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Series Introduction

Many textbooks have been written on control engineering, describing new
techniques for controlling systems, or new and better ways of mathematically
formulating existing methods to solve the ever-increasing complex problems
faced by practicing engineers. However, few of these books fully address the
applications aspects of control engineering. It is the intention of this new series
to redress this situation.

The series will stress applications issues, and not just the mathematics of
control engineering. It will provide texts that present not only both new and
well-established techniques, but also detailed examples of the application of
these methods to the solution of real-world problems.The authors will be drawn
from both the academic world and the relevant applications sectors.

There are already many exciting examples of the application of control
techniques in the established fields of electrical, mechanical (including aero-
space), and chemical engineering.We have only to look around in today’s highly
automated society to see the use of advanced robotics techniques in the
manufacturing industries; the use of automated control and navigation systems
in air and surface transport systems; the increasing use of intelligent control
systems in the many artifacts available to the domestic consumer market; and
the reliable supply of water, gas, and electrical power to the domestic consumer
and to industry. However, there are currently many challenging problems that
could benefit from wider exposure to the applicability of control methodolo-
gies, and the systematic systems-oriented basis inherent in the application of
control techniques.
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This series presents books that draw on expertise from both the academic
world and the applications domains, and will be useful not only as academically
recommended course texts but also as handbooks for practitioners in many
applications domains. Linear Control System Analysis and Design with MATLAB
is another outstanding entry in Dekker’s Control Engineering series.

Neil Munro
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Preface

The countless technological advances of the twentieth century require that
future engineering education emphasize bridging the gap between theory and the
real world.This edition has been prepared with particular attention to the needs
of undergraduates, especially those who seek a solid foundation in control
theory as well as an ability to bridge the gap between control theory and its real-
world applications. To help the reader achieve this goal, computer-aided design
accuracy checks (CADAC) are used throughout the text to encourage good
habits of computer literacy. Each CADAC uses fundamental concepts to ensure
the viability of a computer solution.

This edition has been enhanced as a solid undergraduate and first-year
graduate text; it emphasizes applying control theory fundamentals to both ana-
log and sampled-data single-input single-output (SISO) feedback control sys-
tems. At the same time, the coverage of digital control systems is greatly
expanded. Extensive reference is made to computer-aided design (CAD)
packages to simplify the design process. The result is a comprehensive pre-
sentation of control theory and design�one that has been thoroughly class-
tested, ensuring its value for classroom and self-study use.

This book features extensive use of explanations, diagrams, calculations,
tables, and symbols. Such mathematical rigor is necessary for design applica-
tions and advanced control work. A solid foundation is built on concepts of
modern control theory as well as those elements of conventional control theory
that are relevant in analysis and design of control systems. The presentation of
various techniques helps the reader understand what A. T. Fuller has called
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‘‘the enigmatic control system.’’ To provide a coherent development of the sub-
ject, we eschew formal proofs and lemmas, instead using an organization that
draws the perceptive student steadily and surely to the demanding theory of
multivariable control systems. Design examples are included throughout each
chapter to reinforce the student’s understanding of the material. A student who
has reached this point is fully equipped to undertake the challenges of more
advanced control theories, as presented in advanced control theory textbooks.

Chapter 2 sets forth the appropriate differential equations to describe the
performance of physical systems, networks, and devices.The block diagram, the
transfer function, and the state space (the essential concept of modern
control theory) are also introduced. The approach used for the state space is
the simultaneous derivation of the state-vector differential equation with the
SISO differential equation for a chosen physical system.The chapter also shows
how to derive the mathematical description of a physical system using
LaGrange equations.

Chapter 3 presents the classical method of solving differential equations.
Once the state-variable equation has been introduced, a careful explanation of
its solution is provided. The relationship of the transfer function to the state
equation of the system is presented in Chapter 14. The importance of the state
transition matrix is described, and the state transition equation is derived.
The idea of eigenvalues is explained next; this theory is used with the Cayley^
Hamilton and Sylvester theorems to evaluate the state transition matrix.

The early part of Chapter 4 presents a comprehensive description of
Laplace transformmethods and pole-zero maps. Some further aspects of matrix
algebra are introduced as background for solving the state equation using
Laplace transforms. Finally, the evaluation of transfer matrices is clearly
explained.

Chapter 5 begins with system representation by the conventional block-
diagram approach. This is followed by a discussion of simulation diagrams and
the determination of the state transition equation using signal flow graphs. The
chapter also explains how to derive parallel state diagrams from system transfer
functions, establishing the advantages of having the state equation in uncoupled
form.

Chapter 6 introduces basic feedback system characteristics.This includes
the relationship between system type and the ability of the system to follow or
track polynomial inputs.

Chapter 7 presents the details of the root-locus method.Chapters 8 and 9
describe the frequency-response method using both log and polar plots. These
chapters address the following topics: the Nyquist stability criterion; the corre-
lation between the s-plane, frequency domain, and time domain; and gain set-
ting to achieve a desired output response peak value while tracking polynomial
command inputs. Chapters 10 and 11 describe the methods for improving
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system performance, including examples of the techniques for applying cascade
and feedback compensators. Both the root-locus and frequency-response
methods of designing compensators are covered.

Chapter 12 develops the concept of modeling a desired control ratio with
figures of merit to satisfy system performance specifications.The system inputs
generally fall into two categories: (1) desired input that the system output is to
track (a tracking system) and (2) an external disturbance input for which the
system output is to be minimal (a disturbance-rejection system). For both types
of systems, the desired control ratio is synthesized by the proper placement
of its poles and inclusion of zeros, if required. Chapter 12 also introduces the
Guillemin-Truxal design procedure, which is used for designing a tracking
control system and a design procedure emphasizing disturbance rejection.

Chapter 13 explains how to achieve desired system characteristics using
complete state-variable feedback. Two important concepts of modern control
theory�controllability and observability�are treated in a simple and straight-
forward manner.

Chapter 14 presents the sensitivity concepts of Bode, as used in variation
of system parameters.Other tools include the method of using feedback transfer
functions to form estimates of inaccessible states for use in state feedback, and
a technique for linearizing a nonlinear system about its equilibrium points.

Chapter 15 presents the fundamentals of sampled data (S-D) control
systems.Chapter 16 describes the design of digital control systems, demonstrat-
ing, for example, the effectiveness of digital compensation. The concept of a
pseudo-continuous-time (PCT) model of a digital system permits the use of
continuous-time methods for the design of digital control systems.

The text has been prepared so that it can be used for self-study by
engineers in various areas of practice (electrical, aeronautical, mechanical,
etc.). To make it valuable to all engineers, we use various examples of feedback
control systems and unify the treatment of physical control systems by using
mathematical and block-diagram models common to all.

There are many computer-aided design (CAD) packages (e.g.,
MATLAB� [see App.C], Simulink, and TOTAL-PC) available to help students
and practicing engineers analyze, design, and simulate control systems.The use
of MATLAB is emphasized throughout the book, and many MATLAB m-files
are presented as examples.

We thank the students who have used this book in its previous editions
and the instructors who have reviewed this edition for their helpful comments
and recommendations. We thank especially Dr. R. E. Fontana, Professor
Emeritus of Electrical Engineering, Air Force Institute of Technology, for the
encouragement he provided for the previous editions. This edition is dedicated
to the memory of Dr. T. J. Higgins, Professor Emeritus of Electrical Engineer-
ing,University of Wisconsin, for his thorough review of the earlier manuscripts.
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We also express our appreciation to Professor Emeritus Donald McLean
of the University of Southampton, England, formerly a visiting professor at
the Air Force Institute of Technology. Our association with him has been an
enlightening and refreshing experience. The personal relationship with him
has been a source of inspiration and deep respect.

John J. D’Azzo
Constantine H. Houpis

Stuart N. Sheldon
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1

Introduction

1.1 INTRODUCTION

The technological explosion of the twentieth century,which was accelerated
by the advent of computers and control systems, has resulted in tremendous
advances in the field of science. Thus, automatic control systems and
computers permeate life in all advanced societies today. These systems and
computers have acted and are acting as catalysts in promoting progress
and development, propelling society into the twenty-first century.
Technological developments have made possible high-speed bullet trains;
exotic vehicles capable of exploration of other planets and outer space; the
establishment of the Alpha space station; safe, comfortable, and efficient
automobiles; sophisticated civilian and military [manual and
uninhabited (see Fig. 1.1)] aircraft; efficient robotic assembly lines; and
efficient environmentally friendly pollution controls for factories. The
successful operation of all of these systems depends on the proper function-
ing of the large number of control systems used in such ventures.
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1.2 INTRODUCTION TO CONTROL SYSTEMS

Classical Examples

The toaster in Fig.1.2a can be set for the desired darkness of the toasted bread.
The setting of the ‘‘darkness’’ knob, or timer, represents the input quantity,
and the degree of darkness and crispness of the toast produced is the output
quantity. If the degree of darkness is not satisfactory, because of the condition
of the bread or some similar reason, this condition can in no way automati-
cally alter the length of time that heat is applied. Since the output quantity
has no influence on the input quantity, there is no feedback in this system.
The heater portion of the toaster represents the dynamic part of the overall
system, and the timer unit is the reference selector.

The dc shunt motor of Fig.1.2b is another example. For a given value of
field current, a required value of voltage is applied to the armature to produce
the desired value of motor speed. In this case the motor is the dynamic part of
the system, the applied armature voltage is the input quantity, and the speed
of the shaft is the output quantity. A variation of the speed from the desired
value, due to a change of mechanical load on the shaft, can in no way cause
a change in the value of the applied armature voltage to maintain the desired
speed.Therefore, the output quantity has no influence on the input quantity.

FIGURE 1.1 An unmanned aircraft.

2 Chapter 1
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Systems in which the output quantity has no effect upon the input
quantity are called open-loop control systems.The examples just cited are repre-
sented symbolically by a functional block diagram, as shown in Fig. 1.2c. In
this figure, (1) the desired darkness of the toast or the desired speed of the
motor is the command input, (2) the selection of the value of time on the

FIGURE 1.2 Open-loop control systems: (a) automatic toaster; (b) electric motor;
(c) functional block diagram.

Introduction 3
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toaster timer or the value of voltage applied to the motor armature is
represented by the reference-selector block, and (3) the output of this block is
identified as the reference input.The reference input is applied to the dynamic
unit that performs the desired control function, and the output of this block is
the desired output.

A person could be assigned the task of sensing the actual value of the
output and comparing it with the command input. If the output does not
have the desired value, the person can alter the reference-selector position to
achieve this value. Introducing the person provides a means through which
the output is fed back and is compared with the input. Any necessary change
is then made in order to cause the output to equal the desired value.
The feedback action therefore controls the input to the dynamic unit. Systems
inwhich the output has a direct effect upon the input quantity are called closed-
loop control systems.

To improve the performance of the closed-loop system so that the output
quantity is as close as possible to the desired quantity, the person can be
replaced by a mechanical, electrical, or other form of a comparison unit. The
functional block diagramof a single-input single-output (SISO) closed-loop con-
trol system is illustrated in Fig. 1.3. Comparison between the reference input
and the feedback signals results in an actuating signal that is the
difference between these two quantities.The actuating signal acts tomaintain
the output at the desired value. This system is called a closed-loop control
system. The designation closed-loop implies the action resulting from the
comparison between the output and input quantities in order to maintain the
output at the desired value.Thus, the output is controlled in order to achieve
the desired value.

Examples of closed-loop control systems are illustrated in Figs. 1.4 and
1.5. In a home heating system the desired room temperature (command input)

FIGURE 1.3 Functional block diagram of a closed-loop system.

4 Chapter 1
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is set on the thermostat in Fig.1.4. (reference selector). A bimetallic coil in the
thermostat is affected by both the actual room temperature (output) and the
reference-selector setting. If the room temperature is lower than the desired
temperature, the coil strip alters its shape and causes a mercury switch to
operate a relay, which turns on the furnace to produce heat in the room.
When the room temperature [1] reaches the desired temperature, the shape of
the coil strip is again altered so that themercury switchopens.Thisdeactivates
the relay and in turn shuts off the furnace. In this example, the bimetallic coil
performs the function of a comparator since the output (room temperature)
is fed back directly to the comparator. The switch, relay, and furnace are the
dynamic elements of this closed-loop control system.

Aclosed-loop control systemof great importance to allmultistory build-
ings is the automatic elevator of Fig. 1.5. A person in the elevator presses the
button corresponding to the desired floor. This produces an actuating signal
that indicates the desired floor and turns on themotor that raises or lowers the
elevator. As the elevator approaches the desired floor, the actuating signal
decreases in value and, with the proper switching sequences, the elevator
stops at the desired floor and the actuating signal is reset to zero.The closed-
loop control system for the express elevator in the Sears Tower building in
Chicago is designed so that it ascends or descends the 103 floors in just
under1min with maximum passenger comfort.

Modern Examples

The examples in this section represent complex closed-loop control systems
that are at the forefront of the application of control theory to the control
system challenges of the twenty-first century.

The ultimate objective in robotic arm control research [2]* is to provide
human arm emulation. Payload invariance is a necessary component of

*References are indicated by numbers in brackets and are found at the end of the chapter.

FIGURE 1.4 Home heating control system.
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human arm emulation. Model-based controllers require accurate knowledge
of payload and drive system dynamics to provide good high-speed tracking
accuracy. A robust multivariable control system design technique is required
which solves the payload and dynamics uncertainty. Thus, the model-based
quantitative feedback theory (QFT) design technique [3] is applied which
results in controllers that are implemented by a series of simple backwards
difference equations.QFT high-speed tracking accuracy was experimentally
evaluated on the first three links of the PUMA-500 of Fig. 1.6. This robust
design technique increased tracking accuracy by up to a factor of 4 over the
model-based controller performance baseline. The QFT tracking perfor-
mance is robust for both unmodeled drive system dynamics and payload
uncertainty. The nonheuristic nature of the QFT design and tuning should
allow application to a wide range of manipulators.

The interest in improving the fuel efficiency of automobiles has spurred
the improvement of the idle speed control for the automotive fuel-injected
engine [4,5]. The following is the abstract from the paper entitled ‘‘Robust
Controller Design and Experimental Verification of I.C. Engine Speed
Control’’ by G.K. Hamilton and M.A. Franchek, School of Mechanical
Engineering, Purdue University [4].

FIGURE 1.5 Automatic elevator.
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Presented in this paper is the robust idle speed control of a Ford 4.6L
V-8 fuel injected engine. The goal of this investigation is to design
a robust feedback controller that maintains the idle speed within
a 150 rpm tolerance of about 600 rpm despite a 20Nm step torque
disturbance delivered by the power steering pump. The controlled
input is the by-pass air valve which is subjected to an output satura-
tion constraint. Issues complicating the controller design include the
nonlinear nature of the engine dynamics, the induction-to-power
delay of the manifold filling dynamics, and the saturation constraint
of the by-pass air valve. An experimental verification of the proposed
controller, utilizing the nonlinear plant, is included.

FIGURE 1.6 Robot arm (From Ref. 2).
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The desired performance has been demonstrated on the laboratory test
setup shown in Figure 1.7a. The authors show in their paper that they met all
the design objectives and have achieved excellent results.

Shown in Figure 1.7b is the testing and simulation setup of a mass air
flow (MAF) sensor diagnostics for adaptive fueling control of internal com-
bustion engines performed at the Purdue Engine Research Facility/Engine
Control Technology, Purdue University, by Professor M.A. Franchek and his
associates [6]. An information synthesis solution is attractive for diagnostics
since the algorithm automatically calibrates itself, reduces the number of
false detections, and compresses a large amount of engine health information
into the model coefficients. There are three primary parts to information
synthesis diagnostics. First, an IS model is used to predict the MAF sensor
output based on the engine operating condition. The inputs to this IS
model include the throttle position sensor (TPS) and the engine speed sensor
information. The second part concerns an adaptation process that is used to
reduce the errors between the IS model output and the actual MAF sensor
output. Finally, the adapted model coefficients are used to diagnose the
sensor as well as identify the source for changes in the sensor characteristics.
This proposed solution is experimentally tested and validated on a Ford 4.6 L

FIGURE 1.7a Fuel injection engine.
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V-8 fuel injected engine. The specific MAF sensor faults to be identified
include sensor bias and a leak in the intake manifold.

One of the most important objectives of a wastewater treatment plant
(WWTP) [7], shown in Fig. 1.8, is to protect the water environment from
negative effects produced by residual water, controlling the maximum
concentration of pernicious substances. A computer simulation of the QFT-
designed WWTP-compensated control system met the desired performance
specifications.Thecontrol systemdesign resulted inan improvedperformance
of the plant because the concentration levels obtained are nearer to those

FIGURE 1.7b Testing and simulation setup of a mass air flow sensor diagnostics for
internal combustion engines.

FIGURE 1.8 Wastewater treatment plant.
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required by environmental law, and a notable reduction in the running
costs is produced. Thus, the operation of the plant is notably more efficient.
The controller developed is also suitable for low-cost microcomputer
implementation.

Design methods for analog SISO control systems shown in Fig. 1.3 are
covered in Chaps. 6 to 16. Some systems require a precision in their
performance that cannot be achieved by the structure of Fig. 1.3. Also,
systems exist for which there are multiple inputs and/or multiple outputs.
They are discussed in References 3 and 8. The design methods for such
systems are often based on a representation of the system in terms of state vari-
ables. For example, position,velocity, and accelerationmay represent the state
variables of a position control system. The definition of state variables and
their use in representing systems are contained in Chaps. 2, 3, and 5.The use
of state-variable methods for the design of control systems is presented in
Chaps. 13 and 14. The design methods presented in Chaps. 7 to 16 require
knowledge of a fixed mathematical model of the system that is being
controlled. The parameters of some systems change because of the range of
conditions under which they operate. The quantitative feedback theory is a
design technique for nonlinear plants that contain structured parametric
uncertainty [3]. Using QFT, the parameter variations and performance
specifications are included at the onset of the design process. The use of
a digital computer to assist the engineer in the design process is emphasized
throughout this book, and an available computer-aided design (CAD)
package is given in Appendix C.

The design of the robust flight control system (FCS) for the VISTA
F-16 of Fig. 1.9b was accomplished by an Air Force Institute of Technology

FIGURE 1.9 VISTA F-16.
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student who is an F-16 pilot [9]. He was able to utilize his real-
world knowledge of the aircraft and its handling qualities to achieve
the desired robust FCS. Traditionally, flight control engineers have taken
a conservative, brute force approach to designing a full envelope FCS for
an aircraft. First, many design points, which for this design were points
representing airspeed vs. altitude, within and along the border of the flight
envelope plot were selected. Second, individual compensator designs
were accomplished for each of these points. Third, smooth transitions
between these compensators must be engineered. Making the transitions
imperceptible to the pilot is very difficult and time consuming because
each airspeed-altitude design point can be approached from an infinite
number of initial conditions. Obviously, if the number of the design
points can be reduced, thus reducing the number of transitions required,
the design process can be made more efficient, and the resulting FCS less
complex.

A way to reduce the number of necessary design points is to apply a
robust control design technique to the problem. A compensator synthesized
using robust control principles should be able to handle large parts of, if
not the whole, flight envelope. Unfortunately, many previous attempts at
applying robust control design algorithms to practical, real-world problems
have been dismal failures [9]. Although the problem is well posed, the
failure is due to the fact that the resulting compensator is impractical to
implement. Either the compensator is of too high order, or its gain is too
large to accommodate real-world nonlinearities. Also, any sensor noise
present is accentuated by this gain. The typical reason for these poor results
is that the robust design is synthesized in the essentially noiseless world of the
digital computer, and then validated on the digital computer through the use
of small signal, linear simulation.

A robust control design technique that overcomes the aforementioned
pitfalls is the QFTdesign technique. Although a QFTdesign effort could very
easily result in a compensator of high order and of high gain, it does give the
designer complete control over the gain and the order of the compensator;
hence, QFT is not constrained to produce an impractical compensator.
In addition, if a decision is made to decrease or limit the order or gain of a
compensator, the performance trade-offs due to this action can be clearly
seen by the designer.

In summary, although excellent FCSs have been designed for aircraft
using traditional design methods, the synthesis of those FCSs has been a
costly, time-consuming endeavor. Thus, limiting robustness in FCS design
results in a convoluted, complex, full envelope design. QFToffers the ability
to incorporate enough robustness to simplify the design process and
the resulting FCS, but not so much robustness that the resulting FCS is
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impractical to implement due to violation of physical limitations imposed by
the ‘‘real-world’’ (i.e., actuator saturation or sensor noise amplification).
Also,QFThas the feature of utilizing the control systemdesigner’s knowledge
of the real-world characteristics of the plant, etc. during the ongoing design
process in maximizing the ability to achieve the desired robust system
performance. A simulation [10], involving the nonlinear plant was performed
on the Lamars Simulator [11] by the FCS designer�an F-16 pilot. The
excellent performance in these simulations demonstrated the viability of
a QFT design approach in producing flight-worthy aircraft control systems.
It illustrated the benefits of designing flight control systems with the QFT
robust control system design technique in contrast to the brute force
approach of optimizing a flight control system for performance in expected
configurations and then scheduling the gains.

1.3 DEFINITIONS

From the preceding discussion the following definitions are evolved, based in
part on the standards of the IEEE [1], and are used in this text.

System. A combination of components that act together to perform a
function not possible with any of the individual parts. The word
system as used herein is interpreted to include physical, biological,
organizational, and other entities, and combinations thereof, which
can be represented through a common mathematical symbolism.
The formal name systems engineering can also be assigned to this defi-
nition of the word system. Thus, the study of feedback control
systems is essentially a study of an important aspect of systems
engineering and its application.

Command input.Themotivating input signal to the system,which is inde-
pendent of the output of the system and exercises complete
control over it (if the system is completely controllable).

Reference selector (reference input element). The unit that establishes the
value of the reference input. The reference selector is calibrated in
terms of the desired value of the system output.

Reference input. The reference signal produced by the reference
selector, i.e., the command expressed in a form directly usable by
the system. It is the actual signal input to the control system.

Disturbance input. An external disturbance input signal to the system
that has an unwanted effect on the system output.

Forward element (system dynamics). The unit that reacts to an actuating
signal to produce a desired output.This unit does thework of control-
ling the output and thus may be a power amplifier.
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Output (controlled variable). The quantity that must be maintained at a
prescribed value, i.e., following the command input without respond-
ing the disturbance inputs.

Open-loop control system.A system inwhich the output has no effect upon
the input signal.

Feedback element.The unit that provides the means for feeding back the
output quantity, or a function of the output, in order to compare it
with the reference input.

Actuating signal. The signal that is the difference between the reference
input and the feedback signal. It is the input to the control unit that
causes the output to have the desired value.

Closed-loop control system. A system in which the output has an effect
upon the input quantity in such a manner as to maintain the desired
output value.

The fundamental difference between the open- and closed-loop systems
is the feedback action, which may be continuous or discontinuous. In one
formof discontinuous control the input and output quantities are periodically
sampled and discontinuous. Continuous control implies that the output is
continuously fed back and compared with the reference input compared;
i.e., the control action is discontinuous in time. This is commonly called
a digital, discrete-data or sampled-data feedback control system. A discrete-
data control system may incorporate a digital computer that improves the
performance achievable by the system. In another form of discontinuous
control system the actuating signal must reach a prescribed value before the
system dynamics reacts to it; i.e., the control action is discontinuous in
amplitude rather than in time. This type of discontinuous control system is
commonly called an on-off or relay feedback control system. Both forms
may be present in a system. In this text continuous control systems are
considered in detail since they lend themselves readily to a basic understand-
ing of feedback control systems. The fundamentals of sampled-data (S-D)
control systems are given in Chap.15. Digital control systems are introduced
in Chap.16.

With the above introductory material, it is proper to state a definition [1]
of a feedback control system: ‘‘A control system that operates to achieve
prescribed relationships between selected system variables by comparing
functions of these variables and using the comparison to effect control.’’ The
following definitions are also used.

Servomechanism (often abbreviated as servo). The term is often used to
refer to a mechanical system in which the steady-state error is zero
for a constant input signal. Sometimes, by generalization, it is used
to refer to any feedback control system.
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Regulator. This term is used to refer to systems in which there is a con-
stant steady-state output for a constant signal. The name is derived
from the early speed and voltage controls, called speed and voltage
regulators.

1.4 HISTORICAL BACKGROUND [12]

The action of steering an automobile to maintain a prescribed direction of
movement satisfies the definition of a feedback control system. In Fig. 1.10,
the prescribed direction is the reference input. The driver’s eyes perform the
function of comparing the actual direction of movement with the prescribed
direction, the desired output. The eyes transmit a signal to the brain, which

FIGURE 1.10 A pictorial demonstration of an automobile as a feedback control
system.
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interprets this signal and transmits a signal to the arms to turn the steering
wheel, adjusting the actual direction of movement to bring it in line with
the desired direction. Thus, steering an automobile constitutes a feedback
control system.

One of the earliest open-loop control systems was Hero’s device
for opening the doors of a temple. The command input to the system
(see Fig. 1.11) was lighting a fire upon the altar. The expanding hot air under
the fire drove the water from the container into the bucket. As the bucket
became heavier, it descended and turned the door spindles by means of
ropes, causing the counterweight to rise. The door could be closed by
dousing the fire. As the air in the container cooled and the pressure was
thereby reduced, the water from the bucket siphoned back into the storage
container. Thus, the bucket became lighter and the counterweight, being

FIGURE 1.11 Hero’s device for opening temple doors.
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heavier, moved down, thereby closing the door. This occurs as long as the
bucket is higher than the container. The device was probably actuated when
the ruler and his entourage started to ascend the temple steps.The system for
opening the door was not visible or known to the masses. Thus, it created an
air of mystery and demonstrated the power of the Olympian gods.

JamesWatt’s flyball governor for controlling speed, developed in 1788,
can be considered the first widely used automatic feedback control system.
Maxwell, in 1868, made an analytic study of the stability of the flyball
governor. This was followed by a more detailed solution of the stability of a
third-order flyball governor in 1876 by the Russian engineerWischnegradsky
[13]. Minorsky made one of the earlier deliberate applications of nonlinear
elements in closed-loop systems in his study of automatic ship steering about
1922 [14].

A significant date in thehistory of automatic feedback control systems is
1934, when Hazen’s paper ‘‘Theory of Servomechanisms’’ was published in
the Journal of the Franklin Institute, marking the beginning of the very intense
interest in this new field. It was in this paper that the word servomechanism
originated, from thewords servant (or slave) andmechanism.Black’s important
paper on feedback amplifiers appeared [15] in the same year. AfterWorldWar
II, control theory was studied intensively and applications have proliferated.
Many books and thousands of articles and technical papers havebeenwritten,
and the application of control systems in the industrial and military fields has
been extensive. This rapid growth of feedback control systems was acceler-
ated by the equally rapid development and widespread use of computers.

An early military application of a feedback control system is the antiair-
craft radar tracking control system shown in Fig. 1.12. The radar antenna
detects the position and velocity of the target airplane, and the computer
takes this information and determines the correct firing angle for the gun.
This angle includes the necessary lead angle so that the shell reaches the
projected position at the same time as the airplane. The output signal of the
computer,which is a function of the firing angle, is fed into an amplifier that
provides power for the drive motor. The motor then aims the gun at the
necessary firing angle. A feedback signal proportional to the gun position
ensures correct alignment with the position determined by the computer.
Since the gun must be positioned both horizontally and vertically, this system
has two drive motors,which are parts of two coordinated feedback loops.

The advent of the nuclear reactor was amilestone in the advancement of
science and technology. For proper operation the power level of the reactor
must be maintained at a desired value or must vary in a prescribed manner.
Thismust be accomplished automatically with minimumhuman supervision.
Figure 1.13 is a simplified block diagram of a feedback control system for
controlling the power output level of a reactor. If the power output level differs
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from the reference input value, the actuating signal produces a signal at the
output of the control elements. This, in turn, moves the regulating rod in
the proper direction to achieve the desired power level of the nuclear reactor.
The position of the regulating rod determines the rate of nuclear fission
and therefore the total power generated. This output nuclear power can be
converted into steam power, for example, which is then used for generating
electric energy.

The control theory developed through the late1950smay be categorized
as conventional control theory and is effectively applied to many control-
design problems, especially to SISO systems. Since then, control theory has
been developed for the design of more complicated systems and for multiple-
input multiple-output (MIMO) systems. Space travel has become possible only

FIGURE 1.12 Antiaircraft radar-tracking control systems.

FIGURE 1.13 A feedback system for controlling the power level of a nuclear reactor.
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because of the advent of modern control theory. Areas such as trajectory
optimization and minimum-time and/or minimum-fuel problems, which
are very important in space travel, can be readily handled by multivariable
control theory.The introduction of microprocessors as control elements, i.e.,
performing control functions in contrast to being used solely as computa-
tional tools, has had an enormous impact on the design of feedback control
systems which achieve desired control-system specifications.

The development of control concepts in the engineering field has been
extended to the realm of human and biomedical engineering. The basic
concept of feedback control is used extensively in the field of business
management. The field of medicine is also one to which the principles of
control systems and systems engineering are being applied extensively.Thus,
standards of optimum performance are established in all areas of endeavor:
the actual performance is compared with the desired standard, and any
difference between the two is used to bring them into closer agreement.

1.5 DIGITAL CONTROL DEVELOPMENT [16]

The advances of the twentieth century have expedited the decrease in cost of
digital hardware; thus economical digital control implementation is enabling
the tremendous advances that will be made in the twenty-first century.
Applications include process control, automatic aircraft stabilization and
control, guidance and control of aerospace vehicles, aerospace vehicle man-
agement systems (VMS), uninhabited (unmmaned) aerospace vehicles such
as the Global Hawk, and robotics.The development of digital control systems
is illustrated by the following example of a digital flight control system.

Numerous changes have been made in aircraft flight control systems.
Initially, flight control systems were purely mechanical, which was ideal for
smaller, slow-speed, low-performance aircraft because they were easy to
maintain. However, more control-surface force is required in modern high-
performance airplanes.Thus, during the twentieth century a hydraulic power
boost system was added to the mechanical control. This modification
maintained the direct mechanical linkage between the pilot and the control
surface. As aircraft became larger, faster, and heavier, and had increased
performance, they became harder to control because the pilot could not
provide the necessary power to directly operate the control surfaces. Thus,
the entire effort of moving the control surface had to be provided by the
actuator. A stability augmentation system (SAS) was added to the hydraulic
boosted mechanical regulator system to make the aircraft flyable under
all flight configurations. Motion sensors were used to detect aircraft
perturbations and to provide electric signals to a SAS computer, which, in
turn, calculated the proper amount of servo actuator force required.When
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higher-authority SAS was required, both series- and parallel-pitch axis, dam-
pers were installed. This so-called command augmentation system (CAS),
which is no longer utilized, allowed greater flexibility in control because the
parallel damper could provide full-authority travel without restricting the
pilot’s stick movements. Although planes were originally designed to be stati-
cally stable, longitudinally unstable aircraft are more agile. In these aircraft
the flight control system provided the required stability.

The next step in the evolution of flight control systems was the use of a
fly-by-wire (FBW) control system shown in Fig. 1.14. In this design, all pilot
commands are transmitted to the control-surface actuators through electric
wires. Thus, all mechanical linkages from the pilot’s control stick to the
servo actuators are removed from the aircraft. The FBW system provided
the advantages of reduced weight, improved survivability, and decreased
maintenance. However, the pilot is required to believe in and accept the
increased survivability that is provided by using redundancy throughout the
entire flight control system.

Originally the flight control computers were analog (such as the F-16
aircraft computers), but these have been replaced by digital computers.
In addition, the controller consists of a digital computer which accepts the
pilot commands and signals from the sensors (position and rate gyros) and
accelerometers, and sends commands to the actuators.This is now referred to
as a digital flight control system (DFCS). For twenty-first century aerospace
vehicles the use of hydraulics has essentially been eliminated in favor of an
all-electric system incorporating the use of digital computers. No longer do

FIGURE 1.14 Fly-by-wire (FBW) and power-by-wire (PBW) control systems.
(Control Systems Development Branch, Flight Dynamics Laboratory, Wright-
Patterson AFB, Ohio.)
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they simply control the flight control system; they now command and control
utilities and other aircraft subsystems. The flight control system has now
become a more inclusiveVMS.

The improved airborne digital processors have further reduced the cost,
weight,andmaintenanceofmodernaircraft.Other advantagesassociatedwith
twenty-first century digital equipment include greater accuracy, increased
modification flexibility through the use of software changes, improved in-
flight reconfiguration techniques that compensate for physical damage and
equipment failures, and more reliable preflight and postflight maintenance
testing. An example of a modern high-performance aircraft is shown in
Fig. 1.15.This aircraft has a quad-redundant three-axis fly-by-wire flight con-
trol system. It also includes a digital built-in task computer that runs through
all the preflight tests to make sure that all equipment is functioning properly.

1.6 MATHEMATICAL BACKGROUND

The early studies of control systems were based on the solution of differential
equations by classical methods. Other than for simple systems, the analysis

FIGURE 1.15 An aircraft designed for aero-redundancy for reconfiguration to
maintain desired flying qualities.
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in this approach is tedious and does not readily indicate what changes
should bemade to improve systemperformance.Use of the Laplace transform
simplifies this analysis somewhat. Nyquist’s paper [17] published in 1932
dealt with the application of steady-state frequency-response techniques
to feedback amplifier design. This work was extended by Black [15] and
Bode [18]. Hall [19] and Harris [20] applied frequency-response analysis in
the study of feedback control systems, which furthered the development of
control theory as a whole.

Another advance occurred in 1948,when Evans [21] presented his root-
locus theory. This theory affords a graphical study of the stability properties
of a system as a function of loop gain and permits the graphical evaluation of
both the time and the frequency response. Laplace transform theory and
network theory are joined in the root-locus calculation. In the conventional
control-theory portion of this text the reader learns to appreciate the
simplicity and value of the root locus technique.

The Laplace transform and the principles of linear algebra are used in
the application of modern control theory to system analysis and design.
The nth-order differential equation describing the system can be converted
into a set of n first-order differential equations expressed in terms of the state
variables. These equations can be written in matrix notation for simpler
mathematical manipulation. The matrix equations lend themselves very well
to computer computation. This characteristic has enabled modern control
theory to solve many problems, such as nonlinear and optimization problems,
which could not be solved by conventional control theory.

Mathematical models are used in the linear analysis presented in this
text. Once a physical system has been described by a set of mathematical
equations, they are manipulated to achieve an appropriate mathematical
format. When this has been done, the subsequent method of analysis is
independent of the nature of the physical system; i.e., it does not matter
whether the system is electrical, mechanical, etc. This technique helps the
designer to spot similarities based upon previous experience.

The reader should recognize that no single design method is intended to
be used to the exclusion of the others.Depending upon the known factors and
the simplicity or complexity of a control-system problem, a designer may use
one method exclusively or a combination of methods.With experience in the
design of feedback control systems comes the ability to use the advantages of
each method.

The modern control theory presented in this text provides great
potential for shaping the systemoutput response tomeet desired performance
standards. Additional state-of-the-art design techniques for MIMO controls
systems are presented that bring togethermany of the fundamentals presented
earlier in the text. These chapters present the concepts of designing a robust

Introduction 21

Copyright © 2003 Marcel Dekker, Inc.



control system in which the plant parameters may vary over specified ranges
during the entire operating regime.

Acontrol engineer must be proficient in the use of available comprehen-
sive CAD programs similar to MATLAB (see Appendix C) or TOTAL-PC
[8] (see Appendix D), which are control-system computer-aided-design
programs. Many CAD packages for personal computers (PCs) and main-
frame computers are available commercially. The use of a CAD package
enhances the designer’s control-system design proficiency, since it minimizes
and expedites the tedious and repetitive calculations involved in the designof a
satisfactory control system.To understand and use a computer-aided analysis
and design package, one must first achieve a conceptual understanding of the
theory and processes involved in the analysis and synthesis of control systems.
Once the conceptual understanding is achieved by direct calculations, the
reader is urged to use all available computer aids. For complicated design
problems, engineers must write their own digital-computer program that is
especially geared to help achieve a satisfactory system performance.

1.7 THE ENGINEERING CONTROL PROBLEM

In general, a control problem can be divided into the following steps:

1. A set of performance specifications is established.
2. The performance specifications establish the control problem.
3. A set of linear differential equations that describe the physical

system is formulated or a system identification technique is applied
in order to obtain the plant model transfer functions.

4. A control-theory design approach, aided by available computer-
aided-design (CAD) packages or specially written computer
programs, involves the following:
(a) The performance of the basic (original or uncompensated)

system is determined by application of one of the available
methods of analysis (or a combination of them).

(b) If the performance of the original system does not meet the
required specifications, a control design method is selected
that will improve the system’s response.

(c) For plants having structured parameter uncertainty, the
quantitative feedback theory (QFT) [3] design technique may
be used. Parametric uncertainty is present when parameters of
the plant to be controlled vary during its operation, as explained
in Ref. 3.

5. A simulation of the designed nonlinear system is performed.
6. The actual system is implemented and tested.
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Designof the system toobtain the desired performance is the control problem.
The necessary basic equipment is then assembled into a system to perform the
desired control function. Although most systems are nonlinear, in many cases
the nonlinearity is small enough to be neglected, or the limits of operation are
small enough to allow a linear analysis to be used. This textbook considers
only linear systems.

A basic system has the minimum amount of equipment necessary to
accomplish the control function. After a control system is synthesized to
achieve the desired performance, final adjustments can be made in a simula-
tion, or on the actual system, to take into account the nonlinearities that were
neglected. A computer is generally used in the design, depending upon the
complexity of the system. The essential aspects of the control system design
process are illustrated in Fig. 1.16. Note: The development of this figure is
based upon the application of the QFT [3,8] design technique. A similar
figure may be developed for other design techniques. The intent of (Fig. 1.16)
is to give the reader an overview of what is involved in achieving a successful
and practical control system design.The aspects of this figure that present the
factors that help in bridging the gap between theory and the real world are
addressed in the next paragraph. While accomplishing a practical control
system design, the designer must keep in mind that the goal of the design
process, besides achieving a satisfactory theoretical robust design, is to
implement a control system that meets the functional requirements. In other
words, during the design process one must keep the constraints of the real
world in mind. For instance, in performing the simulations, one must be able
to interpret the results obtained, based upon a knowledge of what can be
reasonably expected of the plant that is being controlled. For example, in
performing a time simulation of an aircraft’s transient response to a pilot’s
maneuvering command to the flight control system, the simulation run time
may need to be only 5s since by that time a pilot would have instituted a new
command signal. If within this 5s window the performance specifications are
satisfied, then it will be deemed that a successful design has been achieved.
However, if the performance varies even more dramatically, rate saturation
of the output effectors will significantly affect the achievement of the
functional requirements. Linear and nonlinear simulations are very helpful
in early evaluation of the controlled system, but if the system is to operate in
the real word, hardware-in-the-loop and system tests must be performed to
check for unmodeled effects not taken into account during the design and
implementation phases. In order to be a successful control system designer,
an individual must be fully cognizant of the role corresponding to each
aspect illustrated in Fig.1.16.

Bridging the gap, as illustrated in Fig. 1.16, is enhanced by the trans-
parency of the metrics depicted by the oval items in the interior of the QFT
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design process. A key element of QFT is embedding the performance
specifications at the onset of the design process.This establishes design goals
that enhance and expedite the achievement of a successful design. Another
important element is the creation of templates at various frequencies.

FIGURE 1.16 A control system design process: bridging the gap.
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The sizes of the templates indicate whether or not a robust design is
achievable. If a robust design is not achievable, then the templates can be
used as a metric in the reformation of the control design problem. Another
element of the QFT design process is the ability to concurrently analyze
frequency responses of the J linear-time invariant (LTI) plants that represent
the nonlinear dynamical system throughout its operating environment. This
gives the designer insight into the behavior of the system. The designer can
use this insight for such things as picking out key frequencies to use during
the design process, as an indicator of potential problems such as nonminimum
phase behavior, and as a tool to compare the nonlinear systemwith the desired
performance boundaries. The next element of QFT consists of the design
boundaries. During the actual loop shaping process, the designer uses
boundaries plotted on theNichols chart.These boundaries are only guidelines
and the designer can exercise engineering judgment to determine if all the
boundaries are critical or if some of the boundaries are not important.
For example, based on knowledge of the real world system, the designer
may determine that meeting performance boundaries below a certain
frequency is not important, but it is important to meet the disturbance
rejection boundaries below that frequency. Once the initial design has been
accomplished, all of the J loop transmission functions can be plotted on a
Nichols chart to analyze the results of applying the designed compensator
(controller) to the nonlinear system. This gives the designer a first look at
any areas of the design that may present problems during simulation and
implementation. The last two elements of the QFT design process that help
bridging the gap is the relationship of the controlled system’s behavior to the
frequency domain design and the operating condition. These relationships
enable the designer to better analyze simulation or system test results for
problems in the control design. To obtain a successful control design, the
controlled system must meet all of the requirements during simulation and
system test. If the controlled system fails any of the simulation or system
tests, then, using the design elements of QFT, the designer can trace that
failure back through the design process and make necessary adjustments
to the design. QFT provides many metrics that provide the link between
the control design process and real world implementation; this is the transpar-
ency of QFT.

1.8 COMPUTER LITERACY

In the mid 1960s, the first practical CAD package, FREQR, for frequency
domain analysis was developed at the Air Force Institute of Technology
(AFIT). This was followed by the development of two other AFIT CAD
packages: PARTL for partial-fraction expansion of transfer functions and for
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obtaining a time response, and ROOTL for obtaining root-locus data and
plots. These CAD packages became the basis for the practical control
system design CAD package called TOTAL, the forerunner of TOTAL-PC
[8], which was developed in 1978 at AFIT. TOTAL became the catalyst,
along with other control CAD packages developed by other individuals,
for the development of the current highly developed commercial control
system design CAD packages that are now readily available. One of these
CAD packages is MATLAB, which has become a valuable tool for a control
engineer and is illustrated in this text. The detailed contents of theTOTAL-
PCCAD package are described in Appendix D.The program is contained in
the disk which is included with this book.

Becoming proficient (computer literate) in the use of these CAD
packages (tools) is essential for a control systems engineer. It is also essential
to develop procedures for checking the CAD results at each stage of the
analysis and design.This is necessary in order to verify that these CAD tools
have generated results which are consistent with theory.Whenever in doubt,
concerning the operation of a specific CAD tool, apply the CAD tool to a
simple problem whose known analytical solution can be readily compared to
the computer generated output.

1.9 OUTLINE OF TEXT

The text is essentially divided into three parts. The first part, consisting of
Chapters 2 through 4, provides the mathematical foundation for modeling
physical systems and obtaining time solutions using classical or Laplace
transform methods. The second part consists of Chapters 5 through 9 that
provide the fundamentals of conventional control theory and state-variable
concepts.The remaining portion of the text represents material that is usually
covered in the first or second undergraduate course in control theory and
control system design.

The first few chapters deal with the mathematics and physical system
modeling that underlie the analysis of control systems.Once the technique of
writing the system equations (and, in turn, their Laplace transforms) that
describe the performance of a dynamic system has been mastered, the ideas
of block and simulation diagrams and transfer functions are developed.
When physical systems are described in terms of block diagrams and transfer
functions, they exhibit basic servo characteristics. These characteristics are
described and discussed. The concept of state is introduced, and the system
equations are developed in the standard matrix format. The necessary linear
algebra required to manipulate the matrix equations is included. A presenta-
tion of the variousmethods of analysis is next presented that can be used in the
study of feedback control systems. SISO systems are used initially to facilitate

26 Chapter 1

Copyright © 2003 Marcel Dekker, Inc.



an understanding of the synthesis methods.These methods rely on root-locus
and steady-state frequency-response analysis. If the initial design does not
meet the desired specifications, then improvement of the basic system by
using compensators in presented. These compensators can be designed by
analyzing and synthesizing a desired open-loop transfer functionor by synthe-
sizing a desired closed-loop transfer function that produces the desiredoverall
system performance.Chapter12 is devoted to modeling a desired closed-loop
transfer function for tracking a desired input or for rejecting (not responding
to) disturbance inputs.

The next portion of the text deals with SISO system design using
state feedback. Topics such as controllability and observability, pole
placement via state-variable feedback, and parameter sensitivity are
presented. The fundamentals of sampled-data (S-D) control-system analysis
are presented in Chap.15.The design of cascade and feedback compensators
(controllers) for improving the performance of S-D control systems is
presented inChap.16.Chapter16 introduces the concept of the representation
of, and the design of digital control systems by a psuedo-continuous-time
(PCT) control system.

Appendix A gives a table of Laplace transform pairs. Fundamentals of
basic matrix algebra are presented in Appendix B. A description of the
MATLAB SIMULINK computer-aided-design packages, that are useful to a
feedback control system engineer, is presented in Appendix C.

In closing this introductory chapter it is important to stress that
feedback control engineers are essentially ‘‘system engineers,’’ i.e., people
whose primary concern is with the design and synthesis of an overall system.
To an extent depending on their ownbackground and experience, they rely on,
and work closely with, engineers in the various recognized branches of
engineering to furnish them with the transfer functions and/or system
equations of various portions of a control system and the special characteris-
tics of the physical plant being controlled. For example, the biomedical
control engineer works closely with the medical profession in modeling
biological functions, man-machine interface problems, etc.

The following design policy includes factors that are worthy of consid-
eration in the control system design problem:

1. Use proven design methods.
2. Select the system design that has the minimum complexity.
3. Useminimumspecificationsor requirements that yieldasatisfactory

system response. Compare the cost with the performance and
select the fully justified system implementation.

4. Perform a complete and adequate simulation and testing of the
system.
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2

Writing System Equations

2.1 INTRODUCTION

An accurate mathematical model that describes a system completely must be
determined in order to analyze a dynamic system.The derivationof thismodel
is based upon the fact that the dynamic system can be completely described by
known differential equations (Chap. 2) or by experimental test data (Sec. 8.1).
The ability to analyze the system and determine its performance depends on
how well the characteristics can be expressed mathematically.Techniques for
solving linear differential equations with constant coefficients are presented
in Chaps. 3 and 4. However, the solution of a time-varying or nonlinear
equation often requires a numerical, graphic, or computer procedure [1].The
systems considered in this chapter are described completely by a set of linear
constant-coefficient differential equations. Such systems are said to be linear
time-invariant (LTI) [2]; i.e., the relationship between the system input and
output is independent of time. Since the system does not change with time,
the output is independent of the time at which the input is applied. Linear
methods are used because there is extensive and elegant mathematics for
solving linear equations. For many systems, there are regions of operation for
which the linear representation works very well.

This chapter presents methods for writing the differential and state
equations for a variety of electrical, mechanical, thermal, and hydraulic
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systems [3].This step is the first that must be mastered by the control-systems
engineer. The basic physical laws are given for each system, and the associa-
ted parameters are defined. Examples are included to show the application of
the basic laws to physical equipment.The result is a differential equation, or a
set of differential equations, that describes the system.The equations derived
are limited to linear systems or to systems that can be represented by linear
equations over their useful operating range. The important concepts of
system and of state variables are also introduced. The system equations,
expressed in terms of state variables, are called state equations.

The analytical tools of linear algebra are presented in Appendix B.
They are introduced in the text as they are needed in the development of the
system differential equations. They are also introduced in a logical format
in the development of state equations. This facilitates the solution of the
differential and state equations that are covered in Chap. 3. This is followed
by the use of Laplace transforms to facilitate solution of differential and state
equations in Chap. 4. The linear algebra format also facilitates the use of
computer-aided techniques for solving the differential and state equations as
presented inAppendix C.

The analysis of behavior of the system equations is enhanced by using
the block diagram representation of the system.Complete drawings showing
all the detailed parts are frequently too congested to show the specific
functions that are performed by each system component. It is common to use
a block diagram, in which each function is represented by a block in order to
simplify the picture of the complete system. Each block is labeled with the
name of the component, and the blocks are appropriately interconnected by
line segments. This type of diagram removes excess detail from the picture
and shows the functional operation of the system.The use of a block diagram
provides a simple means by which the functional relationship of the various
components can be shown and reveals the operation of the system more
readily than does observation of the physical system itself. The simple
functional block diagram shows clearly that apparently different physical
systems can be analyzed by the same techniques. Since a block diagram is
involved not with the physical characteristics of the system but only with the
functional relationship between various points in the system, it can reveal the
similarity between apparently unrelated physical systems.

Ablock diagram [4] represents the flowof information and the functions
performed by each component in the system. A further step taken to increase
the information supplied by the block diagram is to label the input quantity
into each block and the output quantity from each block. Arrows are used to
show the direction of the flow of information. The block represents the
function or dynamic characteristics of the component and is represented by
a transfer function (Sec. 2.4). The complete block diagram shows how the
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functional components are connected and the mathematical equations that
determine the response of each component. Examples of block diagrams are
shown throughout this chapter.

In general, variables that are functions of time are represented by
lowercase letters. These are sometimes indicated by the form x(t ), but
more often this is written just as x. There are some exceptions, because of
established convention, in the use of certain symbols.

To simplify the writing of differential equations, theD operator notation
is used [5].The symbolsD and1/D are defined by

Dy � dyðtÞ
dt

D2y � d2yðtÞ
dt2

ð2:1Þ

D�1y � 1
D
y �

Z t

0
yðtÞ dtþ

Z 0

�1
yðtÞ dt ¼

Z t

0
yðtÞ dtþ Y0 ð2:2Þ

where Y0 represents the value of the integral at time t ¼ 0, that is, the initial
value of the integral.

2.2 ELECTRIC CIRCUITS AND COMPONENTS [6]

The equations for an electric circuit obey Kirchhoff ’s laws, which state the
following:

1. The algebraic sum of the potential differences around a closed path
equals zero.This can be restated as follows: In traversing any closed
loop, the sumof the voltage rises equals the sumof the voltage drops.

2. The algebraic sum of the currents entering (or leaving) a node is
equal to zero. In other words, the sum of the currents entering the
junction equals the sum of the currents leaving the junction.

The voltage sources are usually alternating-current (ac) or direct-
current (dc) generators. The usual dc voltage source is shown as a battery.
The voltage drops appear across the three basic electrical elements: resistors,
inductors, and capacitors.These elements have constant component values.

The voltage drop across a resistor is give by Ohm’s law,which states that
the voltage drop across a resistor is equal to the product of the current through
the resistor and its resistance. Resistors absorb energy from the system.
Symbolically, this voltage is written as

vR ¼ Ri ð2:3Þ
The voltage drop across an inductor is given by Faraday’s law,which is

written

vL ¼ L
di
dt
� L Di ð2:4Þ

Writing System Equations 33

Copyright © 2003 Marcel Dekker, Inc.



This equation states that the voltage drop across an inductor is equal to
the product of the inductance and the time rate of increase of current.
A positive-valued derivative Di implies an increasing current, and thus a
positive voltage drop; a negative-valued derivative implies a decreasing
current, and thus a negative voltage drop.

The positively directed voltage drop across a capacitor is defined as the
ratio of themagnitude of the positive electric charge on its positive plate to the
value of its capacitance. Its direction is from the positive plate to the negative
plate. The charge on a capacitor plate is equal to the time integral of the
current entering the plate from the initial instant to the arbitrary time t, plus
the initial value of the charge.The capacitor voltage is written in the form

vC ¼
q
C
¼ 1

C

Z t

0
i dtþ Q0

C
� i

CD
ð2:5Þ

The mks units for these electrical quantities in the practical system are given
inTable 2.1.

Series Resistor–Inductor Circuit

The voltage source e in Fig. 2.1 is a function of time.When the switch is closed,
setting the voltage rise equal to the sum of the voltage drops produces

vR þ vL ¼ e

Ri þ L
di
dt
¼ Ri þ LDi ¼ e

ð2:6Þ

When the applied voltage e is known, the equation can be solved for
the current i, as shown in Chap. 3. This equation can also be written
in terms of the voltage vL across the inductor in the following manner.
The voltage across the inductor is vL ¼ LDi. Therefore, the current through
the inductor is

i ¼ 1
LD

vL

TABLE 2.1 Electrical Symbols and Units

Symbol Quantity Units

e or v Voltage Volts
i Current Amperes
L Inductance Henrys
C Capacitance Farads
R Resistance Ohms
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Substituting this value into the original equation gives

R
LD

vL þ vL ¼ e ð2:7Þ

The node method is also convenient for writing the system equations directly
in terms of the voltages. The junctions of any two elements are called nodes.
This circuit has three nodes, labeled a, b, and c (see Fig. 2.1).One node is used
as a reference point; in this circuit node c is used as the reference.The voltages
at all the other nodes are considered with respect to the reference node.
Thus vac is the voltage drop from node a to node c, and vbc is the voltage drop
from node b to the reference node c. For simplicity, these voltages are written
just as va and vb.

The source voltage va ¼ e is known; therefore, there is only one
unknown voltage, vb, and only one node equation is necessary. Kirchhoff ’s
second law, that the algebraic sum of the currents entering (or leaving) a node
must equal zero, is applied to node b. The current from node b to node a,
through the resistor R, is ðvb � vaÞ=R. The current from node b to node c
through the inductorL is (1/LD)vb.The sumof these currentsmust equal zero:

vb � va
R
þ 1
LD

vb ¼ 0 ð2:8Þ

Rearranging terms gives

1
R
þ 1
LD

� �
vb �

1
R
va ¼ 0 ð2:9Þ

Except for the use of different symbols for the voltages, this is the same as
Eq. (2.7).Note that the node method requires writing only one equation.

Series Resistor–Inductor–Capacitor Circuit

For the series RLC circuit shown in Fig. 2.2, the applied voltage is equal to
the sum of the voltage drops when the switch is closed:

vL þ vR þ vC ¼ e LDi þ Ri þ 1
CD

i ¼ e ð2:10Þ

FIGURE 2.1 Series resistor–inductor circuit.
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The circuit equation can be written in terms of the voltage drop across
any circuit element. For example, in terms of the voltage across the resistor,
vR ¼ Ri, Eqs. (2.10) become

L
R
DvR þ vR þ

1
RCD

vR ¼ e ð2:11Þ

Multiloop Electric Circuits

Multiloop electric circuits (see Fig. 2.3) can be solved by either loop or nodal
equations.The following example illustrates both methods.The problem is to
solve for the output voltage vo.

LOOP METHOD. A loop current is drawn in each closed loop (usually
in a clockwise direction); then Kirchhoff ’s voltage equation is written for
each loop:

R1 þ
1
CD

� �
i1 � R1i2 �

1
CD

i3 ¼ e ð2:12Þ

�R1i1 þ ðR1 þ R2 þ LDÞi2 � R2i3 ¼ 0 ð2:13Þ

� 1
CD

i1 � R2i2 þ R2 þ R3 þ
1
CD

� �
i3 ¼ 0 ð2:14Þ

FIGURE 2.3 Multiloop network.

FIGURE 2.2 Series RLC circuit.
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The output voltage is

vo ¼ R3i3 ð2:15Þ
These four equationsmust be solved simultaneously to obtain voðtÞ in terms of
the input voltage e(t) and the circuit parameters.

NODE METHOD. The junctions,or nodes,are labeled by letters inFig. 2.4.
Kirchhoff ’s current equations are written for each node in terms of the node
voltages, where node d is taken as reference. The voltage vbd is the voltage
of node b with reference to node d. For simplicity, the voltage vbd is written
just as vb. Since there is one known node voltage va ¼ e and two unknown
voltages vb and vo, only two equations are required:

For node b: i1 þ i2 þ i3 ¼ 0 ð2:16Þ
For node c: �i3 þ i4 þ i5 ¼ 0 ð2:17Þ

In terms of the node voltages, these equations are
vb � va
R1
þ CDvb þ

vb � vo
R2

¼ 0 ð2:18Þ

vo � vb
R2
þ vo
R3
þ 1
LD
ðvo � eÞ ¼ 0 ð2:19Þ

Rearranging the terms in order to systematize the form of the equations gives

1
R1
þ CD þ 1

R2

� �
vb �

1
R2

vo ¼
1
R1

e ð2:20Þ

� 1
R2

vb þ
1
R2
þ 1
R3
þ 1
LD

� �
vo ¼

1
LD

e ð2:21Þ

For this example, only two nodal equations are needed to solve for the
potential at node c. An additional equation must be used if the current in
R3 is required. With the loop method, three equations must be solved
simultaneously to obtain the current in any branch; an additional equation
must be used if the voltage across R3 is required. The method that requires
the solution of the fewest equations should be used. This varies with the
circuit.

The rules for writing the node equations are summarized as follows:

1. The number of equations required is equal to the number of
unknown node voltages.

2. An equation is written for each node.
3. Each equation includes the following:

(a) The node voltage multiplied by the sum of all the admittances
that are connected to this node.This term is positive.

Writing System Equations 37

Copyright © 2003 Marcel Dekker, Inc.



(b) The node voltage at the other end of each branch multiplied
by the admittance connected between the two nodes. This
term is negative.

The reader should learn to apply these rules so that Eqs. (2.20) and (2.21)
can be written directly from the circuit of Fig. 2.4.

2.3 STATE CONCEPTS

Basic matrix properties are used to introduce the concept of state and the
method of writing and solving the state equations. The state of a system
(henceforth referred to only as state) is defined by Kalman [7] as follows:

STATE. The stateof a system is amathematical structure containing a set of
n variables x1(t ), x2(t), . . . , xi(t ), . . . , xn(t ), called the state variables, such that
the initial values xi(t0) of this set and the system inputs uj(t) are sufficient to
describe uniquely the system’s future response of t� t0. A minimum set of
state variables is required to represent the system accurately. The m inputs,
u1(t ), u2(t ), . . . ,uj(t ), . . . ,um(t ), are deterministic; i.e., they have specific
values for all values of time t� t0.

Generally the initial starting time t0 is taken to be zero. The state
variables need not be physically observable and measurable quantities; they
may be purely mathematical quantities. The following additional definitions
apply:

STATE VECTOR. The set of state variables xi(t ) represents the elements or
components of the n-dimensional state vector x(t ); that is,

xðtÞ �
x1ðtÞ
x2ðtÞ
..
.

xnðtÞ

2
6664

3
7775 ¼

x1
x2
..
.

xn

2
6664

3
7775 � x ð2:22Þ

FIGURE 2.4 Multinode network.
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The order of the system characteristic equation is n, and the state equation
representation of the system consists of n first-order differential equations.
When all the inputs uj (t ) to a given systemare specified for t > t0, the resulting
state vector uniquely determines the system behavior for any t > t0.

STATE SPACE. State space is defined as the n-dimensional space inwhich
the components of the state vector represent its coordinate axes.

STATE TRAJECTORY. State trajectory is defined as the path produced in
the state space by the state vector x(t ) as it changes with the passage of time.
State space and state trajectory in the two-dimensional case are referred to as
the phase plane and phase trajectory, respectively [1].

The first step in applying these definitions to a physical system is the
selection of the system variables that are to represent the state of the system.
Note that there is no unique way of making this selection.The three common
representations for expressing the system state are the physical, phase,
and canonical state variables. The physical state-variable representation is
introduced in this chapter. The other two representations are introduced
in later chapters.

The selection of the state variables for the physical-variable method is
based upon the energy-storage elements of the system. Table 2.2 lists
some common energy-storage elements that exist in physical systems and the
corresponding energy equations.The physical variable in the energy equation
for each energy-storage element can be selected as a state variable of the
system.Only independent physical variables are chosen to be state variables.
Independent state variables are those state variables that cannot be expressed
in terms of the remaining assigned state variables. In some systems it may be
necessary to identify more state variables than just the energy-storage
variables. This situation is illustrated in some of the following examples,
where velocity is a state variable. When position, the integral of this state
variable, is of interest, it must also be assigned as a state variable.

Example 1: Series RL Circuit (Fig. 2.1). Only one energy-storage element,
the inductor, is present in this circuit; thus there is only one state variable.
From Table 2.2, the state variable is x1¼ i. The equation desired is one
that contains the first derivative of the state variable. Letting u¼ e, the loop
equation, Eq. (2.6), can be rewritten as

Rx1 þ L_xx1 ¼ u

_xx1 ¼ �
R
L
x1 þ

1
L
u ð2:23Þ

The letter u is the standard notation for the input forcing function and is
called the control variable. Equation (2.23) is the standard form of the state
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equation of the system.There is only one state equation because this is a first-
order system,n¼1.
Example 2: Series RLC Circuit (Fig. 2.2). This circuit contains two
energy-storage elements, the inductor and capacitor. From Table 2.2, the
two assigned state variables are identified as x1¼vc (the voltage across the
capacitor) and x2¼ i (the current in the inductor). Thus two state equations
are required.

A loop or branch equation is written to obtain an equation containing
the derivative of the current in the inductor. A node equation is written to
obtain an equation containing the derivative of the capacitor voltage. The
number of loop equations that must be written is equal to the number of state
variables representing currents in inductors. The number of equations
involving node voltages that must be written is equal to the number of state
variables representing voltages across capacitors. These are usually, but not
always, node equations. These loop and node equations are written in terms
of the inductor branch currents and capacitor branch voltages. From these
equations, it is necessary to determine which of the assigned physical
variables are independent. When a variable of interest is not an energy
physical variable, then this variable is identified as an augmented state variable.

TABLE 2.2 Energy-Storage Elements

Element Energy Physical variable

Capacitor C Cv2

2

Voltage v

Inductor L Li2

2

Current i

Mass M Mv2

2

Translational velocity v

Moment of inertia J Jo2

2

Rotational velocity o

Spring K Kx2

2

Displacement x

Fluid compressibility
V

KB
VP2

L

2KB

Pressure PL

Fluid capacitor C¼ �A �Ah2

2

Height h

Thermal capacitor C Cy2

2

Temperature y
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Figure 2.2 is redrawn in Fig. 2.5 with node b as the reference node.
The node equation for node a and the loop equation are, respectively,

C _xx1 ¼ x2 ð2:24Þ
and

L_xx2 þ Rx2 þ x1 ¼ u ð2:25Þ

Rearranging terms to the standard state equation format yields

_xx1 ¼
1
C
x2 ð2:26Þ

_xx2 ¼ �
1
L
x1 �

R
L
x2 þ

1
L
u ð2:27Þ

Equations (2.26) and (2.27) represent the state equations of the system
containing two independent state variables. Note that they are first-order
linear differential equations and are n¼ 2 in number. They are the minimum
number of state equations required to represent the system’s future
performance.

The following definition is based upon these two examples.

STATE EQUATION. The state equations of a system are a set of n
first-order differential equations,where n is the number of independent states.

The state equations represented by Eqs. (2.26) and (2.27) are expressed
in matrix notation as

_xx1

_xx2

" #
¼

0
1
C

� 1
L
�R
L

2
664

3
775

x1

x2

" #
þ

0
1
L

2
4

3
5½u� ð2:28Þ

It can be expressed in a more compact form as

_xx ¼ Axþ bu ð2:29Þ

FIGURE 2.5 Series RLC circuit.
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where

_xx ¼
_xx1

_xx2

" #
an n� 1 column vector ð2:30Þ

A ¼ a11 a12

a21 a22

" #
¼

0
1
C

� 1
L
�R
L

2
664

3
775

an n� n plant coefficient matrix ð2:31Þ

x ¼ x1

x2

" #
an n� 1 state vector ð2:32Þ

b ¼ b1

b2

" #
¼

0
1
L

2
4

3
5 an n� 1 control matrix ð2:33Þ

and, in this case, u¼ [u] is a one-dimensional control vector. In Eq. (2.29),
matrices A and x are conformable.

If the output quantity y(t ) for the circuit of Fig. 2.2 is the voltage across
the capacitor vC, then

yðtÞ ¼ vC ¼ x1
Thus the matrix system output equation for this example is

yðtÞ ¼ c
T
xþ du ¼ ½1 0� x1

x2

� �
þ ½0�½u� ð2:34Þ

where

c
T ¼ ½1 0� a 1� 2 row vector
y ¼ ½ y� a one-dimensional output vector
d ¼ 0

Equations (2.29) and (2.34) are for a single-input single-output (SISO)
system. For a multiple-input multiple-output (MIMO) system,with m inputs
and l outputs, these equations become

_xx ¼ Axþ Bu ð2:35Þ
y ¼ CxþDu ð2:36Þ

where

A ¼ n� n plant matrix
B ¼ n�m control matrix
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C ¼ l � n output matrix
D ¼ l �m feedforward matrix
u ¼ m-dimensional control vector
y ¼ l-dimensional output vector

Example 3. Obtain the state equation for the circuit of Fig. 2.6, where i2 is
considered to be the output of this system. The assigned state variables are
x1¼i1, x2¼ i2, and x3¼ vC.Thus, two loop and one node equations are written

R1x1 þ L1 _xx1 þ x3 ¼ u ð2:37Þ
�x3 þ L2 _xx2 þ R2x2 ¼ 0 ð2:38Þ
�x1 þ x2 þ C _xx3 ¼ 0 ð2:39Þ

The three state variables are independent, and the system state and output
equations are

_xx ¼

�R1

L1
0 � 1

L1

0 �R2

L2

1
L2

1
C

� 1
C

0

2
6666664

3
7777775
xþ

1
L1

0

0

2
6666664

3
7777775
u ð2:40Þ

y ¼ 0 1 0 �x� ð2:41Þ

Example 4. Obtain the state equations for the circuit of Fig. 2.7. The
output is the voltage v1. The input or control variable is a current source i(t ).
The assigned state variables are i1, i2, i3,v1, and v2.Three loop equations and two
node equations are written:

v1 ¼ L1 Di1 ð2:42Þ
v2 ¼ L2 Di2 þ v1 ð2:43Þ
v2 ¼ L3 Di3 ð2:44Þ

FIGURE 2.6 An electric circuit.
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i2 ¼ C1 Dv1 þ i1 ð2:45Þ
i ¼ i3 þ C2 Dv2 þ i2 ð2:46Þ

Substituting from Eqs. (2.42) and (2.44) into Eq. (2.43), or writing the loop
equation through L1, L2, and L3 and then integrating (multiplying by 1/D),
gives

L3i3 ¼ L2i2 þ L1i1 þ K ð2:47Þ
where K is a function of the initial conditions. This equation reveals that one
inductor current is dependent upon the other two inductor currents. Thus,
this circuit has only four independent physical state variables, two inductor
currents and two capacitor voltages.The four independent state variables are
designated as x1 ¼ v1, x2 ¼ v2, x3 ¼ i1, and x4 ¼ i2, and the control variable is
u¼ i.Three state equations are obtainable from Eqs. (2.42), (2.43), and (2.45).
The fourth equation is obtained by eliminating the dependent current i3
from Eqs. (2.46) and (2.47).The result in matrix form is

_xx ¼

0 0 � 1
C1

1
C1

0 0 � L1

L3C2
�L2 þ L3

L3C2

1
L1

0 0 0

� 1
L2

1
L2

0 0

2
666666666664

3
777777777775

xþ

0

1
C2

0

0

2
666666666664

3
777777777775

¼ u ð2:48Þ

y ¼ 1 0 0 0
� �

x ð2:49Þ
The dependence of i3 on i1 and i2 as shown by Eq. (2.47) may not be

readily observed. In that case the matrix state equation for this example
would be written with five state variables.

The examples in this section are fairly straightforward. In general
it is necessary to write more than just the number of state equations,
because other system variables appear in them. These equations are solved

FIGURE 2.7 Electric circuit.
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simultaneously to eliminate all internal variables in the circuit except for
the state variables. This procedure is necessary in some of the problems
for this chapter. For more complex circuits it is possible to introduce more
generalized and systematized linear graphs for obtaining the state equations.
They are not included in this book.

2.4 TRANSFER FUNCTION AND BLOCK DIAGRAM

A quantity that plays a very important role in control theory is the system
transfer function, defined as follows:

TRANSFER FUNCTION. If the system differential equation is linear, the
ratio of the output variable to the input variable, where the variables are
expressed as functions of theD operator, is called the transfer function.

Consider the system output vC¼ y in the RLC circuit of Fig. 2.2.
Substituting i¼CDvC into Eq. (2.10) yields

ðLCD2 þ RCD þ 1ÞvC ðtÞ ¼ eðtÞ ð2:50Þ
The system transfer function is

GðDÞ ¼ yðtÞ
uðtÞ ¼

vCðtÞ
eðtÞ ¼

1
LCD2 þ RCD þ 1

ð2:51Þ

The notationG(D) is used to denote a transfer functionwhen it is expressed in
terms of theD operator. It may also be written simply asG.

The block diagram representation of this system (Fig. 2.8) represents
the mathematical operation GðDÞuðtÞ ¼ yðtÞ; that is, the transfer function
times the input is equal to the output of the block. The resulting equation is
the differential equation of the system.

2.5 MECHANICAL TRANSLATION SYSTEMS [1,8,9]

Mechanical systems obey Newton’s law that the sum of the forces equals zero;
that is, the sum of the applied forces must be equal to the sum of the reactive
forces. The three qualities characterizing elements in a mechanical
translation* system are mass, elastance, and damping.The following analysis

FIGURE 2.8 Block diagram representation of Fig. 2.2.

*Translationmeans motion in a straight line.

Writing System Equations 45

Copyright © 2003 Marcel Dekker, Inc.



includes only linear functions. Static friction, Coulomb friction, and other
nonlinear friction terms are not included. Basic elements entailing these
qualities are represented as network elements [10], and a mechanical network
is drawn for each mechanical system to facilitate writing the differential
equations.

The massM is the inertial element. A force applied to a mass produces
an acceleration of the mass. The reaction force fM is equal to the product of
mass and acceleration and is opposite in direction to the applied force.
In terms of displacement x,velocity v, and acceleration a, the force equation is

fM ¼ Ma ¼ M Dv ¼ M D2x ð2:52Þ
The network representation of mass is shown in Fig. 2.9a.One terminal,a, has
the motion of the mass; and the other terminal, b, is considered to have the
motion of the reference. The reaction force fM is a function of time and acts
‘‘through’’M.

The elastance,or stiffness,K provides a restoring force as represented by
a spring.Thus, if stretched,the string tries to contract; if compressed, it tries to
expand to its normal length.The reaction force fK on each end of the spring is
the same and is equal to the product of the stiffness K and the amount of
deformation of the spring.The network representation of a spring is shown in
Fig. 2.9b. The displacement of each end of the spring is measured from
the original or equilibrium position. End c has a position xc, and end d has a
position xd, measured from the respective equilibrium positions. The force
equation, in accordance with Hooke’s law, is

fK ¼ Kðxc � xd Þ ð2:53Þ
If the end d is stationary, then xd ¼ 0 and the preceding equation reduces to

fK ¼ Kxc ð2:54Þ
The plot fK vs. xc for a real spring is not usually a straight line, because the
spring characteristic is nonlinear.However,over a limited regionof operation,
the linear approximation, i.e., a constant value forK, gives satisfactory results.

FIGURE 2.9 Network elements of mechanical translation systems.
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The damping, or viscous, friction B characterizes the element that
absorbs energy.The damping force is proportional to the difference in velocity
of two bodies.The assumption that the viscous friction is linear simplifies the
solution of the dynamic equation. The network representation of damping
action is a dashpot, as shown in Fig. 2.9c. Damping may either be intentional
or occur unintentionally and is present because of physical construction.
The reaction damping force fB is approximated by the product of damping B
and the relative velocity of the two ends of the dashpot. The direction of this
force, givenbyEq. (2.55),depends on the relativemagnitudes anddirections of
the velocitiesDxe andDxf :

fB ¼ Bðve � vf Þ ¼ BðDxe � Dxf Þ ð2:55Þ

Damping may be added to a system by use of a dashpot. The basic
operation of a dashpot, in which the housing is filled with an incompressible
fluid, is shown in Fig. 2.10. If a force f is applied to the shaft, the piston presses
against the fluid, increasing the pressure on side b and decreasing the pressure
on side a. As a result, the fluid flows around the piston from side b to side a.
If necessary, a small hole can be drilled through the piston to provide a
positive path for the flow of fluid. The damping force required to move the
piston inside the housing is given by Eq. (2.55),where the damping B depends
on the dimensions and the fluid used.

Before the differential equations of a complete system can be written,
the mechanical network must first be drawn. This is done by connecting the
terminals of elements that have the same displacement. Then the force
equation is written for each node or position by equating the sum of the
forces at each position to zero.The equations are similar to the node equations
in an electric circuit, with force analogous to current, velocity analogous to
voltage, and the mechanical elements with their appropriate operators
analogous to admittance. The reference position in all of the following
examples should be taken from the static equilibrium positions. The force of
gravity therefore does not appear in the system equations.TheU.S.customary
and metric systems of units are shown inTable 2.3.

FIGURE 2.10 Dashpot construction.

Writing System Equations 47

Copyright © 2003 Marcel Dekker, Inc.



Simple Mechanical Translation System

The system shown in Fig. 2.11 is initially at rest. The end of the spring and
the mass have positions denoted as the reference positions, and any displace-
ments from these reference positions are labeled xa and xb, respectively.
A force f applied at the end of the spring must be balanced by a compression
of the spring. The same force is also transmitted through the spring and acts
at point xb.

To draw the mechanical network, the first step is to locate the points xa
and xb and the reference. The network elements are then connected between
these points. For example, one end of the spring has the position xa, and the
other end has the position xb. Therefore, the spring is connected between
these points.The complete mechanical network is drawn in Fig. 2.11b.

The displacements xa and xb are nodes of the circuit. At each node the
sum of the forces must add to zero. Accordingly, the equations may be written

TABLE 2.3 Mechanical Translation Symbols and Units

Symbol Quantity U.S. customary units Metric units

f Force Pounds Newtons
x Distance Feet Meters
v Velocity Feet/second Meters/second
a Acceleration Feet/second2 Meters/second2

My Mass
Slugs ¼ pound-seconds2

foot
Kilograms

K Stiffness coefficient Pounds/foot Newtons/meter
B Damping coefficient Pounds/(foot/second) Newtons/(meter/second)

yMass M in the U.S. customary system above has the dimensions of slugs. Sometimes it is

given in units of pounds. If so, then in order to use the consistent set of units above,

the mass must be expressed in slugs by using the conversion factor 1 slug¼32.2 lb.

FIGURE 2.11 (a) Simple mass-spring-damper mechanical system; (b) corresponding
mechanical network.
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for nodes a and b as

f ¼ fK ¼ Kðxa � xbÞ ð2:56Þ
fK ¼ fM þ fB ¼ MD2xb þ BDxb ð2:57Þ

These two equations can be solved for the two displacements xa and xb and
their respective velocities va ¼ Dxa and vb ¼ Dxb.

It is possible to obtain one equation relating xa to f, xb to xa, or xb to f
by combining Eqs. (2.57) and (2.58):

KðMD2 þ BDÞxa ¼ ðMD2 þ BD þ KÞf ð2:58Þ
ðMD2 þ BD þ KÞxb ¼ Kxa ð2:59Þ
ðMD2 þ BDÞxb ¼ f ð2:60Þ

The solution of Eq. (2.59) shows the motion xb resulting from a given
motion xa. Also, the solution of Eqs. (2.58) and (2.60) show the motions xa
and xb, respectively, resulting from a given force f. From each of these three
equations the following transfer functions are obtained:

G1 ¼
xa
f
¼ MD2 þ BD þ K

KðMD2 þ BDÞ ð2:61Þ

G2 ¼
xb
xa
¼ K

MD2 þ BD þ K
ð2:62Þ

G ¼ xb
f
¼ 1

MD2 þ BD
ð2:63Þ

Note that the last equation is equal to the product of the first two, i.e.,

G ¼ G1G2 ¼
xa
f
xb
xa
¼ xb

f
ð2:64Þ

The block diagram representing the mathematical operation of
Eq. (2.64) is shown in Fig. 2.12. Figure 2.12a is a detailed representation that
indicates all variables in the system.The two block G1 and G2 are said to be in
cascade. Figure 2.12b, called the overall block diagram representation, shows
only the input f and the output xb, where xb is considered the output variable
of the system of Fig. 2.11.

The multiplication of transfer functions, as in Eq. (2.64), is valid as long
as there is no coupling or loading between the two blocks in Fig. 2.12a.

FIGURE 2.12 Block diagram representation of Fig. 2.11: (a) detailed; (b) overall.

Writing System Equations 49

Copyright © 2003 Marcel Dekker, Inc.



The signal xa is unaffected by the presence of the block having the transfer
function G2; thus the multiplication is valid. When electric circuits are
coupled, the transfer functions may not be independent unless they are
isolated by an electronic amplifier with a very high input impedance.

Example 1. Determine the state equations for Eq. (2.57). Equation (2.57)
involves only one enery-storage element, the mass M, whose energy variable
is vb.The output quantity in this system is the position y ¼ xb. Since this quan-
tity is not one of the physical or energy-related state variables, it is necessary to
increase the number of state variables to 2; i.e., xb ¼ x1 is an augmented state
variable. Equation (2.57) is of second order, which confirms that two state
variables are required. Note that the spring constant does not appear in this
equation since the force f is transmitted through the spring to the mass.With
x1 ¼ xb, x2 ¼ vb ¼ _xx1, u ¼ f , and y ¼ x1, the state and output equations are

_xx ¼
0 1

0 � B
M

2
4

3
5xþ

0
1
M

2
4

3
5u ¼ Axþ bu y ¼ 1 0½ � x ¼ cTx

ð2:65Þ

Example 2. Determine the state equations for Eq. (2.59). Equation (2.59)
involves two energy-storage elements, K and M, whose energy variables are
xb and vb, respectively. Note that the spring constant K does appear in this
equation since xa is the input u.Therefore, a state variable must be associated
with this energy element. Thus, the assigned state variables are xb and
vb¼Dxb, which are independent state variables of this system. Let x1 ¼
xb ¼ y and x2 ¼ vb ¼ _xx1: Converting Eq. (2.59) into state-variable form yields
the two equations

_xx1 ¼ x2 _xx2 ¼ �
K
M

x1 �
B
M

x2 þ
K
M

u ð2:66Þ

They can be put into the matrix form

_xx ¼ Axþ bu y ¼ cTx ð2:67Þ

Multiple-Element Mechanical Translation System

A force f ðtÞ is applied to themassM1of Fig. 2.13a.The sliding friction between
the masses M1 and M2 and the surface is indicated by the viscous friction
coefficients B1 and B2. The system equations can be written in terms of the
two displacements xa and xb.Themechanical network is drawn by connecting
the terminals of the elements that have the same displacement (see Fig. 2.13b).
Since the sum of the forces at each node must add to zero, the equations are
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written according to the rules for node equations:

For node a: ðM1D
2þB1DþB3DþK1Þxa�ðB3DÞxb ¼ f ð2:68Þ

For node b: �ðB3DÞxaþðM2D
2þB2DþB3DþK2Þxb ¼ 0 ð2:69Þ

A definite pattern to these equations can be detected. Observe that K1,
M1, B1, and B3 are connected to node a and that Eq. (2.68), for node a,
contains all four of these terms as coefficients of xa. Notice that element
B3 is also connected to node b and that the term �B3 appears as a coefficient
of xb. When this pattern is used, Eq. (2.69) can be written directly. Thus,
since K2,M2, B2, and B3 are connected to node b, they appear as coefficients
of xb. Element B3 is also connected to node a, and �B3 appears as the
coefficient of xa. Each term in the equation must be a force.

The node equations for a mechanical system follow directly from the
mechanical network of Fig. 2.13b. They are similar in form to the node
equations for an electric circuit and follow the same rules.

The block diagram representing the system in Fig. 2.13 is also given by
Fig. 2.12,where again the systemoutput is xb.The transfer functionsG1 ¼ xa=f
andG2 ¼ xb=xa are obtained by solving the equations for this system.

Example 3. Obtain the state equations for the system of Fig. 2.13,where xb is
the system output. There are four energy-storage elements, thus the four
assigned state variables are xa, xb, Dxa and Dxb. Analyzing Eqs. (2.68) and

FIGURE 2.13 (a) Multiple-element mechanical system: (b) correspondingmechanical
network.
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(2.69) shows that this is a fourth-order system.Let

x1 ¼ xb for spring K2 x2 ¼ _xx1 ¼ vb for mass M2

x3 ¼ xa for spring K1 x4 ¼ _xx3 ¼ va for mass M1

u ¼ f y ¼ xb ¼ x1

The four state variables are independent, i.e., no one state variable can be
expressed in terms of the remaining state variables.The system equations are

_xx ¼ Axþ bu y ¼ cTx ð2:70Þ
where,

A ¼

0 1 0 0

� K2

M2
�B2 þ B3

M2
0

B3

M2

0 0 0 1

0
B3

M1
� K1

M1
�B1 þ B3

M1

2
666666664

3
777777775
� b ¼

0

0

0
1
M1

2
66666664

3
77777775

cT ¼ ½ 1 0 0 0 �

2.6 ANALOGOUS CIRCUITS

Analogous circuits represent systems for which the differential equationshave
the same form. The corresponding variables and parameters in two circuits
represented by equations of the same form are called analogs. An electric
circuit can be drawn that looks like the mechanical circuit and is represented
by node equations that have the same mathematical form as the mechanical
equations. The analogs are listed inTable 2.4. In this table the force f and the
current i are analogs and are classified as ‘‘through’’ variables. There is a

TABLE 2.4 Electrical and Mechanical Analogs

Mechanical translation element Electrical element

Symbol Quantity Symbol Quantity

f Force i Current
v¼Dx Velocity e or v Voltage
M Mass C Capacitance
K Stiffness coefficient 1/L Reciprocal inductance
B Damping coefficient G¼ 1/R Conductance
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physical similarity between the two, because a force indicator must be placed
in series with the system. Also, the velocity ‘‘across’’ a mechanical element is
analogous to voltage across an electrical element. Again, there is a physical
similarity, because a measuring instrument must be placed across the system
in both cases. Avoltmeter must be placed across a circuit to measure voltage;
it must have a point of reference. Avelocity indicator must also have a point of
reference. Nodes in the mechanical network are analogous to nodes in the
electric network.

2.7 MECHANICAL ROTATIONAL SYSTEMS

The equations characterizing rotational systems are similar to those for
translation systems. Writing torque equations parallels the writing of force
equations, where the displacement, velocity, and acceleration terms are now
angular quantities. The applied torque is equal to the sum of the reaction
torques.The three elements in a rotational system are inertia, the spring, and
the dashpot. The mechanical-network representation of these elements is
shown in Fig. 2.14.

The torque applied to a body having a moment of inertia J produces
an angular acceleration.The reaction torqueTJ is opposite to the direction of
the applied torque and is equal to the product of moment of inertia and
acceleration. In terms of angular acceleration a, angular velocityo, or angular
displacement y, the torque equation is

TJ ¼ Ja ¼ J Do ¼ J D2y ð2:71Þ
When a torque is applied to a spring, the spring is twisted by an angel y.

The applied torque is transmitted through the spring and appears at the
other end. The reaction spring torque TK that is produced is equal to the
product of the stiffness, or elastance, K of the spring and the angle of twist.
By denoting the positions of the two ends of the spring, measured from the
neutral position, as yc and yd , the reaction torque is

TK ¼ K yc � ydð Þ ð2:72Þ

FIGURE 2.14 Network elements of mechanical rotational systems.

Writing System Equations 53

Copyright © 2003 Marcel Dekker, Inc.



Damping occurs whenever a body moves through a fluid,which may be
a liquid or a gas such as air. To produce motion of the body, a torque must be
applied to overcome the reactiondamping torque.The damping is represented
as a dashpot with a viscous friction coefficient B. The damping torque TB is
equal to the product of damping B and the relative angular velocity of the
ends of the dashpot.The reaction torque of a damper is

TB ¼ B oe � of
� � ¼ B Dye � Dyf

� � ð2:73Þ

Writing the differential equations is simplified by first drawing the
mechanical network for the system. This is done by first designating
nodes that correspond to each angular displacement. Then each element is
connected between the nodes that correspond to the two motions at each
end of that element. The inertia elements are connected from the reference
node to the node representing its position. The spring and dashpot elements
are connected to the two nodes that represent the position of each end of
the element. Then the torque equation is written for each node by equating
the sum of the torques at each node to zero. These equations are similar
to those for mechanical translation and are analogous to those for electric
circuits.The units for these elements are given inTable 2.5.

An electrical analog can be obtained for a mechanical rotational
system in the manner described in Sec. 2.7. The changes to Table 2.4 are
due only to the fact that rotational quantities are involved.Thus torque is the
analog of current, and the moment of inertia is the analog of capacitance.

TABLE 2.5 Mechanical Rotational Symbols and Units

Symbol Quantity U.S. customary units Metric units

T Torque Pound-feet Newton-meters
y Angle Radians Radians
o Angular velocity Radians/second Radians/second
a Angular acceleration Radians/second2 Radians/second2

J� Moment of inertia Slug-feet2 (or pound-
feet-seconds2)

Kilogram-meters2

K Stiffness coefficient Pound-feet/radian Newton-meters/
radian

B Damping coefficient Pound-feet/
(radian/second)

Newton-meters/
radians/second)

�The moment of inertia J has the dimensions of mass-distance2, which have the units slug

feet2 in the U.S. customary system. Sometimes the units are given as pound-feet2. To use

the consistent set of units above, the moment of inertia must be expressed in slug-feet2 by

using the conversion factor 1 slug¼32.2 lb.
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Simple Mechanical Rotational System

The system shown in Fig. 2.15 has a mass, with a moment of inertia J,
immersed in a fluid. A torque T is applied to the mass. The wire produces
a reactive torque proportional to its stiffness K and to the angle of twist.
The fins moving through the fluid having a damping B, which requires
a torque proportional to the rate at which they are moving. The mechanical
network is drawn in Fig. 2.15b. There is one node having a displacement y;
therefore, only one equation is necessary:

J D2yþ BDyþ Ky ¼ T ðtÞ ð2:74Þ

Multiple-Element Mechanical Rotational System

The system represented by Fig. 2.16a has two disks that have damping
between them and also between each of them and the frame.The mechanical

FIGURE 2.15 (a) Simple rotational system; (b) mechanical network.

FIGURE 2.16 (a) Rotational system; (b) corresponding mechanical network.
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network is drawn in Fig. 2.16b by first identifying the three angular
displacements y1, y2, and y3. Then the elements are connected to the proper
nodes. The equations are written directly in systematized form, since the
torques at each node must add to zero, as follows:

Node 1: K1y1�K1y2 ¼ T ðtÞ ð2:75Þ
Node 2: �K1y1þ J1D

2þ ðB1þB3ÞDþK1
� �

y2� ðB3DÞy3 ¼ 0 ð2:76Þ
Node 3: � ðB3DÞy2þ J2D

2þ ðB2þB3ÞDþK2
� �

y3 ¼ 0 ð2:77Þ
These three equations can be solved simultaneously for y1, y2, and y3 as a
function of the applied torque. If y3 is the system output, these equations
can be solved for the following four transfer functions:

G1 ¼
y1
T

G2 ¼
y2
y1

G3 ¼
y3
y2

G ¼ G1G2G3 ¼
y1
T

y2
y1

y3
y2
¼ y3

T
ð2:78Þ

The detailed and overall block diagram representations of Fig. 2.16 are
shown in Fig. 2.17. The overall transfer function G given by Eqs. (2.78) is the
product of the transfer functions,which are said to be in cascade.This product
of transfer functions applies in general to any number of elements in cascade
when there is no loading between the blocks.

Example. Determine the state variables for the system of Fig. 2.16,where y3
is the system output y and torque T is the system input u. The spring K1 is
effectively not in the system because the torque is transmitted through
the spring. Since there are three energy-storage elements J1, J2, and K2, the
assigned state variables are Dy2, Dy3, and y3. These are independent state
variables. Therefore, let x1 ¼ y3, x2 ¼ Dy3, and x3 ¼ Dy2. If the system input
is u¼ y1, then the spring K1 is included, resulting in four state variables
(see Prob. 2.17).

2.8 EFFECTIVE MOMENT OF INERTIA AND DAMPING OF
A GEAR TRAIN

When the load is coupled to a drive motor through a gear train, the moment of
inertia and damping relative to themotor are important.Since the shaft length

FIGURE 2.17 Detailed and overall block diagram representations of Fig. 2.16.
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between gears is very short, the stiffness may be considered infinite. A simple
representation of a gear train is shown in Fig. 2.18a.The following definitions
are used:

N¼number of teeth on each gear
o¼Dy¼ velocity of each gear
na¼ ratio of (speed of driving shaft)/(speed of driven shaft)
y¼ angular position

Typically, gearing may not mesh perfectly, and the teeth of one gear may not
fill the full space between the gear teeth of the matching gear. As a con-
sequence, there can be times when the drive gear is not in contact with the
other gear. This nonlinear characteristic is called dead zone.When the dead
zone is very small, it is neglected for the linearized gearing model.

The mechanical network for the gear train is shown in Fig. 2.18b.
At each gear pair, two torques are produced. For example, a restraining
torqueT1 is the load on gear1produced by the rest of the gear train. A driving
torqueT2 is also produced on gear 2.T2 is the torque transmitted to gear 2 to
drive the rest of the gear train. These torques are inversely proportional to
the ratio of the speeds of the respective gears. The block labeled na between
T1 and T2 is used to show the relationship between them; that is, T2 ¼ naT1.
A transformer may be considered as the electrical analog of the gear train,
with angular velocity analogous to voltage and torque analogous to current.

FIGURE 2.18 (a) Representation of a gear train; (b) corresponding mechanical
network.
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The equations describing the system are

J1D
2y1 þ B1Dy1 þ T1 ¼ T

na ¼
o1

o2
¼ y1

y2
¼ N2

N1

J2D
2y2 þ B2Dy2 þ TL ¼ T2

y2 ¼
y1
na

T2 ¼ naT1
ð2:79Þ

The equations can be combined to produce

J1D
2y1 þ B1Dy1 þ

1
na

J2D
2y2 þ B2Dy2 þ TL

� � ¼ T ð2:80Þ

This equation can be expressed in terms of the torque and the input position y1
only:

J1 þ
J2
n2a

� �
D2y1 þ Ba þ

B2

n2a

� �
Dy1 þ

TL

na
¼ T ð2:81Þ

Equation (2.81) represents the system performance as a function of a single
dependent variable. An equivalent system is one having an equivalent
moment of inertia and damping equal to

Jeq ¼ J1 þ
J2
n2a

ð2:82Þ

Beq ¼ B1 þ
B2

n2a
ð2:83Þ

If the solution for y2 is wanted, the equation can be altered by the substitution
of y1 ¼ nay2. This system can be generalized for any number of gear stages.
When the gear-reduction ratio is large, the load moment of inertia may
contribute a negligible value to the equivalent moment of inertia. When a
motor rotor is geared to a long shaft that provides translational motion, then
the elastance or stiffnessK of the shaft must be taken into account in deriving
the system’s differential equations (see Prob. 2.24).

2.9 THERMAL SYSTEMS [11]

A limited number of thermal systems can be represented by linear differential
equations. The basic requirement is that the temperature of a body be
considered uniform. This approximation is valid when the body is small.
Also,when the region consists of a body of air or liquid, the temperature can
be considered uniform if there is perfect mixing of the fluid. The necessary
condition of equilibrium requires that the heat added to the system equal the
heat stored plus the heat carried away.This requirement can also be expressed
in terms of rate of heat flow.

The symbols shown inTable 2.6 are used for thermal systems.A thermal-
system network is drawn for each system in which thermal capacitance and
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thermal resistance are represented by network elements. The differential
equations can then be written form the thermal network.

The additional heat stored in a body whose temperature is raised from
y1 to y2 is given by

h ¼ q
D
¼ Cðy2 � y1Þ ð2:84Þ

In terms of rate of heat flow, this equation can be written as

q ¼ CDðy2 � y1Þ ð2:85Þ
The thermal capacitance determines the amount of heat stored in a body. It is
analogous to the electric capacitance of a capacitor in an electric circuit,
which determines the amount of charge stored. The network representation
of thermal capacitance is shown in Fig. 2.19a.

Rate of heat flow through a body in terms of the two boundary tempera-
tures y3 and y4 is

q ¼ y3 � y4
R

ð2:86Þ

TABLE 2.6 Thermal Symbols and Units

Symbol Quantity U.S. customary units Metric units

q Rate of heat flow Btu/minute Joules/second
M Mass Pounds Kilograms
S Specific heat Btu/(pounds)(�F) Joules/(kilogram)(�C)
C Thermal capacitance

C¼MS
Btu/�F Joules/�C

K Thermal conductance Btu/(minute)(�F) Joules/(second)(�C)
R Thermal resistance Degrees/

(Btu/minute)
Degrees/
(joule/second)

y Temperature �F �C
h Heat energy Btu Joules

FIGURE 2.19 Network elements of thermal systems.
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The thermal resistance determines the rate of heat flow through the body.
This is analogous to the resistance of a resistor in an electric circuit, which
determines the current flow.The network representationof thermal resistance
is shown in Fig. 2.19b. In the thermal network the temperature is analogous to
potential.

Simple Mercury Thermometer

Consider a thin glass-walled thermometer filled with mercury that has
stabilized at a temperature y1. It is plunged into a bath of temperature y0
at t¼ 0. In its simplest form, the thermometer can be considered to have a
capacitance C that stores heat and a resistance R that limits the heat flow.
The temperature at the center of the mercury is ym. The flow of heat into the
thermometer is

q ¼ y0 � ym
R

ð2:87Þ
The heat entering the thermometer is stored in the thermal capacitance and is
given by

h ¼ q
D
¼ Cðym � y1Þ ð2:88Þ

These equations can be combined to form
y0 � ym
RD

¼ Cðym � y1Þ ð2:89Þ
Differentiating Eq. (2.89) and rearranging terms gives

RC Dym þ ym ¼ y0 ð2:90Þ
The thermal network is drawn in Fig. 2.20.The node equation for this circuit,
with the temperature considered as a voltage, gives Eq. (2.90) directly. From
this equation the transfer function G¼ ym/y0 may be obtained. Since there is
one energy-storage element, the independent state variable is x1¼ ym and the
input is u¼ y0.Thus the state equation is

_xx1 ¼ �
1
RC

x1 þ
1
RC

u ð2:91Þ

FIGURE 2.20 Simple network representation of a thermometer.
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Amoreexactmodelof amercury thermometer is presented inRef.11.Asimple
transfer system for a water tank heater is also presented in this reference.

2.10 HYDRAULIC LINEAR ACTUATOR

The valve-controlled hydraulic actuator is used in many applications as a
force amplifier.Very little force is required to position the valve, but a large
output force is controlled.The hydraulic unit is relatively small,which makes
its use very attractive. Figure 2.21 shows a simple hydraulic actuator in which
motion of the valve regulates the flow of oil to either side of the main cylinder.
An input motion x of a few thousandths of an inch results in a large change of
oil flow.The resulting difference in pressure on themain piston causesmotion
of the output shaft.The oil flowing in is supplied by a source that maintains a
constant high pressure Ph, and the oil on the opposite side of the piston flows
into the drain (sump) at low pressure Ps. The load-induced pressure PL is the
difference between the pressures on each side of the main piston:

PL ¼ P1 � P2 ð2:92Þ
The flow of fluid through an inlet orifice is given by [12]

q ¼ ca

ffiffiffiffiffiffiffiffiffiffiffiffi
2g

�p
w

r
ð2:93Þ

where

c¼ orifice coefficient
a¼ orifice area

�p¼ pressure drop across orifice

FIGURE 2.21 Hydraulic actuator.
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w¼ specific weight of fluid
g¼ gravitational acceleration constant
q¼ rate of flow of fluid

Simplified Analysis

As a first-order approximation, it can be assumed that the orifice coefficient
and the pressure drop across the orifice are constant and independent of valve
position. Also, the orifice are a is proportional to the valve displacement x.
Equation (2.93), which gives the rate of flow of hydraulic fluid through the
valve, can be rewritten in linearized form as

q ¼ Cxx ð2:94Þ
where x is the displacement of the valve.The displacement of the main piston
is directly proportional to the volume of fluid that enters themain cylinder, or,
equivalently, the rate of flowof fluid is proportional to the rate of displacement
of the output.When the compressibility of the fluid and the leakage around the
valve and main piston are neglected, the equation of motion of the main
piston is

q ¼ CbDy ð2:95Þ
Combining the two equations gives

Dy ¼ Cx

Cb
x ¼ C1x ð2:96Þ

This analysis is essentially correct when the load reaction is small.

More Complete Analysis

When the load reaction is not negligible, a load pressure PLmust be produced
across the piston. A more complete analysis takes into account the pressure
drop across the orifice, the leakage of oil around the piston, and the compres-
sibility of the oil. The pressure drop �p across the orifice is a function of the
source pressure Ph and the load pressure PL. Since Ph is assumed constant, the
flow equation for q is a function of valve displacement x and load pressure PL:

q ¼ f ðx�PLÞ ð2:97Þ
The differential rate of flow dq, expressed in terms of partial derivatives, is

dq ¼ @q
@x

dx þ @q
@PL

dPL ð2:98Þ
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If q, x, and PL are measured from zero values as reference points, and if the
partial derivatives are constant at the values they have at zero, the integration
of Eq. (2.98) gives

q ¼ @q
@x

� �
0
x þ @q

@PL

� �
0
PL ð2:99Þ

By defining

Cx �
@p
@x

� �
0

and Cp �
�@q
@PL

� �
0

the flow equation for fluid entering the main cylinder can be written as

q ¼ Cxx � CpPL ð2:100Þ
Both Cx and Cp have positive values. A comparison of Eq. (2.100) with
Eq. (2.94) shows that the load pressure reduces the flow into themain cylinder.
The flow of fluid into the cylinder must satisfy the continuity conditions
of equilibrium.This flow is equal to the sum of the components:

q ¼ q0 þ ql þ qc ð2:101Þ
where

q0¼ incompressible component (causes motion of piston)
ql¼ leakage component
qc¼ compressible component

The component q0,which produces a motion y of the main piston, is

q0 ¼ Cb Dy ð2:102Þ
The compressible component is derived in terms of the bulk modulus of
elasticity of the fluid, which is defined as the ratio of incremental stress to
incremental strain.

Thus

KB ¼
�PL

�V =V
ð2:103Þ

Solving for�V and dividing both sides of the equation by�t gives

�V
�t
¼ V

KB

�PL

�t
ð2:104Þ

Taking the limit as�t approaches zero and letting qc ¼ dV =dt gives

qc ¼
V
KB

DPL ð2:105Þ
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where V is the effective volume of fluid under compression and KB is
the bulk modulus of the hydraulic oil.The volumeV at the middle position of
the piston stroke is often used in order to linearize the differential equation.

The leakage components is

ql ¼ LPL ð2:106Þ
where L is the leakage coefficient of the whole system.

Combining these equations gives

q ¼ Cxx � CpPL ¼ Cb Dy þ V
KB

DPL þ LPL ð2:107Þ

and rearranging terms gives

Cb Dy þ V
KB

DPL þ ðLþ CpÞPL ¼ Cxx ð2:108Þ

The force developed by the main piston is

F ¼ nFAPL ¼ CPL ð2:109Þ
where nF is the force conversion efficiency of the unit and A is the area of the
main actuator piston.

Anexample of a specific type of load,consisting of amass and a dashpot,
is shown in Fig. 2.22. The equation for this system is obtained by equating
the force produced by the piston,which is given by Eq. (2.109), to the reactive
load forces:

F ¼ M D2y þ BDy ¼ CPL ð2:110Þ
Substituting the value of PL from Eq. (2.110) into Eq. (2.108) gives the equation
relating the input motion x to the response y:

MV
CKB

D3y þ BV
CKB
þM

C
Lþ Cp
� �� �

D2y þ Cb þ
B
C

Lþ Cp
� �� �

Dy ¼ Cxx

ð2:111Þ
The preceding analysis is based on perturbations about the reference set

of values x ¼ 0, q ¼ 0,PL ¼ 0.For the entire range ofmotion xof the valve, the
quantities @q=@x and �@q=@PL can be determined experimentally. Although

FIGURE 2.22 Load on a hydraulic piston.
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they are not constant at values equal to the values Cx and Cp at the zero
reference point, average values can be assumed in order to simulate the
system by linear equations. For conservative design the volume V is
determined for the main piston at the midpoint.

To write the state equation for the hydraulic actuator and load of
Figs. 2.21 and 2.22, the energy-related variables must be determined. The
mass M has the output velocity Dy as an energy-storage variable. The com-
pressible component qc also represents an energy-storage element in a hydrau-
lic system. The compression of a fluid produces stored energy, just as in the
compression of a spring.The equation for hydraulic energy is

EðtÞ ¼
Z t

0
PðtÞqðtÞ dt ð2:112Þ

where P(t ) is the pressure and q(t ) is the rate of flow of fluid. The energy
storage in a compressed fluid is obtained in terms of the bulk modulus
of elasticity KB. Combining Eq. (2.105) with Eq. (2.112) for a constant
volume yields

EcðPLÞ ¼
Z PL

0

V
KB

PL dPL ¼
V
2KB

P2
L ð2:113Þ

The stored energy in a compressed fluid is proportional to the pressure PL
squared; thus PLmay be used as a physical state variable.

Since the output quantity in this system is the position y, it is necessary to
increase the state variables to three. Further evidence of the need for three
state variables is the fact that Eq. (2.111) is a third-order equation. Therefore,
in this example, let x1 ¼ y, x2 ¼ Dy ¼ _xx1, x3 ¼ PL, and u ¼ x. Then, from
Eqs. (2.108) and (2.110), the state and output equations are

_xx ¼

0 1 0

0 � B
M

C
M

0 �CbKB

V
�KBðLþ CpÞ

V

2
66664

3
77775xþ

0

0

KBCX

V

2
66664

3
77775u ð2:114Þ

y ¼ ½ y� ¼ 1 0 0
� �

x ¼ ½x1� ð2:115Þ
The effect of augmenting the state variables by adding the piston displacement
x1 ¼ y is to produce a singular system; that is, jAj ¼ 0.This property does not
appear if a spring is added to the load, as shown in Prob. 2.19. In that case
x1 ¼ y is an independent state variable.

A detailed derivation of a positive-displacement rotational hydraulic
transmission is presented in Ref. 1.
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2.11 LIQUID-LEVEL SYSTEM [12,13]

Figure 2.23a represents a two-tank liquid-level control system. Definitions
of the system parameters are

qi �q1�q2 ¼ rates of flow of fluid h1�h2 ¼ heights of fluid level
R1�R2 ¼ flow resistance A1�A2 ¼ cross-sectional tank areas

The following basic linear relationships hold for this system:

q ¼ h
R
¼ rate of flow through orifice ð2:116Þ

qn ¼ ðtank input rate of flow)� ðtank output rate of flow)

¼ net tank rate of flow ¼ ADh ð2:117Þ
Applying Eq. (2.117) to tanks1and 2 yields, respectively,

qn1 ¼ A1 Dh1 ¼ qi � q1 ¼ qi �
h1 � h2

R1
ð2:118Þ

qn2 ¼ A2 Dh2 ¼ q1 � q2 ¼
h1 � h2

R1
� h2
R2

ð2:119Þ

These equations can be solved simultaneously to obtain the transfer functions
h1=qi and h2=qi.

FIGURE 2.23 Liquid-level system and its equivalent electrical analog.
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The energy stored in each tank represents potential energy, which is
equal to �Ah2=2, where � is the fluid density coefficient. Since there are two
tanks, the system has two energy-storage elements, whose energy-storage
variables are h1 and h2. Letting x1 ¼ h1, x2 ¼ h2, and u ¼ qi in Eqs. (2.118)
and (2.119) reveals that x1 and x2 are independent state variables. Thus,
the state equation is

_xx ¼
� 1
R1A1

1
R1A1

1
R1A2

� 1
R1A2

� 1
R2A2

2
664

3
775xþ

1
A1

0

2
664

3
775u ð2:120Þ

The levels of the two tanks are the outputs of the system.Letting y1 ¼ x1 ¼ h1
and y2 ¼ x2 ¼ h2 yields

y ¼ 1 0
0 1

� �
x ð2:121Þ

The potential energy of a tank can be represented as a capacitor whose
stored potential energy is Cv2c =2; thus, the electrical analog of h is vC. As a
consequence, an analysis of Eqs. (2.118) and (2.119) yields the analogs between
the hydraulic and electrical quantities listed in Table 2.7. The analogous
electrical equations are

C1 Dv1 ¼ ii �
v1 � v2
R1

ð2:122Þ

C2 Dv2 ¼
v1 � v2
R1
� v2
R2

ð2:123Þ

These two equations yield the analogous electric circuit of Fig. 2.23b.

2.12 ROTATING POWER AMPLIFIERS [14,15]

Adc generator can be used as a power amplifier, in which the power required
to excite the field circuit is lower than the power output rating of the armature

TABLE 2.7 Hydraulic and Electrical Analogs

Hydraulic element Electrical element

Symbol Quantity Symbol Quantity

qi Input flow rate ii Current source
h Height vC Capacitor voltage
A Tank area C Capacitance
R Flow resistance R Resistance
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circuit.The voltage eg induced in the armature circuit is directly proportional
to the product of the magnetic flux f set up by the field and the speed of
rotation o of the armature.Neglecting hysteresis, this is expressed by

eg ¼ K1fo ð2:124Þ
The flux is a function of the field current and the type of iron used in the field.
A typical magnetization curve showing flux as the function of field current is
given in Fig. 2.24.Up to saturation the relation is approximately linear, and the
flux is directly proportional to field current:

f ¼ K2if ð2:125Þ
Combining these equations gives

eg ¼ K1K2oif ð2:126Þ
When the generator is used as a power amplifier, the armature is driven at
constant speed, and this equation becomes

eg ¼ Kgif ð2:127Þ
A generator is represented schematically in Fig. 2.25, in which Lf and Rf

and Lg and Rg are the inductance and resistance of the field and armature
circuits, respectively.The equations for the generator are

ef ¼ ðLf D þ Rf Þif eg ¼ Kgif et ¼ eg � ðLg D þ RgÞia ð2:128Þ

FIGURE 2.25 Schematic diagram of a generator.

FIGURE 2.24 Magnetization curve.
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The armature current depends on the load connected to the generator
terminals.Combining the first two equations gives

ðLf D þ Rf Þeg ¼ Kgef ð2:129Þ
Equation (2.129) relates the generated voltage eg to the input field voltage ef .
The electrical power output po ¼ et ia is much larger than the power input
pi ¼ ef if . Thus, the ratio po=pi represents the electrical power gain.
Remember, however, that mechanical power drives the generator armature.
Therefore, mechanical power is being converted into electrical power output.

2.13 DC SERVOMOTOR

The development torque of a dc motor is proportional to the magnitude of
the flux due to the field current if and the armature current im. For any
given motor the only two adjustable quantities are the flux and the armature
current.The developed torque can therefore be expressed as

T ðtÞ ¼ K3fim ð2:130Þ
To avoid confusion with t for time, the capital letter T is used to indicate
torque. It may denote either a constant or a function that varies with time.
There are two modes of operation of a servomotor. For the armature control
mode, the field current is held constant and an adjustable voltage is applied to
the armature. In the field control mode, the armature current is held constant
and an adjustable voltage is applied to the field.The armature control method
of operation is considered in detail.The reader can refer to Ref.1 for the field
control method of speed control.

A constant field current is obtained by separately exciting the field from
a fixed dc source. The flux is produced by the field current and is, therefore,
essentially constant. Thus the torque is proportional only to the armature
current, and Eq. (2.130) becomes

T ðtÞ ¼ Ktim ð2:131Þ
When the motor armature is rotating, a voltage em is induced that is
proportional to the product of flux and speed. Because the polarity of this
voltage opposes the applied voltage ea, it is commonly called the back emf.
Since the flux is held constant, the induced voltage em is directly proportional
to the speed om:

em ¼ K1fom ¼ Kbom ¼ Kb Dym ð2:132Þ
The torque constant Kt and the generator constant Kb are the same for
mks units. Control of the motor speed is obtained by adjusting the voltage
applied to the armature. Its polarity determines the direction of the armature
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current and, therefore, the direction of the torque generated. This, in turn,
determines the direction of rotation of the motor. A circuit diagram of the
armature-controlled dc motor is shown in Fig. 2.26.The armature inductance
and resistance are labeled Lm and Rm. The voltage equation of the armature
circuit is

LmDim þ Rmim þ em ¼ ea ð2:133Þ
The current in the armature produces the required torque according to
Eq. (2.131). The required torque depends on the load connected to the motor
shaft. If the load consists only of a moment of inertia and damper (friction),
as shown in Fig. 2.27 the torque equation can be written:

J Dom þ Bom ¼ T ðtÞ ð2:134Þ
The required armature current im can be obtained by equating the generated
torque of Eq. (2.131) to the required load torque of Eq. (2.134). Inserting this
current, and the back emf from Eq. (2.132) into Eq. (2.133) produces the
system equation in terms of the motor velocity om:

LmJ
Kt

D2om þ
LmBþ RmJ

Kt
Dom þ

RmB
Kt
þ Kb

� �
om ¼ ea ð2:135Þ

This equation can also be written in terms of motor position ym:

LmJ
Kt

D3ym þ
LmBþ RmJ

Kt
D2ym þ

RmBþ KbKt

Kt
Dym ¼ ea ð2:136Þ

There are two energy-storage elements, J and Lm, for the system repre-
sented by Figs. 2.26 and 2.27. Designating the independent state variables

FIGURE 2.26 Circuit diagram of a dc motor.

FIGURE 2.27 Inertia and friction as a motor load.
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as x1 ¼ om and x2 ¼ im and the input as u ¼ ea yields the state equation

_xx ¼
�B
J

Kt

J

� Kb

Lm
�Rm

Lm

2
664

3
775xþ

0

1
Lm

2
664

3
775u ð2:137Þ

If motor position ym is the output, another differential equation is required;
that is, ym ¼ o. If the solution of ym is required, then the system is of third
order. A third state variable, x3 ¼ ym, must therefore be added.

The transfer functions om=ea and ym=ea can be obtained from
Eqs. (2.135) and (2.136).The armature inductance is small and can usually be
neglected, Lm � 0. Equation (2.136) is thus reduced to a second-order
equation.The corresponding transfer function has the form

G ¼ ym
ea
¼ KM

DðTmD þ 1Þ ð2:138Þ

2.14 AC SERVOMOTOR [16]

An ac servomotor is basically a two-phase induction motor that has two stator
field coils placed 90 electrical degrees apart, as shown in Fig. 2.28a. In a
two-phase motor the ac voltage e and ec are equal in magnitude and separated
by a phase angle of 90�. A two-phase induction motor runs at a speed slightly
below the synchronous speed and is essentially a constant-speed motor.
The synchronous speed ns is determined by the number of poles P produced
by the stator windings and the frequency f of the voltage applied to the stator
windlings: ns¼120f/P revolutions per minute.

FIGURE 2.28 (a) Schematic diagram of a two-phase induction motor; (b) servomotor
characteristics.
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When the unit is used as a servomotor, the speed must be proportional
to an input voltage. The two-phase motor can be used as a servomotor by
applying an ac voltage e of fixed amplitude to one of the motor windings.
When the other voltage ec is varied, the torque and speed are a function of
this voltage. Figure 2.28b shows a set of torque-speed curves for various
control voltages.

Note that the curve for zero control-field voltage goes through the
origin and that the slope is negative. This means that when the control-field
voltage becomes zero, the motor develops a decelerating torque, causing it to
stop.The curves show a large torque at zero speed.This is a requirement for a
servomotor in order to provide rapid acceleration. It is accomplished in an
induction motor by building the rotor with a high resistance.

The torque-speed curves are not straight lines.Therefore, a linear differ-
ential equation cannot be used to represent the exact motor characteristics.
Sufficient accuracy may be obtained by approximating the characteristics
by straight lines.The following analysis is based on this approximation.

The torque generated is a function of both the speed o and the
control-field voltage Ec. In terms of partial derivatives, the torque equation is
approximated by effecting a doubleTaylor series expansion of T(Ec, o) about
the origin and keeping only the linear terms:

@T
@Ec






origin

Ec þ
@T
@o






origin

o ¼ T ðEc�oÞ ð2:139Þ

If the torque-speed motor curves are approximated by parallel straight lines,
the partial derivative coefficients of Eq. (2.139) are constants that can be
evaluated from the graph. Let

@T
@Ec
¼ Kc and

@T
@o
¼ Ko ð2:140Þ

For a load consisting of a moment of inertia and damping, the load torque
required is

TL ¼ J Doþ Bo ð2:141Þ
Since the generated and load torques must be equal, Eqs. (2.139) and (2.141)
are equated:

KcEc þ Koo ¼ J Doþ Bo

Rearranging terms gives

J Doþ ðB� KoÞo ¼ KcEc ð2:142Þ
In terms of position y, this equation can be written as

J D2yþ ðB� KoÞDy ¼ KcEc ð2:143Þ
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In order for the system to be stable (see Chap. 3) the coefficient ðB� KoÞ
must be positive. Observation of the motor characteristics shows that
Ko ¼ @T=@o is negative; therefore, the stability requirement is satisfied.

AnalyzingEq. (2.142) reveals that this systemhas only one enery-storage
element J.Thus the state equation,where x1 ¼ o and u ¼ Ec, is

_xx1 ¼ �
B� Ko

J
x1 þ

Kc

J
u ð2:144Þ

2.15 LAGRANGE’S EQUATION

Previous sections show the application of Kirchhoff ’s laws for writing the
differential equations of electric networks and the application of Newton’s
laws for writing the equations of motion of mechanical systems. These laws
can be applied, depending on the complexity of the system,with relative ease.
In many instances systems contain combinations of electric and mechanical
components. The use of Lagrange’s equation provides a systematic unified
approach for handling a broad class of physical systems, no matter how
complex their structure [8].

Lagrange’s equation is given by

d
dt

@T
@ _qqn

� �
� @T
@qn
þ @D
@ _qqn
þ @V
@qn
¼ Qn n ¼ 1� 2� 3� . . . ð2:145Þ

where

T¼ total kinetic energy of system
D¼dissipation function of system
V¼ total potential energy of system

Qn¼ generalized applied force at the coordinate n
qn¼ generalized coordinate
_qqn¼ dqn=dt (generalized velocity)

and n ¼ 1� 2� 3� . . . denotes the number of independent coordinates or degrees
of freedom that exist in the system. The total kinetic energy T includes
all energy terms, regardless of whether they are electrical or mechanical.
The dissipation function D represents one-half the rate at which energy is
dissipated as heat; dissipation is produced by friction in mechanical systems
and by resistance in electric circuits. The total potential energy stored in
the system is designated by V. The forcing functions applied to a system are
designated by Qn; they take the form of externally applied forces or torques
in mechanical systems and appear as voltage or current sources in electric
circuits. These quantities are illustrated for electrical and mechanical
components in the following examples. Kinetic energy is associated with
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the generalized velocity and, for an inductor and mass, is given by
TL ¼ L _qq2=2 ¼ Li2=2 and TM ¼ M _xx2=2 ¼ Mv2=2, respectively. Potential
energy is associated with the generalized position and, for a capacitor
and spring, is given by VC ¼ q2=2C and VK ¼ Kx2=2, respectively. The
dissipation function is always a function of the generalized velocity and,
for an electrical resistor and mechanical friction, is given by DR ¼ R _qq2=2 ¼
Ri2=2 and DB ¼ B_xx2=2 ¼ Bv2=2, respectively. The generalized applied force
for an electric circuit is the electromotive force of a generator, thus Qq¼E.
For the Earth’s gravitational force applied to a mass, the generalized applied
force is Qf ¼Mg. Similar relationships can be developed for other physical
systems.The application of Lagrange’s equation is illustrated by the following
example.

Example: Electromechanical System with Capacitive Coupling. Figure 2.29
shows a system in which mechanical motion is converted into electric energy.
This represents the action that takes place in a capacitor microphone. Plate a
of the capacitor is fastened rigidly to the frame. Sound waves impinge upon
and exert a force on plate b of massM,which is suspended from the frame by
a spring K and which has damping B. The output voltage that appears across
the resistor R is intended to reproduce electrically the sound-wave
patterns which strike the plate b.

At equilibrium, with no external force extended on plate b, there is a
charge q0 on the capacitor. This produces a force of attraction between the
plates so that the spring is stretched by an amount x1 and the space between
the plates is x0. When sound waves exert a force on plate b there will be a

FIGURE 2.29 Electromechanical system with capacitive coupling.
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resulting motion x that is measured from the equilibrium position. The
distance between the plates will then be x0� x, and the charge on the plates
will be q0þq.

The capacitance is approximated by

C ¼ eA
x0 � x

and C0 ¼
eA
x0

where e is the dielectric constant for air and A is the area of the plate.

The energy expressions for this system are

T ¼ 1
2L_qq2 þ 1

2M _xx2

D ¼ 1
2R _qq2 þ 1

2B_xx2

V ¼ 1
2C
ðq0 þ qÞ2 þ 1

2Kðx1 þ xÞ2

¼ 1
2eA
ðx0 � xÞðq0 þ qÞ2 þ 1

2Kðx1 þ xÞ2

The method is simple and direct. It is merely necessary to include all the
energy terms, whether electrical or mechanical. The electromechanical
coupling in this example appears in the potential energy. Here, the presence
of charge on the plates of the capacitor exerts a force on the mechanical
system. Also, motion of the mechanical system produces an equivalent emf
in the electric circuit.

The two degrees of freedom are the displacement x of plate b and the
charge q on the capacitor. Applying Lagrange’s equation twice gives

M €xx þ B_xx � 1
2eA
ðq0 þ qÞ2 þ Kðx1 þ xÞ ¼ f ðtÞ ð2:146Þ

L €qq þ R _qq þ 1
eA
ðx0 � xÞðq0 � qÞ ¼ E ð2:147Þ

These equations are nonlinear. However, a good linear approximation
can be obtained, because x and q are very small quantities and, therefore,
the x2,q2, and xq terms can be neglected.This gives

ðq0 þ qÞ2 � q20 þ 2q0q
ðx0 � xÞðq0 � qÞ � x0q0 � q0x þ x0q

With these approximations the system equations become

M €xx þ Kx1 þ Kx � q20
2eA
� 2q0q

2eA
þ B_xx ¼ f ðtÞ ð2:148Þ

L €qq þ x0q0
eA
� q0x

eA
þ x0q

eA
þ R _qq ¼ E ð2:149Þ

Writing System Equations 75

Copyright © 2003 Marcel Dekker, Inc.



From Eq. (2.148), by setting f (t)¼ 0 and taking steady-state conditions, the
result is

Kxl �
q20
2eA
¼ 0

This simply equates the force on the spring and the force due to the charges
at the equilibrium condition. Similarly, in Eq. (2.149) at equilibrium

x0q0
eA
¼ q0

C0
¼ E

Therefore, the two system equations can be written in linearized form as

M €xx þ B_xx þ Kx � q0
eA

q ¼ f ðtÞ ð2:150Þ

L €qq þ R _qq þ q
C0
� q0
eA

x ¼ 0 ð2:151Þ

These equations show that q0=eA is the coupling factor between the electrical
and mechanical portions of the system.

Another form of electromechanical coupling exists when current in
a coil produces a force that is exerted on a mechanical system and,
simultaneously, motion of a mass induces an emf in an electric circuit.
The electromagnetic coupling is represented in Table 2.8. In that case the
kinetic energy includes a term

T ¼ lbNcxi ¼ Uxi ð2:152Þ
The energy for this system,which is shown inTable 2.8,may also be considered
potential energy. Since Eq. (2.145) contains the terms�@T=@qn and @V =@qn,
identification of the coupling energy as potential energy V would change
the sign on the corresponding term in the differential equation.

TABLE 2.8 Identification of Energy Functions for Electromechanical Elements

Definition Element and symbol Kinetic energy T

x¼ relative motion Uxi
i¼ current in coil
U¼ lbNc (electromechanical

coupling constant)
b¼ flux density produced by

permanent magnet
l¼ length of coil
Nc¼ number of turns in coil
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The main advantage of Lagrange’s equation is the use of a single
systematic procedure, eliminating the need to consider separatelyKirchhoff ’s
laws for the electrical aspects and Newton’s law for the mechanical aspects of
the system in formulating the statements of equilibrium.Once this procedure
is mastered, the differential equations that describe the system are readily
obtained.

2.16 SUMMARY

The examples in this chapter cover many of the basic elements of control
systems. In order to write the differential and state equations, the basic laws
governing performance are first stated for electrical, mechanical, thermal,
and hydraulic systems. These basic laws are then applied to specific devices,
and their differential equations of performance are obtained.The basic state,
transfer function, and block diagram concepts are introduced. Lagrange’s
equation has been introduced to provide a systematized method for writing
the differential equations of electrical, mechanical, and electromechanical
systems. This chapter constitutes a reference for the reader who wants to
review the fundamental concepts involved in writing differential equations of
performance. Basic matrix fundamentals are presented in Appendix B.
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3

Solution of Differential Equations

3.1 INTRODUCTION

The general solution of a linear differential equation [1,2] is the sum of two
components, the particular integral and the complementary function.
Often the particular integral is the steady-state component of the solution of
the differential equation; the complementary function, which is the solution
of the corresponding homogeneous equation, is then the transient component
of the solution.Often the steady-state component of the response has the same
form as the driving function. In this book the particular integral is called the
steady-state solution even when it is not periodic. The form of the transient
component of the response depends only on the roots of the characteristic
equation. For nonlinear differential equations the form of the response also
depends on the initial or boundary conditions. The instantaneous value of
the transient component depends on the boundary conditions, the roots of
the characteristic equation, and the instantaneous value of the steady-state
component.

This chapter covers methods of determining the steady-state and
the transient components of the solution. These components are first
determined separately and then added to form the complete solution.
Analysis of the transient solution should develop in the student a feel for the
solution to be expected.
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The method of solution is next applied to the matrix state equation.
A general format is obtained for the complementary solution in terms of the
state transition matrix (STM). Then the complete solution is obtained as a
function of the STM and the input forcing function.

3.2 STANDARD INPUTS TO CONTROL SYSTEMS

For some control systems the input has a specific form that may be
represented either by an analytical expression or as a specific curve.An exam-
ple of the latter is the pattern used in amachining operation,where the cutting
tool is required to follow the path indicated by the pattern outline. For other
control systems the input may be random in shape. In this case it cannot be
expressed analytically and is not repetitive. An example is the camera
platform used in a photographic airplane.The airplane flies at a fixed altitude
and speed, and the camera takes a series of pictures of the terrain below it,
which are then fitted together to form one large picture of the area.This task
requires that the camera platform remain level regardless of the motion of the
airplane. Since the attitude of the airplane varies with wind gusts and depends
on the stability of the airplane itself, the input to the camera platform is
obviously a random function.

It is important to have a basis of comparison for various systems. One
way of doing this is by comparing the response with a standardized input.
The input or inputs used as a basis of comparison must be determined from
the required response of the system and the actual form of its input. The
following standard inputs, with unit amplitude, are often used in checking
the response of a system:

1. Sinusoidal function r ¼ cosot
2. Power series function r ¼ a0 þ a1t þ a2ðt2=2Þ þ 	 	 	
3. Step function r ¼ u�1ðtÞ
4. Ramp (step velocity) function r ¼ u�2ðtÞ ¼ tu�1ðtÞ
5. Parabolic (step acceleration)

function r ¼ u�3ðtÞ ¼ ðt2=2Þu�1ðtÞ
6. Impulse function r ¼ u0ðtÞ
Functions 3 to 6 are called singularity functions (Fig. 3.1). The

singularity functions can be obtained from one another by successive
differentiation or integration. For example, the derivative of the parabolic
function is the ramp function, the derivative of the ramp function is the step
function, and the derivative of the step function is the impulse function.

For each of these inputs a complete solution of the differential
equation is determined in this chapter. First, generalized methods are
developed to determine the steady-state output cðtÞss for each type of input.
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These methods are applicable to linear differential equations of any order.
Next, the method of evaluating the transient component of the response cðtÞt
is determined, and the form of the transient component of the response is
shown to depend on the characteristic equation. Addition of the steady-state
component and the transient component gives the complete solution, that is,
cðtÞ ¼ cðtÞss þ cðtÞt . The coefficients of the transient terms are determined by
the instantaneous value of the steady-state component, the roots of the
characteristic equation, and the initial conditions. Several examples are used
to illustrate these principles. The solution of the differential equation with a
pulse input is postponed until the next chapter.

3.3 STEADY-STATE RESPONSE: SINUSOIDAL INPUT

The input quantity r is assumed to be a sinusoidal function of the form

rðtÞ ¼ R cos ðot þ aÞ ð3:1Þ
The general integrodifferential equation to be solved is of the form

AvD
vc þ Av�1D

v�1c þ 	 	 	 þ A0D
0c þ A�1D

�1c
þ 	 	 	 þ A�wD

�wc ¼ r ð3:2Þ
The steady-state solution can be obtained directly by use of Euler’s identity,

e jot ¼ cosot þ j sinot

The input can then be written

r ¼Rcos ðotþaÞ ¼ real part of Re jðotþaÞ
� �

¼Re Re jðotþaÞ
� �

¼Re ðRe jae jotÞ ¼Re ðRe jotÞ ð3:3Þ
For simplicity, the phrase real part of or its symbolic equivalent Re is
often omitted, but is must be remembered that the real part is intended.

FIGURE 3.1 Singularity functions: (a) step function, u�1ðtÞ; (b) ramp function,
u�2ðtÞ; (c) parabolic function, u�3ðtÞ.
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The quantity R ¼ Re ja is the phasor representation of the input; i.e., it has
both a magnitude R and an angle a. The magnitude R represents the
maximum value of the input quantity rðtÞ. For simplicity the angle a ¼ 0�

usually is chosen for R. The input r from Eq. (3.3) is inserted in Eq. (3.2).
Then, for the expression to be an equality, the response cmust be of the form

cðtÞss ¼ C cos ðot þ fÞ ¼ Re ðCe jfe jotÞ ¼ Re ðCe jotÞ ð3:4Þ
where C ¼ Ce jf is a phasor quantity having the magnitude C and the angle f.
The nth derivative of css with respect to time is

DncðtÞss ¼ Re joð ÞnCe jot� � ð3:5Þ
Inserting css and its derivatives from Eqs. (3.4) and (3.5) into Eq. (3.2) gives

Re ðAvð joÞvCe jot þ Av�1ð joÞv�1Ce jot þ 	 	 	 þ A�wð joÞ�wCe jot �
¼ Re ðRe jotÞ ð3:6Þ

Canceling e jot from both sides of the equation and then solving for C gives

C ¼ R

Avð joÞv þ Av�1ð joÞv�1 þ 	 	 	 þ A0 þ A�1ð joÞ�1 þ 	 	 	 þ A�wð joÞ�w
ð3:7Þ

where C is the phasor representation of the output; i.e., it has a magnitude C
and an anglef.Since the values ofC andf are functions of the frequencyo, the
phasor output is written as Cð joÞ to show this relationship. Similarly, Rð joÞ
denotes the fact that the input is sinusoidal andmay be a functionof frequency.

Comparing Eqs. (3.2) and (3.6), it can be seen that one equation can be
determined easily from the other. Substituting jo for D, Cð joÞ for c, and
Rð joÞ for r in Eq. (3.2) results in Eq. (3.6).The reverse is also true and is inde-
pendent of the order of the equation. It should be realized that this is simply a
rule of thumb that yields the desired expression.

The time response can be obtained directly from the phasor response.
The output is

cðtÞss ¼ Re ðCe jotÞ ¼ jCj cos ðot þ fÞ ð3:8Þ
As an example, consider the rotational hydraulic transmission described
in eq. (2.122), Sec. 2.11, of Ref. 10,which has an input x and an output angular
position ym. The equation that relates input to output in terms of system
parameters is repeated here:

VJ
KBC

D3ym þ
LJ
C

D2ym þ dm Dym ¼ dpopx ð3:9Þ
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When the input is the sinusoid, x ¼ X sinot, the corresponding phasor
equation can be obtained from Eq. (3.9) by replacing xðtÞ by Xð joÞ, ym by
?mð joÞ, and D by jo. The ratio of phasor output to phasor input is termed
the frequency transfer function, often designated by Gð joÞ. This ratio, in terms
of the steady-state sinusoidal phasors, is

Gð joÞ ¼ ?mð joÞ
Xð joÞ ¼

dpop=dm
jo VJ=KBC dmð Þ joð Þ2þ LJ=C dmð Þ joð Þ þ 1
� �

ð3:10Þ

3.4 STEADY-STATE RESPONSE: POLYNOMIAL INPUT

A development of the steady-state solution of a differential equation with a
general polynomial input is presented first. Particular cases of the power
series are then covered in detail.

The general differential equation (3.2) is repeated here:

AvD
vc þ Av�1D

v�1c þ 	 	 	 þ A0c þ A�1D
�1c þ 	 	 	 þ A�wD

�wc ¼ r
ð3:11Þ

The polynomial input is of the form

rðtÞ ¼ R0 þ R1t þ
R2t

2

2!
þ 	 	 	 þ Rkt

k

k!
ð3:12Þ

where the highest-order term in the input is Rkt
k=k!. For t < 0 the value of rðtÞ

is zero. The object is to find the steady-state or particular solution of the
dependent variable c. The method used is to assume a polynomial solution of
the form

cðtÞss ¼ b0 þ b1t þ
b2t

2

2!
þ 	 	 	 þ bqt

q

q!
ð3:13Þ

where determination of the value of q is given as follows:
The assumed solution is then substituted into the differential equation.

The coefficients b0, b1, b2, . . . of the polynomial solution are evaluated by
equating the coefficients of like powers of t on both sides of the equation.
Inserting r(t) from Eq. (3.12) into Eq. (3.11), the highest power of t on the right
side of Eq. (3.11) is k; therefore tk must also appear on the left side of this
equation. The highest power of t on the left side of the equation is produced
by the lowest-order derivative term D�wc and is equal to q plus the order of
the lowest derivative. Therefore, the value of the highest-order exponent of t
that appears in the assumed solution of Eq. (3.13) is

q ¼ k � w q � 0 ð3:14Þ
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where k is the highest exponent appearing in the input and w is the
lowest-order exponent of the differential operator D appearing in the general
differential equation (3.11). Equation (3.14) is valid only for positive values
of q. For each of the following examples the response is a polynomial, because
the input is of that form.However, the highest power in the response may not
be the same as that of the input.When the lowest-order derivative is zero, that
is,w¼ 0 in Eq. (3.11), then q¼k.When integral terms are present, the highest
order of t in c(t) is smaller than k.

Step-Function Input

A convenient input r(t) to a system is an abrupt change represented by a unit
step function, as shown in Fig. 3.1a. This type of input cannot always be put
into a system since it may take a definite length of time to make the change in
input, but it represents a good mathematical input for checking system
response.

The servomotor described in Sec. 2.13 is used as an example. The
response of motor velocity om in terms of the voltage ea applied to the
armature, as given by Eq. (2.135), is of the form

A2 D
2x þ A1 Dx þ A0x ¼ r ð3:15Þ

The unit step function r ¼ u�1ðtÞ is a polynomial in which the highest
exponent of t is k ¼ 0.When the input is a unit step function, the method of
solution for a polynomial can therefore be used, that is, the steady-state
response is also a polynomial. The lowest-order derivative in Eq. (3.15) is
w ¼ 0; therefore, q ¼ 0 and the steady-state response has only one term of
the form

xss ¼ b0 ð3:16Þ
The derivatives are Dxss ¼ 0 and D2xss ¼ 0. Inserting these values into
Eq. (3.15) yields

xðtÞss ¼ b0 ¼
1
A0

ð3:17Þ

Ramp-Function Input (Step Function of Velocity)

The ramp function is a fixed rate of change of a variable as a function of time.
This input is shown in Fig. 3.1b. The input and its derivative are expressed
mathematically as

rðtÞ ¼ u�2ðtÞ ¼ tu�1ðtÞ Dr ¼ u�1ðtÞ
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A ramp input is a polynomial input where the highest power of t is k ¼ 1.
When the input r(t) in Eq. (3.15) is the ramp function u�2ðtÞ, the highest
power of t in the polynomial output is q ¼ k ¼ 1.The output is therefore

xðtÞss ¼ b0 þ b1t ð3:18Þ
The derivatives are Dxss ¼ b1 and D2xss ¼ 0. Inserting these values into
Eq. (3.15), and then equating coefficients of t raised to the same power, yields

t0 : A1b1 þ A0b0 ¼ 0 b0 ¼ �
A1b1
A0
¼ �A1

A2
0

t1 : A0b1 ¼ 1 b1 ¼
1
A0

Thus, the steady-state solution is

xðtÞss ¼ �
A1

A2
0
þ 1
A0

t ð3:19Þ

Parabolic-Function Input (Step Function of Acceleration)

A parabolic function has a constant second derivative,which means that the
first derivative is a ramp.The input r(t) is expressed mathematically as

r ¼ u�3ðtÞ ¼
t2

2
u�1ðtÞ Dr ¼ u�2ðtÞ ¼ tu�1ðtÞ D2r ¼ u�1ðtÞ

Aparabolic input is a polynomial input where the highest power of t isk¼ 2.A
steady-state solution is found in the conventional manner for a polynomial
input. Consider Eq. (3.15) with a parabolic input. The order of the lowest
derivative in the system equation is w ¼ 0.The value of q is therefore equal to
2, and the steady-state response is of the form

xðtÞss ¼ b0 þ b1t þ
b2t

2

2
ð3:20Þ

The derivatives of x areDxss ¼ b1 þ b2t andD
2xss ¼ b2. Inserting these values

into Eq. (3.15), followed by equating the coefficients of t raised to the same
power, yields b2 ¼ 1=A0, b1 ¼ �A1=A

2
0, and b0 ¼ A2

1=A
3
0 � A2=A

2
0:

3.5 TRANSIENT RESPONSE: CLASSICAL METHOD

The classical method of solving for the complementary function or transient
response of a differential equation requires, first, the writing of the
homogeneous equation.The general differential equation has the form

bv D
vc þ bv�1 D

v�1c þ 	 	 	 þ b0 D
0c þ b�1 D

�1c þ 	 	 	 þ b�w D
�wc ¼ r
ð3:21Þ

Solution of Differential Equations 85

Copyright © 2003 Marcel Dekker, Inc.



where r is the forcing function and c is the response.The homogeneous equa-
tion is formed by letting the right side of the differential equation equal zero:

bvD
vct þ bv�1D

v�1ct þ 	 	 	 þ b0ct þ b�1D
�1ct þ 	 	 	 þ b�wD

�wct ¼ 0
ð3:22Þ

where ct is the transient component of the general solution.
The general expression for the transient response, which is the

solution of the homogeneous equation, is obtained by assuming a solution of
the form

ct ¼ Ame
mt ð3:23Þ

where m is a constant yet to be determined. Substituting this value of ct into
Eq. (3.22) and factoring Ame

mt from all terms gives

Ame
mtðbvmv þ bv�1m

v�1 þ 	 	 	 þ b0 þ 	 	 	 þ b�wm
�wÞ ¼ 0 ð3:24Þ

Equation (3.24) must be satisfied for Ame
mt to be a solution. Since emt cannot

be zero for all values of time t, it is necessary that

QðmÞ ¼ bvm
v þ bv�1m

v�1 þ 	 	 	 þ b0 þ 	 	 	 þ b�wm
�w ¼ 0 ð3:25Þ

This equation is purely algebraic and is termed the characteristic equation.The
roots of the characteristic equation, Eq. (3.25), can be readily obtained by
using the MATLAB CAD program. There are vþ w roots, or eigenvalues, of
the characteristic equation; therefore, the complete transient solution
contains the same number of terms of the form Ame

mt if all the roots are
simple.Thus the transient component,when there are no multiple roots, is

ct ¼ A1e
m1t þ A2e

m2t þ 	 	 	 þ Ake
mkt þ 	 	 	 þ Avþwe

mvþwt ð3:26Þ
where each emkt is described as a mode of the system. If there is a root mq of
multiplicity p, the transient includes corresponding terms of the form

Aq1e
mqt þ Aq2te

mqt þ 	 	 	 þ Aqpt
p�1emqt ð3:27Þ

Instead of using the detailed procedure just outlined, the characteristic
equation of Eq. (3.25) is usually obtained directly from the homogeneous
equation of Eq. (3.22) by substitutingm forDct,m

2 forD2ct, etc.
Since the coefficients of the transient solution must be determined

from the initial conditions, there must be vþ w known initial conditions.
These conditions are values of the variable c and of its derivatives that are
known at specific times. The vþ w initial conditions are used to set up vþ w
simultaneous equations of c and its derivatives. The value of c includes
both the steady-state and transient components. Since determination of the
coefficients includes consideration of the steady-state component, the input
affects the value of the coefficient of each exponential term.
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Complex Roots

If all values of mk are real, the transient terms can be evaluated as indicated
above. Frequently, some values of mk are complex.When this happens, they
always occur in pairs that are complex conjugates and are of the form

mk ¼ sþ jod mkþ1 ¼ s� jod ð3:28Þ
where s is called the damping coefficient and od is called the damped natural
frequency.The transient terms corresponding to these values ofm are

Ake
ðsþjod Þt þ Akþ1e

ðs�jod Þt ð3:29Þ
These terms are combined to a more useful form by factoring the term est:

estðAke
jod t þ Akþ1e

�jod tÞ ð3:30Þ
By using the Euler identity e
 jod t ¼ cosod t 
 j sinod t and then combining
terms, expression (3.30) can be put into the form

estðB1 cosod t þ B2 sinod tÞ ð3:31Þ
This can be converted into the form

Aest sinðod t þ fÞ ð3:32Þ
where A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 þ B2

2

p
and f ¼ tan�1ðB1=B2Þ.This form is very convenient for

plotting the transient response. The student must learn to use this
equation directly without deriving it each time. Often the constants in the
transient term are evaluated more readily from the initial conditions by using
the form of Eq. (3.31), and then the expression is converted to the more useful
form of Eq. (3.32).

This transient term is called an exponentially damped sinusoid; it
consists of a sine wave of frequency od whose magnitude is Aest; that is, it is
decreasing exponentially with time if s is negative. It has the form shown in
Fig. 3.2, inwhich the curves
Aest constitute the envelope.The plot of the time
solution always remains between the two branches of the envelope.

For the complex roots given in Eq. (3.28), where s is negative, the
transient decays with time and eventually dies out. A negative s represents a
stable system.When s is positive, the transient increases with time and will
destroy the equipment unless otherwise restrained. A positive s represents
the undesirable case of an unstable system. Control systems must be
designed so that they are always stable.

Damping Ratio z and Undamped Natural Frequency vn

When the characteristic equation has a pair of complex-conjugate roots,
it has a quadratic factor of the form b2m

2 þ b1mþ b0. The roots of this
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factor are

m1,2 ¼ �
b1
2b2

 j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2b0 � b21

4b22

s
¼ s
 jod ð3:33Þ

The real part s is recognized as the exponent of e, and od is the frequency of
the oscillatory portion of the component stemming from this pair of roots, as
given by expression (3.32).

The quantity b1 represents the effective damping constant of the system.
If the numerator under the square root in Eq. (3.33) is zero, then b1 has the
value 2

ffiffiffiffiffiffiffiffiffi
b2b0

p
and the two roots m1,2 are equal. This represents the critical

value of the damping constant and is written b
0
1 ¼ 2

ffiffiffiffiffiffiffiffiffi
b2b0

p
.

Thedamping ratio z is defined as the ratioof the actual damping constant to the
critical value of the damping constant:

z ¼ actual damping constant
critical damping constant

¼ b1
b
0
1
¼ b1

2
ffiffiffiffiffiffiffiffiffi
b2b0

p ð3:34Þ

When z is positive and less than unity, the roots are complex and the
transient is a damped sinusoid of the form of expression (3.32). When z is
less than unity, the response is said to be underdamped. When z is greater
than unity, the roots are real and the response is overdamped; i.e., the
transient solution consists of two exponential terms with real exponents.
For z > 0 the transients decay with time and the response cðtÞ approaches
the steady state value. For z < 0 the transient increases with time and the
response is unstable.

FIGURE 3.2 Sketch of an exponentially damped sinusoid.
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The undamped natural frequency on is defined as the frequency of the
sustained oscillation of the transient if the damping is zero:

on ¼
ffiffiffiffiffi
b0
b2

s
ð3:35Þ

The case of zero damping constant, b1¼0, means that the transient response
does not die out; it is a sine wave of constant amplitude.

The quadratic factors are frequently written in terms of the damping
ratio and the undamped natural frequency. Underdamped systems are
generally analyzed in terms of these two parameters. After factoring b0, the
quadratic factor of the characteristic equation is

b2
b0

m2 þ b1
b0

mþ 1 ¼ 1
o2
n
m2 þ 2z

on
mþ 1 ð3:36Þ

When it is multiplied through by o2
n, the quadratic appears in the form

m2 þ 2zonmþ o2
n ð3:37Þ

The two forms given by Eqs. (3.36) and (3.37) are called the standard forms of
the quadratic factor, and the corresponding roots are

m1,2 ¼ s
 jod ¼ �zon 
 jon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
ð3:38Þ

The transient response of Eq. (3.32) for the underdamped case, written in
terms of z and on, is

Aest sin ðod t þ fÞ ¼ Ae�zont sin ðon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
t þ fÞ ð3:39Þ

From this expression the effect on the transient of the terms z and on can
readily be seen.The larger the product zon, the faster the transient will decay.
These terms also affect the damped natural frequency of oscillation of the
transient, od ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
, which varies directly as the undamped natural

frequency and decreases with an increase in damping ratio.

3.6 DEFINITION OF TIME CONSTANT

The transient terms have the exponential form Aemt. When m¼�a is real
and negative, the plot of Ae�athas the form shown in Fig. 3.3. The value
of time that makes the exponent of e equal to �1 is called the time constant T.
Thus

�aT ¼ �1 and T ¼ 1
a

ð3:40Þ
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In a duration of time equal to one time constant the exponential e�atdecreases
from the value 1 to the value 0.368. Geometrically, the tangent drawn to the
curve Ae�at at t¼ 0 intersects the time axis at the value of time equal to the
time constantT.

When m ¼ s
 jod is a complex quantity, the transient has the form
Aest sinðod t þ fÞ. A plot of this function is shown in Fig. 3.2. In the case of
the damped sinusoid, the time constant is defined in terms of the
parameter s that characterizes the envelope Ae�st. Thus the time constant T
is equal to

T ¼ 1
jsj ð3:41Þ

In terms of the damping ratio and the undamped natural frequency, the time
constant is T ¼ 1=zon. Therefore, the larger the product zon, the greater the
instantaneous rate of decay of the transient.

3.7 EXAMPLE: SECOND-ORDER SYSTEM—MECHANICAL

The simple translational mechanical system of Sec. 2.5 is used as an example
and is shown in Fig. 3.4. Equation (2.59) relates the displacement xb to xa:

M D2xb þ BDxb þ Kxb ¼ Kxa ð3:42Þ
Consider the system to be originally at rest.Then the function xamoves1unit
at time t¼ 0; that is, the input is a unit step function xaðtÞ ¼ u�1ðtÞ.
The problem is to find the motion xb(t).

The displacement of the mass is given by

xbðtÞ ¼ xb,ss þ xb,t

where xb,ss is the steady-state solution and xb,t is the transient solution.

FIGURE 3.3 Plot of the exponential e�at and the root location.
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The steady-state solution is found first by using the method of Sec. 3.4.
In this example it may be easier to consider the following:

1. Since the input xa is a constant, the response xb must reach a fixed
steady-state position.

2. When xb reaches a constant value, the velocity and acceleration
become zero.

By putting D2xb ¼ Dxb ¼ 0 into Eq. (3.42), the final or steady-state
value of xb is xb,ss ¼ xa. After the steady-state solution has been found, the
transient solution is determined.The characteristic equation is

Mm2 þ Bmþ K ¼ M m2 þ B
M

mþ K
M

� �
¼ 0

Putting this in terms of z and on gives

m2 þ 2zonmþ o2
n ¼ 0 ð3:43Þ

for which the roots are m1,2 ¼ �zon 
 on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
. The transient solution

depends on whether the damping ratio z is (1) greater than unity, (2) equal
to unity, or (3) smaller than unity. For z greater than unity the roots are real
and have the valuesm1 ¼ �a and m2 ¼ �b, and the transient response is

xb,t ¼ A1e
�at þ A2e

�bt ð3:44Þ
For z equal to unity, the roots are real and equal; that is, m1 ¼ m2 ¼ �zon.
Since there are multiple roots, the transient response is

xb,t ¼ A1e
�zont þ A2te

�zont ð3:45Þ
For z less than unity, the roots are complex,

m1,2 ¼ �zon 
 jon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q

and the transient solution, as outlined in Sec. 3.5, is

xb,t ¼ Ae�zont sin ðon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
t þ fÞ ð3:46Þ

FIGURE 3.4 Simple mechanical system.
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The complete solution is the sum of the steady-state and transient solutions.
For the underdamped case, z < 1, the complete solution of Eq. (3.42) with a
unit step input is

xbðtÞ ¼ 1þ Ae�zont sin ðon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
t þ fÞ ð3:47Þ

The two constants A and f must next be determined from the initial
conditions. In this example the system was initially at rest; therefore,
xbð0Þ ¼ 0. The energy stored in a mass is W ¼ 1

2Mv2. From the principle of
conservation of energy, the velocity of a system with mass cannot change
instantaneously; thus Dxbð0Þ ¼ 0. Two equations are necessary, one for xb(t)
and one forDxb(t).Differentiating Eq. (3.47) yields

DxbðtÞ ¼ �zonAe
�zont sin ðon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
t þ fÞ

þ on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
Ae�zont cos ðon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
t þ fÞ ð3:48Þ

Inserting the initial conditions xbð0Þ ¼ 0,Dxbð0Þ ¼ 0, and t¼ 0 into Eqs. (3.47)
and (3.48) yields the two simultaneous equations

0 ¼ 1þ A sinf 0 ¼ �zonA sin fþ on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
A cos f

These equations are then solved forA and f:

A ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p f ¼ tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
z

¼ cos�1 z

where the units of f are radians.Thus the complete solution is

xbðtÞ ¼ 1� e�zontffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p sin ðon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
t þ cos�1 zÞ ð3:49Þ

When the complete solution has been obtained, it should be checked to see
that it satisfies the known conditions. For example, putting t¼ 0 into
Eq. (3.49) gives xbð0Þ ¼ 0; therefore, the solution checks. In a like manner, the
constants can be evaluated for the other two cases of damping.Equation (3.49)
shows that the steady-state value xb,ss is equal to xa. Thus, the output tracks
the input.

3.8 EXAMPLE: SECOND-ORDER SYSTEM—ELECTRICAL

The electric circuit of Fig. 3.5 is used to illustrate further the determination
of initial conditions.The circuit, as shown, is in the steady state. At time t¼ 0
the switch is closed. The problem is to solve for the current i2(t) through the
inductor for t> 0.
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Two loop equations are written for this circuit:

10 ¼ 20i1 � 10i2 ð3:50Þ

0 ¼ �10i1 þ D þ 25þ 100
D

� �
i2 ð3:51Þ

Eliminating i1 from these equations yields

10 ¼ 2D þ 40þ 200
D

� �
i2

Differentiating this equation yields

ð2D2 þ 40D þ 200Þi2 ¼ 0 ð3:52Þ
The steady-state solution is found by using the method of Sec. 3.4. Since the
input of Eq. (3.52) is a step function of value zero, the steady-state output is

i2,ss ¼ 0 ð3:53Þ
This can also be deduced from an inspection of the circuit.When a branch
contains a capacitor, the steady-state current is always zero for a dc source.

Next the transient solution is determined.The characteristic equation is
m2 þ 20mþ 100 ¼ 0, for which the roots are m1,2 ¼ �10. Thus the circuit is
critically damped, and the current through the inductor can be expressed by

i2ðtÞ ¼ i2ðtÞt ¼ A1e
�10t þ A2te

�10t ð3:54Þ
Two equations and two initial conditions are necessary to evaluate the two
constants A1 and A2. Equation (3.54) and its derivative,

Di2ðtÞ ¼ �10A1e
�10t þ A2ð1� 10tÞe�10t ð3:55Þ

are utilized in conjunction with the initial conditions i2ð0þÞ and
Di2ð0þÞ. In this example the currents just before the switch is closed are

FIGURE 3.5 Electric circuit: E ¼ 10V, R1¼ 10�, R2¼ 15�, R3¼ 10�, L¼ 1H,
C¼ 0.01 F.
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i1ð0�Þ ¼ i2ð0�Þ ¼ 0. The energy stored in the magnetic field of a single
inductor is W ¼ 1

2Li
2. Since this energy cannot change instantly, the current

through an inductor cannot change instantly either. Therefore, i2ð0þÞ ¼
i2ð0�Þ ¼ 0. Di2ðtÞ is found from the original circuit equation, Eq. (3.51),which
is rewritten as

Di2ðtÞ ¼ 10i1ðtÞ � 25i2ðtÞ � vcðtÞ ð3:56Þ
To determine Di2ð0þÞ, it is necessary first to determine i1ð0þÞ, i2ð0þÞ� and
vcð0þÞ. Since i2ð0þÞ ¼ 0, Eq. (3.50) yields i1ð0þÞ ¼ 0:5A. Since the energy
W ¼ 1

2Cv
2 stored in a capacitor cannot change instantly, the voltage across

the capacitor cannot change instantly either. The steady-state value of
capacitor voltage for t< 0 is vcð0�Þ ¼ 10V; thus

vcð0�Þ ¼ vcð0þÞ ¼ 10V ð3:57Þ
Inserting these values into Eq. (3.56) yields Di2ð0þÞ ¼ �5. Substituting the
initial conditions into Eqs. (3.54) and (3.55) results in A1 ¼ 0 and A2 ¼ �5.
Therefore, the current through the inductor for t� 0 is

i2ðtÞ ¼ �5te�10t ð3:58Þ

3.9 SECOND-ORDER TRANSIENTS [2]

The response to a unit step-function input is usually used as a means of
evaluating the response of a system. The example of Sec. 3.7 is used as an
illustrative simple second-order system. The differential equation given by
Eq. (3.42) can be expressed in the form

D2c
o2
n
þ 2z
on

Dc þ c ¼ r

This is defined as a simple second-order equation because there are no
derivatives of r on the right side of the equation. The underdamped response
ðz < 1Þ to a unit step input, subject to zero initial conditions, is derived in
Sec. 3.7 and is given by

cðtÞ ¼ 1� e�zontffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p sin ðon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
t þ cos�1 zÞ ð3:59Þ

A family of curves representing this equation is shown in Fig. 3.6, where the
abscissa is the dimensionless variable ont. The curves are thus a function
only of the damping ratio z.
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These curves show that the amount of overshoot depends on the
damping ratio z. For the overdamped and critically damped case, z � 1, there
isnoovershoot.For the underdampedcase, z < 1,the systemoscillates around
the final value. The oscillations decrease with time, and the system response
approaches the final value.The peak overshoot for the underdamped system is
the first overshoot. The time at which the peak overshoot occurs, tp, can be
found by differentiating c(t) from Eq. (3.59) with respect to time and setting
this derivative equal to zero:

dc
dt
¼ zone

�zontffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p sin ðon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
t þ cos�1 zÞ

� one
�zont cos ðon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
t þ cos�1 zÞ

¼ 0

This derivative is zero at on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
t ¼ 0, �, 2�, . . .. The peak overshoot

occurs at the first value after zero, provided there are zero initial conditions;
therefore,

tp ¼
�

on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p ð3:60Þ

Inserting this value of time in Eq. (3.59) gives the normalized peak overshoot
with a step input asMp ¼ cðtpÞ=R0:

Mp ¼ cp ¼ 1þ exp � z�ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
 !

ð3:61Þ

FIGURE 3.6 Simple second-order transients.
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The per unit overshootMo as a function of damping ratio is shown in Fig. 3.7,
where

Mo ¼
cp � css

css
ð3:62Þ

The variation of the frequency of oscillation of the transient with variation of
damping ratio is also of interest. In order to represent this variation by one
curve, the quantity od=on is plotted against z in Fig. 3.8. If the scales of
ordinate and abscissa are equal, the curve is an arc of a circle. Note that this
curve has been plotted for z � 1.Values of damped natural frequency for z > 1
are mathematical only, not physical.

The error in the system is the input minus the output; thus the error
equation is

e ¼ r � c ¼ e�zontffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p sin ðon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
t þ cos�1 zÞ ð3:63Þ

FIGURE 3.7 Peak overshoot vs. damping ratios for a simple second-order equation
D2c=o2

n þ ð2B=onÞDcþ c ¼ rðtÞ:

FIGURE 3.8 Frequency of oscillation vs. damping ratio.
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The variation of error with time is sometimes plotted.These curves can
be obtained from Fig. 3.6 by realizing that the curves start at e(0)¼þ 1 and
have the final value eð1Þ ¼ 0.

Response Characteristics

The transient-response curves for the second-order system show a number of
significant characteristics. The overdamped system is slow-acting and does
not oscillate about the final position. For some applications the absence of
oscillations may be necessary. For example, an elevator cannot be allowed to
oscillate at each stop. But for systems where a fast response is necessary, the
slow response of an overdamped system cannot be tolerated.

The underdamped system reaches the final value faster than the
overdamped system, but the response oscillates about this final value.
If this oscillation can be tolerated, the underdamped system is faster acting.
The amount of permissible overshoot determines the desirable value
of the damping ratio. For example, a damping ratio z ¼ 0:4 has an
overshoot of 25.4 percent, and a damping ratio z ¼ 0:8 has an overshoot of
1.52 percent.

The settling time is the time required for the oscillations to decrease to a
specified absolute percentage of the final value and thereafter to remain less
than this value.Errors of 2 or 5 percent are common values used to determine
settling time. For second-order systems the value of the transient component
at any time is equal to or less than the exponential e�zont.The value of this term
is given in Table 3.1 for several values of t expressed in a number of time
constantsT.

The settling time for a 2 percent error criterion is approxi-
mately 4 time constants; for a 5 percent error criterion, it is 3 time constants.
The percent error criterion used must be determined from the
response desired for the system. The time for the envelope of the transient

TABLE 3.1 Exponential Values

t e�Bont Error, %

1T 0.368 36.8
2T 0.135 13.5
3T 0.050 5.0
4T 0.018 1.8
5T 0.007 0.7
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to die out is

Ts ¼
number of time constants

zon
ð3:64Þ

Since z must be determined and adjusted for the permissible overshoot, the
undamped natural frequency determines the settling time.When cðtÞss ¼ 0,
then tsmay be based upon
 2 percent of c(tp).

3.10 TIME-RESPONSE SPECIFICATIONS [3]

Thedesired performance characteristics of a tracking systemof anyordermay
be specified in terms of the transient response to a unit step-function input.
The performance of a system may be evaluated in terms of the following
quantities, as shown in Fig. 3.9.

1. Peak overshoot cp, which is the magnitude of the largest overshoot,
often occurring at the first overshoot.This may also be expressed in
percent of the final value.

2. Time to maximum overshoot tp is the time to reach the maximum
overshoot.

3. Time to first zero error t0, which is the time required to reach the
final value the first time. It is often referred to as duplicating time.

4. Settling time ts, the time required for the output response to first
reach and thereafter remain within a prescribed percentage of the
final value. This percentage must be specified in the individual
case.Common values used for settling time are 2 and 5 percent. As
commonly used, the 2 or 5 percent is applied to the envelope that
yieldsTs.The actual tsmay be smaller thanTs.

5. Rise time tr, defined as the time for the response, on its initial rise, to
go from 0.1 to 0.9 times the steady-state value.

FIGURE 3.9 Typical underdamped response to a step input.
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6. Frequency of oscillation od of the transient depends on the
physical characteristics of the system.

If the system has an initial constant output c1(t)ss and then the input is
changed to obtain a new constant value c2(t)ss, the transient response for an
underdamped system is illustrated in Fig. 3.10. The per unit overshoot may
then be redefined from the expression in Eq. (3.62) to the new value

Mo ¼
maximum overshoot
signal transition

¼ �cp


 

� �cj j

�cj j ð3:65Þ

The time response differs for each set of initial conditions.Therefore, to
compare the time responses of various systems it is necessary to start with
standard initial conditions. The most practical standard is to start with the
system at rest.Then the response characteristics, such asmaximumovershoot
and settling time, can be compared meaningfully.

For some systems these specifications are also applied for a ramp input.
In such cases the plot of error with time is used with the definitions. For
systems subject to shock inputs the response due to an impulse is used as a
criterion of performance.

3.11 CAD ACCURACY CHECKS (CADAC)

A proficient control system engineer is an individual who has mastered
control theory and its application in analysis and design. The competent
engineer must become computer literate in the use of CAD packages like
MATLAB [4] or TOTAL-PC. The individual must fully comprehend the
importance of the following factors:

1. It is essential to have a firm understanding of the CAD algorithm
being used. This leads to a judgment about the reasonableness of
the CAD program results.

FIGURE 3.10 Underdamped transient.
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2. CAD input data must be entered accurately. Remember: garbage
in^garbage out.

3. No computer has infinite accuracy. Therefore, round-off must be
considered.

4. CAD accuracy checks (CADAC) help to validate the accuracy
of the CAD output data. The CADAC are necessary, but not
necessarily sufficient, conditions for ensuring the accuracy of the CAD
output data.

The figures of merit (FOM) equations for Mp, tp, and Ts can serve as
CADAC. They apply not only for simple second-order systems but also for
systems in which the dominant roots (a pair of complex roots or a real root)
of the characteristic equation dictate the time response characteristics.
These CADAC are important for the design methods presented in later
chapters.

3.12 STATE-VARIABLE EQUATIONS [5–8]

The differential equations and the corresponding state equations of
various physical systems are derived in Chap. 2. The state variables
selected in Chap. 2 are restricted to the energy-storage variables. In
Chap. 5 different formulations of the state variables are presented. In
large-scale systems, with many inputs and outputs, the state-variable
approach can have distinct advantages over conventional methods, especially
when digital computers are used to obtain the solutions. Although this text is
restricted to linear time-invariant (LTI) systems, the state-variable approach
is applicable to nonlinear and to time-varying systems. In these cases a
computer is a practical method for obtaining the solution. A feature of the
state-variable method is that it decomposes a complex system into a set of
smaller systems that can be normalized to have a minimum interaction and
that can be solved individually. Also, it provides a unified approach that is
used extensively in modern control theory.

The block diagram of Fig. 3.11 represents a system S that has m
inputs, l outputs, and n state variables. The coefficients in the equations

FIGURE 3.11 General system representation.
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representing an LTI system are constants. The matrix state and output
equations are then

_xxðtÞ ¼ AxðtÞ þ BuðtÞ ð3:66Þ
yðtÞ ¼ CxðtÞ þDuðtÞ ð3:67Þ

The variables x(t), u(t), and y(t) are column vectors, and A, B, C, and D

are matrices having constant elements. Equation (3.66) is solved first for
the state vector x(t). This result is then used in Eq. (3.67) to determine the
output y(t).

The homogeneous state equation,with the input u(t)¼ 0, is

_xx ¼ Ax ð3:68Þ
whereA is a constant n�nmatrix and x is an n�1column vector.

For the scalar first-order equation _xx ¼ ax, the solution, in terms of the
initial conditions at time t¼ 0, is

xðtÞ ¼ eatxð0Þ ð3:69Þ
For any other initial condition, at time t¼ t0, the solution is

xðtÞ ¼ eaðt�t0Þxðt0Þ ð3:70Þ
Comparing the scalar and the state equations shows the solution of Eq. (3.68)
to be analogous to the solution given by Eq. (3.70); it is

xðtÞ ¼ exp½Aðt � t0Þ�xðt0Þ ð3:71Þ
The exponential function of a scalar that appears in Eq. (3.69) can be
expressed as the infinite series

eat ¼ exp½at� ¼ 1þ at
1!
þ ðatÞ

2

2!
þ ðatÞ

3

3!
þ . . .þ ðatÞ

k

k!
þ . . . ð3:72Þ

The analogous exponential function of a square matrix A that appears in
Eq. (3.71),with t0¼ 0, is

eAt ¼ exp½At� ¼ Iþ At
1!
þ ðAtÞ

2

2!
þ ðAtÞ

3

3!
þ . . .þ ðAtÞ

k

k!
þ . . . ð3:73Þ

Thus exp [At] is a square matrix of the same order as A. A more useful form
for the infinite series of Eq. (3.73) is the closed formdeveloped in Sec.3.14.The
closed form is called the state transitionmatrix (STM)or the fundamentalmatrix
of the system and is denoted by

(ðtÞ ¼ eAt ¼ exp ½At� ð3:74Þ
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The term STM is descriptive of the unforced or natural response and is
the expression preferred by engineers. The STM has the following
properties [7,9].

1: (ðt2 � t1Þ(ðt1 � t0Þ ¼ (ðt2 � t0Þ for any t0� t1� t2 ð3:75Þ
2: (ðtÞ(ðtÞ 	 	 	(ðtÞ ¼ (qðtÞ ¼ (ðqtÞ q ¼ positive integer ð3:76Þ
3: (�1ðtÞ ¼ (ð�tÞ ð3:77Þ
4: (ð0Þ ¼ I unity matrix ð3:78Þ
5: (ðtÞ is nonsingular for

all finite values of t ð3:79Þ

3.13 CHARACTERISTIC VALUES

Consider a system of equations represented by

_xx ¼ Ax ð3:80Þ
The signals _xx and x are column vectors, and A is a square matrix of order n.
One case for which a solution of this equation exists is if x and _xx have the same
direction in the state space but differ only in magnitude by a scalar
proportionality factor l. The solution must therefore have the form _xx ¼ lx.
Inserting this into Eq. (3.80) and rearranging terms yields

lI� A½ �x ¼ 0

This equation has a nontrivial solution only if x is not zero. It is therefore
required that the matrix lI� A½ � not have full rank; therefore, the
determinant of the coefficients of xmust be zero:

QðlÞ � jlI� Aj ¼ 0 ð3:81Þ
When A is of order n, the resulting polynomial equation is the characteristic
equation

QðlÞ ¼ ln þ an�1l
n�1 þ 	 	 	 þ a1lþ a0 ¼ 0 ð3:82Þ

The roots li of the characteristic equation are called the characteristic values
or eigenvalues of A. The roots may be distinct (simple) or repeated with a
multiplicity p. Also, a root may be real or complex. Complex roots must
appear in conjugate pairs, and the set of roots containing the complex-
conjugate roots is said to be self-conjugate. The polynomial QðlÞ may be
written in factored form as

QðlÞ ¼ ðl� l1Þðl� l2Þ 	 	 	 ðl� lnÞ ð3:83Þ
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The product of eigenvalues of a matrix A is equal to its determinant, that is,
l1l2 	 	 	 ln ¼ jAj. Also, the sum of the eigenvalues is equal to the sum of the
elements on the main diagonal (the trace) ofA, that is,

Xn
l

li ¼
Xn
i¼1

aii � trace A

3.14 EVALUATING THE STATE TRANSITION MATRIX

There are several methods for evaluating the STM (ðtÞ ¼ exp At½ � in closed
form for a given matrix A. The method illustrated here is based on the
Cayley-Hamilton theorem. The Laplace transform method is covered in the
next chapter, and a state transformation method is covered in Chap. 5.
Consider a general polynomial of the form

N ðlÞ ¼ lm þ Cm�1l
m�1 þ 	 	 	 þ C1lþ C0 ð3:84aÞ

When the polynomial N ðlÞ is divided by the characteristic polynomial QðlÞ,
the result is

N ðlÞ
QðlÞ ¼ F ðlÞ þ RðlÞ

QðlÞ
or

N ðlÞ ¼ F ðlÞQðlÞ þ RðlÞ ð3:84bÞ
The function RðlÞ is the remainder, and it is a polynomial whose maximum
order is n� 1, or 1 less than the order of QðlÞ. For l ¼ li the value QðliÞ ¼ 0;
thus

N ðliÞ ¼ RðliÞ ð3:85Þ
Thematrix polynomial corresponding toEq. (3.84a),usingA as the variable, is

NðAÞ ¼ A
m þ Cm�1A

m�1 þ 	 	 	 þ C1Aþ C0I ð3:86Þ
Since the characteristic equation QðlÞ ¼ 0 has n roots, there are n equations
Qðl1Þ ¼ 0,Qðl2Þ ¼ 0� . . . �QðlnÞ ¼ 0.The analogous matrix equation is

QðAÞ ¼ A
n þ an�1A

n�1 þ 	 	 	 þ a1Aþ a0I ¼ 0

where 0 indicates a null matrix of the same order as QðAÞ. This equation
implies the Cayley-Hamilton theorem, which is sometimes expressed as
‘‘every square matrix A satisfies its own characteristic equation.’’ The matrix
polynomial corresponding to Eqs. (3.84b) and (3.85) is therefore

NðAÞ ¼ FðAÞQðAÞ þ RðAÞ ¼ RðAÞ ð3:87Þ
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Equations (3.85) and (3.87) are valid when N ðlÞ is a polynomial of any order
(or even an infinite series) as long as it is analytic. The exponential function
N ðlÞ ¼ elt is an analytic function that can be represented by an infinite
series, as shown in Eq. (3.72). Since this function converges in the region of
analyticity, it can be expressed in closed form by a polynomial in l of degree
n� 1.Thus, for each eigenvalue, from Eq. (3.85),

eli t ¼ RðliÞ ¼ a0ðtÞ þ a1ðtÞli þ 	 	 	 þ akðtÞlki þ 	 	 	 þ an�1ðtÞln�1i

ð3:88Þ
Inserting the n distinct roots li into Eq. (3.88) yields n equations that can be
solved simultaneously for the coefficients ak. These coefficients may be
inserted into the corresponding matrix equation:

eAt ¼ NðAÞ ¼ RðAÞ
¼ a0ðtÞIþ a1ðtÞAþ 	 	 	 þ akðtÞAk þ 	 	 	 þ an�1ðtÞAn�1 ð3:89Þ

For the STM this yields

(ðtÞ ¼ exp At½ � ¼
Xn�1
k¼0

akðtÞAk ð3:90Þ

For the case of multiple roots, refer to a text on linear algebra [5,8,9] for the
evaluation of(ðtÞ.
Example. Find exp½At�when

A ¼ 0 6
�1 �5

� �

The characteristic equation is

QðlÞ ¼ jlI� Aj ¼ l �6
1 lþ 5










 ¼ l2 þ 5lþ 6 ¼ 0

The roots of this equation are l1 ¼ �2 and l2 ¼ �3.SinceA is a second-order
matrix, the remainder polynomial given by Eq. (3.88) is of first order:

N ðliÞ ¼ R lið Þ ¼ a0 þ a1li ð3:91Þ
SubstitutingN ðliÞ ¼ eli t and the two roots l1 and l2 into Eq. (3.91) yields

e�2t ¼ a0 � 2a1 and e�3t ¼ a0 � 3a1

Solving these equations for the coefficients a0 and a1 yields

a0 ¼ 3e�2t � 2e�3t and a1 ¼ e�2t � e�3t
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The STMobtained by using Eq. (3.90) is

(ðtÞ ¼ exp At½ � ¼ a0Iþ a1Aþ
a0 0
0 a0

� �
þ 0 6a1
�a1 �5a1

� �

¼ 3e�2t � 2e�3t 6e�2t � 6e�3t

�e�2t þ e�3t �2e�2t þ 3e�3t

" #
ð3:92Þ

Another procedure for evaluating the STM, (ðtÞ, is by use of the Sylvester
expansion.The format in this method makes it especially useful with a digital
computer.Themethod is presented herewithout proof for the casewhenA is a
squarematrixwithndistinct eigenvalues.The polynomialN(A)canbewritten

eAt ¼ NðAÞ ¼
Xn
i¼1

N ðliÞZiðlÞ ð3:93Þ

ZiðlÞ ¼
Pn

j¼1, j 6¼1 ðA� ljIÞPn
j¼1, j 6¼i ðli � ljÞ

ð3:94Þ

For the previous example there are two eigenvalues l1 ¼ �2 and l2 ¼ �3.
The twomatricesZ1 andZ2 are evaluated from Eq. (3.94):

Z1 ¼
A� l2I
l1 � l2

¼
0þ 3 6
�1 �5þ 3

� �

�2� ð�3Þ ¼ 3 6
�1 �2

� �

Z2 ¼
A� l1I
l2 � l1

¼
0þ 2 6
�1 �5þ 2

� �

�3� ð�2Þ ¼ �2 �6
1 3

� �

Using these values in Eq. (3.93),whereN ðliÞ ¼ eli t, yields

(ðtÞ ¼ exp At½ � ¼ el1tZ1 þ el2tZ2

Equation (3.92) contains the value of(ðtÞ.
The matrices ZiðlÞ are called the constituent matrices of A and have the

following properties:

1. Orthogonality:
ZiZj ¼ 0 i 6¼ j ð3:95Þ

2. The sum of the complete set is equal to the unit matrix:
Xn
i¼1

Zi ¼ I ð3:96Þ

3. Idempotency:
Z

r
i ¼ Zi ð3:97Þ

where r > 0 is any positive integer.
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Equation (3.93) can be conveniently applied to evaluate other
functions ofA. For example, to obtainA

r use the form

A
r ¼ lr1Z1 þ lr2Z2 þ 	 	 	 þ lrnZn ¼

Xn
i¼1

lriZi ð3:98Þ

The operations involved in computing Eq. (3.98) consist primarily of
addition,which is simpler than multiplying A by itself r times.

3.15 COMPLETE SOLUTION OF THE STATE EQUATION [10]

When an input uðtÞ is present, the complete solution for xðtÞ is obtained from
Eq. (3.66). The starting point for obtaining the solution is the following
equality, obtained by applying the rule for the derivative of the product of
twomatrices (see Appendix B):

d
dt

e�AtxðtÞ
h i

¼ e�At _xxðtÞ � AxðtÞ½ � ð3:99Þ
Utilizing Eq. (3.66), _xx ¼ Axþ Bu, in the right side of Eq. (3.99) yields

d
dt

e�AtxðtÞ
h i

¼ e�AtBuðtÞ
Integrating this equation between 0 and t gives

e�AtxðtÞ � xð0Þ ¼
Z t

0
e�AtBuðtÞ dt ð3:100Þ

Multiplying by eAt on the left and rearranging terms produces

xðtÞ ¼ eAtxð0Þ þ
Z t

0
eAðt�tÞBuðtÞ dt ¼ (ðtÞxð0Þ þ

Z t

0
(ðt � tÞBuðtÞ dt

ð3:101Þ
Using the STM and generalizing for initial conditions at time t ¼ t0 gives the
solution to the state-variable equation with an input uðtÞ as

xðtÞ ¼ (ðt � t0Þxðt0Þ þ
Z t

t0

(ðt � tÞBuðtÞ dt t > t0 ð3:102Þ

This equation is called the state transition equation; i.e., it describes the change
of state relative to the initial conditions xðt0Þ and the input uðtÞ. It may bemore
convenient to change the variables in the integral of Eq. (3.101) by letting
b ¼ t � t,which gives

xðtÞ ¼ (ðtÞ xð0Þ þ
Z t

0
(ðbÞBuðt � bÞ db ð3:103Þ
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where (ðtÞ ¼ eAt is the state transition matrix. Note that (ðsÞxð0Þ is the
zero-input response and(ðsÞBUðsÞ is the zero-state response.

In modern terminology the state solution xðtÞ as given by Eqs. (3.101) to
(3.103) is described by

xðtÞ ¼ xziðtÞ þ xzsðtÞ ð3:104Þ
where xziðtÞ is called the zero-input response, that is, uðtÞ ¼ 0, and xzsðtÞ is
called the zero-state response, that is, xðt0Þ ¼ 0.

Example. Solve the following state equation for a unit step-function scalar
input, uðtÞ ¼ u�1ðtÞ:

_xx ¼ 0 6
�1 �5

� �
xþ 0

1

� �
uðtÞ

The STM for this equation is given by Eq. (3.92).Thus, the total time solution
is obtained by substituting this value of(ðtÞ into Eq. (3.103).Since uðt � bÞhas
the value of unity for 0 < b < t, Eq. (3.103) yields

xðtÞ ¼ (ðtÞxð0Þ þ
Z t

0

6e�2b � 6e�3b

�2e�2b þ 3e�3b

" #
db

¼
3e�2t � 2e�3t 6e�2t � 6e�3t

�e�2t þ e�3t �2e�2t þ 3e�3t

" #
x1ð0Þ
x2ð0Þ

" #

þ
1� 3e�2t þ 2e�3t

e�2t � e�3t

" #
ð3:105Þ

The integral of a matrix is the integral of each element in the matrix with
respect to the indicated scalar variable. This property is used in evaluating
the particular integral in Eq. (3.105). Inserting the initial conditions
produces the final solution for the state transition equation. The Laplace
transform method presented in Chap. 4 is a more direct method for finding
this solution. An additional method is shown in Chap. 5.

3.16 SUMMARY

This chapter establishes the manner of solving differential equations. The
steady-state and transient solutions are determined separately and then
added to form the total response. Then the constants of the transient
component of the solution are evaluated to satisfy the initial conditions.
The ability to anticipate the form of the response is very important.
The solution of differential equations has been extended to include solution
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of the matrix state and output equations. This method is also applicable to
multiple-input multiple-output, time-varying, and nonlinear systems. The
matrix formulation of these systems lends itself to digital-computer solutions.
Solution of differential and state equations is facilitated by use of the
MATLAB computer aided Design method.Use of MATLAB is described in
Appendix C, and a number of examples are contained throughout this text.
Obtaining the complete solution bymeans of the Laplace transform is covered
in the next chapter.
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4

Laplace Transform

4.1 INTRODUCTION

The Laplace transform method is used extensively [1^3] to facilitate and
systematize the solution of ordinary constant-coefficient differential
equations. The advantages of this modern transform method for the analysis
of linear-time-invariant (LTI) systems are the following:

1. It includes the boundary or initial conditions.
2. The work involved in the solution is simple algebra.
3. The work is systematized.
4. The use of a table of transforms reduces the labor required.
5. Discontinuous inputs can be treated.
6. The transient and steady-state components of the solution are

obtained simultaneously.

The disadvantage of transform methods is that if they are used
mechanically, without knowledge of the actual theory involved, they some-
times yield erroneous results. Also, a particular equation can sometimes be
solved more simply and with less work by the classical method. Although an
understanding of the Laplace transform method is essential, it must be
emphasized that the solutions of differential equations are readily
obtained by use of CAD packages such as MATLAB and TOTAL-PC [4]
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(see Appendixes C and D). Laplace transforms are also applied
to the solution of system equations that are in matrix state-variable format.
The method for using the state and output equations to obtain the system
transfer function is presented.

4.2 DEFINITION OF THE LAPLACE TRANSFORM

The direct Laplace transformation of a function of time f (t) is given by

L½ f ðtÞ� ¼
Z 1
0

f ðtÞe�st dt ¼ F ðsÞ ð4:1Þ

where L½ f ðtÞ� is a shorthand notation for the Laplace integral. Evaluation
of the integral results in a function F(s) that has s as the parameter. This
parameter s is a complex quantity of the form sþ jo. Since the limits of
integration are zero and infinity, it is immaterial what value f (t) has for
negative or zero time.

There are limitations on the functions f (t) that are Laplace-
transformable. Basically, the requirement is that the Laplace integral
converge, which means that this integral has a definite functional value. To
meet this requirement [3] the function f (t) must be (1) piecewise continuous
over every finite interval 0 � t1 � t � t2 and (2) of exponential order. A
function is piecewise continuous in a finite interval if that interval can be
divided into a finite number of subintervals, over each of which the function
is continuous and at the ends of each of which f (t) possesses finite right- and
left-hand limits.A function f (t) is of exponential order if there exists a constant
a such that the product e�atjf (t)j is bounded for all values of t greater than some
finite value T. This imposes the restriction that s, the real part of s, must
be greater than a lower bound sa for which the product e�sat j f ðtÞj is of
exponential order. A linear differential equation with constant coefficients
and with a finite number of terms is Laplace transformable if the driving
function is Laplace transformable.

All cases covered in this book are Laplace transformable. The basic
purpose in using the Laplace transform is to obtain a method of solving
differential equations that involves only simple algebraic operations in
conjunctionwith a table of transforms.

4.3 DERIVATION OF LAPLACE TRANSFORMS OF
SIMPLE FUNCTIONS

A number of examples are presented to show the derivation of the Laplace
transform of several time functions. A list of common transform pairs is
given in Appendix A.
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Step Function u�1(t)

The Laplace transform of the unit step function u�1(t) (see Fig. 3.1a) is

L½u�1ðtÞ� ¼
Z 1
0

u�1ðtÞe�st dt ¼ U�1ðsÞ ð4:2Þ

Since u�1(t) has the value1over the limits of integration,

U�1ðsÞ ¼
Z 1
0

e�st dt ¼� e�st

s






1

0
¼ 1

s
if s > 0 ð4:3Þ

The step function is undefined at t¼ 0, but this is immaterial, for the
integral is defined by a limit processZ 1

0
f ðtÞe�st dt ¼ lim

T!1
e!0

Z T

e
f ðtÞe�st dt ð4:4Þ

and the explicit value at t¼ 0 does not affect the value of the integral.The value
of the integral obtained by taking limits is implied in each case but is not
written out explicitly.

Decaying Exponential e�a t

The exponent a is a positive real number.

L½e�at � ¼
Z 1
0

e�ate�st dt
Z 1
0

e�ðsþaÞt dt

¼ �e
�ðsþaÞt

s þ a







1

0

¼ 1
s þ a

s > �a ð4:5Þ

Sinusoid cosut

Here o is a positive real number.

L½cosot� ¼
Z 1
0

cosot e�st dt ð4:6Þ

Expressing cosot in exponential form gives

cosot ¼ ejot þ e�jot

2
Then

L½cosot�¼1
2

Z 1
0

eð jo�sÞt dtþ
Z 1
0

eð�jo�sÞt dt
� �

¼1
2

eð jo�sÞt

jo� s þ
eð�jo�sÞt

�jo� s

" #1
0

¼1
2
� 1
jo� s�

1
�jo� s

� �
¼ s
s2þo2 s>0 ð4:7Þ
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Ramp Function u�2ðtÞ ¼ tu�1ðtÞ

L½t� ¼
Z 1
0

te�st dt s > 0 ð4:8Þ

This expression is integrated by parts by using
Z b

a
u dv ¼ uv







b

a

�
Z b

a
v du

Let u¼ t and dv¼ e�st dt.Then du¼ dt and v¼�e�st/s.Thus
Z 1
0

te�st dt ¼ � te�st

s







1

0

�
Z 1
0
� e�st

s

� �
dt

¼ 0� e�st

s2







1

0

¼ 1
s2

s > 0 ð4:9Þ

4.4 LAPLACE TRANSFORM THEOREMS

Several theorems that are useful in applying the Laplace transform are
presented in this section. In general, they are helpful in evaluating transforms.

Theorem 1: Linearity. Ifa is a constant or is independent of s and t, and if f (t)
is transformable, then

L½af ðtÞ� ¼ aL½ f ðtÞ� ¼ aF ðsÞ ð4:10Þ

Theorem 2: Superposition. If f1(t) and f2(t) are both Laplace-transformable,
the principle of superposition applies:

L½ f1ðtÞ 
 f2ðtÞ� ¼L½ f1ðtÞ� 
L½ f2ðtÞ� ¼ F1ðsÞ 
 F2ðsÞ ð4:11Þ

Theorem 3: Translation in time. If the Laplace transform of f (t) is F(s) and
a is a positive real number, the Laplace transform of the translated function
f ðt � aÞu�1ðt � aÞ is

L½ f ðt � aÞu�1ðt � aÞ� ¼ e�asF ðsÞ ð4:12Þ
Translation in the positive t direction in the real domain becomes
multiplication by the exponential e�as in the s domain.

Theorem 4: Complex differentiation. If the Laplace transform of f (t) is F(s),
then

L½tf ðtÞ� ¼ � d
ds

F ðsÞ ð4:13Þ
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Multiplication by time in the real domain entails differentiation with respect
to s in the s domain.

Example 1. UsingL½cosot� from Eq. (4.7),

L½t cosot� ¼ � d
ds

s
s2 þ o2

� �
¼ s2 � o2

ðs2 þ o2Þ2

Example 2. UsingL½e�at � from Eq. (4.5),

L½te�at � ¼ � d
ds

L½e�at � ¼ � d
ds

1
s þ a

� �
¼ 1
ðs þ aÞ2

Theorem 5: Translation in the s Domain. If the Laplace transform of f (t)
is F(s) and a is either real or complex, then

L½eat f ðtÞ� ¼ F ðs � aÞ ð4:14Þ

Multiplication of eat in the real domain becomes translation in the s domain.

Example 3. Starting withL½sinot� ¼ o=ðs2 þ o2Þ and applyingTheorem 5
gives

L½e�at sinot� ¼ o

ðs þ aÞ2 þ o2

Theorem 6: Real Differentiation. If theLaplace transformof f (t) isF(s),and if
the first derivative of f (t) with respect to timeDf (t) is transformable, then

L½Df ðtÞ� ¼ sF ðsÞ � f ð0þÞ ð4:15Þ
The term f (0þ) is the value of the right-hand limit of the function f (t) as
the origin t¼ 0 is approached from the right side (thus through positive
values of time). This includes functions, such as the step function, that may
be undefined at t¼ 0. For simplicity, the plus sign following the zero is usually
omitted, although its presence is implied.

The transform of the second derivativeD2f (t) is

L½D2f ðtÞ� ¼ s2F ðsÞ � sf ð0Þ � Df ð0Þ ð4:16Þ
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where Df (0) is the value of the limit of the derivative of f (t) as the origin t¼ 0,
is approached from the right side.

The transform of the nth derivativeDnf (t) is

L½Dnf ðtÞ� ¼ snF ðsÞ � sn�1f ð0Þ � sn�2Df ð0Þ � 	 	 	 � s Dn�2f ð0Þ
� Dn�1f ð0Þ ð4:17Þ

Note that the transform includes the initial conditions,whereas in the classical
method of solution the initial conditions are introduced separately to evaluate
the coefficients of the solution of the differential equation.When all initial
conditions are zero, the Laplace transform of the nth derivative of f (t) is
simply snF(s).

Theorem 7: Real Integration. If the Laplace transform of f (t) is F(s), its
integral

D�1f ðtÞ ¼
Z t

0
f ðtÞ dt þ D�1f ð0þÞ

is transformable and the value of its transform is

L½D�1f ðtÞ� ¼ F ðsÞ
s
þ D�1f ð0þÞ

s
ð4:18Þ

The term D�1 f (0þ) is the constant of integration and is equal to the value of
the integral as the origin is approached from the positive or right side.The plus
sign is omitted in the remainder of this text.

The transform of the double integralD�2f (t) is

L D�2f ðtÞ� � ¼ F ðsÞ
s2
þ D�1f ð0Þ

s2
þ D�2f ð0Þ

s
ð4:19Þ

The transform of the nth-order integralD�n f (t) is

L D�nf ðtÞ½ � ¼ F ðsÞ
sn
þ D�1f ð0Þ

sn
þ 	 	 	 þ D�nf ð0Þ

s
ð4:20Þ

Theorem 8: Final Value. If f (t) and Df (t) are Laplace transformable,
if the Laplace transformof f (t) is F(s), and if the limit f (t) as t !1 exists, then

lim
s!0

sF ðsÞ ¼ lim
t!1

f ðtÞ ð4:21Þ

This theorem states that the behavior of f (t) in the neighborhood of t ¼ 1 is
related to the behavior of sF(s) in the neighborhood of s¼ 0. If sF(s) has
poles [values of s for which jsF(s)j becomes infinite] on the imaginary axis
(excluding the origin) or in the right-half s plane, there is no finite final value
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of f (t) and the theorem cannot be used. If f (t) is sinusoidal, the theorem is
invalid, since L½sinot� has poles at s ¼ 
 jo and limt!1 sinot does not
exist. However, for poles of sF(s) at the origin, s¼ 0, this theorem gives the
final value of f ð1Þ ¼ 1. This correctly describes the behavior of f (t) as
t !1.

Theorem 9: Initial Value. If the function f (t) and its first derivative are
Laplace transformable, if the Laplace transform of f (t) is F(s), and if
lims!1 sF ðsÞ exists, then

lim
s!1

sF ðsÞ ¼ lim
t!0

f ðtÞ ð4:22Þ

This theorem states that the behavior of f (t) in the neighborhood of t¼ 0
is related to the behavior of sF(s) in the neighborhood of jsj ¼ 1.There are no
limitations on the locations of the poles of sF(s).

Theorem 10: Complex Integration. If the Laplace transform of f (t) is F(s)
and if f (t)/t has a limit as t ! 0þ, then

L
f ðtÞ
t

� �
¼
Z 1
0

F ðsÞ ds ð4:23Þ

This theorem states that division by the variable in the real domain
entails integration with respect to s in the s domain.

4.5 CAD ACCURACY CHECKS: CADAC

The Laplace transform theorems 8 and 9 for the initial and final values are
valuable CADAC. These theorems should be used, when appropriate, to
assist in the validation of the computer solutions of control system problems.
Additional CADAC are presented throughout this text.

4.6 APPLICATION OF THE LAPLACE TRANSFORM TO
DIFFERENTIAL EQUATIONS

The Laplace transform is now applied to the solution of the diffe-
rential equation for the simple mechanical system that is solved by the
classical method in Sec. 3.7.The differential equation of the system is repeated
here:

MD2x2 þ BDx2 þ Kx2 ¼ Kx1 ð4:24Þ
The position x1(t) undergoes a unit step displacement. This is the input and
is called the driving function. The unknown quantity for which the equation
is to be solved is the output displacement x2(t), called the response function.
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The Laplace transform of Eq. (4.24) is

L½Kx1� ¼L½MD2x2 þ BDx2 þ Kx2� ð4:25Þ
The transform of each term is

L½Kx1� ¼ KX1ðsÞ
L½Kx2� ¼ KX2ðsÞ

L½BDx2� ¼ B½sX2ðsÞ � x2ð0Þ�
L½MD2x2� ¼ M ½s2X2ðsÞ � sx2ð0Þ � Dx2ð0Þ�:

Substituting these terms into Eq. (4.25) and collecting terms gives

KX1ðsÞ ¼ ðMs2 þ Bs þ KÞX2ðsÞ � ½Msx2ð0Þ þMDx2ð0Þ þ Bx2ð0Þ�
ð4:26Þ

Equation (4.26) is the transform equation and shows how the initial condi-
tions�the initial position x2(0) and the initial velocity Dx2(0)�are incorpo-
rated into the equation. The function X1(s) is called the driving transform;
the function X2(s) is called the response transform. The coefficient of X2(s),
which is Ms2 þ Bs þ K, is called the characteristic function. The equation
formed by setting the characteristic function equal to zero is called the
characteristic equation of the system.Solving for X2(s) gives

X2ðsÞ ¼
K

Ms2 þ Bs þ K
X1ðsÞ þ

Msx2ð0Þ þ Bx2ð0Þ þMDx2ð0Þ
Ms2 þ Bs þ K

ð4:27Þ

The coefficient of X1(s) is defined as the system transfer function. The second
term on the right side of the equation is called the initial condition component.
Combining the terms of Eq. (4.27) yields

X2ðsÞ ¼
KX1ðsÞ þMsx2ð0Þ þ Bx2ð0Þ þMDx2ð0Þ

Ms2 þ Bs þ K
ð4:28Þ

Finding the function x2(t) whose transform is given by Eq. (4.28) is symbolized
by the inverse transform operatorL�1; thus

x2ðtÞ ¼L�1½X2ðsÞ�

¼L�1
KX1ðsÞ þMsx2ð0Þ þ Bx2ð0Þ þMDx2ð0Þ

Ms2 þ Bs þ K

� �
ð4:29Þ

The function x2(t) can be found in the table of Appendix A after inserting
numerical values into Eq. (4.29). For this example the system is initially at
rest. From the principle of conservation of energy the initial conditions are
x2(0)¼ 0 andDx2(0)¼ 0. Assume, as in Sec. 3.7, that the damping ratio z is less
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than unity. Since x1(t) is a step function, the time response function is

x2ðtÞ¼L�1
K=M

sðs2þBs=M þK=M Þ
� �

¼L�1
o2
n

sðs2þ2zonsþo2
nÞ

" #
ð4:30Þ

where on ¼
ffiffiffiffiffiffiffiffiffiffiffi
K=M
p

and z ¼ B=2
ffiffiffiffiffiffiffiffiffi
KM
p

. Reference to transform pair 27a
in Appendix A provides the solution directly as

x2ðtÞ ¼ 1� e�zontffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p sin on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
t þ cos�1 z

� �

4.7 INVERSE TRANSFORMATION

The application of Laplace transforms to a differential equation yields an
algebraic equation.From the algebraic equation the transformof the response
function is readily found.To complete the solution the inverse transformmust
be found. In some cases the inverse-transform operation

f ðtÞ ¼L�1½F ðsÞ� ¼ 1
j2�

Z sþj1

s�j1
F ðsÞest ds ð4:31Þ

can be performed by direct reference to transform tables or by use of a digital
computer program (see Appendix C).The linearity and translation theorems
are useful in extending the tables. When the response transform cannot
be found in the tables, the general procedure is to express F(s) as the sum of
partial fractions with constant coefficients. The partial fractions have a first-
order or quadratic factor in the denominator and are readily found in the table
of transforms. The complete inverse transform is the sum of the inverse
transforms of each fraction.This procedure is illustrated next.

The response transform F(s) can be expressed, in general, as the ratio
of two polynomials P(s) and Q(s). Consider that these polynomials are of
degree w and n, respectively, and are arranged in descending order of the
powers of the variables s; thus,

F ðsÞ ¼ PðsÞ
QðsÞ ¼

aws
w þ aw�1s

w�1 þ 	 	 	 þ a1s þ a0
sn þ bn�1sn�1 þ 	 	 	 þ b1s þ b0

ð4:32Þ

The a’s and b’s are real constants, and the coefficient of the highest power of s
in the denominator has been made equal to unity. Only those F(s) that are
proper fractions are considered, i.e., those in which n is greater than w.*

*If n¼w, first divide P(s) by Q(s) to obtain F(s)¼ awþP1(s)/Q(s)¼ awþF1(s). Then express F1(s)
as the sum of partial fractions with constant coefficients.
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The first step is to factor Q(s) into first-order and quadratic factors with real
coefficients:

F ðsÞ ¼ PðsÞ
QðsÞ ¼

PðsÞ
ðs � s1Þðs � s2Þ 	 	 	 ðs � skÞ 	 	 	 ðs � snÞ

ð4:33Þ

The values s1, s2, . . . , sn in the finite plane that make the denominator equal to
zero are called the zeros of the denominator. These values of s, which may be
either real or complex, also make jF(s)j infinite, and so they are called poles of
F(s). Therefore, the values s1, s2, . . . , sn are referred to as zeros of the denomi-
nator or poles of the complete function in the finite plane, i.e., there are n poles
of F(s).Methods of factoring polynomials exist in the literature. Digital-com-
puter programs are available to perform this operation (seeAppendix C) [4].

The transform F(s) can be expressed as a series of fractions. If the
poles are simple (nonrepeated), the number of fractions is equal to n, the
number of poles of F(s). In such case the function F(s) can be expressed as

F ðsÞ ¼ PðsÞ
QðsÞ ¼

A1

s � s1
þ A2

s � s2
þ 	 	 	 þ Ak

s � sk
þ 	 	 	 þ An

s � sn
ð4:34Þ

The procedure is to evaluate the constantsA1,A2, . . . ,An corresponding to the
poles s1, s2, . . . , sn.The coefficients A1, A2,. . . are termed the residuesy of F(s) at
the corresponding poles. Cases of repeated factors and complex factors are
treated separately. Several ways of evaluating the constants are shown in the
following section.

4.8 HEAVISIDE PARTIAL-FRACTION EXPANSION
THEOREMS

The technique of partial-fraction expansion is set up to take care of all cases
systematically. There are four classes of problems, depending on the
denominatorQ(s). Each of these cases is illustrated separately.

Case1 F(s) has first-order real poles.
Case 2 F(s) has repeated first-order real poles.
Case 3 F(s) has a pair of complex-conjugate poles (a quadratic factor in

the denominator).
Case 4 F(s) has repeated pairs of complex-conjugate poles (a repeated

quadratic factor in the denominator).

yMore generally the residue is the coefficient of the (s� si)
�1 term in the Laurent expansion of F(s)

about s¼ si.
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Case 1: First-Order Real Poles

The locations of three real poles of F(s) in the s plane are shown in Fig. 4.1.
The poles may be positive, zero, or negative, and they lie on the real axis
in the s plane. In this example, s1 is positive, s0 is zero, and s2 is negative.
For the poles shown in Fig. 4.1 the transform F(s) and its partial fractions are

F ðsÞ ¼ PðsÞ
QðsÞ ¼

PðsÞ
sðs � s1Þðs � s2Þ

¼ A0

s
þ A1

s � s1
þ A2

s � s2
ð4:35Þ

There are as many fractions as there are factors in the denominator of F(s).
Since s0¼ 0, the factor s� s0 is written simply as s. The inverse transform
of F(s) is

f ðtÞ ¼ A0 þ A1e
s1t þ A2e

s2t ð4:36Þ
The pole s1 is positive; therefore, the term A1e

s1t is an increasing exponential
and the system is unstable. The pole s2 is negative, and the term A2e

s2t is
a decaying exponential with a final value of zero. Therefore, for a system
to be stable, all real poles that contribute to the complementary solution
must be in the left half of the s plane.

To evaluate a typical coefficient Ak, multiply both sides of Eq. (4.34)
by the factor s� sk.The result is

ðs � skÞF ðsÞ ¼ ðs � skÞ
PðsÞ
QðsÞ

¼ A1
s � sk
s � s1

þ A2
s � sk
s � s2

þ 	 	 	 þ Ak þ 	 	 	 þ An
s � sk
s � sn

ð4:37Þ
The multiplying factor s� sk on the left side of the equation and the
same factor of Q(s) should be canceled. By letting s¼ sk, each term on the
right side of the equation is zero except Ak.Thus, a general rule for evaluating
the constants for single-order real poles is

Ak ¼ ðs � skÞ
PðsÞ
QðsÞ

� �
s¼sk
¼ PðsÞ

Q0ðsÞ
� �

s¼sk
ð4:38Þ

FIGURE 4.1 Location of real poles in the s plane.
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where Q0ðskÞ ¼ ½dQðsÞ=ds�s¼sk ¼ ½QðsÞ=ðs � skÞ�s¼sk . The coefficients Ak are
the residues of F(s) at the corresponding poles. For the case of

F ðsÞ ¼ s þ 2
sðs þ 1Þðs þ 3Þ ¼

A0

s
þ A1

s þ 1
þ A2

s þ 3

the constants are

A0 ¼ ½sF ðsÞ�s¼0 ¼
s þ 2

ðs þ 1Þðs þ 3Þ
� �

s¼0
¼ 2

3

A1 ¼ ½ðs þ 1ÞF ðsÞ�s¼�1 ¼
s þ 2

sðs þ 3Þ
� �

s¼�1
¼ � 1

2

A2 ¼ ½ðs þ 3ÞF ðsÞ�s¼�3 ¼
s þ 2

sðs þ 1Þ
� �

s¼�3
¼ � 1

6

The solution as a function of time is

f ðtÞ ¼ 2
3
� 1
2
e�t � 1

6
e�3t ð4:39Þ

Case 2: Multiple-Order Real Poles

The position of real poles of F(s), some of which are repeated, is shown in
Fig. 4.2. The notation ]r indicates a pole of order r. All real poles lie on the
real axis of the s plane. For the poles shown in Fig. 4.2 the transform F(s)
and its partial fractions are

F ðsÞ ¼ PðsÞ
QðsÞ ¼

PðsÞ
ðs � s1Þ3ðs � s2Þ

¼ A13

ðs � s1Þ3
þ A12

ðs � s1Þ2
þ A11

s � s1
þ A2

s � s2
ð4:40Þ

The order of Q(s) in this case is 4, and there are four fractions. Note that the
multiple pole s1,which is of order 3, has resulted in three fractions on the right

FIGURE 4.2 Location of real poles in the s plane.
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side of Eq. (4.40). To designate the constants in the partial fractions, a single
subscript is used for a first-order pole. For multiple-order poles a double-
subscript notation is used. The first subscript designates the pole, and the
second subscript designates the order of the pole in the partial fraction. The
constants associated with first-order denominators in the partial-fraction
expansion are called residues: therefore,only the constantsA11andA2 are resi-
dues of Eq. (4.40).

The inverse transform of F(s) (see transform pairs 7 and 8 in
Appendix A) is

f ðtÞ ¼ A13
t2

2
es1t þ A12te

s1t þ A11e
s1t þ A2e

s2t ð4:41Þ
For the general transformwith repeated real roots,

F ðsÞ ¼ PðsÞ
QðsÞ ¼

PðsÞ
ðs � sqÞrðs � s1Þ 	 	 	

¼ Aqr

ðs � sqÞr
þ Aqðr�1Þ
ðs � sqÞr�1

þ 	 	 	 þ Aqðr�kÞ
ðs � sqÞr�k

þ 	 	 	

þ Aq1

s � sq
þ A1

s � s1
þ 	 	 	 ð4:42Þ

The constant Aqr can be evaluated by simply multiplying both sides of
Eq. (4.42) by (s� sq)

r, giving

ðs � sqÞrF ðsÞ ¼
ðs � sqÞrPðsÞ

QðsÞ ¼ PðsÞ
ðs � s1Þ 	 	 	

¼ Aqr þ Aqðr�1Þðs � sqÞ þ 	 	 	

þ Aq1ðs � sqÞr�1 þ A1
ðs � sqÞr
s � s1

þ 	 	 	 ð4:43Þ

Note that the factor (s� sq)
rmust be divided out of the left side of the equation.

For s¼ sq, all terms on the right side of the equation are zero except
Aqr; therefore,

Aqr ¼ ðs � sqÞr
PðsÞ
QðsÞ

� �
s¼sq

ð4:44Þ

Evaluation of Aq(r�1) cannot be performed in a similar manner. Multiplying
both sides of Eq. (4.42) by ðs � sqÞr�1 and letting s¼ sq would result in both
sides being infinite, which leaves Aq(r�1) indeterminate. If the term Aqr

were eliminated from Eq. (4.43), Aq(r�1) could be evaluated. This can be
done by differentiating Eq. (4.43) with respect to s:

d
ds
ðs � sqÞr

PðsÞ
QðsÞ

� �
¼ Aqðr�1Þ þ 2Aqðr�2Þðs � sqÞ þ 	 	 	 ð4:45Þ
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Letting s¼ sq gives

Aqðr�1Þ ¼
d
ds
ðs � sqÞr

PðsÞ
QðsÞ

� �
 �
s¼sq

ð4:46Þ

Repeating the differentiation gives the coefficient Aq(r�2) as

Aqðr�2Þ ¼
1
2
d2

ds2
ðs � sqÞr

PðsÞ
QðsÞ

� �( )

s¼sq
ð4:47Þ

This process can be repeated until each constant is determined. A
general formula for finding these coefficients associated with the repeated
real pole of order r is

Aqðr�kÞ ¼
1
k!

dk

dsk
ðs � sqÞr

PðsÞ
QðsÞ

� �( )

s¼sq
ð4:48Þ

For the case of

F ðsÞ ¼ 1
ðs þ 2Þ3ðs þ 3Þ ¼

A13

ðs þ 2Þ3 þ
A12

ðs þ 2Þ2 þ
A11

s þ 2
þ A2

s þ 3
ð4:49Þ

the constants are

A13 ¼ ½ðs þ 2Þ3F ðsÞ�s¼�2 ¼ 1 A12 ¼
d
ds
ðs þ 2Þ3F ðsÞ� �
 �

s¼�2
¼ �1

A11 ¼
d2

2ds2
ðs þ 2Þ3F ðsÞ� �( )

s¼�2
¼ 1 A2 ¼ ½ðs þ 3ÞF ðsÞ�s¼�3 ¼ �1

and the solution as a function of time is

f ðtÞ ¼ t2

2
e�2t � te�2t þ e�2t � e�3t ð4:50Þ

A recursive algorithm for computing the partial fraction expansion of
rational functions having any number of multiple poles is readily programmed
on a digital computer and is given in Ref. 5.

Case 3: Complex-Conjugate Poles

The position of complex poles of F(s) in the s plane is shown in Fig. 4.3.
Complex poles always are present in complex-conjugate pairs; their real part
may be either positive or negative. For the poles shown in Fig. 4.3 the
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transform F(s) and its partial fractions are

F ðsÞ ¼ PðsÞ
QðsÞ ¼

PðsÞ
ðs2 þ 2zons þ o2

nÞðs � s3Þ
¼ A1

s � s1
þ A2

s � s2
þ A3

s � s3

¼ A1

s þ zon � jon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p þ A2

s þ zon þ jon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p þ A3

s � s3
ð4:51Þ

The inverse transform of F(s) is

f ðtÞ ¼ A1 exp �zon þ jon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q� �
t

� �

þ A2 exp �zon � jon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q� �
t

� �
þ A3e

s3t ð4:52Þ

Since the poles s1 and s2 are complex conjugates, and since f (t) is a real
quantity, the coefficients A1 and A2 must also be complex conjugates.
Equation (4.52) can be written with the first two terms combined to a more
useful damped sinusoidal form:

f ðtÞ ¼ 2 A1


 

e�zont sin on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
t þ f

� �
þ A3e

s3t

¼ 2 A1


 

est sin ðod t þ fÞ þ A3e

s3t ð4:53Þ
where f ¼ angle of A1 þ 90�, od ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
, and s ¼ �zon.

The values ofA1 and A3, as found in the manner shown previously, are
A1 ¼ ½ðs � s1ÞF ðsÞ�s¼s1 and A3 ¼ ½ðs � s3ÞF ðsÞ�s¼s3

Since s1 is complex, the constant A1 is also complex. Remember that A1 is
associated with the complex pole with the positive imaginary part.

In Fig. 4.3 the complex poles have a negative real part, s ¼ �zon,where
the damping ratio z is positive. For this case the corresponding transient
response is known as a damped sinusoid and is shown in Fig. 3.2. Its

FIGURE 4.3 Location of complex-conjugate poles in the s plane.
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final value is zero.The angleZ shown in Fig. 4.3 ismeasured from the negative
real axis and is related to the damping ratio by

cos Z ¼ z

If the complex pole has a positive real part, the time response increases
exponentially with time and the system in unstable. If the complex roots are
in the right half of the s plane, the damping ratio z is negative.The angle Z for
this case is measured from the positive real axis and is given by

cos Z ¼ z


 



For the case of

F ðsÞ ¼ 10
ðs2 þ 6s þ 25Þðs þ 2Þ ¼

A1

s þ 3� j4
þ A2

s þ 3þ j4
þ A3

s þ 2
ð4:54Þ

the constants are

A1 ¼ ðs þ 3� j4Þ 10
ðs2 þ 6s þ 25Þðs þ 2Þ

� �
s¼�3þj4

¼ 10
ðs þ 3þ j4Þðs þ 2Þ
� �

s¼�3þj4
¼ 0:303ff� 194� :

A3 ¼ ðs þ 2Þ 10
ðs2 þ 6s þ 25Þðs þ 2Þ

� �
s¼�2
¼ 10

s2 þ 6s þ 25

� �
s¼�2
¼ 0:59

Using Eq. (4.53), the solution is

f ðtÞ ¼ 0:606e�3t sin ð4t � 104�Þ þ 0:59e�2t ð4:55Þ
The function F(s) of Eq. (4.54) appears in Appendix A as transform pair 29.
With the notation of Appendix A, the phase angle in the damped sinusoidal
term is

f ¼ tan�1
b

c � a
¼ tan�1

4
2� 3

¼ tan�1
4
�1 ¼ 104� ð4:56Þ

It is important to note that tan�1½4=ð�1Þ� 6¼ tan�1ð�4=1Þ. To get the correct
value for the angle f, it is useful to draw a sketch in order to avoid ambiguity
and ensure that f is evaluated correctly.

IMAGINARY POLES. The position of imaginary poles of F(s) in the s
plane is shown in Fig. 4.4. As the real part of the poles is zero, the poles lie
on the imaginary axis. This situation is a special case of complex poles,
i.e., the damping ratio z ¼ 0. For the poles shown in Fig. 4.4 the transform
F(s) and its partial fractions are

F ðsÞ ¼ PðsÞ
QðsÞ ¼

PðsÞ
ðs2 þ o2

nÞðs � s3Þ
¼ A1

s � s1
þ A2

s � s2
þ A3

s � s3
ð4:57Þ
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The quadratic can be factored in terms of the poles s1 and s2; thus,

s2 þ o2
n ¼ ðs � jonÞðs þ jonÞ ¼ ðs � s1Þðs � s2Þ

The inverse transform of Eq. (4.57) is

f ðtÞ ¼ A1e
jont þ A2e

�jont þ A3e
s3t ð4:58Þ

As f (t) is a real quantity, the coefficients A1 and A2 are complex conjugates.
The terms in Eq. (4.58) can be combined into the more useful form

f ðtÞ ¼ 2 A1


 

 sin ðont þ fÞ þ A3e

s3t ð4:59Þ
Note that since there is no damping term multiplying the sinusoid, this term
represents a steady-state value.The angle f is given by

f ¼ angle of A1 þ 90�

The values ofA1 and A3, found in the conventional manner, are

A1 ¼ ½ðs � s1ÞF ðsÞ�s¼s1 A3 ¼ ½ðs � s3ÞF ðsÞ�s¼s3
For the case where

F ðsÞ ¼ 100
ðs2 þ 25Þðs þ 2Þ ¼

A1

s � j5
þ A2

s þ j5
þ A3

s þ 2
ð4:60Þ

the values of the coefficients are

A1 ¼ ½ðs � j5ÞF ðsÞ�s¼j5 ¼
100

ðs þ j5Þðs þ 2Þ
� �

s¼j5
¼ 1:86ff�158:2� :

A3 ¼ ½ðs þ 2ÞF ðsÞ�s¼�2 ¼
100

s2 þ 25

� �
s¼�2
¼ 3:45

The solution is

f ðtÞ ¼ 3:72 sin ð5t � 68:2�Þ þ 3:45e�2t ð4:61Þ

FIGURE 4.4 Poles of F sð Þ containing imaginary conjugate poles in the s plane.
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Case 4: Multiple-Order Complex Poles

Multiple-order complex-conjugate poles are rare.They can be treated in much
the same fashion as repeated real poles.

4.9 MATLAB PARTIAL-FRACTION EXAMPLE

The MATLAB RESIDUE command is used to obtain the partial-fraction
expansion of Eq. (4.54).

MATLABPartial-Fraction m-file

%Set up transfer function
%
% Define numerator constant of F(s)
k¼10;
% Define poles of F(s)
p(1)¼�3þj*4; p(2)¼�3�j*4; p(3)¼�2;
%Define numerator and denominator
num¼k;
den¼poly(p)
den¼
1 8 37 50
%
% Use the RESIDUE command to call for residues:
[r1, p1, k1¼residue (num, den);
% List the residues (which are complex)
r1
r1¼
�0.2941þ0.0735i
�0.2941�0.0735i
0.5882
% List the poles to check data entry
p1
p1¼
�3.0000þ4.0000i
�3.0000�4.0000i
�2.0000
% List the angle of the residues in degrees,
angle (r1)*180/pi
ans¼
165.9638
�165.9638
0
% List the magnitudes of the residues
abs (r1)
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ans¼
0.3032
0.3032
0.5882
%
% To show numerical stability, form the transfer function from
% the residues (CADAC)(accuracy check)
% CADAC (Accuracy check)
[num1, den1]¼residue (r1, p1, k1);
printsys (num1, den1)
num/den¼
1:1102e� 016s^2þ 4:4409e� 016sþ 10
----------------------------------

s^3þ 8s^2þ 37sþ 50

%
% Note the false roots in the numerator
% Form the Poles
roots (den1)
ans¼
�3.0000þ4.0000i
�3.0000�4.0000i
�2.0000
%
% Plot a three second response to an impulse
% Define a time vector [initial value: incremental value:
% final value]
time¼[0: .02: 3];
% Use impulse response command
impulse (num, den, time)
% Print the plot to compare it with the plot in Fig. 4.5
print –dtiff Sec.4.9. tif

The PARTFRAC Command

The m-file name partfrac.m calculates time responses and is included on the
accompanying CDROM.

Partfrac (num, den)

MATLAB produces the following output,which corresponds to Eq. (4.55).

The partial fraction expansion of
Num/den¼

10
-------------------
s^3þ 8s^2þ 37sþ 50
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Representing the time response for a unit impulse input is
y(t)¼

0:60634 expð � 3tÞ cosð4tþ 165:9638degÞ þ 0:58824 expð � 2tÞ

4.10 PARTIAL-FRACTION SHORTCUTS

Some shortcuts can be used to simplify the partial-fraction expansion
procedures. They are most useful for transform functions that have multiple
poles or complex poles.With multiple poles, the evaluation of the constants
by the process of repeated differentiation given by Eq. (4.48) can be very
tedious, particularly when a factor containing s appears in the numerator of
F ðsÞ. The modified procedure is to evaluate only those coefficients for real
poles that can be obtained readily without differentiation.The corresponding
partial functions are then subtracted from the original function.The resultant
function is easier to work with to get the additional partial fractions than the
original function F ðsÞ.
Example 1. For the function F ðsÞ of Eq. (4.49), which contains a pole
s1 ¼ �2 of multiplicity 3, the coefficient A13 ¼ 1 is readily found. Subtracting
the associated fraction from F ðsÞ and putting the result over a common

FIGURE 4.5 Response of Eq. (4.55) from MATLAB.
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denominator yields.

FxðsÞ ¼
1

ðs þ 2Þ3ðs þ 3Þ �
1

ðs þ 2Þ3 ¼
�1

ðs þ 2Þ2ðs þ 3Þ
Note that the remainder FxðsÞ contains the pole s1 ¼ �2 with a

multiplicity of only 2. Thus the coefficient A12 is now easily obtained
from FxðsÞwithout differentiation.The procedure is repeated to obtain all the
coefficients associated with the multiple pole.

Example 2. Consider the function

F ðsÞ ¼ 20
ðs2 þ 6s þ 25Þðs þ 1Þ ¼

As þ B
s2 þ 6s þ 25

þ C
s þ 1

ð4:62Þ

which has one real pole and a pair of complex poles. Instead of partial
fractions for each pole, leave the quadratic factor in one fraction. Note
that the numerator of the fraction containing the quadratic is a polynomial in
s and is one degree lower than the denominator. Residue C is C ¼
s þ 1ð ÞF sð Þ½ �s¼�1¼ 1. Subtracting this fraction from F ðsÞ gives

20
ðs2 þ 6s þ 25Þðs þ 1Þ �

1
s þ 1

¼ �s2 � 6s � 5
ðs2 þ 6s þ 25Þðs þ 1Þ

Since the pole at s ¼ �1 has been removed, the numerator of the remainder
must be divisible by s þ 1. The simplified function must be equal to the
remaining partial fraction; i.e.,

� s þ 5
s2 þ 6s þ 25

¼ As þ B
s2 þ 6s þ 25

¼ �ðs þ 5Þ
ðs þ 3Þ2 þ 42

The inverse transform for this fraction can be obtained directly from
Appendix A, pair 26.The complete inverse transform of F(s) is

f ðtÞ ¼ e�t � 1:12e�3t sinð4t þ 63:4�Þ ð4:63Þ
Leaving the complete quadratic in one fraction has resulted in real constants
for the numerator.The chances for error are probably less than evaluating the
residues,which are complex numbers, at the complex poles.

A rule presented byHazony andRiley [6] is very useful for evaluating the
coefficients of partial-fraction expansions. For a normalizedz ratio of
polynomials the rule is expressed as follows:

1. If the denominator is1degree higher than the numerator, the sum of
the residues is 1.

zAnormalized polynomial is amonic polynomial, that is,the coefficient of the termcontaining the
highest degree is equal to unity.
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2. If the denominator is 2 or more degrees higher than the numerator,
the sum of the residues is 0.

Equation (4.32) with aw factored from the numerator is a normalized ratio
of polynomials. These rules are applied to the ratio F ðsÞ=aw. It should be
noted that residue refers only to the coefficients of terms in a partial-
fraction expansion with first-degree denominators. Coefficients of terms
with higher-degree denominators are referred to only as coefficients.
These rules can be used to simplify the work involved in evaluating the
coefficients of partial-fraction expansions, particularly when the original
function has a multiple-order pole. For example, only A11 and A2 in
Eq. (4.49) are residues, and therefore A11 þ A2 ¼ 0. Since A2 ¼ �1, the
value of A11 ¼ 1 is obtained directly.

Digital-computer programs (see Appendixes C and D) are readily
available for evaluating the partial-fraction coefficients and obtaining a
tabulation and plot of f ðtÞ [4].

4.11 GRAPHICAL INTERPRETATION OF
PARTIAL-FRACTION COEFFICIENTS [7]

The preceding sections describe the analytical evaluation of the partial-
function coefficients. These constants are directly related to the pole-zero
pattern of the function F(s) and can be determined graphically, whether the
poles and zeros are real or in complex-conjugate pairs. As long as P(s) and
Q(s) are in factored form, the coefficients can be determined graphically by
inspection. Rewriting Eq. (4.32) with the numerator and denominator in
factored form and with aw¼K gives

F ðsÞ ¼ PðsÞ
QðsÞ ¼

Kðs � z1Þðs � z2Þ 	 	 	 ðs � zmÞ 	 	 	 ðs � zwÞ
ðs � p1Þðs � p2Þ 	 	 	 ðs � pkÞ 	 	 	 ðs � pnÞ

¼ K
Qw

m¼1 ðs � zmÞQn
k¼1 ðs � pkÞ

ð4:64Þ

The zeros of this function, s ¼ zm, are those values of s for which the function
is zero; that is, F ðzmÞ ¼ 0. Zeros are indicated by a small circle on the s plane.
The poles of this function, s ¼ pk, are those values of s for which the function is
infinite; that is, jF ðpkÞj ¼ 1. Poles are indicated by a small � on the s plane.
Poles are also known as singularitiesx of the function. When F(s) has only
simple poles (first-order poles), it can be expanded into partial fractions of

xA singularity of a function F(s) is a point where F(s) does not have a derivative.
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the form

F ðsÞ ¼ A1

s � p1
þ A2

s � p2
þ 	 	 	 þ Ak

s � pk
þ 	 	 	 þ An

s � pn
ð4:65Þ

The coefficients are obtained from Eq. (4.38) and are given by
Ak ¼ s � pkð ÞF sð Þ½ �s¼pk ð4:66Þ

The first coefficient is

A1 ¼
K p1 � z1ð Þð p1 � z2Þ 	 	 	 p1 � zwð Þ
p1 � p2ð Þ p1 � p3ð Þ 	 	 	 p1 � pnð Þ ð4:67Þ

Figure 4.6 shows the poles and zeros of a function F(s). The quantity
s ¼ p1 is drawn as an arrow from the origin of the s plane to the pole p1.
This arrow is called a directed line segment. It has a magnitude equal to
jp1j and an angle of 180�. Similarly, the directed line segment s ¼ z1 is
drawn as an arrow from the origin to the zero z1 and has a corresponding
magnitude and angle. A directed line segment is also drawn from the zero
z1 to the pole p1. By the rules of vector addition, this directed line segment
is equal to p1 � z1; in polar form it has a magnitude equal to its length and
an angle c, as shown. By referring to Eq. (4.67), it is seen that p1 � z1
appears in the numerator of A1. Whereas this quantity can be evaluated
analytically, it can also be measured from the pole-zero diagram. In a
similar fashion, each factor in Eq. (4.67) can be obtained graphically; the
directed line segments are drawn from the zeros and each of the other poles
to the pole p1. The angle from a zero is indicated by the symbol c, and the
angle from a pole is indicated by the symbol y.

The general rule for evaluating the coefficients in the partial-fraction
expansion is quite simple.The value ofAk is the product of K and the directed
distances from each zero to the pole pk divided by the product of the directed
distances from each of the other poles to the pole pk. Each of these

FIGURE 4.6 Directed line segments drawn on a pole-zero diagram of a function F sð Þ.
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directed distances is characterized by a magnitude and an angle. This state-
ment can be written in equation form as

Ak ¼ K
product of directed distances from each zero to pole pk

product of directed distances from all other poles to pole pk

K ¼
Qw

m¼1 jpk � zmj ff
Pw

m¼1c pk � zmð Þ
Qn

c¼1�c 6¼k jpk � pcj ff
Pn

c¼1 y pk � pcð Þ
ð4:68Þ

Equations (4.67) and (4.68) readily reveals that as the pole pk comes closer to
the zero zm, the corresponding coefficient Ak becomes smaller (approaches a
zero value).This characteristic is very important in analyzing system response
characteristics. For real poles the values of Ak must be real but can be either
positive or negative. Ak is positive if the total number of real poles and real
zeros to the right of pk is even, and it is negative if the total number of real
poles and real zeros to the right of pk is odd. For complex poles the values of
Ak are complex. If F ðsÞ has no finite zeros, the numerator of Eq. (4.68) is equal
to K. A repeated factor of the form ðs þ aÞr in either the numerator or the
denominator is included r times in Eq. (4.68), where the values of js þ aj and
ff s þ a are obtained graphically.The application of the graphical technique is
illustrated by the following example:

Example. A function F(s) with complex poles (step function response):

F sð Þ ¼ K s þ að Þ
s s þ að Þ2þb2� � ¼ K s þ að Þ

sðs þ a� jbÞðs þ aþ jbÞ

¼ Kðs � z1Þ
sðs � p1Þðs � p2Þ

¼ A0

s
þ A1

s þ a� jb
þ A2

s þ aþ jb
ð4:69Þ

The coefficient A0, for the pole p0 ¼ 0, is obtained by use of the directed
line segments shown in Fig. 4.7a:

A0 ¼
K að Þ

ða� jbÞðaþ jbÞ ¼
Kaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

e jy1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
e jy2
¼ Ka

a2 þ b2
ð4:70Þ

Note that the angles y1 and y2 are equal in magnitude but opposite in sign.
The coefficient for a real pole is therefore always a real number.

The coefficient A1, for the pole p1 ¼ �aþ jb, is obtained by use of the
directed line segments shown in Fig. 4.7b:

A1 ¼
K a� að Þ þ jb½ �
�aþ jbð Þ j2bð Þ ¼

K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� að Þ2þb2

q
e jc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
e jy2be j�=2

¼ K
2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� aÞ2 þ b2

a2 þ b2

s
e jðc�y��=2Þ ð4:71Þ
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where

c ¼ tan�1
b

a� a
and y ¼ tan�1

b
�a

Since the constants A1 and A2 are complex conjugates, it is not necessary to
evaluate A2. It should be noted that zeros in F(s) affect both the magnitude
and the angle of the coefficients in the time function.

The response as a function of time is therefore

f tð Þ ¼ A0 þ 2jA1je�at sin bt þ ffA1 þ 90�
� �

¼ Ka
a2 þ b2

þ K
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� að Þ2þb2
a2 þ b2

s
e�at sinðbt þ fÞ ð4:72Þ

where

f ¼ c� y ¼ tan�1
b

a� a
� tan�1

b
�a ¼ angle of A1 þ 90� ð4:73Þ

This agreeswith transform pair 28 in Appendix A.A0 andA1 can be evaluated
by measuring the directed line segments directly on the pole-zero diagram.
It is interesting to note that, for a given z, as the magnitude on ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2
p

becomes larger, the coefficients A0 and A1 approach zero as
revealed by an analysis of Eqs. (4.70) and (4.71), respectively. (The limiting
value is limon!1 A1½ � ¼ K=2b.) This is an important characteristic when
it is desired that f tð Þ be very small. The application of this characteristic

FIGURE 4.7 Directed line segments for evaluating (a) A0 of Eq. (4.70) and (b) A1 of
Eq. (4.71).

Laplace Transform 133

Copyright © 2003 Marcel Dekker, Inc.



is used in disturbance rejection (Chap. 12). Also see Prob. 4.17 for further
illustration.

4.12 FREQUENCY RESPONSE FROM THE POLE-ZERO
DIAGRAM

The frequency response of a system is described as the steady-state response
with a sine-wave forcing function for all values of frequency.This information
is often presented graphically, using two curves. One curve shows the ratio
of output amplitude to input amplitude M and the other curve shows the
phase angle of the output a,where both are plotted as a function of frequency,
often on a logarithmic scale.

Consider the input to a system as sinusoidal and given by

x1ðtÞ ¼ X1 sinot ð4:74Þ
and the output is

x2ðtÞ ¼ X2 sinðot þ aÞ ð4:75Þ
Themagnitude of the frequency response for the function given in Eq. (4.64) is

M ¼ X2ð joÞ
X1ð joÞ










 ¼ Pð joÞ
Qð joÞ










 ¼ Kð jo� z1Þð jo� z2Þ 	 		
ð jo� p1Þð jo� p2Þ 	 		










 ð4:76Þ

and the angle is

a¼ ffPð joÞ � ffQð joÞ

¼ ffK þff jo� z1 þffjo� z2 þ 		 	� ffjo� p1 �ffjo� p2 � 	 	 	 ð4:77Þ
Figure 4.8 shows a pole-zero diagram and the directed line segments for

evaluating M and a corresponding to a frequency o1. As o increases, each
of the directed line segments changes in both magnitude and angle. Several
characteristics can be noted by observing the change in the magnitude and
angle of each directed line segment as the frequency o increases from 0 to1.
The magnitude and angle of the frequency response can be obtained
graphically from the pole-zero diagram. The magnitude M and the angle a
are a composite of all the effects of all the poles and zeros. In particular, for a
system function that has all poles and zeros in the left half of the s plane, the
following characteristics of the frequency response are noted:

1. At o¼ 0 the magnitude is a finite value, and the angle is 0�.
2. If there aremore poles than zeros, then aso!1, themagnitude of

M approaches zero and the angle is � 90� times the difference
between the number of poles and zeros.
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3. The magnitude can have a peak valueMm only if there are complex
poles fairly close to the imaginary axis. It is shown later that the
damping ratio z of the complex poles must be less than 0.707 to
obtain a peak value for M. Of course, the presence of zeros could
counteract the effect of the complex poles, and so it is possible
that no peak would be present even if z of the poles were less than
0.707.

Typical frequency-response characteristics are illustrated for two
common functions. As a first example,

X2ðsÞ
X1ðsÞ

¼ PðsÞ
QðsÞ ¼

a
s þ a

ð4:78Þ

The frequency response shown in Fig. 4.9b and c starts with a magnitude of
unity and an angle of 0�. As o increases, the magnitude decreases and
approaches zero while the angle approaches � 90�. At o¼ a the magnitude
is 0.707 and the angle is � 45�. The frequency o¼ a is called the corner
frequency ocf or the break frequency. Figure 4.9 shows the pole location, the
frequency-response magnitude M, and the frequency-response angle a as a
function of o.

FIGURE 4.8 Pole-zero diagram of Eq. (4.76) showing the directed line segments for
evaluating the frequency response Mffa.
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The second example is a system transformwith a pair of conjugate poles:

X2ðsÞ
X1ðsÞ

¼ o2
n

s2 þ 2zons þ o2
n
¼ o2

n

ðs � p1Þðs � p2Þ

¼ o2
n

s þ zon � jon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p� �
s þ zon þ jon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p� � ð4:79Þ

The location of the poles of Eq. (4.79) and the directed line segments for s¼ jo
are shown in Fig. 4.10a. At o¼ 0 the values are M¼1 and a¼ 0�. As o
increases, the magnitude M first increases, because jo� p1 is decreasing
faster than jo� p2 is increasing. By differentiating the magnitude of jM( jo)j,
obtained from Eq. (4.79),with respect to o, it can be shown (see Sec. 9.3) that
the maximum valueMm and the frequency om at which it occurs are given by

Mm ¼
1

2z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p ð4:80Þ

om ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2z2

q
ð4:81Þ

A circle drawn on the s plane in Fig. 4.10a, with the poles p1 and p2 as the
end-points of the diameter, intersects the imaginary axis at the value om

given by Eq. (4.81). Both Eq. (4.81) and the geometrical construction of the
circle show that the M curve has a maximum value, other than at o¼ 0, only
if z< 0.707.The angle a becomes more negative as o increases. At o¼on the
angle is equal to � 90�. This is the corner frequency for a quadratic factor

FIGURE 4.9 (a) Pole location of Eq. (4.78); (b) M vs. o; (c) a vs. o.
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with complex roots. As o!1, the angle a approaches �180�. The magni-
tude and angle of the frequency response for z< 0.707 are shown in Fig. 4.10.
The M and a curves are continuous for all linear systems. The M vs. o plot
of Fig. 4.10b describes the frequency response characteristics for the
undamped simple second-order system of Eq. (4.79). In later chapters this
characteristic is used as the standard reference for analyzing and synthesizing
higher-order systems.

4.13 LOCATION OF POLES AND STABILITY

The stability and the corresponding response of a system can be determined
from the location of the poles of the response transform F(s) in the s plane.
The possible positions of the poles are shown in Fig. 4.11, and the responses
are given inTable 4.1.These poles are the roots of the characteristic equation.

Poles of the response transform at the origin or on the imaginary axis
that are not contributed by the forcing function result in a continuous
output. These outputs are undesirable in a control system. Poles in the

FIGURE 4.10 (a) Pole-zero diagram, < 0:707; (b) magnitude of frequency
response; (c) angle of frequency response.

Laplace Transform 137

Copyright © 2003 Marcel Dekker, Inc.



right-half s plane result in transient terms that increase with time. Such
performance characterizes an unstable system; therefore, poles in the
right-half s plane are not desirable, in general.

4.14 LAPLACE TRANSFORM OF THE IMPULSE FUNCTION

Figure 4.12 shows a rectangular pulse of amplitude 1/a and of duration a.
The analytical expression for this pulse is

f ðtÞ ¼ u�1ðtÞ � u�1ðt � aÞ
a

ð4:82Þ

and its Laplace transform is

F ðsÞ ¼ 1� e�as

as
ð4:83Þ

where

e�as ¼ 1� as � ðasÞ
2

2!
� ðasÞ

3

3!
� 	 	 	 ð4:84Þ

TABLE 4.1 Relation of Response to Location of Poles

Position of pole Form of response Characteristics

1 Ae�at Damped exponential
2–2* Ae�bt sinðct þ fÞ Exponentially damped sinusoid
3 A: Constant
4–4* A sin ðdt þ fÞ Constant-sinusoid
5 Aeet Increasing exponential (unstable)
6–6* Aeft sinðgt þ fÞ Exponentially increasing sinusoid (unstable)

FIGURE 4.11 Location of poles in the s plane. (Numbers are used to identify the
poles.)
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and

lim
a!0

1� e�as

as

� �
¼ lim

a!0
1þ as

2!
þ ðasÞ

2

3!
þ 	 	 	

 !
¼ 1 ð4:85Þ

If a is decreased, the amplitude increases and the duration of the pulse
decreases but the area under the pulse, and thus its strength, remains unity.
The limit of f (t) as a! 0 is termed a unit impulse and is designated by
d(t)¼ u0(t).The Laplace transform of the unit impulse, as evaluated by use of
L’Hospital’s theorem, is�(s)¼ 1.

When any function has a jump discontinuity, the derivative of the
function has an impulse at the discontinuity. Some systems are subjected to
shock inputs. For example, an airplane in flight may be jolted by a gust of
wind of short duration.When a gun is fired, it has a reaction force of large
magnitude and very short duration, and so does a steel ball bouncing off
a steel plate. When the duration of a disturbance or input to a system is
very short compared with the natural periods of the system, the response can
often be well approximated by considering the input to be an impulse of
proper strength. An impulse of infinite magnitude and zero duration does
not occur in nature; but if the pulse duration is much smaller than the time
constants of the system, a representation of the input by an impulse is a
good approximation. The shape of the impulse is unimportant as long as
the strength of the equivalent impulse is equal to the strength of the
actual pulse.

Since the Laplace transform of an impulse is defined [8], the
approximate response of a system to a pulse is often found more easily by
this method than by the classical method. Consider the RLC circuit shows in
Fig. 4.13 when the input voltage is an impulse. The problem is to find the
voltage ec across the capacitor as a function of time.The differential equation
relating ec to the input voltage e and the impedances is written by the node
method:

CD þ 1
R þ LD

� �
ec �

1
R þ LD

e ¼ 0 ð4:86Þ

FIGURE 4.12 Rectangular pulse of unit area.
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Rationalizing the equation yields

ðLCD2 þ RCD þ 1Þec ¼ e ð4:87Þ
Taking the Laplace transform of this equation gives

ðs2LC þ sRC þ 1ÞEcðsÞ � sLCecð0Þ � LCDecð0Þ � RCecð0Þ ¼ EðsÞ
ð4:88Þ

Consider an initial condition ecð0�Þ ¼ 0. The voltage across the capacitor is
related to the current in the series circuit by the expression Dec¼ i/C.
Since the current cannot change instantaneously through an inductor,
Dec(0

�)¼ 0. These initial conditions that exist at t¼ 0� are used in
the Laplace-transformed equation when the forcing function is an
impulse. The solution for the current shows a discontinuous step change
at t¼ 0.

The input voltage e is an impulse; therefore, E(s)¼ 1. Solving for
Ec(s) gives

EcðsÞ ¼
1=LC

s2 þ ðR=LÞs þ 1=LC
¼ o2

n

s2 þ 2zons þ o2
n

ð4:89Þ

Depending on the relative sizes of the parameters, the circuit may be
overdamped or underdamped. In the overdamped case the voltage ec(t)
rises to a peak value and then decays to zero. In the underdamped case
the voltage oscillates with a frequency od ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
and eventually

decays to zero. The form of the voltage ec(t) for several values of damping
is shown in Sec. 4.15.

The stability of a system is revealed by the impulse response.With an
impulse input the response transform contains only poles and zeros
contributed by the system parameters. The impulse response is therefore the
inverse transform of the system transfer function and is called the weighting
function:

gðtÞ ¼L�1½GðsÞ� ð4:90Þ
The impulse response provides onemethod of evaluating the system function;
although the method is not simple, it is possible to take the impulse response,

FIGURE 4.13 RLC series circuit.
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which is a function of time, and convert it into the transfer function G(s),
which is a function of s.

The system response g(t) to an impulse input d(t) can be used to determine
the response c(t) to any input r(t) [8].The response c(t) is determined by the use
of the convolution or superposition integral

cðtÞ ¼
Z t

0
rðtÞgðt � tÞ dt ð4:91Þ

This method is normally used for inputs that are not sinusoidal or a power
series.

4.15 SECOND-ORDER SYSTEM WITH IMPULSE
EXCITATION

The response of a second-order system to a step-function input is shown in
Fig. 3.6.The impulse function is the derivative of the step function; therefore,
the response to an impulse is the derivative of the response to a step function.
Figure 4.14 shows the response for several values of damping ratio z for the
second-order function of Eq. (4.89).

The first zero of the impulse response occurs at tp, which is the time
at which the maximum value of the step-function response occurs.

For the underdamped case the impulse response is

f ðtÞ ¼ onffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p e�zont sinon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
t ð4:92Þ

By setting the derivative of f (t) with respect to time equal to zero, the
maximum overshoot can be shown to occur at

tm ¼
cos�1 z

on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p ð4:93Þ

The maximum value of f (t) is

f ðtmÞ ¼ on exp �
z cos�1 zffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
 !

ð4:94Þ

The impulse response g(t) can bemeasured after applying an input pulse
that has a short duration compared with the largest system time constant.
Then it can be used in a deconvolution technique to determine the transfer
function G(s). It can also be used to determine the disturbance-rejection
characteristics of control systems.
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4.16 SOLUTION OF STATE EQUATION [9,10]

The homogeneous state equation is

_xx ¼ Ax ð4:95Þ
The solution of this equation can be obtained by taking the Laplace transform

sXðsÞ � xð0Þ ¼ AXðsÞ ð4:96Þ
Grouping of the terms containingX(s) yields

½sI� A�XðsÞ ¼ xð0Þ ð4:97Þ
The unit matrix I is introduced so that all terms in the equations are proper
matrices. Premultiplying both sides of the equation by [sI�A]�1 yields

XðsÞ ¼ ½sI� A��1xð0Þ ð4:98Þ

FIGURE 4.14 Response to an impulse for F sð Þ ¼ o2
n= s2 þ 2onsþ o2

n

� �
.
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The inverse Laplace transform of Eq. (4.98) gives the time response

xðtÞ ¼L�1 ½sI� A��1� �
xð0Þ ð4:99Þ

Comparing this solution with Eq. (3.70) yields the following expression for
the state transition matrix:

(ðtÞ ¼L�1½sI� A��1 ð4:100Þ
The resolvent matrix is designated by(ðsÞ and is defined by�

(ðsÞ ¼ ½sI� A��1 ð4:101Þ

Example 1. Solve for(ðtÞ (see the example of Sec. 3.14) for

A ¼ 0 6
�1 �5

� �

Using Eq. (4.101) gives

(ðsÞ ¼ s 0
0 s

�
� 0 6
�1 �5

��� ��1
¼ s �6

1 s þ 5

� ��1"

Using Eq. (4.97) gives

�ðsÞ ¼ 1
s2 þ 5s þ 6

s þ 5 6
�1 s

� �
¼

s þ 5
ðs þ 2Þðs þ 3Þ

6
ðs þ 2Þðs þ 3Þ

�1
ðs þ 2Þðs þ 3Þ

s
ðs þ 2Þðs þ 3Þ

2
664

3
775

ð4:102Þ
Using transform pairs12 to14 in Appendix Ayields the inverse transform

�ðtÞ ¼ 3e�2t � 2e�3t 6e�2t � 6e�3t

�e�2t þ e�3t �2e�2t þ 3e�3t

� �

This is the same as the value obtained in Eq. (3.92) and is an alternate
method of obtaining the same result.

The state equation with an input present is

_xx ¼ Axþ Bu ð4:103Þ
Solving by means of the Laplace transform yields

XðsÞ ¼ ½sI� A��1xð0Þ þ ½sI� A��1BUðsÞ ¼ (ðsÞxð0Þ þ(ðsÞBUðsÞ
ð4:104Þ

�WhenA is a companionmatrix, a direct algorithm for evaluating ½sI� A��1 and(ðtÞ is presented
in Ref.11.
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Note that(ðsÞxð0Þ is the zero-input response and(ðsÞBUðsÞ is the zero-state
response (See Sec. 3.15.)

Example 2. Solve for the state equation in the example of Sec. 3.14 for a step
function input. The function (ðsÞ is given by Eq. (4.102) in Example 1 and
U(s)¼ 1/s. Inserting these values into Eq. (4.104) gives

XðsÞ ¼ (ðsÞxð0Þ þ

6
sðs þ 2Þðs þ 3Þ

1
ðs þ 2Þðs þ 3Þ

2
6664

3
7775 ð4:105Þ

Applying the transform pairs 10 and 12 of Appendix A yields the same
result for x(t) as in Eq. (3.105). The Laplace transform method is a direct
method of solving the state equation.

The possibility exists in the elements of(ðsÞ that a numerator factor of
the form sþa will cancel a similar term in the denominator. In that case the
transient mode e-at does not appear in the corresponding element of (ðtÞ.
This has a very important theoretical significance since it affects
the controllability and observability of a control system. These properties are
described in Sec. 13.2. Also, as described in Chap. 7, the ability to
design a tracking control system requires that the system be observable and
controllable.

4.17 EVALUATION OF THE TRANSFER-FUNCTION MATRIX

The transfer-function matrix of a system with multiple inputs and outputs is
evaluated from the state and output equations

_xx ¼ Axþ Bu y ¼ CxþDu

Taking the Laplace transform of these equations and solving for the
outputYðsÞ in terms of the inputU(s) yields

YðsÞ ¼ C(ðsÞxð0Þ þ C(ðsÞBUðsÞ þDUðsÞ ð4:106Þ
Since the transfer-function relationship is YðsÞ ¼ GðsÞUðsÞ and is defined
for zero initial conditions, the system transfer-function matrix is given by
analogy as

GðsÞ ¼ C(ðsÞBþD ð4:107Þ
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For multiple-input multiple-output system G(s) is a matrix in which the
elements are the transfer functions between each output and each input of
the system.

Example. Determine the transfer functions and draw a block diagram for
the two-input two-output system represented by

_xx ¼ 0 1
�2 �3

� �
xþ 1 1

0 �2
� �

u y ¼ 0 �2
1 0

� �
x

The characteristic polynomial is

sI� Aj j ¼ ðs þ 1Þðs þ 2Þ
From Eq. (4.101), the resolvent matrix is

(ðsÞ ¼ 1
ðs þ 1Þðs þ 2Þ

s þ 3 1
�2 s

� �

Then, from Eq. (4.107)

GðsÞ ¼C(ðsÞB¼
4

ðsþ 1Þðsþ 2Þ
4

sþ 2
sþ 3

ðsþ 1Þðsþ 2Þ
1

sþ 2

2
664

3
775¼

G11ðsÞ G12ðsÞ
G21ðsÞ G22ðsÞ

" #
ð4:108Þ

The block diagram for the system is shown in Fig. 4.15.

FIGURE 4.15 Block diagram for Eq. (4.108)
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4.18 MATLAB m-FILE FOR MIMO SYSTEMS

The following commands illustrate howMIMOsystems aremanipulatedwith
MATLAB.
%
% Define the plant, control input, output, and feedforward

matrices
% A¼[0 1;�2�3]; B¼[1 1; 0�2]; C¼[0�2; 1 0]; D¼zeros (2, 2);
%
% Form the state space system model ‘‘statesys’’
%
statesys¼ss(A, B, C, D)
a¼

x1 x2
x1 0 1
x2 �2 �3
b¼

u1 u2
x1 1 1
x2 0 �2
c¼

x1 x2
y1 0 �2
y2 1 0

d¼
u1 u2

y1 0 0
y2 0 0

Continuous-time model.
%
% Transform from state space model to transfer function model
‘‘tfsys’’
%
%
tfsys¼tf (statesys)
Transfer function from input 1 to output . . .

#1 :
4

----------
s^2þ 3sþ 2

#2 :
sþ 3

----------
s^2þ 3sþ 2
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Transfer function from input 2 to output . . .

#1 :
4sþ 4

----------
s^2þ 3sþ 2

#2 :
sþ 1

----------
s^2þ 3sþ 2

%
% Poles and zeros that cancel are removed with the minreal
% command
% Minreal is short for minimum realization
%
tfsys¼minreal(tfsys)
Transfer function from input 1 to output . . .

#1 :
4

----------
s^2þ 3sþ 2

#2 :
sþ 3

----------
s^2þ 3sþ 2

Transfer function from input 2 to output . . .

#1 :
4

----
sþ 2

#2 :
1

----
sþ 2

%% To get factored form use ‘‘zpk’’ which stands for zero, pole,
% gain
%
factoredsys¼zpk(tfsys)
Zero/pole/gain from input 1 to output . . .

#1 :
4

-----------ðsþ 2Þ ðsþ 1Þ

#2 :
ðsþ 3Þ

-----------ðsþ 2Þ ðsþ 1Þ
Zero/pole/gain from input 2 to output . . .

#1 :
4

-----ðsþ 2Þ

#2 :
1

-----ðsþ 2Þ
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% Individual elements of the model are addressed (output,
% input)
%
tfsys(2, 1) % The transfer function to output 2 from input 1
Transfer function:

sþ 3
---------
s^2þ 3sþ 2

%
% Subelements use a pointer notation with {output, input}
% addressing
% See 1tiprops for more information
%
tfsys.num{2, 1} % Numerator of tfsys (2, 1)
ans¼

0 1 3
tfsys.den{2, 1} % Denominator of tfsys (2, 1)
ans¼

1 3 2
factoredsys.z{2, 1) % zeroes of factoredsys (2. 1)
ans¼

�3
factoredsys.p{2, 1} % Poles of factoredsys (2, 1)
ans¼

�2
�1

4.19 SUMMARY

This chapter discusses the important characteristics and the use of the
Laplace transform,which is employed extensively with differential equations
because it systematizes their solution. Also it is used extensively in feedback-
system synthesis. The pole-zero pattern has been introduced to represent a
system function. The pole-zero pattern is significant because it determines
the amplitudes of all the time-response terms. The frequency response has
also been shown to be a function of the pole-zero pattern. The solution of
linear time-invariant (LTI) state equations can be obtained by means of the
Laplace transform. The procedure is readily adapted for the use of a digital
computer [4], which is advantageous for multiple-input multiple-output
(MIMO) systems.

Later chapters cover feedback-system analysis and synthesis by three
methods. The first of these is the root-locus method, which locates the poles
and zeros of the system in the s plane. Knowing the poles and zeros permits
an exact determination of the time response. The second method is based
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on the frequency response. Since the frequency response is a function of the
pole-zero pattern, the two methods are complementary and give equivalent
information in different forms. The root-locus and frequency-response
methods are primarily applicable to SISO systems and rely on use of transfer
functions to represent the system. They can be adapted for the synthesis of
MIMO systems. The state-feedback method is readily used for both SISO
and MIMO systems. The necessary linear algebra operations for state-
feedback synthesis are presented in App. B and in this chapter in preparation
for their use in later chapters.

System stability requires that all roots of the characteristic equation be
located in the left half of the s plane. They can be identified on the pole-zero
diagram and are the poles of the overall transfer function. The transfer
function can be obtained from the overall differential equation relating an
input to an output. The transfer function can also be obtained from the
state-equation formulation, as shown in this chapter.
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5

System Representation

5.1 INTRODUCTION

This chapter introduces the basic principles of system representation.
From the concepts introduced in earlier chapters, a number of systems
are represented in block-diagram form. Feedback is included in these
systems in order to achieve the desired performance. Also, the standard
symbols and definitions are presented. These are extensively used in the
technical literature on control systems and form a common basis for under-
standing and clarity. While block diagrams simplify the representation of
functional relationships within a system, the use of signal flow graphs (SFG)
provides further simplification for larger systems that contain intercoupled
relationships. Simulation diagrams are presented as a means of representing
a system for which the overall differential equation is known. Then
the inclusion of initial condition in SFG leads to the state-diagram
representation. To provide flexibility in the method used by the designer for
system analysis and design, the system representation may be in either the
transfer-function or the state-equation form. The procedures for converting
from one representation to the other are presented in Chap. 4 and in
this chapter. When the state-variable format is used, the mathematical
equations may be written so that the states are uncoupled. This simplifies
the equations, leading to an A matrix that is diagonal. The techniques for
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transforming the state vector in order to achieve different representations
are presented.

5.2 BLOCK DIAGRAMS

The representation of physical components by blocks is shown in Chap. 2.
For each block the transfer function provides the dynamical mathematical
relationship between the input and output quantities. Also, Chap. 1 and
Fig. 1.3 describe the concept of feedback, which is used to achieve a better
response of a control system to a command input. This section presents
several examples of control systems and their representation by block
diagrams. The blocks represent the functions performed rather than the
components of the system.

Example 1: A Temperature Control System. An industrial process
temperature control system is shown in Fig.5.1a.The requirement is to control
the temperature y in the tank.The voltage r, obtained from a potentiometer, is
calibrated in terms of the desired temperature ycomm.This voltage represents
the input quantity to the feedback control system.The actual temperature y,
the output quantity, is measured by means of a thermocouple immersed in the
tank. The voltage eth produced in the thermocouple is proportional to y.
The voltage eth is amplified to produce the voltage b, which is the feedback
quantity. The voltage e¼ r�b is the actuating signal and is amplified by the

FIGURE 5.1 An industrial process temperature control system.
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amplifier having the gain KA to produce the solenoid voltage e1.The current is
in the solenoid,which results from applying e1produce a proportional force fs
that acts on the solenoid armature and valve to control the valve position x.
The valve position in turn controls the flow of hot steam q from the boiler
into the heating coil in the tank. The resulting temperature y of the tank is
directly proportional to the steam flow with a time delay that depends on the
specific heat of the fluid and the mixing rate. The block diagram representa-
tion for this system in Fig. 5.1b shows the functions of each unit and the signal
flow through the system.

To show the operation of the system, consider that an increase in the
tank temperature is required. The voltage r is increased to a value that
represents the value of the desired temperature. This change in r causes an
increase in the actuating signal e. This increase in e, through its effect on the
solenoid and valve, causes an increase in the amount of hot steam flowing
through the heating coil in the tank.The temperature y therefore increases in
proportion to the steam flow.When the output temperature rises to a value
essentially equal to the desired temperature, the feedback voltage b is equal
to the reference input r b � rð Þ. The flow of steam through the heating coil is
stabilized at a steady-state value but maintains y at the desired value.

Example 2: Command Guidance Interceptor System. A more complex
system is the command guidance system shown in Fig. 5.2,which directs the
flight of amissile in space in order to intercept amoving target.The targetmay
be an enemy bomber whose aim is to drop bombs at some position.

FIGURE 5.2 Command guidance interceptor system.
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The defense uses the missile with the objective of intercepting and destroying
the bomber before it launches its bombs.The target-tracking radar is used first
for detecting and then for tracking the target. It supplies information on target
range and angle and their rates of change (time derivatives).This information
is continuously fed into the computer,which calculates a predicted course for
the target.Themissile-tracking radar supplies similar information that is used
by the computer to determine its flight path. The computer compares the
two flight paths and determines the necessary change in missile flight path to
produce a collision course.The necessary flight path changes are supplied to
the radio command link, which transmits this information to the missile.
This electrical information containing corrections in flight path is used by
a control system in the missile. The missile control system converts the
error signals into mechanical displacements of the missile airframe control
surfaces by means of actuators. The missile responds to the positions of the
aerodynamic control surfaces to follow the prescribed flight path, which is
intended to produce a collision with the target. Monitoring of the target is
continuous so that changes in the missile course can be corrected up to the
point of impact. The block diagram of Fig. 5.3 depicts the functions of this
command guidance system.Many individual functions are performed within
each block. Some of the components of the missile control system are shown
within the block representing the missile.

FIGURE 5.3 Block diagram of a generalized command guidance interceptor system.
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Example 3: Aircraft Control System [1]. The feedback control system used
to keep an airplane on a predetermined course or heading is necessary for the
navigation of commercial airliners.Despite poor weather conditions and lack
of visibility, the airplane must maintain a specified heading and altitude in
order to reach its destination safely. In addition, in spite of rough air, the trip
must be made as smooth and comfortable as possible for the passengers and
crew. The problem is considerably complicated by the fact that the airplane
has six degrees of freedom. This fact makes control more difficult than the
control of a ship,whose motion is limited to the surface of the water. A flight
controller is the feedback control system used to control the aircraft motion.

Two typical signals to the system are the correct flight path,which is set
by the pilot, and the level position (attitude) of the airplane. The ultimately
controlled variable is the actual course and position of the airplane. The
output of the control system, the controlled variable, is the aircraft heading.
In conventional aircraft three primary control surfaces are used to control
the physical three-dimensional attitude of the airplane, the elevators, rudder,
and ailerons. The axes used for an airplane and the motions produced by the
control surface are shown in Fig. 5.4.

FIGURE 5.4 Airplane control surfaces: (a) elevator deflection produces pitching
velocity q; (b) rudder deflection produces yawing velocity r; (c) aileron deflection
produces rolling velocity p.

System Representation 155

Copyright © 2003 Marcel Dekker, Inc.



The directional gyroscope is used as the error-measuring device.
Two gyros must be used to provide control of both heading and attitude
(level position) of the airplane.The error that appears in the gyro as an angular
displacement between the rotor and case is translated into a voltage by
various methods, including the use of transducers such as potentiometers,
synchros, transformers, or microsyns.

Additional stabilization for the aircraft can be provided in the control
system by rate feedback. In other words, in addition to the primary feedback,
which is the position of the airplane, another signal proportional to the
angular rate of rotation of the airplane around the vertical axis is fed back in
order to achieve a stable response. A‘‘rate’’gyro is used to supply this signal.
This additional stabilization may be absolutely necessary for some of the
newer high-speed aircraft.

A block diagram of the aircraft control system (Fig. 5.5) illustrates
control of the airplane heading by controlling the rudder position. In this
system the heading that is controlled is the direction the airplane would
travel in still air.The pilot corrects this heading,depending on the crosswinds,
so that the actual course of the airplane coincides with the desired path.
Another control included in the complete airplane control system controls
the ailerons and elevators to keep the airplane in level flight.

5.3 DETERMINATION OF THE OVERALL
TRANSFER FUNCTION

The block diagram of a control system with negative feedback can often be
simplified to the form shown in Fig. 5.6 where the standard symbols and
definitions used in feedback systems are indicated. In this feedback control
system the output is the controlled variable C. This output is measured by

FIGURE 5.5 Airplane directional-control system.
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a feedback elementH to produce the primary feedback signal B,which is then
compared with the reference inputR.The differenceE, between the reference
inputR and the feedback signalB, is the input to the controlled systemG and is
referred to as the actuating signal. For unity feedback systems where H¼1,
the actuating signal is equal to the error signal,which is the difference R�C.
The transfer functions of the forward and feedback components of the system
areG andH, respectively.

In using the block diagram to represent a linear feedback control
system where the transfer functions of the components are known, the letter
symbol is capitalized, indicating that it is a transformed quantity; i.e., it is
a function of the operator D, the complex parameter s, or the frequency
parameter jo. This representation applies for the transfer function, where
G is used to represent G(D), G(s), or Gð joÞ. It also applies to all variable
quantities, such as C, which represents C(D), C(s), or Cð joÞ. Lowercase
symbols are used, as in Fig. 5.5, to represent any function in the time domain.
For example, the symbol c represents cðtÞ.

The important characteristic of such a system is the overall transfer
function, which is the ratio of the transform of the controlled variable C to
the transform of the reference input R. This ratio may be expressed in
operational, Laplace transform, or frequency (phasor) form. The overall
transfer function is also referred to as the control ratio. The terms are used
interchangeably in this text.

The equations describing this system in terms of the transform
variable are

CðsÞ ¼ GðsÞEðsÞ ð5:1Þ
B sð Þ ¼ H sð ÞC sð Þ ð5:2Þ
E sð Þ ¼ R sð Þ � B sð Þ ð5:3Þ

FIGURE 5.6 Block diagram of a feedback system.
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Combining these equations produces the control ratio, or overall transfer
function,

C sð Þ
R sð Þ ¼

G sð Þ
1þ G sð ÞH sð Þ ð5:4Þ

The characteristic equation of the closed-loop system is obtained from the
denominator of the control ratio:

1þ G sð ÞH sð Þ ¼ 0 ð5:5Þ
The stability and response of the closed-loop system, as determined by analy-
sis of the characteristic equation, are discussed more fully in later chapters.

For simplified systems where the feedback is unity, that is, H(s)¼ 1,
the actuating signal, given by Eq. (5.3), is now the error present in the system,
i.e., the reference input minus the controlled variable, expressed by

E sð Þ ¼ R sð Þ � C sð Þ ð5:6Þ
The control ratio with unity feedback is

C sð Þ
R sð Þ ¼

G sð Þ
1þ G sð Þ ð5:7Þ

The open-loop transfer function is defined as the ratio of the output of the
feedback path B(s) to the actuating signal E(s) for any given feedback loop.
In terms of Fig. 5.6, the open-loop transfer function is

B sð Þ
E sð Þ ¼ G sð ÞH sð Þ ð5:8Þ

The forward transfer function is defined as the ratio of the controlled
variable C(s) to the actuating signal E(s). For the system shown in Fig. 5.5 the
forward transfer function is

C sð Þ
E sð Þ ¼ G sð Þ ð5:9Þ

In the case of unity feedback, where H(s)¼ 1, the open-loop and the forward
transfer functions are the same. The forward transfer function G(s) may be
made up not only of elements in cascade but may also contain internal,
or minor, feedback loops. The algebra of combining these internal feedback
loops is similar to that used previously. An example of a controlled system
with an internal feedback loop is shown in Fig. 5.5.

It is often useful to express the actuating signalE in terms of the inputR.
Solving from Eqs. (5.1) to (5.3) gives

E sð Þ
R sð Þ ¼

1
1þ G sð ÞH sð Þ ð5:10Þ
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The concept of system error ye is defined as the ideal or desired system
value minus the actual system output. The ideal value establishes the desired
performance of the system.For unity-feedback systems the actuating signal is
an actual measure of the error and is directly proportional to the system error
(see Fig. 5.7).

Example: Overall Transfer Function

Computation of several calculations using MATLAB are illustrated below.
Assume that the transfer functions for Fig. 5.6 are:

GðsÞ ¼ 5
sþ 5

HðsÞ ¼ 1
s

Determine the overall control ratio, C(s)/R(s). MATLAB provides the ‘‘feed-
back’’ function to calculate the overall (closed-loop) transfer function as
shown by the following m-file.

%
% The feedback command calculates the closed-loop transfer
% function for a given forward transfer function G(s)
% and feedback transfer function H(s)
%
% Type ''help feedback'' for more information
% Example 1:
% Define a forward transfer function GðsÞ ¼ 5=sþ 5
% using the tf command

% G ¼ tf([5],[1 5]) % System = tf (numerator, denominator)

Transfer function:

5
-----
sþ 5

FIGURE 5.7 Block diagram of feedback control system containing all basic elements.
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% Example 2:
% Define a feedback transfer function HðsÞ ¼ 1=s
% using the tf command
H ¼ tf ð ½1�; ½1 0� Þ % System = tf (numerator, denominator)

Transfer function:

1
-
s

% Example 3:
% For a non-unity, negative feedback system the
% closed loop transfer function is
%
cltf = feedback (G,H,-1)

Transfer function:

5s
----------
ŝ 2þ 5sþ 5

% For positive feedback use ''feedback (G,H,1)''

5s
----------
ŝ 2þ 5sþ 5

% Example 4:
% The forward transfer function is calculated by multiplying
% G(s) and H(s)
%
G � H

Transfer function:

5
-------
s^2þ 5s

5.4 STANDARD BLOCK DIAGRAM TERMINOLOGY [2]

Figure 5.7 shows a block diagram representation of a feedback control system
containing the basic elements. Figure 5.8 shows the block diagram and sym-
bols of a more complicated systemwith multiple paths and inputs. Numerical
subscripts are used to distinguish between blocks of similar functions in the
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circuit. For example, in Fig. 5.7 the control elements are designated by G1 and
the controlled system by G2. In Fig. 5.8 the control elements are divided into
two blocks,G1 and G2, to aid in representing relations between parts of the
system. Also, in this figure the primary feedback is represented by H1.
Additional minor feedback loops might be designated byH2,H3, and so forth.

The idealized system represented by the block enclosed with dashed
lines in Fig. 5.7 can be understood to show the relation between the basic
input to the system and the performance of the system in terms of the desired
output. This would be the system agreed upon to establish the ideal value for
the output of the system. In systems where the command is actually the
desired value or ideal value, the idealized system would be represented by
unity. The arrows and block associated with the idealized system, the ideal
value, and the system error are shown in dashed lines on the block diagram
because they do not exist physically in any feedback control system. For any
specific problem, it represents the system (conceived in the mind of the
designer) that gives the best approach, when considered as a perfect system,
to the desired output or ideal value.

Definitions: Variables in the System

Command v is the input that is established by some means external to,
and independent of, the feedback control system.

Reference input r is derived from the command and is the actual signal
input to the system.

FIGURE 5.8 Block diagram of representative feedback control system showing
multiple feedback loops. (All uppercase letters denote transformation.)
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Controlled variable c is the quantity that is directly measured and
controlled. It is the output of the controlled system.

Primary feedback b is a signal that is a function of the controlled
variable and that is compared with the reference input to obtain the
actuating signal.

Actuating signal e is obtained froma comparisonmeasuring device and is
the reference input minus the primary feedback. This signal, usually
at a low energy level, is the input to the control elements that produce
the manipulated variable.

Manipulated variable m is the quantity obtained from the control
elements that is applied to the controlled system. The manipulated
variable is generally at a higher energy level than the actuating signal
and may also be modified in form.

Indirectly controlled variable q is the output quantity that is related
through the indirectly controlled system to the controlled variable.
It is outside the closed loop and is not directly measured for control.

Ultimately controlled variable is a general term that refers to the indirectly
controlled variable. In the absence of the indirectly controlled
variable, it refers to the controlled variable.

Ideal value i is the value of the ultimately controlled variable that would
result from an idealized system operating with the same command
as the actual system.

System error ye is the ideal value minus the value of the ultimately
controlled variable.

Disturbance d is the unwanted signal that tends to affect the controlled
variable. The disturbance may be introduced into the system at
many places.

Definitions: System Components

Reference input elements Gv produce a signal r proportional to the
command.

Control elements Gc produce the manipulated variable m from the
actuating signal.

Controlled system G is the device that is to be controlled. This is
frequently a high-power element.

Feedback element H produces the primary feedback b from the
controlled variable. This is generally a proportionality device but
may also modify the characteristics of the controlled variable.

Indirectly controlled systemZ relates the indirectly controlled variableq to
thecontrolledquantityc.Thiscomponent isoutside thefeedback loop.
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Idealized system Gi is one whose performance is agreed upon to define
the relationship between the ideal value and the command. This is
often called themodel or desired system.

Disturbance element N denotes the functional relationship between the
variable representing the disturbance and its effect on the control
system.

5.5 POSITION CONTROL SYSTEM

Figure 5.9 shows a simplified block diagram of an angular position control
system. The reference selector and the sensor, which produce the reference
input R¼ yR and the controlled output position C¼ yo, respectively, consist
of rotational potentiometers. The combination of these units represents
a rotational comparison unit that generates the actuating signal E for the
position control system, as shown in Fig. 5.10a,where Ky, in volts per radian,
is the potentiometer sensitivity constant. The symbolic comparator for this
system is shown in Fig. 5.10b.

The transfer function of the motor-generator control is obtained by
writing the equations for the schematic diagram shown in Fig. 5.11a. This
figure shows a dc motor that has a constant field excitation and drives an

FIGURE 5.10 (a) Rotational position comparison; (b) its block diagram
representation.

FIGURE 5.9 Position control system.
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inertia and friction load. The armature voltage for the motor is furnished
by the generator, which is driven at constant speed by a prime mover. The
generator voltage eg is determined by the voltage ef applied to the generator
field. The generator is acting as a power amplifier for the signal voltage ef.
The equations for this system are as follows:

ef ¼ Lf Dif þ Rf if ð5:11Þ
eg ¼ Kgif ð5:12Þ

eg � em ¼ ðLg þ LmÞDim þ ðRg þ RmÞim ð5:13Þ
em ¼ Kb Dyo ð5:14Þ
T ¼ KT im ¼ J D2yo þ BDyo ð5:15Þ

The block diagram drawn in Fig. 5.11b is based on these equations. Start-
ing with the input quantity ef , Eq. (5.11) shows that a current if is produced.
Therefore, a block is drawn with ef as the input and if as the output. Equation
(5.12) shows that a voltage eg is generated as a function of the current if .
Therefore, a second block is drawn with the current if as the input and eg as
the output. Equation (5.13) relates the current im in the motor to the difference
of two voltages, eg� em. To obtain this difference a summation point is
introduced. The quantity eg from the previous block enters this summation
point. To obtain the quantity eg� em there must be added the quantity em,
entering summation point with a minus sign. Up to this point the manner
in which em is obtained has not yet been determined. The output of this
summation point is used as the input to the next block, fromwhich the current
im is the output. Similarly, the block with current im as the input and the

FIGURE 5.11 (a) Motor-generator control; (b) block diagram.
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generated torqueTas the output and the block with the torque input and the
resultant motor position as the output are drawn.Theremust be no loose ends
in the complete diagram; i.e., every dependent variable must be connected
through a block or blocks into the system. Therefore, em is obtained from
Eq. (5.14), and a block representing this relationship is drawn with yo as the
input and em as the output. By using this procedure, the block diagram is
completed and the functional relationships in the system are described. Note
that the generator and the motor are no longer separately distinguishable.
Also, the input and the output of each block are not in the same units, as both
electrical and mechanical quantities are included.

The transfer functions of each block, as determined in terms of the
pertinent Laplace transforms, are as follows:

G1ðsÞ ¼
If ðsÞ
Ef ðsÞ

¼ 1=Rf

1þ ðLf =Rf Þs
¼ 1=Rf

1þ Tf s
ð5:16Þ

G2ðsÞ ¼
Eg ðsÞ
If ðsÞ

¼ Kg ð5:17Þ

G3ðsÞ ¼
ImðsÞ

Eg ðsÞ � EmðsÞ
¼ 1=ðRg þ RmÞ

1þ ½ðLg þ LmÞ=ðRg þ RmÞ�s

¼ 1=Rgm

1þ ðLgm=RgmÞs
¼ 1=Rgm

1þ Tgms
ð5:18Þ

G4ðsÞ ¼
T ðsÞ
ImðsÞ

¼ KT ð5:19Þ

G5ðsÞ ¼
�oðsÞ
T ðsÞ ¼

1=B
s½1þ ðJ=BÞs� ¼

1=B
sð1þ TnsÞ

ð5:20Þ

H1ðsÞ ¼
EmðsÞ
�oðsÞ

¼ Kbs ð5:21Þ

Theblock diagramcanbe simplified, as shown inFig.5.12,by combining
the blocks in cascade. The block diagram is further simplified, as shown in

FIGURE 5.12 Simplified block diagram.
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Fig. 5.13, by evaluating an equivalent block from Eg(s) to �o(s), using the
principle of Eq. (5.4). The final simplification results in Fig. 5.14. The overall
transfer functionGx(s) is

GxðsÞ ¼
�oðsÞ
Ef ðsÞ

¼ KgKT=Rf BRgm

sð1þ Tf sÞ½ð1þKTKb=BRgmÞ þ ðTgm þ TnÞs þ TgmTns2�
ð5:22Þ

This expression is the exact transfer function for the entire motor and
generator combination. Certain approximations, if valid, may be made to
simplify this expression.The first approximation is that the inductance of the
generator and motor armatures is very small, therefore, Tgm� 0. With this
approximation, the transfer function reduces to

�oðsÞ
Ef ðsÞ

¼ GxðsÞ �
Kx

sð1þ Tf sÞð1þ TmsÞ
ð5:23Þ

where

Kx ¼
KgKT

Rf ðBRgm þ KTKbÞ
ð5:24Þ

Tf ¼
Lf

Rf
ð5:25Þ

Tm ¼
JRgm

BRgm þ KTKb
ð5:26Þ

If the frictional effect of the load is very small, the approximation can bemade
that B� 0.With this additional approximation, the transfer function has the
same form as Eq. (5.23), but the constants are now

Kx ¼
Kg

Rf Kb
ð5:27Þ

FIGURE 5.13 Reduced block diagram.

FIGURE 5.14 Simplified block diagram for Fig. 5.11.
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Tf ¼
Lf

Rf
ð5:28Þ

Tm ¼
JRgm

KTKb
ð5:29Þ

For simple components, as in this case, an overall transfer function
can often be derived more easily by combining the original system equations.
This can be done without the intermediate steps shown in this example.
However, the purpose of this example is to show the representation of
dynamic components by individual blocks and the combination of blocks.

A new block diagram representing the position-control system of
Fig. 5.9 is drawn in Fig. 5.15. Since the transfer function of the amplifier of
Fig. 5.9 is Ef (s)/E(s)¼A, the forward transfer function of the position-control
system of Fig. 5.15 is

GðsÞ ¼ �oðsÞ
�ðsÞ ¼

AKxKy

sð1þ Tf sÞð1þ TmsÞ
ð5:30Þ

The overall transfer function (control ratio) for this system,withH(s)¼ 1, is

CðsÞ
RðsÞ ¼

�oðsÞ
�RðsÞ

¼ GðsÞ
1þ GðsÞH ðsÞ ¼

AKxKy

sð1þ Tf sÞð1þ TmsÞ þ AKxKy
ð5:31Þ

5.6 SIMULATION DIAGRAMS [3,4]

The simulation used to represent the dynamic equations of a systemmay show
the actual physical variables that appear in the system, or it may show
variables that are used purely for mathematical convenience. In either case
the overall response of the system is the same. The simulation diagram is
similar to the diagram used to represent the system on an analog computer.
The basic elements used are ideal integrators, ideal amplifiers, and ideal
summers, shown in Fig. 5.16. Additional elements such as multipliers and
dividers may be used for nonlinear systems.

FIGURE 5.15 Equivalent representation of Fig. 5.9.
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One of the methods used to obtain a simulation diagram includes the
following steps:

1. Start with differential equation.
2. On the left side of the equation put the highest-order derivative of

the dependent variable. A first-order or higher-order derivative of
the input may appear in the equation. In this case the highest-order
derivative of the input is also placed on the left side of the equation.
All other terms are put on the right side.

3. Start the diagram by assuming that the signal, represented by the
terms on the left side of the equation, is available. Then integrate
it as many times as needed to obtain all the lower-order derivatives.
It may be necessary to add a summer in the simulation diagram
to obtain the dependent variable explicitly.

4. Complete the diagram by feeding back the approximate outputs of
the integrators to a summer to generate the original signal of step 2.
Include the input function if it is required.

Example. Draw the simulation diagram for the seriesRLC circuit of Fig. 2.2
in which the output is the voltage across the capacitor.

Step1. When y¼ vc and u¼ e are used, Eq. (2.10) becomes

LC €yy þ RC _yy þ y ¼ u ð5:32Þ
Step 2. Rearrange terms to the form

€yy ¼ 1
LC

u� R
L
_yy � 1

LC
y

¼ bu� a_yy � by ð5:33Þ
where a¼R/L and b¼1/LC.

FIGURE 5.16 Elements used in a simulation diagram.
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Step 3. The signal €yy is integrated twice, as shown in Fig. 5.17a.

Step 4. The block or simulation diagram is completed as shown
in Fig. 5.17b in order to satisfy Eq. (5.33).

The state variables are often selected as the outputs of the integrators in
the simulation diagram. In this case they are y¼ x1and _yy ¼ x2 ¼ _xx1.These values
and €yy ¼ _xx2 are shown inFig.5.17b.The stateandoutputequations are therefore

_xx1
_xx2

� �
¼

0 1

� 1
LC

�R
L

" #
x1
x2

� �
þ

0
1
LC

" #
u ¼ Axþ Bu ð5:34Þ

y ¼ ½ 1 0� x1
x2

� �
þ 0u ¼ CxþDu ð5:35Þ

It is common in a physical system for the Dmatrix to be zero, as in this
example. These equations are different from Eqs. (2.26) and (2.27), yet they
represent the same system.This difference illustrates that state variables are
not unique. When the state variables are the dependent variable and the
derivatives of the dependent variable, as in this example, they are called phase
variables. The phase variables are applicable to differential equations of any
orderandcanbeusedwithoutdrawing thesimulationdiagram,asshownbelow.

CASE 1. The general differential equation that contains no derivatives of
the input is

Dny þ an�1D
n�1y þ 	 	 	 þ a1Dy þ a0y ¼ u ð5:36Þ

FIGURE 5.17 Simulation diagram for Eq. (5.32).
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The state variables are selected as the phase variables, which are defined by
x1¼y, x2 ¼ Dx1 ¼ _xx1 ¼ Dy, x3 ¼ _xx2 ¼ D2y�. . . � xn ¼ _xxn�1 ¼ Dn�1y. Thus,
Dny ¼ _xxn.When these state variables are used, Eq. (5.36) becomes

_xxn þ an�1xn þ an�2xn�1 þ 	 	 	 þ a1x2 þ a0x1 ¼ u ð5:37Þ
The resulting state and output equations using phase variables are

_xx1
_xx2

..

.

_xxn�1
_xxn

2
666666664

3
777777775
¼

0 1
0 1 0

0 1

0 . .
.

. .
.

0 0 1
�a0 �a1 �a2 �a3 	 	 	 �an�2 �an�1

2
6666666664

3
7777777775
xþ

0
0

..

.

0
1

2
666666664

3
777777775
u

_xx ¼ Acxþ bcu ð5:38Þ

y ¼ x1½ � ¼ 1 0 0 	 	 	� �
x ¼ c

T
c x ð5:39Þ

These equations can be written directly from the original differential
equation (5.36).The plantmatrixAccontains the number1in the superdiagonal
and the negative of the coefficients of the original differential equation in the
nth row. In this simple form the matrix Ac is called the companion matrix.
Also, theBmatrix takes on the form shown in Eq. (5.38) and is indicated by bc.

CASE 2. When derivatives of u(t) appear in the differential equation, the
phase variables may be used as the state variables and the state equation
given in Eq. (5.38) still applies; however, the output equation is no longer
given by Eq. (5.39).This is shown by considering the differential equation

ðDn þ an�1D
n�1 þ 	 	 	 þ a1D þ a0Þy

¼ ðcwDw þ cw�1D
w�1 þ 	 	 	 þ c1D þ c0Þu w � n ð5:40Þ

The output y is specified as

y ¼ ðcwDw þ cw�1D
w�1 þ 	 	 	 þ c1D þ c0Þx1 ð5:41Þ

In terms of the state variables this output equation becomes

y ¼ cw _xxw þ cw�1xw þ 	 	 	 þ c1x2 þ c0x1 ð5:42Þ
Substituting Eq. (5.41) into Eq. (5.40) and canceling common terms on both
sides of the equation yields

ðDn þ an�1D
n�1 þ 	 	 	a1D þ a0Þx1 ¼ u ð5:43Þ
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This equation has the same form as Eq. (5.36). Thus, in terms of phase
variables, Eq. (5.43) can be represented in the form _xx ¼ Acxþ bcu, where
the matrices Ac and bc are the same as in Eq. (5.38). The case for two values
of w are:

1. For w¼ n, the output equation (5.42) becomes
y ¼ cn _xxn þ cn�1xn þ 	 	 	 þ c1x2 þ c0x1

Using Eq. (5.37) to eliminate _xxn yields
y ¼ ðc0 � a0cnÞ ðc1 � a1cnÞ 	 	 	 ðcn�1 � an�1cnÞ

� �
xþ ½cn�u

¼ cTc xþ dcu ð5:44Þ
2. For w < n, _xxw ¼ xwþ1, and cwþi ¼ 0 for i ¼ 1� 2� . . . � n� w. In this

case the output y in Eq. (5.44) reduces to

y ¼ c0 c1 	 	 	 cw 0 	 	 	 0
� �

x ð5:45Þ
Figure 5.18 shows the simulation diagram that represents the system of
Eq. (5.40) in terms of the state equation, Eq. (5.38), and the output equation

FIGURE 5.18 Simulation diagram representing the system of Eq. (5.40) in terms of
Eqs. (5.38) and (5.45).
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Eq. (5.45). It has the desirable feature that differentiation of the input signal
u(t) is not required to satisfy the differential equation.The simulation diagram
has the advantage of requiring only two summers, regardless of the order of
the system, one at the input and one at the output. This representation of a
differential equation is considered again in Sec. 5.8. Differentiators are
avoided in analog- and digital-computer simulations, because they accentuate
any noise present in the signals.

Different sets of state variables may be selected to represent a
system. The selection of the state variables determines the A, B, C, and D

matrices of Eqs. (2.35) and (2.36). A general matrix block diagram
representing the state and the output equations is shown in Fig. 5.19.
The matrix D is called the feedforward matrix. The analysis and design of
multiple-input multiple-output (MIMO) systems are covered in detail in
Refs. 5 to 7.

5.7 SIGNAL FLOW GRAPHS [8,9]

The block diagram is a useful tool for simplifying the representation of
a system. The block diagrams of Figs. 5.9 and 5.15 have only one feedback
loop and may be categorized as simple block diagrams. Figure 5.5 has three
feedback loops; thus it is not a simple system. When intercoupling exists
between feedback loops, and when a system has more than one input and one
output, the control system and block diagram are more complex. Having the
block diagram simplifies the analysis of complex system. Such an analysis
can be even further simplified by using a signal flow graph (SFG),which looks
like a simplified block diagram.

An SFG is a diagram that represents a set of simultaneous equations.
It consists of a graph in which nodes are connected by directed branches.
The nodes represent each of the system variables. A branch connected
between two nodes acts as a one-way signal multiplier: the direction of signal
flow is indicated by an arrow placed on the branch, and the multiplication

FIGURE 5.19 General matrix block diagram representing the state and output
equations.
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factor (transmittance or transfer function) is indicated by a letter placed near
the arrow. Thus, in Fig. 5.20, the branch transmits the signal x1 from left
to right and multiplies it by the quantity a in the process.The quantity a is the
transmittance, or transfer function. It may also be indicated by a¼ t12,
where the subscripts show that the signal flow is from node1 to node 2.

Flow-Graph Definitions

A node performs two functions:

1. Addition of the signals on all incoming branches
2. Transmission of the total node signal (the sum of all incoming

signals) to all outgoing branches

These functions are illustrated in the graph of Fig. 5.21,which represents the
equations

w ¼ auþ bv x ¼ cw y ¼ dw ð5:46Þ
Three types of nodes are of particular interest:

Source nodes (independent nodes).These represent independent variables
and have only outgoing branches. In Fig. 5.21, nodes u and v are
source nodes.

Sink nodes (dependent nodes). These represent dependent variables and
have only incoming branches. In Fig. 5.21, nodes x and y are sink
nodes.

Mixed nodes (general nodes). These have both incoming and outgoing
branches. In Fig. 5.21, node w is a mixed node. A mixed node may be
treated as a sink nodeby adding an outgoing branchof unity transmit-
tance, as shown in Fig. 5.22, for the equation x¼ auþ bv and
w¼ cx¼ cauþ cbv.

FIGURE 5.20 Signal flow graph for x2¼ ax1.

FIGURE 5.21 Signal flow graph for Eqs. (5.46).
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A path is any connected sequence of branches whose arrows are in the
same direction.

A forward path between two nodes is one that follows the arrows of
successive branches and in which a node appears only once. In
Fig. 5.21 the path uwx is a forward path between the nodes u and x.

Flow-Graph Algebra

The following rules are useful for simplifying a signal flow graph:

Series paths (cascade nodes). Series paths can be combined into a single
path by multiplying the transmittances as shown in Fig. 5.23a.

Path gain.The product of the transmittances in a series path.
Parallel paths. Parallel paths can be combined by adding the transmit-

tances as shown in Fig. 5.23b.
Node absorption. A node representing a variable other than a source or

sink can be eliminated as shown in Fig. 5.23c.
Feedback loop. A closed path that starts at a node and ends at the same

node.
Loop gain.The product of the transmittances of a feedback loop.
The equations for the feedback system of Fig. 5.6 are as follows:

C ¼ GE ð5:47Þ
B ¼ HC ð5:48Þ
E ¼ R � B ð5:49Þ

Note that an equation is written for each dependent variable. The corresponding
SFG is shown in Fig. 5.24a. The nodes B and E can be eliminated in turn to
produce Fig. 5.24b and Fig. 5.24c, respectively. Figure 5.24c has a self-loop of
value�GH.The final simplification is to eliminate the self-loop to produce the

FIGURE 5.22 Mixed and sink nodes for a variable.
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overall transmittance from the input R to the output C. This is obtained by
summing signals at node C in Fig. 5.24c, yielding C¼GR�GHC. Solving for
C produces Fig. 5.24d.

General Flow-Graph Analysis

If all the source nodes are brought to the left and all the sink nodes are
brought to the right, the SFG for an arbitrarily complex system can be
represented by Fig. 5.25a. The effect of the internal nodes can be factored
out by ordinary algebraic processes to yield the equivalent graph represented

FIGURE 5.23 Flow-graph simplifications.

FIGURE 5.24 Successive reduction of the flow graph for the feedback system of
Fig. 5.6.
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by Fig. 5.25b.This simplified graph is represented by

y1 ¼ Tax1 þ Tdx2 ð5:50Þ
y2 ¼ Tbx1 þ Tex2 ð5:51Þ
y3 ¼ Tcx1 þ Tf x2 ð5:52Þ
The T ’s, called overall graph transmittances, are the overall trans-

mittances from a specified source node to a specified dependent node. For
linear systems the principle of superposition can be used to‘‘solve’’ the graph.
That is, the sources can be considered one at a time.Then the output signal is
equal to the sum of the contributions produced by each input. The overall
transmittance can be found by the ordinary processes of linear algebra,
i.e., by the solution of the set of simultaneous equations representing the
system. However, the same results can be obtained directly from the SFG.
The fact that they can produce answers to large sets of linear equations
by inspection gives the SFGs their power and usefulness.

The Mason Gain Rule

The overall transmittance can be obtained from the Mason gain formula [8].
The formula and definitions are followed by an example to show its
application.The overall transmittanceT is given by

T ¼
P

Tn�n

�
ð5:53Þ

FIGURE 5.25 Equivalent signal flow graphs.
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where Tn is the transmittance of each forward path between a source and a
sink node and� is the graph determinant, found from

� ¼ 1�
X

L1 þ
X

L2 �
X

L3 þ 	 	 	 ð5:54Þ
In this equation L1 is the transmittance of each closed path, and

P
L1 is

the sumof the transmittances of all closed paths in the graph.L2 is the produce
of the transmittances of two nontouching loops; loops are nontouching
if they do not have any common nodes.

P
L2 is the sum of the products of

transmittances in all possible combinations of nontouching loops taken two
at a time.L3 is the product of the transmittances of three nontouching loops.P

L3 is the sumof the products of transmittances in all possible combinations
of nontouching loops taken three at a time.

In Eq. (5.53), �n is the cofactor of Tn. It is the determinant of the
remaining subgraph when the forward path that produces Tn is removed.
Thus,�n does not include any loops that touch the forward path in question.
�n is equal to unity when the forward path touches all the loops in the graphor
when the graph contains no loops.�n has the same form as Eq. (5.54).

Example. Figure 5.26a shows a block diagram. Since E1 ¼ M1 � B1 � B3 ¼
G1E �H1M2 ¼ H3C, it is not necessary to show M1, �B1, and B3 explicitly.
The SFG is shown in Fig. 5.26b. Since this is a fairly complex system, the
resulting equation is expected to be complex. However, the application of
Mason’s rule produces the resulting overall transmittance in a systematic
manner. This system has four loops, whose transmittances are �G2H1,
�G5H2,�G1G2G3G5, and�G2G3G5H3.Therefore

X
Lt ¼ �G2H1 � G5H2 � G1G2G3G5 � G2G3G5H3 ð5:55Þ

Only two loops are nontouching; therefore,X
L2 ¼ ð�G2H1Þð�G5H2Þ ð5:56Þ

Although there are four loops, there is no set of three loops that are nontouch-
ing; therefore,

X
L3 ¼ 0 ð5:57Þ

The system determinant can therefore be obtained from Eq. (5.54).

There is only one forward path between R and C. The corresponding
forward transmittance is G1G2G3G5. If this path, with its corresponding
nodes, is removed from the graph, the remaining subgraph has no loops.The
cofactor �n is therefore equal to unity. The complete overall transmittance
from R to C, obtained from Eq. (5.53), is
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T ¼ G1G2G3G5

1þ G2H1 þ G5H2 þ G1G2G3G5 þ G2G3G5H3 þ G2G5H1H2

ð5:58Þ
The complete expression forT is obtained by inspection from the SFG. The
SFG is simpler than solving the five simultaneous equations that represent
this system.

5.8 STATE TRANSITION SIGNAL FLOW GRAPH [10]

The state transition SFG or, more simply, the state diagram, is a simulation
diagram for a system of equations and includes the initial conditions of the
states. Since the state diagram in the Laplace domain satisfies the rules of
Mason’s SFG, it can be used to obtain the transfer function of the system and
the transition equation. As described in Sec. 5.6, the basic elements used in a
simulation diagram are a gain, a summer, and an integrator. The signal-flow
representation in the Laplace domain for an integrator is obtained as follows:

_xx1ðtÞ ¼ x2ðtÞ
X1ðsÞ ¼

X2ðsÞ
s
þ x1ðt0Þ

s
ð5:59Þ

FIGURE 5.26 Block diagram and its signal flow graph.
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Equation (5.59) may be represented either by Fig. 5.27a or Fig. 5.27b.
A differential equation that contains no derivatives of the input, as

given by Eq. (5.36), is repeated here:

Dny þ an�1D
n�1y þ 	 	 	 þ a1Dy þ a0y ¼ u ð5:60Þ

In terms of the phase variables, with x1¼y and _xxi ¼ xiþ1, this equation
becomes

_xxn þ an�1xn þ 	 	 	 þ a1x2 þ a0x1 ¼ u ð5:60aÞ
The state diagram is drawn in Fig. 5.28 with phase variables. It is obtained by
first drawing the number of integrator branches 1/s equal to the order of the
differential equation. The outputs of the integrators are designated as the
state variables, and the initial conditions of the n states are included as inputs
in accordance with Fig. 5.27a. Taking the Laplace transform of Eq. (5.60a)
yields, after dividing by s.

XnðsÞ ¼
1
s
�a0X1ðsÞ � a1X2ðsÞ � 	 	 	 � an�1XnðsÞ þ U ðsÞ½ � þ 1

s
xnðt0Þ

The node Xn(s) in Fig. 5.28 satisfies this equation.The signal at the unlabeled
node betweenU(s) and Xn(s) is equal to sXn(s)� xn(t0).

FIGURE 5.27 Representations of an integrator in the Laplace domain in a signal
flow graph.

FIGURE 5.28 State diagram for Eq. (5.60).
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The overall transfer functionY(s)/U(s) is defined with all initial values
of the states equal to zero.Using this condition and applying the Mason gain
formula given by Eq. (5.53) yields

GðsÞ ¼ Y ðsÞ
U ðsÞ ¼

s�n

�ðsÞ ¼
s�n

1þ an�1s�1 þ 	 	 	 þ a1s�ðn�1Þ þ a0s�n

¼ 1
sn þ an�1sn�1 þ 	 	 	 þ a1s þ a0

ð5:61Þ

The state transition equation of the system is obtained from the state
diagram by applying the Mason gain formula and considering each initial
condition as a source.This is illustrated by the following example.

Example 1. Equation (5.32) can be expressed as

€yy þ R
L
_yy þ 1

LC
y ¼ 1

LC
u

(a) Draw the state diagram. (b) Determine the state transition equation.

Solution. (a) The state Diagram, Fig. 5.29, includes two integrators, because
this is a second-order equation. The state variables are selected as the phase
variables that are the outputs of the integrators, that is, x1¼y and x2 ¼ _xx1.

(b) The state transition equations are obtained by applying the Mason
gain formula with the three inputs u, x1(t0), and x2(t0):

X1ðsÞ ¼
s�1ð1þ s�1R=LÞ

�ðsÞ x1ðt0Þ þ
s�2

�ðsÞ x2ðt0Þ þ
s�2=LC
�ðsÞ U ðsÞ

X2ðsÞ ¼
s�2=LC
�ðsÞ x1ðt0Þ þ

s�1

�ðsÞ x2ðt0Þ þ
s�1=LC
�ðsÞ U ðsÞ

�ðsÞ ¼ 1þ s�1R
L
þ s�2

LC

FIGURE 5.29 State diagram for Example 1.
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After simplification, these equations become

XðsÞ ¼
X1ðsÞ
X2ðsÞ

" #

¼ 1
s2 þ ðR=LÞs þ 1=LC

s þ R
L

1

�1
LC

s

2
6664

3
7775

x1ðt0Þ
x2ðt0Þ

" #
þ

1
LC

s
LC

2
664

3
775U ðsÞ

8>>><
>>>:

9>>>=
>>>;

This equation is of the form given by Eq. (4.104), i.e.,

XðsÞ ¼ FðsÞxðt0Þ þFðsÞBUðsÞ
Thus the resolvent matrixF(s) is readily identified and, by use of the inverse
Laplace transform, yields the state transition matrix F(t). The elements of
the resolvent matrix can be obtained directly from the SFG with U(s)¼ 0
and only one xj(t0) considered at a time, i.e., all other initial conditions set
to zero. Each element ofF(s) is

fijðsÞ ¼
XiðsÞ
xjðt0Þ

For example,

f11ðsÞ ¼
X1ðsÞ
x1ðt0Þ

¼ s�1ð1þ s�1R=LÞ
�ðsÞ ¼ s þ R=L

s2�ðsÞ
The complete state transition equation x(t ) is obtainable through use of the
state diagram. Therefore, F(s) is obtained without performing the inverse
operation [sI�A]� 1. Since x(t ) represents phase variables, the system output
is y(t )¼ x1(t ).

Example 2. Adifferential equation containing derivatives of the input, given
by Eq. (5.40), is repeated here.

ðDn þ an�1D
n�1 þ 	 	 	 þ a1D þ a0Þy

¼ ðcwDw þ cw�1D
w�1 þ 	 	 	 þ c1D þ c0Þu w � n ð5:62Þ

Phase variables can be specified as the state variables, provided the output is
identified by Eq. (5.41) as

y ¼ ðcwDw þ cw�1D
w�1 þ 	 	 	 þ c1D þ c0Þx1 ð5:63Þ

Equation (5.62) then reduces to

ðDn þ an�1D
n�1 þ 	 	 	 þ a1D þ a0Þx1 ¼ u ð5:64Þ
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The resulting state diagram for Eqs. (5.63) and (5.64) is shown in Fig. 5.30
for w¼ n. The state equations obtained from the state diagram are given by
Eq. (5.38). The output equation in matrix form is readily obtained from
Fig. 5.30 in terms of the transformed variables X(s) and the inputU(s) as

YðsÞ ¼ ½ðc0 � a0cnÞ ðc1 � a1cnÞ 	 	 	
ðcn�2 � an�2cnÞ ðcn�1 � an�1cnÞ�XðsÞ þ cnUðsÞ
¼ cTc XðsÞ þ dcUðsÞ ð5:65Þ

Equation (5.65) is expressed in terms of the state X(s) and the input U(s).
To obtain Eq. (5.65) from Fig. 5.30, delete all the branches having a transmit-
tance 1/s and all the initial conditions in Fig. 5.30.The Mason gain formula is
then used to obtain the output in terms of the state variables and the input.
Note: there are two forward paths from each state variable to the output
when w¼ n. If w < n, Eq. (5.65) becomes

YðsÞ ¼ c0 c1 	 	 	 cw 0 	 	 	 0�XðsÞ½ ð5:66Þ

5.9 PARALLEL STATE DIAGRAMS FROM
TRANSFER FUNCTIONS

A single-input single-output (SISO) system represented by the differential
equation (5.62) may be represented by an overall transfer function of the form

Y ðsÞ
U ðsÞ ¼ GðsÞ ¼ cws

w þ cw�1s
w�1 þ 	 	 	 þ c1s þ c0

sn þ an�1sn�1 þ 	 	 	 þ a1s þ a0
w � n ð5:67Þ

FIGURE 5.30 State diagram for Eq. (5.62) using phase variables, for w¼ n.
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An alternate method of determining a simulation diagram and a set of state
variables is to factor the denominator and to express G(s) in partial fractions.
When there are no repeated roots and w¼ n, the form is

GðsÞ ¼ cns
n þ cn�1s

n�1 þ 	 	 	 þ c1s þ c0
ðs � l1Þðs � l2Þ 	 	 	 ðs � lnÞ

¼ cn þ
f1

s � l1
þ f2
s � l2

þ 	 	 	 þ fn
s � ln

¼ cn þ
Pn

i¼1GiðsÞ

where each

GiðsÞ ¼
fiZiðsÞ
U ðsÞ ¼

fi
s � li

The symbols zi and their Laplace transforms Zi(s) are used for the state
variables in order to distinguish the form of the associated diagonal matrix.
The outputY(s) produced by the inputU(s) is therefore

Y ðsÞ ¼ cnU ðsÞ þ
f1U ðsÞ
s � l1

þ f2U ðsÞ
s � l2

þ 	 	 	
¼ cnU ðsÞ þ f1Z1ðsÞ þ f2Z2ðsÞ þ 	 	 	 ð5:68Þ

The state variables Zi(s) are selected to satisfy this equation. Each fraction
represents a first-order differential equation of the form

_zzi � lizi ¼ u ð5:69Þ
This expression can be simulated by an integrator with a feedback path
of gain equal to li, followed by a gain fi. Therefore, the complete simulation
diagram is drawn in Fig. 5.31. The reader may add the initial conditions of
the states, ziðt0Þ, to Fig. 5.31. The ziðt0Þ are the inputs to additional branches
having transmittances of value 1/s and terminating at the nodes Zi(s).
The term cnU ðsÞ in Eq. (5.68) is satisfied in Fig. 5.31 by the feedforward path
of gain cn. This term appears only when the numerator and denominator
of G(s) have the same degree. The output of each integrator is defined as a
state variable.The state equations are therefore of the form

_zz ¼
l1 0

l2
. .
.

0 ln

2
6664

3
7775zþ

1
1
..
.

1

2
664

3
775u ¼ Lzþ bnu ð5:70Þ

y ¼ ½ f1 f2 	 	 	 fn�zþ cnu ¼ cTn zþ dnu ð5:71Þ
An important feature of these equations is that the A matrix appears

in diagonal or normal or canonical form. This diagonal form is indicated by

System Representation 183

Copyright © 2003 Marcel Dekker, Inc.



L (or A*), and the corresponding state variables are often called canonical
variables. The elements of the B vector (indicated by bn) are all unity, and the
elements of the C row matrix (indicated by ½ f1 f2 . . . fn� ¼ c

T
n Þ are

the coefficients of the partial fractions in Eq. (5.68). The state diagram of
Fig. 5.31 and the state equation of Eq. (5.70) represent the Jordan form for
the system with distinct eigenvalues. The state and output equations for a
multiple-input multiple-output (MIMO) system can be expressed as

_zz ¼ Lzþ Bnu ð5:72Þ
y ¼ CnzþDnu ð5:73Þ

The diagonal matrixA¼Lmeans that each state equation is uncoupled;
i.e., each state zi can be solved independently of the other states. This fact
simplifies the procedure for finding the state transition matrix F(t). This
form is also useful for studying the observability and controllability of
a system, as discussed in Chap. 13.When the state equations are expressed in
normal form, the state variables are often denoted by zi. Transfer functions
with repeated roots are not encountered very frequently and are not consid-
ered in this text [3].

Example. For the given transfer function G(s), draw the parallel state
diagram and determine the state equation. A partial-fraction expansion
is performed on G(s), and the state diagram is drawn in Fig. 5.32. Then
the state and output equations are written.

FIGURE 5.31 Simulation of Eq. (5.67) by parallel decomposition for w¼ n (Jordan
diagram for distinct roots).
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GðsÞ ¼ 4s2 þ 15s þ 13
s2 þ 3s þ 2

¼ 4þ 1
s þ 2

þ 2
s þ 1

_zzðtÞ ¼ �2 0
0 �1

� �
zðtÞ þ 1

1

� �
uðtÞ

yðtÞ ¼ ½ 1 2� zðtÞ þ 4uðtÞ

5.10 DIAGONALIZING THE A MATRIX [11,12]

In Sec. 5.9 the method of partial-fraction expansion is shown to lead to the
desirable normal formof the state equation, inwhich theAmatrix is diagonal.
The partial-fraction method is not convenient for multiple-input multiple-
output systems or when the system equations are already given in state form.
Therefore, this section presents a more general method for converting the
state equation by means of a linear similarity transformation. Since the state
variables are not unique, the intention is to transform the state vector x to
a new state vector z by means of a constant, square, nonsingular transforma-
tion matrix T so that

x ¼ Tz ð5:74Þ
Since T is a constant matrix, the differentiation of this equation yields

_xx ¼ T_zz ð5:75Þ
Substituting these values into the state equation _xx ¼ Axþ Bu produces

T_zz ¼ ATzþ Bu ð5:76Þ
Premultiplying by T�1 gives

_zz ¼ T
�1
ATzþ T

�1
Bu ð5:77Þ

The corresponding output equation is

y ¼ CTzþDu ð5:78Þ

FIGURE 5.32 Simulation diagram for example of Sec. 5.9.
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It is easily shown that the eigenvalues are the same for both the original
and the transformed equations. From Eq. (5.77) the new characteristic
equation is

lI� T
�1
AT



 

 ¼ 0 ð5:79Þ
In this equation the unit matrix can be replaced by I¼T

�1
T. Then, after

prefactoring T�1 and postfactoring T, the characteristic equation becomes

T
�1ðlI� AÞT

 

 ¼ 0 ð5:80Þ

Using the property (Appendix B) that the determinant of the product of
matrices is equal to the product of the determinants of the individualmatrices,
Eq. (5.80) is equal to

jT�1jEjlI� AjEjTj ¼ jT�1jEjTjEjlI� Aj ¼ 0

Since jT�1jEjTj ¼ jIj ¼ 1, the characteristic equation of the transformed
equation as given by Eq. (5.79) is equal to the characteristic equation of the
original system, i.e.,

jlI� Aj ¼ 0 ð5:81Þ
Therefore, it is concluded that the eigenvalues are invariant in a linear
transformation given by Eq. (5.74).

The matrix T is called the modal matrix when it is selected so that
T
�1
AT is diagonal, i.e.,

T
�1
AT ¼ L ¼

l1 0
l2

. .
.

0 ln

2
6664

3
7775 ð5:82Þ

This supposes that the eigenvalues are distinct.With this transformation the
system equations are

_zz ¼ Lzþ B
0
u ð5:83Þ

y ¼ C
0
zþD

0
u ð5:84Þ

where

L ¼ T
�1
AT B

0 ¼ T
�1
B C

0 ¼ CT D
0 ¼ D

When T is selected so that B
0 ¼T

�1
B contains only unit elements, then it is

denoted as Bn as in Eq. (5.70) and in method 3 (see following).When x¼Tz is
used to transform the equations into any other state-variable representation
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T
�1
AT¼A

0
, thenT is just called a transformation matrix.The case whereA

0
is

the companion matrixAc is covered in Sec. 5.13.
Four methods are presented for obtaining the modal matrix T for

the case where the matrix A has distinct eigenvalues.When A has multiple
eigenvalues, this matrix can be transformed into diagonal form only if the
number of independent eigenvectors is equal to the multiplicity of the
eigenvalues. In such cases, the columns of T may be determined by methods
of 2, 3, and 4.

Method 1: Matrix A in Companion Form

When there are distinct eigenvalues l1, l2, . . ., ln for the matrix A and it is in
companion form (A¼Ac), theVandermonde matrix,which is easily obtained,
is the modal matrix.TheVandermonde matrix is defined by

T ¼

1 1 	 	 	 1
l1 l2 	 	 	 ln
l21 l22 	 	 	 l2n

..

. ..
. . .

. ..
.

ln�11 ln�12 	 	 	 ln�1n

2
66666664

3
77777775

ð5:85Þ

Example 1. Transform the state variables in the following equation in order
to uncouple the states:

_xx ¼
0 1 0
0 0 1

�24 �26 �9

2
4

3
5xþ

1
0
2

2
4

3
5u ð5:86Þ

y ¼ 3 3 1
� �

x ð5:87Þ
The characteristic equation jlI�Acj yields the root, l1¼�2, l2¼�3, and
l3¼�4. Since eigenvalues are distinct and the A matrix is in companion
form, the Vandermonde matrix can be used as the modal matrix. Using
Eq. (5.85) yields

T ¼
1 1 1
�2 �3 �4
4 9 16

2
4

3
5

A matrix inversion routine (using a programmable calculator or computer)
yields
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T
�1 ¼ 1

2

12 7 1
�16 �12 �2

6 5 1

2
4

3
5

To show that this procedure does uncouple the states, the matrix system
equations, in terms of the new state vector z, are obtained from Eqs. (5.77)
and (5.78) as

_zz ¼
�2 0 0
0 �3 0
0 0 �4

2
4

3
5zþ

7
�10

4

2
4

3
5u ð5:88Þ

y ¼ 1 3 7
� �

z ð5:89Þ
This confirms that

T
�1
AT ¼ L ð5:90Þ

Method 2: Adjoint Method

The second method does not require the A matrix to be in companion form.
Premultiplying Eq. (5.82) by T, where the elements of the modal matrix are
defined by T¼ [vij], yields

AT ¼ TL ð5:91Þ
The right side of this equation can be expressed in the form

T ¼

v11 v12 	 	 	 v1n
v21 v22 	 	 	 v2n

..

. ..
. . .

. ..
.

vn1 vn2 	 	 	 vnn

2
66664

3
77775

l1 0
l2

. .
.

0 ln

2
66664

3
77775

¼

l1v11 l2v12 	 	 	 lnv1n
l1v21 l2v22 	 	 	 lnv2n

..

. ..
. . .

. ..
.

l1vn1 l2vn2 	 	 	 lnvnn

2
66664

3
77775 ¼ l1v1 l2v2 	 	 	 lnvn

� �

The column vectors vi of the modal matrix

T ¼ v1 v2 	 	 	 vn
� � ð5:92Þ
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are called the eigenvectors: In terms of the vi, Eq. (5.91) is written as

Av1 Av2 	 	 	 Avn
� � ¼ l1v1 l2v2 	 	 	 lnvn

� � ð5:93Þ
Equating columns on the left and right sides of Eq. (5.93) yields

Avi ¼ livi ð5:94Þ
This equation can be put in the form

liI� A½ �vi ¼ 0 ð5:95Þ
Equation (5.95) identifies that the eigenvectors* vi are in the null space of
the matrix [liI�A].Using the propertyM adjM¼ |M|I [see Eq. (B.25)] and
letting M¼ liI�A yields [liI�A] adj [liI�A]¼ |liI�A|I. Since li is an
eigenvalue, the characteristic equation is jliI�A|¼ 0. Therefore, this equa-
tion becomes

liI� A½ � adj liI� A½ � ¼ 0 ð5:96Þ
Acomparison of Eqs. (5.95) and (5.96) shows that the eigenvector

vi is proportional to any nonzero column of adj½liI� A� ð5:97Þ
Since Eq. (5.77) contains T

�1, a necessary condition is that T must be
nonsingular. This is satisfied if the vi are linearly independent. When the
eigenvalues are distinct, Eq. (5.95) is a homogeneous equation whose rank is
n�1, and each value of li yields only one eigenvector vi.When the eigenvalue
li has multiplicity r, the rank deficiency a of Eq. (5.95) is 1� a�r. Rank defi-
ciency denotes that the rank of Eq. (5.95) is n� a. Then the linearly indepen-
dent eigenvectors vi that satisfy Eq. (5.95) are a in number. If a< r, then the
matrixA cannot be diagonalized.

Example 2. Use adj[lI�A] to obtain the modal matrix for the equations

_xx ¼
�9 1 0
�26 0 1
�24 0 0

2
4

3
5xþ

2
5
0

2
4

3
5u ð5:98Þ

Y ¼ 1 2 �1� �
x ð5:99Þ

The characteristic equation jlI�A|¼ 0 yields the roots l1¼�2, l2¼�3,
and l3¼�4.These eigenvalues are distinct, but A is not in companion form.
Therefore, theVandermode matrix is not the modal matrix.Using the adjoint
method 2 gives

*These are sometimes called the right eigenvectors because ½liI�A� is multiplied on the right by
vi in Eq. (5.95).
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adj½lI� A� ¼ adj
lþ 9 �1 0
26 l �1
24 0 l

2
64

3
75

¼
l2 l 1

�26l� 24 l2 þ 9l lþ 9
�24l �24 l2 þ 9lþ 26

2
64

3
75

For l1 ¼ �2: adj½�2I� A� ¼
4 �2 1

28 �14 7
48 �24 12

2
4

3
5 v1 ¼

1
7

12

2
4

3
5

For l2 ¼ �3: adj½�3I� A� ¼
9 �3 1

54 �18 6
72 �24 8

2
4

3
5 v2 ¼

1
6
8

2
4

3
5

For l3 ¼ �4: adj½�4I� A� ¼
16 �4 1
80 �20 5
96 �24 6

2
4

3
5 v3 ¼

1
5
6

2
4

3
5

For each li the columns of adj [liI�A] are linearly related; i.e., they are
proportional. The vi may be multiplied by a constant and are selected to
contain the smallest integers; often the leading term is reduced to 1. In
practice, it is necessary to calculate only one column of the adjoint matrix.
The modal matrix is

T ¼ v1 v2 v3
� � ¼

1 1 1
7 6 5

12 8 6

2
64

3
75

The inverse is

T
�1 ¼ � 1

2

�4 2 �1
18 �6 2
�16 4 �1

2
64

3
75

The matrix equations, in terms of the new state vector z, are

_zz ¼
�2 0 0
0 �3 0
0 0 �4

2
64

3
75zþ

�1
�3
6

2
64

3
75u ¼ Lzþ B

0
u ð5:100Þ
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y ¼ 3 5 5
� �

z ¼ C
0
z ð5:101Þ

Once each eigenvalue is assigned the designation l1, l2, and l3, they appear
in this order along the diagonal of L. Note that the systems of Examples 1
and 2 have the same eigenvalues, but different modal matrices are required
to uncouple the states.

Method 3: Simultaneous Equation Method

An alternate method for evaluating the n elements of each vi is to form
a set of n equations from the matrix equation, Eq. (5.94). This is illustrated
by the following example.

Example 3. Rework Example 2 using Eq. (5.94). The matrices formed
by using theAmatrix of Eq. (5.98) are

�9 1 0
�26 0 1
�24 0 0

2
64

3
75

v1i
v2i
v3i

2
64

3
75 ¼ li

v1i
v2i
v3i

2
64

3
75 ð5:102Þ

Performing the multiplication yields

�9v1i þ v2i
�26v1i þ v3i
�24v1i

2
64

3
75 ¼

liv1i
liv2i
liv3i

2
64

3
75 ð5:103Þ

Each value of li is inserted in this matrix, and the corresponding elements
are equated to form three equations. For l1¼�2, the equations are

�9v11 þ v21 ¼ �2v11
�26v11 þ v31 ¼ �2v21

�24v11 ¼ �2v31
ð5:104Þ

Only two of these equations are independent. This fact can be demonstrated
by inserting v21 from the first equation and v31 from the third equation into the
second equation.The result is the identity v11¼v11.This merely confirms that
jliI¼Aj is of rank n�1¼2. Since there are three elements (v1i, v2i, and v3i) in
the eigenvector vi and only two independent equations are obtained from Eq.
(5.102), the procedure is to arbitrarily set one of the elements equal to unity.
Thus, after letting v11¼1, these equations yield

v1 ¼
v11
v21
v31

2
64

3
75 ¼

v11
7v11
12v11

2
64

3
75 ¼

1

7

12

2
64

3
75
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This result is the same as obtained in Example 2.The procedure is repeated to
evaluate v2 and v3.

The need to arbitrarily select one of the elements in each column vector
vi can be eliminated by specifying that the desired matrix B

0 ¼Bn. In Sec. 5.9
the partial fraction expansion of the transfer function leads to a column
matrix bn containing all 1s, that is,

bn ¼ 1 1 	 	 	 1
� �T ð5:105Þ

To achieve this form for bn the restriction is imposed that b¼Tbn. This
produces n equations that are added to the n2 equations formed by equating
the elements of AT¼TL. Only n2 of these equations are independent, and
they can be solved simultaneously for the n2 elements of T. The restriction
that b¼Tbn can be satisfied only if the system is controllable (see Sec.13.2).

Method 4: Reid’s Method [13]

The eigenvectorsy vi that satisfy the equation

½liI� A�vi ¼ 0 ð5:106Þ
are said to lie in the null space of the matrix [liI�A].These eigenvectors can
be computed by the following procedure [13]:

1. Use elementary row operation (see Appendix B) to transform
[liI�A] into HNF.

2. Rearrange the rows of this matrix, if necessary, so that the leading
unit elements of each row appear on the principal diagonal.

3. Identify the column of this matrix that contains a zero on the
principal diagonal. After replacing the zero on the principal
diagonal by �1, this column vector is identified as the basis vector
for the eigenvector space.

Example 4. Rework Example 2 using method 4.

liI� A½ � ¼
li þ 9 �1 0
26 li �1
24 0 li

2
64

3
75 ð5:107Þ

yThe eigenvector vi are not unique, because they can be formed by any combination of vectors in
the null space and can be multiplied by any nonzero constant.
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For li¼� 2 this matrix and its HNFnormal form are

7 �1 0
26 �2 �1
24 0 �2

2
64

3
75 


1 0 � 1
12

0 1 � 7
12

0 0 0

2
64

3
75

where 
 indicates the result of elementary operations.The eigenvector v1 lies
in the space defined by the third column after inserting �1 on the principal
diagonal.This is written as

v1 2 span

� 1
12

� 7
12

�1

2
64

3
75

8><
>:

9>=
>; ð5:108Þ

Similarly, for l2¼�3,
6 �1 0

26 �3 �1
24 0 �3

2
64

3
75 


1 0 � 1
8

0 1 6
8

0 0 0

2
64

3
75

The eigenvector v2 lies in the space defined by the third column after inserting
� 1on the principal diagonal, i.e.,

v2 2 span

� 1
8

� 6
8

�1

2
64

3
75

8><
>:

9>=
>; ð5:109Þ

Also, for l3¼�4,
5 �1 0

26 �4 �1
24 0 �4

2
64

3
75 


1 0 � 1
6

0 1 � 5
6

0 0 0

2
64

3
75

The eigenvector v3 lies in the space defined by the third column after inserting
� 1on the principal diagonal, i.e.,

v3 2 span

� 1
6

� 5
6

�1

2
64

3
75

8><
>:

9>=
>; ð5:110Þ

The eigenvectors are selected from the one-dimensional spaces indicated in
Eqs. (5.108) to (5.110).These vectors are linearly independent.For convenience
the basic vectors can be multiplied by a negative constant such that the
elements are positive integers.Therefore,one selection for themodalmatrix is
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T ¼ v1 v2 v3
� � ¼

1 1 1
7 6 5

12 8 6

2
4

3
5 ð5:111Þ

This coincides with the results of method 2.

Method 5: Eigenvector Method

1. Form the matrix

SðliÞ ¼
liI� A

I

� �
ð5:112Þ

2. Use column operations in order to achieve one or more columns in
the form

0 	 	 	
0 	 	 	
0 	 	 	
x 	 	 	
y 	 	 	
z 	 	 	

2
6666664

3
7777775

ð5:113Þ

3. Then the eigenvector associated with the eigenvalue li is

v ¼
x
y
z

2
4

3
5

Example. Refer to Example 4, Eq. (5.107).With l1¼�2, thematrixS(R2) is

SðR2Þ ¼

ðaÞ ðbÞ
7 �1 0

26 �2 �1
24 0 �2
1 0 0
0 1 0
0 0 1

2
6666666664

3
7777777775



0 �1 0
12 �2 �1
24 0 �2
1 0 0
7 1 0
0 0 1

2
6666666664

3
7777777775



0
0
0

�1
�2
0

0
�1
�2

1
7
12

2
64

3
75v1

0
1
0

0
0
1

2
6666666664

3
7777777775

ð5:114Þ

a. Multiply column 2 by 7 and add it to column1.This makes the first
element in the first column equal to zero.
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b. Multiply column 3 by 12 and add it to column 1. This makes the
second element equal to zero.

c. Continue the process until the form shown is achieved.
d. Note that the eigenvector is

v1 ¼
1
7

12

2
4

3
5 ð5:115Þ

With l2¼�3, the matrix S(R3) is

SðR3Þ ¼

6 �1 0
26 �3 �1
24 0 �3
1 0 0
0 1 0
0 0 1

2
66666664

3
77777775



0 �1 0
8 �3 �1

24 0 �3
1 0 0
6 1 0
0 0 1

2
66666664

3
77777775



0
0
0

�1
�3
0

0
�1
�3

1
6
8

2
4

3
5v2

0
1
0

0
0
1

2
66666664

3
77777775

ð5:116Þ
With l3¼�4, the matrix S(R4) is

SðR4Þ ¼

5 �1 0
26 �4 �1
24 0 �4
1 0 0
0 1 0
0 0 1

2
66666664

3
77777775



0 �1 0
6 �4 �1

24 0 �4
1 0 0
5 1 0
0 0 1

2
66666664

3
77777775



0
0
0

�1
�4
0

0
�1
�4

1
5
8

2
4

3
5v3

0
1
0

0
0
1

2
66666664

3
77777775

ð5:117Þ
An alternate method is to leave S(l) in terms of l, that is

SðlÞ ¼ lI� A

I

� �
¼

lþ 9 �1 0
26 l �1
24 0 l

1 0 0
0 1 0
0 0 1

2
6666666664

3
7777777775

Using column operations:

1. Multiply column 2 by lþ 9 and add to column1.
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0 �1 0
l2 þ 9lþ 26 l �1

24 0 l

1 0 0
lþ 9 1 0
0 0 1

2
666666664

3
777777775

ð5:118Þ

2. Multiply column 3 by l2þ9lþ26 and add to column1.

0
0

l3 þ 9l2 þ 26lþ 24

�1
l
0

0
�1
l

1
lþ 9

l2 þ 9lþ 26

2
4

3
5 0

1
0

0
0
1

2
66666664

3
77777775

Note that l3 þ 9l2 þ 26lþ 24 ¼ ðlþ 2Þðlþ 3Þðlþ 4Þ.

Method 6: Using MATLAB

MATLAB’s eig function is designed to return the eigenvalues and eigenvectors
of a matrixA, such that if

½T�D� ¼ eigðAÞ
then

A � T ¼ T � D
Using theAmatrix from Example 2, theMATLAB solution is

½T�D� ¼ eig ðAÞ
T =

�0:1270 0:0995 0:0718
�0:6350 0:5970 0:5026
�0:7620 0:7960 0:8615

D =

�4:0000 0 0
0 �3:0000 0
0 0 �2:0000

The vectors of T are unit length versions of the eigenvectors in Eq. (5.111).The
following command verifies that this transformation is correct:
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lambda = inv (T)*A*T

When thematrixA hasmultiple eigenvalues, the number of independent eigen-
vectors associated with the eigenvalue may or may not be equal to the
multiplicity of the eigenvalue. This property can be determined by using
method 4. The number of columns of the modified HNF of [liI�A]
containing zeros on the principal diagonal may be equal to r, the multiplicity
of li. When this occurs, the independent eigenvectors are used to form
the modal matrix T,with the result that T�1AT¼L is a diagonal matrix.

5.11 USE OF STATE TRANSFORMATION FOR THE STATE
EQUATION SOLUTION

The usefulness of the transformation of a matrix to diagonal form is now
illustrated in solving the state equation. In Sec. 3.15 the state equation and its
solution are given, respectively, by

_xxðtÞ ¼ AxðtÞ þ BuðtÞ ð5:119Þ
and

xðtÞ ¼ eAtxð0Þ þ
Z t

0
eAðt��ÞBuð�Þ d� ð5:120Þ

The evaluation of the state transition matrix eAt is computed in Sec. 3.14 by
using the Cayley-Hamilton theorem. This procedure is simplified by first
expressing the matrix A in terms of the diagonalized matrixL and the modal
matrix T.Thus, from the development in Sec. 5.10,

A ¼ TLT
�1 ð5:121Þ

where L is the diagonal matrix given in Eq. (5.82) and T is the modal
matrix given in Eq. (5.92). Using the series representation of eAt given in
Eq. (3.73), and then using Eq. (5.121), yields

eAt ¼ Iþ At þ A
2t2

2!
þ A

3t3

3!
þ 	 	 	

¼ Iþ ðTLT
�1Þt þ ðTLT

�1Þ2t2
2!

þ ðTLT
�1Þ3t3
3!

þ 	 	 	

¼ T IþLt þL2t2

2!
þL3t3

3!
þ 	 	 	

 !
T
�1 ¼ TeLt

T
�1 ð5:122Þ

System Representation 197

Copyright © 2003 Marcel Dekker, Inc.



SinceL is a diagonal matrix, the matrix eLt is also diagonal and has the form

eLt ¼
el1t 0

el2t

. .
.

0 elnt

2
6664

3
7775 ð5:123Þ

The work of finding the modal matrix T is therefore balanced by the ease of
obtaining eAt.This is illustrated in the following example.

Example. Evaluate eAt for the example of Sec. 3.14.The plant matrixA is

A ¼ 0 6
�1 �5

� �

and the eigenvalues are l1¼�2 and l2¼�3. Since A is not in companion
form, the modal matrix is evaluated using method 2, 3, 4, or 5 of Sec. 5.10:

T ¼ ½ v1 v2� ¼ 3 2
�1 �1

� �

Now,using Eqs. (5.122) and (5.123) yields

eAt ¼ TeLt
T
�1 ¼ T

el1t 0

0 el2t

" #
T
�1

¼ 3 2

�1 �1

" #
e�2t 0

0 e�3t

" #
1 2

�1 �3

" #

¼ 3e�2t � 2e�3t 6e�2t � 6e�3t

�e�2t þ e�3t �2e�2t þ 3e�3t

" #

This result is the same as that given in Eq. (3.92).

5.12 TRANSFORMING A MATRIX WITH
COMPLEX EIGENVALUES

The transformation of variables described in Sec. 5.10 simplifies the system
representation mathematically by removing any coupling between the
system modes. Thus, diagonalizing the A matrix produces the decoupled
form of system representation shown in Fig. 5.31. Each state equation corre-
sponding to the normal form of the state equation, Eq. (5.83), has the form

_zziðtÞ ¼ liziðtÞ þ biu ð5:124Þ
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Since only one state variable zi appears in this equation, it can be solved
independently of all the other states.

When the eigenvalues are complex, the matrix T that produces the
diagonal matrixL contains complex numbers.This property is illustrated for
the differential equation

€xx � 2� _xx þ ð�2 þ o2
dÞx ¼ uðtÞ ð5:125Þ

where o2
n ¼ �2 þ o2

d and the eigenvalues are l1�2 ¼ � 
 jod. Using the phase
variables x1¼x and x2 ¼ _xx1, the state and output equations are

_xx ¼ 0 1
�o2

n 2�

� �
xþ 0

1

� �
u ð5:126Þ

y ¼ 1 0
� �

x ð5:127Þ
The modes can be uncoupled, but doing so is undesirable, as shown next.
Since the eigenvalues are distinct and A is a companion matrix, the modal
matrix T is theVandermonde matrix

T ¼ 1 1
� þ jod � � jod

� �
¼ v1 v2
� � ð5:128Þ

When the transformation x¼Tz is used [14], the normal form of the state and
output equations obtained from Eqs. (5.83) and (5.84) are

_zz ¼ � þ jod 0

0 � � jod

" #
zþ

1
j2od

� 1
j2od

2
664

3
775u ð5:129Þ

y ¼ 1 1
� �

z ð5:130Þ
The simulation diagram based on these equations is shown in Fig. 5.33.
The parameters in this diagram are complex quantities, which increases the

FIGURE 5.33 Simulation diagram for Eqs. (5.129) and (5.130).

System Representation 199

Copyright © 2003 Marcel Dekker, Inc.



difficulty when obtaining themathematical solution.Thus, it may be desirable
to perform another transformation in order to obtain a simulation diagram
that contains only real quantities.The pair of complex-conjugate eigenvalues
l1 and l2 jointly contribute to one transient mode that has the form of
a damped sinusoid.The additional transformation is z¼Qw,where

Q ¼
1
2 � j

2
1
2

j
2

" #
ð5:131Þ

The new state and output equations are

_ww ¼ Q
�1LQwþQ

�1
T
�1
Bu ¼ Lmwþ Bmu ð5:132Þ

y ¼ CTQwþDu ¼ CmwþDmu ð5:133Þ
For this example these equations [5]� are in the modified canonical form

_ww ¼ � od
�od �

� �
wþ 0

1=od

� �
u ð5:134Þ

y ¼ 1 0
� �

w ð5:135Þ
The simulation diagram for these equations is shown in Fig. 5.34. Note that
only real quantities appear. Also, the two modes have not been isolated,
which is an advantage for complex-conjugate roots.

The effect of the two transformations x¼Tz and z¼Qw can be consid-
ered as one transformation given by

x ¼ TQw ¼ 1 0
� od

� �
w ¼ Tmw ð5:136Þ

Comparison of the modified modal matrix Tm in Eq. (5.136) with the original
matrix in Eq. (5.128) shows that

Tm ¼ Re ðv1Þ Im ðv1Þ
� � ð5:137Þ

�Although the trajectories in the state space are not drawn here, the result of this transformation
produces trajectories that are symmetrical with respect to the w axes.

FIGURE 5.34 Simulation diagram for Eqs. (5.134) and (5.135).
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Therefore, Tm can be obtained directly from T without using the Q

transformation.
In the general case containing both complex and real eigenvalues the

modified block diagonal matrix Lm and the resulting matrices Bm and Cm

have the form

Lm ¼

�1 o1
�o1 �1

0

......................................
�2 o2
�o2 �2......................

l
. .
.

0 ln

2
66666666664

3
77777777775

..

.

..

.

..

.

..

.
..
.

..

.
Bm ¼ T

�1
m B ð5:138Þ

Cm ¼ CTm ð5:139Þ
With this modified matrix Lm the two oscillating modes produced by the
two sets of complex eigenvalues �1 
 jo1 and �2 
 jo2 are uncoupled.
The column vectors contained in T for the conjugate eigenvalues are also
conjugates.Thus

T ¼ v1 v
�
1 v3 v

�
3 v5 	 	 	 vn

� � ð5:140Þ
The modified modal matrix Tm can then be obtained directly by using

Tm ¼ Re ðvÞ1 Im ðv1Þ Re ðv3Þ Im ðv3Þ v5 	 	 	 vn
� � ð5:141Þ

5.13 TRANSFORMING AN A MATRIX INTO
COMPANION FORM

The synthesis of feedback control systems and the analysis of their response
characteristics is often considerably facilitated when the plant and control
matrices in the matrix state equation have particular forms.The transforma-
tion from a physical or a general state variable xp to the phase variable x is
presented in this section [3,14]. In this case the state equation in terms of the
general state variable is

_xxp ¼ Apxp þ bpu ð5:142Þ
and the transformed state equation in terms of the phase variables is

_xx ¼ Acxþ bcu ð5:143Þ
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where the companion matrixAc and the vector bc have the respective forms

Ac ¼

0 1 0
0 1

0 . .
.

. .
.

0 	 	 	 0 1
�a0 �a1 �a2 	 	 	 �an�2 �an�1

2
66666664

3
77777775

bc ¼

0
0
..
.

0
1

2
66664

3
77775

ð5:144Þ
The state equation given by Eq. (5.143) is often described in the literature as
being in the control canonical form. The general state and phase variables are
related by

xp ¼ Tx ð5:145Þ
so that

Ac ¼ T
�1
ApT bc ¼ T

�1
bp ð5:146Þ

Since the characteristic polynomial is invariant under a similarity transforma-
tion, it can be obtained from QðlÞ ¼ jlI� Apj or by the method of Sec. 4.16
and has the form

QðlÞ ¼ ln þ an�1l
n�1 þ 	 	 	 þ a1lþ a0 ð5:147Þ

Thus, by using the coefficients of Eq. (5.147), the companion matrix can
readily be formed, placing the negatives of the coefficients along the bottom
row ofAc.

The controllability matrix [see Eq. (13.10)] for the phase-variable state
equation is

Mcc ¼ bc Acbc 	 	 	 A
n�1
c bc

� �

¼

0 1
. . .

0
0 1 	 	 	

0 1 �an�1 	 	 	
0 1 �an�1 a2n�1 � an�2 	 	 	
1 �an�1 a2n�1 � an�2 �a3n�1 þ 2an�1an�2 � an�3 	 	 	

2
666666666664

3
777777777775

ð5:148Þ
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The matrix Mcc
� in Eq. (5.148) can be formed since the coefficients of the

characteristic polynomial Q(l) are known. The matrix Mcc expressed in
terms of the transformed matrices of Eq. (5.146) is

Mcc ¼ T
�1
bp T

�1
Apbp T

�1
A

2
pbp 	 	 	 T

�1
A

n�1
p bp

h i

¼ T�1 bp Apbp A
2
pbp 	 	 	 A

n�1
p bp

h i
¼ T

�1
Mcp ð5:149Þ

The matrix Mcp is obtained by using bp and Ap of the general state-variable
equation (5.142). Equation (5.149) yields

T ¼McpM
�1
cc ð5:150Þ

An alternative procedure is to determine T�1 as follows:

1. Form the augmented matrix ½Mcp I�.
2. Perform elementary row operations (see Sec. 4.16) until this matrix

has the form ½Mcc T
�1�.

3. The right half of this matrix identifies the required transformation
matrix.

Example. A general state-variable equation contains the matrices

Ap ¼
1 6 �3
�1 �1 1
�2 2 0

2
4

3
5 bp ¼

1
1
1

2
4

3
5 ð5:151Þ

for which the characteristic polynomial is evaluated in Sec. 4.16 as

QðlÞ ¼ l3 � 3lþ 2 ¼ ðl� 1Þ2ðlþ 2Þ ð5:152Þ
The matrixMcc obtained in accordance with Eq. (5.148) is

Mcc ¼
0 0 1
0 1 0
1 0 3

2
4

3
5 ð5:153Þ

The augmented matrix obtained in accordance with step1of the procedure is

Mcp I
� � ¼

1 4 �2 ..
.

1 0 0

1 �1 �3 ..
.

0 1 0

1 0 �10 ..
.

0 0 1

2
664

3
775 ð5:154Þ

�The matrix Mcc has striped form, that is, the elements constituting the secondary diagonal
(from the lower left to the upper right) are all equal. The same is true of all elements in the lines
parallel to it.
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Performing row operations until this matrix has the form ½Mcc T
�1� yields

0 0 1 ..
.

1=36 4=36 �5=36

0 1 0 ..
.

7=36 �8=36 1=36

1 0 3 ..
.

13=36 52=36 �29=36

2
66664

3
77775 ¼ Mcc T

�1� � ð5:155Þ

The matrix T�1 from Eq. (5.155) yields the transformation matrix

T ¼
�5 4 1

�6 �1 1

�13 0 1

2
64

3
75 ð5:156Þ

which produces the desired forms of the matrices

Ac ¼ T
�1
ApT ¼

0 1 0
0 0 1
�2 3 0

2
64

3
75 ð5:157Þ

and

bc ¼ T
�1
bp

0

0

1

2
64

3
75 ð5:158Þ

The transformation from the general state variable xp to the phase
variable x can also be accomplished by first obtaining the transfer function
GðsÞ ¼ c

T
p ½sI� Ap��1bp. Then the state and output equations can be obtained

directly by using Eqs. (5.38) and (5.44), respectively. The advantage of the
method presented in this section is that it avoids having to obtain the inverse
of the polynomial matrix [sI�Ap]

�1.

5.14 USING MATLAB TO OBTAIN THE COMPANION
A MATRIX

The example in Sec. 5.13 can be solved for the correct transformation
matrix T by using the MATLAB CAD package. Note the MATLAB built-
in function canon assumes a different definition of companion form.
The MATLAB default companion form may be called right companion
form as the coefficients of the characteristic equation are along the right
column. Using the canon function on the matrices from Eq. (5.151) produces
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the following results:
[Ac, Bc, Cc, Dc, T]¼canon (A, B, C, D, ‘companion’)
Ac =

�0:0000 0:0000 �2:0000
1:0000 0 3:0000
�0:0000 1:0000 �0:0000

Bc¼
1
0
0

Cc =

3 3 �15
Dc =

0
T¼

0:2778 1:1111 �0:3889
0:1944 �0:2222 0:0278
0:0278 0:1111 �0:1389

Alternatively, a MATLAB user defined function can be written to calculate
the bottom companion form described in Sec. 5.13. User defined functions
are m-files with predefined inputs and outputs (See App. C). The following
user defined function botcomp is based upon the logic of the canon function:

function [Ac, Bc, Cc, Dc, T]¼botcomp (A,B,C,D)
%
% BOTCOMP Compute a bottom companion form canonical state-space
% realization.
%
% [Ac,Bc,Cc,Dc,T]¼botcomp (A,B,C,D) computes the canonical
% matrices for a bottom companion form realization and
% returns the state transformation matrix T relating the
% new state vector z to the old state vector x by z¼Tx.
%
% This algorithm uses the method from D’Azzo and Houpis
% Sec. 5.13.
%
% Stuart N. Sheldon
% Revision: 0
%
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Mcp¼ctrb (A, B); % Form the controllability matrix
% (physical form)
% to use the transformation
% Eq (5.141)

Ac¼(Mcp\A�Mcp); % Use Mcp to generate the Companion
% form State Matrix

Bc¼zeros (length (A), 1); % Create an input matrix in
% companion form

Bc (length (A), 1)¼1;
Mcc¼ctrb (Ac, Bc); % Compute the companion form

% controllability matrix
T¼Mcp� inv (Mcc); % Compute a transformation matrix

% using Eq.(5.143)
Ac¼inv (T) �A�T; % Return the companion form state

% matrix
Bc¼inv (T) �B; % Return the companion form

% control input matrix
Cc¼C*T; % Return the companion form output

% matrix
% end botcomp

Using the botcomp function on the matrices from Eq. (5.151) produces the
following results:

[Ac, Bc, Cc, Dc, T]¼botcomp (A, B, C, D)
Ac =

0:0000 1:0000 �0:0000
0 0:0000 1:0000

�2:0000 3:0000 0

Bc =

0

0

1

Cc =

�24:0000 3:0000 3:0000

Dc =
0
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T =

�5:0000 4:0000 1:0000
�6:0000 �1:0000 1:0000
�13:0000 �0:0000 1:0000

Note that these results agree with Eqs. (5.156) and (5.157).

5.15 SUMMARY

The foundation has been completed in Chaps. 2 to 5 for analyzing the
performance of feedback control systems. The analysis of such systems and
the adjustments of parameters to achieve the desired performance are covered
in the following chapters. In order to provide clarity in understanding the
principles and to avoid ambiguity, the systems considered in Chaps. 6 to 16
are restricted primarily to single-input, single-output (SISO) systems. The
procedures can be extended to multiple-input multiple-output (MIMO)
systems, and some synthesis techniques for multivariable systems are
presented in Refs. 5 and 6. The block diagram representation containing a
single feedback loop is the basic unit used to develop the various techniques
of analysis.

Since state variables are not unique, there are several ways of selecting
them.One method is the use of physical variables, as in Chap. 2.The selection
of the state variables as phase or canonical variables is demonstrated in
this chapter through the medium of the simulation diagram.This diagram is
similar to an analog-computer diagram and uses integrators, amplifiers, and
summers.The outputs of the integrators in the simulation diagram are defined
as the state variables.

Preparation for overall system analysis has been accomplished by
writing the conventional differential and state equations in Chap. 2, obtaining
the solution of these equations in Chap. 3, introducing the Laplace transform
andMATLAB to facilitate the design procedure in Chap.4, and incorporating
this into the representation of a complete system in Chap. 5.Matrix methods
are also presented in App. B in preparation for system synthesis via the use of
modern control theory.
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6

Control-System Characteristics

6.1 INTRODUCTION

Open- and closed-loop transfer functions have certain basic characteristics
that permit transient and steady-state analyses of the feedback-controlled
system. Five factors of prime importance in feedback-control systems are
stability, the existence and magnitude of the steady-state error, controllability,
observability, and parameter sensitivity. The stability characteristic of a linear
time-invariant system is determined from the system’s characteristic
equation. Routh’s stability criterion provides a means for determining
stability without evaluating the roots of this equation. The steady-state
characteristics are obtainable from the open-loop transfer function for unity-
feedback systems (or equivalent unity-feedback systems), yielding figures of
merit and a ready means for classifying systems. The first two properties are
developed in this chapter.The remaining properties are presented inChaps.12
through 14. Computer-aided-design (CAD) programs like MATLAB [1]
(Appendix C) and TOTAL-PC (Appendix D) are available to assist in the
determination of these system characteristics.
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6.2 ROUTH’S STABILITY CRITERION [2–5]

The response transform X2(s) has the general form given by Eq. (4.32),which is
repeated here in slightly modified form.X1(s) is the driving transform.

X2ðsÞ ¼
PðsÞ
QðsÞX1ðsÞ

¼ PðsÞX1ðsÞ
bnsn þ bn�1sn�1 þ bn�2sn�2 þ 	 	 	 þ b1s þ b0

ð6:1Þ

Sections 4.6, 4.7, and 4.10 describe the methods used to evaluate the
inverse transform L�1½F ðsÞ� ¼ f ðtÞ. However, before the inverse transfor-
mation can be performed, the characteristic polynomial QðsÞ must be
factored. CAD programs are readily available for obtaining the roots of a
polynomial [1,6]. Section 4.13 shows that stability of the response x2ðtÞ
requires that all zeros of QðsÞ have negative real parts. Since it is usually not
necessary to find the exact solution when the response is unstable, a simple
procedure to determine the existence of zeros with positive real parts is
needed. If such zeros of QðsÞ with positive real parts are found, the system is
unstable and must be modified. Routh’s criterion is a simple method of
determining the number of zeros with positive real parts without actually
solving for the zeros of QðsÞ. Note that zeros of QðsÞ are poles of X2ðsÞ. The
characteristic equation is

QðsÞ ¼ bns
n þ bn�1s

n�1 þ bs�2s
n�2 þ 	 	 	 þ b1s þ b0 ¼ 0 ð6:2Þ

If the b0 term is zero,divide by s to obtain the equation in the formof Eq. (6.2).
The b’s are real coefficients, and all powers of s from sn to s0 must be present
in the characteristic equation. A necessary but not sufficient condition for
stable roots is that all the coefficients in Eq. (6.2) must be positive. If any
coefficients other than b0 are zero, or if all the coefficients do not have the
same sign, then there are pure imaginary roots or roots with positive real
parts and the system is unstable. In that case it is unnecessary to continue
if only stability or instability is to be determined.When all the coefficients
are present and positive, the system may or may not be stable because
there still may be roots on the imaginary axis or in the right-half s plane.
Routh’s criterion is mainly used to determine stability. In special situations
it may be necessary to determine the actual number of roots in the right-
half s plane. For these situations the procedure described in this section
can be used.

The coefficients of the characteristic equation are arranged in the
pattern shown in the first two rows of the following Routhian array.
These coefficients are then used to evaluate the rest of the constants to
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complete the array.

sn bn bn�2 bn�4 bn�6 	 	 	
sn�1 bn�1 bn�3 bn�5 bn�7 	 	 	
sn�2 c1 c2 c3 	 	 	
sn�3 d1 d2 	 	 	
	 	 	 	 	 	 	 	 	
s1 j1
s0 k1
















The constants c1� c2� c3� etc., in the third row are evaluated as follows:

c1 ¼
bn�1bn�2 � bnbn�3

bn�1
ð6:3Þ

c2 ¼
bn�1bn�4 � bnbn�5

bn�1
ð6:4Þ

c3 ¼
bn�1bn�6 � bnbn�7

bn�1
ð6:5Þ

This pattern is continued until the rest of the c’s are all equal to zero. Then the
d row is formed by using the sn�1 and sn�2 rows.The constants are

d1 ¼
c1bn�3 � bn�1c2

c1
ð6:6Þ

d2 ¼
c1bn�5 � bn�1c3

c1
ð6:7Þ

d3 ¼
c1bn�7 � bn�1c4

c1
ð6:8Þ

This process is continued until no more d terms are present. The rest of
the rows are formed in this way down to the s0 row. The complete array is
triangular, ending with the s0 row. Notice that the s1 and s0 rows contain only
one term each. Once the array has been found, Routh’s criterion states that the
number of roots of the characteristic equation with positive real parts is equal to
the number of changes of sign of the coefficients in the first column. Therefore,
the system is stable if all terms in the first column have the same sign.*

The following example illustrates this criterion:

QðsÞ ¼ s5 þ s4 þ 10s3 þ 72s2 þ 152s þ 240 ð6:9Þ

*Reference 7 shows that a system is unstable if there is a negative element in any position in
any row. Thus, it is not necessary to complete the Routhian array if any negative number is
encountered.
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The Routhian array is formed by using the procedure described above:

s5 1 10 152
s4 1 72 240
s3 �62 �88
s2 70:6 240
s1 122:6
s0 240
















In the first column there are two changes of sign, from1 to ^62 and from ^ 62
to 70.6; therefore,QðsÞ has two roots in the right-half s plane (RHP).Note that
this criteriongives the number of rootswith positive real parts but does not tell
the values of the roots. If Eq. (6.9) is factored, the roots are s1 ¼ �3, s2� 3 ¼
�1
 j

ffiffiffi
3
p

, and s4� 5 ¼ þ2
 j4. This calculation confirms that there are two
roots with positive real parts. The Routh criterion does not distinguish
between real and complex roots.

Theorem 1: Division of a Row. Thecoefficientsof any rowmaybemultiplied
or divided by a positive number without changing the signs of the first column.
The labor of evaluating the coefficients in Routh’s array can be reduced by
multiplying or dividing any row by a constant. This may result, for example,
in reducing the size of the coefficients and therefore simplifying the evaluation
of the remaining coefficients.

The following example illustrates this theorem:

QðsÞ ¼ s6 þ 3s5 þ 2s4 þ 9s3 þ 5s2 þ 12s þ 20 ð6:10Þ
The Routhian array is

s6 1 2 5 20
s5 63 69 612

1 3 4 ðafter dividing by 3Þ
s4 �1 1 20
s3 64 624

1 6 ðafter dividing by 4Þ
s2 7 20
s1 22 ðafter multiplying by 7Þ
s0 20























Notice that the size of the numbers has been reduced by dividing the s5 row
by 3 and the s3 row by 4. The result is unchanged; i.e., there are two changes
of signs in the first column and, therefore, there are two roots with positive
real parts.
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Theorem 2: Zero Coefficient in the First Column. When the first term in
a row is zero but not all the other terms are zero, the following methods
can be used:

1. Substitute s¼1/x in the original equation; then solve for the roots
of x with positive real parts. The number of roots x with positive
real parts will be the same as the number of s roots with positive
real parts.

2. Multiply the original polynomial by the factor (sþ1), which intro-
duces an additional negative root.Then form the Routhian array for
the new polynomial.

Both of these methods are illustrated in the following example:

QðsÞ ¼ s4 þ s3 þ 2s2 þ 2s þ 5 ð6:11Þ

The Routhian array is

s4 1 2 5

s3 1 2

s2 0 5











The zero in the first column prevents completion of the array. The fol-

lowing methods overcome this problem.

METHOD 1. Letting s¼1/x and rearranging the polynomial gives

QðxÞ ¼ 5x4 þ 2x3 þ 2x2 þ x þ 1 ð6:12Þ

The new Routhian array is

x4 5 2 1

x3 2 1

x2 �1 2

x1 5

x0 2














There are two changes of sign in the first column. Therefore, there are two
roots of x in the RHP. The number of roots s with positive real parts is also
two.This method does not work when the coefficients of Q(s) and of Q(x) are
identical.
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METHOD 2.

Q1ðsÞ ¼ QðsÞðs þ 1Þ ¼ s5 þ 2s4 þ 3s3 þ 4s2 þ 7s þ 5

s5 1 3 7

s4 2 4 5

s3 2 9

s2 �10 10

s1 11

s0 10


















The same result is obtained by both methods.There are two changes of

sign in the first column, so there are two zeros of Q(s) with positive real parts.
An additional method is described in Ref. 6.

Theorem 3: A Zero Row. When all the coefficients of one row are zero, the
procedure is as follows:

1. The auxiliary equation can be formed from the preceding row,
as shown below.

2. The Routhian array can be completed by replacing the all-zero row
with thecoefficientsobtainedbydifferentiating theauxiliaryequation.

3. The roots of the auxiliary equation are also roots of the original
equation. These roots occur in pairs and are the negative of each
other. Therefore, these roots may be imaginary (complex conju-
gates) or real (one positive and one negative),may lie in quadruplets
(two pairs of complex-conjugate roots), etc.

Consider the system that has the characteristic equation

QðsÞ ¼ s4 þ 2s3 þ 11s2 þ 18s þ 18 ¼ 0 ð6:13Þ
The Routhian array is

s4 1 11 18
s3 62 618

1 9 ðafter dividing by 2Þ
s2 62 618

1 9
s1 0 ðafter dividing by 2Þ
















The presence of a zero row (the s1 row) indicates that there are roots that
are the negatives of each other.The next step is to form the auxiliary equation
from the preceding row,which is the s2 row. The highest power of s is s2, and
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only even powers of s appear.Therefore, the auxililary equation is

s2 þ 9 ¼ 0 ð6:14Þ
The roots of this equation are

s ¼ 
j3
These are also roots of the original equation.The presence of imaginary roots
indicates that the output includes a sinusoidally oscillating component.

To complete the Routhian array, the auxiliary equation is differentiated
and is

2s þ 0 ¼ 0 ð6:15Þ
The coefficients of this equation are inserted in the s1row, and the array is then
completed:

s1 2
s0 9






Since there are no changes of sign in the first column, there are no roots with
positive real parts.

In feedback systems,covered in detail in the following chapters,the ratio
of the output to the input does not have an explicitly factored denominator.
An example of such a function is

X2ðsÞ
X1ðsÞ

¼ PðsÞ
QðsÞ ¼

Kðs þ 2Þ
sðs þ 5Þðs2 þ 2s þ 5Þ þ Kðs þ 2Þ ð6:16Þ

The value of K is an adjustable parameter in the system and may be positive
or negative.The value of K determines the location of the poles and therefore
the stability of the system. It is important to know the range of values of K
for which the system is stable. This information must be obtained from the
characteristic equation,which is

QðsÞ ¼ s4 þ 7s3 þ 15s2 þ ð25þ KÞs þ 2K ¼ 0 ð6:17Þ
The coefficients must all be positive in order for the zeros of Q(s) to lie in the
left half of the s plane (LHP), but this condition is not sufficient for stability.
The Routhian array permits evaluation of precise boundaries for K:

s4 1 15 2K
s3 7 25þ K
s2 80� K 14K

s1
ð80� KÞð25þ KÞ � 98K

80� K
s0 14K
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The term 80�K for the s2 row imposes the restriction K< 80, and the s0 row
requires K> 0. The numerator of the first term in the s1 row is equal to
�K2� 43Kþ 2000, and this function must be positive for a stable system.
By use of the quadratic formula the zeros of this function are K¼ 28.1 and
K¼�71.1, and the numerator of the s1 row is positive between these values.
The combined restrictions on K for stability of the system are therefore
0<K < 28:1.For the valueK¼ 28.1the characteristic equation has imaginary
roots that can be evaluated by applying Theorem 3 to form the auxiliary
equation. Also, for K¼ 0, it can be seen from Eq. (6.16) that there is no
output. The methods for selecting the ‘‘best’’ value of K in the range
between 0 and 28.1 are contained in later chapters. It is important to note
that the Routh criterion provides useful but restricted information. Another
method of determining stability is Hurwitz’s criterion [2,8],which establishes
the necessary conditions in terms of the system determinants.

6.3 MATHEMATICAL AND PHYSICAL FORMS

In various systems the controlled variable, labeled C, shown in Fig. 6.1
may have the physical form of position, speed, temperature, rate of change
of temperature, voltage, rate of flow, pressure, etc. Once the blocks in the
diagram are related to transfer functions, it is immaterial to the analysis of
the system what the physical form of the controlled variable may be.
Generally, the important quantities are the controlled quantity c, its rate of
change Dc, and its second derivative D2c, that is, the first several derivatives
of c, including the zeroth derivative. For any specific control system each
of these ‘‘mathematical’’ functions has a definite ‘‘physical’’ meaning. For
example, if the controlled variable c is position, then Dc is velocity and D2c is
acceleration. As a second example, if the controlled variable c is velocity,
thenDc is acceleration andD2c is the rate of change of acceleration.

Often the input signal to a system has an irregular form, such as that
shown in Fig. 6.2, that cannot be expressed by any simple equation. This
prevents a straight-forward analysis of system response. It is noted, though,
that the signal form shown in Fig. 6.2 may be considered to be composed of

FIGURE 6.1 Simple feedback system.
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three basic forms of known types of input signals, i.e., a step in the region cde, a
ramp in the region 0b, and a parabola in the region ef.Thus, if the given linear
system is analyzed separately for each of these types of input signals, there is
then established a fair measure of performance with the irregular input. For
example, consider the control system for a missile that receives its command
input from an interceptor guidance system (see Fig. 5.3). This input changes
slowly compared with the control-system dynamics. Thus, step and ramp
inputs adequately approximate most command inputs. Therefore, the three
standard inputs not only approximate most command inputs but also provide
a means for comparing the performance of different systems.

Consider that the system shown in Fig. 6.1 is a position-control system.
Feedback control systems are often analyzed on the basis of a unit step input
signal (see Fig. 6.3).This system can first be analyzed on the basis that the unit
step input signal r(t) represents position. Since this gives only a limited idea
of how the system responds to the actual input signal, the system can then
be analyzed on the basis that the unit step signal represents a constant velocity
Dr(t)¼ u�1(t). This in reality gives an input position signal of the form of
a ramp (Fig. 6.3) and thus a closer idea of how the system responds to the
actual input signal. In the same manner the unit step input signal can
represent a constant acceleration, D2r(t)¼ u�1(t), to obtain the system’s

FIGURE 6.3 Graphical forms of step, ramp, and parabolic input functions.

FIGURE 6.2 Input signal to a system.
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performance to a parabolic position input signal.The curves shown in Fig. 6.3
then represent acceleration,velocity, and position.

6.4 FEEDBACK SYSTEM TYPES

The simple closed-loop feedback system, with unity feedback, shown in
Fig. 6.4, may be called a tracker since the output c(t) is expected to track or
follow the input r(t). The open-loop transfer function for this system is
G(s)¼C(s)/E(s),which is determined by the components of the actual control
system.Generally G(s) has one of the following mathematical forms:

GðsÞ ¼ K0ð1þ T1sÞð1þ T2sÞ 	 	 	
ð1þ TasÞð1þ TbsÞ 	 	 	

ð6:18Þ

GðsÞ ¼ K1ð1þ T1sÞð1þ T2sÞ 	 	 	
sð1þ TasÞð1þ TbsÞ 	 	 	

ð6:19Þ

GðsÞ ¼ K2ð1þ T1sÞð1þ T2sÞ 	 	 	
s2ð1þ TasÞð1þ TbsÞ 	 	 	

ð6:20Þ

Note that the constant term in each factor is equal to unity. The preceding
equations are expressed in a more generalized manner by defining the
standard form of the transfer function as

GðsÞ ¼ Kmð1þ b1s þ b2s
2 þ 	 	 	 þ bws

wÞ
smð1þ a1s þ a2s2 þ 	 	 	 þ ausuÞ

¼ KmG
0ðsÞ ð6:21Þ

where

a1� a2� . . . ¼ constant coefficients
b1� b2� . . . ¼ constant coefficients

Km ¼ gain constant of the transfer function GðsÞ
m ¼ 0� 1� 2� . . . denotes the transfer function type

G 0ðsÞ ¼ forward transfer function with unity gain

The degree of the denominator is n¼mþu. For a unity-feedback system,
E and C have the same units. Therefore, K0 is nondimensional, K1 has the
units of seconds�1,K2 has the units of seconds

�2.

FIGURE 6.4 Unity–feedback control system.
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In order to analyze each control system, a ‘‘type’’ designation is
introduced. The designation is based upon the value of the exponent m of s
in Eq. (6.21). Thus, when m¼ 0, the system represented by this equation is
called aType 0 system; when m¼1, it is called aType 1 system; when m¼ 2,
it is called a Type 2 system; etc. [See Prob. 6.20 for a Type �1 (m¼�1)
system.] Once a physical system has been expressed mathematically, the
analysis is independent of the nature of the physical system. It is immaterial
whether the system is electrical, mechanical, hydraulic, thermal, or a
combination of these. The most common feedback control systems have
Type 0, 1, or 2 open-loop transfer functions, as shown in Eqs. (6.18) to (6.20).
It is important to analyze each type thoroughly and to relate it as closely as
possible to its transient and steady-state solution.

The various types exhibit the following steady-state properties:

Type 0: A constant actuating signal results in a constant value for the
controlled variable.

Type 1: A constant actuating signal results in a constant rate of change
(constant velocity) of the controlled variable.

Type 2: A constant actuating signal results in a constant second
derivative (constant acceleration) of the controlled variable.

Type 3: A constant actuating signal results in a constant rate of change
of acceleration of the controlled variable.

These classifications lend themselves to definition in terms of the
differential equations of the system and to identification in terms of the
forward transfer function.For all classifications thedegreeof thedenominator
of G(s)H(s) usually is equal to or greater than the degree of the numerator
because of the physical nature of feedback control systems. That is, in every
physical system there are energy-storage and dissipative elements such that
there can be no instantaneous transfer of energy from the input to the output.
However, exceptions do occur.

6.5 ANALYSIS OF SYSTEM TYPES

The properties presented in the preceding section are now examined in detail
for each type of G(s) appearing in stable unity-feedback tracking systems.
First, remember the following theorems:

Final-value theorem:

lim
t!1

f ðtÞ ¼ lim
s!0

sF ðsÞ ð6:22Þ
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Differential theorem:

L½DmcðtÞ� ¼ smCðsÞ when all initial conditions are zero ð6:23Þ
Also, when the input is a polynomial, the steady-state output of a stable
closed-loop system that has unity feedback [H(s)¼ 1] has the same form as the
input. Therefore, if the input is a ramp function, the steady-state output must
also include a ramp function plus a constant, and so forth.

From the preceding section, it is seen that the forward transfer function
defines the system type and is generally in the factored form

GðsÞ ¼ CðsÞ
EðsÞ ¼

Kmð1þ T1sÞð1þ T2sÞ 	 	 	
smð1þ TasÞð1þ TbsÞð1þ TcsÞ 	 	 	

ð6:24Þ

Solving this equation for E(s) yields

EðsÞ ¼ ð1þ TasÞð1þ TbsÞð1þ TcsÞ 	 	 	
Kmð1þ T1sÞð1þ T2sÞ 	 	 	

smCðsÞ ð6:25Þ

Thus, applying the final-value theorem gives

eðtÞss ¼ lim
s!0
½sEðsÞ� ¼ lim

s!0

sð1þ TasÞð1þ TbsÞð1þ TcsÞ 	 	 	
Kmð1þ T1sÞð1þ T2sÞ 	 	 	

smCðsÞ
� �

¼ lim
s!0

s½smCðsÞ�
Km

ð6:26Þ

Thus, applying the final-value theorem to Eq. (6 .23) gives

lim
s!0

s½smCðsÞ� ¼ DmcðtÞss ð6:27Þ

Therefore, Eq. (6.26) can be written as

eðtÞss ¼
DmcðtÞss

Km
ð6:28Þ

or

KmeðtÞss ¼ DmcðtÞss ð6:29Þ
This equation relates a derivative of the output to the error; it is most useful
for the case where Dmc(t)ss¼ constant.Then e(t)ss must also equal a constant,
that is,e(t)ss¼E0, and Eq. (6.29) may be expressed as

KmE0 ¼ DmcðtÞss ¼ constant ¼ Cm ð6:30Þ
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Note that C(s) has the form

CðsÞ ¼ GðsÞ
1þ GðsÞRðsÞ

¼ Km½ð1þ T1sÞð1þ T2sÞ 	 	 	�
smð1þ TasÞð1þ TbsÞ 	 	 	 þ Kmð1þ T1sÞð1þ T2sÞ 	 	 	

RðsÞ
ð6:31Þ

The expression for E(s) in terms of the input R(s) is obtained as follows:

EðsÞ ¼ CðsÞ
GðsÞ ¼

1
GðsÞ

GðsÞRðsÞ
1þ GðsÞ ¼

RðsÞ
1þ GðsÞ ð6:32Þ

With G(s) given by Eq. (6.24), ther expression for E(s) is

EðsÞ ¼ smð1þ TasÞð1þ TbsÞ 	 	 	RðsÞ
smð1þ TasÞð1þ TbsÞ 	 	 	 þ Kmð1þ T1sÞð1þ T2sÞ 	 	 	

ð6:33Þ

Applying the final-value theorem to Eq. (6.33) yields

eðtÞss ¼ lim
s!0

s
smð1þ TasÞð1þ TbsÞ 	 	 	RðsÞ

smð1þ TasÞð1þ TbsÞ 	 	 	 þ Kmð1þ T1sÞð1þ T2sÞ 	 	 	
� �

ð6:34Þ
Equation (6.34) relates the steady-state error to the input; it is now analyzed
for various system types and for step, ramp, and parabolic inputs.

Case 1: m¼ 0 (Type 0 System)

STEP INPUT rðtÞ ¼ R0u�1ðtÞ�RðsÞ ¼ R0=s. From Eq. (6.34):

eðtÞss ¼
R0

1þ K0
¼ constant ¼ E0 6¼ 0 ð6:35Þ

Applying the final-value theorem to Eq. (6.31) yields:

cðtÞss ¼
K0

1þ K0
R0 ð6:36Þ

From Eq. (6.35) it is seen that a Type 0 system with a constant input
produces a constant value of the output and a constant actuating signal.
[The same results can be obtained by applying Eq. (6.30).] Thus in a Type 0
system a fixed error E0 is required to produce a desired constant output C0;
that is,K0E0¼ c(t)ss¼ constant¼C0. For steady-state conditions:

eðtÞss ¼ rðtÞss � cðtÞss ¼ R0 � C0 ¼ E0 ð6:37Þ
Differentiating the preceding equation yields Dr(t)ss¼Dc(t)ss¼ 0. Figure 6.5
illustrates these results.
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RAMP INPUT rðtÞ ¼ R1tu�1ðtÞ�RðsÞ ¼ R1=s
2. From Eq. (6.34), e(t)ss¼1.

Also, by the use of the Heaviside partial-fraction expansion, the particular
solution of e(t) obtained from Eq. (6.33) contains the term [R1/(1þK0)]t.
Therefore, the conclusion is that aType 0 system with a ramp-function input
produces a ramp output with a smaller slope; thus, there is an error that
increases with time and approaches a value of infinity, meaning that aType 0
system cannot follow a ramp input.

Similarly, aType 0 system cannot follow the parabolic input

rðtÞ ¼ R2t
2

2
u�1ðtÞ ð6:38Þ

since eðtÞss ¼ rðtÞss � cðtÞss approaches a value of infinity.

Case 2: m¼ 1 (Type 1 System)

STEP INPUT RðsÞ ¼ R0=s. From Eq. (6.34), e(t)ss¼ 0. Therefore, aType 1
system with a constant input produces a steady-state constant output of
value identical with the input.That is, for aType1 system there is zero steady-
state error between the output and input for a step input, i.e.,

eðtÞss ¼ rðtÞss � cðtÞss ¼ 0 ð6:39Þ
The preceding analysis is in agreement with Eq. (6.30).That is, for a step input,
the steady-state output must also be a constant c(t)¼C0u�1(t ) so that

DcðtÞss ¼ 0 ¼ K1E0 ð6:40Þ
or

E0 ¼ 0 ð6:41Þ

RAMP INPUT RðsÞ ¼ R1=s
2. From Eq. (6.34)

eðtÞss ¼
R1

K1
¼ constant ¼ E0 6¼ 0 ð6:42Þ

FIGURE 6.5 Steady-state response of a Type 0 system with a step input.
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From Eq. (6.42) it can be seen that aType1systemwith a ramp input produces
a constant actuating signal. That is, in a Type 1 system a fixed error E0 is
required to produce a ramp output. This result can also be obtained from
Eq. (6.30), that is,K1E0¼Dc (t)ss¼ constant¼C1. For steady-state conditions:

eðtÞss ¼ rðtÞss � cðtÞss ¼ E0 ð6:43Þ
For the ramp input

rðtÞ ¼ R1tu�1ðtÞ ð6:44Þ
the particular solution for the output has the form of a power series:

cðtÞss ¼ C0 þ C1t ð6:45Þ
Substituting Eqs. (6.44) and (6.45) into Eq. (6.43) yields

E0 ¼ R1t � C0 � C1t ð6:46Þ
This result can occur only with

R1 ¼ C1 ð6:47Þ
This result signifies that the slope of the ramp input and the ramp output are
equal. Of course, this condition is necessary if the difference between input
and output is a constant. Figure 6.6 illustrates these results. The delay of the
steady-state output ramp shown in Fig. 6.6 is equal to

Delay ¼ eðtÞss
DrðtÞ ¼

1
K1

ð6:48Þ

PARABOLIC INPUT. rðtÞ ¼ ðR2t
2=2Þu�1ðtÞ�RðsÞ ¼ R2=s

3. The particular
solution of e(t) obtained from Eq. (6.33) contains the term

eðtÞ ¼ R2t
K1

ð6:49Þ

FIGURE 6.6 Steady-state response of a Type 1 system with a ramp input.
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Therefore, aType1systemwith a parabolic input produces a parabolic output,
but with an error that increases with time and approaches a value of infinity.
This limit means that aType1system cannot follow a parabolic input.

Case 3: m¼ 2 (Type 2 System)

STEP INPUT RðsÞ ¼ R0=s. Performing a corresponding analysis in the
same manner as for Cases 1 and 2 reveals that a Type 2 system can follow a
step input with zero steady-state error, i.e., c(t)ss¼ r(t)¼R0u-1(t) and e(t)ss¼ 0.

RAMP INPUT RðsÞ ¼ R1=s
2. Performing a corresponding analysis in

the same manner as for Cases 1 and 2 reveals that aType 2 system can follow
a ramp input with zero steady-state error, i.e., c(t)ss¼ r(t)¼R1t and e(t)ss¼ 0.

PARABOLIC INPUT RðsÞ ¼ R2=s
3. From Eq. (6.34),

eðtÞss ¼
R2

K2
¼ constant ¼ E0 6¼ 0 ð6:50Þ

From Eq. (6.50) it can be seen that a Type 2 system with a parabolic input
produces a parabolic output with a constant actuating signal. That is, in
a Type 2 system a fixed error E0 is required to produce a parabolic output.
This result is further confirmed by applying Eq. (6.30), i.e.,

K2E0 ¼ D2cðtÞss ¼ constant ¼ C2 ð6:51Þ
Thus, for steady-state conditions

eðtÞss ¼ rðtÞss � cðtÞss ¼ E0 ð6:52Þ
For a parabolic input given by

rðtÞ ¼ R2t
2

2
u�1ðtÞ ð6:53Þ

the particular solution of the output must be given by the power series

cðtÞss ¼
C2

2
t2 þ C1t þ C0 ð6:54Þ

Substituting Eqs. (6.53) and (6.54) into Eq. (6.52) yields

E0 ¼
R2t

2

2
� C2t

2

2
� C1t � C0 ð6:55Þ

Differentiating Eq. (6.55) twice results in C1¼0 and R2¼C2. Therefore,
E0¼�C0 and the input and output curves have the same shape but are
displaced by a constant error.Figure 6.7 illustrates the results obtained above.

The results determined in this section verify the properties stated in the
previous section for the system types.The steady-state response characteristics
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for Types 0, 1, and 2 unity-feedback systems are given in Table 6.1 and
apply only to stable systems.

6.6 EXAMPLE: TYPE 2 SYSTEM

A Type 2 system is one in which the second derivative of the output is
maintained constant by a constant actuating signal. In Fig. 6.8 is shown
a positioning system that is aType 2 system,where

Kb ¼ motor back-emf constant, V/(rad/s)
Kx ¼ potentiometer constant, V/rad
KT ¼ motor torque constant, lb.ft/A
A ¼ integrator amplifier gain, s�1

Kg ¼ generator constant, V/A
Tm ¼ J Rgm/(KbKTþRgmB)¼motor mechanical constant, s
Tf ¼ generator field constant, s
KM¼ KT/(BRgmþKTKb)¼ overall motor constant, rad/V.s

The motor-generator shown in Fig. 6.8 is a power amplifier and can be
represented by a combination of the circuits shown in Figs. 2.25 and 2.26.
Assuming that the inductances of the generator and motor armatures,
described in Secs. 2.12 and 2.13, are negligible, the transfer function is given
by Eq. (2.135). Figure 6.9 is the block diagram representation of the position
control system shown in Fig. 6.8. Since there are two integrating actions in the
forward path, this is aType 2 system.The forward transfer function is

GðsÞ ¼ y0ðsÞ
EðsÞ ¼

K2

s2ð1þ Tf sÞð1þ TmsÞ
ð6:56Þ

where K2¼KxAKgKM/Rf has the units of seconds
�2.

FIGURE 6.7 Steady-state response of a Type 2 system with a parabolic input.
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TABLE 6.1 Steady-State Response Characteristics for Stable Unity-Feedback
Systems

System

type m r(t)ss c(t)ss e(t)ss e(1) Derivatives

R0u�1ðtÞ K0

1þ K0

R0

R0

1þ K0

R0

1þ K0

Dr ¼ Dc ¼ 0

0 R1tu�1ðtÞ K0R1

1þ K0

t þ C0

R1

1þ K0

t � C0
1 Dr 6¼ Dc

R2t
2

2
u�1ðtÞ

K0R2

2ð1þ K0Þ
t2

þC1t þ C0

R2

2ð1þ K0Þ
t2

�C1t � C0

1 Dr 6¼ Dc

R0u�1ðtÞ R0 0 0 Dr ¼ Dc ¼ 0

1 R1tu�1ðtÞ R1t �
R1

K1

R1

K1

R1

K1

Dr ¼ Dc ¼ R1

R2t
2

2
u�1ðtÞ

R2t
2

2
� R2

K1

t þ C0

R2

K1

t � C0
1 Dr 6¼ Dc

R0u�1ðtÞ R0 0 0 Dr ¼ Dc ¼ 0

2 R1tu�1ðtÞ R1t 0 0 Dr ¼ Dc ¼ R1

R2t
2

2
u�1ðtÞ

R2t
2

2
� R2

K2

R2

K2

R2

K2

D2r ¼ D2c ¼ R2

Dr ¼ Dc ¼ R2t

FIGURE 6.8 Position control of a space-vehicle camera (Type 2 system).
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This Type 2 control system is unstable. As shown in Chap. 10, an
appropriate cascade compensator can be added to the forward path to
produce a stable system.The new transfer function,withT1>T2, has the form

G0ðsÞ ¼ GcðsÞGðsÞ ¼
K 02ð1þ T1sÞ

s2ð1þ Tf sÞð1þ TmsÞð1þ T2sÞ
ð6:57Þ

For a constant input r(t)¼R0u-1(t) the steady-state value of c(t)ss is

cðtÞss ¼ lim
s!0

s
CðsÞ
RðsÞ

R0

s

� �
¼ lim

s!0

G0ðsÞ
1þ G0ðsÞ

R0

� �
¼ R0 ð6:58Þ

Thus

E0 ¼ rðtÞss � cðtÞss ¼ R0 � R0 ¼ 0 ð6:59Þ
As expected, a Type 2 system follows a step-function input with no steady-
state error.

6.7 STEADY-STATE ERROR COEFFICIENTS [9]

The definition of system types is the first step toward establishing a set of
standard characteristics that permit the engineer to obtain as much informa-
tion as possible about a given system with a minimum amount of calculation.
Also, these standard characteristics must point the direction in which a given
system must be modified to meet a given set of performance specifications.
An important characterisitic is the ability of a system to achieve the desired
steady-state output with a minimum error. Thus, in this section there are
defined system error coefficients that are a measure of a stable unity-feedback
control system’s steady-state accuracy for a given desired output that is
relatively constant or slowly varying.

In Eq. (6.30) it is shown that a constant actuating signal exists when the
derivative of the output is constant. This derivative is proportional to the
actuating signal E0 and to a constant Km, which is the gain of the forward
transfer function. The conventional names of these constants for theType 0,
1, and 2, systems are position, velocity, and acceleration error coefficients,
respectively. Since the conventional names were originally selected for

FIGURE 6.9 Block diagram representation of the system of Fig. 6.8.
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application to position-control systems (servomechanisms), these names
referred to the actual physical form of c(t) or r(t),which represent position, as
well as to themathematical formof c(t), that is,c,Dc, andD2c.These names are
ambiguous when the analysis is extended to cover control of temperature,
velocity, etc. In order to define general terms that are universally applicable,
the authors have selected the terminology step, ramp, and parabolic steady-state
error coefficients. Table 6.2 lists the conventional and the author’s designation
of the error coefficients.

The error coefficients are independent of the system type. They apply to
any system type and are defined for specific forms of the input, i.e., for a step, ramp,
or parabolic input. These error coefficients are applicable only for stable unity-
feedback systems.The results are summarized inTable 6.3.

Steady-State Step Error Coefficient

The step error coefficient is defined as

Step error coefficient

¼ steady-state value of output cðtÞss
steady-state actuating signal eðtÞss

¼ Kp ð6:60Þ

and applies only for a step input, r(t)¼R0u-1(t). The steady-state value of the
output is obtained by applying the final-value theorem to Eq. (6.31):

cðtÞss ¼ lim
s!0

sCðsÞ ¼ lim
s!0

sGðsÞ
1þ GðsÞ

R0

s

� �
¼ lim

s!0

GðsÞ
1þ GðsÞR0

� �
ð6:61Þ

Similarly, from Eq. (6.32), for a unity-feedback system

eðtÞss ¼ lim
s!0

s
1

1þ GðsÞ
R0

s

� �
¼ lim

s!0

1
1þ GðsÞR0

� �
ð6:62Þ

TABLE 6.2 Correspondence Between the Conventional and the Authors’
Designation of Steady-State Error Coefficients

Conventional Authors’
designation of designation of

Symbol error coefficients error coefficients

Kp Position Step
Kv Velocity Ramp
Ka Acceleration Parabolic
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Substituting Eqs. (6.61) and (6.62) into Eq. (6.60) yields

Step error coefficient ¼
lim
s!0

GðsÞ
1þ GðsÞR0

� �

lim
s!0

1
1þ GðsÞR0

� � ð6:63Þ

Since both the numerator and the denominator of Eq. (6.63) in the limit
can never be zero or infinity simultaneously,where Km 6¼ 0, the indeterminate
forms 0/0 and1/1 never occur.Thus, this equation reduces to

Step error coefficient ¼ lim
s!0

GðsÞ ¼ Kp ð6:64Þ

Therefore, applying Eq. (6.64) to each type system yields

Kp

lim
s!0

K0ð1þT1sÞð1þT2sÞ 	 	 	
ð1þTasÞð1þTbsÞð1þTcsÞ 	 	 	

¼ K0 Type 0 system (6.65)

1 Type 1 system (6.66)

1 Type 2 system (6.67).

8>>>><
>>>>:

Steady-State Ramp Error Coefficient

The ramp error coefficient is defined as

Ramp error coefficient¼ steady-state value of derivative of output DcðtÞss
steady-state actuating signaleðtÞss

¼ Kv ð6:68Þ

TABLE 6.3 Definitions of Steady-State Error Coefficients for Stable Unity-Feedback
Systems

Error Definition of Value of Form of input
coefficient error coefficient error coefficient signal r(t)

Step (Kp) cðtÞss
eðtÞss

lim
s!0

GðsÞ R0u�1ðtÞ

Ramp (Kv) ðDcÞss
eðtÞss

lim
s!0

sGðsÞ R1tu�1ðtÞ

Parabolic (Ka) ðD2cÞss
eðtÞss

lim
s!0

s2GðsÞ R1t
2

2
u�1ðtÞ
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andapplies only fora ramp input,r(t)¼R1tu-1(t).The first derivative of the output
is given by

L½Dc� ¼ sCðsÞ ¼ sGðsÞ
1þ GðsÞRðsÞ ð6:69Þ

The steady-state value of the derivative of the output is obtained by using the
final-value theorem:

DcðtÞss ¼ lim
s!0

s½sCðsÞ� ¼ lim
s!0

s2GðsÞ
1þ GðsÞ

R1

s2

" #
¼ lim

s!0

GðsÞ
1þ GðsÞR1

� �
ð6:70Þ

Similarly, from Eq. (6.32), for a unity-feedback system

eðtÞss ¼ lim
s!0

s
1

1þ GðsÞ
R1

s2

� �
¼ lim

s!0

1
1þ GðsÞ

R1

s

� �
ð6:71Þ

Substituting Eqs. (6.70) and (6.71) into Eq. (6.68) yields

Ramp error coefficient ¼
lim
s!0

GðsÞ
1þ GðsÞR1

� �

lim
s!0

1
1þ GðsÞ ðR1=sÞ
� � ð6:72Þ

Since this equation never has the indeterminate form 0/0 or1/1, it can be
simplified to

Ramp error coefficient ¼ lim
s!0

sGðsÞ ¼ Kv ð6:73Þ

Therefore, applying Eq. (6.73) to each type system yields

Kv ¼
lim
s!0

sK0ð1þT1sÞð1þT2sÞ 	 	 	
ð1þTasÞð1þTbsÞð1þTcsÞ 	 	 	

¼ 0 Type 0 system (6.74)

K1 Type 1 system (6.75)

1 Type 2 system (6.76)

8>>><
>>>:

Steady-State Parabolic Error Coefficient

The parabolic error coefficient is defined as

Parabolic error coefficient

¼ steady-state value of second derivative of output D2cðtÞss
steady-state actuating signal eðtÞss

¼ Ka ð6:77Þ

230 Chapter 6

Copyright © 2003 Marcel Dekker, Inc.



and applies only for a parabolic input, r(t)¼ (R2t
2/2)u-1(t).The second derivative

of the output is given by

L½D2c� ¼ s2CðsÞ ¼ s2GðsÞ
1þ GðsÞRðsÞ ð6:78Þ

The steady-state value of the second derivative of the output is obtained by
using the final-value theorem:

D2cðtÞss ¼ lim
s!0

s½s2CðsÞ� ¼ lim
s!0

s3GðsÞ
1þGðsÞ

R2

s3

" #
¼ lim

s!0

GðsÞ
1þGðsÞR2

� �
ð6:79Þ

Similarly, from Eq. (6.32), for a unity-feedback system

eðtÞss ¼ lim
s!0

s
1

1þ GðsÞ
R2

s3

� �
¼ lim

s!0

1
1þ GðsÞ

R2

s2

� �
ð6:80Þ

Substituting Eqs. (6.79) and (6.80) into Eq. (6.77) yields

Parabolic error coefficient ¼
lim
s!0

GðsÞ
1þ GðsÞR2

� �

lim
s!0

1
1þ GðsÞ ðR2=s

2Þ
� � ð6:81Þ

Since this equation never has the indeterminate form 0/0 or1/1, it can be
simplified to

Parabolic error coefficient ¼ lim
s!0

s2GðsÞ ¼ Ka ð6:82Þ

Therefore, applying Eq. (6.82) to each type system yields

Ka¼
lim
s!0

s2K0ð1þT1sÞð1þT2sÞ 	 	 	
ð1þTasÞð1þTbsÞð1þTcsÞ 	 	 	

¼ 0 Type 0 system (6.83)

0 Type 1 system (6.84)
K2 Type 2 system (6.85)

8>>><
>>>:

Based upon the steady-state error coefficient definitions and referring
to the corresponding Figs. 6.5 through 6.7, the values of K0, K1, and K2 can
also be determined from the computer simulation of the control system.
For example, from Fig. 6.6 and using Eq. (6.48), the gain is K1¼1/delay.

6.8 CAD ACCURACY CHECKS: CADAC

When appropriate, the steady-state error coefficient definitions can serve
as CADAC. For example, before entering the G(s) function into a CAD
package, determine the values of Km. This step is followed by obtaining the
values of Km from the expression of G(s) on the computer screen or printed
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out by the CADpackage. If the two sets of values agree, then the next required
CADmanipulation is performed.

6.9 USE OF STEADY-STATE ERROR COEFFICIENTS

The use of steady-state error coefficients is discussed for stable unity-feedback
systems, as illustrated in Fig. 6.10.Note that the steady-state error coefficients
can only be used to find errors for unity-feedback systems that are also stable.

Type 1 System

For aType 1 system with a step or ramp input considered at steady-state, the
value of (Dc)ss is

DcðtÞss ¼ K1E0 ð6:86Þ
Thus, the larger, the value of K1, the smaller the size of the actuating signal e
necessary to maintain a constant rate of change of the output. From the
standpoint of trying to maintain c(t)¼ r(t) at all times, a larger K1 results
in a more sensitive system. In other words, a larger K1 results in a greater
speed of response of the system to a given actuating signal e (t). Therefore,
the gain K1 is another standard characteristic of a system’s performance.
The maximum value K1 is limited by stability considerations and is discussed
in later chapters.

For theType1systemwith a step input, the step error coefficient is equal
to infinity, and the steady-state error is therefore zero.The steady-state output
c(t)ss for aType1system is equal to the input when r(t)¼ constant.

Consider now a ramp input r(t)¼R1tu-1(t) The steady-state value of
Dc(t)ss is found by using the final-value theorem:

DcðtÞss ¼ lim
s!0

s½sCðsÞ� ¼ lim
s!0

s
sGðsÞ

1þ GðsÞRðsÞ
� �

ð6:87Þ

where R(s)¼R1/s
2 and

GðsÞ ¼ K1ð1þ T1sÞð1þ T2sÞ 	 	 	 ð1þ TwsÞ
sð1þ TasÞð1þ TbsÞ 	 	 	 ð1þ TusÞ

FIGURE 6.10 Unity-feedback system.
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Inserting these values into Eq. (6.87) gives

DcðtÞss ¼ lim
s!0

s
sK1ð1þ T1sÞð1þ T2sÞ 	 	 	 ð1þ TwsÞ
sð1þ TasÞð1þ TbsÞ 	 	 	 ð1þ TusÞ

R1

s2
þK1ð1þ T1sÞð1þ T2sÞ 	 	 	 ð1þ TwsÞ

2
4

3
5 ¼ R1

Therefore,

ðDcÞss ¼ ðDrÞss ð6:88Þ
The magnitude of the steady-state error is found by using the ramp error
coefficient. From Eq. (6.73).

Kv ¼ lim
s!0

sGðsÞ ¼ K1

From the definition of ramp error coefficient, the steady-state error is

eðtÞss ¼
DcðtÞss
K1

ð6:89Þ

SinceDc(t)ss¼Dr(t),

eðtÞss ¼
Dr
K1
¼ R1

K1
¼ E0 ð6:90Þ

Therefore, a Type 1 system follows a ramp input with a constant error E0.
Figure 6.11 illustrates these conditions graphically.

Table of Steady-State Error Coefficients

Table 6.4 gives the values of the error coefficients for the Type 0,1, and 2
systems. These values are determined from Table 6.3. The reader should
be able to make ready use of Table 6.4 for evaluating the appropriate error

FIGURE 6.11 Steady-state response of a Type 1 system for Dr¼ constant.
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coefficient.The error coefficient is used with the definitions given inTable 6.3
to evaluate the magnitude of the steady-state error.

Polynomial Input: tmQ1

Note that aTypem systemcan followan input of the form tm-1with zero steady-
state error. It can follow an input tm, but there is a constant steady-state error.
It cannot follow an input tmþ1 because the steady-state error approaches
infinity. However, if the input is present only for a finite length of time, the
error is also finite. Then the error can be evaluated by taking the inverse
Laplace transform of Eq. (6.33) and inserting the value of time.The maximum
permissible error limits the time (0< t< t1) that an input t

mþ1can be applied to
a control system.

6.10 NONUNITY-FEEDBACK SYSTEM

The nonunity-feedback system of Fig. 6.1 may be mathematically converted
to an equivalent unity-feedback system from which ‘‘effective’’ system type
and steady-state error coefficient can be determined. The control ratio for
Fig. 6.1 is

CðsÞ
RðsÞ ¼

GðsÞ
1þ GðsÞH ðsÞ ¼

N ðsÞ
DðsÞ ð6:91Þ

and for the equivalent unity-feedback control systemof the formof Fig. 6.4, the
control ratio is

CðsÞ
RðsÞ ¼

GeqðsÞ
1þ GeqðsÞ ð6:92Þ

Since the transfer functionsG(s) andH(s) areknown,equating Eqs. (6.91)
and (6.92) yields

GeqðsÞ ¼
N ðsÞ

DðsÞ � N ðsÞ ð6:93Þ

TABLE 6.4 Steady-State Error Coefficients for Stable Systems

System Step error Ramp error Parabolic error
type coefficient Kp coefficient Kv coefficient Ka

0 K0 0 0
1 1 K1 0
2 1 1 K2
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When the nonunity-feedback system is stable, its steady-state
performance characteristics can be determined based on Eq. (6.93).

Equation (6.91) can also be expressed in the form

CðsÞ
RðsÞ ¼

GðsÞH ðsÞ
1þ GðsÞH ðsÞ
� �

1
H ðsÞ ð6:94Þ

Thus, the nonunity feedback systemof Fig. 6.1can be represented by the
block diagramof Fig.6.12 in accordance with Eq. (6.94).This diagram shows a
unity feedback system in cascadewith1/H(s).WhenH is a constant,Fig.6.12 is
an especially useful representation that permits the design to be performed
using unity feedback methods.

6.11 SUMMARY

In this chapter the physical forms of the reference input and the controlled
variable are related to the mathematical representations of these quantities.
Since, in general, the forward transfer functions of most unity feedback
control systems fall into three categories, they can be identified asType 0, 1,
and 2 systems.The associated definitions of the steady-state error coefficients
readily provide information that is indicative of a stable system’s steady-state
performance. Thus, a start has been made in developing a set of standard
characteristics. A nonunity-feedback system can also be represented by
an equivalent unity-feedback system having the forward transfer function
Geq(s) (see Sec. 6.9). Then the steady-state performance can be evaluated on
the basis of the system type and the error coefficients determined fromGeq(s).
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7

Root Locus

7.1 INTRODUCTION

Adesigner uses the time response of a system to determine if his or her design
of a control system meets specifications. An accurate solution of the system’s
performance can be obtained by deriving the differential equations for the
control system and solving them. However, if the response does not meet
specifications, it is not easy to determine from this solution just what physical
parameters in the system should be changed to improve the response.
A designer wishes to be able to predict a system’s performance by an analysis
that does not require the actual solution of the differential equations. Also, the
designer would like this analysis to indicate readily the manner or method by
which this system must be adjusted or compensated to produce the desired
performance characteristics.

The first thing that a designer wants to know about a given system is
whether or not it is stable. This can be determined by examining the roots
obtained from the characteristic equation 1þG(s)H(s)¼ 0. By applying
Routh’s criterion to this equation, it is possible in short order to determine
stability without solving for the roots. Yet this does not satisfy the designer
because it does not indicate the degree of stability of the system, i.e., the
amount of overshoot and the settling time of the controlled variable.Not only
must the system be stable, but also the overshoot must be maintained within
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prescribed limits and transients must die out in a sufficiently short time.The
graphical methods described in this text not only indicate whether a system is
stable or unstable but, for a stable system, also show the degree of stability. A
number of commercially available computer-aided-design (CAD) programs
can be used to obtain the solution. MATLAB is used as the main CAD
program in this text and its use is described inAppendixC.TheCADprogram
TOTAL-PC is described in Appendix D and is especially useful for root locus
and frequency response design. In addition to the time response, a designer
can choose to analyze and interpret the steady-state sinusoidal response of
the transfer function of the system to obtain an idea of the system’s response.
This method is based upon the interpretation of a Nyquist plot, discussed in
Chaps. 8 and 9.The frequency-response approach yields enough information
to indicate whether the system needs to be adjusted or compensated and how
the system should be compensated.

This chapter deals with the root-locus method [1,2], which incorporates
the more desirable features of both the classical and the frequency-response
methods.The root locus is a plot of the roots of the characteristic equation of the
closed-loop system as a function of the gain of the open-loop transfer function.
With relatively small effort this graphical approach yields a clear indication
of the effect of gain adjustment. The underlying principle is that the poles of
C(s)/R(s) (transient-response modes) are related to the zeros and poles of the
open-loop transfer function G(s)H(s) and also to the gain.This relationship is
shown by Eq. (5.4),which is repeated here:

CðsÞ
RðsÞ ¼

GðsÞ
1þ GðsÞH ðsÞ ð7:1Þ

An important advantage of the root-locus method is that the roots of the
characteristic equation of the system can be obtained directly. This yields
a complete and accurate solution of the transient and steady-state response
of the controlled variable. Also, an approximate solution can be obtained
with a reduction of the work required.A person can readily obtain proficiency
with the root-locus method. With the help of a CAD program, such as
MATLAB orTOTAL-PC (see Appendixes C and D), it is possible to design
a systemwith relative ease.

7.2 PLOTTING ROOTS OF A CHARACTERISTIC EQUATION

To give a better insight into root-locus plots, consider the position-control
system shown in Fig.7.1.Themotor produces a torqueT(s) that is proportional
to the actuating signal E(s). The load consists of the combined motor
and load inertia J and viscous friction B. The forward transfer function
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(see Sec. 2.12) is

GðsÞ ¼ yoðsÞ
EðsÞ ¼

A=J
sðs þ B=J Þ ¼

K
sðs þ aÞ ð7:2Þ

where K¼ A/J and a¼B/J.Assume that a¼ 2.Thus

GðsÞ ¼ CðsÞ
EðsÞ ¼

K
sðs þ 2Þ ð7:3Þ

When the transfer function is expressed with the coefficients of the highest
powers of s in both the numerator and the denominator polynomials equal to
unity, the value of K is defined as the static loop sensitivity. The control ratio
(closed-loop transfer function), using Eq. (7.1), is

CðsÞ
RðsÞ ¼

K
sðs þ 2Þ þ K

¼ K
s2 þ 2s þ K

¼ o2
n

s2 þ 2zons þ o2
n

ð7:4Þ

where on ¼
ffiffiffiffi
K
p

, z ¼ 1=
ffiffiffiffi
K
p

, and K is considered to be adjustable from zero
to an infinite value. The design problem is to determine the roots of the
characteristic equation for all values of K and to plot these roots in the s
plane.The roots of the characteristic equation, s2 þ 2s þ K ¼ 0� are given by

s1�2 ¼ �1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K
p

ð7:5Þ
For K¼ 0, the roots are s1¼0 and s2¼�2, which also are the poles of the
open-loop transfer function given by Eq. (7.3). When K¼1, then s1,2¼�1.
Thus,when 0 < K < 1, the roots s1,2 are real and lie on the negative real axis
of the s plane between�2 and�1and 0 to�1, respectively. For the case where
K > 1, the roots are complex and are given by

s1�2 ¼ s
 jod ¼ �zon 
 jon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
¼ �1
 j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K � 1
p

ð7:6Þ

Note that the real part of all the roots is constant for all values of K > 1.
The roots of the characteristic equation are determined for a number of

values ofK (seeTable 7.1) and are plotted in Fig.7.2.Curves are drawn through
these plotted points.On these curves, containing two branches, lie all possible
roots of the characteristic equation for all values of K from zero to infinity.

FIGURE 7.1 A position-control system.
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Note that each branch is calibrated with K as a parameter and the values of K
at points on the locus are underlined; the arrows show the direction of
increasing values of K.These curves are defined as the root-locus plot of Eq. (7.4).
Once this plot is obtained, the roots that best fit the system performance
specifications can be selected. Corresponding to the selected roots there is
a required value of K that can be determined from the plot.When the roots
have been selected, the time response can be obtained. Since this process

TABLE 7.1 Location of Roots for the Characteristic Equation
s2 þ 2sþ K ¼ 0

K s1 s2

0 �0 þ j 0 �2.0 � j 0
0.5 �0.293 þ j 0 �1.707 � j 0
0.75 �0.5 þ j 0 �1.5 � j 0
1.0 �1.0 þ j 0 �1.0 � j 0
2.0 �1.0 þ j 1.0 �1.0 � j 10
3.0 �1.0 þ j 1.414 �1.0 � j 1.414
50.0 �1.0 þ j 7.0 �1.0 � j 7.0

FIGURE 7.2 Plot of all roots of the characteristic equation s2 þ 2sþ K ¼ 0 for
0 � K <1: Values of K are underlined.
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of finding the root locus by calculating the roots for various values of K
becomes tedious for characteristic equations of order higher than second,
a simpler method of obtaining the root locus would be preferable. The
graphical methods for determining the root-locus plot are the subject of this
chapter.CADmethods are used to facilitate obtaining the root locus.

The value of K is normally considered to be positive. However, it is
possible for K to be negative. For the example in this section, if the value of
K is negative, Eq. (7.5) gives only real roots. Thus, the entire locus lies
on the real axis, that is, 0 � s1 < þ1 and �2 � s2 > �1 for 0 � K > �1:
For any negative value of K there is always a root in the right half of the s
plane, and the system is unstable. Once the root locus has been obtained for
a control system, it is possible to determine the variation in system perfor-
mance with respect to a variation in sensitivity K.For the example of Fig. 7.1,
the control ratio is written in terms of its roots, for K > 1, as

CðsÞ
RðsÞ ¼

K
ðs � s� jod Þðs � sþ jod Þ

ð7:7Þ

Note, as defined in Fig. 4.3, that a root with a damping ratio z lies on a line
making the angle Z ¼ cos�1 z with the negative real axis. The damping ratio
of several roots is indicated in Fig. 7.3. For an increase in the gain K of the
system, analysis of the root locus reveals the following characteristics:

1. A decrease in the damping ratio z. This increases the overshoot of
the time response.

2. An increase in the undamped natural frequency on.The value of on
is the distance from the origin to the complex root.

FIGURE 7.3 Root-locus plot of the position-control system of Fig. 7.1. Z ¼ cos�1z:
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3. An increase in the damped natural frequency od.The value of od is
the imaginary component of the complex root and is equal to the
frequency of the transient response.

4. No effect on the rate of decay s; that is, it remains constant for
all values of gain equal to or greater than Ka. For higher-order
systems this is not the case.

5. The root locus is a vertical line for K � Ka, and s ¼ �zon is
constant.Thismeans that nomatter howmuch the gain is increased
in a linear simple second-order system, the system can never become
unstable. The time response of this system with a step-function
input, for z < 1� is of the form

cðtÞ ¼ A0 þ A1expð�zontÞ sinðod t þ fÞ

The root locus of each control system can be analyzed in a similar
manner to determine the variation in its time response that results from a
variation in its loop sensitivity K.

7.3 QUALITATIVE ANALYSIS OF THE ROOT LOCUS

A zero is added to the simple second-order system of the preceding section
so that the open-loop transfer function is

GðsÞ ¼ Kðs þ 1=T2Þ
sðs þ 1=T1Þ

ð7:8Þ

The root locus of the control system having this transfer function is shown
in Fig. 7.4b. Compare this root locus with that of the original system, shown
in Fig.7.4awhose open loop transfer function is:

GðsÞ ¼ K
sðs þ 1=T1Þ

It is seen that, in Fig. 7.4b, the branches have been ‘‘pulled to the left,’’ or
farther from the imaginary axis. For values of static loop sensitivity greater
than Ka, the roots are farther to the left than for the original system.
Therefore, the transients will decay faster, yielding amore stable system.

If a pole, instead of a zero, is added to the original system, the resulting
transfer function is

GðsÞ ¼ K
sðs þ 1=T1Þðs þ 1=T3Þ

ð7:9Þ

Figure 7.4c shows the corresponding root locus of the closed-loop control
system. Note that the addition of a pole has ‘‘pulled the locus to the right’’
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so that two branches cross the imaginary axis. For values of static loop
sensitivity greater than Kb, the roots are closer to the imaginary axis than for
the original system.Therefore, the transients will decay more slowly, yielding
a less stable system. Also, for values of K > Kg, two of the three roots lie
in the right half of the s plane, resulting in an unstable system.The addition of
the pole has resulted in a less stable system, compared with the original

FIGURE 7.4 Various root-locus configurations for HðsÞ ¼ 1: ðaÞ root locus of basic
transfer function; (b) root locus with additional zero; (c) root locus with addi-
tional pole.
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second-order system.Thus, the following general conclusions can be drawn:

1. The addition of a zero to a system has the general effect of pulling
the root locus to the left, tending to make it a more stable and
faster-responding system (shorter settling timeTs).

2. The addition of a pole to a system has the effect of pulling the root
locus to the right, tending to make it a less stable and slower-
responding system.

Figure 7.5 illustrates the root-locus configurations for negative-
feedback control systems for more complex transfer functions. Note that
the third system contains a pole of G(s)H(s) in the right half of the s plane
(RHP). It represents the performance of an airplane with an autopilot in the
longitudinal mode.

The root-locus method is a graphical technique for readily determining
the location of all possible roots of a characteristic equation as the gain is
varied from zero to infinity. Also, it can readily be determined how the locus
should be altered in order to improve the system’s performance, based upon
the knowledge of the effect of the addition of poles or zeros.

7.4 PROCEDURE OUTLINE

The procedure to be followed in applying the root-locus method is outlined.
This procedure is modified when a CAD program is used to obtain the root
locus.Such a programcanprovide the desired data for the root locus in plotted
or tabular form. The procedure outlined next and discussed in the following
sections is intended to establish firmly for the reader the fundamentals of the
root-locus method and to enhance the interpretation of the data obtained
from the CAD program.

Step1.Derive the open-loop transfer functionG(s)H(s) of the system.
Step 2. Factor the numerator and denominator of the transfer

function into linear factors of the form sþ a, where a may be real or
complex.

Step 3. Plot the zeros and poles of the open-loop transfer function in the
s ¼ sþ jo plane.

Step 4.The plotted zeros and poles of the open-loop function determine
the roots of the characteristic equation of the closed-loop system
½1þ GðsÞH ðsÞ ¼ 0�. Use the geometrical shortcuts summarized in
Sec. 7.8 or a CAD program to determine the locus that describes
the roots of the closed-loop characteristic equation.

Step 5.Calibrate the locus in terms of the loop sensitivity K. If the gain
of the open-loop system is predetermined, the locations of the exact
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FIGURE 7.5 Various root-locus configurations:

ðaÞ GðsÞHðsÞ ¼ Kðsþ 1=T2Þðsþ 1=T4Þ
sðsþ 1=T1Þðsþ 1=T3Þ

ðbÞ GðsÞHðsÞ ¼ Kðsþ 1=T2Þðsþ 1=T4Þ
ðsþ 1=T1Þðsþ 1=T3Þðsþ 1=T5Þ

ðcÞ GðsÞHðsÞ ¼ Kðsþ 1=T2Þ
sðs� 1=TÞðs2 þ 2zonsþ o2

nÞ
These figures are not drawn to scale. Several other root-locus shapes are possible for
a given pole-zero arrangement, depending on the specific values of the poles and
zeros. Variations of the possible root-locus plots for a given pole-zero arrangement are
shown in Ref. 8.

Root Locus 245

Copyright © 2003 Marcel Dekker, Inc.



roots of 1þ GðsÞH ðsÞ can be immediately identified. If the location
of the roots is specified, the required value of K can be determined.

Step 6. Once the roots have been found in step 5, the system’s time
response can be calculated by taking the inverse Laplace transform
of C(s), either manually or by use of a CAD program.

Step 7. If the response does not meet the desired specifications,
determine the shape that the root locus must have to meet these
specifications.

Step 8. If gain adjustment alone does not yield the desired performance,
synthesize the cascade compensator that must be inserted into the
system.Thisprocess,calledcompensation, isdescribed in laterchapters.

7.5 OPEN-LOOP TRANSFER FUNCTION

In securing the open-loop transfer function, keep the terms in the factored
form of ðs þ aÞ or ðs2 þ 2zons þ o2

nÞ. For unity feedback the open-loop
function is equal to the forward transfer functionG(s). For nonunity feedback
it also includes the transfer function of the feedback path. This open-loop
transfer function is of the form

GðsÞH ðsÞ ¼ Kðs þ a1Þ 	 	 	 ðs þ ahÞ 	 	 	 ðs þ awÞ
smðs þ b1Þðs þ b2Þ 	 	 	 ðs þ bcÞ 	 	 	 ðs þ buÞ

ð7:10Þ

where ah and bc may be real or complex numbers and may lie in either the
left-half plane (LHP) or right-half plane (RHP).The value of K may be either
positive or negative. For example, consider

GðsÞH ðsÞ ¼ Kðs þ a1Þ
sðs þ b1Þðs þ b2Þ

ð7:11Þ

When the transfer function is in this form (with all the coefficients of s equal
to unity), the K is defined as the static loop sensitivity. For this example, a zero
of the open-loop transfer exists at s¼�a1 and the poles are at s¼ 0, s¼�b1,
and s¼�b2. Now let the zeros and poles of G(s)H(s) in Eq. (7.10) be denoted
by the letters z and p, respectively, i.e.,

z1 ¼ �a1 z2 ¼ �a2 	 	 	 zw ¼ �aw
p1 ¼ �b1 p2 ¼ �b2 	 	 	 pu ¼ �bu

Equation (7.10) can then be rewritten as

GðsÞH ðsÞ ¼ Kðs � z1Þ 	 	 	 ðs � zwÞ
smðs � p1Þ 	 	 	 ðs � puÞ

¼ K
Qw

h¼1 ðs � zhÞ
sm
Qu

c¼1 ðs � pcÞ
ð7:12Þ

where
Q

indicates a product of terms. The degree of the numerator is w and
that of the denominator ismþ u¼n.
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7.6 POLES OF THE CONTROL RATIO C(s)/R(s)

The underlying principle of the root-locus method is that the poles of the
control ratio C(s)/R(s) are related to the zeros and poles of the open-loop
transfer function G(s)H(s) and to the loop sensitivity K. This relationship
can be shown as follows. Let

GðsÞ ¼ N1ðsÞ
D1ðsÞ

ð7:13Þ

and

H ðsÞ ¼ N2ðsÞ
D2ðsÞ

ð7:14Þ

Then

GðsÞH ðsÞ ¼ N1N2

D1D2
ð7:15Þ

Thus,

CðsÞ
RðsÞ ¼ M ðsÞ ¼ AðsÞ

BðsÞ ¼
GðsÞ

1þGðsÞH ðsÞ ¼
N1=D1

1þN1N2=D1D2
ð7:16Þ

where

BðsÞ � 1þ GðsÞH ðsÞ ¼ 1þ N1N2

D1D2
¼ D1D2 þ N1N2

D1D2
ð7:17Þ

Rationalizing Eq. (7.16) gives

CðsÞ
RðsÞ ¼ M ðsÞ ¼ PðsÞ

QðsÞ ¼
N1D2

D1D2 þ N1N2
ð7:18Þ

From Eqs. (7.17) and (7.18) it is seen that the zeros of B(s) are the poles of
M(s) and determine the form of the system’s transient response. In terms of
G(s)H(s), given by Eq. (7.12), the degree of B(s) is equal to mþu; therefore,
B(s) has n¼mþu finite zeros. As shown in Chap. 4 on Laplace transforms,
the factors of Q(s) produce transient components of c(t) that fall into the
categories shown inTable 7.2.The numerator P(s) of Eq. (7.18)merely modifies
the constant multipliers of these transient components.The roots of B(s)¼ 0,
which is the characteristic equation of the system, must satisfy the equation

BðsÞ � 1þ GðsÞH ðsÞ ¼ 0 ð7:19Þ
These roots must also satisfy the equation:

GðsÞH ðsÞ ¼ Kðs � z1Þ 	 	 	 ðs � zwÞ
smðs � p1Þ 	 	 	 ðs � puÞ

¼ �1 ð7:20Þ
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Thus, as the loop sensitivity K assumes values from zero to infinity, the
transfer function G(s)H(s) must always be equal to �1. The corresponding
values of s that satisfy Eq. (7.20), for any value of K, are the poles of M(s).
The plots of these values of s are defined as the root locus of M(s).

Conditions that determine the root locus for positive values of loop sensi-
tivity are now determined.The general form ofG(s)H(s) for any value of s is

GðsÞH ðsÞ ¼ Fe�jb ð7:21Þ
The right side of Eq. (7.20),�1, can be written as

�1 ¼ e jð1þ2hÞp h ¼ 0�
 1�
 2� . . .

Equation (7.20) is satisfied only for those values of s for which

Fe�jb ¼ e jð1þ2hÞp

where

F ¼ jGðsÞH ðsÞj ¼ 1

and

�b ¼ ð1þ 2hÞp ð7:22Þ
From the preceding it can be concluded that the magnitude of G(s)H(s),

a function of the complex variable s, must always be unity and its phase angle
must be an odd multiple of p if the particular value of s is a zero of B(s)¼
1þG(s)H(s). Consequently, the following two conditions are formalized for
the root locus for all positive values of K from zero to infinity:

For K>0

Magnitude condition: jGðsÞH ðsÞj ¼ 1 ð7:23Þ
Angle condition: =GðsÞH ðsÞ ¼ ð1þ 2hÞ180� for

h ¼ 0�
 1�
 2� . . . ð7:24Þ

TABLE 7.2 Time Response Terms in cðtÞ
Denominator
factor of CðsÞ Corresponding inverse Form

s u�1ðtÞ Step function

sþ ð1=TÞ e�t=T Decaying exponential

s2 þ 2zonsþ o2
n expð�zontÞ sin ðon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
t þ fÞ Damped sinusoid

where z < 1
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In a similar manner, the conditions for negative values of loop sensitivity
ð�1 < K < 0Þ can be determined. [This corresponds to positive feedback,
e(t)¼ r(t)þ b(t), and positive values of K.] The root locus must satisfy the
following conditions.

For K>0

Magnitude condition: jGðsÞH ðsÞj ¼ 1 ð7:25Þ
Angle condition: =GðsÞH ðsÞ ¼ h360� for

h ¼ 0�
 1�
 2� . . . ð7:26Þ

Thus the root-locus method provides a plot of the variation of each of the
poles of C(s)/R(s) in the complex s plane as the loop sensitivity is varied from
K ¼ 0 to K ¼ 
1:

7.7 APPLICATION OF THE MAGNITUDE AND
ANGLE CONDITIONS

Once the open-loop transfer function G(s)H(s) has been determined and put
into the proper form, the poles and zeros of this function are plotted in the
s ¼ sþ jo plane. As an example, consider

GðsÞH ðsÞ ¼ Kðs þ 1=T1Þ2
sðs þ 1=T2Þðs2 þ 2zons þ o2

nÞ
¼ Kðs � z1Þ2

sðs � p1Þðs � p2Þðs � p3Þ
ð7:27Þ

For the quadratic factor s2 þ 2zons þ o2
n with the damping ratio z < 1, the

complex-conjugate poles of Eq. (7.27) are

P2�3 ¼ �zon 
 jon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
¼ s
 jod

The plot of the poles and zeros of Eq. (7.27) is shown in Fig. 7.6. Remember
that complex poles or zeros always occur in conjugate pairs, that s is
the damping constant, and that od is the damped natural frequency of
oscillation. A multiple pole or zero is indicated on the pole-zero diagram
by ��q or ��q, where q ¼ 1� 2� 3� . . . is the multiplicity of the pole or zero.
The open-loop poles and zeros are plotted, and they are used in the graphical
construction of the locus of the poles (the roots of the characteristic equation)
of the closed-loop control ratio.

For any particular value (real or complex) of s the terms s, s� p1, s� p2,
s� z1, . . . are complex numbers designating directed line segments. For
example, if s¼�4þ j4 and p1¼�1, then s� p1¼�3þ j4 or js � p1j ¼ 5, and

f1 ¼ =s � p1 ¼ 126:8� ðsee Fig. 7.6) ð7:28Þ
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Recall that it is shown in Sec. 7.6 that the roots of the characteristic
equation 1þ GðsÞH ðsÞ ¼ 0areall the valuesof s that satisfy the twoconditions:

jGðsÞH ðsÞj ¼ 1 ð7:29Þ

=GðsÞH ðsÞ ¼ ð1þ2hÞ180� for K > 0

h360� for K < 0



h¼ 0�
1�
2� . . . ð7:30Þ

These are labeled as the magnitude and angle conditions, respectively.
Therefore, applying these two conditions to the general Eq. (7.12) results in

jK j 	 js � z1j 	 	 	 js � zwj
jsmj 	 js � p1j 	 js � p2j 	 	 	 js � puj

¼ 1 ð7:31Þ

and

�b ¼ =s � z1 þ 	 	 	 þ =s � zw �mffs � =s � p1 � 	 	 	 � =s � Pu

¼ ð1þ 2hÞ180� for K > 0
h360� for K < 0



ð7:32Þ

Solving Eq. (7.31) for jK j gives

jK j ¼ js
mj 	 js � p1j 	 js � p2j 	 	 	 js � puj

js � z1j 	 	 	 js � zwj
¼ loop sensitivity ð7:33Þ

FIGURE 7.6 Pole-zero diagram for Eq. (7.27).
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Multiplying Eq. (7.32) by �1gives
b¼Pðangles of denominator termsÞ �Pðangles of numerator termsÞ

¼ ð1þ 2hÞ180� for K > 0
h360� for K < 0



ð7:34Þ

All angles are considered positive, measured in the counterclockwise
(CCW) sense. This form is convenient since G(s)H(s) usually has more poles
than zeros. Equations (7.33) and (7.34) are in the form used in the graphical
construction of the root locus. In other words, there are particular values
of s for which G(s)H(s) satisfies the angle condition. For these values of s,
Eq. (7.33) is used to determine the corresponding magnitude K. Those values
of s that satisfy both the angle and the magnitude conditions are the roots
of the characteristic equation and are n¼mþu in number.Thus, correspond-
ing to step 4 in Sec. 7.4, the locus of all possible roots is obtained by applying
the angle condition. This root locus can be calibrated in terms of the loop
sensitivity K by using the magnitude condition.

Example. Determine the locus of all the closed-loop poles of C(s)/R(s), for

GðsÞH ðsÞ ¼ K0ð1þ 0:25sÞ
ð1þ sÞð1þ 0:5sÞð1þ 0:2sÞ ð7:35Þ

GðsÞH ðsÞ ¼ Kðs þ 4Þ
ðs þ 1Þðs þ 2Þðs þ 5Þ K ¼ 2:5K0 ð7:36Þ

Step1.The poles and zeros are plotted in Fig.7.7.
Step 2. In Fig. 7.7 the f’s are denominator angles and the c’s are

numerator angles to a search point. Also, the l ’s are the lengths of
the directed segments stemming from the denominator factors, and
(l )’s are the lengths of the directed segments stemming from the
numerator factors. After plotting the poles and zeros of the open-
loop transfer functions, arbitrarily choose a search point. To this

FIGURE 7.7 Construction of the root locus.
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point, draw directed line segments from all the open-loop poles and
zeros and label as indicated. For this search point to be a point on
the root locus, the following angle condition must be true:

b¼f1þf2þf3�c1 ¼
ð1þ 2hÞ180� for K > 0

h360� for K < 0



ð7:37Þ

If this equation is not satisfied, select another search point until it is
satisfied. Locate a sufficient number of points in the s plane that
satisfy the angle condition. In the next section additional information
is given that lessens and systematizes the work involved in this trial-
and-error approach.

Step 3.Once the complete locus has been determined, the locus can be
calibrated in terms of the loop sensitivity for any root s1 as follows:

jK j ¼ l1l2l3
ðl Þ1

ð7:38Þ

where l1 ¼ js1 þ 1j; l2 ¼ js1 þ 2j; l3 ¼ js1 þ 5j; and ðl Þ1 ¼ js1 þ 4j. In
other words, the values of l1, l2, l3, and (l )1 can be measured for
a given point s1 that satisfies the angle condition; thus, the value of
jKj for this point can be calculated. The appropriate sign must be
given to the magnitude of K, compatible with the particular angle
condition that is utilized to obtain the root locus. Note that since
complex rootsmust occur in conjugate pairs, the locus is symmetrical
about the real axis. Thus, the bottom half of the locus can be drawn
once the locus above the real axis has been determined. The root
locus for this system is shown in Fig. 7.8. Note that for negative
values of K, the three branches of the root locus lie in the left half
plane for K > �2:5.

WðsÞ Plane
From Eqs. (7.36) and (7.20),

W ðsÞ ¼ ux þ jvy ¼
ðs þ 1Þðs þ 2Þðs þ 5Þ

s þ 4
¼ �K ð7:39Þ

The line ux ¼ �K in theW(s) plane maps into the curves indicated in Fig. 7.8.
That is, for each value of ux in theW(s) plane there is a particular value or
a set of values of s in the s plane.

7.8 GEOMETRICAL PROPERTIES (CONSTRUCTION RULES)

To facilitate the application of the root-locus method, the following rules are
established for K > 0. These rules are based upon the interpretation of the
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angle condition and an analysis of the characteristic equation. These rules
can be extended for the case where K < 0. The rules for both K > 0 and
K < 0 are listed in Sec. 7.16 for easy reference. The rules presented aid in
obtaining the root locus by expediting the plotting of the locus. The root
locus can also be obtained by using the MATLAB CAD program. These
rules provide checkpoints to ensure that the computer solution is correct.
They also permit rapid sketching of the root locus,which provides a qualita-
tive idea of achievable closed-loop system performance.

Rule 1: Number of Branches of the Locus

The characteristic equation B(s)¼ 1þG(s)H(s)¼ 0 is of degree n¼mþu;
therefore, there are n roots. As the open-loop sensitivity K is varied from
zero to infinity, each root traces a continuous curve. Since there are n roots,
there are the same number of curves or branches in the complete root locus.

FIGURE 7.8 The complete root locus of Eq. (7.36): (a) for K > 0; (b) for K < 0.
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Since the degree of the polynomial B(s) is determined by the poles of the
open-loop transfer function, the number of branches of the root locus is equal
to the number of poles of the open-loop transfer function.

Rule 2: Real-Axis Locus

In Fig. 7.9 are shown a number of open-loop poles and zeros. If the angle
condition is applied to any search point such as s1on the real axis, the angular
contribution of all the poles and zeros on the real axis to the left of this point
is zero.The angular contribution of the complex-conjugate poles to this point
is 360�. (This is also true for complex-conjugate zeros.) Finally, the poles
and zeros on the real axis to the right of this point each contribute 180�

(with the appropriate sign included). From Eq. (7.34) the angle of G(s)H(s)
to the point s1 is given by

f0þf1þf2þf3þ ½ðf4Þþj þðf4Þ�j �� ðc1þc2Þ ¼ ð1þ2hÞ180� ð7:40Þ

or
180� þ 0� þ 0� þ 0� þ 360� � 0� � 0� ¼ ð1þ 2hÞ180� ð7:41Þ

Therefore, s1 is a point on a branch of the locus. Similarly, it can be shown
that the point s2 is not a point on the locus. The poles and zeros to the left of
a point s on the real axis and the 360� contributed by the complex-conjugate
poles or zeros do not affect the odd-multiple-of-180� requirement. Thus, if
the total number of real poles and zeros to the right of a search point s on the real
axis is odd, this point lies on the locus. In Fig.7.9 the root locus exists on the real
axis from p0 to p1, z1 to p2, and p3 to z2.

All points on the real axis between z1 and p2 in Fig. 7.9 satisfy the
angle condition and are therefore points on the root locus. However, there is

FIGURE 7.9 Determination of the real-axis locus.
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no guarantee that this section of the real axis is part of just one branch.
Figure 7.5b and Prob. 7.4 illustrate the situation where part of the real axis
between a pole and a zero is divided into three sections that are parts of
three different branches.

Rule 3: Locus End Points

Themagnitude of the loop sensitivity that satisfies themagnitude condition is
given by Eq. (7.33) and has the general form

jW ðsÞj ¼ K ¼
Qn

c¼1 js � pc jQw
h¼1 s � zh



 

 ð7:42Þ

Since the numerator and denominator factors of Eq. (7.42) locate the poles
and zeros, respectively, of the open-loop transfer function, the following
conclusions can be drawn:

1. When s¼ pc (the open-loop poles), the loop sensitivity K is zero.
2. When s¼ zh (the open-loop zeros), the loop sensitivity K is infinite.

When the numerator of Eq. (7.42) is of higher order than the
denominator, then s¼1 also makes K infinite, thus being equiva-
lent in effect to a zero.

Thus, the locus starting points (K¼ 0) are at the open-loop poles and the locus
ending points (K¼1) are at the open-loop zeros (the point at infinity being
considered as an equivalent zero of multiplicity equal to the quantity n ^ w).

Rule 4: Asymptotes of Locus as s Approaches Infinity

Plotting of the locus is greatly facilitated by evaluating the asymptotes
approached by the various branches as s takes on large values. Taking the
limit ofG(s)H(s) as s approaches infinity, based on Eqs. (7.12) and (7.20),yields

lim
s!1GðsÞH ðsÞ ¼ lim

s!1 K
Qn

h¼1 ðs � zhÞQn
c¼1 ðs � pcÞ

� �
¼ lim

s!1
K

sn�w
¼ �1 ð7:43Þ

Remember that K in Eq. (7.43) is still a variable in the manner prescribed pre-
viously, thus allowing themagnitude condition tobemet.Therefore, as s!1,

�K ¼ sn�w ð7:44Þ
�Kj j ¼ sn�w



 

 Magnitude condition ð7:45Þ
ff�K ¼ ffsn�w ¼ ð1þ 2hÞ180� Angle condition ð7:46Þ

Rewriting Eq. (7.46) gives ðn� wÞffs ¼ ð1þ 2hÞ180� or
g¼ ð1þ 2hÞ180�

n� w
as s!1 ð7:47Þ
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There are n�w asymptotes of the root locus, and their angles are given by

g ¼ ð1þ 2hÞ180�
½number of poles of GðsÞH ðsÞ� � ½number of zeros of GðsÞH ðsÞ� ð7:48Þ

Equation (7.48) reveals that, no matter what magnitude s may have,
after a sufficiently large value has been reached, the argument (angle) of s
on the root locus remains constant. For a search point that has a sufficiently
large magnitude, the open-loop poles and zeros appear to it as if they had
collapsed into a single point. Therefore, the branches are asymptotic to
straight lineswhose slopes and directions are given by Eq. (7.48) (see Fig.7.10).
These asymptotes usually do not go through the origin. The correct real-axis
intercept of the asymptotes is obtained from Rule 5.

Rule 5: Real-Axis Intercept of the Asymptotes

The real-axis crossing so of the asymptotes can be obtained by applying the
theory of equations.The result is

so ¼
Pn

c¼1 Reð pcÞ �
Pw

h¼1 ReðzhÞ
n� w

ð7:49Þ

The asymptotes are not dividing lines, and a locus may cross its
asymptote. It may be valuable to know from which side the root locus
approaches its asymptote. Lorens and Titsworth [3] present a method for
obtaining this information. The locus lies exactly along the asymptote if the
pole-zero pattern is symmetric about the asymptote line extended through
the point so .

Rule 6: Breakaway Point on the Real Axis [4]

The branches of the root locus start at the open-loop poles where K¼ 0 and
end at the finite open-loop zeros or at s¼1.When the root locus has branches

FIGURE 7.10 Asymptotic condition for large values of s.
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on the real axis between two poles, there must be a point at which the
two branches breakaway from the real axis and enter the complex region of
the s plane in order to approach zeros or the point at infinity. (Examples
are shown in Fig. 7.11a-3: between p0 and p1, and in Fig. 7.11b-2: between
p2 and p3.) For two finite zeros (see Fig. 7.11b-1) or one finite zero and one
at infinity (see Fig. 7.11a-1) the branches are coming from the complex region
and enter the real axis.

In Fig. 7.11a-3 between two poles there is a point sa for which the loop
sensitivity Kz is greater than for points on either side of sa on the real axis.
In other words, since K starts with a value of zero at the poles and increases
in value as the locus moves away from the poles, there is a point somewhere in
betweenwhere theK ’s for the two branches simultaneously reach amaximum
value. This point is called the breakaway point. Plots of K vs. s utilizing
Eq. (7.33) are shown in Fig. 7.11 for the portions of the root locus that exist

FIGURE 7.11 Plots of K and the corresponding real-axis locus for (a) Fig. 7.5a
and (b) Fig. 7.5b.
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on the real axis for K > 0. The point sb for which the value of K is a
minimum between two zeros is called the break-in point. The breakaway
and break-in points can easily be calculated for an open-loop pole-zero
combination for which the derivatives of W(s)¼�K is of the second order.
As an example, if

GðsÞH ðsÞ ¼ K
sðs þ 1Þðs þ 2Þ ð7:50Þ

then

W ðsÞ ¼ sðs þ 1Þðs þ 2Þ ¼ �K ð7:51Þ

Multiplying the factors together gives

W ðsÞ ¼ s3 þ 3s2 þ 2s ¼ �K ð7:52Þ
When s3þ3s2þ 2s is a minimum, �K is a minimum and K is a maximum.
Thus, by taking the derivative of this function and setting it equal to zero,
the points can be determined:

dW ðsÞ
ds
¼ 3s2 þ 6s þ 2 ¼ 0 ð7:53Þ

or

sa�b ¼ �1
 0:5743 ¼ �0:4257� �1:5743
Since the breakaway points sa for K > 0 must lie between s¼ 0 and s¼�1
in order to satisfy the angle condition, the value is

sa ¼ �0:4257 ð7:54Þ
The other point, sb¼�1.5743, is the break-in point on the root locus forK < 0.
Substituting sa¼�0.4257 into Eq. (7.52) gives the value ofK at the breakaway
point for K > 0 as

K ¼ �½ð�0:426Þ3 þ ð3Þð�0:426Þ2 þ ð2Þð�0:426Þ� ¼ 0:385 ð7:55Þ
When the derivative ofW(s) is of higher order than 2, a digital-computer

program can be used to calculate the roots of the numerator polynomial
of dW(s)/ds; these roots locate the breakaway and break-in points. Note that
it is possible to have both a breakaway and a break-in point between a pole
and zero (finite or infinite) on the real axis, as shown in Figs. 7.5, 7.11a-2,
and 7.11b-3. The plot of K vs. s for a locus between a pole and zero falls into
one of the following categories:

1. The plot clearly indicates a peak and a dip, as illustrated between
p1 and z1 in Fig. 7.11b-3. The peak represents a ‘‘maximum’’ value
of K that identifies a break-in point.
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2. The plot contains an inflection point. This occurs when the break-
away and break-in points coincide, as is the case between p2 and z1
in Fig.7.11a-2.

3. The plot does not indicate a dip-and-peak combination or an
inflection point. For this situation there are no break-in or break-
away points.

Rule 7: Complex Pole (or Zero): Angle of Departure

The next geometrical shortcut is the rapid determination of the direction in
which the locus leaves a complex pole or enters a complex zero. Although in
Fig.7.12 a complex pole is considered, the results also hold for a complex zero.

In Fig. 7.12a, an area about p2 is chosen so that l2 is very much smaller
than l0, l1, l3, and (l )1. For illustrative purposes, this area has been enlarged
many times in Fig. 7.12b. Under these conditions the angular contributions
from all the other poles and zeros, except p2, to a search point anywhere in
this area are approximately constant. They can be considered to have values
determined as if the search point were right at p2.Applying the angle condition
to this small area yields

f0 þ f1 þ f2 þ f3 � c1 ¼ ð1þ 2hÞ180� ð7:56Þ
or the departure angle is

f2D ¼ ð1þ 2hÞ180� � ðf0 þ f1 þ 90� � c1Þ
In a similar manner the approach angle to a complex zero can

be determined. For an open-loop transfer function having the pole-zero

FIGURE 7.12 Angle condition in the vicinity of a complex pole.
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arrangement shown in Fig.7.13, the approach anglec1 to the zero z1 is given by

c1A ¼ ðf0 þ f1 þ f2 � 90�Þ � ð1þ 2hÞ180� ð7:57Þ
In other words, the direction of the locus as it leaves a pole or approaches

a zerocanbedeterminedbyadding up,according to the anglecondition,all the
angles of all vectors from all the other poles and zeros to the pole or zero in
question. Subtracting this sum from (1þ2h)180� gives the required direction.

Rule 8: Imaginary-Axis Crossing Point

In cases where the locus crosses the imaginary axis into the right-half s plane,
the crossover point can usually be determined byRouth’smethod or by similar
means. For example, if the closed-loop characteristic equation D1D2þ
N1N2¼0 is of the form

s3 þ bs2 þ cs þ Kd ¼ 0

the Routhian array is

s3

s2

s1

s0













1
b

ðbc � KdÞ=b
Kd

c

Kd

An undamped oscillation may exist if the s�1 row in the array equals zero.
For this condition the auxiliary equation obtained from the s 2 row is

bs2 þ Kd ¼ 0 ð7:58Þ
and its roots are

s1�2 ¼ 
j
ffiffiffiffiffiffiffiffiffiffiffiffi
Kd
b
¼

r

 jon ð7:59Þ

FIGURE 7.13 Angle condition in the vicinity of a complex zero.
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The loop sensitivity term K is determined by setting the s1 row to zero:

K ¼ bc
d

ð7:60Þ

ForK > 0, Eq. (7.59) gives the natural frequency of the undamped oscillation.
This corresponds to the point on the imaginary axis where the locus crosses
over into the right-half s plane. The imaginary axis divides the s plane into
stable and unstable regions. Also, the value of K from Eq. (7.60) determines
the value of the loop sensitivity at the crossover point. For values of K < 0
the term in the s0 row is negative, thus characterizing an unstable response.
The limiting values for a stable response are therefore

0 < K <
bc
d

ð7:61Þ

In like manner, the crossover point can be determined for higher-order
characteristic equations. For these higher-order systems care must be exer-
cised in analyzing all terms in the first column that contain the term K in order to
obtain the correct range of values of gain for stability.

Rule 9: Intersection or Nonintersection of
Root-Locus Branches [5]

The theory of complex variables yields the following properties:

1. Avalue of s that satisfies the angle condition of Eq. (7.34) is a point
on the root locus. If dW(s)/ds 6¼ 0 at this point, there is one and only
one branch of the root locus through the point.

2. If the first y�1 derivatives of W(s) vanish at a given point on the
root locus, there are y branches approaching and y branches leaving
this point; thus, there are root-locus intersections at this point.
The angle between two adjacent approaching branches is given by

�y ¼ 

360�

y
ð7:62Þ

Also, the angle between a branch leaving and an adjacent branch
that is approaching the same point is given by

yy ¼ 

180�

y
ð7:63Þ

Figure 7.14 illustrates these angles at s¼�3,with yy¼ 45� and �y¼ 90�.

Rule 10: Conservation of the Sum of the System Roots

The technique described by this rule aids in the determination of the general
shape of the root locus. Consider the general open-loop transfer function
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in the form

GðsÞH ðsÞ ¼ K
Qw

h¼1 ðs � zhÞ
sm
Qu

c¼1 ðs � pcÞ
ð7:64Þ

Recalling that for physical systems w� n¼uþm, the denominator of C(s)/
R(s) can be written as

BðsÞ ¼ 1þ GðsÞH ðsÞ ¼
Qn

j¼1 ðs � rjÞ
sm
Qu

c¼1 ðs � pcÞ
ð7:65Þ

where rj are the roots described by the root locus.
By substituting from Eq. (7.64) into Eq. (7.65) and equating numerators

on each side of the resulting equation, the result is

sm
Yu
c¼1
ðs � pcÞ þ K

Yw
h¼1
ðs � zhÞ ¼

Yn
j¼1
ðs � rjÞ ð7:66Þ

Expanding both sides of this equation gives

sn �
Xu
c¼1

pcs
n�1 þ 	 	 	

 !
þ K sw �

Xw
h¼1

zhs
w�1 þ 	 	 	

 !

¼ sn �
Xn
j¼1

rj s
n�1 þ 	 	 	 ð7:67Þ

For those open-loop transfer functions in which w � n� 2� the follow-
ing is obtained by equating the coefficients of sn�1 of Eq. (7.67):

Xu
c¼1

pc ¼
Xn
j¼1

rj

Sincemopen-looppoleshavevaluesof zero,thisequationcanalsobewrittenas

Xn
j¼1

pj ¼
Xn
j¼1

rj ð7:68Þ

FIGURE 7.14 Root locus for GðsÞHðsÞ ¼ K

ðsþ 2Þðsþ 4Þðs2 þ 6sþ 10Þ.
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where pj now represents all the open-loop poles, including those at the origin,
and rj are the roots of the characteristic equation. This equation reveals that
as the system gain is varied from zero to infinity, the sum of the system roots
is constant. In other words, the sum of the system roots is conserved and is
independent of K.When a system has several root-locus branches that go to
infinity (as K!1), the directions of the branches are such that the sum of
the roots is constant. A branch going to the right therefore requires that
there will be a branch going to the left. The root locus of Fig. 7.2 satisfies the
conservancy law for the root locus. The sum of the roots is a constant for
all values of K.

For a unity-feedback system, Rao [6] has shown that the closed-loop
pole and zero locations of

CðsÞ
RðsÞ ¼

Kðs � z1Þ 	 	 	 ðs � zwÞ
ðs � p1Þ 	 	 	 ðs � pnÞ

ð7:69Þ

satisfy the relation

Xw
i¼1
ð�ziÞ�q ¼

Xn
j¼1
ð�pjÞ�q q ¼ 1� 2� . . . �m� 1 ð7:70Þ

for m > 1, that is, for a Type 2 (or higher) system. This serves as a check on
the accuracy of the root determination.

Rule 11: Determination of Roots on the Root Locus

After the root locus has been plotted, the specifications for system perfor-
mance are used to determine the dominant roots. The dominant branch is
the branch that is the closest to the imaginary axis. This root has the largest
influence on the time response.When this branch yields complex dominant
roots, the time response is oscillatory and the figures of merit (see Sec. 3.10)
are the peak overshoot Mp, the time tp at which the peak overshoot occurs,
and the settling time ts.An additional figure ofmerit, the gainKm, significantly
affects the steady-state error (see Chap. 6). All of these quantities can be
used to select the dominant roots. Thus, the designer may use the damping
ratio z� the undamped natural frequency on� the damped natural frequency
od � the damping coefficient s, or the gain Km to select the dominant roots.
When the dominant roots are selected, the required loop sensitivity can be
determined by applying the magnitude condition, as shown in Eq. (7.33).
The remaining roots on each of the other branches can be determined by any
of the following methods:

Method1.Determine the point on each branch of the locus that satisfies
the same value of loop sensitivity as for the dominant roots.
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Method 2. If all except one real or a complex pair of roots are known,
either of the following procedures can be used.

Procedure 1. Divide the characteristic polynomial by the factors
representing the known roots.The remainder gives the remain-
ing roots.

Procedure 2. Equation (7.68) can be used to find some of the roots.
A necessary condition is that the denominator of G(s)H(s) be at
least of degree 2 higher than the numerator. If all the roots
except one real root are known, application of Eq. (7.68) yields
directly the value of the real root. However, for complex roots
of the form r ¼ s
 jod it yields only the value of the real com-
ponent s.

CAD programs are available that yield the loop sensitivity and the
roots of the characteristic equation of the system.When the damping ratio
is specified for the dominant roots, these roots determine the value of K and
all the remaining roots.

7.9 CAD ACCURACY CHECKS (CADAC)

The first seven geometrical construction rules, which can be readily
evaluated, should be used as CADAC to assist in the validation of the root
locus data being obtained from a CAD package.

7.10 ROOT LOCUS EXAMPLE

Find CðsÞ=RðsÞ with z ¼ 0:5 for the dominant roots (roots closest to the
imaginary axis) for the feedback control system represented by

GðsÞ ¼ K1

sðs2=2600þ s=26þ 1Þ and H ðsÞ ¼ 1
0:04s þ 1

Rearranging gives

GðsÞ ¼ 2600K1

sðs2 þ 100s þ 2600Þ ¼
N1

D1
and H ðsÞ ¼ 25

s þ 25
¼ N2

D2

Thus,

GðsÞH ðsÞ ¼ 65�000K1

sðsþ25Þðs2þ100sþ2600Þ ¼
K

s4þ125s3þ5100s2þ65�000s

where K¼ 65,000K1.

1. The poles of GðsÞH ðsÞ are plotted on the s plane in Fig. 7.15;
the values of these poles are s¼ 0,�25,�50þ j10,�50� j10.
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The system is completely unstable for K < 0: Therefore, this
example is solved only for the condition K > 0:

2. There are four branches of the root locus.
3. The locus exists on the real axis between 0 and�25.
4. The angles of the asymptotes are

g ¼ ð1þ 2hÞ180�
4

¼ 
45�� 
135�

5. The real-axis intercept of the asymptotes is

so ¼
0� 25� 50� 50

4
¼ �31:25

6. The breakaway point sa (see Fig. 7.15) on the real axis between 0
and�25 is found by solving dW ðsÞ=ds ¼ 0 [see Eq. (7.39)]:

�K ¼ s4 þ 125s3 þ 5100s2 þ 65�000s
dð�KÞ
ds
¼ 4s3 þ 375s2 þ 10�200s þ 65�000 ¼ 0

sa ¼ �9:15
7. The angle of departure f3D (see Fig. 7.16) from the pole�50þ j10 is

obtained from

f0 þ f1 þ f2 þ f3D ¼ ð1þ 2hÞ180�
168:7� þ 158:2� þ 90� þ f3D ¼ ð1þ 2hÞ180�

f3D ¼ 123:1�

Similarly, the angle of departure from the pole�50þ j10 is�123.1�.

FIGURE 7.15 Location of the breakaway point.

FIGURE 7.16 Determination of the departure angle.
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8. The imaginary-axis intercepts are obtained from

CðsÞ
RðsÞ ¼

2600K1ðsþ 25Þ
s4 þ 125s3 þ 5100s2 þ 65�000s þ 65�000K1

ð7:71Þ

The Routhian array for the denominator ofCðsÞ=RðsÞ� which is the
characteristic polynomial, is (see Sec. 6.2,Theorem1)

s4 1 5100 65�000K1
s3 1 520 (after division by 125)
s2 1 14:2K1 (after division by 4580)
s1 520� 14:2K1
s0 14:2K1












Pure imaginary roots exist when the s1 row is zero. This occurs
when K1 ¼ 520=14:2 ¼ 36:6: The auxiliary equation is formed
from the s2 row:

s2 þ 14:2K1 ¼ 0

and the imaginary roots are

s ¼ 
 j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
14:2K1

p
¼ 
 j

ffiffiffiffiffiffiffiffi
520
p

¼ 
 j 22:8

9. Additional points on the root locus are found by locating points
that satisfy the angle condition

ffs þffs þ 25 þffs þ 50� j10 þffs þ 50þ j10

¼ ð1þ 2mÞ180�

The root locus is shown in Fig.7.17.
10. The radial line for z ¼ 0:5 is drawn on the graph of Fig. 7.17 at the

angle (see Fig. 4.3 for definition of Z)

Z ¼ cos�1 0:5 ¼ 60�

The dominant roots obtained from the graph are

s1�2 ¼ �6:6
 j11:4

11. The gain is obtained from the expression

K ¼ 65�000K1 ¼ sj j 	 s þ 25j j 	 s þ 50� j10


 

 	 s þ 50þ j10



 


Inserting the value s1 ¼ �6:6þ j11:4 into this equation yields

K ¼ 65�000K1 ¼ 598�800
K1 ¼ 9:25
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12. Theother roots areevaluated tosatisfy themagnitudeconditionK ¼
598�800:The remaining rootsof thecharacteristic equation are

s3�4 ¼ �55:9
 j18:0

The real part of the additional roots can also be determined by
using the rule from Eq. (7.68):

0� 25þ ð�50þ j10Þ þ ð�50� j10Þ
¼ ð�6:6þ j11:4Þ þ ð�6:6� j11:4Þ þ ðsþ jod Þ þ ðs� jod Þ

This gives

s ¼ �55:9

By using this value, the roots can be determined from the root
locus as�55:9
 j18:0:

13. The control ratio, using values of the roots obtained in steps 10
and12, is

CðsÞ
RðsÞ ¼

N1D2

factors determined from root locus

FIGURE 7.17 Root locus for GðsÞHðsÞ ¼ 65,000K1

sðsþ 25Þðs2 þ 100sþ 2600Þ.
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¼ 1
ðs þ 6:6þ j11:4Þðs þ 6:6� j11:4Þ
� 24�040ðs þ 25Þ
ðs þ 55:9þ j18Þðs þ 55:9� j18Þ

¼ 24�040ðs þ 25Þ
ðs2 þ 13:2s þ 173:5Þðs2 þ 111:8s þ 3450Þ

14. The response c(t) for a unit step input is found from

CðsÞ ¼ 24�040ðs þ 25Þ
sðs2 þ 13:2s þ 173:5Þðs2 þ 111:8s þ 3450Þ
¼ A0

s
þ A1

s þ 6:6� j11:4
þ A2

s þ 6:6þ j11:4

þ A3

s þ 55:9� j18
þ A4

s þ 55:9þ j18

The constants are

A0 ¼ 1:0 A1 ¼ 0:604ff�201:7� A3 ¼ 0:14ff�63:9�
Note that A0 must be exactly 1, since GðsÞ is Type 1 and the gain
of H ðsÞ is unity. It can also be obtained from Eq. (7.71) for
CðsÞ=RðsÞ in step 8. Inserting RðsÞ ¼ 1=s and finding the final
value gives cðtÞss ¼ 1:0:The response cðtÞ is

cðtÞ ¼ 1þ 1:21e�6:6t sinð11:4t � 111:7�Þ
þ 0:28e�55:9t sinð18t þ 26:1�Þ ð7:72Þ

A plot of cðtÞ is shown in Figs.7.19 and 7.26.
15. The solution of the root locus design problem by use of MATLAB

is presented in Sec.7.11.

7.11 EXAMPLE OF SECTION 7.10: MATLAB ROOT LOCUS

MATLAB provides a number of options for plotting the root locus [9,10].
A root locus plot is obtained using the rlocus command.The root locus version
of sisotool described in Appendix C allows a user to design compensators
and to adjust the gain on a root locus plot. To provide more efficient design,
the rloczeta function was written to calculate the gain necessary to yield
a specified closed-loop damping ratio z.The macro fom computes the closed-
loop figures of merit. Both of these commands are illustrated below.

% This example illustrates the rloczeta function which
% calculates the compensator gain required to yield a specified
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% damping ratio zeta
%
% Define a G, H and G*H for the example of section 7.10

G¼ tfð½2600�� ½1 100 2600 01�Þ % System¼ tfðnumerator� denominatorÞ

Transfer function:

2600
-------------------
s^3þ 100s^2þ 2600s

H ¼ tf([25], [1 25])

Transfer function:

25
------
sþ 25

oltf ¼ G � H % oltf ¼ GðsÞHðsÞ
Transfer function:

6500
-----------------------------
s^4þ 125s^3þ 5100s^2þ 65000s

%
% Extract the numerator and denominator polynomials from oltf
% (see Sect 4.18)
GHnum¼oltf.num{1}
GHnum ¼

0 0 0 0 65000

GHden¼oltf.den{1}
GHden ¼

1 125 5100 65000 0

%
% Select a desired damping ratio zeta and tolerance
zeta¼0.5;
tol¼le�12;

% The function
% [k, r]¼rloczeta (num,den,zeta,tol)
% Calculates the gain, k, which yields dominant closed-loop
% roots having a damping ratio given by zeta. Also returns
% all of the closed-loop roots.
%
[k,r]¼rloczeta (GHnum,GHden,zeta,tol)
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K ¼
9.2435

r ¼
�55.9022�18.0414i
�55.9022þ18.0414i
�6.5978�11.4277i
�6.5978þ11.4377i

%
% Calculate the damping ratio for each closed loop pole

zetas ¼ �real(r):=absðrÞ % := is element by element division

zetas ¼
0.9517
0.9517
0.5000
0.5000

%
% Plot the root locus

rlocus (oltf) % Alternatively rlocus (Ghnum,Ghden)
%
% Hold the plot and add the closed loop roots (Fig 7.18)

FIGURE 7.18 MATLAB root-locus plot corresponding to Fig. 7.17.
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hold on
rlocus (GHnum,GHden,k)
% Reshape the plot and make it square

axis([� 70 10 �40 40 ])

axis(0square0)

% Form the closed-loop transfer function
cltf¼feedback (k*G,H,-1) % Remember to include the gain k
Transfer function:

2:403e004sþ 6:008e005
----------------------------------------
s^4þ 125s^3þ 5100s^2þ 65000sþ 6:008e005

% Open a second figure window for the time response of Fig. 7.19
% with the command:
figure (2)
%
% The m-file fom.m was designed to compute the figures of merit
% Its input arguments are the numerator and denominator
% polynomials
%
fom(cltf.num{1},cltf.den{1})

Figures of merit for a unit step input

FIGURE 7.19 MATLAB time response plot corresponding to Eq. (7.72) and
Fig. 7.26.
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rise time ¼ 0:12

peak value ¼ 1:186

peak time ¼ 0:26

settling time ¼ 0:61

final value ¼ 1

7.12 ROOT LOCUS EXAMPLE WITH AN RH PLANE ZERO

Many aircraft flight control systems use an adjustable gain in the feedback
path. Also, the forward transfer function may be nonminimum phase (nmp;
see Sec. 8.11) and have a negative gain. This is illustrated by the control
system shown in Fig.7.20,where

GðsÞ ¼ �2ðs þ 6Þðs � 6Þ
sðs þ 3Þðs þ 4� j4Þðs þ 4þ j4Þ H ðsÞ ¼ Kh > 0

Thus the open-loop transfer function is

GðsÞH ðsÞ ¼ Kðs þ 6Þðs � 6Þ
sðs þ 3Þðs þ 4� j4Þðs þ 4þ j4Þ ð7:73Þ

where K ¼ �2Kh:The root-locus characteristics are summarized as follows:

1. GðsÞH ðsÞhas zeros located at s¼�6 andþ6.The zero at s¼ 6means
that this transfer function is nonminimum phase. The poles are
located at s¼ 0,�3,�4þ j4 and�4�j4.

2. There are four branches of the root locus.
3. For positive values of K, a branch of the root locus is located on the

positive real axis from s¼ 0 to s¼ 6.Thus,there is a positive real root
and the system is unstable. ForK < 0 (the values ofKh are positive),
the root locus must satisfy the 360� angle condition given in
Eq. (7.26). The root locus is shown in Fig. 7.21. This plot is readily
obtained using a CAD program.

4. The closed-loop transfer function is

CðsÞ
RðsÞ ¼

�2ðs þ 6Þðs � 6Þ
s4 þ 11s3 þ ð56þ KÞs2 þ 96s � 36K

ð7:74Þ

FIGURE 7.20 Nonunity-feedback control system.
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The Routhian array for the denominator polynomial shows that
the imaginary axis crossing occurs at s ¼ 
j2:954 for K ¼ �9:224:
Thus, the closed-loop system is stable for K > �9:224:

5. Using z ¼ 0:707 for selecting the dominant poles yields s1�2 ¼
�1:1806
 j1:1810 and s3�4 ¼ �4:3194
 j3:4347� with Kh ¼
1:18ðK ¼ �2:36Þ:The closed-loop transfer function is

CðsÞ
RðsÞ ¼

�2ðs þ 6Þðs � 6Þ
ðs þ 1:1806
 j1:1810Þðs þ 4:3194
 j3:4347Þ ð7:75Þ

6. The output response for a unit-step input is

cðtÞ ¼ 0:84782� 1:6978e�1:1806t sin ð1:181t þ 29:33�Þ
� 0:20346e�4:3194t sin ð3:437t þ 175:47�Þ ð7:76Þ

The step response for this system is plotted in Fig.7.22.Note that the
slight initial undershoot is due to the zero in the RHP.The figures of
merit are Mp ¼ 0:8873� tp ¼ 2:89s� ts ¼ 3:85s� and cð1Þ ¼ 0:8478:
Note that the forward transfer function GðsÞ is Type 1, but the
steady-state value of the output is not equal to the input because of
the nonunity feedback. Also note that the numerator of CðsÞ=RðsÞ is
the same as the numerator ofGðsÞ; thus, it is not affected by the value
selected for K.

7.13 PERFORMANCE CHARACTERISTICS

As pointed out early in this chapter, the root-locus method incorporates
the more desirable features of both the classical method and the steady-state
sinusoidal phasor analysis. In the example of Sec. 7.10 a direct relationship

FIGURE 7.21 Root locus for Eq. (7.73) for negative values of K.
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is noted between the root locus and the time solution.This section is devoted
to strengthening this relationship to enable the designer to synthesize and/or
compensate a system.

General Introduction

In review, consider a simple second-order systemwhose control ratio is

CðsÞ
RðsÞ ¼

K
s2 þ 2zons þ o2

n
ð7:77Þ

and whose transient component of the response to a step input is

cðtÞt ¼ C1e
s1t þ C2e

s2t ð7:78Þ
where, for z < 1,

s1�2 ¼ �zon 
 jon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
¼ s
 jod ð7:79Þ

Thus

cðtÞt ¼ Aestsin ðod t þ fÞ ð7:80Þ
Consider now a plot of the roots in the s plane and their correlation

with the transient solution in the time domain for a step input. Six cases
are illustrated in Fig. 7.23 for different values of damping, showing both
the locations of the roots and the corresponding transient plots. In the case
of z ¼ 0� the roots lie on the 
jo axis and the response has sustained

FIGURE 7.22 Step response for the closed-loop system given in Eq. (7.75).
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FIGURE 7.23 Plot of roots of a second-order characteristic equation in the s plane and their correlation to the transient solution in
the time domain for step input: (a) underdamped, stable, 0 < z < 1; (b) critically damped, stable, z ¼ 1; (c) real roots, overdamped,
stable, z > 1; (d) undamped, sustained oscillations, z ¼ 0; (e) real roots, unstable, z < �1; (f ) underdamped, unstable, 0 > z > �1:
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oscillations (Fig. 7.23d ). Those portions of the root locus that yield roots in
the RHP result in unstable operation (Fig. 7.23e and f ). Thus, the desirable
roots are on that portion of the root locus in the LHP. (As shown in Chap. 9,
the
jo axis of the splane corresponds to the�1þj0 point of theNyquist plot.)

Table 4.1 summarizes the information available from Fig. 7.23; i.e.,
it shows the correlation between the location of the closed-loop poles and
the corresponding transient component of the response. Thus, the value of
the root-locus method is that it is possible to determine all the forms of the
transient component of the response that a control systemmay have.

Plot of Characteristic Roots for 0< z < 1

The important desired roots lie in the region in which 0 < z < 1 (generally
between 0.4 and 0.8). In Fig.7.23a, the radius r from the origin to the root s1 is

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2
d1
þ s2

1� 2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2
nð1� z2Þ þ o2

nz
2

q
¼ on ð7:81Þ

and

cosZ ¼ �s1� 2

r








 ¼ zon

on
¼ z ð7:82Þ

or

Z ¼ cos�1 z ð7:83Þ
Based on the preceding equations, the constant-parameter loci

are drawn in Fig. 7.24. From Figs. 7.23 and 7.24 and Eqs. (7.81) to (7.83)

FIGURE 7.24 Constant-parameter curves on the s plane.
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the following characteristics are summarized for the s plane:

1. Horizontal lines represent lines of constant damped natural fre-
quency od :The closer these lines are to the real axis, the lower the
value of od : For roots lying on the real axis ðod ¼ 0Þ there is no
oscillation in the transient.

2. Vertical lines represent lines of constant damping or constant rate of
decay of the transient. The closer these lines (or the characteristic
root) are to the imaginary axis, the longer it takes for the transient
response to die out.

3. Circles about the origin are circles of constant undamped natural
frequencyon:Sinces

2 þ o2
d ¼ o2

n� the locus of the roots of constant
on is a circle in the s plane; that is, js1j ¼ js2j ¼ on:The smaller the
circles, the lower the value of on:

4. Radial lines passing through the origin with the angle Z are lines of
constant damping ratio z:The angle Z is measured clockwise from
the negative real axis for positive z� as shown in Figs.7.23a and 7.24.

Variation of Roots with z

Note in Fig.7.25 the following characteristics:

For z > 1� the roots s1�2 ¼ �zon 
 on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
are real.

For z ¼ 1� the roots s1�2 ¼ �zon are real and equal.
For z < 1� the roots s1�2 ¼ �zon 
 jon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
are complex conjugates.

For z ¼ 0� the roots s1�2 ¼ 
jon are imaginary.

FIGURE 7.25 Variation of roots of a simple second-order system for a constant on.
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Higher-Order Systems

Consider the control ratio of a system of order n given by

CðsÞ
RðsÞ ¼

PðsÞ
sn þ an�1sn�1 þ 	 	 	 þ a0

ð7:84Þ

In a system having one or more sets of complex-conjugate roots in the
characteristic equation, each quadratic factor is of the form

s2 þ 2zons þ o2
n ð7:85Þ

and the roots are

s1�2 ¼ s
 jod ð7:86Þ

The relationship developed for on and z earlier in this section apply
equally well for each complex-conjugate pair of roots of an nth-order system.
The distinction is that the dominant z and on apply for that pair of complex-
conjugate roots that lies closest to the imaginary axis. These values of
z and on are dominant because the corresponding transient term has the
longest settling time and the largest magnitude.Thus, the dominant values of
z and on are selected from the root locus for the desired response.Remember
that in selecting the values of the dominant z and on� the other roots are
automatically set. Depending on the location of the other roots, they modify
the solution obtained from the dominant roots.

In Example 1 of Sec. 7.10 the response cðtÞ with a step input given by
Eq. (7.72) is

cðtÞ ¼ 1þ 1:21e�6:6tsin ð11:4t � 111:7�Þ þ 0:28e�55:9t sin ð18t þ 26:1�Þ ð7:87Þ

Note that the transient term due to the roots of s ¼ �55:9
 j18 dies out
in approximately one-tenth the time of the transient term due to the dominant
roots s ¼ �6:6
 j11:4:Therefore, the solution can be approximated by the
simplified equation

cðtÞ � 1þ 1:21e�6:6t sin ð11:4t � 111:7�Þ ð7:88Þ
This expression is valid except for a short initial period of timewhile the other
transient term dies out. Equation (7.88) suffices if an approximate solution is
desired, i.e., for determining Mp� tp� and Ts, since the neglected term does not
appreciably affect these three quantities. In general, the designer can judge
from the location of the roots which ones may be neglected. Plots of cðtÞ
corresponding to Eqs. (7.87) and (7.88) are shown in Fig. 7.26. Since there is
little difference between the two curves, the system can be approximated as
a second-order system. The significant characteristics of the time response
areMp ¼ 1:19� tp ¼ 0:26s� ts ¼ 0:61s� and od � 11:4 rad=s:
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The transient response of any complex system, with the effect of all
the roots taken into account, can often be considered to be the result of an
equivalent second-order system.On this basis, it is possible to define effective
(or equivalent) values of z and on:Realize that in order to alter either effective
quantity, the location of one or more of the roots must be altered.

7.14 TRANSPORT LAG [7]

Some elements in control systems are characterized by dead time or transport
lag.This appears as a dead interval for which the output is delayed in response
to an input. Figure 7.27a shows the block diagram of a transport-lag element.
In Fig. 7.27b a typical resultant output eoðtÞ ¼ eiðt � tÞu�1ðt � tÞ is shown,
which has the same form as the input but is delayed by a time interval t:
Dead time is a nonlinear characteristic that can be represented precisely

FIGURE 7.26 Plot cðtÞ vs: t for Eqs. (7.87) and (7.88).

FIGURE 7.27 (a) Transport lag t; (b) time characteristic.
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in terms of the Laplace transform (see Sec. 4.4) as a transcendental function.
Thus,

EoðsÞ ¼ e�tsEiðsÞ ð7:89Þ
The transfer function of the transport-lag element,where s ¼ sþ jo� is

GtðsÞ ¼
EoðsÞ
EiðsÞ

¼ e�ts ¼ e�stff�ot ð7:90Þ

It has a negative angle that is directly proportional to the frequency.
The root locus for a system containing a transport lag is illustrated by

the following example [7].

GðsÞH ðsÞ ¼ Ke�t s

sðs � p1Þ
¼ Ke�ste�jo t

sðs � p1Þ
ð7:91Þ

For K > 0 the angle condition is

ffs þffs � p1 þffot ¼ ð1þ 2hÞ180� ð7:92Þ
The root locus for the system with transport lag is drawn in Fig. 7.28. The
magnitude condition used to calibrate the root locus is

K ¼ sj j 	 s � p1


 

est ð7:93Þ

The same system without transport lag has only two branches (see Fig. 7.2)
and is stable for all K > 0. The system with transport lag has an infinite
number of branches and the asymptotes are

o ¼ ð1þ 2hÞp
t

ð7:94Þ

where h ¼ 0�
 1�
 2� . . .. The values of K at the points where the branches
cross the imaginary axis are

K ¼ o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p21 þ o2

q
ð7:95Þ

The two branches closest to the origin thus have the largest influence on
system stability and are therefore the principal branches. The maximum
value of loop sensitivity K given by Eq. (7.95) is therefore determined by
the frequency o1 (shown in Fig. 7.28) that satisfies the angle condition
o1t ¼ tan�1 p1



 

=o1:

7.15 SYNTHESIS

The root-locus method lends itself very readily to the synthesis problem
because of the direct relationship between the frequency and the time

280 Chapter 7

Copyright © 2003 Marcel Dekker, Inc.



domains to the s domain.The desired response can be achieved by keeping in
mind the following five points:

1. First plot the root locus; then the locations of the dominant closed-
loop poles must be specified, based on the desired transient
response.

2. Use these guidelines for selecting the roots:
(a) Since the desired time response is often specified to have a

peak value Mp between 1.0 and 1.4, the locus has at least one
set of complex-conjugate poles.Often there is a pair of complex
poles near the imaginary axis that dominates the time response
of the system; if so, these poles are referred to as the dominant-
pole pair.

(b) To set the systemgain,anyof the following characteristicsmust
be specified for the dominant-pole pair: the damping ratio z�
the settling timeTs (for 2 percent: Ts ¼ 4=zonÞ� the undamped
natural frequency on� or the damped natural frequency od :
As previously determined (see Fig. 7.24), each of these factors
corresponds to either a line or a circle in the s domain.

FIGURE 7.28 Root locus for GðsÞHðsÞ ¼ Ke�ts

sðs� p1Þ.
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(c) When the line or circle corresponding to the given information
has been drawn, as stated in point 2b, its intersection with the
locus determines the dominant-pole pair and fixes the value of
the system gain. By applying the magnitude condition to this
point, the value of the gain required can be determined. Setting
the value of the gain to this value results in the transient-
response terms, corresponding to the dominant-pole pair,
having the desired characterizing form.

3. When the gain corresponding to the dominant roots has been deter-
mined, the remaining roots can be found by applying the magnitude
condition to each branch of the locus or by using a CAD program.
Once the value of the gain on the dominant branch is fixed, thus
fixing the dominant poles, the locations of all remaining roots on
the other branches are also fixed.

4. If the root locus does not yield the desired response, the locus
must be altered by compensation to achieve the desired results.
The subject of compensation in the s domain is discussed in
later chapters.

7.16 SUMMARY OF ROOT-LOCUS CONSTRUCTION RULES
FOR NEGATIVE FEEDBACK

RULE 1. The number of branches of the root locus is equal to the number
of poles of the open-loop transfer function.

RULE 2. For positive values of K, the root locus exists on those portions of
the real axis for which the total number of real poles and zeros to the right is an
odd number.For negative values ofK, the root locus exists on those portions of
the real axis for which the total number of real poles and zeros to the right is
an even number (including zero).

RULE 3. The root locus starts (K¼ 0) at the open-loop poles and terminates
ðK ¼ 
1Þ at the open-loop zeros or at infinity.
RULE 4. The angles of the asymptotes for those branches of the root locus
that end at infinity are determined by

g ¼ ð1þ 2hÞ180� for K > 0 or h360� for K < 0
[Number of poles of GðsÞH ðsÞ� � ½Number of zeros of GðsÞH ðsÞ�

RULE 5. The real-axis intercept of the asymptotes is

so ¼
Pn

c¼1 Reð pcÞ �
Pw

h¼1 ReðzhÞ
n� w
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RULE 6. The breakaway point for the locus between two poles on the
real axis (or the break-in point for the locus between two zeros on the real
axis) can be determined by taking the derivative of the loop sensitivity Kwith
respect to s. Equate this derivative to zero and find the roots of the resulting
equation. The root that occurs between the poles (or the zeros) is the break-
away (or break-in) point.

RULE 7. For K > 0 the angle of departure from a complex pole is equal to
180� minus the sum of the angles from the other poles plus the sum of the
angles from all the zeros. Any of these angles may be positive or negative.
For K < 0 the departure angle is 180� from that obtained for K > 0.

For K > 0 the angle of approach to a complex zero is equal to the sum
of the angles from all the poles minus the sum of the angles from the other
zeros minus 180�. For K < 0 the approach angle is 180� from that obtained
from K > 0.

RULE 8. The imaginary-axis crossing of the root locus can be determined
by setting up the Routhian array from the closed-loop characteristic
polynomial. Equate the s1 row to zero and the auxiliary equation from the s2

row.The roots of the auxiliary equation are the imaginary-axis crossover points.

RULE 9. The selection of the dominant roots of the characteristic equation
is based on the specifications that give the required system performance;
i.e., it is possible to evaluate s�od � and z from Eqs. (3.60), (3.61), and (3.64),
which in turn determine the location of the desired dominant roots.The loop
sensitivity for these roots is determined by applying the magnitude condition.
The remaining roots are then determined to satisfy the same magnitude
condition.

RULE 10. For those open-loop transfer functions for which w � n� 2� the
sum of the closed-loop roots is equal to the sum of the open-loop poles.Thus,
once the dominant roots have been located, the rule

Xn
j¼1

pj ¼
Xn
j¼1

rj

can be used to find one real or two complex roots. Factoring known roots
from the characteristic equation can simplify the work of finding the remain-
ing roots.

A root-locus CAD program (see Appendix C) will produce an accurate
calibrated root locus. This considerably simplifies the work required for
the system design. By specifying z for the dominant roots or the gain Km�
a computer program can determine all the roots of the characteristic
equation.
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7.17 SUMMARY

In this chapter the root-locus method is developed to solve graphically for the
roots of the characteristic equation. This method can be extended to solving
for the roots of any polynomial. Any polynomial can be rearranged and
put into the mathematical from of a ratio of factored polynomials that is
equal to plus or minus unity, i.e.,

N ðsÞ
DðsÞ ¼ 
1

Once this form has been obtained, the procedures given in this chapter can be
utilized to locate the roots of the polynomial.

The root locus permits an analysis of the performance of feedback
systems and provides a basis for selecting the gain in order to best achieve
the performance specifications. Since the closed-loop poles are obtained
explicitly, the form of the time response is directly available. CAD programs
are available for obtaining cðtÞ vs. t:Widely used CAD packages for control
systems simplify considerably the analysis and design process. They provide
information including root-locus plots, roots of interest for a given gain,
closed-loop transfer functions, and the time response with a specified input.
If the performance specifications cannot be met, the root locus can be
analyzed to determine the appropriate compensation to yield the desired
results.This is covered in Chap.10.
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8

Frequency Response

8.1 INTRODUCTION

The frequency response [1] method of analysis and design is a powerful tech-
nique for the comprehensive study of a system by conventional methods.
Performance requirements can be readily expressed in terms of the frequency
response as an alternative to the s plane analysis using the root locus. Since
noise,which is always present in any system, can result in poor overall perfor-
mance, the frequency-response characteristics of a system permit evaluation
of the effect of noise. The design of a passband for the system response may
result in excluding the noise and therefore improving the system performance
as long as the dynamic tracking performance specifications are met. The
frequency response is also useful in situations for which the transfer functions
of some or all of the components in a system are unknown. The frequency
response can be determined experimentally for these situations, and an
approximate expression for the transfer function can be obtained from the
graphical plot of the experimental data. The frequency-response method is
also a very powerful method for analyzing and designing a robust multi-
input/multi-output (MIMO) [2] system with structured uncertain plant para-
meters. In this chapter two graphical representations of transfer functions
are presented: the logarithmic plot and the polar plot. These plots are used
to develop Nyquist’s stability criterion [1,3^5] and closed-loop design
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procedures. The plots are also readily obtained by use of computer-aided
design (CAD) packages likeMATLABorTOTAL-PC (see Ref.6).The closed-
loop feedback response M( jo) is obtained as a function of the open-loop
transfer function G( jo). Design methods for adjusting the open-loop gain
are developed and demonstrated. They are based on the polar plot of G( jo)
and the Nicholas plot. Both methods achieve a peak valueMm and a resonant
frequency om of the closed-loop frequency response. A correlation between
these frequency-response characteristics and the time response is developed.

Design of control systems by state variable technique is often based
upon achieving an optimum performance according to a specified perfor-
mance index PI; for example, minimizing the integral of squared error (ISE):
PI¼ R10 e tð Þ2dt, where e� r� c. Both frequency-response and root-locus
methods are valuable complementary tools for many of the techniques of
modern control theory.

8.2 CORRELATION OF THE SINUSOIDAL AND TIME
RESPONSE [3]

As pointed out earlier, solving for c(t) by the classical method is laborious and
impractical for synthesis purposes, especially when the input is not a simple
analytical function. The use of Laplace transform theory lessens the work
involved and permits the engineer to synthesize and improve a system.
The root-locus method illustrates this fact. The advantages of the graphical
representations in the frequency domain of the transfer functions are
developed in the following pages.

Once the frequency response of a system has been determined, the time
response can be determined by inverting the corresponding Fourier trans-
form. The behavior in the frequency domain for a given driving function r(t)
can be determined by the Fourier transform as

R joð Þ ¼
Z 1
�1

r tð Þe�jotdt ð8:1Þ

For a given control system the frequency response of the controlled variable is

C joð Þ ¼ G joð Þ
1þG joð ÞH joð ÞR joð Þ ð8:2Þ

By use of the inverse Fourier transform, which is much used in practice, the
controlled variable as a function of time is

cðtÞ ¼ 1
2p

Z 1
�1

C joð Þe jotdo ð8:3Þ
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If the design engineer cannot evaluate Eq. (8.3) by reference to a table of
definite integrals, this equation can be evaluated by numerical or graphical
integration.This is necessary if C joð Þ is available only as a curve and cannot
be simply expressed in analytical form, as is often the case. The procedure is
described in several books [14]. In addition, methods have been developed
based on the Fourier transform and a step input signal, relating C joð Þ
qualitatively to the time solution without actually taking the inverse Fourier
transform. These methods permit the engineer to make an approximate
determination of the system response through the interpretation of graphical
plots in the frequency domain. This makes the design and improvement of
feedback systems possible with a minimum effort and is emphasized in this
chapter.

Section 4.12 shows that the frequency response is a function of the pole-
zero pattern in the s plane. It is therefore related to the time response of the
system. Two features of the frequency response are the maximum value Mm

and the resonant frequency om. Section 9.3 describes the qualitative relation-
ship between the time response and the valuesMm and om. Since the location
of the closed-loop poles can be determined from the root locus, there is a
direct relationship between the root-locus and frequency-response methods.

8.3 FREQUENCY-RESPONSE CURVES

The frequency domain plots that have found great use in graphical analysis in
the design of feedback control systems belong to two categories. The first
category is the plot of the magnitude of the output-input ratio vs. frequency
in rectangular coordinates, as illustrated in Sec. 4.12. In logarithmic coordi-
nates these are known as Bode plots. Associated with this plot is a second plot
of the corresponding phase angle vs. frequency. In the second category the
output-input ratio may be plotted in polar coordinates with frequency as a
parameter. There are two types of polar plots, direct and inverse. Polar plots
are generally used only for the open-loop response and are commonly referred
to as Nyquist Plots [8].The plots can be obtained experimentally or by a CAD
package (see Appendixes C and D).These programs assist in obtaining plots
and the designs developed in this text.When a CAD program is not available,
the Bode plots are easily obtained by a graphical procedure. The other plots
can then be obtained from the Bode plots.

For a given sinusoidal input signal, the input and steady-state output are
of the following forms:

r tð Þ ¼ R sin ot ð8:4Þ

c tð Þ ¼ C sin ot þ að Þ ð8:5Þ
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The closed-loop frequency response is given by

C joð Þ
R joð Þ ¼

G joð Þ
1þG joð ÞH joð Þ ¼ M oð ÞffaðoÞ ð8:6Þ

For each value of frequency, Eq. (8.6) yields a phasor quantity whose magni-
tude isM and whose phase angle a is the angle between Cð joÞ and Rð joÞ.

An ideal system may be defined as one where a¼ 0� and Rð joÞ ¼C joð Þ
for 0<o<1. (See curves 1 in Fig. 8.1.) However, this definition implies an
instantaneous transfer of energy from the input to the output. Such a transfer
cannot be achieved in practice since any physical system has some energy
dissipation and some energy-storage elements. Curves 2 and 3 in Fig. 8.1
represent the frequency responses of practical control systems.The passband,
or bandwidth, of the frequency response is defined as the range of frequencies
from 0 to the frequencyob; whereM¼ 0.707 of the value ato¼ 0.However, the
frequencyom is more easily obtained thanob.The valuesMm andom are often
used as figures of merit (FOM).

In any system the input signal may contain spurious noise signals in
addition to the true signal input, or there may be sources of noise within the
closed-loop system. This noise is generally in a band of frequencies above
the dominant frequency band of the true signal. Thus, to reproduce the true
signal and attenuate the noise, feedback control systems are designed to have
a definite passband. In certain cases the noise frequencymay exist in the same
frequency band as the true signal.When this occurs, the problemof estimating

FIGURE 8.1 Frequency-response characteristics of C( jo)/R( jo) in rectangular
coordinates.
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the desired singal is more complicated. Therefore, even if the ideal system
were possible, it would not be desirable.

8.4 BODE PLOTS (LOGARITHMIC PLOTS)

The plotting of the frequency transfer function can be systematized and
simplified by using logarithmic plots. The use of semilog paper eliminates
the need to take logarithms of very many numbers and also expands the
low-frequency range, which is of primary importance. The advantages of
logarithmic plots are that (1) the mathematical operations of multiplication
and division are transformed to addition and subtraction and (2) the work of
obtaining the transfer function is largely graphical instead of analytical.
The basic factors of the transfer function fall into three categories, and these
can easily be plotted by means of straight-line asymptotic approximations.

In preliminary design studies the straight-line approximations are used
to obtain approximate performance characteristics very quickly or to check
values obtained from the computer. As the design becomes more firmly
specified, the straight-line curves can be corrected for greater accuracy.
From these logarithmic plots enough data in the frequency range of concern
can readily be obtained to determine the corresponding polar plots.

Some basic definitions of logarithmic terms follow.

Logarithm. The logarithm of a complex number is itself a complex number.
The abbreviation ‘‘log’’ is used to indicate the logarithm to the base10:

log G joð Þ

 

e jf oð Þ ¼ log G joð Þ

 

þ log e jf oð Þ

¼ log G joð Þ

 

þ j0:434f oð Þ ð8:7Þ

The real part is equal to the logarithm of the magnitude, log jG( jo)j, and the
imaginary part is proportional to the angle, 0.434f(o). In the rest of this book
the factor 0.434 is omitted and only the angle f(o) is used.

Decibel. In feedback-systemwork the unit commonly used for the logarithm
of themagnitude is the decibel (dB).When logarithms of transfer functions are
used, the input and output variables are not necessarily in the same units;
e.g., the output may be speed in radians per second, and the input may be
voltage in volts.

Log magnitude. The logarithm of the magnitude of a transfer functions
G( jo) expressed in decibel is

20 log G joð Þ

 

 dB
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This quantity is called the log magnitude, abbreviated Lm.Thus

LmG joð Þ ¼ 20 log Gð joÞ

 

 dB ð8:8Þ
Since the transfer function is a function of frequency, the Lm is also a function
of frequency.

Octave and Decade. Twounits used to express frequency bands of frequency
ratios are the octave and the decade. An octave is a frequency band from f1 to
f2,where f2/f1¼2.Thus, the frequency band from1to 2 Hz is1octave in width,
and the frequency band from17.4 to 34.8Hz is also1octave inwidth.Note that
1 octave is not a fixed frequency bandwidth but depends on the frequency
range being considered. The number of octaves in the frequency range from
f1 to f2 is

log f2=f1ð Þ
log 2

¼ 3:32 log
f2
f1

octaves ð8:9Þ

There is an increase of 1 decade from f1 to f2 when f2=f1 ¼ 10. The
frequency band from 1 to 10Hz or from 2.5 to 25 Hz is 1 decade in width.
The number of decades from f1 to f2 is given by

log
f2
f1

decades ð8:10Þ

The dBvalues of somecommon numbers are given inTable 8.1.Note that
the reciprocals of numbers differ only in sign.Thus, the dB value of 2 isþ6 dB
and the dB value of 1

2 is�6 dB.Two properties are illustrated inTable 8.1.

Property 1. As a number doubles, the decibel value increases by 6 dB. The
number 2.70 is twice as big as 1.35, and its decibel value is 6 dB more. The
number 200 is twice as big as100, and its decibel value is 6 dB greater.

Property 2. As a number increases by a factor of 10, the decibel value
increases by 20 dB.The number 100 is 10 times as large as the number 10, and
its decibel value is 20 dB more. The number 200 is 100 times larges than the
number 2, and its decibel value is 40 dB greater.

TABLE 8.1 Decibel Values of Some Common Numbers

Number Decibels Number Decibels

0.01 �40 2.0 6
0.1 �20 10.0 20
0.5 �6 100.0 40
1.0 0 200.0 46
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8.5 GENERAL FREQUENCY-TRANSFER-FUNCTION
RELATIONSHIPS

The frequency transfer function canbewritten in generalized formas the ratio
of polynomials:

G joð Þ ¼ Km 1þ joT1ð Þ 1þ joT2ð Þr 	 	 	
joð Þm 1þ joTað Þ½1þ 2z=onð Þjoþ 1=o2

n
� �

joð Þ2� 	 	 	
¼ KmG

0 joð Þ ð8:11Þ
where Km is the gain constant. The logarithm of the transfer function is a
complex quantity; the real portion is proportional to the log of the magnitude,
and the complex portion is proportional to the angle.Two separate equations
are written, one for the log magnitude and one for the angle, respectively:

LmG joð Þ ¼ LmKm þ Lm 1þ joT1ð Þ þ r Lm 1þ joT2ð Þ þ 	 	 	 �mLm jo

� Lm 1þ joTað Þ � Lm 1þ 2z
on

joþ 1
o2
n

joð Þ2
� �

� 	 	 	 ð8:12Þ

ffG joð Þ ¼ ffKm þff1þ joT1 þ rff1þ joT2 þ 	 	 	 �mffjo
�ff1þ joTa �ff1þ 2z

on
joþ 1

o2
n

joð Þ2� 	 	 	
ð8:13Þ

The angle equation may be written as

ffG joð Þ ¼ ffKm þ tan�1 oT1 þ r tan�1 oT2 þ 	 	 	 �m90�

� tan�1 oTa � tan�1
2zo=on

1� o2=o2
n
� 	 	 	 ð8:14Þ

The gain Km is a real number but may be positive or negative; therefore, its
angle is correspondingly 0� or 180�. Unless otherwise indicated, a positive
value of gain is assumed in this book. Both the log magnitude and the angle
given by these equations are functions of frequency.When the log magnitude
and the angle are plotted as functions of the log of frequency, the resulting pair
of curves are referred to as the Bode plots or the log magnitude diagram and
phase diagram. Equations (8.12) and (8.13) show that the resultant curves are
obtained by the addition and subtractions of the corresponding individual
terms in the transfer function equation.The two curves can be combined into
a single curve of log magnitude vs. angle, with frequency o as a parameter.
This curve, called the Nichols chart or the log magnitude^angle diagram, or
the corresponding Nyquist polar plot, is used for the quantitative design of
the feedback system to meet specifications of required performance.
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8.6 DRAWING THE BODE PLOTS

The properties of frequency- response plots are presented in this section,
but the data for these plots usually are obtained from a CAD program. The
generalized form of the transfer function as given by Eq. (8.11) shows that the
numerator and denominator have four basic types of factors:

Km ð8:15Þ
joð Þ
m ð8:16Þ
ð1þ joT Þ
r ð8:17Þ

1þ 2z
on

joþ 1
o2
n
ð joÞ2

� �
p
ð8:18Þ

Each of these terms except Km may appear raised to an integral power other
than1.The curves of Lmand angle vs. the log frequency can easily be drawn for
each factor. Then these curves for each factor can be added together graphi-
cally to get the curves for the complete transfer function. The procedure can
be further simplified by using asymptotic approximations to these curves, as
shown in the following pages.

Constants

Since the constantKm is frequency-invariant, the plot of

Lm Km ¼ 20 logKm dB

is a horizontal straight line.The constant raises or lowers the Lm curve of the
complete transfer function by a fixed amount. The angle, of course, is zero as
long asKm is positive.

ju Factors

The factor jo appearing in the denominator has a log magnitude

Lm ð joÞ�1 ¼ 20 log ð joÞ�1

 

 ¼ �20 logo ð8:19Þ
When plotted against logo, this curve is a straight line with a negative slope of
6 dB/octave or 20 dB/decade. Values of this function can be obtained from
Table 8.1 for several values of o.The angle is constant and equal to�90�.

When the factor jo appears in the numerator, the Lm is

Lm ð joÞ ¼ 20 log jo


 

 ¼ 20 logo ð8:20Þ

This curve is a straight line with a positive slope of 6 dB/octave or 20 dB/
decade.The angle is constant and equal to þ 90�. Notice that the only differ-
ence between the curves for jo and for 1/jo is a change in the sign of the slope
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of the Lm and a change in the sign of the angle. Both curves go through the
point 0 dB at o¼1.

For the factor ( jo)
m the Lm curve has a slope of 
 6m dB/octave
or
 20m dB/decade, and the angel is constant and equal to
m 90�.

1Q juT Factors

The factor1þjoT appearing in the denominator has a log magnitude

Lm 1þ joTð Þ�1¼ 20 log 1þ joT


 

�1¼ �20 log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ o2T 2

p
ð8:21Þ

For very small values of o, that is oT � 1,

Lm ð1þ joT Þ�1 � log 1 ¼ 0 dB ð8:22Þ
Thus, the plot of the Lm at small frequencies is the 0-dB line. For every large
values of o, that is, oT � 1,

Lm ð1þ joT Þ�1 � 20 log j joT j�1 ¼ �20 logoT ð8:23Þ
The value of Eq. (8.23) at o ¼ 1=T is 0. For values of o > 1=T this function is
a straight line with a negative slope of 6 dB/octave.Therefore, the asymptotes
of the plot of Lm ð1þ joT Þ�1 are two straight lines, one of zero slope below
o ¼ 1=Tand one of �6 dB/octave slope above o ¼ 1=T . These asymptotes
are drawn in Fig. 8.2.

FIGURE 8.2 Log magnitude and phase diagram for 1þ joTð Þ�1¼ ½1þ j o=ocfð Þ��1.
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The frequency at which the asymptotes to the log magnitude curve interesect
is defined as the corner frequency ocf. The value ocf ¼ 1=T is the corner
frequency for the function ð1þ joT Þ
r ¼ ð1þ jo=ocf Þ
r.

The exact values of Lm ð1þ joT Þ�1 are given in Table 8.2 for several
frequencies in the range a decade above and below the corner frequency.
The exact curve is also drawn in Fig. 8.2. The error, in dB, between the exact
curve and the asymptotes is approximately as follows:

1. At the corner frequency: 3 dB
2. One octave above and below the corner frequency:1dB
3. Two octaves from the corner frequency: 0.26 dB

Frequently the preliminary design studies are made by using the asymp-
totes only. The correction to the straight-line approximation to yield the true
Lmcurve is shown in Fig.8.3.Formore exact studies the corrections are put in
at the corner frequency and at1octave above and below the corner frequency,
and the new curve is drawn with a French curve. For a more accurate curve a
CAD program should be used.

The phase angle curve for this function is also plotted in Fig. 8.2.
At zero frequency the angle is 0�; at the corner frequency o¼ocf the
angle is �45�; and at infinite frequency the angle is �90�. The angle curve
is symmetrical about the corner-frequency value when plotted against
log (o/ocf ) or log o. Since the abscissa of the curves in Fig. 8.2 is o/ocf, the
shapes of the angle and Lm curves are independent of the time constant T.
Thus, when the curves are plotted with the abscissa in terms of o, changing
T just ‘‘slides’’ the Lm and the angle curves left or right so that the �3 dB
and the �45�points occur at the frequency o¼ocf.

TABLE 8.2 Values of Lm (1þ joT)� 1 for Several
Frequencies

o/ocf Exact value, dB
Value of the
asymptote, dB Error, dB

0.1 �0.04 0 �0.04
0.25 �0.26 0 �0.26
0.5 �0.97 0 �0.97
0.76 �2.00 0 �2.00
1 �3.01 0 �3.01
1.31 �4.35 �2.35 �2.00
2 �6.99 �6.02 �0.97
4 �12.30 �12.04 �0.26
10 �20.04 �20.0 �0.04
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For preliminary design studies, straight-line approximations of the
phase curve can be used.The approximation is a straight line drawn through
the following three points:

The maximum error resulting from this approximation is about 
 6�. For
greater accuracy, a smooth curve is drawn through the points given in
Table 8.3.

The factor1þjoT appearing in the numerator has the log magnitude

Lm 1þ joTð Þ ¼ 20 log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ o2T 2

p
This is the same function as its inverse Lm (1þjoT )�1 except that it is

positive.The corner frequency is the same, and the angle varies from 0 to 90�

as the frequency increases from zero to infinity.The Lm and angle curves for
the function 1þjoT are symmetrical about the abscissa to the curves for
(1þjoT)�1.

o/ocf 0.1 1.0 10

Angle 0� �45� �90�

FIGURE 8.3 Log magnitude correction for 1þ joTð Þ
1

TABLE 8.3 Angles of (1þ jo/ocf)
�1

for Key Frequency Points

o/ocf Angle, deg

0.1 �5.7
0.5 �26.6
1.0 �45.0
2.0 �63.4
10.0 �84.3
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Quadratic Factors

Quadratic factors in the denominator of the transfer function have the form

1þ 2z
on

joþ 1
o2
n

joð Þ2
� ��1

ð8:24Þ

For z>1 the quadratic can be factored into two first-order factors with real
zeros that can be plotted in the manner shown previously. But for z<1
Eq. (8.24) contains conjugate-complex factors, and the entire quadratic is
plotted without factoring:

Lm 1þ 2z
on

joþ > 1
o2
n

joð Þ2
� ��1

¼ �20 log 1� o2

o2
n

 !2

þ 2zo
on

� �2
2
4

3
5

1=2

ð8:25Þ

Angle 1þ 2z
on

joþ 1
o2
n

joð Þ2
� ��1

¼ � tan�1
2zo=on

1� o2=o2
n

ð8:26Þ

From Eq. (8.25) it is seen that for every small values of o the low-
frequency asymptote is represented by Lm¼ 0 dB. For every high values of
frequency, the Lm is approximately

�20 log
o2

o2
n
¼ �40 log o

on

and the high-frequency asymptote has a slope of �40 dB/decade.The asymp-
totes cross at the corner frequency ocf¼on.

From Eq. (8.25) it is seen that a resonant condition exists in the vicinity
of o¼on, where the peak value of the Lm is greater than 0 dB. Therefore,
there may be a substantial deviation of the Lm curve from the straight-line
asymptotes, depending on the value of z. A family of curves for several values
of z<1 is plotted in Fig. 8.4. For the appropriate z the curve can be drawn by
selecting sufficient points from Fig. 8.4 or computed from Eq. (8.25).

The phase-angle curve for this function also varies with z. At zero
frequency the angle is 0�, at the corner frequency the angle is �90�, and at
infinite frequency the angle is �180�. A family of curves for various values of
z< 1is plotted in Fig.8.4.Enough values to draw the appropriate curve can be
taken from Fig. 8.4 or computed from Eq. (8.26).When the quadratic factor
appears in the numerator, the magnitude of the Lm and phase angle are the
same as those in Fig. 8.4 except that they are changed in sign.

The Lm[1þj2zo/onþ ( jo/on)
2]�1 with z< 0.707 has a peak value.

The magnitude of this peak value and the frequency at which it occurs are
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important terms.These values, given earlier in Sec.4.12 andderived in Sec.9.3,
are repeated here:

Mm ¼
1

2z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p ð8:27Þ

om ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2z2

q
ð8:28Þ

Note that the peak valueMm depends only on the damping ratio z. Since
Eq. (8.28) is meaningful only for real values of om, the curve of M vs. o has

FIGURE 8.4 Log magnitude and phase diagram for [1þ j 2zo/onþ ( jo/on)
2]�1.
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a peak value greater than unity only for z< 0.707.The frequency at which the
peak value occurs depends onboth the damping ratio zand the undamped nat-
ural frequencyon.This information isusedwhenadjusting a control system for
good response characteristics.These characteristics are discussed inChap.9.

The discussion thus far has dealt with poles and zeros that are located in
the left-half (LH) s plane.The Lm curves for poles and zeros lying in the right-
half (RH) s plane are the same as those for poles and zeros located in the LH s
plane. However, the angle curves are different. For example, the angle for the
factor (1�joT) varies from 0 to � 90� as o varies from zero to infinity. Also,
if z is negative, the quadratic factor of expression (8.24) contains RH s plane
poles or zeros. Its angle varies from �360� at o¼ 0 to �180� at o¼1. This
information can be obtained from the pole-zero diagram discussed in Sec.
4.12, with all angles measured in a counterclockwise (ccw) direction. Some
CAD packages do not consistently use a ccw measurement direction and
thus yield inaccurate angle values.

8.7 EXAMPLE OF DRAWING A BODE PLOT

Figure 8.5 is the block diagram of a feedback control system with unity feed-
back. In this section the Lm and phase diagram is drawn in a systematic
manner for the open-loop transfer function of this system. The Lm curve is
drawn both for the straight-line approximation and for the exact curve.Table
8.4 lists the pertinent characteristics for each factor.The Lm asymptotes and
angle curves for each factor are shown in Figs. 8.6 and 8.7, respectively. They
are added algebraically to obtain the composite curve. The composite Lm
curve using straight-line approximations is drawn directly, as outlined below.

Step 1. At frequencies less than o1, the first corner frequency, only the
factors Lm 4 and Lm( jo)�1 are effective. All the other factors have
zero value. At o1, Lm 4¼12 dB and Lm( jo1)

�1¼6 dB; thus, at this
frequency the composite curve has the value of 18 dB. Below o1

the composite curve has a slope of �20 dB/decade because of the
Lm ( jo)�1 term.

Step 2. Above o1, the factor Lm (1þj2o)�1 has a slope of ^20 dB/decade
and must be added to the terms in step 1.When the slopes are added,

FIGURE 8.5 Block diagram of a control system with unity feedback.
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FIGURE 8.6 Log magnitude curve for

G joð Þ ¼ 4 1þ j0:5oð Þ
jo 1þ j2oð Þ � ½1þ j0:05oþ j0:125oð Þ2� :

TABLE 8.4 Characteristics of Log Magnitude and Angle Diagrams for Various
Factors

Factor
Corner

frequency, ocf Log magnitude
Angle
characteristics

4 None Constant magnitude of
þ 12 dB

Constant 0�

( jo)�1 None Constant slope
of –20 dB/decade
(0 dB at o¼ 1)

Constant �90�

(1þ j 2o)�1 o1¼ 0.5 0 slope below corner frequency;
�20 dB/decade slope above
corner frequency. (18 dB at o1)

Varies from
0 to �90�

1þ j 0.5o o2¼ 2.0 0 slope below corner frequency;
þ 20 dB/decade slope above corner
frequency. (�6 dB at o2)

Varies from
0 to þ 90�

[1þ j 0.05oþ
( j 0.125o)2]�1

z¼ 0.2
on¼ 8

o3¼ 8.0 0 slope below corner frequency;
�40 dB/decade slope above corner
frequency. (�18 dB at o3)

Varies from
0 to �180�
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the composite curve has a total slope of ^40 dB/decade in the fre-
quency band from o1 to o2. Since this bandwidth is 2 octaves, the
value of the composite curve at o2 is ^6 dB.

Step 3. Above o2, the numerator factor Lm (1þj0.5o) is effective. This
factor has a slope of þ 20 dB/decade above o2 and must be added to
obtain the composite curve. The composite curve now has a total
slope of ^20 dB/decade in the frequency band from o2 to o3. The
bandwidth from o2 to o3 is 2 octaves; therefore, the value of the com-
posite curve at o3 is ^18 dB.

Step 4. Above o3 the last term Lm [1þj0.05oþ ( j0.125o)2]�1 must be
added. This factor has a slope of ^40 dB/decade; therefore, the total
slope of the composite curve above o3 is ^60 dB/decade.

Step 5.Once the asymptotic plot of Lm G( jo) has been drawn, the cor-
rections can be added if desired. The corrections at each corner fre-
quency and at an octave above and below the corner frequency are
usually sufficient. For first-order terms the corrections are 
 3 dB at
the corner frequencies and 
1dB at an octave above and below the
corner frequency. The values for quadratic terms can be obtained
from Fig. 8.4 since they are a function of z. If the correction curve for
the quadratic factor is not available, the correction at the frequencies
o¼on and o¼ 0.707on can easily be calculated from Eq. (8.25).The
correction at om can also be obtained using Eqs. (8.27 and (8.28).

FIGURE 8.7 Phase-angle curve for

G joð Þ ¼ 4 1þ j0:5oð Þ
jo 1þ j2oð Þ½1þ j0:05oþ j0:125oð Þ2�
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The corrected Lm curves for each factor and for the composite curve
are shown in Fig. 8.6.

Determination of the phase-angle curve of G( jo) can be simplified by
using the following procedure.

1. For the ( jo)�m term, draw a line at the angle of (�m)90�.
2. For each (1þjoT)
 1 term, locate the angles fromTable 8.4 at the

corner frequency, an octave above and an octave below the corner
frequency, and a decade above and below the corner frequency.
Then draw a curve through these points for each (1þjoT )
 1term.

3. For each1þj2zo/onþ ( jo/on)
2 term:

(a) Locate the 
 90�point at the corner frequency o¼on.
(b) FromFig.8.4, for the respective z,obtain a few points to draw the

phase plot for each termwith the aid of a French curve.The angle
at o¼ 0.707on may be sufficient and can be evaluated easily
from Eq. (8.26) as tan�1 2.828z.

4. Once the phase plot of each termof G( jo) has been drawn, the com-
posite phase plot of G( jo) is determined by adding the individual
phase curves.
(a) Use the line respresenting the angle equal to

fflimo!0
G joð Þ ¼ �mð Þ90�

as the base line,wherem is the system type. Add or subtract the
angles of each factor from this reference line.

(b) At a particular frequency on the graph, measure the angle for
each single-order and quadratic factor. Add and/or subtract
them from the base line until all terms have been accounted for.
The number of frequency points used is determined by the
desired accuracy of the phase plots.

(c) At o¼1 the phase is 90� times the difference of the orders of
the numerator and denominator [� (n�o )90�].

The characteristics of the log magnitude-angle diagram for this example are
described in Sec. 8.18. Both the curves obtained from the asymptotes and the
exact plots are shown in Fig. 8.6 and 8.7. The data for this diagram can be
obtained fromMATLAB.

8.8 GENERATION OF MATLAB BODE PLOTS

Accurate plots for LmG( jo) andffGð joÞ can be obtained by usingMATLAB
(see Fig.8.8).TheMATLAB commands shown below are used to obtain Bode
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plots for the transfer function.

G sð Þ ¼ 4 1þ j0:5oð Þ
jo 1þ j2oð Þ½1þ j0:05oþ j0:125oð Þ2 ð8:29Þ

The figure format and layout is adjusted within the figure window. Further
details of a frequency response m-file are shown in Sec. 9.9 and App.C.

num¼4*[.5 1]
den¼conv ([1 0], conv ([2 1], [.125^2 .05 1]))
bode (num, den)

8.9 SYSTEM TYPE AND GAIN AS RELATED TO LOG
MAGNITUDE CURVES

The steady-state error of a closed-loop system depends on the system type and
the gain.The system error coefficients are determined by these two character-
istics, as noted inChap.6.For any givenLmcurve the system type and gain can
be determined. Also,with the transfer function given so that the system type
and gain are known,they can expedite drawing theLmcurve.This is described
forType 0,1, and 2 systems.

FIGURE 8.8 MATLAB Bode plots corresponding to Fig. 8.6 and Fig. 8.7.
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Type 0 Systems

A first-orderType 0 system has a transfer function of the form

G joð Þ ¼ K0

1þ joTa

At low frequencies, o < 1=Ta� Lm Gð joÞ � 20 logK0, which is a constant.
The slope of the Lm curve is zero below the corner frequency o1¼1/Ta
and ^20 dB/decade above the corner frequency. The Lm curve is shown in
Fig. 8.9.

For aType 0 system the characteristics are as follows:

1.The slope at low frequencies is zero.
2.The magnitude at low frequencies is 20 logK0.
3.The gain K0 is the steady-state step error coefficient.

Type 1 System

A second-orderType1system has a transfer function of the form

G joð Þ ¼ K1

jo 1þ joTað Þ
At low frequencies, o<1/Ta, Lm G( jo)� (Lm (K1/jo)¼LmK1�Lm jo,
which has a slope of ^20 dB/decade. At o¼K1, Lm (K1/jo)¼ 0. If the corner
frequency o1¼1/Ta is greater than K1, the low-frequency portion of the curve
of slope�20 dB/decade crosses the 0-dB axis at a value of ox¼K1, as shown in
Fig. 8.10a. If the corner frequency is less than K1, the low-frequency portion of
the curve of slope ^20 dB/decade may be extended until it does cross the 0-dB
axis.The value of the frequency at which the extension crosses the 0-dB axis is
ox¼K1. In other words, the plot Lm (K1=jo) crosses the 0-dB value at
ox ¼ K1, as illustrated in Fig. 8.10b.

At o¼1, Lm jo¼ 0; therefore, Lm (K1/jo)o¼ 1¼20 logK1. For Ta<1
this value is a point on the slope of ^20 dB/decade. ForTa>1 this value is a
point on the extension of the initial slope, as shown inFig.8.10b.The frequency
ox is smaller or larger than unity according asK1is smaller or larger thanunity.

FIGURE 8.9 Log magnitude plot for G(jo)¼K0/(1þ joTa).
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For aType1 system the characteristics are as follows:

1. The slope at low frequencies is ^20 dB/decade.
2. The intercept of the low-frequency slope of ^20 dB/decade (or its

extension) with the 0-dB axis occurs at the frequency ox, where
ox¼K1.

3. The value of the low-frequency slope of ^20 dB/decade (or its exten-
sion) at the frequency o¼1 is equal to 20 logK1.

4. The gain K1 is the steady-state ramp error coefficient.

Type 2 System

A third-orderType 2 system has a transfer function of the form

G joð Þ ¼ K2

joð Þ2 1þ joTað Þ
At low frequencies,o<1/Ta, Lm G( jo)¼Lm [K2/( jo)

2]¼LmK2�Lm ( jo)2,
for which the slope is ^40 dB/decade. At o2¼K2, Lm [K2/( jo)

2]¼ 0;
therefore, the intercept of the initial slope of ^40 dB/decade (or its extens-
ion, if necessary) with the 0-dB axis occurs at the frequencyoy,whereo

2
y ¼ K2.

At o¼1, Lm ( jo)2¼0; therefore, Lm [K2/( jo)
2]o¼1¼20 logK2. This

point occurs on the initial slope or on its extension, according to whether
o1¼1/Ta is larger or smaller than

ffiffiffiffiffiffi
K2
p

. If K2>1, the quantity 20 logK2 is
positive, and if K2<1, the quantity 20 logK2 is negative.

The Lm curve for a Type 2 transfer function is shown in Fig. 8.11.
The determination of gainK2 from the graph is shown.

For aType 2 system the characteristics are as follows:

1. The slope at low-frequencies is ^40 dB/decade.

FIGURE 8.10 Log magnitude plot for G(jo)¼K1/jo(1þ joTa).

304 Chapter 8

Copyright © 2003 Marcel Dekker, Inc.



2. The intercept of the low-frequency slope of ^40 dB/decade (or its
extension, if necessary) with the 0-dB axis occurs at a frequency oy,
where o2

y ¼ K2.
3. The value on the low-frequency slope of ^40 dB/decade (or its exten-

sion) at the frequency o¼1 is equal to 20 logK2.
4. The gainK2 is the steady-state parabolic error coefficient.

8.10 CAD ACCURACY CHECK (CADAC)

CADAC checks that apply for CAD package frequency domain analysis are
the following:

1. Based on the given G( jo), determine the angle of this function,
assuming a minimum-phase stable plant, at o¼ 0 and at o¼1
(see Sec. 8.7). if the plant has any RH plane poles and/or zeros, it is
necessary to ascertain whether the CAD package being used cor-
rectly measures all angles in the ccw (or cw) direction as o goes
from 0 to1.

2. Based on the system type ofG(s), the LmG( jo) can be readily deter-
mined at o¼ 0 for aType 0 plant. The value of ox for aType 1 plant
or oy for aType 2 plant should be verified.

8.11 EXPERIMENTAL DETERMINATION OF TRANSFER
FUNCTION [5,9]

The Lm and phase-angle diagram is of great value when the mathematical
expression for the transfer function of a given system is not known. The
magnitude and angle of the ratio of the output to the input can be obtained

FIGURE 8.11 Log magnitude plot for G(jo)¼K2/( jo)
2(1þ joTa).
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experimentally for a steady-state sinusoidal input signal at a number of fre-
quencies. These data are used to obtain the exact Lm and angle diagram.
Asymptotes are drawn on the exact Lm curve, using the fact that their slopes
must bemultiples of
 20 dB/decade.From these asymptotes and the intersec-
tion the system type and the approximate time constants are determined.
In this manner, the transfer function of the system can be synthesized.

Care must be exercised in determining whether any zeros of the transfer
function are in the right half (RH) s plane. A system that has no open-loop
zeros in the RH s plane is defined as a minimum-phase system [10,11] and all
factors have the form1þTs and/or 1þAsþBs2. A system that has open-loop
zeros in the RH s plane is a nonminimum-phase system [12,13]. The stability is
determined by the location of the poles and does not affect the designation of
minimum or nonminimum phase.

The angular variation for poles or zeros in the RH s plane is different
from those in the LH plane [10]. For this situation, one or more terms in the
transfer function have the form1�Ts and/or1
As
Bs2.As anexample, con-
sider the functions 1þjoT and 1�joT. The Lm plots of these functions are
identical, but the angle diagram for the former goes from 0 to 90� whereas for
the latter it goes from 0 to ^90�.Therefore, caremust be exercised in interpret-
ing the angle plot to determine whether any factors of the transfer function lie
in theRH splane.Many practical systems are in theminimum-phase category.

Unstable plants must be handled with care. That is, first a stabilizing
compensator must be added to form a stable closed-loop system. From
the experimental data for the stable closed-loop system, the plant transfer
function is determined by using the known compensator transfer function.

8.12 DIRECT POLAR PLOTS

The earlier sections of this chapter present a simple graphicalmethod for plot-
ting thecharacteristic curvesof the transfer functions.Thesecurves are theLm
and the angle of G( jo) vs. o, plotted on semilog graph paper. The reason for
presenting this method first is that these curves can be constructed easily and
rapidly. However, frequently the polar plot of the transfer function is desired.
Themagnitude and angle of G( jo), for sufficient frequency points, are readily
obtainable from the Lm G( jo) and ffGð joÞ vs. log o curves. This approach
often takes less time than calculating jG( jo)j and f(o) analytically for each
frequency point desired,unless a CADprogram is available (seeAppendix C).

The data for drawing the polar plot of the frequency response can alsobe
obtained from the pole-zero diagram, as described in Sec. 4.12. It is possible to
visualize the complete shape of the frequency-response curve from the pole-
zero diagrambecause the angular contribution of each pole and zero is readily
apparent.The polar plot of G( jo) is called the direct polar plot.The polar plot
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of [G( jo)]�1 is called the inverse polar plot [11], which is discussed briefly in
Chap. 9.

Complex RC Network (Lag-Lead Compensator)

The circuit of Fig. 8.12 is used in later chapters as a compensator:

G sð Þ ¼ Eo sð Þ
Ein sð Þ ¼

1þ T1 þ T2ð Þs þ T1T2s
2

1þ T1 þ T2 þ T12ð Þs þ T1T2s2
ð8:30Þ

Where the time constants are

T1¼R1C1 T2¼R2C2 T12¼R1C2

As a function of frequency, the transfer function is

G joð Þ ¼ Eo joð Þ
Ein joð Þ ¼

1� o2T1T2
� �þ jo T1 þ T2ð Þ

1� o2T1T2
� �þ jo T1 þ T2 þ T12ð Þ ð8:31Þ

By the proper choice of the time constants, the circuit acts as a lag network in
the lower-frequency range of 0 to ox and as a lead network in the higher-
frequency range of ox to1.That is, the steady-state sinusoidal output Eo lags
or leads the sinusoidal input Ein, according to whether o is smaller or larger
thanox.The polar plot of this transfer function is a circle with its center on the
real axis and lying in the first and fourth quadrants. Figure 8.13 illustrates the
polar plot in nondimensionalized form for a typical circuit.WhenT2 andT12 in
Eq. (8.31) are expressed in terms of T1, the expression of the form given in the
title of Fig. 8.13 results. Its properties are the following:

1. lim
o!0

Gð joT1Þ ! 1ff0�
2. lim

o!1Gð joT1Þ ! 1ff0�
3. At the frequency o¼ox, for which o

2
xT1T2 ¼ 1, Eq. (8.31) becomes

G joxT1ð Þ ¼ T1 þ T2

T1 þ T2 þ T12
¼ G joxT1ð Þ

 

ff00 ð8:32Þ

FIGURE 8.12 An RC circuit used as a lag-lead compensator.
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Note that Eq. (8.32) represents the minimum value of the transfer function in
the whole frequency spectrum. From Fig. 8.13 it is seen that for frequencies
below ox the transfer function has a negative or lag angle. For frequencies
above ox it has a positive or lead angle. The applications and advantages of
this circuit are discussed in later chapters on compensation.

Type 0 Feedback Control System

The field-controlled servomotor [6] illustrates a typical Type 0 device. It has
the transfer function

G joð Þ ¼ C joð Þ
E joð Þ ¼

K0

1þ joTf
� �

1þ joTmð Þ ð8:33Þ

Note from Eq. (8.33) that

G joð Þ ! K0ff0� o! 0þ

0ff�180� o!1

(

Also, for each term in the denominator the angular contribution toG( jo), aso
goes from 0 to1, goes from 0 to �90�. Thus, the polar plot of this transfer
function must start at Gð joÞ ¼ K0ff0� for o¼ 0 and proceeds first through

FIGURE 8.13 Polar plot of

G joT1ð Þ ¼ 1þ joT1ð Þ 1þ j0:2oT1ð Þ
1þ j11:1oT1ð Þ 1þ j0:0179oT1ð Þ

T2¼ 0.2T1, T12¼ 10.0T1.
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the fourth and then through the third quadrants to limo!1Gð joÞ ¼ 0ff�180�
as the frequency approaches infinity, as shown in Fig. 8.14 (a). In other words,
the angular variation of G( jo) is continuously decreasing, going in a clock-
wise (cw) direction from 0� to �180�. The exact shape of this plot is deter-
mined by the particular values of the time constantsTf and Tm.

If Eq. (8.33) had another term of the form 1þjoT in the denominator,
the transfer function would be

G joð Þ ¼ K0

1þ joTf
� �

1þ joTmð Þ 1þ joTð Þ ð8:34Þ

The point G( jo)jo¼1 rotates cw by an additional 90�. In other words,when
o!1� Gð joÞ ! 0ff�270� . In this case the curve crosses the real axis as
shown in Fig. 8.14(b) at a frequency ox for which the imaginary part of the
transfer function is zero.

When a term of the form 1þjoTappears in the numerator, the transfer
function experiences an angular variation of 0 to 90� (a ccw rotation) as the
frequency is varied from 0 to 1. Thus, with increasing frequency, the angle
of G( jo) may not change continuously in one direction. Also, the resultant
polar plot may not be as smooth as the one shown in Fig. 8.14. For example,
the transfer function

G joð Þ ¼ K0ð1þ joT1Þ2
ð1þ joT2Þð1þ joT3Þð1þ joT4Þ2

ð8:35Þ

whose polar plot, shown in Fig. 8.15, has a ‘‘dent’’ when the time constantsT2

and T3 are greater thanT1, and T1 is greater thanT4. From the angular contri-
bution of each factor and from the preceding analysis, it can be surmised that
the polar plot has the general shape shown in the figure. In the event thatT1 is
smaller than all the other time constants, the polar plot is similar in shape to
the one shown in Fig. 8.14a.

FIGURE 8.14 Polar plot for typical Type 0 transfer functions: (a) Eq. (8.33);
(b) Eq. (8.34).
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In the same manner, a quadratic in either the numerator or the denomi-
nator of a transfer function results in an angular contribution of 0 to
180�,
respectively, and the polar plot of G( jo) is affected accordingly. It can be
seen from the examples that the polar of a Type 0 system always starts at a
value K0 (step error coefficient) on the positive real axis for o¼ 0 and ends
at zero magnitude (for n>w) and tangent to one of the major axes at o¼1.
The final angle is �90� times the order of the denominator minus the order
of the numerator of G( jo). The arrows on the plots of G( jo) in Figs. 8.14
and 8.15 indicate the direction of increasing frequency.

Type 1 Feedback Control System

The transfer function of a typical Type1system is

G joð Þ ¼ C joð Þ
E joð Þ ¼

K1

jo 1þ joTmð Þ 1þ joTcð Þ 1þ joTq
� � ð8:36Þ

Note from Eq. (8.36) that

G joð Þ ! 1ff�90� o! 0þ ð8:37Þ
0ff�360� o!1 ð8:38Þ

(

Note that the jo term in the denominator contributes the angle �90� to the
total angle of G( jo) for all frequencies. Thus, the basic difference between
Eqs. (8.34) and (8.36) is the presence of the term jo in the denominator of the
latter equation. Since all the1þjoT terms of Eq. (8.36) appear in the denomi-
nator, its polar plot, as shown in Fig. 8.16, has no dents. From the remarks of
this and previous sections, it can be seen that the angular variation of G( jo)
decreases continuously (ccw) in the same direction from � 90 to � 360� as o
increases from 0 to1.The presence of any frequency-dependent factor in the

FIGURE 8.15 Polar plot for a more complex Type 0 transfer function [Eq. (8.35)].
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numerator has the same general effect on the polar plot as that described
previously for theType 0 system.

From Eq. (8.37) it is seen that the magnitude of the function G( jo)
approaches infinity as the value of o approaches zero.There is a line parallel
to the �90� axis but displaced to the left of the origin, to which G( jo) tends
asymptotically as o! 0. The true asymptote is determined by finding the
value of the real part of G( jo) as o approaches zero.Thus

Vx ¼ lim
o!0

Re ½Gð joÞ� ð8:39Þ

or, for this particular transfer function,

Vx ¼ �K1ðTq þ Tc þ TmÞ ð8:40Þ
Equation (8.40) shows that the magnitude of G( jo) approaches infinity
asymptotically to a vertical line whose real-axis intercept equals Vx, as
illustrated in Fig. 8.16. Note that the value of Vx is a direct function of the
ramp error coefficientK1.

The frequencyof the crossing point on the negative real axis of theG( jo)
function is that value of frequencyox for which the imaginary part of G( jo) is
equal to zero.Thus,

Im ½Gð joxÞ� ¼ 0 ð8:41Þ
or, for this particular transfer function,

ox ¼ ðTcTq þ TqTm þ TmTcÞ�1=2 ð8:42Þ
The real-axis crossing point is very important because it determines closed-
loop stability, as described in later sections dealing with system stability.

FIGURE 8.16 Polar plot for a typical Type 1 transfer function [Eq. (8.36)].
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Type 2 Feedback Control System

The transfer function of the Type 2 system illustrated in Sec. 6.6 and repre-
sented by Eq. (6.56) is

G joð Þ ¼ C joð Þ
E joð Þ ¼

K2

joð Þ2 1þ joTf
� �

1þ joTmð Þ ð8:43Þ

Its properties are

G joð Þ ! 1ff�180� o! 0þ ð8:44Þ
0ff�360� o!þ1 ð8:45Þ

(

The presence of the ( jo)2 term in the denominator contributes �180� to the
total angle of G( jo) for all frequencies. For the transfer function of Eq. (8.43)
the polar plot (Fig. 8.17) is a smooth curve whose angle f(o) decreases
continuously from ^180 to�360�.

The introduction of an additional pole and a zero can alter the shape of
the polar plot.Consider the transfer function

G0 joð Þ ¼ K 02 1þ joT1ð Þ
joð Þ2 1þ joTf

� �
1þ joTmð Þ 1þ joT2ð Þ ð8:46Þ

where T1>T2. The polar plot can be obtained from the pole-zero diagram
shown in Fig. 8.18. At s¼ jo¼ j0þ the angle of each factor is zero except for
the double pole at the origin. The angle at o¼ 0þ is therefore �180�, as
given by Eq. (8.44), which is still applicable. As o increases from zero, the
angle of jo þ1/T1 increases faster than the angles of the other poles. In
fact, at low frequencies the angle due to the zero is larger than the sum of
the angles due to the poles located to the left of the zero. This fact is shown
qualitatively at the frequency o1 in Fig. 8.18. Therefore, the angle of G( jo)
at low frequencies is greater that �180�. As the frequency increases to a
value ox, the sum of the component angles of G( jo) is �180� and the

FIGURE 8.17 Polar plot of Eq. (8.43), a typical Type 2 transfer function resulting in
an unstable feedback control system.
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polar plot crosses the real axis, as shown in Fig. 8.19. As o increases
further, the angle of joþ1/T1 shows only a small increase, but the angles
from the poles increase rapidly. In the limit, as o!1, the angles of
joþ1/T1 and joþ1/T2 are equal and opposite in sign, so the angel of
G( jo) approaches �360�, as given by Eq. (8.45).

Fig. 8.19 shown the complete polar plot of G( jo). A comparison of
Figs. 8.17 and 8.19 shows that both curves approach �180� at o¼ 0þ,which is
typical of Type 2 systems. As o!1, the angle approaches �360� since
both G( jo) and Go( jo) have the same degree, n^w¼ 4. When the Nyquist
stability criterion described in Secs. 8.14 and 8.15 is used, the feedback system
containing G( jo) can be shown to be unstable, whereas the closed-loop
system containing G0( jo) can be stable.

It can be shown that as o! 0þ, the polar plot of a Type 2 system is
below the real axis if

P
(Tnumerator)�

P
(Tdenominator) is a positive value and is

above the real axis if it is a negative value.Thus, for this example the necessary
condition isT1> (TfþTmþT2).

FIGURE 8.18 Pole-zero diagram for

Go sð Þ ¼ K 02T1

TfTmT2

sþ 1=T1

s2 sþ 1=Tfð Þ sþ 1=Tmð Þ sþ 1=T2ð Þ :

FIGURE 8.19 Polar plot for a typical Type 2 transfer function resulting in a stable
system [Eq. (8.46)].
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8.13 SUMMARY: DIRECT POLAR PLOTS

To obtain the direct polar plot of a system’s forward transfer function, the fol-
lowing criteria are used to determine the key parts of the curve.

Step 1. The forward transfer function has the general form

G joð Þ ¼ K
m
1þ joTað Þ 1þ joTbð Þ 	 	 	 1þ joTwð Þ

joð Þm 1þ joT1ð Þ 1þ joT2ð Þ 	 	 	 1þ joTuð Þ ð8:47Þ

For this transfer function the system type is equal to the value of m and
determines the portion of the polar plot representing the limo!0 Gð joÞ. The
low-frequency polar plot characteristic ðas o! 0Þ of the different system
types are summarized in Fig. 8.20.The angle at o ¼ 0 is mð�90�Þ:The arrow
on the polar plots	indicates the direction of increasing frequency.
Step 2. The high-frequency end of the polar plot can be determined as
follows:

lim
o!þ1

G joð Þ ¼ 0ffðw �m� uÞ90� ð8:48Þ

Note that since the degree of the denominator Eq. (8.47) is always greater than
the degree of the numerator, the high-frequency point (o¼1) is approached
(i.e., the angular condition) in the cw sense.The plot ends at the origin tangent
to the axis determined by Eq. (8.48). Tangency may occur on either side of
the axis.

FIGURE 8.20 A summary of direct polar plots of different types of system.
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Step 3. The asymptote that the low-frequency end approaches, for aType 1
system, is determined by taking the limit as o! 0 of the real part of the
transfer function.

Step 4. The frequencies at the points of intersection of the polar plot with
the negative real axis and the imaginary axis are determined, respectively, by
setting

Im Gð joÞ� ¼ 0 ð8:49Þ
Re Gð joÞ� ¼ 0 ð8:50Þ

Step 5. If there are no frequency-dependent terms in the numerator of
the transfer function, the curve is a smooth one in which the angle of G( jo)
continuously decreases as o goes from 0 to 1. With time constants in the
numerator, and depending upon their values, the angle may not continuously
vary in the same direction, thus creating ‘‘dents’’ in the polar plot.

Step 6. As is seen later in this chapter, it is important to know the exact
shape of the polar plot of G( jo) in the vicinity of the ^1þj0 point and the
crossing point on the negative real axis.

8.14 NYQUIST’S STABILITY CRITERION

Asystemdesigner must be sure that the closer-loop system he or she designs is
stable. The Nyquist stability criterion [3,4,8,10] provides a simple graphical
procedure for determining closed-loop stability from the frequency-response
curves of the open-loop transfer functionG( jo)H( jo).The application of this
method in terms of the polar plot is covered in this section; appliction in terms
of the log magnitude^angle (Nichols) diagram is covered in Sec. 8.17.

For a stable system the roots of the characteristic equation

B sð Þ ¼ 1þ G sð ÞH sð Þ ¼ 0 ð8:51Þ
cannot be permitted to lie in the RH s plane or on the jo axis, as shown in
Fig. 8.21. In terms ofG¼N1/D1 andH¼N2/D2, Eq. (8.51) becomes

B sð Þ ¼ 1þ N1N2

D1D2
¼ D1D2 þ N1N2

D1D2
ð8:52Þ

Note that the numerator and denominator of B(s) have the same degree, and
the poles of the open-loop transfer function G(s)H(s) are the poles of B(s). The
closed-loop transfer function of the system is

C sð Þ
R sð Þ ¼

G sð Þ
1þ G sð ÞH sð Þ ¼

N1D2

D1D2 þ N1N2
ð8:53Þ
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The denominator of C(s)/R(s) is the same as the numerator of B(s).The condi-
tion for stability may therefore be restated as follows:For a stable system none
of the zeros ofB(s) can lie in the RH s plane or on the imaginary axis.Nyquist’s
stability criterion relates the number of zeros and poles of B(s) that lie in the
RH s plane to the polar plot of G(s)H(s).

Limitations

In this analysis the assumption is that all the control systems are inherently
linear or that their limits of operation are confined to give a linear operation.
This yields a set of linear differential equations that describe the dynamic per-
formance of the systems. Because of the physical nature of feedback control
systems, the degree of the denominator D1D2 is equal to or greater than the
degree of the numerator N1N2 of the open-loop transfer function G(s)H(s).
Mathematically, this statement means that lims!1 GðsÞH ðsÞ ! 0 or a con-
stant. These two factors satisfy the necessary limitations to the generalized
Nyquist stability criterion.

Mathematical Basis for Nyquist’s Stability Criterion

A rigorous mathematical derivation of Nyquist’s stability criterion involves
complex-variable theory and is available in the literature [11,15]. Fortunately,
the result of the deviation is simple and is readily applied. A qualitative
approach is now presented for the special case that B(s) is a rational fraction.
The characteristic function B(s) given by Eq. (8.52) is rationalized, factored,
and then written in the form

BðsÞ ¼ s � Z1ð Þ s � Z2ð Þ 	 	 	 s � Znð Þ
s � p1ð Þ s � p2ð Þ 	 	 	 s � pnð Þ ð8:54Þ

where Z1, Z2,. . .,Zn are the zeros and p1, p2,. . . ,pn are the poles. [Remember
that zi is used to denote a zero of G(s)H(s).] The poles pi are the same as the

FIGURE 8.21 Prohibited region in the s plane.
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poles of the open-loop transfer function G(s)H(s) and include the s term for
which p¼ 0, if it is present.

In Fig.8.22 someof the poles and zeros of a generalized functionB(s) are
arbitrarily drawn on the s plane. Also, an arbitrary closed contour Q 0 is drawn
that encloses the zero Z1. To the point O 0 on Q 0, whose coordinates are
s¼ �þ jo, are drawn directed line segments from all the poles and zeros.The
lengths of these directed line segments are given by s�Z1, s�Z2, s� p1, s� p2,
etc.Not all the directed segments from the poles and zeros are indicated in the
figure, as they are not necessary to proceed with this development.As the point
O 0 is rotated cw oncearound the closed contourQ 0, the line of length (s�Z1) rotates
through a net cw angle of 360�. All the other directed segments have rotated
through a net angle of 0�. Thus, by referring to Eq. (8.54) it is seen that the cw
rotation of 360� for the length (s�Z1) must simultaneously be realized by the
function B(s) for the enclosure of the zero Z1by the pathQ0.

Consider now a larger closed contour Q00 that includes the zeros Z1,Z2,
Z3, and the pole p5. As a point O

00 is rotated cw once around the closed curve Q 00,
eachof the directed line segments from the enclosed pole and zeros rotates through a
net cw angle of 360�. Since the angular rotation of the pole is experienced by
the characteristic function B(s) in its denominator, the net angular rotation
realized by Eq. (8.54) must be equal to the net angular rotations due to the
pole p5 minus the net angular rotations due to the zeros Z1, Z2, and Z3.
In other words, the net angular rotation experienced by 1þG(s)H(s) is
360� � (3)(360�)¼ � 720�. Therefore, for this case, the net number of rota-
tions N experienced by B(s)¼ 1þG(s)H(s) for the cw movement of point

FIGURE 8.22 A plot of some poles and zeros of Eq. (8.54).
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O 0 once about the closed contourQ 0 is equal to ^2; that is

N¼ (number of poles enclosed)�(number of zeros enclosed)
¼ 1�3 ¼ �2

Where theminus sign denotes cw rotation.Note that if the contourQ 0 includes
only the pole p5,B(s) experiences one ccw rotation as the pointO

00
is moved cw

around the contour. Also, for any closed path that may be chosen, all the poles
and zeros that lie outside the path each contribute a net angular rotation of 0�

toB(s) as a point is moved once around this contour.

Generalizing Nyquist’s Stability Criterion

Consider now a closed contour Q such that the whole RH s plane is encircled
(see Fig. 8.23), thus enclosing all zeros and poles of B(s) that have positive
real parts. The theory of complex variables used in the rigorous derivation
requires that the contour Q must not pass through any poles or zeros of B(s).
When the results of the preceding discussion are applied to the contour Q,
the following properties are noted:

1. The total number of cw rotations of B(s) due to its zeros is equal to
the total number of zeros ZR in the RH s plane.

2. The total number of ccw rotations of B(s) due to its poles is equal to
the total number of poles PR in the RH s plane.

3. The net number of rotationsNof B(s)¼ 1þG(s)H(s) about the origin
is equal to its total number of poles PR minus its total number of
zeros ZR in the RH s plane.Nmay be positive (ccw), negative (cw),
or zero.

FIGURE 8.23 The contour that encloses the entire right-half s plane.
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The essence of these three conclusions can be represented by the
equation

N ¼ change in phase of ½1þG sð ÞH sð Þ�
2p

¼ PR � ZR ð8:55Þ

where ccw rotation is defined as being positive and cw rotation is negative. In
order for the characteristic function B(s) to realize a net rotation N, the direc-
ted line segment representing B(s) (see Fig.8.24a) must rotate about the origin
360N degrees orN complete revolutions. Solving for ZR in Eq. (8.55) yields

ZR ¼ PR � N ð8:56Þ
Since B(s) can have no zeros ZR in the RH s plane for a stable system, it is
therefore concluded that, for a stable system, the net number of rotations of B(s)
about the originmust be ccwand equal to the number of poles PR that lie in the RH s
plane. In other words, if B(s) experiences a net cw rotation, this indicates that
ZR> PR,where PR� 0, and thus the closed-loop system is unstable. If there are
zero net rotations, then ZR¼ PR and the system may or may not be stable,
according to whether PR¼ 0 or PR> 0.

Obtaining a Plot of B(s)

Figure 8.24a and b shows a plot of B(s) and a plot of G(s)H(s), respectively. By
moving the origin of Fig. 8.24b to the ^1þj0 point, the curve is now equal to
1þG(s)H(s), which is B(s). Since G(s)H(s) is known, this function is plotted,
and then the origin is moved to the ^1point to obtain B(s).

In general, the open-loop transfer functions of many physical systems do
not have any poles PR in the RH s plane. In this case,ZR¼N.Thus, for a stable
system the net number of rotations about the ^1þj0 point must be zero when there
are no poles of G(s)H(s) in the RH s plane.

FIGURE 8.24 A change of reference for B(s).
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In the event that the function G(s)H(s) has some poles in the RH s plane
and the denominator is not in factored form,the numberPR can be determined
by applying Routh’s criterion toD1D2.The Routhian array gives the number of
roots in the RH s plane by the number of sign changes in the first column.

Analysis of Path Q

In applying Nyquist’s criterion, the whole RH s plane must be encircled to
ensure the inclusion of all poles or zeros of B(s) in this portion of the plane.
In Fig. 8.23 the entire RH s plane is enclosed by the closed path Q, which is
composed of the following two segments:

1.One segment is the imaginary axis from�j1 to þ j1.
2. The other segment is a semicircle of infinite radius that encircles the

entire RH s plane.

The portion of the path along the imaginary axis is represented math-
ematically by s¼ jo. Thus, replacing s by jo in Eq. (8.54), followed by letting
o take on all values from �1 to þ1, gives the portion of the B(s) plot
corresponding to that portion of the closed contour Q that lies on the ima-
ginary axis.

One of the requirements of the Nyquist criterion is that
lims!1 GðsÞH ðsÞ ! 0 or a constant. Thus lims!1 BðsÞ ¼ lims!1½1þ GðsÞ�
H ðsÞ� ! 1 or 1 plus the constant. As a consequence, as the point O moves
along the segment of the closed contour represented by the semicircle of infi-
nite radius, the corresponding portion of the B(s) plot is a fixed point. As a
result, the movement of point O along only the imaginary axis from �j1 to
þj1 results in the same net rotation of B(s) as if the whole contour Q were
considered. In other words, all the rotation of B(s) occurs while the point O goes
from �j1 to þ j1 along the imaginary axis. More generally, this statement
applies only to those transfer functions G(s)H(s) that conform to the limita-
tions stated earlier in this section.*

Effect of Poles at the Origin on the Rotation of B(s)

Some transfer functions G(s)H(s) have an sm in the denominator. Since no
poles or zeros can lie on the contour Q, the contour shown in Fig. 8.23
must be modified. For these cases the manner in which the o¼ 0� and
o¼ 0þ portions of the plot are joined is now investigated. This can best be
done by taking an example. Consider the transfer function with positive

*A transfer function that does not conform to these limitations and to which the immediately
preceding italicized statement does not apply isG(s)H(s)¼ s.
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values of T1 and T2:

G sð ÞH sð Þ ¼ K1

s 1þ T1sð Þ 1þ T2sð Þ ð8:57Þ

The direct polar plot of G( jo)H( jo) of this function is obtained by substitut-
ing s¼ jo into Eq. (8.57). Figure 8.25 represents the plot of G(s)H(s) for values
of s along the imaginary axis; that is, j0þ< jo< j1 and �j1< jo< j0�. The
plot is drawn for both positive and negative frequency values. The polar plot
drawn for negative frequencies is the conjugate of the plot drawn for positive fre-
quencies. That is, the curve for negative frequencies is symmetrical to the
curve for positive frequencies,with the real axis as the axis of symmetry.

The closed contour Q of Fig. 8.23, in the vicinity of s¼ 0, is modified as
shown in Fig. 8.26a to avoid passing through the origin. In other words, the
point O is moved along the negative imaginary axis from s¼� j1 to a point
where s ¼ �je ¼ 0�ff�p=2 becomes very small. Then the point O moves
along a semicircular path of radius s ¼ ee jy in the RH s plane with a very
small radius e until it reaches the positive imaginary axis at s ¼ þje ¼
j0þ ¼ 0þffp=2. From here the point O proceeds along the positive imaginary
axis to s¼þ j1. Then, letting the radius approach zero, e! 0, for the
semicircle around the origin ensures the inclusion of all poles and zeros in the
RH s plane.To complete the plot of B(s) in Fig. 8.25, it is necessary to investi-
gate the effect of moving pointO on this semicircle around the origin.

For the semicircular portion of the path Q represented by s ¼ ee jy,
where e! 0 and�p/2� y� p/2, Eq. (8.57) becomes

G sð ÞH sð Þ ¼ K1

s
¼ K1

ee jy ¼
K1

e
e�jy ¼ K1

e
e jc ð8:58Þ

FIGURE 8.25 A plot of the transfer function G(jo)H(jo) for Eq.(8.57).
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where K1=e!1 as e!1, and c ¼ �y goes from p/2 to �p/2 as the direc-
ted segment s goes ccw from eff�p=2 to effþp=2 .Thus, in Fig. 8.25, the end-
points from o! 0�and o! 0þ are joined by a semicircle of infinite radius
in the first and fourth quadrants. Figure 8.25 illustrates this procedure and
shows the completed contour of G(s)H(s) as the point O moves along the
modified contour Q in the s plane from point 1 to point 7.When the origin is
moved to the ^1þj0 point, the curve becomes B(s), as shown in Fig.8.26b.

The plot of B(s) in Fig.8.26b does not encircle the ^1þj0 point; there-
fore, the encirclement N is zero. From Eq. (8.57) there are no poles within Q;
that is, PR¼ 0. Thus, when Eq. (8.56) is applied, ZR¼ 0 and the closed-loop
system is stable.

Transfer functions that have the term sm in the denominator have the
general form, as e! 0,

G sð ÞH sð Þ ¼ Km

sm
¼ Km

emð Þejmy ¼
Km

em
e�jmy ¼ Km

em
ejmc ð8:59Þ

wherem¼1, 2, 3, 4,. . .With the reasoning used in the preceding example, it is
seen fromEq.(8.59) that, as smoves from 0� to 0þ, the plot ofG(s)H(s) tracesm
cw semicircles of infinite radius about the origin. Ifm¼ 2, then, as y goes from
�p/2 to p/2 in the s plane with radius e,G(s)H(s) experiences a net rotation of
(2)(180�)¼ 360�.

Since the polar plots are symmetrical about the real axis, it is only neces-
sary to determine the shape of the plot of G(s)H(s) for a range of values of
0<o< þ1. The net rotation of the plot for the range of �1<o< þ1 is
twice that of the plot for the range of 0<o< þ1.

FIGURE 8.26 (a) The contour Q that encircles the right-half s plane, (b) complete
plot for Eq.(8.57).
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When G( ju)H( ju) Passes Through the Point �1þ j0

When the curve of G( jo)H( jo) passes through the ^1þj0 point, the number
of encirclements N is indeterminate.This situation corresponds to the condi-
tion where B(s) has zeros on the imaginary axis. A necessary condition for
applying the Nyquist criterion is that the path encircling the specified area
must not pass through any poles or zeros of B(s). When this condition is
violated, the value for N becomes indeterminate and the Nyquist stability
criterion cannot be applied. Simple imaginary zeros of B(s) mean that the
closed-loop systemwill have a continuous steady-state sinusoidal component
in its output that is independent of the form of the input. Unless otherwise
stated, this condition is considered unstable.

8.15 EXAMPLES OF NYQUIST’S CRITERION USING
DIRECT POLAR PLOT

Several polar plots are illustrated in this section.These plots can be obtained
with the aid of pole-zero diagrams, fromcalculations for a fewkey frequencies,
or from a CAD program. The angular variation of each term of a G(s)H(s)
function, as the contour Q is traversed, is readily determined from its pole-
zero diagram. Both stable and unstable open-loop transfer functions G(s)H(s)
are illustrated in the following examples for which all time constants Ti are
positive.

Example 1: Type 0. The direct polar plot is shown in Fig.8.27 for the follow-
ingType 0 open-loop transfer function:

G sð ÞH sð Þ ¼ K0

1þ T1sð Þ 1þ T2sð Þ ð8:60Þ

FIGURE 8.27 Plot of a typical Type 0 transfer function G(s)H(s) for �1<o<1.
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From this plot it is seen that N¼ 0, and Eq. (8.60) yields the value PR¼ 0.
Therefore, the value of ZR is ZR¼ PR�N¼ 0 and the closed-loop system is
stable. Thus, the Nyquist stability criterion indicates that, no matter how
much the gainKo is increased, this system is always stable.

Example 2: Type 1. The example in Fig. 8.26 for the transfer function of the
form

G sð ÞH sð Þ ¼ K1

s 1þ T1sð Þ 1þ T2sð Þ ð8:61Þ
is shown in the preceding section to be stable. However, if the gain K1 is
increased, the system is made unstable, as seen from Fig. 8.28. Note that the
rotation of B(s), in the direction of increasing frequency, produces a net
angular rotation of ^720� or two complete cw rotations (N¼ � 2), so that
ZR¼ PR�N¼ 2.Thus, the closed-loop system is unstable.

The number of rotations N can be determined by drawing a radial line
from the ^1þj0 point. Then, at each intersection of this radial line with the
curve of G(s)H(s), the direction of increasing frequency is noted. If the
frequency along the curve of G(s)H(s) is increasing as the curve crosses
the radial line in a ccw direction, this crossing is positive. Similarly, if the
frequency along the curve of G(s)H(s) is increasing as the curve crosses the
radial line in a cwdirection, this crossing is negative.The sumof the crossings,
including the sign, is equal toN. In Fig.8.28 both crossings of the radial line are
cw and negative.Thus, the sum of the crossings is N¼�2.
Example 3: Type 2. Consider the transfer function

G sð ÞH sð Þ ¼ K2 1þ T4sð Þ
s2 1þ T1sð Þ 1þ T2sð Þ 1þ T3sð Þ ð8:62Þ

FIGURE 8.28 Polar plot of Fig. 8.26b with increased gain.
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where T4>T1þT2þT3. Figure 8.29 shows the mapping of G(s)H(s) for the
contour Q of the s plane. The word mapping, as used here, means that for a
given point in the s plane there corresponds a given value of G(s)H(s) or B(s).

As pointed out in the preceding section, the presence of the s2 term in the
denominator of Eq. (8.62) results in a net rotation of 360� in the vicinity of
o¼ 0, as shown in Fig. 8.29. For the complete contour of Fig. 8.26a the net
rotation is zero; thus, since PR¼ 0, the system is stable.The value of N can be
determined by drawing the line radiating from the ^1þj0 point (see Fig. 8.29)
and noting one cw and one ccw crossing; thus,N¼ 0. Like the previous exam-
ple, this systemcanbemade unstable by increasing the gain sufficiently for the
G(s)H(s) plot to cross the negative real axis to the left of the ^1þj0 point.
Example 4: Conditionally Stable System. In this instance,

G sð ÞH sð Þ ¼ K0 1þ T1sð Þ2
1þ T2sð Þ 1þ T3sð Þ 1þ T4sð Þ 1þ T5sð Þ2 ð8:63Þ

where T5<T1<T2,T3, and T4. The complete polar plot of Eq. (8.63) is illu-
strated in Fig. 8.30 for a particular value of gain. For the radial line drawn
from the ^1þj0 point the number of rotations is readily determined asN¼ 0.

It is seen in this example that the system can be made unstable not only
by increasing the gain but also by decreasing the gain. If the gain is increased

FIGURE 8.29 The complete polar plot of Eq.(8.62).
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sufficiently for the ^1þj0 point to lie between the points c and d of the polar
plot, the net cw rotation is equal to 2. Therefore, ZR¼ 2 and the system is
unstable. On the other hand, if the gain is decreased so that the ^1þj0 point
lies between the points a and b of the polar plot, the net cw rotation is again 2
and the system is unstable. The gain can be further decreased so that the
^1þj0 point lies to the left of point a of the polar plot, resulting in a stable
system. This system is therefore conditionally stable. A conditionally stable
system is stable for a given range of values of gain but becomes unstable if the
gain is either reduced or increased sufficiently. Such a system places a greater
restriction on the stability and drift of amplifier gain and system characteris-
tics. In addition, an effective gain reduction occurs in amplifiers that reach
saturation with large input signals. This, in turn, may result in an unstable
operation for the conditionally stable system.

Example 5: Open-Loop Unstable. For this case

G sð ÞH sð Þ ¼ K1 T2s þ 1ð Þ
s T1s � 1ð Þ ð8:64Þ

The complete polar plot for this equation is illustrated in Fig. 8.31 for a
particular value of gain K1. There is one cw intersection with the radial line
drawn from the ^1þj0 point, and thus N¼�1. Therefore, since PR¼1,
ZR¼ 2, and the system is unstable. In this example the system is unstable for
low values of gain (0<K1<K1x) for which the real-axis crossing b is to the
right of the ^1þj0 point. For the range 0<K1<K1x the ^1þj0 point is
located, as shown in Fig. 8.31, between the points a and b. However, for the
range K1x<K1<1 the ^1þj0 point lies between the points b and c, which

FIGURE 8.30 The complete polar plot of Eq. (8.63).

326 Chapter 8

Copyright © 2003 Marcel Dekker, Inc.



yields N¼ þ1, thus resulting in ZR¼ PR�N¼1�N¼ 0 and a stable closed-
loop system.

8.16 NYQUIST’S STABILITY CRITERION APPLIED TO
SYSTEM HAVING DEAD TIME

Transport lag (dead time), as described in Sec.7.14, is represented by the trans-
fer functionG�ðsÞ ¼ e��s.The frequency transfer function is

G�ð joÞ ¼ e�jo� ¼ 1ff�o� : ð8:65Þ
It has a magnitude of unity and a negative angle whose magnitude increases
directly in proportion to frequency.The polar plot of Eq. (8.65) is a unit circle
that is traced indefinitely, as shown in Fig. 8.32. The Lm and phase-angle
diagram shows a constant value of 0 dB and a phase angle that decreases with
frequency.

An example can best illustrate the application of theNyquist criterion to
a control system having transport lag. Figure 8.33a illustrates the complete
polar plot of a stable system having a specified value of gain and the transfer
function

Gx sð ÞH sð Þ ¼ K1

s 1þ T1sð Þ 1þ T2sð Þ ð8:66Þ

FIGURE 8.31 The complete polar plot of the open-loop unstable transfer function

G sð ÞH sð Þ ¼ K1 T2sþ 1ð Þ=s T1s� 1ð Þ:
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If dead time is added to this system, its transfer function becomes

G sð ÞH sð Þ ¼ K1e
�rs

s 1þ T1sð Þ 1þ T2sð Þ ð8:67Þ

and the resulting complete polar plot is shown in Fig.8.33b.When the contour
Q is traversed and the polar plot characteristic of dead time, shown inFig.8.32,
is included, the effects on the complete polar plot are as follows:

1. In traversing the imaginary axis of the contour Q between
0þ <o< þ1, the polar plot of G( jo)H( jo) in the third quadrant
is shifted clockwise, closer to the ^1þj0 point. Thus, if the dead
time is increased sufficiently, the ^1þj0 point will be enclosed by
the polar plot and the system becomes unstable.

2. As o!þ1, the magnitude of the angle contributed by the trans-
port lag increases indefinitely. This yields a spiraling curve as
jGð joÞHð joÞj ! 0.

A transport lag therefore tends to make a system less stable.

8.17 DEFINITIONS OF PHASE MARGIN AND GAIN
MARGIN AND THEIR RELATION TO STABILITY [16]

The stability and approximate degree of stability can be determined from the
Lm and phase diagram.The stability characteristic is specified in terms of the
following quantities:

Gain crossover. This is the point on the plot of the transfer function at
which the magnitude of G( jo) is unity [Lm G( jo)¼ 0 dB]. The frequency at
gain crossover is called the phase-margin frequency of.

Phase margin angle. This is 180� plus the negative trigonometrically
considered angle of the transfer function at the gain-crossover point. It is

FIGURE 8.32 Polar plot characteristic for transport lag.

328 Chapter 8

Copyright © 2003 Marcel Dekker, Inc.



designated as the angle �, which can be expressed as �¼180� þf, whereffGð jofÞ ¼ f is negative.
Phase crossover. This is the point on the plot of the transfer function at

which the phase angle is �180�. The frequency at which phase crossover
occurs is called the gain-margin frequency oc.

FIGURE 8.33 Complete polar plots of (a) Eq. (8.66) and (b) Eq. (8.67).
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Gain margin. The gain margin is the factor a by which the gain must be
changed in order to produce instability. Expressed in terms of the transfer
function at the frequency oc, it is

G jocð Þa ¼ 1


 

 ð8:68Þ
On the polar plot of G( jo) the value at oc is

G jocð Þ

 

 ¼ 1
a

ð8:69Þ

In terms of the Lm, in decibels, this is

Lm a ¼ �LmGð jocÞ ð8:70Þ
which identifies the gain margin on the Lm diagram.

These quantities are illustrated in Fig. 8.34 on both the log and the polar
curves.Note the algebraic sign associated with these two quantities asmarked
on the curves. Figure 8.34 a and b represents a stable system, and Fig. 8.34
c and d represents an unstable system.

The phase margin angle is the amount of phase shift at the frequency of

that would just produce instability. This angle would make the polar plot go
through the ^1 point. The phase margin angle for minimum-phase (m.p.)
systems must be positive for a stable system,whereas a negative phase margin
angle means that the system is unstable.

It can be shown that the phase margin angle is related to the effective
damping ratio z of the system.This topic is discussed qualitatively in the next
chapter. Satisfactory response is usually obtained with a phase margin of 45�

to 60�. As an individual gains experience and develops his or her own particu-
lar technique, a desirable value of � to be used for a particular systembecomes
more evident. This guideline for system performance applies only to those
systems where behaviour is that of an equivalent second-order system. The
gainmarginmust be positivewhen expressed in decibels (greater thanunity as
a numeric) for a stable system. A negative gain margin means that the system
is unstable. The damping ratio z of the system is also related to the gain
margin. However, the phase margin gives a better estimate of damping ratio,
and therefore of the transient overshoot of the system, than the gain margin.

The phase-margin frequency of, phase margin angle �, crossover fre-
quencyoc, and the gain margin Lm a are also readily identified on theNichols
plot as shown in Fig.8.35 anddescribed in Sec.8.19.Further information about
the speed of response of the system can be obtained from the maximum value
of the control ratio and the frequency at which thismaximumoccurs.TheLm^
angle diagramor aCADprogram can be used to obtain this data (seeChap.9).

The relationship of stability and gain margin ismodified for a condition-
ally stable system.This can be seen by reference to the polar plot of Fig. 8.29.
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The system for the particular gain represented in Fig.8.29 is stable. Instability
can occur with an increase or a decrease in gain.Therefore, both ‘‘upper’’and
‘‘lower’’ gain margins must be identified, corresponding to the upper cross-
over frequency ocu and the lower crossover frequency ocl. In Fig. 8.30 the
upper gain margin is larger than unity and lower gain margin is less than unity.

8.18 STABILITY CHARACTERISTICS OF THE LOG
MAGNITUDE AND PHASE DIAGRAM

The earlier sections of this chapter discuss how the asymptotes of the Lmvs.o
curve are related to each factor of the transfer function.For example, factors of

FIGURE 8.34 Log magnitude and phase diagram and polar plots of G(jo), showing
gain margin and phase margin angle: (a) and (b) stable; (c) and (d) unstable.
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the form (1þ jo)�1 have a negative slope equal to ^20 dB/decade at high
frequencies. Also, the angle for this factor varies from 0� at low frequencies
to�90� at high frequencies.

The total phase angle of the transfer function at any frequency is closely
related to the slope of the Lm curve at that frequency. A slope of �20 dB/
decade is related to an angle of�90�; a slope of ^40 dB/decade is related to an
angle of �180�; a slope of ^60 dB/decade is related to an angle of �270�; etc.
Changes of slope at higher and lower corner frequencies, around the particu-
lar frequency being considered, contribute to the total angle at that frequency.
The farther away the changes of slope (corner frequency) are from the particu-
lar frequency, the less they contribute to the total angle at that frequency.

Byobserving theasymptotesof theLmcurve, it ispossible toestimate the
approximatevalueof theangle.With referencetoFig.8.6 for theexampleofSec.
8.7, the angle at o¼ 4 is now investigated. The slope of the curve at o¼ 4 is
^20 dB/decade;therefore,theangleisnear�90�.Theslopechangesat thecorner
frequencieso¼ 2ando¼ 8,and so the slopesbeyond these frequencies contri-
bute to the total angle ato¼ 4.The actual angle, as read fromFig.8.7, is�122�.
The farther away thecorner frequenciesoccur,thecloser theangle is to�90�.

The stability of a minimum phase (m.p.) system requires that the phase
margin angle be positive. For this to be true, the angle at the gain crossover
[LmG( jo)¼ 0 dB] must be greater than �180�. This requirement places a
limit on the slope of the Lm curve at the gain crossover.The slope at the gain
crossover should be more positive than ^40 dB/decade if the adjacent corner
frequencies are not close. A slope of ^20 dB/decade is preferable. This value is
derived from the consideration of a theorem by Bode. However, it can be
seen qualitatively from the association of the slope the Lm curve with the
value of the phase angle.This guide should be used to assist in system design.

The Lm and phase diagram reveals some pertinent information, just as
the polar plots do. For example, the gain can be adjusted (which raises or
lowers the Lm curve) to produce a phase margin angle in the desirable range
of 45� to 60�.The shape of the low-frequency portion of the curve determines
system type and therefore the degree of steady-state accuracy.The system type
and the gain determine the error coefficients and therefore the steady-state
error. The phase-margin frequency of gives a qualitative indication of the
speed of response of a system.However, this is only a qualitative relationship.
A more detailed analysis of this relationship is made in the next chapter.

8.19 STABILITY FROM THE NICHOLS PLOT
(LOG MAGNITUDE—ANGLE DIAGRAM)

The Lm^angle diagram is drawn by picking for each frequency the values
of Lm and angle from the Lm and phase diagram. The resultant curve has
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frequency as a parameter. The curve for the example of Sec. 8.7, sketched in
Fig. 8.35, shows a positive gain margin and phase margin angle; therefore,
this represents a stable system. Changing the gain raises or lowers the
curve without changing the angle characteristics. Increasing the gain
raises the curve, thereby decreasing the gain margin and phase margin
angle, with the result that the stability is decreased. Increasing the gain so
that the curve has a positive Lm at �180� results in negative gain and phase
margins; therefore, an unstable system results. Decreasing the gain lowers
the curve and increases stability. However, a large gain is desired to reduce
steady-state errors, as shown in Chap. 6.

The Lm^angle diagram for G(s)H(s) can be drawn for all values of s on
the contourQ of Fig. 8.26a.The resultant curve for minimumphase systems is
a closed contour. Nyquist’s criterion can be applied to this contour by deter-
mining the number of points (having the values 0 dB and odd multiplies of
180�) enclosed by the curve of G(s)H(s). This number is the value of N that is
used in the equationZR¼N�PR to determine the value of ZR. As an example,
consider a control systemwhose transfer function is given by

G sð Þ ¼ K1

s 1þ Tsð Þ ð8:71Þ

FIGURE 8.35 Example of a log magnitude–angle diagram for a minimum-phase
open-loop transfer function.

Frequency Response 333

Copyright © 2003 Marcel Dekker, Inc.



Its Lm^anglediagram, for the contourQ, is shown inFig.8.36.Fromthis figure
it is seen that the value of N is zero and the system is stable. The Lm^angle
contour for a nonminimum-phase system does not close; thus, it is more diffi-
cult to determine the value of N. For these cases the polar plot is easier to use
to determine stability.

In the case of m.p. systems, it is not necessary to obtain the complete
Lm^angle contour to determine stability. Only that portion of the contour is
drawn representing G( jo) for the range of values 0þ<o<1.The stability is
then determined from the position of the curve of G( jo) relative to the (0 dB,
�180�) point. In other words, the curve is traced in the direction of increasing
frequency, i.e., ‘‘walking’’ along the curve in the direction of increasing fre-
quency. The system is stable if the (0 dB, �180�) point is to the right of the
curve. This simplified rule of thumb is based on Nyquist’s stability criterion
for an m.p. system.

A conditionally stable system (as defined in Sec. 8.15, Example 4) is one
in which the curve crosses the �180� axis at more than one point. Figure 8.37
shows the transfer-function plot for such a system with two stable and two
unstable regions. The gain determines whether the system is stable or
unstable. The stable system represented by Fig. 8.37c has two values of gain

FIGURE 8.36 The log magnitude–angle contour for the minimum-phase system of
Eq. (8.71).
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margin, since instability can occur with either an increase or a decrease in
gain. Corresponding to the upper and lower crossover frequencies ocu and
ocl, the gain margin Lm au and Lm al are positive and negative, respectively.
Additional stability information can be obtained from the Lm^angle diagram
(see Chapter 9).

8.20 SUMMARY

In this chapter different types of frequency-response plots are introduced.
From the Lmand phase-angle diagrams the polar plot can be obtained rapidly
and with ease. All of these plots indicate the type of system that is represented
and the necessary gain adjustments that must be made to improve the
response.How these adjustments aremade is discussed in the following chap-
ter. The methods presented for obtaining the Lm frequency-response plots
stress graphical techniques. For greater accuracy a CAD program can be
used to calculate these data (seeAppendixes C and D).

The methods described in this chapter for obtaining frequency-
response plots are based upon the condition that the transfer function of
a given system is known. These plots can also be obtained from experimen-
tal data,which do not require the analytical expression for the transfer func-
tion of a system to be known. These experimental data can be used to

FIGURE 8.37 Log magnitude–angle diagram for a conditionally stable system:
(a), (c) stable; (b), (d) unstable.
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synthesize an analytical expression for the transfer function using the Lm
plot (see Sec. 8.10).

This chapter shows that the polar plot of the transfer function G(s)H(s),
in conjunction with Nyquist’s stability criterion, gives a rapid means of deter-
mining whether a system is stable or unstable. The same information is
obtained from the Lm and phase-angle diagrams and the Lm^angle diagram
(Nichols plot); the phase margin angle and gain margin are also used as a
means of indicating the degree of stability. In the next chapter it is shown
that other key information related to the time domain is readily obtained
from any of these plots. Thus, the designer can determine whether the given
system is satisfactory.

Another useful application of theNyquist criterion is the analysis of sys-
temshaving the characteristic of dead time.TheNyquist criterion has one dis-
advantage in that open-loop poles or zeros on the jo axis require special
treatment. This treatment is not expounded since, in general most problems
are free of poles or zerox on the jo axis.
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9

Closed-Loop Tracking Performance Based on
the Frequency Response

9.1 INTRODUCTION

Chapter 8 is devoted to plotting the open-loop transfer functionG( jo)H( jo).
The two types of plots that are emphasized are the direct polar plot (Nyquist
plot) and the log magnitude^angle plot (Nichols plot). Also included in
Chapter 8 is the determination of closed-loop stability in terms of the
open-loop transfer function by use of the Nyquist stability criterion,which is
illustrated in terms of both types of plot.The result of the stability study places
bounds on the permitted range of values of gain.

This chapter develops a correlation between the frequency and the
time responses of a system, leading to a method of gain setting in order to
achieve a specified closed-loop frequency response [1]. The closed-loop
frequency response is obtained as a function of the open-loop frequency
response. Through the graphical representations in this chapter, the
reader should obtain an appreciation of the responses that can be
achieved by gain adjustment.CAD programs likeTOTAL-PC andMATLAB
(see Appendix C and D) can be used interactively to perform a number of
designs rapidly. In addition, although the design is performed in the fre-
quency domain, the closed-loop responses in the time domain are also
obtained. Then a ‘‘best’’ design is selected by considering both the
frequency and the time responses. CAD programs considerably reduce the
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computational timeof the designer in achieving a system thatmeets the design
specifications.

9.2 DIRECT POLAR PLOT

Consider a simple control system with unity feedback, as shown in Fig. 9.1.
The performance of this system with a sinusoidal input R( jo) is represented
by the following equations:

Eð joÞ ¼ Rð joÞ � Cð joÞ ð9:1Þ
Cð joÞ
Eð joÞ ¼ Gð joÞ ¼ Gð joÞ

 

e jf ð9:2Þ

Cð joÞ
Rð joÞ ¼

Gð joÞ
1þGð joÞ ¼Mð joÞ ¼ M ðoÞe jaðoÞ ð9:3Þ

Eð joÞ
Rð joÞ ¼

1
1þGð joÞ ð9:4Þ

Figure 9.2 is the polar plot ofG( jo) for this control system.The directed
line segment drawn from the �1þj 0 point to any point on the G( jo)H( jo)

FIGURE 9.2 Polar plot of G( jo) for the control system of Figure 9.1.

FIGURE 9.1 Block diagram of a simple control system.
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curve represents the quantityBð joÞ ¼ 1þGð joÞHð joÞ.For a unity-feedback
system,H( jo)¼ 1; therefore,

Bð joÞ ¼ Bð joÞ

 

e j�ðoÞ ¼ 1þGð joÞ ð9:5Þ

The frequency control ratioC( jo)/R( jo) is therefore equal to the ratio

Cð joÞ
Rð joÞ ¼

Að joÞ
Bð joÞ ¼

Að joÞ

 

e jfðoÞ

Bð joÞ

 

e j�ðoÞ ¼
Gð joÞ

1þGð joÞ ð9:6Þ

Cð joÞ
Rð joÞ ¼

Að joÞ

 


Bð joÞ

 

 e jðf��Þ ¼ M ðoÞe jaðoÞ ð9:7Þ

Note that the angle a(o) can be determined directly from the construction
shown in Fig. 9.2. Since the magnitude of the angle f(o) is greater than the
magnitude of the angle l(o), the value of the angle a(o) is negative.
Remember that ccw rotation is taken as positive.

Combining Eqs. (9.4) and (9.5) gives

Eð joÞ
Rð joÞ ¼

1
1þGð joÞ ¼

1
Bð joÞ

 

e j� ð9:8Þ

FromEq. (9.8) it is seen that the greater the distance from the�1þj0 point to a
point on the G( jo) locus, for a given frequency, the smaller the steady-state
sinusoidal error for a particular sinusoidal input. Thus, the usefulness and
importance of the polar plot ofG( jo) have been enhanced.

9.3 DETERMINATION OF Mm AND um FOR A SIMPLE
SECOND-ORDER SYSTEM

The frequency at which themaximumvalueofC( jo)/R( jo) occurs is referred
to as the resonant frequency om. The maximum value is labeled Mm. These
two quantities are figures of merit of a system. As shown in later chapters,
compensation to improve system performance is based upon a knowledge
of om andMm.

For a simple second-order system a direct and simple relationship
can be obtained for Mm and om in terms of the system parameters. Consider
the position-control system of Fig. 9.3, which contains the servomotor
described by Eq. (2.138).The forward and closed-loop transfer functions are,
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respectively,
CðsÞ
EðsÞ ¼

K1

sðTms þ 1Þ ð9:9Þ
CðsÞ
RðsÞ ¼

1
ðTm=K1Þs2 þ ð1=K1Þs þ 1

¼ 1
s2=o2

n þ ð2z=onÞs þ 1
ð9:10Þ

where K1¼AKM. The damping ratio and the undamped natural frequency
for this system, as determined from Eq. (9.10), are z ¼ 1=ð2 ffiffiffiffiffiffiffiffiffiffiffiffi

K1Tm
p Þ and

on ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1=Tm
p

.The control ratio as a function of frequency is therefore
Cð joÞ
Rð joÞ ¼

1
ð1� o2=o2

nÞ þ j2zðo=onÞ
¼ M ðoÞe jaðoÞ ð9:11Þ

Plots of M(o) and a(o) vs. o, for a particular value of on, can be obtained
for different values of z (see Fig. 8.4). In order to obtain a family of curves that
are applicable to all simple second-order systems with different values of on,
they are plotted vs. o/on in Fig. 9.4a.

The inverse Laplace transform of C(s), for a unit-step input, gives the
time response, as derived in Sec. 3.9 for z<1, as

c tð Þ ¼ 1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p e�zont sin on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
t þ cos�1 z

� �
ð9:12Þ

The plot of c(t) for several values of damping ratio z is drawn in Fig. 9.4b.

FIGURE 9.4 (a) Plots of M vs. o/on for a simple second–order system; (b) corre-
sponding time plots for a step input.

FIGURE 9.3 A position-control system.

342 Chapter 9

Copyright © 2003 Marcel Dekker, Inc.



Next, consider the magnitudeM2, as derived from Eq. (9.11):

M 2 ¼ 1
ð1� o2=o2

nÞ2 þ 4z2ðo2=o2
nÞ

ð9:13Þ

To find the maximum value of M and the frequency at which it occurs,
Eq. (9.13) is differentiated with respect to frequency and set equal to zero:

dM 2

do
¼ ��4ð1� o2=o2

nÞðo=o2
nÞ þ 8z2ðo=o2

nÞ
½ð1� o2=o2

nÞ2 þ 4z2ðo2=o2
nÞ�2

¼ 0 ð9:14Þ

The frequency om at which the valueM exhibits a peak (see Fig. 9.5), as found
from Eq. (9.14), is

om ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2z2

q
ð9:15Þ

This value of frequency is substituted into Eq. (9.13) to yield

Mm ¼
1

2z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p ð9:16Þ

From these equations it is seen that the curve ofM vs.ohas a peak value,other
than at o¼ 0, only for z< 0.707. Figure 9.6 is a plot of Mm vs. z for a simple

FIGURE 9.6 A plot of Mm vs. z for a simple second-order system.

FIGURE 9.5 A closed-loop frequency-response curve indicating Mm and om.
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second-order system. For values of z< 0.4, Mm increases very rapidly in
magnitude; the transient oscillatory response is therefore excessively large
and might damage the physical equipment.

In Secs. 3.5 and 7.13 the damped natural frequency od for the transient
of the simple second-order system is shown to be

od ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
ð9:17Þ

Also, in Sec. 3.9 the expression for the peak value Mp for a unit-step input to
this simple system is determined. It is repeated here:

Mp ¼
cp
r
¼ 1þ exp � zpffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p

 !
ð9:18Þ

Therefore, for this simple second-order system the following conclusions are
obtained in correlating the frequency and time responses:

1. Inspection of Eq. (9.15) reveals thatom is a function of bothon and z.
Thus, for a given value of z, the larger the value of om, the larger on,
and the faster the transient time of response for this system.

2. Inspection of Eqs. (9.16) and (9.18) shows that both Mm and Mp are
functions of z.The smaller z becomes, the larger in valueMm andMp

become. Thus, it can be concluded that the larger the value of Mm,
the larger the value ofMp. For values of z< 0.4 the correspondence
between Mm and Mp is only qualitative for this simple case. In
other words, for z¼ 0 the time domain yields Mp¼ 2, whereas
the frequency domain yieldsMm¼1.When z> 0.4, there is a close
correspondence between Mm and Mp. As an example, for z equal
to 0.6,Mm¼1.04 andMp¼1.09.

3. In Fig. 9.7 are shown polar plots for different damping ratios for the
simple second-order system. Note that the shorter the distance
between the�1þj 0 point and a particularG( jo) plot, as indicated
by the dashed lines, the smaller the damping ratio.Thus,Mm is larger
and consequentlyMp is also larger.

From these characteristics a designer can obtain a good approximation
of the time response of a simple second-order system by knowing only theMm

and om of its frequency response.
The procedure of setting the derivative, with respect to o, of

C( jo)/R( jo) to zero works very well with a simple system. But the differen-
tiation of C( jo)/R( jo) and solution for om andMm become tedious for more
complex systems.Therefore, a graphic procedure is generally used, as shown
in the following sections [2].
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9.4 CORRELATION OF SINUSOIDAL AND
TIME RESPONSES [3]

Although the correlation in the preceding section is for a simple second-order
system, it has been found by experience that Mm is also a function of the
effective z and on for higher-order systems.The effective z and on of a higher-
order system (see Sec.7.13) is dependent upon the combined effect of the z and
on of each second-order term and the values of the real roots of the character-
istic equation ofC(s)/R(s).Thus, in order to alter the effectiveMm, the location
of the roots must be changed.Which ones should be altered depends onwhich
are dominant in the time domain.

From the analysis for a simple second-order system, whenever the
frequency response has the shape shown in Fig 9.5, the following correlation
exists between the frequency and time responses for systems of any order:

1. The largerom is made, the faster the time of response for the system.
2. The value of Mm gives a qualitative measure of Mp within the

acceptable range of the effective damping ratio 0.4< z< 0.707.
In terms ofMm, the acceptable range is1<Mm<1.4.

3. The closer theG( jo) curve comes to the�1þj 0 point, the larger the
value ofMm.

The characteristics developed in Chap. 6 can be added to these three items;
i.e., the larger Kp ,Kv or Ka is made, the greater the steady-state accuracy for a
step, a ramp, and a parabolic input, respectively. In terms of the polar plot, the

FIGURE 9.7 Polar plots of G(jo) for different damping ratios for the system shown
in Fig. 9.3.
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farther the point G( jo)jo¼ 0¼K0 for aType 0 system is from the origin, the
more accurate is the steady-state time response for a step input. For aType 1
system,the farther the low-frequency asymptote (aso! 0) is from the imagin-
ary axis, the more accurate is the steady-state time response for a ramp input.

All the factors just mentioned are merely guideposts in the frequency
domain to assist the designer in obtaining an approximate idea of the time
response of a system. They serve as ‘‘stop-and-go signals’’ to indicate if the
design is headed in the right direction in achieving the desired time response.
If the desired performance specifications are not satisfactorily met, compen-
sation techniques (see later chapters) must be used. After compensation the
exact time response can be obtained by taking the inverse Laplace transform
of C(s). The approximate approach saves much valuable time. Exceptions to
the preceding analysis do occur for higher-order systems.The digital compu-
ter is a valuable tool for obtaining the exact closed-loop frequency and time
responses.Thus a direct correlation between them can easily be made.

9.5 CONSTANT M(u) AND a(u) CONTOURS OF
C(ju)/R(ju) ON THE COMPLEX PLANE (DIRECT PLOT)

The open-loop transfer function and its polar plot for a given feedback control
system have provided the following information so far:

1. The stability or instability of the system
2. If the system is stable, the degree of its stability
3. The system type
4. The degree of steady-state accuracy
5. A graphical method of determining C( jo)/R( jo)

These items provide a qualitative idea of the system’s time response.The polar
plot is useful since it permits the determination ofMm and om. Also, it is used
to determine the gain required to produce a specified value ofMm.

The contours of constant values ofMdrawn in the complex plane yield a
rapid means of determining the values of Mm and om and the value of gain
required to achieve a desired value Mm. In conjunction with the contours of
constant values of a(o), also drawn in the complex plane, the plot of
C( jo)/R( jo) can be obtained rapidly. The M and a contours are developed
only for unity-feedback systems.

Equation of a Circle

The equation of a circle with its center at the point (a,b) and having radius r is

ðx � aÞ2 þ ðy � bÞ2 ¼ r2 ð9:19Þ
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The circle is displaced to the left of the origin for a negative value of a, and for
negative values of b the circle is displaced below the origin. This equation of
a circle in the xy plane is used later in this section to express contours of
constantM and a.

M(u) Contours

Figure 9.2 is the polar plot of a forward transfer function G( jo) of a
unity-feedback system. From Eq. (9.3), the magnitudeMof the control ratio is

M ðoÞ ¼ Að joÞ

 


Bð joÞ

 

 ¼

Gð joÞ

 


1þGð joÞ

 

 ð9:20Þ

The question at hand is: How many points are there in the complex plane
for which the ratios of the magnitudes of the phasors A( jo) and B( jo) have
the same value of M(o)? For example, by referring to Fig. 9.2. it can be seen
that for the frequency o¼o1, M has a value Ma. It is desirable to determine
all the other points in the complex plane for which

Að joÞ

 


Bð joÞ

 

 ¼ Ma

To derive the constant M locus, express the transfer function in rectangular
coordinates.That is,

Gð joÞ ¼ x þ jy ð9:21Þ
Substituting this equation into Eq. (9.20) gives

M ¼ x þ jy


 



1þ x þ jy


 

 ¼

x2 þ y2

ð1þ xÞ2 þ y2

" #1=2

or M 2 ¼ x2 þ y2

ð1þ xÞ2 þ y2

Rearranging the terms of this equation yields

x þ M 2

M 2 � 1

 !2

þ y2 ¼ M 2

ðM 2 � 1Þ2 ð9:22Þ

By comparisonwith Eq. (9.19) it is seen that Eq. (9.22) is the equationof a circle
with its center on the real axis withM as a parameter.The center is located at

x0 ¼ �
M 2

M 2 � 1
ð9:23Þ

y0 ¼ 0 ð9:24Þ
and the radius is

r0 ¼
M

M 2 � 1










 ð9:25Þ
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Inserting a given value of M¼Ma into Eq. (9.22) results in a circle in the
complex plane having a radius r0 and its center at (x0, y0).This circle is called
a constantM contour forM¼Ma.

The ratio of magnitudes of the phasors A( jo) and B( jo) drawn to any
point on the Ma circle has the same value. As an example, refer to Fig. 9.8,
in which the Ma circle and the G( jo) function are plotted. Since the circle
intersects the G( jo) plot at the two frequencies o1 and o2, there are two
frequencies for which

Að jo1Þ


 


Bð jo1Þ


 

 ¼

Að jo2Þ


 


Bð jo2Þ


 

 ¼ Ma

In other words, a given point (x1, y1) is simultaneously a point on a particular
transfer functionG( jo) and a point on theM circle passing through it.

The plot of Fig. 9.8 is redrawn in Fig. 9.9 with twomoreM circles added.
In this figure the circleM¼Mb is just tangent to theG( jo) plot.There is only
one point (x3, y3) for G( jo3) in the complex plane for which the ratio
A( jo)/B( jo) is equal to Mb. Also, theMc circle does not intersect and is not
tangent to theG( jo) plot, indicating that there are no points in the plane that
can simultaneously satisfy Eqs. (9.20) and (9.22) forM¼Mc.

Figure 9.10 shows a family of circles in the complex plane for different
values ofM. In this figure, notice that the larger the valueM, the smaller is its
corresponding M circle. Thus, for the example shown in Fig. 9.9 the ratio
C( jo)/R( jo), for a unity-feedback control system, has a maximum value of
M equal to Mm¼Mb. A further inspection of Fig. 9.10 and Eq. (9.23) reveals
the following:

1. For M!1, which represents a condition of oscillation (z!0),
the center of the M circle x0!�1þj 0 and the radius r0! 0.

FIGURE 9.8 A plot of the transfer function G( jo) and the Ma circle.
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FIGURE 9.10 Constant M contours.

FIGURE 9.9 M contours and a G(jo) plot.
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This agrees with the statement made previously that as the G( jo)
plot comes closer to the �1þj 0 point, the system’s effective z
becomes smaller and the degree of its stability decreases.

2. For M(o)¼ 1, which represents the condition where C( jo)¼
R( jo), r0!1 and theM contour becomes a straight line perpendi-
cular to the real axis at x¼� 1

2.
3. ForM! 0, the center of theM circle x0! 0 and the radius r0! 0.
4. For M>1 the centers of the circles lie to the left of x¼�1þj 0,

and for M<1 the centers of the circles lie to the right of x¼ 0. All
centers are on the real axis.

a(u) Contours

The a(o) contours, representing constant values of phase angle a(o) for
C( jo)/R( jo), can also be determined in the same manner as theM contours.
Substituting Eq. (9.21) into Eq. (9,3) yields.

M oð Þe ja oð Þ ¼ x þ jy
ð1þ xÞ þ jy

¼ Að joÞ
Bð joÞ ð9:26Þ

The question at hand now is:Howmany points are there in the complex plane
for which the ratio of the phasorsA( jo) andB( jo) yields the sameanglea? To
answer this question, express the angle a obtained from Eq. (9.26) as follows:

a ¼ tan�1
y
x
� tan�1

y
1þ x

¼ tan�1
y=x � y=ð1þ xÞ

1þ ðy=xÞ½y=ð1þ xÞ� ¼ tan�1
y

x2 þ x þ y2

tana ¼ y
x2 þ x þ y2

¼ N ð9:27Þ

For a constant value of the angle a, tan a¼N is also constant. Rearranging
Eq. (9.27) results in

x þ 1
2

� �2

þ y � 1
2N

� �2

¼ 1
4
N 2 þ 1
N 2 ð9:28Þ

By comparing with Eq. (9.19) it is seen that Eq. (9.28) is the equation of a circle
withN as a parameter. It has its center at

xq ¼ �
1
2

ð9:29Þ

yq ¼
1
2N

ð9:30Þ
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and has a radius of

rq ¼
1
2

N 2 þ 1
N 2

 !1=2

ð9:31Þ

Inserting a given value of Nq¼ tan aq into Eq. (9.28) results in a circle
(see Fig. 9.11) of radius rqwith its center at (xq, yq)

The tangent of angles in the first and third quadrant is positive.
Therefore, the yq coordinate given by Eq. (9.30) is the same for an angle in the
first quadrant and for the negative of its supplement, which is in the third
quadrant. As a result, the constant a contour is only an arc of the circle. As an
example, the a¼�310� and�130� arcs are part of the same circle, as shown in
Fig. 9.11a. Similarly, angles a in the second and fourth quadrants have the same
value yq if they are negative supplements of each other. The constant a
contours for these angles are shown in Fig. 9.11b.

The ratio of the complex quantities A( jo) and B( jo), for all points on
the aq arc, yields the same phase angle aq, that is,

ffAð joÞ � ffBð joÞ ¼ aq ð9:32Þ

A good procedure, in order to avoid ambiguity in determining the angle a is to
start at zero frequency, where a¼ 0, and to proceed to higher frequencies,
knowing that the angle is a continuous function.

Different values of a result in a family of circles in the complex plane
with centers on the line represented by (� 1

2, y), as illustrated in Fig. 9.12.

FIGURE 9.11 Arcs of constant a.
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Tangents to the M Circles

The line drawn through the origin of the complex plane tangent to a givenM
circle plays an important part in setting the gain of G( jo). Referring to
Fig. 9.13 and recognizing that the line bc¼ r0 is the radius and ob¼ x0 is the
distance to the center of the particularM circle, it becomes evident that

sinc ¼ bc
ob
¼ M=ðM 2 � 1Þ

M 2=ðM 2 � 1Þ ¼
1
M

ð9:33Þ

This relationship is utilized in the section on gain adjustment. Also, the point
a in Fig. 9.13 is the�1þj 0 point.This statement is proved from

ðocÞ2 ¼ ðobÞ2 � ðbcÞ2 ac ¼ oc sinc and ðoaÞ2 ¼ ðocÞ2 � ðacÞ2

Combining these equations yields

oað Þ2¼ M 2 � 1
M 2 obð Þ2� bcð Þ2� � ð9:34Þ

FIGURE 9.12 Constant a contours.
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The values of the distances to the center ob and of the radius bc of theM circle
[see Eqs. (9.23) and (9.25)] are then substituted into Eq. (9.34),which results in

oa ¼ 1 ð9:35Þ
Some typical values necessary for constructingM and a contours are as

follows:

Mo ¼ 1:1 xo ¼ �5:76 ro ¼ 5:24 c ¼ 65:4�

Mo ¼ 1:3 xo ¼ �2:45 ro ¼ 1:88 c ¼ 50:3�

a ¼ �60� N ¼ �1:73 rq ¼ 0:577 yq ¼ �0:289
a ¼ 30� N ¼ 0:577 rq ¼ 1:000 yq ¼ 0:866

9.6 CONSTANT 1/M AND a CONTOURS (UNITY
FEEDBACK) IN THE INVERSE POLAR PLANE

The closed-loop unity-feedback system can be represented by either of the
following equations:

Cð joÞ
Rð joÞ ¼

Gð joÞ
1þGð joÞ ¼ Me ja ð9:36Þ

Rð joÞ
Cð joÞ ¼

1
Gð joÞ þ 1 ¼ 1

M
e�ja ð9:37Þ

Note that Eq. (9.37) is composed of two complex quantities that can be readily
plotted in the complex plane, as shown in Fig. 9.14.Thus,R( jo)/C( jo) can be
obtained graphically by plotting the complex quantities1/G( jo) and1.

Constant 1/M and a contours for the inverse plots are developed for
unity-feedback systems. Figure 9.14 illustrates the quantities in Eq. (9.37) for

FIGURE 9.13 Determination of sin �.
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a unity-feedback system,with H( jo)¼ 1. Note that, because of the geometry
of construction, the directed line segment drawn from the �1þj 0 point is
also the quantity 1þ1/G( jo) or (1/M)e�ja. Thus, the inverse plot yields very
readily the form and location of the contours of constant 1/M and a. In other
words, in the inverse plane it can be seen that:

1. Contours of constant values ofM are circleswhose centers are at the
�1þj 0 point, and the radii are equal to1/M.

2. Contours of constant values of�a are radial lines that pass through
the�1þj 0 point.

Figure 9.15 shows the contour for a particular magnitude of
R( jo)/C( jo) and a tangent drawn to theM circle from the origin. In Fig. 9.15,

sinc ¼ ab
ob










 ¼ 1=M

1
¼ 1

M

FIGURE 9.14 Representation of the of the quantities in Eq. (9.37) with H( jo)¼ 1.

FIGURE 9.15 Contour for a particular magnitude R( jo)/C( jo)¼ 1/Mq.
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which is the same as for the contours in the direct plane. The directed line
segment from�1þj 0 to the point (x1, y1) has a value of 1/Mq and angle of�aq.
If the polar plot of 1/G( jo) passes through the (x1, y1) point, then
R( jo1)/C( jo1) has these values. The directed line segment from �1þj0 to
the point (x2, y2) has a magnitude of 1/Mq and an angle of �aq�180�. If the
polar plot of 1/G( jo) passes through the (x2, y2) point, then jR( jo2)/C( jo2)j
has these values.

Figure 9.16 illustrates families of typicalM and a contours.The plots of
constant M values shown in Fig. 9.16 are concentric circles having the same
center at�1þj 0.They are used in Sec. 9.8 to develop the constantM contours
in the log magnitude^angle diagram (Nichols chart).

9.7 GAIN ADJUSTMENT OF A UNITY-FEEDBACK SYSTEM
FOR A DESIRED Mm: DIRECT POLAR PLOT

Gain adjustment is the first step in adjusting the system for the desired
performance.The procedure for adjusting the gain is outlined in this section.
Figure 9.17a shows Gx( jo) with its respective Mm circle in the complex
plane. Since

Gxð joÞ ¼ x þ jy ¼ KxG
0
xð joÞ ¼ Kxðx0 þ jy0Þ ð9:38Þ

it follows that

x0 þ jy0 ¼ x
Kx
þ j

y
Kx

FIGURE 9.16 TypicalM and a contours on the inverse polar plane for unity feedback.
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where G
0
xð joÞ ¼ gxð joÞ=Kx is defined as the frequency-sensitive portion

of Gx( jo) with unity gain. Note that changing the gain merely changes the
amplitude and not the angle of the locus of points of Gx( jo). Thus, if in
Fig. 9.17a a change of scale is made by dividing the, x, y coordinates by Kx so
that the new coordinates are x0,y0, the following are true:

1. TheGx( jo) plot becomes theG0x( jo) plot.
2. TheMm circle becomes simultaneously tangent toG0x( jo) and to the

line representing sin�¼1/Mm.
3. The�1þj0 point becomes the�1/Kxþ j 0 point.
4. The radius r0 becomes r 00¼ r0/Kx.

In other words, if G0x( jo) and Gx( jo) are drawn on separate sheets of graph
paper (see Fig. 9.17b), and the two graphs are superimposed so that the axes

FIGURE9.17 (a) Plot ofGx( jo) with the respectiveMm circle. (b) Circle drawn tangent
both to the plot of G0x( jo) and to the line representing the angle �¼ sin�1(1/Mm).
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coincide, the circles and theGx( jo) andG
0
x( jo) plots also coincide.Referring

to Fig. 9.17a and 9.17b, note that oa¼�1and oa0 ¼�1/Kx.
As a consequence, it is possible to determine the required gain to achieve

a desiredMm for a given system by the following graphical procedure:

Step1. If the original system has a transfer function

Gxð joÞ ¼
Kxð1þ joT1Þð1þ joT2Þ 	 	 	

ð joÞmð1þ joTaÞð1þ joTbÞð1þ joTcÞ 	 	 	
¼ KxG

0
xð joÞ
ð9:39Þ

with an original gainKx, only the frequency-sensitive portionG
0
x( jo)

is plotted.
Step 2. Draw the straight line at the angle �¼ sin�1(1/Mm), measured

from the negative real axis.
Step 3. By trial and error, find a circle whose center lies on the negative

real axis and is simultaneously tangent to both the G0x( jo) plot and
the line drawn at the angle�.

Step 4. Having found this circle, locate the point of tangency on the �-
angle line. Draw a line from the point of the tangency perpendicular
to the real axis. Label the point where this line intersects the real
axis as a0.

Step 5.For this circle to be anMcircle representingMm, the point a
0must

be the �1þ j 0 point. Thus, the x0, y0 coordinates must be multiplied
by a gain factor Km in order to convert this plot into a plot of G( jo).
From the graphical construction the value Km is 1/oa0.

Step 6.The original gain must be changed by a factorA¼Km/Kx.

Note that if Gx( jo) that includes a gain Kx is already plotted, it is
possible to work directly with the plot of the function Gx( jo). Following the
procedure just outlined results in the determination of the additional gain
required to produce the specifiedMm; that is, the additional gain is

A ¼ Km

Kx
¼ 1

oa00

Example. It is desired that the closed-loop system that has the open-loop
transfer function.

Gxð joÞ ¼
1:47

joð1þ j0:25oÞð1þ j0:1oÞ
have anMm¼1.3.The problem is to determine the actual gain K1 needed and
the amount by which the original gain Kx must be changed to obtain thisMm.
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The procedure previously outlined is applied to this problem. G0x( jo) is
plotted in Fig. 9.18 and results in om¼ 2.55 and

K1 ¼
1
oa0
� 1

0:34
¼ 2:94 s�1

The additional gain required is

A ¼ K1

Kx
¼ 2:94

1:47
¼ 2:0

In other words, the original gain ofG( jo) must be doubled to obtainMm of1.3
for C( jo)/R( jo).

9.8 CONSTANT M AND a CURVES ON THE LOG
MAGNITUDE—ANGLE DIAGRAM
(NICHOLS CHART) [4]

As derived earlier in this chapter, the constant M curves on the direct and
inverse polar plots are circles. The transformation of these curves to the log
magnitude (Lm)^angle diagram is done more easily by starting from the
inverse polar plot since all the M circles have the same center. This requires
a change of sign of the Lm and angle obtained, since the transformation is

FIGURE 9.18 Gain adjustment using the procedure outlined in Sec. 9.7 for
G0x( jo)¼ 1/jo(1þ j 0.25o)(1þ j 0.1o).
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from the inverse transfer function on the polar to the direct transfer function
on the Lm plot.

A constant M circle is shown in Fig. 9.19 on the inverse polar plot. The
magnitude r and angle l drawn to any point on this circle are shown.

The equation for thisM circle is

y2 þ 1þ xð Þ2¼ 1
M 2 ð9:40Þ

where

x ¼ r cos � y ¼ r sin � ð9:41Þ
Combining these equations produces

r2M 2 þ 2rM 2 cos �þM 2 � 1 ¼ 0 ð9:42Þ
Solving for r and l yields

r ¼ � cos �
 cos2 ��M 2 � 1
M 2

 !1=2

ð9:43Þ

� ¼ cos�1
1�M 2 � r2M 2

2rM 2 ð9:44Þ

These equations are derived from the inverse polar plot 1/G( jo). Since the
Lm^angle diagram is drawn for the transfer function G( jo) and not for its
reciprocal, a change in the equations must be made by substituting

r ¼ 1
r

f ¼ ��

Since Lm r¼�Lm r, it is only necessary to change the sign of Lm r. For
any value of M a series of values of angles l can be inserted in Eq. (9.43)
to solve for r. This magnitude must be changed to decibels. Alternately, for
any value ofM a series of values of r can be inserted in Eq. (9.44) to solve for

FIGURE 9.19 Constant M circle on the inverse polar plot.
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the corresponding angle l. Therefore, the constant M curve on the Lm-angle
diagram can be plotted by using either of these two equations.

In a similar fashion the constant a curves can be drawn on the Lm-angle
diagram.The a curves on the inverse polar plot are semi-infinite straight lines
terminating on the�1þj 0 point and are given by

tan aþ x tan aþ y ¼ 0 ð9:45Þ
Combining Eq. (9.45) with Eq. (9.41) produces

tan aþ r cos � tan aþ r sin � ¼ 0 ð9:46Þ

tan a ¼ �r sin �
1þ r cos �

¼ �y
1þ x

ð9:47Þ

For constant values of a, a series of values of l can be inserted in this equation
to solve for r. The constant a semi-infinite curves can then be plotted on the
Lm-angle diagram.

Constant M and a curves, as shown in Fig. 9.20, repeat for every 360�.
Also, there is symmetry at every 180� interval. An expanded 300� section of
the constant M and a graph is shown in Fig. 9.23. This graph is commonly
referred to as the Nichols chart.Note that theM¼1(0 dB) curve is asymptotic
to f¼�90� and �270�, and the curves forM< 1

2 (�6 dB) are always negative.
M¼1 is the point at 0 dB, �180�, and the curves forM>1 are closed curves
inside the limitsf¼�90� andf¼�270�.TheNichols chart should be viewed
as two charts.The first has the Cartesian coordinates of dB vs. phase angle f
that are used to plot the open-loop frequency response, with the
frequencies noted along the plot. The second is the chart for loci of constant
M and a for the closed-loop transfer function that is superimposed on the
open-loop frequency-response plot. These loci for constant M and a for the
Nichols chart are applied only for stable unity-feedback systems. A macro,

FIGURE 9.20 Constant M and a curves on the Nichols chart.
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utilizing Eqs. (9.44) and (9.47), can be written to generate a computer printout
of the constantM and a contours on the Nichols chart.

9.9 GENERATION OF MATLAB BODE AND
NYQUIST PLOTS

TheMATLAB commands shown below are used to obtain Bode and Nyquist
plots for the transfer function

GðsÞ ¼ K
sðs þ 1Þðs þ 5Þ ð9:48Þ

In using these commands as a basis of other problems, it is important to pay
attention to the selection of the appropriate scales for the plots. The smallest
scale range for Bode plots should be selected based upon the 0-dB crossing of
the Lmplot and the value of the gain-margin frequency.For theNyquist plot it
is important to select the scale so that the horizontal axis crossing points
(�180� and/orþ180�) are clearly shown.
Bode Plot

% Set up transfer function using open-loop poles and gain
p¼[0 �1 �5];
num¼5;
den¼poly(p);
%
% Use Bode command to obtain plots
%
% In general, select dB scale of þ20 to �40dB, a minimum
% angle scale, and a log frequency (w) scale that includes
% the phase and gain margin frequencies
%
% Get Bode plot of interest
% Specify frequency range w space logarithmically from
% 10�1 to 102

w¼logspace (�1, 2,200);
%
% Entering the command ''bode(num, den, w)'' will open a figure
% window with the Bode plot on a default scale. The plot can be
% edited using the menu buttons at the top of the window.
% Alternatively, the plot format can be hard coded as follows:
%
% Generate Bode plot data
[mag, phase]¼bode(num, den, w);
% Select top plot of two plots
subplot(2,1,1)
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% Plot magnitude data on semilog scale in dB
semilogx(w,20*log10(mag))
% Set axis limits
axis([0.1,100,�40,20]);
% Set title and labels
title('Example'),xlabel('omega(rad/sec)'),ylabel('dB'),grid
% Select bottom plot of two plots
subplot (2,1,2)
% Plot angle data on semilog scale
semilog x(w phase)
% Set axis limits
axis([0.1,100,�270,0]);
% Plot a line at �180
hold on
semilogx([0.1 100], [�180 �180])
hold off
% Set title and labels
xlabel ('omega (rad/sec)'),ylabel ('Degrees'),grid

Nyquist Plot

% Set up transfer function using open-loop poles and gain
p¼[0 �1 �5];
num¼5;
den¼poly(p);
%
% Use Nyquist command to obtain plots
%
% In general, select a log frequency (w) scale that includes
% the gain margin frequency
%
% Get Nyquist plot of interest
% Specify frequency range w
w¼logspace(log10(0.5), log10 (20), 200);
%
% Entering the command ''nyquist (num,den,w)'' will open a
% figure window with the nyquist plot on a default scale.
% The plot can be edited using the menu buttons at the top
% of the window. Alternatively, the plot format can be hard
% coded as follows:
%
nyquist (num,den,w);
hold on
num¼50;
nyquist (num,den,w);
hold off
axis ([�2 0 �0.8 0.8]);
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The Bode plots for K¼ 5 and the Nyquist plots for K¼ 5 and 50 are shown in
Figs. 9.21and 9.22, respectively.

9.10 ADJUSTMENT OF GAIN BY USE OF THE LOG
MAGNITUDE–ANGLE DIAGRAM (NICHOLS CHART)

The Lm^angle diagram for

Gxð joÞ ¼
2:04ð1þ j2o=3Þ

joð1þ joÞð1þ j0:2oÞð1þ j0:2o=3Þ ð9:49Þ
is drawn as the solid curve in Fig. 9.23 on graph paper that has the constantM
and a contours. TheM¼1.12 (1dB) curve is tangent to the curve at om1¼1.1.
These values are themaximumvalues of the control ratioMm and the resonant
frequencyomwith the gainKx¼ 2.04 given inEq. (9.49).Thedesigner specifies
that the closed-loop system should be adjusted to produce anMm¼1.26 (2 dB)
by changing the gain.The dashed curve in Fig. 9.23 is obtained by raising the
transfer function curve until it is tangent to the Mm¼1.26 (2 dB) curve. The
resonant frequency is now equal to om2¼ 2.09. The curve has been raised by
the amount Lm A¼ 4.5 dB, meaning that an additional gain ofA¼1.679 must

FIGURE 9.21 MATLAB Bode plots for K¼ 5.

Closed-Loop Tracking Performance 363

Copyright © 2003 Marcel Dekker, Inc.



FIGURE 9.22 MATLAB Nyquist plots.

FIGURE 9.23 Log magnitude–angle diagram for Eq. (9.49).
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be added in cascade with Gx( jo). The gain is now equal to
K1¼ (1.679)(2.04)¼ 3.43.

Forany frequencypointonthetransfer functioncurve,thevaluesofMand
a can be read from the graph. For example,withMmmade equal to1.26 in Fig.
9.23,thevalueofMato¼ 3.4is�0.5dBanda is�110�.Theclosedloopfrequency
response,bothLmand angle,obtained fromFig.9.23 is also plotted inFig.9.24
for both values of gain, K1¼2.04 and 3.43. The following MATLAB
commands inSect9p10.m illustrate theNichols chartdesignprocess.

echo on

gxnum¼2.04*[2/3 1]; % Create numerator

gxden¼conv([1 1 0],conv([0.2 1],[0.2/3 1])); % Create denominator

Gx¼tf(gxnum,gxden);% Create transfer function from num and den

zpk (Gx) % Show zero – pole – gain form

sisotool(‘nichols’, Gx) % Open the SISO tool window

%

% The design is accomplished by setting a constraint of

% Closed-Loop Peak Gain<2 (value in dB) and moving the curve

% up to lie tangent to the constraint.

%

% See Figure C. 9 for a screen view of the SISO design tool

% in the ‘nichols’ mode. Axes and grid values are adjusted

% to obtain this view.

If the closed-loop response with the resultant gain adjustment has too
low a resonant frequency for the desired performance, the next step is to

FIGURE 9.24 Control ratio vs. frequency obtained from the log magnitude–angle
diagram of Fig. 9.23.
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compensate the system to improve the frequency response. Compensation is
studied in detail in Chaps.10 to12.

9.11 CORRELATION OF POLE-ZERO DIAGRAM WITH
FREQUENCY AND TIME RESPONSES

Whenever the closed-loop control ratio M( jo) has the characteristic from
shown in Fig. 9.5, the system may be approximated as a simple second-order
system.This usually implies that the poles, other than the dominant complex
pair, are either far to the left of the dominant complex poles or are close to
zeros.When these conditions are not satisfied, the frequency response may
have other shapes. This can be illustrated by considering the following three
control ratios:

CðsÞ
RðsÞ ¼

1
s2 þ s þ 1

ð9:50Þ

CðsÞ
RðsÞ ¼

0:313ðs þ 0:8Þ
ðs þ 0:25Þðs2 þ 0:3s þ 1Þ ð9:51Þ

CðsÞ
RðsÞ ¼

4
ðs2 þ s þ 1Þðs2 þ 0:4s þ 4Þ ð9:52Þ

The pole-zero diagram,the frequency response and the time response to a step
input for each of these equations are shown in Fig. 9.25.

For Eq. (9.50) the following characteristics are noted from Fig. 9.25a:

1. The control ratio has only two complex dominant poles and no
zeros.

2. The frequency-response curve has the following characteristics:
(a) A single peakMm¼1.157 at om¼ 0.7.
(b) 1<M<Mm in the frequency range 0<o<1.

3. The time response has the typical waveformdescribed in Chap.3 for
a simple second-order system.That is, the first maximumof c(t) due
to the oscillatory term is greater than c(t)ss, and the c(t) response
after this maximum oscillates around the value of c(t)ss.

For Eq. (9.51) the following characteristics are noted from Fig. 9.25b:

1. The control ratiohas twocomplex poles and one real pole that are all
dominant, and one real zero.

2. The frequency-response curve has the following characteristics:
(a) A single peak,Mm¼1.27 at om¼ 0.95.
(b) M<1 in the frequency range 0<o<ox.
(c) The peakMm occurs at om¼ 0.95>ox.
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FIGURE 9.25 Comparison of frequency and time responses for three pole-zero patterns.
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3. The time response does not have the conventional waveform. That
is, the first maximum of c(t) due to the oscillatory term is less than
c(t)ss because of the transient term A3e

�0.25t.

For Eq. (9.52) the following characteristics are noted from Fig. 9.25c:

1. The control ratio has four complex poles, all are dominant, and no
zeros.

2. The frequency-response curve has the following characteristics:
(a) There are two peaks,Mm1¼1.36 atom1¼0.81andMm2¼1.45 at

om2¼1.9.
(b) In the frequency range 0<o<2.1, 1<M<1.45.
(c) The time response does not have the simple second-order

waveform. That is, the first maximum of c(t) in the oscillation
is greater than c(t)ss, and the oscillatory portion of c(t) does not
oscillate about a value of c(t)ss. This time response can be pre-
dicted from the pole locations in the s plane and from the plot of
M vs. o (the two peaks).

Another example is the system represented by

M ðsÞ ¼ K
ðs � p1Þðs2 þ 2zons þ o2

nÞ
ð9:53Þ

When the real pole p1and real part of the complex poles are equal as shown in
Fig. 9.26a, the corresponding frequency response is as shown in Fig. 9.26b.
The magnitude at om is less than unity.The corresponding time response to a
step input is monotonic; i.e., there is no overshoot as shown in Fig. 9.26c.This
time response may be considered as a critically damped response.

The examples discussed in this section show that the time-response
waveform is closely related to the frequency response of the system. In other
words, the time response waveform of the system can be predicted from the
shape of the frequency response plot.This time-response correlation with the
plot ofM¼ jC( jo)/R( jo)j vs. o,when there is no distinct dominant complex
pair of poles, is an important advantage of frequency-response analysis.
Thus, as illustrated in this section, the frequency-response plot may be used
as a guide in determining (or predicting) time-response characteristics.

9.12 SUMMARY

In summary, this chapter is devoted to the correlation between the frequency
and time responses.The figures of meritMm and om, along with o0 and g, are
established as guideposts for evaluating a system’s tracking performance.The
addition of a pole to an open-loop transfer function produces a cw shift of the
direct polar plot,which results in a larger value ofMm.The time response also
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suffers becauseombecomes smaller.The reverse is true if a zero is added to the
open-loop transfer function, This agrees with the root locus analysis, which
shows that the addition of a pole or zero results in a less stable or more stable
system, respectively. Thus, the qualitative correlation between the root locus
and the frequency response is enhanced.TheM and a contours are developed
as an aid in obtaining the closed-loop frequency response and in adjusting
the gain to obtain a desired Mm. The methods described for setting the gain
for a desiredMm are based on the fact that generally the desired values ofMm

are greater than 1 in order to obtain an underdamped response. When the
gain adjustment does not yield a satisfactory value of om, the system must be
compensated in order to increase om without changing the value Mm.
Compensation procedures are covered in the following chapters.

The procedure used in the frequency-responsemethod is summarized as
follows:

Step1. Derive the open-loop transfer functionG(s)H(s) of the system.
Step 2. Put the transfer function into the formG( jo)H( jo).
Step 3. Arrange the various factors of the transfer function so that they

are in the complex form, jo,1þjoT, and1þajoþb( jo)2.

FIGURE 9.26 Form of the frequency and time responses for a particular pole pattern
of Eq. (9.53).
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Step 4. Plot the Lm and phase-angle diagram for G( jo)H( jo). The
graphical methods of Chap. 8 may be used, but a CAD program can
provide more extensive data.

Step 5.Transfer the data from the plots in step 4 to either of the following;
(a) Lm^angle diagram or (b) direct polar plot.

Step 6. Apply the Nyquist stability criterion and adjust the gain for the
desired degree of stabilityMm of the system.Then check the correla-
tion to the time response for a step-input signal. This correlation
reveals qualitative information about the time response.

Step 7. If the response does not meet the desired frequency and time
response specifications, determine the shape that the plot must have
to meet these specifications. Synthesize the compensator that must
be inserted into the system.The procedure is developed in the follow-
ing chapters.

A digital computer is used extensively in system design. Standard CAD
programs likeMATLAB and TOTAL-PC can be used to obtain the frequency
response of both the open-loop and closed-loop transfer functions. The
computer techniques are especially useful for systems containing frequency-
sensitive feedback. The exact time response is then obtained to provide
a correlation between the frequency and time responses. This chapter
illustrates the use of theNichols chart for analysing the tracking performances
of unity-feedback systems. The Nichols chart can also be used for analysing
the disturbance rejection performance of a nonunity-feedback system.This is
discussed in detail in later chapters.
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10

Root-Locus Compensation: Design

10.1 INTRODUCTION TO DESIGN

The preceding chapters deal with basic feedback control systems composed of
the minimum equipment required to perform the control function and the
necessary sensors and comparators to provide feedback. The designer first
analyzes the performance of the basic system.This chapter presents methods
of improving the design of a control system. To increase the reader’s under-
standing of how poles and zeros affect the time response, a graphical means
is presented for calculating the figures of merit of the system and the effect of
additional significant nondominant poles. Typical pole-zero patterns are
employed to demonstrate the correlation between the pole-zero diagram and
the frequency and time responses. As a result of this analysis, the control
system may be modified to achieve the desired time response. The next few
chapters are devoted to achieving the necessary refinements.

Modifying a system to reshape its root locus in order to improve system
performance is called compensation or stabilization. When the system is
satisfactorily compensated: it is stable, has a satisfactory transient response,
and has a large enough gain to ensure that the steady-state error does not
exceed the specifiedmaximum.Compensation devices may consist of electric
networks or mechanical equipment containing levers, springs, dashpots, etc.
The compensator (also called a filter) may be placed in cascade with the
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forward transfer functionGxðsÞ (cascade or series compensation), as shown in
Fig. 10.1a, or in the feedback path (feedback or parallel compensation), as
shown in Fig. 10.1b and c. In Fig. 10.1b the compensation is introduced by
means of a minor feedback loop. The selection of the location for inserting
the compensator depends largely on the control system,the necessary physical
modifications, and the results desired. The cascade compensator GcðsÞ is
inserted at the low-energy point in the forward path so that power dissipation
is very small.This also requires thatGx have a high input impedance. Isolation
amplifiers may be necessary to avoid loading of or by the compensating net-
work.The networks used for compensation are generally called lag, lead, and
lag-lead compensation.The examples used for each of these compensators are
not the only ones available but are intended primarily to show the methods of
applying compensation.Feedback compensation is used in later design exam-
ples to improve the system’s tracking of a desired input r(t) or to improve the
system’s rejection of a disturbance input d(t).

The following factors must be considered when making a choice
between cascade and feedbeck compensation:

1. The design procedures for a cascade compensator GcðsÞ are more
direct than those for a feedback compensator HcðsÞ. Although the

FIGURE 10.1 Block diagram showing the location of compensators: (a)cascade;
(b) minor loop feedback; and (c) output feedback.
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design of feedback compensation is sometimes more laborious, it
may be easier to implement.

2. The physical form of the control system, i.e., whether it is
electrical, hydraulic, mechanical, etc., determines the ease of
implementing a practical cascade or feedback (parallel) compen-
sator. A microprocessor may also be used to implement the
required compensation.

3. The economics, size, weight, and cost of components and ampli-
fiers are important. In the forward path the signal goes from a
low to a high energy level, whereas the reverse is true in the feed-
back loop. Thus, generally an amplifier may not be necessary in
the feedback path. The cascade path generally requires an
amplifier for gain and/or isolation. In applications such as air-
craft and space-craft, minimum size and weight of equipment
are essential.

4. Environmental conditions in which the feedback control system
is to operate affect the accuracy and stability of the controlled
quantity. For example, this is a critical problem in an airplane,
which is subjected to rapid changes in altitude and temperature.

5. The problem of noise within a control system may determine the
choice of compensator.This is accentuated in situations in which a
greater amplifier gain is required with a forward compensator than
by the use of feedback networks.

6. The time of response desired for a control system is a determining
factor.Often a faster time of response can be achieved by the use of
feedback compensation.

7. Some systems require ‘tight-loop’ stabilization to isolate the
dynamics of one portion of a control system from other portions of
the complete system. This can be accomplished by introducing an
inner feedback loop around the portion to be isolated.

8. When GxðsÞ has a pair of dominant complex poles that yield the
dominant poles of CðsÞ=RðsÞ, the simple first-order cascade com-
pensators discussed in this chapter provide minimal improvement
to the system’s time-response characteristics. For this situation, as
shown in Sec. 10.20, feedback compensation is more effective and
is therefore more desirable.

9. The designer’s experience and preferences influence the choice
between a cascade and feedback compensator for achieving the
desired performance.

10. The feedback compensator of Fig. 10.1c is used in Chap. 12 for dis-
turbance rejection to minimize the response c(t) to a disturbance
input d(t).
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Meeting the system-performance specification often requires the inclu-
sion of a properly designed compensator. The design process is normally
performed by successively changing the compensator parameter(s) and
comparing the resulting system performance. This process is expedited by
the use of interactive CAD packages like MATLAB or TOTAL-PC. The
availability of a graphics capability in a CAD program permits the designer
to see the changes in system performance in real time. An interactive capabil-
ity allows the designer to try a number of compensator designs quickly in
order to select a design that best meets the system-performance requirements.
The use of an interactive CADpackage is standard practice for control system
designers.

10.2 TRANSIENT RESPONSE: DOMINANT
COMPLEX POLES [1]

The root-locus plot permits the designer to select the best poles for the control
ratio. The criteria for determining which poles are best must come from the
specifications of system performance and from practical considerations. For
example, the presence of nonlinear characteristics like backlash, dead zone,
and Coulomb friction can produce a steady-state error with a step input,
even though the linear portion of the system isType 1or higher.The response
obtained from the pole-zero locations of the control ratio does not show the
presence of a steady-state error caused by the nonlinearities.* Frequently the
system gain is adjusted so that there is a dominant pair of complex poles, and
the response to a step input has the underdamped form shown in Fig.10.2a. In
this case the transient contributions from the other polesmust be small. From
Eq. (4.68), the necessary conditions for the time response to be dominated by

*For a detailed studyof the effect of nonlinear characteristics on systemperformance,the reader is
referred to the literature [2,3].

FIGURE 10.2 Transient response to a step input with dominant complex poles. (b)
Pole-zero pattern of C(s)/R(s) for the desired response.
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one pair of complex poles require the pole-zero pattern of Fig.10.2b and have
the following characteristics:

1. The other poles must be far to the left of the dominant poles so that
the transients due to these other poles are small in amplitude and die
out rapidly.

2. Any other pole that is not far to the left of the dominant complex
poles must be near a zero so that the magnitude of the transient
term due to that pole is small.

With the systemdesigned so that the response to a unit step input has the
under-damped form shown in Fig. 10.2a, the following transient figures of
merit (described in Secs. 3.9 and 3.10) are used to judge its performance:

1. Mp, peak overshoot, is the amplitude of the first overshoot.
2. Tp, peak time, is the time to reach the peak overshoot.
3. Ts, settling time, is the time for the response envelope first to reach

and thereafter remain within 2 percent of the final value.
4. N is the number of oscillations in the response up to the settling

time.

Consider the nonunity-feedback system shown in Fig.10.3. using

GðsÞ ¼ N1

D1
¼ KG

Qðs � zkÞQðs � pg Þ
ð10:1Þ

H ðsÞ ¼ N2

D2
¼ KH

Qðs � zjÞQðs � piÞ
ð10:2Þ

GðsÞH ðsÞ ¼ N1N2

D1D2
¼ KGKH

Qw
h¼1 ðs � zhÞQn

c¼1 ðs � pcÞ
ð10:3Þ

The product KGKH¼K is defined as the static loop sensitivity. For G(s)H(s) the
degree of the numerator is w and the degree of the denominator is n. These
symbols are used throughout Chap. 6.The control ratio is

CðsÞ
RðsÞ ¼

PðsÞ
QðsÞ ¼

N1D2

D1D2 þ N1N2
¼ KG

Qw0
m¼1 ðs � zmÞQn

k¼1 ðs � pkÞ
ð10:4Þ

FIGURE 10.3 Feedback system.

Root-Locus Compensation: Design 375

Copyright © 2003 Marcel Dekker, Inc.



Note that the constantKG in Eq. (10.4) is not the same as the static loop sensitiv-
ity unless the system has unity feedback. The degree n of the denominator of
C(s)/R(s) is the sameas forG(s)H(s), regardless of whether the systemhad unity
or nonunity feedback.The degree w0 of the numerator of C(s)/R(s) is equal to the
sum of the degrees of N1and D2. For a unity-feedback system the degree of the
numerator is w0 ¼ w. For a nonunity-feedback system the w0 zeros of Eq. (10.4)
include both the zeros ofG(s), i.e.,N1and the poles ofH(s), i.e.,D2, as shown in
Eq. (10.4).

For a unit step input the output of Fig.10.3 is

CðsÞ ¼ PðsÞ
sQðsÞ ¼

KG
Qw0

m¼1 ðs � zmÞ
s
Qn

k¼1 ðs � pkÞ
¼ A0

s
þ A1

s � p1
þ 	 	 	 þ Ak

s � pk
þ 	 	 	 þ An

s � pn
ð10:5Þ

The poles s¼ 0 that comes from R(s) must be included as a pole of C(s), as
shown in Eq. (10.5).The values of the coefficients can be obtained graphically
from the pole-zero diagramby themethod described in Sec. 4.11and Eq. (4.68)
or by themore practical use of aCADprogram.Assume that the system repre-
sented by Eq. (10.5) has a dominant complex pole p1 ¼ � 
 jod.The complete
time solution is

cðtÞ ¼ Pð0Þ
Qð0Þ þ 2

KG
Qw0

m¼1 ðp1 � zmÞ
P1
Qn

k¼2 ðp1 � pkÞ












 e�t

� cos od t þffPðp1Þ � ffp1 �ffQ0ðp1Þ� �

þ
Xn
k¼3

PðpkÞ
pkQ0ðpkÞ
� �

e pkt ð10:6Þ

where

Q0ðpkÞ ¼
dQðsÞ
ds

� �
s¼pk
¼ QðsÞ

s � pk

� �
s¼pk

ð10:7Þ

By assuming the pole-zero pattern of Fig. 10.2, the last term of Eq. (10.6) may
often be neglected.The time response is therefore approximated by

cðtÞ � Pð0Þ
Qð0Þ þ 2

KG
Qw0

m¼1 ðp1 � zmÞ
p1
Qn

k¼2 ðp1 � pkÞ












 e�t

� cos od t þffPðp1Þ � ffp1 �ffQ0ðp1Þ� �
ð10:8Þ
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Note that, although the transient terms due to the other poles have been
neglected, the effect of those poles on the amplitude and phase angle of the
dominant transient has not been neglected.

The peak time Tp is obtained by setting the derivative with respect to
time of Eq. (10.8) equal to zero.This gives

Tp ¼
1
od

p
2
�ffPðp1ÞþffQ0ðp1Þ� �

¼ 1
od

p
2

n
� [sum of angles from zeros ofCðsÞ=RðsÞto dominant pole p1�

þ
sum of angles from all other poles ofCðsÞ=RðsÞ to
dominant pole p1� including conjugate pole

" #)
ð10:9Þ

This value of Tp is more accurate than that given by Eq. (3.60) for a second-
order system. Since the phase angle � ¼ ffPðp1Þ � ffp1 � ffQ0ðp1Þ in Eq. (10.8)
cannot have a value greater than 2p, the value Tp must occur within one
‘‘cycle’’ of the transient. Inserting this value of Tp into Eq. (10.8) gives the
peak overshootMp . By using the value cos ðp=2� ffp1Þ ¼ od=on, the valueMp

can be expressed as

Mp ¼
Pð0Þ
Qð0Þ þ

2od

o2
n

KG
Qw0

m¼1 ðp1 � zmÞQn
k¼2 ðp1 � pkÞ












e�Tp ð10:10Þ

The first term in Eq. (10.10) represents the final value, and the second
term represents the overshoot Mo. For a unity-feedback system that isType 1
or higher, there is zero steady-state error when the input is a step function.
Therefore, the first termon the right side of Eq. (10.8) is equal to unity. Itsmag-
nitude can also be obtained by applying the final-value theorem to C(s) given
by Eq. (10.5).This equality is used to solve for KG. Note that under these con-
ditionsKG¼K and w0 ¼ w:

KG ¼
Qn

k¼1 ð�pkÞQw
m¼1 ð�zmÞ

ð10:11Þ

The value of the overshootMo can therefore be expressed as

Mo ¼
2od

o2
n

Qn
k¼1 ð�pkÞ

Qw
m¼1 ðp1 � zmÞQw

m¼1 ð�zmÞ
Qn

k¼2 ðp1 � pkÞ










e�Tp ð10:12Þ
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Some terms inside the brackets in Eq. (10.12) cancel the terms in front so that
Mo can be expressed in words as

Mo ¼

product of distances from all poles
of CðsÞ=RðsÞ to origin, excluding
distances of two dominant poles from
origin
product of distances from all other poles
of CðsÞ=RðsÞ to dominant pole p1�
excluding distance between dominant
poles

2
6666666664

3
7777777775

�

product of distances
from all zeros of
CðsÞ=RðsÞ to dominant
pole p1
product of distances
from all zeros of
CðsÞ=RðsÞ to origin

2
6666666664

3
7777777775
e�Tp ð10:13Þ

The denominator terms of Eq. (10.13) clearly reveal that as a zero of
Eq. (10.4) is located closer to the imaginary axis, the magnitude of Mo increases. If
there are no finite zeros of C(s)/R(s), the factors in Mo involving zeros
become unity. Equation (10.13) is valid only for a unity-feedback system that
isType 1or higher. It may be sufficiently accurate for aType 0 system that has
a large value for K0. The value of Mo can be calculated either from the right-
hand term of Eq. (10.10) or from Eq. (10.13), whichever is more convenient.
The effect on Mo of other poles, which cannot be neglected, is discussed in
the next section.

The values of Ts and N can be approximated from the dominant roots.
Section 3.9 shows thatTs is four time constants for 2 percent error:

Ts ¼
4
�j j ¼

4
zon

ð10:14Þ

N ¼ settling time
period

¼ Ts

2p=od
¼ 2od

p �j j ¼
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
z

ð10:15Þ

Equation (10.9) shows that zeros of the control ratio cause a decrease
in the peak time Tp , whereas poles increase the peak time. Peak time can
also be decreased by shifting zeros to the right or poles (other than the
dominant poles) to the left. Equation (10.13) shows that the larger the
value of Tp , the smaller the value of Mo because e�Tp decreases. Mo can
also be decreased by reducing the ratios pk/(pk�p1) and (zm�p1)/zm. But
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this reduction can have an adverse effect on Tp. The conditions on pole-
zero locations that lead to a small Mo may therefore produce a large Tp.
Conversely, the conditions that lead to a small Tp may be obtained at the
expense of a large Mo. Thus, a compromise is required in the peak time and
peak overshoot that are attainable. Some improvements can be obtained
by introducing additional poles and zeros into the system and locating
them appropriately. This topic is covered in the following sections on
compensation.

The approximate equations, given in this section, for the response of a
system to a step-function input are based on the fundamental premise that
there is a pair of dominant complex poles and that the effect of other poles is
small.When this premise is satisfied, a higher-order system, n> 2, effectively
acts like a simple second-order system.These approximate equations are pre-
sented primarily to enhance the reader’s understanding of how poles and
zeros affect the time response. ACAD program can be used to calculate and
plot c(t) and to yield precise values ofMp, tp, and ts.

10.3 ADDITIONAL SIGNIFICANT POLES [4]

When there are two dominant complex poles, the approximations developed
in Sec.10.2 give accurate results.However, there are caseswhere an additional
pole of C(s)/R(s) is significant. Figure 10.4a shows a pole-zero diagram which
contains dominant complex poles and an additional real pole p3. The control
ratio,with K ¼ �o2

np3, is given by

CðsÞ
RðsÞ ¼

K
ðs2 þ 2zons þ o2

nÞðs � p3Þ
ð10:16Þ

With a unit-step input the time response is

cðtÞ ¼ 1þ 2 A1


 

e�zont sin on

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2t

q
þ �

� �
þ A3e

p3t ð10:17Þ

The transient term due to the real pole p3 has the form A3e
p3t where A3, based

upon Eq. (4.68) is always negative.Thus, the overshootMp is reduced, and set-
tling time ts may be increased or decreased. This effect is typical of an addi-
tional real pole. The magnitude A3 depends on the location of p3 relative to
the complex poles. The further to the left the pole p3 is located, the smaller
the magnitude of A3, therefore the smaller its effect on the total response. A
pole that is six times as far to the left as the complex poles has negligible
effect on the time response. The typical time response is shown in Fig. 10.4a.
As the pole p3 moves to the right, the magnitude ofA3 increases and the over-
shoot becomes smaller. As p3 approaches but is still to the left of the complex
poles, the first maximum in the time response is less than the final value.
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The largest overshoot can occur at the second or a later maximumas shown in
Fig.10.4b (see also Fig. 9.25b).

When p3 is located at the real-axis projection of the complex poles, the
response ismonotonic; i.e., there is no overshoot.This represents the critically
damped situation, as shown in Fig.10.4c.The complex poles may contribute a
‘‘ripple’’ to the time response, as shown in the figure.When p3 is located to the
right of the complex poles, it is the dominant pole and the response is over-
damped.

When the real pole p3 is to the left of the complex poles, the peak timeTp
is approximately given by Eq. (10.9). Although the effect of the real pole is to
increase the peak time, this change is small if the real pole is fairly far to the
left. A first-order correction can be made to the peak overshoot Mo given by
Eq. (10.13) by adding the value ofA3e

p3Tp to the peak overshoot due to the com-
plex poles.The effect of the real pole on the actual settling time ts can be esti-
mated by calculating A3 exp (p3Ts) and comparing it with the size and sign of
the underdamped transient at time Ts obtained from Eq. (10.14). If both are
negative at Ts, then the true settling time ts is increased. If they have opposite

FIGURE 10.4 Typical time response as a function of the real-pole location.
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signs, then the valueTs¼ 4T based on the complex roots is a good approxima-
tion for ts.

The presence of a real zero in addition to the real pole further modifies
the transient response. A possible pole-zero diagram for which the control
ratio is

CðsÞ
RðsÞ ¼

Kðs � zÞ
ðs2 þ 2zons þ o2

nÞðs � p3Þ
ð10:18Þ

is shown in Fig.10.5.The complete time response to a unit step-function input
still has the form given in Eq. (10.17). However, the sign of A3, based upon Eq.
(4.68), depends on the relative location of the real pole and the real zero. A3 is
negative if the zero is to the left of p3, and it is positive if the zero is to the right
of p3. Also, themagnitude ofA3 is proportional to the distance from p3 to z [see
Eq. (4.68)]. Therefore, if the zero is close to the pole, A3 is small and the con-
tribution of this transient term is correspondingly small. Compared with the
response for Eq. (10.16), as shown in Fig.10.4, note the following:

1. If the zero z is to the left of the real pole p3, the response is quali-
tatively the same as that for a system with only complex poles;
but the peak overshoot is smaller. Depending on the z of the
dominant complex poles, either the response of Fig. 10.4a or
10.4b may be obtained.

2. If the zero z is to the right of the real pole p3, the peak overshoot is
greater than that for a systemwith only complex poles.

These characteristics are evident in the example in Fig.10.20.
When the real pole p3 and the real zero z are close together, the value of

peak timeTp obtained from Eq. (10.9) can be considered essentially correct.
ActuallyTp decreases if the zero is to the right of the real pole, and vice versa.
A first-order correction toMo from Eq. (10.13) can be obtained by adding the
contribution ofA3e

p3t at the timeTp .The analysis of the effect on ts is similar to
that described previously for the case of just an additional real pole.

FIGURE 10.5 Pole-zero diagram of C(s)/R(s) for Eq. (10.18).

Root-Locus Compensation: Design 381

Copyright © 2003 Marcel Dekker, Inc.



As a summary, many control systems having an underdamped
response can be approximated by one having the following characteristics:
(1) two complex poles; (2) two complex poles and one real pole; and (3) two
complex poles, one real pole, and one real zero. For case 1 the relations Tp,
Mo, Ts, and N developed in Sec. 10.2 give an accurate representation of the
time response. For case 2 these approximate values can be corrected if the
real pole is far enough to the left.Then the contribution of the additional tran-
sient term is small, and the total response remains essentially the sumof a con-
stant and an underdamped sinusoid.For case 3 the approximate values can be
corrected provided the zero is near the real pole so that the amplitude of the
additional transient term is small. More exact calculation of the figures of
merit can be obtained by plotting the exact response as a function of time by
use of a CAD program.

10.4 ROOT-LOCUS DESIGN CONSIDERATIONS

The root-locus design technique presented in Chap. 7 stresses the desired
transient figures of merit. Thus, the selection of the dominant complex root
can be based on a desired damping ratio zD (which determines the peak over-
shoot), the desired damped natural frequency oD (which is the frequency of
oscillation of the transient), or the desired real part �d of the dominant root
(which determines the settling time).Two additional factors must be included
in the design.First, the presence of additional poleswill modify the peak over-
shoot, as described in Sec. 10.3. Second, it may be necessary to specify the
value of the gain Km. For example, in aType 1 system it mat be necessary to
specify a minimum value of K1 in order to limit the magnitude of the steady-
state error ess with a ramp input,where eðtÞss ¼ DrðtÞ=K1.The following exam-
ple incorporates these factors into a root-locus design.

Example. Consider a unity-feedback systemwhere

GxðsÞ ¼
Kx

sðs2 þ 4:2s þ 14:4Þ
¼ Kx

sðs þ 2:1þ j3:1607Þðs þ 2:1� j3:1607Þ ð10:19Þ

and K1¼Kx/14.4. For this system it is specified that the following figures
of merit must be satisfied: 1<Mp�1:123� ts�3s� eðtÞss¼0� tp�1:6s�
K1�1:5s�1:

First Design

With the assumption that the closed-loop system can be represented by an
effective simple second-order model, Eqs. (3.60), (3.61), and (10.14) can be
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used to determine the required values of zD, od, and on:

Mp ¼ 1:123 ¼ 1þ exp
�zpffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q ! zD ¼ 0:555

tp ¼
p
od

! od > 1:9635

Ts ¼
4

zDon
! on > 2:4024

Using the values zD ¼ 0.555, on¼ 2.4024, and od ¼1.9984, the required domi-
nant complex roots are s1,2¼�1.3333
 j1.9984. Figure 10.6 contains the root
locus for Gx(s) and the line representing zD ¼ 0.555. It is evident that the
required dominant roots are not achievable.

Second Design

The first designdoes not consider the fact that there is a third root s3.The asso-
ciated transient A3e

s3t is negative (see Sec. 10.3), and it will reduce the peak
overshoot of the underdamped transient associated with the complex roots
s1,2. Therefore, it is possible to select a smaller value of z for the complex
roots, and the effect of the third root can be used to keep Mp within the

FIGURE 10.6 Root locus for Eq. (10.19).

Root-Locus Compensation: Design 383

Copyright © 2003 Marcel Dekker, Inc.



specified limits. In order simultaneously to satisfy the specification for
K1>1.5, the design is therefore based on obtaining the complex roots
s1,2¼�1
j3 on the root locus. The corresponding sensitivity is K¼14.4
K1¼22,which yields K1¼1.528.The closed-loop transfer function is

CðsÞ
RðsÞ ¼

22
ðs þ 1þ j3Þðs þ 1� j3Þðs þ 2:2Þ ð10:20Þ

The plot of Cð joÞ=Rð joÞ

 

 vs. overy closely approximates the frequency res-
ponse for a simple second-order underdamped system shown in Fig. 9.25a.
A unit-step input results in the following values: Mp�1.123, tp�1.51s, and
ts� 2.95s.Therefore, the desired specifications have been achieved.

10.5 RESHAPING THE ROOT LOCUS

The root-locus plots described in Chap. 7 show the relationship between the
gain of the system and the time response. Depending on the specifications
established for the system, the gain that best achieves the desired performance
is selected.Theperformance specificationsmaybebasedon thedesireddamp-
ing ratio, undamped natural frequency, time constant, or steady-state error.
The root locus may show that the desired performance cannot be achieved
justbyadjustmentof the gain.In fact, in somecases the systemmaybeunstable
for all values of gain. The control-systems engineer must then investigate the
methods for reshaping the root locus tomeet the performance specifications.

The purpose of reshaping the root locus generally falls into one of the
following categories:

1. A given system is stable and its transient response is satisfactory,but
its steady-state error is too large.Thus, the gain must be increased to
reduce the steady-state error (see Chap. 6). This increase must be
accomplished without appreciably reducing ths system stability.

2. A given system is stable, but its transient response is unsatisfactory.
Thus, the root locus must be reshaped so that it is moved farther to
the left, away from the imaginary axis.

3. A given system is stable, but both its transient response and its
steady-state response are unsatisfactory. Thus, the locus must be
moved to the left and the gain must be increased.

4. A given system is unstable for all values of gain.Thus, the root locus
must be reshaped so that part of each branch falls in the left-half s
plane, thereby making the system stable.

Compensation of a systemby the introduction of poles and zeros is used
to improve the operating performance. However, each additional compensa-
tor pole increases the number of roots of the closed-loop characteristic
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equation. If an underdamped response of the form shown in Fig. 10.2a is
desired, the system gain must be adjusted so that there is a pair of dominant
complex poles.This requires that any other pole be far to the left or near a zero
so that its transient response has a small amplitude and therefore has a small
effect on the total time response.The required pole-zero diagram is shown in
Fig10.2b.The approximate values of peak overshootMo, peak timeTp, settling
timeTs, and the number of oscillations up to settling time N can be obtained
from the pole-zero pattern as described in Sec.10.2.The effect of compensator
poles and zeros on these quantities can be evaluated rapidly by use of a CAD
program. (see Appendixes C and D)

10.6 CAD ACCURACY CHECKS (CADAC)

The CADAC given in Secs. 3.11, 4.5, 6.8, 7.9, and 8.10 should be used, when
applicable, in doing the problems associated with this chapter and the remain-
ing chapters of this text. Each of these CADAC should be invoked, when
applicable, at the appropriate point during the utilization of a CAD program.

10.7 IDEAL INTEGRAL CASCADE COMPENSATION
(PI CONTROLLER)

When the transient response of a feedback control system is considered satis-
factory but the steady-state error is too large, it is possible to eliminate the
error by increasing the system type.This change must be accomplished with-
out appreciably changing the dominant roots of the characteristic equation. The
system type can be increased by operating on the actuating signal e to produce
one that is proportional to both the magnitude and the integral of this signal.
This proportional plus integral (PI) controller is shown in Fig.10.7 where

E1ðsÞ ¼ 1þ Ki

s

� �
EðsÞ ð10:21Þ

GcðsÞ ¼
E1ðsÞ
EðsÞ ¼

s þ Ki

s
ð10:22Þ

FIGURE 10.7 Ideal proportional plus integral (PI) control.
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In this system the quantity e1(t) continues to increase as long as an error
e(t) is present.Eventually e1(t) becomes large enough to produce an output c(t)
equal to the input r(t). The error e(t) is then equal to zero. The constant Ki

(generally very small) and the overall gain of the system must be selected to
produce satisfactory roots of the characteristic equation. Since the system
type has been increased, the corresponding error coefficient is equal to infi-
nity.Provided that the new roots of the characteristic equation can be satisfac-
torily located, the transient response is still acceptable.

The locations of the pole and zero of this ideal proportional plus integral
compensator are shown in Fig.10.8.The pole alone would move the root locus
to the right,therebyslowing the timeresponse.Thezeromustbenear theorigin
in order tominimize the increase in response timeof the complete system.The
required integrator can be achieved by an electronic circuit.Mechanically the
integral signal can be obtained by an integrating gyroscope,which is used in
vehicles such as aircraft, space vehicles, ships, and submarines where the
improved performance justifies the cost. Frequently, however a passive elec-
tric network consisting of resistors and capacitors sufficiently approximates
the proportional plus integral action, as illustrated in the next section.

10.8 CASCADE LAG COMPENSATION DESIGN USING
PASSIVE ELEMENTS

Figure 10.9a shows a network that approximates a proportional plus integral
output and is used as a lag compensator. Putting an amplifier of gain A in

FIGURE 10.9 (a) Integral or lag compensator; (b) pole and zero location.

FIGURE 10.8 Location of the pole and zero of an ideal proportional plus integral
compensator.
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series with this network yields the transfer function

GcðsÞ ¼ A
1þ Ts
1þ �Ts ¼

A
�

ðs þ 1=T Þ
ðs þ 1=�T Þ ¼

A
�

ðs � zcÞ
ðs � pcÞ

ð10:23Þ

where � ¼ ðR1 þ R2Þ=R2 > 1 and T¼R2C. The pole pc ¼ �1=�T is therefore
to the right of the zero zc ¼ �1=T , as shown in Fig.10.9b.The locations of the
pole pc and the zero zc of Gc(s) on the s plane can be made close to those of the
ideal compensator. Besides furnishing the necessary gain, the amplifier also
acts as an isolating unit to prevent any loading effects between the compensa-
tor and the original system.

Assume that the original forward transfer function is

GxðsÞ ¼
K
Qw

h¼1 ðs � zhÞQn
g¼1 ðs � pg Þ

ð10:24Þ

when the closed-loop root s1 is selected on the root locus for the original
system, the loop sensitivity K is

K ¼
Qn

g¼1 s � pg


 

Qw

h¼1 s � zh


 

 ð10:25Þ

With the addition of the lag compensator in cascade, the new forward
transfer function is

GðsÞ ¼ GcðsÞGxðsÞ ¼
AK
�

ðs þ 1=T Þ
ðs þ 1=�T Þ

Qw
h¼1 ðs � zhÞQn
g¼1 ðs � pg Þ

ð10:26Þ

When the desired roots of the charateristic equation are located on the
root locus, the magnitude of the loop sensitivity for the new root s0 becomes

K 0 ¼ AK
�
¼ s0 þ 1=�T


 


s0 þ 1=T


 



Qn
g¼1 s0 � pg



 

Qw
h¼1 s0 � zh



 

 ð10:27Þ

As anexample, a lag compensator is applied to aType 0 system.To improve the
steady-state accuracy, the error coefficient must be increased.The value of K0

before and after the addition of the compensator is calculated by using the
definitionK0 ¼ lims!0 GðsÞ from Eqs. (10.24) and (10.26), respectively,

K0 ¼
Qw

h¼1 ð�zhÞQn
g¼1 ð�pg Þ

K ð10:28Þ

K 00 ¼
Qw

h¼1 ð�zhÞQn
g¼1 ð�pg Þ

�K 0 ð10:29Þ

The following procedure is used to design the passive lag cascade
compensator. First, the pole pc ¼ �1=�T and the zero zc ¼ �1=T of the
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compensator are placed very close together.This step means that most of the
original root locus remains practically unchanged. If the angle contributed by
the compensator at the original closed-loop dominant root is less than 5�, the new
locus is displaced only slightly. This 5� is only a guide and should not be
applied arbitrarily. The new closed-loop dominant pole s0 is therefore only
slightly changed from the uncompensated value. This new value satisfies the
restriction that the transient response must not change appreciably. As a
result, the values p0c þ 1=�T and z0c þ 1=T are almost equal, and the values K
and K0 in Eqs. (10.25) and (10.27) are approximately equal.The values K0 and
K 00 in Eqs. (10.28) and (10.29) now differ only by the factor � so that K 00 � �K0.
The gain required to produce the new root s0 therefore increases approxi-
mately by the factor �, which is the ratio of the compensator zero and pole.
Summarizing, the necessary conditions on the compensator are that (1) the
pole and zero must be close together and (2) the ratio � of the zero and pole
must approximately equal the desired increase in gain. These requirements
can be achieved by placing the compensator pole and zero very close to the
origin. The size of � is limited by the physical parameters required in the
network. Avalue �¼10 is often used.

Although the preceding statements are based on a Type 0 system, the
same conditions apply equally well for aType1or higher system.

DESIGN EXAMPLE OF LAG COMPENSATION APPLIED TO A

TYPE 1 SYSTEM. A control system with unity feedback has the forward
transfer function

GxðsÞ ¼
K1

sð1þ sÞð1þ 0:2sÞ ¼
K

sðs þ 1Þðs þ 5Þ ð10:30Þ

that yields the root locus shown in Fig. 10.10. For the basic control system a
damping ratio z ¼ 0:45 yields the following pertinent data:

Dominant roots: s1�2 ¼�0:404
 j0:802

Static loop sensitivity: K ¼ s1


 

 	 s1þ 1



 

 	 s1þ 5


 



¼ �0:404þ j0:802


 

 	 0:596þ j0:802



 


	 4:596þ j0:802


 

¼ 4:188

Ramp error coefficient: K1 ¼ lim
s!0

sGðsÞ ¼ K
5
¼ 4:188

5
¼ 0:838s�1

Undamped natural frequency: on ¼ 0:898 rad=s

Third root: s3 ¼�5:192
The values of peak time Tp, peak overshoot Mo, and settling time Ts

obtained from Eqs. (10.9), (10.13), and (10.14) are Tp¼ 4.12 s, Mo¼ 0.202, and

388 Chapter 10

Copyright © 2003 Marcel Dekker, Inc.



Ts¼ 9.9 s.These are approximate values,whereas the computer program gives
more accurate values (seeTable10.1) including ts¼ 9.48 s.

To increase the gain, a lag compensator is put in cascade with the for-
ward transfer function.With the criteria discussed in the preceding section
and �¼10, the compensator pole is located at pc¼�0.005 and the zero at
zc¼�0.05. This pole and zero are achieved for the network of Fig. 10.9 with
the values R1¼18 M�, R2¼ 2 M�, and C¼10 	F. The angle of the com-
pensator at the original dominant roots is about 2.6� and is acceptable. Since
the compensator pole and zero are very close together, they make only a small
change in the new root locus in the vicinity of the original roots.The compen-
sator transfer function is

GcðsÞ ¼
A
�

s þ 1=T
s þ 1=�T

¼ A
10

s þ 0:05
s þ 0:005

ð10:31Þ

Figure 10.11 (not to scale) shows the new root locus for G(s)¼Gx(s)Gc(s) as
solid lines and the original locus as dashed lines. Note that for the damping
ratio z ¼ 0:45 the new locus and the original locus are close together. The
new dominant roots are s1�2 ¼ �0:384
 j0:763; thus, the roots are essentially

FIGURE 10.10 Root locus of Gx(s)¼K/s(sþ 1)(sþ 5).
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unchanged.Adjusting the gain of the compensated system to obtain rootswith
a damping ratio 0.45, the following results are obtained:

Dominant roots: s1�2 ¼�0:384
 j0:763

Loop sensitivity : K 0 ¼ sj j 	 sþ 1j j 	 sþ 5j j 	 sþ 0:005j j
sþ 0:05j j ¼ 4:01

Ramp error coefficient: K 01 ¼
K 0�
5
¼ ð4:01Þð10Þ

5
¼ 8:02s�1

Increase in gain: A¼ K 01
K1
¼ 8:02
0:838

¼ 9:57

Undamped natural frequency: on ¼ 0:854 rad=s
Others roots: s3 ¼�5:183 and s4 ¼�0:053

The value of Tp for the compensated system is determined by use of
Eq. (10.9),with the values shown in Fig.10.12:

Tp ¼
1
od

p
2
�  1 þ ð�2 þ �3 þ �4Þ

h i

¼ 1
0:763

90� � 113:6� þ ð113:4� þ 9:04� þ 90�Þ½ � p rad
180�

¼ 4:32 s

FIGURE 10.11 Root locus of G(s)¼K0(sþ 0.05)/s(sþ 1)(sþ 5)(sþ 0.005).
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The value of Mo for the compensated system is determined by use of
Eq. (10.13),with the values shown in Fig.10.13:

Mo ¼
l1l2ðlÞ1
l3l4ðlÞ2

e�Tp ¼ ð5:18Þð0:053Þð4:76Þð0:832Þ
0:834
0:05

eð�0:384Þð4:32Þ

¼ 1:1563e�1:659 ¼ 0:22

The values obtained from a computer are tp¼ 4.30 s and Mo¼ 0.266 and are
listed in Table 10.1, Section 10.13, where a comparison is made of the per-
formances achieved with several types of cascade compensators.

A comparison of the uncompensated system and the system with inte-
gral compensation shows that the ramp error coefficient K 01 has increased by
a factor of 9.57 but the undamped natural frequency has been decreased
slightly from 0.898 to 0.854 rad/s. That is, the steady-state error with a ramp
input has decreased but the settling time has been increased from 9.9 to
22.0 s.Provided that the increased settling time and peak overshoot are accep-
table, the system has been improved.To reduce this increase in settling time, it
is necessary to include the constriant [5] that ðs4 � zcÞ=s4



 

 � �0:02. The
reader may demonstrate this by redesigning the lag compensator. Although
the complete root locus is drawn in Fig.10.11, in practice this is not necessary.
Only the general shape is sketched and the particular needed points are accu-
rately determined by using a CAD program.

10.9 IDEAL DERIVATIVE CASCADE COMPENSATION
(PD CONTROLLER)

When the transient response of a feedback system must be improved, it is
necessary to reshape the root locus so that it is moved farther to the left of the

FIGURE 10.12 Angles used to evaluate Tp.
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imaginary axis. Section 7.3 shows that introducing an additional zero in the
forward transfer function produces this effect. A zero can be produced by
operating on the actuating signal to produce a signal that is proportional to
both the magnitude and the derivative (rate of change) of the actuating
signal. This proportional plus derivative (PD) controller is shown in
Fig.10.14,where

E1ðsÞ ¼ ð1þ KdsÞEðsÞ ð10:32Þ
Physically the effect can be described as introducing anticipation into

the system.The system reacts not only to the magnitude of the error but also
to its rate of change. If the error is changing rapidly, then e1(t) is large and the
system responds faster.The net result is to speed up the response of the system.
On the root locus the introduction of a zero has the effect of shifting the curves
to the left, as shown in the following example.

Example. The root locus for aType 2 system that is unstable for all values of
loop sensitivityK is shown inFig.10.15a.Adding a zero to the systembymeans
of the PD compensator Gc(s) has the effect of moving the locus to the left, as

FIGURE 10.13 Lengths used to evaluate Mo.

FIGURE 10.14 Ideal proportional plus derivative (PD) control.
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shown in Fig. 10.15b. The addition of a zero s¼�1/T2 between the origin and
the pole at�1/T1 stabilizes the system for all positive values of gain.

This example shows how the introduction of a zero in the forward trans-
fer function by a proportional plus derivative compensator has modified and
improved the feedback control system.However, the derivative action ampli-
fies any spurious signal or noise that may be present in the actuating signal.
This noise amplification may saturate electronic amplifiers so that the
systemdoes not operate properly.A simple passive network is used to approx-
imate proportional plus derivative action as shown in the next section.

10.10 LEAD COMPENSATION DESIGN USING
PASSIVE ELEMENTS

Figure 10.16a shows a derivative or lead compensator made up of electrical
elements.To this network an amplifier of gainA is added in cascade.The trans-
fer function is

GcðsÞ ¼ A�
1þ Ts
1þ �Ts ¼ A

s þ 1=T
s þ 1=�T

¼ A
s � zc
s � pc

ð10:33Þ

where � ¼ R2=ðR1 þ R2Þ < 1 and T¼R1C. This lead compensator intro-
duces a zero at zc ¼ �1=T and a pole at pc ¼ �1=�T . Thus, � ¼ zc=pc. By
making � sufficiently small, the location of the pole pc is far to the left of
the zero zc, and therefore the pole has small effect on the dominant part of
the root locus. Near the zero the net angle of the compensator is due pre-
dominantly to the zero. Figure 10.16b shows the location of the lead-com-
pensator pole and zero and the angles contributed by each at a point s1. It is
also found that the gain of the compensated system is often increased. The
maximum increases in gain and in the real part ðzonÞ of the dominant root
of the characteristic equation do not coincide. The compensator zero

FIGURE 10.15 Root locus for (a) GxðsÞ ¼ K=s2ðsþ 1=T1Þ; (b) GðsÞ ¼ Kðsþ 1=T2Þ=
s2ðsþ 1=T1Þ:
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location must be determined by making several trials with the aid of a
CAD program for the desired optimum performance.

The loop sensitivity is proportional to the ratio of pc=zc


 

.Therefore, as �

decreases, the loop sensitivity increases.Theminimumvalue of � is limited by
the size of the parameters needed in the network to obtain theminimum input
impedance required. Note also from Eq. (10.33) that a small � requires a large
value of additional gain A from the amplifier. The value �¼ 0.1 is a common
choice.

Design Example—Lead Compensation Applied to a
Type 1 System

The same system used in Sec. 10.7 is now used with lead compensation. The
locations of the pole and zero of the compensator are first selected by
trial. At the conclusion of this section some rules are given to show the best
location.

The forward transfer function of the original system is

GxðsÞ ¼
K1

sð1þ sÞð1þ 0:2sÞ ¼
K

sðs þ 1Þðs þ 5Þ ð10:34Þ

FIGURE 10.16 (a) Derivative or lead compensator. (b) Location of pole and zero of
a lead compensator.
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The transfer function of the compensator, using a value � ¼ 0:1, is

GcðsÞ ¼ 0:1A
1þ Ts

1þ 0:1Ts
¼ A

s þ 1=T
s þ 1=0:1T

ð10:35Þ

The new forward transfer function is

GðsÞ ¼ GcðsÞGxðsÞ ¼
AKðs þ 1=T Þ

sðs þ 1Þðs þ 5Þðs þ 1=0:1T Þ ð10:36Þ

Three selections for the position of the zero s¼�1/T are made. A
comparison of the results shows the relative merits of each. The three loca-
tions of the zero are s¼�0.75, s¼�1.00, and s¼�1.50. Figures 10.17 to 10.19
show the resultant root loci for these three cases. In each figure the dashed
lines are the locus of the original uncompensated system.

The loop sensitivity is evaluated in each case from the expression

K 0 ¼ AK ¼ sj j 	 s þ 1j j 	 s þ 5j j 	 s þ 1=�T


 



s þ 1=T


 

 ð10:37Þ

and the ramp error coefficient is evaluated from the equation

K 01 ¼ lim
s!0

sGðsÞ ¼ K 0�
5

ð10:38Þ

A summary of the results is given inTable10.1,which shows that large increase
in on has been achieved by adding the lead compensators. Since the value of

FIGURE 10.17 Root locus of GðsÞ ¼ AKðsþ 0:75Þ=ðsðsþ 1Þðsþ 5Þðsþ 7:5ÞÞ:
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z is held constant for all three cases, the system has a much faster response
time. A comparison of the individual lead compensators shows the following.

Case A. Placing the zero of the compensator to the right of the plant
pole s¼�1 results in a root s3 on the negative real axis close to the origin
(see Fig. 10.17). From Eq. (4.68) it can be seen that the coefficient associated

FIGURE 10.19 Root locus of GðsÞ ¼ AKðsþ 1:5Þ=ðsðsþ 1Þðsþ 5Þðsþ 15ÞÞ.

FIGURE 10.18 Root locus of GðsÞ ¼ AKðsþ 1Þ=ðsðsþ 1Þðsþ 5Þðsþ 10ÞÞ:
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with this transient term is negative. Therefore, it has the desirable effect of
decreasing the peak overshoot and the undesirable characteristic of having a
longer settling time. If the size of this transient term is small, (themagnitude is
proportional to the distance from the real root to the zero), the effect on the
settling time is small.

The decrease inMo can be determined by calculating the contribution of
the transient termA3e

s3t due to the real root at time tp, as discussed in Sec.10.3.
At the time t¼Ts, the sign of the underdamped transient is negative and the
transient due to the real root is also negative; therefore the actual settling
time is increased. The exact settling time obtained from a complete solution
of the time response is tsa¼ 2.78 s and is shown as plot a in Fig.10.20.

Case B. Thebest settling timeoccurswhen the zero of the compensator can-
cels the pole s¼�1of the original transfer function (see Fig.10.18).There is no
real root near the imaginary axis in this case. The actual settling time is
tsb¼ 2.45 s as shown in plot b in Fig. 10.20. The order of the characteristic
equation is unchanged.

Case C. The largest gain occurswhen the zero of the compensator is located
at the left of the pole s¼�1 of the original transfer function (see Fig. 10.19).
Since the transient due to the root s3¼�1.76 is positive, it increases the peak
overshoot of the response.The value of the transient due to the real root can be
added to the peak value of the underdamped sinusoid to obtain the correct
value of the peak overshoot. The real root may also affect the settling time.

FIGURE 10.20 Time response with a step input for the uncompensated and the
lead-compensated cases of Table 10.1.
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In this case the real root decreases the peak time and increases the settling
time. From plot c in Fig.10.20 the actual values are tp¼1.05 s and tsc¼ 2.50 s.

From the root-locus plots it is evident that increasing the gain increases
the peak overshoot and the settling time. The responses for each of the three
lead compensators are shown in Fig. 10.20. The effect of the additional real
root is to change the peak overshoot and the settling time.The designer must
make a choice between the largest gain attainable, the smallest peak over-
shoot, and the shortest settling time.

Based on this example, the following guidelines are used to apply cas-
cade lead compensators to aType1or higher system:

1. If the zero zc¼�1/T of the lead compensator is superimposed and
cancels the largest real pole (excluding the pole at zero) of the origi-
nal transfer function, a good improvement in the transient response
is obtained.

2. If a larger gain is desired than that obtained by guideline 1, several
trials should bemadewith the zero of the compensator moved to the
left or right of the largest real pole of Gx(s).The location of the zero
that results in the desired gain and roots is selected.

For aType 0 system it is often found that a better time response and a
larger gain can be obtained by placing the compensator zero so that it cancels
or is close to the second-largest real pole of the original transfer function.

10.11 GENERAL LEAD-COMPENSATOR DESIGN

Additional methods are available for the design of an appropriate lead
compensatorGc that is placed in cascade with the open loop transfer function
Gx, as shown in Fig. 10.1a. Figure 10.21 shows the original root locus of
a control system. For a specified damping ratio z the dominant root of the
uncompensated system is s1. Also shown is s2, which is the desired root of
the system’s characteristic equation. Selection of s2 as a desired root is based
on the performance required for the system.The design problem is to select a
lead compensator that results in s2 being a root. The first step is to find the
sum of the angles at the point s2 due to the poles and zeros of the original
transfer functionGx.This angle is set equal to 180� þ�. For s2 to be on the new
root locus, it is necessary for the lead compensator to contribute an angle
�c ¼ �� at this point.The total angle at s2 is then180�, and it is a point on the
new root locus. A simple lead compensator represented by Eq. (10.33),with its
zero to the right of its pole, can be used to provide the angle �c at the point s2.

Method 1. Actually, there are many possible locations of the compensator
pole and zero that will produce the necessary angle �c at the point s2.
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Cancellation of poles of the original open-loop transfer function by means of
compensator zeros may simplify the root locus and thereby reduce the com-
plexity of the problem. The compensator zero is simply placed over a real
pole. Then the compensator pole is placed further to the left at a location
that makes s2 a point on the new root locus.The pole to be canceled depends
on the system type. For a Type 1 system the largest real pole (excluding the
pole at zero) should be canceled. For aType 0 system the second-largest real
pole should be canceled.

Method 2. The following construction is based on obtaining the maximum
value of �, which is the ratio of the compensator zero and pole. The steps in
locating the lead-compensator pole and zero (see Fig.10.21) are these:

1. Locate the desired root s2. Draw a line from this root to the origin
and a horizontal line to the left of s2.

2. Bisect the angle between the two lines drawn in step1
3. Measure the angle �c=2on either side of the bisector drawn in step 2.
4. The intersections of these lineswith the real axis locate the compen-

sator pole pc and zero zc.

The construction just outlined is shown in Fig. 10.21. It is left for the
reader to show that this construction results in the largest possible value of �.
Since � is less than unity and appears as the gain of the compensator [see Eq.
(10.33)], the largest value of � requires the smallest additional gain A.

Method 3. Changing the locations of the compensator pole and zero can
produce a range of values for the gain while maintaining the desired root s2.
A specified procedure for achieving both the desired root s2 and the system
gain Km is given in Refs. 6 and 7.

FIGURE 10.21 Graphical construction for locating the pole and zero of a simple lead
compensator.
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10.12 LAG-LEAD CASCADE COMPENSATION DESIGN

The preceding sections show that (1) the insertion of an integral or lag
compensator in cascade results in a large increase in gain and a small
reduction in the undamped natural frequency and (2) the insertion of a
derivative or lead compensator in cascade results in a small increase in
gain and large increase in the undamped natural frequency. By inserting
both the lag and the lead compensators in cascade with the original trans-
fer function, the advantages of both can be realized simultaneously; i.e., a
large increase in gain and a large increase in the undamped natural fre-
quency can be obtained. Instead of using two separate networks, it is pos-
sible to use one network that acts as both a lag and a lead compensator.
Such a network, shown in Fig. 10.22 with an amplifier added in cascade,
is called a lag-lead compensator. The transfer function of this compensator
(see Sec. 8.12) is

GcðsÞ ¼ A
ð1þ T1sÞð1þ T2sÞ

ð1þ �T1sÞ½1þ ðT2=�Þs� ¼ A
ðs þ 1=T1Þðs þ 1=T2Þ
ðs þ 1=�T1Þðs þ �=T2Þ

ð10:39Þ

where �>1and T1>T2.
The fraction ð1þ T1sÞ=ð1þ �T1sÞ represents the lag compensator, and

the fraction ð1þ T2sÞ=½1þ ðT2=�Þs� represents the lead compensator. The
values T1, T2, and � are selected to achieve the desired improvement in
system performance.The specific values of the compensator components are
obtained from the relationships T1 ¼ R1C1�T2 ¼ R2C2� �T1 þ T2=� ¼
R1C1 þ R2C2 þ R1C2. It may also be desirable to specify a minimum value of
the input impedance over the passband frequency range.

The procedure for applying the lag-lead compensator is a combination
of the procedures for the individual units.

FIGURE 10.22 (a) Lag-lead compensator. (b) Pole and zero locations.
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1. For the integral or lag component:
(a) The zero s¼�1/T1 and the pole s ¼ �1=�T1 are selected close

together,with � set to a large value such as �¼10.
(b) The pole and zero are located to the left of and close to the

origin, resulting in an increased gain.
2. For the derivative or lead component, the zero s¼�1/T2 can be

superimposed on a pole of the original system. Since � is already
selected in step 1, the new pole is located at s ¼ ��=T2. As a result
the root locus moves to the left and therefore the undamped natural
frequency increases.

The relative positions of the poles and zeros of the lag-lead compensa-
tors are shown in Fig.10.22b.

Design Example—Lag-Lead Compensation Applied
to a Type 1 System

The system described in Secs. 10.8 and 10.10 is now used with a lag-lead
compensator.The forward transfer function is

GxðsÞ ¼
K1

sð1þ sÞð1þ 0:2sÞ ¼
K

sðs þ 1Þðs þ 5Þ ð10:40Þ

The lag-lead compensator used is shown in Fig. 10.22, and the transfer func-
tionGc(s) is givenbyEq. (10.39).The newcomplete forward transfer function is

GðsÞ ¼ GcðsÞGxðsÞ ¼
AKðs þ 1=T1Þðs þ 1=T2Þ

sðs þ 1Þðs þ 5Þðs þ 1=�T1Þðs þ �=T2Þ
ð10:41Þ

The poles and zeros of the compensator are selected in accordance with the
principles outlined prevoiusly in this section. They coincide with the
values used for the integral and derivative compensators when applied indivi-
dually in Secs. 10.8 and 10.10. With an � ¼ 10, the compensator poles and
zeros are

zlag ¼ �
1
T1
¼ �0:05 plag ¼ �

1
�T1
¼ �0:005

zlead ¼ �
1
T2
¼ �1 plead ¼ �

�

T2
¼ �10

The forward transfer function becomes

GðsÞ ¼ GcðsÞGxðsÞ ¼
K 0ðs þ 1Þðs þ 0:05Þ

sðs þ 1Þðs þ 0:005Þðs þ 5Þðs þ 10Þ ð10:42Þ

The root locus (not to scale) for this system is shown in Fig.10.23.
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For damping ratio z ¼ 0:45 the following pertinent data are obtained for
the compensated system:

Dominant roots: s1�2 ¼�1:571
 j3:119

Loop sensitivity
(evaluated at s¼ s1Þ: K 0 ¼ sj j 	 sþ 0:005j j 	 sþ 5j j 	 sþ 10j j

sþ 0:05j j ¼ 146:3

Ramp error coefficient: K 01 ¼ lim
s!0

sGðsÞ ¼ K 0ð0:05Þ
ð0:005Þð5Þð10Þ ¼ 29:3s�1

Undamped natural frequency: on ¼ 3:49rad=s

The additional roots are s3¼�11.81and s4¼�0.051.These results,when
compared with those of the uncompensated system, show a large increase in
both the gain and the undamped natural frequency. They indicate that the
advantages of the lag-lead compensator are equivalent to the combined
improvement obtained by the lag and the lead compensators.Note the practi-
cality in the choice of � ¼ 10, which is based on experience. The response
characteristics are shown inTable10.1.

10.13 COMPARISON OF CASCADE COMPENSATORS

Table 10.1 shows a comparison of the system response obtained when a lag,
a lead, and a lag-lead compensator are added in cascade with the same basic
feedback system. These results are for the examples of Secs. 10.8, 10.10, and
10.12 and are obtained by use of a CAD program.These results are typical of
the changes introduced by the use of cascade compensators, which can be

FIGURE 10.23 Root locus of GðsÞ ¼ K 0ðsþ 0:05Þ=ðsðsþ 0:005Þðsþ 5Þðsþ 10ÞÞ:
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TABLE 10.1 Comparison of Performance of Several Cascade Compensators for the System of Eq. (10.30) with 
 ¼ 0:45

Compensator
Dominant

complex roots
Undamped natural
frequency, !n Other roots

Ramp error
coefficients, K1 tp, s Mo ts, s

Additional gain,
required, A

1. Uncompensated �0.404þ j 0.802 0.898 �5.192 0.84 4.12 0.202 9.48 —

2. Lag:
sþ 0:05

sþ 0:005

�0.384þ j 0.763 0.854 �0.053
�5.183

8.02 4.30 0.266 22.0 9.57

3. Lead:
sþ 0:75

sþ 7:5

�1.522þ j 3.021 3.38 �0.689
�9.77

2.05 1.18 0.127 2.78 24.4

4. Lead:
sþ 1

sþ 10

�1.588þ j 3.152 3.53 �11.83 2.95 1.09 0.195 2.45 35.1

5. Lead:
sþ 1:5

sþ 15

�1.531þ j 3.039 3.40 �1.76
�16.18

4.40 1.05 0.280 2.50 52.5

6. Lag-lead:
ðsþ 0:05Þðsþ 1Þ
ðsþ 0:005Þðsþ 10Þ

�1.571þ j 3.119 3.49 �0.051
�11.81

29.26 1.10 0.213 3.33 34.9

7. PID:
7:194ðsþ 1Þðsþ 0:1Þ

s

�2.449þ j 4.861 5.443 �0.1017 1 0.646 0.225 2.10 7.194
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summarized as follows:

1. Lag compensator
(a) Results in a large increase in gain Km (by a factor almost equal

to �),which means a much smaller steady-state error
(b) Decreases on and therefore has the disadvantage of producing

an increase in the settling time
2. Lead compensator

(a) Results in a moderate increase in gain Km, thereby improving
steady-state accuracy

(b) Results in a large increase in on and therefore significantly
reduces the settling time

(c) The transfer function of the lead compensator,using the passive
network of Fig. 10.16a, contains the gain � [see Eq. (10.33)],
which is less than unity. Therefore the additional gain A,
which must be added, is larger than the increase in Km for the
system

3. Lag-lead compensator (essentially combines the desirable charac-
teristics of the lag and the lead compensators)
(a) Results in a large increase in gain Km, which improves the

steady-state response
(b) Results in a large increase in on,which improves the transient-

response settling time

Figure10.24 shows the frequency response for the original and compen-
sated systems corresponding toTable 10.1.There is a close qualitative correla-
tion between the time-response characteristics listed in Table 10.1 and the
corresponding frequency-response curves shown in Fig.10.24.The peak time
response valueMp is directly proportional to the maximum valueMm, and the
settling time ts is a direct function of the passband frequency.Curves 3,4, and 5
have amuchwider passband than curves1and 2; therefore, these systemshave
a faster settling time.

For systems other than the one used as an example, these simple com-
pensators may not produce the desired changes. However, the basic principles
described here are applicable to any system for which the open-loop poles closest to
the imaginary axis are on the negative real axis. For these systems the conven-
tional compensators may be used, and good results are obtained.

When the complex open-loop poles are dominant, the conventional
compensators produce only small improvements. A pair of complex poles
near the imaginary axis often occurs in aircraft and in missile transfer
functions. Effective compensation could remove the open-loop dominant
complex poles and replace them with poles located farther to the left.
This means that the compensator should have a transfer function of the
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form

GcðsÞ ¼
1þ Bs þ As2

1þ Ds þ Cs2
ð10:43Þ

If exact cancellation is assumed, the zeros of Gc(s) would coincide with the
complex poles of the original transfer function. A representative root locus,
when the compensator has real poles, is shown in Fig. 10.25. The solid lines
are the new locus, and the dashed lines are the original locus.Thus, the transi-
ent response has been improved. However, the problem remaining to be
solved is the synthesis of a network with the desired poles and zeros. There
are references that cover network synthesis [8, 9]. An alternative design
method for improving the performance of plants that have dominant complex
poles is the use of rate feedback compensation (see Sec. 10.21). This method
does not require the assumption of exact cancellation shown in Fig.10.25.

10.14 PID CONTROLLER

The PI and PD controller of Secs.10.7 and10.9, respectively, can be combined
into a single controller, i.e., a proportional plus integral plus derivative (PID)
controller as shown in Fig.10.26.The transfer function of this controller is

GcðsÞ ¼
E1ðsÞ
EðsÞ ¼ Kds þ Kp þ

Ki

s
¼ Kdðs � z1Þðs � z2Þ

s
ð10:44Þ

FIGURE 10.24 Frequency response for systems of Table 10.1: (1) original basic
system; (2) lag-compensated; (3) lead-compensated, zero at �1.5; (4) lead-
compensated, zero at �1.0; (5) lag-lead compensated.
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where (z1þz2)¼�Kp/Kd and z1z2¼Ki/Kd. The compensator of Eq. (10.44) is
placed in cascade with the basic system of Eq. (10.30), with z1¼�1 and
z2¼�0.1, so the forward transfer function is

GcðsÞGxðsÞ ¼
KKdðs þ 0:1Þ
s2ðs þ 5Þ

For a damping ratio z ¼ 0:45 the resulting control ratio is

CðsÞ
RðsÞ ¼

30:13ðs þ 0:1Þ
ðs þ 2:449
 j4:861Þðs þ 0:1017Þ ð10:45Þ

FIGURE 10.25 Root locus of GcðsÞGxðsÞ ¼ K 00=ðð1þ T1sÞð1þ T2sÞð1þ T3sÞ�
ð1þ T4sÞÞ:

FIGURE 10.26 A PID controller.
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The figures of merit for the PID-compensated system are Mp¼1.225,
tp¼ 0.646 s, ts¼ 2.10 s,Kv ¼ 1, andK2 ¼ 0:6026 s�2.Comparing these results
with those in Table 10.1 shows that the PID controller results in the best
improvement in system performance. Also note that the use of PID controller
increases the system type fromType1 toType 2.With the advances in the state
of the art of microelectronics, satisfactory derivative action may be achieved
to produce the PID controller. However, to avoid saturation of the differen-
tiated signal e due to noise that is present in the system, it is necessary to add
a cascade filter to attenuate the high frequencies.

10.15 INTRODUCTION TO FEEDBACK COMPENSATION

System performance may be improved by using either cascade or feedback
compensation. The factors that must be considered when making that deci-
sion are listed in Sec. 10.1. The effectiveness of cascade compensation is illu-
strated in the preceding sections of this chapter. The use of feedback
compensation is demonstrated in the remainder of this chapter.The location
of a feedback compensator depends on the complexity of the basic system, the
accessibility of insertion points, the form of the signal being fed back, the
signal with which it is being compared, and the desired improvement.
Figure 10.27 shows various forms of feedback-compensated systems. For
each case there is a unity-feedback loop (major loop) in addition to the

FIGURE 10.27 Various forms of feedback systems: (a) uncompensated system;
(b) feedback-compensated system; (c) and (d) feedback-compensated systems with
a cascade gain A or compensator Gc.
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compensation loop (minor loop) in order tomaintain a direct correspondence
(tracking) between the output and input.

It is often necessary to maintain the basic system type when applying
feddback compensation. Care must therefore be exercised in determining
the number of differentiating terms that are permitted in the numerator of
H(s). Table 10.2 presents the basic forms that H(s) can have so that the
system type remains the same after the minor feedback-compensation loop
is added. H(s) may have additional factors in the numerator and denomina-
tor. It can be shown by evaluating G(s)¼C(s)/E(s) that, to maintain the
system type, the degree of the factor s in the numerator of H(s) must be
equal to or higher than the type of the forward transfer function Gx(s)
shown in Fig. 10.27.

The use of a direct or unity-feedback loop on any non^Type 0 control
element converts it into a Type 0 element. This effect is advantageous when
going from a low-energy-level input to a high-energy-level output for a given
control element and also when the forms of the input and output energy are
different.When Gx(s) in Fig.10.28 isType1or higher, it may represent either a
single control element or a group of control elements whose transfer function
is of the general form

GxðsÞ ¼
Kmð1þ T1sÞ 	 	 	

smð1þ TasÞð1þ TbsÞ 	 	 	
ð10:46Þ

whenm 6¼ 0.The overall ratio of output to input is given by

GðsÞ ¼ OðsÞ
I ðsÞ ¼

GxðsÞ
1þ GxðsÞ

ð10:47Þ

or

GðsÞ ¼ Kmð1þ T1sÞ 	 	 	
smð1þ TasÞð1þ TbsÞ 	 	 	 þ Kmð1þ T1sÞ 	 	 	

ð10:48Þ

TABLE 10.2 Basic Forms of H(s) to Be Used to
Prevent Change of System Type

Basic form of H(s)
Type with which it
can be used

K 0
Ks 0 and 1
Ks2 0, 1, and 2
Ks3 0, 1, 2, and 3
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Equation (10.48) represents an equivalent forward transfer function between
O(s) and I(s) of Fig.10.28 and has the formof aType 0 control element.Thus,the
transformation of type has been effected. Therefore, for a step input,
OðtÞss ¼ lims!0½sGðsÞI ðsÞ� ¼ 1. As a consequence, a given input signal pro-
duces an output signal of equal magnitude but at a higher energy level
and/or with a different form of energy. The polar plots of GxðjoÞ and
OðjoÞ=IðjoÞ would show that for any given frequency the phase-margin
angle is greater with feedback, thus indicating a more stable system (a
smaller value of Mm).

10.16 FEEDBACK COMPENSATION: DESIGN PROCEDURES

Techniques are now described for applying feedback compensation to the
root-locus method of system design [10]. The system to be investigated, see
Fig. 10.29, has a minor feedback loop around the original forward transfer
function Gx(s). The minor-loop feedback transfer function H(s) has the form
described in the following pages. Either the gain portion of Gx(s) or the cas-
cade amplifierA is adjusted to fix the closed-loop system characteristics. For
more complex systems a design approach based on the knowledge obtained
for this simple system can be developed.

Two methods of attack can be used. The characteristic equation of the
complete systemmay be obtained and the root locus plotted, by use of the par-
tition[11] method, as a function of a gain that appears in the system. A more
general approach is first to adjust the roots of the characteristic equation of
the inner loop.These roots are then the poles of the forward transfer function

FIGURE 10.29 Block diagram for feedback compensation.

FIGURE 10.28 Transforming non–Type 0 control element to Type 0.
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and are used to draw the root locus for the overall system.Bothmethods,using
various types of feedback compensators, are illustrated in the succeeding
sections. The techniques developed with cascade compensation should be
kept in mind. Basically, the addition of poles and zeros changes the root
locus. To improve the system time response the locus must be moved to the
left, away from the imaginary axis.

10.17 SIMPLIFIED RATE FEEDBACK COMPENSATION:
A DESIGN APPROACH

The feedback system shown in Fig.10.29 provides the opportunity for varying
three functions,Gx(s),H(s) and A.The larger the number of variables inserted
into a system, the better the opportunity for achieving a specified perfor-
mance. However, the design problem becomes much more complex. To
develop a feel for the changes that can be introduced by feedback compensa-
tion, first a simplification is made by letting A¼1. The system of Fig. 10.29
then reduces to that shown in Fig. 10.30a. It can be further simplified as
shown in Fig.10.30b.

The first and simplest case of feedback compensation tobe considered is
the use of a rate transducer that has the transfer functionH ðsÞ ¼ Kts.The ori-
ginal forward transfer function is

GxðsÞ ¼
K

sðs þ 1Þðs þ 5Þ H ðsÞ ¼ Kts ð10:49Þ

The control ratio is

CðsÞ
RðsÞ ¼

GxðsÞ
1þ GxðsÞH1ðsÞ

¼ GxðsÞ
1þ GxðsÞ½1þH ðsÞ� ð10:50Þ

The characteristic equation is

1þ GxðsÞ½1þH ðsÞ� ¼ 1þ Kð1þ KtsÞ
sðs þ 1Þðs þ 5Þ ¼ 0 ð10:51Þ

FIGURE 10.30 (a) Minor-loop compensation. (b) Simplified block diagram,
H1ðsÞ ¼ 1þ HðsÞ.
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Equation (10.51) shows that the transducer plus the unity feedback have intro-
duced the ideal proportional plus derivative control ð1þ KtsÞ that can also be
achieved by a cascade compensator. The results should therefore be qualita-
tively the same.

Partitioning the characteristic equation (10.51) to obtain the general
format F(s)¼�1,which is required for obtaining a root locus, yields

GxðsÞH1ðsÞ ¼
KKtðs þ 1=KtÞ
sðs þ 1Þðs þ 5Þ ¼ �1 ð10:52Þ

The root locus is drawn as a function of KKt. Introduction of minor loop rate
feedback results in the introduction of a zero [see Eq. 10.52]. It therefore has
the effect of moving the locus to the left and improving the time response.This
zero is not the same as introducing a cascade zero because no zero appears in the
rationalized equation of the control ratio

CðsÞ
RðsÞ ¼

K
sðs þ 1Þðs þ 5Þ þ KKtðs þ 1=KtÞ

ð10:53Þ

The rate constant Kt must be chosen before the root locus can be drawn for
Eq. (10.52).Care must be taken in selecting the value of Kt. For example, if Kt¼1
is used, cancellation of (sþ1) in the numerator and denominator of Eq. (10.52)
yields

K
sðs þ 5Þ ¼ �1 ð10:54Þ

and it is possible to get the impression thatC(s)/R(s) has only two poles.This is
not the case, as can be seen from Eq. (10.53). Letting Kt ¼ 1 provides the
common factor sþ1 in the characteristic equation so that it becomes

ðs þ 1Þ½sðs þ 5Þ þ K � ¼ 0 ð10:55Þ
One closed-loop pole has therefore been made equal to s¼�1, and the other
two poles are obtained from the root locus of Eq. (10.54). If complex roots are
selected from the root locus of Eq. (10.54),then the pole s¼�1is dominant and
the response of the closed-loop system is overdamped (see Fig.10.4d).

The proper design procedure is to select a number of trial locations for
the zero s ¼ �1=Kt, to tabulate or plot the system characteristics that result,
and then to select the best combination. As an example, with z ¼ 0:45 as the
criterion for the complex closed-loop poles and Kt ¼ 0:4, the root locus is
similar to that of Fig. 10.31 with A¼1. Table 10.3 gives a comparison of the
original system with the rate-compensated system. From the root locus of
Eq. (10.52) the roots are s1�2 ¼ �1
 j2, and s3¼�4, with K¼ 20. The gain
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K1must be obtained from the forward transfer function:

K1 ¼ lim
s!0

sGðsÞ ¼ lim
s!0

sGxðsÞ
1þ GxðsÞH ðsÞ

¼ lim
s!0

sK
s½ðs þ 1Þðs þ 5Þ þ KKt �

¼ K
5þ KKt

¼ 1:54 ð10:56Þ

The results inTable10.3 show that the effects of rate feedback are similar
to those of a cascade lead compensator,but the gainKt is not so large (seeTable
10.1). The control ratio of the system with rate feedback, with K¼ 20 and
Kt¼ 0.4, is

CðsÞ
RðsÞ ¼

20
ðs þ 1� j2Þðs þ 1þ j2Þðs þ 4Þ ð10:57Þ

The performance characteristics for various compensation methods are
summarized inTables10.1and10.5.

10.18 DESIGN OF RATE FEEDBACK

The more general case of feedback compensation shown in Fig. 10.29, with
H ðsÞ ¼ Kts and the amplifier gain A not equal to unity, is considered in this

FIGURE 10.31 Root locus for Eq. (10.60).

TABLE 10.3 Comparison of Performances

System

Dominant
complex poles

 ¼ 0:45

Other
roots

Ramp error
coefficient K1, s

�1 tp, s Mo ts, s

Original �0.40
 j 0.8 �5.19 0.84 4.12 0.202 9.48
Cascade lead �1.59
 j 3.15 �11.83 2.95 1.09 0.195 2.45
Rate feedback �1.0
 j 2.0 �4.0 1.54 1.87 0.17 3.95
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section.Twomethods of attacking this problem are presented.The block dia-
grams of Fig.10.32a and b are mathematically equivalent to the block diagram
of Fig.10.29 since they all yield the same closed-loop transfer function:

CðsÞ
RðsÞ ¼

AGxðsÞ
1þ GxðsÞH ðsÞ þ AGxðsÞ

¼ AGxðsÞ
1þ GxðsÞ½H ðsÞ þ A� ð10:58Þ

METHOD 1. The characteristic equation obtained from the denominator
of Eq. (10.58) for the plant given by Eq. (10.49) is

1þ GxðsÞ½H ðsÞ þ A� ¼ 1þ KðKts þ AÞ
sðs þ 1Þðs þ 5Þ ¼ 0 ð10:59Þ

Partitioning the characteristic equation to obtain the general format
F(s)¼�1,which is required for the root locus, yields

KKtðs þ A=KtÞ
sðs þ 1Þðs þ 5Þ ¼ �1 ð10:60Þ

Since the numerator and denominator are factored, the roots can be obtained
by plotting a root locus.The angle condition of (1þ2h)180� must be satisfied
for the root locus of Eq. (10.60). It should be kept in mind, however, that
Eq. (10.60) is not the forward transfer function of this system; it is just an
equation whose roots are the poles of the control ratio. The three roots of this

FIGURE 10.32 Block diagrams equivalent to Fig. 10.29.
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characteristic equation vary as K,Kt, and A are varied.Obviously, it is neces-
sary to fix two of these quantities and to determine the roots as a function of
the third. A sketch of the root locus as a function ofK is shown in Fig.10.31 for
arbitrary values of A and Kt. Note that rate feedback results in an equivalent
open-loop zero, so the system is stable for all values of gain for the value of
A=Kt shown. This observation is typical of the stabilizing effect that can be
achieved by derivative feedback and corresponds to the effect achieved with
a proportional plus derivative (PD) compensator in cascade.

The angles of the asymptotes of two of the branches of Eq. (10.60)
are
 90�. For the selection A=Kt shown in Fig. 10.31, these asymptotes are in
the left half of the s plane, and the system is stable for any value ofK.However,
if A=Kt > 6, the asymptotes are in the right half of the s plane and the system
can become unstable if K is large enough. For the best transient response the
root locus should be moved as far to the left as possible.This is determined by
the location of the zero s ¼ �A=Kt. To avoid having a dominant real root, the
value of A=Kt is made greater than unity.

The forward transfer function obtained from Fig.10.29 is

GðsÞ ¼ CðsÞ
EðsÞ ¼

AGxðsÞ
1þ GxðsÞH ðsÞ

¼ AK
sðs þ 1Þðs þ 5Þ þ KKts

ð10:61Þ

The ramp error coefficient obtained from Eq. (10.61) is

K 01 ¼
AK

5þ KKt
ð10:62Þ

Selection of the zero (s ¼ �A=Kt), the sensitivityKKt for the root locus drawn
for Eq. (10.60), and the ramp error coefficient of Eq. (10.62) are all interrelated.
The designer therefore has some flexibility in assigning the values ofA,Kt, and
K. The values A¼ 20 and Kt¼ 0.8 result in a zero at s¼�2.5, the same as the
example in Sec.10.17. For z ¼ 0:45, the control ratio is given by Eq. (10.57) and
theperformance is the sameas that listed inTable10.3.Theuseof the additional
amplifierA does not change the performance; instead, it permits greater flex-
ibility in the allocation of gains. For example,K can be decreased and both A
andKt increased by a corresponding amount with no change in performance.

METHOD 2. Amore general design method is to start with the inner loop,
adjusting the gain to select the poles. Then successive loops are adjusted, the
poles for each loopbeing set to desired values.For the systemof Eq. (10.49),the
transfer function of the inner loop is

CðsÞ
I ðsÞ ¼

K
sðs þ 1Þðs þ 5Þ þ KKts

¼ K
s½ðs þ 1Þðs þ 5Þ þ KKt �

¼ K
sðs � p1Þðs � p2Þ

ð10:63Þ
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The equation for which the root locus is plotted to find the roots p1
and p2 is

ðs þ 1Þðs þ 5Þ þ KKt ¼ 0

which can be written as

KKt

ðs þ 1Þðs þ 5Þ ¼ �1 ð10:64Þ

The locus is plotted in Fig.10.33,where several values of the inner-loop damp-
ing ratio zi for the roots are shown. Selection of a zi permits evaluation of the
product KKt by use of Eq. (10.64).Upon assignment of a value to one of these
quantities, the other can then be determined. The poles of the inner loop are
the points on the locus that are determined by the zi selected.They also are the
poles of the open-loop transfer function for the overall system as represented
in Eq. (10.63). It is therefore necessary that the damping ratio zi of the inner
loop have a higher value than the desired damping ratio of the overall system.
The forward transfer function of the complete system becomes

GðsÞ ¼ CðsÞ
EðsÞ ¼

AK
sðs2 þ 2zion�is þ o2

n�iÞ
ð10:65Þ

The root locus of the complete system is shown in Fig.10.34 for several values
of the inner-loop damping ratio zi.These loci are plotted as a function ofAK.

The control ratio has the form

CðsÞ
RðsÞ ¼

AK
sðs2 þ 2zion�is þ o2

n�iÞ þ AK

¼ AK
ðs þ �Þðs2 þ 2zons þ o2

nÞ
ð10:66Þ

FIGURE 10.33 Poles of the inner loop for several values of 
i .
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In this problem the damping ratio z of the complex poles of the control ratio is
used as the basis for design. Both the undamped natural frequency on and the
ramp error coefficient K 01 ¼ AK=ð5þ KKtÞ depend on the selction of the
inner-loop damping ratio zi. Several trials are necessary to show how these
quantities and the remaining figures of merit vary with the selection of zi.
This information is shown graphically in Fig. 10.35. The system performance
specifications must be used to determine a suitable design. The associated
value of K 01 determines the required values of A, K and Kt. The results in
Table 10.4 show that zi ¼ 0:6 produces the shortest settling time ts¼ 2.19, an
overshoot Mo¼ 0.01 and K 01 ¼ 1:54. Table 10.4 also shows for z < 0:6 that a
real root is most dominant, which yields an overdamped system with an
increased value of ts.

FIGURE 10.34 Root locus of complete system for several values of 
i .

FIGURE 10.35 Variation of K 01�ts, and !n with 
i .
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10.19 DESIGN: FEEDBACK OF SECOND DERIVATIVE
OF OUTPUT

To improve the system performance further, a signal proportional to the
second derivative of the output may be fed back. For a position system an
accelerometer will generate such a signal. An approximation to this desired
signal may be generated by modifying the output of a rate transducer with a
high-pass filter. An example of this technique for a position-control system is
shown in Fig.10.36.

The transfer function of the inner feedback, which consists of a tach-
ometer in cascade with a lead compensator, is

H ðsÞ ¼ BðsÞ
CðsÞ ¼ Kts

s
s þ 1=RC

� �
¼ Kts

2

s þ 1=RC
ð10:67Þ

Method 1 is used for the application of this compensator. Using the deno-
minator of Eq. (10.58), the root locus is drawn for Gx(s)[H(s)þA]¼�1,which
yields

KKtðs2 þ As=Kt þ A=KtRCÞ
sðs þ 1Þðs þ 5Þðs þ 1=RCÞ ¼ �1 ð10:68Þ

SinceA/Kt and1/RCmust be selected in order to specify the zeros inEq. (10.68)
before the locus can be drawn, it is well to look at the expression for K 01 to
determine the limits to be placed on these values. The forward transfer

TABLE 10.4 System Response Characteristics Using Method 2


i KKt AK Roots tp, s Mo ts, s K 01

0.475 34.91 19.33 �2.74
 j 5.48 y 0 7.64 0.484
�0.52

0.5 31.01 30.53 �2.5
 j 4.98 y 0 4.34 0.847
�0.93

0.55 24.76 39.0 �2.1
 j 4.22 y 0 2.36 1.31
�1.75

0.6 20.01 38.63 �1.82
 j 3.62 1.40 0.01 2.19 1.54
�2.35

0.7 13.37 30.51 �1.38
 j 2.74 1.52 0.12 2.88 1.66
�3.24

0.8 9.06 22.14 �1.03
 j 2.14 1.77 0.20 3.75 1.57
�3.83

yOverdamped response.
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function is

GðsÞ ¼ AGxðsÞ
1þ GxðsÞH ðsÞ

¼ AKðs þ 1=RCÞ
sðs þ 1Þðs þ 5Þðs þ 1=RCÞ þ KKts2

ð10:69Þ

Since it is aType1 transfer function, the gain K 01 is equal to

K 01 ¼ lim
s!0

sGðsÞ ¼ AK
5

ð10:70Þ

Since K 01 is independent of RC, the value of RC is chosen to produce the most
desirable root locus. The two zeros of s2 þ ðA=KtÞs þ A=KtRC may be either
real or complex and are equal to

sa�b ¼ �
A
2Kt



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A
2Kt

� �2

� A
KtRC

s
ð10:71Þ

A representative sketch of the root locus is shown if Fig.10.37 for an arbitrary
selection of A, Kt, and RC. For Fig. 10.37 the values A¼1, Kt¼ 0.344, and
1/RC¼ 0.262 give zeros at sa¼�0.29 and sb¼�2.62. Note that the zero sa
and the pole s¼�1/RC have the properies of a cascade lag compensator;
therefore, an increase in gain can be expected. The zero sb results in an
improved time response.By specifying a damping ratio z ¼ 0:35 for the domi-
nant roots, the result isK¼ 52.267,K 01 ¼ 10:45, andon ¼ 3:75; and the overall

FIGURE 10.37 Root locus of Eq. (10.68).

FIGURE 10.36 Tachometer and RC feedback network.
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control ratio is

CðsÞ
RðsÞ ¼

52:267ðs þ 0:262Þ
ðs þ 1:31þ j3:51Þðs þ 1:31� j3:51Þðs þ 3:35Þðs þ 0:291Þ

ð10:72Þ
Note that a passive lead network in the feedback loop acts like a passive

lag network in cascade and results in a large increase in K 01. Several trials may
be necessary to determine the best selection of the closed-loop poles and ramp
error coefficient. A z ¼ 0:35 is chosen instead of z ¼ 0:45 to obtain a larger
value forK 01.Since the third pole s¼�3.34 reduces the peak overshoot, a smal-
ler value of z is justifiable; however, the peak overshoot and settling time are
larger than the best results obtained with just rate feedback (seeTable10.5).

The use of anRC network in the feedback pathmay not always produce a
desired increase in gain. Also, selecting the proper location of the zeros and
the corresponding values of A, Kt, and RC in Eq. (10.68) may require several
trials.Therefore, a possible alternative is to use only rate feedback to improve
the time response, and then to add a cascade lag compensator to increase the
gain.The corresponding design steps are essentially independent.

10.20 RESULTS OF FEEDBACK COMPENSATION DESIGN

The preceding sections show the application of feedback compensation by
the root-locus method. Basically, rate feedback is similar to ideal derivative
control in cascade. The addition of a high-pass RC filter in the feedback
path permits a large increase in the error coefficient. For good results the
feedback compensator H(s) should have a zero, s¼ 0, of higher order than
the type of the original transfer function Gx(s). The method of adjusting the
poles of the inner loop and then adjusting successively larger loops is
applicable to all multiloop systems. This method is used extensively in the
design of aircraft flight control systems [12]. The results of feedback

TABLE 10.5 Comparison of Cascade and Feedback Compensation Using the Root
Locus

System Kt !n 
 Mo ts, s

Uncompensated 0.84 0.89 0.45 0.202 9.48
Rate feedback 1.54 4.0 0.45 0.01 2.19
Second derivative of output 10.45 3.75 0.35 0.267 6.74
Cascade lag compensator 8.02 0.854 0.45 0.266 22.0
Cascade lead compensator 2.95 3.53 0.45 0.195 2.45
Cascade lag-lead compensator 29.26 3.49 0.45 0.213 3.33
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compensation applied in the preceding sections are summarized in Table
10.5. Results of cascade compensation are also listed for comparison. This
tabulation shows that comparable results are obtained by cascade and feed-
back compensation.

10.21 RATE FEEDBACK: PLANTS WITH DOMINANT
COMPLEX POLES

The simple cascade compensators of Secs.10.8 to10.12 yield very little system
performance improvement for plants having the pole-zero pattern of
Fig.10.38awhere the plant has dominant complex poles.The following trans-
fer function, representing the longitudinal motion of an aircraft [12], yields
such a pattern:

GxðsÞ ¼
�ðsÞ
egðsÞ
¼ Kxðs � z1Þ

sðs � p1Þðs � p2Þðs � p3Þ
ð10:73Þ

where � is the pitch angle and eg is the input to the elevator servo.With unity
feedback the root locus of Fig. 10.38a shows, for Kx > 0 that only z < zx is
achievable for the dominant roots. However, good improvement in
system performance is obtained by using a minor loop with rate feedback
H(s)¼Kts. Using method 1 of Sec. 10.18 for the system configuration of
Fig.10.29 yields

CðsÞ
EðsÞ ¼

AKxðs � z1Þ
sðs � p1Þðs � p2Þðs � p3Þ þ KtKxsðs � z1Þ

ð10:74Þ

FIGURE 10.38 Root locus for the longitudinal motion of an aircraft: (a) uncompen-
sated; (b) compensated (rate feedback).
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and

CðsÞ
RðsÞ ¼

AKxðs � z1Þ
sðs � p1Þðs � p2Þðs � p3Þ þ KtKxsðs � z1Þ þ AKxðs � z1Þ

ð10:75Þ

The characteristic equation formed from the denominator of Eq. (10.58), or
from the denominator of Eq. (10.75), is partitioned to yield

KtKxðs � z1Þðs þ A=KtÞ
sðs � p1Þðs � p2Þðs � p3Þ

¼ �1 ð10:76Þ

Acomparison of Eqs. (10.73) and (10.76) shows that rate feed back has added a
zero to the root locus.One possible root locus,depending on the value ofA/Kt,
is shown in Fig. 10.38b. This illustrates that using rate feedback with Kt> 0
allows a good improvement in system performance, since it is possible to
achieve z > zx and � < �x for the complex roots.The real root near the origin
may appear to be dominant, but it is close to the zero z1.Therefore, it may not
make a large contribution to the transient response.

Note that the cascade compensator of Eq. (10.43), as applied inFig.10.25,
shows exact cancellation of the pair of complex poles by the compensator
zeros. In practice, exact cancellation cannot be achieved because the aircraft
poles vary with different flight conditions.Thus, as illustrated by this section,
using simple rate feedback is a more practical approach for achieving
improved system performance.

10.22 SUMMARY

This chapter shows the applications of cascade and feedback compensation.
The procedures for applying the compensators are given so that they can be
used with any system.They involve a certain amount of trial and error and the
exercise of judgment based on past experience.The improvements produced
by each compensator are shown by application to a specific system. In cases
where the conventional compensators do not produce the desired results,
other methods of applying compensators are available in the literature.

It is important to emphasize that the conventional compensators cannot
be applied indiscriminately. For example, the necessary improvements may
not fit the four categories listed in Sec.10.5,or the use of the conventional com-
pensator may cause a deterioration of other performance characteristics.
In such cases the designer must use some ingenuity in locating the compensa-
tor poles and zeros to achieve the desired results.The use of several compen-
sating networks in cascade and/or in feedback may be required to achieve the
desired root locations.

Realization of compensator pole-zero locations by means of passive
networks requires an investigation of network synthesis techniques. Design

Root-Locus Compensation: Design 421

Copyright © 2003 Marcel Dekker, Inc.



procedures for specialized networks that produce two poles and two zeros are
available [8, 9,13].

It may occur to the reader that the methods of compensation in this and
the following chapters can become laborious because some trial and error is
involved. The use of an interactive CAD program to solve design problems
minimizes the work involved. Using a computer means that an acceptable
design of the compensator can be determined in a shorter time. It is still
useful to obtain a few values of the solution, by an analytical or graphical
method, to ensure that the problem has been properly set up and that the
CAD program is operating correctly.
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11

Frequency-Response Compensation Design

11.1 INTRODUCTION TO FEEDBACK
COMPENSATION DESIGN

Improvements in the response of feedback tracking control systems and
disturbance rejection can be achieved in the frequency domain.This chapter
presents frequency-domain tracking techniques, and Chap.12 presents a dis-
turbance-rejection technique.The preceding chapter presents the factors used
with the root-locus method for selecting compensators and the
corresponding effects on the time response.The designer can place the poles
and zeros of the proposed compensator on the s plane and determine the poles
of the closed-loop tracking system, which in turn permits evaluation of the
closed-loop time response. Similarly, new values of Mm, om, and Km can be
determined by the frequency-response method, using either the polar plot or
the log plot. However, the closed-loop poles are not explicitly determined.
Furthermore, the correlation between the frequency-response parameters
Mm and om and the time response is only qualitative, as discussed in Secs. 9.3,
9.4, and 9.11. The presence of real roots near the complex dominant roots
further changes the correlation between the frequency-response parameters
and the time response, as discussed in Sec. 9.11.

This chapter presents the changes that can be made in the frequency-
response characteristics by use of the three types of cascade compensators
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(lag, lead, and lag-lead) and by feedback compensation.They are only repre-
sentative of the compensators that can be used. Design procedures used to
obtain improvement of the system performance are described. A designer
can extend or modify these design procedures, which are based on the
presence of one pair of complex dominant roots for the closed-loop system,
to those systems where there are other dominant roots besides the main
complex pair [1]. Both the log plots and the polar plots are used in this chapter
in applying the frequency-response compensation criteria to show that either
type of plot can be used; the choice depends on individual preference.

The performance of a closed-loop system can be described in terms of
Mm, om, and the system error coefficient Km. The value of Mm (or g) essen-
tially describes the damping ratio z and therefore the amount of overshoot in
the transient response. For a specific value ofMm, the resonant frequency om
(or of) determines the undamped natural frequency on, which in turn deter-
mines the response time of the system. The system error coefficient Km is
important because it determines the steady-state error with an appropriate
standard input. The design procedure is usually based on selecting a value of
Mm and using the methods described in Chap. 9 to find the corresponding
values of om and the required gain Km. If the desired performance
specifications are not met by the basic system after this is accomplished,
compensation must be used. This alters the shape of the frequency-response
plot in an attempt to meet the performance specifications. Also, for those
systems that are unstable for all values of gain, it is mandatory that a stabil-
izing or compensating network be inserted in the system. The compensator
may be placed in cascade or in a minor feedback loop. The reasons
for reshaping the frequency-response plot generally fall into the following
categories:

1. A given system is stable, and its Mm and om (and therefore the
transient response) are satisfactory, but its steady-state error is too
large. The gain Km must therefore be increased to reduce the
steady-state error (see Chap. 6) without appreciably altering the
values of Mm and om. It is shown later that in this case the high-
frequency portion of the frequency-response plot is satisfactory,
but the low-frequency portion is not.

2. A given system is stable, but its transient settling time is unsatis-
factory; i.e., the Mm is set to a satisfactory value, but the om is too
low. The gain may be satisfactory, or a small increase may be
desirable. The high-frequency portion of the frequency-response
plot must be altered in order to increase the value of om:

3. A given system is stable and has a desiredMm, but both its transient
response and its steady-state response are unsatisfactory.Therefore,
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the values of both om and Km must be increased.The portion of the
frequency plot in the vicinity of the �1þj0 (or �180�, 0-dB) point
must be altered to yield the desired om� and the low-frequency
portion must be changed to obtain the increase in gain desired.

4. A given system is unstable for all values of gain. The frequency-
response plot must be altered in the vicinity of the �1þj0 or
(�180�, 0-dB) point to produce a stable system with a desired Mm

and om.

Thus, the objective of compensation is to reshape the frequency-
response plot of the basic system by means of a compensator in order to
achieve the performance specifications. Examples that demonstrate this
objective are presented in the following sections. The design methods in this
chapter and the effects of compensation are illustrated by the use of
frequency-response plots in order to provide a means for understanding the
principles involved. It is expected, however, that CAD programs such as
MATLAB and TOTAL-PC will be used extensively in the design process (see
Sec.10.6). Such a program provides both the frequency response and the time
response of the resultant system.

11.2 SELECTION OF A CASCADE COMPENSATOR

Consider the system shown in Fig.11.1

Gxð joÞ ¼ forward transfer function of a basic feedback
control system

Gð joÞ ¼ Gcð joÞGxð joÞ ¼ forward transfer function that results
in the required stability and steady-state accuracy

DividingGð joÞ byGxð joÞ gives the necessary cascade compensator

Gcð joÞ ¼
Gð joÞ
Gxð joÞ

ð11:1Þ

A physical electrical network for the compensator described in Eq. (11.1)
can be synthesized by the techniques of Foster,Cauer, Brune, and Guillemin.

FIGURE 11.1 Cascade compensation.
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In the preceding and present chapters the compensators are limited to
relatively simple RC networks. Based on the design criteria presented, the
parameters of these simple networks can be evaluated in a rather direct
manner. The simple networks quite often provide the desired improvement
in the control system’s performance. When they do not, more complex
networksmust be synthesized [2,3]. Physically realizable networks are limited
in their performance over the whole frequency spectrum; this makes it
difficult to obtain the exact transfer-function characteristic given by
Eq. (11.1).However, this is not a serious limitation, because the desired perfor-
mance specifications are interpreted in terms of a comparatively small
bandwidth of the frequency spectrum. A compensator can be constructed to
have the desired magnitude and angle characteristics over this bandwidth.
Minor loop feedback compensation can also be used to achieve the desired
Gð joÞ. This may yield a simpler network than the cascade compensator
given by Eq. (11.1).

The characteristics of the lag and lead compensators and their
effects upon a given polar plot are shown in Fig. 11.2a and b. The cascade lag
compensator results in a clockwise (cw) rotation of Gð joÞ and can produce
a large increase in gain Km with a small decrease in the resonant frequency
om. The cascade lead compensator results in a counterclockwise (ccw)
rotation of Gð joÞ and can produce a large increase in om with a small
increase in Km. When the characteristics of both the lag and the lead
networks are necessary to achieve the desired specifications, a lag-lead
compensator can be used. The transfer function and polar plot of this lag-
lead compensator are shown in Fig. 11.2c. The corresponding log plots for
each of these compensators are included with the design procedures later in
this chapter.

The choice of a compensator depends on the characteristics of the given
(or basic) feedback control system and the desired specifications.When these
networks are inserted in cascade, they must be of the (1) proportional plus
integral and (2) proportional plus derivative types. The plot of the lag
compensator shown in Fig.11.2a approximates the ideal integral plus propor-
tional characteristics shown in Fig.11.3a at high frequencies. Also, the plot of
the lead compensator shown in Fig. 11.2b approximates the ideal derivative
plus proportional characteristics shown in Fig 11.3b at low frequencies.
These are the frequency ranges where the proportional plus integral and
proportional plus derivative controls are needed to provide the necessary
compensation.

The equations of Gcð joÞ in Figs. 11.2a and 11.2b, which represent the
lag and the lead compensators used in this chapter, can be expressed as

Gcð joÞ ¼ Gcð joÞ


 

fffc ð11:2Þ
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Solving for the angle fc yields

fc ¼ tan�1 oT � tan�1 oaT ¼ tan�1
oT � oaT
1þ o2aT 2 ð11:3Þ

or

T 2 þ a� 1
oa tanfc

T þ 1
o2a
¼ 0 ð11:4Þ

where a > 1 for the lag compensator and a < 1 for the lead compensator.
In the design procedures shown in later sections, a frequency o is specified at
which a particular value offc is desired.For the selected values of a,fc, ando,

FIGURE 11.2 Polar plots: (a) lag compensator; (b) lead compensator; (c) lag-lead
compensator.
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Eq. (11.4) is used to determine the value of T required for the compensator.
For a lag compensator, a small value of fc is required,whereas a large value
of fc is required for a lead compensator. For a lead compensator the value
omax� at which the maximum phase shift occurs, can be determined for a
givenT and a by setting the derivative of fc with respect to the frequency o
equal to zero. Therefore, from Eq. (11.3) the maximum angle occurs at the
frequency

omax ¼
1

T
ffiffiffi
a
p ð11:5Þ

Inserting this value of frequency into Eq. (11.3) gives themaximumphase shift

ðfcÞmax ¼ sin�1
1� a
1þ a

ð11:6Þ

Typical values for a lead compensator are

a 0 0.1 0.2 0.3 0.4 0.5

ðfcÞmax 90� 54.9� 41.8� 32.6� 25.4� 19.5�

FIGURE 11.3 (a) Ideal integral plus proportional compensator. (b) Ideal derivative
plus proportional compensator.
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A knowledge of the maximum phase shift is useful in the application of lead
compensators. The design procedures developed in the following sections
utilize the characteristics of compensators discussed in this section.

11.3 CASCADE LAG COMPENSATOR

When Mm and om, which determine the transient response of a feedback
control system, are satisfactory but the steady-state error is too large, it is
necessary to increase the gain without appreciably altering that portion of
the given log magnitude (Lm)-angle plot in the vicinity of the (�180�, 0-dB)
point (category1).This can be done by introducing an integral or lag compen-
sator in cascade with the original forward transfer function as shown in
Fig. 11.1. Figure 10.9 shows a representative lag network having the transfer
function

GcðsÞ ¼ A
1þ Ts
1þ aTs

ð11:7Þ

where a > 1. As an example of its application, consider a basicType 0 system.
For an improvement in the steady-state accuracy, the system step error
coefficient Kp must be increased. Its values before and after the addition of
the compensator are

Kp ¼ lim
s!0

GxðsÞ ¼ K0 ð11:8Þ

K 0p ¼ lim
s!0

GcðsÞGxðsÞ ¼ AK0 ¼ K 00 ð11:9Þ

The compensator amplifier gain A must have a value that gives the
desired increase in the value of the step error coefficient.Thus

A ¼ K 00
K0

ð11:10Þ

This increase in gain must be achieved while maintaining the same Mm and
without appreciably changing the value of om. However, the lag compensator
has a negative angle, which moves the original Lm-angle plot to the left,
or closer to the (�180�, 0-dB) point.This has a destabilizing effect and reduces
om. To limit this decrease in om� the lag compensator is designed so that it
introduces a small angle, generally nomore than�5�, at the original resonant
frequencyom1.The value of�5� ato0 ¼ om1 is an empirical value, determined
from practical experience in applying this type of network. A slight variation
in method, which gives equally good results, is to select Gc(s) so that the
magnitude of its angle is 5� or less at the original phase-margin frequencyof1.
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The overall characteristics of lag compensators are best visualized from
the log plot. The Lm and phase-angle equations for the compensator of
Eq. (11.7) are

LmG
0
cð joÞ ¼ Lm ð1þ joT Þ � Lm ð1þ joaT Þ ð11:11Þ
ffGcð joÞ ¼ ff1þ joT �ff1þ joaT ð11:12Þ

For various values of a there is a family of curves for the log magnitude
and phase-angle diagram, as shown in Fig. 11.4. These curves show that an
attenuation equal to Lm a is introduced above oT ¼ 1. Assume that a system
has the original forward transfer function Gxð joÞ and that the gain has been
adjusted for the desired phase margin g. The Lm and phase-angle diagram of
Gxð joÞ are sketched in Fig. 11.5.The addition of the lag compensator Gcð joÞ
reduces the log magnitude by Lm a for the frequencies above o ¼ 1=T . The
value of T of the compensator is selected so that the attenuation Lm a
occurs at the original phase-margin frequency of1. Notice that the phase
margin angle at of1 has been reduced. To maintain the specified value of g,
the phase-margin frequency has been reduced to of2. It is now possible to
increase the gain of Gxð joÞG0cð joÞ by selecting the value A so that the Lm
curve will have the value 0 dB at the frequency of2.

Theeffectsof the lag compensatorcan nowbeanalyzed.The reduction in
log magnitude at the higher frequencies due to the compensator is desirable.
This permits an increase in the gain to maintain the desired g.Unfortunately,

FIGURE 11.4 Log magnitude and phase-angle diagram for lag compensator

G0cð joÞ ¼
1þ joT
1þ joaT

:
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the negative angle of the compensator lowers the angle curve.Tomaintain the
desired g, the phase-margin frequency is reduced. To keep this reduction
small, the value of ocf ¼ 1=T should be made as small as possible.

The Lm-angle diagram permits gain adjustment for the desiredMm.The
curves for Gxð joÞ and Gxð joÞG0cð joÞ are shown in Fig. 11.6. The increase in
gain to obtain the same Mm is the amount that the curve of Gxð joÞG0cð joÞ
must be raised in order to be tangent to theMm curve. Because of the negative
angle introduced by the lag compensator, the new resonant frequency om2 is
smaller than the original resonant frequency om1. Provided that the decrease
in om is small and the increase in gain is sufficient to meet the specifications,
the system is considered satisfactorily compensated.

FIGURE 11.5 Original and lag-compensated log magnitude and phase-angle plots.

FIGURE 11.6 Original and lag-compensated Nichols plots.
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In summary, the lag compensator is basically a low-pass filter: the low
frequencies are passed and the higher frequencies are attenuated. This
attenuation characteristic of the lag compensator is useful and permits an
increase in the gain.The negative phase-shift characteristic is detrimental to
system performance but must be tolerated. Because the predominant and
useful feature of the compensator is attenuation, a more appropriate name
for it is high-frequency attenuation compensator.

11.4 DESIGN EXAMPLE: CASCADE LAG COMPENSATION

To give a basis for comparison of all methods of compensation, the examples
of Chap. 10 are used in this chapter. For the unity-feedback Type 1 system of
Sec.10.8 the forward transfer function is

GxðsÞ ¼
K1

sð1þ sÞð1þ 0:2sÞ ð11:13Þ

By the methods of Secs. 9.7 and 9.10, the gain required for this system to have
anMm of 1.26 (2 dB) is K1¼0.872 s�1, and the resulting resonant frequency is
om1 ¼ 0:715 rad/s. With these values the transient response is considered
to be staisfactory, but the steady-state error is too large. Putting a lag
compensator in cascade with a basic system (category 1) permits an increase
in gain and therefore reduces the steady-state error.

The cascade compensator to be used has the transfer function given by
Eq. (11.7). Selection of an a ¼ 10 means that an increase in gain of almost 10
is desired. Based on the criterion discussed in the last section (a phase
shift of �5� at the original om), the compensator time constant can be
determined. Note that in Fig. 11.4, fc ¼ �5� occurs for values of oT
approximately equal to 0.01 and 10. These two points correspond, respec-
tively, to points ob and oa in Fig. 11.2a. The choice oT ¼ omT ¼ 10 or
oT ¼ of1T ¼ 10 (where oa ¼ of1 or oa ¼ om1) is made because this pro-
vides the maximum attenuation at om1. This ensures a maximum possible
gain increase in Gð joÞ to achieve the desired Mm. Thus, for om1 ¼ 0:72, the
value T � 13:9 is obtained. Note that the value of T can also be obtained
from Eq. (11.4). For ease of calculation, the value of T is rounded off to 14.0,
which does not appreciably affect the results.

In Figs. 11.7a and 11.7b the Lm and phase-angle diagrams for the
compensator G

0
cð joÞ are shown, together with the curves for G

0
xð joÞ. The

sum of the curves is also shown and represents the function G
0
cð joÞG0xð joÞ.

The curves of G0cð joÞG0xð joÞ from Fig. 11.7 are used to draw the Lm^angle
diagram of Fig. 11.8. By using this curve, the gain is adjusted to obtain an
Mm¼1.26. The results are K 01 ¼ 6:68 and om ¼ 0:53. Thus an improvement
in K1 has been obtained, but a penalty of a smaller om results. An increase in

432 Chapter 11

Copyright © 2003 Marcel Dekker, Inc.



FIGURE 11.7 Log magnitude and phase-angle diagrams for

G0xð joÞ ¼
1

joð1þ joÞð1þ j0:2oÞ
G0cð joÞG0xð joÞ ¼

1þ j14o
joð1þ joÞð1þ j0:2oÞð1þ j140oÞ :
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gain of approximatelyA¼ 7.7 results from the use of a lag compensator with
a ¼ 10, which is typical of the gain increase permitted by a given a. This
additional gain may be obtained from an amplifier already present in the
basic system if it is not already operating at maximum gain. Note that the
value of gain is somewhat less than the chosen value of a. Provided that the
decrease in om and the increase in gain are acceptable, the system has been
suitably compensated.

The polar plots representing the basic and compensated systems shown
in Fig. 11.9 also show the effects of compensation. Both curves are tangent
to the circle representing Mm¼1.26. Note that there is essentially no change
of the high-frequency portion of Gð joÞ compared with Gxð joÞ. However, in
the low-frequency region there is a cw rotation of Gð joÞ due to the lag
compensator.

Table11.1presents a comparison between the root-locusmethod and the
frequency-plot method of applying a lag compensator to a basic control

FIGURE 11.8 Lm-angle diagram: original and lag-compensated systems.
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system.Note the similarity of results obtained by thesemethods.The selection
of the method depends upon individual preference. The compensators
developed in the root-locus and frequency-plot methods are different, but
achieve comparable results. To show this explicitly, Table 11.1 includes
the compensator developed in the root-locus method as applied to the
frequency-response method. In the frequency-response method, either the
log or the polar plot may be used. An analytical technique for designing a
lag or PI compensator, using both phase margin and a desired value of Km, is
presented in Ref. 4.

FIGURE 11.9 Polar plots of a Type 1 control system, with and without lag
compensation:

Gxð joÞ ¼
0:872

joð1þ joÞð1þ j0:2oÞ
Gð joÞ ¼ Gcð joÞGxð joÞ ¼

6:675ð1þ j14oÞ
joð1þ joÞð1þ j0:2oÞð1þ j140oÞ :
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11.5 CASCADE LEAD COMPENSATOR

Figure10.16a shows a lead compensator made up of passive elements that has
the transfer function

G
0
cð joÞ ¼ a

1þ joT
1þ joaT

a < 1 ð11:14aÞ

This equation is marked with a prime since it does not contain the gain A. The
Lm and phase-angle equations for this compensator are

Lm G
0
cð joÞ ¼ Lm aþ Lm ð1þ joT Þ � Lm ð1þ joaT Þ ð11:14bÞ
ffG0cð joÞ ¼ ff1þ joT �ff1þ joaT ð11:14cÞ

A family of curves for various values of a is shown in Fig. 11.10. It is seen
from the shape of the curves that an attenuation equal to Lm a is introduced
at frequencies below oT ¼ 1. Thus, the lead network is basically a high-pass
filter: the high frequencies are passed, and the low frequencies are attenuated.
Also, an appreciable lead angle is introduced in the frequency range
from o ¼ 1=T to o ¼ 1=aT (from oT ¼ 1 to oT ¼ 1=a). Because of its angle
characteristic a lead network can be used to increase the bandwidth for a
system that falls in category 2.

Application of the lead compensator can be based on adjusting the g
and of. Assume that a system has the original forward transfer function
Gxð joÞ, and that the gain has been adjusted for the desired g or for the
desired Mm. The Lm and phase-angle diagram of Gxð joÞ is sketched in
Fig. 11.11. The purpose of the lead compensator is to increase of, and there-
fore to increase om. The lead compensator introduces a positive angle over
a relatively narrow bandwidth. By properly selecting the value of T,

TABLE 11.1 Comparison Between Root-Locus and Frequency Methods of Applying
a Cascade Lag Compensator to a Basic Control System

G0cðsÞ om1 om on1 on K1 K 01 Mm Mp tp, s ts, s

Root-locus method, z of dominant roots¼ 0.45
1þ 20s

1þ 200s
— 0.66 0.898 0.854 0.840 8.02 1.31 1.266 4.30 22.0

Frequency-response method, Mm¼ 1.26 (effective z¼ 0.45)

1þ 14s

1þ 140s
0.715 0.53 — — 0.872 6.68 1.260 1.257 4.90 22.8

1þ 20s

1þ 200s
0.715 0.60 — — 0.872 7.38 1.260 1.246 4.55 23.6
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FIGURE 11.10 Log magnitude and phase-angle diagram for lead compensator

G0cð joÞ ¼ a
1þ joT
1þ joaT

:

FIGURE 11.11 Original and lead-compensated log magnitude and phase-angle
plots.
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the phase-margin frequency can be increased from of1 to of2. Selection of
T can be accomplished by physically placing the angle curve for the com-
pensator on the same graph with the angle curve of the original system. The
location of the compensator angle curve must produce the specified g at
the highest possible frequency; this location determines the value of the
time constant T. The gain of G0cð joÞGxð joÞ must then be increased so that
the Lm curve has the value 0 dB at the frequency of2. For a given a, an
analysis of the Lm curve of Fig. 11.10 shows that the farther to the right
the compensator curves are placed, i.e., the smaller T is made, the larger
the new gain of the system.

It is also possible to use the criterion derived in the previous chapter for
the selection of T. This criterion is to select T, for Type 1 or higher systems,
equal to or slightly smaller than the largest time constant of the original
forward transfer function. This is the procedure used in the example of the
next section. For aType 0 system, the compensator time constant T is made
equal to or slightly smaller than the second-largest time constant of the
original system. Several locations of the compensator curves should be tested
and the best results selected.

More accurate application of the lead compensator is based on
adjusting the gain to obtain a desired Mm by use of the Lm-angle diagram.
Figure 11.12 shows the original curve Gxð joÞ and the new curve
G
0
cð joÞGxð joÞ. The increase in gain to obtain the same Mm is the amount

that the curve G
0
cð joÞGxð joÞ must be raised to be tangent to the Mm curve.

Because of the positive angle introduced by the lead compensator, the new
resonant frequency om2 is larger than the original resonant frequency om1.
The increase in gain is not as large as that obtained by use of the lag
compensator.

FIGURE 11.12 Original and lead-compensated log magnitude–angle curves.
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11.6 DESIGN EXAMPLE: CASCADE LEAD COMPENSATION

For the unity-feedback Type 1 system of Sec. 10.8, the forward transfer
function is

GxðsÞ ¼
K1

sð1þ sÞð1þ 0:2sÞ ð11:15Þ

From Sec. 11.4 for Mm¼1.26 it is found that K1¼0.872 s�1 and om1 ¼
0:715 rad=s. Putting a lead compensator in cascade with the basic system
increases the value of om, and therefore improves the time response of the
system.This situation falls in category 2.

The choice of values of a andT of the compensator must be such that the
angle fc adds a sizeable positive phase shift at frequencies above om1 (or of1)
of the overall forward transfer function.The nominal value of a ¼ 0:1 is often
used; thus only the determination of the value of T remains. Two values of T
selected in Sec. 10.10 are used in this example so that a comparison can be
made between the root-locus and frequency-response techniques.The results
are used to establish the design criteria for lead compensators.

In Figs. 11.13a and 11.13b the Lm and phase-angle diagrams for the
basic system G

0
xð joÞ, the two compensators G0cð joÞ, and the two composite

transfer functions Gcð joÞG0xð joÞ are drawn. Using the Lm and phase-angle
curves of G0cð joÞG0xð joÞ from Fig. 11.13 the Lm-angle diagrams are drawn
in Fig. 11.14. The gain is again adjusted to obtain Mm¼1.26 (2 dB). The
corresponding polar plots of the original systemGxð joÞ and the compensated
systemsGð joÞ ¼ Gcð joÞGxð joÞ are shown in Fig.11.15. Note that the value of
om is increased for both values of T.

Table 11.2 presents a comparison between the root-locus method and
the frequency-response method of applying a lead compensator to a basic
control system. The results show that a lead compensator increases the
resonant frequency om. However, a range of values of om is possible, depend-
ing on the compensator time constant used. The larger the value of om, the
smaller the value of K1. The characteristics selected must be based on the
system specifications. The increase in gain is not as large as that obtained
with a lag compensator. Note in the table the similarity of results obtained by
the root-locus and frequency-responsemethods.Because of this similarity, the
design rules of Sec. 10.10 can be interpreted in terms of the frequency-
response method as follows.

RULE 1. The value of the time constantT in the numerator ofGcð joÞ given
by Eq. (11.14a) is made equal to the value of the largest time constant in the
denominator of the original transfer function Gxð joÞ for a Type 1 or higher
system. This usually results in the largest increase in om and of (best time
response), and there is an increase in system gain Km.
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FIGURE 11.13 Log magnitude and phase-angle diagrams of

G0xð joÞ ¼
1

joð1þ joÞð1þ j0:2oÞ
G0cð joÞG0xð joÞ ¼

0:1ð1þ joTÞ
joð1þ joÞð1þ j0:2oÞð1þ j0:1oTÞ :
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RULE 2. The value of the time constant T in the numerator of Gcð joÞ is
made slightly smaller than the largest time constant in the denominator of
the original transfer function for a Type 1 or higher system. This results in
achieving the largest gain increase for the systemwith an appreciable increase
in om and of.

Rule 1 is the simplest to apply to the design of the lead compensator.
Where both a maximum gain increase and a good improvement in the time of
response are desired, Rule 2 is applicable. For aType 0 system, Rules 1 and 2
are modified so that the lead-compensator time constant is selected either
equal to or slightly smaller than the second-largest time constant of the
original system.

Remember that the lag and lead networks are designed for the same
basic system; thus fromTables 11.1 and 11.2 it is seen that both result in a gain
increase.The distinction between the two types of compensation is that the lag
network gives the largest increase in gain (with the best improvement in

FIGURE 11.14 Log magnitude–angle diagrams with lead compensators from
Figs. 11.13a and b.
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steady-state accuracy) at the expense of increasing the response time,whereas
the lead network gives an appreciable improvement in the time of response
and a small improvement in steady-state accuracy. The particular problem
at hand dictates the type of compensation to be used. An analytical technique
for designing a lead compensator is presented in Ref. 4, using g as the basis
of design.

FIGURE 11.15 Polar plots of Type 1 control system with and without lead
compensation:

Gxð joÞ ¼
0:872

joð1þ joÞð1þ j0:2oÞ

Gð joÞ


T¼2=3¼

3:48ð1þ j2o=3Þ
joð1þ joÞð1þ j0:2oÞð1þ j0:2o=3Þ

Gð joÞ


T¼1¼

3:13

joð1þ j0:1oÞð1þ j0:2oÞ :
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11.7 CASCADE LAG-LEAD COMPENSATOR

The introduction of a lag compensator results in an increase in the gain,
with a consequent reduction of the steady-state error in the system.
Introducing a lead compensator results in an increase in the resonant
frequency om and a reduction in the system’s settling time. If both the
steady-state error and the settling time are to be reduced, a lag and a lead
compensator must be used simultaneously. This improvement can be
accomplished by inserting the individual lag and lead networks in cascade,
but it is more effective to use a new network that has both the lag and the
lead characteristics. Such a network, shown in Fig. 10.22a, is called a lag-
lead compensator. Its transfer function is

Gcð joÞ ¼
Að1þ joT1Þð1þ joT2Þ
ð1þ joaT1Þð1þ joT2=aÞ

ð11:16Þ

where a > 1 and T1>T2. The first half of this transfer function produces the
lag effect, and the second half produces the lead effect. The Lm and
phase-angle diagram for a representative lag-lead compensator is shown in
Fig. 11.16,where the selection is madeT1¼5T2. A simple design method is to
makeT2 equal to a time constant in the denominator of the original system.An
alternative procedure is to locate the compensator curves on the log plots of
the original system to produce the highest possible of. Figure 11.17 shows a
sketch of the Lm and phase-angle diagram for the original forward
transfer function Gxð joÞ, the compensator G

0
cð joÞ, and the combination

Gcð joÞG0xð joÞ. The phase-margin frequency is increased from of1 to of2,

TABLE 11.2 Comparison Between Root-Locus and Frequency-Response Methods
of Applying a Lead Compensator to a Basic Control System

G
0
cðsÞ om1 om on1 on K1 K 0 Mm Mp tp s

Root-locus method, z of dominant roots¼ 0.45

0:1
1þ s

1þ 0:1s
— 2.66 0.89 3.52 0.84 2.95 1.215 1.196 1.09 2.45

0:1
1þ 0:667s

1þ 0:0667s
— 2.67 0.89 3.40 0.84 4.40 1.38 1.283 1.05 2.50

Frequency-response method, Mm¼ 1.26 (effective z¼ 0.45)

0:1
1þ s

1þ 0:1s
0.715 2.83 — — 0.872 3.13 1.26 1.215 1.05 2.40

0:1
1þ 0:667s

1þ 0:0667s
0.715 2.09 — — 0.872 3.48 1.26 1.225 1.23 2.73
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FIGURE 11.17 Original and lag-lead compensated log magnitude and phase angle
plots.

FIGURE 11.16 Log magnitude and phase-angle diagram for lag-lead compensator

G0cð joÞ ¼
ð1þ j5oT2Þð1þ joT2Þ
ð1þ j50oT2Þð1þ j0:1oT2Þ

:
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and the additional gain is labeled Lm A.The new value ofMm can be obtained
from the Lm-angle diagram in the usual manner.

Another method is simply the combination of the design procedures
used for the lag and lead networks, respectively. Basically, the Lm and phase-
angle curves of the lag compensator can be located as described in Sec. 11.3.
The lag-compensator curves are given by Fig. 11.4 and are located so that
the negative angle introduced at either the original of1 or the original om1 is
small�of theorder of�5�.This permits determinationof the timeconstantT1.
The Lm and phase-angle curves of the lead compensator can be located as
described in Sec. 11.5. The lead-compensator curves are given by Fig. 11.10,
except that the Lm curve should be raised to have a value of 0 dB at the
low frequencies.This is necessary because the lag-lead compensator transfer
function does not contain a as a factor. Either the time constant T2 of the
compensator can be made equal to the largest time constant of the original
system (for aType1or higher system), or the angle curve is located to produce
the specified phasemargin angle at thehighest possible frequency. In the latter
case, the location chosen for the angle curve permits determination of the time
constant T2. When using the lag-lead network of Eq. (11.16), the value of a
used for the lag compensation must be the reciprocal of the a used for the
lead compensation. The example given in the next section implements this
second method because it is more flexible.

11.8 DESIGN EXAMPLE: CASCADE LAG-LEAD
COMPENSATION

For the basic system treated in Secs. 11.4 and 11.6, the forward transfer
function is

Gxð joÞ ¼
K1

joð1þ joÞð1þ j0:2oÞ ð11:17Þ

For an Mm¼1.26, the result is K1¼0.872 s�1 and om1 ¼ 0:715 rad=s.
According to the second method described above, the lag-lead compensator
is the combination of the individual lag and lead compensators designed in
Secs.11.4 and11.6.Thus the compensator transfer function is

Gcð joÞ ¼ A
ð1þ jT1oÞð1þ joT2Þ
ð1þ jaT1oÞð1þ j0:1oT2Þ

for a ¼ 10 ð11:18Þ

The new forward transfer function withT1¼14 and T2¼1 is

Gð joÞ ¼ Gcð joÞGxð joÞ ¼
AK1ð1þ j14oÞ

joð1þ j0:2oÞð1þ j140oÞð1þ j0:1oÞ
ð11:19Þ
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Figures 11.18a and 11.18b show the Lm and phase-angle diagrams of the basic
system G

0
xð joÞ, the compensatorG0cð joÞ, and the composite transfer function

G
0
cð joÞG0xð joÞ. From these curves, the Lm-angle diagram G

0
að joÞ is shown in

Fig. 11.19. Upon adjusting for an Mm¼1.26, the results are K 01 ¼ 29:93 and
oma ¼ 2:69. When these values are compared with those of Tables 11.1
and 11.2, it is seen that lag-lead compensation results in a value of K1

approximately equal to the product of the K1’s of the lag and lead-compen-
sated systems. Also, the om is only slightly less than that obtained with the
lead-compensated system. Thus, a larger increase in gain is achieved than
with lag compensation, and the value of om is almost as large as the value
obtained by using the lead-compensated system. One may therefore be
inclined to use a lag-lead compensator exclusively. Gb in Fig. 11.19 is with
T1¼20.

The resulting error coefficient (gain) due to the insertion of a lag-lead
compensator is approximately equal to the product of

1. The original error coefficientKm of the uncompensated system
2. The increase in Km due to the insertion of a lag compensator
3. The increase in Km due to the insertion of a lead compensator

Table 11.3 shows the results for both the root-locus and log-plot
methods of applying a lag-lead compensator to a basic control system. The
compensator designed from the log plots is different than the one designed by
the root-locus method. To show that the difference in performance is small,
Table 11.3 includes the results obtained with both compensators when
applying the frequency-response method. Both plots are shown in Fig. 11.19.
The plot using Eq. (10.42) with T1¼20 yields omb ¼ 2:74, as shown in this
figure.

11.9 FEEDBACK COMPENSATION DESIGN USING
LOG PLOTS [1]

The previous sections demonstrate straightforward procedures for applying
cascade compensation.When feedback compensation is applied to improve
the tracking qualities of a control system, additional parameters must be
determined. Besides the gain constant of the basic forward transfer function,
the gain constant and frequency characteristics of the minor feedback must
also be selected. Additional steps must therefore be introduced into the
design procedure. The general effects of feedback compensation are
demonstrated through application to the specific system that is used through-
out this text.The use of a minor loop for feedback compensation is shown in
Fig. 11.20.The transfer functionGxð joÞ represents the basic system,Hð joÞ is
the feedback compensator forming a minor loop around Gxð joÞ, and A is an
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FIGURE 11.18 Log magnitude and phase-angle diagrams of Eqs. (11.17) to (11.19)
with T1¼ 14.

Frequency-Response Compensation Design 447

Copyright © 2003 Marcel Dekker, Inc.



TABLE 11.3 Comparison Between Root-Locus and Frequency-Response Methods
of Applying a Lag-Lead Compensator to a Basic Control System

G0cðsÞ om1 om on1 on K1 K 01 Mm Mp tp, s ts, s

Root locus method, z of dominant roots¼ 0.45

ð1þ sÞð1þ 20sÞ
ð1þ 0:1sÞð1þ 200sÞ

— 2.63 0.898 3.49 0.84 29.26 1.23 1.213 1.10 3.33

Frequency response method, Mm¼ 1.26 (effective z¼ 0.45)

ð1þ sÞð1þ 20sÞ
ð1þ 0:1sÞð1þ 200sÞ

0.715 2.74 — — 0.872 30.36 1.26 1.225 1.08 3.30

ð1þ sÞð1þ 14sÞ
ð1þ 0:1sÞð1þ 140sÞ

0.715 2.69 — — 0.872 29.93 1.26 1.229 1.09 3.55

FIGURE 11.19 Log magnitude–angle diagram of G0ð joÞ from Eq. (11.19)—G0a with
T1¼ 14 and G1

b with T1¼ 20.
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amplifier that is used to adjust the overall performance.The forward transfer
function of this system is

G1ð joÞ ¼
Cð joÞ
Ið joÞ ¼

Gxð joÞ
1þGxð joÞHð joÞ

ð11:20Þ

In order to apply feedback compensation, new techniques must be
developed.This is done by first using some approximations with the straight-
line Lm curves and then developing an exact procedure. Consider the two
cases when

Gxð joÞHð joÞ


 

� 1 and Gxð joÞHð joÞ



 

� 1

The forward transfer function of Eq. (11.20) can be approximated by

G1ð joÞ � Gxð joÞ for Gxð joÞHð joÞ


 

� 1 ð11:21Þ

and

G1ð joÞ �
1

Hð joÞ for Gxð joÞHð joÞ


 

� 1 ð11:22Þ

The condition when jGxð joÞHð joÞj � 1 is still undefined, in which case
neither Eq. (11.21) nor Eq. (11.22) is applicable. In the approximate procedure
this condition is neglected, and Eqs. (11.21) and (11.22) are used when
jGxð joÞHð joÞj < 1 and jGxð joÞHð joÞj > 1, respectively.This approximation
allows investigation of the qualitative results to be obtained. After these
results are found to be satisfactory, the refinements for an exact solution are
introduced.

An example illustrates the use of these approximations. Assume that
Gxð joÞ represents a motor having inertia and damping.The transfer function
derived in Sec. 2.13 can be represented by

Gxð joÞ ¼
KM

joð1þ joTmÞ
ð11:23Þ

FIGURE 11.20 Block diagram for feedback compensation.
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Let the feedback Hð joÞ ¼ 1ff0�. This problem is sufficiently simple to be
solved exactly algebraically. However, use is made of the Lm curve and the
approximate conditions. In Fig. 11.21 the Lm curve for Gxð joÞHð joÞ is
sketched.

From Fig. 11.21 it is seen that jGxð joÞHð joÞj > 1 for all frequencies
below o1.Using the approximation of Eq. (11.22), G1ð joÞ can be represented
by 1=Hð joÞ for frequencies below o1. Also, because jGxð joÞHð joÞj < 1 for all
frequencies above o1, the approximate of Eq. (11.21) can be used. Therefore
G1ð joÞ can be represented, as shown, by the line of zero slope and 0 dB for
frequencies up to o1 and the line of slope ^12-dB/octave above o1. The
approximate equation ofG1ð joÞ therefore has a quadratic in the denominator
with on ¼ o1:

G1ð joÞ ¼
1

1þ 2z jo=o1 þ ð jo=o1Þ2
ð11:24Þ

Of course Gð joÞ can be obtained algebraically for this simple case from
Eq. (11.20),with the result given as

G1ð joÞ ¼
1

1þ ð1=KM Þ joþ ð joÞ2T=KM
ð11:25Þ

where o1 ¼ on ¼ ðKM=T Þ1=2 and z ¼ 1=½2ðKMT Þ1=2�. Note that the
approximate result is basically correct, but that some detailed information,
in this case the value of z, is missing. The approximate angle curve can be
drawn to correspond to the approximate Lm curve ofG1ð joÞ or to Eq. (11.24).

11.10 DESIGN EXAMPLE: FEEDBACK COMPENSATION
(LOG PLOTS)

The system of Fig.11.20 is investigated with the value ofGxð joÞ given by

Gxð joÞ ¼
Kx

joð1þ joÞð1þ j0:2oÞ ð11:26Þ

FIGURE 11.21 Log magnitude curves for Gxð joÞHð joÞ ¼ K1=joð1þ joTÞ and the
approximate forward transfer function G1ð joÞ for Hð joÞ ¼ 1.
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The system having this transfer function has been used throughout this text
for the various methods of compensation. The Lm and phase-angle diagram
using the straight-line Lm curve is drawn in Fig.11.22. A phase margin angle,
g of 45� can be obtained,which yields of1 ¼ 0:8, provided the gain is changed
by�2 dB.

The object in applying compensation is to increase both the of and
the gain. In order to select a feedback compensator Hð joÞ, consider the
following facts:

1. The system type should be maintained. In accordance with the
conditions outlined in Sec. 10.15 and the results given in Sec. 10.20
for the root-locus method, it is known that good improvement is
achieved by using a feedback compensator Hð joÞ that has a zero,
s¼ 0, of order equal to (or preferably higher than) the type of the
original transfer functionGxð joÞ.

2. It is shown in Sec.11.9 that the new forward transfer function can be
approximated by

G1ð joÞ �
Gxð joÞ for Gxð joÞHð joÞ < 1



 


1

Hð joÞ for Gxð joÞHð joÞ > 1


 



8><
>:

This information is used for the proper selection ofHð joÞ.
In order to increase the values of of and the gain, a portion of the curves
of Gxð joÞ for a selected range of frequencies can be replaced by the curves

FIGURE 11.22 Log magnitude and phase-angle diagram of

G0xð joÞ ¼
1

joð1þ joÞð1þ j0:2oÞ :
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of 1=Hð joÞ. This requires that the value of Hð joÞ be selected such that
jGxð joÞHð joÞj > 1 for that range of frequencies. A feedback unit using a
tachometer and an RC derivative network is considered.The circuit is shown
in Fig.10.36, and the transfer function is

Hð joT Þ ¼ ðKt=T Þð joT Þ2
1þ joT

¼ KhH
0ð joT Þ ð11:27Þ

whereKh ¼ Kt=T .The Lm and phase-angle diagram for 1=H0ð joÞ is plotted in
Fig. 11.23 with a nondimensionalized frequency scale, oT .When this scale is
converted to a dimensionalized scale o, the curves of Fig. 11.23 shift to
the left or to the right asT is increased or decreased.The angle curve 1=Hð joÞ
shows that the desired g can be obtained at a frequency that is a function of the
compensator time constant T. This shows promise for increasing g, provided
that the magnitude jGxð joÞHð joÞj can be made greater than unity over the
correct range of frequencies. Also, the larger Kt/T is made, the smaller the
magnitude of 1=Hð joÞ at the phase-margin frequency. This permits a large
value of gain A and therefore a large error coefficient.

Section 8.18 describes the desirability of a slope of �20 dB/decade to
produce a large g. The design objective is therefore to produce a section of
the G1ð joÞ Lm curve with a slope of ^20 dB/decade and with a smaller
magnitude than (i.e., below) the Lm curve of Gxð joÞ. This new section of
the G1ð joÞ curve must occur at a higher frequency than the original of1.
To achieve compensation, the Lm curve 1=Hð joÞ is placed over the Gxð joÞ
curve so that there are one to two points of intersection.There is no reason to
restrict the value of Kx, but a practical procedure is to use the value of Kx that

FIGURE 11.23 Log magnitude and phase-angle diagram of

1

H0ð joTÞ ¼
1þ joT

ð joTÞ2 :
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produces the desired Mm without compensation. One such arrangement is
shown in Fig. 11.24,with Kx¼ 2,T¼1, and Kt¼ 25. Intersections between the
two curves occur at o1 ¼ 0:021 and o2 ¼ 16.The Lm plot of Gxð joÞHð joÞ is
also drawn in Fig.11.24 and shows that

Gxð joÞHð joÞ


 

 < 1 for o2 < o < o1

> 1 for o2 > o > o1




ThereforeG1ð joÞ can be represented approximately by

G1ð joÞ �
Gxð joÞ for o2 < o < o1

1=Hð joÞ for o2 > o > o1




The composite curve has corner frequencies at 1=o1, 1/T, and 1=o2 and can
therefore be approximately represented,whenT¼1, by

G1ð joÞ ¼
2ð1þ jo=T Þ

joð1þ jo=o1Þð1þ jo=o2Þ2
¼ 2ð1þ joÞ

joð1þ j47:5oÞð1þ j0:0625oÞ2
ð11:28Þ

The Lm and phase-angle diagram for Eq. (11.28) is shown in Fig. 11.25.
Selecting T¼1, then g¼ 45� can occur at o ¼ 1. However, the new approxi-
mate forward transfer function G1ð joÞ has a second-order pole at o ¼ o2,
as shown in Eq. (11.28). Therefore, there is a higher frequency at which
g¼ 45� can be achieved, as shown in Fig. 11.25. The higher frequency
of ¼ 4:5 is chosen in this example, which yields a gain of Lm A¼ 41 dB.
This shows a considerable improvement of the system performance.

FIGURE 11.24 Log magnitude plots of 1=Hð joÞ,Gxð joÞ, andGxð joÞGð joÞ.
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The angle curve of 1=H0ð joT Þ in Fig. 11.23 shows that the desired
values of g and of are a function of the value of T. For a given value of g the
angle ff1=H0ð joT Þ ¼ �180� þ g is evaluated. The corresponding value of
ðoT Þg is then tan g ¼ oT .Then the required value of T is T ¼ ðoT Þg=of. It is
desired that the frequencyo2 at the upper intersection ofGxð joÞ and 1=Hð joÞ
(see Figs. 11.24 and 11.25) be much larger than the new phase margin
frequency of. This is achieved with o2 � 20of, which satisfies the desired
condition that ffG1ð jofÞ ¼ ff1=Hð jofÞ . When this condition is satisfied,
a precise determination of T is possible.

An exact curve of G1ð joÞ can be obtained analytically. The functions
Gxð joÞ andHð joÞ are

GxðsÞ ¼
2

sð1þ sÞð1þ 0:2sÞ HðsÞ ¼ 25s2

1þ s
ð11:29Þ

The functionG1ð joÞ is obtained as follows:

G1ð joÞ ¼
Gxð joÞ

1þGxð joÞHð joÞ
¼ 2ð1þ joÞ

joð1þ joÞ2ð1þ j0:2oÞ þ 50ð joÞ2

¼ 2ð1þ joÞ
joð1þ j52oÞ½1þ 0:027ð joÞ þ 0:00385ð joÞ2� ð11:30Þ

FIGURE 11.25 Log magnitude and phase-angle diagrams of

G1ð joÞ ¼
2ð1þ joÞ

joð1þ j47:5oÞð1þ j0:0625oÞ2 :
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A comparison of Eqs. (11.28) and (11.30) shows that there is little difference
between the approximate and the exact equations. The main difference is
that the approximate equation has the term ð1þ j0:0625oÞ2, which assumes
a damping ratio z ¼ 1 for this quadratic factor. The actual damping ratio is
z ¼ 0:217 in the correct quadratic factor ½1þ 0:027ð joÞ þ 0:00385ð joÞ2�.
The corner frequency is the same for both cases, on ¼ 16. As a result, the
exact angle curve given in Fig. 11.25 shows a higher value of ofð¼ 13Þ than
that obtained for the approximate curve ðof ¼ 4:5Þ. If the basis of design is
the value ofMm, the exact curve should be used.The data for the exact curve
are readily available from a computer (see Appendix C).

The adjustment of the amplifier gain A is based on either g or Mm. An
approximate value forA is the gain necessary to raise the curve of LmG1ð joÞ
so that it crosses the 0-dB line at of. A more precise value forA is obtained by
plottingG1ð joÞ on the Lm^angle diagram and adjusting the system gain for a
desired value of Mm. The exact Lm G1ð joÞ curve should be used for best
results.

The shape of the Nichols plot for G1ð joÞ is shown in Fig. 11.26.When
adjusting the gain for a desired Mm, the objectives are to achieve a large
resonant frequency om and a large gain constant K1. The tangency of the Mm

curve at oc ¼ 15:3 requires a gain A¼ 95.5 and yields K1¼191. However,

FIGURE 11.26 Nichols plot of G1ð joÞ:
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the rapid change in phase angle in the vicinity of oc can produce unexpected
results.TheM vs. o characteristic curve c, shown in Fig.11.27, has two peaks.
This is not the form desired and must be rejected.This example serves to call
attention to the fact that one point, the peakM value, is not sufficient to deter-
mine the suitability of the system response.

Tangency at ob, in Fig. 11.26 requires A¼ 57.5 and yields K1¼115.
Curve b in Fig. 11.27 has the form desired and is acceptable. Compared with
the original system, the minor-loop feedback compensation has produced a
modest increase in om from 0.715 to 1.2. There is also a very large increase
in K1 from 0.872 to 115. Tangency at oa is not considered, as it would
represent a degradation of the uncompensated performance.

This example qualitatively demonstrates that feedback compensation
can be used to produce a section of the Lm curve of the forward transfer
function Gð joÞ with a slope of �20 dB/decade. This section of the curve can
be placed in the desired frequency range, with the result that the new of is
larger than that of the original system. However, to obtain the correct
quantitative results, the exact curves should be used instead of the straight-
line approximations. Also, the use of the Lm^angle diagram as the last step in
the design process, to adjust the gain for a specified Mm, gives a better
indication of performance than the g does.

The reader may wish to try other values of Kt and T in the feedback
compensator in order to modify the system performance. Also, it is worth
considering whether or not the RC network should be used as part of the
feedback compensator.The results using the root-locusmethod (see Secs.10.16
to 10.20) show that rate feedback alone does improve system performance.
The use of second-derivative feedback produces only limited improvements.

FIGURE 11.27 Closed-loop frequency response
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11.11 APPLICATION GUIDELINES: BASIC MINOR-LOOP
FEEDBACK COMPENSATORS

Table11.4 presents three basic feedback compensators and the corresponding
angle characteristics of 1=Hð joÞ. One approach in designing these compen-
sators is to determine the parameters of H(s) that yield the desired value of
the phase margin angle g at a desired value of of.

For compensators1and 2 inTable11.4, the desired values of gð< 90�) and
of should occur in the vicinity of the intersection of the Lm ½1=Hð joÞ� and the
Lm Gxð joÞplots, assuming that the angle ofGxð joÞ varies from its initial value
to�90�i (i¼ 2, 3, . . .) as the frequency increases from zero to infinity.Thus, to
achieve an acceptable design of these compensators, an initial choice is made
for the value of Kx or Kt and T. It may be necessary to lower the plot of
Lm ½1=Hð joÞ� to ensure that the intersection value of o is in the proper range,
such that the desired value ofof is attainable.The intersection of Lm ½1=Hð joÞ�
with LmGxð joÞ must occur on that part of LmGð joÞ that has a slope that
will allow a g < 90� to be achievable in the vicinity of the intersection.By trial
and error, the parameters of 1/H(s) are varied to achieve an acceptable value
of of. For practical control systems there is an upper limit to an acceptable
value ofof,based upon thedesire to attenuatehigh-frequency systemnoise.

For compensator 3, based uponTable11.4 and Sec.11.10, there are usually
two intersections of Lm Gxð joÞ and Lm ð1=Hð joÞÞ. For the system of Fig.
11.20, the desired values of gð< 90 deg) and of for Lm AG1 can be made to
occur on the �6 dB/octave portion of the plot of Lm ½1=Hð joÞ�.This requires
that the intersections of the plots of Lm ½Gxð joÞ� and Lm ½1=Hð joÞ� occur
at least one decade away from the value of o that yields the desired values of
of and g. With this separation, the forward transfer function G1ð jofÞ �
1=H ð jofÞ.

The guidelines presented in this section for the three compensators
of Table 11.4 are intended to provide some fundamental insight to the reader
in developing effective minor loop feedback compensator design procedures.

TABLE 11.4 Basic Feedback Compensators

H(s) 1/H(s) Characteristic of ff1=Hð joÞ for 0 � o � 1

1: Kts 1

Kts
�90�

2:
Kts

Tsþ 1

Tsþ 1

Kts
�90� to 0�

3:
KtTs

2

Tsþ 1

Tsþ 1

KtTs
2

�180� to �90�
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11.12 SUMMARY

A basic unity-feedback control system is used throughout this and other
chapters. It is therefore possible to compare the results obtained by adding
each of the compensators to the system.The results obtained are consolidated
in Table 11.5. The results achieved by using the frequency response are
comparable to those obtained by using the root locus (see Chap. 10).
The design methods that have been demonstrated use some trial-and
error techniques.This design process can be expedited by use of an appropri-
ate CAD package (see Appendixes C and D). The greater complexity
of the feedback design procedures make reliance on CAD packages more
valuable.

The following properties can be attributed to each compensator:

Cascade lag compensator. Results in an increase in the gain Km and a
small reduction in om. This reduces steady-state error but increases
transient settling time.

TABLE 11.5 Summary of Cascade and Feedback Compensation of a Basic Control
System Using the Frequency-Response Method with Mm¼ 1.26 (Effective z¼ 0.45)

Compensator om K1 Additional gain required Mp tp, s ts, s

Uncompensated 0.715 0.872 — 1.203 4.11 9.9

Lag:

1þ 14s

1þ 140s
0.53 6.68 7.66 1.257 4.90 22.8

1þ 20s

1þ 200s
0.60 7.38 8.46 1.246 4.55 23.6

Lead:

0:1
1þ s

1þ 0:1s
2.83 3.13 35.9 1.215 1.05 2.40

0:1
1þ 2s=3

1þ 0:2s=3
2.09 3.48 39.9 1.225 1.23 2.73

Lag-lead:

ð1þ sÞð1þ 14sÞ
ð1þ 0:1sÞð1þ 140sÞ

2.69 29.93 34.3 1.229 1.088 3.55

ð1þ sÞð1þ 20sÞ
ð1þ 0:1sÞð1þ 200sÞ

2.74 30.36 35.0 1.225 1.077 3.30

Feedback:

HðsÞ ¼ 25s2

1þ s

1.20 115 57.5 1.203 1.49 3.27
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Cascade lead compensator. Results in an increase in om, thus reducing
the settling time.There may be a small increase in gain.

Cascade lag-lead compensator. Results in both an increase in gain Km

and in resonant frequency om. This combines the improvements of
the lag and the lead compensators.

Feedback compensator. Results in an increase in both the gain Km and
the resonant frequency om.The basic improvement in om is achieved
by derivative feedback.This may be modified by adding a filter such
as an RC network.
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12

Control-Ratio Modeling

12.1 INTRODUCTION [1]

The conventional control-design techniques of the previous chapters
determine closed-loop system performance based on the open-loop transfer
function [G(s) or G(s)H(s)] or the open-loop transfer function of an equivalent
unity-feedback system. The frequency response or the root-locus technique
yields a closed-loop response that is based on some of the closed-loop
specifications. If necessary, compensation is then added in order to meet
additional specifications. There are some techniques that first require the
modeling of a desired control ratio that satisfies the desired figures of
merit. The desired control ratio is then used to determine the necessary
compensation. Formulating the desired control ratio is the main objective of
this chapter. Figure 12.1 represents a multiple-input single-output (MISO)
control system in which r(t) is the input, y(t) is the output required to track
the input, d(t) is an external disturbance input that must have minimal effect
on the output, and F(s) is a prefilter to assist in the tracking of r(t) by y(t).Thus,
two types of control ratios need to be modeled: a tracking transfer function
MT (s) and a disturbance transfer functionMD(s). In Fig. 12.1 and the remain-
der of this text, except for Chaps15 and16, the output is denoted by y(t) orY(s)
instead of c(t) orC(s); this conformswith symbols typically found in the litera-
ture for this material. For single-input single output (SISO) systems, the
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symbol c(t) is most often used to represent the output in most basic texts and
agrees with the presentation in the earlier parts of this book.

The control systems considered in the previous chapters represent
systems for which F(s)¼ 1 and d(t)¼ 0; thus, they are SISO control systems.
For these SISO systems the Guillemin-Truxal method, which requires the
designer to specify a desired model MT (s), represents a method of designing
the required compensatorGc(s) of Fig.12.1.

MISO control systems, in which both a desired input r(t) and a distur-
bance input d(t) are present, require the design of a cascade compensator
Gc(s) and an input prefilter F(s), as shown in Fig. 12.1. The quantitative
feedback theory (QFT) technique addresses the design of such systems,
which have both a desired and a disturbance input. This design technique
requires both types of control-ratio models, MT (s), and MD(s), in order
to effect a satisfactory design. Some state-variable design techniques
(Chapter 13) also require the specification of a model tracking control ratio.
The use of proportional plus integral plus derivative (PID) controllers leads
naturally to the rejection of disturbance inputs and the tracking of the
command inputs.

This chapter is devoted to the discussion of tracking control-ratio
models, the presentation of the Guillemin-Truxal design method, the presen-
tation of a disturbance-rejection design method for a control system having
r(t)¼ 0 and a disturbance input d(t) 6¼ 0, and the discussion of disturbance-
rejection control-ratio models. CAD packages (see appendixes C and D) are
available to assist the designer in synthesizing desired model control ratios
(see Sec.10.6).

12.2 MODELING A DESIRED TRACKING CONTROL RATIO

The pole-zero placement method of this section requires the modeling of a
desired tracking control ratio [Y(s)/R(s)]T¼MT (s) in order to satisfy the
desired tracking performance specifications forMp, tp, and Ts (or ts) for a step

FIGURE 12.1 A MISO control system.
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input (transient characteristic) and the gain Km (steady-state characteristic).
The model must be consistent with the degrees of the numerator and
denominator,w and n respectively, of the basic plantGx(s). Before proceeding,
it is suggested that the reader review Secs. 3.9, 3.10, 9.11,10.2, and10.3.

CASE 1. Themodel that yields the desired figures ofmerit and is simplest to
synthesize is one that represents an effective simple second-order control
ratio [Y(s)/R(s)]T, and is independent of the numerator and denominator
degrees w and n of the plant. The simple second-order closed-loop model for
this case is

MT1ðsÞ ¼
A1

s2 þ as þ A1
¼ o2

n

s2 þ 2zons þ o2
n

¼ o2
n

ðs � p1Þðs � p2Þ
¼ GeqðsÞ

1þ GeqðsÞ
ð12:1Þ

where A1 ¼ o2
n ensures that, with a step input of amplitude R0, the output

tracks the input so that y(t)ss¼R0.The control ratio of Eq. (12.1) corresponds
to a unity-feedback systemwith an equivalent forward transfer function

GeqðsÞ ¼
A1

sðs þ aÞ ð12:2Þ

Note that although there are four possible specifications,Mp , tp ,Ts , and Km ,
only two adjustable parameters, z and on, are present in Eq. (12.1).When Eqs.
(3.60), (3.61), and (3.64) are analyzed for peak time tp , peak overshootMp , and
setting timeTs , respectively, and the appropriate value for Km is selected, it is
evident that only two of these relationships can be used to obtain the two
adjustable parameters that locate the two dominant poles p1,2 of Eq. (12.1).
Therefore, itmay not be possible to satisfy all four specifications.For example,
specifying theminimumvalue of the gainK1 (whereK1¼A1/a) yields the mini-
mum acceptable value of on. Also, the required value of z is determined from
Mp ¼ 1þ expð�pz=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
Þ. Having determined on and z, the values of

tp ¼ p=od and Ts ¼ 4=zon can be evaluated. If these values of tp and Ts are
within the acceptable range of values, the desired model has been achieved.
If not, an alternative procedure is to determine z and on by using the desired
Mp and Ts , orMp and tp ¼ p=on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
.

In order to satisfy the requirement that the specifications 1 < Mp � ap,
tp � tap , and ts � tas two of these values ap, tap, and tas are used to determine the
two unknowns za and ona . These values of za and ona yield the desired
dominant poles p1,2 shown in Fig.12.2. Any dominant complex pole not lying
in the shaded area satisfies these specifications. If an acceptable second-order
MT (s), as given by Eq. (12.1), cannot be found that satisfies all the desired
performance specifications, a higher-order control ratio must be used.
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CASE 2. It may be possible to satisfy the specifications by use of the
following third-order model:

MT2ðsÞ ¼
A

s þ d
MT1ðsÞ ¼

A
ðs þ d Þðs2 þ 2zons þ o2

nÞ
ð12:3Þ

The dominant complex poles of Eq. (12.3) are determined in the samemanner
as for case1; i.e., the values of z and on are determined by using the specifica-
tions for Mp , tp , Ts , and Km. Because the model of Eq. (12.1) cannot satisfy
all four specifications, the known effects of the real pole s¼�d in Eq. (12.3)
can be used to try to achieve these specifications. With a CAD program
(see appendixes C and D), various trial values of d are used to check whether
or not the desired specifications can be achieved.Note that for each value of d,
the corresponding value ofA2must be equal toA2 ¼ do2

n in order to satisfy the
requirement that e(t)ss¼ 0 for a step input. As an example, the specifications
Mp¼1.125, tp¼1.5s, and Ts¼ 3.0s cannot be satisfied by the second-order
control ratio of the form of Eq. (12.1), but they can be satisfied by

Y ðsÞ
RðsÞ ¼

22
ðs þ 1
 j3Þðs þ 2:2Þ ð12:4Þ

For a third-order all-pole open-loop plant, the model of Eq. (12.3) must be
used. Then, if the model of Eq. (12.1) is satisfactory, the pole �d is made a
nondominant pole.

FIGURE 12.2 Location of the desired dominant pole.
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CASE 3. The third case deals with the third-order model [see Eq. (10.18)]

MT3ðsÞ ¼
Aðs þ cÞ
s þ d

MT1ðsÞ ¼
A3ðs þ cÞ

ðs þ dÞðs2 þ 2zons þ o2
nÞ

¼ A3ðs � z1Þ
ðs � p1Þðs � p2Þðs � p3Þ

ð12:5Þ

which has one zero. The zero can be a zero of the plant or a compensator
zero that is inserted into the system to be used in conjunction with the pole
�d in order to satisfy the specifications. The procedure used in synthesizing
Eq. (12.5) is based upon the nature of the zero; i.e., the zero (1) is not close to
the origin or (2) it is close to the origin and is therefore a troublesome zero.
(A stable system with a zero close to the origin may have a large transient
overshoot for a step input.)

When the system has a step input, Fig. 12.3 represents the pole-zero
diagram of Y(s) for Eq. (12.5). Consider three possible locations of the real
zero; to the right of, canceling, and to the left of the real pole p3¼�d.When
the zero cancels the pole p3, the value of Mp is determined only by the
complex-conjugate poles p1 and p2; when the zero is to the right of p3, the
value ofMp is larger (see Sec.10.9); and when it is to the left, the value ofMp is
smaller [see Eq. (4.68) and Sec.10.9].The amount of this increase or decrease is
determined by how close the zero is to the pole p3. Thus the optimum
location of the real pole, to the right of the zero, minimizes the effect of the
troublesome zero; i.e., it reduces the peak of the transient overshoot.

In order to achieve MT, it may be necessary to insert additional
equipment in cascade and/or in feedback with Gx(s). Also, in achieving the
desired model for a plant containing a zero, the design method may use (1) the

FIGURE 12.3 Pole-zero location of Y(s) for Eq. (12.5), with a step input.
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cancellation of the zero by a dominator pole, (2) the addition of a second zero,
or (3) the replacement of the zero with one at a new location.

In synthesizing the desired control ratio, a system designer has a choice
of one of the following approaches.

METHOD 1. Cancel some or all of the zeros of the control ratio by poles of
the control ratio.The number of zeros to be canceled must be equal to or less
than the excess of the number of poles n minus the number of desired
dominant poles b. If necessary, cascade compensators of the form Gc(s)¼
1/(s�Pi) can be inserted into the open-loop system in order to increase the
number of poles ofY(s)/R(s) so that cancellationof zeros can be accomplished.
The number of compensator poles g required must increase the order of the
system sufficiently to ensure that a � nþ g� b. Theoretically it is possible
to insert a compensator of this form just preceding the block that contains
the unwanted zero to be canceled by the pole of this compensator. However,
in many systems it is not physically possible to locate the compensator in this
manner. Also, setting Pi equal to the value of the unwanted zero zh of the
plant results in an unobservable state. All the states must be controllable and
observable in order to achieve an optimal response.Thus, to achieve an optimal
response and to cancel the unwanted zero, choose Pi such that Pi 6¼ zh.

METHOD 2. Relocate some or all of the zeros of Gx(s) by using cascade
compensators of the form Gc(s)¼ (s� zi)/(s�Pi). The Pi is the value of the
zero of Gx(s) that is to be canceled, and the zero zi assumes the value of the
desired zero location. The number g of these compensators to be inserted
equals the number of zeros a to be relocated. The values of zi represent the
desired zeros. The values of Pi are selected to meet the condition that a poles
of the control ratio are used to cancel the a unwanted zeros.

METHOD 3. A combination of the above two approaches can be used;
i.e., canceling some zeros by closed-loop poles and replacing some of them by
the zeros of the cascade compensatorsGc(s).

The modeling technique discussed in this section requires that the
poles and zeros of Y(s)/R(s) be located in a pattern that achieves the desired
time response.This is called the pole-zero placement technique. The number of
poles minus zeros of (Y/R)T must equal or exceed the number of poles
minus zeros of the plant transfer function. For a plant having w zeros,w of the
closed-loop poles are either located ‘‘very close’’ to these zeros, in order to
minimize the effect of these poles on y(t), or suitably placed for the desired
time response to be obtained. If there are b dominant poles, the remaining
n� b� w poles are located in the nondominant region of the s plane.Another
method of selecting the locations of the poles and zeros of MT (s) is given in
Ref. 3; it is based on a performance index that optimizes the closed-loop time
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responses.The specification of Y(s)/R(s) is the basis for the Guillemin-Truxal
method of Sec. 12.3 and for the state-feedback designs discussed in this and
in the next chapter.

12.3 GUILLEMIN-TRUXAL DESIGN PROCEDURE [4]

The modeling technique discussed in this section requires that the poles and
zeros of Y(s)/R(s) be located in a pattern which achieves the desired time
response.This is called the pole-zero placement technique.The number of poles
minus zeros of (Y/R)T must equal or exceed the number of polesminus zeros of
the plant transfer function. For a plant having w zeros,w of the closed-loop
poles are either located ‘‘very close’’ to these zeros in order to minimize the
effect of these poles on y(t) or suitably placed for the desired time response to
be obtained. If there are b dominant poles, the remaining n� b� w poles are
located in the nondominant region of the s plane.Another method of selecting
the locations of the poles and zeros ofMT (s) is given in Chap.16 of Ref. 5; it is
based on a performance index that optimizes the closed-loop time response.
The specification of Y(s)/R(s) is the basis for the Guillemin-Truxal method of
this section and for the state-feedback designs discussed in the next chapter.

In contrast to designing the cascade compensator Gc(s) of Fig. 12.4
based upon the analysis of the open-loop transfer function, the Guillemin-
Truxal method is based upon designing Gc(s) to yield a desired control ratio
[Y(s)/R(s)]T¼MT (s). The control ratio for the unity-feedback cascade-
compensated control system of Fig.12.4 is

MT ðsÞ ¼
Y ðsÞ
RðsÞ ¼

N ðsÞ
DðsÞ ¼

GcðsÞGxðsÞ
1þ GcðsÞGxðsÞ

ð12:6Þ

where N(s) and D(s) represent the specified zeros and poles, respectively,
of the desired control ratio. Solving this equation for the required cascade
compensatorD(s) yields

GcðsÞ ¼
MT ðsÞ

½1�MT ðsÞ�GxðsÞ
¼ N ðsÞ
½DðsÞ � N ðsÞ�GxðsÞ

ð12:7Þ

FIGURE 12.4 A cascade-compensated control system.
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In other words,when N(s) and D(s) have been specified, the required transfer
function for D(s) is obtained. Network-synthesis techniques are then utilized
to synthesize a network having the required transfer function of Eq. (12.7).
Usually a passive network containing only resistors and capacitors is desired.
Option 28 of the TOTAL-PC CAD package can be utilized to determine
Gc(s) [2]. Further details of the Guillemin-Truxal method are given in Ref. 6.

Example 1. The desired control ratio of a unity-feedback control system is

Y ðsÞ
RðsÞ ¼

N ðsÞ
DðsÞ ¼

210ðs þ 1:5Þ
ðs þ 1:75Þðs þ 16Þðs þ 1:5
 j3Þ ð12:8Þ

The numerator constant has been selected to yield zero stedy-state error
with a step input and the desired figures of merit are Mp¼1.28, tp¼1.065s,
and ts¼ 2.54s.

GxðsÞ ¼
4

sðs þ 1Þðs þ 5Þ ð12:9Þ

The required cascade compensator, determined by substituting Eqs. (12.8)
and (12.9) into Eq. (12.7), is

GcðsÞ ¼
52:5sðs þ 1Þðs þ 1:5Þðs þ 5Þ

s4 þ 20:75s3 þ 92:6s2 þ 73:69s

¼ 52:5sðs þ 1Þðs þ 1:5Þðs þ 5Þ
sðs þ 1:02Þðs þ 4:88Þðs þ 14:86Þ �

52:5ðs þ 1:5Þ
s þ 14:86

ð12:10Þ

The approximation made in Gc(s) yields a simple, physically realizable,
minimum-phase lead network with an a¼ 0.101. Based on a root-locus
analysis of Gc(s)Gx(s), the ratios of the terms (sþ1)/(sþ1.02) and (sþ 5)/
(sþ 4.88)s of Gc(s) have a negligible effect on the location of the desired
dominant poles of Y(s)/R(s). With the simplified Gc(s) the root-locus plot,
usingGc(s)Gx(s), is shown in Fig.12.5, and the control ratio achieved is

Y ðsÞ
RðsÞ ¼

210ðs þ 1:5Þ
ðs þ 1:755Þðs þ 16:0Þðs þ 1:52
 j3:07Þ

Because this equation is very close to that of Eq. (12.8), it is satisfactory.
Note that the root-locus plot of Gc(s)Gx(s)¼�1 has asymptotes of 180�

and
60�; therefore the system becomes unstable for high gain.
The Guillemin-Truxal design method, as illustrated by this example,

involves three steps:

1. Specifying the desired zeros, poles, and numerator constant of
the desired closed-loop functionY(s)/R(s) in the manner discussed
in Sec.12.2.
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2. Solving for the required cascade compensatorGc(s) from Eq. (12.7).
3. Synthesizing a physically realizable compensator Gc(s), preferably

a passive network.

Using practical cascade compensators, the number of polesminus zeros of the
closed-loop system must be equal to or greater than the number of poles
minus zeros of the basic open-loop plant. This must include the poles and
zeros introduced by the cascade compensator. The practical aspects of
system synthesis using the Guillemin-Truxal method impose the limitation
that the poles of Gx(s) must lie in the left-half s plane. Failure to exactly
cancel poles in the right-half s plane would result in an unstable closed-loop
system. The state-variable-feedback method, described in the next chapter,
is a compensation method that achieves the desired Y(s)/R(s) without this
limitation.

12.4 INTRODUCTION TO DISTURBANCE REJECTION [6,7]

The previous chapters and Sec. 12.3 deal with designing a control system
whose output follows (tracks) the input signal. The design approach for the
disturbance-rejection problem, by contrast, is based upon the performance
specification that the output of the control system of Fig. 12.6 must not be
affected by a system disturbance input d(t). In other words, the steady-state

FIGURE 12.5 Root-locus plot for Example 1.
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output y(t)ss¼ 0 for the input dðtÞ 6¼ 0.Consider the control ratio

Y ðsÞ
DðsÞ ¼

Kðsw þ cw�1s
w�1 þ 	 	 	 þ c1s þ c0Þ

sn þ qn�1sn�1 þ 	 	 	 þ q1s þ q0
ð12:11Þ

Assuming a stable system and a step disturbance D(s)¼D0/s, the output is
given by

Y ðsÞ ¼ Kðsw þ cw�1s
w�1 þ 	 	 	 þ c1s þ c0Þ

sðsn þ qn�1sn�1 þ 	 	 	 þ q1s þ q0Þ
ð12:12Þ

The desired output y(t)ss¼ 0 is achieved only if c0¼ 0. This requires that the
numerator of Y(s)/D(s) have at least one zero at the origin.

It is desired for this type of control problem that the disturbance
have no effect on the steady-state output; also, the resulting transient
must die out as fast as possible with a limit ap on the maximum magnitude of
the output.

The next three sections present a frequency-domain design technique
for minimizing the effect of a disturbance input on the output of a
control system. This technique is enhanced by simultaneously performing a
qualitative root-locus analysis for a proposed feedback-compensator
structure.

12.5 A SECOND-ORDER DISTURBANCE-REJECTION
MODEL

A simple second-order continuous-time disturbance-rejection model [7]
transfer function for the system of Fig.12.6 is

MDðsÞ ¼
Y ðsÞ
DðsÞ ¼

Gx

1þ GxH
¼ Kxs

s2 þ 2zons þ o2
n

ð12:13Þ

FIGURE 12.6 A simple disturbance-rejection control system.

470 Chapter 12

Copyright © 2003 Marcel Dekker, Inc.



where Kx> 0. For a unit-step disturbance D(s)¼ 1/s and y(t)ss¼ 0.
Equation (12.13) yields (seeTransform Pair 24a in Appendix A)

yðtÞ ¼L�1
Kx

s2 þ 2zons þ o2
n

� �

¼ Kx

on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p e�zont sinon

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2 t

q
ð12:14Þ

wherea2 þ b2 ¼ o2
n,b ¼ od,anda ¼ sj j ¼ zon.The timedomainor frequency

domain approaches can be used to determine appropriate model values of
z and on, while Kx is assumed fixed. The application of these methods is
described below.

Time Domain

The time response of Eq. (12.14) is plotted vs.ont in Fig. 4.14 for several values
of z � 1. By setting the derivative of y(t) with respect to time equal to zero,
it can be shown that the maximumovershoot occurs at the time

tp ¼
cos�1 z

on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p ð12:15Þ

and the maximum value of y(t) is

yðtpÞ ¼
Kx

on
exp � z cos�1 zffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p

 !
ð12:16Þ

Letting Kx ¼ vo2
n (with v> 0), Eq. (12.16) is rearranged to the form

yðtpÞ
on
¼ v exp � z cos�1 zffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p

 !
ð12:17Þ

A plot of Eq. (12.17) vs. z is shown in Fig.12.7.

Frequency Domain

The frequency response function of Eq. (12.13) is

MDð joÞ ¼
Yð joÞ
Dð joÞ ¼

ðKx=o
2
nÞð joÞ

½1� ðo=onÞ2� þ jð2zo=onÞ
¼ Kx

o2
n
M
0
Dð joÞ ð12:18Þ

A straight-line approximation of the Bode plot of LmMDð joÞ vs. logo (drawn
on semilog paper) is shown in Fig. 12.7b for a selected value of on. This plot
reveals that

1. The closed-loop transfer function MDð joÞ must attenuate all
frequencies present in the disturbance input Dð joÞ. The plot of
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Lm M
0
Dð joÞ vs. o is raised or lowered by an amount equal to

LmðKx=o
2
nÞ. The value of ðKx=o

2
nÞ therefore determines the maxi-

mum valueMm shown in Fig.12.7b.
2. As on increases, the peak value moves to the right to a higher fre-

quency.

Selection of the desired disturbance model of Eq. (12.13) is based
on both the time-response and the frequency-response characteristics.
For example, selection of on determines the bandwidth, as shown in Fig.
12.7b. Also, the maximum value of the permitted peak overshoot, as shown
in Figs. 4.14 and 12.7a, is determined by the value of z. In addition, the peak
time tp and the settling time ts ¼ 4=zon of the transient may be used to
determine the parameters in the model of Eq. (12.13). Some trial and error
may be necessary to ensure that all specifications for the disturbance
model are satisfied.

12.6 DISTURBANCE-REJECTION DESIGN PRINCIPLES
FOR SISO SYSTEMS [7]

The desired disturbance model MD(s) of a system must be based on the
specified time-domain and frequency-domain characteristics as described in
Secs.12.4 and12.5. In order to obtain the desired characteristics ofMD(s), it is
necessary to design the required feedback controller H(s) in Fig. 12.6. A first
trial may be H(s)¼KH/s. If this choice of H(s) does not produce the desired
characteristics, then a higher-order feedback transfer function must be used.
The order of the transfer functions in the system may also require a
disturbance model of higher than second order.

FIGURE 12.7 (a) Peak value of Eq. (12.14), using Eq. (12.17). (b) Bode plot
characteristics of Eq. (12.18).
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The approximations developed in Sec. 11.9 are now restated for the
disturbance rejection system of Fig.12.8.

Yð joÞ
Dð joÞ ¼

Gxð joÞ
1þGxð joÞHð joÞ

ð12:19Þ

whereHð joÞ ¼ Hxð joÞHcð joÞ.This control ratio can be approximated by

Yð joÞ
Dð joÞ �

Gxð joÞ for jGxð joÞHð joÞj � 1 (12.20)
1

Hð joÞ for jGxð joÞHð joÞj � 1 (12.21)

8<
:

The condition when jGxð joÞHð joÞj � 1 is still undefined, in which case
neither of these conditions is applicable, In the approximate procedure
the straight-line Bode plots are used and this condition is neglected.
Therefore Eqs. (12.20) and (12.21) are used when jGxð joÞHð joÞj < 1 and
jGxð joÞHð joÞj > 1, respectively. This approximation, along with a root-
locus sketch of GxðsÞH ðsÞ ¼ �1, allows investigation of the qualitative results
to be obtained.After these results are found to be satisfactory, the refinements
for an exact solution are introduced.

The design procedure using the approximations of Eqs. (12.20) and
(12.21) follows.

Step 1. Using the straight-line approximations, plot LmGxð joÞ vs: logo:
Step 2. Assume that the feedback compensatorHc(s) is put in cascade with a
specified feedback unit Hx(s), in order to yield the desired system perfor-
mance.To use the straight-line approximations,withHð joÞ ¼Hxð joÞHcð joÞ,
plot Lm 1=Hð joÞ vs. o. Note that:

1. The condition LmGxð joÞHð joÞ ¼ 0 may also be expressed as

LmGxð joÞ ¼ �LmHð joÞ ¼ Lm1=Hð joÞ ð12:22Þ
This condition is satisfied at the intersection of the plots of Gxð joÞ
and 1=Hð joÞ. The frequency at the intersections represents the
boundary between the two regions given by Eqs. (12.20) and (12.21).

FIGURE 12.8 A control system with a disturbance input.
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There must be at least one intersection between the plots in order
for both approximations to be valid. Disturbance rejection over the
frequency band of 0 � o � ob, the condition of Eq. (12.21), results
in only one intersection.

2. For disturbance rejection it is desired to have LmYð joÞ=Dð joÞ <
LmMD. Also, Eq. (12.21) must hold for 0 � o � ob in order to
yield the desired frequency-domain specifications. To satisfy these
objectives it is usually necessary for the gain constant of H(s) to be
very high.

Step 3. Plot LmGxð joÞHð joÞ vs: o by using the straight-line approxima-
tion, and determine the slope of the plot at the 0-dB crossover point.
Achieving a stable system requires (see Sec. 8.17) that this slope be greater
than ^40 dB/decade if the adjacent corner frequencies are not close. Also, the
loop transmission frequency of (the 0-dB crossover or phase-margin fre-
quency) of LmGxð joÞHð joÞ must be within the allowable specified value in
order to attenuate high-frequency loop noise. Placing zeros of Hc(s) ‘‘too
close’’ to the imaginary axis may increase the value of of. It may be necessary
at this stage of the design procedure to modifyHc(s) in order to satisfy the sta-
bility requirement and the frequency-domain specifications.

Step 4. Once a trial H(s) is found that satisfies the frequency-domain
specifications, sketch the root locus [Gx(s)H(s)¼�1] to ascertain that (a) at
least a conditionally stable system exists, and (b) it is possible to satisfy the
time-domain specifications. [Section 12.5 discusses the desired locations of
the poles of Y(s) that achieve the desired specifications (see also Prob. 12.7)].
If the sketch seems reasonable, (1) obtain the exact root-locus plots and select
a value of the static loop sensitivity K¼ KGKxKc and (2) for this value of K,
obtain a plot of y(t) vs. t in order to obtain the figures of merit.

Step 5. If the results of step 4 do not yield satisfactory results, then use these
results to select a newHc(s) and repeat steps 2 through 4.

Example 2. Consider the nonunity-feedback system of Fig.12.8,where

GxðsÞ ¼
KG

sðs þ 1Þ ¼
1

sðs þ 1Þ ð12:23Þ

and

HxðsÞ ¼
Kx

s þ 200
¼ 200

s þ 200
ð12:24Þ

Because a disturbance input is present, it is necessary to design the compen-
sator HcðsÞ ¼ KcH

0
cðsÞ so that the control system of Fig. 12.8 satisfies the
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following specifications for a unit-step disturbance input dðtÞ: j yðtpÞj �
0:002� yðtÞss ¼ 0, and tp � 0:2 s. Using the empirical estimate that Mp ¼
j yðtpÞ=dðtÞj � Mm gives the specification LmMm � Lm0:002 ¼ �54 dB
for the desired model MD(s). It is also estimated that the bandwidth of the
disturbance transfer function modelYð joÞ=Dð joÞ is 0 � o � 10 rad=s.

Trial Solution

Step 1. The plot of LmGxð joÞ vs. o is shown in Fig.12.9.
Step 2. Because Gx(s) does not have a zero at the origin and Y(s)/D(s)

does require one for disturbance rejection [so that yð1Þss ¼ 0],
then H(s) must have a pole at the origin. Thus the feedback transfer
function must have the form

H ðsÞ ¼ HxðsÞHcðsÞ ¼
KH ðs þ a1Þ 	 	 	

sðs þ 200Þðs þ b1Þ 	 	 	
ð12:25Þ

FIGURE 12.9 Log magnitude plots of Example 2.
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where the degree of the denominator is equal to or greater than the
degree of the numerator. As a first trial, let

HcðsÞ ¼
Kc

s
ð12:26Þ

Then KH¼KxKc¼ 200Kc. To determine the value of Kc required to
satisfy LmYð joÞ=Dð joÞ � �54 dB for 0 � o � 10 rad=s, initially
plot the curve for ½Lm1=Hcð joÞ�Kc¼1.The value of Kc is then selected
so that the plot of Lm1=Hcð joÞ is located such that it is on or below
the �54 dB line for the frequency range o � ob ¼ 10. Because the
corner frequency of Hð joÞ at o ¼ 200 lies outside the desired
bandwidth, Lm1=Hcð joÞ ¼ Lm1=H ð joÞ is the controlling factor in
the frequency range o � 10. Next, lower this plot, as shown in the
figure, until the plot of Lm1=H ð joÞ yields the desired value of
�54 dB at ob ¼ 10 rad=s. Equation (12.21), for this case, satisfies the
requirement jMð joÞj � Mm over the desired bandwidth and
is below �54 dB. Lm 200Kc¼ 74 dB is required to lower the plot
of Lm1=Hð joÞ to the required location. With this value of Kc the
resulting first-trial feedback transfer function is

H ðsÞ ¼ 5000
sðs þ 200Þ ð12:27Þ

Step 3. An analysis of

Gxð joÞHð joÞ ¼
Kc

ð joÞ2ð1þ joÞ 1þ j
o
200

� � ð12:28Þ

reveals that the plot of Lm ½Gxð joÞHð joÞ� vs. o crosses the 0-dB axis
with a minimum slope of �40 dB/decade regardless of the value of
Kc.This crossover characteristic is indicative of an unstable system.

Step 4. This is confirmed by the root-locus sketch in Fig.12.10, for

GxðsÞH ðsÞ ¼
KH

s2ðs þ 1Þðs þ 200Þ ¼ �1 ð12:29Þ

which reveals a completely unstable system for theH(s) of Eq. (12.27).

The next trial requires that at least one zero be added to Eq. (12.27)
in order to make the system at least conditionally stable while maintaining
the desired bandwidth. A final acceptable design of Hc(s) that meets the
system specifications requires a trial-and-error procedure. A solution to this
design problem is given in Sec.12.7.
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Example 3. Consider the nonunity-feedback system of Fig.12.8,where

GxðsÞ ¼
2

s þ 2

and

H ðsÞ ¼ HxðsÞHcðsÞ ¼
KH

s

Determine the response y(t) for a step disturbance input dðtÞ ¼ u�1ðtÞ as the
gain KH is increased.

The system output is

Y ðsÞ ¼ 2
s2 þ 2s þ 2KH

¼ 2
ðs � p1Þðs � p2Þ

¼ A1

ðs � p1Þ
þ A2

ðs � p2Þ
ð12:30Þ

Thus

yðtÞ ¼ A1e
p1t þ A2e

p2t ð12:31Þ
where p1� 2 ¼ �1
 j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KH � 1
p

. For KH > 0:5,

A1 ¼
1

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KH � 1
p A2 ¼ �A1

The coefficients of the output transient, as KH !1, are

lim
KH!1

A1 ¼ lim
KH!1

A2 ¼ 0

For this example, asKH is made larger, the coefficientsA1and A2 in Eq. (12.31)
become smaller.Thus

lim
KH!1

yðtÞ ¼ 0

FIGURE 12.10 A root-locus sketch for Eq. (12.29)
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which is the desired result for disturbance rejection. The output for a
step disturbance input has two desired properties. First, the steady-state
output is zero because the feedback contains an integrator. Second, the
magnitude of the transient becomes smaller as the feedback gainKH increases.
(Note that the value of KH is limited by practical considerations). A
similar analysis can be made for a more complicated system (see Probs. 12.8
and12.9). In some applications it may not be necessary to achieve yð1Þss ¼ 0.

12.7 DISTURBANCE-REJECTION DESIGN EXAMPLE

In Example 2, the feedback compensator Hc(s)¼Kc/s results in an unstable
system. An analysis of the root locus in Fig. 12.10 indicates that Hc(s) must
contain at least one zero near the origin in order to pull the root-locus
branches into the left-half s plane. In order to minimize the effect of an
unwanted disturbance on y(t), it is necessary to minimize the magnitude of
all the coefficients of

yðtÞ ¼ A1e
p1t þ 	 	 	 þ Ane

pnt ð12:32Þ
Problem 4.18 shows that this requires the poles of Y(s)/D(s) to be located as far
to the left in the s plane as possible.Figure12.11graphically describes the result
of the analysismade in Prob.12.7 for the desired placement of the control-ratio
poles.The root-locusbranchwhich first crosses the imaginary axis determines
the maximum value of gain for a stable system. The root selected on this

FIGURE 12.11 Effects on the peak overshoot to a disturbance input due to changes
in the parameters zi and oni

of complex poles and the values of the real poles of the
control ratio.
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FIGURE 12.12 Bode plot for Example 4: (a) straight-line approximations; (b) exact
poles.
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branch should have 0:5 < z < 0:7, which has been determined empirically.
When there is a choice of roots for a given z, the root selected should have the
largest value of gain and on.These properties are indicated in Fig.12.11.

Example 4. The system of Example 2, Sec. 12.6, is now redesigned in order
to achieve a stable system. Also, the root-locus branches must be pulled as
far to the left as possible. Therefore, assume the following compensator,
which contains two zeros:

HcðsÞ ¼
Kcðs þ a1Þðs þ a2Þ
sðs þ b1Þðs þ b2Þ

ð12:33Þ

As a trial, let a1¼4 and a2¼8.The poles�b1and�b2 must be chosen as far to
the left as possible; therefore values b1¼b2¼ 200 are selected. The plot of
Lm1=Hxð joÞHcð joÞ � �54 dB, where jYð joÞ=Dð joÞj � j1=Hxð joÞHcð joÞj
over the range 0 � o � ob ¼ 10 rad=s, is shown in Fig. 12.12. This requires
that 200Kc � 50� 107.The open-loop transfer function of Fig.12.8 is now

GxðsÞHxðsÞHcðsÞ ¼
200Kcðs þ 4Þðs þ 8Þ
s2ðs þ 1Þðs þ 200Þ3

¼ ðKc=1250Þð0:25s þ 1Þð0:125s þ 1Þ
s2ðs þ 1Þð0:005s þ 1Þ3 ð12:34Þ

FIGURE 12.13 Sketch of root locus for Eq. (12.34). Not to scale.
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The poles and zeros of Eq. (12.34) are plotted in Fig.12.13.The value of static-
loop sensitivity 200Kc ¼ 5� 108 yields the set of roots

p1 ¼ �3:8469 p2 ¼ �10:079
p3� 4 ¼ �23:219
 j66:914 p5� 6 ¼ �270:32
 j95:873

that are shown in Fig.12.13.This choice of gain results in a satisfactory design,
because Mp ¼ 0:001076 � 0:002 (�54 dB), tp¼ 0.155 s (<0.2 s), y(t)ss¼ 0, and
0 � o � ob ¼ 10 rad=s. Note that the gain can be reduced until either
Mp¼ 0.002 with tp � 0:2 s or tp¼ 0.2 s withMp � 0:002 is achieved. Although
not specified in this problem, the phase-margin frequency of ¼ 56:2 rad=s
must also be taken into account in the design of a practical system.

12.8 DISTURBANCE-REJECTION MODELS

Themultiple-input single-output (MISO) control systemofFig.12.14 has three
inputs, r(t), d1(t), and d2(t), which represent a tracking and two disturbance
inputs, respectively. The previous chapters are concerned with the tracking
problem alone, with d(t)¼ 0. This section uses the pole-zero placement
method for the development of a desired disturbance-rejection control-ratio
model (Y/R)D¼MD . The specification for disturbance rejection for the con-
trol system of Fig. 12.14, with a step disturbance input d2ðtÞ ¼ D0u�1ðtÞ and
r(t)¼ d1(t)¼ 0 is

j yðtÞj � ap for t � tx ð12:35Þ
as shown in Fig. 12.15. Note that the initial value of the output for this
condition is y(0)¼D0. When d1ðtÞ ¼ D0u�1ðtÞ and rðtÞ ¼ d2ðtÞ ¼ 0, then the
requirement for disturbance rejection is

j yðtpÞj � ap ð12:36Þ
as shown in Fig. 12.16, where y(0)¼ 0. The simplest control-ratio models for
Figs.12.15 and12.16, respectively, are shown inTable12.1.

FIGURE 12.14 A multiple-input single-output (MISO) system.
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TABLE 12.1 Disturbance Rejection Control Ratio Models

rðtÞ ¼ d1ðtÞ ¼ 0 and d2ðtÞ ¼ D0u�1ðtÞ (See Fig. 12.15)

MD ¼
Y1ðsÞ
D2ðsÞ

¼ s

sþ a
(12.37) Y1ðsÞ ¼

D0

sþ a
y1ðtÞ ¼ D0e

�at (12.39)

MD ¼
Y2ðsÞ
D2ðsÞ

¼ sðsþ aÞ
ðsþ aÞ2 þ b2

(12.38) Y2ðsÞ ¼
D0ðsþ aÞ
ðsþ aÞ2 þ b2

y2ðtÞ ¼ D0e
�at cos bt (12.40)

rðtÞ ¼ d2ðtÞ ¼ 0 and d1ðtÞ ¼ D0u�1ðtÞ (See Fig. 12.16)

MD ¼
Y3ðsÞ
DðsÞ ¼

KDs

ðsþ aÞðsþ bÞ (12.41) Y3ðsÞ ¼
KDD0

ðsþ aÞðsþ bÞ Y3ðtÞ ¼
KDD0

b� a
ðe�at � e�bt Þ (12.43)

MD ¼
Y4ðsÞ
D1ðsÞ

¼ KDs

ðsþ aÞ2 þ b2
(12.42) Y4ðsÞ ¼

KDD0

ðsþ aÞ2 þ b2
Y4ðtÞ ¼

KDD0

b
e�at sin bt (12.44)
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With the values of ap, tx , and D0 specified, the value of a for the case
represented by Eqs. (12.37) and (12.39) is given by

a ¼ � 1
tx
ln

ap
D0

� �
ð12:45Þ

FIGURE 12.15 Disturbance-rejection time response for Fig. 12.14 with rðtÞ ¼
d1ðtÞ ¼ 0 and d2ðtÞ ¼ D0u�1ðtÞ.

FIGURE 12.16 Disturbance-rejection time response for Fig. 12.14 with rðtÞ ¼
d2ðtÞ ¼ 0 and d1ðtÞ ¼ D0u�1ðtÞ.
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For the case represented by Eqs. (12.38) and (12.40), then

a ¼ � 1
tx
ln

ap
D0 cos btx

� �
ð12:46Þ

In Eqs. (12.38), the two quantities a and b must be determined. Since
Eq. (12.46) shows that a is a function of b, a trial-and-error procedure can be
used to determine suitable values.Thus, assume a value of b and determine the
corresponding value of a. If the time-response characteristics are satisfactory,
the model is completely determined. If not, try another value for b.

Consider the case where the settling time specification is given by

jyðtsÞj ¼ D0e
�ats cos bts



 

 ¼ 0:02ap ¼ as ð12:47Þ
that is, the output decays to 2 percent of the maximum value at t¼ ts.With ts
specified, then Eq. (12.40) can be used to obtain the value of a, i.e.,

a ¼ � 1
ts
ln

as
D0 cos bts

� �
ð12:48Þ

If all four quantities (tp , ts ,ap, andD0) are specified,then the intersectionof the
plots of Eqs. (12.46) and (12.48), if one exists, yields the value of a that meets
all the specifications.

For the case represented by Eqs. (12.41) and (12.43), assume that the
values of ap, as, tp , ts , andD0 are specified.Then, from Eq. (12.43),

ap ¼ Ka e�atp � e�btp
� �

> 0 ð12:49Þ

where Ka ¼ KDD0=ðb� aÞ. Also from Eq. (12.43)

dyðtÞ
dt






t¼tp
¼ Ka �ae�atp þ be�btp

� �
¼ 0 ð12:50Þ

At t¼ ts , Eq. (12.43) yields

as ¼ Kaðe�ats � e�bts Þ ð12:51Þ
From Eqs. (12.49) and (12.50) obtain, respectively

e�atp ¼ ap
Ka
þ e�btp ð12:52Þ

and

b
a
¼ eðb�aÞtp ð12:53Þ
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Also, from Eq. (12.51) with Ka > 0, obtain

e�ats > e�bts ! 1 >
e�ðb=aÞats

e�ats
¼ eð1�ðb=aÞÞats ð12:54Þ

Equation (12.54) is valid only when b=a > 1, or
b > a ð12:55Þ

Thus, assumea value for b/a, and for various values of b (ora),obtain values for
a (or b) from Eqs. (12.51) and (12.53). Obtain a plot of a vs. b for each of these
equations. If these plots intersect, then the values of a or b at the intersection
result in a transfer function MD(s) that satisfies the desired performance
specifications. If no intersection exists, assume another value for b/a and
repeat the process.

If the desired performance specifications cannot be obtained by
the simple models of Table 12.1, then poles and/or zeros must be added, by a
trial-and-error procedure, until a model is synthesized that is satisfactory.
For either case, it may be necessary to add nondominant poles and/or zeros
to MD(s) in order that the degrees of its numerator and denominator poly-
nomials are consistent with the degrees of the numerator and denominator
polynomials of the control ratio of the actual control system.

12.9 SUMMARY

This chapter presents the concepts of synthesizing a desired control-ratio
model for a system’s output in order to either track a desired input or to
reject a disturbance input.These models are based on the known characteris-
tics of a second-order system. Once these simple models are obtained,
nondominant poles and/or zeros can be added to ensure that the final model
is compatible with the degree of the numerator and denominator ploynomials
of the control ratio of the actual control system.TheGuillemin-Truxalmethod
is presented as one design method that requires the use of a tracking model.
A disturbance-rejection frequency-domain design technique is presented.
This technique is based upon the known correlation between the frequency
domain, time domain, and the s plane.
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13

Design: Closed-Loop Pole-Zero Assignment
(State-Variable Feedback)

13.1 INTRODUCTION

Chapter10 to12 deal with the improvement of systemperformance in the time
and frequency domains, respectively, by conventional design procedures.
Such procedures are based on an analysis of the open-loop transfer function
and yield an improved closed-loop response as a consequence of properly
designed cascade and/or feedback compensators. The design method
presented in this chapter is based upon achieving a desired or model control
ratioMT ðsÞ� i.e., this is a pole-zero placement method. Section12.2 describes
the modeling of a desired closed-loop transfer function. This chapter
introduces the concept of feeding back all the system states to achieve the
desired improvement in system performance. The design concepts developed
with conventional control-theory are also used to design state-variable
feedback. The state-variable-feedback concept requires that all states be
accessible in a physical system, but for most systems this requirement is not
met; i.e., some of the states are inaccessible.Techniques for handling systems
with inaccessible states are presented in Chap. 14. The state-variable-feed-
back design method presented in this chapter is based upon achieving a
desired closed-loop state equation or a desired control ratio for a single-input
single-output (SISO) system. Synthesis methods using matrix methods for
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multiple-input multiple-output (MIMO) systems are available in the literature
[1^14]. Following the convention often used with the state-variable represen-
tation of systems, the output and actuating signals are represented in this
chapter and Chap.14 by yðtÞ and uðtÞ instead of cðtÞ and eðtÞ� respectively.

The principal objective of the state-variable method in this chapter is
the assignment of the closed-loop eigenvalues for SISO systems. This design
process can be simplified for higher-order systems by first transforming the
state equation into control canonical form. The procedure is described in
Sec. 13.4. The analysis and synthesis involved in the problems associated
with this chapter, like the previous chapters, relies on the use of the CAD
packages like MATLAB,TOTAL, or ICECAP/PC (see Appendix B).The uti-
lization of such programs expedites the design process for achieving a solution
and eliminates the tedious hand calculations.

13.2 CONTROLLABILITY AND OBSERVABILITY [5–9]

Before introducing the state feedback design methods, the necessary
conditions and tests for controllability and observability are presented.
Recall that the state and output equations representing a system, as defined
in Sec. 2.3, have the form

_xx ¼ AxþBu ð13:1Þ
y ¼ CxþDu ð13:2Þ

where x, y, and u are vectors and A, B, C, and D are matrices having the
dimensions:

x: n� 1 y: ‘� 1 u:m� 1 A: n� n B: n�m C: ‘� n D: ‘�m

An important objective of state variable control is the design of systems that
have an optimum performance. The optimal control [1,2,8,9] is based on the
optimization of some specific performance criterion. The achievement of
such optimal linear control systems is governed by the controllability and
observability properties of the system. For example, in order to be able to
relocate or reassign the open-loop plant poles to more desirable closed-loop
locations in the s-plane, it is necessary that the plant satisfy the controllability
property. Further, these properties establish the conditions for complete
equivalence between the state-variable and transfer-function representations.
A study of these properties, presented below, provides a basis for considera-
tion of the assignment of the closed-loop eigenstructure (eigenvalue and
eigenvector spectra).

CONTROLLABILITY. A system is said to be completely state-controllable
if, for any initial time t0� each initial state xðt0Þ can be transferred to any final
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state xðtf Þ in a finite time, tf >t0� by means of an unconstrained control input
vector uðtÞ: An unconstrained control vector has no limit on the amplitudes
of uðtÞ: This definition implies that uðtÞ is able to affect each state variable in
the state equationof Eq. (13.1).Controllability alsomeans that eachmode vie

li t

in xðtÞ is directly affected by the input uðtÞ:The solution of the state equation
(see Sec. 3.14) is

xðtÞ ¼ (ðt � t0Þxðt0Þ þ
Z t

t0

ðt � tÞBuðtÞ dt ð13:3Þ

OBSERVABILITY. A system is said to be completely observable if every
initial state xðt0Þ can be exactly determined from the measurements of the
output yðtÞ over the finite interval of time t0 � t � tf :This definition implies
that every state of xðtÞ affects the output yðtÞ :

yðtÞ ¼ CxðtÞ ¼ C(ðt � t0Þxðt0Þ þ C

Z t

t0

(ðt � tÞBuðtÞ dt ð13:4Þ

where the initial state xðt0Þ is the result of control inputs prior to t0:
The concepts of controllability and observability [7] can be illustrated

graphically by the block diagram of Fig. 13.1. By the proper selection of the
state variable it is possible to divide a system into the four subdivisions
shown in Fig.13.1:

Sco ¼ completely controllable and completely observable subsystem
So ¼ completely observable but uncontrollable subsystem

FIGURE 13.1 The four possible subdivisions of a system.

Design: Closed-Loop Pole-Zero Assignment 489

Copyright © 2003 Marcel Dekker, Inc.



Sc ¼ completely controllable but unobservable subsystem
Su ¼ uncontrollable and unobservable subsystem

This figure readily reveals that only the controllable and observable
subsystem Sco satisfies the definition of a transfer-function matrix

GðsÞUðsÞ ¼ YðsÞ ð13:5Þ
If theentiresystemiscompletelycontrollableandcompletelyobservable,

thenthestate-variableandtransfer-functionmatrix representationsofasystem
are equivalent and accurately represent the system. In that case the resulting
transfer function does carry all the information characterizing the dynamic
performance of the system. As mentioned in Chap. 2, there is no unique
method of selecting the state variables to be used in representing a system, but
the transfer-function matrix is completely and uniquely specified once the
state-variable representation of the system is known. In the transfer-function
approach, the state vector is suppressed; the transfer-function method is
concerned only with the system’s input-output characteristics. The state-
variablemethod also includes a descriptionof the system’s internal behavior.

The determination of controllability and observability of a system
by subdividing it into its four possible subdivisions is not always easy.
A simple method for determining these system characteristics is developed
by using Eq. (13.3) with t0 ¼ 0 and specifying that the final state vector
xðtf Þ ¼ 0:This yields

0 ¼ eAtf xð0Þ þ
Z tf

0
eAðtf �tÞBuðtÞ dt

or

xð0Þ ¼ �
Z tf

0
e�AtBuðtÞ dt ð13:6Þ

The Cayley-Hamilton method presented in Sec. 3.14 shows that exp ð�AtÞ
can be expressed as a polynomial of order n� 1.Therefore,

e�At ¼
Xn�1
k¼0

akðtÞAk ð13:7Þ

Inserting this value into Eq. (13.6) yields

xð0Þ ¼ �
Xn�1
k¼0

A
k
B

Z tf

0
akðtÞuðtÞ dt ð13:8Þ
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With the input uðtÞ of dimension r, the integral in Eq. (13.8) can be evaluated,
and the result isZ tf

0
akðtÞuðtÞ dt ¼ bk

where bk is a vector of dimension n� 1: Equation (13.8) can now be
expressed as

xð0Þ ¼ �
Xn�1
k¼0

A
k
Bbk ¼ � B --

--
-

AB --
--
-

	 	 	 --
--
-

A
n�1

B
h i

b0
- - -
b1
- - -
..
.

- - -
b n�1

2
666666664

3
777777775

ð13:9Þ

According to the definition of complete controllability, each mode vie
li t must

be directly affected by the input uðtÞ: This requires that the controllability
matrixMc have the property

RankMc¼ Rank B --
--
-

AB --
--
-

	 	 	 --
--
-

A
n�1

B
h i

¼ n ð13:10Þ

For a single-input system, the matrix B is the vector b, and the matrix of
Eq. (13.10) has dimension n� n:

When the state equation of a SISO system is in control canonical form;
that is, the plant matrix A is in companion form and the control vector
b ¼ 0 	 	 	 0 KG½ �T � then the controllability matrix Mc has full rank n
(see Sec. 5.13). Thus, the system is completely controllable and it is not
necessary to perform a controllability test.

When the matrix pair (A,B) is not completely controllable, the
uncontrollable modes can be determined by transforming the state equation
so that the plant matrix is in diagonal form (see Sec. 5.10). This approach is
described below. A simple method for determining controllability when the
system has nonrepeated eigenvalues is to use the transformation x¼Tz to con-
vert the Amatrix into diagonal (canonical) form, as described in Sec. 5.10, so
that the modes are decoupled.The resulting state equation is

_zz ¼ T�1ATzþ T�1Bu ¼ ,zþ B
0
u ð13:11Þ

Each transformed state zi represents a mode and can be directly affected by
the input uðtÞ only if B0 ¼ T

�1
B has no zero row. Therefore, for nonrepeated

eigenvalues, a system is completely controllable if B0 has no zero row. For
repeated eigenvalues see Refs. 5 and 7. B0 is called the mode-controllability
matrix. A zero row of B

0 indicates that the corresponding mode is
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uncontrollable. The eigenvalues associated with uncontrollable modes are
called input-decoupling zeros.

In a similar manner, the condition for observability is derived from the
homogeneous system equations

_xx ¼ Ax ð13:12Þ
y ¼ Cx ð13:13Þ

When Eq. (13.7) is used, the output vector yðtÞ can be expressed as

yðtÞ ¼ CeAtxð0Þ þ
Xn�1
k¼0

akðtÞCAk
xð0Þ ð13:14Þ

For observability the output yðtÞ must be influenced by each state xi: This
imposes restrictions on CA

k. It can be shown that the system is completely
observable if the following observabilitymatrixMo has the property

Rank Mo ¼ Rank C
T

--
--
-

A
T
C

T

--
--
-

ðAT Þ2CT

--
--
-

	 	 	 --
--
-

ðAT Þðn�1ÞCT Þ
h i

¼ n

ð13:15Þ
For a single-output system, the matrix C

T is a column matrix that can be
represented by c , and the matrix of Eq. (13.15) has dimension n� n:When the
matrix pair (A,C) is not completely observable,the unobservablemodes canbe
determined by transforming the state and output equations so that the plant
matrix is in diagonal form.This approach is described below.

A simplemethod of determining observability that can be usedwhen the
system has nonrepeated eigenvalues is to use the transformation x ¼ Tz in
order to put the equations in canonical form; that is, the plant matrix is
transformed to the diagonal form,. The output equation is then

y ¼ Cx ¼ CTz ¼ C
0
z ð13:16Þ

If a column of C0 has all zeros, then one mode is not coupled to any of the
outputs and the system is unobservable. The condition for observability, for the
case of nonrepeated eigenvalues, is that C0 have no zero columns. C0 is called the
mode-observability matrix. The eigenvalues associated with an unobservable
mode are called output-decoupling zeros.

Example. Figure 13.2 shows the block-diagram representation of a system
whose state and output equations are

_xx ¼ �2 0
�1 �1

� �
xþ 1

1

� �
u ð13:17Þ

y ¼ 0 1
� �

x ð13:18Þ
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Determine: (a) the eigenvalues from the state equation, (b) the transfer func-
tion Y ðsÞ=U ðsÞ� (c) whether the system is controllable and/or observable,
(d) the transformation matrix T that transforms the general state-variable
representation of Eqs. (13.17) and (13.18) into the canonical form representa-
tion, and (e) drawa simulation diagrambasedon the canonical representation.

sI� Aj j ¼ s þ 2 0
1 s þ 1










 ¼ ðs þ 2Þðs þ 1ÞðaÞ

The eigenvalues are l1 ¼ �2 and l2 ¼ �1:Thus,

, ¼ �2 0
0 �1

� �

(ðsÞ ¼ sI� A½ ��1¼
s þ 1 0
�1 s þ 2

� �

ðs þ 1Þðs þ 2ÞðbÞ

GðsÞ ¼ c
T(ðsÞb ¼ 0 1

� � s þ 1 0
�1 s þ 2

� �
1
1

� �� �
1

ðs þ 1Þðs þ 2Þ
¼ s þ 1
ðs þ 1Þðs þ 2Þ ¼

1
s þ 2

Note that there is a cancellation of the factor s þ 1� and only the mode
with l1¼�2 is both controllable and observable. When a mode is either
uncontrollable or unobservable, it does not appear in the transfer function.

Rank b --
--
-

Ab
h i

¼ Rank 1 �2
1 �2

� �
¼ 1ðcÞ

The controllability matrixMc ¼ b Ab½ � is singular and has a rank deficiency
of one; thus the system is not completely controllable and has one uncontrol-
lable mode.

Rank c --
--
-

A
T
c

h i
¼ Rank 0 �1

1 �1
� �

¼ 2

FIGURE 13.2 Simulation diagram for the system of Eq. (13.17).
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The observability matrix c --
--
-

A
T
c

h i
is nonsingular; thus the system is comple-

tely observable. Note that the mode with l2¼�1, which is canceled in the
determination of the transfer function, is observable but not controllable.
(d ) Using Eq. (5.91) of Sec. 5.10,with x¼Tz, gives

AT ¼ T,

�2 0
�1 �1

� �
v11 v12
v21 v22

� �
¼ v11 v12

v21 v22

� � �2 0
0 �1

� �

�2v11 �2v12
�v11 � v21 �v12 � v22

� �
¼ �2v11 �v12
�2v21 �v22

� �

Equating elements on both sides of this equation yields

�2v11 ¼ �2v11 �2v12 ¼ �v12
�v11 � v21 ¼ �2v21 �v12 � v22 ¼ �v22

Because there are only two independent equations, assume that v11 ¼ v22 ¼ 1:
Then v21 ¼ 1 and v12 ¼ 0:Utilizing these values yields

b
0 ¼ T

�1
b ¼ 1 0

�1 1

� �
1
1

� �
¼ 1

0

� �

c
0T ¼ c

TT ¼ 0 1
� � 1 0

1 1

� �
¼ 1 1
� �

The canonical equations, for this system are therefore

_zz ¼ �2 0
0 �1

� �
zþ 1

0

� �
u

y ¼ 1 1
� �

z

Because b
0 contains a zero row, the system is uncontrollable and l¼�1 is

an input-decoupling zero. Because c
0 contains all nonzero elements, the

system is completely observable.These results agree with the results obtained
by the method used in part (c).
(e) The individual state and output equations are

_zz1 ¼ �2z1 þ u ð13:19Þ
_zz2 ¼ �z2 ð13:20Þ
y ¼ z1 þ z2 ð13:21Þ

Equation (13.19) satisfies the requirement of controllability; for any t0 the
initial state z1(t0) can be transferred to any final state z1(tf) in a finite time tf�
t0 by means of the unconstrained control vector u. Because u does not appear
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in Eq. (13.20), it is impossible to control the state z2; thus l2¼�1 is an input-
decoupling zero and the system is uncontrollable.Equation (13.21) satisfies the
definition of observability, i.e., both states appear in y and, therefore, z1(t0) and
z2(t0) can be determined from the measurements of the output y(t) over the
finite interval of time t0 � t � tf :

The simulation diagram of Fig. 13.3 is synthesized from Eqs. (13.19) to
(13.21). The advantage of the canonical form is that the modes l1¼�2 and
l2¼�1 are completely decoupled. This feature permits the determination
of the existence of some or all of the four subdivisions of Fig. 13.1 and the
application of the definitions of controllability and observability.

Example: MATLAB Controllability and Observability

A ¼ �2 0;�1 �1� �
;

B ¼ 1; 1
� �

;

C ¼ 0 1
� �

;

%
% (a) Determine the eigenvalues
eig(A)

ans ¼
� 1

� 2

%
% (b) Determine the transfer function

sys ¼ ssðA�B�C�0Þ;
sys ¼ tfðsysÞ

FIGURE 13.3 Simulation diagram for Eqs. (13.17) and (13.18).
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Transfer function:

sþ 1

s^2þ 3 sþ 2
¼ sþ 1

ðsþ 1Þðsþ 2Þ
sys ¼ minreal ðsysÞ
Transfer function :

1

sþ 2

%
% (c) Determine controllability and observability
%
% The “ctrb” function computes the controllability matrix
co¼ctrb(A, B)
co¼

1 �2
1 �2

rank(co)
ans¼

1
% The number of uncontrollable states
uncon¼length(A) – rank (co)
uncon¼

1
%
% The “obsv” function computes the observability matrix
ob¼obsv(A, C)
ob¼

0 1
�1 �1

rank (ob)
ans¼

2
%
% (d) MATLAB’s version shows one controllable state [Ab, Bb, Cb,
Db, T] ¼CANON (A, B, C,0, ‘modal’)
Ab¼

�1 0
0 �2

Bb¼
0

1.4142
Cb¼

1.0000 0.7071
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Db¼
0

T¼
�1.0000 1.0000

1.4142 0

T*A* inv (T)

ans¼
�1 0

0 �2

13.3 STATE FEEDBACK FOR SISO SYSTEMS

This section covers the design of a single-input single-output (SISO) system in
which the set of closed-loop eigenvalues is assigned by state feedback. The
plant state and output equations have the form

_xx ¼ Axþ Bu ð13:22Þ
y ¼ Cx ð13:23Þ

The state-feedback control law (see Fig.13.4) is

u ¼ rþ Kx ð13:24Þ
where r is the input vector and K is the state-feedback matrix having dimen-
sionm�n.The closed-loop state equation obtained by combining Eqs. (13.22)
and (13.24) yields

_xx ¼ ðAþ BKÞxþ Br ð13:25Þ
Thus the closed-loop systemmatrix produced by state feedback is

Ac1¼ Aþ BK ð13:26Þ

FIGURE 13.4 State feedback control system.
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which results in the closed-loop characteristic equation

QðlÞ ¼ lI� Ac1


 

 ¼ lI� A� BKj j ¼ 0 ð13:27Þ

Equation (13.27) reveals that the closed-loop eigenvalues can be assigned by
the proper selection of the state-feedbackmatrixK.A necessary and sufficient
condition for the selection ofK is that the plant be completely controllable [9]
(see Sec.13.2).

Example 1. A second-order system is represented by the state and output
equations

_xx ¼ �1 3
0 �2

� �
xþ 1

1

� �
u ð13:28Þ

y ¼ 1 0
� �

x ¼ x1 ð13:29Þ

The open-loop eigenvalue spectrum is sðAÞ ¼ f�1�� 2g: The system is
completely controllable since, from Eq. (13.10),

RankMc ¼ Rank 1 2
1 �2

� �
¼ 2 ð13:30Þ

The closed-loop eigenvalues are determined from Eq. (13.27) with
K ¼ k1 k2

� �
:

lI� A� BKj j ¼ l 0
0 l

� �
� �1 3

0 �2

� �
� 1

1

� �
k1 k2
� �










¼ l2 þ ð3� k1 � k2Þlþ ð2� 5k1 � k2Þ ð13:31Þ

Assigning the closed-loop eigenvalues l1¼�5 and l2¼�6 requires the
characteristic polynomial to be l2þ11lþ30. Equating the coefficients of
this desired characteristic equation with those of Eq. (13.31) results in the
values k1¼�5 and k2¼�3, or K¼ [�5 �3]. The resulting closed-loop state
equation obtained by using Eq. (13.25) is

_xx ¼ �6 0
�5 �5

� �
xþ 1

1

� �
r ð13:32Þ

This state equation has the required eigenvalue spectrum sðAc1Þ ¼ f�5�� 6g:

The following example illustrates the requirement of controllability for
closed-loop eigenvalue assignment by state feedback.
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Example 2. A cascade gain K is inserted in the plant of the example in
Sec.13.2, Eq. (13.17) so that its transfer function is

GðsÞ ¼ Kðs þ 1Þ
ðs þ 1Þðs þ 2Þ

It is shown in that example that this plant is not controllable.Figure13.5 shows
a state-feedback system for this plant. The closed-loop control ratio can be
obtained by use of theMason gain rule [Eq. (5.53)], and is given by

Y ðsÞ
RðsÞ ¼

Kðs þ 1Þ
s2 þ ð3þ Kk1 þ Kk2Þs þ ð2þ Kk2 þ Kk1Þ

ð13:33Þ

In order for the system to follow a step input with no steady-state error, the
requirement obtained by applying the final value theorem is that
K ¼ 2þ Kk2 þ Kk1� or

K ¼ 2
1� k1 � k2

ð13:34Þ

Because this system is uncontrollable, as determined in Sec. 13.2, the pole
located at s2¼�1 cannot be altered by state feedback. The characteristic
equation of Eq. (13.33) illustrates this property because it can be factored to
the form

ðs þ 1Þðs þ 2þ Kk2 þ Kk1Þ ¼ 0 ð13:35Þ
Therefore one eigenvalue, s2¼�2, is altered by state feedback to the
value s1 ¼ �ð2þ Kk2 þ Kk1Þ ¼ �K � where K can be assigned as desired.
Because the uncontrollable pole cancels the zero of Eq. (13.33), the control
ratio becomes

Y ðsÞ
RðsÞ ¼

Kðs þ 1Þ
ðs þ 1Þðs þ KÞ ¼

K
s þ K

ð13:36Þ

This example demonstrates that the uncontrollable pole s1¼�1 cannot be
changed by state feedback.

FIGURE 13.5 An uncontrollable state-feedback system.
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When deriving the transfer function from the system differential
equations, cancellation of a pole by a zero is not permitted in developing the
state representation. Cancellation of a pole by a zero in the transfer function
may hide some of the dynamics of the entire system.This eliminates informa-
tion pertaining to So,Sc, and Su; that is, the observability and controllability of
the system are determined from the state equations, as illustrated in these
examples.

13.4 STATE-FEEDBACK DESIGN FOR SISO SYSTEMS
USING THE CONTROL CANONICAL
(PHASE-VARIABLE) FORM

The examples of Sec.13.3 are of second order, and therefore the algebraic solu-
tion for the K matrix is computationally simple and direct. For higher-order
systems, the computations are simplified by first transforming the state equa-
tion into the control canonical form _xxc ¼ Acxc þ bcu: For this representation
of the state equation,the plantmatrixAc is in companion form,and the control
matrix bc contains all zeros except for the unit element in the last row. This
form leads directly to the determination of the required state-feedback
matrix that is unique.The procedure is presented in this section.

The model of an open-loop SISO system can be represented by a
physical state variable and an output equation

_xx ¼ Apxp þ bpu ð13:37Þ
y ¼ c

T
p xp ð13:38Þ

The actuating signal u is formed in accordance with the feedback control law

u ¼ rþ k
T
p xp ð13:39Þ

where r is the reference input and

k
T
p ¼ kp1 kp2 	 	 	 kpn

� � ð13:40Þ
The closed-loop state equation obtained from Eqs. (13.37) and (13.39) is

_xxp ¼ Ap þ bpk
T
p

� �
xp þ bpr ¼ Apclxp þ bpr ð13:41Þ

The design procedure that assigns the desired set of closed-loop eigen-
values, sðApcl Þ ¼ flig� i ¼ 1� 2� . . . � n� is accomplished as follows:

1. Use the method of Sec. 5.13 to obtain the matrixT,which transforms
the state equation (13.37), by the change of state variables xp¼Txc,
into the control canonical form _xxc ¼ Acxc þ bcu� where Ac is in
companion form and bc ¼ 0 	 	 	 0 1½ �T :
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2. Select the set of desired closed-loop eigenvalues and obtain the
corresponding closed-loop characteristic polynomial

QclðlÞ ¼ ðl� l1Þðl� l2Þ 	 	 	 ðl� lnÞ
¼ ln þ a n�1l

n�1 þ 	 	 	 þ a1lþ a0 ð13:42Þ

3. Write the companion form of the desired closed-loop plant matrix

Acc1 ¼

0 1

0 1

0 . .
.

. .
.

1

0 1

�a0 �a1 	 	 	 �an�2 �a n�1

2
666666666664

3
777777777775

ð13:43Þ

and bc ¼ 0 	 	 	 0 1½ �:
4. Use the feedback matrix

k
T
c ¼ kc1 kc2 	 	 	 kcn

� � ð13:44Þ

to form the closed-loop matrix

ACc1
¼Acþbcu¼AcþbckTc

¼

0 1 	 	 	 0 0

0 0 	 	 	 0 0

------------------------------------------------------------------------------------

0 0 	 	 	 1 0

0 0 	 	 	 0 1

�a0þkc1 �a1þkc2 	 	 	 �an�2kcðn�1Þ �an�1þkcn

2
6666666666664

3
7777777777775

ð13:45Þ
5. Equate the matrices of Eqs. (13.43) and (13.45), and solve for the

elements of the matrix kTc :
6. Compute the required physical feedback matrix using

k
T
p ¼ k

T
c T
�1 ð13:46Þ
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Example. Using the physical system shown by Eq. (13.47), assign the set of
eigenvalues f�1þ j1� � 1� j1� � 4g:

Ap ¼
1 6 �3
�1 �1 1
�2 2 0

2
4

3
5 bp ¼

1
1
1

2
4

3
5 ð13:47Þ

This open-loop system is unstable because sðAÞ ¼ f1� 1� � 2g:
Step1. As derived in the example of Sec. 5.13,

Ac ¼
0 1 0
0 0 1
�2 3 0

2
4

3
5 bc ¼

0
0
1

2
4

3
5 ð13:48Þ

and, for xp ¼ Txc ,

T ¼
�5 4 1
�6 �1 1
�13 0 1

2
4

3
5 ð13:49Þ

Step 2.The required closed-loop characteristics polynomial is

Qc1ðlÞ ¼ ðlþ 1� j1Þðlþ 1þ j1Þðlþ 4Þ ¼ l3 þ 6l2 þ 10lþ 8
ð13:50Þ

Step 3.The closed-loop plant matrix in companion form is

Acc1 ¼
0 1 0
0 0 1
�8 �10 �6

2
4

3
5 ð13:51Þ

Step 4

Ac þ bck
T
c ¼

0 1 0
0 0 1

�2þ kc1 3þ kc2 kc3

2
4

3
5 ð13:52Þ

Step 5. Equating the coefficients of Acc1and Ac þ bck
T
c yields

k
T
c ¼ �6 �13 �6� � ð13:53Þ

Step 6. Using Eq. (13.46), the feedback matrix required for the physical
system is

k
T
p ¼ k

T
c T
�1 ¼ 1=36 �175 �232 191

� � ð13:54Þ
The reader should verify that the physical closed-loop matrix

Apc1 ¼ Ap þ bpk
T
p ¼

1
36

�139 �16 83
�211 �268 227
�247 �160 191

2
4

3
5 ð13:55Þ

has the required set of eigenvalues sðApc1 Þ ¼ f�1þ j1� � 1� j1� � 4g:
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This design method provides a very straightforward procedure for
computing the state feedback matrix k

T
p :MATLAB contains procedures for

assisting with this design.

13.5 STATE-VARIABLE FEEDBACK [10]
(PHYSICAL VARIABLES)

The open-loop position-control system of Fig. 13.6 is used to illustrate the
effects of state-variable feedback. The dynamic equations for this basic
system are

ea ¼ Ae A > 0 ð13:56Þ
ea � em ¼ ðRm þ LmDÞim ð13:57Þ

em ¼ Kbom ð13:58Þ
T ¼ KT im ¼ JDom þ Bom ð13:59Þ
om ¼ Dym ð13:60Þ

In order to obtain the maximum number of accessible (measurable) states,
physical variables are selected as the state variables. The two variables
im and om and the desired output quantity ym are identified as the three state
variables: x1 ¼ ym ¼ y� x2 ¼ om ¼ _xx1� and x3 ¼ im� and the input u ¼ e:
Figure13.6 shows that all three state variables are accessible for measurement.
The sensors are selected to produce voltages that are proportional to the state
variables and to have effect on the measured variables.

FIGURE 13.6 Open-loop position-control system and measurement of states.
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Figure 13.7a is the block diagram of a closed-loop position-control
system utilizing the system of Fig. 13.6. Each of the states is fed back through
amplifiers whose gain values k1, k2, and k3 are called feedback coefficients.
These feedback coefficients include the sensor constants and any additional
gain required by the system design to yield the required values of k1,k2, and k3.
The summation of the three feedback quantities,where kT ¼ k1 k2 k3

� �
is

the feedback matrix, is

k
T
X ¼ k1X1 þ k2X2 þ k3X3 ð13:61Þ

Using block-diagram manipulation techniques, Fig. 13.7a is simplified to the
block diagram of Fig. 13.7b. A further reduction is achieved, as shown in
Fig. 13.7c. Note that the forward transfer function GðsÞ ¼ X1ðsÞ=U ðsÞ shown
in this figure is identical with that obtained from Fig. 13.7a with zero-state
feedback coefficients. Thus, state-variable feedback is equivalent to inserting
a feedback compensator HeqðsÞ in the feedback loop of a conventional feed-
back control system, as shown in Fig. 13.7d. The reduction of 13.7a to that of
Fig.13.7c or Fig.13.7d is theH-equivalent reduction.The system control ratio is
therefore

Y ðsÞ
RðsÞ ¼

GðsÞ
1þ GðsÞHeqðsÞ

ð13:62Þ

For Figs.13.7c and13.7d the following equations are obtained:

GðsÞHeqðsÞ ¼
100A½k3s2 þ ð2k2 þ k3Þs þ 2k1�

sðs2 þ 6s þ 25Þ ð13:63Þ

Y ðsÞ
RðsÞ ¼

200A
s3 þ ð6þ 100k3AÞs2 þ ð25þ 200k2Aþ 100k3AÞs þ 200k1A

ð13:64Þ
The equivalent feedback transfer functionHeqðsÞmust be designed so that the
system’s desired figures of merit are satisfied.The following observations are
noted from Eqs. (13.63) and (13.64) for this system in which G(s) has no zeros;
i.e., it is an all-pole plant.

1. In order to achieve zero steady-state error for a step input,
R(s)¼R0/s, Eq. (13.64) must yield

yðtÞss ¼ lim
s!0

sY ðsÞ ¼ R0

k1
¼ R0

This requires that k1¼1.
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FIGURE 13.7 A position-control system with feedback, its Heq representation, and
the corresponding root locus.
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2. The numerator ofHeqðsÞ is of second order; i.e., the denominator of
G(s) is of degree n¼ 3 and the numerator of HeqðsÞ is of degree
n�1¼2.

3. The poles ofG(s)Heq(s) are the poles ofG(s).
4. The zeros ofG(s)Heq(s) are the zeros ofHeq(s).
5. The use of state feedback produces additional zeros in the open-

loop transfer function G(s)Heq(s) without adding poles. This is in
contrast to cascade compensation using passive networks. The
zeros of Heq(s) are to be located to yield the desired response. It is
known that the addition of zeros to the open-loop transfer function
moves the root locus to the left; i.e., they make the system more
stable and improve the time-response characteristics.

6. Since the root-locus plot of G(s)Heq(s)¼�1 has one asymptote,
g ¼ �180� for k3>0, it is possible to pick the locations of the zeros
ofHeq(s) to ensure a completely stable system for all positive values
of gain. Figure 13.7e shows a possible selection of the zeros and the
resulting root locus. Note that when the conventional cascade com-
pensators of Chap. 10 are used, the angles of the asymptotes yield
branches that go, in general, into the right-half (RH) s plane. The
maximum gain is therefore limited in order to maintain system
stability.This restriction is removed with state feedback.

7. The desired figures of merit, for an underdamped response, are
satisfied by selecting the desired locations of the pole of Y(s)/R(s) of
Eq. (13.64) at s1� 2 ¼ �a
 jb and s3 ¼ �c: For these specified pole
locations the known characteristic equation has the form

ðs þ a
 jbÞðs þ cÞ ¼ s3 þ d2s
2 þ d1s þ d0 ¼ 0 ð13:65Þ

Equating the corresponding coefficients of the denominators of
Eqs. (13.64) and (13.65) yields

d2 ¼ 6þ 100k3A ð13:66Þ
d1 ¼ 25þ 200k2Aþ 100k3A ð13:67Þ
d0 ¼ 200k1A ¼ 200A ð13:68Þ

These three equations with three unknowns can be solved for the
required values ofA,k2, and k3.

It should be noted that if the basic system G(s) has any zeros, they
become poles of Heq(s). Thus, the zeros of G(s) cancel these poles of Heq(s) in
G(s)Heq(s). Also, the zeros of G(s) become the zeros of the control ratio. The
reader is able to verify this property by replacing 2/(sþ1) in Fig. 13.7a by
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2(sþ a)/(sþ1) and performing an H-equivalent reduction. This property is
also illustrated in the examples of Sec.13.11.

13.6 GENERAL PROPERTIES OF STATE FEEDBACK
(USING PHASE VARIABLES)

In order to obtain general state-variable-feedback properties that are
applicable to anyG(s) transfer function,consider theminimum-phase transfer
function

GðsÞ ¼ Y ðsÞ
U ðsÞ ¼

KGðsw þ cw�1s
w�1 þ 	 	 	 þ c1s þ c0Þ

sn þ an�1s n�1 þ 	 	 	 þ a1s þ a0
ð13:69Þ

where KG > 0�w < n� and the coefficients ci are all positive.The system char-
acteristics and properties are most readily obtained by representing this
system in terms of phase variables [see Secs. 5.6 and 5.8, Eqs (5.38) and (5.45),
with cw¼1and u replaced by KGu, and Sec.13.4]:

_xx ¼

0 1 0 	 	 	 0
0 0 1 	 	 	 0
																		 																					 1
�a0 �a1 �a2 	 	 	 �an�1

2
6664

3
7775xþ

0
0
	
KG

2
6664

3
7775u ð13:70Þ

y ¼ c0 c1 	 	 	 cw�1 1 0 	 	 	 0
� �

x ¼ c
T
c x ð13:71Þ

From Fig.13.7d and Eq. (13.71)

HeqðsÞ ¼
k
T
c XðsÞ
Y ðsÞ ¼

k
T
c XðsÞ
cTc XðsÞ

¼ k1X1ðsÞ þ k2X2ðsÞ þ 	 	 	 þ knXnðsÞ
c0X1ðsÞ þ c1X2ðsÞ þ 	 	 	 þ Xwþ1

ð13:72Þ
If w¼ n, use Eq. (5.44) to obtain y¼CxþDu.

The state-feedback matrix is kTc because the state variables are phase
variables. Using the phase-variable relationship XjðsÞ ¼ s j�1X1ðsÞ� so that
_XX1 ¼ X 2� _XX2 ¼ X 3� 	 	 	 � then Eq. (13.72) becomes

HeqðsÞ ¼
kns

n�1 þ kn�1s
n�2 þ 	 	 	 þ k2s þ k1

sw þ cw�1sw�1 þ 	 	 	 þ c1s þ c0
ð13:73Þ

Thus, from Eqs. (13.69) and (13.73), after cancellation of common terms,

GðsÞHeqðsÞ ¼
KGðkns n�1 þ kn�1s

n�2 þ 	 	 	 þ k2s þ k1Þ
sn þ an�1s n�1 þ 	 	 	 þ a1s þ a0

ð13:74Þ
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Factoring kn from the numerator polynomial gives an alternate form of this
equation,

GðsÞHeqðsÞ ¼
KGknðs n�1 þ 	 	 	 þ a1s þ a0Þ

sn þ an�1s n�1 þ 	 	 	 þ a1s þ a0
ð13:75Þ

where the loop sensitivity is KGkn ¼ K : Substituting Eqs. (13.69) and (13.74)
into Eq. (13.62) yields

Y ðsÞ
RðsÞ ¼

KGðsw þ cw�1s
w�1 þ 	 	 	 þ c0Þ

sn þ ðan�1 þ KGknÞs n�1 þ 	 	 	 þ ða0 þ KGk1Þ
ð13:76Þ

An analysis of these equations yields the following conclusions:

1. The numerator ofHeq(s) is a polynomial of degree n�1in s; that is, it
has n�1 zeros. The values of the coefficients ki of this numerator
polynomial, and thus the n�1 zeros of Heq(s), can be selected by
the system designer.

2. The numerator of G(s), except for KG, is equal to the denominator of
Heq(s).Therefore, the open-loop transfer function G(s)Heq(s) has the
same n poles asG(s) and has the n�1zeros ofHeq(s) which are to be
determined in the design process. [An exception to this occurswhen
physical variables are utilized and the transfer function XnðsÞ=U ðsÞ
contains a zero. In that case this zero does not appear as a pole of
Heq(s), and the numerator and denominator of G(s)Heq(s) are both
of degree n.]

3. The root-locus diagram, based on Eq. (13.75) for kn> 0, reveals that
n�1 branches terminate on the n�1 arbitrary zeros,which can be
located anywhere in the s plane by properly selecting the values of
the ki. There is a single asymptote at g¼�180�, and therefore one
branch terminates on the negative real axis at s¼�1. System
stability is ensured for high values of KG if all the zeros of Heq(s)
are located in the left-half (LH) s plane. For kn< 0, a single
asymptote exists at g¼ 0�; thus the system becomes unstable for
high values of KG.

4. State-variable feedback provides the ability to select the locations of
the zeros of G(s)Heq(s), as given by Eq. (13.75), in order to locate
closed-loop systempoles that yield the desired system performance.
From Eq. (13.76) it is noted that the result of feedback of the states
through constant gains ki is to change the closed-loop poles and to
leave the system zeros, if any, the same as those of G(s).
(This requires the plant to be controllable, as described in
Sec. 13.2.) It may be desirable to specify that one or more of
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the closed-loop poles cancel one or more unwanted zeros in
Y ðsÞ=RðsÞ:

5. In synthesizing the desired Y ðsÞ=RðsÞ� the number of poles minus
the number of zeros of Y ðsÞ=RðsÞ must equal the number of poles
minus the number of zeros ofG(s).

A thorough steady-state error analysis of Eq. (13.76) is made in Secs.13.7
and 13.8 for the standard step, ramp, and parabolic inputs. From the conclu-
sions obtained in that section, some or all of the feedback gains k1, k2, and k3
are specified.

Summarizing, the Heq(s) can be designed to yield the specified closed-
loop transfer function in the manner described for the system of Fig. 13.7.
A root-locus sketch of GðsÞHeqðsÞ ¼ 
1 can be used as an aid in synthesizing
the desiredY ðsÞ=RðsÞ function.From this sketch it is possible to determine the
locations of the closed-loop poles, in relation to any system zeros, that will
achieve the desired performance specifications. Note that although the zeros
of G(s) are not involved in obtaining the root locus for G(s)Heq(s), they do
appear in Y ðsÞ=RðsÞ and thus affect the time function y(t).

DESIGN PROCEDURE. The design procedure is summarized as follows:

Step 1.Draw the system state-variable block diagramwhen applicable.
Step 2. Assume that all state variable are accessible.
Step 3. ObtainHeq(s) and Y ðsÞ=RðsÞ in terms of the ki’s.
Step 4.Determine the value of k1 required for zero steady-state error for

a unit step input, u�1ðtÞ; that is, yðtÞss ¼ lims!0 sY ðsÞ ¼ 1:
Step 5. Synthesize the desired ½Y ðsÞ=RðsÞ�T from the desired perfor-

mance specifications for Mp� tp� ts� and steady-state error require-
ments (see Sec. 12.2). It may also be desirable to specify that one or
more of the closed-loop poles should cancel unwanted zeros of
Y ðsÞ=RðsÞ:

Step 6. Set the closed-loop transfer functions obtained in steps 3 and 5
equal to each other. Equate the coefficients of like powers of s of the
denominator polynomials and solve for the required values of the ki.
If phase variables are used in the design, a linear transformation
must be made in order to convert the phase-variable-feedback
coefficients required for the physical variables present in the control
system.

If some of the states are not accessible, suitable cascade or minor-loop
compensators can be determined using the known values of the ki.
This method is discussed in Sec.14.6.

The procedure for designing a state-variable-feedback system is illus-
trated by means of examples using physical variables in Secs. 13.9
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through 13.12. Before the examples are considered, however, the
steady-state error properties are investigated in Secs.13.7 and13.8.

13.7 STATE-VARIABLE FEEDBACK: STEADY-STATE
ERROR ANALYSIS

A steady-state error analysis of a stable control system is an important design
consideration (see Chap. 6). The three standard inputs are used for a steady-
state analysis of a state-variable-feedback control system.The phase-variable
representation is used in the following developments, in which the necessary
values of the feedback coefficients are determined. The results apply only
when phase variables are used and do not apply when general state variables
are used.

Step Input rðtÞ ¼ R0u�1ðtÞ�RðsÞ ¼ R0=s

For a step input, solving Eq. (13.76), which is based upon the phase-variable
representation forY(s), and applying the final-value theorem yields

yðtÞss ¼
KGc0R0

a0 þ KGk1
ð13:77Þ

The system error is defined by

eðtÞ � rðtÞ � yðtÞ ð13:78Þ
For zero steady-state error, eðtÞss ¼ 0� the steady-state outputmust be equal to
the input:

yðtÞss ¼ rðtÞ ¼ R0 ¼
KGc0R0

a0 þ KGk1
ð13:79Þ

where c0 6¼ 0:This requires that KGc0 ¼ a0 þ KGk1� or

k1 ¼ c0 � a0=KG ð13:80Þ
Thus, zero steady-state error with a step input can be achieved with state-
variable feedback even if G(s) isType 0. For an all-pole plant c0¼1, and for a
Type 1 or higher plant, a0¼ 0. In that case the required value is k1¼1.
Therefore, the feedback coefficient k1 is determined by the plant parameters once
zero steady-state error for a step input is specified. This specification is
maintained for all state-variable-feedback control-system designs throughout
the remainder of this text. From Eq. (13.76), the system characteristic
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equation is

sn þ ðan�1 þ KGknÞs n�1 þ 	 	 	 þ ða2 þ KGk3Þs2 þ ða1 þ KGk2Þs
þ ða0 þ KGk1Þ ¼ 0 ð13:81Þ

where a1 þ KGk2 ¼ KGc1 and a0 þ KGk1 ¼ KGc0: A necessary condition for
all closed-loop poles ofY ðsÞ=RðsÞ to be in the LH s plane is that all coefficients
in Eq. (13.81) must be positive.Therefore, the constant term of the polynomial
a0 þ KGk1 ¼ KGc0 must be positive.

Ramp Input rðtÞ ¼ R1u�2ðtÞ ¼ R1tu�1ðtÞ�RðsÞ ¼ R1=s
2

To perform the analysis for ramp and parabolic inputs, the error function E(s)
must first be determined. Solving for Y(s) from Eq. (13.76) and evaluating
EðsÞ ¼ RðsÞ � Y ðsÞ yields

EðsÞ ¼ RðsÞ
sn þ ðan�1 þKGknÞs n�1 þ 	 	 	 þ ða0 þKGk1Þ
�KGðsw þ cw�1s

w�1 þ 	 	 	 þ c1s þ c0Þ
sn þ ðan�1 þKGknÞs n�1 þ 	 	 	 þ ða1 þKGk2Þs þ ða0 þKGk1Þ

ð13:82Þ
Substituting Eq. (13.80), the requirement for zero steady-state error for a step
input, into Eq. (13.82) produces a cancellation of the constant terms in the
numerator.Thus,

EðsÞ ¼ RðsÞ
sn þ ðan�1 þ KGknÞs n�1 þ 	 	 	 þ ða1 þ KGk2Þs
�KGðsw þ cw�1s

w�1 þ 	 	 	 þ c1sÞ
sn þ ðan�1 þ KGknÞs n�1 þ 	 	 	 þ ða1 þ KGk2Þs þ KGc0

ð13:83Þ
Not that the numerator has a factor of s.

For a ramp input, the steady-state error is the constant

cðtÞss ¼ lim
s!0

sEðsÞ ¼ a1 þ KGk2 � KGc1
KGc0

R1 ð13:84Þ

In order to obtain eðtÞss ¼ 0� it is necessary that a1 þ KGk2 � KGc1 ¼ 0:
This is achieved when

k2 ¼ c1 � a1=KG ð13:85Þ
For an all-pole plant, c0 ¼ 1 and c1 ¼ 0; thus k2 ¼ �a1=KG: In that case, the
coefficient of s in the system characteristic equation (13.81) is zero, and the
system is unstable. Therefore, zero steady-state error for a ramp input cannot
be achieved by state-variable feedback for an all-pole stable system. If
a1 þ KGk2 > 0� in order to obtain a positive coefficient of s in Eq. (13.81),
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the systemmay be stable but a finite steady-state error exists.The error in all-
pole plant is

eðtÞss ¼ k2 þ
a1
KG

� �
R1 ð13:86Þ

When a plant contains at least one zero, so that c1>0, it is possible to
specify the value of k2 given by Eq. (13.85) and to have a stable system. In that
case the system has zero steady-state error with a ramp input.Substituting Eq.
(13.85) into Eq. (13.81) results in the positive coefficientKGc1 for the first power
of s. Thus, a stable state-variable-feedback system having zero steady-state error
with both a step and a ramp input can be achieved only when the control ratio has
at least one zero.Note that this occurs even thoughG(s) may beType 0 or1.

Parabolic Input rðtÞ ¼ R2u�3ðtÞ ¼ ðR2t2=2Þu�1ðtÞ�RðsÞ ¼ R2=s3

The all-pole and pole-zero plants are considered separately for a parabolic
input. For the all-pole plant with Eq. (13.80) satisfied, Eq. (13.82) reduces to

EðsÞ ¼ R2

s3
sn þ ðan�1 þ KGknÞs n�1 þ 	 	 	 þ ða1 þ KGk2Þs

sn þ ðan�1 þ KGknÞs n�1 þ 	 	 	 þ ða1 þ KGk2Þs þ KGc0

" #

ð13:87Þ
Because eðtÞss ¼ lims!0 sEðsÞ ¼ 1� it is concluded that an all-pole plant cannot
follow a parabolic input.This is true even if Eq. (13.80) is not satisfied.

Under the condition this eðtÞss ¼ 0 for both step and ramp inputs to a
pole-zero stable system, Eqs. (13.80) and (13.85) are substituted into
Eq. (13.83) to yield, for a plant containing at least one zero,

EðsÞ ¼ R2

s3

sn þ ðan�1 þ KGknÞs n�1 þ 	 	 	 þ ða2 þ KGk3Þs2
�KGðcwsw þ cw�1s

w�1 þ 	 	 	 þ c2s
2Þ

sn þ ðan�1 þ KGknÞs n�1 þ 	 	 	 þ KGc1s þ KGc0

2
664

3
775 ð13:88Þ

Note that s2 is the lowest power term in the numerator. Applying the
final-value theorem to this equation yields

eðtÞss ¼ lim
s!0

sEðsÞ ¼ a2 þ KGk3 � KGc2
KGc0

R2 ð13:89Þ

In order to achieve eðtÞss ¼ 0� it is necessary that a2 þ KGk3 � KGc2 ¼ 0:Thus

k3 ¼ c2 � a2=KG ð13:90Þ
With this value of k3 the s2 term in Eq. (13.81) has the positive coefficient
KGc2 only when w� 2.Thus, a stable system having zero steady-state error with a
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parabolic input can be achieved, even if G(s) is Type 0, only for a pole-zero system
with two or more zeros.

In a system having only one zero (w¼1), the value c2¼0 and
k3 ¼ �a2=KG produces a zero coefficient for the s2 term in the characteristic
equation (13.81), resulting in an unstable system. Therefore, zero steady-state
error with a parabolic input cannot be achieved by a state-variable-feedback pole-
zero stable system with one zero. If k3 6¼ �a2=KG and a2 þ KGk3 > 0 in order to
maintain a positive coefficient of s2 in Eq. (13.81), a finite error exists. The
system can be stable, and the steady-state error is

eðtÞss ¼
R2ða2 þ KGk3Þ

KGc0
ð13:91Þ

When a performance specifications requires the closed-loop system to
follow ramp and parabolic inputs with no steady-state error, and if the plant
has no zeros, it is possible to add a cascade block that contains one or more
zeros. The insertion point for this block must take into account the factors
presented in Sec.13.11.

13.8 USE OF STEADY-STATE ERROR COEFFICIENTS

For the example represented by Fig.13.7a the feedback coefficient blocks are
manipulated to yield theH-equivalent block diagram in Fig.13.7d. Similarly a
G-equivalent unity-feedback block diagram, as shown in Fig. 13.8, can
be obtained. The overall transfer functions for Figs. 13.7d and 13.8 are,
respectively,

M ðsÞ ¼ Y ðsÞ
RðsÞ ¼

GðsÞ
1þ GðsÞHeqðsÞ

ð13:92Þ

M ðsÞ ¼ Y ðsÞ
RðsÞ ¼

GeqðsÞ
1þ GeqðsÞ

ð13:93Þ

Solving forGeqðsÞ from Eq. (13.93) yields

GeqðsÞ ¼
M ðsÞ

1�M ðsÞ ð13:94Þ

FIGURE 13.8 G-equivalent block diagram.
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Using the control ratioM(s) from Eq. (13.76) in Eq. (13.94) yields

GeqðsÞ ¼
KGðsw þ 	 	 	 þ c1s þ c0Þ

sn þ ðan�1 þ KGknÞs n�1 þ 	 	 	 þ ða1 þ KGk2Þs
þ ða0 þ KGk1Þ � KGðsw þ 	 	 	 þ c1s þ c0Þ

ð13:95Þ

This is a Type 0 transfer function and has the step-error coefficient Kp ¼
KGc0=ða0 þ KGk1 � KGc0Þ:When the condition k1 ¼ c0 � a0=KG is satisfied so
that eðtÞss ¼ 0with a step input,Eq. (13.95) reduces to

GeqðsÞ ¼
KGðswþ		 	þ c1sþ c0Þ

snþðan�1þKGknÞsn�1þ		 	þ ða1þKGk2Þs�KGðswþ		 	þ c1sÞ
ð13:96Þ

Since this is a Type 1 transfer function, the step-error coefficient is Kp ¼
lims!0½sGeqðsÞ� ¼ 1� and ramp error coefficient is

Kv ¼ KGc0=ða1 þ KGk2 � KGc1Þ: ð13:97Þ
Satisfying the conditions for eðtÞss ¼ 0 for both step and ramp inputs, as

given by Eqs. (13.80) and (13.85), Eq. (13.96) reduces to

GeqðsÞ¼
KGðswþ			þ c1sþ c0Þ

snþðan�1þKGknÞsn�1þ			þða2þKGk3Þs2�KGðswþ			þ c2s2Þ
ð13:98Þ

Since this is a Type 2 transfer function, there is zero steady-state error with
a ramp input. It follows a parabolic input with a steady-state error.The error
coefficients are Kp ¼ 1�Kv ¼ 1� and Ka ¼ KGc0=ða2 þ KGk3 � KGc2Þ:

For the case when w� 2 and the conditions for eðtÞss ¼ 0 for all three
standard inputs are satisfied [Eqs. (13.80), (13.85), and (13.96)], Eq. (13.98)
reduces to

GeqðsÞ¼
KGðswþ			þ c1sþ c0Þ

snþðan�1þKGknÞsn�1þ			þða3þKGk4Þs3�KGðswþ			þ c3s3Þ
ð13:99Þ

This is a Type 3 transfer function that has zero steady-state error with a
parabolic input. The error coefficients are Kp ¼ Kv ¼ Ka ¼ 1:The results of
the previous analysis are contained in Table 13.1. Table 13.2 summarizes the
zero steady-state error requirements for a stable state-variable-feedback con-
trol system.Based onTables13.1and13.2, the specification on the type of input
that the system must follow determines the number of zeros that must be
included in Y(s)/R(s). The number of zeros determines the ability of the
system to follow a particular input with no steady-state error and to achieve a
stable system.
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With state-variable feedback, any desired system type can be achieved
for Geq(s), regardless of the type represented by G(s). In order to achieve a
Typem system, the requirement form> 0 is that

ai�1 þ KGk1 � KGci�1 ¼ 0 for all i ¼ 1� 2� 3� . . . �m ð13:100Þ
Thus, a system in which the plant is not Type m can be made to behave as a
Type m system by use of state feedback. This is achieved without
adding pure integrators in cascade with the plant. In order to achieve a
Typem system it is seen fromTable13.2 that the control ratiomust have aminimum
of m�1 zeros. This is an important characteristic of state-variable-feedback
systems.

The requirement for eðtÞss ¼ 0 for a ramp input can also be specified
in terms of the locations of the zeros of the plant with respect to the desired

TABLE 13.1 State-Variable-Feedback System: Steady-State Error Coefficentsy

State-variable feedback system Number of zeros Kp Kv Ka

All-pole plant w¼ 0 1 KG

a1 þ KGk2

0

Pole-zero plant w¼ 1 1 1 KGc0
a2 þ KGk3

w� 2 1 1 1
yFor phase-variable representation.

TABLE 13.2 Stable State-Variable-Feedback System: Requirements for Zero
Steady-State Errory

System

Number of
zeros

required

Input

Step Ramp Parabola
Geq (s)
type

All-pole plant w¼ 0 k1 ¼ 1� a0
KG

z § 1

Pole-zero plant w¼ 1 k1 ¼ c0 �
a0
KG

k2 ¼ c1 �
a1
KG

z 2

w� 2 k3 ¼ c1 �
a2
KG

3

yFor phase-variable representation.
zA steady-steady error exists.

§Cannot follow.
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locations of the poles of the control ratio (see Chap.12). Expanding

EðsÞ
RðsÞ ¼

1
1þ GeqðsÞ

ð13:101Þ

in aMaclaurin series in s yields

F ðsÞ ¼ EðsÞ
RðsÞ ¼ e0 þ e1s þ e2s

2 þ 	 	 	 þ eis
i þ 	 	 	 ð13:102Þ

where the coefficients e0� e1� e2� . . . are called the generalized error coefficients
[11] and are given by

ei ¼
1
i!

diF ðsÞ
dsi

� �
s¼0

ð13:103Þ

From this equation, e0 and e1 are:

e0 ¼
1

1þ Kp
ð13:104Þ

e1 ¼
1
Kv

ð13:105Þ

Note that e0 and e1 are expressed in terms of the system error coefficients
defined in Chap. 6. When the requirement of Eq. (13.80) is satisfied,
Eq. (13.96) yields Kp ¼ 1: Solving for E(s) from Eq. (13.102) and substituting
the result into Y ðsÞ ¼ RðsÞ � EðsÞ yields

Y ðsÞ
RðsÞ ¼ 1� e0 � e1s � e2s

2 � 	 	 	 ð13:106Þ

The relation between Kv and the poles and zeros of Y(s)/R(s) is readily
determined if the control ratio is written in factored form:

Y ðsÞ
RðsÞ ¼

KGðs � z1Þðs � z2Þ 	 	 	 ðs � zwÞ
ðs � p1Þðs � p2Þ 	 	 	 ðs � pnÞ

ð13:107Þ

The first derivative of Y(s)/R(s) in Eq. (13.106) with respect to s, evaluated
at s¼ 0, yields�e1which is equal to�1/Kv.

When it is noted that ½Y ðsÞ=RðsÞ�s¼0 ¼ 1 for a Type 1 or higher system
with unity feedback, the following equation can be written [11]:

1
Kv
¼ �

d
ds

Y
R

� �� �
s¼0

Y
R

� �
s¼0

¼ � d
ds

ln
Y ðsÞ
RðsÞ

� �� �
s¼0

ð13:108Þ
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Substitution of Eq. (13.107) into Eq. (13.108) yields
1
Kv
¼ � 1

s � z1
þ 	 	 	 þ 1

s � zw
� 1
s � p1

� 	 	 	 � 1
s � pn

� �
s¼0

¼
Xn
j¼1

1
pj
�
Xw
j¼1

1
zj

ð13:109Þ

Thus, the conditions for eðtÞss ¼ 0 for a ramp input,which occurs for Kv ¼ 1�
that is, 1=Kv ¼ 0� is satisfied when

Xn
j¼1

1
pj
¼
Xw
j¼1

1
zj

ð13:110Þ

Therefore, in synthesizing the desired control ratio, its poles can be located
not only to yield the desired transient response characteristics but also to
yield the value Kv ¼ 1: In addition, it must contain at least one zero that is
not canceled by a pole.

The values of k1, k2, and k3 determined for eðtÞss ¼ 0 for the respective
input from Eqs. (13.80), (13.85), and (13.90) are based upon the phase-variable
representation of the system. These values may not be compatible with the
desired roots of the characteristic equation. In that case it is necessary to
leave at least one root unspecified so that these feedback gains may be used.
If the resulting location of the unspecified root(s) is not satisfactory,other root
locations may be tried in order to achieve a satisfactory performance. Once
a system is designed that satisfies both the steady-state and the transient time
responses, the feedback coefficients for the physical system can be calculated.
This is accomplished by equating the corresponding coefficients of the
characteristic equations representing, respectively, the physical- and the
phase-variable systems. It is also possible to achieve the desired performance
by working with the system represented entirely by physical variables, as
illustrated by the examples in the following sections.

13.9 STATE-VARIABLE FEEDBACK: ALL-POLE PLANT

The design procedure presented in Sec.13.6 is now applied to an all-pole plant.

Design Example. For the basic plant having the transfer function shown in
Fig. 13.9a, state-variable feedback is used in order to achieve a closed-loop
response with Mp ¼ 1:043� ts ¼ 5:65 s� and zero steady-state error for a step
input rðtÞ ¼ R0u�1ðtÞ:

Steps1^3. See Fig.13.9b and c, and use Eq. (13.62) to obtain
Y ðsÞ
RðsÞ ¼

10A
s3 þ ð6þ 2Ak3Þs2 þ ½5þ 10Aðk3 þ k2Þ�s þ 10Ak1

ð13:111Þ
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Step 4. Inserting Eq. (13.111) into yðtÞss ¼ lims!0 sY ðsÞ ¼ R0� for a step
input, yields the requirement that k1¼ 1.

Step 5. Assuming that Eq. (13.111) has complex poles that are truly
dominant, Eq. (3.61) is used to determine the damping ratio.

Mp ¼ 1:043 ¼ 1þ exp � zpffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
 !

or

z � 0:7079

From Ts ¼ 4=jsj� jsj ¼ 4=5:65 ¼ 0:708: For these values of z and jsj,
the desired closed-loop complex-conjugate poles are p1:2 ¼ �0:708

j0:7064: Because the denominator of G(s) is of third order, the control
ratio also has a third-order denominator, as shown in Eq. (13.111).

FIGURE 13.9 A state-variable-feedback system, all-pole plant: (a) plant; (b) state-
variable feedback; (c) Heq(s).
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To ensure the dominancy of the complex poles, the third pole is made
significantly nondominant and is arbitrarily selected as p3¼�100.
Therefore, the desired closed-loop transfer function is

Y ðsÞ
RðsÞ ¼

10A
ðs þ 100Þðs þ 0:708
 j0:7064Þ
¼ 10A

s3 þ 101:4s2 þ 142:6s þ 100
ð13:112Þ

Step 6. In order to achieve zero steady-state error, a step input requires
the selection k1¼ 1 (see Sec. 13.5). Then, equating corresponding
terms in the denominators of Eqs. (13.111) and (13.113) yields

10Ak1 ¼ 100 A ¼ 10
6þ 2Ak3 ¼ 101:4 k3 ¼ 4:77

5þ 100ðk3 þ k2Þ ¼ 142:7 k2 ¼ �3:393
Inserting Eq. (13.112) into Eq. (13.94) yields the G-equivalent form
(see Fig.13.8):

GeqðsÞ ¼
100

sðs2 þ 101:4s þ 142:7Þ ð13:113Þ

Thus,Geq(s) isType1and the ramp error coefficient is K1¼ 0.701.

An analysis of the root locus for the unity-feedback and the state-feed-
back systems, shown in Fig. 13.10a and b, respectively, reveals several
characteristics.

FIGURE 13.10 Root-locus diagrams for (a) basic unity-feedback and (b) state-
variable control systems.
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For large values of gain the unity-feedback system is unstable, even if
cascade compensation is added. For any variation in gain the corresponding
change in the dominant roots changes the system response.Thus, the response
is sensitive to changes of gain.

The state-variable-feedback system is stable for all A> 0. Because the
roots are very close to the zeros of G(s)Heq(s), any increase in gain from the
value A¼10 produces negligible changes in the location of the roots. In other
words, for high-forward-gain (hfg) operation, A> 0, the system’s response is
essentially unaffected by variations in A, provided the feedback coefficients
remain fixed. Thus, for the example represented by Fig. 13.10b, when
K ¼ 9:54A � 95:4� the change in the values of the dominant roots is small
and there is little effect on the time response for a step input.The insensitivity
of the system response to the variation of the gain A is related to the system’s
sensitivity function,which is discussed in the next chapter.This insensitivity is
due to the fact that the two desireddominant roots are close to the two zeros ofHeq(s)
and the third root is nondominant. To achieve this insensitivity to gain variation
there must be b dominant roots that are located close to b zeros of Heq(s).
The remaining n� b roots must be nondominant. In this example b¼ n�1¼2,
but in general b�n�1.

Both the conventional and state-feedback systems can follow a step
input with zero steady-state error. Also, they both follow a ramp input with a
steady-state error. The state-variable-feedback system cannot be designed to
produce zero steady-state error for a ramp input becauseG(s) does not contain
a zero. In order to satisfy this condition a cascade compensator that adds a
zero toG(s) can be utilized in the state-variable-feedback system.

In general, as discussed in Sec. 12.2,when selecting the poles and zeros
of ½Y ðsÞ=RðsÞ�T to satisfy the desired specifications, one pair of dominant
complex-conjugate poles p1.2 is often chosen.The other n� 2 poles are located
far to the left of the dominant pair or close to zeros in order to ensure the
dominancy of p1.2. It is also possible to have more than just a pair of dominant
complex-conjugate poles to satisfy the desired specifications. For example, an
additional pole of Y(s)/R(s) can be located to the left of the dominant complex
pair.When properly located, it can reduce the peak overshoot and may also
reduce the settling time. Choosing only one nondominant root, that is, n�1
dominant roots, results in lower values of K and the ki than when a larger
number of nondominant roots is chosen. For state-variable feedback the value
of the gain A is always taken as positive.

13.10 PLANTS WITH COMPLEX POLES

This section illustrates how the state-variable representation of a plant
containing complex poles is obtained. Because the system shown in
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Fig. 13.11a is of the fourth order, four state variables must be identified.
The transfer function O(s)/I(s) involves two states. If the detailed block-
diagram representation of O(s)/I(s) contains two explicit states, it should
not be combined into the quadratic form; by combining the blocks, the
identity of one of the states is lost. That situation is illustrated by the
system of Fig. 13.6. As represented in Fig. 13.7a, the two states X2 and
X3 are accessible, but in the combined mathematical form of Fig. 13.7c
the physical variables are not identifiable. When one of the states is not
initially identified, an equivalent model containing two states must be
formed for the quadratic transfer function O(s)/I(s) of Fig. 13.11a. This
decomposition can be performed by the method of Sec. 5.12. The simu-
lation diagram of Fig. 5.34 is shown in the block diagram of Fig. 13.11b.
This decomposition is inserted into the complete control system that
contains state-variable feedback, as shown in Fig. 13.11c. If the state X3

is inaccessible, then, once the values of ki are determined, the physical
realization of the state feedback can be achieved by block-diagram
manipulation. An alternate approach is to represent the transfer func-
tion O(s)/I(s) in state-variable form, as shown in Fig. 13.12. This repre-
sentation is particularly attractive when X3 is recognizable as a physical
variable. If it is not, then the pick-off for k3 can be moved to the right
by block-diagram manipulation.

FIGURE 13.11 Representation of a plant containing complex poles.
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13.11 COMPENSATOR CONTAINING A ZERO

When a cascade compensator of the form GcðsÞ ¼ ðs � ziÞ=ðs � piÞ is
required, it can be constructed in either of the forms shown in Fig. 13.13a
or b. The input signal is shown as AU because, in general, this is the most
accessible place to insert the compensator. The differential equation for the
two forms are

For Fig:13:13a : _xxiþn ¼ Pixiþn � ziAuþ A _uu ð13:114Þ
For Fig:13:13b : _xx0iþn ¼ Pix

0
iþn þ ðPi � ziÞAu ð13:115Þ

The presence of _uu in Eq. (13.114) does not permit describing the system with
this compensator by the state equation _xx ¼ Axþbu� and thus xiþn in
Fig. 13.13a is not a state variable. The presence of a zero in the first block of
the forward path can also occur in a system before a compensator is inserted.

FIGURE 13.12 State-variable representation of O(s)/I(s) in Fig. 13.11a.

FIGURE 13.13 Cascade compensators: GcðsÞ ¼ ðs� zi Þ=ðs� Pi Þ : (a) conventional;
(b) feedforward form; (c) generating the state variable X 0iþn; (d) mathematical model
for (c).
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The design of such a system can be treated like that of a system containing the
compensator of Fig. 13.13a. The consequence of the _uu term in Eq. (13.114) is
that the zero of Gc(s) does not appear as a pole of Heq(s). Thus the root-locus
characteristics discussed in Sec. 13.6 must be modified accordingly. There is
no difficulty in expressing the system in state-variable formwhen the function
of Fig. 13.13a is not the first frequency-sensitive term in the forward path.
When the compensator of Fig. 13.13a is inserted at any place to the right of
the G1 block in the forward path shown in Fig. 13.14, the system can be
described by a state equation. Thus, the root-locus characteristics discussed
in Sec.13.6 also apply for this case.

A system containing the feedforward compensator in Fig.13.13b can be
described by a state equation, because _uu does not appear in Eq. (13.115).Thus,
the poles of Heq(s) continue to be the zeros of G(s). Therefore, the root-locus
characteristics discussed in Sec.13.6 also apply for this case.This is a suitable
method of constructing the compensator GcðsÞ ¼ ðs � ziÞ=ðs � PiÞ because
it produces the accessible state variable X 0iþn: The implementation of Gc(s)
consists of the lag term Kc=ðs � PiÞ� where Kc ¼ Pi � zi� with the unity-gain
feedforward path shown in Fig. 13.13b. The transfer function for the system
of Fig.13.13b is

GðsÞ ¼ Pi � zi
s � Pi

þ 1 ¼ Pi � zi
s � Pi

þ s � Pi

s � Pi
¼ s � zi

s � Pi

An additional possibility is to generate a new state variableX 0iþn from the
physical arrangement shown in Fig. 13.13c. This is equivalent to the
form shown in Fig. 13.13d and is mathematically equivalent to Fig. 13.13b.
Thus, X 0iþn is a valid state variable and may be used with a feedback
coefficient kiþn.

13.12 STATE-VARIABLE FEEDBACK: POLE-ZERO PLANT

Section 13.9 deals with a system having an all-pole plant; the control ratio
therefore has no zeros. Locating the roots of the characteristic equation for
such a system to yield the desired system response is relatively easy. This
section deals with a system having a plant that contains both poles and zeros

FIGURE 13.14 Forward path.
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and has a control ratio of the form

Y ðsÞ
RðsÞ ¼

KGðs � z1Þðs � z2Þ 	 	 	 ðs � zhÞ 	 	 	 ðs � zwÞ
ðs � p1Þðs � p2Þ 	 	 	 ðs � pcÞ 	 	 	 ðs � pnÞ

ð13:116Þ

that has the same zeros as the plant.When open-loop zeros are present, the
synthesis of the overall characteristic equation becomes more complex than
for the all-pole plant. As discussed in Sec. 13.8 and summarized inTable 13.2
the presence of a zero in the control ratio is necessary in order to achieve
e(t)ss¼ 0 for a ramp input. In synthesizing the desired control ratio,
Eq. (13.110) can also be used to assist in achieving this condition while
simultaneously satisfying the other desired figures of merit.

If the locations of the zeros of Gx(s) are satisfactory, the design proce-
dure is the same as for the all-pole case of Sec. 13.9. That is, the coefficients
of the desired characteristic equation are equated to the corresponding coeffi-
cients of the numerator polynomial of1þG(s)Heq(s) in order to determine the
required KG and ki. It is possible to achieve low sensitivity to variation in gain
by requiring that

1. Y(s)/R(s) have b dominant poles and at least one nondominat pole.
2. The b dominant poles be close b zeros ofHeq(s).

The later can be achieved by a judicious choice of the compensator pole(s)
and/or the nondominant poles.

Three examples are used to illustrate state feedback design for plants
that contain one zero. The procedure is essentially the same for systems
havingmore than one zero.The design technique illustrated in these examples
can be modified as desired.

Trial 1: Design Example 1. The control ratio for the system of Fig.13.15 is

Y ðsÞ
RðsÞ ¼

Aðs þ 2Þ
s3 þ ½6þ ðk3 þ k2ÞA�s2 þ ½5þ ðk3 þ 2k2 þ k1ÞA�s þ 2k1A

ð13:117Þ

A trial function for the desired control ratio for this system is specified as

Y ðsÞ
RðsÞ






desired

¼ 2
s2 þ 2s þ 2

ð13:118Þ

which follows a step input with no steady-state error. Note that three
dominant poles are being assigned: p1 ¼ �1þ j1� p2 ¼ �1� j1� p3 ¼ �2:
There is no nondominant pole inY(s)/R(s).
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If Eq. (13.117) is to reduce to Eq. (13.119), then one pole of Eq. (13.117) must
have the value s =�2, in order to cancel the zero, and A = 2. Equation (13.118)
is modified to reflect this requirement.

Y ðsÞ
RðsÞ






desired

¼ 2ðs þ 2Þ
ðs2 þ 2s þ 2Þðs þ 2Þ ¼

2ðs þ 2Þ
ðs3 þ 4s2 þ 6s þ 4Þ ð13:119Þ

Equating the corresponding coefficients of the denominators of Eqs. (13.117)
and (13.119) yields k1 ¼ 1� k2 ¼ 1=2� and k3 ¼ �3=2:Thus

GðsÞHeqðsÞ ¼
�Aðs2 � s=2� 2Þ
sðs þ 1Þðs þ 5Þ ¼ �1 ð13:120Þ

whose zeros are s1 ¼ �1:189 and s2 ¼ 1:686.Canceling the minus sign shows
that the 0� root locus is required, and it is plotted in Fig. 13.16. For A ¼ 2, the
roots are p1� 2 ¼ �1
 j1 and p3 ¼ �2, as specified by Eq. (13.119). Note that
because Eq. (13.118) has no other poles in addition to the dominant poles, the
necessary condition of at least one nondominant pole is not satisfied. As a
result, two braches of the root locus enter the RH of the s plane, yielding a
system that can become unstable for high gain.The response of this system to
a unit step input has Mp ¼ 1:043� tp ¼ 3:1 s, and ts ¼ 4:2 s. Because the
roots are not near zeros, the system is highly sensitive to gain variation,

FIGURE 13.15 Closed-loop zero cancellation by state-variable-feedback: (a) detailed
block diagram; (b) H-equivalent reduction (where KG¼A).
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as seen from the root locus in Fig.13.16. Any increase in A results in a signifi-
cant change in performance characteristics, and the systembecomes unstable
if A exceeds the value of 6.The ramp error coefficient obtained from GeqðsÞ is
K1 ¼ 1:0.

Design Example 1 illustrates that insensitivity to gain variation and
stability for all positive values of gain is not achieved. In order to satisfy
these conditions, ½Y ðsÞ=RðsÞ�T must have b dominant poles and at least one
nondominant pole.The next example illustrates this design concept.

Trial 2: Design Example 2. For the third-order system of Fig. 13.15, it is
desired to cancel the control ratio zero at s¼�2 and to reduce the system
output sensitivity to variations in the gain A while effectively achieving
the second-order response of Eq. (13.118). The time response is satisfied if
Y(s)/R(s) has three dominant poles s1�2 ¼ �1
 j1 and s3 ¼ �2: However, in
order to achieve insensitivity to gain variation, the transfer function Heq(s)
must be increased to n¼ 4. Therefore, one pole must be added to G(s) by
using the cascade compensator GcðsÞ ¼ 1=ðs þ aÞ: Then Y(s)/R(s) can have
one nondominant pole p and the desired control ratio is given by

Y ðsÞ
RðsÞ






desired

¼ KGðs þ 2Þ
ðs2 þ 2s þ 2Þðs þ 2Þðs � pÞ : ð13:121Þ

The selections of the values of KG¼A and p are not independent
because the condition of e(t)ss¼ 0 for a step input rðtÞ ¼ R 0u�1ðtÞ is required.

FIGURE 13.16 Root locus for Eq. (13.120).
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Thus

yðtÞss ¼ lim
s!0

sY ðsÞ ¼ �KG

2p
R0 ¼ R0 ð13:122Þ

or

KG ¼ �2p ð13:123Þ
As mentioned previously, the larger the value of the loop sensitivity for

the root locus of G(s)Heq(s)¼�1, the closer the roots will be to the zeros of
Heq(s). It is this ‘‘closeness’’ that reduces the system’s output sensitivity to
gain variations. Therefore, the value of KG should be chosen as large as pos-
sible consistent with the capabilities of the system components. This large
value of KG may have to be limited to a value that does not accentuate the
system noise to an unacceptable level. For this example, selecting a value of
KG¼100 ensures that p is a nondominant pole.This results in a value p¼�50
so that Eq. (13.121) becomes

Y ðsÞ
RðsÞ






desired

¼ 100ðs þ 2Þ
s4 þ 54s3 þ 206s2 þ 304s þ 200Þ : ð13:124Þ

The detailed state feedback andH-equivalent block diagrams for themodified
control system are shown in Fig.13.17a and b, respectively.

FIGURE 13.17 Closed-loop zero cancellation by state-variable feedback: (a) detailed
block diagram; (b) H-equivalent reduction (where KG¼A).
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In order to maintain a controllable and observable system the values
of a can be chosen to be any value other than the value of the zero term
ofG(s).Thus, assume a¼1. With this value of a and with KG¼100, the control
ratio of the system of Fig.13.17b is

Y ðsÞ
RðsÞ ¼

100ðs þ 2Þ
s4 þ ð7þ 100k4Þs3 þ ½11þ 100ð6k4 þ k3 þ k2Þ�s2
þ ½5þ 100ð5k4 þ k3 þ k2 þ k1Þ�s þ 200k1

ð13:125Þ

For Eq. (13.125) to yield e(t)ss¼ 0 with a step input requires k1¼1. Equating
the corresponding coefficients of the denominators of Eqs. (13.124) and
(13.125) and solving for the feedback coefficients yields k2 ¼ 0:51�
k3 ¼ �1:38� and k4 ¼ 0:47:Thus, from Fig.13.17b:

GðsÞHeqðsÞ ¼
0:47KGðs3 þ 4:149s2 þ 6:362s þ 4:255Þ

s4 þ 7s3 þ 11s2 þ 5s
ð13:126Þ

Verification. The root locus shown in Fig.13.18 reveals that the three desired
dominant roots are close to the three zeros of Heq(s), the fourth root is non-
dominant, and the root locus lies entirely in the left-half s plane.Thus, the full
benefits of state-variable feedback have been achieved. In other words, a
completely stable system with low sensitivity to parameter variation has
been realized. The figures of merit of this system are Mp ¼ 1:043� tp ¼ 3:2 s�
ts ¼ 4:2 s� and K1 ¼ 0:98 s�1:

Trial 3: Design Example 3. A further improvement in the time response
can be obtained by adding a pole and zero to the overall system function of

FIGURE 13.18 The root locus for Eq. (13.126).
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Design Example 2.The control ratio to be achieved is

Y ðsÞ
RðsÞ ¼

KGðs þ 1:4Þðs þ 2Þ
ðs þ 1Þðs2 þ 2s þ 2Þðs þ 2Þðs � pÞ

¼ KGðs þ 1:4Þðs þ 2Þ
s5 þ ðs � pÞs4 þ ð10� 5pÞs3 þ ð10� 10pÞs2 þ ð4� 10pÞs � 4p

ð13:127Þ
Analysis of Eq. (13.127) shows the following features:

1. BecauseY(s)/R(s) has four dominant poles, the nondominant pole p
yields the desired property of insensitivity to gain variation.

2. The pole-zero combination ðs þ 1:4Þ=ðs þ 1Þ is added to reduce the
peak overshoot in the transient response.

3. The factor sþ 2 appears in the numerator because it is present in
G(s).Because it is not desired inY(s)/R(s), it is canceled by producing
the same factor in the denominator.

4. In order to achieve zero steady-state error with a step
input rðtÞ ¼ u�1ðtÞ� the output is obtained by applying the final-
value theorem toY(s). This yields yðtÞss ¼ KG � 1:4� 2=ð�4pÞ ¼ 1:
Therefore, p¼�0.7KG. Assuming the large value of KG¼100 to
be satisfactory results in p¼�70, which is nondominant, as
required.

The required form of the modified system is shown in Fig. 13.19. The
cascade compensator 1/(sþ1) is added to the system in order to achieve
the degree of the denominator of Eq. (13.127). The cascade compensator
(sþ1.4)/(sþ 3) is included in order to produce the desired numerator factor
sþ1.4. The denominator is arbitrarily chosen as sþ 3. This increases the
degree of the denominator in order to permit canceling the factor sþ 2 in
Y(s)/R(s).

The forward transfer function obtained from Fig.13.19 is

GðsÞ ¼ 100ðsþ1:4Þðsþ2Þ
sðsþ1Þ2ðsþ3Þðsþ5Þ ¼

100ðs2þ3:4sþ2:8Þ
s5þ10s4þ32s3þ38s2þ15s

ð13:128Þ

The value ofHeq(s) is evaluated from Fig.13.19 and is

HeqðsÞ ¼

ðk5 þ k4Þs4 þ ð9k5 þ 7:4k4 þ k3 þ k2Þs3
þð23k5 þ 13:4k4 þ 2:4k3 þ 3:4k2 þ k1Þs2
þð15k5 þ 7k4 þ 1:4k3 þ 2:8k2 þ 3:4k1Þs þ 2:8k1

ðs þ 1:4Þðs þ 2Þ
ð13:129Þ
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The desired overall system function is obtained from Eq. (13.127), with the
values KG¼100 and p¼�70, as follows.

Y ðsÞ
RðsÞ ¼

100ðs þ 1:4Þðs þ 2Þ
s5 þ 75s4 þ 360s3 þ 710s2 þ 704s þ 280

ð13:130Þ

The system function obtained by usingG(s) andHeq(s) is

Y ðsÞ
RðsÞ ¼

100ðsþ1:4Þðsþ2Þ
s5þ½10þ100ðk5þk4Þ�s4
þ ½32þ100ð9k5þ7:4k4þk3þk2Þ�s3
þ ½38þ100ð23k5þ13:4k4þ2:4k3þ3:4k2þk1Þ�s2
þ ½15þ100ð15k5þ7k4þ1:4k3þ2:8k2þ3:4k1Þ�sþ100ð2:8k1Þ

ð13:131Þ
Equating the coefficients in the denominators of Eqs. (13.130) and (13.131)
yields 280k1¼280, or k1¼1, and

1500k5 þ 700k4 þ 140k3 þ 280k2 ¼ 349
2300k5 þ 1340k4 þ 240k3 þ 340k2 ¼ 572
900k5 þ 740k4 þ 100k3 þ 100k2 ¼ 328
100k5 þ 100k4 ¼ 65

ð13:132Þ

FIGURE 13.19 State feedback diagram for Design Example 3.
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Solving these four simultaneous equations gives k2 ¼ 1:0� k3 ¼ �2:44167�
k4 ¼ 0:70528� and k5 ¼ �0:05528:

In order to demonstrate the desirable features of this system, the root
locus is drawn in Fig.13.20 for

GðsÞHeqðsÞ ¼
100ð0:65s4 þ 3:28s3 þ 6:72s2 þ 6:89s þ 2:8Þ

sðs þ 1Þ2ðs þ 3Þðs þ 5Þ
¼ 65ðs þ 1:04532
 j1:05386Þðs þ 0:99972Þðs þ 1:95565Þ

sðs þ 1Þ2ðs þ 3Þðs þ 5Þ
ð13:133Þ

The root locus shows that the zero of Y(s)/R(s) at s¼�2 has been canceled
by the pole at s¼�2. Because the root s4¼�2 is near a zero in Fig. 13.20, its
value is insensitive to increases in gain.This ensures the desired cancellation.
The dominant roots are all near zeros in Fig. 13.20, thus assuring that the
desired control ratio Y(s)/R(s) as given by Eq. (13.127) has been achieved.
The system is stable for all values of gain KG. Also, state-variable feedback
has produced a system in which Y(s)/R(s) is unaffected by increases in A
above 100. The time response y(t) to step input has a peak overshoot
Mp¼1.008, a peak time tp¼ 3.92, and a settling time ts¼ 2.94. The ramp
error coefficient evaluated for Geq(s) is K1¼ 0.98.These results show that the
addition of the pole-zero combination (sþ1.4)/(sþ1) to Y(s)/R(s) has
improved the performance.This system is insensitive to variation in gain.

The three design examples in this section are intended to provide a firm
foundation in the procedures for

1. Synthesizing the desired system performance and the overall
control ratio.

2. Analyzing the root locus of G(s)Heq(s)¼�1 for the desired system
performance and verifying insensitivity to variations in gain.

FIGURE 13.20 Root locus for Eq. (13.133). (Drawing is not to scale.)

Design: Closed-Loop Pole-Zero Assignment 531

Copyright © 2003 Marcel Dekker, Inc.



3. Determining the values of ki to yield the desired system
performance.

These approaches are not all-inclusive, and variationsmay be developed
[8,10].

13.13 OBSERVERS [12–17]

The synthesis of state-feedback control presented in the earlier portions of
this chapter assumes that all the states x are measurable or that they can be
generated from the output. In many practical control systems it is physically
or economically impractical to install all the transducers which would be
necessary to measure all of the states. The ability to reconstruct the plant
states from the output requires that all the states be observable.The necessary
condition for complete observability is given by Eq. (13.15).

The purpose of this section is to present methods of reconstructing the
states from the measured outputs by a dynamical system, which is called an
observer. The reconstructed state vector x̂x may then be used to implement a
state-feedback control law u ¼ Kx̂x: A basic method of reconstructing the
states is to simulate the state and output equations of the plant on a digital
computer.Thus, consider a system represented by the state and output equa-
tions of Eqs. (13.12) and (13.13).These equations are simulated on a computer
with the same input u that is applied to the actual physical system.The states of
the simulated system and of the actual systemwill then be identical only if the
initial conditions of the simulation and of the physical plant are the same.
However, the physical plant may be subjected to unmeasurable disturbances,
which cannot be applied to the simulation.Therefore, the difference between
the actual plant output y and the simulation output ŷy is used as another input
in the simulation equation. Thus, the observer state and output equations
become

_̂xx̂xx ¼ Ax̂xþ Buþ Lðy� ŷyÞ ð13:134Þ
and

ŷy ¼ Cx̂x ð13:135Þ
where L is the n� l observer matrix.

A method for synthesizing the matrix L uses the observer reconstruction
error and its derivative defined, respectively, by

e � x� x̂x ð13:136aÞ
_ee ¼ _xx� _̂xx̂xx ð13:136bÞ
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Subtracting Eq. (13.134) from Eq. (13.22) and using Eqs. (13.23), (13.135), and
(13.136) yields the observer-error state equation

_ee ¼ ðA� LCÞe ð13:137Þ
By an appropriate choice of the observer matrix L, all of the eigenvalues of
A�LC can be assigned to the left-half plane, so that the steady-state value of
e(t) for any initial condition is zero:

lim
t!0

eðtÞ ¼ 0 ð13:138Þ

Equation (13.137) indicates that the observer error equation has no input and
is excited only by the initial condition, and thus the observer error is not deter-
mined by the system input. The steady-state value of the error is therefore
equal to zero.The significance of this is that the observer states approach the
plant states in the steady-state for any input to the plant. The eigenvalues of
[A�LC] are usually selected so that they are to the left of the eigenvalues of
A.Thus, the observer states have an initial ‘‘start-up’’error when the observer
is turned on, but they rapidly approach the plant states.

The selection of the observer matrix L can be used to assign both the
eigenvalues and the eigenvectors of the matrix [A�LC]. Only eigenvalue
assignment is considered in this section. The method of Refs. 12 and 13 is
used to assign the eigenvectors also. The representation of the physical plant
represented by Eqs. (13.22) and (13.23) and the observer represented by
Eqs. (13.134) and (13.135) are shown in Fig.13.21.

Example 3. In the example of Sec. 13.3, the output is used to implement a
state feedback control law. An observer is to be synthesized to reconstruct
the inaccessible state x2. The system is completely observable since, from
Eq. (13.15),

RankMo ¼ Rank 1 �1
0 3

� �
¼ 2 ¼ n ð13:139Þ

The eignevalues [A�LC] are determined by the characteristic polynomial

lI� ðA� LCÞ

 

 ¼ l 0

0 l

" #
�
�1 3

0 �2

" #
þ

‘1

‘2

" #
1 0
� �












¼ l2 þ ð3þ l1Þlþ ð2þ 2l1 þ 3l2Þ ¼ ðlþ 9Þðlþ 10Þ

ð13:140Þ
Assigning the eigenvalues as l1¼�9 and l2¼�10 requires that l1¼16 and
l2¼ 56

3 . The effectiveness of the observer in reconstructing the state x2(t) is
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shown by comparing the responses of the plant and the observer. For
u(t)¼ u�1(t), x1(0)¼ 0, x2(0)¼ 1, x̂x1ð0Þ ¼ 0� and x̂x2ð0Þ ¼ 0� the initial state
reconstruction error are e1ð0Þ ¼ 0 and e2ð0Þ ¼ 1: The responses obtained
from Eqs. (13.22), (13.137), and (13.134), respectively, are:

x2ðtÞ ¼ 0:5þ 0:5e�2t ð13:141Þ
e2ðtÞ ¼ 8e�9t � 7e�10t ð13:142Þ
x̂x2ðtÞ ¼ 0:5þ 0:5e�2t � 8e�9t þ 7e�10t ð13:143Þ

These quantities are plotted in Fig. 13.22 and show that x̂x2ðtÞ converges
rapidly to the actual state x2(t).

The observer described by Eqs. (13.134) and (13.135) is called a full-order
observer since it generates estimates of all the states. If some of the states are
accessible, as in the example above in which the state x1¼y is measurable, the
order of the observer may be reduced.The description of such reduced-order
observers is contained in the literature [6].

13.14 CONTROL SYSTEMS CONTAINING OBSERVERS

This section covers the synthesis of control systems for plants with inaccessi-
ble states. In such cases an observer can be used to generate estimates of
the states, as described in Sec. 13.13. Consider the case of a controllable and

FIGURE 13.21 Plant with inaccessible states and an observer that generates
estimates of the states.
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observable system governed by the state and output equations of Eqs. (13.22)
and (13.23).The observer governed by Eq. (13.134) produces the states x̂xwhich
are estimates of the plant states x.The reconstruction error between the plant
states x and the observer states x̂x is given by Eq. (13.136a). The matrix L

is selected, as shown in Sec. 13.13, so that the eigenvalues of [A�LC] are
far to the left of the eigenvalues of A. The control law used to modify the
performance of the plant is

u ¼ rþ Kx̂x ¼ rþ Kðx� eÞ ð13:144Þ
where r is the input. Then Eq. (13.22) becomes

_xx ¼ ðAþ BKÞx� BKeþ Br ð13:145Þ
The composite closed-loop system consists of the interconnected plant and
observer (see Fig. 13.21) and the controller of Eq. (13.144). This closed-loop
system is represented by Eqs. (13.145) and (13.137), which are written in the
composite matrix form

_xx
_ee

� �
¼ Aþ BK �BK

0 A� LC

� �
x

e

� �
þ B

0

� �
r ð13:146Þ

The characteristic polynomial for the matrix of Eq. (13.146) is

QðlÞ ¼ lI� ðAþ BKÞ

 

E lI� ðA� LCÞ

 

 ð13:147Þ
Therefore, the eigenvalues of ½Aþ BK� and ½Aþ LC� can be assiagned
independently by the selection of appropriate matrices K and L. This is an

FIGURE 13.22 Plant and observer states, Eqs. (13.141) and (13.143).
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important property which permits the observer and the controller to be
designed separately.

Example 4. For the system in the example of Sec. 13.3, the eigenvalues of
½Aþ BK� are assigned as l1¼�5 and l2¼�6 by selecting k1¼�5 and
k2¼�3, or K ¼ �5 3

� �
: For uðtÞ ¼ u�1ðtÞ� x1ð0Þ ¼ 0� and x2ð0Þ ¼ 1� the

state response of the system of Eq. (13.32) when the states are accessible is

x1ðtÞ
x2ðtÞ

� �
¼

1
6� 1

6 e
�6t

1
30þ 9

5 e
�5t � 5

6 e
�6t

" #
ð13:148Þ

It is noted, since y¼ x1, that the output does not track the input.When the
states are not accessible and the observer of the example in Sec.13.14 is used,
the composite representation of Eq. (13.146) is

_xxðtÞ
_eeðtÞ

� �
¼
�6 0 5 3
�5 �5 5 3
0 0 �17 3
0 0 �56

3 �2

2
664

3
775 xðtÞ

eðtÞ
� �

þ
1
1
0
0

2
664

3
775rðtÞ ð13:149Þ

The solution of the plant states from Eq. (13.149) with the input
rðtÞ ¼ u�1ðtÞ� x1ð0Þ� x2ð0Þ ¼ 1� e1ð0Þ ¼ 0� and e2ð0Þ ¼ 1 is

x1ðtÞ
x2ðtÞ

� �
¼

1
6þ 23

6 e�6t � 13e�9t þ 9e�10t
1
30� 42

5 e�5t þ 115
6 e�6t � 26e�9t þ 81

5 e�10t

" #
ð13:150Þ

The difference between Eqs. (13.148) and (13.150) is due to the presence of the
observer in the latter case. The responses are plotted in Fig. 13.23 and show
that the states reach the same steady-state values.

The contribution of the observer to the plant-state response can be
changed by assigning the eigenvectors as well as the eigenvalues.This can be
accomplished by the method of Refs. 3 and 4.

13.15 SUMMARY

This chapter presents the controllability and observability properties of a
system. These properties are important in the application of many control
system design techniques. This is followed by the presentation of the design
method using the state-variable representation of SISO systems. Assignment
of the closed-loop eigenvalues for SISO systems is readily accomplished when
the plant state equation is transformed into the control canonical form
_xx ¼ Acxþ bcu and the system is controllable. In this representation,
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the plant matrix Ac is in companion form and the control matrix bc contains
all zeros except for the unit element in the last row.

A model control ratio incorporating the desired system performance
specifications is used in this chapter to design a compensated state-
variable-feedback control system. The root-locus properties and character-
ization, the steady-state error analysis, and the use of steady-state error
coefficients, as they pertain to state-variable-feedback systems (all-pole
and pole-zero plants) are discussed in detail. The presence of at least
one nondominant closed-loop pole is required in order to minimize the
sensitivity of the output response to gain variations. A comparison
of the sensitivity to gain variation is made of unity-feedback and state-
variable-feedback systems.

The design of an observer to implement a state feedback design is
illustrated when all the state variables are observable. The use of CAD
programs expedite the achievement of an acceptable design.
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14

Parameter Sensitivity and State-Space
Trajectories

14.1 INTRODUCTION

In Chap. 13 it is shown that an advantage of a state-feedback control system
operating with high forward gain (hfg) is the insensitivity of the system
output to gain variations in the forward path.The design method of Chap. 13
assumes that all states are accessible. This chapter investigates in depth the
insensitive property of hfg operation of a state-feedback control system.This
is followed by a treatment of inaccessible states. In order for the reader
to develop a better feel for the kinds of transient responses of a system, this
chapter includes an introduction to state-space trajectories. This includes
the determination of the steady-state, or equilibrium, values of a system
response. While linear time-invariant (LTI) systems have only one equili-
brium value, a nonlinear system may have a number of equilibrium solutions.
These can be determined from the state equations. They lead to the develop-
ment of the Jacobian matrix,which is used to represent a nonlinear system by
approximate linear equations in the region close to the singular points.

14.2 SENSITIVITY

The environmental conditions to which a control system is subjected affect
the accuracy and stability of the system. The performance characteristics
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of most components are affected by their environment and by aging.Thus, any
change in the component characteristics causes a change in the transfer func-
tion and therefore in the controlled quantity.The effect of a parameter change
on system performance can be expressed in terms of a sensitivity function.This
sensitivity function SM

� is a measure of the sensitivity of the system’s response
to a system parameter variation and is given by

SM
� ¼

dðlnM Þ
dðln �Þ ¼

dðlnM Þ
d�

d�
dðln �Þ ð14:1Þ

where ln¼logarithm to base e, M¼ system’s output response (or its control
ratio), and �¼ system parameter that varies.Now

dðlnM Þ
d�

¼ 1
M

dM
d�

and
dðln �Þ
d�
¼ 1
�

ð14:2Þ
Accordingly, Eq. (14.1) can be written

SM
�

M¼Mo

�¼�o









¼ dM=Mo

d�=�o

¼ �

M
dM
d�

� �
M¼Mo

�¼�o







 ¼ fractional change in output
fractional change in system parameter

(14.3)

whereMo and �o represent the nominal values ofM and �.WhenM is a function
of more than one parameter, say �1, �2 , . . . , �k, the corresponding formulas for
the sensitivity entail partial derivatives. For a small change in � from �o , M
changes fromMo , and the sensitivity can be written as

SM
� M¼Mo

�¼�o







 � �M=Mo

��=�o
ð14:4Þ

To illustrate the effect of changes in the transfer function, four cases are
considered for which the input signal r(t) and its transform R(s) are fixed.
Although the responseY(s) is used in these four cases, the results are the same
whenM(s) is the control ratio.

Case 1: Open-Loop System of Fig. 14.1a

The effect of a change inG(s), for a fixed r(t) and thus a fixedR(s), can be deter-
mined by differentiating,with respect toG(s), the output expression

YoðsÞ ¼ RðsÞGðsÞ ð14:5Þ
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giving

dYoðsÞ ¼ RðsÞ dGðsÞ ð14:6Þ
Combining these two equations gives

dYoðsÞ ¼
dGðsÞ
GðsÞ YoðsÞ ! SY ðsÞ

GðsÞ ðsÞ ¼
dYoðsÞ=YoðsÞ
dGðsÞ=GðsÞ ¼ 1 ð14:7Þ

Achange in the transfer functionG(s) therefore causes a proportional change
in the transform of the outputYo(s).This requires that the performance speci-
fications of G(s) be such that any variation still results in the degree of accu-
racy within the prescribed limits. In Eq. (14.7) the varying function in the
system is the transfer function G(s).

Case 2: Closed-Loop Unity-Feedback System of Fig. 14.1b
½HðsÞ ¼ 1�
Proceeding in the samemanner as for case1, forG(s) varying, leads to

YcðsÞ ¼ RðsÞ GðsÞ
1þ GðsÞ ð14:8Þ

dYcðsÞ ¼ RðsÞ dGðsÞ
½1þ GðsÞ�2 ð14:9Þ

dYcðsÞ ¼
dGðsÞ

GðsÞ½1þ GðsÞ�YcðsÞ ¼
1

1þ GðsÞ
dGðsÞ
GðsÞ YcðsÞ

SY ðsÞ
GðsÞ ¼

dYcðsÞ=YcðsÞ
dGðsÞ=GðsÞ ¼

1
1þ GðsÞ ð14:10Þ

Comparing Eq. (14.10) with Eq. (14.7) readily reveals that the effect of changes
of G(s) upon the transform of the output of the closed-loop control is reduced
by the factor 1/j1 þ G(s)j compared to the open-loop control. This is an
important reason why feedback systems are used.

FIGURE 14.1 Control systems: (a) open loop; (b) closed loop.

Parameter Sensitivity and State-Space Trajectories 541

Copyright © 2003 Marcel Dekker, Inc.



Case 3: Closed-Loop Nonunity-Feedback System of Fig. 14.1b
[Feedback Function HðsÞ Fixed and GðsÞ Variable]
Proceeding in the samemanner as for case1, for G(s) varying, leads to

YcðsÞ ¼ RðsÞ GðsÞ
1þ GðsÞH ðsÞ ð14:11Þ

dYcðsÞ ¼ RðsÞ dGðsÞ
½1þ GðsÞH ðsÞ�2 ð14:12Þ

dYcðsÞ ¼
dGðsÞ

GðsÞ 1þ GðsÞH ðsÞ½ �YcðsÞ ¼
1

1þ GðsÞH ðsÞ
dGðsÞ
GðsÞ YcðsÞ

SY ðsÞ
GðsÞ ¼

dYcðsÞ=YcðsÞ
dGðsÞ=GðsÞ ¼

1
1þ GðsÞH ðsÞ ð14:13Þ

Comparing Eqs. (14.7) and (14.13) shows that the closed-loop variation is
reduced by the factor 1/j1þG(s)H(s)j. In comparing Eqs. (14.10) and (14.13), if
the term j1þG(s)H(s)j is larger than the term j1þG(s)j, then there is an advan-
tage to using a nonunity-feedback system. Further, H(s) may be introduced
both to provide an improvement in system performance and to reduce the
effect of parameter variations withinG(s).

Case 4: Closed-Loop Nonunity-Feedback System of Fig. 14.1b
[Feedback Function HðsÞ Variable and GðsÞ Fixed]
From Eq. (14.11),

dYcðsÞ ¼ RðsÞ �GðsÞ
2dH ðsÞ

½1þ GðsÞdH ðsÞ�2 ð14:14Þ

Multiplying and dividing Eq. (14.14) by H(s) and also dividing by Eq. (14.11)
results in

dYcðsÞ ¼ �
GðsÞH ðsÞ

1þ GðsÞH ðsÞ
dH ðsÞ
H ðsÞ

� �
Yc sð Þ � �

dH ðsÞ
H ðsÞ YcðsÞ

SY ðsÞ
H ðsÞ ¼

dYcðsÞ=YcðsÞ
dH ðsÞ=H ðsÞ � �1 ð14:15Þ

The approximation applies for those cases where jG(s)H(s)j>>1. When
Eq. (14.15) is compared with Eq. (14.7), it is seen that a variation in the feed-
back function has approximately a direct effect upon the output, the same as
for the open-loop case. Thus, the components of H(s) must be selected
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as precision fixed elements in order tomaintain the desired degree of accuracy
and stability in the transformY(s).

The two situations of cases 3 and 4 serve to point out the advantage of
feedback compensation from the standpoint of parameter changes. Because
the use of fixed feedback compensation minimizes the effect of variations in
the components of G(s), prime consideration can be given to obtaining the
necessary power requirements in the forward loop rather than to accuracy
and stability.H(s) can be designed as a precision device so that the transform
Y(s), or the output y(t), has the desired accuracy and stability. In other words,
by use of feedback compensation the performance of the system can be made to
depend more on the feedback term than on the forward term.

Applying the sensitivity equation (14.3) to each of the four cases,where
M(s)¼Y(s)/R(s),where �¼G(s) (for cases 1, 2, and 3), and �¼H(s) (for case 4),
yields the results shown inTable14.1.This table reveals that SM

� never exceeds a
magnitude of 1, and the smaller this value, the less sensitive the system is to a
variation in the transfer function. For an increase in the variable function, a
positive value of the sensitivity function means that the output increases
from its nominal response. Similarly, a negative value of the sensitivity
function means that the output decreases from its nominal response. The
results presented in this table are based upon a functional analysis; i.e., the
‘‘variations’’considered are inG(s) andH(s).The results are easily interpreted
when G(s) and H(s) are real numbers. When they are not real numbers,
and where � represents the parameter that varies within G(s) or H(s), the
interpretation can be made as a function of frequency.

The analysis in this section so far has considered variations in the
transfer functions G(s) and H(s). Take next the case when r(t) is sinusoidal.
Then the input can be represented by the phasor R( jo) and the output by
the phasor Y( jo). The system is now represented by the frequency transfer

TABLE 14.1 Sensitivity Functions

Case System variable parameter SM
�

1 G(s) dYo=Yo

dG=G
¼ 1

2 G(s) dYc=Yc

dG=G
¼ 1

1þ G

3 G(s) dYc=Yc

dG=G
¼ 1

1þ GH

4 H(s) dYc=Yc

dH=H
� �1
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functionsG( jo) andH( jo). All the formulas developed earlier in this section
are the same in form,but the arguments are jo instead of s. As parameters vary
within G( jo) and H( jo), the magnitude of the sensitivity function can be
plotted as a function of frequency.The magnitude S

M
� ð joÞ



 

 does not have the
limits of 0 to 1 given inTable 14.1, but can vary from 0 to any large magnitude.
An example of sensitivity to parameter variation is investigated in detail in the
following section. That analysis shows that the sensitivity function can be
considerably reduced with appropriate feedback included in the system
structure.

14.3 SENSITIVITY ANALYSIS [3,4]

An important aspect in the design of a control system is the insensitivity of the
system outputs to items such as: sensor noise, parameter uncertainty, cross-
coupling effects, and external systemdisturbances.The analysis in this section
is based upon the control system shown in Fig.14.2 whereT(s)¼Y(s)/R(s) and
where F(s) represents a prefilter. The plant is described by P(s) and may
include some parameter uncertainties (see Sec.14.4). In this systemG(s) repre-
sents a compensator.The prefilter and compensator are designed tominimize
the effect of the parameter uncertainties. The goal of the design is to satisfy
the desired figures of merit (FOM). In this text it is assumed that F(s)¼ 1.
The effect of these items on system performance can be expressed in terms of
the sensitivity functionwhich is defined by

ST
� ¼

�

T
@T
@�

� �
ð14:16Þ

where � represents the variable parameter in T. Figure 14.2 is used for the
purpose of analyzing the sensitivity of a system to three of these items.

Using the linear superposition theorem,where

Y ¼ YR þ YC þ YN

FIGURE 14.2 An example of system sensitivity analysis.
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and

TR ¼
YR

R
¼ FL

1þ L
ð14:17aÞ

TN ¼
YN

N
¼ �L

1þ L
ð14:17bÞ

TC ¼
YC

C
¼ P

1þ L
ð14:17cÞ

and L¼GP (the loop transmission function), the following transfer functions
and sensitivity functions (where �¼P) are obtained, respectively, as:

STR
P ¼

FG
1þ L

ð14:18aÞ

STN
P ¼

�G
1þ L

ð14:18bÞ

STC
P ¼

1
1þ L

ð14:18cÞ

Since sensitivity is a function of frequency, it is necessary to achieve a
slope for Lm Lo( jo) that minimizes the effect on the system due to sensor
noise. This is the most important case, since the ‘‘minimum BW’’ of
Eq. (14.17b) tends to be greater than the BWof Eq. (14.17a), as illustrated in
Fig. 14.3. Based on the magnitude characteristic of Lo for low- and high-
frequency ranges, then:

For the low-frequency range,where jL( jo)j>>1, from Eq. (14.18b),

STN
P �

�1
Pð joÞ










 ð14:19Þ

For the high-frequency range,where jL( jo)j<<1, from Eq. (14.18b),

STN
P � �Gð joÞ



 

 ¼ �Lð joÞ
Pð joÞ










 ð14:20Þ

The BW characteristics of the open-loop function L( jo), with respect
to sensitivity, are illustrated in Fig. 14.4. As seen from this figure, the
low-frequency sensitivity given by Eq. (14.19) is satisfactory but the high-
frequency sensitivity given by Eq. (14.20) is unsatisfactory since it can present
a serious noise rejection problem.

Based upon the analysis of Fig. 14.4, it is necessary to try to make the
phase margin frequency of (the loop transmission BW), small enough in
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FIGURE 14.4 Bandwidth characteristics of Fig. 14.2.

FIGURE 14.3 Frequency response characteristics for the system of Fig. 14.2.
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order to minimize the sensor noise effect on the system’s output. For most
practical systems n�wþ 2 andZ 1

0
log S

T
P

� �
do ¼ 0 ð14:21Þ

S
T
P N



 

 < 1! log S
T
P N

� �
< 0 ð14:22aÞ

S
T
P N



 

 > 1! log S
T
P N

� �
> 0 ð14:22bÞ

Thus, the designer must try to locate the condition of Eq. (14.22b) in the high-
frequency range where the system performance is not of concern; i.e., the
noise effect on the output is negligible.

The analysis for external disturbance effect (see Ref. 4) on the system
output is identical to that for cross-coupling effects. For either case, low
sensitivity is conducive to their rejection.

14.4 SENSITIVITY ANALYSIS [3,4] EXAMPLES

This section shows how the use of complete state-variable or output feedback
minimizes the sensitivity of the output response to a parameter variation.This
feature of state feedback is in contrast to conventional control-system design
and is illustrated in the example of Sec. 13.9 for the case of system gain varia-
tion. In order to illustrate the advantage of state-variable feedback over the
conventional method of achieving the desired system performance, a system
sensitivity analysis is made for both designs.The basic plantGx(s) of Fig.13.9a
is used for this comparison. The conventional control system is shown in
Fig. 14.5a. The control-system design can be implemented by the complete
state-feedback configuration of Fig.14.5b or by the output feedback represen-
tation of Fig.14.5c,which usesHeq as a fixed feedback compensator.The latter
configuration is shown to be best for minimizing the sensitivity of the output
response with a parameter variation that occurs in the forward path, between
the state xn and the output y. For both the state-feedback configuration and its
output feedback equivalent, the coefficients ki are determined for the nominal
values of the parameters and are assumed tobe invariant.The analysis is based
upon determining the value of the passband frequency ob at jMo( job)j ¼
Mo¼ 0.707 for the nominal system values of the conventional and state-
variable-feedback control systems. The system sensitivity function of
Eq. (14.3), repeated here, is determined for each system of Fig. 14.5 and
evaluated for the frequency range 0�o�ob:

SM
� ðsÞ M¼Mo

�¼�o







 ¼ �

M
dM
d�

� �
M¼Mo
�¼�o







 ð14:23Þ
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Note thatM is the control ratio.The passband frequency is ob¼ 0.642 for the
system of Fig. 14.5a with nominal values, and ob¼1.0 for the state-feedback
system of Figs.14.5b and14.5cwith nominal values.

The control ratios for each of the three cases to be analyzed are

Figure14.5a:

M ðsÞ ¼ 10A
s3 � ðp1 þ p2Þs2 þ p1p2s þ 10A

ð14:24Þ
Figure14.5b:

M ðsÞ ¼ 10A
s3 þ ð2Ak3 � p1 � p2Þs2 þ ½p1p2 þ 2Að5k2 � k3p2Þ�s þ 10Ak1

ð14:25Þ
Figure14.5c:

M ðsÞ ¼ 10A
s3 þ ð2Ak3 � p1 � p2Þs2 þ ½p1p2 þ 10Aðk3 þ k2Þ�s þ 10Ak1

ð14:26Þ

FIGURE 14.5 Control: (a) unity feedback; (b) state feedback; (c) state feedback,
H-equivalent. The nominal values are p1¼�1, p2¼�5 and A¼ 10.
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The system sensitivity function for any parameter variation is readily
obtained for each of the three configurations of Fig.14.5 by using the respec-
tive control ratios of Eqs. (14.24) to (14.26). The plots of S

M
p1 ð joÞ



 

, S
M
p2 ð joÞ



 

,
and S

M
A ð joÞ



 

 vs. o, shown in Fig. 14.6, are drawn for the nominal values
of p1¼�1, p2¼�5, and A¼10 for the state-variable-feedback system. For the
conventional system, the value of loop sensitivity equal to 2.1 corresponds to

¼ 0.7076, as shown on the root locus in Fig.13.10a.The samedamping ratio is
used in the state-variable-feedback system developed in the example in
Sec.13.9.Table14.2 summarizes the values obtained.

FIGURE 14.6 Sensitivity due to pole and gain variation.
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TABLE 14.2 System Sensitivity Analysis

Control system Figure Mð jobÞ


 

 % �Mð jobÞ



 

 SM
p1 ð jobÞ



 

 SM
p2 ð jobÞ



 

 SM
A ð jobÞ



 


Conventional system design

1. Nominal plant
(A¼ 0.21, p1¼�1, p2¼�5):
GðsÞ ¼ 2:1

sðsþ 1Þðsþ 5Þ

14.5a 0.707
(ob¼ 0.642)

— 1.09 1.28 1.29

2. P1¼�2:
GðsÞ ¼ 2:1

sðsþ 2Þðsþ 5Þ

14.5a 0.338 52.4 — — —

3. P2¼�10:
GðsÞ ¼ 2:1

sðsþ 1Þðsþ 10Þ

14.5a 0.658 6.9 — — —

4. A¼ 0.42:

GðsÞ ¼ 4:2

sðsþ 1Þðsþ 5Þ

14.5a 1.230 74.0 — — —
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State-variable feedback system design [M is given in Eqs. (13.111), (14.25), and (14.26), respectively]

5. Nominal plant:

GðsÞHeqðsÞ ¼
95:4ðs2 þ 1:443sþ 1:0481Þ

sðsþ 1Þðsþ 5Þ
14.5b,c 0.707

(ob¼ 1.0)
— 0.036

0.05 for X3

inaccessible
3.40 for X3

accessible

0.051

6. p1¼�2:
GðsÞHeqðsÞ ¼

95:4ðs2 þ 1:443sþ 1:0481Þ
sðsþ 2Þðsþ 5Þ

14.5b,c 0.683 3.39 — — —

7a. p2¼�10, X3 accessible:

GðsÞHeqðsÞ ¼
95:4ðs2 þ 6:443sþ 1:0481Þ

sðsþ 1Þðsþ 10Þ
14.5b 0.160 77.4 — — —

7b. p2¼�10, X3 inaccessible:

GðsÞHeqðsÞ ¼
95:4ðs2 þ 1:443sþ 1:0481Þ

sðsþ 1Þðsþ 10Þ
14.5c 0.682 3.54 — — —

8. A¼ 20:

GðsÞHeqðsÞ ¼
190:8ðs2 þ 1:443sþ 1:0481Þ

sðsþ 1Þðsþ 5Þ
14.5b,c 0.717 1.41 — — —
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The sensitivity function for each system, at o¼ob, is determined for a
100 percent variation of the plant poles p1¼�1, p2¼�5, and of the forward
gain A, respectively.The term%j�Mj is defined as

% �Mj j ¼ Mð jobÞ


 

� Moð jobÞ



 


Moð jobÞ


 

 100 ð14:27Þ

where jMo( job)j is the value of the control ratio with nominal values of the
plant parameters, and jM( job)j is the value with one parameter changed to
the extreme value of its possible variation.The time-response data for systems
1to 8 are given inTable14.3 for a unit step input.Note that the response for the
state-variable-feedback system (5 to 8, except 7a) is essentially unaffected by
parameter variations.

The sensitivity function SM
� represents a measure of the change to be

expected in the system performance for a change in a system parameter.This
measure is borne out by comparing Tables 14.2 and 14.3. That is, in the
frequency-domain plots of Fig.14.6, a value S

M
A ð joÞ



 

¼1.29 at o¼ob¼ 0.642
is indicated for the conventional system, compared with 0.051 for the state-
variable-feedback system.Also,the percent change%j�M( jo)j for a doubling
of the forward gain is 74 percent for the conventional system and only 1.41
percent for the state-variable-feedback system.These are consistent with the
changes in the peak overshoot in the time domain of %�Mp(t)¼ 13.45 and
0.192 percent, respectively, as shown in Table 14.3. Thus, the magnitude
of %�M( jo) and %�Mp(t) are consistent with the relative magnitudes of
% S

M
A ð jobÞ



 

. Similar results are obtained for variations of the pole p1.
An interesting result occurswhen the polep2¼�5 is subject to variation.

If thestateX3 (seeFig.14.5b) is accessibleand is fedbackdirectly throughk3,the
sensitivity S

M
p2 ð joÞ



 

 is much larger than for the conventional system, having a

TABLE 14.3 Time-Response Data

Control system Mp(t) tp, s ts, s
%�MpðtÞ ¼

Mp �Mpo



 


Mpo

100

1 1.048 7.2 9.8 —
2 1.000 — 16.4 4.8
3 1.000 — 15.0 4.8
4 1.189 4.1 10.15 13.45
5 1.044 4.45 6 —
6 1.035 4.5 6� 0.86
7a 1.000 — 24 4.4
7b 1.046 4.6 6.5 0.181
8 1.046 4.4 5.6� 0.192
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value of 3.40 at ob¼1.0. However, if the equivalent feedback is obtained
from X1 through the fixed transfer function [Heq(s)]�0¼p2, Fig. 14.5c, the
sensitivity is considerably reduced to S

M
p2 ð j1Þ



 

¼ 0.050,comparedwith1.28 for
the conventional system. If the components of the feedback unit are selected
so that the transfer function [Heq(s)] is invariant, then the time-response char-
acteristic foroutput feedback through[Heq(s)] isessentially unchangedwhenp2
doubles in value (seeTable14.3) comparedwith the conventional system.

In analyzing Fig. 14.6, the values of the sensitivities must be considered
over the entire passband (0�o�ob). In this passband the state-variable-
feedback system has a much lower value of sensitivity than the conventional
system.The performance of the state-variable-feedback systems is essentially
unaffected by any variation inA, p1,or p2 (with restrictions)when the feedback
coefficients remain fixed, provided that the forward gain satisfies the
condition K� Kmin (see Probs.14.2 and14.3).The low-sensitivity state-variable-
feedback systems considered in this section satisfy the following conditions: the
system’s characteristic equation must have (1) b dominant roots (<n) which
are located close to zeros ofHeq(s) and (2) at least one nondominant root.

One approach for determining the nominal value for the variable para-
meter � for a state-variable-feedbackdesign is to determinek for theminimum,
midrange, and maximum value of �. Then evaluate and plot S

M
� ð joÞ



 

 for the
range of 0�o�ob for each of these values of �. The value of � that yields
theminimumareaunder thecurveof S

M
� ð joÞ



 

 vs.o ischosenas thevalue for �o.
The analysis of this section reveals that for the state-variable-feedback

system any parameter variation between the control U and the state variable
Xn has minimal effect on system performance. In order to minimize the effect
on system performance for a parameter variation that occurs between the
states Xn and X1, the feedback signals should be moved to the right of the
block containing the variable parameter (see Sec. 14.5), even if all the states
are accessible. The output feedback system that incorporates an invariant
Heq(s) has a response that is more invariant to parameter variations than
a conventional system.

14.5 PARAMETER SENSITIVITY EXAMPLES

Example 1. The (Y/R)T , Eq. (13.118), for Design Example 1 of Chap. 13
contains no nondominant pole. As seen from the root locus of Fig. 13.16
for this example, the system is highly sensitive to gain variations. Using
Eq. (13.117) in Eq. (14.3) with �¼A yields S

M
� ð joÞ



 

¼1.84 at ob¼1.41.
Example 2. The (Y/R)T of DesignExample1ismodified to contain onenon-
dominant pole; see Eq. (13.121). Using Eq. (13.121), with p¼�50 and �¼KG,
in Eq. (14.3) yields S

M
� ð jobÞ



 

¼ 0.064 at ob¼1.41. Thus, the presence of a
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nondominant pole drastically reduces S
M
� ð jobÞ



 

, which is indicative of the
reduction of the sensitivity magnitude for the frequency range 0�o�ob.

Example 3. The (Y/R)T of Design Example 2 is modified to improve the
value of ts; see Eq. (13.127). Using Eq. (13.127), with p¼�70 and �¼KG, in
Eq. (14.3) yields S

M
� ð jobÞ



 

¼ 0.087 at ob¼1.41.
The data inTable14.4 summarize the results of these three examples and

show that the presence of at least one nondominant pole in (Y/R)T drastically
reduces the system’s sensitivity to gain variation while achieving the desired
time-response characteristics.

14.6 INACCESSIBLE STATES [5]

In order to achieve the full benefit of a state-variable-feedback system, all
the states must be accessible. Although, in general, this requirement may not
be satisfied, the design procedures presented in this chapter are still valid.
That is, on the basis that all states are accessible, the required value of the
state-feedback gain vector kwhich achieves the desiredY(s)/R(s) is computed.
Then, for states that are not accessible, the corresponding ki blocks aremoved
by block-diagram manipulation techniques to states that are accessible. As a
result of these manipulations the full benefits of state-variable feedback may
not be achieved (low sensitivity SM

� and a completely stable system), as
described in Sec.14.4. For the extreme case when the output y¼ x1 is the only
accessible state, the block-diagram manipulation to the G-equivalent (see
Fig. 14.8c) reduces to the Guillemin-Truxal design. More sophisticated meth-
ods for reconstructing (estimating) the values of the missing states do exist
(Luenberger observer theory). They permit the accessible and the recon-
structed (inaccessible) states all to be fed back through the feedback coeffi-
cients, thus eliminating the need for block-diagram manipulations and
maintaining the full benefits of the state-variable feedback-designed

TABLE 14.4 Time-Response and Gain-Sensitivity Data

Example (Y/R)D MP tp, s ts, s K1, s
�1

SM
KG
ð j!bÞ



 


ob¼ 1.41

1 2ðsþ 2Þ
ðs2 þ 2sþ 2Þðsþ 2Þ

1.043 3.1 4.2 1.0 1.84

2 100ðsþ 2Þ
ðs2 þ 2sþ 2Þðsþ 2Þðsþ 50Þ

1.043 3.2 4.2 0.98 0.064

3 100ðsþ 1:4Þðsþ 2Þ
ðs2 þ 2sþ 2Þðsþ 1Þðsþ 2Þðsþ 70Þ

1.008 3.92 2.94 0.98 0.087
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system [5].Evenwhen all states are theoretically accessible,design and/or cost
of instrumentation may make it prohibitive to measure some of the states.

Various block diagram manipulations of Fig.14.5b, depending on which
states are accessible, are shown in Figs. 14.7 and 14.8. The availability of
practical state-variable sensors determines which physical implementation is
most feasible.The active minor-loop compensation of Fig.14.7b results in the
requirement for first- and second-order derivative action in the minor loops;
thus Hc(s) is an improper function. It is possible to add poles to Hc(s) that are
far to the left in order to achieve a realizableHc(s).

The compensators required for each case represented in Figs. 14.7 and
14.8, using the values of k1¼1, k2¼�3.393, k3¼4.77, and A¼10 determined
in Sec. 13.9, are given in Table 14.5, which also gives the sensitivity function
S
M
KG
ð jobÞ



 

 for each case at ob¼1.0 and M¼ 0.707. As noted inTable 14.5, the
low sensitivity of the output response to gain variations is maintained as long
as invariant feedback compensatorsHc(s) are used. In other words, the block-
diagrammanipulations that result in onlyminor-loop compensation, i.e., using
only feed-back compensators Hc(s), have the same Heq(s) as before the
manipulations are performed. Therefore, the same stability and sensitivity
characteristics aremaintained for themanipulated as for the nonmanipulated
systems. When the shifting is to the left, to yield a resulting cascade

FIGURE 14.7 Minor-loop compensation (manipulation to the right) of the control
system of Fig. 14.5b with p1¼�1 and p2¼�2.
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FIGURE 14.8 Manipulation of state feedback to the left for the control system of
Fig. 14.5b.
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compensator Gc(s), the low sensitivity to parameter variation is not achieved.
This sensitivity characteristic is borne out by analyzing the root locus of Figs.
13.10b and14.9. Figure 13.10b is the root locus representing the block-diagram
manipulations using only Hc(s) networks. Figure 14.9 shows the root locus
representing the block-diagram manipulations using cascade Gc(s) networks.
In Fig.13.10b, an increase in the gain does not produce any appreciable change
in the closed-loop system response. In contrast, any gain variation in the sys-
tems represented by Fig.14.9 greatly affects the closed-loop system response.

Note that the manipulated system of Fig.14.8d, using both cascadeGc(s)
andminor-loopHc(s)¼ k2 compensators,yields the same relative sensitivity as
for the systemof Fig.14.8cwhich uses only cascade compensation. In general,
for a system using both Gc(s) and Hc(s) compensators, it may be possible to
achieve a sensitivity that is between that of a system using only minor-loop
compensation and that of one using only cascade compensation.

The technique presented in this section for implementing a system
having inaccessible states is rather simple and straightforward. It is very
satisfactory for systems that are noise-free and time-invariant. For example,
if in Fig. 14.5b the state X3 is inaccessible and X2 contains noise, it is
best to shift the k3 block to the left. This assumes that the amplifier output
signal has minimal noise content. If all signals contain noise, the system
performance is degraded from the desired performance. This technique
is also satisfactory under parameter variations and/or if the poles and zeros
of the transfer function Gx(s) are not known exactly when operating under
high forward gain.

TABLE 14.5 Compensators and Sensitivity Functions for Control
Systems of Figs. 14.7 and 14.8

Figure Compensator SM
A ðj!bÞ



 


14.7a HcðsÞ ¼ 0:954sþ 1:377 0.0508

14.7b HcðsÞ ¼ 0:954s2 þ 1:377s 0.0508

14.8a HcðsÞ ¼
9:54

sþ 1
0.0508

14.8b HcðsÞ ¼
9:54ðsþ 1:443Þ
ðsþ 1Þðsþ 5Þ

0.0508

14.8c GcðsÞ ¼
10ðsþ 1Þðsþ 5Þ
ðsþ 1:43Þðsþ 99:98Þ

0.51

14.8d GcðsÞ ¼
10ðsþ 1Þ
sþ 96:4

0.51
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14.7 STATE-SPACE TRAJECTORIES [6]

The definition of stability for a linear time-invariant (LTI) system is an
easy concept to understand. The complete response to any input contains a
particular solution that has the same form as the input and a complementary
solution containing terms of the form Ae�i t. When the eigenvalues �i have
negative real parts, the transients associated with the complementary solution
decay with time, and the response is called stable.When the rootshave positive
real parts, the transients increase without bound and the system is called
unstable. It is necessary to extend the concept of stability to nonlinear
systems. This section introduces the properties of state-space trajectories,
which give a visual picture of transient and steady-state performance. The
kinds of singular points and their associated stability are categorized for
both linear and nonlinear systems.

The state space is defined as the n-dimensional space in which the com-
ponents of the state vector represent its coordinate axes. The unforced
response of a system having n state variables, released from any initial point
x(t0), traces a curve or trajectory in an n-dimensional state space.Time t is an
implicit function along the trajectory.When the state variables are represented
by phase variables, the state spacemay also be called a phase space.While it is
impossible to visualize a space with more than three dimensions, the concept
of a state space is nonetheless very useful in systems analysis.The behavior of
second-order systems is conveniently viewed in the state space because it is
two-dimensional and is in fact a state (or phase) plane. It is easy to obtain a
graphical or geometrical representation and interpretation of second-order

FIGURE 14.9 Root locus for (a) Fig. 14.8c, and (b) Fig. 14.8d.
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system behavior in the state plane.The concepts developed for the state plane
can be extrapolated to the state space of higher-order systems. Examples of a
number of second-order systems are presented in this section.These concepts
are extendedqualitatively to third-order systems.The symmetry that results in
the state-plane trajectories is demonstrated for the cases when theAmatrix is
converted to normal (canonical) or modified normal (modified canonical)
form. The second-order examples that are considered include the cases
where the eigenvalues are (1) negative real and unequal (overdamped),
(2) negative real and equal (critically damped), (3) imaginary (oscillatory),
and (4) complex with negative real parts (underdamped). The system that is
studied has no forcing function and is represented by the state equation

_xx ¼ a11 a12
a21 a22

� �
x ð14:28Þ

Because there is no forcing function, the response results from energy stored
in the system as represented by initial conditions.

Example 1. Overdamped response. Consider the following examplewith the
given initial conditions:

_xx ¼ 0 3
�1 �4

� �
x xð0Þ ¼ 0

2

� �
ð14:29Þ

Because one state equation is _xx1¼ 3x2, then x2 is a phase variable. Therefore,
the resulting state plane is called a phase plane.

The state transitionmatrix�(t) is obtained by using the Sylvester expan-
sion theorem (see Sec. 3.14) or any other convenient method. The system
response is overdamped,with eigenvalues �1¼�1 and �2¼�3. For the given
initial conditions the system response is

xðtÞ ¼ FðtÞxð0Þ ¼ 3e�t � 3e�3t

�e�t þ 3e�3t

� �
ð14:30Þ

The trajectory represented by this equation can be plotted in the phase plane
x2 versus x1. A family of trajectories in the phase plane for a number of initial
conditions is drawn in Fig.14.10. Such a family of trajectories is called a phase
portrait. The arrows show the direction of the states along the trajectories for
increasing time.Motion of the point on a trajectory is in the clockwise direc-
tion about the origin because _xx1¼ 3x2. Thus, when x2 is positive, x1 must be
increasing in value, and when x2 is negative, x1 must be decreasing in value.
The value of N in Fig. 14.10 is the slope of the trajectory at each point in the
phase plane, i.e.,N¼dx2/dx1, as described in Eq. (14.32).The rate of change of
x1 is zero at the points where the trajectories cross the x1 axis. Therefore, the
trajectories always cross the x1 axis in a perpendicular direction.
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One method of drawing the phase trajectory is to insert values of time t
into the solution x(t) and to plot the results. For the example above the
solutions are x1¼ 3e�t ^ 3e�3t and x2¼�e�tþ 3e�3t. Another approach is
to eliminate t from these equations to obtain an analytical expression for the
trajectory.This can be done by first solving for e�t and e�3t:

e�t ¼ x1 þ x2
2

and e�3t ¼ x1 þ 3x2
6

Raising e�t to the third power, e�3t to the first power, and equating the results
yields

x1 þ x2
2

� �3
¼ x1 þ 3x2

6

� �1

ð14:31Þ

This equation is awkward to use and applies only for the specified initial con-
ditions. Further, it is difficult to extend this procedure to nonlinear systems.

FIGURE 14.10 Phase-plane portrait for Eq. (14.30).
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Apractical graphicalmethod for obtaining trajectories in the state plane
is the method of isoclines. The previous example is used to illustrate this
method.Taking the ratio of the state equations of this example yields

_xx2
_xx1
¼ dx2=dt

dx1=dt
¼ dx2

dx1
¼ �x1 � 4x2

3x2
¼ N ð14:32Þ

This equation represents the slope of the trajectory passing through any point
in the state plane.The integration of this equation traces the trajectory starting
at any initial condition. The method of isoclines is a graphical technique for
performing this integration.When the slope of the trajectory in Eq. (14.32) is
selected at any specific value N, the result is the equation of a straight line
having a slopem and represented by

x2 ¼ �
1

4þ 3N
x1 ¼ mx1 ð14:33Þ

This equation describes a family of curves that are called isoclines. They have
the property that all trajectories crossing a particular isocline have the same
slope at the crossing points.For LTI second-order systems the isoclines are all
straight lines. A trajectory can be sketched as shown in Fig.14.10.

The system represented by Example 1 is stable, as indicated by the
negative eigenvalues. Because there is no forcing function, the response is
due to the energy initially stored in the system. As this energy is dissipated,
the response approaches equilibrium at x1¼ x2¼ 0. All the trajectories
approach and terminate at this point. The slope of the trajectory going
through this equilibrium point is therefore indeterminate; that is, N¼dx2/
dx1¼0/0, representing a singularity point. This indeterminacy can be used to
locate the equilibrium point by letting the slope of the trajectory in the state
plane be N¼dx2/dx1¼0/0. Applying this condition to Eq. (14.32) yields the
two equations x2¼0 and �x1� 4x2¼0. This confirms that the equilibrium
point x1¼x2¼0. For the overdamped response this equilibrium point
is called a node. The procedure can be extended to all systems of any order,
even when they are nonlinear. This is done by solving the vector equation
_xx¼ 0 for the equilibrium point(s). For an underdamped system the
equilibrium point is called a focus.

14.8 LINEARIZATION (JACOBIAN MATRIX) [6,7]

The definition of stability for a linear time-invariant (LTI) system is an easy
concept to understand.The complete response has two components; the par-
ticular and complementary solutions. The particular solution that has the
same form as the input and the complementary solution contains terms of
the form Ae�i t.When the eigenvalues �i have negative real parts, the transients
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associated with the complementary solution decay with time, and the
response is called stable.When the roots have positive real parts,the transients
increase without bound and the system is called unstable. Some nonlinear
systems design techniques are based upon obtaining a set of JLTI plants
about specified operating points. A method for obtaining a set of LTI plants
for a nonlinear system, about Joperating (equilibrium) points, is presented in
this section. This method permits the determination of stability condition in
the neighborhood of each equilibrium point.

A linear system with no forcing function (an autonomous system) and
with jAj 6¼ 0 has only one equilibrium point, x0. All the examples in this text
have equilibrium points at the origin x0¼ 0. A nonlinear system, on the other
hand, may have more than one equilibrium point.This is easily illustrated by
considering the unity-feedback angular position-control system shown in
Fig. 14.11. The feedback action is provided by synchros that generate the
actuating signal e¼ sin (�i� �o).With no input, �i¼ 0, the differential equation
of the system is

€��o þ a _��o þ K sin �o ¼ 0 ð14:34Þ
This is obviously a nonlinear differential equation because of the term sin �o.
With the phase variables x1¼ �o and x2 ¼ _xx1 ¼ _��o, the corresponding state
equations are

_xx1 ¼ x2 _xx2 ¼ �K sin x1 � ax2 ð14:35Þ
The slope of the trajectories in the phase plane is obtained from

N ¼ _xx2
_xx1
¼ �K sin x1 � ax2

x2
ð14:36Þ

In the general case the unforced nonlinear state equation is

_xx ¼ fðxÞ ð14:37Þ
Because equilibrium points x0 exist _xx ¼ fðx0Þ ¼ 0, the singularities are x2¼0
and x2¼ kp, where k is an integer. The system therefore has multiple
equilibrium points.

FIGURE 14.11 A nonlinear feedback control system.
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In a small neighborhood about each of the equilibrium points, a non-
linear system behaves like a linear system.The states can therefore be written
as x¼ x0þ x*,where x* represents the perturbation or state deviation from the
equilibrium point x0. Each of the elements of f(x) can be expanded in aTaylor
series about one of the equilibrium points x0. Assuming that x* is restricted to
a small neighborhood of the equilibrium point, the higher-order terms in the
Taylor series may be neglected. Thus, the resulting linear variational state
equation is

_xx� ¼

@f1
@x1

@f1
@x2

	 	 	 @f1
@xn

@f2
@x1

@f2
@x2

	 	 	 @f2
@xn

	 	 	 	 	 	 	 	 	 	 	 	
@fn
@x1

@fn
@x2

	 	 	 @fn
@xn

2
6666666664

3
7777777775

x¼x0

x
� ¼ Jxx

� ð14:38Þ

where fi is the ith row of f(x) and Jx ¼ @f=@xT is called the Jacobianmatrix and
is evaluated at x0.

For the system of Eq. (14.35), the motion about the equilibrium point
x1¼x2¼0 is represented by

_xx� ¼ _xx�1
_xx�2

� �
¼ 0 1
�K �a

� �
x
�
1

x
�
2

� �
¼ Jxx

� ð14:39Þ

For these linearized equations the eigenvalues are �1�2 ¼ �a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a=2ð Þ2�K

q
.

This equilibrium point is stable, depending upon the magnitudes of a and K.
For motion about the equilibrium point x1¼ p, x2¼0, the state

equations are

_xx� ¼ 0 1
K �a

� �
x
� ð14:40Þ

The eigenvalues of this Jx are �1�2 ¼ �a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a=2ð Þ2þK

q
. Thus, one eigen-

value is positive and the other is negative.Therefore, the equilibrium point is
an unstable saddle point. The motion around the saddle point is considered
unstable because every point on all trajectories, except on the two-
separatrices, moves away from this equilibrium point. A phase-plane portrait
for this system can be obtained by the method of isoclines. From Eq. (14.36),
the isocline equation is

x2 ¼
�K sin x1
N þ a

ð14:41Þ
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The phase portrait is shown in Fig. 14.12. Note that the linearized equations
are applicable only in the neighborhood of the singular points. Thus, they
describe stability in the small.

When an input u is present, the nonlinear state equation is

_xx ¼ f x�uð Þ ð14:42Þ
Its equilibrium point x0, when u¼ u0 is a constant, is determined by letting
_xx¼ f(x0,u0)¼ 0. Then the linearized variational state equation describing the
variation from the equilibriumpoint is obtained by using only the linear terms
from the Taylor series expansion. For variations in u, appearing as u� in the
input u¼ u0þ u

�, the linearized state equation is

_xx� ¼

@f1 x�uð Þ
@x1

@f1 x�uð Þ
@x2

	 	 	 @f1 x�uð Þ
@xn

@f2 x�uð Þ
@x1

@f2 x�uð Þ
@x2

	 	 	 @f2 x�uð Þ
@xn	 	 	 	 	 	 	 	 	 	 	 	

@fn x�uð Þ
@x1

@fn x�uð Þ
@x2

	 	 	 @fn x�uð Þ
@xn

2
666666664

3
777777775

x¼x0
u¼u0

x
�

þ

@f1ðx�uÞ
@u1

	 	 	 @f1ðx�uÞ
@ur	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

@fnðx�uÞ
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2
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� ¼ Jxx

� þ Juu
� ð14:43Þ

FIGURE 14.12 Phase portrait for Eq. (14.34).
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In analyzing the system performance in the vicinity of equilibrium, it is
usually convenient to translate the origin of the state space to that point.This
is doneby insertingx¼ x0þx� into theoriginal equations.With theorigin atx0,
the variations from this point are described by x�.

The characteristic equation describing the motion about the equili-
brium point can be obtained from the linearized state equations. For a
second-order system it has the form

s2 þ ps þ q ¼ ðs � �1Þðs � �2Þ ¼ 0 ð14:44Þ
The eigenvalues �1 and �2 determine whether the singular point produces an
overdamped or an underdamped oscillatory response (a node, a focus, or a
saddle). The eigenvalues also determine whether the transient response
about the equilibrium point is stable or unstable.

14.9 SUMMARY

This chapter presents an analysis of the sensitivity of the system output to
variations of system parameters. This is accomplished by defining a sensitiv-
ity function SM

� , where M is the control ratio and � is the parameter that
varies. A sensitivity analysis for a specific example system shows that a
state-variable-feedback system has a much lower sensitivity than a conven-
tional output feedback design.When there are inaccessible states, the states
can be regenerated from the output, provided that the system is completely
observable. For SISO systems this requires derivative action, accentuating
noise that may be present in the output. This can be avoided by designing
an observer [8^10]. The properties of state-space trajectories and singular
points are introduced. Most of the examples used are second-order systems
because they clearly and easily demonstrate the important characteristics,
such as stability and the kinds of singular points. Both linear and nonlinear
differential equations are considered. The Jacobian matrix is used to repre-
sent nonlinear systems by approximate linear equations in the vicinity of
their singular points. The important property is demonstrated that a linear
equation has only one singular equilibrium point,whereas a nonlinear equa-
tion may have more than one singular equilibrium point.
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15

Sampled-Data Control Systems

15.1 INTRODUCTION [1–5]

The methods presented in the previous chapters deal with the fundamental
properties of continuous systems. However, digital computers are available
not only for the design of control systems but also to perform the control
function. Digital computers and microprocessors are used in many control
systems. The size and cost advantages associated with the microcomputer
make its use as a controller economical and practical. Using such a digital
processor with a plant that operates in the continuous-time domain requires
that its input signal be discrete,which requires the sampling of the signals used
by the controller. Such sampling may be an inherent characteristic of the
system. For example, a radar tracking system supplies information on an air-
plane’s position and motion to a digital processor at discrete periods of time.
This information is therefore available as a succession of data points.When
there is no inherent sampling, an analog-to-digital (A/D) converter must be
incorporated in a digital or sampled-data (S-D) control system.The sampling
process can be performed at a constant rate or at a variable rate, or it may be
random.The discussion in this chapter is based on a constant-rate sampling.
The output of the controllermust thenbe converted fromdiscrete form into an
analog signal by a digital-to-analog (D/A) converter. A functional block
diagram of such a system is shown in Fig. 15.1, in which the signals e* and u*
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are in discrete form, u is piecewise continuous, and the remaining signals are
continuous. The notation e* and u* denotes that these signals are sampled at
specified time intervals and are therefore in discrete form. Systems that
include a digital computer are known as digital control systems. The synthesis
techniques for such systems are based on representing the entire system as an
equivalent sampled or discrete or an equivalent pseudo-continuous-time
(PCT) system.

There are various approaches that may be used in analyzing the stability
and time-response characteristics of S-D systems. These approaches may be
divided into two distinct categories: (1) direct (DIR) and (2) digitization
(DIG) or discrete digital control analysis techniques. In the first (DIR) cate-
gory the analysis is performed entirely in the discrete domain (z plane). In the
second (DIG) category the analysis and synthesis of the sampled-data system
is carried out entirely by transformation to the w0 plane or, by use of the Pade¤
approximation (see Ref.1, App.C), entirely in the s plane.The use of the Pade¤
approximation, along with the information provided by a Fourier analysis of
the sampled signal, results in the modeling of a sampled-data control system
by a PCTcontrol system.The w0 plane analysis is not covered in this text but
the reader is referred toRef.1where an overviewof theDIR andDIGmethods
is presented.

The analysis and design of sampled-data control systems, as discussed in
this chapter, is expedited by the use of CAD packages, such as MATLAB or
TOTAL-PC (see Sec.10.6 and Appendixes C and D).

15.2 SAMPLING

Sampling may occur at one or more places in a system.The sampling opera-
tion is represented in a block diagram by the symbol for a switch. Figure 15.2
shows a systemwith sampling of the actuating signal.Note that the output c (t)
is a continuous function of time. A fictitious sampler that produces the
mathematical function c*(t) (see Sec. 15.6) is also shown. The sampling

FIGURE 15.1 Control system incorporating a digital computer.
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process can be considered a modulation process in which a pulse train p(t),
with magnitude 1/g and period T, multiplies a continuous-time function f (t)
and produces the sampled function f �p ðtÞ.This is represented by

f �p ðtÞ ¼ pðtÞf ðtÞ ð15:1Þ
These quantities are shown in Fig.15.3. A Fourier-series expansion of p(t) is

pðtÞ ¼ 1
g

Xþ1
n¼�1

Cne
jnos t ð15:2Þ

where the sampling frequency is os ¼ 2p=T and the Fourier coefficients Cn

are given by

Cn ¼
1
T

Z T

0
pðtÞe�jos t dt ¼ 1

T
sin ðnosg=2Þ

nosg=2
e�jnosg=2 ð15:3Þ

The sampled function is therefore

f �p ðtÞ ¼
Xþ1

n¼�1
Cn f ðtÞe jnos t ð15:4Þ

If the Fourier transform of the continuous function f (t) is F( jo), the Fourier
transform of the sampled function is [2,3,5]

F�p ð joÞ ¼
Xþ1

n¼�1
CnF ð joþ jnosÞ ð15:5Þ

Acomparison of the Fourier spectra of the continuous and sampled functions
is shown in Fig.15.4. It is seen that the sampling process produces a fundamen-
tal spectrum similar in shape to that of the continuous function. It also

FIGURE 15.2 Block diagram of a sampled-data control system involving the
sampling of the actuating signal.
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FIGURE 15.3 (a) Continuous function f(t); (b) sampling train p(t); (c) sampled
function f �p ðtÞ.

FIGURE 15.4 Frequency spectra for (a) a continuous function f(t) and (b) a
pulse-sampled function f �p ðtÞ.
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produces a succession of spurious complementary spectra that are shifted
periodically by a frequency separation nos.

If the sampling frequency is sufficiently high, there is very little overlap
between the fundamental and complementary frequency spectra. In that case
a low-pass filter could extract the spectrum of the continuous input signal by
attenuating the spurious higher-frequency spectra. The forward transfer
function of a control system generally has a low-pass characteristic, so the
system responds with more or less accuracy to the continuous signal.

15.3 IDEAL SAMPLING

To simplify the mathematical analysis of sampled-data control systems, the
concept of an ideal sampler (impulse sampling) is introduced. If the duration
of g of the sampling pulse is much less than the sampling time T and much
smaller than the smallest time constant of e(t), then the pulse train p(t) can be
represented by an ideal sampler. Since the area of each pulse of p(t) has unit
value, the impulse train also has a magnitude of unity.The ideal sampler pro-
duces the impulse train �T(t),which is shown in Fig.15.5 and is represented by

�T ðtÞ ¼
Xþ1

k¼�1
�ðt � kT Þ ð15:6Þ

where �ðt � kT Þ is the unit impulse which occurs at t¼T. The frequency
spectrum of the function that is sampled by the ideal impulse train is shown
in Fig.15.6. It is similar to that shown in Fig.15.4, except that the complemen-
tary spectra have the same amplitude as the fundamental spectrum [1].
Because the forward transfer function of a control system attenuates the
higher frequencies, the overall system response is essentially the same with
the idealized impulse sampling as with the actual pulse sampling. Note
in Figs. 15.4 and 15.6 that sampling reduces the amplitude of the spectrum
by the factor 1/T. The use of impulse sampling simplifies the mathematical
analysis of sampled systems and is therefore used extensively to represent the
sampling process.

FIGURE 15.5 An impulse train.
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When f (t)¼ 0 for t< 0, the impulse sequence is

f �ðtÞ ¼ f ðtÞ �T ðtÞ ¼
Xþ1
k¼0

f ðtÞ �T ðt � kT Þ ð15:7Þ

and the Laplace transform is given by the infinite series

F�ðsÞ ¼
Xþ1
k¼0

f ðkT Þe�kTs ð15:8Þ

where f (kT ) represents the function f (t) at the sampling timeskT. Because the
expression F*(s) contains the term eTs, it is not an algebraic expression but a
transcendental one.Therefore, a change of variable is made:

z � eTs ð15:9Þ

FIGURE 15.6 Frequency spectra for (a) a continuous function f(t); (b) an impulse-
sampled function f*(t), when os>2oc [1]; (c) an impulse-sampled function f*(t), when
o<2oc [1].
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where s¼ (1/T ) ln z. Equation (15.8) can now be written as

½F�ðsÞ�s¼ð1=T Þ ln z ¼ F ðzÞ ¼
Xþ1
k¼0

f ðktÞz�k ð15:10Þ

For functions f (t) which have zero value for t< 0,the one-sidedZ transform is
the infinite series

F ðzÞ ¼ f ð0Þ þ f ðT Þz�1 þ f ð2T Þz�2 þ 	 	 	 ð15:11Þ
If the Laplace transform of f (t) is a rational function, it is possible to

write F *(s) in closed form.When the degree of the denominator of F(s) is at
least 2 higher than the degree of the numerator, the closed form can be
obtained from

F�ðsÞ ¼
X

at poles of F ð pÞ
residues of F ð pÞ 1

1� e�ðs�pÞT

� �
 �
ð15:12Þ

where F(p) is the Laplace transform of f (t) with s replaced by p. The Z trans-
form in closed formmay be obtained from Eq. (15.12) and is written as [4]

F ðzÞ ¼ F̂F ðzÞ þ 
 ¼
X

at poles of F ð pÞ
residues of F ð pÞ 1

1� epT z�1

� �
 �
þ b

ð15:13Þ
where

b ¼ lim
s!1

sF ðxÞ � lim
z!1

F̂F ðzÞ ð15:14Þ

The value of b given by Eq. (15.14) ensures that the initial value f (0)
represented by F(s) and F(z) are identical. F(z) is called the Z transform of
f *(t). The starred and z forms of the impulse response transfer function are
easily obtained for the ordinary Laplace transfer function.

Example 15.1. Consider the transfer function

GðsÞ ¼ K
sðs þ aÞ ð15:15Þ

The corresponding impulse transfer function in the s domain is

G�ðsÞ ¼ Ke�sT ð1� e�atÞ
að1� e�sT Þð1� e�ðsþaÞT Þ ð15:16Þ

and in the z domain,

GðzÞ ¼ ð1� e�aT ÞKz�1
að1� z�1Þð1� e�aT z�1Þ ð15:17Þ
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The transformation of Eq. (15.16) into the z domain, as given by Eq. (15.17),
results in the primary strip ð�jos =2<jo<jos=2Þ and the infinite number of
complementary strips ð. . .� j5os =2<�jo<�j3os =2; �j3os =2<�jo<
�jos =2, and jos =2<jo<j3os =2, j3os =2<jo<j5os =2; . . .Þ in the s plane.
The pole for k ¼ 0 is said to lie in the primary strip in the s plane and the
remaining poles, for k 6¼ 0, are said to lie in the complementary strips in the s
plane. Note that they are uniformly spaced with respect to their imaginary
parts with a separation jos. The poles of G*(s) in Eq. (15.16) are infinite in
number. These poles exist at s¼ jkos and s¼� aþ jkos for all values of
�1<k<þ1. The complementary strips are transformed into the same
(overlapping) portions in the z plane. Thus, by contrast, there are just two
poles of Eq. (15.17), located at z¼1 and z¼ e�aT. The root-locus method can
therefore be applied easily in the z plane, whereas for sampled functions
it is not very convenient to use in the s plane because of the infinite number
of poles.

The transformation of the s plane into the z plane can be investigated by
inserting s¼sþ jod into

z ¼ eTs ¼ e�T e jodT ¼ e�Te j2pod=os ð15:18Þ
where od ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
.

1. Lines of constant s in the s plane map into circles of radius equal to
esT in the z plane as illustrated in Fig. 15.7 where s¼� zon.
In Fig. 15.8 are shown loci of constant z and loci of constant on.
Specifically, the segment of the imaginary axis in the s plane of
width os maps into the circle of unit radius [unit circle (UC)] in
the z plane as shown in Fig. 15.17b; successive segments map into

FIGURE 15.7 Transformation from the s plane to the z plane.
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overlapping circles. This fact shows that a proper consideration
of sampled-data (S-D) systems in the z plane requires the use of a
multiple-sheeted surface, i.e., a Riemann surface. But by virtue of
the uniform repetition of the roots of the characteristic equation,
the condition for stability is that all roots of the characteristic equa-
tion contained in the principal branch liewithin the unit circle in the
principal sheet of the z plane.

2. Lines of constant od in the s plane map into radial rays drawn at the
angleoT in the z plane.The portion of the constantod line in the left
half of the s plane becomes the radial ray within the unit circle in the
z plane. The negative part of real axis �1<�<0 in the s plane is
mapped on the segment of the real axis defined by 0< z�1.

3. The constant-damping-ratio ray in the s plane is defined by the
equation

s ¼ � þ jod ¼ �od cot �þ jod

when � ¼ cos�1 z. Therefore,

z ¼ esT ¼ e�odT cot �þjodT ¼ e�odT cot �ffodT ð15:19Þ
The corresponding map describes a logarithmic spiral in the z plane.

FIGURE 15.8 Plots of loci of constant z and loci of constant on. (From Ref. 1, with
permission of the McGraw-Hill Companies.)
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In summary, the strips in the left-half s plane (s<0) map into the region
inside theUC in the z plane, and the strips in the right-half s plane (s>0)map
into the region outside the UC in the z plane.

15.4 Z-TRANSFORM THEOREMS

A short list of Z transforms is given inTable 15.1. Several simple properties of
the one-sided Z transform permit the extension of the table and facilitate
its use in solving difference equations. These properties are presented as
theorems. They apply when the Z transform of f �(t), denoted by Z[f �(t)], is
F(z) and the sampling time isT.

Theorem 1. Translation in Time (Time Shift). Shifting to the right (delay)
yields

Z½ f �ðt � pT Þ� ¼ z�pF ðzÞ ð15:20Þ
Shifting to the left (advance) yields

Z½ f �ðt þ pT Þ� ¼ zpF ðzÞ �
Xp�1
i¼0

f ðiT Þzp�i ð15:21Þ

Theorem 2. Final Value. If F(z) converges for jzj>1 and all poles of
(1�z)F(z) are inside the unit circle, then

lim
k!1

f ðkT Þ ¼ lim
z!1
½ð1� z�1ÞF ðzÞ� ð15:22Þ

Theorem 3. Initial Value. If limz!1 F ðzÞ exists, then
lim
k!0

f ðkT Þ ¼ lim
z!1F ðzÞ ð15:23Þ

15.5 DIFFERENTIATION PROCESS [1]

An approximation to the continuous derivative cðtÞ ¼ _rrðtÞ uses the first-
backward difference or Euler’s technique:

cðkT Þ ¼ frðkT Þ � r½ðk � 1ÞT �g
T

ð15:24Þ

Using this numerical analysis approach to approximate the derivative results
in an anticipatory solution requiring future inputs tobeknown inorder to gen-
erate the current solution (noncausal situation). This future knowledge is
usually difficult to generate in a real-time control system. These numerical
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analysis concepts are very important in realizing a digital control law or
equation that will prove to be a linear difference equation.

15.5.1 First Derivative Approximation

The backward-difference discretization of the differentiation process is
defined by

_ccðtÞ � DcðtÞ � dcðtÞ
dt
� lim

T!0

cðkT Þ � c½ðk � 1ÞT �
T

ð15:25Þ

TABLE 15.1 Table of z Transforms

Continuous time

function

Laplace

transform

z transform

of f *(t) F(z)
Discrete time function

f(kt) for k� 0

1. �0(t) 1 1 �0(0)

2. �(t� kT)
k is any integer

e�kTs z�1 �(t� kT )

3. u�1(t) 1

s

z

z � 1
�(t� kT )

4. tu�1(t) 1

s2
Tz

ðz � 1Þ2
kT�(t� kT )

5:
t2

2
u�1ðtÞ

1

s3
T2zðz þ 1Þ
2ðz � 1Þ3

kT2�(t� kT )

6. e�at 1

sþ a

z

z � e�aT
e�akT

7:
e�bt � e�at

a� b

1

ðsþ aÞðsþ bÞ
1

a� b

z

z � e�bT
� z

z � e�aT

� �
1

a� b
ðe�bkT � e�akT Þ

8. u�1(t)� e�at a

sðsþ aÞ a
ð1� e�aT Þz

ðz � 1Þðz � e�aT Þ
�(t� kT )e�akT

9: t � 1� e�aT

a

a

s 2ðsþ aÞ
Tz

ðz � 1Þ2 �
ð1� e�aT Þz

aðz � 1Þðz � e�aT Þ kT � 1� e�akT

a

10. sin at a

s 2 þ a2
z sin aT

z 2 � 2 z cos aT þ 1
sin akT

11. cos at s

s 2 þ a2
zðz � cos aTÞ

z 2 � 2 z cos aT þ 1
cos akT

12. e�at sin bt b

ðsþ aÞ2 þ b2
ze�aT sin bT

z2 � 2 ze�aT cos bT þ e�2aT
e�akT sin bkT

13. e�at cos bt sþ a

ðsþ aÞ2 þ b2
z2 � ze�aT cos bT

z2 � 2 ze�aT cos bT þ e�2aT
e�akT cos bkT

14. te�at 1

ðsþ aÞ2
Tze�aT

z � e�aT
� ��2 kT e�akT
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where c (t) has the appropriate continuity characteristics and D is the deriva-
tive operator. This equation may be approximated by the first-backward
difference as follows:

DcðkT Þ ¼ dcðtÞ
dt






t¼kT
� cðkT Þ � c½ðk � 1ÞT �

T
¼ 1

T
rcðkT Þ ð15:26Þ

15.5.2 Second Derivative Approximation

The second derivation backward-difference discretization is defined as

D 	 DcðtÞ � D2cðtÞ � d2cðtÞ
dt2
� lim

T!0

DcðkT Þ � Dc½ðk � 1ÞT �
T

ð15:27Þ

which may be approximated by

D2cðkT Þ ¼ d2cðtÞ
dt2







t¼kT
� DcðkT Þ � Dc½ðk � 1ÞT �

T
ð15:28Þ

Note that the term Dc(kT ) in Eq. (15.28) is given by Eq. (15.26). The term
Dc[(k�1)T ] is expressed in the format of Eq. (15.26) by replacing k by (k�1)
to yield

1
T
rc½ðk � 1ÞT � ¼ c½ðk � 1ÞT � � c½ðk � 2ÞT �

T
ð15:29Þ

Substituting Eqs. (15.26) and (15.29) into Eq. (15.28) yields the second-
backward difference

D2cðkT Þ � 1
T 2 frcðkT Þ � rc½ðk � 1ÞT �g

� 1
T 2 fcðkT Þ � 2c½ðk � 1ÞT �g � 1

T 2 r2cðkT Þ ð15:30Þ

15.5.3 r th Derivative Approximation

The approximation of the r th-backward difference of the r th derivative is

DrcðkT Þ � 1
Tr frr�1cðkT Þ � rr�1c½ðk � 1ÞT � þ c½ðk � 2ÞT �g

¼ 1
Tr rrcðkT Þ ð15:31Þ

where r¼1, 2, 3,. . . and k¼ 0, 1, 2,. . .. For a given value of r, Eq. (15.31) can be
expanded in a similar manner as is done for the second derivative backward
difference approximation to obtain the expanded representation ofDrc (kT ).
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15.6 SYNTHESIS IN THE z DOMAIN (DIRECT METHOD)

For the block diagram of Fig.15.2, the system equations are

CðsÞ ¼ GðsÞE�ðsÞ ð15:32Þ
EðsÞ ¼ RðsÞ � BðsÞ ¼ RðsÞ � GðsÞH ðsÞE�ðsÞ ð15:33Þ

The starred transform of Eq. (15.33) is

E�ðsÞ ¼ R�ðsÞ � GH �ðsÞE�ðsÞ ð15:34Þ
whereGH �(s)� [G(s)H(s)].Note that, in general,GH �(s) 6¼G �(s)H �(s).

Solving for E �(s) from Eq. (15.34) and substituting into Eq. (15.32) yields

CðsÞ ¼ GðsÞR�ðsÞ
1þ GH �ðsÞ ð15:35Þ

The starred transform C �(s) obtained from Eq. (15.35) is

C�ðsÞ ¼ G�ðsÞR�ðsÞ
1þ GH �ðsÞ ð15:36Þ

The Z transform of this equation is obtained by replacing each starred
transform by the corresponding function of z:

CðzÞ ¼ GðzÞRðzÞ
1þ GH ðzÞ ð15:37Þ

Although the output c (t) is continuous, the inverse of C(z) in Eq. (15.37) yields
only the set of values c (kT ), k¼ 0, 1, 2,. . ., corresponding to the values at
the sampling instants. Thus, c (kT ) is the set of impulses from an ideal
fictitious sampler located at the output, as shown in Fig. 15.2,which operates
in synchronismwith the sampler of the actuating signal.

Example 15.2. Derive the expressions (1) C �(s), (2) C(z), and (3) the control
ratioC(z)/R(z) if possible for the S-D control system of Fig.15.9.

Part (1). To derive C �(s), complete the following two steps.
Step 1:The expressions that relate all the external and internal variables

shown in Fig.15.9 are:

CðsÞ ¼ G2ðsÞE�1 ðsÞ ðaÞ
E1ðsÞ ¼ G1ðsÞEðsÞ ðbÞ
EðsÞ ¼ RðsÞ � BðsÞ ðcÞ
BðsÞ ¼ H1ðsÞI �ðsÞ ðdÞ
I ðsÞ ¼ H2ðsÞCðsÞ ðeÞ
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Step 2: The objectives are (i) to manipulate these equations in such
a manner that all the internal variables are eliminated; and (ii) to
obtain a relationship between the input and output system variables
only. Substituting equation (a) into equation (e) and equation (c) into
equation (b) yields, respectively:

I ðsÞ ¼ G2ðsÞH2ðsÞE�1 ðsÞ ðf Þ
E1ðsÞ ¼ G1ðsÞRðsÞ � G1ðsÞBðsÞ ðgÞ

Equation (d ) is substituted into equation (g) to yield:

E1ðsÞ ¼ G1ðsÞRðsÞ � G1ðsÞH1ðsÞI �ðsÞ ðhÞ

The starred transform of equations (a), ( f ), and (h) are, respectively:

C�ðsÞ ¼ G�2ðsÞE�1 ðsÞ ðiÞ
I �ðsÞ ¼ G2H

�
2 ðsÞE�1 ðsÞ ð jÞ

E�1 ðsÞ ¼ G1R
�ðsÞ � G1H

�
1 ðsÞI �ðsÞ ðkÞ

Note that the input forcing function r (t) is now incorporated as part of
the starred transformG1R

�(s).
Substituting I �(s) fromequation ( j) into equation (k) and then solving
for E�1 ðsÞ yields:

E�1 ðsÞ ¼
G1R

�ðsÞ
1þ G1H �1 ðsÞG2H �2 ðsÞ

ðlÞ

This equation is substituted into equation (i) to yield:

C�ðsÞ ¼ G�2ðsÞG1R
�ðsÞ

1þ G1H �1 ðsÞG2H �2 ðsÞ
ð15:38Þ

FIGURE 15.9 A nonunity feedback sampled-data control system. (From Ref. 1,
with permission of the McGraw-Hill Companies.)
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Part (2). The Z transform of Eq. (15.38) is obtained by replacing each
starred transform by the corresponding function of z.

CðzÞ ¼ G2ðzÞG1RðzÞ
1þ G1H1ðzÞG2H2ðzÞ

ð15:39Þ

Part (3). Note that the inputR(z) is incorporated as part ofG1R(z); thus
this equation cannot be manipulated to obtain the desired control
ratio. A pseudo control ratio can be obtained as follows:

CðzÞ
RðzÞ
� �

p
¼ 1

RðzÞ ½CðzÞ� ¼
1

RðzÞ
G2ðzÞG1RðzÞ

1þ G1H1ðzÞG2H2ðzÞ
� �

ð15:40Þ

15.6.1 z-Plane Stability

The control ratio for the system of Fig.15.2, obtained from Eq. (15.37), is

CðzÞ
RðzÞ ¼

GðzÞ
1þ GH ðzÞ ¼

W ðzÞ
QðzÞ ð15:41Þ

The characteristic equation of a S-D control system is obtained by setting to
zero the denominator of the control system’s control ratio. For example, the
characteristic equation for the closed-loop system as represented by
Eq. (15.41) is given by

QðzÞ ¼ 1þ GH ðzÞ ¼ 0 ð15:42Þ
In general, for a closed-loop S-Dcontrol system, the characteristic equa-

tion has the form:

QðzÞ � 1þ PðzÞ ¼ 0 ð15:43Þ
As mentioned previously, the nature and location of the roots of the
characteristic equation (15.42) determine the stability and the dynamic
behavior of the closed-loop system in a manner similar to that for analog
systems. For a continuous-time system, the root locus for the closed-
loop system is based on the characteristic equation 1þG(s)H(s)¼ 0 or,
equivalently,G(s)H(s)¼ "�j(lþ2h)p, where h¼ 0, 
1, 
 2, . . .. Similarly, a root-
locus analysis can be made for a S-D system whose closed-loop characteristic
equation is given by Eq. (15.42).

15.6.2 System Stability [5]

The fundamental concepts of stability are presented in the previous chapters.
For the discrete model c (kT þ1)¼ f [c (kT ), kT ], the system is stable if all
solutions remain within a small distance of each other after a specific discrete
value of time, knT. Asymptotic stability refers to the condition that all the
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solutions to the discrete model are stable and the distance between them goes
to zero as k!1. Asymptotic stability then implies stability. For a discrete
time-invariant linear system model where F(x,kT )!F(z), asymptotic
stability requires that all characteristic roots of the characteristic equation
[or poles for F(z)] are within the unit circle (UC). Another stability relation-
ship defined as bounded-input bounded output (BIBO) refers to the application
of a bounded input generating a bounded output in a discrete time-invariant
linear model. Asymptotic stability for this model implied BIBO stability.

To determine if a given discrete time-invariant linear model is stable
(asymptotically stable), a number of techniques [1] are available: genera-
tion of characteristic values, Nyquist’s method, Jury’s stability test, root-
locus, Bode diagram, and Lyapunov’s second method. The characteristic
values for a given z domain transfer function can be determined by using a
computer-aided-design (CAD) package with the appropriate accuracy.

System stability is determined by the location of the roots of the system
characteristic equation in the zdomain. In Sec.15.3 it is stated that the primary
and complementary strips are transformed into the same (overlapping)
portions of the z plane. That is, the strips in the left-half s plane (s<0) map
into the region inside the UC in the z plane, and the strips in the right-half s
plane (s>0) map into the region outside the UC in the z plane. Figure 15.10
illustrates the mapping of the primary strip into the inside of the unit circle in
the z plane.Therefore, a sample-data control system is stable if the roots of the
z domain characteristic equation lie inside the UC. In Chapter 16 it is shown
that by transforming a sample-data control system to its corresponding PCT
analog control system its stability can be determined in the same manner as
for analog systems.

FIGURE 15.10 The mapping of the s plane into the z plane by means of z¼ eTs.
(From Ref. 1, with permission of the McGraw-Hill Companies.)
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15.6.3 System Analysis

Analysis of the performance of the sampled system, corresponding to the
response given by Eq. (15.37), can be performed by the frequency-response or
root-locus method. It should be kept in mind that the geometric boundary for
stability in the z plane is the unit circle. As an example of the root-locus
method, consider the sampled feedback system represented by Fig. 15.2 with
H(s)¼ 1.Using G(s) given by Eq. (15.15) with a¼1 and a sampling timeT¼1,
the equation for G(z) is

GðzÞ ¼ GH ðzÞ ¼ 0:632Kz
ðz � 1Þðz � 0:368Þ ð15:44Þ

The characteristic equation, as obtained from Eq. (15.42), is 1þGH(z) = 0 or

GH ðzÞ ¼ �1 ð15:45Þ

The usual root-locus techniques can be used to obtain a plot of the roots of
Eq. (15.45) as a function of the sensitivity K. The root locus is drawn in
Fig. 15.11. The maximum value of K for stability is obtained from the magni-
tude conditionwhich yieldsKmax¼ 2.73.This occurs at the crossing of the root
locus and the unit circle.The selection of the desired roots can be based on the
damping ratio z desired. For the specified value of z, the spiral given by
Eq. (15.19) and shown in Fig. 15.8, must be drawn. The intersection of this
curve with the root locus determines the roots. Alternatively, it is possible to
specify the setting time. This determines the value of s in the s plane, so the
circle of radius esTcan be drawn in the z plane.The intersection of this circle
and the root locus determines the roots. For the value z¼ 0.48 the roots are

FIGURE 15.11 Root locus for Eqs. (15.44) and (15.45).
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z¼ 0.368þ j0.482, shown on the root locus in Fig.15.11, and the value of K¼1.
The control ratio is therefore

CðzÞ
RðzÞ ¼

0:632z
z � 0:368
 j0:482

¼ 0:632z
z2 � 0:736z þ 0:368

ð15:46Þ

For a unit-step input the value of R(z) is

RðzÞ ¼ z
z � 1

ð15:47Þ

so that

CðzÞ ¼ 0:632z2

ðz � 1Þðz2 � 0:736z þ 0:368Þ ð15:48Þ

The expression for C(z) can be expanded by dividing its denominator into its
numerator to get a power series in z�1.

CðzÞ ¼ 0:632z�1 þ 1:096z�2 þ 1:205z�3 þ 1:120z�4 þ 1:014z�5

þ 0:98z�6 þ 	 	 	 ð15:49Þ
The inverse transform of C(z) is

cðkT Þ ¼ 0�ðtÞ þ 0:632�ðt � T Þ þ 1:096�ðt � 2T Þ þ 	 	 	 ð15:50Þ
Hence, comparing Eq. (15.49) with Eq. (15.11), the values of c (kT ) at the
sampling instants are the coefficients of the terms in the series of Eq. (15.50)
at the corresponding sampling instants. A plot of the values c (kT ) is shown in
Fig. 15.12.The curve of c (t) is drawn as a smooth curve through these plotted
points.

FIGURE 15.12 Plot of c(nT) for Eq. (15.50).
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This section presents several basic characteristics in the analysis of
sampled-data (S-D) systems. Additional topics of importance include the
reconstruction of the continuous signal from the sampled signal by use of
hold circuits and the problem of compensation to improve performance.
These topics are presented in the following sections.

15.7 THE INVERSE Z TRANSFORM

In the example of Sec. 15.6 the inverse of C(z) is obtained by expanding this
function into an infinite series in terms of z�k. This is referred to as the
power-series method. Then the coefficients of z�k are the values of c (kT ). The
division required to obtain C(z) as an infinite series (open form) is easily
performed on a digital computer. However, if an analytical expression in
closed form for c �(t) is desired,C(z) can be expanded into partial fractions
which appear inTable 15.1. Since the Z transforms inTable 15.1 contain a zero
at the origin in the numerator, the Heaviside partial fraction expansion is first
performed on C(z)/z; i.e., functions of C(z) that contain a zero at the origin
must first be put into proper form.

Example 15.3. ForC(z) given by Eq. (15.48) withT¼1,
CðzÞ
z
¼ A

z � 1
þ Bz þ C
z2 � 0:736z þ 0:368

ð15:51Þ

The coefficients are evaluated by the usual Heaviside partial-fraction
method and yield A¼1, B¼�1, and C¼ 0.368. Inserting these values into
Eq. (15.51) and using the form of entries 3 and 13 of Table 15.1, the response
transformC(z) is

CðzÞ ¼ z
z � 1

� zðz � e�a cos bÞ
z2 � 2ze�a cos bþ e�2a

ð15:52Þ

wherea¼ 0.5 and b¼1.Thus, fromTable15.1the systemoutput of Eq. (15.52) in
closed form is

cðkT Þ ¼ 1� e�0:5k cos k ð15:53Þ
The open form introduces an error that is propagated in the division due to
round off. This does not occur with the closed form. Remember that C(z)
represents the sampled values c �(t) of c (t) at the sample instants kT. Thus, the
inversion from the z domain to the time domain yields c �(t) or the values
c(kT ). Thus, the inversion process yields values of c (t) only at the sampling
instants. In other words, C(z) does not contain any information about the
values in between the sampling instants. This is an inherent limitation of the
Z transformmethod.
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In order to obtain the inverseZ transformof functions ofC(z) that donot
contain a zero at the origin, the reader is referred to Ref.1.

15.8 ZERO-ORDER HOLD

The function of a zero-order hold (ZOH) is to reconstruct a piecewise-
continuous signal from the sampled function f �(t). It holds the output
amplitude constant at the value of the impulse for the duration of the sampling
period T. Thus, it has the transfer function

GzoðsÞ ¼
1� e�Ts

s
ð15:54Þ

The action of the ZOH is shown in Fig. 15.13.When the sampling time T is
small or the signal is slowly varying, the output of the ZOH is frequently used
in digital control systems. It is used to convert the discrete signal obtained
from a digital computer into a piecewise-continuous signal that is the input
to the plant. The ZOH is a low-pass filter that, together with the basic plant,

FIGURE 15.13 Input and output signals for a zero-order hold: (a) continuous input
signal e(t) and the sampled signal e*(t): (b) continuous signal e(t) and the piecewise-
constant output m(t) of the zero-order hold.

586 Chapter 15

Copyright © 2003 Marcel Dekker, Inc.



attenuates the complementary frequency spectra introduced by the sampling
process. The ZOH does introduce a lag angle into the system, and therefore
it can affect the stability and time-response characteristic of the system.

Example 15.4. Figure 15.14 shows a unity-feedback system in which a
zero-order hold is placed after the sampler and before the plant Gx(s), which
is given by Eq. (15.14) where a¼1. The Z transform of the forward transfer
function Gz(z) is

GzðzÞ ¼
CðzÞ
EðzÞ ¼Z½GðsÞ� ¼Z½GzoðsÞGxðsÞ� ¼Z

1� e�Ts

s
K

sðsþ1Þ
� �

ð15:55Þ

Because Z(1�e�Ts)¼ 1�z�1, this term can be factored from Eq. (15.55) to
give, forT¼1,

GzðzÞ ¼ ð1� z�1ÞZ K
s2ðsþ1Þ
� �

¼Kðze�1þ1�2e�1Þ
ðz�1Þðz� e�1Þ ¼

0:368Kðzþ0:717Þ
ðz�1Þðz�0:368Þ

ð15:56Þ

A comparison with the Z transform without the ZOH as given by Eq. (15.44)
shows that the zero is moved from the origin to z¼� 0.717.

The root locus for the systemofFig.15.14 is shown inFig.15.15andmaybe
compared with the root locus without the ZOH in Fig. 15.11. The maximum
value of the gain K for stability is Kmax¼ 0.8824. With z¼ 0.707, the
closed-loop control ratio is

CðzÞ
RðzÞ ¼

0:118ðz þ 0:717Þ
ðz � 0:625þ j0:249Þðz � 0:625� j0:249Þ ¼

0:118ðz þ 0:17Þ
z2 � 1:25z þ 0:453

ð15:57Þ

FIGURE 15.14 The uncompensated sampled-data (S-D) control system.
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For this control ratio, esT¼ 0.673 so that the corresponding real part of the
closed-loop poles in the s domain is s¼� 0.396 and the approximate setting
time isTs¼ 4/0.396¼10.1s.

This example illustrates that a second-order sampled system becomes
unstable for large values of gain. This is in contrast to a continuous second-
order system,which is stable for all positive values of gain. The advantage of
a discrete control system is the greater flexibility of compensation that can be
achieved with a digital compensator.

15.9 LIMITATIONS

Like anymethodof analysis, there are limitations to the use of theZ-transform
method. In spite of these limitations, however, thismethod is a very useful and
convenient analytical tool because of its simplicity. Nevertheless, the follow-
ing limitations must be kept in mind when applying and interpreting the
results of theZ-transformmethod:

1. The use of an ideal sampler in the analysis of a discrete-data system
is based upon themodel inwhich the strengths (area) of the impulses
in the impulse train c �(t) are equal to the corresponding values of the
input signal c (t) at the sampling instants kT. For this mathematical
model to be ‘‘close’’ to correct, it is necessary for the sampling
duration (or pulse width) g to be very small in comparison with the
smallest time constant of the system. It must also be very much
smaller than the sampling timeT.

FIGURE 15.15 Root locus for the system of Fig. 15.14.
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2. While the inverseZ transformZ�1[C(z)] yields only c (kT ) and not a
unique analytical function c (t), the modified Z-transform method
Zm,[5] removes this limitation.

3. The impulse responses of rational C(s) functions (exclusive of a hold
device) experience a jumpbehavior at t¼ 0 [at t¼kT for c �(t)] unless
these functions have at least two more poles than zeros. For these
functions,

lim
t!kTþ

cðtÞ ¼ Lþ 6¼ lim
t!kT�

cðtÞ ¼ L�

i.e., the value of c (kT ), as t approaches the value of kT from the low
side, is not identical to the value obtained when approaching kT
from the high side. In other words, a discontinuity occurs in the
value of c (kT ) at t¼kT. Fortunately, the C(z) encountered in the
analysis of most practical control systems have at least two more
poles than zeros (n�wþ 2), and this limitation does not apply for
such systems.

15.10 STEADY-STATE ERROR ANALYSIS FOR
STABLE SYSTEMS

The three important characteristics of a control system are (1) stability,
(2) steady-state performance, and (3) transient response.The first item of interest
in the analysis of a system is its stability characteristics. If there is a range of
gain for which a system yields a stable performance, then the next item of
interest is the system’s steady-state error characteristics; i.e., can the system
output c (kT ) follow a given input r (kT ) with zero or a small value of error
[e(kT )¼ r (kT )� c (kT )]. If the first two items are satisfactory, a transient
time-response analysis is then made. Section 15.6.2 and 15.6.3 deal with the
first item.This section discusses the second characteristic, and the remaining
sections deal, mainly,with the transient response.

Fortunately, the analysis of the steady-state error characteristics of
a unity-feedback S-D system parallels the analysis for a unity-feedback
continuous-time stable system based upon system types and upon
specific forms of the system input function. For the unity-feedback S-D
system of Fig. 15.14, the control ratio and the output and error signals
expressed in the z domain are, respectively,

CðzÞ
RðzÞ ¼

GzðzÞ
1þ GzðzÞ

ð15:58Þ

CðzÞ ¼ GzðzÞ
1þ GzðzÞ

RðzÞ ð15:59Þ
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and

EðzÞ ¼ RðzÞ � CðzÞ ¼ RðzÞ
1þ GzðzÞ

ð15:60Þ

Thus, if the system is stable, the final-value theorem can be applied to
Eqs. (15.59) and (15.60) to obtain the steady-state or final value of the output
and the error at the sampling instants: i.e.,

c�ð1Þ ¼ lim
t!1

c�ðtÞ ¼ lim
z!1

ð1� z�1ÞGzðzÞ
1þ GzðzÞ

RðzÞ
" #

ð15:61Þ

e�ð1Þ ¼ lim
t!1 e�ðtÞ ¼ lim

z!1

ð1� z�1ÞRðzÞ
1þ GzðzÞ

" #
ð15:62Þ

The steady-state error analysis for the stable nonunity feedback system
of Fig. 15.16a may be analyzed by determining its equivalent z domain-stable
unity-feedback system shown in Fig. 15.16b. The control ratios of the
respective configurations of Fig.15.16 are, respectively,

CðzÞ
RðzÞ ¼

GzðzÞ
1þ GZOGxH ðzÞ

¼ N ðzÞ
DðzÞ ð15:63Þ

CðzÞ
RðzÞ ¼

GeqðzÞ
1þ GeqðzÞ

ð15:64Þ

where N(z) and D(z) are the numerator and denominator polynomials,
respectively, of Eq. (15.63).Geq(z) is determined by equating Eqs. (15.63) and
(15.64) and manipulating to obtain

GeqðzÞ ¼
N ðzÞ

DðzÞ � N ðzÞ ¼
N ðzÞ
DGðzÞ

¼ N ðzÞ
ðz � 1ÞmD 0GðzÞ

ð15:65Þ

FIGURE 15.16 (a) A stable nonunity-feedback sampled-data system; (b) the
equivalent z domain stable unity feedback system of Fig. 15.16a. (From Ref. 1, with
permission of the McGraw-Hill Companies.)
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where D0GðzÞ is the resultant polynomial remaining after the term (z�1)m is
factored out of DG(z)¼D(z)�N(z). A similar procedure can be utilized
to determine Geq(z) for other stable nonunity-feedback S-D systems. Thus,
for Fig. 15.16b, the steady or final value of the output and the error at the
sampling instants, for this stable system, are given respectively as follows:

c�ð1Þ ¼ lim
t!1

c�ðtÞ ¼ lim
z!1

ð1� z�1ÞGeqðzÞ
1þ GeqðzÞ

RðzÞ
" #

ð15:66Þ

e�ðtÞ ¼ lim
t!1

e�ðtÞ ¼ lim
z!1

ð1� z�1ÞRðzÞ
1þ GeqðzÞ

" #
ð15:67Þ

15.10.1 Steady-State Error-Coefficients

The steady-state error coefficients have the samemeaning and importance for
sampled-data systems as for continuous time systems; i.e., how well the system
output can follow a given type of input forcing function.The following deriva-
tions of the error coefficients are independent of the system type.They apply to any
system type and are defined for specific forms of the input. These error coefficients
are useful only for a stable system and are defined in this text for a unity-feedback
system.

Step Input. R(z)¼Roz/(z�1). The step error coefficient Kp is defined as

Kp �
c�ð1Þ
e�ð1Þ ð15:68Þ

Substituting from Eqs. (15.61) and (15.62) into Eq. (15.68) yields
Kp ¼ lim

z!1
GðzÞ ð15:69Þ

which applies only for a step input, r(t)¼R0u�1(t).

Ramp Input. R(z)¼R1zl(z�1)2.The ramp error coefficient Kv is defined as

Kv �
steady-state value of derivative of output

e�ð1Þ ð15:70Þ

Since Eq. (15.26) represents the derivative of c (t) in the discrete-time domain,
use of the translation and final-value theorems [Eqs. (15.20) and (15.22),
respectively] permits Eq. (15.70) to be written as

Kv ¼
lim
z!1

ð1�z�1Þ2
T CðzÞ

h i

e�ð1Þ ð15:71Þ
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Substituting from Eqs. (15.61) and (15.62) into Eq. (15.71) yields

Kv ¼
1
T

lim
z!1

z � 1
z

GzðzÞ
� �

s�1 ð15:72Þ

which applies only for a ramp input, r (t)¼R1tu�1(t).

Parabolic Input. RðzÞ ¼ R2T
2zðz þ 1Þ=2ðz � 1Þ3. The parabolic error

coefficientKa is defined as

Ka �
steady-state value of second derivative of output

e�ð1Þ ð15:73Þ

Since Eq. (15.30) represents the second derivative of the output in the discrete-
time domain, use of the translation and final-value theorems permits
Eq. (15.73) to be written as

Ka ¼
lim
z!1

ð1�z�1Þ3
T 2

h i

e�ð1Þ ð15:74Þ

Substituting from Eqs. (15.59) and (15.67) into Eq. (15.74) yields

Ka ¼
1
T 2 limz!1

ðz � 1Þ2
z2

GzðzÞ
" #

s�2 ð15:75Þ

which applies only for a parabolic input, r(t)¼R2 t
2u�1(t)/2.

15.10.2 Evaluation of Steady-State Error Coefficients

The forward transfer function of a sampled-data unity-feedback system in the
z domain has the general form

GðzÞ ¼ Kzd ðz � a1Þðz � a2Þ 	 	 	 ðz � aiÞ 	 	 	
ðz � 1Þmðz � b1Þðz � b2Þ 	 	 	 ðz � bjÞ 	 	 	

ð15:76Þ

where ai and bjmay be real or complex,d andm are positive integers,m¼ 0,1,
2,. . . , andm represents the system type. Note that the (z�1)m term in Eq. (15.76)
corresponds to the sm term in the denominator of the forward transfer function
of a continuous-time Type m system. Substituting from Eq. (15.76) into
Eqs. (15.69), (15.72), and (15.75), respectively, yields the following values of the
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steady-state error coefficients for the variousTypem systems:

Kp ¼
lim
z!1

Kzdðz � a1Þðz � a2Þ 	 	 	
ðz � b1Þðz � b2Þ 	 	 	

¼ K0 Type 0 ð15:77Þ

1 Type 1 ð15:78Þ
1 Type 2 ð15:79Þ

8>>>><
>>>>:

Kv ¼

1
T lim

z!1

Kzd ðz � 1Þðz � a1Þðz � a2Þ 	 	 	
zðz � b1Þðz � b2Þ 	 	 	

¼ 0 Type 0 ð15:80Þ

1
T lim

z!1

Kzd ðz � a1Þðz � a2Þ 	 	 	
zðz � b1Þðz � b2Þ 	 	 	

¼ K1 Type 1 ð15:81Þ

1 Type 2 ð15:82Þ

8>>>>>>><
>>>>>>>:

Ka ¼

1
T 2 lim

z!1

Kzd ðz � 1Þ2ðz � a1Þðz � a2Þ 	 	 	
z2ðz � b1Þðz � b2Þ 	 	 	

¼ 0 Type 0 ð15:83Þ

1
T 2 lim

z!1

Kzd ðz � 1Þðz � a1Þðz � a2Þ 	 	 	
z2ðz � b1Þðz � b2Þ 	 	 	

¼ 0 Type 1 ð15:84Þ

1
T 2 lim

z!1

Kzd ðz � a1Þðz � a2Þ 	 	 	
z2ðz � b1Þðz � b2Þ 	 	 	

¼ K2 Type 2 ð15:85Þ

8>>>>>>>>><
>>>>>>>>>:

In applying Eqs. (15.77) to (15.85) it is required that the denominator of G(z)
be in factored form to ascertain if it contains any z�1 factor(s). Table 15.2
summarizes the results of Eqs. (15.77) to (15.85).

15.10.3 Use of Steady-State Error Coefficients

The importance of the steady-state error coefficients is illustrated bymeans of
an example.

TABLE 15.2 Steady-State Error Coefficients for Stable Systems

System
type

Step error
Coefficient Kp

Ramp error
Coefficient Kv

Parabolic error
Coefficient Ka

0 K0 0 0
1 1 K1 0
2 1 1 K2
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Example 15.5. For the system of Fig. 15.14, consider Gz(z) of the form of
Eq. (15.76) with m¼1 (a Type 1 system). Determine the value of e�ð1Þ for
each of the three standard inputs (step, ramp, and parabolic), assuming that
the system is stable.

For the definitions of Eqs. (15.68), (15.70), and (15.73) and fromTable15.2,
the following results are obtained:

e�ð1Þ ¼ c�ð1Þ
Kp
¼ c�ð1Þ
1 ¼ 0 ð15:86Þ

e�ð1Þ ¼ steady-state value of derivative of output
K1

¼ E0 ð15:87Þ

e�ð1Þ ¼ steady-state value of second derivative of output
0

¼ 1
ð15:88Þ

Thus, a Type 1 sampled-data stable system (1) can follow a step input with
zero steady-state error, (2) can follow a ramp input with a constant error E0,
and (3) cannot follow a parabolic input. Equation (15.87) indicates that the
value of E0, for a given value of R1 (for the ramp input), may be made smaller
by making K1 larger.This assumes that the desired degree of stability and the
desired transient performance are maintained while K1 is increasing in value.
A similar analysis can be made forTypes 0 and 2 systems (see problems).

Example 15.6. For the system of Fig. 15.17, consider that Geq(z), given by
Eq. (15.65), is of the form of Eq. (15.76) with m¼ 2 (an equivalent Type 2
system).Determine the steady-state error coefficients for this system.

FIGURE 15.17 A nonunity-feedback sampled-data control system. (From Ref. 1,
with permission of the McGraw-Hill Companies.)
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Applying the definitions of Eqs. (15.69), (15.71), and (15.75) yields,
respectively,

Kp ¼ 1 Kv ¼ 1 Ka ¼
1
T 2

N ðzÞ
z2D 0GðzÞ
� �

¼ K2

Example 15.7. The expression for the output of the control system shown in
Fig.15.17 is

CðzÞ ¼ G2ðzÞG1ðzÞRðzÞ
1þ G2G1H ðzÞ

ð15:89Þ

For a specified input r (t) (step, ramp, or parabolic), obtain R(z)¼Z[r (t)],
corresponding to a sampled r (t), and then obtain the pseudo control ratio
[C(z)/R(z)]p; i.e., divide both sides of Eq. (15.89) by R(z) to obtain

CðzÞ
RðzÞ
� �

p
¼ 1

RðzÞ
G2ðzÞG1ðzÞRðzÞ
1þ G2G1H ðzÞ
� �

ð15:90Þ

By setting Eq. (15.90) equal to Eq. (15.64), it is then possible to obtain an
expression for Geq(z) that represents the forward transfer function of an
equivalent unity-feedback system represented by Fig. 15.16b, where
Gz(z)�Geq(z). This expression of Geq(z) can then be used to determine the
‘‘effective’’ Type m system that Fig. 15.17 represents and to solve for Kp, Kv,
and Ka.

As a specific example, let

CðzÞ
RðzÞ
� �

p
¼ Kðz2 þ az þ bÞ

z3 þ cz2 þ dz þ e
¼ N ðzÞ

DðzÞ ð15:91Þ

where r (t)¼ u�1(t), K¼ 0.129066, a¼ 0.56726, b¼� 0.386904, c¼�1.6442,
d¼1.02099, and e¼� 0.224445. For these values of the coefficients the
system is stable. Setting Eq. (15.91) equal to Eq. (15.65) and solving for Geq(z)
yields

GeqðzÞ ¼
Kðz2 þ az þ bÞ

z3 � 1:773266z2 þ 0:97776z � 0:174509
¼ N ðzÞ

DGðzÞ
Applying the final-value theorem to Eq. (15.91) yields cð1Þ ¼ 1.Therefore, the
nonunity feedback system of Fig. 15.17 effectively acts at least as a Type 1
system. Based upon Eq. (15.76) this implies that DG(z) contains at least one
factor of the form z�1. Dividing DG(z) by z�1 yields z2�0.773266zþ
0.17451,which does not contain z�1 as a factor.Thus, the nonunity-feedback
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system is aType1system.The equation forGeq(z) is rewritten as follows:

GeqðzÞ ¼
Kðz2 þ az þ bÞ

ðz � 1Þðz2 � 0:773266z þ 0:17451Þ
For the ramp input r (t)¼R1tu�1(t) with R1¼0.5 and forT¼ 0.1, then applying
Eqs. (15.72) and (15.87) yields, respectively,

K1 ¼
1
T
lim
z!1

z � 1
z

GeqðzÞ
� �

¼ Kð1þ aþ bÞ
T ð0:401244Þ s�1

and

e�ð1Þ ¼ R1

K1
¼ 0:5

3:796
¼ 0:1317

Thus, the system follows a ramp input with a steady-state error.

15.11 ROOT-LOCUS ANALYSIS FOR SAMPLED-DATA
CONTROL SYSTEMS

The first thing that a designer wants to know about a given S-D system is
whether or not it is stable. This can be determined by examining the
roots obtained from the characteristic equation 1þG(z)H(z)¼ 0. Thus, the
root-locus method is used to analyze the performance of a S-D control
system in the same manner as for a continuous-time control system. For
either type of system, the root locus is a plot of the roots of the characteristic
equation of the closed-loop system as a function of the gain constant. This
graphical approach yields a clear indication of gain-adjustment effects
with relatively small effort compared with other methods. The underlying
principle is that the poles of C(z)/R(z) or C(z) (transient-response modes)
are related to the zeros and poles of the open-loop transfer function
G(z)H(z) and also the gain. An important advantage of the root-locus
method is that the roots of the characteristic equation of the system can
be obtained directly, which results in a complete and accurate solution
of the transient and steady-state response of the controlled variable.
Another important feature is that an approximate control solution can be
obtained with a reduction of the required work. With the help of a CAD
package, it is possible to synthesize a compensator, if one is required, with
relative ease.

This section presents a detailed summary of the root-locus method.The
first subsection details a procedure for obtaining the root locus, the next
subsection defines the root-locus construction rules for negative feedback,
and the last subsection contains examples of this method.
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15.11.1 Procedure Outline

The procedure to be followed in applying the root-locus method is outlined in
this subsection. This procedure is easier when a CAD program is used to
obtain the root locus. Such a program can provide the desired data for
the root locus in plotted or tabular form.This procedure,which is a modified
version of the one applicable for the continuous-time systems, is summarized
as follows

Step 1.Derive the open-loop transfer functionG(z)H(z) of the system.
Step 2.Factorize the numerator and denominator of the transfer

function into linear factors of the form zþ a, where a may be real or
complex.

Step 3.Plot the zeros and poles of the open-loop transfer function in the
z plane,where z¼szþ joz.

Step 4. The plotted zeros and poles of the open-loop function
determine the roots of the characteristic equation of the closed-loop
system [1þG(z)H(z)¼ 0]. By use of geometrical shortcuts or a
digital-computer program, determine the locus that describes the
roots of the closed-loop characteristic equation.

Step 5. Calibrate the locus in termsof the loop sensitivityK. If the gainof
the open-loop system is predetermined, the location of the exact
roots of 1þG(z)H(z)¼ 0 is immediately known. If the location of the
roots (or z) is specified, the required value of K can be determined.

Step 6. Once the roots have been found in step 5, the system’s time
response can be calculated by taking the inverse Z transform, either
manually or by use of a computer program.

Step 7. If the response does not meet the desired specifications,
determine the shape that the root locus must have to meet these
specifications.

Step 8. Synthesize the network that must be inserted into the system,
if other than gain adjustment is required, to make the required
modification on the original locus.This process, called compensation,
is described in Chaps.10 to12.

15.11.2 Root-Locus Construction Rules for
Negative Feedback

The system characteristic equation, Eq. (15.43), is rearranged as follows:

PðzÞ ¼ �1 ð15:92Þ
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Assume that P(z) represents the open-loop function

PðzÞ ¼ GðzÞH ðzÞ ¼ Kðz � z1Þ 	 	 	 ðz � ziÞ 	 	 	 ðz � zwÞ
ðz � p1Þ 	 	 	 ðz � pcÞ 	 	 	 ðz � pnÞ

ð15:93Þ

where zi and pc are the open-loop zeros and poles, respectively,n is the number
of poles,w is the number of zeros, and K is defined as the static loop sensitivity
(gain constant) when P(z) is expressed in this format. Equation (15.92) falls
into the mathematical format for root-locus analysis; i.e.,

Magnitude condition:jPðzÞj ¼ 1 ð15:94Þ

Angle condition: � b ¼ ð1þ 2hÞ180� for K > 0
h360� for K<0



ð15:95Þ

Thus, the construction rules for continuous-time systems,with minor modifi-
cations since the plot is in the z plane, are applicable for S-D systems and are
summarized as follows:

Rule 1.The number of branches of the root locus is equal to the number
of poles of the open-loop transfer function.

Rule 2. For positive values of K, the root exist on those portions of the
real axis for which the sum of the poles and zeros to the right is an
odd integer. For negative values of K, the root locus exists on those
portions of the real axis for which the sum of the poles and zeros to
the right is an even integer (including zero).

Rule 3. The root locus starts (K¼ 0) at the open-loop poles and
terminates ðK ¼ 
1Þ at the open-loop zeros or at infinity.

Rule 4. The angles of the asymptotes of the root locus that end at
infinity are determined by

g ¼ ð1þ 2hÞ180�
½no: of poles of GðzÞH ðzÞ� � ½no: of zeros of GðzÞH ðzÞ�
for k>0 ð15:96Þ

and

g ¼ h360�

½no: of poles of GðzÞH ðzÞ� � ½no: of zeros of GðzÞH ðzÞ�
for k<0 ð15:97Þ

Rule 5.The real-axis intercept of the asymptotes is

z0 ¼
Pn

c¼1 Re pc �
Pw

i¼1 Re zi
n� w

ð15:98Þ
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Rule 6.Thebreakaway point for the locus between twopoles on the real
axis (or the break-in point for the locus between two zeros on the
real axis) can be determined by taking the derivative of the loop
sensitivity K with respect to z. Equate this derivative to zero and
find the roots of the resulting equation.The root that occurs between
the poles (or the zero) is the breakaway (or break-in) point.

Rule 7. For K> 0 the angle of departure from a complex pole is equal
to 180� minus the sum of the angle from the other poles plus the sum
of the angle from the zeros. Any of these angles may be positive
or negative. For K< 0 the departure angle is 180� from that obtained
for K> 0.
ForK> 0 the angle of approach to a complex zero is equal to the sum
of the angles from the polesminus the sumof the angles from the other
zeros minus 180�. For K< 0 the approach angle is 180� from that
obtained for K> 0.

Rule 8.The root loci are symmetrical about the real axis.
Rule 9. The static loop sensitivity calibration K of the root locus can
be made by applying the magnitude condition given by Eq. (15.94)
as follows:

K ¼ jz � p1j 	 jz � p2j 	 	 	 jz � pcj 	 	 	 jz � pnj
jz � z1j 	 jz � z2j 	 	 	 jz � zwj

ð15:99Þ

Rule 10. The selection of the dominant roots of the characteristic
equation is based upon the specification that give the required
system performance; i.e., it is possible to evaluate s, od, and z,
from Eqs. (3.60), (3.61), and (3.64).
These values in turn are mapped into the z domain to determine the
location of the desired dominant roots in the z plane.The loop sensi-
tivity for these roots is determined by means of the magnitude condi-
tion. The remaining roots are then determined to satisfy the same
magnitude condition.
A root-locus CAD digital-computer program produces an accurate
calibrated root locus. This considerably simplifies the work
required for the system design. By specifying z for the dominant
roots or K, use of a computer program can yield all the roots of the
characteristic equation.y

yA good engineering design rule as a first estimate for a calculation step size in a CAD program is
T/10 in order to generate accurate results.

Sampled-Data Control Systems 599

Copyright © 2003 Marcel Dekker, Inc.



It should be remembered that the entire unbounded left-hand s plane is
mapped into the unit circle (UC) in the z plane. The mappings of the poles
and zeros in the left-half s plane into the z plane migrate toward the vicinity of
the 1þj0 point as T! 0. Thus, in plotting the poles and zeros of
G(z)¼Z[G(s)], they approach the 1þj0 point asT! 0. For a ‘‘small-enough’’
value of T and an inappropriate plot scale, some or all of these poles and zeros
‘‘appear to lie on top of one another.’’ Therefore,caution should be exercised in
selecting the scale for the root-locus plot and the degree of accuracy that needs to
be maintained for an accurate analysis and design of a S-D system.

15.11.3 Root-Locus Design Examples

Example 15.8. The second-order characteristic equation, for a given control
ratio, z2�0.2Azþ 0.1A¼ 0 is partitioned to put it into format of Eq. (15.92) as
follows:

z2 ¼ 0:2Az � 0:1A ¼ �Kðz � 0:5Þ ð15:100Þ
where K¼� 0.2A. Equation (15.100) is rearranged to yield

PðzÞ ¼ Kðz � 0:5Þ
z2

¼ �1 ð15:101Þ

that is of the mathematical format of Eq. (15.92). The poles and zero of
Eq. (15.101) are plotted in the z plane as shown in Fig. 15.18.The construction
rules applied to this example yield the following information.

Rule 1. Number of branches of the root locus is given by n¼ 2.
Rule 2. For K> 0 (A< 0) the real-axis locus exists between z¼ 0.5 and

z ¼ �1, and for K< 0 (A> 0) the real-axis locus exists between
z¼ 0.5 and z ¼ þ1.

FIGURE 15.18 Poles and zero of Eq. (15.101). (From Ref. 1, with permission of the
McGraw-Hill Companies.)
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Rule 3.The root-locusbranches start,withK¼ 0,at the poles ofP(z).One
branch ends at the zero, z¼ 0.5, and one branch ends at infinity for
K ¼ 
1.

Rule 4. Asymptotes
For K> 0:

g ¼ ð1þ 2hÞ180�
2� 1

¼ ð1þ 2hÞ180� thus g ¼ 180�

For K< 0:

g ¼ h360�

2� 1
¼ h360� thus g ¼ 0�ðor 360�Þ

Rule 5. Not applicable for the asymptotes determined by Rule 4.
Rule 6. For this example there is no breakaway point on the real axis for

K> 0. For K< 0, Eq. (15.101) is rearranged to obtain the function

W ðzÞ ¼ z2

�z þ 0:5
¼ K ð15:102Þ

Taking the derivative of this function and setting it equal to zero
yields the break-in and breakaway points.Thus,

dW ðzÞ
dz
¼ zðz � 1Þ
ð�z þ 0:5Þ2 ¼ 0

which yields z1,2¼0, 1. Therefore, z1¼0 is the breakaway point and
z2¼1 is the break-in point.

Rule 7. Not applicable for this example.
Rule 8. The root locus is symmetrical about the real axis.
Rule 9. The static loop sensitivity calibration of the root locus can be

made by evaluating Eq. (15.102) for various values of z that lie on the
root locus.

Rule 10. Not applicable for this example.

The root locus for Eq. (15.101) is shown in Fig. 15.19. The UC intersections
of the root locus as determined by a CAD program occur for the static loop
sensitivity values of K¼ 2/3 and K¼� 2.

Example 15.9. Given the unity-feedback sampled-data system shown in
Fig. 15.14, where Gx(s)¼KG/[s(sþ 2)], the objectives of this example are as
follows: (a) determine C(z)/R(z) in terms of KG and T (i.e., the values of KG

and Tare unspecified); (b) determine the root locus and the maximum value
of KG for a stable response withT¼ 0.1s; (c) determine the steady-state error
characteristics with various inputs for this system for those values of KG and
T that yield a stable system response; and (d ) determine the roots of the
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characteristic equation for z¼ 0.6, the corresponding time response c (kT ),
and the figure of merit (FOM).

Solution.

a. The forward transfer function of the open-loop system is

GzðsÞ ¼ GzoðsÞGxðsÞ ¼
KGð1� e�sT Þ
s2ðs þ 2Þ ¼ ð1� e�sT Þ KG

s2ðs þ 2Þ
¼ G�e ðsÞ

KG

s2ðs þ 2Þ
Thus,using entry 8 inTable15.1yields

GzðzÞ ¼ GeðzÞZ
KG

s2ðs þ 2Þ
� �

¼ ð1� z�1ÞZ KG

s2ðs þ 2Þ
� �

¼ KG½T þ 0:5e�2T � 0:5Þz þ ð0:5� 0:5e�2T � Te�2T Þ�
2ðz � 1Þðz � e�2T Þ

ð15:103Þ
Substituting Eq. (15.103) into

CðzÞ
RðzÞ ¼

GzðzÞ
1þ GzðzÞ

¼ N ðzÞ
DðzÞ

FIGURE 15.19 Root-locus plot of Example 15.8. (From Ref. 1, with permission of
the McGraw-Hill Companies.)
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yields

CðzÞ
RðzÞ ¼

0:5KG½ðT � 0:5þ 0:5e�2T Þzþ ð0:5� 0:5e�2T �Te�2T Þ�
z2� ½ð1þ e�2T Þ � 0:5KGðT � 0:5þ 0:5e�2T Þ�z

þe�2T þ 0:5KGð0:5� 0:5e�2T �Te�2T Þ
ð15:104Þ

b. From Eq. (15.104), the characteristic equation is given by
Q(z)¼ 1þGz(z)¼ 0,which yields

GzðzÞ ¼
K z þ 0:5�0:5e�2T�Te�2T

Tþ0:5e�2T�0:5
� �

ðz � 1Þðz � e�2T Þ ¼ �1 ð15:105Þ

where

K ¼ 0:5KGðT þ 0:5e�2T � 0:5Þ
ForT¼ 0.1 s,

GzðzÞ ¼
Kðz þ 0:9355Þ

ðz � 1Þðz � 0:81873Þ ¼ �1 ð15:106Þ

and K¼ 0.004683KG. The root locus for Eq. (15.106) is shown
in Fig. 15.20. For T¼ 0.1 the maximum value of K for a stable

FIGURE 15.20 A root-locus sketch for Eq. (15.106) where T¼ 0.1 s. (From Ref. 1,
with permission of the McGraw-Hill Companies.)
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response is K� 0.1938,which results in KGmax
� 41:38. An analysis

of Eq. (15.105) reveal that:

1. The pole at e�2T approaches the UC as T! 0 and approaches the
origin as T !1.

2. The zero approaches � 2 as T! 0 (this can be determined by
applying L’Ho“ pital’s rule twice) and approaches the origin as
T !1.

3. Based upon the plot scale chosen, it may be difficult to interpret
or secure accurate values from the root locus in the vicinity
of the 1þj0 point as T! 0. Both poles will ‘‘appear’’ to be
superimposed.
As a consequence of items 1 and 2 and considering only the root
locus, one may jump to the conclusion that the range of KG for
a stable systemdecreases asT! 0.This is not the case for this exam-
ple sinceK is a functionofT, as shown in the next section.As pointed
out in item 3, for an open-loop transfer function having a number of
poles and zeros in the vicinity of z¼1, it may be difficult to obtain an
accurate root-locus plot in the vicinity of z¼1 if the plotting area is
too large. This accuracy aspect can best be illustrated if the z con-
tours of Fig. 15.8 are used graphically to locate a set of dominant
complex roots p1,2 corresponding to a desired z. Trying to graphi-
cally determine the values of the roots at the intersection of
the desired z contours and the dominant root-locus branches is
most difficult. Any slight error in the values of p1,2 may result in
a pair of dominant roots having a value of z that is larger or smaller
than the desired value. This problem is also involved even if a com-
puter-aided program is used to locate this intersection, especially
if the program is not implemented with the necessary degree of
calculation accuracy. Also, the word length (number of binary
digits) of the selected digital control processor may not be sufficient
to provide the desired damping performance without extended
precision. It may be necessary to reduce the plotting area to
a sufficiently small region about z¼1and then to reduce the calcula-
tion step size in order to obtain an accurate picture of the range of
K for a stable system performance. This aspect of accuracy is
amplified at the end of this section.

c. For a step input [R(z)¼ z/(z�1)], C(z) is solved from Eq. (15.104).
Applying the final-value theorem to C(z) yields

cð1Þ ¼ lim
z!1
½ð1� z�1ÞCðzÞ� ¼ 1

Therefore, eð1Þ ¼ 0 for a stable system.
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For other than step inputs, the steady-state performance charac-
teristics ofE(z) for a unity-feedback systemmust be analysed.Thus,

EðzÞ ¼ 1
1þ GzðzÞ

RðzÞ ð15:107Þ

Considering therampinputR(z)¼Tz/(z�1)2,E(z) for thisexample is

EðzÞ¼ 2ðz�1Þðz�e�2T Þ
2ðz�1Þðz�e�2T ÞþKG½ðT þ0:5e�2T �0:5Þz

þð0:5�0:5e�2T �Te�2T Þ�

8>>>><
>>>>:

9>>>>=
>>>>;

Tz

ðz�1Þ2

Thus, for a stable system,

e�ð1Þ ¼ lim
z!1
½ð1� z�1ÞEðzÞ� ¼ 1

K






K>0

> 0

Therefore, a sampled-data unity-feedback stable control system
whose plant Gx(s) isType 1 has the same steady-state performance
characteristics as does a stable unity-feedback continuous-time
control system. In a similar manner, an analysis with other
polynomial inputs can be made for otherTypem plants.

d. The roots of the characteristic equation for z¼ 0.6 are
p1,2¼0.90311
 j0.12181 (where K¼ 0.01252). The output time-
response function is

cðkT Þ ¼ 0:01252000r½ðk � 1ÞT � þ 0:01171246r½ðk � 2ÞT �þ
1:80621000c½ðk� 1ÞT � � 0:83044246c½ðk� 2ÞT �

and the FOM are Mp�1.113, tp� 2.35 s, ts¼ 3.6 s, and
K1¼1.3368 s�1. Note that KG¼ 2.6735. In addition, it should be
noted that the roots can also be determined graphically by the
use of the z contours of Fig. 15.8 as shown in Fig. 5.9 with limited
accuracy.

As discussed previously in this section, Figs.15.21and15.22 illustrate the
care that must be exercised in performing a mathematical analysis for a
sample-data control system for small values of T. For the value of T¼ 0.01s,
the three poles ofGz(z) in Fig.15.21appear to be on top of one another (for the
plotting scale used in figure).Thus, it is most difficult to locate accurately the
dominant poles p1,2 for z¼ 0.45 in this figure. An error in the graphical
interpretation of the values of p1,2 can easily put these poles outside the
UC or on another z contour. The root-locus plot in Fig. 15.22 corresponds
to that portion of the root locus in Fig. 15.21 in the vicinity of the 1þj0 point.
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That is, Fig. 15.22 is an enlargement of the area about the 1þj0 point of
Fig. 15.21. By ‘‘blowing up’’ this region, one can plot the root locus accurately
in the vicinity of the1þj0 point and accurately determine p1,2.

15.12 SUMMARY

In this chapter the sampling process associatedwith anLTIsystem is analyzed
by using the impulse-function representation of the sampled quantity. Linear
difference equations are introduced in this chapter and used to model a
continuous-time or a sampled-data (S-D) control system based upon the
approximation of differentiation. The effective use of the concept of an ideal

FIGURE 15.21 Root-locus for GzðzÞ ¼ Kzðz þ 0:26395Þðz þ 3:6767Þ=ðz � 1Þ
ðz � 0:99005Þðz � 0:95123Þ� where T ¼ 0:001 s: (From Ref. 1, with permission of the
McGraw-Hill Companies.)
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sampler in analyzing sampled-data systems is introduced. An important
aspect of a S-D control system is the data conversion process (reconstruction
or construction process), which is modelled by a zero-order hold (ZOH)
device and the analog-to-digital (A/D) and the digital-to-analog (D/A)
conversion devices.

The synthesis in the z domain and the associated stability analysis in the
z domain is presented in this chapter.This is followed by the steady-state ana-
lysis of stable S-D control systems.The chapter concludes with the root-locus
guidelines for the design of S-D control systems.Numerous examples are also
presented.
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16

Digital Control Systems*

16.1 INTRODUCTION [1,2]

Chapter15 presents the direct technique for analyzing the basic sampled-data
control system. Generally, gain adjustment alone is not sufficient to achieve
the desired system performance specifications, i.e., the figures of merit
(FOM) (see Secs. 3.9 and 3.10). A cascade and/or feedback compensator (con-
troller) can be used to accomplish the design objectives.This chapter presents
the design process for satisfying the specified values of the conventional
control-theory FOM by using a cascade or a feedback controller.

As indicated in Sec. 15.1, there are two approaches that may be used in
analyzing and improving the performance of an S-D control system; the direct
(DIR) or the digitization (DIG) control design techniques. The main advan-
tage of the DIR design is that the performance specifications can be met with
less stringent requirements on the controller parameters. The disadvantage
of the method is that there is a limited amount of knowledge, experience, or
engineering tools for effecting a suitable Dc(z) controller.Whereas, the DIG
design utilizes the well established s domain knowledge, experience, or

*Much of the material in this chapter is taken from Ref. 1 with permission of the McGraw-Hill
Companies.
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engineering design tools. Cascade compensation can be achieved by using a
digital controllerDc(z), as shown in Fig.16.1.

16.2 COMPLEMENTARY SPECTRA [3]

In Sec.15.2 it is stated that the selection of the sampling timeTdetermines the
width of the primary and complementary components of the frequency spec-
tra shown in Fig. 15.6. To avoid the overlapping of these components, see
Fig. 15.6b, the sampling time should be selected small enough to satisfy the
Shannon sampling theorem:

os > 2oc or
p
T
> oc

To illustrate the important role that the selection of the sampling time
plays, consider the sampling of two sinuoids,which are being sampled with a
sampling timeT,

eaðtÞ ¼ sin ðo1t þ yÞ where o1 ¼ 2p=T and 0 � o1 < os=2
ð16:1Þ

and

ebðtÞ ¼ sin
j2p
T
� o1

� �
t þ p� y

� �
ð16:2Þ

where j¼1, 2,. . ..Their corresponding sampled expressions,with t¼kT, are

eaðkT Þ ¼ sin ðko1T þ yÞ ð16:3Þ

ebðkT Þ ¼ sin ð j2kp� kTo1 þ p� yÞ ¼ sin ðkTo1 þ yÞ ð16:4Þ
Equations (16.3) and (16.4) reveal that sampling either Eq. (16.1) or (16.2)
results in the identical sequence. Thus, this example reveals it is impossible
to differentiate between two sinuoids whose sum (or difference) of radian
frequencies is an integral multiple of 2p/T. The frequency p/T rad/s is referred
to as the folding orNyquist frequency.

FIGURE 16.1 A compensated digital control system.
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To illustrate the effect of folding (or aliasing) [3] two sampling times,
T¼ 0.1s and T¼1s, are consider for the open-loop S-D system of Fig. 16.2
where Gx(s)¼Kx/[s(sþ 2
 j5)]. For T¼ 0.1s, the poles p1,2¼� 2
 j5 lie
inside the primary strip that exists between þjos=2 ¼ þjp=T ¼ þj31:4 and
�jos=2 ¼ �jp=T ¼ �j31:4; thus no folding action exists. For T¼1s, the
poles p1,2¼� 2
 j5 lie in a complementary strip (outside the primary strip)
that exists between þjos=2 ¼ jp=T ¼ j3:14 and �jos=2 ¼ �jp=T ¼ �j3:14.
Thus,the poles p1¼�2þ j5 and p2¼� 2� j5 are folded into p1f¼�2� j1.283
and p2f¼� 2þ j1.283, respectively.

16.3 TUSTIN TRANSFORMATION: s TO z PLANE
TRANSFORMATION [1]

The transformation from the s domain to the z domain given by z¼ eTs

is a transcedental relationship. A linear approximation for this transforma-
tion is obtained by use of the Tustin algorithm. Solving for s in terms of z
yields the function of z that is substituted for s in implementing the Tustin
transformation:

s ¼ 1
T
ln z ð16:5Þ

The natural logarithm ln z is expanded into the series

ln z ¼ 2 x þ 1
3
x3 þ 1

5
x5 þ 	 	 	

� �
ð16:6Þ

where

x ¼ 1� z�1

1þ z�1
ð16:7Þ

Using only the first term in the infinite series of Eq. (16.6) yields the Tustin
transformation

s � 2
T
1� z�1

1þ z�1
¼ 2

T
z � 1
z þ 1

ð16:8Þ

FIGURE 16.2 An open-loop sampled-data system.
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The expression for s in Eq. (16.8) can be inserted into a function such as G(s),
which represents a continuous-time function. Rationalizing the expression
yields the function G(z), which represents a discrete function. The root-locus
and frequency response methods that have been developed for continuous-
time systems, can now be applied to the design of discrete-time systems.

An advantage of theTustin algorithm is that it is comparatively easy to
implement. Also, the accuracy of the response of theTustin z-domain transfer
function is good compared with the response of the exact z-domain transfer
function; i.e., the accuracy increases as the frequency increases.

16.3.1 Tustin Transformation Properties

Ideally, the z-domain transfer function obtained by digitizing an s-domain
transfer function should retain all the properties of the s-domain transfer
function. However, this is not achieved completely. The transformation
has four properties that are of particular interest to the designer. These
four properties are the cascading property, stability, dc gain, and the
impulse response. The first three properties are maintained by the Tustin
transformation; i.e., these three properties are invariant. The Tustin algo-
rithm maintains the cascading property of the s-domain transfer function.
Thus, cascading two z-domain Tustin transfer functions yields the same
results as cascading the s-domain counterparts and Tustin-transforming
the result to the z-domain. This cascading property implies that no ZOH
device is required when cascading s-domain transfer functions. The Tustin
transformation of a stable s-domain transfer function is also stable. The
dc gains for the s-domain and the z-domain Tustin transfer functions
are identical; that is, F(s)js¼0¼F(z)jz¼1. However, the dc gains for the exact
Z transfer functions are not identical.

Example 16.1. This example illustrates the properties of the Tustin
transformation of a function e(t) that is sampled as shown in Fig. 16.3. Given
E(s)¼Ex(s)¼ 1/[(sþ1)(sþ 2)], with no ZOH involved, and T¼ 0.1s, the exact
Z transform obtained by using Eq. (15.12) yields

EðzÞ ¼ Z½e�ðtÞ� ¼ 0:086107z
ðz � 0:81873Þðz � 0:90484Þ

FIGURE 16.3 A sampled function.
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The Tustin transformation, indicated by the subscripts TU, is obtained by
inserting for s from Eq. (16.8) into E(s) and simplifying the resultant equation
yields

½EðzÞ�TU ¼
0:0021645ðz þ 1Þ2

ðz � 0:81818Þðz � 0:90476Þ

For each transform, the initial- and final-value theorems yield, respectively,
the results shown in the table below.

This example demonstrates that theTustin transformation results in aZ trans-
form for which, in general, the degrees of the numerator and denominator are
the same, i.e.,w¼ n. Thus, since n¼w, the initial value of [E(z)]TU is always
different from zero; that is,

lim
z!1EðzÞ 6¼ lim

z!1½EðzÞ�TU ð16:9Þ

Based upon the dc gain, it is evident that the values of E(z) and [E(z)]TU differ
by a factor of 1/T ; that is,

EðzÞ ¼ Z½e�ðtÞ� � 1
T
½EðzÞ�TU ð16:10Þ

The reason for this difference is that theTustin transformation does not take
into account the attenuation factor 1/T introduced by the sampling process
(see Fig. 15.6), whereas E(z)¼Z[e*(t)] does take this attenuation factor into
account. This factor must be included when the DIG technique is used for
system analysis and design.

Example 16.2. To illustrate further theTustin properties, consider the open-
loop sampled-data system of Fig. 16.2 with T¼ 0.1s that includes a ZOH
unit and

GxðsÞ ¼
s þ 2

sðs þ 1Þ

E(s) E(z) [E(z)]TU
1

T
½EðzÞ�TU

Initial value 0 0 0.0021645 0.021646
Final value 0 0 0 0
dc gain 0.5 4.9918 0.499985 4.99985
n (degree of denominator) 2 2 2 2
w (degree of numerator) 0 1 2 2
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Thus,

GðzÞ ¼ Z½GzoðsÞGxðsÞ� ¼
0:105ðz � 0:8171Þ
ðz � 1Þðz � 0:904Þ

Applying Eq. (16.8) toGx(s) yields

½GxðzÞ�TU ¼
0:0524ðz þ 1Þðz � 0:8182Þ
ðz � 1Þðz � 0:9048Þ � GðzÞ

The initial-value and final-value theorems yield, respectively, for each
transform, the results shown in the following table.

Therefore, for this example, since a ZOH unit is involved, the exact Z
transform of G(s), takes into account the factor 1/T shown in Fig. 15.6, As a
result, as noted in Eq. (16.10),GðzÞ ffi ð1=T Þ½GðzÞ�TU.

16.3.2 Tustin Mapping Properties

The following discussion is useful in understanding the Tustin mapping
properties. To represent functionally the s to z plane mapping, Eq. (16.8) is
rearranged to yield

z ¼ 1þ sT=2
1� sT=2

ð16:11Þ

Utilizing the mathematical expression,

1þ a
1� a

¼ e j2 tan�1 a

and letting s ¼ jôosp in Eq. (16.11) the following expression is obtained [1]:

z ¼ 1þ jôospT=2
1� jôospT=2

¼ e j2 tan�1 ôospT=2
� �

ð16:12Þ

The exactZ transform yields z ¼ e jospT ,whereosp is as equivalent s plane fre-
quency.Thus, the following equation is obtained from Eq. (16.12):

e jospT ¼ exp e j2 tan�1 ôospT
2

� �
ð16:13Þ

Theorem G(z) [G(z)]TU

I.V. 0 0.0524
F.V. 0.20047 0.200133
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Equating the exponents yields

ospT
2
¼ tan�1

ôospT
2

ð16:14Þ

or

tan
ospT
2
¼ ôospT

2
ð16:15Þ

When ospT/2<17�, or� 0.30 rad, then

osp � ôosp ð16:16Þ
Thismeans that in the frequency domain theTustin approximation is good for
small values of ospT/2.

Returning to Eq. (16.13), it is easy to realize that the s-plane imaginary
axis is mapped into the unit circle (UC) in the z plane, as shown in Fig. 15.10.
The left-half (LH) s plane is mapped into the inside of the UC. The same
stability regions exist for the exactZ transform and theTustin approximation.

Also, in this approximation, the entire s-plane imaginary axis is mapped
once and only once onto the UC.TheTustin approximation prevents pole and
zero aliasing since the folding phenomenon does not occur with this method.
However, there is a warping penalty [1], that is, the bilinear transformation
does not result in a 1:1 relationship between the location of the corresponding
poles and zeros in the splane and the z plane. In other words,the locationof the
transformed z-plane pole or zero corresponds to the warped location of the
corresponding pole or zero in the s plane. This warping phenomena is
illustrated in Fig. 16.4. Compensation can be accomplished by using
Eq. (16.15),which is depicted in Fig.16.4.To compensate for the warping, pre-
warping ofosp by using Eq. (16.15) generates ôosp,whichwill result in a1:1 rela-
tionship between the location of the corresponding poles and zeros in the
s plane and the z plane. The continuous controller is mapped into the z plane
bymeans of Eq. (16.8) using the prewarped frequency ôosp.The digital compen-
sator (controller) must be tuned (i.e., its numerical coefficients adjusted) to
finalize the design since approximations have been employed. As seen from
Fig. 16.4, Eq. (16.16) is a good approximation when ospT/2 and ôospT=2 are
both less than 0.3 rad.

The prewarping approach for theTustin approximation takes the s plane
imaginary axis and folds it back to the range p/2 to� p/2, as seen in Fig.16.4.
The spectrum of the input must also be taken into consideration when select-
ing an approximation procedure with or without prewarping. It should
be noted that in the previous discussion only the frequency has been
prewarped due to the interest in the controller frequency response. The real
part of the s plane pole influences such parameters as rise time, overshoot,
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and settling time.Thus, consideration of the warping of the real pole compo-
nent is now analyzed as a fine-tuning approach. Proceeding in the same
manner as used in deriving Eq. (16.16), substitute z ¼ esspT and s ¼ ŝssp into
Eq. (16.11) to yield

esspT ¼ 1þ ŝsspT=2
1� ŝsspT=2

ð16:17Þ

Replacing esspT by its exponential series and dividing the numerator by the
denominator in Eq. (16.17) results in the expression

1þ sspT þ
ðsspT Þ2

2
þ 	 	 	 ¼ 1þ ŝsspT

1� ŝsspT=2
ð16:18Þ

FIGURE 16.4 Map of ôo ¼ 2ðtanospT=2Þ=T. (a) Plot of Eq. (16.13) and (b) warping
effect.
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If jsspT j � ðsspT Þ2=2 (or 1� jsspT=2jÞ and 1� jŝsspT=2j, then

jŝsspj � jsspj �
2
T

ð16:19Þ

Thus, with Eqs. (16.16) and (16.19) satisfied, the Tustin approximation in the
s domain is good for small magnitudes of the real and imaginary components
of the variable s. The shaded area in Fig. 16.5 represents the allowable loca-
tion of the poles and zeros in the s plane for a good Tustin approximation.
Because of the mapping properties and its ease of use, theTustin transforma-
tion is employed for the DIG technique in this text. Fig. 16.4b illustrates the
warping effect of a pole (or zero) when the approximations are not satisfied.

A matched Z transform can be defined as a direct mapping of each
s-domain root to a z-domain root: s þ a! 1� e�aT z�1. The poles of Gz(z)
using this approach are identical to those resulting from the exact Z transfor-
mationof a givenG(s).However, the zeros and the dc gain are usually different.

A characteristic of a bilinear transformation is that, in general, it
transforms an unequal-order transfer function (ns 6¼ws) in the s domain into
one for which the order of the numerator is equal to the order of its denom-
inator (nz¼ wz) in the z domain. This characteristic must be kept in mind
when synthesizingG(s) and F(s).

FIGURE 16.5 Allowable location (crosshatched area) of dominant poles and zeros in
s plane for a good Tustin approximation.
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16.4 z-DOMAIN TO THE w- AND w0-DOMAIN
TRANSFORMATIONS [1]

The initial use of the DIG technique involved the bilinear transformation
from the z domain to the w domain by use of

z ¼ w þ 1
�w þ 1

ð16:20Þ

A disadvantage of this mapping is that it lacks the desirable property that as
the sampling time T ! 0, w! s; i.e.,

wjT!0 ¼ lim
T!0

z � 1
z þ 1

¼ e sT � 1
e sT þ 1

¼ sT þ ðsT Þ2=2!þ 	 	 	
2þ sT þ ðsT Þ2=2!þ 	 	 	

" #
¼ 0

ð16:21Þ
The desired property that as the sampling time T ! 0, w! s is achieved by
defining

w0 � 2
T
w � 2

T
sT þ ðsT Þ2=2!þ 	 	 	

2þ sT þ ðsT Þ2=2!þ 	 	 	

" #
ð16:22Þ

This desirable property yields a quantity in the w0 domain that is analogous to
a quantity in the s domain. To achieve the z to w0 transformation, substitute
w¼Tw0/2 into Eq. (16.20).This results in

z ¼ Tw0 þ 2
�Tw0 þ 2

ð16:23Þ

Therefore, the w0 DIG design technique utilizes this equation.Henceforth the
prime designator on w0 is omitted; i.e., it is designated as w.

The bilinear transformation from the z domain to the w domain may be
accomplished by using Eq. (16.11) with s replaced by w or by use of Eq. (16.23).
Both s andwbilinear transformations are referred to as aTustin transformation.
The w-domain mapping is illustrated in Fig.16.6 where the mapping from the
s domain into the z domain is accomplished by means of z¼ eTs. The trans-
formation into the w domain results in a minimum-phase (m.p.) s domain
transfer function becoming a nonminimum-phase (n.m.p.) w domain transfer
function. In performing a w-domain control systemdesign, the w-domain con-
trol system can be treated as being a‘‘continuous-time’’system.Thus, the same
CAD packages utilized for s-domain analysis and design can be used.

Besides the n.m.p. characteristic of the w-domain transfer functions,
another disadvantage in transforming the resultant digital controller into the
z domain is that the resulting warping effect is in the opposite direction to that
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shown in Fig. 16.4b. That is, the warping direction is toward the imaginary
axis, resulting in a less stable system.

16.5 DIGITIZATION (DIG) TECHNIQUE

There are two approaches available for utilizing the DIG method. The first
approach is to transform the Z-transform function by use of a bilinear trans-
formation, as discussed in Sec.16.3.The second approach is to transform into
the w domain as discussed in Sec.16.4. In theDIGmethod,once the controller
design is achieved in the s or wdomain,one of several transformationmethods
can be employed to transform the cascade or feedback controller, with or
without the s- or w-domain controller gain included, into its equivalent
z-domain discrete controller. The reason for not including the gain is dis-
cussed in the following section. The advantage of this technique, discussed
in detail in this chapter, is that tried and proven continuous-time domain
methods are used for designing an acceptable Dc(s) or Dc(w) controller.

FIGURE 16.6 Mapping of the s plane into the z plane into the w 0 plane.
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A disadvantage is that, if T is not small enough, the poles and zeros of the
controller lay outside the good bilinear transformation region, which may
result in not achieving the desired performance.

After Dc(z) is included in the system model, as shown in Fig. 16.1,
a system analysis is again performed. If the modified system does not meet
the desired specifications, the controller ismodified accordingly.This process
is continued until the desired system specifications are achieved.To illustrate
this design process, the basic systemof Sec.15.6.3 is used in this chapter for the
design of lead, lag, and lag-lead or lead-lag cascade controllers.

The disadvantage of performing the analysis and design in the
w domain is that, when transforming a m.p. s-domain transfer function,
it becomes a non-minimum-phase (n.m.p.) transfer function in the w domain.
Another disadvantage is the warping of the poles and zeros that occurs when
transforming the w domain transfer function into the z domain. Performing
the PCTanalysis and design in the s domain eliminates the first disadvantage.
Although warping also occurs with the s-domain approach, its effect tends
to make the system more stable, as shown in Fig. 16.4b. Also, the warping
effect is minimized the smaller that the value of the sampling timeT becomes.
The direction of the warping effect when using the w-domain design is
opposite to that which occurs with the s domain design; i.e., the w-domain
poles and zeros arewarped toward the imaginary axis,thus decreasing the sys-
tem’s degree of stability.Thus, the PCTDIG technique, discussed in Sec.16.7,
is used for the compensation designs done in the remainder portion of this
chapter.

16.6 DIGITIZATION (DIG) DESIGN TECHNIQUE

An important tool for any design technique is a CAD package.As the value of
T decreases, the use of a computer becomes essential in order to achieve an
accurate design of the digital controller. The presentation of the cascade-
compensator design procedure outlined and discussed in the following sec-
tions is intended to outline clearly the manner in which the DIG technique is
applied to the design of the compensatorDcð	Þ ¼ ðgainÞD0cð	Þ.

Figure 16.7 represents the trial-and-error design philosophy in applying
the DIG technique in the design of a cascade compensator via the analysis
of the open-loop system. If path A does not result in the specifications set
forth by the sampled-data control system of Fig. 16.1, then path B is used to
try o determine a satisfactory value of Kzc.Thus, the choice of the design path
selected from Fig.16.7 is based upon the following guidelines:

1. Follow pathA if the dominant poles and zeros ofCð�Þ=Rð�Þ lie in the
crosshatched area of Fig.16.5. (Tustin approximation is good!)
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2. Follow path A when the degree of warping is deemed not
to affect negatively the achievement of the desired design
results (see Sec. 16.12). If the desired results are not achieved,
try path B.

3. Follow path Bwhen severe warping exists.

FIGURE 16.7 Digitization (DIG) design philosophy for Fig. 16.1.
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The DIG design procedure is as follows:

Step 1.Convert the basic sampled-data control system to a PCTcontrol
system or transform the basic system into the w plane. (Try both
approaches for determining the best design.)

Step 2.By means of a root-locus analysis, determineDc(s)¼KscDc(s).
Step 3.Obtain the control ratio of the compensated system and the cor-

responding time response for the desired forcing function. If the
desired FOM are not achieved, repeat step 2 by selecting a different
value of 
, s, od, etc., or a different desired control ratio.

Step 4.When an acceptableDc(s) orDc(w) has been achieved, transform
the compensator, via the Tustin transformation, into the z domain.
Note: In order for real poles (or zeros) [ pi (or zi)] that lie on the nega-
tive real axis of the s plane to lie between 0 and 1 in the z plane,when
utilizing theTustin transformation of Eq. (16.8), jpij � 2/T (or jzij � 2/T )
must be satisfied.

Step 5. Obtain the z-domain control ratio of the compensated system
and the corresponding time response for the desired forcing function.
If the FOM for the sampled-data control system have been achieved
via path A or B, then the design of the compensator is complete. If
not, return to step 2 and repeat the steps with a new compensator
design or proceed to the DIR technique.

The following sections present the DIG PCT design technique that
requires the utilization of theTustin tranformation.

16.7 THE PSUEDO-CONTINUOUS-TIME (PCT)
CONTROL SYSTEM

As noted in Sec. 16.1, the transformation of a m.p. s-domain transfer function
results in a n.m.p. transfer function in the w domain.When the requirements
in Sec. 16.3.2 for a psuedo-continuous-time (PCT) representation of a S-D
system are satisfied and if a plant ism.p., then the simpler analog design proce-
dures of this text can be applied to a m.p. PCTsystem.With the sampling rates
that are now available, the dominant s-plane poles and zeros that determine
the system’s FOM are essentially not warped when transformed into the
z domain. These twenty-first-century sampling rates enable the design of a
digital controller by first designing as s domain compensator Dc(s), by the
well-established s-domain cascade and feedback compensation design
techniques. Once Dc(s) that yields the desired system FOM is synthesized,
then it is transformed into the z domain by the use of theTustin transformation
to obtain [Dc(z)]TU.Thus,using theminimal practical sampling time allowable
assures that the desired FOM for the designed digital control system will be
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achieved. This PCT design approach is also referred to as a DIG design
method.

16.7.1 Introduction to Psuedo-Continuous-Time System
DIG Technique [1]

The DIG method of designing an S-D system, in the complex-frequency
s plane, requires a satisfactory pseudo-continuous-time (PCT) model of the
S-D system. In other words, the sampler and the ZOH unit for the S-D
system of Fig. 16.8 (also shown in Fig. 16.9a) must be approximated by the
linear continuous-time unit GA(s) shown in Fig. 16.9c. The DIG method
requires that the dominant poles and zeros of the PCTmodel lie in the shaded
area of Fig. 16.5 in order to achieve a high level of correlation with the S-D
system. To determine GA(s), first consider the frequency component E*( jo)
representing the continuous-time signal E( jo), where all its side-bands are
multiplied by the factor 1/T [see Eq. (6.9) of Ref. 1]. Because of the low-pass
filtering characteristics of a S-D system, only the primary component needs
to be considered in the analysis of the system.Therefore, the PCT approxima-
tion of the sampler of Fig.16.8 is shown in the Fig.16.9b.

Using the first-order Pade0 approximation (see Ref. 1), the transfer
function of the ZOH device, when the value of T is small enough, is
approximated as follows:

GzoðsÞ ¼
1� e�Ts

s
� 2T

Ts þ 2
¼ GpaðsÞ ð16:24Þ

Thus, the Pade¤ approximation Gpa(s) is used to replace Gzo(s), as shown in
Fig. 16.9a. This approximation is good for oc�os /10, whereas the second-
order approximation is good for oc�os /3 (Ref. 1). Therefore, the sampler

FIGURE 16.8 The uncompensated sampled-data control system.
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and ZOH units of a S-D system are approximated in the PCTsystem of Fig.
16.9c by the transfer function.

GAðsÞ ¼
1
T
GpaðsÞ ¼

2
Ts þ 2

ð16:25Þ
Since Eq. (16.25) satisfies the condition limT!0 GAðsÞ ¼ 1, it is an accurate
PCT representation of the sampler and ZOH units, because it satisfies the
requirement that as T! 0 the output of GA(s) must equal its input. Further,
note that in the frequency domain as os !1ðT ! 0Þ, then the primary strip
becomes the entire frequency-spectrum domain, which is the representation
for the continuous-time system [1].

Note that in obtaining the PCT model for a digital control system,
the factor 1/T replaces only the sampler that is sampling the continuous-time
signal. This multiplier of 1/T attenuates the fundamental frequency of the
sampled signal, and all its harmonics are attenuated.To illustrate the effect of
the value of Ton the validity of the results obtained by the DIG method, con-
sider the S-D closed-looped control system of Fig.16.8,where

GxðsÞ ¼
4:2

sðs þ 1Þðs þ 5Þ ð16:26Þ

The closed-loop system performance for three values of T is determined in
both the s and z domains, i.e., theDIG technique and thedirect (DIR) technique
(the z analysis), respectively. Table 16.1 presents the required value of Kx and
time-response characteristics for each value of T obtained by use a CAD

FIGURE 16.9 (a) Sampler and ZOH; (b) approximations of the sampler and ZOH;
(c) the approximate continuous-time control system equivalent of Fig. 16.8.
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package.Note that forT� 0.1s there is a high level of correlation between the
DIG and DIR models. For T�1s there is still a relatively good correlation.
(The designer needs to specify, for a given application,what is considered to
be ‘‘good correlation.’’)

16.7.2 MATLAB Design for Sec. 16.7.1

MATLAB provides a number of options for design. The root locus tool
described in Appendix C allows a user to design compensators and adjust
gain on a root locus plot. The following MATLAB commands are used to
launch the root locus tool with the models from this section and create the
closed-loop time responses shown in Fig. 16.10. The following detailed
MATLAB commands, for T¼ 0.1s, involves both the DIG (PCT) and the
DIR (exact z-domain) designs.

DIG (PCT) Design

echo on
gxnum¼4.2; % Create numerator
gxden¼conv([1 1 0],[1 5]); % Create denominator
Gx¼tf(gxnum,gxden); % Create transfer function

% from num and den
zpk(Gx) % Show zero-pole-gain form

Zero/pole/gain: % Eq. (16.26)
4.2

- - - - - - - - - -
s(sþ5)(sþ1)

Tsamp¼0.1; % Tsamp is changed for
% sample time¼0.01 or 1.0

Ga¼tf([2],[Tsamp 2]) % Create sampler and ZOH

TABLE 16.1 Analysis of a PCT System Representing a Sampled-Data Control
System for 
¼ 0.45 (Values obtained by use of TOTAL-PC)

Method T, s Domain Kx Mp Tp, s Ts, s

DIR 0.01 Z 4.147 1.202 4.16 9.53
DIG S 4.215 1.206 4.11 9.478

DIR 0.1 Z 3.892 1.202 4.2–4.3 9.8þ
DIG S 3.906 1.203 4.33 9.90þ

DIR 1 Z 2.4393 1.199 6 13–14
DIG S 2.496 1.200 6.18 13.76
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Transfer function:
2

- - - - -
0.1 sþ2

GDIG¼series(GA, Gx); % Multiply GA and Gx
zpk(GDIG) % Show zero-pole-gain form

Zero/pole/gain:
84

- - - – - - - - - - - - - -
s (sþ20) (sþ5) (sþ1)

rltool(GDIG) % Open root locus tool window

% Root locus tool is used to design compensator and
% export the closed loop transfer function T_r2y

T_r2y % Closed loop transfer function

Zero/pole/gain from input ‘‘r’’ to output ‘‘y’’:
78.12

- - - - - - - - - - - - - - - - - - - - - - - - - - - -
(sþ5.238) (sþ19.99) (s^2þ0.7754sþ0.7462)

cltf¼tf(T r2y) % Create transfer function form
% of cltf

FIGURE 16.10 MATLAB step response of DIG (PCT) vs. DIR technique for
T¼ 0.1 s.
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Transfer function from input ‘‘r’’ to output ‘‘y’’
78.12

- - - - - - - - - - - - - - - - - - - -
s^4þ26 s^3þ125 s^2þ100 sþ78.12

fom(cltf.num{1, 1},cltf.den{1,1}) % Get figures of merit

Figures of merit for a unit step input

rise time = 1.82
peak value = 1.2032
peak time = 4.33
settling time = 9.9
final value = 1

DIR Design

echo on
gxnum = 4.2; % Creat numerator
gxden=conv([1 1 0],[1 5]) % Create denominator
Gx=tf (gxnum, gxden); % Create transfer function

% from num and den
zpk(Gx) % Show zero-pole-gain form

% Ref. Eq. (16.26)

Zero/pole/gain:
4.2

- - - - - - - - -
s(sþ5)(sþ1)

Tsamp¼0.1; % Tsamp is changed for
% sample time¼0.01, 0.1, and 1.0

dirgx¼c2d(Gx,Tsamp,’zoh’) % Transform Gx to the z domain
% using a zero order hold

Transfer function:
0.000605 z^2þ0.002092 zþ0.0004483
- - - - - - - - - - - - - - - - - - - - - -

z^3�2.511 z^2þ2.06 z�0.5488

Sampling time: 0.1
zpk(dirgx) % Show zero – pole – gain form

Zero/pole/gain:
0.000605 (zþ3.228) (zþ0.2295)
- - - - - - - - - - - - - - - - - - -
(z�1) (z�0.9048) (z�0.6065)

Sampling time: 0.1
rltool(dirgx) % Open root locus tool
% Root locus tool is used to design compensator and
% export the closed loop transfer function T_r2y
%
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% The following commands complete the plot shown
%in Fig. 16.10

T_r2y % Closed loop transfer function

Zero/pole/gain from input ‘‘r’’ to output ‘‘y’’:
0.00056063 (zþ3.228) (zþ0.2295)
- - - - - - - - - - - - - - - - - - - - -
(z�0.5927) (z^2�1.918zþ0.9253)

Sampling time: 0.1
hold on
step (T_r2y)

The results of the MATLAB design for T¼ 0.01 and 1.0 s are shown in
Figs. 16.11 and 16.12, respectively.These results agree with the values given in
Table 10.1 which were obtained by use of the TOTAL PC CAD package.
Figure 16.10 and 16.11 for T� 0.1s illustrate that the PCTdesigns agree very
closely to the DIR design results.

16.7.3 Simple PCT Example

Figure16.8 represents a basic or uncompensated S-D control systemwhere

GxðsÞ ¼
Kx

sðs þ 1Þ ð16:27Þ

FIGURE 16.11 MATLAB step response of DIG (PCT) vs. DIR technique for
T¼ 0.01 s.
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is used to illustrate the approaches for improving the performance of a basic
system.

Case 1: PCT Open-Loop Control System

For 
¼ 0.7071, the root-locus plot Gx(s)¼� 1 shown in Fig. 16.13a yields
Kx¼ 0.4767.

FIGURE 16.12 MATLAB step response of DIG (PCT) vs. DIR technique for T¼ 1.0 s.

FIGURE 16.13 Root locus for (a) Case 1, Eq. (16.27); (b) Case 2, Eq. (16.28).
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One approach for designing a S-D unity-feedback control system is
first to obtain a suitable closed-loop model [C(s)/R(s)]TU for the PCT
unity-feedback control system of Fig. 16.8, based on the plant of the S-D
control system.This model is then used as a guide for selecting an acceptable
C(z)/R(z).Thus, for the plant of Eq. (16.27) the open-loop transfer function is

GPCðsÞ ¼ GAðsÞGxðsÞ ¼
2Kx=T

sðs þ 1Þðs þ 2=T Þ ð16:28Þ

ForT¼ 0.1s, the closed-loop transfer function is

CðsÞ
RðsÞ ¼

GPCðsÞ
1þGPCðsÞ

¼ 20Kx

s3 þ 21s2 þ 20s þ 20Kx
ð16:29Þ

The root locus for GPC(s)¼� 1 is shown in Fig. 16.13b. For comparison pur-
pose the root-locus plot of Gx(s)¼� 1 is shown in Fig. 16.13a. These figures
illustrate the effect of inserting a lag network in cascade in a feedback control
system; i.e., the lag characteristic of Gzo(s) reduces the degree of system stabi-
lity, as illustrated by Fig. 16.13, which transforms a completely stable system
into a conditionally stable system.Thus for a given value of 
, the values of tp
and ts (and Ts) are increased. Therefore, as stated previously, the ZOH unit
degrades the degree of system stability.

Case 2: PCT System’s Output Transfer Function

The desired control ratio model, given by Eq. (16.21), is based upon a
desired damping ratio 
¼ 0.707 for the dominant roots. For a unit-step
forcing function, the PCTsystem’s output transfer function is obtained from
Eq. (16.21) as follows:

½CðsÞ�M ¼
9:534

sðs3 þ 21s2 þ 20s þ 9:534Þ
¼ 9:534

sðs þ 0:4875
 j0:4883Þðs þ 20:03Þ ð16:30Þ

where Kx¼ 0.4767. The real and imaginary parts of the desired roots
of Eq. (16.30), for T¼ 0.1s, lie in the acceptable region of Fig. 16.5 for a
good Tustin approximation. Note that the pole at � 20.03 is due to the Pade¤
approximation for Gzo(s) [see Eq. (16.27)].

16.7.4 Sampled-Data Control System Example

Thedetermination of the time-domainperformanceof the S-Dcontrol system
of Fig.16.8may be achieved by either obtaining the exact expression forC(z) or
applying the Tustin transformation to Eq. (16.29) to obtain the approximate
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expression for [C(z)/R(z)]TU. Thus, the output expression C(z)TU for a step
forcing function is given by

½CðzÞ�TU ¼
CðzÞ
RðzÞ
� �

TU
RðzÞ where RðzÞ ¼ z

z � 1
ð16:31Þ

Case 3: The DIR Approach Using the Exact Z Transformation

Proceeding with the exact approach first requires the Z-transfer function of
the forward-loop transfer function of Fig.16.8. For the plant transfer function
of Eq. (16.27),

GzðzÞ ¼ Z
Kxð1� e�sT Þ
s2ðs þ 1Þ

� �
¼ ð1� z�1ÞZ Kx

s2ðs þ 1Þ
� �

¼ Kx½ðT � 1þ e�T Þz þ ð1� Te�T � e�T Þ�
z2 � ð1þ e�T þ Kx � TKx � Kxe�T Þz þ e�T þ Kx � KxðT þ 1Þe�T

ð16:32Þ
Thus, forT¼ 0.1s and Kx¼ 0.4767,

GzðzÞ ¼
0:002306ðz þ 0:9672Þ
ðz � 1Þðz � 0:9048Þ ð16:33Þ

which yields

CðzÞ
RðzÞ ¼

0:002306ðz þ 0:9672Þ
ðz � 0:9513
 j0:04649Þ ð16:34Þ

The DIG technique requires that the s-domain model control ratio be trans-
formed into a z-domain model. Applying theTustin transformation to

CðsÞ
RðsÞ
� �

¼ GPCðsÞ
1þGPCðsÞ

¼ M ðsÞ ð16:35Þ

yields
½CðzÞ�TU
½RðzÞ�TU

¼ ½M ðzÞ�TU ð16:36Þ

This equation is rearranged to

½CðzÞ�TU ¼ ½M ðzÞ�TU½RðzÞ�TU ð16:37Þ
As stated in Sec.16.7.1,

RðzÞ ¼ Z½r�ðtÞ� ¼ 1
T
½RðzÞ�TU ð16:38Þ

CðzÞ ¼ Z½c�ðtÞ� ¼ 1
T
½CðzÞ�TU ð16:39Þ
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Inserting Eqs. (16.38) and (16.39) into Eq. (16.36) yields
CðzÞ
RðzÞ ¼ ½M ðzÞ�TU ð16:40Þ

Substituting from Eq. (16.39) into Eq. (16.37) and rearranging yields

CðzÞ ¼ 1
T
½M ðzÞ�TU½RðzÞ�TU ¼

1
T
½Tustin of M ðsÞRðsÞ� ð16:41Þ

Case 4: The Tustin Control-Ratio Transfer Function

Based upon Eq. (16.40), the Tustin transformation of Eq. (16.40), with
Kx¼ 0.4767, results in aTustin model of the control ratio as follows:

CðzÞ
RðzÞ ¼

CðzÞ
RðzÞ
� �

TU

¼ 5:672� 10�4ðz þ 1Þ3
ðz � 0:9513
 j0:04651Þðz þ 6:252� 10�4Þ ð16:42Þ

Note that the dominant poles of Eq. (16.42) are essentially the same as those of
Eq. (16.34). This result is due to using the value of T that produced dominant
roots lying in the good Tustin region of Fig.16.5.The nondominant pole is due
to the Pade¤ approximation of Gzo(s). In using the exact Z transformation the
order of the numerator polynomial of C(z)/R(z), Eq. (16.27) is 1 less than the
order of its denominator polynomial.When using theTustin transformation,
the order of the numerator polynomial of the resulting [C(z)/R(z)]TU is in
general equal to the order of its corresponding denominator polynomial
[see Eq. (16.35)]. Thus, [C(z)]TU results in a value of c*(t) 6¼ 0 at t¼ 0,which is
in error based upon zero intial conditions. Table 16.2 illustrates the effect of
this characteristic of theTustin transformation on the time response due to a
unit-step forcing function.The degradation of the time response by use of the
Tustin transformation is minimal; i.e., the resulting values of the FOM are in
close agreement to those obtained by using the exact Z transformation.
Therefore, theTustin transformation is a valid design tool when the dominant
zeros and poles of [C(s)/R(s)]TU lie in the acceptableTustin region of Fig.16.5.

Table 16.3 summarizes the time-response FOM for a unit-step forcing
function of the continuous-time system of Fig. 16.9 for the two cases of (1)
G(s)¼Gx(s) [with GA(s) removed] and (2) G(s)¼GA(s)Gx(s) and the S-D
system in Fig. 16.8 based upon the (3) exact and (4) Tustin expressions
for C(z). Note that the value of Mp occurs between 6.4 and 6.5 s and the value
of ts occurs between 8.6 and 8.7 s.The table reveals that:

1. In converting a continuous-time system into a sample-data system
the time-response characteristics are degraded.
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2. The time-response characteristics of the S-D system, using the gain
values obtained from the continuous-time model, agree favorably
with those of the continuous-time model. As may be expected,
there is some variation in the values obtained when utilizing the
exact C(z) and [C(z)]TU.

TABLE 16.2 Comparison of Time Responses Between
C(z) and [C(z)]TU for a Unit-Step Input and T¼ 0.1 s

c(kT)

k
Case 3 (exact),

C(z)
Case 4 (Tustin),

[C(z)]TU

0 0. 0.5672E-03
2 0.8924E-02 0.9823E-02
4 0.3340E-01 0.3403E-01
6 0.7024E-01 0.7064E-01
8 0.1166 0.1168
10 0.1701 0.1701
12 0.2284 0.2283
14 0.2897 0.2894
18 0.4153 0.4148
22 0.5370 0.5364
26 0.6485 0.6478
30 0.7461 0.7453
34 0.8281 0.8273
38 0.8944 0.8936
42 0.9460 0.9452
46 0.9844 0.9836
50 1.011 1.011
54 1.029 1.028
58 1.039 1.038
60 1.042 1.041
61 1.042 1.042
62 1.043 1.043
63 1.043 1.043
64
65

1:043
1:043

�
Mp

1:043
1:043

�
Mp

66 1.043 1.043
67 1.043 1.043
68 1.042 1.042
85 1.022 1.022
86
87

1:021
1:019

�
ts

1:021
1:019

ts
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16.7.5 The PCT System of Fig. 16.1

Comparing Fig. 16.1 to Fig. 15.1, it should be noted that the portion of the for-
ward loop of Fig.16.14d, excluding the plantGx(s), corresponds to the forward
loop of Fig.15.1 excluding the plant.Thus, in obtaining the PCTsystem repre-
senting the MISO digital control system of Fig. 16.14d, only the sampling of
the analog function e(t) is replaced by a factor of1/T.The sampling switch in the
output of the digital controller is shown only to remind the reader that
the output of the controller is the result of the digital-to-analog conversion.
Therefore, in obtaining the PCTsystem, since this sampler does not involve the
sampling of an analog signal, it is not replaced by the factor 1/T. This diagram is
simplified to the one shown in Fig.16.14e.

16.7.6 PCT Design Summary

Once a satisfactory controller Dc(s) (see Fig. 16.14d) has been achieved,
where the degrees of the numerator and denominator are, respectively,
ws and ns then (1) if ns�wsþ 2,use the exactZ-transform to obtain the discrete
controller Dc(z), or (2) if ws< ns<wsþ 2, use the Tustin transformation to
obtain [Dc(z)]TU [1]. For the latter case, insert ns�ws , nondominant zeros so
that ns¼ws. If these nondominant zeros are not inserted, theTustin transfor-
mation of Dc(s) will result in ns�ws z-domain dominant zeros that can affect
the system’s performance.

A final check should be made before simulating the discrete design; i.e.,
the Bode plots of Dc(s)js¼jo and Dc(z)jz¼e ð joT Þ should be essentially the
same within the desired bandwidth (BW) in order to ascertain that the
discrete-time system response characteristics are essentially the same as
those obtained for the analog PCTsystem response. If the plots differ appreci-
ably, it implies that warping has occurred and the desired discrete-time
response characterstics may not be achieved (depending on the degree of the
warping).

TABLE 16.3 Time-Response Characteristics of the Uncompensated System

Mp tp, s ts, s K1, s
�l Case

Continuous-time system
G(s)¼Gx(s) 1.04821 6.3 8.40 to 8.45 0.4767 1
GM(s)¼GA(s)Gx(s) 1.04342 6.48 8.69 2

Sampled-data system
C(z) 1.043 6.45 8.75 0.4765 3
[C(z)]TU 1.043 6.45 8.75 4
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The result of this section demonstrate that when theTustin approxima-
tion is valid, the PCTapproximation of the sampled-data system is a practical
design method.When a cascade compensator Dc(s) (see Fig.16.11) is designed
to yield the desired performance specifications in the pseudo-continuous-
time domain, the discrete cascade compensator Dc(z) (see Fig. 16.1 where the
controller does not include a ZOH) is accurately obtained by using theTustin
transformation.

FIGURE 16.14 The PCT equivalent of Fig. 16.1.
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16.8 DESIGN OF DIGITAL CONTROL SYSTEM [1]

The previous section present the DIR and DIG techniques for analyzing
and achieving the desired performance of the basic system. Generally, gain
adjustment alone is not sufficient to achieve all the desired system perfor-
mance specifications, i.e., the figures of merit (FOM) (see Secs. 3.9 and 3.10).
A cascade and/or feedback compensator (controller) can be used to achieve
the design objectives. The following sections discuss the design objective of
satisfying values of the desired conventional control theory FOM by using
cascade or feedback compensators.

The analysis of a system’s performance may be carried out in either the
time and/or frequency domains. If the performance of the basic system is
unsatisfactory, then, based on the results of this analysis, a compensator can
be designed. Two approaches may be used to design the digital compensator
(controller) of Fig. 16.1�the DIR and DIG techniques. Both techniques rely
heavily on a trial-and-error approach that requires a firm understanding of the
fundamentals of compensation. To facilitate this trial-and-error approach,
a computer-aided design (CAD) package such as MATLAB (see App. B) or
TOTAL-PC (see App. D) is used. The main advantage of the DIR design is
that the performance specification can be met with less stringent require-
ments on the controller parameters.

In the DIG method, the controller is first designed in the s domain, and
then the bilinear transformation is employed to transform the controller into
its equivalent z domain discrete controller.The advantage of this technique is
that tried and proven continuous-timedomainmethods are used for designing
an acceptableDc(s) controller.However, ifT is not small enough, the poles and
zeros of the controller lie outside the good bilinear transformation region,
which may result in not achieving the desired performance.

After Dc(z) is included in the system model, as shown in Fig. 16.1,
a system analysis is again performed. If the modified system does not meet
the desired specifications, the controller is modified accordingly.To illustrate
this design process, the basic system of Sec. 16.7.3 is used for the design of a
lead, lag, and lead-lag cascade compensator.

16.9 DIRECT (DIR) COMPENSATOR

This sectionpresents thebasic concept of theDIR technique for cascade com-
pensation. The standard lead and lag s domain transfer function is trans-
formed to the z domain where the specific design is to be applied.This simple
lead (a<1) and lag (a>1) compensators in the s domain have the form

DcðsÞ ¼
Kscðs � zsÞ
s � ps

ð16:43Þ
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where ps¼ zs/a. These s plane zeros and poles are transformed into the
z domain poles and zeros as follows:

zz ¼ esT



s¼zS¼ ezsT ð16:44Þ

pz ¼ esT



s¼ps¼ e pTs ¼ e zsT=a ð16:45Þ

Thus, the corresponding first-order z domain compensator (digital filter) is

DcðzÞ ¼
Kzcðz � zzÞ
z � pz

¼ Kzcðz � zzÞ
z � zz=b

ð16:46Þ

where pz¼ zz/b.
A relationship between a and b is obtained by taking the natural log of

Eqs. (16.44) and (16.45) as follows:

zsT ¼ ln zz ð16:47Þ
zsT
a
¼ ln pz ð16:48Þ

Taking the ratio of these equations and rearranging yields a ln pz¼ ln zz.Thus,
paz ¼ zz ð16:49Þ

and

b ¼ zz
pz
¼ pa�1z ð16:50Þ

For a lead controller a<1 and pz<1. Therefore, for a lead filter, b>1 from
Eq. (16.50). For a lag digital filter, b<1. (Note that the magnitude condition on
b is just the opposite of that on a.)

In the z domain pz> zz> 0 for a lag controller and zz> pz for a lead
controller.Thus, the standard lag-lead controller is of the form

DcðzÞ ¼ Kc
z � z1
z � p1

� �
z � z2
z � p2

� �
ð16:51Þ

where p1>z1>0 (the lag portion) and z2> p2>0 (the lead portion). The cas-
cade controller design rules given in Chap. 10 can be used for the design of
these z domain compensators (see Ref.1).

16.10 PCT LEAD CASCADE COMPENSATION

In this section the PCT DIG technique is utilized to achieve the desired
improvement in the performance of the basic S-D control system by the use
of conventional s-plane cascade compensation methods. It is assumed in this
chapter that the digital controller of Fig. 16.1 does not use a ZOH device in the
analog-to-digital (A/D) model in the input to the controller.
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Case 5: PCT Lead Compensator Design

The magnitude of the real part of the dominant poles of Eq. (16.30), for
the basic model system, is js1,2j ¼0.4875. Thus, it is necessary to at least
double this magnitude for the real part js1,2j of the dominant roots of the
compensated model system (Fig. 16.14e), in order to reduce the settling time
by one-half.To accomplish this, a lead network of the form

DcðsÞ ¼ Ksc
s þ a
s þ b

a < b ð16:52Þ

can be inserted in cascade with Gpc(s) (see Fig.16.14e). Since the settling time
for the basic system is 8.6 s (see Table 16.2), then the desired ts�Ts is 4.3 s.
Inserting this value into Ts ¼ 4=js01�2j yields

js01�2j �
4
4:3
¼ 0:93 ð16:53Þ

that is in the region for a good Tustin approximation.Using the cancellation
rule of Chap. 10 for the design of Eq. (16.52), i.e., a¼1, and assuming b¼10
yields, for 
¼ 0.7071 in the s domain (see the root locus of Fig. 16.15),
the actual value of

js01�2j ¼ 3:8195 ð16:54Þ
This value lies just outside the shaded region of Fig. 16.5, for T¼ 0.1 s, but
inside the boundary of s¼� 2/T¼� 20. For this example, this does not

FIGURE 16.15 Root locus of a compensated system: Dc(s)Gpc(s)¼� 1.
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present a problem with respect toTs since 3.8195 is at least four times greater
than the desired value of 0.93. This factor of 4 does not yield Ts¼ 4/3.8195
because s01�2 is not in the shaded region of Fig. 16.5. Since js01�2j > 2js1�2j,
a definite improvement in Ts , is achieved as demonstrated in this example.
Thus, the compensator

DcðsÞ ¼
Kscðs þ 1Þ
s þ 10

ð16:55Þ

for 
¼ 0.7071, yields the root locus of Fig.16.15 and

CðsÞ
RðsÞ
� �

TU
¼ DcðsÞGPCðsÞ

1þ DcðsÞGPCðsÞ
¼ 9:534Ksc

s3 þ 30s2 þ 200s þ 652:6
ð16:56Þ

¼ 9:534Ksc

ðs þ 3:8195
 j3:8206Þðs þ 22:36Þ ð16:57Þ

where Ksc¼ 68.45 for the continuous-time model. For this system model
Mp�1.04169, tp� 0.875 s, ts�1.15 s, and Kl¼ 3.263 s�1.

Substituting from Eq. (16.8) into Eq. (16.55), with T¼ 0.1 s, yields the
digital compensator or controller form of Fig.16.1:

½DcðzÞ�TU ¼
E1ðzÞ
EðzÞ ¼

Kcð21z � 19Þ
30z � 10

¼ Kzcðz � 19
21Þ

z � 1
3

ð16:58Þ

where Ksc¼Kc, and Kzc¼ 0.7Kc, and b1e¼ 2.7143. Thus, for the system of
Fig.16.1,

GðzÞ ¼ ½DcðzÞ�TUGzðzÞ ¼
1:6142� 10�3Kcðz þ 0:9672Þ
ðz � 1Þðz � 0:3333Þ ð16:59Þ

FIGURE 16.16 Lead compensation: root locus for Eq. (16.59).
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Case 6: The z-domain PCT Control Ratio for the Lead
Controller Design

The root-locus plot for this design is shown in Fig. 16.16 and, for 
¼ 0.7071 in
the z domain, the control ratio designed via path B of Fig.16.6 is

CðzÞ
RðzÞ ¼

0:1125ðz þ 0:9672Þ
ðz � 0:6104
 j0:2638Þ ð16:60Þ

where Kc¼ 69.694 is close to the s-plane model value of 68.45 for Eq. (16.57).
Thus, for this example, pathsA andB yield essentially the same system perfor-
mance. This good degree of correlation is due to the fact that the imaginary
part of the dominant poles in the s plane lies within the shaded area of Fig.
16.5. Table 16.4 compares the FOM of the continuous-time and sampled-data
uncompensated and compensated systems.Thus,the resulting designof case 6
achieves the desired design specifications.Taking theZ�1of Eq. (16.58) yields
the difference equation for the resulting controller as follows:

Z1½30E1ðzÞ � 10z�1E1ðzÞ� ¼ Z�1½Kcð21� 19z�1ÞEðzÞ�
e1ðkT Þ ¼ 48:7858eðkT Þ � 44:13953e½ðk� 1ÞT � þ 0:333333e1½ðk� 1ÞT �

This discrete control law (algorithm) is translated into a software program to
be implemented on a digital computer (controller) [1].

16.10.1 MATLAB Design for Sec. 16.10

The following detailed MATLAB m-file, forT¼ 0.1 s, involves both the DIG
(PCT) and the DIR (exact z-domain) designs.

DIG (PCT) Design

echo on
gxnum¼1; % Create numerator
gxden¼[1 1 0]; % Create denominator

TABLE 16.4 FOM for a Cascade Lead-Compensated Designed System: s-plane
Design (DIG) (Values obtained by use of the TOTAL-PC CAD package)

System Mp tp, s ts, s K1, s
�1 Case

[C(s)]T
Uncompensated 1.0482 6.3 8.40–8.45 0.4767 1
Compensated 1.0417 0.875 1.15 3.263 5

C(z)
Uncompensated 1.043 6.4þ 8.6þ 0.4765 3
Compensated 1.043 0.8 1þ 3.3208 6
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Gx¼tf(gxnum, gxden); % Create transfer function
% from num and den

zpk(Gx) % Show zero – pole – gain form

Zero/pole/gain: % [Eq. (16.27)]
1

- - - - -
s (sþ1)

Tsamp¼0.1; % Tsamp is sample time¼0.1 sec
GA¼tf([2], [Tsamp 2]) % Create sampler and ZOH
Transfer function:

2
- - - - -
0.1 sþ2
Gpc¼series(GA, Gx); % Multiply GA and GX
zpk(Gpc) % Show zero – pole – gain form
Zero/pole/gain:

20
- - - - - - - - - -
s (sþ20) (sþ1)
Dc¼tf([1 1], [1 10]); % Create lead compensator
GDIG¼series(Dc, Gpc); % Multiply Dc and Gpc
zpk (GDIG) % Show zero – pole – gain form
Zero/pole/gain:

20 (sþ1)
- - - - - - - - - - - - - - -
s (sþ20) (sþ10) (sþ1)
GDIG¼minreal (GDIG); % Cancel pole-zero pairs
[k, r]¼rloczeta(GDIG.num {1,1},GDIG.den{1,1},.7071,.0000 1)

% Find gain for zeta¼.7071
k¼
32.6243

r¼
�22.3607
�3.8196�3.8197i
�3.8196þ3.8197i

cltf¼feedback(k*GDIG, 1); % Close the loop
fom(cltf.num {1,1}, cltf.den {1,1})

% Calculate figures of merit

Figures of merit for a unit step input

rise time ¼ 0.41
peak value ¼ 1.0417
peak time ¼ 0.88
settling time ¼ 1.14
final value ¼ 1
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DIR Design (Exact z Domain Design): T¼ 0.1 s

echo on
gxnum¼1; % Create numerator
gxden¼[1 1 0]; % Create denominator
Gx¼tf(gxnum, gxden); % Create transfer function

% from num and den
zpk(Gx) % Show zero – pole – gain form
Zero/pole/gain:

1
- - - - -
s (sþ1)

Tsamp¼0.1; % Tsamp is sample time¼0.1
dirgx¼c2d(Gx, Tsamp, ‘zoh’) % Transform Gx to the z domain
Transfer function:
0.004837 zþ0.004679
- - - - - - - - - - - - -
z^2�1.905 zþ0.9048
Sampling time: 0.1
zpk(dirgx) % Show zero – pole – gain form

Zero/pole/gain:
0.0048374 (zþ0.9672)
- - - - - - - - - - - - - -

(z�1) (z�0.9048)

Sampling time: 0.1
Dc¼tf ([1 1], [1 10]); % Create lead compensator
dirdc¼c2d(Dc, Tsamp,‘tustin’); % Transform Dc to the z domain
zpk(dirdc) % Show zero – pole – gain form

Zero/pole/gain:
0.7 (z�0.9048)
- - - - - - - - - -

(z�0.3333)

Sampling time: 0.1
GDIR¼series (dirdc, dirgx); % Multiply Dc(z) and Gz(z)
zpk (GDIR) % Show zero – pole – gain form
Zero/pole/gain:
0.0033862 (zþ0.9672) (z�0.9048)
- - - - - - - - - - - - - - - - - - - - -

(z�1) (z�0.9048) (z�0.3333)

Sampling time: 0.1
GDIR¼mineral (GDIR, .0001); % Cancel pole – zero pair
rltool (GDIR) % Open root locus tool

window
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% Root locus tool is used to design compensator and
% export the closed loop transfer function T_r2y

hold on
Step (T_r2y)

As noted in Fig. 16.17, the FOM for the DIG design for T¼ 0.1 s agree
very closely with those for the DIR design. It is left to the reader to obtain
correspondingMATLAB plots forT¼ 0.01and1.0 s.

16.11 PCT LAG COMPENSATION

When a sizable improvement in the value of the static error coefficient
is desired, assuming that the transient characteristics are satisfactory
(category I of Sec. 10.5), a lag compensator can be inserted in cascade with
the basic plant.The s plane lag compensator is of the form

DcðsÞ ¼ Ksc
s þ 1=T1

s þ 1=aT1

� �
where Ksc ¼

A
a

ð16:61Þ

FIGURE 16.17 MATLAB step response T¼ 0.1 s and figures of merit for Eqs.
(16.57) and (16.60).
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FIGURE 16.18 Root locus of (a) Eq. (16.63) and (b) Eq. (16.66).
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The same basic system and the value of T¼ 0.1s of the previous section is also
used in this section to illustrate the design of a lag compensator. Applying the
standard design procedure (see Sec.10.8) for a lag compensator in the s plane
for the plant of Eq. (16.27) yields the lag compensator

DcðsÞ ¼
Kscðs þ 0:01Þ
s þ 0:001

ð16:62Þ

and

GðsÞ ¼ DscðsÞGAðsÞGxðsÞ ¼
Ksðs þ 0:01Þ

sðs þ 0:001Þðs þ 1Þðs þ 20Þ ð16:63Þ

where Ks¼ 20KscKx. The root-locus method, for 
¼ 0.7071 (see Fig. 16.18a),
yields

CðsÞ
RðsÞ ¼

9:524ðs þ 0:01Þ
ðs þ 0:48291
 j0:48304Þðs þ 0:010195Þðs þ 20:025Þ ð16:64Þ

whereKsc¼1.001andKs¼ 9.524.The root-locus branches in the vicinity of the
origin, for the scale used in Fig.16.18a, are indistinguishable from the axes.

Applying theTustin transformation of Eq. (16.8) to Eq. (16.62) yields

½DcðzÞ�TU ¼
Kzcðz � 0:999Þ
z � 0:9999

ð16:65Þ

where Kzc¼1.00045,Ksc¼ 0.9994 and

GðzÞ ¼ ½DcðzÞ�TUGzðzÞ ¼
Kzðz þ 0:9672Þðz � 0:999Þ

ðz � 1Þðz � 0:9048Þðz � 0:9999Þ ð16:66Þ

whereKz¼ 2.303�10�3 (pathAof Fig.16.7).The z-domain root locus is shown
in Fig. 16.18b and the corresponding control ratio is given in the m-file in
Sec.16.11.1.

The resultantFOMfor aunit-step forcing function aregiven inTable16.5.
As expected, an increase in the value of K1, by use of lag compensator
is achieved at the expense of increasing the values ofMp, tp, and ts.

TABLE 16.5 The PCT DIG Lag Compensator Design FOM

System Domain Mp Mm tp, s ts, s K1, s
�1 om, rad/s ob, rad/s

Uncompensated S 1.043 1.00 6.48 8.69 0.4767 . . . 0.6900
Z 1.043 1.00þ 6.4þ 8.6þ 0.4767 0þ 0.691�

Compensated S 1.063 1.019 6.545 10.85 4.762 0.09 0.6960
Z 1.063 1.02� 6.4þ 10.7 4.8 0.060 0.644þ

Digital Control Systems 645

Copyright © 2003 Marcel Dekker, Inc.



16.11.1 MATLAB Design for Sec. 16.11

The following detailed MATLAB m-file, forT¼ 0.1 s, involves both the DIG
(PCT) and the DIR (exact z-domain) designs.

DIG (PCT) Design

echo on
gxnum¼1; % Create numerator
gxden¼[1 1 0]; % Create denominator
Gx¼tf(gxnum, gxden); % Create transfer function

% from num and den
zpk(Gx) % Show zero – pole – gain form

Zero/pole/gain:
1

- - - - -
s (sþ1)

Tsamp¼0.1; % Tsamp is sample time¼0.1 sec
GA¼tf([2], [Tsamp 2]) % Create sampler and ZOH

Transfer function:
2

- - - - -
0.1 sþ2

Gpc¼series(GA, Gx); % Multiply GA and Gx
zpk (Gpc) % Show zero – pole – gain form

Zero/pole/gain:
20

- - - - - - - - - -
s (sþ20) (sþ1)

Dc¼tf([1 0.01], [1 0.001]); % Create lag compensator
GDIG¼series (Dc, Gpc); % Multiply Dc and Gpc
zpk(GDIG) % Show zero – pole – gain form

Zero/pole/gain:
20 (sþ0.01)

- - - - - - - - – - - - - - - -
s (sþ20) (sþ1) (sþ0.001)

rltool(GDIG) % Use root locus tool to design
% and export T_r2y

% Resulting gain is .4762 to give Ks¼9.524
T_r2y % Closed loop transfer function
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Zero/pole/gain from input ‘‘r’’ to output ‘‘y’’:
9.524 (sþ0.01)

- - - - - - - - - - - - - - - - - - - - - - - - - - - -
(sþ0.01019) (s¼20.02) (s2þ0.9658 sþ0.4665)

cltf¼tf (T_r2y) % Create transfer function form of cltf

Transfer function from input ‘‘r’’ to output ‘‘y’’:
9.524 sþ0.09524

- - - - - - - - - - - - - - - - - - - - - - -
s4þ21 s3þ20.02 s2þ9.544 sþ0.09524

fom(cltf.num {1,1}, cltf.den {1,1}, .01,15);
% Stop time set to 15 sec because auto stop senses the slow modes.
Figures of merit for a unit step input

rise time ¼ 3.03
peak value ¼ 1.0627
peak time ¼ 6.55
settling time ¼ 10.84
final value ¼ 1

DIR Design (Exact z Domain Design)

echo on
gxnum¼1; % Create numerator
gxden¼[1 1 0]; % Create denominator
Gx¼tf (gxnum, gxden); % Create transfer function

% from num and den
zpk(Gx) % Show zero – pole – gain form

Zero/pole/gain:
1

- - - - -
s (sþ1)
Tsamp¼0.1; % Tsamp is sample time¼0.1
Gz¼c2d(Gx, Tsamp, ‘zoh’) % Transform Gx to the z domain

Transfer function:
0.004837 zþ0.004679
- - - - - - - - - - - - -
z^2�1.905 zþ0.9048

Sampling time: 0.1
zpk (Gz) % Show zero – pole – gain form

Zero/pole/gain:
0.0048374 (zþ0.9672)
- - - - - - - - - - - - - -

(z�1) (z�0.9048)
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Sampling time: 0.1
Dc¼tf ([1 �0.999], [1 �0.9999], Tsamp);

% Create lead compensator
GDIR¼series (Dc, Gz); % Multiply Dc(z) and Gz(z)
zpk (GDIR) % Show zero – pole – gain form
Zero/pole/gain:
0.0048374 (z�0.999) (zþ0.9672)
- - - - - - - - - - - - - - - - - - - -
(z�1) (z�0.9999) (z�0.9048)

Sampling time: 0.1
rltool(GDIR) % Open root locus tool window
T_r2y % Show closed loop

% transfer function
Zero/pole/gain from input ‘‘r’’ to output ‘‘y’’:
0.0022902 (zþ0.9672) (z�0.999)
- - - - - - - - - - - - - - - - - - - -
(z�0.999) (z^2�1.903zþ0.9079)

Sampling time: 0.1
hold on % Hold plot from above
Step(T_r2y) % Plot step response
axis([0 15 0 1.4]) % Reset axis scale

As noted in Fig. 16.19, the FOM for the DIG design for T¼ 0.1s agree
very closely with those for the DIR design and with the FOM in Table 16.5.
It is left to the reader to obtain corresponding MATLAB plots for T¼ 0.01
and1.0 s.

16.12 PCT LAG-LEAD COMPENSATION

When both a large improvement in the static error coefficient and the
transient-response characteristics are desired, a lag-lead cascade
compensator of the form

DcðsÞ ¼ A
ðs þ 1=T1Þðs þ 1=T2Þ
ðs þ 1=aT1Þðs þ a=T2Þ

a > 1 ð16:67Þ

can be used,where a nominal value of a¼10 is chosen.Note that the portion

s þ 1=T1

s þ 1=aT1

of Eq. (16.67) corresponds to the lag compensator and the remaining portion
corresponds to the lead compensator. The following example involves the
PCTdesign of a lag-lead controller.
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Example 16.3. The basic system of Sec. 10.12, which involved the design of
an analog lag-lead compensator, is utilized to illustrate the effectiveness of
the PCT technique.The plant transfer function is

GxðsÞ ¼
4:2

sðs þ 1Þðs þ 5Þ ð16:68Þ

The desired FOMare1<Mp�1.163, tp� 0.3 s, and ts< 0.5 s.Using the equality
conditions and Eqs. (3.60), (3.61), and (3.64) results in


a ¼ 0:5 and jsaj ¼ j
aonj ¼ 8

which in turn yields

on ¼ 16 od ¼ 13:869 and p1�2 ¼ �8
 j13:86 ð16:69Þ
Because the lag characteristic of the ZOH unit has the same effect on
increasing ts as does a lag compensator, it is best to choose jsaj> 8. The
desired dominant complex of poles of Eq. (16.69) are modified to

p1�2s ¼ �10
 j14 ð16:70Þ
whereTs¼ 4/10¼ 0.25 s and 
¼ 0.581.Utilizing z¼ esTresults in

p1�2z ¼ 0:90483ff8:02� ¼ 0:89598
 j0:12626 ð16:71Þ

FIGURE 16.19 MATLAB step response for T¼ 0.1 s, figures of merit for Eq. (16.64)
(DIG), and the DIR control ratio given in the m-file.
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The open-loop transfer function forT¼ 0.01s of the system of Fig.16.14e is

GðsÞ ¼ DcðsÞGAðsÞGxðsÞ ¼
840DcðsÞ

sðs þ 1Þðs þ 5Þðs þ 200Þ ð16:72Þ

A plot of the known poles of Eq. (16.72) and the plot of the desired dominant
closed-loop pole of p1s are shown in Fig. 16.20. The dominant poles of G(s)
along with p1s all lie in the good Tustin bilinear transformation region.Thus,
a good PCTdesign is achievable. First, it is necessary to ascertain whether a
compensator of the simple form of Eq. (16.52) provides the required compen-
sation to achieve the desired dominant closed-loop poles of p1�2s . Thus, the
root-locus angle condition yields

ðf0 þ f1 þ f2 þ f3Þ � ½angle of DcðsÞ� ¼ 180�

ð125:55� þ 122:750� þ 109:65� þ 4:2�Þ � ½angle of DcðsÞ�s¼p1s ¼ 180�

362:15� � ½angle of DcðsÞ�s¼p1s ¼ 180�

ð16:73Þ
Therefore,

½angle of DcðsÞ�s¼p1s ¼ 182:15� ð16:74Þ
Since, theoretically, the largest possible positive angle that the simple
compensator of Eq. (16.52) can provide is 90�, a compensator of the form

DcðsÞ ¼
Kscðs þ aÞðs þ bÞ
ðs þ cÞðs þ dÞ ð16:75Þ

FIGURE 16.20 Plot of known poles of G(s) and p1s .
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must be utilized.Assuming perfect cancellation, let a¼1and b¼ 5.Thus,only
the values of c and d need to be determined.Utilizing Dc(s) of Eq. (16.52) and
the selected values of a and b results in

GðsÞ ¼ 804Ksc

sðs þ 200Þðs þ cÞðs þ dÞ ð16:76Þ

Thus, for Eq. (16.76),

ðf0 þ f3 þ fc þ fd Þ ¼ 129:75þ ðfc þ fd Þ ¼ 180�

ðfc þ fd Þ ¼ 50:25� ð16:77Þ

Selecting c¼ d yields fc ¼ fd ¼ 25:125�:

tanfd ¼
14
�
¼ 0:46897 ! � ¼ 29:85

which yields c¼ d¼10þ�¼39.85. The resultant controller, for 
¼ 0.581,
generates a value of Ksc¼ 4243.8 and the following control ratio and its
associated FOM:

CðsÞ
RðsÞ ¼

3:565� 106

ðs þ 9:997
 j14:01Þðs þ 60:41Þðs þ 199:3Þ ð16:78Þ

Mp ¼ 1:10 tp ¼ 0:249 s ts ¼ 0:366 s and Kj ¼ 11:22 s�1

The FOMof Eq. (16.78) are essentially those specified by Eq. (16.69).
Since the orders of the numerator and the denominator of Eq. (16.75) are

the same, then itsTustin transformation yields

½DcðzÞ�TU ¼
3040ðz � 0:99005Þðz � 0:95123Þ

ðz � 0:6677Þ2 ð16:79Þ

and results in

CðzÞ
RðzÞ ¼

½DcðzÞ�TGzðzÞ
1þ ½DcðzÞ�TGzðzÞ�

¼ 2:096� 10�3ðz þ 0:26395Þðz þ 3:6767Þ
ðz � 0:8953
 j0:1270Þðz � 0:5428Þ

ð16:80Þ

The FOMare

Mp ¼ 1:101 tp ¼ 0:24 s ts ¼ 0:36� s and Kl ¼ 11:22 s�1

These FOMare essentially the same as those for Eq. (16.80).
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Because the dominant poles of G(s) and the desired s-plane closed-loop
poles lie in the good Tustin region for the given value of T, the results of the
PCTapproach, for this example, yield essentially the same FOM in the s and
z domains. If the FOM in the z domain, via path A of Fig. 16.7,were not quite
satisfied,then a z-domain‘‘fine-tuning’’ (gain adjustment) via pathBmay yield
the desired FOM.

16.12.1 MATLAB Design for Sec. 16.12

The following detailed MATLAB m-file, forT¼ 0.1s, involves both the DIG
(PCT) and the DIR (exact z-domain) designs.

DIG Design

echo on
gxnum¼4.2; % Create numerator
gxden¼conv([1 1 0],[1 5]); % Create denominator
Gx¼tf(gxnum, gxden); % Create transfer function

% from num and den
zpk(Gx) % Show zero – pole – gain form

Zero/pole/gain:
4.2

- - - - - - - - -
s (sþ5) (sþ1)

Tsamp¼0.01; % Tsamp is sample time¼0.01 sec
GA¼tf([2], [Tsamp 2]) % Greate sampler and ZOH

Transfer function:
2

- - - - - -
0.01 sþ2

Gs¼series (GA, Gx); % Multiply GA and Gx
zpk (Gs) % Show zero – pole – gain form

Zero/pole/gain:
840

- - - - - - - - - - - - - - -
s (sþ200) (sþ5) (sþ1)

Dcnum¼conv([1 1], [1 5]); % Place zeros
Dcden¼conv([1 39.85], [1 39.85]); % Place poles
Dc¼tf(Dcnum, Dcden); % Assemble lead-lag compensator
GDIG¼series (Dc, Gs); % Multiply Dc and Gpc
GDIG¼minreal (GDIG); % Cancel pole-zero pairs
zpk (GDIG) % Show zero - pole - gain form
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Zero/pole/gain:
840

- - - - - - - - - - - - - - -
s (sþ200) (sþ39.85)^2

rltool(GDIG) % Use root locus tool to design
% and export T_r2y

% Resulting gain is Ksc¼4243.8
% These commands are used to determine
% the figures of merit of the closed loop system
T_r2y % Show closed loop transfer function

Zero/pole/gain from input ‘‘r’’ to output ‘‘y’’:
3564792

- - - - - - - - - - - - - - - - - - - - - - - - - - -
(sþ199.3) (sþ60.41) (s^2þ19.99sþ296.1)

cltf¼tf(T_r2y) % Create transfer function form of clft

Transfer function from input ‘‘r’’ to output ‘‘y’’:
3.565e006

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
s^4þ279.7 s^3þ1.753e004 s^2þ3.176e005 sþ3.565e006

fom(cltf.num{1, 1}, cltf.den{1, 1});
% Calculate figures of merit

Figures of merit for a unit step input

rise time ¼ 0.11
peak value ¼ 1.1006
peak time ¼ 0.25
setting time ¼ 0.36
final value ¼ 1

DIR Design (Exact z Domain Design)

echo on
gxnum¼4.2; % Create numerator
gxden¼conv([1 1 0], [1 5]); % Create denominator
Gx¼tf(gxnum, gxden); % Create transfer function

% from num and den
zpk(Gx) % Show zero - pole - gain form

Zero/pole/gain:
4.2

- - - - - - - - -
s (sþ5) (sþ1)

Tsamp¼0.01; % Tsamp is sample time¼0.1 sec
Gz¼c2d(Gx, Tsamp, ‘zoh’) % Transform Gx to the z domain
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Transfer function:
6.896e�007 z^2þ2.717e�006 zþ6.692e�007
- - - - - - - - - - - - - - - - - - - - – - - - - - -

z^3�2.941 z^2þ2.883 z�0.9418

Sampling time: 0.01
zpk(Gz) % Show zero - pole - gain form

Zero/pole/gain:
6.8961e�007 (zþ3.677) (zþ0.2639)
- - - - - - - - - - - - - - - - - - - - - -

(z�1) (z�0.99) (z�0.9512)

Sampling time: 0.01
Dcnum¼conv([1 1], [1 5]); % Place zeros
Dcden¼conv([1 39.85], [1 39.85]); % Place poles
Dc¼tf(Dcnum, Dcden); % Assemble lead-lag compensator
Dcz¼c2d(Dc, Tsamp, ‘tustin’); % Transform compensator
zpk(Dcz) % Show compensator for Eq. 16.79

Zero/pole/gain:
0.71626 (z�0.99) (z�0.9512)
- - - - - - - - - - - - - - - - - -

(z�0.6677)^2

Sampling time: 0.01
GDIR¼series(Dcz, Gz); % Multiply Dc(z) and Gz(z)
GDIR¼minreal(GDIR, 0.00001) % Cancel pole-zero pairs

Transfer function:
4.939e�007 z^2þ1.946e�006 zþ4.793e�007
- - - - - - - - - - - - - - - - - - - - - - - - - - -

z^3�2.335 z^2þ1.781 z�0.4458

Sampling time: 0.01
zpk(GDIR) % Show zero - pole - gain form
Zero/pole/gain:
4.9394e�007 (zþ3.677) (zþ0.2639)
- - - - - - - - - - - - - - - - - - - - - -

(z�1) (z�0.6677)^2

Sampling time: 0.01
rltool(GDIR) % Open root locus tool window

% These commands are used to plot the closed loop system
T_r2y % Show closed loop transfer function

Zero/pole/gain from input ‘‘r’’ to output ‘‘y’’:
0.002097 (zþ3.677) (zþ0.2639)

- - - - - - - - - - - - - - - - - - - - -
(z�0.5428) (z^2�1.791zþ0.8177)
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Sampling time: 0.01
hold on % Hold plot from above
step(T_r2y) % Plot step response

As noted in Fig. 16. 21, the FOM for the DIG design forT¼ 0.1s agree
very closely with those for the DIR design. It is left to the reader to obtain
correspondingMATLAB plots forT¼ 0.01and1.0 s.

16.13 FEEDBACK COMPENSATION: TRACKING

System performance, based upon the system output tracking or following the
desired system input, can be improved by using either cascade or feedback
compensation. The factors listed in Sec. 11.1 must be considered when
making that decision.The effectiveness of cascade compensation is illustrated
in the preceding sections.The use of feedback compensation is demonstrated
in the next three sections, not only for a control system whose output must
track a desired system input, but also for a control system whose output
should not respond to a system disturbance input. The feedback compensa-
tion design procedures for continuous-time systems can be applied to S-D
systems. These procedures are not so straightforward and easy to apply as
the design procedures for cascade compensation.

The feedback compensation procedures of Chap. 12, for tracking and
disturbance rejection, can be readily applied to the PCTrepresentation of the
digital control system.Once the compensator in the sdomain hasbeen synthe-
sized it then can be readily transformed into the z-domain controller by use of
theTustin transformation.

16.13.1 General Analysis

The plant transfer for the digital control system of Fig.16. 22 is

GxðsÞ ¼
Kx

sðs þ 1Þ ð16:81Þ

The following equations describe the control system of Fig.16. 22:

EðsÞ ¼ RðsÞ � BðsÞ ð16:82Þ
CðsÞ ¼ GxðsÞEðsÞ ¼ GxðsÞRðsÞ � GxðsÞBðsÞ ð16:83Þ
BðsÞ ¼ HzoðsÞI �ðsÞ ¼ HzoðsÞH �c ðsÞC�ðsÞ ð16:84Þ

Inserting B(s) into Eq. (16.83) yields

CðsÞ ¼ GxðsÞRðsÞ � GxðsÞHzoðsÞH �c ðsÞC�ðsÞ ð16:85Þ
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The impulse transform of this equation is

C�ðsÞ ¼ GxR
�ðsÞ �HzoG

�
x ðsÞH �c ðsÞC�ðsÞ ð16:86Þ

Solving for C*(s) yields

C�ðsÞ ¼ GxR
�ðsÞ

1þHzoG�x ðsÞH �c ðsÞ
ð16:87Þ

and the resulting z-domain model is

CðzÞ ¼ GxRðzÞ
1þHzoGxðzÞHcðzÞ

ð16:88Þ

A root-locus analysis for the digital nonunity-feedback control systemof
Fig.16.22 requires the determination of its characteristic equation

QðzÞ ¼ 1þHzoGxðzÞHcðzÞ ¼ 0 ð16:89Þ
which is rearranged to

HzoGxðzÞHcðzÞ ¼ �1 ð16:90Þ
to yield themathematical format of Eq. (15.92) that is required for a root-locus
analysis.

FIGURE 16.21 MATLAB step response for T¼ 0.1 s and figures of merit for
Eqs. (16.78) and (16.80).
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For the givenGx(s) of Eq. (16.81) and R(s)¼ 1/s,

GxRðzÞ ¼
KxTz

ðz � 1Þ2 �
Kxð1� e�T Þz
ðz � 1Þðz � e�T Þ ð16:91Þ

HzoGxðzÞ ¼
KxT
z � 1

� Kxð1� e�T Þ
z � e�T

ð16:92Þ

Let the controller take the form

HcðzÞ � Kzc
N ðzÞ
DðzÞ ð16:93Þ

Substituting Eqs. (16.92) and (16.93) into Eq. (16.90) yields

KzcKxN ðzÞ½T ðz � e�T Þ � ð1� e�T Þðz � 1Þ�
ðz � 1Þðz � e�T ÞDðzÞ

¼ KzcKxðT � 1þ e�T Þðz � dÞN ðzÞ
ðz � 1Þðz � e�T ÞDðzÞ ¼ �1 ð16:94Þ

where d¼ (1�e�T�Te�T)/(1�e�T�T ).
For a more complicated nonunity-feedback system, containing minor

loops, it may be simpler to substitute Eqs. (16.91) to (16.93) into Eq. (16.90)
to yield

CðzÞ¼
Kx

Tzðz�e�T Þ�zð1�e�T Þðz�1Þ
ðz�1Þ2ðz�e�T Þ

1þKzcKx
T ðz�e�T Þ�ð1�e�T Þðz�1Þ

ðz�1Þðz�e�T Þ
� �

N ðzÞ
DðzÞ

¼ Kx½Tzðz�e�T Þ�zð1�e�T Þðz�1Þ�DðzÞ
ðz�1Þ|fflffl{zfflffl}

Forcing
function pole

fðz�1Þðz�e�T ÞDðzÞþKzcKx½T ðz�e�T Þ�ð1�e�T Þðz�1Þ�N ðzÞg

ð16:95Þ
The characteristic equation

ðz � 1Þðz � e�T ÞDðzÞ þ KzcKx ½T ðz � e�T Þ � ð1� e�T Þðz � 1Þ�N ðzÞ ¼ 0
ð16:96Þ

is partitioned [5] and rearranged to yield Eq. (16.94).
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Equation (16.94) permits a root-locus analysis for the sampled-data
control system of Fig.16.22. Assuming that

HcðzÞ ¼ Kzc
z � c
z � b

¼ Kzc
N ðzÞ
DðzÞ ð16:97Þ

the plot of the poles and zeros of Eq. (16.94) is shown inFig.16.23.For a desired

 and settling timeTs� 4/jsj, the desired dominant complex pole p1 is located
as illustrated in this figure. If it is not possible for the basic system to produce
the desired dominant poles, the angle condition may be used to locate the zero
c and the pole b of Hc that can produce the desired dominant poles. If the
simple feedback compensator of Eq. (16.97) is not satisfactory, then the angle
condition is again applied but with a more complicated Hc(z) function.Use of
computer-aided-design (CAD) programs can expedite the root-locus analysis.

If a zero(s) [or pole(s)] ofHc(	) are selected to cancel a pole(s) [or zero(s)]
of the basic plant G(	), then they become poles of C(	) (see Chap. 11). This
characteristic can be observed in this example by selecting the zero of Hc(z)
[Eq. (16.97)] equal to the pole at �e�Tof HzoGx(z) [Eq. (16.92)]. Thus, by this
design method, the term (z� e�T) can be factored out of the bracketed
term in the denominator of Eq. (16.95), resulting in this term becoming a pole
of C(z).

In correlating the root-locus plot with respect to the corresponding
time-response characteristics, one must be aware of which poles and zeros of
Eq. (16.94) are zeros of C(z). As mentioned previously, a pole of C(z) that lies
very close to a zero of C(z) can have little effect on c*(t).

The feedback compensation design example of this section is based
upon achieving an Mp�1.1, ts�1s, and c(t)ss¼1, for a unit-step forcing func-
tion and T¼ 0.1s. Solving Eqs. (3.60) and (3.64) for these values of Mp and ts

FIGURE 16.22 A feedback compensated digital control system.
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yields 
� 0.59, jsj �4, and on� 6.7795. Thus, the desired dominant second-
order s-plane poles are

p1�2s ¼ s
 jon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
2

p
¼ �4
 j5:4738 ð16:98Þ

which map into the z plane as follows:

p1�2z ¼ e p1�2T ¼ 0:6703ff 
 31:363� ¼ 0:5721
 j0:3487 ð16:99Þ
These desired dominant z-plane poles, for this example,cannot be achieved by
use of onlyHc(z)¼Kzc; i.e., the desired dominant poles cannot be obtained by
only a gain adjustment (see Sec. 16.7.2). It may be possible to achieve these
desired dominant poles with a simple lead, lag, or lag-lead controller.

16.13.2 DIG Technique for Feedback Control

The digitization (DIG) approach to digital design requires the pseudo-
continuous-time (PCT) control-system approximation of the sampled-data
system of Fig.16.22 shown in Fig.16.24,where, forT¼ 0.1s, the plant transfer
function is given by Eq. (16.81), and

HxðsÞ ¼ HAðsÞHcðsÞ ¼
20KscN ðsÞ
ðs þ 20ÞDðsÞ ð16:100Þ

FIGURE 16.23 A plot of the poles and zeros of Eq. (16.94).
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Hpa(s)¼ 2/(sþ 20) is the Pade¤ approximation of Hzo(s), and HA(s)¼Hpa(s)/T.
For the approach of this subsection theHc(s) is assumed to be of the form:

HcðsÞ ¼
Kscðs þ aÞ2
ðs þ bÞðs þ cÞ ð16:101Þ

Normally, as a first trial, one should start with the simple compensator
Hc(s)¼Ksc(sþ a)/(sþ b) in order to try to achieve the desired FOM.

Although the desired dominant roots p1�2s ¼ �4
 j5:4738 are not
within the shaded area of Fig.16.5 for a very good Tustin approximation, they
still lie within the overall region where the condition of Eq. (16.15),
js1�2j � 2=T ¼ 20, is satisfied and the Tustin approximation can yield a
satisfactory system design. In general, the poles and zeros ofHc(s) are selected
to be real. ForHc(s) to act effectively as two‘‘simple lead networks’’ in cascade
the poles of Eq. (16.101) are located as far to the left of the zeros as practical.
They are also selected in such a manner that when they are mapped into the
z domain,via theTustin transformation, they lie between 0 andþ1on the posi-
tive real axis of the z domain. Substituting from Eq. (16.8) into Eq. (16.101)
yields

HcðzÞ ¼
ð2þ aT Þ2ðKscÞ
ð2þ bT Þð2þ cT Þ

z � 2� aT
2þ aT

2� �

2� 2� bT
2þ bT

� �
z � 2� cT
2þ cT

� �

2
6664

3
7775 ð16:102Þ

For positive real poles and zeros to exist between 0 and þ1 for Eq. (16.102),
then aT< 2, bT< 2, and cT< 2. Assume that the poles in Eq. (16.102) are at
the origin; i.e.,

2� bT ¼ 2� cT ¼ 0 ð16:103Þ
that results in c¼ b¼ 2/T. Note that poles at z¼ 0 in the z domain, by means
of the transformation z¼ esT, correspond to poles at�1 in the s plane.

The open-loop transfer function of Fig. 16.24, with T¼ 0.1s and
c¼ b¼ 2/T, is

GxðsÞHxðsÞ ¼
20KscKxðs þ aÞ2
sðs þ 1Þðs þ 20Þ3 ð16:104Þ

The poles of Eq. (16.104) and the desired dominant closed-loop roots p1,2 are
plotted in Fig. 16.25. The angle condition is then applied to determine where
the zeros at �a must be placed in order for the desired dominant roots to be
poles of C(s)/R(s). The application of this condition results in a� 7.062.Once
the value of a has been determined, the magnitude condition or a computer
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can then be used to determine the static loop sensitivity at p1,2 and the remain-
ing closed-loop poles. For this example, 20KscKx� 5201, p3,4��8.9772

j8.976, p5��35.06, and

CðsÞ
RðsÞ ¼

Kxðs þ 20Þ3
ðs � p1Þðs � p2Þðs � p3Þðs � p4Þðs � p5Þ

ð16:105Þ

To satisfy the requirement of c(t)ss¼1, for r(t)¼ u�1(t), the final value theorem
is applied to the expression for C(s) to generate the value of Kx� 32.425.This
value of Kx results in Ksc� 8.02.The FOM for the control ratio of Eq. (16.105)
are given inTable16.6.

FIGURE 16.25 The plot of the poles of Eq. (16.104).

FIGURE 16.24 PCT system approximation of the sampled-data control system of
Fig. 16.22.
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To determine the ramp error coefficient, it is necessary to solve for
Geq(s) from

CðsÞ
RðsÞ ¼

32:425ðs þ 20Þ3
s5 þ 61s4 þ 1260s3 þ 14�400s2 þ 81�460s þ 259�400

¼ N
D

¼ GeqðsÞ
1þ GeqðsÞ

Thus,

GeqðsÞ ¼
N

D � N
¼ 32:425ðs þ 20Þ3

s5 þ 61s4 þ 12227:6s3 þ 12�455s2 þ 42�550s
ð16:106Þ

and

K1 ¼ lim
s!0

sGeqðsÞ ¼ 6:096 s�1

Although Mp is larger than desired (1.1) for the PCTsystem, thusTustin
transformation of Hc(s) is obtained next to determine if this first trial design
results in a sampled-data system whose system performance is ‘‘close’’ to the
desired specifications.Substituting the valuesT,a,b,c, andKsc intoEq. (16.102)
yields

HcðzÞ ¼
Kzcðz � 0:48710Þ2

z2
¼ Kzc

N ðzÞ
DðzÞ ð16:107Þ

where Kzc¼ 3.6709. Substituting Eq. (16.107) into Eq. (16.94), with T¼ 0.1,
yields

0:0048374KxKzcðz þ 0:967255Þðz � 0:48710Þ2
z2ðz � 1Þðz � 0:90480Þ ¼ �1 ð16:108Þ

where K¼ 0.0048374KxKzc¼ 0.0048374(32.425)(3.6709)¼ 0.575791.With this
value of K the roots of the characteristic equation can be determined.

To determine the system’s FOM it is necessary to obtain the pseudo-
control ratio for a nonunity feedback digital control system. To accomplish

TABLE 16.6 Figures of Merit of DIG Control System of Figs. 16.22 and 16.25

Domain Mp tp, s ts, s K1, s
�1

s 1.134 0.554 0.86þ 6.096
z 1.088 0.6 0.9þ 4.51
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this the input forcing function r(t) must be specified. For this example, it is
noted that the right-hand side of Eq. (16.95) contains the factor z/(z�1) that
is the Z transform of the specified input forcing function, a step forcing
function. By dividing both sides of this equation by this factor yields the
pseudo-control ratio as follows:

CðzÞ
RðzÞ
� �

p
¼ Kx ½Tzðz� e�T Þ� zð1� e�T Þðz�1Þ�DðzÞ
ðz�1Þðz� e�T ÞDðzÞþKzcKx ½T ðz� e�T Þ� ð1� e�T Þðz�1Þ�N ðzÞ

ð16:109Þ

For the value of T¼ 0.1 and by substituting from Eq. (16.107) into Eq.
(16.109) with Kx and Kzc unspecified and inserting the poles as determined
by Eq. (16.108) yields

CðzÞ
RðzÞ
� �

p
¼ 0:0048374Kxz

2ðz þ 0:967255Þ
z2ðz � 1Þðz � 0:9048Þ þ Kðz þ 0:967255Þðz � 0:4871Þ2

¼ 0:0048374Kxz
2ðz þ 0967255Þ

ðz � 0:60086
 j0:31144Þðz � 0:063643
 j0:53202Þ

¼ N
D
¼ GeqðzÞ

1þGeqðzÞ
ð16:110Þ

whereK¼ 0.0048374KxKsc¼ 0.575791.The value ofKxdetermined in the PCT
system design is not used because of the warping effect.This effect is noted by
the comparison of the desired z-domain roots p1�2z ¼ e p1�2T ¼ 0:5721

j0:3487 obtained by selecting path B of Fig. 16.7 with the roots p1�2z ¼
0:6001
 j0:3112 obtained by selecting path A. The difference between these
roots result from theDIG technique for which the p1�2s do not lie in the shaded
area of Fig.16.5.

The value of Kx is determined by satisfying the condition

cð1Þ ¼ lim
z!1
½ð1� z�1ÞCðzÞ� ¼ 1

where R(z)¼ z/(z�1).Thus, Eq. (16.110) requires that Kx¼ 31.09728.To satisfy
the required value of K¼ 0.57579 with this value of Kx,Kzc¼ 3.82763.

The expression ofGeq(z) is determined from Eq. (16.110) to be

GeqðzÞ ¼
N

D � N
¼ 0:15115z2ðz þ 0:967255Þ
ðz � 1Þðz � 0:482043Þðz þ 0:001003
 j0:522266Þ
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Thus,

K1 ¼
1
T
lim
z!1

z � 1
z

GeqðzÞ
� �

¼ 4:50998 s�1

As noted from Table 16. 6, the z-domain FOM have satisfied the desired
performance specifications; thus, the design is satisfactory. The required
digital controller is

HcðzÞ ¼
I ðzÞ
CðzÞ ¼

3:82763ðz � 0:4871Þ2
z2

¼ 3:82763ð1� 0:4871z�1Þ2

ð16:111Þ

the results in the difference equation

iðkT Þ ¼ 3:82763cðkT Þ�3:7288877c½ðk�1ÞT �þ0:90816803c½ðk�2ÞT �
ð16:112Þ

This discrete control law (algorithm) can be translated into a software
program to be implemented by the digital computer (controller). Note that
the third coefficient requires at least a 30-bit integer computer word.

16.14 CONTROLLING UNWANTED DISTURBANCES

The design approach for minimizing unwanted disturbances for continuous-
time systems is presented in Chap.12. In this section the design approach for
continuous-time systems is applied to minimize unwanted disturbances for
sample-data systems by use of the DIG technique. The design procedure of
this section has the objective that the system output should not follow the dis-
turbance inputThis is the opposite situation from the design procedures given
in Chaps. 10 and 11 for analog systems where the output tracks the
command input.

16.14.1 PCT DIG Technique

Figure 16.26 is the PCT control system representation of the sampled data
system of Fig. 16.22. In Example 2 of Sec. 12.7 the feedback compensator
Hc(s)¼Kc/s resulted in an unstable system. An analysis of the root locus of
Fig. 12.10 indicates that Hc(s) must contain at least one zero in order to pull
the root-locus branches into the left-half s plane.
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The result of Prob. 12.7 indicate that to minimize the magnitudes of all
coefficients of

cðtÞ ¼ A1e
p1t þ 	 	 	 þ Ane

pnt ð16:113Þ
that are desired for minimizing the effect of an unwanted disturbance input
on c(t), it is necessary to locate as many of the poles of C(s)/D(s) as far to the
left of the s plane as possible. Figure 16.27 graphically describes the result of
the analysis made in Prob. 12.7 for the desired placement of the control ratio
poles. To achieve the desired location of the poles and yet pull the root-locus
branches as far as possible to the left, initially assume the following structure
for the feedback compensator:

HcðsÞ ¼
Kscðs þ a1Þðs þ a2Þ
sðs þ b1Þðs þ b2Þ

ð16:114Þ

As a trial, let a1¼4 and a2¼8. The poles b1 and b2 are chosen as far left
as possible and yet should lie in theTustin region 0 to � 2/Tof Fig. 16.5. For
this example, T¼ 0.01s and 2/T¼ 200. The values of b1 and b2 are
both set equal to 200; therefore, the open-loop transfer function of Fig. 16.26
with b1¼b2 is

GxðsÞHxðsÞHcðsÞ ¼
200Kscðs þ 4Þðs þ 8Þ
s2ðs þ 1Þðs þ 200Þ3 ð16:115Þ

where Gx(s)¼ 1/[s(sþ1)] and Hx(s)¼ 200/(sþ 200). The poles and zeros
of Eq. (16.115) are plotted in Fig. 16.27. For the plot Lm 1/Hx( jo)Hc( jo)�
� 54 dB, where jC( jo)/D( jo)1j � j1/Hx( jo)Hc( jo)j over the range
0�o�ob¼10 rad/s, requires that 200Ksc� 50�107.The static loop sensitiv-
ity value of 50�107 yields the following set of roots:

The associated root locus is shown in Fig. 16.28. This choice of gain
results in a satisfactory design, since Mp¼ 0.001076�0.002(�54 dB),
tp¼ 0.155 s (<0.2 s), c(t)ss¼ 0, and 0�o�ob¼10 rad/s.

FIGURE 16.26 A control system with a disturbance input.
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Applying the Tustin transformation to Eq. (16.114), with a1¼4, a2¼8,
and the two poles at� 200, yields

HcðzÞ ¼
0:3315� 10þ4ðz � 0:9231Þðz � 0:9608Þðz þ 1Þ

z2ðz � 1Þ ð16:116Þ

where Ksc¼ 0.3315�10þ4. The zero at z¼�1(s¼
 josT/2¼
 jp/T ) can
cause oscillation due to the disturbances. For the system of Fig. 16.22, with

FIGURE 16.27 Desired directional changes in the parameters 
i and oni and the
control ratio’s real pole values for decreasing the peak overshoot to a disturbance
input: (a) s plane; (b) z plane.
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r (t)¼ u�1(t) and T¼ 0.01s, the resulting model is

GxRðzÞ ¼ Z½GxðsÞRðsÞ� ¼
0:4983� 10�4zðz þ 0:9967Þ
ðz � 1Þ2ðz � 0:9900Þ ð16:117Þ

HzoGxðzÞ ¼ Z½HzoðsÞGxðsÞ� ¼
0:4983� 10�4ðz þ 0:9967Þ
ðz � 1Þðz � 0:9900Þ ð16:118Þ

The characteristic equation, from Eq. (16.89), yields

HzoGxðzÞHcðzÞ ¼ �1 ð16:119Þ
Substituting from Eqs. (16.116) and (16.118) into Eq. (16.119) yields

0:16519ðz � 0:9231Þðz � 0:9608Þðz þ 0:9967Þðz þ 1Þ
z2ðz � 0:99Þðz � 1Þ2 ¼ �1 ð16:120Þ

fromwhich the root locusmay be obtained.The roots for the specified value of
static loop sensitivity yields the following expression for C(z):

CðzÞ ¼ 4:983� 10�5ðzþ 0:9967Þz2
ðz� 0:90403Þðz� 0:196227Þðz� 0:60787
 j0:53203Þðzþ 0:25723Þ

ð16:121Þ

FIGURE 16.28 A possible root locus for Eq. (16.115) (not to scale).
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The resulting performance characteristics for the sampled-data control
system of Fig.16.22 are

Mp ¼ 1:08� 10�3ð� �59:3dBÞ and tp � 0:16 s

Mm ¼ 1:304� 10�3ð� �57:7dBÞ for 0 � o � 10 rad=s

The gain Kzc¼ 3315 can be considered as ‘‘high,’’and thus present a pro-
blem with respect to its implementation on the digital controller. If this is the
case, then a portion of this gain can be allocated to other components in the
feedback path. Also, the gain can be reduced until either Mp¼ 0.002 with
tp� 0.2 s or tp¼ 0.2 s with Mp� 0.002 is achieved. Although not specified
in this problem, the loop transmission frequency of must be taken into
account in the design of a practical system.

16.15 EXTENSIVE DIGITAL FEEDBACK COMPENSATOR
EXAMPLE

The basic second-order system and the associated desired FOM of Example
16.3 of Sec. 16.12 are utilized in this section to illustrate the design of a feed-
back compensator via the PCT DIG technique. The cancellation of poles
(or zeros) of the plant by zeros (or poles) of Dc(s) that can be done in the
design of a cascade compensator, cannot be done in the design of the feedback
compensator Hc(s). As stated in Sec. 16.13.1, the canceled term(s) become
pole(s) of C(s), which in general is counterproductive to the achievement of
the desired FOM.

16.15.1 PCT DIG Example

For Fig.16.24,whereT¼ 0.01s, the open-loop PCT transfer function is

GxðsÞHxðsÞ ¼
200KxKscN ðsÞ

sðs þ 1Þðs þ 5Þðs þ 200ÞDðsÞ ð16:122Þ

This equation is identical to Eq. (16.72), except Dc(s) is replaced by Hc(s).
Thus, the root-locus analysis of Example 16.3 holds for Eq. (16.122). Initially,
consider a second-order continuous controller

HxðsÞ ¼
200Kscðs þ aÞ2
ðs þ 200Þðs þ bÞ2 ð16:123Þ

In order tominimize the effect of a dominant real root, the zeros of Eq. (16.122)
at�a are located to the left of the pole at�5.Thus, as a first trial, select a¼ 6.
In order to achieve the desired closed-loop poles, p1�2s ¼ �10
 j14, the
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application of the angle and magnitude conditions in Fig. 16.22 yield a value
of b¼ 62.89 for the compensator pole and a static loop sensitivity value of
200KxKsc¼1.151�105. The resulting control ratio is

CðsÞ
RðsÞ ¼

Kxðsþ 62:89Þ2ðsþ 200Þ
ðsþ 5:338Þðsþ 13:70Þðsþ 10:08
 j14:12Þðsþ 95:76Þðsþ 196:8Þ

ð16:124Þ
Applying the final value theorem to the expression for C(s), with R(s)¼ 1/s,
yields a value of Kx¼ 523.97 for e(t)ss¼ 0. Thus, Ksc¼109.83 and the FOM
for Eq. (16.124) are Mp¼1.000 and ts¼ 0.86 s. As Eq. (16.124) predicts
(real pole at �5.338 is more dominant than p1,2), an overdamped response is
achieved with ts¼ 0.867>0.5 s (desired).

Tomove the dominant real pole of Eq. (16.124) farther to the left in order
to decrease the value of ts and achieve an underdamped response, it is
necessary to increase the number of poles and zeros ofHc(s) to 3. As a second
trial, let a¼11 for the three zeros of Hc(s). For this choice of a, the following
design information is obtained:

b ¼ 39:702 200KxKsc ¼ 1:038� 107 Kx ¼ 11049 Ksc ¼ 47

CðsÞ
RðsÞ ¼

Kxðsþ 39:702Þ3ðsþ 200Þ
ðsþ 7:109Þðsþ 10:05
 j14:08Þðsþ 10:79
 j1736Þðsþ 78:6Þðsþ 197:7Þ

ð16:125Þ

FIGURE 16.29 The plot of the poles and zeros of Eq. (16.122): first trial.
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Mp¼1.000 and ts¼ 0.603>0.5 s (desired). As noted by this design example,
in order to achieve the desired underdamped response, p1�2s and FOM
requires a high order Hc(s). Based upon this conclusion, the cascade
compensator designs of Sec. 16.12 are more practical in the sense of
lower-order controllers.

16.16 CONTROLLER IMPLEMENTATION [1]

In designing a digital controller it is very important that the implementation
issue, as stressed in Fig.1.16, be kept in mind. In designing the digital control-
ler to achieve the desired control system performance requirements, the
engineer must be aware of the factors that play an important role in the imple-
mentation of the controller. For example, how is maximum computational
accuracy achieved?

The factors considered in the implementation of a digital controller are
discussed in detail in Ref. 1. This section is intended only to stress to digital
control system designers a few important factors in implementation of digital
controllers.

As an example, consider a lead controller that was designed to yield the
desired system FOM,whose transfer function is

DcðzÞ ¼
Kzcðz � zaÞðz � zbÞ
ðz � pcÞðz � pd Þ

ð16:126Þ

The parameter values of the controller are:

Kzc ¼ 2002:6 za ¼ 0:99005 zb ¼ 0:95123 pc ¼ pd ¼ 0:6696

Since it is desired to implement this controller by a theoretical 7-bit digital
computer, it is necessary that the parameters of Eq. (16.118) be rounded off to
two decimal digits (2�3.32¼6.64�7); i.e.,

DcðzÞ ¼
200ðz � 0:95Þðz � 0:99Þ

ðz � 0:67Þ2 ð16:127Þ

Thus, the resulting control ratio now becomes

CðzÞ
RðzÞ ¼

1:3792� 10�3ðz þ 0:26395Þðz þ 3:6767Þðz � 0:95Þðz � 0:99Þ
ðz � 0:8883
 j0:07586Þðz � 0:5647Þðz � 0:9487Þðz � 0:9901Þ

ð16:128Þ
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This yields the following FOMusing essentially infinite arithmetic operation
accuracy:

Mp ¼ 1:023 tp ¼ 0:38 s ts ¼ 0:43þ s K1 ¼ 7:714 s�1

Comparing these FOM with those obtained without the roundoff show that
the values of Mp and K1 are decreased but the values for tp and ts have
increased. The control engineer has to make the decision as to whether the
theoretical FOM resulting from using the controller of Eq. (16.128) are or are
not acceptable before taking into account factors of controller implementa-
tion including word length.

As another example, a digital control system is designed utilizing the lag
controller

DcðzÞ ¼
z � za
z � pb

ð16:129Þ

where za¼ 0.999 and pb¼ 0.9999 that satisfied the desired FOM. Since it is
desired to implement this controller by a theoretical 7-bit digital computer, it
is necessary that the parameters of Eq. (16.129) be rounded off to two decimal
digits, i.e.,

DcðzÞ ¼
z � 0:99
z � 1

ð16:130Þ

Thus, the resulting control ratio now becomes

CðzÞ
RðzÞ ¼

2:1� 10�3ðz þ 0:26396Þðz þ 3:6767Þðz � 0:99Þ
ðz � 1:090
 j0:2140Þðz � 0:9900þÞðz � 0:7696Þ ð16:131Þ

which results in an unstable system because of underflow (see Chap. 10 of
Ref.1).

Thus, in rounding up or down the parameters of a controller
care must be exercised in the degree of accuracy that must be main-
tained in selecting a pole-zero placement [1]. The following general guide-
lines need to be kept in mind when rounding up or down the controller
coefficients:

1. Rounding up the controller zeros (closer to the UC) and rounding
down the poles (further away from the UC), regardless of the
magnitude of the ‘‘excess’’digits, results in a more stable system.

2. Controller implementation fine-tuning of the controller gain in the
simulation phase of the design process can result in the achievement
of the desired FOM.
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Another important factor is the software implementation of the digital
controller design. Tight performance specifications and a high degree of
uncertainty require small sampling intervals T. Unfortunately, the smaller
the value of T, the greater the degree of accuracy that is required to be main-
tained. The numerical accuracy is enhanced by a factored representation of
the controller and prefilter [1]. For example, by use of the bilinear transforma-
tion the controller Gz(z) of Fig.16.30b is obtained from the compensator Gc(s)
or Gc(w) of Fig. 16.30a. Therefore, the equivalent cascaded transfer function
representation (factored representation) of Gz(z), shown in Fig. 16.30c, is
utilized to obtained the algorithm for the software implementation of Gz(z)
in order to improve the accuracy of the system’s performance due to this
controller.

The reader is referred to the technical literature that discuss the other
factors involved in controller implementation, e.g., Ref.1.

16.17 SUMMARY

The availability of inexpensive microprocessors has led to their extensive use
in digital control systems. Although there is a degradation of performance by
the introduction of sampling, this is more than overcome by the greater range
of digital controllers that can be achieved.The flexibility provided by the use
of microprocessors in synthesizing digital controllers yields greatly improved
control system performance.

Two approaches for analysing a sampled-data control system are
presented: the DIG (digitization) and DIR (direct) techniques. The former

FIGURE 16.30 s- or w-domain to z-domain bilinear transformation: formulation for
implementation of the G(z) controller.
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requires the use of the Pade¤ approximation and theTustin transformation for
an initial design in the s plane (PCT control-system configuration). If the
Tustin approximation criteria of Sec. 16.3 are satisfied, the correlation
between the two planes is very good. If the approximations are not valid, the
analysis and design of the digital control system should be done by the DIR
technique.

The conventional procedures (see Chap. 10) for the design of
analog cascade compensators are used for the design of digital control
system in the examples of this chapter. They involve a certain amount of
trial and error and the exercise of judgement based upon past experience.
The improvements produced by each controller are shown by application
to a specific system. In cases where the conventional design procedures
for cascade digital controllers do not produce the desired results, the method
of Sec. 16.15 can be used. The feed-back compensation design procedures
of this chapter can be utilized when a cascade compensator cannot
produce the desired system performance, or when a ‘‘simpler’’ compensator
can be achieved. The respective design procedures for cascade and feedback
controllers depend upon the system output tracking or following of the
system input.

When designing a digital controller, the designer is not restricted to
the use of the nominal upper bound of a¼10 for a lag compensator and
the nominal lower bound of a¼ 0.1 for a lead compensator in the s or
w domain. Larger upper and lower bounds, respectively, can be used, based
upon the flexibility of the computer hardware in terms of word-length
accuracy (see Ref.1).

The examples of this section are designed to provide a scenario inwhich
a control-system designer needs to select a method based on:

1. The factors listed in Sec.11.1with respect to the choice of cascade vs.
feedback compensation.

2. The complexity of the controller (the number of poles and zeros).
3. The achievement of the desired FOM.

The use of several compensators in cascade and/or in feedback may be
required to achieve the desired pole-zero locations for the control ratio.
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Appendix A

Table of Laplace Transform Pairs

F(s) f(t) 0� t

1. 1 u0ðtÞ unit impulse at t ¼ 0

2:
1

s
1 or u� 1(t) unit step starting at t¼ 0

3:
1

s 2
tu� 1(t) ramp function

4:
1

s n

1

ðn� 1Þ! t
n�1 n ¼ positive integer

5:
1

s
e�as u� 1(t� a) unit step starting at t¼ a

6:
1

s
ð1� e�asÞ u� 1(t)� u� 1(t� a) rectangular pulse

7:
1

sþ a
e�at exponential decay

8:
1

ðsþ aÞn
1

ðn� 1Þ! t
n�1e�at n ¼ positive integer

(continued)
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F(s) f(t) 0� t

9:
1

sðsþ aÞ
1

a
ð1� e�at Þ

10:
1

sðsþ aÞðsþ bÞ
1

ab
1� b

b� a
e�at þ a

b� a
e�bt

� �

11:
sþ a

sðsþ aÞðsþ bÞ
1

ab
a� bða� aÞ

b� a
e�at þ aða� bÞ

b� a
e�bt

� �

12:
1

ðsþ aÞðsþ bÞ
1

b� a
ðe�at � e�btÞ

13:
s

ðsþ aÞðsþ bÞ
1

a� b
ðae�at � be�btÞ

14:
sþ a

ðsþ aÞðsþ bÞ
1

b� a
½ða� aÞe�at � ða� bÞe�bt �

15:
1

ðsþ aÞðsþ bÞðsþ cÞ
e�at

ðb� aÞðc� aÞ þ
e�bt

ðc� bÞða� bÞ þ
e�ct

ða� cÞðb� cÞ

16:
sþ a

ðsþ aÞðsþ bÞðsþ cÞ
ða� aÞe�at
ðb� aÞðc� aÞ þ

ða� bÞe�bt
ðc� bÞða� bÞ þ

ða� cÞe�ct
ða� cÞðb� cÞ

17:
o

s 2 þ o2
sinot

18:
s

s 2 þ o2
cosot

19:
sþ a

s 2 þ o2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ o2

p
o

sin ðot þ fÞ f ¼ tan�1
o
a

20:
s sin yþ o cos y

s 2 þ o2

sin ðot þ yÞ

21:
1

sðs 2 þ o2Þ
1

o2
ð1� cosotÞ

22:
sþ a

sðs 2 þ o2Þ
a
o2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ o2

p
o2

cos ðot þ fÞ f ¼ tan�1
o
a

23:
1

ðsþ aÞðs 2 þ o2Þ
e�at

a2 þ o2
þ 1

o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þo2

p sin ðot � fÞ f ¼ tan�1
o
a

24:
1

ðsþ aÞ2 þ b2
1

b
e�at sin bt

24a:
1

s 2 þ 2zonsþ o2
n

1

on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p e�zont sinon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
t

(continued)
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F(s) f(t) 0� t

25:
sþ a

ðsþ aÞ2 þ b2
e�at cos bt

26:
sþ a

ðsþ aÞ2 þ b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� aÞ2 þ b2

q

b
e�atsin ðbt þ fÞ f ¼ tan�1

b

a� a

27:
1

s½ðsþ aÞ2 þ b2�
1

a2 þ b2
þ 1

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p e�atsin ðbt � fÞ

f ¼ tan�1
b

�a
27a:

1

sðs2 þ 2zonsþ o2
nÞ

1

o2
n

� 1

o2
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p e�zontsin ðon

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
t þ fÞ

f ¼ cos�1 z

28:
sþ a

s½ðsþ aÞ2 þ b2� a
a2 þ b2

þ 1

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� aÞ2 þ b2

a2 þ b2

s
e�atsin ðbt þ fÞ

f ¼ tan�1
b

a� a
� tan�1

b

�a
29:

1

ðsþ cÞ½ðsþ aÞ2 þ b2�
e�ct

ðc� aÞ2 þ b2
þ e�atsin ðbt � fÞ
b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc� aÞ2 þ b2

q

f ¼ tan�1
b

c� a

30:
1

sðsþ cÞ½ðsþ aÞ2 þ b2�
1

cða2 þ b2Þ �
e�ct

c½ðc� aÞ2 þ b2�
þ e�at sin ðbt � fÞ
b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc� aÞ2 þ b2

q

f ¼ tan�1
b

�aþ tan�1
b

c� a

31:
sþ a

sðsþ cÞ½ðsþ aÞ2 þ b2�
a

cða2 þ b2Þ þ
ðc� aÞe�ct

c½ðc� aÞ2 þ b2�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� aÞ2 þ b2

q

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc� aÞ2 þ b2

q e�atsin ðbt þ fÞ

f ¼ tan�1
b

a� a
� tan�1

b

�a� tan�1
b

c� a

32:
1

s2ðsþ aÞ
1

a2
ðat � 1þ e�atÞ

(continued)
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F(s) f(t) 0� t

33:
1

sðsþ aÞ2
1

a2
ð1� e�at � ate�at Þ

34:
sþ a

sðsþ aÞ2
1

a2
½a� ae�at þ aða� aÞte�at �

35:
s2 þ a1sþ a0
sðsþ aÞðsþ bÞ

a0
ab
þ a2 � a1aþ a0

aða� bÞ e�at � b2 � a1bþ a0
bða� bÞ e�bt

36:
s2 þ a1sþ a0
s½ðsþ aÞ2 þ b2�

a0
c2
þ 1

bc
½ða2 � b2 � a1aþ a0Þ2

þ b2ða1 � 2aÞ2�1=2e�atsin ðbt þ fÞ
f ¼ tan�1

bða1 � 2aÞ
a2 � b2 � a1aþ a0

� tan�1
b

�a
c2 ¼ a2 þ b2

37:
1

ðs2 þ o2Þ½ðsþ aÞ2 þ b2�
ð1=oÞsin ðot þ f1Þ þ ð1=bÞe�atsin ðbt þ f2Þ

½4a2o2 þ ða2 þ b2 � o2Þ2�1=2

f1 ¼ tan�1
�2ao

a2 þ b2 � o2
f2 ¼ tan�1

2ab

a2 � b2 þ o2

38:
sþ a

ðs 2 þ o2Þ½ðsþ aÞ2 þ b2� 1

o
a2 þ o2

c

 !1=2

sin ðot þ f1Þ

þ 1

b

ða� aÞ2 þ b2

c

" #1=2

e�atsin ðbt þ f2Þ

c ¼ ð2aoÞ2 þ ða2 þ b2 � o2Þ2

f1 ¼ tan�1
o
a
� tan�1

2ao
a2 þ b2 þ o2

f2 ¼ tan�1
b

a� a
þ tan�1

2ab

a2 � b2 þ o2

39:
sþ a

s 2½ðsþ aÞ2 þ b2�
1

c
at þ 1� 2aa

c

� �
þ ½b

2 þ ða� aÞ2�1=2
bc

e�atsin ðbt þ fÞ
c ¼ a2 þ b2

f ¼ 2 tan�1
b

a

� �
þ tan�1

b

a� a

40:
s2 þ a1sþ a0
s2ðsþ aÞðsþ bÞ

a1 þ a0t
ab

� a0ðaþ bÞ
ðabÞ2 � 1

a� b
1� a1

a
þ a0

a2

� �
e�at

� 1

1� b
1� a1

b
þ a0
b2

� �
e�bt
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Appendix B

Matrix Linear Algebra

B.1 INTRODUCTION

Some basic matrix concepts needed in the development of the state
method of describing and analyzing physical systems are presented in this
appendix [1^3].

B.2 MATRIX

A matrix is a rectangular array of elements. The elements may be real or
complex numbers or variables of time or frequency. A matrix with a rows
and b columns is called an a� b matrix or is said to be of order a� b:The
matrix is also said to have size or dimension a� b: If a ¼ b� the matrix is
called a square matrix. Boldface capital letters are used to denote rectangular
matrices, and boldface small letters are used to denote column matrices.
A general expression for an a� bmatrix is

M ¼

m11 m12 	 	 	 m1b
m21 m22 	 	 	 m2b

..

. ..
. . .

. ..
.

ma1 ma2 	 	 	 mab

2
6664

3
7775 ¼ mij

2
6664

3
7775 ðB:1Þ
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The elements are denoted by lowercase letters. Adouble-subscript notation is
used to denote the location of the element in the matrix; thus, the element mij

is located in the ith row and the jth column.

B.3 TRANSPOSE

The transpose of a matrix M is denoted by M
T. The matrix M

T is obtained
by interchanging the rows and columns of the matrix M. In general, with
M¼ [mij], the transpose matrix isMT¼ [mji].

B.4 VECTOR

A vector is a matrix that has either one row or one column. An a� 1 matrix is
called a column vector, written

x ¼
x1
x2
..
.

xa

2
6664

3
7775 ðB:2Þ

and a1� bmatrix is called a row vector,written

x
T ¼ ½x1 x2 	 	 	 xb� ðB:3Þ

Thus, the transpose of a column vector x yields the row vector xT.

B.5 ADDITION AND SUBTRACTION OF MATRICES

The sumordifferenceof twomatricesM andN,bothof ordera� b, is a matrix
W of order a� b. The element wij ofW¼M
N is

wij ¼ mij 
 nij ðB:4Þ
These operations are commutative and associative; i.e.,

Commutative: M
N ¼ 
NþM ðB:5Þ
Associative: ðMþNÞ þQ ¼Mþ ðNþQÞ ðB:6Þ

Example 1. Addition of matrices

W ¼
3 1 2
1 0 �4
0 5 7

2
4

3
5þ

1 �3 1
2 1 5
�4 �1 0

2
4

3
5 ¼

4 �2 3
3 1 1
�4 4 7

2
4

3
5

ðB:7Þ
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B.6 MULTIPLICATION OF MATRICES

The multiplication of two matrices MN can be performed if and only if (iff )
they conform. If the orders of M and N are a� b and �� �, respectively, they
are conformable iff b¼ �, that is, the number of columns ofMmust be equal to
the number of rows of N. Under this condition MN¼W, where the elements
ofW are defined by

wij ¼
Xb
k¼1

miknkj ðB:8Þ

That is, each element of the ith row of M is multiplied by the corresponding
element of the jth column of N, and these products are summed to
yield the ijth element ofW.The dimension or order of the resulting matrixW
is a� �.

Matrix multiplication operations are summarized as follows:

1. An a� bMmatrix times a b� � Nmatrix yields an a� �Wmatrix;
that is,MN¼W.

2. An a� bMmatrix times a b�aNmatrix yields an a� aW square
matrix; that is, MN¼W. Note that although NM¼Y is also a
square matrix, it is of order b� b.

3. When M is of order a� b and N is of order b� a, each of the
productsMN andNM is conformable.However, in general,

MN 6¼ NM ðB:9Þ

Thus the product ofM andN is said to be noncommutable, that is, the
order of multiplication cannot be interchanged.

4. The product MN can be referred to as ‘‘N premultiplied by M’’
or as ‘‘M postmultiplied by N.’’ In other words, premultiplication
or postmultiplication is used to indicate whether one matrix is
multiplied by another from the left or from the right.

5. A 1� a row vector times an a� b matrix yields a 1� b row vector;
that is xTM¼ y

T.
6. A b� a matrix times an a�1 column vector yields a b�1 column

vector; that is,Mx¼ y.
7. A1� arow vector times an a�1columnvector yields a1�1matrix,

that is, xTy¼w,which contains a single scalar element.
8. The k-fold multiplication of a square matrix M by itself is indicted

byMk.

These operations are illustrated by the following examples.
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Example 2. Matrix multiplication

2 1 3

1 4 1

� � 2 1 0

0 3 1

1 2 1

2
64

3
75 ¼ 7 11 4

3 15 5

� �
2 1 3

1 4 1

� � 2 1

0 3

1 2

2
64

3
75 ¼ 7 11

3 15

� �

2 1

0 3

1 2

2
64

3
75 2 1 3

1 4 1

� �
¼

5 6 7

3 12 3

4 9 5

2
64

3
75 2 1

1 1

� �
1 0

2 3

� �
¼ 4 3

3 3

� �

2 1

0 3

� �
1

3

� �
¼ 5

9

� �
½1 3� 2

1

� �
¼ ½5�

B.7 MULTIPLICATION OF A MATRIX BY A SCALAR

The multiplication of matrix M by a scalar k is effected by multiplying each
elementmij by k, that is,

kM ¼Mk ¼ ½kmij � ðB:10Þ

Example 3.

2 1 0
5 �7

� �
¼ 1 0

5 �7
� �

2 ¼ 2 0
10 �14

� �

B.8 UNIT OR IDENTITY MATRIX

A unit matrix, denoted I, is a diagonal matrix in which each element on the
principal diagonal is unity. Sometimes the notation In is used to indicate an
identity matrix of order n. An example of a unit matrix is

I ¼
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775 ðB:11Þ

The premultiplication or postmultiplication of amatrixMby the unitmatrix I
leaves the matrix unchanged.

MI ¼ IM ¼M ðB:12Þ
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B.9 DIFFERENTIATION OF A MATRIX

The differentiation of a matrix with respect to a scalar is effected by differen-
tiating each element of the matrix with respect to the indicated variable:

d
dt

MðtÞ½ � ¼ _MMðtÞ ¼ _mmij
� � ¼

_mm11 _mm12 	 	 	 _mm1b
_mm21 _mm22 	 	 	 _mm2b

..

. ..
. . .

. ..
.

_mma1 _mma2 	 	 	 _mmab

2
6664

3
7775 ðB:13Þ

The derivative of a product of matrices follows rules similar to those for the
derivative of a scalar product,with preservation of order.Thus, typically,

d
dt

MðtÞNðtÞ½ � ¼MðtÞ _NNðtÞ þ _MMðtÞNðtÞ ðB:14Þ

B.10 INTEGRATION OF A MATRIX

The integrationof amatrix is effected by integrating each element of thematrix
with respect to the indicated variable:R

MðtÞ dt ¼ ½R mij dt� ðB:15Þ

B.11 ADDITIONAL MATRIX OPERATIONS
AND PROPERTIES

Additional characteristics of matrices required to solvematrix state equations
by using the Laplace transform are presented in this section.

PRINCIPAL DIAGONAL. The principal diagonal of a square matrix M¼
[mij] consists of the elementsmii.

DIAGONAL MATRIX. A diagonal matrix is a square matrix in which all
the elements off the principal diagonal are zero.This fact can be expressed as
mij¼ 0 for i 6¼ j and the principal diagonal elements mii¼mi are not all zero.
When the diagonal elements are all equal, the matrix is called a scalarmatrix.

TRACE. The trace of a square matrix M of order n is the sum of all the
elements along the principal diagonal; that is,

trace M ¼ m11 þm22 þ 	 	 	 þmnn ¼
Xn
i¼1

mii ðB:16Þ
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For the state equation _xx ¼ Axþ Bu,

trace A ¼
X

�ðAÞ ¼
Xn
i¼1

�i ðB:17Þ

where �(A) is the spectrum ofA.

DETERMINANT. The determinant of a square matrix M of order n is the
sum of all possible signed products of n elements containing one and only
one element from every row and column in the matrix. The determinant of a
matrix can be represented by replacing the brackets by vertical bars. The
determinant ofMmay be denoted by jMj, or detM, or�M. It is assumed that
the reader knows how to evaluate determinants.

Example 4.

M ¼
3 1 2
1 0 �4
0 5 7

2
4

3
5 jMj ¼

3 1 2
1 0 �4
0 5 7















 ¼ 63 ðB:18Þ

Characteristics of determinants are as follows:

1. The determinant of a unit matrix is jIj ¼ 1.

2. Thedeterminant of amatrix is zero if (a) any rowor columncontains
all zeros or (b) the elements of any two rows (or columns) have a
common ratio.

SINGULAR MATRIX. A square matrix is said to be singular if the value of
its determinant is zero. If the value of its determinant is not zero, the matrix is
nonsingular.

MINOR. The minor Mij of a square matrix M of order n is the determinant
formed after the ith row and jth column are deleted fromM.

PRINCIPAL MINOR. A principal minor is a minor Mii whose diagonal
elements are also the diagonal elements of the square matrixM.

COFACTOR. A cofactor is a signedminor and is given by

Cij ¼ �ij ¼ ð�1ÞiþjMij ðB:19Þ

Example 5. For the matrixM of Example 4, the cofactor C21 is obtained by
deleting the second row and first column, giving

C21 ¼ ð�1Þ2þ1 1 2
5 7










 ¼ þ3 ðB:20Þ
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B.12 GENERALIZED DETERMINANT

The determinant of a square matrixM of order n can also be computed from
the sum of terms obtained by an expansion along any row i or along any
column j as follows:

1. The cofactors Cij are formed for each element mij of any row of the
matrixM.Then

jMj ¼
Xn
j¼1

mijCij for any row i ðB:21Þ

2. The cofactors Cij are formed for each element mij of any column j of
the matrixM.Then

jMj ¼
Xn
i¼1

mijCij for any column j ðB:22Þ

ADJOINT MATRIX. The adjoint of square matrix M, denoted as adj M,
is the transpose of the cofactor matrix. The cofactor matrix is formed by
replacing each element ofM by its cofactor.

AdjM ¼
�
Cji

�
¼
�
Cij

�T
¼ array of

cofactor

� �T
ðB:23Þ

Example 6. The adjM for the matrixM of Example 4 is

AdjM ¼
20 �7 8
3 21 �15
�4 14 �1

2
4

3
5

T

¼
20 3 �4
�7 21 14
5 �15 �1

2
4

3
5 ðB:24Þ

INVERSE MATRIX. The product of a matrix and its adjoint is a scalar
matrix, as illustrated by the following example.

Example 7. The productM adjM, using values in Examples 4 and 6, is

MadjM¼
3 1 2
1 0 �4
0 5 7

2
4

3
5 20 3 �4
�7 21 14
5 �15 �1

2
4

3
5¼

63 0 0
0 63 0
0 0 63

2
4

3
5¼ 63I¼ jMjI

ðB:25Þ
The inverse of a squarematrixM is denoted byM�1and has the property

MM
�1 ¼M

�1
M ¼ I ðB:26Þ

Matrix Linear Algebra 685

Copyright © 2003 Marcel Dekker, Inc.



The inverse matrixM�1 is defined from the result of Example 7 as

M
�1 ¼ adjM

jMj ðB:27Þ

The inverse exists only if jMj 6¼ 0; that is, the matrixM is nonsingular.

INVERSE OF A PRODUCT OF MATRICES. The inverseof a product of
matrices is equal to the product of the inverses of the individual matrices in
reverse order:

½A B��1 ¼ B
�1
A
�1 ðB:28Þ

PRODUCT OF DETERMINANTS. The determinant of the product of
square matrices is equal to the product of the individual determinants:

jABCj ¼ jAj 	 jBj 	 jCj ðB:29Þ

RANK OF A MATRIX. The rank r of a matrixM, not necessarily square,
is the order of the largest square array contained in M that has a nonzero
determinant.

Example 8.

M ¼
1 2 3
2 3 4
3 5 7

2
4

3
5 ðB:30Þ

The determinant jMj ¼ 0; that is, M is a singular matrix. The square array
obtained by deleting the first row and second column has a nonzero
determinant:

2 4
3 7










 ¼ 2 ðB:31Þ

Therefore,M has a rank of 2.

DEGENERACY (OR NULLITY) OF A MATRIX. When a matrix M

of order n has rank r, there are q¼ n� r rows or columns which are linear
combinations of the r rows or columns. The matrix M is then said to have
degeneracy q. In Example 8 the matrix M is of order n¼ 3, the rank is r¼ 2,
and the degeneracy is q¼1 (simple degeneracy). Note that the third row ofM
is the sum of the first two rows. Also, the third column is two times the second
column minus the first column.

SYMMETRIC MATRIX. Asquarematrix containing only real elements is
symmetric if it is equal to its transpose, that is, A¼AT. The relationship
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between the elements is

aij ¼ aji

A symmetric matrix is symmetrical about its principal diagonal.

TRANSPOSE OF A PRODUCT OF MATRICES. The transpose of
a product of matrices is the product of the transposed matrices in reverse
order:

½AB�T ¼ B
T
A

T ðB:32Þ
This relationship can be described by the statement that the product of trans-
posed matrices is equal to the transpose of the product in reverse order of the
original matrices.

B.13 HERMITE NORMAL FORM

A number of properties of a matrix can be determined by transforming the
matrix to Hermite normal form (HNF). These properties include the deter-
mination of the rank of a matrix, the inverse of a matrix of full rank, the char-
acteristic polynomial of a matrix, the eigenvectors associated with the
eigenvalue, the controllability of a system, and the observability of a system.
The transformation is accomplished on a matrix M by performing the
following basic or elementary operations:

1. Interchanging the ith and jth rows
2. Multiplying the ith row by a nonzero scalar k
3. Adding to the elements of the ith row the corresponding elements of

the jth row multiplied by a scalar k

The purpose of these operations is to produce a unit element as the first non-
zero element in each row (from the left), with the remaining elements of the
column all zero.These operations can be accomplished by premultiplying by
elementary matrices,where the elementary matrices are formed by performing
the desired basic operations on a unit matrix. For example, for a third-order
matrix M, premultiplying by the following elementary matrices Ei produces
the results indicated:

0 1 0

1 0 0

0 0 1

2
664

3
775

1 0 0
0 1 0
0 0 k

2
4

3
5 1 0 0

0 1 k
0 0 1

2
4

3
5 ðB:33Þ

Interchanging Multiplying Adding k times
rows 1 and 2 row 3 by k row 3 to row 2
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Example 9. The matrix of Example 8 is reduced to HNF by the following
operations:

1. Subtract 2 times row 1 from row 2 and 3 times row 1 from row 3.
Premultiplyingby thecorrespondingelementarymatrixE1produces

E1M¼
1 0 0
�2 1 0
�3 0 1

2
4

3
5 1 2 3

2 3 4
3 5 7

2
4

3
5¼

1 2 3
0 �1 �2
0 �1 �2

2
4

3
5¼M1 ðB:34Þ

2. Add 2 times row 2 to row1, subtract row 2 from row 3, and multiply
row 2 by �1. Premultiplying by the corresponding elementary
matrix E2 produces

E2M1 ¼
1 2 0
0 �1 0
0 �1 1

2
4

3
5 1 2 3

0 �1 �2
0 �1 �2

2
4

3
5¼

1 0 �1
0 1 2
0 0 0

2
4

3
5¼M2 ðB:35Þ

The matrixM2 is in Hermite normal form and has the same rank as
the matrix M. Since M2 has one zero row, it has a rank of 2, which
agrees with the result of Example 8.

B.14 MATRIX INVERSION BY ROW OPERATIONS

The inverseM�1 of a nonsingular matrixM can be obtained as follows:

1. Form the augmented matrix [M --I].
2. Perform row operations on the augmented matrix so that the left

portion M becomes the identity matrix I.When the left portion is
so transformed, the right portion I is transformed into the matrix
inverse M

�1. Thus, the transformed augmented matrix
becomes [I -- M�1].

Example 10. For the matrix of Example 4, the augmented matrix is

½M --I� ¼
3 1 2
1 0 �4
0 5 7 --

--
--
--
-- 1 0 0

0 1 0
0 0 1

3
5

2
4 ðB:36Þ

A suitable set of basic row operations includes subtracting 3 times row 2 from
row1and then interchanging rows1and 2, yielding

1 0 �4
0 1 14
0 5 7 --

--
--
--
-- 0 1 0

1 �3 0
0 0 1

3
5

2
4
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Subtracting 5 times row 2 from row 3 yields

1 0 �4
0 1 14
0 0 �63 --

--
--
--
-- 0 1 0

1 �3 0
�5 15 1

3
5

2
4

Dividing row 3 by�63, adding 4 times the new row 3 to row1, and subtracting
14 times the new row 3 from row 2 yields

1 0 0
0 1 0
0 0 1 --

--
--
--
-- 20=63 3=63 �4=63

�7=63 21=63 14=63
5=63 �15=63 �1=63

3
5 ¼ ½I -- M�1�

2
4 ðB:37Þ

The inverse matrix M
�1 agrees with the value obtained from Eq. (B.27) and

the results of Examples 4 and 6.

B.15 EVALUATION OF THE
CHARACTERISTIC POLYNOMIAL

The characteristic polynomial for the matrix A appearing in the state
equation

_xx ¼ Axþ bu ðB:38Þ
is

Qð�Þ ¼ j�I� Aj ¼ �n þ an�1�
n�1 þ 	 	 	 þ a1�þ a0 ðB:39Þ

When the n�(nþ1) matrix

Mc ¼ b Ab A
2
b 	 	 	 A

n
b

� � ðB:40Þ

is reduced to HNF,which must be full rank, the coefficients of the character-
istic polynomial appear in the last column, [4] i.e.,

1 0 0 	 	 	 0 0 �a0
0 1 0 	 	 	 0 0 �a1
..
. ..

. ..
. . .

. ..
. ..

. ..
.

0 0 0 	 	 	 0 1 �an�1

2
6664

3
7775 ðB:41Þ

This proceduremay be simpler than forming the determinantQ(�)¼ j�I�Aj.
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Example 11.

A ¼
1 6 �3
�1 �1 1

�2 2 0

2
64

3
75 b ¼

1

1

1

2
64

3
75

Mc ¼
1 4 �2 10

1 �1 �3 �5
1 0 �10 �2

2
64

3
75 ðB:42Þ

ReducingMc to HNF yields

1 0 0 �2
0 1 0 3
0 0 1 0

2
4

3
5 �a0 �a1
 �a2

ðB:43Þ

The characteristic polynomial is therefore

Qð�Þ ¼ �3 þ a2�
2 þ a1�þ a0 ¼ �3 � 3�þ 2 ðB:44Þ

B.16 LINEAR INDEPENDENCE

Aset of vectors v1�v2� . . . �vk� . . . �vn is linearly independent provided there is no
set of scalars ai(i¼1, 2, . . . ,n), not all zero, that satisfies

a1v1 þ 	 	 	 þ akvk þ 	 	 	 þ anvn ¼ 0 ðB:45Þ
If this equation is satisfied with the ai not all zero, then the vectors
are linearly dependent. Linear independence can be checked by forming the
matrix

v
T
1

v
T
2

..

.

v
T
n

2
66664

3
77775 ðB:46Þ

If this matrix has rank n, the vectors are linearly independent; otherwise they
are linearly dependent.The rank of thismatrix can be determined by reducing
it to Hermite normal form.
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Appendix C

Introduction to MATLAB and Simulink

C.1 INTRODUCTION

MATLAB� is a technical computing environment (program) designed for
numerical computation and visualization. Over the years it has become a
standard tool in many universities and research organizations for performing
mathematical calculations. Originally written to provide access to matrix
manipulation software, MATLAB has developed into a powerful tool to
simplify mathematical analysis.

In order to use MATLAB successfully, the student should under-
stand how to enter and manipulate variables, how to model control
systems in MATLAB, and how to produce plots and graphs depicting
the performance of control systems. This appendix is intended to guide
the student through the MATLAB functions which are useful in under-
standing and accomplishing these tasks. Students are encouraged to use
the documentation provided with MATLAB to explore more advanced
problems.

The commands shown here are valid for MATLAB version 6.1, Release
12.1, for Windows 98. There may be variations in other versions, or releases
for other platforms. Many of the commands shown here are in the Control
Systems Toolbox, which is available as an add-on to the basic MATLAB
program.
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C.2 BASICS

MATLAB is a window-based workspace environment in which variables are
entered and manipulated. The MATLAB program is started by double click-
ing the MATLAB icon in theWindows desktop.This opens a window similar
to that shown in Fig. C.1. Commands are entered in the command window,
which is the inner window as shown on the right side of Fig. C.1. Two right
arrows (>>) is the command prompt, indicating that the program is ready
for the next command. Variables are created as they are entered, and are
stored in the workspace.Variable names must begin with a letter. A variable
to represent �=1.7 may be entered as follows:

alpha=1.7;

Placing the variable name‘‘alpha’’ to the left of the equal sign defines alpha as
whatever is on the right side of the equal sign.

MATLAB displays the variable upon entry unless a semicolon is placed
at the end of the line, that is,

beta=alpha*3.7 %Optional comment
beta=

6.2900

FIGURE C.1 MATLAB window.
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A percent sign provides a mean to include a comment. Everything to the right
of a percent sign is ignored byMATLAB.

In MATLAB version 6, a workspace window lists the variables that are
defined. The ‘‘who’’ command also allows the user to see what variables are
defined in the workspace.

Who
Your variables are:
alpha beta

C.2.1 Matrices

Matrices are entered a row at a time as follows:

A=[11 12 13
21 22 23
31 32 33]

The carriage return is implied at the end of each line and is not
explicitly shown in this text. MATLAB displays the variables upon entry
unless a semicolon is placed at the end of the line. Semicolons are also used
to simplify and conserve space. The same 3�3 matrix may be entered as
follows:

A=[11 12 13; 21 22 23; 31 32 33]; % Optional Comment

Matrices are indexed in (row, column) format. For example, a single element
of a matrix can be referenced as follows:

A(2,3)

This gives the result

ans=
23

C.2.2 Matrix Transpose

Matrices are transposed using a prime notation.

B=A’

produces

B=

11 21 31

12 22 32

13 23 33
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C.2.3 Range of Values

A colon is used to denote a range of values, e.g., A(1:2,:) is a
matrix consisting of the first two rows of A. A colon notation also can
be used to generate a vector of equally spaced elements. The format for
defining a vector x whose elements range from an initial value to a final
value is

x= ½0 : 2*pi�; %½Initial value : Final valueaf�

The step size is assumed to be 1 unless an optional step size is specified
between the initial and final values. A vector, used to plot data, may be
defined as follows:

x= ½0 : :25 : 2*pi� %½Initial value : Step size : Final value�

MATLAB generates the vector:

x=

Columns 1 through 7

0 0:2500 0:5000 0:7500 1:0000 1:2500 1:5000

Columns 8 through 14

1:7500 2:0000 2:2500 2:5000 2:7500 3:0000 3:2500

Columns 15 through 21

3:5000 3:7500 4:0000 4:2500 4:5000 4:7500 5:0000

Columns 22 through 26

5:2500 5:5000 5:7500 6:0000 6:2500

Numerous common mathematical functions are available, such as

y=sin(x)

which generate a vector corresponding to the sine of each element of the
vector x. Some other trigonometric functions available in MATLAB are
listed inTable C.1.

The data are plotted with the command

plot (x, y)

This command opens a plot window as shown in Fig. C.2. The window has
menu buttons across the top which allows the user to rescale, annotate, edit,
save, and print the plot.
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FIGURE C.2 MATLAB plot window.

TABLE C.1 MATLAB Trigonometric Functions

sin Sine. sec Secant.
sinh Hyperbolic sine. sech Hyperbolic secant.
asin Inverse sine. asec Inverse secant.
asinh Inverse hyperbolic sine. asech Inverse hyperbolic secant.
cos Cosine. csc Cosecant.
cosh Hyperbolic cosine. csch Hyperbolic cosecant.
acos Inverse cosine. acsc Inverse cosecant.
acosh Inverse hyperbolic cosine. acsch Inverse hyperbolic cosecant.
tan Tangent. cot Cotangent.
tanh Hyperbolic tangent. coth Hyperbolic cotangent.
atan Inverse tangent. acot Inverse cotangent.
atan2 Four quadrant inverse tangent. acoth Inverse hyperbolic cotangent.
atanh Inverse hyperbolic tangent.
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Multiple traces can be shown on one plot as illustrated by the following
commands:

z=cos(x);

subplot (2, 1, 1), plot (x, y) % Plot 2 rows 1 column and

% select the first subplot

title (‘Multiple Plots’) % Set title above first plot

grid % Turn grid on in first plot

ylabel (‘sin(x)’) % Set Y axis label in first plot

subplot (2, 1, 2), plot (x, z) % Select second subplot

grid % Turn grid on in second plot

xlabel (‘x’) % Set X axis label in second
% plot

ylabel (‘cos (x)’) % Set Y axis label in
% second plot

These commands generate the plot shown in Fig.C.3.

FIGURE C.3 Multiple plots in one window: sine plot (top figure); cosine plot
(bottom figure).
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Note that the titles and labels canbe set fromthe command lineor within
the plot window using the buttons across the top of the window. A number of
line styles andcolorsmay be specified asdescribedby the command:

help plot options

Typing ‘‘help’’ at the prompt will provide an outline of the help available in
the command window.More extensive help features are accessed through the
help menu button near the top of the MATLABwindow.

C.2.4 m-Files and MAT-Files

MATLAB allows the user to define scripts containing several commands in
m-Files. m-Files are stored in the current directory as ‘‘filename.m’’ and
are executed from the command line by typing the file name without the
.m extension. m-Files may be created and edited from theMATLABwindow
by using the ‘‘New m-File’’ button on the toolbar.

Workspace variables also may be saved for latter use by typing ‘‘save
filename’’. This creates a MAT-File in the current directory named
‘‘filename.mat’’. The variables are loaded back into the workspace by typing
‘‘load filename’’.

C.3 DEFINING SYSTEMS

Polynomials are represented by a vector of coefficients. For example, the
polynomial s3 + 2s2 + 5 is represented by the vector [1 2 0 5]. All coeffi-
cients including the zero must be included in the vector. Polynomials are
multiplied by convolving the representative vectors; hence the transfer
function

poly ¼ sðs þ 3Þðs þ 10Þ ¼ s3 þ 13s2 þ 30s ðC:1Þ
is formed as follows:

poly=conv([1 0], conv([1 3], [1 10]))

poly=

1 13 30 0

The roots of the polynomial are calculated using the ‘‘roots’’command.

roots(poly)

ans=

0

- 10

- 3
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C.3.1 Transfer Function Model

A transfer function is a ratio of polynomials in s; hence the transfer function

num
den
¼ s þ 5

sðs þ 3Þðs þ 10Þ ¼
s þ 5

s3 þ 13s2 þ 30s
ðC:2Þ

is formed as follows:

num=[1 5];

den=conv([1 0], conv([1 3], [1 10]))

den=

1 13 30 0

The ‘‘TF’’ command is used to generate a linear time-variant (LTI) transfer
function system model object, ‘‘sys’’ from the numerator and denominator
polynomials.This transfer function systemmodel object is subsequently used
for analysis as shown in Sec.C.4.

sys=tf(num, den)

Transfer function:

sþ 5
- - - - - - - - - - -
s^3 + 13 s^2 + 30 s

C.3.2 State Space Model

State space models are entered as matrices. In Sec. 2.13, a DC servomotor is
modeled by Eq. (2.135). Augmenting the system with _yym ¼ o yields the
third-order state space equation:

_xx ¼ Axþ Bu ¼
_yym
_oom

_iim

2
64

3
75 ¼

0 1 0

0
�Bm

Jm

Kt

Jm

0
�Kb

Lm

�Rm

Lm

2
6666664

3
7777775

ym

om

_iim

2
6664

3
7775þ

0

0

1
Lm

2
66664

3
77775ea

ðC:3Þ

y ¼ CxþDu ¼ ym ¼ ½ 1 0 0 �
ym
om

_iim

2
64

3
75þ 0½ �ea ðC:4Þ
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A very small 12 volt DC servomotor has the characteristics provided
below,which are converted to SI units to develop the A and B matrices. The
units of the variables are: y is in radians, o is in rad/s, i is in amperes, and e is
in volts.

Bm ¼ 0:013 oz:-in: Kt ¼ 1:223
oz-in:
A

Lm ¼ 0:75mH Kb ¼ 0:905
mV
rpm

J ¼ 0:085� 10�4 oz:-in:-s2 Rm ¼ 24�

A ¼
0 1 0
0 �1530 144000
0 �11:5 �32000

2
4

3
5 ðC:5Þ

B ¼
0
0

1330

2
4

3
5 ðC:6Þ

The following commands are used to enter the state space model, to
generate a linear time-invariant system model object, ‘‘sys2.’’ This state
space model object may be used for analysis like the transfer function system
model object. These commands have been saved in an m-file named ‘‘dcser-
vo.m’’ which is on the accompanying CDROMand can be executed by typing
‘‘dcservo’’at the command prompt.

A=[0 1 0 % Define the plant matrix
0 -1530 144000
0 -11.5 -32000];

B=[0; 0; 1330]; % Define the input matrix
C=[1 0 0]; % Define the output matrix
D=[0]; % Define the direct

% feedthrough matrix
sys2=ss(A,B,C,D) % Generates a state space

% model object

which produces the state and output equations:

a=

x1 x2 x3
x1 0 1 0
x2 0 �1530 1:44eþ005
x3 0 �11:5 �32000
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b=

u1

x1 0

x2 0

x3 1330

c=

x1 x2 x3

y1 1 0 0

d=

u1
y1 0

continuous-time model.

C.4 ANALYSIS

C.4.1 Root Locus

The LTI system model object is used for analysis. The root locus for a unity
feedback system is presented in Chap. 7. The root locus is plotted in
MATLAB using the ‘‘rlocus’’command.

rlocus(sys) % Plots a root locus for sys

or

rlocus(sys, K) % Plots a root locus with
% user-specified vector
% of gains K

A more advanced interface for root locus analysis and design is the
‘‘SISOTOOL’’ interface. The ‘‘SISOTOOL’’ is a graphical user interface that
facilitates compensator design and is started with the command:

sisotool(’rlocus’,sys) % Startroot locus design tool

This command opens a new window, plots the root locus as shown in Fig.C.4,
and allows the user to specify a gain or add compensator components by
placing poles and zeros on the plot.Design constraints such as desired damp-
ing ratio or peak overshoot can be set within the tool and appear as bounds on
the plot.

A root-locus plot for a digital control system (see Chap. 15) is shown
in Fig.C.5.
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C.4.2 Frequency Response

Frequency response is presented in Chaps. 8 and 9. Frequency response plots
are generated for LTI systemmodels using the command

bode(SYS)

which generates a Bode diagram as shown in Fig. C.6 for Eq. (C.2). Another
example is shown in Sec. 9.9.Nichols andNyquist plots are generated with the
commands:

nichols(SYS)

or

nyquist(SYS)

The ‘‘SISOTOOL’’ described above also provides options for designing on a
Bode or Nichols chart.The command

sisotool(‘bode’,sys) % Start bode plot design tool

FIGURE C.4 Root locus SISOTOOL window.
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opens the‘‘SISOTOOL’’with theBodeplotsasshown inFig.C.7.Thecommand

sisotool(‘nichols’,sys) % Start nichols chart
design tool

opens the ‘‘SISOTOOL’’ with the Nichols chart as shown in Fig. C.8. With
either view, the user can adjust gain or add compensator poles and zeros and
immediately see the resulting loop characteristics.

Another ‘‘SISOTOOL’’ example is the Nichols chart shown in Fig. C.9
that depicts the plot of LmG vs fG being tangent to anM-contour.

C.5 SIMULATION

Control systems are commonly evaluated by simulating the response to a step
and an impulse inputs.The‘‘step’’and ‘‘impulse’’commands generate plots
of the step and impulse response respectively.When invoked with arguments
to the left of the equal sign as shown,

[y, t]=step(sys)

FIGURE C.5 Digital root locus SISOTOOL window.
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or

[y, t]=impulse(sys)

the output vector ‘‘y’’and time vector ‘‘t’’ that are generated automatically for
the plot, are defined in the workspace.These vectors are available then for use
elsewhere.

It is often desirable to specify the input as a function of time to generate
simulations that are more complex than the step and impulse inputs. This is
done by defining an input vector ‘‘u’’ and the corresponding time vector ‘‘t’’.
These vectors are used as inputs to the ‘‘lsim’’ command that simulates the
response of a linear system as follows:

t=[0:.1:10]; % Define a simulation time
% vector

u=[ones(1,51) zeros(1,50)]; % Define vector representing
% a pulse input

[y, t]=lsim(sys,u,t); % Simulate the response
plot(t, [y, u]) % Plot the response

FIGURE C.6 Bode diagram of an example transfer function.
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This example also illustrates the ones and zeros commands. Avector
or matrix whose elements are all ones or zeros is defined with these
commands, using arguments which are the size of the vector or matrix
desired. A related function is ‘‘eye (rows, columns)’’ which defines an
identity matrix or a nonsquare matrix with ones on the principal diagonal
and zeros elsewhere.

eye(3)
ans=

1 0 0

0 1 0

0 0 1

eye(3,5)
ans=

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

FIGURE C.7 Bode diagram SISOTOOL window.
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C.5.1 Simulink

For simulations of more advanced system models, including nonlinear
models, it is useful to run Simulink. Simulink is a graphical simulation tool
which is started from the MATLAB command window by typing ‘‘simu-
link’’ at the prompt. This opens a window with the Simulink block library
and provides an option for creating a new Simulink model.Blocks are selected
and placed on themodelworkspace to create a systemblockdiagramas shown
in Fig.C.10.

C.6 IMPLEMENTATION OF RESULTS

Compensators are typically designed as continuous time transfer functions.
They may be implemented with analog components, but it is more common
to implement them in a digital control system.MATLABprovides commands
for transforming analog designs into the discrete domain. To implement the

FIGURE C.8 Nichols chart SISOTOOL window.
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FIGURE C.9 Nichols chart diagram SISOTOOL window with grid and bounds.

FIGURE C.10 Simulink block diagram.
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lead filter Gc ¼ ðs þ 3Þ=ðs þ 30Þ in a digital system with a sampling rate of
40Hz, the ‘‘c2d’’ function is used.

num=[1 3];
den=[1 30];
ts=1/40;
sys=tf(num,den)
Transfer function:
sþ3
- - - -
sþ30

sysd=c2d(sys,ts,’zoh’)

Transfer function:
z�0.9472
- - - - - -
z�0.4724

Sampling time: 0.025

The discrete transfer function is used as described in Chap. 15. The ‘‘c2d’’
function provides several transformation methods including the zero order
hold method shown here and the Tustin transformation. See the MATLAB
documentation for more information.
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Appendix D

TOTAL-PC CAD Package

D.1 INTRODUCTION

TOTAL-PC is ideally suited as an educational tool while others are
more suited for the practicing engineer. In general, most packages are
command-driven interactive programs through the keyboard or a file
designation. Some software products include extensive system building
capabilities, very high-order plant modeling, nonlinear system construc-
tion, and a multitude of data displays as the MIMO QFT CAD package
of Ref. 5. Some of these packages require extensive knowledge to use
their full capabilities, whereas others are not comprehensive in their
capabilities.

The computer programs called TOTAL-PC is discussed in this
appendix as a specific example of a CAD package. This CAD package along
with the MATLAB� and the MIMO QFT CAD packages are the ones
employed in the text examples. The disk attached to this text contains
the TOTAL-PC CAD packages and its associated USERS Manual. This
CAD package can also be used by students for their basic control theory
courses. Questions in the use of this package should be addressed to
Dr. Robert Ewing whose e-mail address is: Robert.ewing@wpafb.af.mil
Users of this CAD package should periodically check with Dr. Ewing for
updated versions.
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D.2 OVERVIEW OF TOTAL-PC

TOTAL [1, 2] is an option-number package that reflects a hand calculator or
line-terminal environment for interface speed and agility. This FORTRAN
package was originally developed at the Air Force Institute of Technology
(AFIT) in the late 1970s; provides an extensive set of control system analysis
and design CAD capabilities. During the early 1990s the improved version of
TOTAL-PC enhanced the analysis and design of control systems. This CAD
package contains over 150 commands (see Table D.1), which are divided
according to general functional categories. It divides each of its options
(commands) into various groups. It contains the conventional analog and
discrete control system analysis and design options and the QFT design
options.

TABLE D.1 Some TOTAL-PC Options

Transfer-function input options

0 List options
1 Recover all data from file memory
2 Polynomial form—GTF (forward transfer function)
3 Polynomial form—HTF (feedback transfer function)
4 Polynomial form—OLTF (open-loop transfer function)
5 Polynomial form—CLTF (closed-loop transfer function)
6 Factored form—GTF
7 Factored form—HTF
8 Factored form—OLTF
9 Factored form—CLTF

Matrix input options for state equations

10 List options
11 AMAT—Continuous plant matrix
12 BMAT—Continuous input matrix
13 CMAT—Output matrix
14 DMAT—Direct transmission matrix
15 KMAT—State variable feedback matrix
16 FMAT—Discrete plant matrix
17 GMAT—Discrete input matrix
18 Set up stage-space model of system
19 Explain use of above matrices

(continued)
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TABLE D.1 Continued

Block diagram manipulation and state-space options

20 List options
21 Form OLTF¼GTF*HTF (in cascade)
22 Form CLTF¼(GAIN*GTF)/(1þGAIN*GTF*HTF)
23 Form CLTF¼(GAIN*OLTF)/(1þGAIN*OLTF)
24 Form CLTF¼GTFþHTF (in parallel)
25 GTF(s) and HTF(s) from continuous state-space model
26 GTF(z) and HTF(z) from discrete state-space model
27 Write adjoint (*sI-AMAT) to file answer
28 Find HTF from CLTF and GTF for CLTF¼GTF*HTF/(1þGTF*HTF)
29 Find HTF from CLTF and GTF for CLTF¼GTF/(1þGTF*HTF)

Time-response options, continuous F(t) and discrete F(kT )

30 List options
31 Tabular listing of F(t) or F(kT )
32 Plot F(t) or F(kT ) at user’s terminal
33 Printer plot (written to file answer)
34 Calcomp plot (written to file plot)
35 Print time or difference equation [F(t) or F(kT )]
36 Partial fraction expansion of CLTF (or OLTF)
37 LIST T-PEAK, T-RISE, T-SETTLING, T-DUP, M-PEAK, final value
38 Quick sketch at user’s terminal
39 Select input: step, ramp, pulse, impulse, sin oT

Root-locus options

40 List options
41 General root locus
42 Root locus with a gain of interest
43 Root locus with a zeta (damping ratio) of interest
44 List n points on a branch of interest
45 List all points on a branch of interest
46 List locus roots at a gain of interest
47 List locus roots at a zeta of interest
48 Plot root locus at user’s terminal
49 List current values of all root locus variables

Frequency-response options

50 List options
51 Tabular listing
52 Two-cycle scan of magnitude (or dB)
53 Two-cycle scan of phase (degrees or radians)

(continued)
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TABLE D.1 Continued

Frequency-response options

54 Plot F( jo) at user’s terminal
55 Create GNUPlot-Frequency plot
56 Create GNUPlot-Root locus plot
57 Tabulate points of interest: peaks, breaks, etc.
58 Create GNUPLOT-Nichols Log magnitude/angle plot
59 Chalk Pitch Axis HQ Criterion Analysis

Polynomial operations

60 List options
61 Factor polynomial (POLYA)
62 Add polynomials (POLYC¼POLYAþPOLYB)
63 Subtract polynomials (POLYC¼POLYA-POLYB)
64 Multiply polys (POLYC¼POLYA*POLYB)
65 Divide polys (POLYCþREM¼POLYA/POLYB)
66 Store Polynomial (POLY ) into POLYD
67 Expand roots into a polynomial
68 (sþ a)n expansion into a polynomial
69 Activate polynomial calculator

Matrix operations

70 List options
71 ROOTA¼eigenvalues of AMAT
72 CMAT¼AMATþBMAT
73 CMAT¼AMAT-BMAT
74 CMAT¼AMAT*BMAT
75 CMAT¼AMAT inverse
76 CMAT¼AMAT transposed
77 CMAT¼identity matrix I
78 DMAT¼zero matrix 0
79 Copy one matrix to another

Digitization options

80 List options
82 CLTF(s) to CLTF(z) by first difference approximation
83 CLTF(s) to CLTF(z) by Tustin transformation
84 CLTF(z) TO CLTF(s) by impulse invariance
85 CLTF(z) TO CLTF(s) by inverse first difference
86 CLTF(z) TO CLTF(s) by inverse Tustin
87 Find FMAT and GMAT from AMAT and BMAT
89 CLTF(X) to CLTF(Y) by X¼ALPHA*(YþA)/(YþB)

(continued)
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D.3 QFT CAD PACKAGE

Up to about 1986 there were essentially no Quantitative Feedback Theory
(QFT) CAD packages designed specifically to assist in doing a complete

TABLE D.1 Continued

Miscellaneous options

90 LIST OPTIONS
91 Rewind and update Memory file with current data
93 List current switch settings (ECHO, ANSWER, etc.)
96 List special commands allowed in option mode
97 List variable name directory
98 List main options of total
99 Print new features bulletin
119 Augment AMAT:[AMAT]¼[AMAT] GAIN*[BMAT]*[KMAT]
121 Form OLTF¼CLK*CLNPOLY/[CLDPOLY-CLK*CLNPOLY](G-EQUIVALENT)
129 (Integral of (CLTF SQUARED))/2PI¼

Double-precision discrete transform options*

140 LIST OPTIONS
141 CLTF(s) TO CLTF(z) (IMPULSE VARIANCE)
142 CLTF(s) TO CLTF(w) W¼ (Z - 1)/(Zþ 1)
143 CLTF(s) TO CLTF(w 0 ) W 0 ¼ (2/T )(Z - 1)/(Zþ 1)
144 HI-RATE CLTF(z) TO LO-RATE CLTF(z)
145 HI-RATE CLTF(w) TO LO-RATE CLTF(w)
146 HI-RATE CLTF(w 0) TO LO-RATE CLTF(w 0)
147 OPTION 144 (AVOIDING INTERNAL FACTORING)
148 OPTION 144 (ALL CALCULATIONS IN Z PLANE)

Quantitative feedback technique (QFT)

150 Define-Plant
151 List options
152 Define-TLTF: (Lower Tracking Ratio)
153 Define-TUTF: (Upper Tracking Ratio)
154 Define-TDTF: (Disturbance)
155 Select-Nominal plant: (1–10)
156 Define-FTF: (Pre-filter function)
157 Define-LOTF: (Nominal loop function)
158 Display Plant, TLTF, TUTF, TDTF, FTF, LOTF
159 QFT design/report macro

*Option 37 is not available for the discrete domain.
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FIGURE D.1 CAD flowchart for MISO analog QFT design.
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QFT design for a control system. The TOTAL QFT CAD package [3] for
MISO systems was designed as an educational tool as illustrated in Fig. D.1.
In 1992 the MIMO QFT CAD package [4] developed at AFIT accelerated
the utilization of the QFT technique for the design of robust multivariable
control systems.
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Problems

CHAPTER 2

2.1. Write the (a) loop, (b) node, and (c) state equations for the circuit shown
after the switch is closed. Let u¼ e, y1¼vC, and y2 ¼ vR2

: (d ) Determine
the transfer function y1/e and y2/u¼G2.

2.2. Write the (a) loop, (b) node, and (c) state equations for the circuit shown
after the switch S is closed.
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2.3. The circuits shown are in the steady state with the switch S closed. At
time t¼ 0, S is opened. (a) Write the necessary differential equations
for determining i1(t). (b) Write the state equations.

2.4. Write all the necessary equations to determine v0. (a) Use nodal equa-
tions. (b)Use loop equations. (c)Write the state andoutput equations.

2.5. Derive the state equations. Note that there are only two independent
state variables.

2.6. (a) Derive the differential equation relating the position y(t) and the
force f (t). (b) Draw the mechanical network. (c) Determine the transfer
function G(D)¼ y/f. (d ) Identify a suitable set of independent state
variables.Write the state equation in matrix form.
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2.7. (a) Draw the mechanical network for the mechanical system shown.
(b) Write the differential equations of performance. (c) Draw the ana-
logous electric circuit inwhich force is analogous to current. (d )Write
the state equations.

2.8. (a) Write the differential equations describing the motion of the
following system, assuming small displacements. (b) Write the state
equations.

2.9. A simplified model for the vertical suspension of an automobile is
shown in the figure. (a) Draw the mechanical network; (b) write the
differential equations of performance; (c) derive the state equations;
(d ) determine the transfer function x1=ûu2, where ûu2 ¼ ðB2D þ K2Þu2
is the force exerted by the road.

2.10. An electromagnetic actuator contains a solenoid, which produces a
magnetic force proportional to the current in the coil, f¼Kii.The coil
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has resistance and inductance. (a) Write the differential equations of
performance. (b) Write the state equations.

2.11. A warehouse transportation system has amotor drive moving a trolley
on a rail. Write the equation of motion.

2.12. For the system shown, the torqueT is transmitted through a noncom-
pliant shaft and a hydraulic clutch to a pulley#1,which has a moment
of inertial J1.The clutch is modeled by the damping coefficient B1 (it is
assumed to be massless). A bearing between the clutch and the pulley
#1has a damping coefficient B2. Pulley#1is connected to pulley#2
with a slipless belt drive. Pulley#2,which has a moment of inertial J2,
is firmly connected to a wall with a compliant shaft that has a spring
constant K. The desired outputs are: y1¼ yb, the angular position of
the J1, and y2 ¼ _yya, the angular velocity of the input shaft, before the
clutch. (a) Draw the mechanical network; (b) write the differential
equations of performance; (c) write the state equations; (d ) determine
the transfer function y1/u and y2/u.
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2.13. (a)Write the equations of motion for this system. (b) Using the physical
energy variables,write the matrix state equation.

2.14. The figure represents a cylinder of intertia J1 inside a sleeve of intertia
J2. There is viscous damping B1 between the cylinder and the sleeve.
The springs K1 and K2 are fastened to the inner cylinder. (a) Draw
the mechanical network. (b) Write the system equations. (c) Draw
the analogous circuit. (d ) Write the state and output equations. The
outputs are y1 and y2. (e) Determine the transfer functionG¼ y2/T.

2.15. The two gear trains have an identical net reduction, have identical
inertias at each stage, and are driven by the same motor. The number
of teeth on each gear is indicated on the figures. At the instant of start-
ing, the motor develops a torqueT. Which system has the higher initial
load acceleration? (a) Let J1¼J2¼ J3; (b) let J1¼40J2¼ 4J3.

2.16. In the mechanical system shown, r1 is the radius of the drum. (a) Write
the necessary differential equations of performance of this system.
(b) Obtain a differential equation expressing the relationship of the
output x2 in terms of the input T(t) and the corresponding transfer
function. (c) Write the state equations withT(t) as the input.
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2.17. Write the state and systemoutput equations for the rotationalmechan-
ical system of Fig. 2.16. (a) With T as the input, use x1¼ y3, x2¼Dy3,
x3¼Dy2 and (b) with y1 as the input, use x1¼ y3, x2¼Dy3, x3¼ y2,
x4¼Dy2.

2.18. For the hydraulic preamplifier shown,write the differential equations
of performance relating x1 to y1. (a) Neglect the load reaction. (b) Do
not neglect load reaction. There is only one fixed pivot, as shown in
figure.

2.19. Themechanical load on the hydraulic translational actuator is Sec. 2.9,
Fig. 2.22, is changed to that in the accompanying figure.Determine the
new state equations and compare with Eq. (2.114).

2.20. The sewage system leading to a treatment plant is shown.The variables
qA and qB are input flow rates into tanks1and 2, respectively.Pipes1, 2,
and 3 have resistances as shown.Derive the state equations.

2.21. Most control systems require some type of motive power. One of the
most commonly used units is the electric motor.Write the differential
equations for the angular displacement of a moment of inertia, with
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damping, connected directly to a dc motor shaft when a voltage is
suddenly applied to the armature terminals with the field separately
energized.

2.22. The damped simple pendulum shown in the figure is suspended in a
uniform gravitational field g. There is a horizontal force f and a rota-
tional viscous friction B. (a) Determine the equation of motion (note:
J ¼ M‘2). (b) Linearize the equation of part (a) by assuming cos y�1
and sin y� y for small values of y. (c) Write the state and output
equations of the system using x1¼ y, x2 ¼ _yy, and y¼ x1.

2.23. Given themechanical system shown, the load J2 is coupled to the rotor
J1 of a motor through a reduction gear and springs K1 and K2. The
gear-to-teeth ratio is 1:N. The torque T is the mechanical torque
generated by the motor.B1 and B2 are damping coefficients, and y1, y2,
y3,andy4areangulardisplacements. (a)Drawamechanicalnetwork for
this system. (b) Write the necessary differential equations in order to
solve for y4.
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2.24. In some applications the motor shaft of Prob. 2.21 is of sufficient
length so that its elastance K must be taken into account. Consider
that v2(t) is constant and that the velocity om(t)¼Dym(t) is being
controlled. (a) Write the necessary differential equation for determin-
ing the velocity of the load oJ=Dyj. (b) Determine the transfer
function oJ(t)/v1(t).

CHAPTER 3

3.1. (a) With vc(0
�)¼ 0,what are the initial values of current in all elements

when the switch is closed? (b) Write the state equations. (c) Solve for
the voltage across C as a function of time from the state equations.
(d ) FindMp, tp, and ts.

R1 ¼ R2 ¼ 2 kO C ¼ 50 mF L ¼ 1H E ¼ 100V

3.2. In Prob. 2.12, the parameters have the following values:

J1 ¼ 1:0 lb 	 ft 	 s2 B1 ¼ 0:5 lb 	 ft=ðrad=sÞ K ¼ 0:5 lb 	 ft=rad
J1 ¼ 1:0 slug 	 ft2 B2 ¼ 3:35 oz 	 ln=ðdeg=sÞ
Solve for yb(t) if T(t)¼ tu�1(t).

3.3. In Prob. 2.10, the parameters have the following values:

M1 ¼ M2 ¼ 0:05 slug L ¼ 1 H l1 ¼ 10 in: K1 ¼ K2 ¼ 1:2 lb=in:
R ¼ 10 O l2 ¼ 20 in: B1 ¼ B2 ¼ 15 oz=ðin:=sÞ Ki ¼ 24 oz=A

With e(t)¼ u�1(t) and the system initially at rest, solve for xb(t).
3.4. In part (a) of Prob. 2.18, the parameter have the following values:

a ¼ b ¼ 12 in: C1 ¼ 9:0 ðin:=sÞ=in: c ¼ 10 in: d ¼ 2 in:

Solve for y1(t) with x1(t)¼ 0.1u�1(t) in. and zero initial conditions.
3.5. (a) r(t)¼ (D3þ6D2þ11Dþ 6)c(t). With r(t)¼ sin t and zero initial

conditions, determine c(t). (b) r(t)¼ [(Dþ1)(D2þ 4Dþ 5)]c(t). With
r(t)¼ tu�1(t) and all initial conditions zero, determine the complete
solution with all constants evaluated. (c) D3cþ10D2cþ 32Dcþ 32c¼
10r. Find c(t) for r(t)¼ u�1(t),D

2c(0)¼Dc(0)¼ 0, and c(0)¼�2.One of
the eigenvalues is �¼�2. (d ) For each equation determine C( jo)/
R( jo) and c(t)ss for r(t)¼ 10 sin 5t.
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3.6. The systemshown is initially at rest.At time t¼ 0 the string connecting
M toW is severed atX.Measure x(t) fromthe initial position.Find x(t).

3.7. Switch S1 is open, and there is no energy stored in the circuit. (a) Write
the state equations. (b) Find vo(t) after switch S1 is closed. (c) After the
circuit reaches steady state, the switch S1 is open. Find vo(t).

3.8. Solve the following differential equations. Assume zero initial condi-
tions. Sketch the solutions.

ðaÞ D2xþ16x¼1 ðbÞ D2xþ4Dxþ3x¼9
ðcÞ D2xþDxþ4:25x¼ tþ1 ðdÞ D3xþ3D2xþ4Dxþ2x¼10sin 10t

3.9. For Prob. 2.2, solve for i2(t),where

E ¼ 10 V L ¼ 1 H C1 ¼ C2 ¼ 0:001 F R1 ¼ 10 O R2 ¼ 15 O

3.10. For the circuit of Prob. 2.2: (a) obtain the differential equation relating
i2(t) to the input E; (b) write the state equations using the physical
energy variables; (c) solve the state and output equations and compare
with the solution of Prob. 3.9; (d ) write the state and output equations
using the phase variables, starting with the differential equation from
part (a).

3.11. In Prob. 2.3, the parameters have the values R1¼R2¼R3¼10 O,
C1¼C2¼1mF, and L1¼L2¼50H. If E¼100V, (a) find i1(t); (b) sketch
i1(t) and compute Mo, tp, and ts; (c) determine the value of Ts (
2
percent of i(0)); (d ) solve for i1(t) from the state equation.

3.12. For L¼ 0.4, C¼ 0.5, and (1) R¼1, (2) R¼ 0.5; (a) show that the
differential equation is (RCD2þDþR/L)va¼De; (b) find va(t)ss for
e(t)¼ u�1(t); (c) find the roots m1 and m2; (d ) find va(0

þ); (e) find
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Dva(0
þ) [use ic(0

þ)]; ( f ) determine the complete solution va(t);
(g) sketch and dimension the plot of va(t).

3.13. Solve the following equations. Show explicitly FðtÞ, x(t), and y(t).

_xx ¼ �6 4
�2 0

� �
xþ 0

1

� �
u y ¼ ½ 1 0 �x

x1ð0Þ ¼ 2 x2ð0Þ ¼ 0 uðtÞ ¼ u�1ðtÞ
3.14. A single-degree-of-freedom representation of the rolling dynamics of

an aircraft, together with a first-order representation of the aileron
servomotor, is given by

pðtÞ ¼ _ffðtÞ Jx _ppðtÞ ¼ LdAdAðtÞ þ LppðtÞ
T _ddAðAÞ ¼ ðdAÞcommðtÞ � dAðtÞ

(a) Derive a state-variable representation of the aircraft and draw a
block diagram of the control systemwith

ðdAÞcommðtÞ ¼ AVref � PxðtÞ
where

x(t)¼ state vector of the aircraft system¼ [f p dA]
T

P¼matrix of correct dimensions and with constant nonzero
elements pij.

A¼ scalar gain
Vref¼ the reference input
(dA)comm¼ the input to the servo

(b) Determine the aircraft state equation in response to the reference
inputVref.

3.15. Use the Sylvester expansion of Sec. 3.14 to obtainA
10 for

A ¼
0 1 0
0 0 1
�6 �11 �6

2
4

3
5

3.16. For the mechanical system of Fig. 2.11a the state equation for Example
2, Sec. 2.6, is given in phase-variable form. With the input as u¼ xa,
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the state variables are x1¼xb and x2 ¼ _xxb. Use M¼ 5, K¼10, and
B¼15. The initial conditions are xb(0)¼ 1 and _xxbð0Þ ¼ �2. (a) Find
the homogeneous solution of x(t). (b) Find the complete solution with
u(t)¼ u�1(t).

3.17. For the autonomous system

_xx ¼
0 1 0
0 0 1
�5 �7 �3

2
4

3
5x y ¼ ½ 1 0 0 �x

(a) Find the system eigenvalues. (b) Evaluate the transmission matrix
f(t) by means of Sylvester’s expansion theorem.

CHAPTER 4

4.1. Determine the inverse Laplace transform by use of partial fraction
expansion:

ðaÞ F ðsÞ ¼ 9
ðsþ1Þ2ðs2þ2sþ10Þ ðbÞ F ðsÞ ¼

90
sðs2þ4sþ13Þðsþ5Þ

ðcÞ F ðsÞ ¼ 20ðsþ5Þ
ðsþ2Þ2ðs2þ4sþ5Þ

4.2. Find x(t) for

ðaÞ X ðsÞ ¼ 4
s3þ6s2þ16sþ16

ðbÞ X ðsÞ ¼ 10ðs2þ4sþ13Þ
sðsþ2Þðs2þ4sþ5Þ

ðcÞ X ðsÞ ¼ 0:969426ðs2þ4:2sþ13:44Þ
sðsþ1Þðs2þ4sþ13Þ

ðdÞ Sketch xðtÞ for parts (aÞ and (bÞ:

4.3. Given an ac servomotor with inertia load, find o(t) by (a) the classical
method; (b) the Laplace-transformmethod.

oð0Þ ¼ 5� 103 rad=s Ko ¼ �6� 10�3 oz 	 in:=ðrad=sÞ
Kc ¼ 1:4 oz 	 in:=V

eðtÞ ¼ 5u�1ðtÞV J ¼ 15:456 oz 	 in:2
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4.4. Repeat the following problems using the Laplace transform:

ðaÞ Prob. 3.1 ðbÞ Prob: 3:3 ðcÞ Prob: 3:5

ðdÞ Prob: 3:6 ðeÞ Prob: 3:10 ð f Þ Prob: 3:11ðdÞ
ðgÞ Prob: 3:13 ðgÞ Prob: 3:14

4.5. Find the partial-fraction expansions of the following:

ðaÞ F ðsÞ¼ 6
ðsþ2Þðsþ6Þ ðbÞ F ðsÞ¼ 10

sðsþ2Þðsþ5Þ

ðcÞ F ðsÞ¼ 26
sðs2þ6sþ13Þ ðdÞ F ðsÞ¼ 0:5ðsþ6Þ

s2ðsþ1Þðsþ3Þ

ðeÞ F ðsÞ¼ 10ðsþ4Þ
s2ðs2þ4sþ20Þ ð f Þ F ðsÞ¼ 4ðsþ5Þ

ðsþ1Þðs2þ4sþ20Þ

ðgÞ F ðsÞ¼ 20
s2ðsþ10Þðs2þ8sþ20Þ ðhÞ F ðsÞ¼

15ðsþ2Þ
sðsþ3Þðs2þ6sþ10Þ

ðiÞ F ðsÞ¼ 13ðsþ1:01Þ
sðsþ1Þðs2þ4sþ13Þ ð jÞ F ðsÞ¼0:9366ðs2þ6:2sþ19:22Þ

sðsþ1Þðs2þ6sþ18Þ
Note: For parts (g) through ( j) use a CAD program.

4.6. Solve the differential equations of Prob. 3.8 by means of the Laplace
transform.

4.7. Write the Laplace transforms of the following equations and solve for
x(t); the initial conditions are given to the right.

ðaÞ Dx þ 4x ¼ 0 xð0Þ ¼ 5

ðbÞ D2x þ 2:8Dx þ 4x ¼ 10 xð0Þ ¼ 2;Dxð0Þ ¼ 3

ðcÞ D2x þ 4Dx þ 13x ¼ t xð0Þ ¼ 0;Dxð0Þ ¼ �4
ðdÞ D3x þ 4D2x þ 9Dx þ 10x ¼ sin 5t

xð0Þ ¼ �4;Dxð0Þ ¼ 1;D2xð0Þ ¼ 0

4.8. Determine the finial value for:
(a) Prob. 4.1 (b) Prob. 4.2 (c) Prob. 4.5

4.9. Determine the initial value for:
(a) Prob. 4.1 (b) Prob. 4.2 (c) Prob. 4.5

4.10. For the functions of Prob. 4.5, plotM vs. o and a vs. o.
4.11. Find the complete solution of x(t) with zero initial conditions for

(1) (D2þ 2Dþ 2)(Dþ 5)x¼ (Dþ 3) f (t)
(2) (D2þ3Dþ 2)(Dþ 5)x¼ (Dþ 6) f (t)
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The forcing function f (t) is
(a) u0(t) (b) 10u�1(t) (c) tu�1(t) (d ) 2t2u�1(t)

4.12. A linear system is described by

ð1Þ _xx ¼ �5 1
2 �2

� �
xþ 0

1

� �
u y ¼ ½ 0 1� x

ð2Þ _xx ¼ 0 2
�4 �6

� �
xþ 1

0

� �
u y ¼ ½ 1 1 �x

where u(t)¼ u�1(t) and the initial conditions are x1(0)¼ 1, x2(0)¼ 1. (a)
Using Laplace transforms, find X(s). Put the elements of this vector
over a common denominator. (b) Find the transfer function G(s).
(c) Find y(t).

4.13. A linear system is represented by

ð1Þ _xx¼ �3 1
�3 �7

� �
xþ 1

1

� �
u y¼ 1 1

0 1

� �
x u¼ u�1ðtÞ

ð2Þ _xx¼ 0 4
�2 �6

� �
xþ 1 1

0 �1

� �
u y¼ 2 0

1 1

� �
x u¼ 1

1

� �
u�1ðtÞ

ð3Þ _xx¼ 0 �2
0 �6
� �

xþ 1
1

� �
u y¼ 0 2

1 1

� �
x u¼ u�1ðtÞ

(a) Find the complete solution for y(t ) when x1(0)¼ 0 and x2(0)¼ 1.
(b ) Determine the transfer functions. (c) Draw a block diagram
representing the system.

4.14. A system is described by

ð1Þ _xx ¼ �4 �1
3 0

� �
xþ 0

1

� �
u y ¼ x1

ð2Þ _xx ¼ 0 1
�6 �5

� �
xþ 1

1

� �
u y ¼ x1

(a) Find x(t) with x(0)¼ 0 and u¼ u�1(t). (b) Determine the transfer
functionG(s)¼Y(s)/U(s).

4.15. Repeat Prob. 3.17 using the Laplace transform.
4.16. Shown that Eqs. (4.52) and (4.53) are equivalent expressions.
4.17. Given

Y ðsÞ ¼ Kðs þ a1Þ 	 	 	 ðs þ awÞ
sðs þ z1on1 
 jod1 Þðs þ z3on3 
 jod3Þðs þ b5Þ 	 	 	 ðs þ bnÞ
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all the ai’s and bk’s are positive and real and z1on1 ¼ z3on3 with
on3 > on1: Determine the effect on the Heaviside partial-fraction
coefficients associated with the pole p3 ¼ �z3on3 þ jod3 when on3 is
allowed to approach infinity.Hint: Analyze

lim
o!1A3 ¼ lim

o!1½ðs � pkÞY ðsÞ�s¼p3¼�z3on3
þjod3

K has the value required for y(t)ss¼1for a unit step input.Consider the
cases (1) n¼w, (2) n>w.

4.18. Repeat Prob. 4.17 with a1¼0,w¼ 2,n¼ 6, and K is a fixed value.
4.19. For the linearized system of Prob. 2.22 determine (a) the transfer

function and (b) the value of B that makes this system critically
damped.

4.20. Determine the transfer function and draw a block diagram.

_xx ¼ �3 0
4 �2

� �
xþ 2 0

1 1

� �
u y ¼ 2 0

0 1

� �
x

CHAPTER 5

5.1. For the temperature-control system of Fig. 5.1, some of the pertinent
equations are b¼Kby, fs¼Ksis,q¼Kq x, y¼Kcq/(Dþ a).The solenoid
coil has resistance R and inductance L. The solenoid armature and
valve have mass M, damping B, and a restraining spring K. (a)
Determine the transfer function of each block in Fig. 5.1b. (b)
Determine the forward transfer function G(s). (c) Write the state and
output equations in matrix form.Use x1¼ y, x2¼ x, x3 ¼ _xx, x4¼ is.

5.2. Find an example of a practical closed-loop control system not covered
in this book. Briefly describe the system and show a block diagram.

5.3. A satellite-tracking system is shown in the accompanying schematic
diagram.The transfer function of the tracking receiver is

V1

�comm ��L
¼ 6

1þ s=42�

The following parameters apply:

Ka ¼ gain of servoamplifier¼ 60
Kt ¼ tachometer constant¼ 0.05 V 	s
KT ¼ motor torque constant¼ 0.6 N 	m/A
Kb ¼ motor back-emf constant¼ 0.75 V 	s
JL ¼ antenna inerita¼ 3,000 kg 	m2

Jm ¼ motor inertia¼ 8�10�3 kg 	m2

1:N ¼ gearbox stepdown ratio¼1:12,200
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(a) Draw a detailed block diagram showing all the variables. (b) Derive
the transfer function�L(s)/�comm(s).

5.4. A photographic control system is shown in simplified form in the
diagram. The aperture slide moves to admit the light from the high-
intensity lamp to the sensitive plate, the illumination of which is a
linear function of the exposed area of the aperture.The maximum area
of the aperture is 4m2. The plate is illuminated by 1 candela (cd) for
every square meter of aperture area.This luminosity is detected by the
photocell,which provides an output voltage of1V/cd.The motor torque
constant is 2 N 	m/A, the motor inertia is 0.25 kg 	m2, and the motor
back-emf constant is 1.2V 	s. The viscous friction is 0.25N 	m	s, and
the amplifier gain is 50 V/V. (a) Draw the block diagram of the system
with the appropriate transfer function inserted in each block. (b) Derive
the overall transfer function.

5.5. The longitudinal motion of an aircraft is represented by the vector
differential equation

_xx ¼
�0:09 1 �0:02
�8:0 �0:06 �6:0
0 �0 �10

2
4

3
5xþ

0
0
10

2
4

3
5dE
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where

x1 ¼ angle of attack
x2 ¼ rate of change of pitch angle
x3 ¼ incremental elevator angle
dE ¼ control input into the elevator actuator

Derive the transfer function relating the system output, rate of change
of pitch angle, to the control input into the elevator actuator, x2/dE.

5.6. (a) Use the hydraulic valve and power piston in a closed-loop position
control system, and derive the transfer function of the system. (b)
Draw a diagram of a control system for the elevators on an airplane.
Use a hydraulic actuator.

5.7. In the diagram [qc] represents compressibility flow, and the pressure
p is the same in both cylinders. Assume there is no leakage flow around
the pistons. Draw a block diagram that relates the output Y(s) to the
input X(s).

5.8. The dynamic equations that describe an aircraft in the landing
configuration are as follows:

_hhðtÞ ¼ b33hðtÞ þ b32yðtÞ
€yyðtÞ ¼ b11 _yyðtÞ þ b12yðtÞ þ b13hðtÞ þ c11deðtÞ

where the coefficients are defined as follows:

b11 ¼
1
Ts
� 2zos b13 ¼

1
VT 2

s
� 2zos

VTs
þ o2

s

V
b33 ¼ �

1
Ts

b12 ¼
2zos

Ts
� o2

s �
1
T 2
s

b32 ¼
V
Ts

c11 ¼ o2
s KsTs
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These coefficients are constant for a given flight condition and aircraft
configuration.The parameters are defined as follows:

Ks ¼ short-period aircraft gain Ts¼ flight path time constant
os ¼ short-period natural frequency h¼ altitude
z ¼ short-period damping ratio y¼ pitch angle

(a) Draw a detailed block diagram that explicitly shows each time-
varying quantity and the constant coefficients (left in terms of the b’s
and c’s). The input is de(t) and the output is h(t). (b) Determine the
transfer functionG(s)¼H(s)/�e(s).

5.9. A multiple-input multiple-output (MIMO) digital robot arm control
system (see Fig. 1.6) may be decomposed into sets of analog multiple-
input single-output (MISO) control systems by the pseudo-continu-
ous time (PCT) technique. The figure shown represents one of these
equivalent MISO systems, where r(t) is the input that must be
tracked, and d1(t) and d2(t) are unwanted disturbance inputs. For
this problem consider d2(t)¼ 0 and

F ðsÞ ¼ 0:9677615ðs þ 13Þ
ðs þ 3:2
 j1:53Þ

GðsÞ ¼ 824000ðs þ 8Þðs þ 450Þ
ðs þ 110Þðs þ 145
 j285Þ
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PðsÞ ¼ PðsÞ ¼ 125
sðs þ 450Þðs � 3Þ

5.10. For the control systemshown, (1) the force of attractionon the solenoid
is given by fc¼Kcic,whereKc has the units pounds per ampere. (2) The
voltage appearing across the generator field is given by ef¼Kxx,where
Kx has the units volts per inch and x is in inches. (3) When the voltage
across the solenoid coil is zero, the spring Ks is unstretched and x¼ 0.
(a) Derive all necessary equations relating all the variables in the
system. (b) Draw a block diagram for the control system.The diagram
should include enough blocks to indicate specifically the variables
Ic(s), X(s), If (s), Eg(s), and T(s). Give the transfer function for each
block in the diagram. (c) Draw an SFG for this system. (d ) Determine
the overall transfer function. (e) Write the system state and output
equation in matrix form.

5.11. Given

(1) D3yþ10D2yþ 31Dyþ 3y¼D3uþ 4D2uþ 8Duþ 2u
(2) D4yþ14D3yþ 71D2yþ154Dyþ120y¼ 4D2uþ 8u
(3) D3yþ 6D2yþ 5Dy�12y¼ 3D2uþ 6Duþ u

Obtain state and output equations using (a) phase variables,
(b) canonical variables.
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5.12. For the system described by the state equation

ð1Þ _xx ¼ 0 4
�1 �5

� �
xþ 2

1

� �
u

ð2Þ _xx ¼ �2 �1
0 3

� �
xþ 0

10

� �
u

(a) Derive the system transfer function if y¼ x1. (b) Draw an appropri-
ate state-variable diagram. (c) For zero initial state and a unit-step
input evaluate x1(t) and x2(t).

5.13. Draw a simulation diagram for the state equations of Prob. 3.7 using
physical variables.

5.14. Given the following system:

(a) Draw an equivalent signal flow graph. (b) Apply Mason’s gain rule
to find C(s)/R(s). (c) Write the four differential and three algebraic
equations that form the math model depicted by the block diagram
above. Use only the signals r(t), e(t), x(t), y(t), z(t), and c(t) in these
equations.

5.15. For the following system,

(a) Draw a signal flow graph. (b) Derive transfer functions for E(s)/
R(s),C(s)/R(s), and B(s)/R(s).

5.16. The pump in the system shown below supplies the pressure
p1(t)¼ 4u�1(t). Calculate the resulting velocity v2(t) of the mass M2.
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Include the effect of the mass of the power piston. (a) Neglect load
reaction. (b) Include load reaction.

CHAPTER 6

6.1. For Prob. 5.3, (a) use the Routh criterion to check the stability of the
system. (b) Compute the steady-state tracking error of the system in
response to a command input which is a ramp of 0.0317�/s. (c) Repeat
(b) with the gain of the tracking receiver increased from16 to 40.

6.2. For each of the following cases, determine the range of values of K for
which the response c(t) is stable, where the driving function is a step
function.Determine the roots on the imaginary axis that yield sustained
oscillations.

ðaÞ CðsÞ ¼ K
s½sðs þ 2Þðs2 þ 4s þ 20Þ þ K �

ðbÞ CðsÞ ¼ Kðs þ 1Þ
s½s2ðs2 þ 3s þ 2Þ þ Kðs þ 0:1Þ�

ðcÞ CðsÞ ¼ 20K
s½sðs þ 1Þðs þ 5Þ þ 20K �

ðdÞ CðsÞ ¼ Kðs þ 5Þ
s½sðs þ 1Þðs þ 2Þðs þ 3Þ þ Kðs þ 5Þ�

ðeÞ For Prob. 5:14:
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6.3. Factor the following equations:

ðaÞ s3 þ 6:4s2 þ 18:48s þ 19:36 ¼ 0

ðbÞ s4 þ 13s2 þ 36 ¼ 0

ðcÞ s3 þ 6s2 þ 15:25s þ 18:75 ¼ 0

ðdÞ s4 þ 9s3 þ 37s2 þ 81s þ 52 ¼ 0

ðeÞ s4 þ 5s3 þ 82s2 þ 208s þ 240 ¼ 0

ð f Þ s4 þ 3s3 � 15s2 � 19s þ 30 ¼ 0

ðgÞ s5 þ 10s4 þ 50s3 þ 140s2 þ 209s þ 130 ¼ 0

6.4. UseRouth’s criterion to determine the number of roots in the right-half s
plane for the equations of Prob. 6.3.

6.5. Aunity-feedback system has the forward transfer function

GðsÞ ¼ Kð2s=3þ 1Þ
sðs þ 1Þðs þ 5Þðs þ 10Þ

In order to obtain the best possible ramp error coefficient, the highest
possible gain K is desirable. Do stability requirements limit this choice
of K ?

6.6. The equation relating the output y(t ) of a control system to its input is

(a) [s4þ16s3þ65s2þ (50þK )sþ1.2K ]Y(s)¼ 5X(s)
(b) [s3�7s2þ10sþ 2þK(sþ 2)]Y(s)¼X(s)

Determine the range of K for stable operation of the system. Consider
both positive and negative values of K.

6.7. The output of a control system is related to its input r(t) by

½s4 þ 12s3 þ ð2:1þ KÞs2 þ ð20þ 10KÞs þ 25K �CðsÞ
¼ Kðs þ 1ÞRðsÞ

Determine the range of K for stable operation of the system. Consider
both positive and negative values of K. Find K that yields imaginary
roots.

6.8.

F ðsÞ ¼ 1
s½ðs4 þ 0:5s3 þ 4:5s2 þ s þ 2Þ þ Kðs þ 1Þ�

K is real butmay be positive or negative. (a) Find the range of values ofK
for which the time response is stable. (b) Select a value of K that will
produce imaginary poles for F(s). Find these poles.What is the physical
significance of imaginary poles as far as the time response is concerned?
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6.9. For the system shown, (a) find C(s)/R(s). (b) What type of system does
C(s)/E(s) represent? (c) Find the step-, ramp-, and parabolic-error
coefficients. (d ) Find the steady-state value of c(t), e(t), and m(t) if
r(t)¼ 4u�1(t), K¼1, and A¼1. (e) A steady-state error less than 0.5 is
required. Determine the value for A and K that meet this condition.
What effect does K have on the steady-state error? ( f ) For parts (d )
and (e), is the closed-loop system stable?

6.10. For a unity-feedback control system:

ð1Þ GðsÞ ¼ 10ðs þ 2Þ
sðs þ 1Þðs þ 4Þðs2 þ 4s þ 13Þ

ð2Þ GðsÞ ¼ 400ðs þ 2Þ
s2ðs þ 5Þðs2 þ 2s þ 10Þ

(a) Determine the step-, ramp-, and parabolic-error coefficients
(Kp,Kv , and Ka) for this system. (b) Using the appropriate error coeffi-
cients from part (a), determine the steady-state actuating signal e(t)ss
for r1(t)¼ (18þ t)u�1(t) and for r2(t)¼ 4t2u�1(t). (c) Is the closed-loop
system table? (d ) Use the results of part (b) to determine c(t)ss.

6.11. (a) Determine the open-loop transfer function G(s)H(s) of Fig. (a).
(b) Determine the overall transfer function. (c) Figure (b) is an equiva-
lent block diagram of Fig. (a).What must the transfer function Hx(s)
be in order for Fig. (b) to be equivalent to Fig. (a)? (d ) Figure (b)
represents what type of system? (e) Determine the system error
coefficients of Fig. (b). ( f ) If r(t)¼ u�1(t), determine the final value of
c(t). (g) What are the values of e(t)ss andm(t)ss?
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6.12. Find the step-, ramp-, and parabolic-error coefficients for unity-
feedback systems that have the following forward transfer functions:

ðaÞ GðsÞ ¼ 20
ð0:2s þ 1Þð0:5s þ 1Þ

ðbÞ GðsÞ ¼ 200
s2ðs2 þ 4s þ 13Þðs2 þ 6s þ 25Þ

ðcÞ GðsÞ ¼ 24ðs þ 2Þ
sðs2 þ 4s þ 6Þ

ðdÞ GðsÞ ¼ 48ðs þ 3Þ
sðs þ 6Þðs2 þ 4s þ 4Þ

ðeÞ GðsÞ ¼ 25ðs þ 3Þ
ðs þ 5Þðs2 þ 4s þ 24Þ

6.13. For Prob. 6.12, find e(1) by use of the error coefficients, with the
following inputs:

(a) r (t)¼ 5 (b) r (t)¼ 2t (c) r (t)¼ t 2

6.14. Aunity-feedback control system has

ð1Þ GðsÞ ¼ 12K
s½ðs þ 2Þðs þ 4Þ þ 10�

ð2Þ GðsÞ ¼ Kðs þ 3Þ
sðs þ 1Þðs þ 6Þðs þ 9Þ

where r(t)¼ 2t. (a) If K¼ 2, determine e(t)ss. (b) It is desired that for a
ramp input e(t)ss�1. What minimum value must K1 have for the
condition to be satisfied? (c) For the value of K1 determined in part
(b), is the system stable?

6.15. (a) Derive the ratio G(s)¼C(s)/E(s). (b) Based upon G(s), the figure
has the characteristic of what type of system? (c) Derive the control
ratio for this control system. (d ) Repeat with the minor loop feedback
replaced by Kh. (e) What conclusion can be reached about the
effect of minor loop feedback on system type? ( f ) For (c) and (d )
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determineGeq(s).

6.16. Aunity-feedback system has the forward transfer function

GðsÞ ¼ Kðs þ 4Þ
sðs þ 2Þðs2 þ 4s þ 8Þ

The input r (t)¼ 6þ 8t is applied to the system. (a) It is desired that the
steady-state value of the error be equal to or less than 1.6 for the given
input function. Determine the minimum value that K1 must have
to satisfy this requirement. (b) Using Routh’s stability criterion,
determine whether the system is stable for the minimum value of K1

determined in part (a).
6.17. The angular position y of a radar antenna is required to follow a

command signal yc. The command signal ec is proportional to yc
with a proportionality constant Ky V/deg. The positioning torque is
applied by an ac motor that is activated by a position error signal e.
The shaft of the electric motor is geared to the antenna with a gear
ratio n. A potentiometer having a proportionality constant Ky V/deg
produces a feedback signal ey proportional to y. The actuating signal
e¼ ec� ey is amplified with gain KaV/V to produce the voltage ea that
drives the motor. The amplifier output ea is an ac voltage. With the
motor shaft clamped, the motor stall torque measured at the motor
shaft is proportional to ea with a proportionality constant Kc in 1b/
V. The motor torque decreases linearly with increasing motor speed
_yym and is zero at the no-load speed _yy0. The no-load speed is propor-
tional to ea with proportionality constant K0. The moment of inertia
of the motor, gearing, and antenna, referred to the output y, is J and
the viscous friction B is negligible. The motor torque is therefore
T ¼ J €yyþ TL, where TL is a wind torque. (a) Draw a completely
labeled detailed block diagram for this system. (b) Neglecting TL,
find the open-loop transfer function y(s)/E(s) and the closed-loop
transfer function y(s)/yc(s). (c) For a step input yc, describe the
response characteristics as the gain Ka is increased. (d ) For a con-
stant wind torque TL and yc(t)¼ 0 find the steady-state position
error as a function of Ka.
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6.18. The components of a single-axis stable platform with direct drive can
be described by the following equations:

Controlled platform: T ¼ JDoþ Boþ TL

Integrating gyro: Deig ¼ Kigðoc � oþ od þ obÞ

Servomotor: T ¼ Ka

Kig

� �
eig

where

J¼moment of platform and servomotor
B¼damping
o¼ angular velocity of platformwith respect to inertial frame of

reference
T¼servomotor torque
TL¼ interfering torque
eig¼ gyro output voltage
oc¼ command angular velocity
od¼drift rate of gyro
ob¼ angular velocity of the base
Kig¼ gyro gain
Ka/Kig¼ amplifier gain

Consider that thebasehas a givenorientation and thatob¼ 0. (a) Show
that the overall equation of performance for the stable platform is

ðJD2 þ BD þ KaÞo ¼ Kaðoc þ od Þ � DTL

(b) Draw a detailed block diagram representing the system. (c) Using
eig and o as state variables,write the state equations of the system. (d )
Withoc¼ 0 andTL¼ 0 determine the effect of a constant draft rateod.
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(e) With oc¼ 0 and od¼ 0, determine the effect of a constant interfer-
ing torqueTL on o.

6.19. In the feedback system shown,Kh is adjustable and

GðsÞ ¼ KGðsw þ 	 	 	 þ c0Þ
sn þ 	 	 	 þ a1s þ a0

The output is required to follow a step input with no steady-state error.
Determine the necessary conditions on Kh for a stable system.

6.20. For Prob. 2.24 (a) derive the transfer functionGx(s)¼O(s)/V1(s).Figure
(a) shows a velocity control system, where Kx is the velocity sensor
coefficient.The equivalent unity-feedback system is shown in Fig. (b),
where O(s)/R(s)¼KxGx(s)/[1þKxGx(s)]. (b) What system type does
G(s)¼ KxGx(s) represent? (c) Determine o(t)ss, when r(t)¼R0u�1(t).
Assume the system is stable.

6.21. Given the following system find (a)C(s)/R(s). (b) For eachof the follow-
ing values of K : 1 and 0.1, determine the poles of the control ratio and
if the system is stable, (c) determine Geq(s), and (d ) the equivalent
system type.
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6.22. Given the following system, find C(s)/R(s). (a) Find the range of values
of K for which the system is stable. (b) Find the positive value of K that
yields pure oscillations in the homogeneous system and find the
frequency associated with these oscillations.

6.23. Based on this figure, do the following:

(a) By block diagram reduction findG(s) andH(s) such that the system
can be represented in this form:

(b) For this system findGeq(s) for an equivalent unity-feedback system
of this form:
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6.24. By blockdiagrammanipulations or the use of SFG,simplify the follow-
ing systems to the form of Fig. 6.1.

6.25. Aunity-feedback system has the forward transfer function

GðsÞ ¼ 20K
sðs2 þ 10s þ 14þ KÞ

(a)What is themaximumvalue ofK for stable operation of the system?
(b) ForK equal to one-half themaximumvalue,what is the e(t)ss for the
ramp input r(t)¼ 2tu�1(t)?

6.26. Aunity-feedback system has the forward transfer function

GðsÞ ¼ Kðs þ 30Þ
ðs þ 1Þðs2 þ 20s þ 116Þ

(a)What is themaximumvalue ofK for stable operation of the system?
(b) For a unit-step input, e(t)ss must be less than 0.1 for a stable system.
Find Km to satisfy this condition. (c) For the value of Km of part (b),
determine c(t) and the figures of merit by use of a CAD package.

746 Linear Control System Analysis and Design

Copyright © 2003 Marcel Dekker, Inc.



6.27. Aunity-feedback system has the forward transfer function

GðsÞ ¼ 20K
sðs2 þ 10s þ 29Þ

where the ramp input is r(t)¼ 2tu�1(t).
(a) For K¼100, assuming the system is stable, what is e(t)ss? (b) For
K¼1000 what is e(t)ss? (c) Is the system stable for each value? If so,
what are the figures of merit for a unit-step forcing function?

6.28. Aunity-feedback system has the forward transfer function

GðsÞ ¼ Kðs þ 10Þ
ðs þ 1Þðs2 þ 10s þ 50Þ

(a) For a unit-step input, e(t)ss must be less than 0.1 for a stable system.
Find Km to satisfy this condition. (b) For the value of Km that satisfies
this condition determine c(t) and the figures of merit, for a unit-step
forcing function, by use of a CAD package.

CHAPTER 7

7.1. Determine the pertinent geometrical properties and sketch the root-
locus for the following transfer functions for both positive and nega-
tive values of K:

ðaÞ GðsÞH ðsÞ ¼ K

sðs þ 1Þ2

ðbÞ GðsÞH ðsÞ ¼ Kðs � 2Þ
ðs þ 1Þðs2 þ 4s þ 20Þ

ðcÞ GðsÞH ðsÞ ¼ Kðs þ 4Þ
sðs2 þ 4s þ 29Þ

ðdÞ GðsÞH ðsÞ ¼ K
s2ðs þ 1:5Þðs þ 5Þ

ðeÞ GðsÞH ðsÞ ¼ K0

ð1þ 0:5sÞð1þ 0:2sÞð1þ 0:125sÞ2

ðf Þ GðsÞH ðsÞ ¼ Kðs þ 3Þ2
sðs2 þ 4s þ 8Þ

ðgÞ GðsÞH ðsÞ ¼ Kðs2 þ 6s þ 34Þ
ðs þ 1Þðs2 þ 4s þ 5Þ

Determine the range of values ofK for which the closed-loop system is
stable.
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7.2. (CAD Problem) Obtain the root locus of the following for a unity-
feedback systemwith K� 0:

ðaÞ GðsÞ ¼ K

ð1þ sÞð0:5þ sÞ2

ðbÞ GðsÞ ¼ K
sðs2 þ 8s þ 15Þðs þ 2Þ

ðcÞ GðsÞ ¼ K
ðs2 þ 4Þðs2 þ 8s þ 20Þ

ðdÞ GðsÞ ¼ Kðs þ 3Þ
s2ðs2 þ 4s þ 13Þ

ðeÞ GðsÞ ¼ K
sðs2 þ 2s þ 2Þðs2 þ 6s þ 13Þ

ð f Þ GðsÞ ¼ Kðs þ 15Þ
ðs þ 3Þðs2 þ 12s þ 100Þðs þ 15Þ

ðgÞ GðsÞ ¼ Kðs þ 8Þ
sðs2 þ 6s þ 25Þ

Does the root cross any of the asymptotes?
7.3. A system has the following transfer functions:

GðsÞ ¼ Kðs þ 9Þ
sðs2 þ 6s þ 13Þ H ðsÞ ¼ 1 K > 0

(a) Plot the root locus. (b) A damping ratio of 0.6 is required for the
dominant roots. Find C(s)/R(s).The denominator should be in factored
form. (c) With a unit step input, find c(t), (d ) Plot the magnitude and
angle of C( jo)/R( jo) vs. o.

7.4. (CAD Problem) A feedback control system with unity feedback has a
transfer function

GðsÞ ¼ 100Kðs þ 10Þ
sðs2 þ 10s þ 29Þ

(a) Plot the locus of the roots of1þG(s)¼ 0 as the loop sensitivityK(>0)
is varied. (b) The desired figures ofmerit for this systemareMp¼1.0432,
tp�18 s, and ts� 2.27 s. Based on these values, determine the dominant
closed-loop poles that the control ratio must have in order to be able to
achieve these figures of merit. Are these closed-loop poles achievable?
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If so, determine the value of K. (c) For the value of K1 found in part (b),
determine e(t) for r (t)¼ u�1(t) and determine the actual values of the
figures of merit that are achieved. (d ) Plot the magnitude and angle of
M( jo) vs. o for the closed-loop system.

7.5. (a) Sketch the root locus for the control system having the following
open-loop transfer function. (b) Calculate the value of K1 that causes
instability. (c) Determine C(s)/R(s) for z¼ 0.3. (d ) Use a CAD package
to determine c(t) for r (t)¼ u�1(t).

ð1Þ GðsÞ ¼ K1ð1þ 0:05sÞ
sð1þ 0:0714sÞð1þ 0:1s þ 0:0125s2Þ

ð2Þ GðsÞ ¼ Kðs � 5Þðs þ 4Þ
sðs þ 1Þðs þ 3Þ

7.6. (a) Sketch the root locus for a control system having the following for-
ward and feedback transfer functions:

GðsÞ ¼ K2ð1þ s=4Þ
s2ð1þ s=15Þ H ðsÞ ¼ KH ð1þ s=10Þ

(b) Express C(s)/R(s) in terms of the unknown gains K2 and KH. (c)
Determine the value of KH what will yield cð1Þ ¼ 1 for rðtÞ ¼ u�1ðtÞ.
(d ) Choose closed-loop pole locations for a z¼ 0.6. (e)Write the factored
form of C(s)/R(s). ( f ) Determine the figures of meritMp, tp, ts and Km.

7.7. Aunity-feedback control system has the transfer function

GðsÞ ¼ K
ðs þ 1Þðs þ 7Þðs2 þ 8s þ 25Þ

(a) Sketch the root locus for positive and negative values of K. (b) For
what values of K does the system become unstable? (c) Determine the
value of K for which all the roots are equal. (d ) Determine the value of
K from the root locus that makes the closed-loop system a perfect
oscillator.

7.8. (CAD Problem) A unity-feedback control system has the transfer
function

ð1Þ GðsÞ ¼ K1ð1� 0:5sÞ
ð1þ 0:5sÞð1þ 0:2sÞð1þ 0:1sÞ

ð2Þ GðsÞ ¼ K1

sð1þ 0:1sÞð1þ 0:08s þ 0:008s2Þ
(a) Obtain the root locus for positive and negative values ofK1. (b) What
range of values of K1makes the system unstable?

7.9. (CAD problem) For positive values of gain, obtain the root locus for
unity-feedback control systems having the following open-loop transfer
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functions. For what value or values of gain does the system become
unstable in each case?

ðaÞ GðsÞ ¼ Kðs2 þ 8s þ 25Þ
sðs þ 1Þðs þ 2Þðs þ 5Þ

ðbÞ GðsÞ ¼ Kðs2 þ 4s þ 13Þ
s2ðs þ 3Þðs þ 6Þðs þ 20Þ

ðcÞ GðsÞ ¼ Kðs2 þ 2s þ 5Þ
sðs2 � 2s þ 2Þðs þ 10Þ

7.10. (CAD Problem) For each system of Prob. 7.9 a stable system with
Mp¼1.14 is desired. If this value of Mp is achievable, determine the
control ratioC(s)/R(s). Select the best roots in each case.

7.11. A nonunity-feedback control system ha the transfer functions

GðsÞ¼ KGð1þ s=3:2Þ
ð1þ s=5Þ½1þ2ð0:7Þs=23þðs=23Þ2�½1þ2ð0:49Þs=7:6þðs=76Þ2�

H ðsÞ ¼ KH ð1þ s=5Þ
1þ 2ð0:89Þs=42:7þ ðs=42:7Þ2

(a) Sketch the root locus for the system, using as few trial points as
possible. Determine the angles and locations of the asymptotes and
the angles of departure of the branches from the open-loop poles.
(b) Determine the gain KGKH at which the system becomes unstable,
and determine the approximate locations of all the closed-loop poles
for this value of gain. (c) Using the closed-loop configuration deter-
mined in part (b), write the expression for the closed-loop transfer
function of the system.

7.12. (CAD Problem) A nonunity-feedback control system has the transfer
functions

ð1Þ GðsÞ ¼ 10Aðs2 þ 8s þ 20Þ
sðs þ 4Þ H ðsÞ ¼ 0:2

s þ 2

ð2Þ GðsÞ ¼ Kðs2 þ 6s þ 13Þ
sðs þ 3Þ H ðsÞ ¼ 1

s þ 1

For system (1): (a) determine the value of the amplifier gain A that
will produce complex roots having the minimum possible value of z.
(b) ExpressC(s)/R(s) in terms of its poles, zeros, and constant term.
For system (2) an Mp¼1.0948 is specified: (a) determine the values
of K that will produce complex roots for a z corresponding to this
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value of Mp. Note that there are two intersections of the z line. (b)
Express C(s)/R(s) in terms of its poles, zeros, and constant term for
each intersection. (c) For each control ratio determine the figures of
merit. Compare these values. Note the differences, even though the
pair of complex poles in each case has the same value of z.

7.13. For the figure shown, only the forward and feedback gains,Kx and Kh,
are adjustable. (a) Express C(s)/R(s) in terms of the poles and zeros of
Gx(s) and H(s). (b) Determine the value Kh must have in order that
cð1Þ ¼ 1:0 for a unit step input. (c) Determine the value of KxKh that
will produce complex roots having a z¼ 0.6. (d ) Determine the corre-
sponding C(s)/R(s). (e) Determine Geq(s) for a unity feedback system
that is equivalent to this nonunity feedback system. ( f ) Determine
the figures of meritMp, tp, ts, and Km.

Gx ¼
Kxðs þ 1Þ
s2ðs þ 4Þ Hs ¼

Khðs þ 2Þ
s þ 3

7.14. Yaw rate feedback and sideslip feedback havebeen added to an aircraft
for turn coordination. The transfer functions of the resulting aircraft
and the aileron servo are, respectively,

_ffs
daðsÞ

¼ 16
s þ 3

and
daðsÞ
eda ðsÞ

¼ 20
s þ 20

For the bank-angle control system shown in the figure, design a
suitable system by drawing the root-locus plots on which your design
is based. (a) Use z¼ 0.8 for the inner loop and determine Krrg. (b) Use
z¼ 0.7 for the outer loop and determine Kvg. (c) Determine
fðsÞ=fcommðsÞ.

7.15. A heading control system using the bank-angle control system is
shown in the following figure, where g is the acceleration of gravity
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and VT is the true airspeed. Use the design of Prob. 7.14 for
fðsÞ=fcommðsÞ. (a) Draw a root locus for this system and use z¼ 0.6 to
determine Kdg. (b) Determine  (s)/ comm(s) and the time response
with a step input for VT¼ 500 ft/s. (The design can be repeated using
z¼ 1.0 for obtaining Krrg.)

7.16. (CAD Problem) The simplified open-loop transfer function for aT-38
aircraft at 35,000 ft and 0.9Mach is

GðsÞ ¼ yðsÞ
deðsÞ

¼ 22:3Kxð0:995s þ 1Þ
ðs þ 45Þðs2 þ 1:76s þ 7:93Þ

The open-loop transfer function contains the simplified longitudinal
aircraft dynamics (a second-order system relating pitch rate to eleva-
tor deflection). The Kx/(sþ 45) term models the hydraulic system
between the pilot’s control and the elevator. Obtain a plot of the root
locus for this system. Select characteristic roots that have a damping
ratio of 0.42. Find the gain value Kx that yields these roots. Determine
the system response to an impulse. What is the minimum value of
damping ratio available at this flight condition?

CHAPTER 8

8.1. For each of the transfer functions

ð1Þ GðsÞ ¼ 1
sð1þ 0:5sÞð1þ 4sÞ

ð2Þ GðsÞ ¼ 0:5
sð1þ 0:2sÞð1þ 0:004s þ 0:0025s2Þ

ð3Þ GðsÞ ¼ 100ðs þ 2Þ
sðs2 þ 6s þ 25Þ

ð4Þ GðsÞ ¼ 10ð1� 0:5sÞ
sð1þ sÞð1þ 0:5sÞ

(a) draw the log magnitude (exact and asymptotic) and phase
diagrams; (b) determine of and oc for each transfer function.
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8.2. For each of the transfer functions

ð1Þ GðsÞ ¼ 2ð1þ 0:25sÞ
s2ð1þ s

ffiffiffiffiffiffi
60
p Þð1þ 0:04sÞ ð2Þ GðsÞ ¼ 5

ð1þ 5s=3Þð1þ 1:25sÞ2

ð3Þ GðsÞ ¼ 0:2
s2ð1þ 2s=9Þð1þ s=15Þ ð4Þ GðsÞ ¼ 10ð1þ 0:125sÞ

sð1þ 0:5sÞð1þ 0:25sÞ

(a) Draw the log magnitude (exact and asymptotic) and phase diagrams.
8.3. (CAD Problem) Plot to scale the log magnitude and angle vs. log o

curves forG( jo). Is it an integral or a derivative compensating network?

ðaÞ Gð joÞ ¼ 20ð1þ j8oÞ
1þ j0:2o

ðbÞ Gð joÞ ¼ 20ð1þ j0:125oÞ
1þ j10o

8.4. Acontrol systemwith unity feedback has the forward transfer function,
with Km¼1,

ð1Þ GðsÞ ¼ K1ð1þ 0:4sÞ
sð1þ 0:1sÞð1þ 8s=150

ffiffiffi
2
p þ s2=900Þ

ð2Þ GðsÞ ¼ K0ð1þ 0:85Þ
ð1þ sÞð1þ 0:4sÞð1þ 0:2sÞ2

(a) Draw the log magnitude and angle diagrams. (b) Draw the polar plot
ofG0( jo).Determine all key points of the curve.

8.5. A system has

GðsÞ ¼ 8ð1þ T2sÞð1þ T3sÞ
s2ð1þ T1sÞ2ð1þ T4sÞ

where T1¼1, T2¼1/2, T3¼1/8, T4¼1/16. (a) Draw the asymptotes of
Lm G( jo) on a decibel vs. log o plot. Label the corner frequencies on
the graph. (b) What is the total correction from the asymptotes at o¼ 2?

8.6. (a) What characteristic must the plot of magnitude in decibels vs. log o
possess if a velocity servo system (ramp input) is to have no steady-state
velocity error for a constant velocity input dr (t)/dt? (b) What is true of
the corresponding phase-angle characteristic?

8.7. Explainwhy the phase-angle curve cannot be calculated from the plot of
jG( jo)j in decibels vs. log o if some of the factors are not minimum
phase.
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8.8. The asymptotic gain vs. frequency curve of the open-loop minimum-
phase transfer function is shown for a unity-feedback control system.
(a) Evaluate the open-loop transfer function. Assume only first-order
factors. (b) What is the frequency at which jG( jo)j is unity? What is the
phase angle at this frequency? (c) Draw the polar diagram of the open-
loop control system.

8.9. For each plot shown, (a) evaluate the transfer function; (b) find the
correction that should be applied to the straight-line curve at o¼ 4;
(c) determineKm for Cases I and II. Assume only first-order factors.
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8.10. Determine the value of the error efficient from parts (a) and (b) of the
figure.
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8.11. An experimental transfer function gave, respectively, the following
results:

(a) Determine the transfer function represented by the above data.
(b) What type of system does it represent?

8.12. Determine the transfer function by using the straight-line asymptotic
log plot shown and the fact that the correct angle is �93.576� at o¼ 8.
Assume a minimum-phase transfer function.

Plant 1

o Lm G( jo), dB Angle, deg

0.20 �18.57 �91.4
0.60 �27.97 �94.1
1.0 �32.11 �97.1
2.0 �36.65 �107.1
3.0 �37.34 �126.9
4.0 �38.13 �172.9
4.2 �38.93 �184.4
4.4 �40.02 �195.0
4.8 �42.68 �212.2
5.0 �44.09 �218.7
5.4 �46.83 �228.4
6.0 �50.55 �237.7
7.0 �55.72 �246.4
9.0 �63.50 �254.3
14.0 �76.04 �261.1
20.0 �85.69 �264.0
30.0 �96.44 �266.1
49.0 �109.74 �267.7

Plant 2

o Lm G( jo), dB Angle, deg

0.01 18.13 �0.247
0.02 18.13 �0.491
0.20 18.09 �4.893
0.50 17.89 �11.99
1.000 17.25 �22.52
2.000 15.49 �37.18
4.000 12.54 �49.65
6.000 11.05 �54.89
7.000 10.73 �57.29
8.000 10.62 �60.11
16.000 11.15 �123.9
17.000 10.32 �135.3
18.000 9.26 �145.3
19.000 8.06 �153.8
20.000 6.82 �160.8
40.000 �10.01 �205.3
50.000 �15.03 �213.6
55.000 �17.18 �217.0
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8.13. Determine whether each system shown is stable or unstable in the
absolute sense by sketching the completeNyquist diagrams.H(s)¼ 1.

8.14. Use theNyquist stability criterion and the polar plot to determine,with
the aid of a CAD package, the range of values K (positive or negative)
for which the closed-loop system is stable.

ðaÞ GðsÞH ðsÞ ¼ Kðs þ 1Þ2ðs þ 2Þ
s3ðs þ 10Þ

ðbÞ GðsÞH ðsÞ ¼ K
s2ð�1þ 5sÞð1þ sÞ

ðcÞ GðsÞH ðsÞ ¼ K
s2ð1� 0:5sÞ

ðdÞ GðsÞH ðsÞ ¼ K
s2ðs þ 15Þðs2 þ 6s þ 10Þ

ðeÞ GðsÞH ðsÞ ¼ K
sðs2 þ 4s þ 5Þ

ð f Þ GðsÞH ðsÞ ¼ K
s2ðs þ 9Þ
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8.15. For the following transfer functions, sketch a direct Nyquist locus to
determine the closed-loop stability. Determine, with the aid of CAD
package, the range of values of K that produce stable closed-loop
operation and those which produce unstable closed-loop operation.
H(s)¼ 1.

ðaÞ GðsÞ ¼ K
2þ s

ðbÞ GðsÞ ¼ Kð2þ sÞ
sð1� sÞ

ðcÞ GðsÞ ¼ Kð1þ 0:5sÞ
s2ð8þ sÞ

ðdÞ GðsÞ ¼ K
sð7þ sÞð2þ sÞ

ðeÞ GðsÞ ¼ K
ðs þ 3Þðs � 1Þðs þ 6Þ

8.16. (CAD Problem) For the control systems having the transfer functions

ð1Þ GðsÞ ¼ K1

sð1þ 0:02sÞð1þ 0:05sÞð1þ 0:10sÞ

ð2Þ GðsÞ ¼ Kð1þ 0:25sÞ
ð1þ 0:1sÞð2þ 3s þ s2Þ

ð3Þ GðsÞ ¼ Kðs þ 3Þðs þ 40Þ
sðs2 þ 20s þ 1000Þðs þ 80Þðs þ 100Þ

ð4Þ ðGðsÞ ¼ Kðs þ 4Þðs þ 8Þ
ðs þ 1Þðs2 þ 4s þ 5Þðs þ 10Þ

determine from the logarithmic curves the required value of Km and
the phase-margin frequency so that each systemwill have (a) a positive
phase margin angle of 45�; (b) a positive phase margin angle of 60�.
(c) From these curves determine the maximum permissible value of
Km for stability.

8.17. A system has the transfer functions

GðsÞ ¼ Kðs þ 8Þ
sðs þ 4Þðs2 þ 16s þ 164Þðs þ 40Þ H ðsÞ ¼ 1
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(a) Draw the log magnitude and phase diagram of G0( jo). Draw both
the straight-line and the corrected log magnitude curves. (b) Draw the
log magnitude-angle diagram. (c) Determine the maximum value of
K1 for stability.

8.18. What gain values would just make the systems in Prob. 8.2 unstable?
8.19. For the following plant,where Kx¼ 3.72, determine the phase margin

angle g and the phase margin frequency ox.

GxðsÞ ¼
Kxð1þ s=4Þ

sð1þ sÞð1þ s=8Þ

CHAPTER 9

9.1. For Prob. 8.1, find K1,Mm, oc, of, and om for a g¼ 45� by
(a) The direct-polar-plot method; (b) The log magnitude^angle dia-
gram; (c) Acomputer program. (d ) Repeat (a) through (c) by determin-
ing the value of K1 for anMm¼1.26. (e) Compare the values of om, oc,
of, and K1obtained in (d ) with those obtained in (a) and (b).

9.2. (CAD Problem) For the feedback control system of Prob. 7.4:
(a) Determine, by use of the polar-plot method, the value of K1

that just makes the system unstable. (b) Determine the value of K1

that makes Mm¼1.16. (c) For the value of K1 found in part (b),
find c(t) for r(t)¼ u�1(t). (d ) Obtain the data for plotting the curve of
M vs. o for the closed-loop system and plot this curve. (e) Why do the
results of this problem differ from those obtained in Prob. 7.4? [See
Eq. (9.16).]

9.3. (CAD Problem) Determine the value K1must have for anMm¼1.3.

9.4. Using the plot of G0( jo) shown, determine the number of values of
gain Km which produce the same value of Mm. Which of these
values yields the best system performance? Give the reasons for your
answer.

GðsÞ ¼ K1ð1þ 0:1sÞ2
sð1þ sÞ2ð1þ s=150Þ3
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9.5. (CAD Problem) (a) Determine the values ofMm andom for each of the
transfer functions of Prob. 8.16 with Km¼ 2. (b) Repeat with the gain-
constant values obtained in part (a) of Prob. 8.16. (c) Repeat with the
gain constant value in part (b) of Prob. 8.16. (d ) For part (c), plotM vs.
o and obtain c(t) for a step input.

9.6. (CAD Problem) (a) In Prob.8.17, adjust the gain for LmMm¼ 2 dB and
determine om. For this value of gain find the phase margin angle, and
plotM vs. o and a vs. o. (b) Repeat for Prob. 8.4.

9.7. For

GxðsÞ ¼
K

sðs þ 8Þðs þ 16Þ and H ðsÞ ¼ 1

determine the required gain to achieve an Mm¼1.26. What are the
values of om, of, and g for this value ofMm? (a) Use log plots. (b) Use
polar plots. (c) Use a computer.

9.8. (a) For Prob. 8.2, determine, by use of the Nichols chart, the values of
Mm and om. (b) What must the gain be in order to achieve an
Mm¼1.12? (c) Refine the values of parts (a) and (b) by use of a CAD
package. (d ) What is the value of om and the phase margin angle for
this value ofMm for each case?

9.9. (CAD Problem) Refer to Prob. 8.1.
(a) Determine the values of K1, om, and g corresponding to the follow-
ing values ofMm:1.05,1.1,1.2,1.4,1.6,1.8, and 2.0.For each value ofMm,
determine zeff from Eq. (9.16) and plotMm vs. zeff. (b) For each value of
K1 determined in part (a), calculate the value of Mp. For each value
of Mp, determine zeff from Fig. 3.7 and plot Mp vs. zeff. (c) What is the
correlation between Mm vs. zeff and Mp vs. zeff ? What is the effect of
a third real root that is also dominant? (d ) What is the correlation
between g and bothMm andMp?

9.10. For the given transfer function: (a) With the aid of the Nichols chart,
specify the value of K2 that will make the peak Mm in the frequency
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response as small as possible. (b) At what frequency does this peak
occur? (c) What value doesC( jo)/R( jo) have at the peak?

ð1Þ GðsÞ ¼ K2ð1þ 2:5sÞ
s2ð1þ 0:125sÞð1þ 0:04sÞ

ð2Þ GðsÞ ¼ Kðs þ 0:08Þ
s2ðs þ 2Þ

9.11. By use of Nichols chart for

GðsÞ ¼ K
sðs þ 1Þðs þ 2Þ

(a) What is the maximum value of the unity-feedback closed-loop fre-
quency responsemagnitudeMmwithK¼1? (b)Determine the value of
K for a phase margin angle of g¼ 45�. (c) What is the corresponding
gain margin a for this value of K ?

9.12. Evaluate the transfer function for the frequency-response plot shown
below.The plot is not drawn to scale.

CHAPTER 10

For the design of all problems of Chap. 10, obtain the figures of merit
(Mp, tp, ts, and Km) for the uncompensated and compensated systems.
Where appropriate, use a CAD package in solving these problems.

10.1. It is desired that a control system have a damping ratio of 0.5 for the
dominant complex roots. Using the root-locus method, (a) add a lag
compensator, with a¼10, so that this value of z can be obtained; (b)
add a lead compensator with a¼ 0.1; (c) add a lag-lead compensator
with a¼10. Indicate the time constants of the compensator in each
case. Obtain c(t) with a step input in each case. Compare the results
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obtained by the use of each type of compensator with respect to the
error coefficient Km, od,Ts, andMo .

ð1Þ GðsÞ ¼ K
ðs þ 1Þðs þ 3Þðs þ 6Þ

ð2Þ GðsÞ ¼ K
sðs þ 2Þðs þ 5Þðs þ 6Þ

Note: For plant (1), the 5� rule for a lag compensator does not apply.
By trial and error determine the best location of the compensator’s
zero and pole.

10.2. Acontrol system has the forward transfer function

GxðsÞ ¼
K2

s2ð1þ 0:05sÞ

The closed-loop system is to be made stable by adding a compensator
Gc(s) and an amplifierA in cascade withGx(s). A zof 0.6 is desired with
a value of on� 3.75 rad/s. By use of the root-locus method, determine
the following: (a) What kind of compensator is needed? (b) Select an
appropriate a and T for the compensator. (c) Determine the value of
the error coefficient K2. (d ) Plot the compensated root locus. (e) Plot
M vs. o for the compensated closed-loop system. (f) From the plot of
part (e) determine the values of Mm and om. With this value of Mm

determine the effective z of the system by the use of
Mm ¼ ð2z

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
Þ�1. Compare the effective z and om with the values

obtained from the dominant pair of complex roots.Note: The effective
om ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 ¼ 2z2

p
. (g) Obtain c(t) for a unit step input.

10.3. For a unity feedback systemwhose basic plant is

ð1Þ Gx ¼
Kx

sðs2 þ 8s þ 20Þ

ð2Þ Gx ¼
Kxðs þ 8Þ

sðs þ 3Þðs2 þ 10s þ 50Þ
Use z¼ 0.5 for the dominant roots.Determine the figures of meritMp,
tp, ts, and Km for each of the following cases: (a) original system; (b) lag
compensator added, a¼10; (c) lead compensator added, a¼0.1; (d )
lag-lead compensator added, a¼10. Note: Except for the original
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system, it is not necessary to obtain the complete root locus for each
type of compensation.When the lead and lag-lead compensator are
added to the original system, there may be other dominant roots in
addition to the complex pair. When a real root is also dominant, a
z¼ 0.3 may produce the desired improvement (see Sec.10.3).

10.4. Aunity-feedback system has the forward transfer function

GxðsÞ ¼
K2

s2

(a) Design a cascade compensator that will produce a stable system
and that meets the following requirements without reducing the
system type: (1) The dominant poles of the closed-loop control ratio
are to have a damping ratio z¼ 0.6. (2) The settling time is to be
Ts¼ 3.5s. Is it a lag or lead compensator? (b) Using the cascade com-
pensator, determine the control ratio C(s)/R(s). (c) Find c(t) for a step
input.What is the effect of the real pole of C(s)/R(s) on the transient
response?

10.5. Using the root-locus plot of Prob. 7.7, adjust the damping ratio to
z¼ 0.5 for the dominant roots of the system. Find K0, on,Mo,Tp,Ts,N,
C(s)/R(s) for (a) the original system and (b) the original systemwith the
cascade lag compensator using a¼10; (c) design a cascade compensa-
tor that will improve the response time, i.e., will move the dominant
branch to the left in the s plane.

10.6. A unity-feedback system has the transfer function Gx(s). The closed-
loop roots must satisfy the specifications z¼ 0.707 and Ts¼ 2 s. A sug-
gested compensator Gc(s) must maintain the same degree as the
characteristic equation for the basic system:

GxðsÞ ¼
Kðs þ 6Þ
sðs þ 4Þ GcðsÞ ¼

Aðs þ aÞ
s þ b

(a) Determine the values of a and b. (b) Determine the value of a.
(c) Is this a lag or a lead compensator?

10.7. A unity-feedback control system contains the forward transfer func-
tion shown below. The system specifications are on¼ 4 and Ts� 2 s,
which are to be achieved by the proposed cascade compensator
which has the form indicated.

Gx ¼
Kðs þ 6Þ

sðs þ 2Þðs þ 5Þ Gc ¼ A
s þ a
s þ b

(a) For the uncompensated system, based upon the given performance
specifications, determine the value of z which yields the desired domi-
nant complex-conjugate poles. For this value of z determine the value
of K and the corresponding figures of merit. (b) Determine the values
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of a and b such that the desired complex-conjugate poles of C(s)/R(s),
for the compensated system, are truly dominant and the degree of the
compensated system is 3. (c) Determine the values ofA and a for this
compensator. (d ) Is this Gc(s) a lag or lead compensator? (e)
Determine the control ratio and the figures of merit for the compen-
sated system.

10.8. For the transfer function

GxðsÞ ¼
Kx

ðs þ 2Þðs þ 4Þðs þ 6Þðs þ 8Þ

(a) sketch the root locus. (b) For z¼ 0.6 the system’s performance
specifications are Ts� 2.5 s and K0� 0.6. Determine the roots
and the value ofKx for z¼ 0.6. (c) Add a lead compensator that cancels
the pole at s¼�1. (d ) Add a lead compensator that cancels the pole
at s¼�2. Determine K. (e) Compare the results of parts (c) and
(d ). Establish a ‘‘rule’’ for adding a lead compensator to a Type 0
system.

10.9. For the system of Prob. 7.4, the desired dominant roots are
�2.5
 j4.5. (a) Design a compensator that will achieve these
characteristics. (b) Determine c(t) with a unit step input. (c) Are the
desired complex roots dominant? (d ) Compare the results of the
basic system for the same value of z with those of the compensated
system.

10.10. Aunity-feedback system has the transfer function

GxðsÞ ¼
K

sðs þ 3Þðs þ 10Þ

The dominant poles of the closed-loop system must be s¼�1.5
 j2.
(a) Design a lead compensator with the maximum possible value of a
that will produce these roots. (b) Determine the control ratio for the
compensated system. (c) Add a compensator to increase the gain
without increasing the settling time.

10.11. In the figure the servomotor has inertia but no viscous friction.
The feedback through the accelerometer is proportional to the
acceleration of the output shaft. (a) When and H(s)¼ 1, is the servo
system stable? (b) Is the system stable if Kx¼15, Ky¼ 2, and
H(s)¼ 1/s ? (c) Use H(s)¼ 1/(1þTs) and show that it produces a
stable system. Show that the system is stable with this value of H(s)
by obtaining the transfer function C( jo)/E( jo) and sketching the
root locus.
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10.12. The accompanying schematic shows amethod for maintaining a con-
stant rate of discharge from a water tank by regulating the level of the
water in the tank. The relationship governing the dynamics of the
flow into and out of the tank are:

Q1 � Q2 ¼ 16
dh
dt

Q2 ¼ 4h Q1 ¼ 10y

where

Q1¼volumetric flow into tank
Q2¼ volumetric flow out of tank
h¼pressure head in tank
y¼ angular rotation of control valve

The motor damping is much smaller than the inertia. The system
shown is stable only for very small values of system gain. Therefore,
feedback from the control valve to the amplifier is proposed. Show
conclusively which of the following feedback functions would pro-
duce the best results: (a) feedback signal proportional to control-
valve position; (b) feedback signal proportional to rate of change of
control-valve position; (c) feedback signal comprising a component
proportional to valve position and a component proportional to rate
of change of valve position.
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For Probs.10.13 and10.14, the block diagram shows a simplified form
of roll control for an airplane. Overall system specifications with a
step input are ts�1.2 s and 1<Mp�1.3. Ah is the gain of an amplifier
in the H2 feedback loop. G2¼A2 is an amplifier of adjustable gain
with a maximum value of 100. Restrict b to values between15 and 50.
With G1(s)¼ 1, derive general expressions for Gy(s) and �(s)/R(s)
before solving these problems.

G3ðsÞ ¼
1:8

ð1þ s=6Þð1þ sÞ H2ðsÞ ¼ 0:2Ah
s þ a
s þ b

G4ðsÞ ¼
1
s

10.13. (a) By use of the root locusmethod1,withG1(s)¼ 1,determine a set of
parameters Ah, a, and b in H2(s) to meet the overall system specifica-
tions. [Note:Problem10.15 requires the design of the cascade compen-
sator G1(s) to improve K1 by a factor of 5.When a lag compensator is
used tomeet this requirement, it is known that it results in an increase
in the values ofMp and ts.Therefore,modify the specifications for this
problem toMp<1.2 and 1s< ts<1.1s in order to allow for the degra-
dation in transient performance produced by this compensator.]
(b) Determine Gy(s)¼ s�(s)/E1(s) and G(s)¼A1Gy(s)G4(s) in factored
form. Then with A1¼1 compute K1. (c) Determine the figures of
merit (Mp, tp, ts, and K1) for the closed-loop system. (d ) With
e1(t)¼ u1(t), determine the values of Mp and ts for the inner loop
represented byGy(s).

10.14. (a) By use of the root locusmethod 2,determine the parameters,Ah,a,
and b to meet the inner-loop specifications Mp¼1.05 and Ts¼1.2 s.
[The same note given in Prob. 10.13 (a) also applies to this problem.]
Select A2 so that the steady-state value of _ffðtÞ follows a step input
e1(t)¼ u1(t). Determine the necessary values of Ah and A2. (b)
Determine Gy(s) in factored form. (c) Determine the figures of merit
forGy(s) and compare themwith those of Prob.10.13(d ).

10.15. (a) Using the values determined in Prob. 10.13, derive the expression
Gz(s)¼Gy(s)G4(s). (b) DesignG1(s) to increase the value ofK1of Prob.
10.13 by a factor of 5 while maintaining the desired overall system
specifications. (c) Determine the resulting F(s)/R(s) in factored form.
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(d ) Determining the figures of merit for a step input, and compare
themwith those of Prob.10.13.

10.16. Repeat Prob. 10.15 with the values determined in Prob. 10.14. In
tabular form, summarize the results of Probs.10.13 through10.16.

10.17. For the feedback-compensated system of Fig.10.29,

GxðsÞ ¼
4

sðs þ 2Þ H ðsÞ ¼ Kh
sðs þ aÞ
s þ 4

(a) Use method 1 to determine C(s)/R(s) using Ts¼1.6 s (2 percent
criterion) and z¼ 0.65 for the dominant roots. (b) Design a cascade
compensator that yields the same dominant root as part (a). (c)
Compare the gains of the two systems.

10.18. Aunity-feedback system has

GxðsÞ ¼
K

sðs þ 5Þ

(a) For z¼ 0.5,determineK andC(s)/R(s). (b)Minor-loop and cascade
compensation are to be added (see Fig. 10.29) with the amplifier
replaced byGc(s):

GcðsÞ ¼
Aðs þ cÞ
s þ b

H ðsÞ ¼ Khs
s þ a

Use the value of K determined in part (a). By method 1 of the root-
locus design procedure,determine values of a,b,Kh, andA to produce
dominant roots having z¼ 0.5, s¼�7, and c(t)ss¼1.0. Only positive
values of Kh and A are acceptable.To minimize the effect of the third
real root, it should be located near a zero of C(s)/R(s). (c) Determine
C(s)/E(s) and C(s)/R(s) in factored form.

10.19. For G(s) given in Prob.10.3, add feedback rate (tachometer) compen-
sation. Use root-locus method 1 or 2 as assigned. (a) Design the
tachometer so that an improvement in system performance is
achieved while maintaining a z¼ 0.5 for the dominant roots. (b)
Repeat part (a) for a z¼ 0.3. Compare with the results of Prob. 10.3.
Note:Use Fig.10.29.

10.20. Refer to Fig. 10.29. It is desired that the dominant poles of C(s)/R(s)
have z¼ 0.5 and Ts¼1s. For the plant of Prob. 7.8(2), using the
method 1 with A¼ 5, determine the values of b and Kt to meet these
specifications. Be careful in selecting b. Check the time response to
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determine the effect of the real on the settling time.

H ðsÞ ¼ Kts
s þ b

10.21. Repeat Prob.10.20 using method 2.Compare the results with those of
Probs10.5 and10.20.

10.22. The forward loop transfer function for a unity-feedback control
system is

GxðsÞ ¼
Kxðs þ 10Þ

sðs2 þ 4s þ 13Þðs þ 50Þ
The specifications for the closed-loop performance,with a step input,
are 1<Mp�1.095, tp�1.6 s, ts� 2.9 s, K1�2. (a) Based upon these
specifications determine zD for the desired dominant closed-loop
poles. (b) For this value of zD are these dominant poles achievable?
(c) Show that the desired specifications can be achieved without the
use of a compensator. Hint: the complex poles of Gx(s) have a
z� 0.555; therefore, the approach utilized in the Second Design of
Sec. 10.4 may yield a zD< 0.555, for this problem, for the dominant
closed-loop poles that may result in achieving the performance
specifications. By trial and error, select a value of zD< 0.555 until a
satisfactory solution is achieved.

10.23. Given the system of Fig.10.29 with

GxðsÞ ¼
Kxðs þ 5Þ
sðs þ 1:5Þ H ðsÞ ¼ Khðs þ 0:25Þ

s þ 10

(a) The specification for the inner loop is that c(t)ss¼1for i(t)¼ u�1(t).
Determine the value of Kh in order to satisfy this condition. Hint:
Analyze C(s)/I(s). (b) It is desired that the dominant poles of C(s)/
R(s) be exactly at � 4
 j4. By use of method 1, with Kh having
the value determined in part (a), determine the values of A, Km, and
Kx that yield these dominant poles.

10.24. Draw the root locus for the system containing the PID cascade
compensator of Sec. 10.14.Verify the closed-loop transfer function of
Eq. (10.45) and the figures of merit.
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CHAPTER 11

For the design problems of Chap. 11, obtain the time and frequency
domain figure of meritMp, tp, ts,Km,Mm, om, of, and g for the uncom-
pensated and compensated systems.Where appropriate, use a CAD
package in solving these problems.

11.1. (a) For the basic control system of Prob. 8.17 adjust K to achieve an
Mm¼1.16 and determine the corresponding values of ofx

and g, and
all the other figures of merit. The value of g is to be maintained for
parts (b) through (d ). (b) Add a lag compensator,with a¼10. (c) Add a
lead compensator with a¼ 0.1. (d ) Add a lag-lead compensator with
a¼ 10. (e) Form a table comparing both frequency and time domain
figures of merit for all parts of this problem.Specify the time constants
of the compensator used in each case.

11.2. Acontrol system has the forward transfer function

GxðsÞ ¼
K

s2ð1þ 0:05sÞ
Theclosed-loopsystemis tobemadestablebyaddingacompensatorGc

and an amplifierA in cascade with Gx(s). AnMm¼1.41 is desired with
om�1.5 rad/s. (a) What kind of compensator is needed? (b) Select an
appropriate a and T for the compensator (c) Select the necessary value
of amplifier gain A. (d ) Plot the compensated curve. (e) Compare the
results of this problemwith thoseobtained inProb.10.2.

11.3. Abasic (uncompensated) control system unity feedback has a forward
open-loop transfer function

GxðsÞ ¼
K1

sð1þ s=4Þð1þ s=12Þ2

(a) For the basic system, find the gainK1 for g¼ 45�, and determine the
corresponding phase-margin frequency ofx

. (b) For the same phase-
margin angle as in (a), it is desired to increase the phase-margin
frequency to a value of of ¼ 3:2 with the maximum possible improve-
ment in gain. To accomplish this, a lead compensator is to be used.
Determine the values of a and T that will satisfy these requirements.
For these values of a and T, determine the new value of gain.
(c) Repeat part (b) with the lag-lead compensator of Fig. 11.16. Select
an appropriate value for T.With Gc(s) inserted in cascade with Gx(s),
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find the gain needed for 45� phase margin. (d ) Show how the compen-
sator has improved the system performance; i.e., determine all figures
of merit (see note for Chap.11problems) for each part of this problem.

11.4. (a)Using theGx(s) of Prob.11.3witK1¼2.6271determineofx
and gx for

the basic system. (b) Design a cascade lead compensator, using a¼ 0.1,
in order to achieve an of ¼ 3:2 rad/s, for this value of g¼ gx.
Determine the required value of T and A. (c) For the basic (uncompen-
sated) unity-feedback control system it is desired to increase Km by a
factor of approximately 10 while maintaining g¼ gx. Design a cascade
compensator that yields this increase inKm. Specify the values of a and
T so that jff Gcð joÞ j � 0:6� at o ¼ ofx

. Determine the value of A and
Km for the compensated system. (d ) It is desired that a phase margin
angle g¼ 45� and a phase-margin frequency of ¼ 3:2 rad/s be
achieved by use of the lag-lead compensator

G0cðsÞ ¼
ð1þ 100sÞð1þ 0:5sÞ
ð1þ 1000sÞð1þ 0:5asÞ

DeterminethevaluesofaandAthat yield thesevaluesofgandof for the
compensated system.Determine the ramperror coefficient of the com-
pensated system. (e) It is desired, for the compensated system of
Fig.11.20, that of ¼ 3:2 and g¼ 45� (note that the phase-margin angle
is determined essentially by the characteristics of a feedback unit).
Determine if the following proposed feedback unity will result in a
stable system.If a stable response can be achieved,determine the value
ofA that yields thedesired valueof gand the corresponding value ofof.

H ðsÞ ¼ KHs
2

1þ s=a
KH ¼ 100

Note: For all parts determine the figures of merit:Mp, tp, ts,Km, andMm,
and the actual values of of and g that are achieved.

11.5. The mechanical system shown that been suggested for use as a com-
pensating component in a mechanical system. (a) Determine whether
it will function as a lead or a lag compensator by finding X2(s)/F(s). (b)
SketchX2( jo)/F( jo).

11.6. Aunity-feedback control system has the transfer function

GðsÞ ¼ K

sðs þ 4Þ3 GcðsÞ
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(a) What is the value of the gain of the basic system for an Mm¼1.26?
(b) Design a cascade compensator Gc(s) that will increase the step-
error coefficient by a factor of 8 while maintaining the same Mm.
(c) What effect does the compensation have on the closed-loop
response of the system? (d ) Repeat the design using aminor-loop feed-
back compensator.

11.7. Aunity-feedback control system has the transfer function

GðsÞ ¼ GcðsÞGxðsÞ
where Gx(s)¼ 1/s2. It is desired to have an Mm¼1 with damped
natural frequency of about 12.0 rad/s. Design a compensator Gc(s)
that will help to meet these specifications.

11.8. A system has

G2ðsÞ ¼
0:8ð1þ 0:0625sÞ

1þ 0:01s
G3ðsÞ ¼

1
s

For the control system shown in Fig. (a), determine the cascade com-
pensatorGc(s) required tomake the systemmeet the desired open-loop
frequency-response characteristics shown in Fig. (b).What is the value
ofMm for the compensated system?
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11.9. A system has the transfer function

GxðsÞ ¼
Kxðs þ 0:4Þ

sðs þ 4Þðs þ 0:61
 j0:91Þ

(a) ForMm¼1.12 determineofx
, g,K1, andom for the original system.

For parts (b) and (c) this value of g is to be maintained. (b) Add a lag
compensator with a¼10, determineT, and adjust the gain to achieve
the desired value of g. (c) Add a lead compensator with a¼ 0.1, deter-
mine T, and adjust the gain to achieve the desired value of g. (d )
Determine both frequency and time domain figures of merit, for all
part of this problem, and compare these values in a tabular format.

11.10. Repeat Prob.10.1(2), usingMm¼1.16 as the basis of design.Compare
the results.

11.11. Repeat Prob. 10.14 but solve by the use of Bode plots. Note: Limit G1

andG2 to less than100. (a) Assume that the forward transfer function
for the uncompensated unity-feedback system is given by G2G3G4,
withG1¼A1¼1.Thus the control ratio is

�ðsÞ
RðsÞ ¼

A2G3ðsÞG4ðsÞ
1þ A2G3ðsÞG4ðsÞ

Solve for the value ofA2 that yields the desired value ofMm�Mp¼1.2.
Determine the values of ofx

, g,Mp, tp, ts, and K1, (b) For the compen-
sated system, with A1 6¼1, incorporate G4 into the minor loop.
DetermineH2(s) and A1 in order to achieve the value of g determined
in (a) and determine all figures of merit for the compensated system,
including of. (c) Compare the results of this problem with those of
Prob.10.13.

For Probs. 11.12 through 11.17, analyze the 0-dB crossing slope of the
straight-line Bode plot of Lm C/Eof system stability.

11.12. A system has

G1ðsÞ ¼ 25 G2ðsÞ ¼ 5 G3ðsÞ ¼
4

sþ 2
G4ðsÞ ¼

1
s

H1ðsÞ ¼
s

sþ 1

System specifications are K1¼200s�1, g�þ40�, and of ¼ 8 rad/s.
Using approximate techniques, (a) determine whether the feedback-
compensated system satisfies all the specifications; (b) find a cascade
compensator to be added between G1(s) and G2(s), with the feed-
back loop omitted, to produce the same C( jo)/E( jo) as in part (a);
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(c) determine whether the system of part (b) satisfies all the
specifications.

11.13. For the feedback-compensated system of Fig.11.20,

GxðsÞ ¼
4ð1þ s=5Þ

sð1þ 2Þð1þ s=10Þ H ðsÞ ¼ KtTs
2

1þ Ts

(a) For the original system, without feedback compensation, deter-
mine the values of A and ofx

for a phase-margin angle g¼ 50�. (b)
Add the minor-loop compensator H(s) and determine, for g¼ 50�,
of ¼ 2:4 rad/s, and K1¼140, the new value of A and the values of
Kt and T. The specifications are to be dictated by H(s). Hint: Adjust
Kt so that the following conditions are satisfied:

o1 � of=20 o2 � 20of

where o1 and o2 are the intersection frequencies of Lm Gx vs. o and
Lm [1/H( jo)].
(c) Determine the frequency and time domain figures of merit for
parts (a) and (b). (d ) Compare the results.

11.14. The system represented in the figure is an ac voltage regulator.
(a) Calculate the response time of the uncompensated system,when
the switch S is open, to an output disturbance d2¼ u�1(t). Calculate
vout(t) for t¼Ts¼ 4/s, where s is with the switch S open. (b) Repeat
part (a) with the switch S closed. (c) Compare the values obtained in
parts (a) and (b) and comment on any difference in performance.
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11.15. The simplified pitch-attitude-control system used in a space-launch
vehicle is represented in the block diagram. (a) Determine the upper
and lower gain margin. (b) Is the closed system stable?

11.16. Repeat Prob. 10.19 using the log plots for Mm¼1.16. (a) For the
uncompensated system adjust Kx to yield the value of Mm¼1.16 and
determine the resulting values ofofx

, g, and all figures of merit. (b) In
determining the value of Kt to use, first determine the range of values
it can have in order to have an intersection between LmGx andLm [1/
H] and to maintain a stable open-loop C(s)/I(s), transfer function. A
root-locus sketch for Gx(s)H(s)¼�1 reveals that C(s)/I(s) can have
right-half plane poles. Thus, for a stable C(s)/I(s) the 0 dB crossing
slope of Lm GxHmust be greater than� 40 dB/dec. (c) Select a value
of Kt in the allowable range and determine the value of A that yields
the desired value of g. (d ) Obtain the exact expressions for C(s)/E(s)
and C(s)/R(s). (e) Determine all figures of merit for the compensated
system. ( f ) Compare with the results in Prob. 10.3. Obtain the time
response.Hint: since jff 1=Hð joÞ j ¼ �90�, then, for g< 90�, the new
of is close to the interaction of 1/H( jo) and G( jo). Note: For Prob.
10.19 (1), for Kt¼1, the system is unstable if the value of Kx is set at
the value obtained for the uncompensated system tomeet the desired
value ofMm.

11.17. (a) For the uncompensated unity-feedback control systemwhere

GxðsÞ ¼
Kxð1þ sÞ
s2ð1þ s=8Þ

determine, for g¼ 50�, K2x and ofx
. (b) Assume K2x has the value

determined in part (a) and is not adjustable. For the feedback system
of Fig. 11.20 the feedback compensator is given by H( jo)¼
KHH

00( jo), where KH¼KtT and H
00( jo)¼ ( jo)2/(1þjoT ). Draw

plots of Lm [1/ H00( jo)] and ff 1=H00ð joÞ : (c) It is desired, for the com-
pensated system, that g¼ 50� and the phase-margin frequency
of ¼ 4ofx

should be determined essentially by the characteristics of
the feedback unit. Using straight-line approximations, determine
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graphically, as a first trial, the values ofT,Kt, andA that yield this value
of gand the corresponding value ofof.Analyze the slope of LmC( jo)/
E( jo) at the 0 dB crossing for system stability. (d ) Compare the values
ofMp,Mm, om, tp, ts, and K2 of part (c) with part (a). For the value of A
determined graphically in part (c),what are the actual values ofof and
g of part (c)?

CHAPTER 12

Use a CAD package in solving the design problem of Chap. 12,where
appropriate.

12.1. For the control system of Prob. 10.22 the desired specifications are
1<Mp�1.123, ts� 3 s, tp�1.6 s, and K1�1.5 s�1. (a) Synthesize a
desired control ratio that satisfies these specifications. (b) Using the
Guillemin-Truxal method (see Sec. 12.3), determine the required
compensatorGc(s).

12.2. The desired closed-loop time response for a step input is achieved by
the system having the control ratio:

MT ðsÞ ¼
23:1ðs þ 20Þ

ðs2 þ 2s þ 10Þðs þ 2:2Þðs þ 21Þ
Given

GxðsÞ ¼
10

sðs2 þ 4:2s þ 14:4Þ GcðsÞ ¼ A
s þ a
s þ b

(a) Determine the required passive cascade compensator Gc(s) for the
unity-feedback system.
(b) CompareMp, tp, and ts for the desired and actualM(s).

12.3. The desired closed-loop time response for a step input is achieved by
the system having the control ratio

MT ðsÞ ¼
19:50ðsþ2Þ

ðs2þ4sþ13Þðsþ3Þ GxðsÞ ¼
1

sðsþ1Þ GcðsÞ ¼A
ðsþaÞ
sþ b

(a) Determine, by the Guillemin-Truxal method, a passive cascade
compensator Gc(s) for unity-feedback system with the Gx(s) shown.
(b) It is desired to simplify the compensator to the form shown.
Determine the values of A, a, and b that will yield the best results.
(c) CompareMp, tp, ts, and K1 for the desired and the actual systems.

12.4. Determinea cascadecompensator for a unity-feedback systemthathas
the open-loop transfer function Gx(s)¼ 10/[s(sþ 4)(sþ 6)]. Determine
the simplest possible approximate compensator transfer function that
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yields the time response, for a step input, that is achieved by the
following desired control ratio:

MT ðsÞ ¼
29:94ðs þ 2:1Þ

s4 þ 12s3 þ 43:99s2 þ 79:42s þ 62:86

12.5. For the nonunity-feedback control system of Fig.10.3,

GxðsÞ ¼
Kx
Qw

i¼1 ðs þ aiÞQn
j¼1 ðs þ bjÞ

" #

n�w

MT ðsÞ ¼
GxðsÞ

1þ GxðsÞH ðsÞ
¼ K 0

Qw0
m¼1 ðs � zmÞQn0

k¼1 ðs � pkÞ

" #

n0�w0

Determinewhether a feedback compensatorH(s) (other than just gain)
can be evaluated by use of the Guillemin-Truxal method such that the
order of its denominator is equal to or greater than the order of its
numerator.

12.6. Determine a cascade compensator by the Guillemin-Truxal method
where

GxðsÞ¼
20

sðsþ3Þðsþ7Þ MT ðsÞ¼
28:86

ðsþ1:999Þðsþ7:305Þðs2þ4sþ8:84Þ
12.7. Repeat Prob. 4.17, where, for disturbance rejection, it is desired that

y(t)ss¼ 0 for D(s)¼Do/s with a1¼0. For this problem Y(s) represents
the output of a nonunity-feedback control system, where Gx(s)¼
KxG

0(s)¼N1/D1 is fixed (the degree of numerator is w1 and the degree
of the denominator is n1) and H(s)¼KhH

0(s)¼N2/D2 is to be deter-
mined (the degree of the numerator is w2 and the degree of the denomi-
nator is n2).Hint: First determineY(s) in terms ofN1,N2,D1, andD2 and
the degree of its numerator and denominator in terms of w1,w2, n1, and
n2. For case (2) of Prob. 4.17, consider n¼wþ1and n>wþ1.

12.8. The figure below represents a disturbance-rejection control system,
where

GxðsÞ ¼
10

sð0:25s þ 1Þ
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(a) The following feedback unit

H ðsÞ ¼ KH ðs þ 4Þðs þ 8Þ
sðs þ aÞ KH > 0

is proposed to meet the specifications of y(t)ss¼ 0 for d(t)¼ u�1(t),
jy(tp)j � 0.01, and LmjYð joÞ=Dð joÞj � �40 dB ¼ �Lm ap for 0 �
o � 10 rad=s. Select the value of a that satisfies these specifications.
(b) Graphically, by use of straight-line asymptotes, determine a value
of KH that meets these specifications with the specified H(s). (c) For
your value of KH, determine whether the system is stable by use of
Routh’s stability criterion. Correlate this with the slope of Lm GxH

at the 0-dB crossing. (d ) Obtain a plot of y(t) vs. t and determine ap
and tp.Note: Adjust KH so that jyðtpÞj ¼ ap.

12.9. For the disturbance-rejection control system of Prob.12.8

GxðsÞ ¼
30

sðs þ 3Þ and H ðsÞ ¼ HxðsÞHyðsÞ

where

HxðsÞ ¼
200

s þ 200
HyðsÞ ¼ Ky

NyðsÞ
DyðsÞ

¼ Kyðs � z1Þðs � z2Þ
sðs � p1Þ

Determine the feedback compensator Hy(s) such that the control
system can satisfy the following specifications for a unit step distur-
bance input d(t).

jyðtpÞj � 0:01 ¼ ap tp � 0:15s yðtÞss ¼ 0

and

Lm
Yð joÞ
Dð joÞ










 � �40 dB ¼ �Lm ap

within the bandwidth of 0 <o� 15 rad/s. Analyze the 0-dB crossing
slope of the straight-line Bode plot of LmGxH for system stability
and correlate this to a root-locus sketch ofGx(s)H(s)¼�1.

12.10. Analyze the time response characteristics of the control ratio

Y ðsÞ
RðsÞ ¼

Kðs þ aÞ
ðs þ 1:5Þðs þ 6Þ

with a unit step forcing function, for the following values of a: 0.01,
0.1, 1, 10, 50. For each value of a, adjust the value of K so that Ka¼ 9.
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[See Eq. (4.68).] Discuss the characteristics of overdamped versus
underdamped responses for an all pole control ratio.

12.11. The following block diagram is proposed tominimize the effect of the
unwanted disturbanceTL on the output response c(t):

(a) Determine C(s)/TL(s) only in terms of the symbols Ga(s),
Gx(s) and Hb(s). That is, do not use the actual transfer
functions.

(b) Determine thecondition, in the frequency domain,thatmust
be satisfied so that Hb(s) essentially determines whether
the following specifications can be met:

Lm
Cð joÞ
TLð joÞ
� �

� �60 dB

for frequency range 0 � o � 4 rad=s

Use only the straight-line approximation technique.
Hint: Determine C(s)/TL(s) so that it is directly a function
of 1/Hb(s), and again do not use the actual transfer
functions.

(c) Determine the value of Kb that can satisfy the frequency-
domain specifications where

GxðsÞ ¼
1

s þ 1
GaðsÞ ¼

1
s

HbðsÞ ¼
Kbðs þ 2Þ
sðs þ 100Þ

(d ) Does this value of Kb yield a stable system? Illustrate your
answer by a root-locus sketch.

(e) If the value ofKb results in a stable system,determine c(tp),
tp, ts, and c(t)ss forTL¼1.

12.12. The following figure represents a disturbance-rejection control
systemwhere

GxðsÞ ¼
50ðs þ 5Þ

sðs þ 0:5Þðs þ 10Þ
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The feedback unit

H ðsÞ ¼ Khðs þ 1Þ
sðs þ 5Þ Kh > 0

is proposed to meet the specifications of c(t)ss¼ 0 for a unit-step
disturbance and

Lm
Cð joÞ
TLð joÞ
� �

��40dB for frequency range 0� o � 5 rad=s

(a) Graphically, by use of straight-line asymptotes, determine a value
of Kh that results in these specifications being met with the specified
H(s). (b) With this value of Kh, plot LmCð joÞ=TLðjoÞvs:o. (c) Does
this value of Kh yield a stable system?

12.13. Given the nonunity-feedback system:

where

HpðsÞ ¼
10

s þ 1
Hpa ¼

100
s þ 100

GbðsÞ ¼
2:2557

s2 þ 2:148s þ 51:266
KT ¼ 7:4

The system specifications are yðtpÞ � 0:01 for ut(t)¼ 1.25u�1(t),
y(t)ss¼ 0, ob�125 rad/s (bandwidth), and ts� 4 s [ts is based on
y(ts)¼ 0.0002, i.e., 2 percent of the maximum allowable y(tp)]. Hc(s)
is a third-order over a third-order feedback compensator. (a)
Determine Hc(s) that results in the system achieving the desired spe-
cifications. Your solution should follow the design procedure of
Sec. 12.6 and include a figure containing plots for your design that
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correspond to those in Fig. 12.9. (b) For your final design obtain the
following plots: y(t) vs. t, Lm½yð joÞ=Utð joÞ� vs: o and the root locus.

CHAPTER 13

Where appropriate use a CAD package to solve these problems.
13.1. For a single-input single-output system the open-loopmatrix state and

output equations are _xx ¼ Axþ bu and y ¼ c
T
x. Derive the overall

closed-loop control ratio for a state-variable feedback system with
u¼ k

T
x:

Y ðsÞ
RðsÞ ¼ c

T ½sI� ðA� bk
T Þ��1b

13.2. For the system described by

D3y þ 9D2y þ 26Dy þ 24y ¼ 5u

(a) Draw the simulation diagram. (b)Write thematrix state and output
equations for the simulation diagram. (c) Rewrite the state equation
and the output equation in uncoupled form. (d ) From part (c)
determine whether the system is completely controllable, observable,
or both.

13.3. (a) Determine whether the following systems are completely observa-
ble. (b)Determinewhether they are completely controllable. (c)Obtain
the transfer functions. (d ) Determine how many observable states and
how many controllable states are present in each system. (e) Are the
systems stable?

ð1Þ _xx ¼ 1 0
2 2

� �
xþ 1

0

� �
u y ¼ 2 1

� �
x

ð2Þ _xx ¼
0 1 0
0 0 1
0 �5 �6

2
4

3
5xþ

1
1
1

2
4

3
5u y ¼ ½ 0 1 1 �x

ð3Þ _xx ¼
1 0 0
0 2 1
0 �2 �1

2
4

3
5xþ

1
0
1

2
4

3
5u y ¼ ½ 1 1 0 �x

ð4Þ _xx ¼
�1 0 0
0 �1 0
0 �2 �2

2
4

3
5xþ

0
1
1

2
4

3
5u y ¼ ½ 1 1 0 �x
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13.4. A single-input single-output system is described by the transfer
function

GðsÞ ¼ s2 þ 10s þ 24
s4 þ 9s3 þ 26s2 þ 24s

(a) Derive the phase-variable state equation.Draw the block diagram.
The Ac matrix is singular. How is this interpreted physically? (b)
Represent the system in terms of canonical variables.Draw the corre-
sponding block diagram. (c) Is the systemobservable and controllable?

13.5. A control system is to use state-variable feedback. The plant has the
given transfer function. The system is to meet the following require-
ments: (1) it must have zero steady-state error with a step input,
(2) dominant poles of the closed-loop control ratio are to be � 2
 j3,
(3) the system is tobe stable for all valuesA> 0, and (4) the control ratio
is to have low sensitivity to increase in gain A. A cascade elementGc(s)
must be added to meet this requirement.

(a) Draw the block diagram showing the state-variable feedback.
(b) Determine Heq(s). (c) Find Y(s)/R(s) in terms of the state-variable
feedback coefficients. (d ) Determine the desired control ratio Y(s)/
R(s). (e) Determine the necessary values of the feedback coefficients.
( f ) Sketch the root locus for G(s)Heq(s)¼�1 and show that the
system is insensitive to variations in A. (g) Determine Geq(s) and K1.
(h) DetermineMp, tp, and tswith a step input.

13.6. A control system is to use state-variable feedback. The plant has the
given transfer function. The system is to meet the following require-
ments: (1) it must have zero steady-state error with a step input, (2) the
dominant poles of the closed-loop control ratio are supposed to be
� 1
j2, (3) the system is to be stable for all values A> 0, and (4) the
control ratio is to have low sensitivity to increase in gain A and is to
contain a zero at s¼�1.5. A cascade element may be added to meet
this requirement.

GxðsÞ ¼
Aðs þ 3Þ

sðs þ 1Þðs þ 6Þ
(a) Determine the desired control ratioY(s)/R(s). (b) Draw the block
diagram showing the state-variable feedback.Use the form illustrated
in Fig. 13.17 where the term (sþ 2)/(sþ1) in the figure is changed to
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(sþ 3)/(sþ1) and the transfer function1/(sþ 5) is replaced by (sþ1.5)/
(sþ 6) for this problem. (c) Determine Heq(s). (d ) Find Y(s)/R(s) in
terms of the state-variable feedback coefficients. (e) Determine the
necessary values of the feedback coefficients. (f ) Sketch the root
locus for G(s)Heq(s)¼� 1 and show that the system is insensitive to
variations in A. (g) Determine Geq(s) and K1. (h) DetermineMp, tp, and
tswith a step input.

13.7. Design a state-variable feedback system for the given plant Gx(s). The
desired complex dominant roots are to have a z¼ 0.5. For a unit-step
function the approximate specifications are Mp¼1.2, tp¼ 0.2 s, and
ts¼ 0.5 s. (a) Determine a desirableM(s) that will satisfy these specifi-
cations. Use steps 1 to 6 of the design procedure given in Sec. 13.6 to
determine k. Draw the root locus for G(s)Heq(s)¼�1. From it show
the ‘‘good’’ properties of state feedback. (b) Obtain y(t) for the final
design. Determine the values of the figures of merit and the ramp-
error coefficient.

13.8. For the plants of Prob. 10.3 design a state-variable feedback system
utilizing the phase-variable representation. The specifications are
that dominant roots must have z¼ 0.5, a zero steady-state error for a
step input, and ts � 1

3 s. (a) Determine a desirableM(s) that will satisfy
the specifications.Use steps1to 6 of the design procedure given in Sec.
13.6 to determine k. Draw the root locus for G(s)Heq(s)¼�1. From it
show the ‘‘good’’ properties of state feedback. (b) Obtain y(t) for the
final design. Determine the values of the figures of merit and the
ramp-error coefficient.

13.9. Design a state-variable feedback system that satisfies the following
specifications: (1) for a unit-step input, Mp¼1.10 and Ts� 0.6 s;
and (2) the system follows a ramp input with zero steady-state error.
(a) Determine the expression for y(t) for a step and for a ramp input.
(b) For the step input determine Mp, tp, and ts. (c) What are the values
of Kp,Kv, and Ka?
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13.10. Aclosed-loop systemwith state-variable feedback is to have a control
ratio of the form

Y ðsÞ
RðsÞ ¼

Aðs þ 2Þðs þ 0:4Þ
ðs2 þ 4s þ 8Þðs � p1Þðs � p2Þ

where p1 and p2 are not specified. (a) Find the two necessary relation-
ships between A, p1, and p2 so that the system has zero steady-state
error with both a step and a ramp input. (b)WithA¼100,use the rela-
tionships developed in (a) to find p1 and p2. (c) Use the system shown
in Fig. 13.17 with the transfer function 1/(sþ 5) replaced by (sþ 0.4)/
(sþ 5). Determine the values of the feedback coefficients. (d ) Draw
the root locus for Gx(s)Heq(s)¼�1. Does this root locus show that
the system is insensitive to changes of gain A? (e) Determine the time
response with a step and with a ramp input. Discuss the response
characteristics.

13.11. Design a state-variable feedback system, for each of the plants shown,
that satisfy the following specifications: for plant (1) the dominant
roots must have a z¼ 0.55, a zero steady-state error for a step input,
and Ts¼ 0.93 s; and for plant (2) the dominant roots must have a
z¼ 0.6, a zero steady-state error for a step input, and Ts¼ 0.8 s.

13.12. For the system of Fig. 13.15 it is desired to improve ts from that
obtained with the control ratio of Eq. (13.119) while maintaining an
underdamped response with a smaller overshoot and faster settling
time. Adesired control ratio that yields this improvement is

Y ðsÞ
RðsÞ ¼

1:467ðs þ 1:5Þ
ðs þ 1:1Þðs2 þ 2s þ 2Þ

The necessary cascade compensator can be inserted only at the
output of the amplifier A. (a) Design a state-variable feedback
system that yields the desired control ratio. (b) Draw the root locus
for G(s)Heq(s) and comment on its acceptability for gain variation. (c)
For a step input determineMp, tp, ts, and K1.Compare with the results
of Examples1 to 3 of Sec.13.12.
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13.13. For Example 3, Sec. 13.12, determine Geq(s) and the system type.
Redesign the state-variable feedback system to make it Type 2.

13.14. The desired control ratio MT (s) is to satisfy the following require-
ments: the desired dominant poles are given by s 2þ 4sþ 8; there are
no zeros; e(t)ss¼ 0 for a step input; and the system is insensitive to
variations in gain A. Determine anMT (s) that achieves these specifi-
cations for the plant

GxðsÞ ¼
Aðs þ 3Þ

sðs þ 1:2Þðs þ 2:5Þðs þ 4Þ
13.15. Repeat Prob.13.14 with the added stipulation that e(t)ss¼ 0 for a ramp

input. A cascade compensator may be added to achieve the desired
specifications. A zero may be required inMT (s) to achieve e(t)ss for a
ramp input.Compare the figures of merit with those of Prob.13.14.

13.16. For the following plant

GxðsÞ ¼
Aðs þ 2Þ

sðs2 þ 4s þ 3:84Þ
(a) Determine a desired control ratio MT (s) such that the following
specifications are met: (1) the dominant roots are at �1
j1, (2) the
zero at�2 does not affect the output response, (3) e(t)ss¼ 0 for a step
input, and (4) the system sensitivity to gain variation is minimized.
(b) To achieve the desired MT (s), will a cascade unit in conjunction
with Gx(s) be needed? If your answer is yes, specify the transfer func-
tion(s) of unit(s) that must be added to the system to achieve the
desired system performance.

13.17. Given the following closed-loop control ratio

M ðsÞ ¼ Y ðsÞ
RðsÞ ¼

Aðs þ aÞ2
ðs2 þ 4s þ 8Þðs þ 2Þðs þ bÞ

(a) With A, a, and b unspecified, determine Geq(s). (b) For part (a),
determine the condition that must be satisfied for Geq(s) to be aType
2 transfer function. (c) It is desired that e(t)ss¼ 0 for step and ramp
inputs. Determine the values of A, a, and b that will satisfy these
specifications.

13.18. An open-loop plant transfer function is

GðsÞ ¼ 5
sðs þ 2Þðs þ 4Þ

(a) Write state and output equations in control canonical (phase-
variable) form. (b) Compute the feedback matrix k

T
p , which assigns
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the set of closed-loop eigenvalues {� 0.5
 j0.6, �60}. (c) Compute
the state and output responses for the unit-step input r(t)¼ u�1(t)
and x(0)¼ [1 0 1]T. Plot the responses.

13.19. For the plant represented by

_xx ¼ 0 1

�2 �4

" #
xþ 0

2

" #
u

Design the feedback matrixK that assigns the set of closed-loop plant
eigenvalues as {� 3, �6}. Determine the state responses with the
initial values x(0)¼ [1 �1]T.

13.20. ASISOsystem represented by the state equation _xxp ¼ Apxp þ bpu has
the matrices

Ap ¼
�1 0 0

0 �2 �2
�1 0 �3

2
64

3
75 bp1 ¼

1

1

1

2
64

3
75 bp2 ¼

1

0

0

2
64

3
75

For each bp: (a) Determine controllability. (b) Find the eigenvalues.
(c) Find the transformation matrix T that transforms the state equa-
tion to the control canonical (phase-variable) form. (d ) Determine
the state-feedback matrix kTc required to assign the eigenvalue spec-
trum sðAclÞ ¼ f�2� �4� �6g .

13.21. For the system of Prob. 13.20, determine the feedback matrix k

that assigns the closed-loop eigenvalue spectrum sðAclÞ ¼
f�1þ j2��1�j2� �2g.

13.22. Repeat Prob.13.20 with

Ap¼
0 1 0

0 �2 �3
0 0 �6

2
64

3
75 bp¼

0

2

1

2
64

3
75 sfAclg¼ f�1þ j1�1� j1� �4g

13.23. _xx ¼ Axþ Bu,where

A ¼

�3 1 0 0

�2 0 1 0

0 1 1 0

0 0 0 1

2
66664

3
77775 B ¼

0

0

1

1

2
66664

3
77775
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(a) Determine controllability. (b) Transform the state equation to
the control canonical form. Determine the matrix T. (c) Design the
feedback matrixK that assigns the closed-loop eigenvalue spectrum

sðAclÞ ¼ f�3þ j2� � 3� j2� � 5� 10g

(d ) Obtain the time response of the closed-loop systemwith zero input
and the initial conditions x(0)¼ [1 0 0 1]T.

CHAPTER 14

14.1. A unity-feedback control system has the following forward transfer
function:

GðsÞ ¼ Kðs þ aÞ
smðs þ bÞðs2 þ cs þ dÞ

The nominal values are K¼10, a¼ 4, b¼ 2, c¼ 2, and d¼ 5. (a) With
m¼1, determine the sensitivity with respect to (1) K, (2) a, (3) b, (4) c,
and (5) d. (b ) Repeat withm¼ 0.

14.2. The range of values of a is 3� a�1,Mp�1.095 for a unit-step input,
and Ts� 0.9 s. Design a state-variable feedback system that satisfies
the given specifications and is insensitive to variation of a. Assume
that all states xi are accessible and are fed back directly through the
gains ki. Obtain plots of y(t) for a¼1, a¼ 2, and a¼ 3 for the final
design. CompareMp, tp, ts, and K1. Determine the sensitivity functions
for variation ofA and a (at a¼1, 2, and 3).

14.3. Repeat Prob.14.2 but with state X3 inaccessible.
14.4. Determine the sensitivity function for Example1in Sec.13.12 for varia-

tions in A. Insert the values of ki in Eq. (13.118) and then differentiate
with respect toA to obtain SM

A .
14.5. For Example 2, Sec.13.12, obtainY(s)/R(s) as a function of KG [see Fig.

13.17 with a¼1].Determine the sensitivity function SM
KG
.

14.6. The desired control ratio for a tracking system is

MT ðsÞ ¼
KGðs þ 1:5Þ

ðs þ 1:1Þðs2 þ 2s þ 2Þðs � pÞ
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This control ratio must satisfy the following specifications: e(t)ss¼ 0
for r (t)¼R0u�1(t), and jSM

KG
ð joÞj must be a minimum over the range

0�o�ob. (a) Determine the values of KG and p that satisfy these
specifications.The transfer function of the basic plant is

GxðsÞ ¼
Kxðs þ 3Þ

sðs þ 1Þðs þ 5Þ ¼
Kxðs þ 3Þ

s3 þ 6s2 þ 5s

A controllable and observable state-variable feedback-control system
is to be designed for this plant so that it produces the desired control
ratio above. (b) Is it possible to achieve MT (s) using only the plant in
the final design? If not,what simple unit(s)must be added to the system
to achieve the desired system performance? Specify the parameters of
these unit(s). Using phase-variable representation, determine k

T for
the state-variable feedback-control system.Assumeappropriate values
to perform the calculations.

14.7. For the state-feedback system shown, all the states are accessible, the
parameters a and b vary, and sensors are available that can sense all
state variables. The values of k1, k2, k3, and A are known for a desired
MT (s) based on nominal values for a and b. It is desired that the system
response y(t) be insensitive to parameter variations. (a) By means of a
block diagram indicate an implementation of this design to minimize
the effect of parameter variations on y(t) by use of physically realizable
networks. (b) Specify the required feedback transfer functions, ignor-
ing sensor dynamics.

14.8. For the state-feedback control system of Prob. 14.7 with a¼ 4, b¼ 3
and a and b do not vary, the specifications are as follows: e(t)ss¼ 0 for
r(t)¼ u�1(t), jSM

A ð joÞj must be a minimum over the range 0�o<ob,
and the dominant poles of MT (s) are given by s2þ 4sþ13. Determine
(a) anMT(s) that achieves these specifications and (b) the values forKG,
k1,k2, and k3 that yield thisMT (s).
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14.9. Use the Jacobian matrix to determine the stability in the vicinity of
the equilibrium points for the system described by:

ðaÞ _xx1 ¼ 3x1 ¼ x21 � 2x1x2 þ u1
_xx2 ¼ �x1 þ x2 þ u1u2� where u0 ¼ 0 1

� �T
ðbÞ _xx1 ¼ 2x1 � 4x1x2

_xx2 ¼ þx21 � 2x2
ðcÞ _xx1 ¼ �4x21 þ x2

_xx2 ¼ x1 � 2x2

14.10. For the systems described by the state equations

ð1Þ _xx1¼ x1�x21�x1x2�2u1� _xx2¼þx1þ2x2�u1u2� u0¼½1 0�T
ð2Þ _xx1¼ x2� _xx2¼2x1�3x2þ0:25x23� _xx3¼2x1x3þx3
ð3Þ _xx1¼4x2� _xx2¼þ2x2�sinx1

(a) Determine the equilibrium points for each system. (b) Obtain the
linearized equations about the equilibrium points. (c) Determine
whether the system is asymptotically stable or unstable in the neigh-
borhood of its equilibrium points.

CHAPTER 15

15.1. By use of Eqs. (15.13) and (15.14),verify the followingZ transforms in
Table15.1: (a) entry 4, (b) entry 7, (c) entry12, (d ) entry14.

15.2. Determine the inverseZ transform, in closed form, of

ðaÞ F ðzÞ ¼ zðz� 0:2Þ
ðz� 1Þðz2� zþ 0:41Þ ðbÞ F ðzÞ ¼

�4ðz2þ zÞ
ðz� 1Þ2ðz� 0:6Þðz� 0:5Þ

15.3. For the sampled-data control system of Fig. 15.14 the output
expression is:

CðzÞ ¼ 0:5Kðz2 � 0:48zÞ
ðz � 1Þðz2 � z þ 0:26Þ

whereT¼1 s, r (t)¼ u�1(t).
(a) Apply the partial fraction expansion to the expression C(z)/z
by the method of Sec. 15.7. (b) Using the resulting C(z) expression,
i.e., z[C(z)/z], of part (a) determine c(kT) by use of Table 15.1. For the
complex poles use entry12 of Table15.1. (c) Determine c(0) and c(1).
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15.4. Repeat Prob.15.3 for

CðzÞ ¼ zðz � 0:1Þðz þ 0:2Þ
ðz � 1Þðz � 0:6Þðz � 0:8Þ

15.5. Repeat Prob.15.2 but use the power-seriesmethod to obtain the open
form for f (kT ).

15.6. Determine the value of c(2T ) for

CðzÞ ¼ z4 þ z3 þ z2

z4 � 2:8z3 þ 3:4z2 � 2:24z þ 0:63

by use of the power series expansion method.
15.7. Determine the initial and final values of the Z transforms given in

Prob.15.2, i.e., solve for c(0) and c(1),where R(z)¼ z/(z�1).
15.8. Let F(z)¼C(z)/E(z) in Prob.15.2. Determine the difference equation

for c(kT ) by use of the translation theorem of Sec.15.4.
15.9. Based upon the time domain to the s- to the z-plane correlation deter-

mine the anticipated values of tp and Ts for c(kT ) for the function

CðzÞ ¼ Kzðz þ 0:2Þ
ðz � 1Þðz2 � 1:4z þ 0:74Þ

whereT¼ 0.1 s and r (t)¼ u�1(t).
15.10. Determine the values of c(0) and c(1) for

CðzÞ ¼ Kzðz þ 0:1Þ
ðz � 1Þðz2 � 1:6z þ 1Þ

where r (t)¼ u�1(t).
15.11. For the sampled-data systems shown, determine C(z) and C(z)/R(z),

if possible, from the block diagram. Note: Write all basic equations
that relate all variables shown in the figure.
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15.12. (CAD Problem) For the sampled-data control system of Fig. 15.14,
Gx(s) is given by Eq. (15.15), where a¼ 4 and T is unspecified.
(a) Determine G(z) and C(z)/R(z). (b) Assume a sufficient number of
values ofT between 0.01and10 s, and for each value ofTdetermine the
maximumvalue thatK can have for a stable response. (c) PlotKmax vs.
T and indicate the stable region. (d ) Obtain the root locus for this
system with T¼ 0.1 s. (e) Use Eq. (15.19) to locate the roots on the
root locus which have a z¼ 0.65 and determine the corresponding
value of K. ( f ) For a unit step input determine c(kT ),Mp, tp, and ts.

15.13. For the sampled-data systemof Fig.15.14 the plant transfer function is

GxðsÞ ¼
Kx

sðs þ 2Þðs þ 10Þ

where T¼ 0.05 s. The desired performance specifications are:
Mp¼1.095 and ts¼ 2 s. (a) Determine the value zD that the desired
dominant roots must have. (b) For this value of zD, by use of the root-
locus method, determine the value of Kx and the roots of the charac-
teristic equation. (c) For the value of Kx of part (b) determine the
resulting C(z)/R(z). (d ) For a unit step forcing function determine
the actual values ofMp and ts for the uncompensated system.
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CHAPTER 16

16.1. Given

ð1Þ GðsÞ ¼ Kðs þ 3Þðs þ 20Þ
sðs þ 1:5Þðs þ 2
 j3Þðs þ 10
 j25Þ

ð2Þ GðsÞ ¼ Kðs þ 5Þðs þ 10Þ
sðs þ 1Þðs þ 2
 j2Þðs þ 10
 j25Þ

and T¼ 0.04 s. Map each pole and zero of G(s) by use of Eq. (16.8)
and z¼ esT. Compare the results with respect to Fig. 16.5 and analyze
the warping effect.

16.2. Repeat Prob.16.1,withT¼ 0.01s and1s, for:

ð1Þ s¼�1 ð2Þ s¼�500 ð3Þ s¼�1000
 j500

ð4Þ s¼�2þ j0:5 ð5Þ s¼�0:1þ j0:1 ð6Þ s¼�0:8þ j0:6

16.3. The poles and zeros of the following desired control ratio of the PCT
system have been specified:

ð1Þ CðsÞ
RðsÞ
� �

M
¼ Kðsþ 8Þ
ðsþ 5
 j7Þðsþ 10Þ ð2Þ

CðsÞ
RðsÞ
� �

M
¼ Kðsþ 8Þ
ðsþ 4
 j8Þðsþ 6Þ

(a)Whatmust be the value ofK in order for y(t)ss¼ r(t) for a step input?
(b) Avalue of T¼ 0.1s has been proposed for the sampled-data system
whose design is to be based upon the above control ratio. Do all the
poles and zeros lie in the good Tustin approximation region of Fig.
16.5? If the answer is no, what should be the value of T so that all the
poles and zeros do lie in this region?

16.4. (a) Obtain the PCT equivalent for the sampled-data system of Prob.
15.12 for T¼ 0.1s. (b) Repeat parts d through f of Prob. 15.12 for the
PCTequivalent. (c) Compare the results of part b with those of parts
d through f of Prob. 15.12. This problem illustrates the degradation in
system stability that results in converting a continuous-time system
into a sampled-data system.

16.5. (CAD Problem) The sampled-data control system of Prob.16.4 is to be
compensated in the manner shown in Fig.16.1.Determine a controller
by the DIR technique that reduces ts of Prob. 16.4, by one-half.
DetermineMp, tp, ts, and Km.

16.6. Repeat Prob. 16.5 by the PCT DIG technique. (a) By use of Eq. (16.8)
obtain [Dc(z)]TU and the control ratio [C(z)/R(z)]TU. (b) Obtain
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the values of Mp, tp, ts, and Km compare these values with those of
Prob.16.5.

16.7. Repeat Prob.16.4 forT¼ 0.04.
16.8. Repeat Prob.16.5 forT¼ 0.04.
16.9. Repeat Prob. 16.6 forT¼ 0.04 and compare the results with those of

Prob.16.8.
16.10. (CAD Problem) For the basic system of Fig. 16.7, where Gx(s)¼Kx/

s(sþ 2): (a) Determine Mp, tp, ts, and K1 for z¼ 0.65 and T¼ 0.01 s
by the DIR method. (b) Obtain the PCT control system of part a
and the corresponding figures of merit. (c) Generate a controller
Dc(z) (with no ZOH) that reduces the value of ts of part a by approxi-
mately one-half for z¼ 0.65 and T¼ 0.01s. Do first by the DIG
method (s plane) and then by the DIR method. Obtain Mp, tp, and ts
for c(t) of the PCTand c*(t) (for both the DIG and the DIR designs)
and Km. Draw the plots of c*(t) vs. *kT for both designs. (d ) Find a
controller Dc(z) (with no ZOH) that increases the ramp error coeffi-
cient of part a, with z¼ 0.65 and T¼ 0.01 s with a minimal degrada-
tion of the transient-response characteristics of part a. Do first by
the DIG method (s plane) and then by the DIR method. Obtain Mp,
tp, and ts for c(t) of the PCTand c*(t) for both the DIG and the DIR
designs and Km. Draw a plot of c*(t) vs. kT for both designs. (e)
Summarize the results of this problem in tabular form and analyze.
For part (b) use 4-decimal-digit accuracy; for parts (c) and (d ) 4-
decimal-digit accuracy; then repeat for 8-decimal-digit accuracy.
Compare results.

16.11. By use of the PCT DIG technique design a controller [Dc(z)]TU
[Eq. (16.46)] for Prob. 15.13 which will achieve the desired perfor-
mance specifications.

16.12. For the digital control system of Fig. 16.1 the plant and the ZOH
transfer function is:

GzðsÞ ¼ GzoðsÞGpðsÞ ¼
2ð1� e�TsÞðs þ 3Þ
s2ðs þ 1Þðs þ 2Þ

Thedesired figures ofmerits (FOM) areMp¼1.043 and ts¼ 2 s. (a) By
use of the PCTDIG technique,whereT¼ 0.02 s, determineDc(s) that
will yield the desired dominant poles, based upon satisfying the spe-
cified FOM, for the system’s control ratio. (b)Determine the resulting
FOM for the compensated system of part a. (c) By use of Eq. (16.8)
obtain [Dc(z)]TU and the control ratio [C(z)/R(z)]TU. (d ) Obtain the
values ofMp, tp, ts, and Km for part (c) and compare these values with
those of part (b).
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16.13. (CAD Problem) For the basic system of Fig. 15.17, where Gx(s)¼Kx/
s(sþ 2): (a) Determine Mp, tp, ts, and K1 for z¼ 0.65 and T¼ 0.01 s by
the DIR method. (b) Obtain the PCTcontrol system of part (a) and
the corresponding figures of merit. (c) Generate a digital controller
Dc(z) (with no ZOH) that reduces the value of ts of part (a) by approxi-
mately one-half for z¼ 0.65 and T¼ 0.01 s. Do first by the DIG
method (s plane) and then by the DIR method. Obtain Mp, tp, and ts
for c(t) of the PCTand c*(t) (for both the DIG and the DIR designs)
and Km. Draw the plot of c*(t) vs. kT for both designs. (d ) Find a
digital controller Dc(z) (with no ZOH) that increases the ramp error
coefficient of part (a), with z¼ 0.65 and T¼ 0.01 s with a minimal
degradation of the transient response characteristics of part (a). Do
first by the DIG method (s plane) and then by the DIR method.
ObtainMp, tp, and ts for c(t) of the PCTand c*(t) for both the DIG and
the DIR designs) and Km. Draw the plots of c*(t) vs. kT for both
designs. (e) Summarize the results of this problem in tabular form
and analyze. Note: For part (b) use 4-decimal-digit accuracy; for
parts (c) and (d ) use 4-decimal-digit accuracy; then repeat using
8-digit accuracy.Compare the results.
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Answers to Selected Problems

CHAPTER 2

2.1. (a) Loop equations: Let R¼ R2þR3 and R 0 ¼ R1/R

eðtÞ ¼ R1 þ LD þ 1
CD

� �
i1 � LD þ 1

CD

� �
i2 ð1Þ

0 ¼ � LD þ 1
CD

� �
i1 þ R þ LD þ 1

CD

� �
i2 ð2Þ

(b)Node equations:
Node va:

1
R1
þ 1
R2
þ 1
LD

� �
va � ðCDÞvb �

1
R2

� �
vc ¼

1
R1

� �
e ð3Þ

Node vb:

�ðCDÞva þ
1
LD
þ CD

� �
vb ¼ 0 ð4Þ

Node vc:

� 1
R2

� �
va þ

1
R2
þ 1
R3

� �
vc ¼ 0 ð5Þ
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(c) State equations: Let x1¼y1¼i/CD, x2¼ iL, x2¼DiL, ic¼CDy1¼Cx1,
i1�i2¼ ic¼ iL

A ¼
0

1
C

� 1
L
� R 0

ðR 0 þ 1ÞL

2
664

3
775 ð6Þ

b
T ¼

0
1

ðR 0 þ 1ÞL

2
4

3
5 c

T ¼ ½ 1 0� ð7Þ

(d )Note:Utilizing Eqs. (1), (2), (8), and (9), obtain

x2 ¼ C _xx1 ð8Þ

_xx2 ¼ C €xx2 ð9Þ

GðDÞ ¼ y1ðtÞ
uðtÞ ¼

1
½ðR 0 þ 1ÞLC�D2 þ ½R 0C�D þ ½R 0 þ 1� ð10Þ

2.2. (a) Loop equations:

E ¼ R1 þ
1

C1D

� �
i1 �

1
C1D

� �
i2 ð1Þ

0 ¼ � 1
C1D

� �
i1 þ R2 þ LD þ 1

C1D
þ 1
C2D

� �
i2 ð2Þ

(b) Node 1 between R1 and R2, node 2 between R2 and L, and node 3
between L and C2

Node 1:
1
R1
þ C1D þ

1
R2

� �
v1 �

1
R2

� �
v2 ¼

1
R1

� �
E

Node 2: � 1
R2

� �
v1 þ

1
R2
þ 1
LD

� �
v2 �

1
LD

� �
v3 ¼ 0

Node 3: � 1
LD

� �
v2 þ

1
LD
þ C2D

� �
v3 ¼ 0
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(c) Let x1¼v1¼vc1, x2¼ v3¼ vc2, x3¼ iL

A ¼

� 1
R1C1

0 � 1
C1

0 0
1
C2

1
L

� 1
L
�R2

L

2
6666664

3
7777775

b ¼

1
R1C1

0

0

2
6666664

3
7777775

2.3. Circuit 2: (b)

_xx ¼
�R1 þ R2

L
� 1
L

1
C

0

2
664

3
775xþ

1
L

0

2
664

3
775u

2.6. (c)

GðDÞ ¼ K2

D4 þ BD3 þ KD2 þ BKaD þ ðKaKb � K2Þ
where Ka¼K1þK2,Kb¼K2þK3,K¼ KaþKb

(d ) Let

x1 ¼ xa x2 ¼ _xx1 x3 ¼ xb
x4 ¼ _xx3 u ¼ f ðtÞ yðtÞ ¼ xb

A ¼

0 1 0 0
�K K2 0 0

0 0 0 1
K2 0 Kb �1

2
6664

3
7775 b ¼

0
1
0
0

2
6664

3
7775 c ¼

0
0
1
0

2
6664

3
7775

2.10. (a) ðLD þ RÞi ¼ e� kii ¼ f �
xa
l1
¼ xb

l2
ðM2D

2 þ B2D þ K2Þxb ¼ f2

ðM1D
2 þ B1D þ K1Þxa þ

l2
l1
f2 ¼ f ¼ kii

Let
l2
l1
¼ a�

M1

a
þ aM2 ¼ b;

B1

a
þ aB2 ¼ c� and

K1

a
þ aK2 ¼ d

ðbD2 þ cD þ dÞxb ¼ kii
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(b) There are only three independent states:

x1 ¼ xb� x2 ¼ _xxb� x3 ¼ i� and u ¼ e

_xx1 ¼ x2

_xx2 ¼ �
d
b
x1 �

c
b
x2 þ

K1

b
x3

_xx3 ¼
R
L
x3 þ

l
L
u

2.11. Traction force¼MD2xþBDx
2.12. (b) T(t)¼ (B1D)ya� (B1D)yb

0¼�(B1D)yaþ [JD2þ (B2�B1)DþK1]yb

(c) Let J¼J1þJ2, y1¼x1¼ ya, y2¼ x2¼ yb, x3¼ x2, and u¼T

_xx ¼

0 0 1

0 0 1

0
�K
J

B1 � B2

J

2
66664

3
77775xþ

1
B1

0
1
J

2
66664

3
77775u y ¼ 1 0 0

0 1 0

� �
x

ðdÞ y1
u
¼ JD2 þ B2D þ K

B1D½JD2 þ ðB2 � B1ÞD þ K �
y2
u
¼ 1

JD2 þ ðB2 � B1ÞD þ K

2.18. ðaÞ C1ad
ðaþ bÞðc þ dÞ þ D
� �

y1 ¼
C1b
aþ b

x1

2.21. KTv1(t)¼ JLaD
3ymþ (JRaþBLa)D

2ymþ (BRaþKTKb)ym

CHAPTER 3

3.2. ybðtÞ ¼ �2þ 2t þ A1e
m1t þ A2e

m2t

where

A1 ¼ 2:01015 A2 ¼ �0:01015
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Therefore

ybðtÞ ¼ �2þ 2t þ 2:010105e�1:071t � 0:01015e�15:06t

Check at t¼ 0: yb(0)¼� 2þ 2.01015�0.01015¼0
3.5. (b) cðtÞ ¼ �0:36þ 0:2t þ A1e

m1t þ A2e
m2t þ A3e

m3t

Utilizing the initial conditions yields

A1 ¼ 0:5 A2 ¼ ð
ffiffiffi
2
p
=10Þff�171:9� : ¼ A�3

3.7. (a) Physical variables: x1¼vc and x2¼ iL.

A ¼ �104 �106
0:1 �465

� �
b ¼ 104

0

� �
c
T ¼ ½ 1 0�

(b) vcðtÞ ¼ 48:95þA1e
m1t þA2e

m2t whereDvc ¼ m1A1e
m1t þm2A2e

m2t

Inserting the initial conditions yields

0 ¼ 48:95þ A1 þ A2 0:5� 106 ¼ �475:5A1 � 9989:5A2�
A1 ¼ 1:15 A2 ¼ �50:1

3.8. (b) x(t)¼ 3þ1.5e�3t� 4.5e�t

ðcÞ xðtÞ ¼ 0:18þ 0:2353t þ e�0:5t ½�0:18 cos ð2tÞ � 0:16 sin ð2tÞ�
¼ 0:18þ 0:2353t þ 0:242e�0:5t sin ð2t � 132�Þ

3.13.

(ðtÞ ¼ �e�2t þ 2e�4t 2e�2t � 2e�4t

�e�2t þ e�4t 2e�2t � e�4t

" #

xðtÞ ¼
1
2
� 3e�2t þ 9

2
e�4t

3
4
� 3e�2t þ 9

4
e�4t

2
664

3
775

yðtÞ ¼ x1 ¼
1
2
� 3e�2t þ 9

2
e�4t

3.16. ðaÞ xðtÞh ¼ (ðtÞxð0Þ ¼ e�2t

�2e�2t
� �

ðbÞ xðtÞ ¼ 1� 2e�t þ 2e�2t

�2e�t
� �

3.17. (1) (a) �1¼�1, �2,3¼�1
j2

(ðtÞ ¼ Z1e
�t þ Z2e

�te jt þ Z3e
�te�jt
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CHAPTER 4

4.1. (a) f (t)¼ e�t[tþ 0.333 sin (3tþ180�)]
(b) f (t)¼ 1.3846� e�5tþ1.9612e�2t sin (3tþ191.3�)

4.2. (c) x(t)¼ 1� 0.9898e�tþ 0.01701e�2t sin (3tþ 216.9�)
4.4. (b) With zero initial conditions, the Laplace transform yields:

XbðsÞ ¼
12

sðs þ 10Þðs þ 1:2874Þðs þ 223:71Þ ¼
A
s
þ B
s þ 10

þ C
s þ 1:2874

þ D
s þ 223:71

where

A ¼ 4:167� 10�3 B ¼ 0:06445� 10�3

C ¼ �4:81� 10�3 D ¼ �1:128� 10�6

xbðtÞ ¼ 4:167� 10�3þ 0:6445� 10�4e�10t � 4:81� 10�3e�1:2874t

� 1:128� 10�6e�223:7t

4.5. ðdÞ F ðsÞ ¼ 1
s2
� 7
6s
þ 5
4ðs þ 1Þ �

0:5
6ðs þ 3Þ

ðhÞ F ðsÞ ¼ 1
s
þ 9
s þ 3

þ 28
s þ 3� j1

þ 30
s þ 3þ j1

4.6. ðbÞ iLðtÞ ¼ 0:4833e�3:684t � 0:5534 sin ðod t þ 61�Þ

4.7. ðbÞ ðs2 þ 2:8s þ 4ÞX ðsÞ ¼ 2ðs2 þ 4:3s þ 6:13Þ
s

xðtÞ ¼ 3:0669þ 1:5e�1:4t sin ð1:416t � 45:32�Þ

ðdÞ ðs5þ4s4þ34s3þ110s2þ225sþ250ÞX ðsÞþ4s2� s�56¼ 5
s2þ25

xðtÞ ¼ 10:837e�t sin ð2t � 85:233�Þ
þ 0:99974 sin ð5t þ 180�Þ þ 14:799e�2t

4.8. (a) Prob. 4.1(a): 0, Prob. 4.1(b): 1813
(b) Prob. 4.2(a): 0, Prob. 4.2(c):1
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4.11. ð1Þ ðbÞ xðtÞ ¼ 3þ 3:8348e�t sin ðt þ 237:53�Þ þ 0:2353e�5t

ðcÞ xðtÞ ¼ 0:30t � 0:260þ 0:2712e�t sin ðt þ 102:53�Þ � 0:0047e�5t

4.12. System (1)

ðaÞ (ðsÞ ¼ ½sI�A��1 ¼ s þ 5 �1
�2 s þ 2

� ��1
¼ 1

�

s þ 2 1
2 s þ 5

� �

� ¼ s2 þ 7s þ 8 ¼ ðs þ 5:62Þðs þ 1:438Þ

XðsÞ ¼ X1ðsÞ
X2ðsÞ

� �
¼ 1

�

s2 þ 3s þ 1
s3 þ 12s2 þ 35s þ 1

" #

XðsÞ ¼ ½sI� A��1xð0Þ þ ½sI� A��1bUðsÞ
(b)GðsÞ ¼ C�ðsÞBþD

GðsÞ ¼ 1
�
½01� s þ 2 1

2 s þ 5

� �
0
1

� �
þ 0

¼ s þ 5
s2 þ 7s þ 8

¼ s þ 5
ðs þ 5:62Þðs þ 1:438Þ

ðcÞYðsÞ ¼ CXðsÞ ¼ ½ 0 1 �XðsÞ ¼ X2 ! yðtÞ ¼ x2ðtÞ
¼ 0:74836e�1:4384t � 0:37336e�5:5616t þ 0:6250

As a check: xið0Þ ¼ Lim
s!1
½sXiðsÞ� ¼ 1 and x2ð0Þ ¼ Lim

s!1
½sX1ðsÞ�

¼ 1½sX2ðsÞ� ¼ 1 and yð1Þ ¼ 0:6250:

4.15. (1) s(A)¼ {� 1þj2,�1�j2,�1}

CHAPTER 5

5.5. GðsÞ ¼ �ð60s þ 3:8Þ
ðs þ 10Þðs2 þ 0:15s þ 8:0054Þ

5.11. (2) �¼�2, �¼�3, �¼�4, �¼�5
(a) y¼ [8 0 4 0]x

(b) y¼ [4 �22 36 �18]x
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5.12. ðaÞ GðsÞ ¼ �10
ðs þ 2Þðs þ 3Þ ðcÞ xðtÞ ¼

�5
3
ð1� 3e�2t þ 2e�3tÞ
10
3
ð1� e�3tÞ

2
64

3
75

CHAPTER 6

6.2. (a) 0<K<1280/9; s1,2¼
 j2.5827; for K¼142.22
(c) 0<K< 30; s1,2¼
 j2.2356; for K¼ 30

6.3. (a) (sþ 2)(sþ 2.2
 j2.2) (c) (sþ1
j1.414)(s�1
j1.414)

( f ) (s�1)(sþ 2)(s� 3)(sþ 5)

6.4. (a) None (c) None ( f ) 2
6.10. (a)For (1):Kp ¼ 1,Kv¼ 5

13,Ka¼ 0, (b)For r1(t): (1) e(t)ss¼13
5 (2) e(t)ss¼ 0

6.12. (a) 20, 0, 0 (d)1, 6, 0
6.13. (a): (a) 52 (b)1 (c)1

(d ): (a) 0 (b) 13 (c)1
6.19. KGci¼ aiþKhKGci> 0 for a stable system and KGc0¼ a0þKhKGc0 for

e(t)ss¼ 0
6.25. (b)K¼ 4: (b)K¼ 7: and K1¼6.666 s�1e(t)ss¼ 0.3;
6.27. (a) For K¼100: K1¼68.97 s�1 and e(t)ss¼ 0.0145; (b) for K¼1000:

K1¼689.7 s�1 and e(t)ss¼ 0.00145; (c) unstable for K¼1000; stable
for K¼100 and the corresponding FOMareMp¼1.345, tp¼1.06 s,
and ts¼ 3.286 s.

CHAPTER 7

7.2. (c) For K> 0, real-axis branches: none; four branches; g¼
 45�,

 135�; angles of departure:
45�,
135�; imaginary-axis crossing:

 j2 with K¼ 0. Branches are straight lines and coincide with the
asymptotes.

(e) Real-axis branch: 0 to �1; five branches; g¼
 36�, 
108�, 180�;
s0¼�1.6; no breakaway or break-in points; angles of departure:

 71.7�, 
33.8�; and the imaginary-axis crossing: 
 j1with K¼ 30.
Locus crosses the
 36� asymptotes.

7.4. (a) For K> 0, real-axis branches: 0 to �10; three branches; g¼
 90�;
s0¼ 0; break-in point: �3.9113 (K¼ 3.33095); breakaway point:
�2.78698 (K¼ 3.4388); and imaginary-axis crossing: none.

(b)K ¼ 0:05427
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(c) eðtÞ ¼ 1:5951e�2:2164tsin ð2:1992t þ 207:274�Þ
(d )

7.7. Poles: p1 ¼ �1� p2 ¼ �7� p3� 4 ¼ 4
 j3
(a) For K> 0, real-axis branch: �1 to � 7; four branches; g¼
 45�,

 135�; angles of departure: 0�,�180�,
90�; imaginary-axis cross-
ing 
 j4 with K¼1105; break-in and breakaway pints coincide at
s¼� 4. For K< 0, real-axis branches: �1 to þ1 and � 7 to �1;
g¼
 90�,180�; angles of departure; 0�,
90�,180�; imaginary-axis
crossing: s¼ 0 with K¼�175.

ðbÞ � 175 < K < 1105 ðcÞ K ¼ 81
7.8. (1) (a) For K¼� 50K1: three branches; g¼
 90� for K1<0; g¼ 180�

for K1>0; s0¼� 9.5; breakaway points: �7.72 for K> 0, �3.139 for
K< 0; break-in point: 5.362 for K< 0; imaginary-axis crossings:
at s¼ 0 for K¼ 50 and
 j3.6993 for K¼�66.32.
(b) Stable for�66.32<K< 50

7.11. (a) Real-axis branches: �3.2 to �1 (Note: The canceled pole and zero
at s¼�5 is a root of the characteristic equation and is not utilized
in determining the root locus for locating the remaining roots.)
6-branches: g¼
36�, 
108�, 180�, s0¼�22.5; Break-in point:
s¼�16.5; Angle of departures (given in order of closeness to the
imaginary axis in the 2nd quadrant): 144.4�, �94.4�, 4.2�;
Imaginary-axis crossing:
 j17.20 for K¼1.869�107.

(b) KGKH ¼ 1:0735; p1� 2 ¼ 
j17:21� p3� 4 ¼ 33:28
 j28:05� p5 ¼
�4:634� p6 ¼ �44:46� p7 ¼ �5

ðcÞ CðsÞ
RðsÞ ¼

1:869�107ðsþ 3:2Þ
ðsþ 4:634Þðsþ 5Þðsþ 44:46Þðs
 j17:21Þðsþ 33:28
 j28:05Þ

7.12. ð1Þ ðaÞ A ¼ 1:44

o M a, deg o M a, deg

0 1 0 1.4 0.9586 �44.7
0.2 0.9995 �6.1 1.8 0.9153 �58.5
0.4 0.998 �12.3 2.0 0.8854 �65.5
0.6 0.9951 �18.5 2.4 0.8103 �79.3
0.8 0.9903 �24.9 2.8 0.7202 �92.3
1.0 0.9832 �31.3 3.2 0.6252 �104.1
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CHAPTER 8

8.1. (b) (1) Gð j0þÞ ¼ 1ff �90�� Gð j1Þ ¼ 0ff � 270�� ox ¼ oc ¼ 2:236,
Gð joxÞ ¼ �0:2223� of ¼ 0:867
(2) Gð j0þÞ ¼ 1ff �90�� Gð j1Þ ¼ 0ff �360�� ox ¼ oc ¼ 9:75

Gð joxÞ ¼ �0:0952� of ¼ 0:4977
8.4. (1) ðbÞ Gð j0þÞ ¼ 1ff �90�� Gð j1Þ ¼ 0ff �270�� ox ¼ 35:4�

Gð joxÞ ¼�0:05645
8.6. (a) It must have an initial slope of� 40 dB/decade

(b) The phase-angle curve approaches an angle of180� as o! 0
8.9. Case II:

GðsÞ ¼ 2337:5ð1þ 0:25sÞ
sð1þ 5sÞð1þ 0:125sÞð1þ 0:05sÞ

8.10. ðaÞ K0 ¼ 31:7 ðbÞ K2 ¼ 2:56 ¼ ðoyÞ2
8.11. (a) Plant 1

GðsÞ ¼ 0:4
sðs þ 1
 j4Þ

8.13. (a)N¼� 2,ZR¼ 2, unstable (c)N¼ 0,ZR¼ 0, stable
8.14. (a) For stability K>1.26759
8.15. (a) Stable for K>�2 (e) Stable for18<K< 90.12
8.16. (1) ðaÞ K1 ¼ 5:5654�of ¼ 4:845 ðbÞ K1 ¼ 3:345�of ¼ 3:15

ðcÞ maximum K1 ¼ 1:9429� 105

(2) ðaÞ K0 ¼ 20:13�of ¼ 8:3 ðbÞ K0 ¼ 8:58�of ¼ 4:61
ðcÞ Stable for 0 < K0 <1

CHAPTER 9

9.1. ð2Þ K1 ¼ 7:94�Mm ¼ 1:326�om ¼ 7:81�of ¼ 6:94�oc ¼ 15:81
(4) K1 ¼ 0:7075�Mm ¼ 1:318�om ¼ 0:658�of ¼ 0:6054� oc ¼ 1:508

9.3. Mm ¼ 1:30�K1 ¼ 2:975�om ¼ 2:75
9.5. (1) (a)Mm ¼ 1� om ¼ 0 ðbÞ Mm ¼ 1:326� om ¼5:4 ðcÞ Mm ¼1:016�

om ¼ 2:24
9.8. (4) ðaÞ Mm ¼ 5:8904�om ¼ 3:82 ðcÞ K0 ¼ 0:18 for Mm ¼ 1:12

ðdÞ om ¼ 0:39� g ¼ 56:16�

9.11. Using a CAD program: (a)Mm¼1.11293, om¼ 0.435 (b)K¼1.338
(c) a¼ 6
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CHAPTER 10

10.3, 10.18.

10.6. (a) a¼ 4,b¼ 2.6653 (b) a¼ 1.126 (c) lag compensator
10.7. (a) For the uncompensated system: from the performance specifica-

tions, for z¼ 0.5, are Mp¼1.16, tp¼ 2 s, ts¼ 4.39 s, K¼ 2.933,
K1¼1.76 s�1, and the control ratio poles are � 0.9235
 j1.601
and�5.153.

(b) jsj � 4=Ts ¼ 2; assuming a¼ 2, z¼0.5, and jsj ¼ 2 yields
b¼ 4.726

(c) A¼ 5.21and a¼ 0.4232
(d) A lead compensator; Mp¼1.59, tp¼ 0.917 s, ts¼ 2.02 s, and

K1¼3.88 s�1
10.18. (a) For z¼ 0.5 the uncompensated system yields the following data:

K¼ 25.01,K1¼5 s�1,Mp¼1.163, tp¼ 0.725 s, ts¼1.615 s.
(b) Based upon the desired values of z and s¼�7, the desired

dominant poles are P1,2D¼� 7
 j12.124. One possible solution
is: let a¼ 40, b¼ 0.01, c¼ 0.1; by applying the angle condition
and the use of a CAD package the following results are obtained:
A¼ 6.0464, Kh¼11.18, K1¼126.1s�1, Mp¼1.161, tp¼ 0.27 s,
ts¼ 0.426 s.

System (1)
Dominant
roots

Other
roots K1� s�1 Tp,s ts,s Mo

Basic �1.25
 j 2.166 �6.501 1.72 1.67 3.36 0.14
Lag-compensated:
a¼ 10, T¼ 2 �1.03
 j 1.787 �5.267

�0.726
16.16 1.8 5.37 0.41

Lead-compensated:
a¼ 0.1, T¼ 0.25 �2.23
 j 3.86 �3.123

�40.42
3.13 0.916 1.78 0.10

Lag-lead-compensated:
a¼ 10, T1¼ 2, T2¼ 0.25 �2.08
 j 3.6 �0.598

�2.897
�40.40

30.18 0.967 4.15 0.244

Tachometer-compensated:
A¼ 1.61, Kt¼ 1, z¼ 0.5 �3.40
 j 5.89 �1.2 1.02 — 3.39 0.0
A¼ 4.79, Kt¼ 1, z¼ 0.3 �1.86
 j 5.92 �4.28 2.97 0.756 1.89 0.13
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10.20. SeeProb.10.3 for basic systemperformancedata.Basedon the desired
performance specifications, the desired dominant poles are:
P1� 2D ¼ �4
 j6:928. Let Kx¼1250K1 be the gain term of G(s). By
applying method 1, the following results are obtained: Kx¼ 760.71,
Kt¼ 0.5619, b¼11.895, Mp¼1.092, tp¼ 0.725 s, ts¼ 0.97 s, K1¼
2.369 s�1. The other poles are: �6.296
 j4.486 and �11. The plot of
c(t) has the desired simple second-order time response characteristics
due to the effect of the real root.

CHAPTER 11

11.1. ðaÞ K ¼ 11935, of ¼ 3:10, g ¼ 51:16�, Mp ¼ 1:161, tp ¼ 0:8654 s�
ts ¼ 1:807 s�K1 ¼ 3:6387 s�1:

(b) 1=T ¼ 0:302� K ¼ 11935� A ¼ 7:7084� Mm ¼ 1:18�
Mp ¼ 1:203� tp ¼ 1:104 s� ts ¼ 5:455 s� K1 ¼ 28:05 s�1;
of ¼ 2:53�g¼ 51:1�:
Results for an Mm ¼ 1:16 are not as good as for Mm ¼ 1:18:

(c) T ¼ 0:25, K ¼ 213200, Mm ¼ 1:564, Mp ¼ 1:186, tp ¼ 0:3125 s�
ts ¼ 1:273 s, K1 ¼ 6:50 s�1; for Mm ¼ 1:16: Kx ¼ 175800, Mp ¼
1.076, tp ¼ 0:3372 s� ts ¼ 1:105 s� K1 ¼ 5:36 s�1� of ¼ 7:10,
g¼ 66:46�:

(d) T1 ¼ 3:311, T2 ¼ 0:25, Kx ¼ 209000, Mm ¼ 1:564, Mp ¼ 1:212,
tp ¼ 0:3180 s, ts ¼ 2:857 s, K1 ¼ 63:72 s�1; for Mm ¼ 1:16: K ¼
175800, Mp ¼ 1:104, tp ¼ 0:3442 s, ts ¼ 3:526 s�K1 ¼ 54:87 s�1�
of ¼ 7:35� g ¼ 62:71�:

11.5. ðaÞ GðsÞ ¼ 1
8K

1þ Ts
1þ �Ts
� �

� where T ¼ B
K

and � ¼ 0:5

11.12. ðaÞ At o ¼ 8 : Gð joÞ ¼ Cð joÞ=Eð joÞ � 6:3ff �119�� thus K1 ¼ 250�
of ¼ 8� and g � 40�:

ðbÞ Gc ¼
ðs þ 1Þð0:5s þ 1Þ
ð10s þ 1Þð0:05s þ 1Þ

11.17. (a)K2x¼ 2.02, ofx¼ 2.15,Mm¼1.398,Mp¼1.29, tp¼1.39 s, ts¼ 3.03 s
(c) For g¼ 50�: u ¼ ofT ¼ 8:6T ¼ 1:19 yields T¼ 0.1384. From the

graphical construction, with o1 � of=20 and o2 ¼ 20 of ¼ 172,
obtainKt¼ 24.28 and A¼180, thus
CðsÞ
EðsÞ ¼

2907ðs þ 1Þðs þ 7:225Þ
s2ðs þ 1:108Þðs þ 406:3Þ
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The 0-dB crossing slope is �12 dB/oct at o¼ 6, but the zero at
�7.225 will have a moderating effect on the degree of stability.

(d ) Mm¼1.47, Mp¼1.30, tp¼ 0.34 s, ts¼1.03 s, K2¼ 46.65; since the
values of Mp are essentially the same, a good improvement in
system performance has been achieved. g¼51� and of ¼ 9:12.

CHAPTER 12

12.2. GcðsÞ
2:31ðsþ 20Þ

sþ 21

With this cascade compensator Mp¼1.12, tp¼1.493 s, ts¼ 2.941s,
K1¼1.53. The specified MT (s) yields Mp¼1.123, tp¼1.493, ts¼ 2.948,
K1¼1.424.

12.4. As a first trial, use

Gc �
2:994ðs þ 2:1Þ
s þ 2:223

With this cascade compensator Mp¼1.03, tp¼ 2.37 s, ts¼ 2.94 s,
Kt¼ 0.75. The specified MT (s) yields Mp¼1.06, tp¼ 2.2 s, ts¼ 3.04 s,
K1¼0.79.

12.8. (a) The pole at the origin of H(s) ensures c(t)ss¼ 0; make pole �b
nondominant: b¼100

ðbÞ KH ¼ 2500
(c) Chxaracteristic equation: s4þ104s3þ10,400s2þ120,000sþ

320,000¼ 0. Routh stability criterion reveals that all roots lie
in the left-half s plane. A plot of Lm GxH reveals that its 0-dB
axis crossing slope is �6 dB/oct, indicating a stable system.
The system poles are p1¼�4, p2¼�8.06, p3,4¼� 45.97

j311.7.jy(tp)j ¼ 0.0025, tp¼ 0.163 s. For jy(tp)j ¼ 0.01, KH¼ 630,
which produces very little change in the value of tp.

CHAPTER 13

13.3. (1) (a) Not observable, (b) controllable, (c)GðsÞ ¼ 2=ðs � 2Þ, (d) one
observable and two controllable states, (e) unstable
(4) (a) Observable, (b) controllable, (c) GðsÞ ¼ ðs � 1Þ=ðs þ 1Þ ðs þ 2Þ,
(d) Two observable and two controllable states, and (e) stable

13.5. (a) Add a cascade compensatorGcðsÞ ¼ 1=ðs þ 1Þ
ðbÞ HeqðsÞ ¼ k3s

2 þ ð2k3 þ k2Þs þ k1
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(d) A desired control ratio is

MT ðsÞ ¼
Y ðsÞ
RðsÞ ¼

A
ðs2 þ 4s þ 13Þðs þ 25Þ

ðeÞWith A ¼ 162:5� kT ¼ ½1 0:16923 0:08�
ðgÞ GeqðsÞ ¼ 325=½sðs2 þ 29s þ 113Þ�� K1 ¼ 2:876
ðhÞ Mp ¼ 1:12� tp ¼ 1:09 s� ts ¼ 1:66 s

13.8. For system (1) (a)

M ðsÞ ¼ 11�700
ðs þ 12
 j21Þðs þ 20Þ

k1 ¼ 1 k2 ¼ 0:091026 k3 ¼ 0:003077

(b) yðtÞ ¼ 1þ 1:025e�12t sin ð21tþ 171:1�Þ� 1:1584e�20t

Mp ¼ 1:057� tp ¼ 0:215s� ts ¼ 0:273s�K1 ¼ 11s�1

13.12. (a)

MT ðsÞ ¼
Y ðsÞ
RðsÞ ¼

1:467ðs þ 1:5Þðs þ 2Þ
ðs2 þ 2s þ 2Þðs þ 1:1Þðs þ 2Þ

whereGcðsÞ
s þ 1:5
s þ 1

� A ¼ 1:467

Y ðsÞ=RðsÞ
¼ Aðsþ1:5Þðsþ2Þ
s4þ½7þAð0:5k4þk3þk2Þ�s3þ½11þAð3k4þ2:5k3þ3:5k2þk1Þ�s2
þ½5þAð2:5k4þ1:5k3þ3k2þ3:5k1Þ�sþ3Ak1

where k1 ¼ 1� k2 ¼ 0:8635� k3 ¼ �2:43541� k4 ¼ 0:5521
ðcÞ Mp ¼ 1:015� tp ¼ 3:75 s� ts ¼ 2:79 s� K1 ¼ 0:524 s�1

13.16. (a)

MT ðsÞ ¼
195ðs þ 2Þ

ðs2 þ 2s þ 2Þðs þ 1:95Þðs þ 100Þ
(b) By applying the Guillemin-Truxal method, a reduced-order

compensator is obtained by dividing the denominator of Gc(s) by
its numerator to obtain Gc(s)� 1/(sþ 99.9). The figures of merit
for MT(s) are Mp¼1.042, tp¼ 3.18 s, and ts¼ 4.23 s, where for the
system implemented with the reduced-order compensator
Mp¼1.056, tp¼ 3.12 s, and ts¼ 4.44 s.

13.19. k
T ¼ �8 �2:5� �

x1ðtÞ ¼
5
3
e�3t � 1

3
e�6t x2ðtÞ ¼�5e�3t þ 4e�6t xð0Þ ¼ 1

�1
� �

13.20. (1) (a) Completely controllable, (b) s (Ap)¼ {�1,�2,�3},
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ðcÞ T ¼
6 5 1
3 2 1
0 2 1

2
64

3
75� ðdÞ kT ¼ �42 �33 �6� �

CHAPTER 14

14.1. For m¼1: (a)

ST
k ðsÞjk¼15 ¼

s4 þ 7s3 þ 25s2 þ 39s
s4 þ 7s3 þ 25s2 þ 54s þ 75

14.6. (a) p¼�21,KG¼ 30.8 (b) No; need a compensator of the form

Gc ¼
Aðs þ aÞ
ðs þ bÞðs þ cÞ

14.10. For system (2), (a) Three equilibrium points are

xa ¼
0
0
0

2
64

3
75 xb ¼

�1
2

0
2

2
64

3
75 xc ¼

�1
2

0
�2

2
64

3
75

(b) For xb,

Jxb ¼
0 1 0
2 �3 0:5x3
2
3 0 2x1 þ 1

2
64

3
75

xo

CHAPTER 15

15.5. ðaÞ z�1 þ 1:8z�2 þ 2:19z�3 þ 2:252z�4 þ 	 	 	
15.7. ðaÞ f ð0Þ ¼ 0; system is stable� thus f ð1Þ ¼ 1:95122
15.8. ðaÞ ð1� 2z�1 þ 1:41z�2 � 0:41z�3ÞCðzÞ ¼ ðz�1 � 0:2z�2ÞEðzÞ

By use of Theorem1:

cðkT Þ ¼ 2c½ðk � 1ÞT � � 1:41c½ðk � 2ÞT � þ 0:41c½ðk � 3ÞT �
þ e½ðk � 1ÞT � � 0:2e½ðk � 2ÞT �

15.11. System 2

C�ðsÞ ¼ G1G
�
2ðsÞM �ðsÞ
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C�ðsÞ
R�ðsÞ ¼

G1G
�
2ðsÞ

1þ G1H �ðsÞ þ G1G�2ðsÞ

CðzÞ
RðzÞ ¼

G1G2ðzÞ
1þ G1H ðzÞ þ G1G2ðzÞ

CHAPTER 16

16.1. (1)

16.2. (2) zTU ¼�0.2857, z¼ 0.006738�difference due to warping
(3) zTU ¼�0.71598
 j0.11834, z¼ 0.20586
 j0.69589�difference due
to warping

16.3. (1)

CðsÞ
RðsÞ
� �

T
¼ Ks þ 8K
ðs2 þ 10s þ 174Þðs þ 10Þ ! 8K

¼ ð10Þð174Þ ! K ¼ 217:5

(b) For T¼ 0.1!
j(0.6114/T )¼
 j6.114 and (�0.1)/T¼�1!
thus, the zero and poles of the desired control ratio do not lie in the
good Tustin region of Fig.16.5.Thus:

0:6114
T
� 7! T � 0:08734� and

0:1
T
� 10! T � 0:1

10
� 0:01;

therefore,T� 0.01.
16.5.

DcðzÞ ¼
Kcðz � 0:6703Þ
ðz � 0:06703Þ where

K ¼ 3:795� 10�2K1 � 0:2566! Kc ¼ 6:7615

z-domain value

s Plane Eq. (16.8) Z¼ esT

� 1.5 0.94176 0.94176
� 3 0.8868 0.88692
� 20 0.4286 0.44933
� 2
 j 3 0.9167
 j 0.1106 0.91671
 j 0.11054
10
 j 25 0.4201
 j 0.5917 0.39208
 j 0616063
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Mp ¼ 1:062� tp ¼ 0:4 s� ts ¼ 0:6þs� and K1 ¼ 5:1577 s�1

CðsÞ
RðsÞ ¼

251:2ðs þ 0:005Þ
ðsþ 0:4061
 j0:4747Þðs þ 0:0005Þðsþ 3:183Þðs þ 200þÞ

Mp ¼ 1:078� tp ¼ 6:98 s� ts ¼ 10:7 s� K1 ¼ 4:187� and A ¼ 10

The remaining solutions are left to the instructor to obtain.
16.10. (a)

GzðzÞ ¼
4:967� 10�5Kxðz þ 0:9934Þ
ðz � 1Þðz � 0:9802Þ ! Kx ¼ 2:34105

CðzÞ
RðzÞ ¼

1:163� 10�4ðz þ 0:9934Þ
ðz � 0:9900
 j0:01152Þ

(b) The PCT block diagram is similar to that of Fig. 16.14 d with
DcðsÞ ¼ 1 and GpaðsÞ=T ¼ 200=ðs þ 200Þ ¼ GAðsÞ:

GPCðsÞ ¼ GAGxðsÞ ¼
200Kx

sðs þ 2Þðs þ 200Þ �Kx ¼ 2:34105

CðsÞ
RðsÞ ¼

GPCðsÞ
1þ GPCðsÞ

¼ 466:21
ðs þ 0:99408
 j1:159Þðs þ 200:012Þ

The continuous-time system control ratio, for z¼ 0.65, is:

CðsÞ
RðsÞ ¼

GxðsÞ
1þ GxðsÞ

¼ 2:368
s þ 1
 j1:170

(c) DIG�To reduce ts by about 1/2, select DcðsÞ ¼ Aðs þ 2Þ=ðs þ 5Þ;
GðsÞ ¼ DcðsÞGpðsÞ ¼ �1 for z¼ 0.65: K¼ 200AKx¼ 2874.6;
Kx¼ 2.368, and A¼ 6.0705.

CðsÞ
RðsÞ ¼

K
ðs þ 2:463
 j2:881Þðs þ 200:1Þ ;

½DcðzÞ�TU ¼
5:982ðz � 0:9802Þ

z � 0:9512

CðzÞ
RðzÞ ¼

½DcðzÞ�TUGzðzÞ
1þ ½DcðzÞ�TUGzðzÞ

¼ 7:0359� 10�4ðz þ 0:9934Þ
z � 0:9752
 j0:02810

DIR�For Kx¼ 2.368 and z¼ 0.65, Dc(z) = A(z� 0.9802)/
ðz � 0:09802Þ where A ¼ 1865:3.

CðzÞ
RðzÞ ¼

DcðzÞGzðzÞ
1þ DcðzÞGzðzÞ

¼ 0:2194ðz þ 0:9934Þ
z � 0:4393
 j0:3507
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(d ) DIG�For Kx¼ 2.368 and z¼ 0.65, Dc(s) = 0.1A(s+ 0.01)/
ðs þ 0:001Þ and A ¼ 9:384893:
CðsÞ
RðsÞ ¼

DcðsÞGPC ðsÞ
1þ DcðsÞGPCðsÞ

CðsÞ
RðsÞ ¼

468:4ðs þ 0:01Þ
ðs þ 0:98955
 j1:1595Þðs þ 0:01008Þðs þ 200:01Þ

½DcðzÞ�TU ¼
0:9385315ðz � 0:9999Þ

z � 0:99999

CðzÞ
RðzÞ ¼

½DcðzÞ�TUGzðzÞ
1þ ½DcðzÞ�TUGzðzÞ

¼ 1:1633� 10�4ðz þ 0:9934Þðz � 0:9999Þ
ðz � 0:990087
 j0:01148126Þðz � 0:99989923Þ

DIR�For Kx¼ 2.368, z¼0.65, and

½DcðzÞ�TU ¼
Kzcðz � 0:9999Þ
z � 0:99999

! Kzc ¼ 0:986259 obtain:

CðzÞ
RðzÞ¼

DcðzÞGzðzÞ
1þDcðzÞGzðzÞ

¼ 1:1163�10�4ðzþ0:9934Þðz�0:9999Þ
ðz�0:990087
 j0:01145146Þðz�0:99989923Þ

(e) The tables summarize the results of the various designs presented
on the following page.The desired improvements using s-domain
compensation design rules (for both s- and z-domain analysis)
are obtained. Since the dominant poles and zeros lie in the
good Tustin region for the lag and lead units, there is a good
correlation between the DIG and DIR results.

System Domain
Zeros
of C/R Poles of C/R

Basic (a)
and (b)

Continuous s — �1.000
 j 1.170

DIG s — �0.9941
 j 1.159, �200.012
DIR z �0.9934 0.9900
 j 0.01152

(c) Lead DIG s — �2.463
 j 2.881, �200.1
z �0.9934 0.9752
 j 0.02810

DIR z �0.9934 0.4393
 j 0.3507
(d) Lag DIG s �0.01 � 0.9895
 j 1.160, �0.01008, �200.01

z �0.9934 
0.990087
 j 0.011481, 0.999899
DIR z 0.9999 0.990087
 j 0.001145146, 0.999899
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16.13. (a)

GzðzÞ ¼ GzoGxðzÞ ¼
2:073� 10�7ðz þ 3:695Þðz þ 0:2653Þ
ðz � 1Þðz � 0:9900Þðz � 0:9704Þ

CðzÞ
RðzÞ ¼

2:073� 10�7ðz þ 3:695Þðz þ 0:2653Þ
ðz � 0:9959
 j0:0047756Þðz � 0:9687Þ

Mp ¼ 1:067� tp ¼ 6:94 s� ts ¼ 9:92 s� and K1 ¼ 0:41604 s�1

(b)

GðsÞ ¼ GAðsÞGxðsÞ ¼
200Kx

sðs þ 1Þðs þ 3Þðs þ 200Þ
CðsÞ
RðsÞ ¼

251:2
ðs þ 0:4082
 j0:4773Þðs þ 3:184Þðs þ 200þÞ

Mp ¼ 1:067� tp ¼ 6:94 s� ts ¼ 9:90 s� and K1 ¼ 0:4187 s�1

(c) PCT lead design�DcðsÞ ¼ KscðsÞðs þ 1Þ=ðs þ 3Þ
CðsÞ
RðsÞ ¼

1454
ðs þ 0:8439
 j0:9866Þðs þ 4:312Þðs þ 200þÞ

Mp ¼ 1:064� tp ¼ 3:47 s� ts ¼ 4:88 s� K1 ¼ 0:808 s�1� and
A= 5.7882

(d ) PCT lag design�DcðsÞ ¼ ðA=10Þ½ðs þ 0:005Þ=ðs þ 0:0005Þ�

System Domain Kx Mp tp s ts s K1 s
�1

Basic (a) and (b) Continuous s 2.368 1.0682 2.69 3.90 1.184
DIG s 2.341 1.0675 2.72 3.94 1.165
DIR z 2.341 1.068 2.70 3.93 1.171

(c) Lead DIG s 2.368 1.068 1.096 1.59 2.875
z 1.068 1.09 1.58 2.874

DIR z 1.067 0.05 0.07 2.84
(d) Lag DIG s 1.0767 2.71 4.15 11.71

z 1.077 2.71 4.16 11.71
DIR z 1.076 2.72 4.17 11.68
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