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Series Introduction

Many textbooks have been written on control engineering, describing new
techniques for controlling systems, or new and better ways of mathematically
formulating existing methods to solve the ever-increasing complex problems
faced by practicing engineers. However, few of these books fully address the
applications aspects of control engineering. It is the intention of this new series
to redress this situation.

The series will stress applications issues, and not just the mathematics of
control engineering. It will provide texts that present not only both new and
well-established techniques, but also detailed examples of the application of
these methods to the solution of real-world problems. The authors will be drawn
from both the academic world and the relevant applications sectors.

There are already many exciting examples of the application of control
techniques in the established fields of electrical, mechanical (including aero-
space), and chemical engineering. We have only to look around in today’s highly
automated society to see the use of advanced robotics techniques in the
manufacturing industries; the use of automated control and navigation systems
in air and surface transport systems; the increasing use of intelligent control
systems in the many artifacts available to the domestic consumer market; and
the reliable supply of water, gas, and electrical power to the domestic consumer
and to industry. However, there are currently many challenging problems that
could benefit from wider exposure to the applicability of control methodolo-
gies, and the systematic systems-oriented basis inherent in the application of
control techniques.
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This series presents books that draw on expertise from both the academic
world and the applications domains, and will be useful not only as academically
recommended course texts but also as handbooks for practitioners in many
applications domains. Linear Control System Analysis and Design with MATLAB
is another outstanding entry in Dekker’s Control Engineering series.

Neil Munro
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Preface

The countless technological advances of the twentieth century require that
future engineering education emphasize bridging the gap between theory and the
real world. This edition has been prepared with particular attention to the needs
of undergraduates, especially those who seek a solid foundation in control
theory as well as an ability to bridge the gap between control theory and its real-
world applications. To help the reader achieve this goal, computer-aided design
accuracy checks (CADAC) are used throughout the text to encourage good
habits of computer literacy. Each CADAC uses fundamental concepts to ensure
the viability of a computer solution.

This edition has been enhanced as a solid undergraduate and first-year
graduate text; it emphasizes applying control theory fundamentals to both ana-
log and sampled-data single-input single-output (SISO) feedback control sys-
tems. At the same time, the coverage of digital control systems is greatly
expanded. Extensive reference is made to computer-aided design (CAD)
packages to simplify the design process. The result is a comprehensive pre-
sentation of control theory and design—one that has been thoroughly class-
tested, ensuring its value for classroom and self-study use.

This book features extensive use of explanations, diagrams, calculations,
tables, and symbols. Such mathematical rigor is necessary for design applica-
tions and advanced control work. A solid foundation is built on concepts of
modern control theory as well as those elements of conventional control theory
that are relevant in analysis and design of control systems. The presentation of
various techniques helps the reader understand what A. T. Fuller has called
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“the enigmatic control system.” To provide a coherent development of the sub-
ject, we eschew formal proofs and lemmas, instead using an organization that
draws the perceptive student steadily and surely to the demanding theory of
multivariable control systems. Design examples are included throughout each
chapter to reinforce the student’s understanding of the material. A student who
has reached this point is fully equipped to undertake the challenges of more
advanced control theories, as presented in advanced control theory textbooks.

Chapter 2 sets forth the appropriate differential equations to describe the
performance of physical systems, networks, and devices. The block diagram, the
transfer function, and the state space (the essential concept of modern
control theory) are also introduced. The approach used for the state space is
the simultaneous derivation of the state-vector differential equation with the
SISO differential equation for a chosen physical system. The chapter also shows
how to derive the mathematical description of a physical system using
LaGrange equations.

Chapter 3 presents the classical method of solving differential equations.
Once the state-variable equation has been introduced, a careful explanation of
its solution is provided. The relationship of the transfer function to the state
equation of the system is presented in Chapter 14. The importance of the state
transition matrix is described, and the state transition equation is derived.
The idea of eigenvalues is explained next; this theory is used with the Cayley—
Hamilton and Sylvester theorems to evaluate the state transition matrix.

The early part of Chapter 4 presents a comprehensive description of
Laplace transform methods and pole-zero maps. Some further aspects of matrix
algebra are introduced as background for solving the state equation using
Laplace transforms. Finally, the evaluation of transfer matrices is clearly
explained.

Chapter 5 begins with system representation by the conventional block-
diagram approach. This is followed by a discussion of simulation diagrams and
the determination of the state transition equation using signal flow graphs. The
chapter also explains how to derive parallel state diagrams from system transfer
functions, establishing the advantages of having the state equation in uncoupled
form.

Chapter 6 introduces basic feedback system characteristics. This includes
the relationship between system type and the ability of the system to follow or
track polynomial inputs.

Chapter 7 presents the details of the root-locus method. Chapters 8 and 9
describe the frequency-response method using both log and polar plots. These
chapters address the following topics: the Nyquist stability criterion; the corre-
lation between the s-plane, frequency domain, and time domain; and gain set-
ting to achieve a desired output response peak value while tracking polynomial
command inputs. Chapters 10 and 11 describe the methods for improving
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system performance, including examples of the techniques for applying cascade
and feedback compensators. Both the root-locus and frequency-response
methods of designing compensators are covered.

Chapter 12 develops the concept of modeling a desired control ratio with
figures of merit to satisfy system performance specifications. The system inputs
generally fall into two categories: (1) desired input that the system output is to
track (a tracking system) and (2) an external disturbance input for which the
system output is to be minimal (a disturbance-rejection system). For both types
of systems, the desired control ratio is synthesized by the proper placement
of its poles and inclusion of zeros, if required. Chapter 12 also introduces the
Guillemin-Truxal design procedure, which is used for designing a tracking
control system and a design procedure emphasizing disturbance rejection.

Chapter 13 explains how to achieve desired system characteristics using
complete state-variable feedback. Two important concepts of modern control
theory—controllability and observability—are treated in a simple and straight-
forward manner.

Chapter 14 presents the sensitivity concepts of Bode, as used in variation
of system parameters. Other tools include the method of using feedback transfer
functions to form estimates of inaccessible states for use in state feedback, and
a technique for linearizing a nonlinear system about its equilibrium points.

Chapter 15 presents the fundamentals of sampled data (S-D) control
systems. Chapter 16 describes the design of digital control systems, demonstrat-
ing, for example, the effectiveness of digital compensation. The concept of a
pseudo-continuous-time (PCT) model of a digital system permits the use of
continuous-time methods for the design of digital control systems.

The text has been prepared so that it can be used for self-study by
engineers in various areas of practice (electrical, acronautical, mechanical,
etc). To make it valuable to all engineers, we use various examples of feedback
control systems and unify the treatment of physical control systems by using
mathematical and block-diagram models common to all.

There are many computer-aided design (CAD) packages (e.g.,
MATLAB® [see App. C], Simulink, and TOTAL-PC) available to help students
and practicing engineers analyze, design, and simulate control systems. The use
of MATLAB is emphasized throughout the book, and many MATLAB m-files
are presented as examples.

We thank the students who have used this book in its previous editions
and the instructors who have reviewed this edition for their helpful comments
and recommendations. We thank especially Dr. R. E. Fontana, Professor
Emeritus of Electrical Engineering, Air Force Institute of Technology, for the
encouragement he provided for the previous editions. This edition is dedicated
to the memory of Dr. T. J. Higgins, Professor Emeritus of Electrical Engineer-
ing, University of Wisconsin, for his thorough review of the earlier manuscripts.
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We also express our appreciation to Professor Emeritus Donald McLean
of the University of Southampton, England, formerly a visiting professor at
the Air Force Institute of Technology. Our association with him has been an
enlightening and refreshing experience. The personal relationship with him
has been a source of inspiration and deep respect.

John J. DAzzo
Constantine H. Houpis
Stuart N. Sheldon
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1

Introduction

1.1 INTRODUCTION

The technological explosion of the twentieth century, which was accelerated
by the advent of computers and control systems, has resulted in tremendous
advances in the field of science. Thus, automatic control systems and
computers permeate life in all advanced societies today. These systems and
computers have acted and are acting as catalysts in promoting progress
and development, propelling society into the twenty-first century.
Technological developments have made possible high-speed bullet trains;
exotic vehicles capable of exploration of other planets and outer space; the
establishment of the Alpha space station; safe, comfortable, and efficient
automobiles; sophisticated civilian and military [manual and
uninhabited (see Fig. 1.1)] aircraft; efficient robotic assembly lines; and
efficient environmentally friendly pollution controls for factories. The
successful operation of all of these systems depends on the proper function-
ing of the large number of control systems used in such ventures.
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FIGURE 1.1 An unmanned aircraft.

1.2 INTRODUCTION TO CONTROL SYSTEMS
Classical Examples

The toaster in Fig. 1.2a can be set for the desired darkness of the toasted bread.
The setting of the “darkness” knob, or timer, represents the input quantity,
and the degree of darkness and crispness of the toast produced is the output
quantity. If the degree of darkness is not satisfactory, because of the condition
of the bread or some similar reason, this condition can in no way automati-
cally alter the length of time that heat is applied. Since the output quantity
has no influence on the input quantity, there is no feedback in this system.
The heater portion of the toaster represents the dynamic part of the overall
system, and the timer unit is the reference selector.

The dc shunt motor of Fig. 1.25 is another example. For a given value of
field current, a required value of voltage is applied to the armature to produce
the desired value of motor speed. In this case the motor is the dynamic part of
the system, the applied armature voltage is the input quantity, and the speed
of the shaft is the output quantity. A variation of the speed from the desired
value, due to a change of mechanical load on the shaft, can in no way cause
a change in the value of the applied armature voltage to maintain the desired
speed. Therefore, the output quantity has no influence on the input quantity.
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FIGURE 1.2 Open-loop control systems: (a) automatic toaster; (b) electric motor;
(¢) functional block diagram.

Systems in which the output quantity has no effect upon the input
quantity are called open-loop control systems. The examples just cited are repre-
sented symbolically by a functional block diagram, as shown in Fig. 1.2¢. In
this figure, (1) the desired darkness of the toast or the desired speed of the
motor is the command input, (2) the selection of the value of time on the
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toaster timer or the value of voltage applied to the motor armature is
represented by the reference-selector block, and (3) the output of this block is
identified as the reference input. The reference input is applied to the dynamic
unit that performs the desired control function, and the output of this block is
the desired output.

A person could be assigned the task of sensing the actual value of the
output and comparing it with the command input. If the output does not
have the desired value, the person can alter the reference-selector position to
achieve this value. Introducing the person provides a means through which
the output is fed back and is compared with the input. Any necessary change
is then made in order to cause the output to equal the desired value.
The feedback action therefore controls the input to the dynamic unit. Systems
in which the output has a direct effect upon the input quantity are called closed-
loop control systems.

To improve the performance of the closed-loop system so that the output
quantity is as close as possible to the desired quantity, the person can be
replaced by a mechanical, electrical, or other form of a comparison unit. The
functional block diagram of a single-input single-output (SISO) closed-loop con-
trol system is illustrated in Fig. 1.3. Comparison between the reference input
and the feedback signals results in an actuating signal that is the
difference between these two quantities. The actuating signal acts to maintain
the output at the desired value. This system is called a closed-loop control
system. The designation closed-loop implies the action resulting from the
comparison between the output and input quantities in order to maintain the
output at the desired value. Thus, the output is controlled in order to achieve
the desired value.

Examples of closed-loop control systems are illustrated in Figs. 1.4 and
1.5. In a home heating system the desired room temperature (command input)

Reference  Actuating System
mput signal dynamics
Command | Reference | | + Forward - Qutput
input selector o elements = o
Feedback
signal

Feegback |
element

loop control system.

FIGURE 1.3 Functional block diagram of a closed-loop system.
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FIGURE 1.4 Home heating control system.

is set on the thermostat in Fig. 1.4. (reference selector). A bimetallic coil in the
thermostat is affected by both the actual room temperature (output) and the
reference-selector setting. If the room temperature is lower than the desired
temperature, the coil strip alters its shape and causes a mercury switch to
operate a relay, which turns on the furnace to produce heat in the room.
When the room temperature [1] reaches the desired temperature, the shape of
the coil strip is again altered so that the mercury switch opens. This deactivates
the relay and in turn shuts off the furnace. In this example, the bimetallic coil
performs the function of a comparator since the output (room temperature)
is fed back directly to the comparator. The switch, relay, and furnace are the
dynamic elements of this closed-loop control system.

A closed-loop control system of great importance to all multistory build-
ings is the automatic elevator of Fig. 1.5. A person in the elevator presses the
button corresponding to the desired floor. This produces an actuating signal
that indicates the desired floor and turns on the motor that raises or lowers the
elevator. As the elevator approaches the desired floor, the actuating signal
decreases in value and, with the proper switching sequences, the elevator
stops at the desired floor and the actuating signal is reset to zero. The closed-
loop control system for the express elevator in the Sears Tower building in
Chicago is designed so that it ascends or descends the 103 floors in just
under 1 min with maximum passenger comfort.

Modern Examples

The examples in this section represent complex closed-loop control systems
that are at the forefront of the application of control theory to the control
system challenges of the twenty-first century.

The ultimate objective in robotic arm control research [2]* is to provide
human arm emulation. Payload invariance is a necessary component of

*References are indicated by numbers in brackets and are found at the end of the chapter.
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2d floor

FIGURE 1.5 Automatic elevator.

human arm emulation. Model-based controllers require accurate knowledge
of payload and drive system dynamics to provide good high-speed tracking
accuracy. A robust multivariable control system design technique is required
which solves the payload and dynamics uncertainty. Thus, the model-based
quantitative feedback theory (QFT) design technique [3] is applied which
results in controllers that are implemented by a series of simple backwards
difference equations. QFT high-speed tracking accuracy was experimentally
evaluated on the first three links of the PUMA-500 of Fig. 1.6. This robust
design technique increased tracking accuracy by up to a factor of 4 over the
model-based controller performance baseline. The QFT tracking perfor-
mance is robust for both unmodeled drive system dynamics and payload
uncertainty. The nonheuristic nature of the QFT design and tuning should
allow application to a wide range of manipulators.

The interest in improving the fuel efficiency of automobiles has spurred
the improvement of the idle speed control for the automotive fuel-injected
engine [4,5]. The following is the abstract from the paper entitled “Robust
Controller Design and Experimental Verification of I.C. Engine Speed
Control” by G.K. Hamilton and M.A. Franchek, School of Mechanical
Engineering, Purdue University [4].
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FIGURE 1.6 Robot arm (From Ref. 2).

Presented in this paper is the robust idle speed control of a Ford 4.6
V-8 fuel injected engine. The goal of this investigation is to design
a robust feedback controller that maintains the idle speed within
a 150 rpm tolerance of about 600 rpm despite a 20 Nm step torque
disturbance delivered by the power steering pump. The controlled
input is the by-pass air valve which is subjected to an output satura-
tion constraint. Issues complicating the controller design include the
nonlinear nature of the engine dynamics, the induction-to-power
delay of the manifold filling dynamics, and the saturation constraint
of the by-pass air valve. An experimental verification of the proposed
controller, utilizing the nonlinear plant, is included.
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The desired performance has been demonstrated on the laboratory test
setup shown in Figure 1.7a. The authors show in their paper that they met all
the design objectives and have achieved excellent results.

Shown in Figure 1.75 is the testing and simulation setup of a mass air
flow (MAF) sensor diagnostics for adaptive fueling control of internal com-
bustion engines performed at the Purdue Engine Research Facility/Engine
Control Technology, Purdue University, by Professor M.A. Franchek and his
associates [6]. An information synthesis solution is attractive for diagnostics
since the algorithm automatically calibrates itself, reduces the number of
false detections, and compresses a large amount of engine health information
into the model coefficients. There are three primary parts to information
synthesis diagnostics. First, an IS model is used to predict the MAF sensor
output based on the engine operating condition. The inputs to this IS
model include the throttle position sensor (TPS) and the engine speed sensor
information. The second part concerns an adaptation process that is used to
reduce the errors between the IS model output and the actual MAF sensor
output. Finally, the adapted model coefficients are used to diagnose the
sensor as well as identify the source for changes in the sensor characteristics.
This proposed solution is experimentally tested and validated on a Ford 4.6 L

FIGURE 1.7a Fuel injection engine.
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FIGURE 1.7b  Testing and simulation setup of a mass air flow sensor diagnostics for
internal combustion engines.
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FIGURE 1.8 Wastewater treatment plant.

V-8 fuel injected engine. The specific MAF sensor faults to be identified
include sensor bias and a leak in the intake manifold.

One of the most important objectives of a wastewater treatment plant
(WWTP) [7], shown in Fig. 1.8, is to protect the water environment from
negative effects produced by residual water, controlling the maximum
concentration of pernicious substances. A computer simulation of the QFT-
designed WWTP-compensated control system met the desired performance
specifications. The control system design resulted in an improved performance
of the plant because the concentration levels obtained are nearer to those
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required by environmental law, and a notable reduction in the running
costs is produced. Thus, the operation of the plant is notably more efficient.
The controller developed is also suitable for low-cost microcomputer
implementation.

Design methods for analog SISO control systems shown in Fig. 1.3 are
covered in Chaps. 6 to 16. Some systems require a precision in their
performance that cannot be achieved by the structure of Fig. 1.3. Also,
systems exist for which there are multiple inputs and/or multiple outputs.
They are discussed in References 3 and 8. The design methods for such
systems are often based on a representation of the system in terms of state vari-
ables. For example, position, velocity, and acceleration may represent the state
variables of a position control system. The definition of state variables and
their use in representing systems are contained in Chaps. 2, 3, and 5. The use
of state-variable methods for the design of control systems is presented in
Chaps. 13 and 14. The design methods presented in Chaps. 7 to 16 require
knowledge of a fixed mathematical model of the system that is being
controlled. The parameters of some systems change because of the range of
conditions under which they operate. The quantitative feedback theory is a
design technique for nonlinear plants that contain structured parametric
uncertainty [3]. Using QFT, the parameter variations and performance
specifications are included at the onset of the design process. The use of
a digital computer to assist the engineer in the design process is emphasized
throughout this book, and an available computer-aided design (CAD)
package is given in Appendix C.

The design of the robust flight control system (FCS) for the VISTA
F-16 of Fig. 1.9b was accomplished by an Air Force Institute of Technology

FIGURE 1.9 VISTA F-16.
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student who is an F-16 pilot [9]. He was able to utilize his real-
world knowledge of the aircraft and its handling qualities to achieve
the desired robust FCS. Traditionally, flight control engineers have taken
a conservative, brute force approach to designing a full envelope FCS for
an aircraft. First, many design points, which for this design were points
representing airspeed vs. altitude, within and along the border of the flight
envelope plot were selected. Second, individual compensator designs
were accomplished for each of these points. Third, smooth transitions
between these compensators must be engineered. Making the transitions
imperceptible to the pilot is very difficult and time consuming because
each airspeed-altitude design point can be approached from an infinite
number of initial conditions. Obviously, if the number of the design
points can be reduced, thus reducing the number of transitions required,
the design process can be made more efficient, and the resulting FCS less
complex.

A way to reduce the number of necessary design points is to apply a
robust control design technique to the problem. A compensator synthesized
using robust control principles should be able to handle large parts of, if
not the whole, flight envelope. Unfortunately, many previous attempts at
applying robust control design algorithms to practical, real-world problems
have been dismal failures [9]. Although the problem is well posed, the
failure is due to the fact that the resulting compensator is impractical to
implement. Either the compensator is of too high order, or its gain is too
large to accommodate real-world nonlinearities. Also, any sensor noise
present is accentuated by this gain. The typical reason for these poor results
is that the robust design is synthesized in the essentially noiseless world of the
digital computer, and then validated on the digital computer through the use
of small signal, linear simulation.

A robust control design technique that overcomes the aforementioned
pitfalls is the QF T design technique. Although a QFT design effort could very
easily result in a compensator of high order and of high gain, it does give the
designer complete control over the gain and the order of the compensator;
hence, QFT is not constrained to produce an impractical compensator.
In addition, if a decision is made to decrease or limit the order or gain of a
compensator, the performance trade-offs due to this action can be clearly
seen by the designer.

In summary, although excellent FCSs have been designed for aircraft
using traditional design methods, the synthesis of those FCSs has been a
costly, time-consuming endeavor. Thus, limiting robustness in FCS design
results in a convoluted, complex, full envelope design. QFT offers the ability
to incorporate enough robustness to simplify the design process and
the resulting FCS, but not so much robustness that the resulting FCS is

Copyright © 2003 Marcel Dekker, Inc.



impractical to implement due to violation of physical limitations imposed by
the “real-world” (i.e., actuator saturation or sensor noise amplification).
Also, QFT has the feature of utilizing the control system designer’s knowledge
of the real-world characteristics of the plant, etc. during the ongoing design
process in maximizing the ability to achieve the desired robust system
performance. A simulation [10], involving the nonlinear plant was performed
on the Lamars Simulator [I1] by the FCS designer—an F-16 pilot. The
excellent performance in these simulations demonstrated the viability of
a QFT design approach in producing flight-worthy aircraft control systems.
It illustrated the benefits of designing flight control systems with the QFT
robust control system design technique in contrast to the brute force
approach of optimizing a flight control system for performance in expected
configurations and then scheduling the gains.

1.3 DEFINITIONS

From the preceding discussion the following definitions are evolved, based in
part on the standards of the IEEE [1], and are used in this text.

System. A combination of components that act together to perform a
function not possible with any of the individual parts. The word
system as used herein is interpreted to include physical, biological,
organizational, and other entities, and combinations thereof, which
can be represented through a common mathematical symbolism.
The formal name systems engineering can also be assigned to this defi-
nition of the word system. Thus, the study of feedback control
systems is essentially a study of an important aspect of systems
engineering and its application.

Command input. The motivating input signal to the system,which is inde-
pendent of the output of the system and exercises complete
control over it (if the system is completely controllable).

Reference selector (reference input element). The unit that establishes the
value of the reference input. The reference selector is calibrated in
terms of the desired value of the system output.

Reference input. The reference signal produced by the reference
selector, i.e., the command expressed in a form directly usable by
the system. It is the actual signal input to the control system.

Disturbance input. An external disturbance input signal to the system
that has an unwanted effect on the system output.

Forward element (system dynamics). The unit that reacts to an actuating
signal to produce a desired output. This unit does the work of control-
ling the output and thus may be a power amplifier.

Copyright © 2003 Marcel Dekker, Inc.



Output (controlled variable). The quantity that must be maintained at a
prescribed value, i.e., following the command input without respond-
ing the disturbance inputs.

Open-loop control system. A system in which the output has no effect upon
the input signal.

Feedback element. The unit that provides the means for feeding back the
output quantity, or a function of the output, in order to compare it
with the reference input.

Actuating signal. The signal that is the difference between the reference
input and the feedback signal. It is the input to the control unit that
causes the output to have the desired value.

Closed-loop control system. A system in which the output has an effect
upon the input quantity in such a manner as to maintain the desired
output value.

The fundamental difference between the open- and closed-loop systems
is the feedback action, which may be continuous or discontinuous. In one
form of discontinuous control the input and output quantities are periodically
sampled and discontinuous. Continuous control implies that the output is
continuously fed back and compared with the reference input compared;
i.e., the control action is discontinuous in time. This is commonly called
a digital, discrete-data or sampled-data feedback control system. A discrete-
data control system may incorporate a digital computer that improves the
performance achievable by the system. In another form of discontinuous
control system the actuating signal must reach a prescribed value before the
system dynamics reacts to it; i.e., the control action is discontinuous in
amplitude rather than in time. This type of discontinuous control system is
commonly called an on-off or relay feedback control system. Both forms
may be present in a system. In this text continuous control systems are
considered in detail since they lend themselves readily to a basic understand-
ing of feedback control systems. The fundamentals of sampled-data (S-D)
control systems are given in Chap. 15. Digital control systems are introduced
in Chap. 16.

With the above introductory material, it is proper to state a definition [1]
of a feedback control system: “A control system that operates to achieve
prescribed relationships between selected system variables by comparing
functions of these variables and using the comparison to effect control.” The
following definitions are also used.

Servomechanism (often abbreviated as servo). The term is often used to
refer to a mechanical system in which the steady-state error is zero
for a constant input signal. Sometimes, by generalization, it is used
to refer to any feedback control system.
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Regulator. This term is used to refer to systems in which there is a con-
stant steady-state output for a constant signal. The name is derived
from the early speed and voltage controls, called speed and voltage
regulators.

1.4 HISTORICAL BACKGROUND [12]

The action of steering an automobile to maintain a prescribed direction of
movement satisfies the definition of a feedback control system. In Fig. 1.10,
the prescribed direction is the reference input. The driver’s eyes perform the
function of comparing the actual direction of movement with the prescribed
direction, the desired output. The eyes transmit a signal to the brain, which

Prescribed direction
of movement-
reference input

Actual direction of
movement of
automobile-output

FIGURE 1.10 A pictorial demonstration of an automobile as a feedback control
system.
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FIGURE 1.11 Hero’s device for opening temple doors.

interprets this signal and transmits a signal to the arms to turn the steering
wheel, adjusting the actual direction of movement to bring it in line with
the desired direction. Thus, steering an automobile constitutes a feedback
control system.

One of the earliest open-loop control systems was Hero’s device
for opening the doors of a temple. The command input to the system
(see Fig. 1.11) was lighting a fire upon the altar. The expanding hot air under
the fire drove the water from the container into the bucket. As the bucket
became heavier, it descended and turned the door spindles by means of
ropes, causing the counterweight to rise. The door could be closed by
dousing the fire. As the air in the container cooled and the pressure was
thereby reduced, the water from the bucket siphoned back into the storage
container. Thus, the bucket became lighter and the counterweight, being
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heavier, moved down, thereby closing the door. This occurs as long as the
bucket is higher than the container. The device was probably actuated when
the ruler and his entourage started to ascend the temple steps. The system for
opening the door was not visible or known to the masses. Thus, it created an
air of mystery and demonstrated the power of the Olympian gods.

James Watt’s flyball governor for controlling speed, developed in 1788,
can be considered the first widely used automatic feedback control system.
Maxwell, in 1868, made an analytic study of the stability of the flyball
governor. This was followed by a more detailed solution of the stability of a
third-order flyball governor in 1876 by the Russian engineer Wischnegradsky
[13]. Minorsky made one of the earlier deliberate applications of nonlinear
elements in closed-loop systems in his study of automatic ship steering about
1922 [14].

A significant date in the history of automatic feedback control systems is
1934, when Hazen’s paper “Theory of Servomechanisms” was published in
the Journal of the Franklin Institute, marking the beginning of the very intense
interest in this new field. It was in this paper that the word servomechanism
originated, from the words servant (or slave) and mechanism. Black’s important
paper on feedback amplifiers appeared [15] in the same year. After World War
I1, control theory was studied intensively and applications have proliferated.
Many books and thousands of articles and technical papers have been written,
and the application of control systems in the industrial and military fields has
been extensive. This rapid growth of feedback control systems was acceler-
ated by the equally rapid development and widespread use of computers.

An early military application of a feedback control system is the antiair-
craft radar tracking control system shown in Fig. 1.12. The radar antenna
detects the position and velocity of the target airplane, and the computer
takes this information and determines the correct firing angle for the gun.
This angle includes the necessary lead angle so that the shell reaches the
projected position at the same time as the airplane. The output signal of the
computer, which is a function of the firing angle, is fed into an amplifier that
provides power for the drive motor. The motor then aims the gun at the
necessary firing angle. A feedback signal proportional to the gun position
ensures correct alignment with the position determined by the computer.
Since the gun must be positioned both horizontally and vertically, this system
has two drive motors, which are parts of two coordinated feedback loops.

The advent of the nuclear reactor was a milestone in the advancement of
science and technology. For proper operation the power level of the reactor
must be maintained at a desired value or must vary in a prescribed manner.
This must be accomplished automatically with minimum human supervision.
Figure 1.13 is a simplified block diagram of a feedback control system for
controlling the power output level of a reactor. If the power output level differs
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FIGURE 1.12 Antiaircraft radar-tracking control systems.

from the reference input value, the actuating signal produces a signal at the
output of the control elements. This, in turn, moves the regulating rod in
the proper direction to achieve the desired power level of the nuclear reactor.
The position of the regulating rod determines the rate of nuclear fission
and therefore the total power generated. This output nuclear power can be
converted into steam power, for example, which is then used for generating
electric energy.

The control theory developed through the late 1950s may be categorized
as conventional control theory and is effectively applied to many control-
design problems, especially to SISO systems. Since then, control theory has
been developed for the design of more complicated systems and for multiple-
input multiple-output (MIMO) systems. Space travel has become possible only
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FIGURE 1.13 A feedback system for controlling the power level of a nuclear reactor.

Copyright © 2003 Marcel Dekker, Inc.



because of the advent of modern control theory. Areas such as trajectory
optimization and minimum-time and/or minimum-fuel problems, which
are very important in space travel, can be readily handled by multivariable
control theory. The introduction of microprocessors as control elements, i.e.,
performing control functions in contrast to being used solely as computa-
tional tools, has had an enormous impact on the design of feedback control
systems which achieve desired control-system specifications.

The development of control concepts in the engineering field has been
extended to the realm of human and biomedical engineering. The basic
concept of feedback control is used extensively in the field of business
management. The field of medicine is also one to which the principles of
control systems and systems engineering are being applied extensively. Thus,
standards of optimum performance are established in all areas of endeavor:
the actual performance is compared with the desired standard, and any
difference between the two is used to bring them into closer agreement.

1.5 DIGITAL CONTROL DEVELOPMENT [16]

The advances of the twentieth century have expedited the decrease in cost of
digital hardware; thus economical digital control implementation is enabling
the tremendous advances that will be made in the twenty-first century.
Applications include process control, automatic aircraft stabilization and
control, guidance and control of acrospace vehicles, aerospace vehicle man-
agement systems (VMS), uninhabited (unmmaned) aerospace vehicles such
as the Global Hawk, and robotics. The development of digital control systems
is illustrated by the following example of a digital flight control system.
Numerous changes have been made in aircraft flight control systems.
Initially, flight control systems were purely mechanical, which was ideal for
smaller, slow-speed, low-performance aircraft because they were easy to
maintain. However, more control-surface force is required in modern high-
performance airplanes. Thus, during the twentieth century a hydraulic power
boost system was added to the mechanical control. This modification
maintained the direct mechanical linkage between the pilot and the control
surface. As aircraft became larger, faster, and heavier, and had increased
performance, they became harder to control because the pilot could not
provide the necessary power to directly operate the control surfaces. Thus,
the entire effort of moving the control surface had to be provided by the
actuator. A stability augmentation system (SAS) was added to the hydraulic
boosted mechanical regulator system to make the aircraft flyable under
all flight configurations. Motion sensors were used to detect aircraft
perturbations and to provide electric signals to a SAS computer, which, in
turn, calculated the proper amount of servo actuator force required. When
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FIGURE 1.14 Fly-by-wire (FBW) and power-by-wire (PBW) control systems.
(Control Systems Development Branch, Flight Dynamics Laboratory, Wright-
Patterson AFB, Ohio.)

higher-authority SAS was required, both series- and parallel-pitch axis, dam-
pers were installed. This so-called command augmentation system (CAS),
which is no longer utilized, allowed greater flexibility in control because the
parallel damper could provide full-authority travel without restricting the
pilot’s stick movements. Although planes were originally designed to be stati-
cally stable, longitudinally unstable aircraft are more agile. In these aircraft
the flight control system provided the required stability.

The next step in the evolution of flight control systems was the use of a
fly-by-wire (FBW) control system shown in Fig. 1.14. In this design, all pilot
commands are transmitted to the control-surface actuators through electric
wires. Thus, all mechanical linkages from the pilot’s control stick to the
servo actuators are removed from the aircraft. The FBW system provided
the advantages of reduced weight, improved survivability, and decreased
maintenance. However, the pilot is required to believe in and accept the
increased survivability that is provided by using redundancy throughout the
entire flight control system.

Originally the flight control computers were analog (such as the F-16
aircraft computers), but these have been replaced by digital computers.
In addition, the controller consists of a digital computer which accepts the
pilot commands and signals from the sensors (position and rate gyros) and
accelerometers, and sends commands to the actuators. This is now referred to
as a digital flight control system (DFCS). For twenty-first century aerospace
vehicles the use of hydraulics has essentially been eliminated in favor of an
all-electric system incorporating the use of digital computers. No longer do
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FIGURE 1.15 An aircraft designed for aero-redundancy for reconfiguration to
maintain desired flying qualities.

they simply control the flight control system; they now command and control
utilities and other aircraft subsystems. The flight control system has now
become a more inclusive VMS.

The improved airborne digital processors have further reduced the cost,
weight,and maintenance of modern aircraft. Other advantages associated with
twenty-first century digital equipment include greater accuracy, increased
modification flexibility through the use of software changes, improved in-
flight reconfiguration techniques that compensate for physical damage and
equipment failures, and more reliable preflight and postflight maintenance
testing. An example of a modern high-performance aircraft is shown in
Fig. 1.15. This aircraft has a quad-redundant three-axis fly-by-wire flight con-
trol system. It also includes a digital built-in task computer that runs through
all the preflight tests to make sure that all equipment is functioning properly.

1.6 MATHEMATICAL BACKGROUND

The early studies of control systems were based on the solution of differential
equations by classical methods. Other than for simple systems, the analysis
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in this approach is tedious and does not readily indicate what changes
should be made to improve system performance. Use of the Laplace transform
simplifies this analysis somewhat. Nyquist’s paper [17] published in 1932
dealt with the application of steady-state frequency-response techniques
to feedback amplifier design. This work was extended by Black [15] and
Bode [18]. Hall [19] and Harris [20] applied frequency-response analysis in
the study of feedback control systems, which furthered the development of
control theory as a whole.

Another advance occurred in 1948, when Evans [21] presented his root-
locus theory. This theory affords a graphical study of the stability properties
of a system as a function of loop gain and permits the graphical evaluation of
both the time and the frequency response. Laplace transform theory and
network theory are joined in the root-locus calculation. In the conventional
control-theory portion of this text the reader learns to appreciate the
simplicity and value of the root locus technique.

The Laplace transform and the principles of linear algebra are used in
the application of modern control theory to system analysis and design.
The nth-order differential equation describing the system can be converted
into a set of n first-order differential equations expressed in terms of the state
variables. These equations can be written in matrix notation for simpler
mathematical manipulation. The matrix equations lend themselves very well
to computer computation. This characteristic has enabled modern control
theory to solve many problems, such as nonlinear and optimization problems,
which could not be solved by conventional control theory.

Mathematical models are used in the linear analysis presented in this
text. Once a physical system has been described by a set of mathematical
equations, they are manipulated to achieve an appropriate mathematical
format. When this has been done, the subsequent method of analysis is
independent of the nature of the physical system; i.c., it does not matter
whether the system is electrical, mechanical, etc. This technique helps the
designer to spot similarities based upon previous experience.

The reader should recognize that no single design method is intended to
be used to the exclusion of the others. Depending upon the known factors and
the simplicity or complexity of a control-system problem, a designer may use
one method exclusively or a combination of methods. With experience in the
design of feedback control systems comes the ability to use the advantages of
each method.

The modern control theory presented in this text provides great
potential for shaping the system output response to meet desired performance
standards. Additional state-of-the-art design techniques for MIMO controls
systems are presented that bring together many of the fundamentals presented
earlier in the text. These chapters present the concepts of designing a robust
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control system in which the plant parameters may vary over specified ranges
during the entire operating regime.

A control engineer must be proficient in the use of available comprehen-
sive CAD programs similar to MATLAB (see Appendix C) or TOTAL-PC
[8] (see Appendix D), which are control-system computer-aided-design
programs. Many CAD packages for personal computers (PCs) and main-
frame computers are available commercially. The use of a CAD package
enhances the designer’s control-system design proficiency, since it minimizes
and expedites the tedious and repetitive calculations involved in the design of a
satisfactory control system. To understand and use a computer-aided analysis
and design package, one must first achieve a conceptual understanding of the
theory and processes involved in the analysis and synthesis of control systems.
Once the conceptual understanding is achieved by direct calculations, the
reader is urged to use all available computer aids. For complicated design
problems, engineers must write their own digital-computer program that is
especially geared to help achieve a satisfactory system performance.

1.7 THE ENGINEERING CONTROL PROBLEM
In general, a control problem can be divided into the following steps:

1. A set of performance specifications is established.

2. The performance specifications establish the control problem.

3. A set of linear differential equations that describe the physical
system is formulated or a system identification technique is applied
in order to obtain the plant model transfer functions.

4. A control-theory design approach, aided by available computer-
aided-design (CAD) packages or specially written computer
programs, involves the following:

(@) The performance of the basic (original or uncompensated)
system is determined by application of one of the available
methods of analysis (or a combination of them).

(b) If the performance of the original system does not meet the
required specifications, a control design method is selected
that will improve the system’s response.

(o For plants having structured parameter uncertainty, the
quantitative feedback theory (QFT) [3] design technique may
be used. Parametric uncertainty is present when parameters of
the plant to be controlled vary during its operation, as explained
in Ref. 3.

5. A simulation of the designed nonlinear system is performed.

6. The actual system is implemented and tested.
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Design of the system to obtain the desired performance is the control problem.
The necessary basic equipment is then assembled into a system to perform the
desired control function. Although most systems are nonlinear, in many cases
the nonlinearity is small enough to be neglected, or the limits of operation are
small enough to allow a linear analysis to be used. This textbook considers
only linear systems.

A basic system has the minimum amount of equipment necessary to
accomplish the control function. After a control system is synthesized to
achieve the desired performance, final adjustments can be made in a simula-
tion, or on the actual system, to take into account the nonlinearities that were
neglected. A computer is generally used in the design, depending upon the
complexity of the system. The essential aspects of the control system design
process are illustrated in Fig. 1.16. Note: The development of this figure is
based upon the application of the QFT [3,8] design technique. A similar
figure may be developed for other design techniques. The intent of (Fig. 1.16)
is to give the reader an overview of what is involved in achieving a successful
and practical control system design. The aspects of this figure that present the
factors that help in bridging the gap between theory and the real world are
addressed in the next paragraph. While accomplishing a practical control
system design, the designer must keep in mind that the goal of the design
process, besides achieving a satisfactory theoretical robust design, is to
implement a control system that meets the functional requirements. In other
words, during the design process one must keep the constraints of the real
world in mind. For instance, in performing the simulations, one must be able
to interpret the results obtained, based upon a knowledge of what can be
reasonably expected of the plant that is being controlled. For example, in
performing a time simulation of an aircraft’s transient response to a pilot’s
maneuvering command to the flight control system, the simulation run time
may need to be only 5s since by that time a pilot would have instituted a new
command signal. If within this 5s window the performance specifications are
satisfied, then it will be deemed that a successful design has been achieved.
However, if the performance varies even more dramatically, rate saturation
of the output effectors will significantly affect the achievement of the
functional requirements. Linear and nonlinear simulations are very helpful
in early evaluation of the controlled system, but if the system is to operate in
the real word, hardware-in-the-loop and system tests must be performed to
check for unmodeled effects not taken into account during the design and
implementation phases. In order to be a successful control system designer,
an individual must be fully cognizant of the role corresponding to each
aspect illustrated in Fig. 1.16.

Bridging the gap, as illustrated in Fig. 1.16, is enhanced by the trans-
parency of the metrics depicted by the oval items in the interior of the QFT

Copyright © 2003 Marcel Dekker, Inc.



Functional Requirements
This is the problem statement
Included are the operational
goals of the controlled system

Eerformance Specifications and its operating environment Dynamics Model
These are the mathematical Mathematical model
expressions which represent the of the system 1o be

functional requirements. controlled

)

Algorithm to optimize the use of
control effectors for efMiciency and

decoupling

OFT Contrel System Desien
Produces control algorithms for

test and implementation

Concurrent Nichols Plots o

{lmplcmmlmdmltmdiiau control ] s na R srmeentt

Robust Stability, performance,
and disturbance boundaries as a
Tunction of frequency

*Nonlinear Functions ERITROTRERL o
*Nonlinear Dynamics

Ability to masipulate
closed-loop response as a
function of frequency

Successful
Control Design

System Test
Tryout of controlled system
under actual operating conditions

Imbedded Performance :;
Specifications 4
[ Human-in-the-Loop Simulation
| +Visual cues
i | *Moving base

Concurrent Bode
Plots, open and
closed-loop

of simulations and System tests

Engineering Visualization
[ Used to better understand results }

Design can be broken
down by open or closed-
laop operating condition

Hardware-in-the-Loop

Real-ti ion of control al,
*Noise

+User supplies commands and then can

react to resulting dynamic behavior
+Gives a better understanding of control
system operation

for feedback
«Ci i

7 cycle ti pling Rate
*Quantization Error, Warping

FIGURE 1.16 A control system design process: bridging the gap.

design process. A key element of QFT is embedding the performance
specifications at the onset of the design process. This establishes design goals
that enhance and expedite the achievement of a successful design. Another
important element is the creation of templates at various frequencies.

Copyright © 2003 Marcel Dekker, Inc.



The sizes of the templates indicate whether or not a robust design is
achievable. If a robust design is not achievable, then the templates can be
used as a metric in the reformation of the control design problem. Another
element of the QFT design process is the ability to concurrently analyze
frequency responses of the J linear-time invariant (LTI) plants that represent
the nonlinear dynamical system throughout its operating environment. This
gives the designer insight into the behavior of the system. The designer can
use this insight for such things as picking out key frequencies to use during
the design process, as an indicator of potential problems such as nonminimum
phase behavior, and as a tool to compare the nonlinear system with the desired
performance boundaries. The next element of QFT consists of the design
boundaries. During the actual loop shaping process, the designer uses
boundaries plotted on the Nichols chart. These boundaries are only guidelines
and the designer can exercise engineering judgment to determine if all the
boundaries are critical or if some of the boundaries are not important.
For example, based on knowledge of the real world system, the designer
may determine that meeting performance boundaries below a certain
frequency is not important, but it is important to meet the disturbance
rejection boundaries below that frequency. Once the initial design has been
accomplished, all of the J loop transmission functions can be plotted on a
Nichols chart to analyze the results of applying the designed compensator
(controller) to the nonlinear system. This gives the designer a first look at
any areas of the design that may present problems during simulation and
implementation. The last two elements of the QFT design process that help
bridging the gap is the relationship of the controlled system’s behavior to the
frequency domain design and the operating condition. These relationships
enable the designer to better analyze simulation or system test results for
problems in the control design. To obtain a successful control design, the
controlled system must meet all of the requirements during simulation and
system test. If the controlled system fails any of the simulation or system
tests, then, using the design elements of QFT, the designer can trace that
failure back through the design process and make necessary adjustments
to the design. QFT provides many metrics that provide the link between
the control design process and real world implementation; this is the transpar-
ency of OF T

1.8 COMPUTER LITERACY

In the mid 1960s, the first practical CAD package, FREQR, for frequency
domain analysis was developed at the Air Force Institute of Technology
(AFIT). This was followed by the development of two other AFIT CAD
packages: PARTL for partial-fraction expansion of transfer functions and for
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obtaining a time response, and ROOTL for obtaining root-locus data and
plots. These CAD packages became the basis for the practical control
system design CAD package called TOTAL, the forerunner of TOTAL-PC
[8], which was developed in 1978 at AFIT. TOTAL became the catalyst,
along with other control CAD packages developed by other individuals,
for the development of the current highly developed commercial control
system design CAD packages that are now readily available. One of these
CAD packages is MATLAB, which has become a valuable tool for a control
engineer and is illustrated in this text. The detailed contents of the TOTAL-
PC CAD package are described in Appendix D. The program is contained in
the disk which is included with this book.

Becoming proficient (computer literate) in the use of these CAD
packages (tools) is essential for a control systems engineer. It is also essential
to develop procedures for checking the CAD results at each stage of the
analysis and design. This is necessary in order to verify that these CAD tools
have generated results which are consistent with theory. Whenever in doubt,
concerning the operation of a specific CAD tool, apply the CAD tool to a
simple problem whose known analytical solution can be readily compared to
the computer generated output.

1.9 OUTLINE OF TEXT

The text is essentially divided into three parts. The first part, consisting of
Chapters 2 through 4, provides the mathematical foundation for modeling
physical systems and obtaining time solutions using classical or Laplace
transform methods. The second part consists of Chapters 5 through 9 that
provide the fundamentals of conventional control theory and state-variable
concepts. The remaining portion of the text represents material that is usually
covered in the first or second undergraduate course in control theory and
control system design.

The first few chapters deal with the mathematics and physical system
modeling that underlie the analysis of control systems. Once the technique of
writing the system equations (and, in turn, their Laplace transforms) that
describe the performance of a dynamic system has been mastered, the ideas
of block and simulation diagrams and transfer functions are developed.
When physical systems are described in terms of block diagrams and transfer
functions, they exhibit basic servo characteristics. These characteristics are
described and discussed. The concept of state is introduced, and the system
equations are developed in the standard matrix format. The necessary linear
algebra required to manipulate the matrix equations is included. A presenta-
tion of the various methods of analysis is next presented that can be used in the
study of feedback control systems. SISO systems are used initially to facilitate
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an understanding of the synthesis methods. These methods rely on root-locus
and steady-state frequency-response analysis. If the initial design does not
meet the desired specifications, then improvement of the basic system by
using compensators in presented. These compensators can be designed by
analyzing and synthesizing a desired open-loop transfer function or by synthe-
sizing a desired closed-loop transfer function that produces the desired overall
system performance. Chapter 12 is devoted to modeling a desired closed-loop
transfer function for tracking a desired input or for rejecting (not responding
to) disturbance inputs.

The next portion of the text deals with SISO system design using
state feedback. Topics such as controllability and observability, pole
placement via state-variable feedback, and parameter sensitivity are
presented. The fundamentals of sampled-data (S-D) control-system analysis
are presented in Chap. 15. The design of cascade and feedback compensators
(controllers) for improving the performance of S-D control systems is
presented in Chap. 16. Chapter 16 introduces the concept of the representation
of, and the design of digital control systems by a psuedo-continuous-time
(PCT) control system.

Appendix A gives a table of Laplace transform pairs. Fundamentals of
basic matrix algebra are presented in Appendix B. A description of the
MATLAB SIMULINK computer-aided-design packages, that are useful to a
feedback control system engineer, is presented in Appendix C.

In closing this introductory chapter it is important to stress that
feedback control engineers are essentially “system engineers,” i.e., people
whose primary concern is with the design and synthesis of an overall system.
To an extent depending on their own background and experience, they rely on,
and work closely with, engineers in the various recognized branches of
engineering to furnish them with the transfer functions and/or system
equations of various portions of a control system and the special characteris-
tics of the physical plant being controlled. For example, the biomedical
control engineer works closely with the medical profession in modeling
biological functions, man-machine interface problems, etc.

The following design policy includes factors that are worthy of consid-
eration in the control system design problem:

1. Use proven design methods.

2. Select the system design that has the minimum complexity.

3. Useminimum specifications or requirements that yield a satisfactory
system response. Compare the cost with the performance and
select the fully justified system implementation.

4. Perform a complete and adequate simulation and testing of the
system.
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2

Writing System Equations

2.1 INTRODUCTION

An accurate mathematical model that describes a system completely must be
determined in order to analyze a dynamic system. The derivation of this model
is based upon the fact that the dynamic system can be completely described by
known differential equations (Chap. 2) or by experimental test data (Sec. 8.1).
The ability to analyze the system and determine its performance depends on
how well the characteristics can be expressed mathematically. Techniques for
solving linear differential equations with constant coefficients are presented
in Chaps. 3 and 4. However, the solution of a time-varying or nonlinear
equation often requires a numerical, graphic, or computer procedure [1]. The
systems considered in this chapter are described completely by a set of linear
constant-coefficient differential equations. Such systems are said to be linear
time-invariant (LTI) [2]; i.e., the relationship between the system input and
output is independent of time. Since the system does not change with time,
the output is independent of the time at which the input is applied. Linear
methods are used because there is extensive and elegant mathematics for
solving linear equations. For many systems, there are regions of operation for
which the linear representation works very well.

This chapter presents methods for writing the differential and state
equations for a variety of electrical, mechanical, thermal, and hydraulic
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systems [3]. This step is the first that must be mastered by the control-systems
engineer. The basic physical laws are given for each system, and the associa-
ted parameters are defined. Examples are included to show the application of
the basic laws to physical equipment. The result is a differential equation, or a
set of differential equations, that describes the system. The equations derived
are limited to linear systems or to systems that can be represented by linear
equations over their useful operating range. The important concepts of
system and of state variables are also introduced. The system equations,
expressed in terms of state variables, are called state equations.

The analytical tools of linear algebra are presented in Appendix B.
They are introduced in the text as they are needed in the development of the
system differential equations. They are also introduced in a logical format
in the development of state equations. This facilitates the solution of the
differential and state equations that are covered in Chap. 3. This is followed
by the use of Laplace transforms to facilitate solution of differential and state
equations in Chap. 4. The linear algebra format also facilitates the use of
computer-aided techniques for solving the differential and state equations as
presented in Appendix C.

The analysis of behavior of the system equations is enhanced by using
the block diagram representation of the system. Complete drawings showing
all the detailed parts are frequently too congested to show the specific
functions that are performed by each system component. It is common to use
a block diagram, in which each function is represented by a block in order to
simplify the picture of the complete system. Each block is labeled with the
name of the component, and the blocks are appropriately interconnected by
line segments. This type of diagram removes excess detail from the picture
and shows the functional operation of the system. The use of a block diagram
provides a simple means by which the functional relationship of the various
components can be shown and reveals the operation of the system more
readily than does observation of the physical system itself. The simple
functional block diagram shows clearly that apparently different physical
systems can be analyzed by the same techniques. Since a block diagram is
involved not with the physical characteristics of the system but only with the
functional relationship between various points in the system, it can reveal the
similarity between apparently unrelated physical systems.

A block diagram [4] represents the flow of information and the functions
performed by each component in the system. A further step taken to increase
the information supplied by the block diagram is to label the input quantity
into each block and the output quantity from each block. Arrows are used to
show the direction of the flow of information. The block represents the
function or dynamic characteristics of the component and is represented by
a transfer function (Sec. 2.4). The complete block diagram shows how the
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functional components are connected and the mathematical equations that
determine the response of each component. Examples of block diagrams are
shown throughout this chapter.

In general, variables that are functions of time are represented by
lowercase letters. These are sometimes indicated by the form x(z), but
more often this is written just as x. There are some exceptions, because of
established convention, in the use of certain symbols.

To simplify the writing of differential equations, the D operator notation
is used [5]. The symbols D and 1/D are defined by

_ dy(0) 2 _dy)
Dy:T Dy= pr (2.1)
1 t 0 t
-1 = = —
D y_Dy_/(;y(T)dT+/_ooy(T)dt_,/(;y(t)dT+YO (2.2)

where Y, represents the value of the integral at time ¢ = 0, that is, the initial
value of the integral.

2.2 ELECTRIC CIRCUITS AND COMPONENTS I[6]

The equations for an electric circuit obey Kirchhoff’s laws, which state the
following:

1. The algebraic sum of the potential differences around a closed path
equals zero. This can be restated as follows: In traversing any closed
loop, the sum of the voltage rises equals the sum of the voltage drops.

2. The algebraic sum of the currents entering (or leaving) a node is
equal to zero. In other words, the sum of the currents entering the
junction equals the sum of the currents leaving the junction.

The voltage sources are usually alternating-current (ac) or direct-
current (dc) generators. The usual dc voltage source is shown as a battery.
The voltage drops appear across the three basic electrical elements: resistors,
inductors, and capacitors. These elements have constant component values.

The voltage drop across a resistor is give by Ohm’s law, which states that
the voltage drop across a resistor is equal to the product of the current through
the resistor and its resistance. Resistors absorb energy from the system.
Symbolically, this voltage is written as

vg = Ri (2.3)
The voltage drop across an inductor is given by Faraday’s law, which is
written
di
VL di 1 (2.4)
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TaBLE 2.1 Electrical Symbols and Units

Symbol Quantity Units
eorv Voltage Volts

i Current Amperes
L Inductance Henrys
(o Capacitance Farads
R Resistance Ohms

This equation states that the voltage drop across an inductor is equal to
the product of the inductance and the time rate of increase of current.
A positive-valued derivative Di implies an increasing current, and thus a
positive voltage drop; a negative-valued derivative implies a decreasing
current, and thus a negative voltage drop.

The positively directed voltage drop across a capacitor is defined as the
ratio of the magnitude of the positive electric charge on its positive plate to the
value of its capacitance. Its direction is from the positive plate to the negative
plate. The charge on a capacitor plate is equal to the time integral of the
current entering the plate from the initial instant to the arbitrary time ¢, plus
the initial value of the charge. The capacitor voltage is written in the form

S R PR N (2.5)

c~c ¢l cC~CD '
The mks units for these electrical quantities in the practical system are given
inTable 2.1.

Series Resistor-Inductor Circuit

The voltage source ein Fig. 2.1 is a function of time. When the switch is closed,
setting the voltage rise equal to the sum of the voltage drops produces

VgtV =e

. di . . (2.6)
R1+LE:R1+LD1 =e

When the applied voltage e is known, the equation can be solved for
the current i, as shown in Chap. 3. This equation can also be written
in terms of the voltage v; across the inductor in the following manner.
The voltage across the inductor is v; = L Di. Therefore, the current through
the inductor is

1

I.ZEVL
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FIGURE 2.1 Series resistor-inductor circuit.

Substituting this value into the original equation gives

%VL +v,=e 2.7)
The node method is also convenient for writing the system equations directly
in terms of the voltages. The junctions of any two elements are called nodes.
This circuit has three nodes, labeled a, b, and ¢ (see Fig. 2.1). One node is used
as a reference point; in this circuit node cis used as the reference. The voltages
at all the other nodes are considered with respect to the reference node.
Thus v, is the voltage drop from node a to node ¢, and v, is the voltage drop
from node b to the reference node c. For simplicity, these voltages are written
just as v, and vy,

The source voltage v, = e is known; therefore, there is only one
unknown voltage, v;, and only one node equation is necessary. Kirchhoff’s
second law, that the algebraic sum of the currents entering (or leaving) a node
must equal zero, is applied to node b. The current from node b to node a,
through the resistor R, is (v, —v,)/R. The current from node b to node ¢
through the inductor L is (1/LD)v;. The sum of these currents must equal zero:

vy — VY, 1 _
R + "= 0 (2.8)
Rearranging terms gives
1 1 1
(E—i_E)W)_ﬁv‘l =0 (29)

Except for the use of different symbols for the voltages, this is the same as
Eq. (2.7). Note that the node method requires writing only one equation.

Series Resistor-Inductor-Capacitor Circuit

For the series RLC circuit shown in Fig. 2.2, the applied voltage is equal to
the sum of the voltage drops when the switch is closed:

1
— LDi+Ri+——i= 2.1
vp+vgt+ve=e i+ H—CDI e (2.10)
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FIGURE 2.3 Multiloop network.

The circuit equation can be written in terms of the voltage drop across
any circuit element. For example, in terms of the voltage across the resistor,
vg = Ri, Egs. (2.10) become

L 1
EDVR+VR+WVR28 (2]1)

Multiloop Electric Circuits

Multiloop electric circuits (see Fig. 2.3) can be solved by either loop or nodal
equations. The following example illustrates both methods. The problem is to
solve for the output voltage v,.

LOOP METHOD. A loop current is drawn in each closed loop (usually
in a clockwise direction); then Kirchhoff’s voltage equation is written for

each loop:
1. . 1.
R1+E ll_R112_513:e (212)
1. . 1.
—611 —R212+<R2 +R3 +E)l3:0 (214)
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The output voltage is
V0=R3i3 (215)

These four equations must be solved simultancously to obtain v,(¢) in terms of
the input voltage e(¢) and the circuit parameters.

NODE METHOD. Thejunctions,ornodes,arelabeled by lettersin Fig.2.4.
Kirchhoff’s current equations are written for each node in terms of the node
voltages, where node d is taken as reference. The voltage v, is the voltage
of node b with reference to node d. For simplicity, the voltage v,, is written
just as v,. Since there is one known node voltage v, = ¢ and two unknown
voltages v, and v,, only two equations are required:

For node b: h+hL+i3=0 (2.16)
For node c: —i3+i+is=0 (2.17)

In terms of the node voltages, these equations are
Vp — Vg Vb — Vo

———+ CDv;, + =0 (2.18)
R, 2
V,—Vp Y, 1
—+—0,—e)=0 2.19
&t tipte o 2.19)
Rearranging the terms in order to systematize the form of the equations gives
1 1 1 1
— L CD+— )y ——y = — 2.20
(Rl e R2>Vb R, Yo R, ¢ (220
1 1 1 1 1
_ — )y =— 2.21
R2Vb+<R2+R3+LD>v” LD¢ @21)

For this example, only two nodal equations are needed to solve for the
potential at node c. An additional equation must be used if the current in
R; is required. With the loop method, three equations must be solved
simultaneously to obtain the current in any branch; an additional equation
must be used if the voltage across Rj is required. The method that requires
the solution of the fewest equations should be used. This varies with the
circuit.
The rules for writing the node equations are summarized as follows:

1. The number of equations required is equal to the number of
unknown node voltages.
2. Anequation is written for each node.
3. Each equation includes the following:
(@) The node voltage multiplied by the sum of all the admittances
that are connected to this node. This term is positive.
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FIGURE 2.4 Multinode network.

(b) The node voltage at the other end of each branch multiplied
by the admittance connected between the two nodes. This
term is negative.

The reader should learn to apply these rules so that Egs. (2.20) and (2.21)
can be written directly from the circuit of Fig. 2.4.

2.3 STATE CONCEPTS

Basic matrix properties are used to introduce the concept of state and the
method of writing and solving the state equations. The state of a system
(henceforth referred to only as state) is defined by Kalman [7] as follows:

STATE. The stateofasystemis a mathematical structure containing a set of
n variables x(¢), x5(¢), . . ., x(t), . . ., x,(t), called the state variables, such that
the initial values x(t) of this set and the system inputs u,(¢) are sufficient to
describe uniquely the system’s future response of 7> #,. A minimum set of
state variables is required to represent the system accurately. The m inputs,
u(t), ux(t),...,uft),...,u,(t), are deterministic; i.e., they have specific
values for all values of time 7 > .

Generally the initial starting time 7, is taken to be zero. The state
variables need not be physically observable and measurable quantities; they
may be purely mathematical quantities. The following additional definitions
apply:

STATE VECTOR. The setofstate variables x(¢) represents the elements or
components of the n-dimensional state vector x(¢); that is,

x1(2) X1
x(1) = xzz(t) - xf = x (2.22)
%] L
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The order of the system characteristic equation is n, and the state equation
representation of the system consists of » first-order differential equations.
When all the inputs u;(¢) to a given system are specified for 7 > #), the resulting
state vector uniquely determines the system behavior for any 7 > ¢,

STATE SPACE. State space is defined as the n-dimensional space in which
the components of the state vector represent its coordinate axes.

STATE TRAJECTORY. State trajectory is defined as the path produced in
the state space by the state vector x(¢) as it changes with the passage of time.
State space and state trajectory in the two-dimensional case are referred to as
the phase plane and phase trajectory, respectively [1].

The first step in applying these definitions to a physical system is the
selection of the system variables that are to represent the state of the system.
Note that there is no unique way of making this selection. The three common
representations for expressing the system state are the physical, phase,
and canonical state variables. The physical state-variable representation is
introduced in this chapter. The other two representations are introduced
in later chapters.

The selection of the state variables for the physical-variable method is
based upon the energy-storage elements of the system. Table 2.2 lists
some common energy-storage elements that exist in physical systems and the
corresponding energy equations. The physical variable in the energy equation
for each energy-storage element can be selected as a state variable of the
system. Only independent physical variables are chosen to be state variables.
Independent state variables are those state variables that cannot be expressed
in terms of the remaining assigned state variables. In some systems it may be
necessary to identify more state variables than just the energy-storage
variables. This situation is illustrated in some of the following examples,
where velocity is a state variable. When position, the integral of this state
variable, is of interest, it must also be assigned as a state variable.

Example 1: Series RL Circuit (Fig. 2.1). Only one energy-storage element,
the inductor, is present in this circuit; thus there is only one state variable.
From Table 2.2, the state variable is x; =i. The equation desired is one
that contains the first derivative of the state variable. Letting u — e, the loop
equation, Eq. (2.6), can be rewritten as

Rxl + Lxl =Uu
. R 1
X1 = —le —i—zu (223)

The letter u is the standard notation for the input forcing function and is
called the control variable. Equation (2.23) is the standard form of the state
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equation of the system. There is only one state equation because this is a first-
order system,n=1.

Example 2: Series RLC Circuit (Fig. 2.2). This circuit contains two
energy-storage elements, the inductor and capacitor. From Table 2.2, the
two assigned state variables are identified as x; =v,. (the voltage across the
capacitor) and x, =i (the current in the inductor). Thus two state equations
are required.

A loop or branch equation is written to obtain an equation containing
the derivative of the current in the inductor. A node equation is written to
obtain an equation containing the derivative of the capacitor voltage. The
number of loop equations that must be written is equal to the number of state
variables representing currents in inductors. The number of equations
involving node voltages that must be written is equal to the number of state
variables representing voltages across capacitors. These are usually, but not
always, node equations. These loop and node equations are written in terms
of the inductor branch currents and capacitor branch voltages. From these
equations, it is necessary to determine which of the assigned physical
variables are independent. When a variable of interest is not an energy
physical variable, then this variable is identified as an augmented state variable.

TaABLE 2.2 Energy-Storage Elements

Element Energy Physical variable
Capacitor C cv? Voltage v
2
Inductor L L Current /
2
Mass VI mv? Translational velocity v
2
Moment of inertia J Jo? Rotational velocity ®
2
Spring K Kx? Displacement x
2
. I
Fluid compressibility ra VPf Pressure P_
5 L
Fluid capacitor C= pA pAH? Height A
2
Thermal capacitor C co? Temperature 0
2
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FIGURE 2.5 Series RLC circuit.

Figure 2.2 is redrawn in Fig. 2.5 with node b as the reference node.
The node equation for node a and the loop equation are, respectively,

Ci; = x (2.24)
and
LXZ =+ RXZ +x1 =Uu (225)

Rearranging terms to the standard state equation format yields

. 1

X1 = 6)(2 (226)
. 1 R 1

Xy = —ZX] — sz +Zu (227)

Equations (2.26) and (2.27) represent the state equations of the system
containing two independent state variables. Note that they are first-order
linear differential equations and are » =2 in number. They are the minimum
number of state equations required to represent the system’s future
performance.

The following definition is based upon these two examples.

STATE EQUATION. The state equations of a system are a set of n
first-order differential equations, where # is the number of independent states.

The state equations represented by Eqs. (2.26) and (2.27) are expressed
in matrix notation as

1
. 0 — 0
X1 X1
e ¢ w11 | (2.28)
X2 1 _Rilx L
L L
It can be expressed in a more compact form as
X = AX + bu (2.29)
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where

x
X = |: .l:| an n x 1 column vector (2.30)
X2
1
A | @ 0 C
| 421 a2 _ l _ 5
L L
an n x n plant coefficient matrix (2.31)
)
X = ] an n x 1 state vector (2.32)
_x2
by 0
b= =11 an n x 1 control matrix (2.33)
| by 7

and, in this case, u=[u] is a one-dimensional control vector. In Eq. (2.29),
matrices A and x are conformable.

If the output quantity y(¢) for the circuit of Fig. 2.2 is the voltage across
the capacitor v, then

() =ve = x
Thus the matrix system output equation for this example is

Yy =c"x+du=[1 0][? } + [0][u] (2.34)
2
where
=01 0] a1l x 2 row vector
y =[] a one-dimensional output vector
d=0

Equations (2.29) and (2.34) are for a single-input single-output (SISO)
system. For a multiple-input multiple-output (MIMO) system, with m inputs
and / outputs, these equations become

x = Ax + Bu (2.35)
y = Cx + Du (2.36)
where

A = n x n plant matrix

B = n x m control matrix
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FIGURE 2.6 An electric circuit.

C = x n output matrix
D =/ x m feedforward matrix
u = m-dimensional control vector

y = I-dimensional output vector

Example 3. Obtain the state equation for the circuit of Fig. 2.6, where i, is
considered to be the output of this system. The assigned state variables are
X1 =I, X, = i, and x3 = v¢. Thus, two loop and one node equations are written

Rlxl + LIJ.C] +X3 =u (237)
—X3 + Lz)'Cz + R2X2 = 0 (238)
—X1 +X2 + CX3 = 0 (239)

The three state variables are independent, and the system state and output
equations are

R, 1 1
L, L, L,
. R, 1
_ RS S (V) 2.40
X 0 L L X L ( )
1 1
c c 0
y=[0 1 0]x (2.41)

Example 4. Obtain the state equations for the circuit of Fig. 2.7. The
output is the voltage v;. The input or control variable is a current source i(z).
The assigned state variables are iy, i, i3,v;, and v,. Three loop equations and two
node equations are written:

V= Ll Dll (242)
vy = L, Diy + v, (2.43)
vy = Ly Dis (2.44)

Copyright © 2003 Marcel Dekker, Inc.



FIGURE 2.7 Electric circuit.

iZZCIDV] +l]
i:i3+C2DVZ+i2

(2.45)
(2.46)

Substituting from Egs. (2.42) and (2.44) into Eq. (2.43), or writing the loop
equation through L,, L,, and L; and then integrating (multiplying by 1/D),
gives

Lyiy = Lyi, + Lyiy + K (2.47)

where K is a function of the initial conditions. This equation reveals that one
inductor current is dependent upon the other two inductor currents. Thus,
this circuit has only four independent physical state variables, two inductor
currents and two capacitor voltages. The four independent state variables are
designated as x; = v, x, = v,, x3 = ij, and x4 = i,, and the control variable is
u=1. Three state equations are obtainable from Egs. (2.42), (2.43), and (2.45).
The fourth equation is obtained by eliminating the dependent current i
from Egs. (2.46) and (2.47). The result in matrix form is

- 1 1 7 707
0 0 —— —
C] C]
0 0 _LLIC _LZLjLCL3 Ci
X = 32 22 k4| P =u (2.48)
o 0 0 0 0
11
L L © 1 Lo
y=[1 0 0 0]x (2.49)

The dependence of i3 on #; and i, as shown by Eq. (2.47) may not be
readily observed. In that case the matrix state equation for this example
would be written with five state variables.

The examples in this section are fairly straightforward. In general

it is necessary to write more than just the number of state equations,
because other system variables appear in them. These equations are solved
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FIGURE 2.8 Block diagram representation of Fig. 2.2.

simultaneously to eliminate all internal variables in the circuit except for
the state variables. This procedure is necessary in some of the problems
for this chapter. For more complex circuits it is possible to introduce more
generalized and systematized linear graphs for obtaining the state equations.
They are not included in this book.

2.4 TRANSFER FUNCTION AND BLOCK DIAGRAM

A quantity that plays a very important role in control theory is the system
transfer function, defined as follows:

TRANSFER FUNCTION. If the system differential equation is linear, the
ratio of the output variable to the input variable, where the variables are
expressed as functions of the D operator, is called the transfer function.

Consider the system output vc=y in the RLC circuit of Fig. 2.2.
Substituting i = C Dvcinto Eq. (2.10) yields

(LCD* 4+ RCD + 1)vc(1) = (1) (2.50)
The system transfer function is
() =20 v _ ! 2.51)

~u(t) e(ty LCD*+RCD+1

The notation G(D) is used to denote a transfer function when it is expressed in
terms of the D operator. It may also be written simply as G.

The block diagram representation of this system (Fig. 2.8) represents
the mathematical operation G(D)u(t) = y(¢); that is, the transfer function
times the input is equal to the output of the block. The resulting equation is
the differential equation of the system.

2.5 MECHANICAL TRANSLATION SYSTEMS [1,8,9]

Mechanical systems obey Newton’s law that the sum of the forces equals zero;
that is, the sum of the applied forces must be equal to the sum of the reactive
forces. The three qualities characterizing elements in a mechanical
translation*® system are mass, elastance, and damping. The following analysis

*Translation means motion in a straight line.
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FIGURE 2.9 Network elements of mechanical translation systems.

includes only linear functions. Static friction, Coulomb friction, and other
nonlinear friction terms are not included. Basic elements entailing these
qualities are represented as network elements [10], and a mechanical network
is drawn for each mechanical system to facilitate writing the differential
equations.

The mass M is the inertial element. A force applied to a mass produces
an acceleration of the mass. The reaction force f, is equal to the product of
mass and acceleration and is opposite in direction to the applied force.
In terms of displacement x, velocity v, and acceleration a, the force equation is

fu =Ma=MDv=MDx (2.52)

The network representation of mass is shown in Fig. 2.94. One terminal, a, has
the motion of the mass; and the other terminal, b, is considered to have the
motion of the reference. The reaction force f;, is a function of time and acts
“through” M.

The elastance, or stiffness, K provides a restoring force as represented by
aspring. Thus, if stretched, the string tries to contract; if compressed, it tries to
expand to its normal length. The reaction force fx on each end of the spring is
the same and is equal to the product of the stiffness K and the amount of
deformation of the spring. The network representation of a spring is shown in
Fig. 2.9b. The displacement of each end of the spring is measured from
the original or equilibrium position. End c has a position x,, and end d has a
position x,, measured from the respective equilibrium positions. The force
equation, in accordance with Hooke’s law, is

Sk = K(x. — x4) (2.53)
If the end d is stationary, then x; = 0 and the preceding equation reduces to
Jk = Kx. (2.54)

The plot fx vs. x. for a real spring is not usually a straight line, because the
spring characteristic is nonlinear. However, over a limited region of operation,
the linear approximation, i.e., a constant value for K, gives satisfactory results.
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FIGURE 2.10 Dashpot construction.

The damping, or viscous, friction B characterizes the element that
absorbs energy. The damping force is proportional to the difference in velocity
of two bodies. The assumption that the viscous friction is linear simplifies the
solution of the dynamic equation. The network representation of damping
action is a dashpot, as shown in Fig. 2.9¢. Damping may either be intentional
or occur unintentionally and is present because of physical construction.
The reaction damping force f3 is approximated by the product of damping B
and the relative velocity of the two ends of the dashpot. The direction of this
force, given by Eq. (2.55), depends on the relative magnitudes and directions of
the velocities Dx, and Dx;:

Jf8 = B(v, —vs) = B(Dx, — Dxy) (2.55)

Damping may be added to a system by use of a dashpot. The basic
operation of a dashpot, in which the housing is filled with an incompressible
fluid, is shown in Fig. 2.10. If a force fis applied to the shaft, the piston presses
against the fluid, increasing the pressure on side b and decreasing the pressure
on side a. As a result, the fluid flows around the piston from side b to side a.
If necessary, a small hole can be drilled through the piston to provide a
positive path for the flow of fluid. The damping force required to move the
piston inside the housing is given by Eq. (2.55), where the damping B depends
on the dimensions and the fluid used.

Before the differential equations of a complete system can be written,
the mechanical network must first be drawn. This is done by connecting the
terminals of elements that have the same displacement. Then the force
equation is written for each node or position by equating the sum of the
forces at each position to zero. The equations are similar to the node equations
in an electric circuit, with force analogous to current, velocity analogous to
voltage, and the mechanical elements with their appropriate operators
analogous to admittance. The reference position in all of the following
examples should be taken from the static equilibrium positions. The force of
gravity therefore does not appear in the system equations. The U.S. customary
and metric systems of units are shown in Table 2.3.
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TaBLE 2.3 Mechanical Translation Symbols and Units

Symbol Quantity U.S. customary units Metric units
f Force Pounds Newtons
X Distance Feet Meters
v Velocity Feet/second Meters/second
a Acceleration Feet/second? Meters/second?
mt Mass pound-seconds®>  Kilograms

Slugs =—————

foot

K Stiffness coefficient Pounds/foot Newtons/meter
B Damping coefficient Pounds/(foot/second) Newtons/(meter/second)

TMass M in the U.S. customary system above has the dimensions of slugs. Sometimes it is
given in units of pounds. If so, then in order to use the consistent set of units above,
the mass must be expressed in slugs by using the conversion factor 1 slug=32.21b.

Reference

}———xc ’——o—xh
i
| K fio;

fit)—»

M

*~Reterence

(a) (b)

FIGURE 2.11 (a) Simple mass-spring-damper mechanical system; (b) corresponding
mechanical network.

Simple Mechanical Translation System

The system shown in Fig. 2.11 is initially at rest. The end of the spring and
the mass have positions denoted as the reference positions, and any displace-
ments from these reference positions are labeled x, and x,, respectively.
A force fapplied at the end of the spring must be balanced by a compression
of the spring. The same force is also transmitted through the spring and acts
at point x;,.

To draw the mechanical network, the first step is to locate the points x,,
and x;, and the reference. The network elements are then connected between
these points. For example, one end of the spring has the position x,, and the
other end has the position x; Therefore, the spring is connected between
these points. The complete mechanical network is drawn in Fig. 2.115.

The displacements x, and x; are nodes of the circuit. At each node the
sum of the forces must add to zero. Accordingly, the equations may be written
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for nodes a and b as

S =Tk = K(xs — xp) (2.56)
fx =fu +f3 = MD*x, + BDx, (2.57)

These two equations can be solved for the two displacements x, and x;, and
their respective velocities v, = Dx, and v, = Dx;,.

It is possible to obtain one equation relating x, to f, x, to x,, or x; to f
by combining Egs. (2.57) and (2.58):

K(MD? + BD)x, = (MD* + BD + K)f (2.58)
(MD* + BD + K)x, = Kx, (2.59)
(MD* 4+ BD)x, = f (2.60)

The solution of Eq. (2.59) shows the motion x, resulting from a given
motion x,. Also, the solution of Egs. (2.58) and (2.60) show the motions x,
and x,, respectively, resulting from a given force f. From each of these three
equations the following transfer functions are obtained:

X, MD’+BD+K

Gl=—="——— 2.61
' f 7 K(MD? + BD) @.61)
K
G, = T —_— (2.62)
X, MD*+BD+K
Xp 1
G="=—5—— 2.63
f  MD?*+BD (2.63)
Note that the last equation is equal to the product of the first two, i.c.,
Xq Xp Xp
G=G G, =-a2b_7b 2.64

The block diagram representing the mathematical operation of
Eq. (2.64) is shown in Fig. 2.12. Figure 2.12a is a detailed representation that
indicates all variables in the system. The two block G; and G are said to be in
cascade. Figure 2.12b, called the overall block diagram representation, shows
only the input fand the output x,, where x,, is considered the output variable
of the system of Fig. 2.11.

The multiplication of transfer functions, as in Eq. (2.64), is valid as long
as there is no coupling or loading between the two blocks in Fig. 2.12a.

x x
la) b

FIGURE 2.12 Block diagram representation of Fig. 2.11: (a) detailed; (b) overall.
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The signal x, is unaffected by the presence of the block having the transfer
function G,; thus the multiplication is valid. When electric circuits are
coupled, the transfer functions may not be independent unless they are
isolated by an electronic amplifier with a very high input impedance.

Example 1. Determine the state equations for Eq. (2.57). Equation (2.57)
involves only one enery-storage element, the mass M, whose energy variable
is v;. The output quantity in this system is the position y = x,. Since this quan-
tity is not one of the physical or energy-related state variables, it is necessary to
increase the number of state variables to 2; i.e., x, = x| is an augmented state
variable. Equation (2.57) is of second order, which confirms that two state
variables are required. Note that the spring constant does not appear in this
equation since the force fis transmitted through the spring to the mass. With
X1 = Xp, X, = v, = X1, u = f, and y = xq, the state and output equations are

0 1 0
X = 0 _B|x+|1 u=Ax+bu y=[1 0x=c’x
M M

(2.65)

Example 2. Determine the state equations for Eq. (2.59). Equation (2.59)
involves two energy-storage elements, K and M, whose energy variables are
x; and v, respectively. Note that the spring constant K does appear in this
equation since x, is the input u. Therefore, a state variable must be associated
with this energy element. Thus, the assigned state variables are x; and
vy, = Dxp, which are independent state variables of this system. Let x; =
x, = y and x, = v, = x;. Converting Eq. (2.59) into state-variable form yields
the two equations

. . K B
X =X, X, = _Mxl - sz + Mu (2.66)

They can be put into the matrix form

X = Ax + bu y=c'x (2.67)

Multiple-Element Mechanical Translation System

A force f(¢) is applied to the mass M; of Fig. 2.13a. The sliding friction between
the masses M; and M, and the surface is indicated by the viscous friction
coefficients B; and B,. The system equations can be written in terms of the
two displacements x, and x;. The mechanical network is drawn by connecting
the terminals of the elements that have the same displacement (see Fig. 2.135).
Since the sum of the forces at each node must add to zero, the equations are
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FIGURE 2.13 (a) Multiple-element mechanical system: (b) corresponding mechanical
network.

written according to the rules for node equations:
For node a: (MD*+B,D+B;D+K))x,— (B;D)x, =f  (2.68)
Fornode b:  —(B3D)x,+ (MyD* + B,D+ B;D+Ky))x, =0  (2.69)

A definite pattern to these equations can be detected. Observe that K,
M, B;, and B; are connected to node a and that Eq. (2.68), for node a,
contains all four of these terms as coefficients of x,. Notice that element
B3 is also connected to node b and that the term —Bj; appears as a coefficient
of x;. When this pattern is used, Eq. (2.69) can be written directly. Thus,
since K, M,, B, and Bj; are connected to node b, they appear as coefficients
of x;. Element B3 is also connected to node a, and —B; appears as the
coefficient of x,,. Each term in the equation must be a force.

The node equations for a mechanical system follow directly from the
mechanical network of Fig. 2.13b. They are similar in form to the node
equations for an electric circuit and follow the same rules.

The block diagram representing the system in Fig. 2.13 is also given by
Fig. 2.12, where again the system output is x,. The transfer functions G; = x,,/f
and G, = x;/x, are obtained by solving the equations for this system.

Example 3. Obtain the state equations for the system of Fig. 2.13, where x,, is
the system output. There are four energy-storage elements, thus the four
assigned state variables are x,, x;, Dx, and Dx; Analyzing Eqs. (2.68) and
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(2.69) shows that this is a fourth-order system. Let
x; =x; for spring K, X, =x; =v, for mass M,
x3 =Xx, for spring K x4 =x3 =v, for mass M,
u=f Yy =Xp =X

The four state variables are independent, i.e., no one state variable can be
expressed in terms of the remaining state variables. The system equations are

x = Ax + bu y=c'x (2.70)
where,
C 0 1 0 0 - 0
K B+B By .
M, M, M,
A = . b = 0
0 0 0 1
0 B, KB +B 1
i M, M, M, LMy

cr=[1 0 0 0]

2.6 ANALOGOUS CIRCUITS

Analogous circuits represent systems for which the differential equations have
the same form. The corresponding variables and parameters in two circuits
represented by equations of the same form are called analogs. An electric
circuit can be drawn that looks like the mechanical circuit and is represented
by node equations that have the same mathematical form as the mechanical
equations. The analogs are listed in Table 2.4. In this table the force fand the
current i are analogs and are classified as “through” variables. There is a

TaBLE 2.4 Electrical and Mechanical Analogs

Mechanical translation element Electrical element
Symbol Quantity Symbol Quantity
f Force i Current
v=Dx Velocity eorv Voltage
M Mass cC Capacitance
K Stiffness coefficient 1/L Reciprocal inductance
B Damping coefficient G=1/R Conductance
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physical similarity between the two, because a force indicator must be placed
in series with the system. Also, the velocity “across” a mechanical element is
analogous to voltage across an electrical element. Again, there is a physical
similarity, because a measuring instrument must be placed across the system
in both cases. A voltmeter must be placed across a circuit to measure voltage;
it must have a point of reference. A velocity indicator must also have a point of
reference. Nodes in the mechanical network are analogous to nodes in the
electric network.

2.7 MECHANICAL ROTATIONAL SYSTEMS

The equations characterizing rotational systems are similar to those for
translation systems. Writing torque equations parallels the writing of force
equations, where the displacement, velocity, and acceleration terms are now
angular quantities. The applied torque is equal to the sum of the reaction
torques. The three elements in a rotational system are inertia, the spring, and
the dashpot. The mechanical-network representation of these elements is
shown in Fig. 2.14.

The torque applied to a body having a moment of inertia J produces
an angular acceleration. The reaction torque 77 is opposite to the direction of
the applied torque and is equal to the product of moment of inertia and
acceleration. In terms of angular acceleration o, angular velocity o, or angular
displacement 0, the torque equation is

T, =Jo=JDo=JD*0 (2.71)

When a torque is applied to a spring, the spring is twisted by an angel 6.
The applied torque is transmitted through the spring and appears at the
other end. The reaction spring torque 7k that is produced is equal to the
product of the stiffness, or elastance, K of the spring and the angle of twist.
By denoting the positions of the two ends of the spring, measured from the
neutral position, as 0, and 0,, the reaction torque is

Ty = K(6, — 0,) (2.72)
a c 4
of K B
b d f

FIGURE 2.14 Network elements of mechanical rotational systems.
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Damping occurs whenever a body moves through a fluid, which may be
a liquid or a gas such as air. To produce motion of the body, a torque must be
applied to overcome the reaction damping torque. The damping is represented
as a dashpot with a viscous friction coefficient B. The damping torque T is
equal to the product of damping B and the relative angular velocity of the
ends of the dashpot. The reaction torque of a damper is

Ty = B(o, — o;) = B(D, — D6;) (2.73)

Writing the differential equations is simplified by first drawing the
mechanical network for the system. This is done by first designating
nodes that correspond to each angular displacement. Then each element is
connected between the nodes that correspond to the two motions at each
end of that element. The inertia elements are connected from the reference
node to the node representing its position. The spring and dashpot elements
are connected to the two nodes that represent the position of each end of
the element. Then the torque equation is written for each node by equating
the sum of the torques at each node to zero. These equations are similar
to those for mechanical translation and are analogous to those for electric
circuits. The units for these elements are given in Table 2.5.

An electrical analog can be obtained for a mechanical rotational
system in the manner described in Sec. 2.7. The changes to Table 2.4 are
due only to the fact that rotational quantities are involved. Thus torque is the
analog of current, and the moment of inertia is the analog of capacitance.

TaBLE 2.5 Mechanical Rotational Symbols and Units

Symbol Quantity U.S. customary units Metric units

T Torque Pound-feet Newton-meters

0 Angle Radians Radians

) Angular velocity Radians/second Radians/second

o Angular acceleration Radians/second? Radians/second?

J* Moment of inertia Slug-feet? (or pound- Kilogram-meters?
feet-seconds?)

K Stiffness coefficient Pound-feet/radian Newton-meters/

radian

B Damping coefficient Pound-feet/ Newton-meters/

(radian/second) radians/second)

*“The moment of inertia J has the dimensions of mass-distance?, which have the units slug
feet? in the U.S. customary system. Sometimes the units are given as pound-feet?. To use
the consistent set of units above, the moment of inertia must be expressed in slug-feet® by
using the conversion factor 1 slug=32.21b.
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Simple Mechanical Rotational System

The system shown in Fig. 2.15 has a mass, with a moment of inertia J,
immersed in a fluid. A torque 7 is applied to the mass. The wire produces
a reactive torque proportional to its stiffness K and to the angle of twist.
The fins moving through the fluid having a damping B, which requires
a torque proportional to the rate at which they are moving. The mechanical
network is drawn in Fig. 2.15b. There is one node having a displacement 6;
therefore, only one equation is necessary:

JD*0+ BDO+ K0 =T(r) (2.74)

Multiple-Element Mechanical Rotational System

The system represented by Fig. 2.16a has two disks that have damping
between them and also between each of them and the frame. The mechanical

Flutd

nl) (] o«

FIGURE 2.15 (a) Simple rotational system; (b) mechanical network.
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FIGURE 2.16 (a) Rotational system; (b) corresponding mechanical network.
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FIGURE 2.17 Detailed and overall block diagram representations of Fig. 2.16.

network is drawn in Fig. 2.16b by first identifying the three angular
displacements 6y, 6,, and 03. Then the elements are connected to the proper
nodes. The equations are written directly in systematized form, since the
torques at each node must add to zero, as follows:

NOde 1: K161 —K192 = T(t) (275)
Node 2: — K0, + [/;D* + (B, + B3)D+ K]0, — (B;D)0; =0  (2.76)
Node 3: —(B;D)0, +[/,D? + (B, + B3)D + K,]0; = 0 (2.77)

These three equations can be solved simultaneously for 6;, 6,, and 05 as a
function of the applied torque. If 03 is the system output, these equations
can be solved for the following four transfer functions:

0 0 6 B . 0,0,0, 0,
G=F G=g G=g G=GGG=qgt=1
(2.78)

The detailed and overall block diagram representations of Fig. 2.16 are
shown in Fig. 2.17. The overall transfer function G given by Egs. (2.78) is the
product of the transfer functions, which are said to be in cascade. This product
of transfer functions applies in general to any number of elements in cascade
when there is no loading between the blocks.

Example. Determine the state variables for the system of Fig. 2.16, where 03
is the system output y and torque 7 is the system input u. The spring K is
effectively not in the system because the torque is transmitted through
the spring. Since there are three energy-storage elements J;, J,, and K, the
assigned state variables are D0,, DO;, and 03. These are independent state
variables. Therefore, let x; = 03, x, = D03, and x3 = D0,. If the system input
is #=0,, then the spring K; is included, resulting in four state variables
(see Prob. 2.17).

2.8 EFFECTIVE MOMENT OF INERTIA AND DAMPING OF
A GEAR TRAIN

When the load is coupled to a drive motor through a gear train, the moment of
inertia and damping relative to the motor are important. Since the shaft length
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FIGURE 2.18 (a) Representation of a gear train; (b) corresponding mechanical
network.

between gears is very short, the stiffness may be considered infinite. A simple
representation of a gear train is shown in Fig. 2.18a. The following definitions
are used:

N =number of teeth on each gear

o = DO = velocity of each gear

n, =ratio of (speed of driving shaft)/(speed of driven shaft)
0 = angular position

Typically, gearing may not mesh perfectly, and the teeth of one gear may not
fill the full space between the gear teeth of the matching gear. As a con-
sequence, there can be times when the drive gear is not in contact with the
other gear. This nonlinear characteristic is called dead zone. When the dead
zone is very small, it is neglected for the linearized gearing model.

The mechanical network for the gear train is shown in Fig. 2.185.
At each gear pair, two torques are produced. For example, a restraining
torque 7 is the load on gear 1 produced by the rest of the gear train. A driving
torque 75 is also produced on gear 2. T5 is the torque transmitted to gear 2 to
drive the rest of the gear train. These torques are inversely proportional to
the ratio of the speeds of the respective gears. The block labeled n, between
T; and T, is used to show the relationship between them; that is, 7, = n,T}.
A transformer may be considered as the electrical analog of the gear train,
with angular velocity analogous to voltage and torque analogous to current.
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The equations describing the system are

JD*0, +B DO+ Ty =T  J,D*0,+B,D0,+ T, =T,
0, N 0 2.79
"a=ﬂ=*1=*2 0y =— T, =n,T; (2.79)
o 06 N n,

The equations can be combined to produce

1
J1D291 —l—B]De] +n—(J2D262 +B2D92 + TL) = T (280)
This equation can be expressed in terms of the torque and the input position 6,
only:
J. B T
(Jl +—§>Dzel + (Ba+—22>D61 +Lt=T (2.81)
n; n; n,

Equation (2.81) represents the system performance as a function of a single
dependent variable. An equivalent system is one having an equivalent
moment of inertia and damping equal to

J.

Jg =+ n_g (2.82)
B
By =B, +;T§ (2.83)

a

If the solution for 0, is wanted, the equation can be altered by the substitution
of 6; = n,0,. This system can be generalized for any number of gear stages.
When the gear-reduction ratio is large, the load moment of inertia may
contribute a negligible value to the equivalent moment of inertia. When a
motor rotor is geared to a long shaft that provides translational motion, then
the elastance or stiffness K of the shaft must be taken into account in deriving
the system’s differential equations (see Prob. 2.24).

2.9 THERMAL SYSTEMS [11]

A limited number of thermal systems can be represented by linear differential
equations. The basic requirement is that the temperature of a body be
considered uniform. This approximation is valid when the body is small.
Also, when the region consists of a body of air or liquid, the temperature can
be considered uniform if there is perfect mixing of the fluid. The necessary
condition of equilibrium requires that the heat added to the system equal the
heat stored plus the heat carried away. This requirement can also be expressed
in terms of rate of heat flow.

The symbols shown inTable 2.6 are used for thermal systems. A thermal-
system network is drawn for each system in which thermal capacitance and
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TaBLE 2.6 Thermal Symbols and Units

Symbol Quantity U.S. customary units Metric units

q Rate of heat flow Btu/minute Joules/second

m Mass Pounds Kilograms

S Specific heat Btu/(pounds)(°F) Joules/ (kilogram)(°C)

c Thermal capacitance Btu/°F Joules/°C

c=MS

K Thermal conductance  Btu/(minute)(°F) Joules/(second)(°C)

R Thermal resistance Degrees/ Degrees/
(Btu/minute) (joule/second)

0 Temperature °F °C

h Heat energy Btu Joules

% C R
fa} ()

FIGURE 2.19 Network elements of thermal systems.

thermal resistance are represented by network elements. The differential
equations can then be written form the thermal network.

The additional heat stored in a body whose temperature is raised from
0, to 0, is given by

h= % — (0, — 0)) (2.84)

In terms of rate of heat flow, this equation can be written as
qg=CD(®, —0)) (2.89)
The thermal capacitance determines the amount of heat stored in a body. It is
analogous to the electric capacitance of a capacitor in an electric circuit,
which determines the amount of charge stored. The network representation
of thermal capacitance is shown in Fig. 2.19a.
Rate of heat flow through a body in terms of the two boundary tempera-
tures 03 and 04 is
0; — 04
q =

= (2.86)
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The thermal resistance determines the rate of heat flow through the body.
This is analogous to the resistance of a resistor in an electric circuit, which
determines the current flow. The network representation of thermal resistance
is shown in Fig. 2.195. In the thermal network the temperature is analogous to
potential.

Simple Mercury Thermometer

Consider a thin glass-walled thermometer filled with mercury that has
stabilized at a temperature 0,. It is plunged into a bath of temperature 0,
at r=0. In its simplest form, the thermometer can be considered to have a
capacitance C that stores heat and a resistance R that limits the heat flow.
The temperature at the center of the mercury is 0,,,. The flow of heat into the

thermometer is
0o — 0
=—_" 2.87
q R (2.87)
The heat entering the thermometer is stored in the thermal capacitance and is
given by
h= % —C®,, —0) (2.88)
These equations can be combined to form
e0 B em
D~ c,, —6y) (2.89)
Differentiating Eq. (2.89) and rearranging terms gives
RC DO, +0,, =0, (2.90)

The thermal network is drawn in Fig. 2.20. The node equation for this circuit,
with the temperature considered as a voltage, gives Eq. (2.90) directly. From
this equation the transfer function G =90,,/6, may be obtained. Since there is
one energy-storage element, the independent state variable is x; = 6,, and the
input is # = 0. Thus the state equation is

. 1 1
X = —Rxl +RM (291)

FIGURE 2.20 Simple network representation of a thermometer.
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FIGURE 2.21 Hydraulic actuator.

A more exact model of a mercury thermometer is presented in Ref. 11. A simple
transfer system for a water tank heater is also presented in this reference.

2.10 HYDRAULIC LINEAR ACTUATOR

The valve-controlled hydraulic actuator is used in many applications as a
force amplifier. Very little force is required to position the valve, but a large
output force is controlled. The hydraulic unit is relatively small, which makes
its use very attractive. Figure 2.21 shows a simple hydraulic actuator in which
motion of the valve regulates the flow of oil to either side of the main cylinder.
An input motion x of a few thousandths of an inch results in a large change of
oil flow. The resulting difference in pressure on the main piston causes motion
of the output shaft. The oil flowing in is supplied by a source that maintains a
constant high pressure P, and the oil on the opposite side of the piston flows
into the drain (sump) at low pressure P,. The load-induced pressure P; is the
difference between the pressures on each side of the main piston:

P, =P —P (2.92)
The flow of fluid through an inlet orifice is given by [12]

q= ca,IZg% (2.93)

where

¢ = orifice coefficient
a = orifice area
A p =pressure drop across orifice
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w = specific weight of fluid
g = gravitational acceleration constant
q = rate of flow of fluid

Simplified Analysis

As a first-order approximation, it can be assumed that the orifice coefficient
and the pressure drop across the orifice are constant and independent of valve
position. Also, the orifice are a is proportional to the valve displacement x.
Equation (2.93), which gives the rate of flow of hydraulic fluid through the
valve, can be rewritten in linearized form as

q=Cwx (2.94)

where x is the displacement of the valve. The displacement of the main piston
is directly proportional to the volume of fluid that enters the main cylinder, or,
equivalently, the rate of flow of fluid is proportional to the rate of displacement
of the output. When the compressibility of the fluid and the leakage around the
valve and main piston are neglected, the equation of motion of the main
piston is
q = CyDy (2.95)
Combining the two equations gives
Cy
Dy=—x=Cx (2.96)
Gy

This analysis is essentially correct when the load reaction is small.

More Complete Analysis

When the load reaction is not negligible, a load pressure P; must be produced
across the piston. A more complete analysis takes into account the pressure
drop across the orifice, the leakage of oil around the piston, and the compres-
sibility of the oil. The pressure drop Ap across the orifice is a function of the
source pressure P, and the load pressure P;. Since P, is assumed constant, the
flow equation for ¢ is a function of valve displacement x and load pressure P;:

q=f(xPr) 2:97)

The differential rate of flow dg, expressed in terms of partial derivatives, is

oq oq
dg=Lax + 2L gp 2.98
1= Top, 41 (2.98)
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If g, x, and P; are measured from zero values as reference points, and if the
partial derivatives are constant at the values they have at zero, the integration
of Eq. (2.98) gives

_(9%q oq
= () ()

By defining

_ (o _(—9q
cx=<ax)0 and C”‘<8PL>0

the flow equation for fluid entering the main cylinder can be written as
q=Cx—CPp (2.100)

Both C, and C, have positive values. A comparison of Eq. (2.100) with
Eq. (2.94) shows that the load pressure reduces the flow into the main cylinder.
The flow of fluid into the cylinder must satisfy the continuity conditions
of equilibrium. This flow is equal to the sum of the components:

q9=4q0+4 +4. (2.101)

where
qo = incompressible component (causes motion of piston)

q,=leakage component
q.= compressible component

The component gy, which produces a motion y of the main piston, is

q0 = C, Dy (2.102)
The compressible component is derived in terms of the bulk modulus of
elasticity of the fluid, which is defined as the ratio of incremental stress to
incremental strain.

Thus

AP
B=Av)v

Solving for AV and dividing both sides of the equation by Az gives

AV VAP

At Kp At
Taking the limit as Az approaches zero and letting g, = dV'/dt gives

V
4. = —DP, (2.105)
Kp

(2.103)

(2.104)
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where V is the effective volume of fluid under compression and Kj is
the bulk modulus of the hydraulic oil. The volume V" at the middle position of
the piston stroke is often used in order to linearize the differential equation.

The leakage components is
q =LP; (2.106)

where L is the leakage coefficient of the whole system.
Combining these equations gives

v
q=Cx—C,PL=C, Dy+ fDPL + LP; (2.107)
B
and rearranging terms gives
14
C, Dy + ?DPL +(L+ Cy)Pp = Cx (2.108)
B

The force developed by the main piston is
F:nFAPL = CPL (2109)
where nis the force conversion efficiency of the unit and 4 is the area of the

main actuator piston.

An example of a specific type of load, consisting of a mass and a dashpot,
is shown in Fig. 2.22. The equation for this system is obtained by equating
the force produced by the piston, which is given by Eq. (2.109), to the reactive
load forces:

F=MD+BDy=CP, (2.110)
Substituting the value of P, from Eq. (2.110) into Eq. (2.108) gives the equation
relating the input motion x to the response y:

MV BV
D’y + [

M 5 B _
K, C—KB+F(L+C,,)}Dy+[C,,+—(L+C,,)}Dy—Cxx

C
(2.111)

The preceding analysis is based on perturbations about the reference set
ofvaluesx = 0, ¢ = 0, P; = 0. For the entire range of motion x of the valve, the
quantities dg/dx and —dq/dP; can be determined experimentally. Although

IO o B I
F [ —F1

e

FIGURE 2.22 Load on a hydraulic piston.
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they are not constant at values equal to the values C, and C, at the zero
reference point, average values can be assumed in order to simulate the
system by linear equations. For conservative design the volume V is
determined for the main piston at the midpoint.

To write the state equation for the hydraulic actuator and load of
Figs. 2.21 and 2.22, the energy-related variables must be determined. The
mass M has the output velocity Dy as an energy-storage variable. The com-
pressible component g, also represents an energy-storage element in a hydrau-
lic system. The compression of a fluid produces stored energy, just as in the
compression of a spring. The equation for hydraulic energy is

E(t) = /0 t P(1)q(t) dr 2.112)

where P(¢) is the pressure and ¢(¢) is the rate of flow of fluid. The energy
storage in a compressed fluid is obtained in terms of the bulk modulus
of elasticity Kp. Combining Eq. (2.105) with Eq. (2.112) for a constant
volume yields

by 14
E(P)= | —P, dP,=—P} 2.113
(Pr) , Ky LTkt ( )
The stored energy in a compressed fluid is proportional to the pressure P,
squared; thus P; may be used as a physical state variable.

Since the output quantity in this system is the position y, it is necessary to
increase the state variables to three. Further evidence of the need for three
state variables is the fact that Eq. (2.111) is a third-order equation. Therefore,
in this example, let x; =y, x, = Dy = x|, x3 = P;, and u = x. Then, from
Egs. (2.108) and (2.110), the state and output equations are

0 1 0 0
B C
. lo -2 hd 0
X = M M X+ u (2.114)
0 — CbKB _KB(L + Cp) KBCX
V 4 V
y=DI=[1 0 0]x=[x] (2.115)

The effect of augmenting the state variables by adding the piston displacement
x; = yisto produce a singular system; that is, |A| = 0. This property does not
appear if a spring is added to the load, as shown in Prob. 2.19. In that case
x; = yis an independent state variable.

A detailed derivation of a positive-displacement rotational hydraulic
transmission is presented in Ref. 1.
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FIGURE 2.23 Liquid-level system and its equivalent electrical analog.

2.11 LIQUID-LEVEL SYSTEM [12,13]

Figure 2.23a represents a two-tank liquid-level control system. Definitions
of the system parameters are

4i»q1,q> = rates of flow of fluid A, h, = heights of fluid level
R;, R, =flow resistance Ay, A, = cross-sectional tank areas

The following basic linear relationships hold for this system:

h

9=5= rate of flow through orifice (2.116)
q, = (tank input rate of flow) — (tank output rate of flow)

= net tank rate of flow = A Dh (2.117)

Applying Eq. (2.117) to tanks 1 and 2 yields, respectively,
h —h
G = A1 Dhy = i =y = i == — (2.118)
h—h, h

qn, = Ay Dhy = q; — g, = R R (2.119)

These equations can be solved simultaneously to obtain the transfer functions
hy/q; and hy /q;.
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TABLE 2.7 Hydraulic and Electrical Analogs

Hydraulic element Electrical element
Symbol Quantity Symbol Quantity
q; Input flow rate i Current source
h Height Ve Capacitor voltage
A Tank area C Capacitance
R Flow resistance R Resistance

The energy stored in each tank represents potential energy, which is
equal to pAh* /2, where p is the fluid density coefficient. Since there are two
tanks, the system has two energy-storage clements, whose energy-storage
variables are h; and h,. Letting x; = hy, x, = h,, and u = ¢; in Eqs. (2.118)
and (2.119) reveals that x; and x, are independent state variables. Thus,
the state equation is

1 1 1
R A R A A,
X = 1 1 x4 | A u (2.120)
1 1 1

The levels of the two tanks are the outputs of the system. Letting y; = x; = Iy
andy, = x, = h, yields

)= [(1) (1)}‘ (2.121)

The potential energy of a tank can be represented as a capacitor whose
stored potential energy is Cv2/2; thus, the electrical analog of % is vc. As a
consequence, an analysis of Egs. (2.118) and (2.119) yields the analogs between
the hydraulic and electrical quantities listed in Table 2.7. The analogous
electrical equations are

C, Dy, = i; — ! - e (2.122)
1
Vi — WM %)
C, Dy = _h 2.123
2 UV R R, ( )

These two equations yield the analogous electric circuit of Fig. 2.235.

2.12 ROTATING POWER AMPLIFIERS [14,15]

A dc generator can be used as a power amplifier, in which the power required
to excite the field circuit is lower than the power output rating of the armature
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FIGURE 2.24 Magnetization curve.

circuit. The voltage ¢, induced in the armature circuit is directly proportional
to the product of the magnetic flux ¢ set up by the field and the speed of
rotation o of the armature. Neglecting hysteresis, this is expressed by

e, = K do (2.124)

The flux is a function of the field current and the type of iron used in the field.
A typical magnetization curve showing flux as the function of field current is
given in Fig. 2.24. Up to saturation the relation is approximately linear, and the
flux is directly proportional to field current:

¢ = Kyiy (2.125)
Combining these equations gives
eg = Kle(le (2]26)

When the generator is used as a power amplifier, the armature is driven at
constant speed, and this equation becomes

e, = Kyl (2.127)

A generator is represented schematically in Fig. 2.25, in which Lrand Ry
and L, and R, are the inductance and resistance of the field and armature
circuits, respectively. The equations for the generator are

e, = (Ly D+ Ry)iy e, = K,iy e, =e,— (Ly D+ Rpi, (2.128)
Ry Ry Le

er“) G Lj.r eg('” G: et}
| K

FIGURE 2.25 Schematic diagram of a generator.
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The armature current depends on the load connected to the generator
terminals. Combining the first two equations gives

Equation (2.129) relates the generated voltage e, to the input field voltage ;.
The electrical power output p, = e,i, is much larger than the power input
pi; = esip. Thus, the ratio p,/p; represents the electrical power gain.
Remember, however, that mechanical power drives the generator armature.
Therefore, mechanical power is being converted into electrical power output.

2.13 DC SERVOMOTOR

The development torque of a dc motor is proportional to the magnitude of
the flux due to the field current ir and the armature current i,. For any
given motor the only two adjustable quantities are the flux and the armature
current. The developed torque can therefore be expressed as

T(f) = Ky i, (2.130)

To avoid confusion with ¢ for time, the capital letter T is used to indicate
torque. It may denote either a constant or a function that varies with time.
There are two modes of operation of a servomotor. For the armature control
mode, the field current is held constant and an adjustable voltage is applied to
the armature. In the field control mode, the armature current is held constant
and an adjustable voltage is applied to the field. The armature control method
of operation is considered in detail. The reader can refer to Ref. 1 for the field
control method of speed control.

A constant field current is obtained by separately exciting the field from
a fixed dc source. The flux is produced by the field current and is, therefore,
essentially constant. Thus the torque is proportional only to the armature
current, and Eq. (2.130) becomes

T(t) = K,i, (2.131)

When the motor armature is rotating, a voltage e, is induced that is
proportional to the product of flux and speed. Because the polarity of this
voltage opposes the applied voltage e,, it is commonly called the back emf.
Since the flux is held constant, the induced voltage e, is directly proportional
to the speed ®,,:

ey = K 00, = Ky, = K, D0, (2.132)

The torque constant K, and the generator constant K, are the same for
mks units. Control of the motor speed is obtained by adjusting the voltage
applied to the armature. Its polarity determines the direction of the armature
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FIGURE 2.26 Circuit diagram of a dc motor.

current and, therefore, the direction of the torque generated. This, in turn,
determines the direction of rotation of the motor. A circuit diagram of the
armature-controlled dc motor is shown in Fig. 2.26. The armature inductance
and resistance are labeled L,, and R,,. The voltage equation of the armature
circuit is

L, Di, + R,i,+e,=e, (2.133)

The current in the armature produces the required torque according to
Eq. (2.131). The required torque depends on the load connected to the motor
shaft. If the load consists only of a moment of inertia and damper (friction),
as shown in Fig. 2.27 the torque equation can be written:

J Do,, + Bo,, = T(?) (2.134)

The required armature current i,, can be obtained by equating the generated
torque of Eq. (2.131) to the required load torque of Eq. (2.134). Inserting this
current, and the back emf from Eq. (2.132) into Eq. (2.133) produces the
system equation in terms of the motor velocity ®,,:

L,J L,B+R,J R, B
%Dzﬂ)m—F%D@m‘i‘ ( Ir;t +Kb)(l)m =€, (2]35)
This equation can also be written in terms of motor position 0,,:
L,J 5 L,B+R,J , R, B + K, K,
—D0,+———D0,,+———Db,, = 2.136
Kt m + Kt m + KI m ea ( )

There are two energy-storage elements, J and L,,, for the system repre-
sented by Figs. 2.26 and 2.27. Designating the independent state variables

B

T o, 2

FIGURE 2.27 Inertia and friction as a motor load.
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as x; = ®,, and x, = i,, and the input as u = ¢, yields the state equation

B K, 0

. J J

X = K, R, X+ 1 u (2.137)
Lm Lm Lm

If motor position 0,, is the output, another differential equation is required;
that is, 0,, = o. If the solution of 0,, is required, then the system is of third
order. A third state variable, x; = 0,,, must therefore be added.

The transfer functions ®,/e, and 0,/e, can be obtained from
Egs. (2.135) and (2.136). The armature inductance is small and can usually be
neglected, L,, ~ 0. Equation (2.136) is thus reduced to a second-order
equation. The corresponding transfer function has the form

0 Ky,

G=2"

e " DT,DFT) &0

2.14 AC SERVOMOTOR [16]

An ac servomotor is basically a two-phase induction motor that has two stator
field coils placed 90 electrical degrees apart, as shown in Fig. 2.28a. In a
two-phase motor the ac voltage e and e, are equal in magnitude and separated
by a phase angle of 90°. A two-phase induction motor runs at a speed slightly
below the synchronous speed and is essentially a constant-speed motor.
The synchronous speed n, is determined by the number of poles P produced
by the stator windings and the frequency fof the voltage applied to the stator
windlings: n, = 120f] P revolutions per minute.

Torgue

8(.
| %
Speed

i ~

a) 1]

FIGURE 2.28 (a) Schematic diagram of a two-phase induction motor; (b) servomotor
characteristics.
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When the unit is used as a servomotor, the speed must be proportional
to an input voltage. The two-phase motor can be used as a servomotor by
applying an ac voltage e of fixed amplitude to one of the motor windings.
When the other voltage e, is varied, the torque and speed are a function of
this voltage. Figure 2.28b shows a set of torque-speed curves for various
control voltages.

Note that the curve for zero control-field voltage goes through the
origin and that the slope is negative. This means that when the control-field
voltage becomes zero, the motor develops a decelerating torque, causing it to
stop. The curves show a large torque at zero speed. This is a requirement for a
servomotor in order to provide rapid acceleration. It is accomplished in an
induction motor by building the rotor with a high resistance.

The torque-speed curves are not straight lines. Therefore, a linear differ-
ential equation cannot be used to represent the exact motor characteristics.
Sufficient accuracy may be obtained by approximating the characteristics
by straight lines. The following analysis is based on this approximation.

The torque generated is a function of both the speed ® and the
control-field voltage E.. In terms of partial derivatives, the torque equation is
approximated by effecting a double Taylor series expansion of T(E,, ) about
the origin and keeping only the linear terms:

aT LT
JE, “ " 90

o = T(E,, ») (2.139)

origin

origin
If the torque-speed motor curves are approximated by parallel straight lines,

the partial derivative coefficients of Eq. (2.139) are constants that can be
evaluated from the graph. Let

oT oT
=K, d — =K 2.140
oE, Ko an g = Ko ( )
For a load consisting of a moment of inertia and damping, the load torque
required is
T, = J Do + Bo (2.141)

Since the generated and load torques must be equal, Egs. (2.139) and (2.141)
are equated:

K.E, + K,0 =J Do + Bo

Rearranging terms gives

J Do+ (B— K,)o = K_.E, (2.142)
In terms of position 0, this equation can be written as
JD*0+ (B—K,) D0 = K_E, (2.143)
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In order for the system to be stable (see Chap. 3) the coefficient (B — K,)
must be positive. Observation of the motor characteristics shows that
K, = 9T /dw is negative; therefore, the stability requirement is satisfied.
Analyzing Eq. (2.142) reveals that this system has only one enery-storage
element J. Thus the state equation, where x; = wand u = E_, is
B-K, K

7N +7Cu (2.144)

x| =

2.15 LAGRANGE’'S EQUATION

Previous sections show the application of Kirchhoff’s laws for writing the
differential equations of electric networks and the application of Newton’s
laws for writing the equations of motion of mechanical systems. These laws
can be applied, depending on the complexity of the system, with relative ease.
In many instances systems contain combinations of electric and mechanical
components. The use of Lagrange’s equation provides a systematic unified
approach for handling a broad class of physical systems, no matter how
complex their structure [8].
Lagrange’s equation is given by

d(oT\ _oT oD, oV
di\og,

T 3D oV _ —1,2,3,... 2.145
0, o, oa, (214

where

T =total kinetic energy of system

D = dissipation function of system

V' =total potential energy of system
0, = generalized applied force at the coordinate n
q,, = generalized coordinate

q, = dq,/dt (generalized velocity)

andn =1,2,3,...denotes the number of independent coordinates or degrees
of freedom that exist in the system. The total kinetic energy T includes
all energy terms, regardless of whether they are electrical or mechanical.
The dissipation function D represents one-half the rate at which energy is
dissipated as heat; dissipation is produced by friction in mechanical systems
and by resistance in electric circuits. The total potential energy stored in
the system is designated by V. The forcing functions applied to a system are
designated by Q,,; they take the form of externally applied forces or torques
in mechanical systems and appear as voltage or current sources in electric
circuits. These quantities are illustrated for electrical and mechanical
components in the following examples. Kinetic energy is associated with
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the generalized velocity and, for an inductor and mass, is given by
T, = Lq2/2 = Li2/2 and T, = Mx2/2 = Mv2/2, respectively. Potential
energy is associated with the generalized position and, for a capacitor
and spring, is given by V¢ = ¢*/2C and Vg = Kx?/2, respectively. The
dissipation function is always a function of the generalized velocity and,
for an electrical resistor and mechanical friction, is given by Dy = qu /2 =
Ri*/2 and Dy = Bx*/2 = Bv*/2, respectively. The generalized applied force
for an electric circuit is the electromotive force of a generator, thus Q,=E.
For the Earth’s gravitational force applied to a mass, the generalized applied
force is Oy = Mg. Similar relationships can be developed for other physical
systems. The application of Lagrange’s equation is illustrated by the following
example.

Example: Electromechanical System with Capacitive Coupling. Figure 2.29
shows a system in which mechanical motion is converted into electric energy.
This represents the action that takes place in a capacitor microphone. Plate a
of the capacitor is fastened rigidly to the frame. Sound waves impinge upon
and exert a force on plate b of mass M, which is suspended from the frame by
a spring K and which has damping B. The output voltage that appears across
the resistor R is intended to reproduce electrically the sound-wave
patterns which strike the plate b.

At equilibrium, with no external force extended on plate b, there is a
charge g, on the capacitor. This produces a force of attraction between the
plates so that the spring is stretched by an amount x; and the space between
the plates is xo. When sound waves exert a force on plate b there will be a

L

il
f— [ {1)

Moveable plate. |, |
1

FIGURE 2.29 Electromechanical system with capacitive coupling.
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resulting motion x that is measured from the equilibrium position. The
distance between the plates will then be xy — x, and the charge on the plates

will be g +4.
The capacitance is approximated by
A A
C= ¢ and Cy = e
Xo — X X0

where ¢ is the dielectric constant for air and A4 is the area of the plate.
The energy expressions for this system are
T =1Ly +1Mx
D =1Rq +1B¥
1
V= E(‘]o +q) +1K(x +x)°
— e (x0 — (g0 + 9+ SR + )
_ZsAxo X)\qgo ~ 4 F BXp T X
The method is simple and direct. It is merely necessary to include all the
energy terms, whether electrical or mechanical. The electromechanical
coupling in this example appears in the potential energy. Here, the presence
of charge on the plates of the capacitor exerts a force on the mechanical

system. Also, motion of the mechanical system produces an equivalent emf
in the electric circuit.

The two degrees of freedom are the displacement x of plate b and the
charge g on the capacitor. Applying Lagrange’s equation twice gives

1
M3+ Bi — 5 (40 + 9% + K(x; +x) =£() (2.146)

.. . 1
Lg+ Rq+ a(xo —x)qo—q) =E (2.147)

These equations are nonlinear. However, a good linear approximation
can be obtained, because x and ¢ are very small quantities and, therefore,
the x%, ¢°, and xq terms can be neglected. This gives

2 2
(9 +9)" ~ q0 + 24909
(X0 —x)(g0 — 9) = Xoq0 — Gox + Xoq

With these approximations the system equations become

% 2909
Mjé+Kx1+Kx—ﬁ—ﬁ+Bx:f(t) (2.148)
. Xoqdo qoX , X4 .
L+ 2040 0% % 4 po— E 2.149
q+ €A cA + cA +Rq ( )
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From Eq. (2.148), by setting f(¢) =0 and taking steady-state conditions, the
result is

This simply equates the force on the spring and the force due to the charges
at the equilibrium condition. Similarly, in Eq. (2.149) at equilibrium

Xodo _ 90

2070 _ 90 _ g
€A C()
Therefore, the two system equations can be written in linearized form as
Mjé—l—B)'c—i-Kx—gq—Zq:f(t) (2.150)
.. . 9 4
Lig+RGg+————x=0 2.151
I+ RG+ o™ (2.151)

These equations show that ¢, /cA is the coupling factor between the electrical
and mechanical portions of the system.

Another form of electromechanical coupling exists when current in
a coil produces a force that is exerted on a mechanical system and,
simultaneously, motion of a mass induces an emf in an electric circuit.
The electromagnetic coupling is represented in Table 2.8. In that case the
kinetic energy includes a term

T = IBN.xi = Uxi (2.152)
The energy for this system, which is shown in Table 2.8, may also be considered
potential energy. Since Eq. (2.145) contains the terms—d7/dq, and 9V /dq,,

identification of the coupling energy as potential energy ¥ would change
the sign on the corresponding term in the differential equation.

TaBLE 2.8 Identification of Energy Functions for Electromechanical Elements

Definition Element and symbol Kinetic energy T

x =relative motion Uxi

/=current in coil

U=1IBN, (electromechanical
coupling constant)

B =flux density produced by
permanent magnet

/=length of coil il

) . Coil
N;=number of turns in coil ;EI

Permanent
magnet

Copyright © 2003 Marcel Dekker, Inc.



The main advantage of Lagrange’s equation is the use of a single
systematic procedure, eliminating the need to consider separately Kirchhoff’s
laws for the electrical aspects and Newton’s law for the mechanical aspects of
the system in formulating the statements of equilibrium. Once this procedure
is mastered, the differential equations that describe the system are readily
obtained.

2.16 SUMMARY

The examples in this chapter cover many of the basic elements of control
systems. In order to write the differential and state equations, the basic laws
governing performance are first stated for electrical, mechanical, thermal,
and hydraulic systems. These basic laws are then applied to specific devices,
and their differential equations of performance are obtained. The basic state,
transfer function, and block diagram concepts are introduced. Lagrange’s
equation has been introduced to provide a systematized method for writing
the differential equations of electrical, mechanical, and electromechanical
systems. This chapter constitutes a reference for the reader who wants to
review the fundamental concepts involved in writing differential equations of
performance. Basic matrix fundamentals are presented in Appendix B.
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3

Solution of Differential Equations

3.1 INTRODUCTION

The general solution of a linear differential equation [1,2] is the sum of two
components, the particular integral and the complementary function.
Often the particular integral is the steady-state component of the solution of
the differential equation; the complementary function, which is the solution
of the corresponding homogeneous equation, is then the transient component
of the solution. Often the steady-state component of the response has the same
form as the driving function. In this book the particular integral is called the
steady-state solution even when it is not periodic. The form of the transient
component of the response depends only on the roots of the characteristic
equation. For nonlinear differential equations the form of the response also
depends on the initial or boundary conditions. The instantaneous value of
the transient component depends on the boundary conditions, the roots of
the characteristic equation, and the instantaneous value of the steady-state
component.

This chapter covers methods of determining the steady-state and
the transient components of the solution. These components are first
determined separately and then added to form the complete solution.
Analysis of the transient solution should develop in the student a feel for the
solution to be expected.

Copyright © 2003 Marcel Dekker, Inc.



The method of solution is next applied to the matrix state equation.
A general format is obtained for the complementary solution in terms of the
state transition matrix (STM). Then the complete solution is obtained as a
function of the STM and the input forcing function.

3.2 STANDARD INPUTS TO CONTROL SYSTEMS

For some control systems the input has a specific form that may be
represented either by an analytical expression or as a specific curve. An exam-
ple of the latter is the pattern used in a machining operation, where the cutting
tool is required to follow the path indicated by the pattern outline. For other
control systems the input may be random in shape. In this case it cannot be
expressed analytically and is not repetitive. An example is the camera
platform used in a photographic airplane. The airplane flies at a fixed altitude
and speed, and the camera takes a series of pictures of the terrain below it,
which are then fitted together to form one large picture of the area. This task
requires that the camera platform remain level regardless of the motion of the
airplane. Since the attitude of the airplane varies with wind gusts and depends
on the stability of the airplane itself, the input to the camera platform is
obviously a random function.

It is important to have a basis of comparison for various systems. One
way of doing this is by comparing the response with a standardized input.
The input or inputs used as a basis of comparison must be determined from
the required response of the system and the actual form of its input. The
following standard inputs, with unit amplitude, are often used in checking
the response of a system:

1. Sinusoidal function r = cos of
2. Power series function r=ay+ayt +ay(*)2) + - -
3. Step function r=u_(t)
4. Ramp (step velocity) function r=1u_(t)=tu_i(t)
5. Parabolic (step acceleration)
function r=u_3(t) = (/2)u_, (1)
6. Impulse function r = uy(t)

Functions 3 to 6 are called singularity functions (Fig. 3.1). The
singularity functions can be obtained from one another by successive
differentiation or integration. For example, the derivative of the parabolic
function is the ramp function, the derivative of the ramp function is the step
function, and the derivative of the step function is the impulse function.

For each of these inputs a complete solution of the differential
equation is determined in this chapter. First, generalized methods are
developed to determine the steady-state output c(¢),, for each type of input.
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FIGURE 3.1 Singularity functions: (a) step function, u_¢(t); (b) ramp function,
u_y(t); (c) parabolic function, u_3(t).

These methods are applicable to linear differential equations of any order.
Next, the method of evaluating the transient component of the response c¢(¢),
is determined, and the form of the transient component of the response is
shown to depend on the characteristic equation. Addition of the steady-state
component and the transient component gives the complete solution, that is,
c(t) = c(t)g + c(t),. The coefficients of the transient terms are determined by
the instantaneous value of the steady-state component, the roots of the
characteristic equation, and the initial conditions. Several examples are used
to illustrate these principles. The solution of the differential equation with a
pulse input is postponed until the next chapter.

3.3 STEADY-STATE RESPONSE: SINUSOIDAL INPUT
The input quantity ris assumed to be a sinusoidal function of the form
r(t) = Rcos (of + o) (3.1
The general integrodifferential equation to be solved is of the form
AD'c+A, D 'e+- +4D°c+A4 D¢
+--+A_,D"c=r (3.2)
The steady-state solution can be obtained directly by use of Euler’s identity,

Jjot

e’ = cos ot +j sin ot

The input can then be written
r = Rcos(wt + o) = real part of (Rej(m’+°‘))
—Re (Rej(m’+°‘)) — Re(Re™e™) = Re(Re/™)  (3.3)

For simplicity, the phrase real part of or its symbolic equivalent Re is
often omitted, but is must be remembered that the real part is intended.
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The quantity R = Re’* is the phasor representation of the input; i.., it has
both a magnitude R and an angle o. The magnitude R represents the
maximum value of the input quantity r(¢). For simplicity the angle o = 0°
usually is chosen for R. The input r from Eq. (3.3) is inserted in Eq. (3.2).
Then, for the expression to be an equality, the response ¢ must be of the form

c(t)y, = C cos (of + ¢) = Re (Ce’®e/®) = Re (Ce’™) (3.4)
where C = Ce’®isa phasor quantity having the magnitude C and the angle ¢.
The nth derivative of ¢, with respect to time is

D'c(t)y, = Re [(jw)"Ce’] (3.5)
Inserting ¢, and its derivatives from Egs. (3.4) and (3.5) into Eq. (3.2) gives

Re (4,(jo) Ce’™ + A, (jo) ' Ce’™ + -+ A_,(jo) " Ce’]
= Re (Re’™) (3.6)
Canceling e’ from both sides of the equation and then solving for C gives

R
C =
A,(jo) + A4, (o) "+ + A+ A (o) 4+ A (o)
(3.7)

where C is the phasor representation of the output; i.e., it has a magnitude C
and an angle ¢. Since the values of C and ¢ are functions of the frequency , the
phasor output is written as C( jo) to show this relationship. Similarly, R( jo)
denotes the fact that the input is sinusoidal and may be a function of frequency.

Comparing Egs. (3.2) and (3.6), it can be seen that one equation can be
determined easily from the other. Substituting jo for D, C(jo) for ¢, and
R(jo) for rin Eq. (3.2) results in Eq. (3.6). The reverse is also true and is inde-
pendent of the order of the equation. It should be realized that this is simply a
rule of thumb that yields the desired expression.

The time response can be obtained directly from the phasor response.
The output is

c(t),, = Re (Ce’™) = |C| cos (of + ¢) (3.8)

As an example, consider the rotational hydraulic transmission described
in eq. (2.122), Sec. 2.11, of Ref. 10, which has an input x and an output angular
position 8,,. The equation that relates input to output in terms of system
parameters is repeated here:

vJ LJ
mzﬁem + ?Dzem +d,, DO, = d,0,x (3.9)
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When the input is the sinusoid, x = X sin ¢, the corresponding phasor
equation can be obtained from Eq. (3.9) by replacing x(¢) by X(jw), 9,, by
0,,(jo), and D by jo. The ratio of phasor output to phasor input is termed
the frequency transfer function, often designated by G( jo). This ratio, in terms
of the steady-state sinusoidal phasors, is

0,(jo) _ dp(”p/dm
X(jo)  jo[(VI/KsC d,)( jo)*+(LJ/C d,)jo)+1]
(3.10)

G(jo) =

3.4 STEADY-STATE RESPONSE: POLYNOMIAL INPUT

A development of the steady-state solution of a differential equation with a
general polynomial input is presented first. Particular cases of the power
series are then covered in detail.

The general differential equation (3.2) is repeated here:

ADc+ A, D e+ +Age+A_ D et 44 D c=r

(3.11)
The polynomial input is of the form
Ry Rt
r(0) =Ry + Rt + =+ + = (3.12)

where the highest-order term in the input is Rktk /k!. For t < 0 the value of r(r)
is zero. The object is to find the steady-state or particular solution of the
dependent variable c¢. The method used is to assume a polynomial solution of
the form
2 q

c(t)gs = by +b1t+bzz—§+---+b;—f
where determination of the value of ¢ is given as follows:

The assumed solution is then substituted into the differential equation.
The coefficients by, by, b, ... of the polynomial solution are evaluated by
equating the coefficients of like powers of 7 on both sides of the equation.
Inserting r(7) from Eq. (3.12) into Eq. (3.11), the highest power of 7 on the right
side of Eq. (3.11) is k; therefore X must also appear on the left side of this
equation. The highest power of 7 on the left side of the equation is produced
by the lowest-order derivative term D™ "¢ and is equal to ¢ plus the order of
the lowest derivative. Therefore, the value of the highest-order exponent of ¢
that appears in the assumed solution of Eq. (3.13) is

g=k—w g>0 (3.14)

(3.13)
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where k is the highest exponent appearing in the input and w is the
lowest-order exponent of the differential operator D appearing in the general
differential equation (3.11). Equation (3.14) is valid only for positive values
of ¢. For each of the following examples the response is a polynomial, because
the input is of that form. However, the highest power in the response may not
be the same as that of the input. When the lowest-order derivative is zero, that
is,w =0 in Eq. (3.11), then ¢ = k. When integral terms are present, the highest
order of ¢ in ¢(?) is smaller than k.

Step-Function Input

A convenient input #(f) to a system is an abrupt change represented by a unit
step function, as shown in Fig. 3.1a. This type of input cannot always be put
into a system since it may take a definite length of time to make the change in
input, but it represents a good mathematical input for checking system
response.

The servomotor described in Sec. 2.13 is used as an example. The
response of motor velocity ®,, in terms of the voltage e, applied to the
armature, as given by Eq. (2.135), is of the form

Ay D*x + A, Dx + Agx = r (3.15)

The unit step function r = u_;(¢) is a polynomial in which the highest
exponent of ¢ is kK = 0. When the input is a unit step function, the method of
solution for a polynomial can therefore be used, that is, the steady-state
response is also a polynomial. The lowest-order derivative in Eq. (3.15) is
w = 0; therefore, ¢ = 0 and the steady-state response has only one term of
the form

X = by (3.16)
The derivatives are Dx,, =0 and D*x, = 0. Inserting these values into

Eq. (3.15) yields

X0 = b= (3.17)

Ramp-Function Input (Step Function of Velocity)

The ramp function is a fixed rate of change of a variable as a function of time.
This input is shown in Fig. 3.15. The input and its derivative are expressed
mathematically as

r) =u () =tu, (1)  Dr=u_(9)
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A ramp input is a polynomial input where the highest power of 7 is k = 1.

When the input r(7) in Eq. (3.15) is the ramp function u_,(¢), the highest

power of ¢ in the polynomial output is ¢ = k = 1. The output is therefore
x(t)ss = b() + blt (318)

The derivatives are Dx,, = b; and szss = 0. Inserting these values into
Eq. (3.15), and then equating coefficients of 7 raised to the same power, yields

Ab A
0 101 1
101 + Agby 0 4, T
i Agh; =1 b =L
: 001 = =
Thus, the steady-state solution is
A 1
x(f)y = — —+—1 (3.19)

A 4,

Parabolic-Function Input (Step Function of Acceleration)

A parabolic function has a constant second derivative, which means that the

first derivative is a ramp. The input r(7) is expressed mathematically as
2
t
r=us)=Jua(t)  Dr=us(t) =m0 D*r = u_(f)

A parabolic input is a polynomial input where the highest power of tis k =2. A
steady-state solution is found in the conventional manner for a polynomial
input. Consider Eq. (3.15) with a parabolic input. The order of the lowest
derivative in the system equation is w = 0. The value of ¢ is therefore equal to

2, and the steady-state response is of the form
2

X(f)y, = by + byt + "27’ (3.20)

The derivatives of xare Dxy, = by + byt and D*x,, = b,. Inserting these values
into Eq. (3.15), followed by equating the coefficients of 7 raised to the same
power, yields b, = 1/A4,, b; = —A, /A3, and by = A3 /Ay — A,/ A}.

3.5 TRANSIENT RESPONSE: CLASSICAL METHOD

The classical method of solving for the complementary function or transient
response of a differential equation requires, first, the writing of the
homogeneous equation. The general differential equation has the form

bDc+b, D e+ - +byDc+b D le+---+b D c=r
(3.21)
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where r is the forcing function and c is the response. The homogeneous equa-
tion is formed by letting the right side of the differential equation equal zero:

b,D'¢,+b, D' 'e,+- +bye,+b D e, +-+b_,D "¢, =0
(3.22)

where ¢, is the transient component of the general solution.

The general expression for the transient response, which is the
solution of the homogeneous equation, is obtained by assuming a solution of
the form

¢, =A™ (3.23)

where m is a constant yet to be determined. Substituting this value of ¢, into
Eq. (3.22) and factoring A4,,¢™ from all terms gives

A" (b’ +by_ym’ ™+t by + -+ b_ym ™) =0 (3.24)

Equation (3.24) must be satisfied for 4,,¢™ to be a solution. Since ™ cannot
be zero for all values of time ¢, it is necessary that

Q(m) = b’ +b,_ym" ™+ +by+- -+ b m" =0 (3.25)

This equation is purely algebraic and is termed the characteristic equation. The
roots of the characteristic equation, Eq. (3.25), can be readily obtained by
using the MATLAB CAD program. There are v+ w roots, or eigenvalues, of
the characteristic equation; therefore, the complete transient solution
contains the same number of terms of the form A,,¢™ if all the roots are
simple. Thus the transient component, when there are no multiple roots, is

¢ =AM + Ay o+ A" 4+ A, e (3.26)

where each ™' is described as a mode of the system. If there is a root m, of

multiplicity p, the transient includes corresponding terms of the form
Ape™’ + Apte™ + -+ A0 e (3.27)

Instead of using the detailed procedure just outlined, the characteristic
equation of Eq. (3.25) is usually obtained directly from the homogeneous
equation of Eq. (3.22) by substituting m for Dc,, m* for D’c,, etc.

Since the coefficients of the transient solution must be determined
from the initial conditions, there must be v+ w known initial conditions.
These conditions are values of the variable ¢ and of its derivatives that are
known at specific times. The v+ w initial conditions are used to set up v+ w
simultaneous equations of ¢ and its derivatives. The value of ¢ includes
both the steady-state and transient components. Since determination of the
coefficients includes consideration of the steady-state component, the input
affects the value of the coefficient of each exponential term.
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Complex Roots

If all values of my are real, the transient terms can be evaluated as indicated
above. Frequently, some values of m; are complex. When this happens, they
always occur in pairs that are complex conjugates and are of the form

mg =0 +jog; Mg =0 —joy, (3.28)

where c is called the damping coefficient and o, is called the damped natural
frequency. The transient terms corresponding to these values of m are

Ake(6+jwd)f + Ak+1e(67jwd)t (3.29)
These terms are combined to a more useful form by factoring the term e°"

e (Are®" 4 Ay e (3.30)

By using the Euler identity e™/®¢' = cos w ¢ & j sin w,¢ and then combining

terms, expression (3.30) can be put into the form
e® (B, cos oyt + B, sin w,1) (3.31)
This can be converted into the form

Ae® sin(wyt + ¢) (3.32)

where A = \/B} + B} and ¢ = tan ™! (B,/B,). This form is very convenient for
plotting the transient response. The student must learn to use this
equation directly without deriving it each time. Often the constants in the
transient term are evaluated more readily from the initial conditions by using
the form of Eq. (3.31), and then the expression is converted to the more useful
form of Eq. (3.32).

This transient term is called an exponentially damped sinusoid; it
consists of a sine wave of frequency w, whose magnitude is 4e”’; that is, it is
decreasing exponentially with time if o is negative. It has the form shown in
Fig. 3.2, in which the curves & 4e®* constitute the envelope. The plot of the time
solution always remains between the two branches of the envelope.

For the complex roots given in Eq. (3.28), where o is negative, the
transient decays with time and eventually dies out. A negative G represents a
stable system. When o is positive, the transient increases with time and will
destroy the equipment unless otherwise restrained. A positive G represents
the undesirable case of an unstable system. Control systems must be
designed so that they are always stable.

Damping Ratio { and Undamped Natural Frequency w,,

When the characteristic equation has a pair of complex-conjugate roots,
it has a quadratic factor of the form b2m2 + bym + by. The roots of this
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FIGURE 3.2 Sketch of an exponentially damped sinusoid.

factor are

by , . [4byby — b} .

The real part c is recognized as the exponent of e, and ®, is the frequency of
the oscillatory portion of the component stemming from this pair of roots, as
given by expression (3.32).

The quantity b, represents the effective damping constant of the system.
If the numerator under the square root in Eq. (3.33) is zero, then b; has the
value 2,/b,by and the two roots m,, are equal. This represents the critical
value of the damping constant and is written b; = 2.,/b,b,.
The damping ratio ( is defined as the ratio of the actual damping constant to the
critical value of the damping constant:

_actual damping constant b, b,
~ critical damping constant b, 2./b,b,

(3.34)

When { is positive and less than unity, the roots are complex and the
transient is a damped sinusoid of the form of expression (3.32). When ( is
less than unity, the response is said to be underdamped. When { is greater
than unity, the roots are real and the response is overdamped, i.e., the
transient solution consists of two exponential terms with real exponents.
For { > 0 the transients decay with time and the response c¢(#) approaches
the steady state value. For { < 0 the transient increases with time and the
response is unstable.
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The undamped natural frequency o, is defined as the frequency of the
sustained oscillation of the transient if the damping is zero:

_ [bo
o, = /;2 (3.35)

The case of zero damping constant, b; =0, means that the transient response
does not die out; it is a sine wave of constant amplitude.

The quadratic factors are frequently written in terms of the damping
ratio and the undamped natural frequency. Underdamped systems are
generally analyzed in terms of these two parameters. After factoring b, the
quadratic factor of the characteristic equation is

b, b, 1 2C

2 2
= — 1=— - 1 3.36
bom —i—bom—i— CO%m +mnm+ ( )

When it is multiplied through by cof,, the quadratic appears in the form

m* + 2Lo,m + o> (3.37)
The two forms given by Eqgs. (3.36) and (3.37) are called the standard forms of
the quadratic factor, and the corresponding roots are

m, =6 +jog = —(o, £jo,/1 - (3.38)

The transient response of Eq. (3.32) for the underdamped case, written in
terms of { and ®,, is

Ae® sin(wgt + ¢) = Ae =" sin (w,/1 — P 1+ ¢) (3.39)

From this expression the effect on the transient of the terms { and ®, can
readily be seen. The larger the product L, the faster the transient will decay.
These terms also affect the damped natural frequency of oscillation of the
transient, ®; = m,v/1 — ?, which varies directly as the undamped natural
frequency and decreases with an increase in damping ratio.

3.6 DEFINITION OF TIME CONSTANT

The transient terms have the exponential form 4e”’. When m = —a is real
and negative, the plot of 4e “has the form shown in Fig. 3.3. The value
of time that makes the exponent of e equal to —1 is called the time constant T.
Thus

—aTl = -1 and T=-— (3.40)
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FIGURE 3.3 Plot of the exponential e~ and the root location.

In a duration of time equal to one time constant the exponential e “decreases
from the value 1 to the value 0.368. Geometrically, the tangent drawn to the
curve Ae “ at t=0 intersects the time axis at the value of time equal to the
time constant 7.

When m = o £ jwo, is a complex quantity, the transient has the form
Ae®" sin(wyt + ¢). A plot of this function is shown in Fig. 3.2. In the case of
the damped sinusoid, the time constant is defined in terms of the
parameter G that characterizes the envelope Ae”°'. Thus the time constant 7
is equal to

T=— (3.41)

In terms of the damping ratio and the undamped natural frequency, the time
constant is 7 = 1/, Therefore, the larger the product {®,, the greater the
instantaneous rate of decay of the transient.

3.7 EXAMPLE: SECOND-ORDER SYSTEM—MECHANICAL

The simple translational mechanical system of Sec. 2.5 is used as an example
and is shown in Fig. 3.4. Equation (2.59) relates the displacement x; to x,:

M D’x, + B Dx, + Kx, = Kx, (3.42)

Consider the system to be originally at rest. Then the function x, moves 1 unit
at time 7r=0; that is, the input is a unit step function x,(r) = u_;(?).
The problem is to find the motion x,(7).

The displacement of the mass is given by

Xp(1) = Xp g5 + Xp;

where x;, s is the steady-state solution and x,, is the transient solution.
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FIGURE 3.4 Simple mechanical system.

The steady-state solution is found first by using the method of Sec. 3.4.
In this example it may be easier to consider the following:

1. Since the input x, is a constant, the response x; must reach a fixed
steady-state position.

2. When x, reaches a constant value, the velocity and acceleration
become zero.

By putting szb = Dx;, =0 into Eq. (3.42), the final or steady-state
value of x, is x; ; = x,. After the steady-state solution has been found, the
transient solution is determined. The characteristic equation is

B K
Mm2+Bm+K:M<m2+Mm+M> =0

Putting this in terms of { and o, gives
m* + 20o,m + 02 = 0 (3.43)

for which the roots are m;, = —{o, £ 0,V ¢> — 1. The transient solution
depends on whether the damping ratio ( is (1) greater than unity, (2) equal
to unity, or (3) smaller than unity. For { greater than unity the roots are real

and have the values m; = —a and m, = —b, and the transient response is

Xp, = Are™ + Aye ™ (3.44)
For { equal to unity, the roots are real and equal; that is, m; = m, = —(o,,.
Since there are multiple roots, the transient response is

Xp, = Aye " 4 Ayte™O" (3.45)

For { less than unity, the roots are complex,

my, = _C(Dn ijwn\/ 1 - §2

and the transient solution, as outlined in Sec. 3.5, is

Xp, = Ae™" sin (0,01 — 1 + ) (3.46)
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The complete solution is the sum of the steady-state and transient solutions.
For the underdamped case, { < 1, the complete solution of Eq. (3.42) with a
unit step input is

xp(6) = 14+ Ae ' sin (/1 — 1 + ) (3.47)

The two constants 4 and ¢ must next be determined from the initial
conditions. In this example the system was initially at rest; therefore,
xp(0) = 0. The energy stored in a mass is W = %Mvz. From the principle of
conservation of energy, the velocity of a system with mass cannot change
instantaneously; thus Dx;(0) = 0. Two equations are necessary, one for x;(7)
and one for Dx, (7). Differentiating Eq. (3.47) yields

Dxy(f) = —Lw,Ae " sin (o,/1 — £ + ¢)

+op/1 = 2A4e75 cos (/1 — 2t + ¢) (3.48)

Inserting the initial conditions x,(0) = 0, Dx;,(0) = 0,and = 0 into Eqs. (3.47)
and (3.48) yields the two simultaneous equations

0=1+4sind 0=—{w,A4sin ¢+ 0,/1 -4 cos ¢
These equations are then solved for 4 and ¢:
-1 V1=
¢ = tan
V1-=¢ g

where the units of ¢ are radians. Thus the complete solution is

—Lo,t

X0 =1- ;ﬁsin (/1= t+cos Q) (3.49)
When the complete solution has been obtained, it should be checked to see
that it satisfies the known conditions. For example, putting =0 into
Eq. (3.49) gives x;,(0) = 0; therefore, the solution checks. In a like manner, the
constants can be evaluated for the other two cases of damping. Equation (3.49)
shows that the steady-state value x, is equal to x,. Thus, the output tracks
the input.

A= =cos '

3.8 EXAMPLE: SECOND-ORDER SYSTEM—ELECTRICAL

The electric circuit of Fig. 3.5 is used to illustrate further the determination
of initial conditions. The circuit, as shown, is in the steady state. At time =0
the switch is closed. The problem is to solve for the current i»(7) through the
inductor for ¢ > 0.
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FIGURE 3.5 Electric circuit: £=10V, R1=10%, R,=15Q, R3=10Q, L=1H,
C=0.01F.

Two loop equations are written for this circuit:
10 = 20i; — 104, (3.50)

100
0=—10i + <D+25 +T>i2 (3.51)

Eliminating /; from these equations yields
200

Differentiating this equation yields
(2D? + 40D + 200)i, = 0 (3.52)
The steady-state solution is found by using the method of Sec. 3.4. Since the
input of Eq. (3.52) is a step function of value zero, the steady-state output is
e =0 (3.53)
This can also be deduced from an inspection of the circuit. When a branch
contains a capacitor, the steady-state current is always zero for a dc source.
Next the transient solution is determined. The characteristic equation is
m’ + 20m + 100 = 0, for which the roots are m; ; = —10. Thus the circuit is
critically damped, and the current through the inductor can be expressed by
(1) = iy(t), = Aje " + Ayre™ (3.54)

Two equations and two initial conditions are necessary to evaluate the two
constants A and 4,. Equation (3.54) and its derivative,

Dir(f) = =104, "% + 4,(1 — 100)e™ " (3.55)

are utilized in conjunction with the initial conditions #,(0") and
Di»(0%). In this example the currents just before the switch is closed are
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i1(07) = ,(07) = 0. The energy stored in the magnetic field of a single
inductor is W = %Liz. Since this energy cannot change instantly, the current
through an inductor cannot change instantly either. Therefore, i,(0") =
i,(07) = 0. Di,(¢) is found from the original circuit equation, Eq. (3.51), which
is rewritten as

Dix(£) = 10i,(t) — 25i5(t) — vo(2) (3.56)

To determine Di,(07), it is necessary first to determine #;(0%), i,(0"), and
v.(0%). Since i,(07) = 0, Eq. (3.50) yields i;(0") = 0.5 A. Since the energy
W =10 stored in a capacitor cannot change instantly, the voltage across
the capacitor cannot change instantly either. The steady-state value of
capacitor voltage for t < 0is v,(07) = 10 V; thus

1,(07) = v,(07) = 10V (3.57)

Inserting these values into Eq. (3.56) yields Di,(0") = —5. Substituting the
initial conditions into Egs. (3.54) and (3.55) results in 4; = 0 and 4, = —5.
Therefore, the current through the inductor for 7> 0 is

i(f) = =5t (3.58)

3.9 SECOND-ORDER TRANSIENTS [2]

The response to a unit step-function input is usually used as a means of
evaluating the response of a system. The example of Sec. 3.7 is used as an
illustrative simple second-order system. The differential equation given by
Eq. (3.42) can be expressed in the form

D*c¢ 2
zc—l——gDc—i—c =r
(Dn (Dl’l

This is defined as a simple second-order equation because there are no
derivatives of r on the right side of the equation. The underdamped response
(€ < 1) to a unit step input, subject to zero initial conditions, is derived in
Sec. 3.7 and is given by

c(f)=1- \/e%sin (/1 =t +cos ') (3.59)

A family of curves representing this equation is shown in Fig. 3.6, where the
abscissa is the dimensionless variable ®,z. The curves are thus a function
only of the damping ratio {.
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FIGURE 3.6 Simple second-order transients.

These curves show that the amount of overshoot depends on the
damping ratio {. For the overdamped and critically damped case, { > 1, there
is no overshoot. For the underdamped case, { < 1,the system oscillates around
the final value. The oscillations decrease with time, and the system response
approaches the final value. The peak overshoot for the underdamped system is
the first overshoot. The time at which the peak overshoot occurs, 7, can be
found by differentiating c(7) from Eq. (3.59) with respect to time and setting
this derivative equal to zero:

de  C(o,e " _
5= C’;ﬁczsm(wn\/ 1 -t +cos'0)
— @,e " cos (0,y/1 — 2t +cos™' Q)

=0
This derivative is zero at ©,v/1 — (>t =0, 7, 27, .... The peak overshoot
occurs at the first value after zero, provided there are zero initial conditions;

therefore,

PR — (3.60)

! (Y 1- CZ
Inserting this value of time in Eq. (3.59) gives the normalized peak overshoot
with a step input as M, = ¢(t,)/Ry:

Mpch=1+exp(—c—n> (3.61)

V1=-¢
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FIGURE 3.7 Peak overshoot vs. damping ratios for a simple second-order equation
D?c/w2 + (2¢/0p)Dc + ¢ = r(t).
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FIGURE 3.8 Frequency of oscillation vs. damping ratio.

The per unit overshoot M, as a function of damping ratio is shown in Fig. 3.7,
where

M, =25 (3.62)

CSS

The variation of the frequency of oscillation of the transient with variation of
damping ratio is also of interest. In order to represent this variation by one
curve, the quantity o;/o, is plotted against { in Fig. 3.8. If the scales of
ordinate and abscissa are equal, the curve is an arc of a circle. Note that this
curve has been plotted for { < 1.Values of damped natural frequency for{ > 1
are mathematical only, not physical.

The error in the system is the input minus the output; thus the error
equation is

eﬂ*,m"t
e=r—c¢=——sin(w,/1 —t+cos ') (3.63)
V1=-¢
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The variation of error with time is sometimes plotted. These curves can
be obtained from Fig. 3.6 by realizing that the curves start at e(0) =+ 1 and
have the final value e(co0) = 0.

Response Characteristics

The transient-response curves for the second-order system show a number of
significant characteristics. The overdamped system is slow-acting and does
not oscillate about the final position. For some applications the absence of
oscillations may be necessary. For example, an elevator cannot be allowed to
oscillate at each stop. But for systems where a fast response is necessary, the
slow response of an overdamped system cannot be tolerated.

The underdamped system reaches the final value faster than the
overdamped system, but the response oscillates about this final value.
If this oscillation can be tolerated, the underdamped system is faster acting.
The amount of permissible overshoot determines the desirable value
of the damping ratio. For example, a damping ratio { = 0.4 has an
overshoot of 25.4 percent, and a damping ratio { = 0.8 has an overshoot of
1.52 percent.

The settling time is the time required for the oscillations to decrease to a
specified absolute percentage of the final value and thereafter to remain less
than this value. Errors of 2 or 5 percent are common values used to determine
settling time. For second-order systems the value of the transient component
at any time is equal to or less than the exponential ¢~% The value of this term
is given in Table 3.1 for several values of ¢ expressed in a number of time
constants 7.

The settling time for a 2 percent error criterion is approxi-
mately 4 time constants; for a 5 percent error criterion, it is 3 time constants.
The percent error criterion used must be determined from the
response desired for the system. The time for the envelope of the transient

TaBLE 3.1 Exponential Values

t e st Error, %
17T 0.368 36.8
2T 0.135 13.5
37 0.050 5.0
aT 0.018 1.8
5T 0.007 0.7
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to die out is

T - number of time constants
* Lo,

(3.64)

Since { must be determined and adjusted for the permissible overshoot, the
undamped natural frequency determines the settling time. When ¢(#), = 0,
then 7, may be based upon =+ 2 percent of c(z,).

3.10 TIME-RESPONSE SPECIFICATIONS [3]

The desired performance characteristics of a tracking system of any order may
be specified in terms of the transient response to a unit step-function input.
The performance of a system may be evaluated in terms of the following
quantities, as shown in Fig. 3.9.

1. Peak overshoot c,, which is the magnitude of the largest overshoot,
often occurring at the first overshoot. This may also be expressed in
percent of the final value.

2. Time to maximum overshoot #, is the time to reach the maximum
overshoot.

3. Time to first zero error fy, which is the time required to reach the
final value the first time. It is often referred to as duplicating time.

4. Settling time #,, the time required for the output response to first
reach and thereafter remain within a prescribed percentage of the
final value. This percentage must be specified in the individual
case. Common values used for settling time are 2 and 5 percent. As
commonly used, the 2 or 5 percent is applied to the envelope that
yields 7. The actual z; may be smaller than 7.

5. Risetime 7, defined as the time for the response, on its initial rise, to
go from 0.1 to 0.9 times the steady-state value.

Allowable
e b tolerance
L R —— T _— Y
i SIS
-~ - - - — - 1T Inn
T P | ¥
ar | | |
(nl
c | | |
2 [ L
I | | I
b [ 1
= 1 | 1
0
to tp L,

FIGURE 3.9 Typical underdamped response to a step input.
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FIGURE 3.10 Underdamped transient.

6. Frequency of oscillation ®,; of the transient depends on the
physical characteristics of the system.

If the system has an initial constant output ¢;(¢)ss and then the input is
changed to obtain a new constant value c¢,(?)s, the transient response for an
underdamped system is illustrated in Fig. 3.10. The per unit overshoot may
then be redefined from the expression in Eq. (3.62) to the new value

maximum overshoot  |Ac,| — |Ac]
=

: — = (3.65)
signal transition |Ac|

The time response differs for each set of initial conditions. Therefore, to
compare the time responses of various systems it is necessary to start with
standard initial conditions. The most practical standard is to start with the
system at rest. Then the response characteristics, such as maximum overshoot
and settling time, can be compared meaningfully.

For some systems these specifications are also applied for a ramp input.
In such cases the plot of error with time is used with the definitions. For
systems subject to shock inputs the response due to an impulse is used as a
criterion of performance.

3.11 CAD ACCURACY CHECKS (CADAC)

A proficient control system engineer is an individual who has mastered
control theory and its application in analysis and design. The competent
engineer must become computer literate in the use of CAD packages like
MATLAB [4] or TOTAL-PC. The individual must fully comprehend the
importance of the following factors:

1. Ttis essential to have a firm understanding of the CAD algorithm
being used. This leads to a judgment about the reasonableness of
the CAD program results.
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2. CAD input data must be entered accurately. Remember: garbage
in—garbage out.

3. No computer has infinite accuracy. Therefore, round-off must be
considered.

4. CAD accuracy checks (CADAC) help to validate the accuracy
of the CAD output data. The CADAC are necessary, but not
necessarily sufficient, conditions for ensuring the accuracy of the CAD
output data.

The figures of merit (FOM) equations for M,, ,, and T; can serve as
CADAC. They apply not only for simple second-order systems but also for
systems in which the dominant roots (a pair of complex roots or a real root)
of the characteristic equation dictate the time response characteristics.
These CADAC are important for the design methods presented in later
chapters.

3.12 STATE-VARIABLE EQUATIONS [5-8]

The differential equations and the corresponding state equations of
various physical systems are derived in Chap. 2. The state variables
selected in Chap. 2 are restricted to the energy-storage variables. In
Chap. 5 different formulations of the state variables are presented. In
large-scale systems, with many inputs and outputs, the state-variable
approach can have distinct advantages over conventional methods, especially
when digital computers are used to obtain the solutions. Although this text is
restricted to linear time-invariant (LTT) systems, the state-variable approach
is applicable to nonlinear and to time-varying systems. In these cases a
computer is a practical method for obtaining the solution. A feature of the
state-variable method is that it decomposes a complex system into a set of
smaller systems that can be normalized to have a minimum interaction and
that can be solved individually. Also, it provides a unified approach that is
used extensively in modern control theory.

The block diagram of Fig. 3.11 represents a system S that has m
inputs, / outputs, and n state variables. The coefficients in the equations

U] — __-__y]
Hy —— —U-.Yz
s
Uy ] X XD, e 4 X, — ¥

FIGURE 3.11 General system representation.
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representing an LTI system are constants. The matrix state and output
equations are then

x(7) = Ax(f) + Bu(?) (3.66)
y(¢) = Cx(¥) + Du(¢) (3.67)
The variables x(7), u(?), and y(?) are column vectors, and A, B, C, and D
are matrices having constant elements. Equation (3.66) is solved first for
the state vector x(#). This result is then used in Eq. (3.67) to determine the

output y(?).
The homogeneous state equation, with the input u() =0, is

X = AX (3.68)

where A is a constant n x n matrix and x is an n x 1 column vector.
For the scalar first-order equation x = ax, the solution, in terms of the
initial conditions at time r =0, is

x(¢) = e"x(0) (3.69)
For any other initial condition, at time ¢ = f,, the solution is
x(2) = e Vx(1y) (3.70)

Comparing the scalar and the state equations shows the solution of Eq. (3.68)
to be analogous to the solution given by Eq. (3.70); it is

x(£) = exp[A(t — 1y)]x(%y) (3.71)

The exponential function of a scalar that appears in Eq. (3.69) can be
expressed as the infinite series
2 3 k
ar _ at  (at) (at) (at)
" = explat] =1 +ﬂ+T+T+...+T
The analogous exponential function of a square matrix A that appears in
Eq. (3.71),with £y =0, is

T (3.72)

Ar (A1} (AP (An)¥
At _ _ Al
e _exp[At]_I—i-l!-i- 2 3 oot il
Thus exp [Af] is a square matrix of the same order as A. A more useful form
for the infinite series of Eq. (3.73) is the closed form developed in Sec. 3.14. The
closed form is called the state transition matrix (STM) or the fundamental matrix

of the system and is denoted by
D(r) = e = exp[Af] (3.74)

T (3.73)
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The term STM is descriptive of the unforced or natural response and is
the expression preferred by engineers. The STM has the following

properties [7,9].
1. ®(t, — )P — ty) = D, — 1y) for any ¢y, 11,1, (3.75)
2. D()D(r) - - D(t) = PI(t) = D(qt) q = positive integer  (3.76)
307 (1) = d(-1) (3.77)
4. ©0)=1 unity matrix (3.78)
5. ®(r) is nonsingular for

all finite values of ¢ (3.79)

3.13 CHARACTERISTIC VALUES
Consider a system of equations represented by
X = AX (3.80)

The signals x and x are column vectors, and A is a square matrix of order n.
One case for which a solution of this equation exists is if x and x have the same
direction in the state space but differ only in magnitude by a scalar
proportionality factor A. The solution must therefore have the form x = Ax.
Inserting this into Eq. (3.80) and rearranging terms yields

AMI—Alx=0

This equation has a nontrivial solution only if x is not zero. It is therefore
required that the matrix [AI — A] not have full rank; therefore, the
determinant of the coefficients of x must be zero:

oM)=|M—-—Al=0 (3.81)
When A is of order #n, the resulting polynomial equation is the characteristic
equation

0 =N +a, N+t ahtag=0 (3.82)

The roots A; of the characteristic equation are called the characteristic values
or eigenvalues of A. The roots may be distinct (simple) or repeated with a
multiplicity p. Also, a root may be real or complex. Complex roots must
appear in conjugate pairs, and the set of roots containing the complex-
conjugate roots is said to be self-conjugate. The polynomial Q(1) may be
written in factored form as

0N = =M)A=2p) - (A= 24y) (3.83)
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The product of eigenvalues of a matrix A is equal to its determinant, that is,
AiAy -+ A, = |A]. Also, the sum of the eigenvalues is equal to the sum of the
elements on the main diagonal (the trace) of A, that is,

Xn:%i = Xn:aﬁ = trace A
I i=1

3.14 EVALUATING THE STATE TRANSITION MATRIX

There are several methods for evaluating the STM ®(7) = exp[Af] in closed
form for a given matrix A. The method illustrated here is based on the
Cayley-Hamilton theorem. The Laplace transform method is covered in the
next chapter, and a state transformation method is covered in Chap. 5.
Consider a general polynomial of the form

N =M+ Cp M '+ + O+ Cy (3.84q)

When the polynomial V(1) is divided by the characteristic polynomial Q(%),
the result is

N R
o0y~ Mt om)
or
NG = FO)OO) + ROV (3.84b)

The function R(}) is the remainder, and it is a polynomial whose maximum
order is n — 1, or 1 less than the order of Q(L). For A = }; the value Q(A;) = 0;

thus
N(\) = R(\) (3.85)
The matrix polynomial corresponding to Eq. (3.844), using A as the variable, is
NA)=A" 4+ C,, ;A" '+ ...+ CA + Gyl (3.86)

Since the characteristic equation Q(A) = 0 has n roots, there are n equations
O)=0,00,)=0,...,0(,) = 0.The analogous matrix equation is

Q(A) = An + anfl‘An_l + -t alA + a()I = 0

where 0 indicates a null matrix of the same order as Q(A). This equation
implies the Cayley-Hamilton theorem, which is sometimes expressed as
“every square matrix A satisfies its own characteristic equation.” The matrix
polynomial corresponding to Egs. (3.845) and (3.85) is therefore

N(A) = F(A)Q(A) + R(A) = R(A) (3.87)

Copyright © 2003 Marcel Dekker, Inc.



Equations (3.85) and (3.87) are valid when N(}) is a polynomial of any order
(or even an infinite series) as long as it is analytic. The exponential function
N(L) = € is an analytic function that can be represented by an infinite
series, as shown in Eq. (3.72). Since this function converges in the region of
analyticity, it can be expressed in closed form by a polynomial in A of degree
n — 1. Thus, for each eigenvalue, from Eq. (3.85),

M = R0u) = og(t) + o (O + -+ o (OA + -+ o, (DN
(3.88)

Inserting the n distinct roots A; into Eq. (3.88) yields » equations that can be
solved simultancously for the coefficients o. These coefficients may be
inserted into the corresponding matrix equation:

e = N(A) = R(A)

= (O] + o (DA + - - - + o (DAF + -+ + o1, (A" ! (3.89)
For the STM this yields
n—1
D(1) = explAr] = Y ax(AF (3.90)
k=0

For the case of multiple roots, refer to a text on linear algebra [5,8,9] for the
evaluation of ®(r).

Example. Find exp[Af] when

]

The characteristic equation is

A —6

— _ — — 12 —
ot =i-ai=|} |2 esrs=0
The roots of this equation are .; = —2 and A, = —3. Since A is a second-order
matrix, the remainder polynomial given by Eq. (3.88) is of first order:
N() = R(ky) = g + 042 (3.91)

Substituting N();) = €™ and the two roots A, and %, into Eq. (3.91) yields

e =0y — 204 and e =0y — 30y

Solving these equations for the coefficients o, and o yields

dy=3e -2 and oy =e X —e ¥
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The STM obtained by using Eq. (3.90) is

o 0 0 60(1
D(1) = exp[Af] = ool + A + +
0 o)} —0l —50(1

[36_2t _ 28_3t 6e—2t _ 6e—3t }

(3.92)

- _e—2t + e—3t _ze—Zt + 3e—3t
Another procedure for evaluating the STM, ®(¢), is by use of the Sylvester
expansion. The format in this method makes it especially useful with a digital
computer. The method is presented here without proof for the case when A is a
square matrix with n distinct eigenvalues. The polynomial N(A) can be written

M =N@A) =D NOWZ) (3.93)
i=1
Z,0) = ZZT Lz (A 77D (3.94)
itz (hi = 1)
For the previous example there are two eigenvalues A; = —2 and A, = —3.
The two matrices Z; and Z, are evaluated from Eq. (3.94):
0+3 6
Z_A—XZI_|:—] —5+3:|_[3 6}
VISV —2—(=3) S )
042 6
z _A—xll_[ -1 —5+2}_[—2 —6i|
27— —3—(=2) I

Using these values in Eq. (3.93), where N(\;) = e, yields
O(r) = exp[Al] = € Z, + €77,

Equation (3.92) contains the value of ®(7).
The matrices Z;(A) are called the constituent matrices of A and have the
following properties:

1. Orthogonality:

2. The sum of the complete set is equal to the unit matrix:
Z Z, =1 (3.96)
i=1

3. Idempotency:
7! =17, (3.97)

where r > 0 is any positive integer.
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Equation (3.93) can be conveniently applied to evaluate other
functions of A. For example, to obtain A" use the form

A =MZy+ M2+ + 02, =Y MZ, (3.98)
i=1

The operations involved in computing Eq. (3.98) consist primarily of
addition, which is simpler than multiplying A by itself r times.

3.15 COMPLETE SOLUTION OF THE STATE EQUATION [10]

When an input u(¢) is present, the complete solution for x(¢) is obtained from
Eq. (3.66). The starting point for obtaining the solution is the following
equality, obtained by applying the rule for the derivative of the product of
two matrices (see Appendix B):

% [e*A’x(t)] — e Mx(1) — AX(1)] (3.99)

Utilizing Eq. (3.66), x = Ax + Bu, in the right side of Eq. (3.99) yields
d
= [e*A’x(t)] — e ABu(r)
Integrating this equation between 0 and 7 gives
!
e Ax(1) — x(0) = / e A Bu(t) dt (3.100)
0
Multiplying by e*’ on the left and rearranging terms produces

x(f) = eMx(0) + / t AUBu(t) dt = D(0)x(0) + / t ®(7 — 7)Bu(t) dt
0 0

(3.101)

Using the STM and generalizing for initial conditions at time 7 = ¢, gives the
solution to the state-variable equation with an input u(z) as

!
x(t) = ®(t — 1ty)x(ty) + / ®(t — 1)Bu(t) dt t>f (3.102)

L}
This equation is called the state transition equation; i.e., it describes the change
of state relative to the initial conditions x(#,) and the input u(z). It may be more

convenient to change the variables in the integral of Eq. (3.101) by letting
B = t — t,which gives

X(7) = ®(1) x(0) + /0 ®(B)Bu(z — B) dp (3.103)
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where ®(r) = ¢! is the state transition matrix. Note that ®(s)x(0) is the
zero-input response and @(s)BU(s) is the zero-state response.

In modern terminology the state solution x(7) as given by Egs. (3.101) to
(3.103) is described by

X(1) = x;(1) + X,(?) (3.104)

where x,;(7) is called the zero-input response, that is, u(r) = 0, and x,,(7) is
called the zero-state response, that is, x(¢;) = 0.

Example. Solve the following state equation for a unit step-function scalar
input, u(t) = u_(¢):

. 0 6 0
[ St
The STM for this equation is given by Eq. (3.92). Thus, the total time solution

is obtained by substituting this value of ®(¢) into Eq. (3.103). Since u(¢ — ) has
the value of unity for 0 < < ¢, Eq. (3.103) yields

Do) 5 /t [ 6e 2 _ e3P } ap
0 | —2e7%F 43¢
3¢ —2e7  Ge M —6e! x1(0)
|: T L 3e3ti| |:x2(0):|

1 —3e 2 427
+ s (3.105)

e —e

x(1)

The integral of a matrix is the integral of each element in the matrix with
respect to the indicated scalar variable. This property is used in evaluating
the particular integral in Eq. (3.105). Inserting the initial conditions
produces the final solution for the state transition equation. The Laplace
transform method presented in Chap. 4 is a more direct method for finding
this solution. An additional method is shown in Chap. 5.

3.16 SUMMARY

This chapter establishes the manner of solving differential equations. The
steady-state and transient solutions are determined separately and then
added to form the total response. Then the constants of the transient
component of the solution are evaluated to satisfy the initial conditions.
The ability to anticipate the form of the response is very important.
The solution of differential equations has been extended to include solution
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of the matrix state and output equations. This method is also applicable to
multiple-input multiple-output, time-varying, and nonlinear systems. The
matrix formulation of these systems lends itself to digital-computer solutions.
Solution of differential and state equations is facilitated by use of the
MATLAB computer aided Design method. Use of MATLAB is described in
Appendix C, and a number of examples are contained throughout this text.
Obtaining the complete solution by means of the Laplace transform is covered
in the next chapter.
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4

Laplace Transform

4.1 INTRODUCTION

The Laplace transform method is used extensively [1-3] to facilitate and
systematize the solution of ordinary constant-coefficient differential
equations. The advantages of this modern transform method for the analysis
of linear-time-invariant (LTT) systems are the following:

It includes the boundary or initial conditions.

The work involved in the solution is simple algebra.

The work is systematized.

The use of a table of transforms reduces the labor required.
Discontinuous inputs can be treated.

The transient and steady-state components of the solution are
obtained simultaneously.

SR e o

The disadvantage of transform methods is that if they are used
mechanically, without knowledge of the actual theory involved, they some-
times yield erroneous results. Also, a particular equation can sometimes be
solved more simply and with less work by the classical method. Although an
understanding of the Laplace transform method is essential, it must be
emphasized that the solutions of differential equations are readily
obtained by use of CAD packages such as MATLAB and TOTAL-PC [4]
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(see Appendixes C and D). Laplace transforms are also applied
to the solution of system equations that are in matrix state-variable format.
The method for using the state and output equations to obtain the system
transfer function is presented.

4.2 DEFINITION OF THE LAPLACE TRANSFORM

The direct Laplace transformation of a function of time f(7) is given by
2101 = [ fwedi=Fo @)

where Z[f(r)] is a shorthand notation for the Laplace integral. Evaluation
of the integral results in a function F(s) that has s as the parameter. This
parameter s is a complex quantity of the form o + jo. Since the limits of
integration are zero and infinity, it is immaterial what value f(¢) has for
negative or zero time.

There are limitations on the functions f(?) that are Laplace-
transformable. Basically, the requirement is that the Laplace integral
converge, which means that this integral has a definite functional value. To
meet this requirement [3] the function f(#) must be (1) piecewise continuous
over every finite interval 0 <# <t <1t and (2) of exponential order. A
function is piecewise continuous in a finite interval if that interval can be
divided into a finite number of subintervals, over each of which the function
is continuous and at the ends of each of which f(¢) possesses finite right- and
left-hand limits. A functionf(#) is of exponential order if there exists a constant
a such that the product e~ “|f(#)| is bounded for all values of t greater than some
finite value 7 This imposes the restriction that o, the real part of s, must
be greater than a lower bound o, for which the product e °«|f(¢)| is of
exponential order. A linear differential equation with constant coefficients
and with a finite number of terms is Laplace transformable if the driving
function is Laplace transformable.

All cases covered in this book are Laplace transformable. The basic
purpose in using the Laplace transform is to obtain a method of solving
differential equations that involves only simple algebraic operations in
conjunction with a table of transforms.

4.3 DERIVATION OF LAPLACE TRANSFORMS OF
SIMPLE FUNCTIONS

A number of examples are presented to show the derivation of the Laplace
transform of several time functions. A list of common transform pairs is
given in Appendix A.
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Step Function u_4(t)

The Laplace transform of the unit step function u_;(?) (see Fig. 3.1a) is
L@ = [ w0 dr = U 42)
Since u_ () has the value 1 over the limits of integration,
U_(s) = /OO e ldt =—
0 0

The step function is undefined at =0, but this is immaterial, for the
integral is defined by a limit process

00 T
f SO dt = lim f f(e™ dt (4.4)
0 E::O €

o0

=~ ifo>0 (4.3)

—st

s

and the explicit value at 7= 0 does not affect the value of the integral. The value
of the integral obtained by taking limits is implied in each case but is not
written out explicitly.

ot

Decaying Exponential e

The exponent o is a positive real number.

o0 00
g[e—at] :/ e Mot dtf e—(s+<x)t dt
0 0

oo

—(s+o)t 1
= ¢ = c > —a (4.5)
s+ o 0 S+ o
Sinusoid cos ot
Here o is a positive real number.
Z[cos oi] :/ coswte " dt (4.6)
0
Expressing cos of in exponential form gives
eimt+€7jmt
cos ot =
2
Then
1 o 0o 1 [eUo—9r  —jo—91™
Zlcosof] =~ / VO gy 4- / R e s
2\ Jy 0 2| jo—s —jo—s o
1 1 1
=—(—, - ):2s s o>0 4.7)
2\ jo—s —jo—s) s*+o

Copyright © 2003 Marcel Dekker, Inc.



Ramp Function u_,(t) = tu_4(t)

P = / te ' dt c>0 (4.8)
0

This expression is integrated by parts by using

b by
/ udv=uy —/ vdu
a a a

Letu=tand dv=e " dt. Then du=dt and v= —e~*"/s. Thus

00 e e 0 e
/ te ' dt = — - / <— ) dt
0 § 0 s

0
[}

=— o©>0 (4.9)

4.4 LAPLACE TRANSFORM THEOREMS

Several theorems that are useful in applying the Laplace transform are
presented in this section. In general, they are helpful in evaluating transforms.

Theorem 1: Linearity. Ifaisa constant orisindependent of sand ¢, and if /(7)
is transformable, then

Llaf ()] = aZ[f ()] = aF(s) (4.10)
Theorem 2: Superposition. If f;(?) and f5(¢?) are both Laplace-transformable,
the principle of superposition applies:

LIAO £LO] = LLAO] £ LAH0] = Fi(s) £ Fy(s) (4.11)

Theorem 3: Translation in time. If the Laplace transform of f(7) is F(s) and
a is a positive real number, the Laplace transform of the translated function

f(t—au_i(t—a)is
LIf(t — au_(t — a)] = e “F(s) (4.12)

Translation in the positive ¢ direction in the real domain becomes

—as

multiplication by the exponential e~ “ in the s domain.

Theorem 4: Complex differentiation. If the Laplace transform of f(7) is F{(s),
then

d
LI O] =~ F(s) (4.13)
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Multiplication by time in the real domain entails differentiation with respect
to sin the s domain.

Example 1. Using #[cos of] from Eq. (4.7),

d s §* — o
PLltcoswt] = — pr <s2 n 0)2> = = o

Example 2. Using #[e*] from Eq. (4.5),

d d( 1 1
—ar_ @ a4 _
e "= =57l ds<s+oc> (5 + o)

Theorem 5: Translation in the s Domain. If the Laplace transform of f(7)
is F(s) and a is either real or complex, then

Z1e”f(t)] = F(s — a) (4.14)
Multiplication of ¢* in the real domain becomes translation in the s domain.

Example 3. Starting with Z[sin wf] = o/(s* + ©) and applying Theorem 5
gives

w

geiat sinof] =————
[ ] (s + a)? + 02

Theorem 6: Real Differentiation. Ifthe Laplace transform off(7)is F(s),and if
the first derivative of f(#) with respect to time Df(7) is transformable, then

ZIDf(0)] = sF(s) — f(07) (4.15)

The term f(0%) is the value of the right-hand limit of the function f(¥) as
the origin t=0 is approached from the right side (thus through positive
values of time). This includes functions, such as the step function, that may
be undefined at 7 = 0. For simplicity, the plus sign following the zero is usually
omitted, although its presence is implied.

The transform of the second derivative sz (His

ZID*f ()] = s*F(s) — sf(0) — Df (0) (4.16)
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where Df(0) is the value of the limit of the derivative of f(¢) as the origin =0,
is approached from the right side.
The transform of the nth derivative D"f(?) is

LD ()] = 5"F(s) = s""'f(0) = "> Df(0) — --- — s D"f(0)
— D" 'f(0) (4.17)
Note that the transform includes the initial conditions, whereas in the classical
method of solution the initial conditions are introduced separately to evaluate
the coefficients of the solution of the differential equation. When all initial

conditions are zero, the Laplace transform of the nth derivative of f(?) is
simply s” F(s).

Theorem 7: Real Integration. If the Laplace transform of f(7) is F(s), its
integral

D (1) = / 0 di+ D0
0

is transformable and the value of its transform is

—1e0+
w107y =" 2 IO)

The term D' £(07) is the constant of integration and is equal to the value of
the integral as the origin is approached from the positive or right side. The plus
sign is omitted in the remainder of this text.

The transform of the double integral D—2£(¢) is

F(s) D~ f(0) D’Zf(O)

(4.18)

[D f(t)] (4.19)
5 s
The transform of the nth-order integral D" £(¢) is
1 _
LD (1)) = F(s) i SO Q) (4.20)

s" K}

Theorem 8: Final Value. If f() and Df(¢) are Laplace transformable,

ifthe Laplace transform of f(7) is F(s), and if the limit /(¢) as t — oo exists, then
limsF(s) = lim f(¢) (4.21)
s—0 t—o00

This theorem states that the behavior of £(#) in the neighborhood of = oo is

related to the behavior of sF(s) in the neighborhood of s=0. If sF(s) has

poles [values of s for which |sF(s)| becomes infinite] on the imaginary axis
(excluding the origin) or in the right-half s plane, there is no finite final value
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of f(?) and the theorem cannot be used. If f(7) is sinusoidal, the theorem is
invalid, since .#[sin ] has poles at s = +jo and lim,_, , sin o does not
exist. However, for poles of sF(s) at the origin, s =0, this theorem gives the
final value of f(co) = co. This correctly describes the behavior of f(7) as
t — o0.

Theorem 9: Initial Value. If the function f(7) and its first derivative are
Laplace transformable, if the Laplace transform of f(¢) is F(s), and if
lim,_, ., sF(s) exists, then

lim sF(s) = lim /(1 (4.22)

This theorem states that the behavior of f(¢) in the neighborhood of =0
is related to the behavior of sF(s) in the neighborhood of |s| = co. There are no
limitations on the locations of the poles of sF(s).

Theorem 10: Complex Integration. If the Laplace transform of f(7) is F(s)
and if /(f)/thas a limit as 7 — 07, then

SOl _ [~
3[7]_ fo F(s) ds (4.23)

This theorem states that division by the variable in the real domain
entails integration with respect to s in the s domain.

4.5 CAD ACCURACY CHECKS: CADAC

The Laplace transform theorems 8 and 9 for the initial and final values are
valuable CADAC. These theorems should be used, when appropriate, to
assist in the validation of the computer solutions of control system problems.
Additional CADAC are presented throughout this text.

4.6 APPLICATION OF THE LAPLACE TRANSFORM TO
DIFFERENTIAL EQUATIONS

The Laplace transform is now applied to the solution of the diffe-
rential equation for the simple mechanical system that is solved by the
classical method in Sec. 3.7. The differential equation of the system is repeated
here:

MD?x, + BDx, + Kx, = Kx (4.24)

The position x;(7) undergoes a unit step displacement. This is the input and
is called the driving function. The unknown quantity for which the equation
is to be solved is the output displacement x,(?), called the response function.
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The Laplace transform of Eq. (4.24) is
L[Kx,] = L[MD*x, + BDx, + Kx;] (4.25)
The transform of each term is
ZL[Kx,] = KX (s)
ZL[Kx;] = KX;(s)
Z[BDx;] = B[sX5(s) — x(0)]
PIMD*x,] = M[s* X5(s) — sx2(0) — Dx,(0)].
Substituting these terms into Eq. (4.25) and collecting terms gives

KX, (s) = (Ms® + Bs + K)X(s) — [Msx,(0) + MDx,(0) + Bx,(0)]
(4.26)

Equation (4.26) is the transform equation and shows how the initial condi-
tions—the initial position x,(0) and the initial velocity Dx,(0)—are incorpo-
rated into the equation. The function Xi(s) is called the driving transform;
the function X,(s) is called the response transform. The coefficient of X,(s),
which is Ms®> + Bs+ K, is called the characteristic function. The equation
formed by setting the characteristic function equal to zero is called the
characteristic equation of the system. Solving for X,(s) gives

K Msx,(0) + Bx,(0) + MDx,(0)
o v X 1 (S ) + P
Ms* 4+ Bs+ K Ms~ 4+ Bs+ K
The coefficient of X (s) is defined as the system transfer function. The second
term on the right side of the equation is called the initial condition component.
Combining the terms of Eq. (4.27) yields

KX (s) + Msx,(0) + Bx,(0) + MDx,(0)
Ms? + Bs + K
Finding the function x,(#) whose transform is given by Eq. (4.28) is symbolized
by the inverse transform operator £~ '; thus
X(0) = £ X))
_ KX, (s) + Msx;(0) + Bx,(0) + MDx,(0)
Ms? + Bs + K

Xy(s) = (4.27)

Xy(s) = (4.28)

(4.29)

The function x,(f) can be found in the table of Appendix A after inserting
numerical values into Eq. (4.29). For this example the system is initially at
rest. From the principle of conservation of energy the initial conditions are
x2(0) = 0 and Dx,(0) = 0. Assume, as in Sec. 3.7, that the damping ratio C is less
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than unity. Since x,(?) is a step function, the time response function is

2
(1) = %! [ K/M } — g [ On ] (4.30)

s(s>+Bs/M+K/M) s(s? +2Lw,s+ 02)

where ©, = «/K/M and { = B/2+~/KM. Reference to transform pair 27a
in Appendix A provides the solution directly as

—Cw,t
() =1- \/el—__czsin(mm/l — %t + cos™! g)

4.7 INVERSE TRANSFORMATION

The application of Laplace transforms to a differential equation yields an
algebraic equation. From the algebraic equation the transform of the response
function is readily found. To complete the solution the inverse transform must
be found. In some cases the inverse-transform operation

0 = 27 F6)] = o

j2r

can be performed by direct reference to transform tables or by use of a digital

computer program (see Appendix C). The linearity and translation theorems

are useful in extending the tables. When the response transform cannot

be found in the tables, the general procedure is to express F(s) as the sum of

partial fractions with constant coefficients. The partial fractions have a first-

order or quadratic factor in the denominator and are readily found in the table

of transforms. The complete inverse transform is the sum of the inverse
transforms of each fraction. This procedure is illustrated next.

The response transform F(s) can be expressed, in general, as the ratio
of two polynomials P(s) and Q(s). Consider that these polynomials are of
degree w and n, respectively, and are arranged in descending order of the
powers of the variables s; thus,

G+joo
/ F(s)e" ds 4.31)

c—joo

_P(s) a,s"+ ay_ 18" as+oa

S 0() s+ b, " bys+ by
The a’s and b’s are real constants, and the coefficient of the highest power of s

in the denominator has been made equal to unity. Only those F{(s) that are
proper fractions are considered, i.c., those in which n is greater than w.*

F(s) (4.32)

“If n=w, first divide P(s) by O(s) to obtain F(s) = a,, + P,(s)/ O(s) = a,, + Fi(s). Then express F;(s)
as the sum of partial fractions with constant coefficients.
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The first step is to factor Q(s) into first-order and quadratic factors with real
coefficients:

P(s) P(s)
0() (s—s)s—95) - (s—s50)--(s—s,)

The values sy, 55, . . ., 5, in the finite plane that make the denominator equal to
zero are called the zeros of the denominator. These values of s, which may be
either real or complex, also make | F(s)| infinite, and so they are called poles of
F(s). Therefore, the values sy, 5, . . ., s, are referred to as zeros of the denomi-
nator or poles of the complete function in the finite plane, i.c., there are n poles
of F(s). Methods of factoring polynomials exist in the literature. Digital-com-
puter programs are available to perform this operation (see Appendix C) [4].
The transform F(s) can be expressed as a series of fractions. If the
poles are simple (nonrepeated), the number of fractions is equal to n, the
number of poles of F{(s). In such case the function F{(s) can be expressed as

P A A A A
_Pe) _ 4 2 L kL " (4.34)
o) s—s sS—5 s — S S —S,

F(s) = (4.33)

F(s)

The procedure is to evaluate the constants 4y, A,, . . ., A, corresponding to the
poles sy, 55, . . ., 5,. The coefficients A;, 4,,. . . are termed the residues’ of F(s) at
the corresponding poles. Cases of repeated factors and complex factors are
treated separately. Several ways of evaluating the constants are shown in the
following section.

4.8 HEAVISIDE PARTIAL-FRACTION EXPANSION
THEOREMS

The technique of partial-fraction expansion is set up to take care of all cases
systematically. There are four classes of problems, depending on the
denominator Q(s). Each of these cases is illustrated separately.

Casel F(s) has first-order real poles.

Case 2 F(s) has repeated first-order real poles.

Case3 F(s) has a pair of complex-conjugate poles (a quadratic factor in
the denominator).

Case 4 F(s) has repeated pairs of complex-conjugate poles (a repeated
quadratic factor in the denominator).

"More generally the residue is the coefficient of the (s — 5;) ' term in the Laurent expansion of F(s)
about s =s;.
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5 plane
3 > i
5 3 ¥

FIGURE 4.1 Location of real poles in the s plane.

Case 1: First-Order Real Poles

The locations of three real poles of F(s) in the s plane are shown in Fig. 4.1.
The poles may be positive, zero, or negative, and they lie on the real axis
in the s plane. In this example, s, is positive, sy is zero, and s, is negative.
For the poles shown in Fig. 4.1 the transform F(s) and its partial fractions are

P(S) . P(S) o AO Al + A2
06) s(s—s))s—8) s Ss—85 S5—85
There are as many fractions as there are factors in the denominator of F(s).

Since 59 =0, the factor s — s, is written simply as s. The inverse transform
of F(s) is

F(s) =

(4.35)

f(t) = A(] +Al€s|t + Azeszt (436)

The pole s, is positive; therefore, the term 4,¢"’ is an increasing exponential
and the system is unstable. The pole s, is negative, and the term A,e”’ is
a decaying exponential with a final value of zero. Therefore, for a system
to be stable, all real poles that contribute to the complementary solution

must be in the left half of the s plane.

To evaluate a typical coefficient A;, multiply both sides of Eq. (4.34)
by the factor s — 5. The result is

P(s)
— s)F(s) = (s — 7
(5= SOF(E) = (5 =50 5
s — 3 s — 3 s—5
= A, k+A2 k+...+Ak+...+An k
s — 8 S— 8 S — 8,

(4.37)

The multiplying factor s—s; on the left side of the equation and the
same factor of Q(s) should be canceled. By letting s =s;, each term on the
right side of the equation is zero except A,. Thus, a general rule for evaluating
the constants for single-order real poles is

_ O O
Ay = [(s — 5%) @lzs’{— [Q,(S)l:s’{ (4.38)
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where Q'(s;) = [dO(s)/ds];—;, = [O(s)/(s — si))s—s,- The coefficients A, are
the residues of F(s) at the corresponding poles. For the case of
s+ 2 AO A] A2
F = = —
) s(s+ D(s+3) s+s+1 s+3

the constants are

s+2 2
AO — [sF(S)]sz() = [miL:Oz g
5 1
Ay =[(s+ DF(s),—_y = [s(i—i_T?’)] T2
s=—1
2 1
Ay =[(s +3)F(s)],__3 = |:S(ss++l):| C6
=3

The solution as a function of time is

1,

f(@® :g__e— — e (4.39)

1
2 6

Case 2: Multiple-Order Real Poles

The position of real poles of F(s), some of which are repeated, is shown in
Fig. 4.2. The notation ], indicates a pole of order r. All real poles lie on the
real axis of the s plane. For the poles shown in Fig. 4.2 the transform F{(s)
and its partial fractions are

_P(s) P(s)
&)= o(s) (s — s1)3(s —5)
Aj3 Ay Aj A

= + + 4.40
s G-s)’ s—s s—% (440)

The order of Q(s) in this case is 4, and there are four fractions. Note that the
multiple pole sy, which is of order 3, has resulted in three fractions on the right

Jw
5 plane
5 5
’]a 2 ‘

FIGURE 4.2 Location of real poles in the s plane.
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side of Eq. (4.40). To designate the constants in the partial fractions, a single
subscript is used for a first-order pole. For multiple-order poles a double-
subscript notation is used. The first subscript designates the pole, and the
second subscript designates the order of the pole in the partial fraction. The
constants associated with first-order denominators in the partial-fraction
expansion are called residues: therefore, only the constants 4;; and A, are resi-
dues of Eq. (4.40).

The inverse transform of F(s) (see transform pairs 7 and 8 in

Appendix A) is
2
t
f() = A 5eslt + Apate” + Ay e’ + Ay’ (4.41)
For the general transform with repeated real roots,
P P
Foy PO PO
Os)  (s—59)(s—51)-
A,y Ay Ay
= kk r+ 4 11‘)—1++L1?—k+
(s — sq) (s— sq) (s — sq)
A A
SR LT ST (4.42)
S—5, S—S5

The constant 4,, can be evaluated by simply multiplying both sides of
Eq. (4.42) by (s —s,)", giving
(s —s5,)"P(s)  P(s)

OO =00 T -
=Ag + Ago-1)(s =59 + -
r71 ( §—35 )
+ Agi(s — s5) —_— - (4.43)

=5
Note that the factor (s — s,)" must be divided out of the left side of the equation.
For s=s,, all terms on the right side of the equation are zero except

; therefore,

» P(s)
[( —s5,) Q(S)]s . (4.44)

Evaluation of 4,,_y) cannot be performed in a similar manner. Multiplying
both sides of Eq. (4.42) by (s —s,)"" ! and letting s= s, would result in both
sides being infinite, which leaves A4,,_;) indeterminate. If the term A,
were eliminated from Eq. (4.43), A,,_1) could be evaluated. This can be
done by differentiating Eq. (4.43) with respect to s:

|:( — q) gﬁs;] = Aq(rfl) + 2Aq(,,2)(s — Sq) + - (445)

qr;
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Letting s =5, gives

d » P(s)
Aq(r—l) = {% [(S — Sl]) @] }stq (446)
Repeating the differentiation gives the coefficient 4,(,_) as
1d° P(s)
A =1-—|(s—s) == 4.4
q(r-2) [2 dSZ [(S Sq) Q(S)] - ( 7)

This process can be repeated until each constant is determined. A
general formula for finding these coefficients associated with the repeated
real pole of order ris

1 d* . P
Aq(r—k) = {k'dsk |:(S - Sq) QE;;:|} (448)

For the case of

1 A A A A
F(s) = - =B 4y B -1 2 (4.49)
(s+2°6+3) (s+2° (s+2) s+2 s+3
the constants are
3 d 3
A =[(s+2)F(s)),=r =1 A = $[(S +2)'F(s)] =-1
s=—2
d* 3
A = 25 [(s +2)°F(s)] =1 Ay =[(s +3)F(5)]=_3 = —1
s=—2
and the solution as a function of time is
2
1) = 552’ —te M p oM (4.50)

A recursive algorithm for computing the partial fraction expansion of
rational functions having any number of multiple poles is readily programmed
on a digital computer and is given in Ref. 5.

Case 3: Complex-Conjugate Poles

The position of complex poles of F(s) in the s plane is shown in Fig. 4.3.
Complex poles always are present in complex-conjugate pairs; their real part
may be either positive or negative. For the poles shown in Fig. 4.3 the
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FIGURE 4.3 Location of complex-conjugate poles in the s plane.

transform F(s) and its partial fractions are
P(s) _ P(s)
0(s) (8> + 2Lw,s + 0p)(s — 53)
A, A, A3
= + -
§— 8 §— 5 §— 853
A Ay A3

= — —+
S+C.>0)n_j“)n I_Cz S+C0)n+j0~)n 1_@2 S5

The inverse transform of F(s) is

£ =4, exp[(—@wn +jon/1 - c2>t]
+ 4, exp[(—Cmn —jo,/1 — C2>t] + Aze™! (4.52)

Since the poles s, and s, are complex conjugates, and since f{(7) is a real
quantity, the coefficients 4; and 4, must also be complex conjugates.
Equation (4.52) can be written with the first two terms combined to a more
useful damped sinusoidal form:

f() =24, |e—€m,,t sin <®nmt + Cb) + Ay

= 2|4, | sin (0 7 + ) + A3 (4.53)

where ¢ = angle of 4; +90°, 0, = 0,1 — (% and 6 = —{w,.
The values of A; and A3, as found in the manner shown previously, are
Ay = [(s — 51)F(s)] and Ay = [(s — s)F(s)],,,

Since s; is complex, the constant A; is also complex. Remember that A, is
associated with the complex pole with the positive imaginary part.

In Fig. 4.3 the complex poles have a negative real part, c = —{®,, where
the damping ratio { is positive. For this case the corresponding transient
response is known as a damped sinusoid and is shown in Fig. 3.2. Its

F(s) =

s=s1
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final value is zero. The angle | shown in Fig. 4.3 is measured from the negative
real axis and is related to the damping ratio by

cosn=_
If the complex pole has a positive real part, the time response increases
exponentially with time and the system in unstable. If the complex roots are
in the right half of the s plane, the damping ratio ( is negative. The angle n for
this case is measured from the positive real axis and is given by

cos N = [{
For the case of
10 A, A, A,
F(s) = = 4.54
O = P 6 12505+2) s+3—ja s34+ 512 *Y
the constants are
[ 10
A =|(s+3—j4
I R e By PN T 2)L3+,-4
- 1 )
= 0 ] =0.303/~ 194"
(s +3+/(s+2) 344
[ 1 1
L (s°+6s+25)(s+2)|,_, \s*+65+25/,__,

Using Eq. (4.53), the solution is

f() = 0.606e % sin (4t — 104°) + 0.59¢ (4.55)

The function F(s) of Eq. (4.54) appears in Appendix A as transform pair 29.
With the notation of Appendix A, the phase angle in the damped sinusoidal
term is

4 4
¢ = tan™! B AT C (4.56)
c—a 2-3 -1

It is important to note that tan~'[4 /(=1D)] # tan™! (—4/1). To get the correct
value for the angle ¢, it is useful to draw a sketch in order to avoid ambiguity
and ensure that ¢ is evaluated correctly.

IMAGINARY POLES. The position of imaginary poles of F(s) in the s
plane is shown in Fig. 4.4. As the real part of the poles is zero, the poles lie
on the imaginary axis. This situation is a special case of complex poles,
i.e., the damping ratio { = 0. For the poles shown in Fig. 4.4 the transform
F(s) and its partial fractions are

_P(s) P(s) A4 Ay A3
_Q(s)_(s2+mﬁ)(s—s3)_s—s1 s—s2+s—s3

F(s)

(4.57)
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FIGURE 4.4 Poles of F(s) containing imaginary conjugate poles in the s plane.

The quadratic can be factored in terms of the poles s; and s,; thus,

st o = (5 = j0,)(s +jo,) = (s = 51)(s — )
The inverse transform of Eq. (4.57) is
f(t) = A" + Aye " 4 43¢ (4.58)

As f(?) is a real quantity, the coefficients 4, and A, are complex conjugates.
The terms in Eq. (4.58) can be combined into the more useful form

() = 2[4, sin (o, + ¢) + A3€™ (4.59)

Note that since there is no damping term multiplying the sinusoid, this term
represents a steady-state value. The angle ¢ is given by

¢ = angle of 4; +90°
The values of 4; and A3, found in the conventional manner, are
Ay =[5 =sD)F )]sz, A3 =[(s = $3)F ()=,
For the case where
100 A, A, As

F(s) = = 4.60
O = 125612 s—/5 st/5 s+2 (4.60)
the values of the coefficients are
100 °
A =[(s—SFS). = |——— | —=1.86/-1582"
1 [(S J ) (s)]s_]5 |:(S +j5)(s+2)i|s=j5
100
Ay = DF($)]eyr=5——= =345
3 [(S+ ) (5)]s_72 <s2+25)s:2
The solution is
f(t) = 3.72sin (5t — 68.2°) + 3.45¢ (4.61)
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Case 4: Multiple-Order Complex Poles

Multiple-order complex-conjugate poles are rare. They can be treated in much
the same fashion as repeated real poles.

4.9 MATLAB PARTIAL-FRACTION EXAMPLE

The MATLAB RESIDUE command is used to obtain the partial-fraction
expansion of Eq. (4.54).
MATLAB Partial-Fraction m-file

o

Set up transfer function

o0 o°

Define numerator constant of F(s)
k=10;
% Define poles of F(s)

p(l)=—3+3%4; p(2) =—3—-3%4; p(3) =—2;
$Define numerator and denominator
num=Xk;

den=poly (p)

den=

=

8 37 50

oe

Use the RESIDUE command to call for residues:
rl, pl, kl =residue (num, den) ;
% List the residues (which are complex)
rl
rl=
—0.29414+0.07351
—0.2941—-0.07351
0.5882
% List the poles to check data entry
pl
pl=
—3.0000+4.00001
—3.0000—4.00001
—2.0000
% List the angle of the residues in degrees,
angle (rl)*180/pi
ans =
165.9638
—165.9638
0
% List the magnitudes of the residues
abs (rl)

— oP
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ans =
.3032
.3032
.5882

0 O O O

o

To show numerical stability, form the transfer function from
the residues (CADAC) (accuracy check)

CADAC (Accuracy check)

[numl, denl] =residue (rl, pl, k1);

printsys (numl, denl)

num/den =

oe

0P

1.1102e — 016s"2+4.4409e — 016s + 10

s"3+8s"2+37s+50

o

oP

Note the false roots in the numerator
Form the Poles

roots (denl)

ans =

—3.0000+4.00001

—3.0000—4.00001

—2.0000

o

% Plot a three second response to an impulse

% Define a time vector [initial value: incremental value:
% final value]

time=1[0: .02: 3];

% Use impulse response command

impulse (num, den, time)

Q

% Print the plot to compare it with the plot in Fig. 4.5
print —dtiff Sec.4.9. tif

The PARTFRAC Command

The m-file name partfrac.m calculates time responses and is included on the
accompanying CDROM.

Partfrac (num, den)
MATLAB produces the following output, which corresponds to Eq. (4.55).

The partial fraction expansion of
Num/den =

s"34+8s"2437s+50
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Impulse Response
0.25 + r

0.2 1

T

Amplitude
L= ]

o o

- o

0.05¢ ]

0 L L L i
o 0.5 1 1.5 2 25 3

Time {sec}

FIGURE 4.5 Response of Eqg. (4.55) from MATLAB.

Representing the time response for a unit impulse input is
y(t) =

0.60634 exp( —3t) cos(4t 4+ 165.9638deg) + 0.58824 exp( — 2t)

4.10 PARTIAL-FRACTION SHORTCUTS

Some shortcuts can be used to simplify the partial-fraction expansion
procedures. They are most useful for transform functions that have multiple
poles or complex poles. With multiple poles, the evaluation of the constants
by the process of repeated differentiation given by Eq. (4.48) can be very
tedious, particularly when a factor containing s appears in the numerator of
F(s). The modified procedure is to evaluate only those coefficients for real
poles that can be obtained readily without differentiation. The corresponding
partial functions are then subtracted from the original function. The resultant
function is easier to work with to get the additional partial fractions than the
original function F(s).

Example 1. For the function F(s) of Eq. (4.49), which contains a pole
s1 = —2 of multiplicity 3, the coefficient 4,3 = 1 is readily found. Subtracting
the associated fraction from F(s) and putting the result over a common
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denominator yields.

1 1 -1
Fi(s) = 3 - 3= 2
(s+2)Y6+3) (s+2) (s+2)(s+3)
Note that the remainder F,(s) contains the pole s; = —2 with a

multiplicity of only 2. Thus the coefficient 4;, is now easily obtained
from F,(s) without differentiation. The procedure is repeated to obtain all the
coefficients associated with the multiple pole.

Example 2. Consider the function
20 _ As+B n C
(24+65+25)(s+1) s*2+6s+25 s+1

which has one real pole and a pair of complex poles. Instead of partial
fractions for each pole, leave the quadratic factor in one fraction. Note
that the numerator of the fraction containing the quadratic is a polynomial in
s and is one degree lower than the denominator. Residue C is C =
[(s + 1)F(s)],__;= 1. Subtracting this fraction from F(s) gives

F(s) = (4.62)

20 1 s —65=5
(2+65+25)(s+1) s+1 (2+65+25)(s+1)
Since the pole at s = —1 has been removed, the numerator of the remainder

must be divisible by s + 1. The simplified function must be equal to the
remaining partial fraction; i.e.,

s+5 As+ B —(s+5)

2465425 S+65425 (s43) 44

The inverse transform for this fraction can be obtained directly from
Appendix A, pair 26. The complete inverse transform of F(s) is

f(O) = e — 1.12¢" sin(4¢ + 63.4°) (4.63)

Leaving the complete quadratic in one fraction has resulted in real constants
for the numerator. The chances for error are probably less than evaluating the
residues, which are complex numbers, at the complex poles.

A rule presented by Hazony and Riley [6] is very useful for evaluating the
coefficients of partial-fraction expansions. For a normalized* ratio of
polynomials the rule is expressed as follows:

1. Ifthe denominator is 1 degree higher than the numerator, the sum of
the residues is 1.

A normalized polynomial is a monic polynomial, that is, the coefficient of the term containing the
highest degree is equal to unity.
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2. Ifthe denominator is 2 or more degrees higher than the numerator,
the sum of the residues is 0.

Equation (4.32) with a,, factored from the numerator is a normalized ratio
of polynomials. These rules are applied to the ratio F(s)/a,. It should be
noted that residue refers only to the coefficients of terms in a partial-
fraction expansion with first-degree denominators. Coefficients of terms
with higher-degree denominators are referred to only as coefficients.
These rules can be used to simplify the work involved in evaluating the
coefficients of partial-fraction expansions, particularly when the original
function has a multiple-order pole. For example, only 4;; and A4, in
Eq. (4.49) are residues, and therefore A4;; + A, = 0. Since 4, = —1, the
value of 4;; = 1 is obtained directly.

Digital-computer programs (see Appendixes C and D) are readily
available for evaluating the partial-fraction coefficients and obtaining a
tabulation and plot of £(¢) [4].

411 GRAPHICAL INTERPRETATION OF
PARTIAL-FRACTION COEFFICIENTS [7]

The preceding sections describe the analytical evaluation of the partial-
function coefficients. These constants are directly related to the pole-zero
pattern of the function F(s) and can be determined graphically, whether the
poles and zeros are real or in complex-conjugate pairs. As long as P(s) and
Q(s) are in factored form, the coefficients can be determined graphically by
inspection. Rewriting Eq. (4.32) with the numerator and denominator in
factored form and with a,, = K gives

P(s) _ KGs—z)(6—=2) - (S=2u)--- (s =2
o) (s—p)s—p)---(—pr)---(s—py)

_ H;:l (S B Zm)
=& HZ:] (s —pr)

The zeros of this function, s = z,,, are those values of s for which the function
is zero; that is, F(z,,) = 0. Zeros are indicated by a small circle on the s plane.
The poles of this function, s = p;, are those values of s for which the function is
infinite; that is, |F(p;)| = co. Poles are indicated by a small x on the s plane.
Poles are also known as singularities® of the function. When F{(s) has only
simple poles (first-order poles), it can be expanded into partial fractions of

F(s) =

(4.64)

§A singularity of a function F(s) is a point where F(s) does not have a derivative.
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the form

A A A A,
F(s)=—1 4+ 22 4. .. 42k 4.4 (4.65)
S=p1 S—D2 S — Pk S —Pn
The coefficients are obtained from Eq. (4.38) and are given by
A = [(s = pOF ()], (4.66)
The first coefficient is
_K(py—z))(pr —2z) - (p1 — 2) (4.67)

YT (pi =) —ps) - (P — )

Figure 4.6 shows the poles and zeros of a function F{(s). The quantity
s = p; is drawn as an arrow from the origin of the s plane to the pole p,.
This arrow is called a directed line segment. It has a magnitude equal to
|p1] and an angle of 180°. Similarly, the directed line segment s =z is
drawn as an arrow from the origin to the zero z; and has a corresponding
magnitude and angle. A directed line segment is also drawn from the zero
z) to the pole p;. By the rules of vector addition, this directed line segment
is equal to p; — z;; in polar form it has a magnitude equal to its length and
an angle \, as shown. By referring to Eq. (4.67), it is seen that p; — z;
appears in the numerator of 4;. Whereas this quantity can be evaluated
analytically, it can also be measured from the pole-zero diagram. In a
similar fashion, each factor in Eq. (4.67) can be obtained graphically; the
directed line segments are drawn from the zeros and each of the other poles
to the pole p;. The angle from a zero is indicated by the symbol \, and the
angle from a pole is indicated by the symbol 6.

The general rule for evaluating the coefficients in the partial-fraction
expansion is quite simple. The value of 4, is the product of K and the directed
distances from each zero to the pole p; divided by the product of the directed
distances from each of the other poles to the pole p;. Each of these

i)

v # plane

e

e e R C
3

iy

FIGURE 4.6 Directed line segments drawn on a pole-zero diagram of a function F(s).
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directed distances is characterized by a magnitude and an angle. This state-
ment can be written in equation form as
product of directed distances from each zero to pole p;
product of directed distances from all other poles to pole p,
K= | 2=t V(P = Z) 4.68)
[Toet con 1Px — Pl > et 0Pk — p)

A, =K

Equations (4.67) and (4.68) readily reveals that as the pole p; comes closer to
the zero z,,, the corresponding coefficient 4, becomes smaller (approaches a
zero value). This characteristic is very important in analyzing system response
characteristics. For real poles the values of 4, must be real but can be either
positive or negative. A, is positive if the total number of real poles and real
zeros to the right of p; is even, and it is negative if the total number of real
poles and real zeros to the right of p, is odd. For complex poles the values of
Ay are complex. If F(s) has no finite zeros, the numerator of Eq. (4.68) is equal
to K. A repeated factor of the form (s + a)" in either the numerator or the
denominator is included r times in Eq. (4.68), where the values of |s + a| and
/s + a are obtained graphically. The application of the graphical technique is
illustrated by the following example:

Example. A function F(s) with complex poles (step function response):

F(s) = K(s+o) K(s+ o)
- s[(s + a)2+b2] "~ s(s+a —jb)(s + a+jb)
K(S — Z]) o AO A] A2

- v =7 4.69
SG-p)G—p) s Tsta—jb sta+tjb (469)

The coefficient Ay, for the pole p, = 0, is obtained by use of the directed
line segments shown in Fig. 4.7 a:
B K(o) B Ko _ Ka
T (@—jb)a+jb) /i + Beit /gt + BPei: @+ b
Note that the angles 6; and 0, are equal in magnitude but opposite in sign.
The coefficient for a real pole is therefore always a real number.

The coefficient A4, for the pole p; = —a + jb, is obtained by use of the
directed line segments shown in Fig. 4.75:

4 _ Kl —a)+jb] _ K@ —ay+? e

' (—a+b)(j2b) T /a2 1 Bei2bein)?

2
- % [e-ar + & _Z“J)r ;2’ B gitv=t-712 @.71)
a

Ay

(4.70)
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FIGURE 4.7 Directed line segments for evaluating (a) Ao of Eq. (4.70) and (b) A, of
Eq. (4.71).

where

! and 0 = tan™! i

=tan
v o—a —a

Since the constants 4; and A, are complex conjugates, it is not necessary to
evaluate A,. It should be noted that zeros in F(s) affect both the magnitude
and the angle of the coefficients in the time function.

The response as a function of time is therefore

f(t) = Ay + 2|4, sin(bt + A+ 900)

Ko K (o — a)*+b? Cat -
:a2+b2+; ( Ry e “sin(bt + ) 4.72)

d=y—0=tan"' L A angle of 4, + 90° (4.73)

oa—a —a

where

This agrees with transform pair 28 in Appendix A. Ay and 4; can be evaluated
by measuring the directed line segments directly on the pole-zero diagram.
It is interesting to note that, for a given (, as the magnitude ®, =
Va* + b* becomes larger, the coefficients 4, and A4, approach zero as
revealed by an analysis of Eqgs. (4.70) and (4.71), respectively. (The limiting
value is lim, _ . [4;] = K/2b) This is an important characteristic when
it is desired that f(¢) be very small. The application of this characteristic
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is used in disturbance rejection (Chap. 12). Also see Prob. 4.17 for further
illustration.

4.12 FREQUENCY RESPONSE FROM THE POLE-ZERO
DIAGRAM

The frequency response of a system is described as the steady-state response
with a sine-wave forcing function for all values of frequency. This information
is often presented graphically, using two curves. One curve shows the ratio
of output amplitude to input amplitude M and the other curve shows the
phase angle of the output o, where both are plotted as a function of frequency,
often on a logarithmic scale.

Consider the input to a system as sinusoidal and given by

x1(t) = X sin ot (4.74)
and the output is
X, () = X, sin(of + o) (4.75)

The magnitude of the frequency response for the function given in Eq. (4.64) is

_ [XeGo) _ ‘P(fw) _ [KGo — z)(jo —2) - - w16
Xi(o)|  [Q(jw) (jo —p)(jo —pa) - - '
and the angle is
0= /PU0) _ 0G0)
:ﬁ—l- JO—z) 4 fJO—2Z 4 ... fJO—Pp _ fJO—Pr _ ... 4.77)

Figure 4.8 shows a pole-zero diagram and the directed line segments for
evaluating M and o corresponding to a frequency ;. As ® increases, each
of the directed line segments changes in both magnitude and angle. Several
characteristics can be noted by observing the change in the magnitude and
angle of each directed line segment as the frequency o increases from 0 to oco.
The magnitude and angle of the frequency response can be obtained
graphically from the pole-zero diagram. The magnitude M and the angle o
are a composite of all the effects of all the poles and zeros. In particular, for a
system function that has all poles and zeros in the left half of the s plane, the
following characteristics of the frequency response are noted:

1. At =0 the magnitude is a finite value, and the angle is 0°.

2. Ifthere are more poles than zeros, then as ® — oo, the magnitude of
M approaches zero and the angle is —90° times the difference
between the number of poles and zeros.
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FIGURE 4.8 Pole-zero diagram of Eq. (4.76) showing the directed line segments for
evaluating the frequency response M La.

3. The magnitude can have a peak value M,, only if there are complex
poles fairly close to the imaginary axis. It is shown later that the
damping ratio { of the complex poles must be less than 0.707 to
obtain a peak value for M. Of course, the presence of zeros could
counteract the effect of the complex poles, and so it is possible
that no peak would be present even if { of the poles were less than
0.707.

Typical frequency-response characteristics are illustrated for two
common functions. As a first example,

Xo(s) P(s) a
Xi(s)  O() s+a

(4.78)

The frequency response shown in Fig. 4.95 and c starts with a magnitude of
unity and an angle of 0°. As ® increases, the magnitude decreases and
approaches zero while the angle approaches — 90°. At ® = a the magnitude
is 0.707 and the angle is —45°. The frequency w=a is called the corner
frequency o or the break frequency. Figure 4.9 shows the pole location, the
frequency-response magnitude M, and the frequency-response angle o as a
function of o.
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FIGURE 4.9 (a) Pole location of Eq. (4.78); (b) M vs. w; (c) o vs. .

The second example is a system transform with a pair of conjugate poles:
X(s) _ o _ o
Xi(s) s*+20o,s+02 (s—p)s—p2)

o

B (s + Lo, —jo,v1 — C2> (s + Lo, +jo,v1 — 2;2)

The location of the poles of Eq. (4.79) and the directed line segments for s = jo
are shown in Fig. 4.10a. At ® =0 the values are M=1 and =0°". As ®
increases, the magnitude M first increases, because jo — p; is decreasing
faster than jo — p, is increasing. By differentiating the magnitude of |M(jo)|,
obtained from Eq. (4.79), with respect to ®, it can be shown (see Sec. 9.3) that
the maximum value M,, and the frequency ®,, at which it occurs are given by

M, - L (4.80)

201 =2

©,, = o,/ 1 =2 (4.81)

A circle drawn on the s plane in Fig. 4.10a, with the poles p; and p, as the
end-points of the diameter, intersects the imaginary axis at the value o,
given by Eq. (4.81). Both Eq. (4.81) and the geometrical construction of the
circle show that the M curve has a maximum value, other than at ® =0, only
if £ < 0.707. The angle o becomes more negative as ® increases. At ® = ®,, the
angle is equal to — 90°. This is the corner frequency for a quadratic factor

(4.79)
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FIGURE 4.10 (a) Pole-zero diagram, < 0.707; (b) magnitude of frequency
response; (c¢) angle of frequency response.

with complex roots. As ® — 00, the angle o approaches — 180°. The magni-
tude and angle of the frequency response for { < 0.707 are shown in Fig. 4.10.
The M and o curves are continuous for all linear systems. The M vs. o plot
of Fig. 4.10b describes the frequency response characteristics for the
undamped simple second-order system of Eq. (4.79). In later chapters this
characteristic is used as the standard reference for analyzing and synthesizing
higher-order systems.

4.13 LOCATION OF POLES AND STABILITY

The stability and the corresponding response of a system can be determined
from the location of the poles of the response transform F(s) in the s plane.
The possible positions of the poles are shown in Fig. 4.11, and the responses
are given inTable 4.1. These poles are the roots of the characteristic equation.

Poles of the response transform at the origin or on the imaginary axis
that are not contributed by the forcing function result in a continuous
output. These outputs are undesirable in a control system. Poles in the
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FIGURE 4.11 Location of poles in the s plane. (Numbers are used to identify the
poles.)

right-half s plane result in transient terms that increase with time. Such
performance characterizes an unstable system; therefore, poles in the
right-half s plane are not desirable, in general.

4.14 LAPLACE TRANSFORM OF THE IMPULSE FUNCTION

Figure 4.12 shows a rectangular pulse of amplitude 1/a and of duration a.
The analytical expression for this pulse is
u_(t) —u_(t —a)

S = (4.82)

a

and its Laplace transform is

Fs)=1—¢ " (4.83)
as
where
2 3
T C) N G (4.84)

TaBLE 4.1 Relation of Response to Location of Poles

Position of pole Form of response Characteristics

1 Ae™ Damped exponential

2-2* Ae% sin(ct + ¢) Exponentially damped sinusoid

3 A: Constant

4-4* Asin (dt + ¢) Constant-sinusoid

5 Ae®! Increasing exponential (unstable)

6-6* Aet sin(gt + ¢) Exponentially increasing sinusoid (unstable)
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FIGURE 4.12 Rectangular pulse of unit area.

and

. (1= ® ) as (as)’
llg})(as)_tlg%(lezl—f- 3 +--~)—1 (4.85)
If a is decreased, the amplitude increases and the duration of the pulse
decreases but the area under the pulse, and thus its strength, remains unity.
The limit of f(¢) as a — 0 is termed a unit impulse and is designated by
3(f) = ug(?). The Laplace transform of the unit impulse, as evaluated by use of
L’Hospital’s theorem, is A(s) = 1.

When any function has a jump discontinuity, the derivative of the
function has an impulse at the discontinuity. Some systems are subjected to
shock inputs. For example, an airplane in flight may be jolted by a gust of
wind of short duration. When a gun is fired, it has a reaction force of large
magnitude and very short duration, and so does a steel ball bouncing off
a steel plate. When the duration of a disturbance or input to a system is
very short compared with the natural periods of the system, the response can
often be well approximated by considering the input to be an impulse of
proper strength. An impulse of infinite magnitude and zero duration does
not occur in nature; but if the pulse duration is much smaller than the time
constants of the system, a representation of the input by an impulse is a
good approximation. The shape of the impulse is unimportant as long as
the strength of the equivalent impulse is equal to the strength of the
actual pulse.

Since the Laplace transform of an impulse is defined [8], the
approximate response of a system to a pulse is often found more easily by
this method than by the classical method. Consider the RLC circuit shows in
Fig. 4.13 when the input voltage is an impulse. The problem is to find the
voltage e. across the capacitor as a function of time. The differential equation
relating e, to the input voltage e and the impedances is written by the node
method:

1
'D — =
(C +R+LD>ec R+ip ="

(4.86)
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FIGURE 4.13 RLC series circuit.

Rationalizing the equation yields
(LCD* + RCD + 1)e, = e (4.87)
Taking the Laplace transform of this equation gives

(sZLC 4+ sRC + 1)E_ (s) — sLCe,(0) — LCDe.(0) — RCe,.(0) = E(s)
(4.88)

Consider an initial condition e¢.(0~) = 0. The voltage across the capacitor is
related to the current in the series circuit by the expression De.=i/C.
Since the current cannot change instantaneously through an inductor,
De (07)=0. These initial conditions that exist at r=0" are used in
the Laplace-transformed equation when the forcing function is an
impulse. The solution for the current shows a discontinuous step change

at r=0.
The input voltage e is an impulse; therefore, E(s)=1. Solving for
E (s) gives
1/LC .
E(s) = / On (4.89)

S+ (R/L)s + 1/LC 82 + 2Lo,s + o

Depending on the relative sizes of the parameters, the circuit may be
overdamped or underdamped. In the overdamped case the voltage e.(7)
rises to a peak value and then decays to zero. In the underdamped case
the voltage oscillates with a frequency o, = w,v/1 — (> and eventually
decays to zero. The form of the voltage e (?) for several values of damping
is shown in Sec. 4.15.

The stability of a system is revealed by the impulse response. With an
impulse input the response transform contains only poles and zeros
contributed by the system parameters. The impulse response is therefore the
inverse transform of the system transfer function and is called the weighting
function:

g = 27 '[G(s)] (4.90)

The impulse response provides one method of evaluating the system function;
although the method is not simple, it is possible to take the impulse response,
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which is a function of time, and convert it into the transfer function G(s),
which is a function of s.

The system response g(f) to an impulse input 5(7) can be used to determine
the response () to any input r(7) [8]. The response ¢(7) is determined by the use
of the convolution or superposition integral

c(t) = /Ot r(t)g(t — 1) dr (4.91)

This method is normally used for inputs that are not sinusoidal or a power
series.

4.15 SECOND-ORDER SYSTEM WITH IMPULSE
EXCITATION

The response of a second-order system to a step-function input is shown in
Fig. 3.6. The impulse function is the derivative of the step function; therefore,
the response to an impulse is the derivative of the response to a step function.
Figure 4.14 shows the response for several values of damping ratio { for the
second-order function of Eq. (4.89).

The first zero of the impulse response occurs at #,, which is the time
at which the maximum value of the step-function response occurs.

For the underdamped case the impulse response is

f(H) = lcoinczeg‘”"’ sinw,\/1 -0t (4.92)

By setting the derivative of f(r) with respect to time equal to zero, the
maximum overshoot can be shown to occur at

f_ cos_IC
O,V 1 _Cz

The maximum value of f(7) is

-1
i) = 0y exp (— %) (4.94)

The impulse response g(7) can be measured after applying an input pulse
that has a short duration compared with the largest system time constant.
Then it can be used in a deconvolution technique to determine the transfer
function G(s). It can also be used to determine the disturbance-rejection
characteristics of control systems.

(4.93)
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FIGURE 4.14 Response to an impulse for £(s) = 02/(s* + 20,5 + 3).

4.16 SOLUTION OF STATE EQUATION [9,10]

The homogeneous state equation is

X = Ax (4.95)
The solution of this equation can be obtained by taking the Laplace transform
sX(s) — x(0) = AX(s) (4.96)

Grouping of the terms containing X(s) yields
[sT — A]X(s) = x(0) 4.97)

The unit matrix I is introduced so that all terms in the equations are proper
matrices. Premultiplying both sides of the equation by [sI — A]~ yields

X(s) = [sI — A]"'x(0) (4.98)
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The inverse Laplace transform of Eq. (4.98) gives the time response
x(1) = 2 sl — A]"'}x(0) (4.99)

Comparing this solution with Eq. (3.70) yields the following expression for
the state transition matrix:

O() = L [s1 — A]! (4.100)
The resolvent matrix is designated by ®(s) and is defined by*
O(s) = [sT — A]"! (4.101)

Example 1. Solve for ®(¢) (see the example of Sec. 3.14) for

)

Using Eq. (4.101) gives

O A | R A

Using Eq. (4.97) gives

s+5 6
_ 1 s+5 6| [ (+2(+3) (s+2)(s+3)
q>(s)_s2+5s+6[ -1 Si|_ -1 s
+2)(s+3) (s+2)(s+3)

(4.102)

Using transform pairs 12 to 14 in Appendix A yields the inverse transform

3372[ _ 2873[ 6e72t _ 66731‘
_e—2t + e73t _2e72t + 3e73t

(1) = [

This is the same as the value obtained in Eq. (3.92) and is an alternate
method of obtaining the same result.
The state equation with an input present is

X = AXx + Bu (4.103)
Solving by means of the Laplace transform yields

X(s) = [sT — A]"'x(0) + [sT — A]"'BU(s) = ®(s)x(0) + ®(s)BU(s)
(4.104)

*When A is a companion matrix, a direct algorithm for evaluating [sI — A]~' and ®(f) is presented
in Ref. 11.
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Note that ®(s5)x(0) is the zero-input response and ®(s)BU(s) is the zero-state
response (See Sec. 3.15)

Example 2. Solve for the state equation in the example of Sec. 3.14 for a step
function input. The function ®(s) is given by Eq. (4.102) in Example 1 and
U(s) = 1/s. Inserting these values into Eq. (4.104) gives

6

s(s+2)(s+3)
X(s) = ®(s)x(0) + . (4.105)

(s+2)(s+3)

Applying the transform pairs 10 and 12 of Appendix A yields the same
result for x(?) as in Eq. (3.105). The Laplace transform method is a direct
method of solving the state equation.

The possibility exists in the elements of ®(s) that a numerator factor of
the form s+a will cancel a similar term in the denominator. In that case the
transient mode ¢ does not appear in the corresponding element of ®(7).
This has a very important theoretical significance since it affects
the controllability and observability of a control system. These properties are
described in Sec. 13.2. Also, as described in Chap. 7, the ability to
design a tracking control system requires that the system be observable and
controllable.

4.17 EVALUATION OF THE TRANSFER-FUNCTION MATRIX

The transfer-function matrix of a system with multiple inputs and outputs is
evaluated from the state and output equations

X = AX + Bu y = Cx+ Du

Taking the Laplace transform of these equations and solving for the
output Y(s) in terms of the input U(s) yields

Y(s) = C®(5)x(0) + CD(s)BU(s) + DU(s) (4.106)

Since the transfer-function relationship is Y(s) = G(s)U(s) and is defined
for zero initial conditions, the system transfer-function matrix is given by
analogy as

G(s) = CO(s)B + D (4.107)
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For multiple-input multiple-output system G(s) is a matrix in which the
elements are the transfer functions between each output and each input of
the system.

Example. Determine the transfer functions and draw a block diagram for
the two-input two-output system represented by

N I (R n 1 1 10 =2
2 3o 2" YTl o)t
The characteristic polynomial is

IsSI — Al =(s+ 1)(s+2)

From Eq. (4.101), the resolvent matrix is

1 s+3 1
D) =——"—
© @+n@+n[—2 J
Then, from Eq. (4.107)
4 4

G(s) = Ca(sB= | T DET2) s+2 :[Gu(s) Gia(s)

s+3 1 Gri(s) Gy(s)

j| (4.108)
(s+1D(s+2) s+2

The block diagram for the system is shown in Fig. 4.15.

4
S T

¥+

Y

-+

s+ 3
G”_(s;l)mz)

1 +
o ey e

FIGURE 4.15 Block diagram for Eq. (4.108)
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4.18 MATLAB m-FILE FOR MIMO SYSTEMS

The following commands illustrate how MIMO systems are manipulated with
MATLAB.

o0 of

o0 of

oe

e

Define the plant,
matrices

control input, output, and feedforward

A=[01;—-2-3];B=[11;0-2];C=[0—2;10]; D==zeros (2, 2);

Form the state space system model '‘statesys’’

tatesys=ss (A, B, C, D)

s
a=
x1

%2
b:
x1

%2

Cc =

vl
V2

d=

vl
v2

x1

ul
0
0

u2
0
0

Continuous-time model.

o

- o°

o

o

tfsys=tf (statesys)

Transform from state space model to transfer function model

‘tfsys’’

Transfer function from input 1 to output ...
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Transfer function from input 2 to output ...

oe

Poles and zeros that cancel are removed with the minreal
command
Minreal is short for minimum realization

o0 oP

oe

tfsys=minreal (tfsys)
Transfer function from input 1 to output ...

Transfer function from input 2 to output ...

4
#1: -——-
s+ 2
1
#2: ———-
s+ 2
% To get factored formuse '‘zpk’’ which stands for zero, pole,

oe

gain

oe

factoredsys =zpk(tfsys)
Zero/pole/gain from input 1 to output ...

(s+2)(s+1)

Zero/pole/gain from input 2 to output ...
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o

Individual elements of the model are addressed (output,
input)

e

o

tfsys(2, 1) % The transfer function to output 2 from input 1
Transfer function:

s2+3s+2

oe

oe

Subelements use a pointer notation with {output, input}
addressing
See ltiprops for more information

o0 o0

oe

tfsys.num{2, 1} % Numerator of tfsys (2, 1)

ans =
0 1 3
tfsys.den{2, 1} % Denominator of tfsys (2, 1)
ans =
1 3 2
factoredsys.z{2, 1) % zeroes of factoredsys (2. 1)
ans =
-3
factoredsys.p{2, 1} % Poles of factoredsys (2, 1)
ans =
-2
-1

419 SUMMARY

This chapter discusses the important characteristics and the use of the
Laplace transform, which is employed extensively with differential equations
because it systematizes their solution. Also it is used extensively in feedback-
system synthesis. The pole-zero pattern has been introduced to represent a
system function. The pole-zero pattern is significant because it determines
the amplitudes of all the time-response terms. The frequency response has
also been shown to be a function of the pole-zero pattern. The solution of
linear time-invariant (LTT) state equations can be obtained by means of the
Laplace transform. The procedure is readily adapted for the use of a digital
computer [4], which is advantageous for multiple-input multiple-output
(MIMO) systems.

Later chapters cover feedback-system analysis and synthesis by three
methods. The first of these is the root-locus method, which locates the poles
and zeros of the system in the s plane. Knowing the poles and zeros permits
an exact determination of the time response. The second method is based
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on the frequency response. Since the frequency response is a function of the
pole-zero pattern, the two methods are complementary and give equivalent
information in different forms. The root-locus and frequency-response
methods are primarily applicable to SISO systems and rely on use of transfer
functions to represent the system. They can be adapted for the synthesis of
MIMO systems. The state-feedback method is readily used for both SISO
and MIMO systems. The necessary linear algebra operations for state-
feedback synthesis are presented in App. B and in this chapter in preparation
for their use in later chapters.

System stability requires that all roots of the characteristic equation be
located in the left half of the s plane. They can be identified on the pole-zero
diagram and are the poles of the overall transfer function. The transfer
function can be obtained from the overall differential equation relating an
input to an output. The transfer function can also be obtained from the
state-equation formulation, as shown in this chapter.
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5

System Representation

5.1 INTRODUCTION

This chapter introduces the basic principles of system representation.
From the concepts introduced in earlier chapters, a number of systems
are represented in block-diagram form. Feedback is included in these
systems in order to achieve the desired performance. Also, the standard
symbols and definitions are presented. These are extensively used in the
technical literature on control systems and form a common basis for under-
standing and clarity. While block diagrams simplify the representation of
functional relationships within a system, the use of signal flow graphs (SFG)
provides further simplification for larger systems that contain intercoupled
relationships. Simulation diagrams are presented as a means of representing
a system for which the overall differential equation is known. Then
the inclusion of initial condition in SFG leads to the state-diagram
representation. To provide flexibility in the method used by the designer for
system analysis and design, the system representation may be in either the
transfer-function or the state-equation form. The procedures for converting
from one representation to the other are presented in Chap. 4 and in
this chapter. When the state-variable format is used, the mathematical
equations may be written so that the states are uncoupled. This simplifies
the equations, leading to an A matrix that is diagonal. The techniques for
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transforming the state vector in order to achieve different representations
are presented.

5.2 BLOCK DIAGRAMS

The representation of physical components by blocks is shown in Chap. 2.
For each block the transfer function provides the dynamical mathematical
relationship between the input and output quantities. Also, Chap. 1 and
Fig. 1.3 describe the concept of feedback, which is used to achieve a better
response of a control system to a command input. This section presents
several examples of control systems and their representation by block
diagrams. The blocks represent the functions performed rather than the
components of the system.

Example 1: A Temperature Control System. An industrial process
temperature control system is shown in Fig. 5.1a. The requirement is to control
the temperature 6 in the tank. The voltage r, obtained from a potentiometer, is
calibrated in terms of the desired temperature 0.,mm. This voltage represents
the input quantity to the feedback control system. The actual temperature 6,
the output quantity, is measured by means of a thermocouple immersed in the
tank. The voltage e;, produced in the thermocouple is proportional to 6.
The voltage ey, is amplified to produce the voltage b, which is the feedback
quantity. The voltage e =r— b is the actuating signal and is amplified by the

g
(o e
oLer Tank

..
|
e —
|

* .

r‘rt':
T =7 Heating coil
Amplifier| I [
ke |91 —
4 - :r | Steam @
! exhaust
L_—_J
Solenoid armature / \
Asnphifier Thermocouple
fa)
By & q :
i potentiometer | Solenoid [-e—{ Valve }—.— H?:::;tillng o
. 2in
Amalifier Thermocouple

FIGURE 5.1 An industrial process temperature control system.
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amplifier having the gain K, to produce the solenoid voltage e;. The current i
in the solenoid, which results from applying e, produce a proportional force f;
that acts on the solenoid armature and valve to control the valve position x.
The valve position in turn controls the flow of hot steam ¢ from the boiler
into the heating coil in the tank. The resulting temperature 0 of the tank is
directly proportional to the steam flow with a time delay that depends on the
specific heat of the fluid and the mixing rate. The block diagram representa-
tion for this system in Fig. 5.15 shows the functions of each unit and the signal
flow through the system.

To show the operation of the system, consider that an increase in the
tank temperature is required. The voltage r is increased to a value that
represents the value of the desired temperature. This change in r causes an
increase in the actuating signal e. This increase in e, through its effect on the
solenoid and valve, causes an increase in the amount of hot steam flowing
through the heating coil in the tank. The temperature 6 therefore increases in
proportion to the steam flow. When the output temperature rises to a value
essentially equal to the desired temperature, the feedback voltage b is equal
to the reference input r (b ~ r). The flow of steam through the heating coil is
stabilized at a steady-state value but maintains 0 at the desired value.

Example 2: Command Guidance Interceptor System. A more complex
system is the command guidance system shown in Fig. 5.2, which directs the
flight of a missile in space in order to intercept a moving target. The target may
be an enemy bomber whose aim is to drop bombs at some position.

Missile Target
o .‘ |
” \ !
e II
e 5 )
- | H
-
Ve \ i
s |
// \ !
e
¢ el
Missile- | Radio Target-
tracking y command tracking
radar link radar
A
»=  Computer |-

FIGURE 5.2 Command guidance interceptor system.
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The defense uses the missile with the objective of intercepting and destroying
the bomber before it launches its bombs. The target-tracking radar is used first
for detecting and then for tracking the target. It supplies information on target
range and angle and their rates of change (time derivatives). This information
is continuously fed into the computer, which calculates a predicted course for
the target. The missile-tracking radar supplies similar information that is used
by the computer to determine its flight path. The computer compares the
two flight paths and determines the necessary change in missile flight path to
produce a collision course. The necessary flight path changes are supplied to
the radio command link, which transmits this information to the missile.
This electrical information containing corrections in flight path is used by
a control system in the missile. The missile control system converts the
error signals into mechanical displacements of the missile airframe control
surfaces by means of actuators. The missile responds to the positions of the
aerodynamic control surfaces to follow the prescribed flight path, which is
intended to produce a collision with the target. Monitoring of the target is
continuous so that changes in the missile course can be corrected up to the
point of impact. The block diagram of Fig. 5.3 depicts the functions of this
command guidance system. Many individual functions are performed within
each block. Some of the components of the missile control system are shown
within the block representing the missile.

_F
| Missile |
|
i I Missite flight
i : Control - i path
Radio - Missile |
i —
| receiver Amplifier surface. airframe | |
\ magtor drive | |
1 - !
|
| Rate |, | |
I gyro ] |[ l[
1
I 1 I
o |.
[
I
Missile- !
traching —————— 4
radar
Radio
commang  — Compuler
link
Target-
tracking
radar

FIGURE 5.3 Block diagram of a generalized command guidance interceptor system.
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Example 3: Aircraft Control System [1]. The feedback control system used
to keep an airplane on a predetermined course or heading is necessary for the
navigation of commercial airliners. Despite poor weather conditions and lack
of visibility, the airplane must maintain a specified heading and altitude in
order to reach its destination safely. In addition, in spite of rough air, the trip
must be made as smooth and comfortable as possible for the passengers and
crew. The problem is considerably complicated by the fact that the airplane
has six degrees of freedom. This fact makes control more difficult than the
control of a ship, whose motion is limited to the surface of the water. A flight
controller is the feedback control system used to control the aircraft motion.

Two typical signals to the system are the correct flight path, which is set
by the pilot, and the level position (attitude) of the airplane. The ultimately
controlled variable is the actual course and position of the airplane. The
output of the control system, the controlled variable, is the aircraft heading.
In conventional aircraft three primary control surfaces are used to control
the physical three-dimensional attitude of the airplane, the elevators, rudder,
and ailerons. The axes used for an airplane and the motions produced by the
control surface are shown in Fig. 5.4.

_/f&,

[e) Z

FIGURE 5.4 Airplane control surfaces: (a) elevator deflection produces pitching
velocity g; (b) rudder deflection produces yawing velocity r; (c) aileron deflection
produces rolling velocity p.
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FIGURE 5.5 Airplane directional-control system.

The directional gyroscope is used as the error-measuring device.
Two gyros must be used to provide control of both heading and attitude
(level position) of the airplane. The error that appears in the gyro as an angular
displacement between the rotor and case is translated into a voltage by
various methods, including the use of transducers such as potentiometers,
synchros, transformers, or microsyns.

Additional stabilization for the aircraft can be provided in the control
system by rate feedback. In other words, in addition to the primary feedback,
which is the position of the airplane, another signal proportional to the
angular rate of rotation of the airplane around the vertical axis is fed back in
order to achieve a stable response. A “rate” gyro is used to supply this signal.
This additional stabilization may be absolutely necessary for some of the
newer high-speed aircraft.

A block diagram of the aircraft control system (Fig. 5.5) illustrates
control of the airplane heading by controlling the rudder position. In this
system the heading that is controlled is the direction the airplane would
travel in still air. The pilot corrects this heading, depending on the crosswinds,
so that the actual course of the airplane coincides with the desired path.
Another control included in the complete airplane control system controls
the ailerons and elevators to keep the airplane in level flight.

5.3 DETERMINATION OF THE OVERALL
TRANSFER FUNCTION

The block diagram of a control system with negative feedback can often be
simplified to the form shown in Fig. 5.6 where the standard symbols and
definitions used in feedback systems are indicated. In this feedback control
system the output is the controlled variable C. This output is measured by
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FIGURE 5.6 Block diagram of a feedback system.

a feedback element H to produce the primary feedback signal B, which is then
compared with the reference input R. The difference E, between the reference
input R and the feedback signal B, is the input to the controlled system G and is
referred to as the actuating signal. For unity feedback systems where H=1,
the actuating signal is equal to the error signal, which is the difference R — C.
The transfer functions of the forward and feedback components of the system
are G and H, respectively.

In using the block diagram to represent a linear feedback control
system where the transfer functions of the components are known, the letter
symbol is capitalized, indicating that it is a transformed quantity; i.e., it is
a function of the operator D, the complex parameter s, or the frequency
parameter jo. This representation applies for the transfer function, where
G is used to represent G(D), G(s), or G(jo). It also applies to all variable
quantities, such as C, which represents C(D), C(s), or C(jw). Lowercase
symbols are used, as in Fig. 5.5, to represent any function in the time domain.
For example, the symbol ¢ represents ¢(¢).

The important characteristic of such a system is the overall transfer
function, which is the ratio of the transform of the controlled variable C to
the transform of the reference input R. This ratio may be expressed in
operational, Laplace transform, or frequency (phasor) form. The overall
transfer function is also referred to as the control ratio. The terms are used
interchangeably in this text.

The equations describing this system in terms of the transform
variable are

C(s) = G(s)E(s) (5.1)
B(s) = H(s)C(s) (5.2)
E(s) = R(s) — B(s) (5.3)
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Combining these equations produces the control ratio, or overall transfer
function,
Cls) G
R(s) 1+ G(s)H(s)
The characteristic equation of the closed-loop system is obtained from the
denominator of the control ratio:

1+ G(s)H(s) = 0 (5.5)

(5.4)

The stability and response of the closed-loop system, as determined by analy-
sis of the characteristic equation, are discussed more fully in later chapters.

For simplified systems where the feedback is unity, that is, H(s)=1,
the actuating signal, given by Eq. (5.3), is now the error present in the system,
i.e., the reference input minus the controlled variable, expressed by

E(s) = R(s) — C(s) (5.6)
The control ratio with unity feedback is
o) _ G (5.7)

R(s) 1+ G(s)

The open-loop transfer function is defined as the ratio of the output of the
feedback path B(s) to the actuating signal E(s) for any given feedback loop.
In terms of Fig. 5.6, the open-loop transfer function is

B(s)

—— = G(s)H 5.8

EG) ($)H (s) (5.8)

The forward transfer function is defined as the ratio of the controlled
variable C(s) to the actuating signal E(s). For the system shown in Fig. 5.5 the
forward transfer function is

C(s)

—~=G 5.9

o= O (5.9)
In the case of unity feedback, where H(s) = 1, the open-loop and the forward
transfer functions are the same. The forward transfer function G(s) may be
made up not only of elements in cascade but may also contain internal,
or minor, feedback loops. The algebra of combining these internal feedback
loops is similar to that used previously. An example of a controlled system
with an internal feedback loop is shown in Fig,. 5.5.

It is often useful to express the actuating signal £ in terms of the input R.
Solving from Egs. (5.1) to (5.3) gives

By _ 1

R(s) 1+ G(s)H(s) (5.10)
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FIGUREbL.7 Block diagram of feedback control system containing all basic elements.

The concept of system error y, is defined as the ideal or desired system
value minus the actual system output. The ideal value establishes the desired
performance of the system. For unity-feedback systems the actuating signal is
an actual measure of the error and is directly proportional to the system error
(see Fig.5.7).

Example: Overall Transfer Function

Computation of several calculations using MATLAB are illustrated below.
Assume that the transfer functions for Fig. 5.6 are:

G(s) = s—i—iS H(s) = %

Determine the overall control ratio, C(s)/R(s). MATLAB provides the “feed-
back” function to calculate the overall (closed-loop) transfer function as
shown by the following m-file.

o0 o°

The feedback command calculates the closed-loop transfer

% function for a given forward transfer function G(s)
% and feedback transfer function H(s)

% Type ' 'help feedback'' for more information

% Example 1:

% Define a forward transfer function G(s) =5/s+5

0P

using the tf command

o

G=tf([5],[15]) % System=tf (numerator, denominator)

Transfer function:
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o

Example 2:

Define a feedback transfer function H(s)=1/s

using the tf command

H=tf([1],[1 0]) % System=tf (numerator, denominator)

e

o

Transfer function:

1

S

o

Example 3:
For a non-unity, negative feedback system the
closed loop transfer function is

o0 0P

o

cltf = feedback (G,H,-1)

Transfer function:

% Example 4:
% The forward transfer function is calculated by multiplying
% G(s) and H(s)

5.4 STANDARD BLOCK DIAGRAM TERMINOLOGY [2]

Figure 5.7 shows a block diagram representation of a feedback control system
containing the basic elements. Figure 5.8 shows the block diagram and sym-
bols of a more complicated system with multiple paths and inputs. Numerical
subscripts are used to distinguish between blocks of similar functions in the
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FIGURE 5.8 Block diagram of representative feedback control system showing
multiple feedback loops. (All uppercase letters denote transformation.)

circuit. For example, in Fig. 5.7 the control elements are designated by G, and
the controlled system by G». In Fig. 5.8 the control elements are divided into
two blocks, G; and G, to aid in representing relations between parts of the
system. Also, in this figure the primary feedback is represented by H;.
Additional minor feedback loops might be designated by H,, H3, and so forth.

The idealized system represented by the block enclosed with dashed
lines in Fig. 5.7 can be understood to show the relation between the basic
input to the system and the performance of the system in terms of the desired
output. This would be the system agreed upon to establish the ideal value for
the output of the system. In systems where the command is actually the
desired value or ideal value, the idealized system would be represented by
unity. The arrows and block associated with the idealized system, the ideal
value, and the system error are shown in dashed lines on the block diagram
because they do not exist physically in any feedback control system. For any
specific problem, it represents the system (conceived in the mind of the
designer) that gives the best approach, when considered as a perfect system,
to the desired output or ideal value.

Definitions: Variables in the System
Command v is the input that is established by some means external to,
and independent of, the feedback control system.

Reference input r is derived from the command and is the actual signal
input to the system.
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Controlled variable c is the quantity that is directly measured and
controlled. It is the output of the controlled system.

Primary feedback b is a signal that is a function of the controlled
variable and that is compared with the reference input to obtain the
actuating signal.

Actuating signal e is obtained from a comparison measuring device and is
the reference input minus the primary feedback. This signal, usually
at alow energy level, is the input to the control elements that produce
the manipulated variable.

Manipulated variable m is the quantity obtained from the control
elements that is applied to the controlled system. The manipulated
variable is generally at a higher energy level than the actuating signal
and may also be modified in form.

Indirectly controlled variable q is the output quantity that is related
through the indirectly controlled system to the controlled variable.
It is outside the closed loop and is not directly measured for control.

Ultimately controlled variable is a general term that refers to the indirectly
controlled variable. In the absence of the indirectly controlled
variable, it refers to the controlled variable.

Ideal value i is the value of the ultimately controlled variable that would
result from an idealized system operating with the same command
as the actual system.

System error y, is the ideal value minus the value of the ultimately
controlled variable.

Disturbance d is the unwanted signal that tends to affect the controlled
variable. The disturbance may be introduced into the system at
many places.

Definitions: System Components

Reference input elements G, produce a signal r proportional to the
command.

Control elements G. produce the manipulated variable m from the
actuating signal.

Controlled system G is the device that is to be controlled. This is
frequently a high-power element.

Feedback element H produces the primary feedback b from the
controlled variable. This is generally a proportionality device but
may also modify the characteristics of the controlled variable.

Indirectly controlled system Z relates the indirectly controlled variable g to
the controlled quantity ¢. This component is outside the feedback loop.
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Idealized system G; is one whose performance is agreed upon to define
the relationship between the ideal value and the command. This is
often called the model or desired system.

Disturbance element N denotes the functional relationship between the
variable representing the disturbance and its effect on the control
system.

5.5 POSITION CONTROL SYSTEM

Figure 5.9 shows a simplified block diagram of an angular position control
system. The reference selector and the sensor, which produce the reference
input R =0z and the controlled output position C =60, respectively, consist
of rotational potentiometers. The combination of these units represents
a rotational comparison unit that generates the actuating signal E for the
position control system, as shown in Fig. 5.10a, where K, in volts per radian,
is the potentiometer sensitivity constant. The symbolic comparator for this
system is shown in Fig. 5.105.

The transfer function of the motor-generator control is obtained by
writing the equations for the schematic diagram shown in Fig. 5.11a. This
figure shows a dc motor that has a constant field excitation and drives an

Angular
E.[s) pogition
Ris Rotational o 4 Motor-generator | Cls}
™ potentiometer Amplifier contral
Bis)
Rotational
potentiometer
FIGURE 5.9 Position control system.
E
i
E =K, t0p
T =
=
al L0

FIGURE 5.10 (a) Rotational position comparison; (b) its block diagram
representation.
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FIGURE 5.11 (a) Motor-generator control; (b) block diagram.

inertia and friction load. The armature voltage for the motor is furnished
by the generator, which is driven at constant speed by a prime mover. The
generator voltage e, is determined by the voltage eyapplied to the generator
field. The generator is acting as a power amplifier for the signal voltage ey.
The equations for this system are as follows:

e; = Ly Dis + Ryiy (5.11)
eg = Kyiy (5.12)
eg — ey = (Ly + L,,) Di,, + (R, + R,)iy, (5.13)
en = Ky DO, (5.14)
T = Kzi,, = J D*0, + BD6, (5.15)

The block diagram drawn in Fig. 5.115 is based on these equations. Start-
ing with the input quantity e;, Eq. (5.11) shows that a current iris produced.
Therefore, a block is drawn with eyas the input and i, as the output. Equation
(5.12) shows that a voltage e, is generated as a function of the current iy.
Therefore, a second block is drawn with the current iras the input and e, as
the output. Equation (5.13) relates the current i,, in the motor to the difference
of two voltages, e, —e,,. To obtain this difference a summation point is
introduced. The quantity e, from the previous block enters this summation
point. To obtain the quantity e, — e,, there must be added the quantity e,,,
entering summation point with a minus sign. Up to this point the manner
in which e, is obtained has not yet been determined. The output of this
summation point is used as the input to the next block, from which the current
i,, is the output. Similarly, the block with current i,, as the input and the
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generated torque 7T'as the output and the block with the torque input and the
resultant motor position as the output are drawn. There must be no loose ends
in the complete diagram; i.e., every dependent variable must be connected
through a block or blocks into the system. Therefore, e, is obtained from
Eq. (5.14), and a block representing this relationship is drawn with 0, as the
input and e, as the output. By using this procedure, the block diagram is
completed and the functional relationships in the system are described. Note
that the generator and the motor are no longer separately distinguishable.
Also, the input and the output of each block are not in the same units, as both
electrical and mechanical quantities are included.

The transfer functions of each block, as determined in terms of the
pertinent Laplace transforms, are as follows:

Lo UR R,
Gl(s)_Ef(S)_ 1+(L1/Rf)s_ 1+TfS (5]6)
E,
G(s) = I;g((;)) =K, 517
Gy(s) = —m 1/(R, + R,)
BB = En(s) 1L + L)/ (Re + Ry)ls
Ry 1/Ry,
1+ (Lgn/Ry)s 1+ Ty (5.18)
Gy(s) = IT ((ss)) =Ky (5.19)
_ O _ 1/B _ 1/B
Gs(s) = T(s) s[l+(J/B)s] s+ T,9) (5.20)
her= gmg; = (5.21)

The block diagram can be simplified, as shown in Fig. 5.12, by combining
the blocks in cascade. The block diagram is further simplified, as shown in

E (s)1-E {5}
Ei(sh| K iR, | Eyls) 8 " K /R,,B 0,15
1+Tys > S Tgms) (14T} | f
E{s)
Kbs

FIGURE 5.12 Simplified block diagram.
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FIGURE 5.13 Reduced block diagram.

Fig. 5.13, by evaluating an equivalent block from E(s) to ©,(s), using the
principle of Eq. (5.4). The final simplification results in Fig. 5.14. The overall
transfer function G,(s) is

Oy(s) K,K7/R;BR,,

Ef(s) S(l + T}S)[(l + KTKb/BRgm) + (T:gm + Tn)s + T:gm Tnsz]
(5.22)

This expression is the exact transfer function for the entire motor and

generator combination. Certain approximations, if valid, may be made to

simplify this expression. The first approximation is that the inductance of the

generator and motor armatures is very small, therefore, T, ~ 0. With this
approximation, the transfer function reduces to

Gi(s) =

B,(s) - K,
Es) G~ a5 Tr5)(1 + T,s) (5.23)
where
K, = KoKy (5.24)
Ry (BRy,, + K Kp)
Ly
=% (5.25)
7, = R (5.26)
" = BR,, + K1 K,

If the frictional effect of the load is very small, the approximation can be made
that B~ (. With this additional approximation, the transfer function has the
same form as Eq. (5.23), but the constants are now

K (5.27)

K, =
R/K,

Els) 8, (s}
Gyls)

FIGURE 5.14 Simplified block diagram for Fig. 5.11.

Copyright © 2003 Marcel Dekker, Inc.



Potentiometer

Sensitivity Amplifier  Motor-generator
E E C =0,
K, S L G - L

r

FIGURE 5.15 Equivalent representation of Fig. 5.9.

-l (5.28)
TR,

JR
T, =& 2
ot (5.29)

For simple components, as in this case, an overall transfer function
can often be derived more easily by combining the original system equations.
This can be done without the intermediate steps shown in this example.
However, the purpose of this example is to show the representation of
dynamic components by individual blocks and the combination of blocks.

A new block diagram representing the position-control system of
Fig. 5.9 is drawn in Fig. 5.15. Since the transfer function of the amplifier of
Fig. 5.9 is E/(s)/ E(s) = 4, the forward transfer function of the position-control
system of Fig. 5.15 is

0,(s) AKK,

6 =86 ~sa+ Tys)(1 + T,ys)

(5.30)

The overall transfer function (control ratio) for this system, with H(s) = 1, is
Cls) _Ous) _  G») AK, K
R(s)  Og(s) 1+ G(s)H(s) s(1+ Tys)(1 + T,,5) + AK Ky

(5.31)

5.6 SIMULATION DIAGRAMS [3.4]

The simulation used to represent the dynamic equations of a system may show
the actual physical variables that appear in the system, or it may show
variables that are used purely for mathematical convenience. In either case
the overall response of the system is the same. The simulation diagram is
similar to the diagram used to represent the system on an analog computer.
The basic elements used are ideal integrators, ideal amplifiers, and ideal
summers, shown in Fig. 5.16. Additional elements such as multipliers and
dividers may be used for nonlinear systems.
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FIGURE 5.16 Elements used in a simulation diagram.

One of the methods used to obtain a simulation diagram includes the
following steps:

1. Start with differential equation.

2. On the left side of the equation put the highest-order derivative of
the dependent variable. A first-order or higher-order derivative of
the input may appear in the equation. In this case the highest-order
derivative of the input is also placed on the left side of the equation.
All other terms are put on the right side.

3. Start the diagram by assuming that the signal, represented by the
terms on the left side of the equation, is available. Then integrate
it as many times as needed to obtain all the lower-order derivatives.
It may be necessary to add a summer in the simulation diagram
to obtain the dependent variable explicitly.

4. Complete the diagram by feeding back the approximate outputs of
the integrators to a summer to generate the original signal of step 2.
Include the input function if it is required.

Example. Draw the simulation diagram for the series RLC circuit of Fig. 2.2
in which the output is the voltage across the capacitor.

Step 1. When y =v.and u = e are used, Eq. (2.10) becomes

LCy+RCy+y=u (5.32)
Step 2. Rearrange terms to the form
. 1 R. 1
y= L_Cu - Zy - RJ’
= bu — ay — by (5.33)

wherea=R/Land b=1/LC.
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Step 3. The signal y is integrated twice, as shown in Fig. 5.17a.

Step 4. The block or simulation diagram is completed as shown
in Fig. 5.17b in order to satisfy Eq. (5.33).

The state variables are often selected as the outputs of the integrators in
the simulation diagram. In this case they are y = x;and y = x, = x;.These values
and y = x, are shown in Fig. 5.17b. The state and output equations are therefore

. 0 1 0
[’,‘1}:[ 1 Ri||:x1]+|: 1 i|u=Ax+Bu (5.34)
Xy —_ — = X2 —
IC L LC
y=11 O][xl] +0u=Cx+Du (5.35)
X2

It is common in a physical system for the D matrix to be zero, as in this
example. These equations are different from Eqgs. (2.26) and (2.27), yet they
represent the same system. This difference illustrates that state variables are
not unique. When the state variables are the dependent variable and the
derivatives of the dependent variable, as in this example, they are called phase
variables. The phase variables are applicable to differential equations of any
orderand canbe used without drawing the simulation diagram, as shownbelow.

CASE 1. The general differential equation that contains no derivatives of
the input is

D'y+a, D" 'y+-- “+a D, +ay=u (5.36)

(b}

FIGURE 5.17 Simulation diagram for Eq. (5.32).
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The state variables are selected as the phase variables, which are defined by
x1=y, X, =Dx; =% =Dy, x3=x =D%,. ..,x,=%x,_,=D""'y. Thus,
D"y = x,. When these state variables are used, Eq. (5.36) becomes

Xyt @y 1 Xyt @y2X, 1+ -+ axy+apxy =u (5.37)

The resulting state and output equations using phase variables are

T X ] 0 1 T 0
X 0 1 0 0
0
= 0 X + u
X1 0 0 1

L Xn I L —ay —ay —ay —ay - —a,5 —a, L1
X =A.Xx+b.u (5.38)
y=Mkl=[1 0 0 ---Jx=c¢lx (5.39)

These equations can be written directly from the original differential
equation (5.36). The plant matrix A.contains the number 1 in the superdiagonal
and the negative of the coefficients of the original differential equation in the
nth row. In this simple form the matrix A, is called the companion matrix.
Also, the B matrix takes on the form shown in Eq. (5.38) and is indicated by b..

CASE 2. When derivatives of u(?) appear in the differential equation, the
phase variables may be used as the state variables and the state equation
given in Eq. (5.38) still applies; however, the output equation is no longer
given by Eq. (5.39). This is shown by considering the differential equation

(D" +a, (D" 4+ a D+ ag)y
=(¢,D" +c¢, D" '+ +¢D+cyu w<n (5.40)
The output y is specified as
y=(c,D"+ ¢, D"+ + e D+ coxy (5.41)
In terms of the state variables this output equation becomes
Y=0¢,X, + Cp1X, + - -+ 1% + coxy (5.42)

Substituting Eq. (5.41) into Eq. (5.40) and canceling common terms on both
sides of the equation yields

D" +a, D" '+ a;D+ag)x; =u (5.43)
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This equation has the same form as Eq. (5.36). Thus, in terms of phase
variables, Eq. (5.43) can be represented in the form x = A x + b,u, where
the matrices A, and b, are the same as in Eq. (5.38). The case for two values
of ware:

1. For w=n,the output equation (5.42) becomes
Y =Xyt X, o axp + 6
Using Eq. (5.37) to eliminate x,, yields

y= [(CO - aOCn) (C] —aq cn) T (cn—l - an—lcn) ]X + [cn]u
=clx+du (5.44)
2. Forw<mn,x,=x,,,and ¢, ;=0fori=1,2,...,n—w. In this

case the output y in Eq. (5.44) reduces to
y=[e a - ¢ 0 -+ 0]x (5.45)

Figure 5.18 shows the simulation diagram that represents the system of
Eq. (5.40) in terms of the state equation, Eq. (5.38), and the output equation

—d,

—a;

-dy

FIGURE 5.18 Simulation diagram representing the system of Eq. (5.40) in terms of
Egs. (5.38) and (5.45).
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FIGURE 5.19 General matrix block diagram representing the state and output
equations.

Eq. (5.45). It has the desirable feature that differentiation of the input signal
u(?) is not required to satisfy the differential equation. The simulation diagram
has the advantage of requiring only two summers, regardless of the order of
the system, one at the input and one at the output. This representation of a
differential equation is considered again in Sec. 5.8. Differentiators are
avoided in analog- and digital-computer simulations, because they accentuate
any noise present in the signals.

Different sets of state variables may be selected to represent a
system. The selection of the state variables determines the A, B, C, and D
matrices of Eqgs. (2.35) and (2.36). A general matrix block diagram
representing the state and the output equations is shown in Fig. 5.19.
The matrix D is called the feedforward matrix. The analysis and design of
multiple-input multiple-output (MIMO) systems are covered in detail in
Refs.5to 7.

5.7 SIGNAL FLOW GRAPHS [8,9]

The block diagram is a useful tool for simplifying the representation of
a system. The block diagrams of Figs. 5.9 and 5.15 have only one feedback
loop and may be categorized as simple block diagrams. Figure 5.5 has three
feedback loops; thus it is not a simple system. When intercoupling exists
between feedback loops, and when a system has more than one input and one
output, the control system and block diagram are more complex. Having the
block diagram simplifies the analysis of complex system. Such an analysis
can be even further simplified by using a signal flow graph (SFG), which looks
like a simplified block diagram.

An SFG is a diagram that represents a set of simultaneous equations.
It consists of a graph in which nodes are connected by directed branches.
The nodes represent each of the system variables. A branch connected
between two nodes acts as a one-way signal multiplier: the direction of signal
flow is indicated by an arrow placed on the branch, and the multiplication
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FIGURE 5.20 Signal flow graph for x, = ax;.

factor (transmittance or transfer function) is indicated by a letter placed near
the arrow. Thus, in Fig. 5.20, the branch transmits the signal x; from left
to right and multiplies it by the quantity a in the process. The quantity a is the
transmittance, or transfer function. It may also be indicated by a =1,
where the subscripts show that the signal flow is from node 1 to node 2.

Flow-Graph Definitions
A node performs two functions:

1. Addition of the signals on all incoming branches
2. Transmission of the total node signal (the sum of all incoming
signals) to all outgoing branches

These functions are illustrated in the graph of Fig. 5.21, which represents the
equations

w=au+ by x=cw y=dw (5.46)
Three types of nodes are of particular interest:

Source nodes (independent nodes). These represent independent variables
and have only outgoing branches. In Fig. 5.21, nodes u and v are
source nodes.

Sink nodes (dependent nodes). These represent dependent variables and
have only incoming branches. In Fig. 5.21, nodes x and y are sink
nodes.

Mixed nodes (general nodes). These have both incoming and outgoing
branches. In Fig. 5.21, node w is a mixed node. A mixed node may be
treated as a sink node by adding an outgoing branch of unity transmit-
tance, as shown in Fig. 5.22, for the equation x=au+ bv and
w=cx = cau + cbv.

FIGURE 5.21 Signal flow graph for Egs. (5.46).
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FIGURE 5.22 Mixed and sink nodes for a variable.

A path is any connected sequence of branches whose arrows are in the
same direction.

A forward path between two nodes is one that follows the arrows of
successive branches and in which a node appears only once. In
Fig. 5.21 the path uwx is a forward path between the nodes » and x.

Flow-Graph Algebra
The following rules are useful for simplifying a signal flow graph:

Series paths (cascade nodes). Series paths can be combined into a single
path by multiplying the transmittances as shown in Fig. 5.23a4.

Path gain. The product of the transmittances in a series path.

Parallel paths. Parallel paths can be combined by adding the transmit-
tances as shown in Fig. 5.235.

Node absorption. A node representing a variable other than a source or
sink can be eliminated as shown in Fig. 5.23c¢.

Feedback loop. A closed path that starts at a node and ends at the same
node.

Loop gain. The product of the transmittances of a feedback loop.

The equations for the feedback system of Fig. 5.6 are as follows:

C=GE (5.47)
B=HC (5.48)
E=R-B (5.49)

Note that an equation is written for each dependent variable. The corresponding
SFG is shown in Fig. 5.24a. The nodes B and E can be eliminated in turn to
produce Fig. 5.24b and Fig. 5.24¢, respectively. Figure 5.24¢ has a self-loop of
value — GH. The final simplification is to eliminate the self-loop to produce the
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FIGURE 5.23 Flow-graph simplifications.

overall transmittance from the input R to the output C. This is obtained by
summing signals at node C in Fig. 5.24c¢, yielding C = GR — GHC. Solving for
Cproduces Fig. 5.24d.

General Flow-Graph Analysis

If all the source nodes are brought to the left and all the sink nodes are
brought to the right, the SFG for an arbitrarily complex system can be
represented by Fig. 5.25a. The effect of the internal nodes can be factored
out by ordinary algebraic processes to yield the equivalent graph represented

R 1 E G c R i E G C
s, - o - .
71\%' \j
B (h) —H
(a}
R G o R c
o -~ o - °
_G
1+GH
(e) s (d)

FIGURE 5.24 Successive reduction of the flow graph for the feedback system of
Fig. 5.6.
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by Fig. 5.25b. This simplified graph is represented by

= Taxl + TdX2 (550)
M= Tbxl + TeX2 (551)
y3 = Tcxl + Tf'Xz (552)

The Ts, called overall graph transmittances, are the overall trans-
mittances from a specified source node to a specified dependent node. For
linear systems the principle of superposition can be used to “solve” the graph.
That is, the sources can be considered one at a time. Then the output signal is
equal to the sum of the contributions produced by each input. The overall
transmittance can be found by the ordinary processes of linear algebra,
i.c., by the solution of the set of simultaneous equations representing the
system. However, the same results can be obtained directly from the SFG.
The fact that they can produce answers to large sets of linear equations
by inspection gives the SFGs their power and usefulness.

The Mason Gain Rule

The overall transmittance can be obtained from the Mason gain formula [8].
The formula and definitions are followed by an example to show its
application. The overall transmittance T'is given by

T= % (5.53)

Ya Fa
Signal flow graph —Sas——O

(a)

FIGURE 5.25 Equivalent signal flow graphs.
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where T, is the transmittance of each forward path between a source and a
sink node and A is the graph determinant, found from

A=1->"Li+Y L=y Ly+-- (5.54)

In this equation L, is the transmittance of each closed path, and ) L, is
the sum of the transmittances of all closed paths in the graph. L, is the produce
of the transmittances of two nontouching loops; loops are nontouching
if they do not have any common nodes. Y L, is the sum of the products of
transmittances in all possible combinations of nontouching loops taken two
at a time. L; is the product of the transmittances of three nontouching loops.
> Ls is the sum of the products of transmittances in all possible combinations
of nontouching loops taken three at a time.

In Eq. (5.53), A, is the cofactor of 7. It is the determinant of the
remaining subgraph when the forward path that produces 7,, is removed.
Thus, A,, does not include any loops that touch the forward path in question.
A, is equal to unity when the forward path touches all the loops in the graph or
when the graph contains no loops. A,, has the same form as Eq. (5.54).

Example. Figure 5.26a shows a block diagram. Since £; = M; — B; — By =
GE — HiM, = H;C, it is not necessary to show M;, — B;, and B; explicitly.
The SFG is shown in Fig. 5.26b. Since this is a fairly complex system, the
resulting equation is expected to be complex. However, the application of
Mason’s rule produces the resulting overall transmittance in a systematic
manner. This system has four loops, whose transmittances are —G,H|,
—GsH,, —G1G,G3Gs, and —G,G3GsH3. Therefore

ZL, = —GyH| — GsH, — G1G,G5G5 — G,G3G5H; (5.55)
Only two loops are nontouching; therefore,

> L, = (-G, Hy)(—GsH,) (5.56)

Although there are four loops, there is no set of three loops that are nontouch-
ing; therefore,

Sy =0 (5.57)

The system determinant can therefore be obtained from Eq. (5.54).

There is only one forward path between R and C. The corresponding
forward transmittance is G,G,G3Gs. If this path, with its corresponding
nodes, is removed from the graph, the remaining subgraph has no loops. The
cofactor A, is therefore equal to unity. The complete overall transmittance
from R to C, obtained from Eq. (5.53), is
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FIGURE 5.26 Block diagram and its signal flow graph.
T— GG,G3G;
" 14 GyH, + GsH, + G,G,G3Gs + G,G3GsHy + G,GsH H,
(5.58)

The complete expression for 7'is obtained by inspection from the SFG. The
SFG is simpler than solving the five simultaneous equations that represent
this system.

5.8 STATE TRANSITION SIGNAL FLOW GRAPH [10]

The state transition SFG or, more simply, the state diagram, is a simulation
diagram for a system of equations and includes the initial conditions of the
states. Since the state diagram in the Laplace domain satisfies the rules of
Mason’s SFG, it can be used to obtain the transfer function of the system and
the transition equation. As described in Sec. 5.6, the basic elements used in a
simulation diagram are a gain, a summer, and an integrator. The signal-flow
representation in the Laplace domain for an integrator is obtained as follows:

x1(2) = x2(2)
X2_(~V)+x1§fo)

X (s) = (5.59)
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FIGURE 5.27 Representations of an integrator in the Laplace domain in a signal
flow graph.

Equation (5.59) may be represented either by Fig. 5.27a or Fig. 5.27b.
A differential equation that contains no derivatives of the input, as
given by Eq. (5.36), is repeated here:

D'y+a, D" 'y+.--+aDy+ay=u (5.60)
In terms of the phase variables, with x; =y and x; = x;,, this equation
becomes

Xy + @y 1%, + - Fayxy +apx; =u (5.60a)

The state diagram is drawn in Fig. 5.28 with phase variables. It is obtained by
first drawing the number of integrator branches 1/s equal to the order of the
differential equation. The outputs of the integrators are designated as the
state variables, and the initial conditions of the n states are included as inputs
in accordance with Fig. 5.27a. Taking the Laplace transform of Eq. (5.60a)
yields, after dividing by s.

X,9) = a0 Xi(6) — a1 Xals) — - — a1 9) + U]+ 3,000

The node X,,(s) in Fig. 5.28 satisfies this equation. The signal at the unlabeled
node between U(s) and X,,(s) is equal to s.X,,(s) — x,.(¢).

x, Mot Xo.lty) ity .'I.'ltfo'
s Q

L)
Yig

FIGURE 5.28 State diagram for Eq. (5.60).
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The overall transfer function Y(s)/ U(s) is defined with all initial values
of the states equal to zero. Using this condition and applying the Mason gain
formula given by Eq. (5.53) yields
Y(s) s s
Us) A() 14a, s+ +aps @D 4 gps™
. 1

st a, " as+a
The state transition equation of the system is obtained from the state

diagram by applying the Mason gain formula and considering each initial
condition as a source. This is illustrated by the following example.

G(s) =

(5.61)

Example 1. Equation (5.32) can be expressed as

n R n 1
y y [T Mok
(a) Draw the state diagram. (b) Determine the state transition equation.

Solution. (a) The state Diagram, Fig. 5.29, includes two integrators, because
this is a second-order equation. The state variables are selected as the phase
variables that are the outputs of the integrators, that is, x, =y and x, = x;.

(b) The state transition equations are obtained by applying the Mason
gain formula with the three inputs u, x; (), and x,(zy):

T +s'R/L 572 LC
Xl(s):% 1(0)+m 2(0)+SA/() U(s)
2/LC st sT/LC
Xals) = L )+ 4 sl + T UG)
-1 -2
A(s)=1+SLR+SL—C
letol xll’fol
5 1/LC
UVis} ) - ,-, 5 Yis)

-1/LC

FIGURE 5.29 State diagram for Example 1.
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After simplification, these equations become

X(s) — |:X1(S):|

Xa(s)
R 1
B 1 S+Z ! xl(tO) + R U(S)
T2+ ([R/L)s+1/LC -1 x,(to) S
IC s LC

This equation is of the form given by Eq. (4.104), i.e.,
X(s) = P(s)x(t9) + P(s)BU(s)

Thus the resolvent matrix ®(s) is readily identified and, by use of the inverse
Laplace transform, yields the state transition matrix ®(7). The elements of
the resolvent matrix can be obtained directly from the SFG with U(s) =0
and only one x,(%) considered at a time, i.e., all other initial conditions set
to zero. Each element of ®(s) is

_ Xi©®)
P5ts) = x;(%)
For example,
dpi(s) = Xi(s) s (1+s R/L) s+R/L

x(ty) A(s) — SPA(s)

The complete state transition equation x(¢) is obtainable through use of the
state diagram. Therefore, ®(s) is obtained without performing the inverse
operation [sI — A]~ . Since x() represents phase variables, the system output

is y(t) = x(¢).

Example 2. A differential equation containing derivatives of the input, given
by Eq. (5.40), is repeated here.

(D" +a, D"+ -+ @D+ ag)y
=(¢,D" + ¢y D" '+ 4+ D+co)u w<n (5.62)

Phase variables can be specified as the state variables, provided the output is
identified by Eq. (5.41) as

y=(c,D"+ ¢, (D" '+ 4D+ co)x (5.63)
Equation (5.62) then reduces to

D"+a, D" '+ +aD+a)x, =u (5.64)
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FIGURE 5.30 State diagram for Eq. (5.62) using phase variables, for w=n.

The resulting state diagram for Egs. (5.63) and (5.64) is shown in Fig. 5.30
for w=n. The state equations obtained from the state diagram are given by
Eq. (5.38). The output equation in matrix form is readily obtained from
Fig. 5.30 in terms of the transformed variables X(s) and the input U(s) as

Y(s) = [(cg — apcy) (c1 —ayc,)
(cn72 - an72cn) (Cnfl - anflcn)]x(s) + CnU(S)
= ¢/ X(s) + dU(s) (5.65)

Equation (5.65) is expressed in terms of the state X(s) and the input U(s).
To obtain Eq. (5.65) from Fig. 5.30, delete all the branches having a transmit-
tance 1/s and all the initial conditions in Fig. 5.30. The Mason gain formula is
then used to obtain the output in terms of the state variables and the input.
Note: there are two forward paths from each state variable to the output
whenw=n.Ifw < n, Eq. (5.65) becomes

Ys)=[cg ¢ -+ ¢, 0 --- 0]X(s) (5.66)

5.9 PARALLEL STATE DIAGRAMS FROM
TRANSFER FUNCTIONS

A single-input single-output (SISO) system represented by the differential
equation (5.62) may be represented by an overall transfer function of the form

Y(s) G(s) = e + ¢ 18" N+t as+ o
Us) s ta, "+t as+ag

w<n (5.67)
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An alternate method of determining a simulation diagram and a set of state
variables is to factor the denominator and to express G(s) in partial fractions.
When there are no repeated roots and w = n, the form is

"+ e 18"+ ¢

G(s) =
(5) =M —Ry)---(s— 1)
_ N 5 fi )
_c”+s—k1+s—x2+"'+s—xn_c"+2i=1G"(s)
where each
_fiZi(s) S
Gl =" =

The symbols z; and their Laplace transforms Z{s) are used for the state
variables in order to distinguish the form of the associated diagonal matrix.
The output Y(s) produced by the input U(s) is therefore

SiUGs) _I_fz U(s)
S-}\l S-)\Q
=, US)+HZ1()+HZr(s)+--- (5.68)

The state variables Z{(s) are selected to satisfy this equation. Each fraction
represents a first-order differential equation of the form

2,' — 7\41'21' =u (5.69)

This expression can be simulated by an integrator with a feedback path
of gain equal to A;, followed by a gain f;. Therefore, the complete simulation
diagram is drawn in Fig. 5.31. The reader may add the initial conditions of
the states, z;(¢), to Fig. 5.31. The z;(¢,) are the inputs to additional branches
having transmittances of value 1/s and terminating at the nodes Zy(s).
The term ¢, U(s) in Eq. (5.68) is satisfied in Fig. 5.31 by the feedforward path
of gain ¢,. This term appears only when the numerator and denominator
of G(s) have the same degree. The output of each integrator is defined as a
state variable. The state equations are therefore of the form

Y(s) =c,U(s) + 4o

A 0 1

. &) 1

z= ) z+ | . [u=Az+b,u (5.70)
0 Ay 1

y=I[fA f - flz+teu=clz+du (5.71)

An important feature of these equations is that the A matrix appears
in diagonal or normal or canonical form. This diagonal form is indicated by
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FIGURE 5.31 Simulation of Eq. (5.67) by parallel decomposition for w=n (Jordan
diagram for distinct roots).

A (or A¥), and the corresponding state variables are often called canonical
variables. The elements of the B vector (indicated by b,,) are all unity, and the
elements of the C row matrix (indicated by [f; f ... fil=c¢!) are
the coefficients of the partial fractions in Eq. (5.68). The state diagram of
Fig. 5.31 and the state equation of Eq. (5.70) represent the Jordan form for
the system with distinct eigenvalues. The state and output equations for a
multiple-input multiple-output (MIMO) system can be expressed as

z=Az+B,u (5.72)
y=C,z+D,u (5.73)

The diagonal matrix A = A means that each state equation is uncoupled;
i.., each state z; can be solved independently of the other states. This fact
simplifies the procedure for finding the state transition matrix ®(7). This
form is also useful for studying the observability and controllability of
a system, as discussed in Chap. 13. When the state equations are expressed in
normal form, the state variables are often denoted by z; Transfer functions
with repeated roots are not encountered very frequently and are not consid-
ered in this text [3].

Example. For the given transfer function G(s), draw the parallel state
diagram and determine the state equation. A partial-fraction expansion
is performed on G(s), and the state diagram is drawn in Fig. 5.32. Then
the state and output equations are written.
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FIGURE 5.32 Simulation diagram for example of Sec. 5.9.

45> + 155+ 13 L2
s24+3s5+2 s+2 s+1

. -2 0 1
(1) = |: 0 _11|z(t)+ |:1:|u(t)

y(@&) =1 2]z() + 4u(r)

G(s) =

5.10 DIAGONALIZING THE A MATRIX [11,12]

In Sec. 5.9 the method of partial-fraction expansion is shown to lead to the
desirable normal form of the state equation, in which the A matrix is diagonal.
The partial-fraction method is not convenient for multiple-input multiple-
output systems or when the system equations are already given in state form.
Therefore, this section presents a more general method for converting the
state equation by means of a linear similarity transformation. Since the state
variables are not unique, the intention is to transform the state vector x to
a new state vector z by means of a constant, square, nonsingular transforma-
tion matrix T so that

x=Tz (5.74)
Since T is a constant matrix, the differentiation of this equation yields

x =Tz (5.75)
Substituting these values into the state equation x = Ax 4+ Bu produces

Tz = ATz + Bu (5.76)
Premultiplying by T~ gives

z=T 'ATz+ T 'Bu (5.77)
The corresponding output equation is

y = CTz + Du (5.78)
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It is easily shown that the eigenvalues are the same for both the original
and the transformed equations. From Eq. (5.77) the new characteristic
equation is

M —T'AT| =0 (5.79)

In this equation the unit matrix can be replaced by I=T'T. Then, after
prefactoring T~ and postfactoring T, the characteristic equation becomes

T - A)T| =0 (5.80)

Using the property (Appendix B) that the determinant of the product of
matrices is equal to the product of the determinants of the individual matrices,
Eq. (5.80) is equal to

T - —A|*|T| = [T+ |T|- ML= A] =0

Since |T7!|+|T| = [I| = 1, the characteristic equation of the transformed
equation as given by Eq. (5.79) is equal to the characteristic equation of the
original system, i.c.,

I —A| =0 (5.81)

Therefore, it is concluded that the eigenvalues are invariant in a linear
transformation given by Eq. (5.74).

The matrix T is called the modal matrix when it is selected so that
T 'ATis diagonal, i.e.,

M 0
1 M
T AT =A = ) (5.82)
0 A
This supposes that the eigenvalues are distinct. With this transformation the
system equations are

z=Az+Bu (5.83)
y=Cz+Du (5.84)
where

A=T'AT B=T'B C=CT D=D

When T is selected so that B = T~'B contains only unit elements, then it is
denoted as B,, as in Eq. (5.70) and in method 3 (see following). When x =Tz is
used to transform the equations into any other state-variable representation
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T 'AT=A,thenTis just called a transformation matrix. The case where Ais
the companion matrix A is covered in Sec. 5.13.

Four methods are presented for obtaining the modal matrix T for
the case where the matrix A has distinct eigenvalues. When A has multiple
eigenvalues, this matrix can be transformed into diagonal form only if the
number of independent eigenvectors is equal to the multiplicity of the
eigenvalues. In such cases, the columns of T may be determined by methods
of2,3,and 4.

Method 1: Matrix A in Companion Form

When there are distinct eigenvalues Ay, A, . . ., A, for the matrix A and it is in
companion form (A = A,), the Vandermonde matrix, which is easily obtained,
is the modal matrix. The Vandermonde matrix is defined by

| 1 1
A Ay A
T=| M A A (5.85)
_}"71171 }\371 . )\‘:71 )

Example 1. Transform the state variables in the following equation in order
to uncouple the states:

0 1 0 1

x=| 0 0 1|x+/[0]u (5.86)
24 -26 -9 2

v=[3 3 1]x (5.87)

The characteristic equation |AI — A_| yields the root, ,; = —2, A, =—3, and
A3 = —4. Since eigenvalues are distinct and the A matrix is in companion
form, the Vandermonde matrix can be used as the modal matrix. Using
Eq. (5.85) yields

111
T=|-2 -3 -4
4 9 16

A matrix inversion routine (using a programmable calculator or computer)
yields
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12 7 1
T! =3 —-16 —-12 =2
6 5 1

To show that this procedure does uncouple the states, the matrix system
equations, in terms of the new state vector z, are obtained from Egs. (5.77)

and (5.78) as
-2 0 0 7
zZ= 0 -3 0lz+| —10 |u
0 0 —4 4
y=[1 3 7]z

This confirms that

T'AT=A

Method 2: Adjoint Method

(5.88)

(5.89)

(5.90)

The second method does not require the A matrix to be in companion form.
Premultiplying Eq. (5.82) by T, where the elements of the modal matrix are

defined by T = [v;], yields

AT =TA

The right side of this equation can be expressed in the form

[vit vz e v M 0

Va1 Va2 ot V2 o3
T =

L Va1 V2 Vun 0 7\'n

v Mvin oo Ay
Mvar havey o0 Ay

= . . . . = [7»1V1 Aavy
L 7"lvnl 7&2\7”2 e knvnn

The column vectors v; of the modal matrix

T:[Vl V2 Vn]
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are called the eigenvectors: In terms of the v;, Eq. (5.91) is written as

[Avl Avy, .- Avn] = [Mv] AaVy e knvn] (5.93)
Equating columns on the left and right sides of Eq. (5.93) yields

Av; = \v; (5.94)
This equation can be put in the form

(M —Alv; =0 (5.95)

Equation (5.95) identifies that the eigenvectors® v; are in the null space of
the matrix [A;1 — A]. Using the property M adj M = |[M|I [see Eq. (B.25)] and
letting M =21 — A yields [\ — A] adj [A1— A]= |\ I —AJL Since A; is an
eigenvalue, the characteristic equation is |[A;] — A| = 0. Therefore, this equa-
tion becomes

AT —Aladjiil — Al =0 (5.96)
A comparison of Egs. (5.95) and (5.96) shows that the eigenvector
v; is proportional to any nonzero column of adj[A;,1 — A] (5.97)

Since Eq. (5.77) contains T~', a necessary condition is that T must be
nonsingular. This is satisfied if the v; are linearly independent. When the
eigenvalues are distinct, Eq. (5.95) is a homogeneous equation whose rank is
n —1, and each value of A, yields only one eigenvector v, When the eigenvalue
\; has multiplicity # the rank deficiency o of Eq. (5.95) is 1 <a <r. Rank defi-
ciency denotes that the rank of Eq. (5.95) is # — o.. Then the linearly indepen-
dent eigenvectors v, that satisfy Eq. (5.95) are o in number. If o < r, then the
matrix A cannot be diagonalized.

Example 2. Use adj[AI — A] to obtain the modal matrix for the equations

-9 1 0 2
x=|-26 0 1 (x+|5|u (5.98)
-24 0 0 0
Y=[12 -1)] (5.99)
The characteristic equation |AI — A| =0 yields the roots Ay =—2, A, =—3,
and A; = — 4. These eigenvalues are distinct, but A is not in companion form.
Therefore, the Vandermode matrix is not the modal matrix. Using the adjoint
method 2 gives

*These are sometimes called the right eigenvectors because [A;1 — A] is multiplied on the right by
v; in Eq. (5.95).
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rA+9 -1 0

adj[LI — A] = adj| 26 A —1
24 0 A
% A 1
=] —26L—24 Ar+9) L+9
—24) —24 22+ 9% +26
C 4 -2 1 1
For A, = —2: adj[—2I—A]l=(28 —-14 7 vi=| 7
| 48 24 12 12
C 9 -3 1 1
For L, = -3: adjl-31—A]l=| 54 —-18 6 v,a=16
|72 24 8 8
16 —4 1 1
For \; = —4:  adj[—4I—A]=|80 —20 5 =15
96 —24 6 6

For each A; the columns of adj [A,I — A] are linearly related; i.e., they are
proportional. The v; may be multiplied by a constant and are selected to
contain the smallest integers; often the leading term is reduced to 1. In

practice, it is necessary to calculate only one column of the adjoint matrix.
The modal matrix is

1 1 1
T:[Vl \ ) Vs]: 7 6 5
12 8 6
The inverse is
| —4 2 -1
T“:-E 18 -6 2
—16 4 -1

The matrix equations, in terms of the new state vector z, are

2 0 0 -1
i=| 0 -3 0|z+| -3 |lu=Az+Bu (5.100)
0 0 —4 6
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y=[3 5 s]zzc’z (5.101)

Once each eigenvalue is assigned the designation A;, A,, and A3, they appear
in this order along the diagonal of A. Note that the systems of Examples 1
and 2 have the same eigenvalues, but different modal matrices are required
to uncouple the states.

Method 3: Simultaneous Equation Method

An alternate method for evaluating the » elements of each v; is to form
a set of n equations from the matrix equation, Eq. (5.94). This is illustrated
by the following example.

Example 3. Rework Example 2 using Eq. (5.94). The matrices formed
by using the A matrix of Eq. (5.98) are

-9 1 0| w; Vi
=26 0 1 Vi | =N | vy (5.102)
| 24 0 0 V3 V3i
Performing the multiplication yields
[ =9y + vy Aivii
=26vi;+v3; | = | Ay (5.103)
| —24vy; Aivsi
Each value of }; is inserted in this matrix, and the corresponding elements
are equated to form three equations. For ; = — 2, the equations are
=9yt =—2vy
—26v11 +v31 = —2vy (5.104)
—24v;; = —2v3;

Only two of these equations are independent. This fact can be demonstrated
by inserting v, from the first equation and v3; from the third equation into the
second equation. The result is the identity v;; =v;;. This merely confirms that
|AJd=A]is of rank n — 1 =2. Since there are three elements (vy;, v;, and v3;) in
the eigenvector v; and only two independent equations are obtained from Eq.
(5.102), the procedure is to arbitrarily set one of the elements equal to unity.
Thus, after letting v;; =1, these equations yield

Y11 Y11 1
vV = V21 = 7V1] = 7
V31 12V11 12
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This result is the same as obtained in Example 2. The procedure is repeated to
evaluate v, and vs.

The need to arbitrarily select one of the elements in each column vector
v; can be eliminated by specifying that the desired matrix B'=B,,. In Sec. 5.9
the partial fraction expansion of the transfer function leads to a column
matrix b, containing all 1s, that is,

b,=[1 1 - 1]" (5.105)

To achieve this form for b, the restriction is imposed that b=Tb,. This
produces n equations that are added to the n” equations formed by equating
the elements of AT =TA. Only n* of these equations are independent, and
they can be solved simultaneously for the n* elements of T. The restriction
that b=Tb,, can be satisfied only if the system is controllable (see Sec. 13.2).

Method 4: Reid’s Method [13]
The eigenvectors’ v; that satisfy the equation
(LI —Alv; =0 (5.106)

are said to lie in the null space of the matrix [A;,] — A]. These eigenvectors can
be computed by the following procedure [13]:

1. Use elementary row operation (see Appendix B) to transform
[Ad — A]into HNF.

2. Rearrange the rows of this matrix, if necessary, so that the leading
unit elements of each row appear on the principal diagonal.

3. Identify the column of this matrix that contains a zero on the
principal diagonal. After replacing the zero on the principal
diagonal by — 1, this column vector is identified as the basis vector
for the eigenvector space.

Example 4. Rework Example 2 using method 4.

MN+9 -1 0
DI—Al=| 26 Ao -1 (5.107)
24 0 N

"The eigenvector v; are not unique, because they can be formed by any combination of vectors in
the null space and can be multiplied by any nonzero constant.
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For A; = — 2 this matrix and its HNF normal form are

7 -1 0 10 -4
26 -2 —~1|~|0 1 -}
24 0 -2 00 0

where ~ indicates the result of elementary operations. The eigenvector v, lies
in the space defined by the third column after inserting —1 on the principal
diagonal. This is written as

—1z
vi espany | — (5.108)
-1
Similarly, for A, = -3,
6 —1 0 1 0 —%
26 -3 —-1|~]0 1 g
24 0 -3 00 0

The eigenvector v, lies in the space defined by the third column after inserting
— 1 on the principal diagonal, i.e.,

1
Vv, € span —g (5.109)
-1
Also, for A3 = —4,
5 -1 0 1 0 —%
26 —4 —1[~|0 1 =3
24 0 —4 0 0 0

The eigenvector v; lies in the space defined by the third column after inserting
— 1 on the principal diagonal, i.e.,

= o\ V=

V3 € span (5.110)

The eigenvectors are selected from the one-dimensional spaces indicated in
Egs. (5.108) to (5.110). These vectors are linearly independent. For convenience
the basic vectors can be multiplied by a negative constant such that the
elements are positive integers. Therefore, one selection for the modal matrix is
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1 1 1
T:[Vl \{) V3]: 7 6 5 (5]11)
12 8 6

This coincides with the results of method 2.

Method 5: Eigenvector Method

1. Form the matrix

Sty [x,.l - A}

; (5.112)

2. Use column operations in order to achieve one or more columns in
the form

0
0

0 (5.113)

N <%

3. Then the eigenvector associated with the eigenvalue A; is

-
Il
N <X

Example. Refer to Example 4, Eq. (5.107). With A; = — 2, the matrix S( —2)is

(@) (b)
r 7 -1 07 -0 -1 07 0 -1 0 ]
26 -2 —1 12 -2 -1 0 2 1
S(—2) = | 24 0 —2 24 0 —2 0 0 —2
0 0 1 0 0 1 0o o
0 0 7 1 0 7 | 1 0
L 0 0 1 L o 1] [L12 0 1 |
(5.114)

a. Multiply column 2 by 7 and add it to column 1. This makes the first
element in the first column equal to zero.
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b. Multiply column 3 by 12 and add it to column 1. This makes the
second element equal to zero.

¢. Continue the process until the form shown is achieved.

d. Note that the eigenvector is

1
vi=| 7 (5.115)
12

With &, = — 3, the matrix S(—3) is

6 —1 0 0 -1 0 0 -1 0
26 -3 -1 8§ -3 -1 0 -3 -1
24 0 -3 24 0 -3 0 0 -3
S(-3) = ~ ~
1 0 0 1 0 0 1 0 0
1 0 1 0 6 |v, 1 0
L 0 0 1] L 0 0 1] L8 0 1|
(5.116)
With A3 = — 4, the matrix S(—4) is
5 -1 0] F 0 -1 0] M0 -1 0 ]
26 —4 -1 6 —4 -1 0 -4 -1
24 0 —4 24 0 —4 0 0 —4
S(—4) = ~ ~
1 0 0 1 0o o0 1 0 0
0 1 0 5 1 0 5 1v; 1 0
L 0 0 1] L 0 0 1] L8 0 1|
(5.117)
An alternate method is to leave S(1) in terms of A, that is
TA+9 -1 0 7
26 I -1
_ 24 0 A
SO = [M A} _
I 0 0
0 1 0
L 0 0 J

Using column operations:

1. Multiply column 2 by A + 9 and add to column 1.
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- 0 -1 0
A2+ 90+ 26 A -1
24 0 A
(5.118)
1 0 0
L+9 1 0
L 0 0 1

2. Multiply column 3 by A? 4+ 9 + 26 and add to column 1.

0 —1 0]

0 A ~1

A3 4902 + 260 + 24 0 A
1 0 0

L+9 1 0

A2+ 9% +26 0 1

Note that 1* + 92% 4 261 + 24 = (A + 2)(L + 3)(A + 4).

Method 6: Using MATLAB

MATLAB?s eig function is designed to return the eigenvalues and eigenvectors
of a matrix A, such that if

[T,D] = eig(®)
then
AxT=T=x*xD
Using the A matrix from Example 2, the MATLAB solution is
[T,D] = eig(®)
T =

—0.1270 0.0995 0.0718
—0.6350 0.5970 0.5026
—0.7620 0.7960 0.8615

D=

—4.0000 0 0
0 —3.0000 0
0 0 —2.0000

The vectors of T are unit length versions of the eigenvectors in Eq. (5.111). The
following command verifies that this transformation is correct:

Copyright © 2003 Marcel Dekker, Inc.



lambda = inv (T)*A*T

When the matrix A has multiple eigenvalues, the number of independent eigen-
vectors associated with the eigenvalue may or may not be equal to the
multiplicity of the eigenvalue. This property can be determined by using
method 4. The number of columns of the modified HNF of [A1— A]
containing zeros on the principal diagonal may be equal to r, the multiplicity
of A; When this occurs, the independent eigenvectors are used to form
the modal matrix T, with the result that T~ 'AT = A is a diagonal matrix.

5.11 USE OF STATE TRANSFORMATION FOR THE STATE
EQUATION SOLUTION

The usefulness of the transformation of a matrix to diagonal form is now
illustrated in solving the state equation. In Sec. 3.15 the state equation and its
solution are given, respectively, by

x(t) = Ax(f) + Bu(?) (5.119)

and
t
x(f) = eMx(0) + / AIBu(r) de (5.120)
0

The evaluation of the state transition matrix ¢’ is computed in Sec. 3.14 by
using the Cayley-Hamilton theorem. This procedure is simplified by first
expressing the matrix A in terms of the diagonalized matrix A and the modal
matrix T. Thus, from the development in Sec. 5.10,

A =TAT™! (5.121)

where A is the diagonal matrix given in Eq. (5.82) and T is the modal
matrix given in Eq. (5.92). Using the series representation of ¢*’ given in
Eq. (3.73), and then using Eq. (5.121), yields

AP AP

At _ A AT
eV =1+ Ar+ 1 + 3 +

TAT Y2 (TAT YA
( ) +( ) 4

o -1
=1+ (TAT )t + 3

A AP
:T(l+At+T+T+--- T ! =TeMT! (5.122)
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Since A is a diagonal matrix, the matrix ™ is also diagonal and has the form
e’ 0

N = “ (5.123)

The work of finding the modal matrix T is therefore balanced by the ease of
obtaining ¢, This is illustrated in the following example.

Example. Evaluate e* for the example of Sec. 3.14. The plant matrix A is

]

and the eigenvalues are A; = —2 and A, = — 3. Since A is not in companion
form, the modal matrix is evaluated using method 2, 3,4, or 5 of Sec. 5.10:

T=[vi v]= [_i _i]

Now, using Eqs. (5.122) and (5.123) yields

A
eAI — TeAtT—l — T[e ! 0 }T—l
O e?\,zt

3 21[e® o 1 2
-1 -1 0 3|l -1 -3
[3621 _ 28731 66721 _ 6673t }

_e—2t + e—3t _26—21 + 36_3t

This result is the same as that given in Eq. (3.92).

5.12 TRANSFORMING A MATRIX WITH
COMPLEX EIGENVALUES

The transformation of variables described in Sec. 5.10 simplifies the system
representation mathematically by removing any coupling between the
system modes. Thus, diagonalizing the A matrix produces the decoupled
form of system representation shown in Fig. 5.31. Each state equation corre-
sponding to the normal form of the state equation, Eq. (5.83), has the form

zi(t) = hizi(t) + biu (5.124)
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Since only one state variable z; appears in this equation, it can be solved
independently of all the other states.

When the eigenvalues are complex, the matrix T that produces the
diagonal matrix A contains complex numbers. This property is illustrated for
the differential equation

X — 20% + (07 4+ 03)x = u(r) (5.125)

where wf, =’ + coz and the eigenvalues are &, = o & jw,. Using the phase

variables x; =x and x, = x, the state and output equations are

-0 1 0 5.126
X‘[—mﬁ 20}“’[1}" (5.126)

y=[1 0]x (5.127)

The modes can be uncoupled, but doing so is undesirable, as shown next.
Since the eigenvalues are distinct and A is a companion matrix, the modal
matrix T is the Vandermonde matrix

1 1
T= |:U—|—j(x)d U—j(,\)d:| = [Vl V2] (5128)
When the transformation x =Tz is used [14], the normal form of the state and
output equations obtained from Egs. (5.83) and (5.84) are

1

+Jjo 0 2
P R 24| 1% (5.129)
0 O'—j(l)d _ 1
J204
y=[1 1] (5.130)

The simulation diagram based on these equations is shown in Fig. 5.33.
The parameters in this diagram are complex quantities, which increases the

Az =0~ juy

FIGURE 5.33 Simulation diagram for Egs. (5.129) and (5.130).
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difficulty when obtaining the mathematical solution. Thus, it may be desirable
to perform another transformation in order to obtain a simulation diagram
that contains only real quantities. The pair of complex-conjugate eigenvalues
Ay and A, jointly contribute to one transient mode that has the form of
a damped sinusoid. The additional transformation is z = Qw, where

|

The new state and output equations are

(SIS
NS~ N[~

} (5.131)

w=Q 'AQw+Q 'T"'Bu=A,w+B,u (5.132)

y=CTQw+Du=C,,w+D,u (5.133)
For this example these equations [5]* are in the modified canonical form

L o (OF] 0

W= [—(Dd o i|w+|:l/®di|u (5.134)

y=[1 0]w (5.135)

The simulation diagram for these equations is shown in Fig. 5.34. Note that
only real quantities appear. Also, the two modes have not been isolated,
which is an advantage for complex-conjugate roots.

The effect of the two transformations x =Tz and z = Qw can be consid-
ered as one transformation given by

0
g

x =TQw= |:i :|W=me (5.136)
Comparison of the modified modal matrix T,, in Eq. (5.136) with the original

matrix in Eq. (5.128) shows that

T, =[Re(v;) Im(v)] (5.137)
s Wt 1s Wots W 14 Wity Yo
i <1
1/, twy 1
en o
-ty

FIGURE 5.34 Simulation diagram for Egs. (5.134) and (5.135).

*Although the trajectories in the state space are not drawn here, the result of this transformation
produces trajectories that are symmetrical with respect to the w axes.
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Therefore, T,, can be obtained directly from T without using the Q
transformation.

In the general case containing both complex and real eigenvalues the
modified block diagonal matrix A,, and the resulting matrices B,,, and C,,
have the form

A, = D=y 0y B, =T,'B (5.138)

C, =CT,, (5.139)

With this modified matrix A,, the two oscillating modes produced by the
two sets of complex eigenvalues oy +jm; and o, +jo, are uncoupled.
The column vectors contained in T for the conjugate eigenvalues are also
conjugates. Thus

T=[vi Vi vi Vi vs - V,] (5.140)
The modified modal matrix T,, can then be obtained directly by using

T,=[Re(v); Im(v;)) Re(vs) Im(v;) vs - v,] (5.141)

5.13 TRANSFORMING AN A MATRIX INTO
COMPANION FORM

The synthesis of feedback control systems and the analysis of their response
characteristics is often considerably facilitated when the plant and control
matrices in the matrix state equation have particular forms. The transforma-
tion from a physical or a general state variable x, to the phase variable x is
presented in this section [3,14]. In this case the state equation in terms of the
general state variable is

X, = A,X, +b,u (5.142)
and the transformed state equation in terms of the phase variables is

X = A.X+b.u (5.143)

Copyright © 2003 Marcel Dekker, Inc.



where the companion matrix A, and the vector b, have the respective forms

0 1 0
0 1 0
0 . 0
Ac = bc =
. 0
0 ... 0 1 1
L—a4 —a —a - —ay, —a,1 |
(5.144)

The state equation given by Eq. (5.143) is often described in the literature as
being in the control canonical form. The general state and phase variables are

related by
x, = Tx (5.145)
so that
-1 -1
A, =T AT b.=T"'b, (5.146)

Since the characteristic polynomial is invariant under a similarity transforma-
tion, it can be obtained from Q(A) = |AI — A,| or by the method of Sec. 4.16
and has the form

QW =\'+a, M+ +ak+a (5.147)

Thus, by using the coefficients of Eq. (5.147), the companion matrix can
readily be formed, placing the negatives of the coefficients along the bottom
row of A.

The controllability matrix [see Eq. (13.10)] for the phase-variable state
equation is

M. =[b, Apb, --- Az 'b,]
- 0 1
0
= 0 1
0 1 —a,_q
0 1 —ap1 ‘13,71 —a,2
1 —a,y G =, —ay 1 +2a, 18, 5 —a,

(5.148)
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The matrix M.." in Eq. (5.148) can be formed since the coefficients of the
characteristic polynomial Q(A) are known. The matrix M, expressed in
terms of the transformed matrices of Eq. (5.146) is

Me=[T'b, T'Ab, T'A2, - T'Ar'b,]
=T"[b, Ab, A, - A'B,]|=T7'M, (5.149)

The matrix M,, is obtained by using b, and A, of the general state-variable
equation (5.142). Equation (5.149) yields

-1
T = M,,M, (5.150)
An alternative procedure is to determine T~ as follows:

1. Form the augmented matrix [M,, 1I].

2. Perform elementary row operations (see Sec. 4.16) until this matrix
has the form[M,, T '].

3. The right half of this matrix identifies the required transformation
matrix.

Example. A general state-variable equation contains the matrices

1 6 -3 1
A,=|-1 -1 1 b,=|1 (5.151)
-2 2 0 1
for which the characteristic polynomial is evaluated in Sec. 4.16 as
QM) =1 =3r+2=0A—-1>*A+2) (5.152)
The matrix M, obtained in accordance with Eq. (5.148) is
0 0 1
M,=[0 1 0 (5.153)
1 0 3

The augmented matrix obtained in accordance with step 1 of the procedure is

1 4 -2 17100
My, I]=17 1 -3 : 01 0 (5.154)
1 0 —10 © 0 0 1

*The matrix M, has striped form, that is, the elements constituting the secondary diagonal
(from the lower left to the upper right) are all equal. The same is true of all elements in the lines
parallel to it.
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Performing row operations until this matrix has the form [M,, Tfl] yields

0 0 1 : 1/36 4/36 —5/36
01 0 7/36 -836 1/36|=[Me T'] (5155
1 0 3 : 13/36 52/36 —29/36

The matrix T~ from Eq. (5.155) yields the transformation matrix

-5 41
T=| -6 -1 1 (5.156)
~13 0 1

which produces the desired forms of the matrices

01 0
A=T'AT=| 0 0 1 (5.157)
-2 30
and
0
b. =T 'b,| 0 (5.158)
1

The transformation from the general state variable x, to the phase
variable x can also be accomplished by first obtaining the transfer function
G(s) = cpT [sT — Ap]flbp. Then the state and output equations can be obtained
directly by using Eqgs. (5.38) and (5.44), respectively. The advantage of the
method presented in this section is that it avoids having to obtain the inverse
of the polynomial matrix [s1 — Ap]fl.

5.14 USING MATLAB TO OBTAIN THE COMPANION
A MATRIX

The example in Sec. 513 can be solved for the correct transformation
matrix T by using the MATLAB CAD package. Note the MATLAB built-
in function canon assumes a different definition of companion form.
The MATLAB default companion form may be called right companion
form as the coefficients of the characteristic equation are along the right
column. Using the canon function on the matrices from Eq. (5.151) produces
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the following results:
[Ac, Bc, Cc, Dc, T] =canon (A, B, C, D, ‘companion’)

Ac =
—0.0000 0.0000 —2.0000
1.0000 0 3.0000
—0.0000 1.0000 —0.0000
Bc=
1
0
0
Cc =
3 3 -—15
Dc =
0
T=

0.2778 1.1111 -0.3889
0.1944 —-0.2222 0.0278
0.0278 0.1111 -0.1389

Alternatively, a MATLAB user defined function can be written to calculate
the bottom companion form described in Sec. 5.13. User defined functions
are m-files with predefined inputs and outputs (See App. C). The following
user defined function botcomp is based upon the logic of the canon function:

function [Ac, Bc, Cc, Dc, T] =botcomp (A,B,C,D)

o

oe

BOTCOMP Compute a bottom companion form canonical state-space
realization.

o0 o°

oe

[Ac,Bc,Cc,Dc,T] =botcomp (A,B,C,D) computes the canonical
matrices for a bottom companion form realization and
returns the state transformation matrix T relating the

new state vector z to the old state vector x by z=Tx.

o0 o0 o° o°

o

This algorithm uses the method from D’Azzo and Houpis
Sec. 5.13.

o0 0P

oe

Stuart N. Sheldon
Revision: 0

o0 of
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o

Mcp=ctrb (A, B);

o0 0P

o

Ac = (Mcp\A*Mcp) ;

o0 0P o°

Bc=zeros (length (A), 1);

0P

Bc (length (A), 1) =1;
Mcc=ctrb (Ac, Bc);

oe

0P

T=Mcp* inv (Mcc) ;

o0 oP

0P

Ac=1nv (T) *AxT;

o0 oP

Bc=1nv (T) *B;

oe

Cc=C*T;

o0 oP

% end botcomp

Using the botcomp function on the
following results:

[Ac, Bc, Cc, Dc, T] =botcomp

Ac =
0.0000 1.0000 -—0.0000
0 0.0000 1.0000
—2.0000 3.0000 0
Bc =
0
0
1
Cc =
—24.0000 3.0000 3.0000
Dc =
0
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Form the controllability matrix
(physical form)

to use the transformation

Eg (5.141)

Use Mcp to generate the Companion
form State Matrix

Create an input matrix in
companion form

Compute the companion form
controllability matrix

Compute a transformation matrix
using Eg. (5.143)

Return the companion form state
matrix

Return the companion form
control input matrix

Return the companion form output
matrix

matrices from Eq. (5.151) produces the

(A, B, C, D)



T =

—5.0000 4.0000 1.0000
—6.0000 —1.0000 1.0000
—13.0000 —0.0000 1.0000

Note that these results agree with Egs. (5.156) and (5.157).

5.15 SUMMARY

The foundation has been completed in Chaps. 2 to 5 for analyzing the
performance of feedback control systems. The analysis of such systems and
the adjustments of parameters to achieve the desired performance are covered
in the following chapters. In order to provide clarity in understanding the
principles and to avoid ambiguity, the systems considered in Chaps. 6 to 16
are restricted primarily to single-input, single-output (SISO) systems. The
procedures can be extended to multiple-input multiple-output (MIMO)
systems, and some synthesis techniques for multivariable systems are
presented in Refs. 5 and 6. The block diagram representation containing a
single feedback loop is the basic unit used to develop the various techniques
of analysis.

Since state variables are not unique, there are several ways of selecting
them. One method is the use of physical variables, as in Chap. 2. The selection
of the state variables as phase or canonical variables is demonstrated in
this chapter through the medium of the simulation diagram. This diagram is
similar to an analog-computer diagram and uses integrators, amplifiers, and
summers. The outputs of the integrators in the simulation diagram are defined
as the state variables.

Preparation for overall system analysis has been accomplished by
writing the conventional differential and state equations in Chap. 2, obtaining
the solution of these equations in Chap. 3, introducing the Laplace transform
and MATLAB to facilitate the design procedure in Chap. 4, and incorporating
this into the representation of a complete system in Chap. 5. Matrix methods
are also presented in App. B in preparation for system synthesis via the use of
modern control theory.
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6

Control-System Characteristics

6.1 INTRODUCTION

Open- and closed-loop transfer functions have certain basic characteristics
that permit transient and steady-state analyses of the feedback-controlled
system. Five factors of prime importance in feedback-control systems are
stability, the existence and magnitude of the steady-state error, controllability,
observability, and parameter sensitivity. The stability characteristic of a linear
time-invariant system is determined from the system’s characteristic
equation. Routh’s stability criterion provides a means for determining
stability without evaluating the roots of this equation. The steady-state
characteristics are obtainable from the open-loop transfer function for unity-
feedback systems (or equivalent unity-feedback systems), yielding figures of
merit and a ready means for classifying systems. The first two properties are
developed in this chapter. The remaining properties are presented in Chaps. 12
through 14. Computer-aided-design (CAD) programs like MATLAB [1]
(Appendix C) and TOTAL-PC (Appendix D) are available to assist in the
determination of these system characteristics.
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6.2 ROUTH’S STABILITY CRITERION [2-5]

The response transform X,(s) has the general form given by Eq. (4.32), which is
repeated here in slightly modified form. X;(s) is the driving transform.

Xas) = %Xl (s)
PS)Xi(s)

T b,s" by 5"+ by, 5" 24 -+ bys + by

(6.1)

Sections 4.6, 4.7, and 4.10 describe the methods used to evaluate the
inverse transform %~ ![F(s)] = f(¢). However, before the inverse transfor-
mation can be performed, the characteristic polynomial Q(s) must be
factored. CAD programs are readily available for obtaining the roots of a
polynomial [1,6]. Section 4.13 shows that stability of the response x,()
requires that all zeros of Q(s) have negative real parts. Since it is usually not
necessary to find the exact solution when the response is unstable, a simple
procedure to determine the existence of zeros with positive real parts is
needed. If such zeros of Q(s) with positive real parts are found, the system is
unstable and must be modified. Routh’s criterion is a simple method of
determining the number of zeros with positive real parts without actually
solving for the zeros of Q(s). Note that zeros of Q(s) are poles of X,(s). The
characteristic equation is

O(s) = bys" 4+ by 18" by 5" 2+ -+ bis+by =0 (6.2)

If the b, term is zero, divide by s to obtain the equation in the form of Eq. (6.2).
The b’s are real coefficients, and all powers of s from s” to s’ must be present
in the characteristic equation. A necessary but not sufficient condition for
stable roots is that all the coefficients in Eq. (6.2) must be positive. If any
coefficients other than b, are zero, or if all the coefficients do not have the
same sign, then there are pure imaginary roots or roots with positive real
parts and the system is unstable. In that case it is unnecessary to continue
if only stability or instability is to be determined. When all the coefficients
are present and positive, the system may or may not be stable because
there still may be roots on the imaginary axis or in the right-half s plane.
Routh’s criterion is mainly used to determine stability. In special situations
it may be necessary to determine the actual number of roots in the right-
half s plane. For these situations the procedure described in this section
can be used.

The coefficients of the characteristic equation are arranged in the
pattern shown in the first two rows of the following Routhian array.
These coefficients are then used to evaluate the rest of the constants to
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complete the array.

5" bn bnfl bn74 bn76
Sn_l bn—l bn—3 bn—S bn—7
P ¢ e

Sn_3 dl d2

5! J

SO kl

The constants ¢y, ¢, ¢3, etc., in the third row are evaluated as follows:

_ bn—lbn—Z - bnbn—3

o — > (6.3)
bnflbn74 — bnbn75

_ 6.4

6 = (6.4)

o — b,,_lb,,_; —1 b,b,_7 (6.5)

This pattern is continued until the rest of the C’s are all equal to zero. Then the
d row is formed by using the s" ' and s” 2 rows. The constants are

o b, 3 —b,_10

d, (6.6)
9
_a b,_s — b,_1c3
d, = e (6.7)
dy = b7 —by1¢ (6.8)

4

This process is continued until no more d terms are present. The rest of
the rows are formed in this way down to the s” row. The complete array is
triangular, ending with the s’ row. Notice that the s' and s” rows contain only
one term each. Once the array has been found, Routh’s criterion states that the
number of roots of the characteristic equation with positive real parts is equal to
the number of changes of sign of the coefficients in the first column. Therefore,
the system is stable if all terms in the first column have the same sign.*

The following example illustrates this criterion:

O(s) = 5° + 5" +10s* + 725 + 1525 + 240 (6.9)

*Reference 7 shows that a system is unstable if there is a negative element in any position in
any row. Thus, it is not necessary to complete the Routhian array if any negative number is
encountered.
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The Routhian array is formed by using the procedure described above:

s§ 1 10 152
st 1 72 240
s |—62  —88

s | 70.6 240

st 1226

s | 240

In the first column there are two changes of sign, from 1 to —62 and from — 62
to 70.6; therefore, Q(s) has two roots in the right-half s plane (RHP). Note that
this criterion gives the number of roots with positive real parts but does not tell
the values of the roots. If Eq. (6.9) is factored, the roots are s; = —3, 5, 3 =
—1+,+/3, and 84,5 = +2 £ j4. This calculation confirms that there are two
roots with positive real parts. The Routh criterion does not distinguish
between real and complex roots.

Theorem 1: Division of a Row. The coefficients of any row may be multiplied
or divided by a positive number without changing the signs of the first column.
The labor of evaluating the coefficients in Routh’s array can be reduced by
multiplying or dividing any row by a constant. This may result, for example,
in reducing the size of the coefficients and therefore simplifying the evaluation
of the remaining coefficients.

The following example illustrates this theorem:

0(s) = 5% 4+ 35° + 25" + 95 + 557 + 125+ 20 (6.10)

The Routhian array is

s 1 2 5 20
S 9 R
1 3 4 (after dividing by 3)
st -1 1 20
S| 4 M
1 6 (after dividing by 4)
s 7 20
st 22 (after multiplying by 7)
s" 120

Notice that the size of the numbers has been reduced by dividing the s” row
by 3 and the s° row by 4. The result is unchanged; i.e., there are two changes
of signs in the first column and, therefore, there are two roots with positive
real parts.
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Theorem 2: Zero Coefficient in the First Column. When the first term in
a row is zero but not all the other terms are zero, the following methods
can be used:

1. Substitute s =1/x in the original equation; then solve for the roots
of x with positive real parts. The number of roots x with positive
real parts will be the same as the number of s roots with positive
real parts.

2. Multiply the original polynomial by the factor (s+1), which intro-
duces an additional negative root. Then form the Routhian array for
the new polynomial.

Both of these methods are illustrated in the following example:
Os)=s*+5 +25*+25+5 (6.11)

The Routhian array is

sf11 2 5
s$S11 2
10 5

The zero in the first column prevents completion of the array. The fol-
lowing methods overcome this problem.

METHOD 1. Letting s=1/x and rearranging the polynomial gives
0x) =5x* +2x +2x% +x +1 (6.12)
The new Routhian array is

Y105 201

N W

R ®.%x
|

01 2

There are two changes of sign in the first column. Therefore, there are two
roots of x in the RHP. The number of roots s with positive real parts is also
two. This method does not work when the coefficients of Q(s) and of Q(x) are
identical.
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METHOD 2.
0/()=06)s+1) =5 +25* +353 +45 + 75+ 5

s 1 3 7
st 2 4 5
s’ 2 9
s |—10 10
sl 11

s 110

The same result is obtained by both methods. There are two changes of
sign in the first column, so there are two zeros of Q(s) with positive real parts.
An additional method is described in Ref. 6.

Theorem 3: A Zero Row. When all the coefficients of one row are zero, the
procedure is as follows:

1. The auxiliary equation can be formed from the preceding row,
as shown below.

2. The Routhian array can be completed by replacing the all-zero row
with the coefficients obtained by differentiating the auxiliary equation.

3. The roots of the auxiliary equation are also roots of the original
equation. These roots occur in pairs and are the negative of each
other. Therefore, these roots may be imaginary (complex conju-
gates) or real (one positive and one negative), may lie in quadruplets
(two pairs of complex-conjugate roots), etc.

Consider the system that has the characteristic equation
0)=s"+253 + 115> + 185+ 18 =0 (6.13)
The Routhian array is

11 18

(after dividing by 2)

—_—N = N =

18
9
18
9

s'0 (after dividing by 2)

The presence of a zero row (the s' row) indicates that there are roots that
are the negatives of each other. The next step is to form the auxiliary equation
from the preceding row, which is the s° row. The highest power of s is 5%, and
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only even powers of s appear. Therefore, the auxililary equation is

$£4+9=0 (6.14)
The roots of this equation are

s = +£j3

These are also roots of the original equation. The presence of imaginary roots
indicates that the output includes a sinusoidally oscillating component.
To complete the Routhian array, the auxiliary equation is differentiated

and is

25+0=0 (6.15)
The coefficients of this equation are inserted in the s' row, and the array is then
completed:

st]2

19

Since there are no changes of sign in the first column, there are no roots with
positive real parts.

In feedback systems, covered in detail in the following chapters, the ratio
of the output to the input does not have an explicitly factored denominator.
An example of such a function is

Xo(s)  P(s) K(s+2)

Xi(s)  O(s) s(s+5)s>+25+5)+K(s+2)
The value of K is an adjustable parameter in the system and may be positive
or negative. The value of K determines the location of the poles and therefore
the stability of the system. It is important to know the range of values of K

for which the system is stable. This information must be obtained from the
characteristic equation, which is

Os)=s"+75 + 155 +(25+ K)s + 2K = 0 (6.17)

(6.16)

The coefficients must all be positive in order for the zeros of Q(s) to lie in the
left half of the s plane (LHP), but this condition is not sufficient for stability.
The Routhian array permits evaluation of precise boundaries for K:

st 1 15 2K
s 7 25+ K
's 80 — K 14K
o | 80— K25+ K) — 98K
80 — K
50 14K
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The term 80 — K for the s° row imposes the restriction K < 80, and the s row
requires K> 0. The numerator of the first term in the s' row is equal to
—K* — 43K+ 2000, and this function must be positive for a stable system.
By use of the quadratic formula the zeros of this function are K=28.1 and
K =—711, and the numerator of the s' row is positive between these values.
The combined restrictions on K for stability of the system are therefore
0 < K < 28.1. For the value K = 28.1 the characteristic equation has imaginary
roots that can be evaluated by applying Theorem 3 to form the auxiliary
equation. Also, for K=0, it can be seen from Eq. (6.16) that there is no
output. The methods for selecting the “best” value of K in the range
between 0 and 28.1 are contained in later chapters. It is important to note
that the Routh criterion provides useful but restricted information. Another
method of determining stability is Hurwitz’s criterion [2,8], which establishes
the necessary conditions in terms of the system determinants.

6.3 MATHEMATICAL AND PHYSICAL FORMS

In various systems the controlled variable, labeled C, shown in Fig. 6.1
may have the physical form of position, speed, temperature, rate of change
of temperature, voltage, rate of flow, pressure, etc. Once the blocks in the
diagram are related to transfer functions, it is immaterial to the analysis of
the system what the physical form of the controlled variable may be.
Generally, the important quantities are the controlled quantity ¢, its rate of
change Dc, and its second derivative D7c, that is, the first several derivatives
of ¢, including the zeroth derivative. For any specific control system each
of these “mathematical” functions has a definite “physical” meaning. For
example, if the controlled variable ¢ is position, then Dc is velocity and D¢ is
acceleration. As a second example, if the controlled variable ¢ is velocity,
then Dcis acceleration and D’cis the rate of change of acceleration.

Often the input signal to a system has an irregular form, such as that
shown in Fig. 6.2, that cannot be expressed by any simple equation. This
prevents a straight-forward analysis of system response. It is noted, though,
that the signal form shown in Fig. 6.2 may be considered to be composed of

Rig) + Eis Cis
Gish i

s

Hix

FIGURE 6.1 Simple feedback system.
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FIGURE 6.2 Input signal to a system.

; Ramp
‘ Step /

Farabola

L

FIGURE 6.3 Graphical forms of step, ramp, and parabolic input functions.

three basic forms of known types of input signals, i.e., a step in the region cde, a
ramp in the region 05, and a parabola in the region ef. Thus, if the given linear
system is analyzed separately for each of these types of input signals, there is
then established a fair measure of performance with the irregular input. For
example, consider the control system for a missile that receives its command
input from an interceptor guidance system (see Fig. 5.3). This input changes
slowly compared with the control-system dynamics. Thus, step and ramp
inputs adequately approximate most command inputs. Therefore, the three
standard inputs not only approximate most command inputs but also provide
a means for comparing the performance of different systems.

Consider that the system shown in Fig. 6.1 is a position-control system.
Feedback control systems are often analyzed on the basis of a unit step input
signal (see Fig. 6.3). This system can first be analyzed on the basis that the unit
step input signal r(f) represents position. Since this gives only a limited idea
of how the system responds to the actual input signal, the system can then
be analyzed on the basis that the unit step signal represents a constant velocity
Dr(t) =u_1(?). This in reality gives an input position signal of the form of
a ramp (Fig. 6.3) and thus a closer idea of how the system responds to the
actual input signal. In the same manner the unit step input signal can
represent a constant acceleration, D*r(f)=u_,(7), to obtain the system’s
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performance to a parabolic position input signal. The curves shown in Fig. 6.3
then represent acceleration, velocity, and position.

6.4 FEEDBACK SYSTEM TYPES

The simple closed-loop feedback system, with unity feedback, shown in
Fig. 6.4, may be called a tracker since the output ¢(?) is expected to track or
follow the input #(?). The open-loop transfer function for this system is
G(s) = C(s)/ E(s), which is determined by the components of the actual control
system. Generally G(s) has one of the following mathematical forms:

_ Ky(1 + Tys)(1 + Tys) - - -

9= (14 T,s)(1+ Tps) - -- (6.18)
_ I(l(1 + T]S)(l + TZS) ce
G(s) = s(1+ T,s)(1 + Tps) - -- (6.19)

S (1+ Ts)(1 + Tps) - - -

Note that the constant term in each factor is equal to unity. The preceding
equations are expressed in a more generalized manner by defining the
standard form of the transfer function as

K1 +bis+bs+-- +b,s")

G(s) = s"(1+ ays + ars* + -+ a,s") K G'(s) (6.21)
where

ai, a,, ... = constant coefficients

by, by, ... = constant coefficients

K,, = gain constant of the transfer function G(s)
m=0,1,2,...denotes the transfer function type
G'(s) = forward transfer function with unity gain
The degree of the denominator is #=m +u. For a unity-feedback system,

E and C have the same units. Therefore, K, is nondimensional, K; has the
units of seconds !, K, has the units of seconds 2.

Rist + Eist s

G ig Jo-
Cis) Y

FIGURE 6.4 Unity-feedback control system.
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In order to analyze each control system, a “type” designation is
introduced. The designation is based upon the value of the exponent m of s
in Eq. (6.21). Thus, when m =0, the system represented by this equation is
called a Type 0 system; when m =1, it is called a Type 1 system; when m =2,
it is called a Type 2 system; etc. [See Prob. 6.20 for a Type —1 (m=-1)
system.] Once a physical system has been expressed mathematically, the
analysis is independent of the nature of the physical system. It is immaterial
whether the system is electrical, mechanical, hydraulic, thermal, or a
combination of these. The most common feedback control systems have
Type 0, 1, or 2 open-loop transfer functions, as shown in Egs. (6.18) to (6.20).
It is important to analyze each type thoroughly and to relate it as closely as
possible to its transient and steady-state solution.

The various types exhibit the following steady-state properties:

Type 0: A constant actuating signal results in a constant value for the
controlled variable.

Type 1: A constant actuating signal results in a constant rate of change
(constant velocity) of the controlled variable.

Type 2: A constant actuating signal results in a constant second
derivative (constant acceleration) of the controlled variable.

Type 3: A constant actuating signal results in a constant rate of change
of acceleration of the controlled variable.

These classifications lend themselves to definition in terms of the
differential equations of the system and to identification in terms of the
forward transfer function. For all classifications the degree of the denominator
of G(s)H(s) usually is equal to or greater than the degree of the numerator
because of the physical nature of feedback control systems. That is, in every
physical system there are energy-storage and dissipative elements such that
there can be no instantaneous transfer of energy from the input to the output.
However, exceptions do occur.

6.5 ANALYSIS OF SYSTEM TYPES

The properties presented in the preceding section are now examined in detail
for each type of G(s) appearing in stable unity-feedback tracking systems.
First, remember the following theorems:

Final-value theorem:

,IEEO f@ = lina sF(s) (6.22)
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Difterential theorem:

ZLID" ()] = s" C(s) when all initial conditions are zero  (6.23)

Also, when the input is a polynomial, the steady-state output of a stable
closed-loop system that has unity feedback [ H(s) = 1] has the same form as the
input. Therefore, if the input is a ramp function, the steady-state output must
also include a ramp function plus a constant, and so forth.

From the preceding section, it is seen that the forward transfer function
defines the system type and is generally in the factored form

_Cls) K+ Tyis)(1+ Trs)- -

G(s) = = 6.24
) =E6) = 50 + Tl + Ty)(1 + Tos) - (624)
Solving this equation for E(s) yields
A+ T)A+ Tps)A 4+ Tes)---
E(s) = C 6.25
O =+ T + Ty * €W (6:23)
Thus, applying the final-value theorem gives
1 1 S(l + Tas)(l + Tbs)(l + Tcs) T m
elt)ss = limlsE(s)] = 15’%[ K+ T+ . €
sl Cls)]
= ll—{% X, (6.26)
Thus, applying the final-value theorem to Eq. (6.23) gives
limO s[s™ C(s)] = D" () (6.27)
Therefore, Eq. (6.26) can be written as
D" (1)
_ 2
=" (6.28)
or
K,e(t)s = D" () (6.29)

This equation relates a derivative of the output to the error; it is most useful
for the case where D"'¢(7)ss = constant. Then e(t), must also equal a constant,
that is, e(f)ss = Ey, and Eq. (6.29) may be expressed as

K,,Ey = D" c(t);, = constant = C,, (6.30)
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Note that C(s) has the form

cs) =29 R

1+ G(s)
_ Kl + Tys)(1 + T2s) - -]
TS+ Ts)(1 + Tys) -+ Ky (14 Tys)(1 + Ths) -

R(s)
(6.31)

The expression for E(s) in terms of the input R(s) is obtained as follows:
C(s) 1 G()R(s)  R(s)

E(s) = = = 6.32
) =G6) " GO 1+ 66)  1+606) 6.32)
With G(s) given by Eq. (6.24), ther expression for E(s) is
s"(1 + T,s)(1 + Tps) - - - R(s)
E(s) = 6.33
) = T Tos) (1 + Tys) - + K1+ Tys)(1 + Ta5) - (633)
Applying the final-value theorem to Eq. (6.33) yields
) s"(1 + T,s)(1 + Tys) - - - R(s)
=1
eWss sﬂ%s[sm(l T T+ Tps) -+ K(1 + Tis)(1 + Tos) -
(6.34)

Equation (6.34) relates the steady-state error to the input; it is now analyzed
for various system types and for step, ramp, and parabolic inputs.

Case 1: m=0 (Type 0 System)

STEP INPUT r(t) = Ryu_1(t), R(s) = Ry/s. From Eq. (6.34):

Ry
e(t), = T+ K constant = Ej # 0 (6.35)
Applying the final-value theorem to Eq. (6.31) yields:
K,
= R .
c(f)gs TR (6.36)

From Eq. (6.35) it is seen that a Type 0 system with a constant input
produces a constant value of the output and a constant actuating signal.
[The same results can be obtained by applying Eq. (6.30).] Thus in a Type 0
system a fixed error Ej is required to produce a desired constant output Cy;
that is, Ko E( = ¢(f)ss = constant = C. For steady-state conditions:

ety = r(t)y — )y = Ry — Cy = Ey (6.37)

Differentiating the preceding equation yields Dr(f)ss = Dc(t)ss = 0. Figure 6.5
illustrates these results.
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FIGURE 6.5 Steady-state response of a Type 0 system with a step input.

RAMP INPUT #(t) = Rytu_1(t), R(s) = Ry/s*. From Eq. (6.34), e(f)ss = 0.
Also, by the use of the Heaviside partial-fraction expansion, the particular
solution of e(?) obtained from Eq. (6.33) contains the term [R;/(1+Kj)]z.
Therefore, the conclusion is that a Type 0 system with a ramp-function input
produces a ramp output with a smaller slope; thus, there is an error that
increases with time and approaches a value of infinity, meaning that a Type 0
system cannot follow a ramp input.
Similarly, aType 0 system cannot follow the parabolic input

R,
i) = % Uu_1) (6.38)

since e(?),, = r(t)ss — c(?) s approaches a value of infinity.
Case 2: m=1 (Type 1 System)

STEP INPUT R(s) = Ry/s. From Eq. (6.34), e(?)ss = 0. Therefore, a Type 1
system with a constant input produces a steady-state constant output of
value identical with the input. That is, for aType 1 system there is zero steady-
state error between the output and input for a step input, i.e.,

e(t)ss = r(t)ss - C(t)ss =0 (639)

The preceding analysis is in agreement with Eq. (6.30). That is, for a step input,
the steady-state output must also be a constant ¢(f) = Cyu_;(¢) so that

Dc(t)ss =0= KIE() (640)
or

Ey=0 (6.41)
RAMP INPUT R(s) = R;/s>.. From Eq. (6.34)

R
e(t)y, = — = constant = Ey # 0 (6.42)

1
K
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From Eq. (6.42) it can be seen that aType 1 system with a ramp input produces
a constant actuating signal. That is, in a Type 1 system a fixed error Ej is
required to produce a ramp output. This result can also be obtained from
Eq. (6.30), that is, K1Ey = Dc (f)ss = constant = C). For steady-state conditions:

e(t)y = r(t)gs — c(t) s = Ey (6.43)
For the ramp input

r(t) = Rytu_;(¢) (6.44)
the particular solution for the output has the form of a power series:

c(t)y = Cy + Cit (6.45)
Substituting Egs. (6.44) and (6.45) into Eq. (6.43) yields

Ey=Rit—Cy— Cit (6.46)

This result can occur only with
R, = C (6.47)

This result signifies that the slope of the ramp input and the ramp output are
equal. Of course, this condition is necessary if the difference between input
and output is a constant. Figure 6.6 illustrates these results. The delay of the
steady-state output ramp shown in Fig. 6.6 is equal to

e(t)ss _ 1

Delay = Dr(t) = E (6.48)

PARABOLIC INPUT. () = (Ry*/2)u_,(1), R(s) = Ry/s>. The particular
solution of e(?) obtained from Eq. (6.33) contains the term

Ryt
e(t) = — 6.49
=% (6.49)
Fit)
el
Error = Dr
1 br=rfic
-— Delay

—=Steady state

0 t ——

FIGURE 6.6 Steady-state response of a Type 1 system with a ramp input.
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Therefore, a Type 1 system with a parabolic input produces a parabolic output,
but with an error that increases with time and approaches a value of infinity.
This limit means that a Type 1 system cannot follow a parabolic input.

Case 3: m=2 (Type 2 System)

STEP INPUT R(s) = Ry/s. Performing a corresponding analysis in the
same manner as for Cases 1 and 2 reveals that a Type 2 system can follow a
step input with zero steady-state error, i.e., ¢(?)ss = 1) = Rou.1(¢) and e(?)ss = 0.

RAMP INPUT R(s) = R,/s®>. Performing a corresponding analysis in
the same manner as for Cases 1 and 2 reveals that a Type 2 system can follow
aramp input with zero steady-state error, i.c., ¢(f)ss = H(f) = Ryt and e(?)ss = 0.

PARABOLIC INPUT R(s) = Ry/s°. From Eq. (6.34),

e(t)y = R = constant = E; #£ 0 (6.50)
K,
From Eq. (6.50) it can be seen that a Type 2 system with a parabolic input
produces a parabolic output with a constant actuating signal. That is, in
aType 2 system a fixed error Ey is required to produce a parabolic output.
This result is further confirmed by applying Eq. (6.30), i.e.,

KE, = ch(t)SS = constant = G, (6.51)
Thus, for steady-state conditions
e(t)ys = 1(t)ys — c(t)ss = Ey (6.52)

For a parabolic input given by

2
r(t) = R—u 1(0) (6.53)

the particular solution of the output must be given by the power series
c(t)y = —t + Cit+ Gy (6.54)

Substituting Egs. (6.53) and (6.54) into Eq. (6.52) yields

Ey=—2 -2 _Ct—-GC (6.55)

Differentiating Eq. (6.55) twice results in C; =0 and R, = C,. Therefore,
Ey=—C, and the input and output curves have the same shape but are
displaced by a constant error. Figure 6.7 illustrates the results obtained above.

The results determined in this section verify the properties stated in the
previous section for the system types. The steady-state response characteristics
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FIGURE 6.7 Steady-state response of a Type 2 system with a parabolic input.

for Types 0, 1, and 2 unity-feedback systems are given in Table 6.1 and
apply only to stable systems.

6.6 EXAMPLE: TYPE 2 SYSTEM

A Type 2 system is one in which the second derivative of the output is
maintained constant by a constant actuating signal. In Fig. 6.8 is shown
a positioning system that is aType 2 system, where

K, = motor back-emf constant, V/(rad/s)

K, = potentiometer constant, V/rad

K7 = motor torque constant, 1b.ft/A

A = integrator amplifier gain, s~

K, = generator constant, V/A

T, = J Rgu/(KpK1+ Rg,,B) = motor mechanical constant, s
T, = generator field constant, s

K= Ky/(BR,,, + K;Kp) = overall motor constant, rad/V.s

The motor-generator shown in Fig. 6.8 is a power amplifier and can be
represented by a combination of the circuits shown in Figs. 2.25 and 2.26.
Assuming that the inductances of the generator and motor armatures,
described in Secs. 2.12 and 2.13, are negligible, the transfer function is given
by Eq. (2.135). Figure 6.9 is the block diagram representation of the position
control system shown in Fig. 6.8. Since there are two integrating actions in the
forward path, this is aType 2 system. The forward transfer function is

0o(s) K,

O =Fs "0 Tr5)(1 + T,p9)

(6.56)

where K> = K, AK K,/ Rrhas the units of seconds 2.
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TaBLE 6.1

Steady-State Response Characteristics for Stable Unity-Feedback

Systems
System
type m Mt)ss c(t)ss elt)ss e(oo) Derivatives
Rou_4(t) Ky R Ro Ro Dr=Dc=0
1T+K, © 1+ K, 1+ K
0 Rytu_4(t) KoRy R %) Dr # Dc
t+ C t — C
11K T 1+ Ko 0
Rot* o Ko R 0 Dr + Dc
2 U 211Ky 2(1+ Ko)
+Cit+Cy —Cit—C,
Rou_4(t) Ro 0 0 Dr=Dc=0
1 Ritu_4(2) Rt R R Dr = Dc = R,
1 K‘I K1
Ryt? Rt* R, L oo Dr # Dc
I S I TR
Rou_1(8) Ro 0 0 Dr=Dc=0
2 Rytu_4(t) Ryt 0 0 Dr =Dc = R,
Bl o RE R © i D'r=D'c =y
2 2 Kz 2 2 Dr = Dc = Ryt
R,
4 1
\ '90 Electronic
)" integratar
and amplifier | L‘,-

Potentiometer

e; = Afe, dt } ] ‘

Mechanical linkage

FIGURE 6.8 Position control of a space-vehicle camera (Type 2 system).
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FIGURE 6.9 Block diagram representation of the system of Fig. 6.8.

This Type 2 control system is unstable. As shown in Chap. 10, an
appropriate cascade compensator can be added to the forward path to
produce a stable system. The new transfer function, with 7;>T>, has the form

Ké(l + TIS)

Go(s) = G(s)G(s) = 6.57
0(8) = G()G(s) SA+ T+ Ty)(1 + T59) (6.57)
For a constant input 1(¢) = Ryu_(?) the steady-state value of ¢(?),; is
.| C(9)Ry . Gy (s)
eWss s‘l‘é[s R(s) s ] sl—%[l T Go(s) "} 0 (6.58)
Thus
Ey = r(t), — e(f)yg = Ry — Ry = 0 (6.59)

As expected, a Type 2 system follows a step-function input with no steady-
state error.

6.7 STEADY-STATE ERROR COEFFICIENTS [9]

The definition of system types is the first step toward establishing a set of
standard characteristics that permit the engineer to obtain as much informa-
tion as possible about a given system with a minimum amount of calculation.
Also, these standard characteristics must point the direction in which a given
system must be modified to meet a given set of performance specifications.
An important characterisitic is the ability of a system to achieve the desired
steady-state output with a minimum error. Thus, in this section there are
defined system error coefficients that are a measure of a stable unity-feedback
control system’s steady-state accuracy for a given desired output that is
relatively constant or slowly varying.

In Eq. (6.30) it is shown that a constant actuating signal exists when the
derivative of the output is constant. This derivative is proportional to the
actuating signal E, and to a constant K,,, which is the gain of the forward
transfer function. The conventional names of these constants for the Type 0,
1, and 2, systems are position, velocity, and acceleration error coefficients,
respectively. Since the conventional names were originally selected for
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TaBLE 6.2 Correspondence Between the Conventional and the Authors’
Designation of Steady-State Error Coefficients

Conventional Authors’
designation of designation of
Symbol error coefficients error coefficients
Ky Position Step
K, Velocity Ramp
K, Acceleration Parabolic

application to position-control systems (servomechanisms), these names
referred to the actual physical form of ¢(#) or #(#), which represent position, as
well as to the mathematical form of ¢(?), that is, ¢, D¢, and D’c. These names are
ambiguous when the analysis is extended to cover control of temperature,
velocity, etc. In order to define general terms that are universally applicable,
the authors have selected the terminology step, ramp, and parabolic steady-state
error coefficients. Table 6.2 lists the conventional and the author’s designation
of the error coefficients.

The error coefficients are independent of the system type. They apply to
any system type and are defined for specific forms of the input, i.e., for a step, ramp,
or parabolic input. These error coefficients are applicable only for stable unity-
feedback systems. The results are summarized in Table 6.3.

Steady-State Step Error Coefficient
The step error coefficient is defined as
Step error coefficient

_ steady-state value of output c(¢);;
~ steady-state actuating signal e(r),

/ (6.60)

and applies only for a step input, 1(f) = Ryu_;(¢). The steady-state value of the
output is obtained by applying the final-value theorem to Eq. (6.31):

5 L sG(s) Ry| .. G(s)

Similarly, from Eq. (6.32), for a unity-feedback system

L 1 R, 1
eWss _}Lmo[sl T G(s) s:| _}5’3[1 T G(s)RO} (6.62)
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TaBLE 6.3 Definitions of Steady-State Error Coefficients for Stable Unity-Feedback

Systems

Error Definition of Value of Form of input

coefficient error coefficient error coefficient signal r(t)

Step (K,) c(t)ss lim G(s) Rou_1(t)
e(0)ss 0

Ramp (K,) (De)ss lim sG(s) Ritu_(t)
e(t)ss 0

. 2 . 2 R1t2

Parabolic (K,) (D7c)gs 1111(1)5 G(s) Tu_1(t)
e(t)ss -

Substituting Eqgs. (6.61) and (6.62) into Eq. (6.60) yields

Step error coefficient = = S (6.63)

1
lim| ———R
333[1 + G(s) "]
Since both the numerator and the denominator of Eq. (6.63) in the limit

can never be zero or infinity simultaneously, where K,,, # 0, the indeterminate
forms 0/0 and co/oco never occur. Thus, this equation reduces to

Step error coefficient = lin(1) G(s) = K, (6.64)
Therefore, applying Eq. (6.64) to each type system yields

Ko(l + T]S)(l + Tzs)' .
—K, Type 0 syst 6.65
e T+ Ty + Ty R0 Type Osystem — (6.65)
K

7] o Type 1 system  (6.66)

00 Type 2 system  (6.67).

Steady-State Ramp Error Coefficient

The ramp error coefficient is defined as

steady-state value of derivative of output De(¥)

Ramp error coefficient = —
steady-state actuating signale(?)y

—K, (6.68)
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and applies only for a ramp input, r(f) = Rytu_(?). The first derivative of the output

is given by

sG(s)
1+ G(s)

ZL[Dc] = sC(s) = R(s)

(6.69)

The steady-state value of the derivative of the output is obtained by using the

final-value theorem:

De(t) = hms[sC(s)] = 11 |: 116w s

Similarly, from Eq. (6.32), for a unity-feedback system

1 R ) I R
e(t)ss hm|: 1+ G(S) s2 i| 11—1;%[ 1+ G(S) T:|

Substituting Egs. (6.70) and (6.71) into Eq. (6.68) yields

. G(s)
15‘3[ 1+ G(s)Rl}

11n1|: +G()(R1/s)i|

Ramp error coefficient =

o Rl} = “‘%[1 f(é)(s)

Rl] (6.70)

(6.71)

(6.72)

Since this equation never has the indeterminate form 0/0 or co/oo, it can be

simplified to

Ramp error coefficient = liné sG(s) = K,
Rd

Therefore, applying Eq. (6.73) to each type system yields
sKo(1+ Tys)(1 4+ Tys)---

lim
K — s=>0(1+ Tp8)(1+ Tps)(1+ Tes) -
') K Type 1 system
00 Type 2 system

Steady-State Parabolic Error Coefficient

The parabolic error coefficient is defined as

Parabolic error coefficient

__ steady-state value of second derivative of output ch(t)ss

=0 Type0system

steady-state actuating signal e(7)
=K,
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(6.73)

(6.74)

(6.75)
(6.76)

(6.77)



and applies only for a parabolic input, r(1) = (R>t°/2)u (7). The second derivative
of the output is given by

's G(s)
1+ G(s)

The steady-state value of the second derivative of the output is obtained by
using the final-value theorem:

3
De(t),, =lin3s[szC(s)]=lim|: s G(s) RZ} —lim[ Gs) Rz] (6.79)

LID*c] = s C(s) = R(s) (6.78)

s—0 1 —+ G(S)s—3 - s—0 1 —+ G(S)

Similarly, from Eq. (6.32), for a unity-feedback system
. 1 R . 1 R
e(f)ss = lim [s 1160 s } lim [1 TG0 5 } (6.80)
Substituting Egs. (6.79) and (6.80) into Eq. (6.77) yields

. G(s)
1‘3&[1 + G(s) RZ]

(Rz/sz)]

Parabolic error coefficient =

(6.81)
15‘%[1 + G(s)

Since this equation never has the indeterminate form 0/0 or co/oo, it can be
simplified to

Parabolic error coefficient = lins 's G(s) =K, (6.82)

Therefore, applying Eq. (6.82) to each type system yields

2
. PR+ Tys)(1+ Tys)---
1 = T t .
o e A T (0t Tys)(1 1 T9). O TypeOsystem  (6.83)
“]o Type 1 system  (6.84)
K, Type 2 system  (6.85)

Based upon the steady-state error coefficient definitions and referring
to the corresponding Figs. 6.5 through 6.7, the values of K, Kj, and K, can
also be determined from the computer simulation of the control system.
For example, from Fig. 6.6 and using Eq. (6.48), the gain is K; =1/delay.

6.8 CAD ACCURACY CHECKS: CADAC

When appropriate, the steady-state error coefficient definitions can serve
as CADAC. For example, before entering the G(s) function into a CAD
package, determine the values of K,,,. This step is followed by obtaining the
values of K,, from the expression of G(s) on the computer screen or printed
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FIGURE 6.10 Unity-feedback system.

out by the CAD package. If the two sets of values agree, then the next required
CAD manipulation is performed.

6.9 USE OF STEADY-STATE ERROR COEFFICIENTS

The use of steady-state error coefficients is discussed for stable unity-feedback
systems, as illustrated in Fig. 6.10. Note that the steady-state error coefficients
can only be used to find errors for unity-feedback systems that are also stable.

Type 1 System

For aType 1 system with a step or ramp input considered at steady-state, the
value of (Dc¢), is

Dc(t)ss = KIEO (686)

Thus, the larger, the value of K, the smaller the size of the actuating signal e
necessary to maintain a constant rate of change of the output. From the
standpoint of trying to maintain c¢(f) = r(f) at all times, a larger K; results
in a more sensitive system. In other words, a larger K; results in a greater
speed of response of the system to a given actuating signal e (7). Therefore,
the gain K is another standard characteristic of a system’s performance.
The maximum value K; is limited by stability considerations and is discussed
in later chapters.

For the Type 1 system with a step input, the step error coefficient is equal
to infinity, and the steady-state error is therefore zero. The steady-state output
c(?)ss for aType 1 system is equal to the input when r(f) = constant.

Consider now a ramp input r(f) = Ritu(¢) The steady-state value of
Dc(t)ss is found by using the final-value theorem:

sG(s)

De(1),, = lim s{sC(s)] = lim [STG(S)R(S)] (6.87)

where R(s) = Ry/s* and

_Kl(l =+ Tls)(l + T2S)(1 + TWS)
 s(1 4+ T)(1 + Tys)--- (1 + T,,9)

G(s)
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Inserting these values into Eq. (6.87) gives
sKi(1 + Tys)(1 + Tps) - - - (1 + To,5) Ry

Det) =Tim| *“S(1+ T,s)(1 + Tps) (1 + T,5) & | =Ry
K (1 + T15)(1 + Tps) - - (1 + T,s)

Therefore,
(Dc)ys = (D) (6.88)

The magnitude of the steady-state error is found by using the ramp error
coefficient. From Eq. (6.73).

K, = lina sG(s) = K
s—>

From the definition of ramp error coefficient, the steady-state error is

Dc(t)
e(t)y, = 58 6.89)
(0 ="% (
Since Dc()ss = Dr(?),
Dr R]
= =g =Fo (6.90)

Therefore, a Type 1 system follows a ramp input with a constant error Ej.
Figure 6.11 illustrates these conditions graphically.

Table of Steady-State Error Coefficients

Table 6.4 gives the values of the error coefficients for the Type 0,1, and 2
systems. These values are determined from Table 6.3. The reader should
be able to make ready use of Table 6.4 for evaluating the appropriate error

rit) el )gs

g
| PE,

! Dr=De

0

[

FIGURE 6.11 Steady-state response of a Type 1 system for Dr = constant.
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TaBLE 6.4 Steady-State Error Coefficients for Stable Systems

System Step error Ramp error Parabolic error
type coefficient K, coefficient K, coefficient K,
0 Ko 0 0
1 %) K; 0
2 0 0 K2

coefficient. The error coefficient is used with the definitions given inTable 6.3
to evaluate the magnitude of the steady-state error.

Polynomial Input: ¢+’

Note that aType m system can follow an input of the form 7" with zero steady-
state error. It can follow an input £, but there is a constant steady-state error.
It cannot follow an input "' because the steady-state error approaches
infinity. However, if the input is present only for a finite length of time, the
error is also finite. Then the error can be evaluated by taking the inverse
Laplace transform of Eq. (6.33) and inserting the value of time. The maximum
permissible error limits the time (0 < 7 < ;) that an input 7"+ can be applied to
a control system.

6.10 NONUNITY-FEEDBACK SYSTEM

The nonunity-feedback system of Fig. 6.1 may be mathematically converted
to an equivalent unity-feedback system from which “effective” system type
and steady-state error coefficient can be determined. The control ratio for
Fig. 6.1is

Cls) _  Gs) NG

R(s) 1+ G(s)H(s)  D(s)
and for the equivalent unity-feedback control system of the form of Fig. 6.4, the
control ratio is

C(s)  Gyyls)
R(s) 14 G,(s)

Since the transfer functions G(s) and H(s) are known, equating Egs. (6.91)
and (6.92) yields

(6.91)

(6.92)

N(s)

Ged®) = D5y = NGs)

(6.93)

Copyright © 2003 Marcel Dekker, Inc.



G ™

|-

|+

FIGURE 6.12 Equivalent nonunity feedback representation of Fig. 6.1.

When the nonunity-feedback system is stable, its steady-state
performance characteristics can be determined based on Eq. (6.93).
Equation (6.91) can also be expressed in the form

CGs) _ [ G(s)H(s)

R(s) |14 G(s)H(s)

Thus, the nonunity feedback system of Fig. 6.1 can be represented by the
block diagram of Fig. 6.12 in accordance with Eq. (6.94). This diagram shows a
unity feedback system in cascade with 1/ H(s). When His a constant, Fig. 6.12 is
an especially useful representation that permits the design to be performed
using unity feedback methods.

1
} e (6.94)

6.1 SUMMARY

In this chapter the physical forms of the reference input and the controlled
variable are related to the mathematical representations of these quantities.
Since, in general, the forward transfer functions of most unity feedback
control systems fall into three categories, they can be identified as Type 0, 1,
and 2 systems. The associated definitions of the steady-state error coefficients
readily provide information that is indicative of a stable system’s steady-state
performance. Thus, a start has been made in developing a set of standard
characteristics. A nonunity-feedback system can also be represented by
an equivalent unity-feedback system having the forward transfer function
Geq(s) (see Sec. 6.9). Then the steady-state performance can be evaluated on
the basis of the system type and the error coefficients determined from Gq(s).
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7

Root Locus

7.1 INTRODUCTION

A designer uses the time response of a system to determine if his or her design
of a control system meets specifications. An accurate solution of the system’s
performance can be obtained by deriving the differential equations for the
control system and solving them. However, if the response does not meet
specifications, it is not easy to determine from this solution just what physical
parameters in the system should be changed to improve the response.
A designer wishes to be able to predict a system’s performance by an analysis
that does not require the actual solution of the differential equations. Also, the
designer would like this analysis to indicate readily the manner or method by
which this system must be adjusted or compensated to produce the desired
performance characteristics.

The first thing that a designer wants to know about a given system is
whether or not it is stable. This can be determined by examining the roots
obtained from the characteristic equation 1+ G(s)H(s)=0. By applying
Routh’s criterion to this equation, it is possible in short order to determine
stability without solving for the roots. Yet this does not satisfy the designer
because it does not indicate the degree of stability of the system, i.e., the
amount of overshoot and the settling time of the controlled variable. Not only
must the system be stable, but also the overshoot must be maintained within
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prescribed limits and transients must die out in a sufficiently short time. The
graphical methods described in this text not only indicate whether a system is
stable or unstable but, for a stable system, also show the degree of stability. A
number of commercially available computer-aided-design (CAD) programs
can be used to obtain the solution. MATLAB is used as the main CAD
program in this text and its use is described in Appendix C.The CAD program
TOTAL-PC is described in Appendix D and is especially useful for root locus
and frequency response design. In addition to the time response, a designer
can choose to analyze and interpret the steady-state sinusoidal response of
the transfer function of the system to obtain an idea of the system’s response.
This method is based upon the interpretation of a Nyquist plot, discussed in
Chaps. 8 and 9. The frequency-response approach yields enough information
to indicate whether the system needs to be adjusted or compensated and how
the system should be compensated.

This chapter deals with the root-locus method [1,2], which incorporates
the more desirable features of both the classical and the frequency-response
methods. The root locus is a plot of the roots of the characteristic equation of the
closed-loop system as a function of the gain of the open-loop transfer function.
With relatively small effort this graphical approach yields a clear indication
of the effect of gain adjustment. The underlying principle is that the poles of
C(s)/R(s) (transient-response modes) are related to the zeros and poles of the
open-loop transfer function G(s)H(s) and also to the gain. This relationship is
shown by Eq. (5.4), which is repeated here:

) _ G

R(s) 1+ G(s)H(s) (7.1)

An important advantage of the root-locus method is that the roots of the
characteristic equation of the system can be obtained directly. This yields
a complete and accurate solution of the transient and steady-state response
of the controlled variable. Also, an approximate solution can be obtained
with a reduction of the work required. A person can readily obtain proficiency
with the root-locus method. With the help of a CAD program, such as
MATLAB or TOTAL-PC (see Appendixes C and D), it is possible to design
a system with relative ease.

7.2 PLOTTING ROOTS OF A CHARACTERISTIC EQUATION

To give a better insight into root-locus plots, consider the position-control
system shown in Fig. 7.1. The motor produces a torque 7{(s) that is proportional
to the actuating signal E(s). The load consists of the combined motor
and load inertia J and viscous friction B. The forward transfer function
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Ris)=8,1s) 4 Eis) T(s) Cls)=8y(3)
oy e
- J

Amplifier il
and motor

FIGURE 7.1 A position-control system.

(see Sec. 2.12) is
0,00 A/ K

G(s) = E(s) “ s(s+B/J) :s(s+a) (7:2)
where K = A/J and a = B/J. Assume that a = 2. Thus
Gy =W __K (7.3)

E(s)  s(s+2)

When the transfer function is expressed with the coefficients of the highest
powers of s in both the numerator and the denominator polynomials equal to
unity, the value of K is defined as the static loop sensitivity. The control ratio
(closed-loop transfer function), using Eq. (7.1), is

sy K K o,
R(s) s(s+2)+K 2425+ K s>+ 2w, + o2

where 0, = VK, { = 1/+/K, and K is considered to be adjustable from zero
to an infinite value. The design problem is to determine the roots of the
characteristic equation for all values of K and to plot these roots in the s
plane. The roots of the characteristic equation, s*> + 2s + K = 0, are given by

Sl,zz—lﬂ:\/l—K (75)

For K=0, the roots are s; =0 and s, = —2, which also are the poles of the
open-loop transfer function given by Eq. (7.3). When K=1, then s, =—1.
Thus, when 0 < K < 1, the roots sy » are real and lie on the negative real axis
of the s plane between —2 and —1 and 0 to —1, respectively. For the case where
K > 1,the roots are complex and are given by

s12 = 0 tjog = Lo, £jo,/1 - =—-1+;VK -1 (7.6)

Note that the real part of all the roots is constant for all values of K > 1.

The roots of the characteristic equation are determined for a number of
values of K (see Table 7.1) and are plotted in Fig. 7.2. Curves are drawn through
these plotted points. On these curves, containing two branches, lie all possible
roots of the characteristic equation for all values of K from zero to infinity.

(7.4)
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TaBLE 7.1 Location of Roots for the Characteristic Equation

$P4+25s+K=0
K Sq Sy
0 -0 +,0 -2.0 —/0
0.5 —0.293 +,0 —-1.707 —j0
0.75 —0.5 +/0 —-1.56 —/0
1.0 —-1.0 +,0 —-1.0 —/0
2.0 —-1.0 +/1.0 —-1.0 —j10
3.0 —1.0 +/1.414 —1.0 —j1.414
50.0 —-1.0 +,7.0 -1.0 —57.0
T ) jw
K
1,20
5 plane
3.0
@L--jl,o
K=005 |10 | K=p
=2 -1 0.5 ]
30 110
2.0
T -j20
K

=

FIGURE 7.2 Plot of all roots of the characteristic equation s2 +2s+ K =0 for
0 < K < o0. Values of K are underlined.

Note that each branch is calibrated with K as a parameter and the values of K
at points on the locus are underlined; the arrows show the direction of
increasing values of K. These curves are defined as the root-locus plot of Eq. (7.4).
Once this plot is obtained, the roots that best fit the system performance
specifications can be selected. Corresponding to the selected roots there is
a required value of K that can be determined from the plot. When the roots
have been selected, the time response can be obtained. Since this process
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of finding the root locus by calculating the roots for various values of K
becomes tedious for characteristic equations of order higher than second,
a simpler method of obtaining the root locus would be preferable. The
graphical methods for determining the root-locus plot are the subject of this
chapter. CAD methods are used to facilitate obtaining the root locus.

The value of K is normally considered to