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Preface

During my experience of teaching aircraft structures I have felt the need for a text-
book written specifically for students of aeronautical engineering. Although there
have been a number of excellent books written on the subject they are now either
out of date or too specialist in content to fulfil the requirements of an undergraduate
textbook. My aim, therefore, has been to fill this gap and provide a completely self-
contained course in aircraft structures which contains not only the fundamentals of
elasticity and aircraft structural analysis but also the associated topics of airworthi-
ness and aeroelasticity.

The book is intended for students studying for degrees, Higher National Diplomas
and Higher National Certificates in aeronautical engineering and will be found of
value to those students in related courses who specialize in structures. The subject
matter has been chosen to provide the student with a textbook which will take him
from the beginning of the second year of his course, when specialization usually
begins, up to and including his final examination. I have arranged the topics so
that they may be studied to an appropriate level in, say, the second year and then
resumed at a more advanced stage in the final year; for example, the instability of
columns and beams may be studied as examples of structural instability at second
year level while the instability of plates and stiffened panels could be studied in the
final year. In addition, I have grouped some subjects under unifying headings to
emphasize their interrelationship; thus, bending, shear and torsion of open and
closed tubes are treated in a single chapter to underline the fact that they are just
different loading cases of basic structural components rather than isolated topics. I
realize however that the modern trend is to present methods of analysis in general
terms and then consider specific applications. Nevertheless, I feel that in cases
such as those described above it is beneficial for the student’s understanding of the
subject to see the close relationships and similarities amongst the different portions
of theory.

Part 1 of the book, ‘Fundamentals of Elasticity’, Chapters 1-6, includes sufficient
elasticity theory to provide the student with the basic tools of structural analysis.
The work is standard but the presentation in some instances is original. In Chapter
4 T have endeavoured to clarify the use of energy methods of analysis and present a
consistent, but general, approach to the various types of structural problem for
which energy methods are employed. Thus, although a variety of methods are dis-
cussed, emphasis is placed on the methods of complementary and potential energy.



x Preface

Overall, my intention has been to give some indication of the role and limitations of
each method of analysis.

Part I1, ‘Analysis of Aircraft Structures’, Chapters 7—11, contains the analysis of the
thin-walled, cellular type of structure peculiar to aircraft. In addition, Chapter 7
includes a discussion of structural materials, the fabrication and function of structural
components and an introduction to structural idealization. Chapter 10 discusses the
limitations of the theory presented in Chapters 8 and 9 and investigates modifications
necessary to account for axial constraint effects. An introduction to computational
methods of structural analysis is presented in Chapter 11 which also includes some
elementary work on the relatively modern finite element method for continuum
structures.

Finally, Part III, ‘Airworthiness and Aeroelasticity’, Chapters 12 and 13, are self
explanatory.

Worked examples are used extensively in the text to illustrate the theory while
numerous unworked problems with answers are listed at the end of each chapter;
S.L units are used throughout.

I am indebted to the Universities of London (L.U.) and Leeds for permission to
include examples from their degree papers and also the Civil Engineering Department
of the University of Leeds for allowing me any facilities I required during the prepara-
tion of the manuscript. I am also extremely indebted to my wife, Margaret, who will-
ingly undertook the onerous task of typing the manuscript in addition to attending to
the demands of a home and our three sons, Andrew, Richard and Antony.

T.H.G. Megson



Preface to Second Edition

The publication of a second edition has given me the opportunity to examine the
contents of the book in detail and determine which parts required alteration and
modernization. Aircraft structures, particularly in the field of materials, is a rapidly
changing subject and, while the fundamentals of analysis remain essentially the
same, clearly an attempt must be made to keep abreast of modern developments.
At the same time I have examined the presentation making changes where I felt it
necessary and including additional material which I believe will be useful for students
of the subject.

The first five chapters remain essentially the same as in the first edition except for
some minor changes in presentation.

In Chapter 6, Section 6.12 has been rewritten and extended to include flexural—
torsional buckling of thin-walled columns; Section 6.13 has also been rewritten to
present the theory of tension field beams in a more logical form.

The discussion of composite materials in Chapter 7 has been extended in the light of
modern developments and the sections concerned with the function and fabrication of
structural components now include illustrations of actual aircraft structures of differ-
ent types. The topic of structural idealization has been removed to Chapter 8.

Chapter 8 has been retitled and the theory presented in a different manner. Matrix
notation is used in the derivation of the expression for direct stress due to unsymme-
trical bending and the ‘bar’ notation discarded. The theory of the torsion of closed
sections has been extended to include a discussion of the mechanics of warping,
and the theory for the secondary warping of open sections amended. Also included
is the analysis of combined open and closed sections. Structural idealization has
been removed from Chapter 7 and is introduced here so that the effects of structural
idealization on the analysis follow on logically. An alternative method for the calcu-
lation of shear flow distributions is presented.

Chapter 9 has been retitled and extended to the analysis of actual structural com-
ponents such as tapered spars and beams, fuselages and multicell wing sections. The
method of successive approximations is included for the analysis of many celled wings
and the effects of cut-outs in wings and fuselages are considered. In addition the cal-
culation of loads on and the analysis of fuselage frames and wing ribs is presented. In
addition to the analysis of structural components composite materials are considered
with the determination of the elastic constants for a composite together with their use
in the fabrication of plates.



xii Preface to Second Edition

Chapter 10 remains an investigation into structural constraint, although the pre-
sentation has been changed particularly in the case of the study of shear lag. The
theory for the restrained warping of open section beams now includes general systems
of loading and introduces the concept of a moment couple or bimoment.

Only minor changes have been made to Chapter 11 while Chapter 12 now includes
a detailed study of fatigue, the fatigue strength of components, the prediction of
fatigue life and crack propagation. Finally, Chapter 13 now includes a much more
detailed investigation of flutter and the determination of critical flutter speed.

I am indebted to Professor D. J. Mead of the University of Southampton for
many useful comments and suggestions. I am also grateful to Mr K. Broddle of
British Aerospace for supplying photographs and drawings of aircraft structures.

T.H.G. Megson
1989



Preface to Third Edition

The publication of a third edition and its accompanying solutions manual has allowed
me to take a close look at the contents of the book and also to test the accuracy of the
answers to the examples in the text and the problems set at the end of each chapter.

I have reorganized the book into two parts as opposed, previously, to three. Part 1,
Elasticity, contains, as before, the first six chapters which are essentially the same except
for the addition of two illustrative examples in Chapter 1 and one in Chapter 4.

Part I, Chapters 7 to 13, is retitled Aircraft structures, with Chapter 12, Airworthi-
ness, now becoming Chapter 8, Airworthiness and airframe loads, since it is logical
that loads on aircraft produced by different types of manoeuvre are considered
before the stress distributions and displacements caused by these loads are calculated.

Chapter 7 has been updated to include a discussion of the latest materials used in
aircraft construction with an emphasis on the different requirements of civil and
military aircraft.

Chapter 8, as described above, now contains the calculation of airframe loads
produced by different types of manoeuvre and has been extended to consider the
inertia loads caused, for example, by ground manoeuvres such as landing.

Chapter 9 (previously Chapter 8) remains unchanged apart from minor corrections
while Chapter 10 (9) is unchanged except for the inclusion of an example on the
calculation of stresses and displacements in a laminated bar; an extra problem has
been included at the end of the chapter.

Chapter 11 (10), Structural constraint, is unchanged while in Chapter 12 (11) the
discussion of the finite element method has been extended to include the four node
quadrilateral element together with illustrative examples on the calculation of element
stiffnesses; a further problem has been added at the end of the chapter.

Chapter 13, Aeroelasticity, has not been changed from Chapter 13 in the second
edition apart from minor corrections.

I am indebted to, formerly, David Ross and, latterly, Matthew Flynn of Arnold for
their encouragement and support during this project.

T.H.G. Megson
1999
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Basic elasticity

We shall consider, in this chapter, the basic ideas and relationships of the theory of
elasticity that are necessary for the development of the analytical work in the
remainder of the book. The treatment is divided into three broad sections: stress,
strain and stress—strain relationships. The third section is deferred until the end of
the chapter to emphasize the fact that the analysis of stress and strain, for example
the equations of equilibrium and compatibility, does not assume a particular
stress—strain law. In other words, the relationships derived in Sections 1.1 to 1.14
inclusive are applicable to non-linear as well as linearly elastic bodies.

1.1 Stress

Consider the arbitrarily shaped, three-dimensional body shown in Fig. 1.1. The body
is in equilibrium under the action of externally applied forces P, P,... and is
assumed to comprise a continuous and deformable material so that the forces are
transmitted throughout its volume. Thus, at any internal point O there is a resultant
force 6 P. The particle of material at O subjected to the force 6P is in equilibrium so
that there must be an equal but opposite force § P (shown dotted in Fig. 1.1) acting on
the particle at the same time. If we now divide the body by any plane nn containing O
then these two forces P may be considered as being uniformly distributed over a
small area 64 of each face of the plane at the corresponding points O as in Fig. 1.2.
The stress at O is then defined by the equation

6P
S = lim - ,
tress éAlHO 6A (1 1)

The directions of the forces 6P in Fig. 1.2 are such as to produce tensile stresses on
the faces of the plane nn. It must be realized here that while the direction of 67 is
absolute the choice of plane is arbitrary, so that although the direction of the stress
at O will always be in the direction of §P its magnitude depends upon the actual
plane chosen since a different plane will have a different inclination and therefore a
different value for the area 64. This may be more easily understood by reference to
the bar in simple tension in Fig. 1.3. On the cross-sectional plane mm the uniform
stress is given by P/A, while on the inclined plane m'n’ the stress is of magnitude
P/A4’. In both cases the stresses are parallel to the direction of P.



4 Basic elasticity

Fig. 1.1 Internal force at a point in an arbitrarily shaped body.

Generally, the direction of 6 P is not normal to the area §4, in which case it is usual
to resolve 6P into two components: one, §P,, normal to the plane, the other 6P,
acting in the plane itself (see Fig. 1.2). The stresses associated with these components
are a normal or direct stress defined as

. 6P,
o= lm 54 (1.2)
and a shear stress defined as
. 0P
=054 (13

The resultant stress is computed from its components by the normal rules of vector
addition, namely

Resultant stress = v 0% + 72

Ps
Fig. 1.2 Internal force components at the point O.



1.2 Notation for forces and stresses

\A

P

Fig. 1.3 Values of stress on different planes in a uniform bar.

However, to be strictly accurate, stress is not a vector quantity for, in addition to
magnitude and direction, we must specify the plane on which the stress acts. Stress is
therefore a tensor, its complete description depending on the two vectors of force and
surface of action.

1.2 Notation for forces and stresses

It is usually convenient to refer the state of stress at a point in a body to an orthogonal
set of axes Oxyz. In this case we cut the body by planes parallel to the direction of the
axes. The resultant force 6P acting at the point O on one of these planes may then be
resolved into a normal component and two in-plane components as shown in Fig. 1.4,
thereby producing one component of direct stress and two components of shear
stress.

The direct stress component is specified by reference to the plane on which it
acts but the stress components require a specification of direction in addition to the
plane. We therefore allocate a single subscript to direct stress to denote the plane
on which it acts and two subscripts to shear stress, the first specifying the plane,
the second direction. Thus in Fig. 1.4, the shear stress components are 7., and 7.,
acting on the z plane and in the x and y directions respectively, while the direct
stress component is o,.

We may now completely describe the state of stress at a point O in a body by
specifying components of shear and direct stress on the faces of an element of side
bx, by, 6z, formed at O by the cutting planes as indicated in Fig. 1.5.

The sides of the element are infinitesimally small so that the stresses may be
assumed to be uniformly distributed over the surface of each face. On each of the
opposite faces there will be, to a first simplification, equal but opposite stresses.

5
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._k——Cutting plane

X
" _Resultant stress

Fig. 1.4 Components of stress at a point in a body.

We shall now define the directions of the stresses in Fig. 1.5 as positive. Thus,
normal stresses directed away from their related surfaces are tensile and positive,
opposite compressive stresses are negative. Shear stresses are positive when they act
in the positive direction of the relevant axis in a plane on which the direct tensile
stress is in the positive direction of the axis. If the tensile stress is in the opposite

y
Oy
3x
Oz
bV
T,
Xy 8y
Ox > Ox
Txz
X

Sz

z

Fig. 1.5 Sign conventions and notation for stresses at a point in a body.



1.3 Equations of equilibrium

direction then positive shear stresses are in directions opposite to the positive direc-
tions of the appropriate axes.

Two types of external force may act on a body to produce the internal stress system
we have already discussed. Of these, surface forces such as P\, P, ..., or hydrostatic
pressure, are distributed over the surface area of the body. The surface force per unit
area may be resolved into components parallel to our orthogonal system of axes and
these are generally given the symbols X, Y and Z. The second force system derives
from gravitational and inertia effects and the forces are known as body forces.
These are distributed over the volume of the body and the components of body
force per unit volume are designated X, Y and Z.

1.3 Equations of equilibrium

Generally, except in cases of uniform stress, the direct and shear stresses on opposite
faces of an element are not equal as indicated in Fig. 1.5 but differ by small amounts.
Thus if, say, the direct stress acting on the z plane is o, then the direct stress acting on
the z+ éz plane is, from the first two terms of a Taylor’s series expansion,
o, + (00./0z)éz.

We now investigate the equilibrium of an element at some internal point in an
elastic body where the stress system is obtained by the method just described.

In Fig. 1.6 the element is in equilibrium under forces corresponding to the stresses
shown and the components of body forces (not shown). Surface forces acting on the
boundary of the body, although contributing to the production of the internal stress
system, do not directly feature in the equilibrium equations.

y day,
oy, t E 8)/
aTyl aTy,(
T, + 3y Sy Sx Tyx + 3y 8y
or /0',
Tzy + 4 8 // 8y
dz \\\ Tz // arx
——— | Ty + 3 Y3
Txz X \ l X
- 7 . 0o,
s ._____..l( / 2y | —— o, + B Sx
\ . — a X
Ty ’ Txz
/" Tyz Tuz + a_ 8
—— X
T 8z
o ot
! T+ —2= 8
[ 0z
[ o, 1
o+ =— 3
0z o,
z

Fig. 1.6 Stresses on the faces of an element at a point in an elastic body.
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Taking moments about an axis through the centre of the element parallel to the =z

axis
Ty yé’z% + <T~\‘y + 88\, o v) oybz 62 f‘._‘.é,\‘é’z%
- ( oy 88) >6A6_% =0
which simplifies to
T byézéx + 887;‘) ¥ y&z(i;ﬁ — T\ Ox628y — oy X6z (é;)z =0

Dividing through by éxéyéz and taking the limit as éx and éy approach zero

Txy = Typx
Similarly Ty = Toy (1.4)
Tee =T,

Now considering the equilibrium of the element in the x direction

.- .
oo+ 0% 5 ) 6387 — 0,867 + ( oy + 2 6y )66z
Ox . Ay

- T, 0x62 + <T_~A\, + 8(;_\ 62) 5xdy

— T 6x0y + Xoxbybz =0
which gives

do, 0Ty OTy
(9x+ By + == - +X=0

Or, writing 7, = 7, and 7, = 7., from Eqs (1.4)

do aT.\')' 07 _
ettt X =0
Similarly %}+8g‘\j‘ +a—;’—~+ Y =0 (1.5)
802 aTz.\‘ or. Toy _
pe + Bx + By +Z=0

The equations of equilibrium must be satisfied at all interior points in a deformable
body under a three-dimensional force system.

1.4 Plane stress

Most aircraft structural components are fabricated from thin metal sheet so that
stresses across the thickness of the sheet are usually negligible. Assuming, say, that
the z axis i1s in the direction of the thickness then the three-dimensional case of
Section 1.3 reduces to a two-dimensional case in which o., 7. and 7,. are all zero.



1.5 Boundary conditions

This condition is known as plane stress; the equilibrium equations then simplify to

do, Oy

X=0
OX Ay (1.6)
(90\ ()7"\
+ +Y=0
Oy ox

1.5 Boundary conditions

The equations of equilibrium (1.5) (and also (1.6) for a two-dimensional system)
satisfy the requirements of equilibrium at all internal points of the body. Equilibrium
must also be satisfied at all positions on the boundary of the body where the compo-
nents of the surface force per unit area are X, ¥ and Z. Thus, the triangular element
of Fig. 1.7 at the boundary of a two-dimensional body of unit thickness is in equili-
brium under the action of surface forces on the element AB of the boundary and
internal forces on internal faces AC and CB.
Summation of forces in the x direction gives

Xbs — 06y — 1,.0x + X $6x6y =0
which, by taking the limit as x approaches zero, becomes
- d1 dx
X — il
Ty T
The derivatives dy/ds and dx/ds are the direction cosines / and m of the angles that
a normal to AB makes with the x and ) axes respectively. Hence
X=0ld+ TyxM
and in a similar manner Y =oum+ 71l
A relatively simple extension of this analysis produces the boundary conditions for
a three-dimensional body, namely

I

o + T+ T
O+ Tyl + 10 (1.7)
o+ Tom A Tl

N = >
I

B
=<t

Ty

o
x/
@
x|

c

0 X

Fig. 1.7 Stresses on the faces of an element at the boundary of a two-dimensional body.
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where /, m and n become the direction cosines of the angles that a normal 1o the
surface of the body makes with the x, y and z axes respectively.

1.6 Determination of stresses on inclined planes

The complex stress system of Fig. 1.6 is derived from a consideration of the actual
loads applied to a body and is referred to a predetermined, though arbitrary,
system of axes. The values of these stresses may not give a true picture of the severity
of stress at that point so that it is necessary to investigate the state of stress on other
planes on which the direct and shear stresses may be greater.

We shall restrict the analysis to the two-dimensional system of plane stress defined
in Section 1.4.

Figure 1.8(a) shows a complex stress system at a point in a body referred to axes
Ox, Oy. All stresses are positive as defined in Section 1.2. The shear stresses 7,
and 7,, were shown to be equal in Section 1.3. We now, therefore, designate them
both 7,,. The element of side éx, 6y and of unit thickness is small so that stress
distributions over the sides of the element may be assumed to be uniform. Body
forces are ignored since their contribution is a second-order term.

Suppose that we require to find the state of stress on a piane AB inclined at an angle
@ to the vertical. The triangular element EDC formed by the plane and the vertical
through E is in equilibrium under the action of the stresses shown in Fig. 1.8(b),
where o, and 7 are the direct and shear components of the resuitant stress on AB.
Then resolving forces in a direction perpendicular to ED we have

0,ED = 0,ECcos 8 + ,CDsin @ + 7,,ECsin 0 + 7,,CD cos §
Dividing through by ED and simplifying
0, = 0,Cos* 0+ o, sin® @ + Ty SiN 260 (1.8)
Now resolving forces parallel to ED
7ED = 6,ECsinf — 6,CDcos ¢ — 7,,ECcos 0 + 7,,CD sin 6

A Ty
ﬂu s > Txy E
E 5x |V -
9 By o o, ‘9
oy .
T
Tyl Gl D e D
Txy \ T,,;- T
0 AN
- x o,
(a) {b)

Fig. 1.8 (a) Stresses on a two-dimensional element; (b) stresses on an inclined plane at the point.



1.7 Principal stresses

Again dividing through by ED and simplifying

r= (U"‘%sin 20 — 7, 0520 (1.9)

1.7 Principal stresses

For given values of o, 0, and 7, in other words given loading conditions, o, varies
with the angle # and will attain a maximum or minimum value when da, /df = 0.
From Eq. (1.8)

d

% = —20,cosfsint + 20, sinfcos b + 27, cos 20 = 0
Hence

—(oy —0,)sin20 + 27, cos 26 = 0
or
27y,
tan29:———7") (1.10)
Ox — (TJ'

Two solutions, ¢ and 6 + /2, are obtained from Eq. (1.10) so that there are two
mutually perpendicular planes on which the direct stress is either a maximum or a
minimum. Further, by comparison of Eqs (1.10) and (1.9) it will be observed that
these planes correspond to those on which there is no shear stress. The direct stresses
on these planes are called principal stresses and the planes themselves, principal planes.

From Eq. (1.10)

274, = o
Sin 29 — T.\,\ , cos 29 _ 0‘,\ (TJ
\/(0.\‘ - U)')z + 47—.\2‘)' \/(J.r - 01‘)2 + 47—,3_\'
and
~27, —(o, — 0o,
sin2(0 + w/2) = Ty . cos2(0+7/2) = (0~ o)
\/ia.\' - U_)')Z + 47—.%)' \/(0,\‘ - U_r)z + 47—.\2')‘
Rewriting Eq. (1.8) as
oy = %(l + cos 20) + %(l — €08 20) + 7, sin 260
and substituting for {sin 20, cos 26} and {sin 2(6 + 7/2),cos 2(6 + 7/2)} in turn gives
o+ 0o, 5
Ulr_%qt%\/(ax*a_r)z—}-%fg. (1.11)
and
o+,
on =2 L o - o)t 4, (112)

where oy is the maximum or major principal stress and oy is the minimum or minor
principal stress. Note that oy is algebraically the greatest direct stress at the point
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while oy is algebraically the least. Therefore, when oy is negative, i.e. compressive, it is
possible for oy to be numerically greater than oy.

The maximum shear stress at this point in the body may be determined in an
identical manner. From Eq. (1.9)

d
d—; = (0, — 0,) 0820 + 27, 5in 20 = 0
giving
(0 —0y)
an2g = — 22 %) .
tan 20 7r (1.13)
It follows that
sin2g = — ) esap— 2Ty
\/(0’_‘, - 0'.)')2 + 4T\2) \/((7.\‘ - O-y)z + 4T\2\
-— 0, —27,
sin2(0 + 7/2) = (02— o) cos2(0+ m/2) = T

\/(0’_\- - U)‘)Z + 47—3} ' \/(G.v - J_l')z + 47—%\

Substituting these values in Eq. (1.9) gives

Tmax,min — i% \/(U.v - Uy)z + 47.\21\' (1.14)

Here, as in the case of principal stresses, we take the maximum value as being the
greater algebraic value.
Comparing Eq. (1.14) with Eqs (1.11) and (1.12) we see that

oy — 0O
Tmax = 12 i (115)

Equations (1.14) and (1.15) give the maximum shear stress at the point in the body in
the plane of the given stresses. For a three-dimensional body supporting a two-
dimensional stress system this is not necessarily the maximum shear stress at the point.

Since Eq. (1.13) is the negative reciprocal of Eq. (1.10) then the angles 26 given by
these two equations differ by 90° or, alternatively, the planes of maximum shear stress
are inclined at 45° to the principal planes.

1.8 Mohr's circle of stress

The state of stress at a point in a deformable body may be determined graphically by
Mohr’s circle of stress.

In Section 1.6 the direct and shear stresses on an inclined plane were shown to be
given by

On = 0, COS> 0 + o, sin29+7-x_‘. sin 26 (Eq.(1.8))
and

T:(U'Y?;(T"')sinZO—r\..‘.COSZQ (Eq.(1.9))
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) n

Ox

Ty

(a) (b) (Tmin)
Fig. 1.9 (a) Stresses on a triangular element; (b) Mohr’ circle of stress for stress system shown in (a).

respectively. The positive directions of these stresses and the angle 8 are defined in
Fig. 1.9(a). Equation (1.8) may be rewritten in the form

oy = %(1 + cos 26) +%(1 — €0826) + 7,y 8in 20
or
oy —$(0x +0,) =4(0x — 0,) 0826 + 7, 8in 26
Squaring and adding this equation to Eq. (1.9) we obtain

[oa =3 (o + )P +7 = (ox — o) + 75,

which represents the equation of a circle of radius % \/ (o — a}.)2 + 47_3,. and having its
centre at the point ((o, — 0,)/2,0).

The circle is constructed by locating the points Qy(oy,7y,) and Qy(oy, —Ty))
referred to axes Oor as shown in Fig. 1.9(b). The centre of the circle then lies at C
the intersection of Q;Q; and the Og axis; clearly C is the point ((o, — 0,)/2,0) and
the radius of the circle is 11/(0, — 0;,)2 + 47, as required. CQ’ is now set off at an
angle 20 (positive clockwise) to CQ,, Q' is then the point (o,, —7) as demonstrated
below. From Fig. 1.9(b) we see that

ON=0C+CN
or, since OC = (o, + 0,)/2, CN = CQ’ cos(8 — 26) and CQ’ = CQ, we have

Op = # + CQ, (cos Bcos 20 + sin Bsin 26)
But

_ CP1 _ (Ux B Uy)
CQI = COS,B and CP] = —2—

Hence

+ ("" 3 "y) c0s20 + CP, tan fsin 20
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which, on rearranging, becomes
2 .2 .
o, = 0,C08" 0+ o, sin” f + 7, sin 20

as in Eq. (1.8). Similarly it may be shown that
Q'N =1,,¢c0s20 — (%) §in20 = —7

as in Eq. (1.9). Note that the construction of Fig. 1.9(b) corresponds to the stress
system of Fig. 1.9(a) so that any sign reversal must be allowed for. Also, the Oc
and Ot axes must be constructed to the same scale or the equation of the circle is
not represented.

The maximum and minimum values of the direct stress, viz. the major and minor
principal stresses oy and oy;, occur when N (and Q') coincide with B and A respec-

tively. Thus
o1 = OC + radius of circle
Oxt+o
-t Jem e
or
(o +0y) 2
o =—x2—y+%\/(ax —0y) + 473,
and in the same fashion
(o +0y) 2
o1 =—xz—y—%\/(0x —0,)* + 472,

The principal planes are then given by 26 = 8(o7) and 26 = 8 + 7(oy).

Also the maximum and minimum values of shear stress occur when Q' coincides
with D and E at the upper and lower extremities of the circle.

At these points Q'N is equal to the radius of the circle which is given by

2
CQ, = ___(ax 4ay) +T§y

Hence Tmay min = £1 \/ (ox — U},)2 + 4732, as before. The planes of maximum and mini-
mum shear stress are given by 20 = 8+ «/2 and 20 = 8+ 3w/2, these being inclined
at 45° to the principal planes.

Example 1.1

Direct stresses of 160 N/mm?, tension, and 120 N/mm?, compression, are applied at a
particular point in an elastic material on two mutually perpendicular planes. The
principal stress in the material is limited to 200 N/mm?, tension. Calculate the allow-
able value of shear stress at the point on the given planes. Determine also the value of
the other principal stress and the maximum value of shear stress at the point. Verify
your answer using Mohr’s circle.
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8 o {200 N/mm?)

Ox

(160 N/mm?)

Ty

C A
Ty T

\

o, (~120N/mm?)

Fig. 1.10 Stress system for Example 1.1.

The stress system at the point in the material may be represented as shown in
Fig. 1.10 by considering the stresses to act uniformly over the sides of a triangular
element ABC of unit thickness. Suppose that the direct stress on the principal
plane AB is ¢. For horizontal equilibrium of the element

oABcos @ = 0,BC + 7,AC
which simplifies to
Ty tanf = o — o, (i)
Considering vertical equilibrium gives
oABsin § = 0,AC + 7,,BC
or
Tycotl =o~o, (i)
Hence from the product of Eqs (i) and (ii)
oy = (0= 0)(0 — )

Now substituting the values o, = 160 N/mm?, o, =—120 N/mm2 and o=0) =
200 N/mm2 we have

Ty = £113N/mm’
Replacing cot @ in Eq. (ii) by 1/ tan 6 from Eq. (i) yields a quadratic equation in o
o — o(o, — 0y) + 0,0y, — T_fy =0 (iii)

The numerical solutions of Eq. (iii) corresponding to the given values of oy, 0}, and 7,
are the principal stresses at the point, namely

o1 = 200 N/mm? (given), oy = —160 N/mm?

15
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T max = 180 N/mm?

Q, (160N/mm?, 113N/mm?)

,’/TC P1 ag

(0}, = —160N/mm?) el {0, =200 N/mm?)

(=120 N/mm?2, =113 N/mm?)

Fig. 1.11 Solution of Example 1.1 using Mohr’s circle of stress.

Having obtained the principal stresses we now use Eq. (1.15) to find the maximum
shear stress, thus

2 160
Tmax = 00+ =180 N/mmz

The solution is rapidly verified from Mohr's circle of stress (Fig. 1.11). From the
arbitrary origin O, OP; and OP, are drawn to represent o, = 160 N/mm’ and
o, =—120 N/mmz. The mid-point C of PP, is then located. OB = gy = 200 N/
mm? is marked out and the radius of the circle is then CB. OA is the required principal
stress. Perpendiculars P;Q, and P,Q, to the circumference of the circle are equal to
+7,, (to scale) and the radius of the circle is the maximum shear stress.

1.9 Strain

The external and internal forces described in the previous sections cause lincar and
angular displacements in a deformable body. These displacements are generally
defined in terms of strain. Longitudinal or direct strains are associated with direct
stresses o and relate to changes in length while shear strains define changes in angle
produced by shear stresses. These strains are designated, with appropriate suffixes,
by the symbols ¢ and ~ respectively and have the same sign as the associated stresses.

Consider three mutually perpendicular line elements OA, OB and OC at a point O
in a deformable body. Their original or unstrained lengths are 6x, §y and 6z respec-
tively. If, now, the body is subjected to forces which produce a complex system of
direct and shear stresses at O, such as that in Fig. 1.6, then the line elements will
deform to the positions O’'A’, O'B’ and O'C’ shown in Fig. 1.12.

The coordinates of O in the unstrained body are (x, y, z) so that those of A, Band C
are (x + éx,y,z2), (x,y + 8y, z) and (x, y, z + 6z). The components of the displacement
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Fig. 1.12 Displacement of line elements OA, OB and OC.

of O to O' parallel to the x, y and z axes are u, v and w. These symbols are used to
designate these diplacements throughout the book and are defined as positive in
the positive directions of the axes. We again employ the first two terms of a Taylor’s
series expansion to determine the components of the displacements of A, B and C.
Thus, the displacement of A in a direction parallel to the x axis is 1 + (8u/0x)éx.
The remaining components are found in an identical manner and are shown in
Fig. 1.12.

We now define direct strain in more quantitative terms. If a line element of length L
at a point in a body suffers a change in length AL then the longitudinal strain at that
point in the body in the direction of the line element is

The change in length of the element OA is (O'A’ — OA) so that the direct strain at
O in the x direction is obtained from the equation
_OA'—OA OA - 6x
- 0A 6

(1.16)

€x

Now

2 2 , 2
(O'A"Y? = (6x+u+%6x—u) + (v—l—a—az&x—v) + (w—l-g—y;b”x—w)

A el Su 2 @ 2 ow 2
OA_&\/(HE +(5) + (5%

or

17
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which may be written when second-order terms are neglected
|
3
OA' = 6x<l + 2@)
Ox

Applying the binomial expansion to this expression we have

IAS %
O'A —6x(l+6x> (1.17)

in which squares and higher powers of 8u/0x are ignored. Substituting for O'A’ in
Eq. (1.16) we have

_ou
£ = Bx
v
It follows that € = 3 (1.18)
_ow
& =5z

The shear strain at a point in a body is defined as the change in the angle between
two mutually perpendicular lines at the point. Therefore, if the shear strain in the xz
plane is ~,, then the angle between the displaced line elements O'A’ and O'C’ in
Fig. 1.12 is /2 — #,, radians.

Now cos A'O’'C' = cos(m/2 ~ ) = sin+y,, and as v, is small then cos A'O'C' =
7. From the trigonometrical relationships for a triangle

s (OIAI)Z + (O/C/)Z _ (AICI)Z
cosA0OC = 2{OAN 0T (1.19)

We have previously shown, in Eq. (1.17), that

O'A’ = 6x(1 +%)
Ix

Similarly

o'C = 62(1 +@)
Oz

But for small displacements the derivatives of u, v and w are small compared with 1,
so that, as we are concerned here with actual length rather than change in length, we
may use the approximations

O'A' =~ éx, 0C ~éz

Again to a first approximation

ow 2 ou_\?
12 _ow _Oug
(A'C) —<6z axéx) +<6x 826)
Substituting for O’A’, O'C’ and A’C’ in Eq. (1.19) we have

s AIO'C — (6x%) + (62) — [6z — (Bw/Bx)6x]* — [6x — (Bu/Bz)6z]*
26xbz
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Expanding and neglecting fourth-order powers gives
2(0w/0x)bxbz + 2(0u/0z)dxéz

! (ol
cosA'O'C = 58>
or

o ow  Ou

ok o

o dv  Ou
Similarly T T 50 + ()_y (1.20)

ow  Ov

Ty = d_} + E

It must be emphasized that Eqs (1.18) and (1.20) are derived on the assumption that
the displacements involved are small. Normally these linearized equations are
adequate for most types of structural problem but in cases where deflections are
large, for example types of suspension cable etc., the full, non-linear, large deflection
equations, given in many books on elasticity, must be employed.

1.10 Compatibility equations

In Section 1.9 we expressed the six components of strain at a point in a deformable
body in terms of the three components of displacement at that point, », v and w.
We have supposed that the body remains continuous during the deformation so
that no voids are formed. It follows that each component, u, v and w, must be a
continuous, single-valued function or, in quantitative terms

u:,/',(x,y,z), v:fz(.\',_y,z), w:j}(x,y,z)

If voids were formed then displacements in regions of the body separated by the
voids would be expressed as different functions of x, y and z. The existence, therefore,
of just three single-valued functions for displacement is an expression of the continu-
ity or compatibility of displacement which we have presupposed.

Since the six strains are defined in terms of three displacement functions then they
must bear some relationship to each other and cannot have arbitrary values. These
relationships are found as follows. Differentiating +,, from Eqs (1.20) with respect
to x and y gives '

v O v I u

= — + _—
axdy  Oxdy dx  Oxdy dy
or since the functions of v and v are continuous

& Ve &’ v & ou

oxdy 02 0y | 9y Ox

which may be written, using Eq. (1.18)

Py ey ey
axdy  ox?  y?

(1.21)

19
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In a similar manner

O e, e,
ovdz 922 9y?
az”x’x: _ 825: n azf.r (1.23)
oxdz  9x*  9z? o
If we now differentiate v, with respect to x and z and add the result to .. differ-
entiated with respect to y and x, we obtain

Py Py O <8u av> o (@ @)

Ox0z  OyOx = oz a + ox AyOx \ Jx * oz

or

O (O v\ O Ou . & (v N ow N & ou
Ox \ oz oy ) 0z0y Ox  oxE\dz Oy dydz Ox
Substituting from Eqs (1.18) and (1.21) and rearranging

025 v 0 0’\/"" af\l'v‘ 07\"'
JoE = [ - R R :
Oyoz 0,\‘< Ox + Ay + 0z ) (1.24)
Similarly
ey D (v Oy Ova
208 _ 0 (On: O O 1.25
Ox0z 6y< Ox Oy M 0z > 129
and
826- 0 8’7»‘" 0'\/'\'* 87\'\'
= 9 (9% O I 1.26
Oxdy 82( Ox + Ay 0z ) ( )

Equations (1.21)-(1.26) are the six equations of strain compatibility which must be
satisfied in the solution of three-dimensional problems in elasticity.

1.11 Plane strain

Although we have derived the compatibility equations and the expressions for strain
for the general three-dimensional state of strain we shall be mainly concerned with
the two-dimensional case described in Section 1.4. The corresponding state of strain,
in which it is assumed that particles of the body suffer displacements in one plane
only, is known as plane strain. We shall suppose that this plane is, as for plane stress,
the xy plane. Then ., 7. and v,. become zero and Eqs (1.18) and (1.20) reduce to

~ Ou o @
YooxT T Oy

[}

and
o Jdv n Ou
Txy = Ox 0}



1.12 Determination of strains on inclined planes 21

Further, by substituting ¢. = 7,. = v,. = 0 in the six equations of compatibility
and noting that €, €, and ~,, are now purely functions of x and y, we are left with
Eq. (1.21), namely

827.0 B 826}, & €y
Oxdy  Ox2  Oy?

as the only equation of compatibility in the two-dimensional or plane strain case.

1.12 Determination of strains on inclined planes

Having defined the strain at a point in a deformable body with reference to an arbi-
trary system of coordinate axes we may calculate direct strains in any given direction
and the change in the angle (shear strain) between any two originally perpendicular
directions at that point. We shall consider the two-dimensional case of plane strain
described in Section 1.11.

An element in a two-dimensional body subjected to the complex stress system of
Fig. 1.13(a) will distort into the shape shown in Fig. 1.13(b). In particular, the
triangular element ECD will suffer distortion to the shape E'C’D’ with corresponding
changes in the length FC and angle EFC. Suppose that the known direct and shear
strains associated with the given stress system are ., €, and 7,, (the actual relation-
ships will be investigated later) and that we require to find the direct strain ¢, in a
direction normal to the plane ED and the shear strain v produced by the shear
stress acting on the plane ED.

To a first order of approximation

C'D' = CD(l +¢,)
C'E' = CE(l +¢,) (1.29)
E'D’ = ED(1 + &y, 2)
where ¢, ;> is the direct strain in the direction ED. From the geometry of the
triangle E'C'D’ in which angle E'C'D’ = 7/2 — ,,.
(E'D')? = (C'D')* + (C'E)* — 2(C'D')(C'E') cos(m/2 — )

o,
y A y
Txy
— Txy
E
Ox 6 Oy
F
Ty C D
<]
Txy
Y a-y
X - X

(a) (b)

Fig. 1.13 (a) Stress system on rectangular element; (b) distorted shape of element due to stress system in (a).
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or substituting from Egs (1.29)
(ED)’(1 +énsrp2)’ = (CDY(1 +€2) + (CE)(1 +¢,)?
— 2(CD)(CE)(1 + &,)(1 +¢,) sinyy,

Noting that (ED)? = (CD)? 4 (CE)? and neglecting squares and higher powers of
small quantities this equation may be rewritten

2(ED)%€y 4 r/2 = 2(CD)%¢, + 2(CE)’e, — 2(CE)(CD)~,
Dividing through by 2(ED)? gives
Entn/2 = Ex sin? 9 + &y cos® 6 — cosfsin 0y (1.30)

The strain &, in the direction normal to the plane ED is found by replacing the angle 8
in Eq. (1.30) by 8 — 7/2. Hence

Ep =excos20+eysin20+,y—;ysin20 (1.31)
Turning our attention now to the triangle C'F'E’ we have
(C'E')? = (C'F)? + (F'E')? - 2(C'F')(F'E') cos(m/2 — 7) (1.32)

in which
CE' = CE(1 +¢))
C'F' = CF(l +¢,)
F'E = FE(l + £341/2)

Substituting for C'E’, C'F’ and F'E’ in Eq. (1.32) and writing cos(n/2 — ) = sin~y
we find

(CE)X(1+¢,)* = (CF)*(1 + &)* + (FE)*(1 + £g4n/2)’
~ 2(CF)(FE)(1 + &3)(1 + €nnj2) siny (1.33)

All the strains are assumed to be small so that their squares and higher powers may be
ignored. Further, sinv =~ v and Eq. (1.33) becomes

(CE)*(1 + 2¢,) = (CF)*(1 + 2¢,) + (FE)*(1 + 25 r2) — 2(CF)(FE)y
From Fig. 1.13(a), (CE)? = (CF)? + (FE)* and the above equation simplifies to
2(CE)’e, = 2(CF)%, + 2(FE)*¢, 1. 1/2 — 2(CF)(FE)y
Dividing through by 2(CE)? and transposing

€q8in% 6 + Entn/2 cos? — €y

7= sin fcos @
Substitution of ¢, and &, »/; from Eqs (1.31) and (1.30) yields
T (ex — Ey) . _ Txy
y = sin 20 5 08 20 (1.34)
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1.13 Principal strains

If we compare Eqs (1.31) and (1.34) with Eqs (1.8) and (1.9) we observe that they may
be obtained from Eqgs (1.8) and (1.9) by replacing ¢, by ¢, 0, by €, 0, by €, 7, by
Yxy/2 and 7 by /2. Therefore, for each deduction made from Eqgs (1.8) and (1.9)
concerning o, and 7 there is a corresponding deduction from Eqs (1.31) and (1.34)
regarding ¢, and ~/2.

Thus, at a point in a deformable body, there are two mutually perpendicular planes
on which the shear strain v is zero and normal to which the direct strain is a maximum
or minimum. These strains are the principal strains at that point and are given (from
comparison with Eqgs (1.11) and (1.12)) by

ecte, [
g = T" +% (6,\' — 5)_)2 + ,,/%‘ (l35)

and

et e,

S =y (e ) i (1.36)

&n =

If the shear strain is zero on these planes it follows that the shear stress must also
be zero and we deduce, from Section 1.7, that the directions of the principal strains
and principal stresses coincide. The related planes are then determined from
Eq. (1.10) or from

tan 26 = — % (1.37)
Ex — &y

In addition the maximum shear strain at the point is

(%) = % \/ (F.\‘ - E_r)z + "/.%j\' (138)
max

or

i g1 —€n
= = 1.39
(2)max 2 ( )

{cf. Egs (1.14) and (1.15)}.

1.14 Mohr's circle of strain

We now apply the arguments of Section 1.13 to the Mohr circle of stress described in
Section 1.8. A circle of strain, analogous to that shown in Fig. 1.9(b), may be drawn
when oy, 0, etc. are replaced by ¢, ¢, etc. as specified in Section 1.13. The horizontal
extremities of the circle represent the principal strains, the radius of the circle, half the
maximum shear strain and so on.

23
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1.15 Stress—strain relationships

In the preceding sections we have developed, for a three-dimensional deformable
body, three equations of equilibrium [Eqs (1.5)] and six strain—displacement relation-
ships [Eqs (1.18) and (1.20)]. From the latter we eliminated displacements thereby
deriving six auxiliary equations relating strains. These compatibility equations are
an expression of the continuity of displacement which we have assumed as a pre-
requisite of the analysis. At this stage, therefore, we have obtained nine independent
equations towards the solution of the three-dimensional stress problem. However, the
number of unknowns totals 1S5, comprising six stresses, six strains and three
displacements. An additional six equations are therefore necessary to obtain a
solution.

So far we have made no assumptions regarding the force—displacement or stress
strain relationship in the body. This will, in fact, provide us with the required six
equations but before these are derived it is worthwhile considering some general
aspects of the analysis.

The derivation of the equilibrium, strain—displacement and compatibility equa-
tions does not involve any assumption as to the stress—strain behaviour of the
material of the body. It follows that these basic equations are applicable to any
type of continuous, deformable body no matter how complex its behaviour under
stress. In fact we shall consider only the simple case of linearly elastic isotropic
materials for which stress is directly proportional to strain and whose elastic proper-
ties are the same in all directions. A material possessing the same properties at all
points is said to be homogeneous.

Particular cases arise where some of the stress components are known to be zero
and the number of unknowns may then be no greater than the remaining equilibrium
equations which have not identically vanished. The unknown stresses are then found
from the conditions of equilibrium alone and the problem is said to be statically deter-
minate. For example, the uniform stress in the member supporting a tensile load P in
Fig. 1.3 is found by applying one equation of equilibrium and a boundary condition.
This system is therefore statically determinate.

Statically indeterminate systems require the use of some, if not all, of the other
equations involving strain—displacement and stress—strain relationships. However,
whether the system be statically determinate or not, stress—strain relationships are
necessary to determinc deflections. The role of the six auxiliary compatibility
equations will be discussed when actual elasticity problems are formulated in
Chapter 2.

We now proceed Lo investigale the relationship of stress and strain in a three-
dimensional, linearly elastic, isotropic body.

Experiments show that the application of a uniform direct stress, say o, does not
produce any shear distortion of the material and that the direct strain < is given by
the equation

e = % (1.40)
where F 1s a constant known as the modulus of elasticity or Young's modulus.
Equation (1.40) is an expression of Hooke's Law. Further, £, is accompanied by
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lateral strains
g, = -V, &=-—Vv— (1.41)

in which v is a constant termed Poisson’s Ratio.
For a body subjected to direct stresses o,, o, and o, the direct strains are, from
Eqs (1.40), (1.41) and the principle of superposition (see Chapter 4, Section 4.9)

€y = % oy — V(o) +03)]
&y = % [oy = v(ox + 02)] (1.42)
€ = % [0: - V(Ux + 0).)]

Suppose now that, at some arbitrary point in a material, there are principal strains
er and gy corresponding to principal stresses o7 and oyy. If these stresses (and strains)
are in the direction of the coordinate axes x and y respectively, then 7, = 7,, = 0 and
from Eq. (1.34) the shear strain on an arbitrary plane at the point inclined at an angle
0 to the principal planes is

Y= (EI — E.'") sin 26 (143)

Using the relationships of Eqs (1.42) and substituting in Eq. (1.43) we have
1 .
1= g (o1 = vou) — (ou - voy)] sin 26

or

(0’1 — O'I[) sin 26 (144)
Using Eq. (1.9) and noting that for this particular case 7, = 0, 0, = 0y and 0}, = oy
21 = (0'1 - JII) sin 26

from which we may rewrite Eq. (1.44) in terms of r as

A
= Z(IE' Y, (1.45)
The term E/2(1 + v) is a constant known as the modidus of rigidity G. Hence
7=T1/G

and the shear strains 7,,, v.. and v, are expressed in terms of their associated shear
stresses as follows

T _Te e
G’ Ixz G’ Tyz G
Equations (1.46), together with Eqs (1.42), provide the additional six equations

required to determine the 15 unknowns in a general three-dimensional problem
in elasticity. They are, however, limited in use to a linearly elastic isotropic body.

Txy = (146)
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For the case of plane stress they simplify to

3\

ex = = (0x — voy)

5

&y = E(O'y - l/O'x)

(1.47)
bt 74
Ez = F (Ux - Jy)
T,
Yxy = % J

It may be seen from the third of Egs (1.47) that the conditions of plane stress and
plane strain do not necessarily describe identical situations.

Changes in the linear dimensions of a strained body may lead to a change in
volume. Suppose that a small element of a body has dimensions éx, §y and éz.
When subjected to a three-dimensional stress system the element will sustain a
volumetric strain e (change in volume/unit volume) equal to

. (14 €5)6x(1 + €,)6y(1 + ;)6z — bxbybz
bxbybz

Neglecting products of small quantities in the expansion of the right-hand side of the
above equation yields

e=¢ecte,te,; (1.48)
Substituting for ¢, €, and ¢, from Eqs (1.42) we find, for a linearly elastic, isotropic
body
1
e=-E—[0x+ay+az—2V(ax+0y+az)]
or
(1-2v)
e =T(0'x+0'y +0'z)
In the case of a uniform hydrostatic pressure, o, = 0, = 0, = —p and
31 -2y
e=———p—p (1.49)

The constant E/3(1 — 2v) is known as the bulk modulus or modulus of volume
expansion and is often given the symbol K.

An examination of Eq. (1.49) shows that v < 0.5 since a body cannot increase in
volume under pressure. Also the lateral dimensions of a body subjected to uniaxial
tension cannot increase so that v > 0. Therefore, for an isotropic material
0 < v < 0.5 and for most isotropic materials v is in the range 0.25 to 0.33 below
the elastic limit. Above the limit of proportionality v increases and approaches 0.5.

Example 1.2

A rectangular element in a linearly elastic isotropic material is subjected to tensile
stresses of 83 N/mm? and 65 N/mm2 on mutually perpendicular planes. Determine
the strain in the direction of each stress and in the direction perpendicular to both
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stresses. Find also the principal strains, the maximum shear stress, the maximum
shear strain and their directions at the point. Take E = 200000 N/mm? and v = 0.3.

If we assume that o, = 83 N/mm? and o, =65 N/mm? then from Egs (1.47)

1
=——(83—0. =3.175 —4
£, 200000(83 0.3 x 65) 75 % 10
1
65 — 0.3 x 83) = 2.005 —4
€ = 200000 x 83) = x 10
e = =03 (831 65) = ~2.220 x 10~
27200000 -

In this case, since there are no shear stresses on the given planes, o, and o, are
principal stresses so that €, and ¢, are the principal strains and are in the directions
of o, and oy,. It follows from Eq. (1.15) that the maximum shear stress (in the plane of
the stresses) is

83—65

Tmax =~ = 9 N/mm?

acting on planes at 45° to the principal planes.
Further, using Eq. (1.45), the maximum shear strain is

2% (14+03)x9
Tmax = 7560000

50 that Y, = 1.17 x 107 on the planes of maximum shear stress.

Example 1.3

At a particular point in a structural member a two-dimensional stress system exists
where o, = 60 N/mm o, =—40N /mm” and Ty = 50 N/mm?. If Young’s modulus
E = 200000 N/mm? and Poisson’s ratio » = 0.3 calculate the direct strain in the x
and y directions and the shear strain at the point. Also calculate the principal strains
at the point and their inclination to the plane on which o, acts; verify these answers
using a graphical method.

From Eqgs (1.47)

g 60 + 0.3 x 40) = 360 x 107°
= 200 000( +0.3>40) =360 x
1 -6
€y = 200000( —40 — 0.3 x 60) = —290 x 10
From Eq. (1.45) the shear modulus, G, is given by
6= B 200000 .05 N/mm?

2(14+v) 2(1+0.3)
Hence, from Eqs (1.47)

Ty 50

—_——_— = — = 1_6
Ty =G ~ 76923 ~ 00 * 10

27
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TA

Q, (360x 1076, 1x650x1075)
1 2

(-290x 1078, — 1x650x107%)

Fig. 1.14 Mohr’s circle of strain for Example 1.3.

Now substituting in Eq. (1.35) for 2, &, and 7,

360 — 290
2

15 L 2 2
e = 10 [ +§\/(360+290) +650

which gives
e =495 x 107¢
Similarly, from Eq. (1.36)
ey = —425 x 107°
From Eq. (1.37)

650 x 10 ¢
tan 26 = =1
360 x 1076 4290 x 106
Therefore
20 = 45° or 225°
so that

6 =22.5"or 112.5°

The values of ¢, 1 and 6 are verified using Mohr’s circle of strain (Fig. 1.14). Axes
Oz and Oy are set up and the points Q; (360 x 10*(’,% x 650 x 10 ®) and Q,
(—290 x 10°°, —% x 650 x 10 ) located. The centre C of the circle is the intersection
of Q;Q, and the Oe axis. The circle is then drawn with radius CQ, and the points
B(e) and A(ey) located. Finally angle Q,CB = 26 and angle Q,CA = 26 + «.

1.16 Experimental measurement of surface strains

Stresses at a point on the surface of a piece of material may be determined by measur-
ing the strains at the point, usually by electrical resistance strain gauges arranged in
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Fig. 1.15 Strain gauge rosette.

the form of a rosette, as shown in Fig. 1.15. Suppose that e; and ¢; are the principal
strains at the point, then if ¢,, €5 and ¢, are the measured strains in the directions 8,
(0+ ), (+ a+ B) to g we have, from the general direct strain relationship of

Eq. (1.31)
£, = €1€08> 0 + gy sin® 0 (1.50)

since €, becomes €y, €, becomes ey and 7y, is zero since the x and y directions have
become principal directions. Rewriting Eq. (1.50) we have

1 +cos28 1 —cos 20
Eq =€} ——2'— +€II T

or
€q =3 (e1+en) +5 (61 — en) cos 20 (1.51)
Similarly
ey =13 (e1 +en) +3(er — en) cos 2(0 + o) (1.52)
and
e, =3 (er+€n) +5 (1 — ex) c0s 2(0 + a + B) (1.53)

Therefore if ¢,, €, and ¢, are measured in given directions, i.e. given angles a and j3,
then ¢, g;y and 8 are the only unknowns in Eqgs (1.51), (1.52) and (1.53).

The principal stresses are now obtained by substitution of e; and ey in Eqs (1.47).
Thus

€1 = ';_(JI — voyy) (1.54)
and
1
En = E(UH — voy) (L.55)
Solving Eqs (1.54) and (1.55) gives

E
op = m(el + vey) (1.56)



30 Basic elasticity

a (&)

P (Eb)

(e,)

Fig. 1.16 Experimental values of principal strain using Mohr's circle.

and

E
M=T2 (en + ver) (1.57)

A typical rosette would have o = 3 = 45° in which case the principal strains are
most conveniently found using the geometry of Mohr’s circle of strain. Suppose
that the arm a of the rosette is inclined at some unknown angle 8 to the maximum
principal strain as in Fig. 1.15. Then Mohr’s circle of strain is as shown in Fig.
1.16; the shear strains +,, 7, and ~y, do not feature in the analysis and are therefore
ignored. From Fig. 1.16

OC = 3 (e, +ec)

CN=¢,—-0C=1(c,—¢,)

QN=CM=¢,—-0C=¢, —1(c, +¢,)
The radius of the circle is CQ and

CQ=4/CN2+QN?

CQ = /B (ea — €) + les — 3 (ea + )

Hence

which simplifies to

Q= —=flea—er) + (e~ o)’

Therefore ey, which is given by
gr = OC + radius of circle

is

€ = %(Ea +e)+ % \/(Ea - eb)z + (ec — 5b)2 (1.58)
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Also
en = OC — radius of circle

ie.

1
en =73(ea+e) — 7 \/(ea — &)+ (6. — &) (1.59)
Finally the angle 6 is given by
Q_N__ =6b —%(Ea +€c)

tan 20 = —
CN 1(ea —e.)
ie.
2ep — e, — €,
tan 26 = (1.60)
€&

A similar approach may be adopted for a 60° rosette.

Example 1.4

A bar of solid circular cross-section has a diameter of 50 mm and carries a torque, T,
together with an axial tensile load, P. A rectangular strain gauge rosette attached to
the surface of the bar gave the following strain readings: e, = 1000 x 1075,
£, = —200 x 107¢ and &, = —300 x 107% where the gauges ‘a’ and ‘¢’ are in line
with, and perpendicular to, the axis of the bar respectively. If Young’s modulus, E,
for the bar is 70 000 N/mm2 and Poisson’s ratio, v, is 0.3, calculate the values of T
and P.

Substituting the values of ¢,, €5 and ¢, in Eq. (1.58)

—6

~6
g = 1_02_ (1000 — 300) +%\/ (1000 4 200)2 4 (—200 + 300)°

which gives

ey = 1202 x 107°
Similarly, from Eq. (1.59)

e = —502 x 107°
Now substituting for ¢; and ey in Eq. (1.56)

5 70000 x 10~°
P 1=(03)2
Similarly, from Eq. (1.57)

(=502 + 0.3 x 1202) = —80.9 N/mm?

oy = —109N/m.m2
Since o, = 0, Eqs (1.11) and (1.12) reduce to

o, 1 .
01=7+§ 0% + 4712, @)
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and

o. 1 .
o :7—5\/0.%-+4T\2-y (i)

respectively. Adding Egs (1) and (i1)) we obtain
o]+ 0y =0y
Thus
o, =80.9 — 10.9 = 70 N/mm’
For an axial load P

P

P
= 70N R
on = JON/mm* =2 = = S5 /a

whence
P =1374kN
Substituting for o, in either of Egs (i) or (ii) gives
Ty = 29.7N/mm’

From the theory of the torsion of circular section bars

Tr T %25
. =29.7N L B R
T fmm = = 503
from which
T =0.7kNm

Note that P could have been found directly in this particular case from the axial
strain. Thus, from the first of Eqs (1.47)

o, = Eg, = 70000 x 1000 x 107¢ = 70 N/mm?

as before.
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Problems

P.1.1 A structural member supports loads which produce, at a particular point, a
direct tensile stress of 80 N/mm2 and a shear stress of 45 N/mm2 on the same plane.
Calculate the values and directions of the principal stresses at the point and also the
maximum shear stress, stating on which planes this will act.
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Ans. oy =100.2N/mm?, §=24°11'
oy = —202N/mm?, = 114° 11
Tmax = 60.2 N/mmz, at 45° to principal planes

P.1.2 At a point in an elastic material there are two mutually perpendicular
planes, one of which carries a direct tensile stress at 50 N/mm? and a shear stress
of 40 N/mm?, while the other plane is subjected to a direct compressive stress of
35N/mm? and a complementary shear stress of 40 N/mm?. Determine the principal
stresses at the point, the position of the planes on which they act and the position
of the planes on which there is no normal stress.

Ans. oy = 65.9N/mm?, 0 =21°38
o = —50.9N/mm?, § = 111°38’
No normal stress on planes at 70°21" and —27° 5’ to vertical.

P.1.3 Listed below are varying combinations of stresses acting at a point and
referred to axes x and y in an elastic material. Using Mohr’s circle of stress determine
the principal stresses at the point and their directions for each combination.

oy N/mm? oy N/mm? Ty N/mm?

() +54 £30 +5
Gi) +30 +54 -5
(i) —60 ~36 +5
(iv) +30 —50 +30

Ans. () op = +55N/mm?, oy =+29N/mm?, oy at 11.5° to x axis.
(i) oy =+55N/mm? o =-+29N/mm? oy at 11.5° to x axis.
(ili) o7 = —34.5N/mm?, o =—61N/mm?, oy at 79.5° to x axis.
(iv) op=+40N/mm?, oy =—60N/mm?, oy at 18.5° to x axis.

P.1.4 The state of stress at a point is caused by three separate actions, each of
which produces a pure, unidirectional tension of 10N/mm? individually but in
three different directions as shown in Fig. P.1.4. By transforming the individual

10 N/mm?
10 N/mm® 10 N/mm?
l 10 N/mm? 10 N/mm?
10 N/mm?

Fig. P.1.4

33
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stresses to a common set of axes (x, y) determine the principal stresses at the point and
their directions.

Ans. oy = oy = 15N/mm?. All directions are principal directions

P.1.5 A shear stress 7y, acts in a two-dimensional field in which the maximum
allowable shear stress is denoted by 7, and the major principal stress by o7.

Derive, using the geometry of Mohr’s circle of stress, expressions for the maximum
values of direct stress which may be applied to the x and y planes in terms of the three
parameters given above.

Ans. 0y = 01— Tmax + Tglax_TEy

Oy =01 — Tmax — 7'3-.“‘—7}%}:

P.1.6 A solid shaft of circular cross-section supports a torque of S0kNm and a
bending moment of 25kNm. If the diameter of the shaft is 150 mm calculate the

values of the principal stresses and their directions at a point on the surface of the
shaft.

Ans. oy =1214N/mm?, 6=131°43
on = —464N/mm?, 6= 121°43

P.1.7 An element of an elastic body is subjected to a three-dimensional stress
system o, 0, and o,. Show that if the direct strains in the directions x, y and z are
Ex, €y and €, then

o= de+2Ge,, 0,=Ae+2Ge,, o0,=Ae+2Ge,

where
A= VB
(I+v)(1-2v)

the volumetric strain.

and e=¢,+¢,+¢

P.1.8 Show that the compatibility equation for the case of plane strain, viz.
Pry _ ey e
Ox0y Ox*  Oy?
may be expressed in terms of direct stresses o, and o, in the form
¥ &
(a_xz'f'a—yz)(o’x-de) =0

P.1.9 In Fig. P.1.9 the direct strains in the directions a, b, ¢ are —0.002, —0.002
and +0.002 respectively. If I and II denote principal directions find &y, £;; and 6.

Ans. ;= +40.00283, e = —0.00283, 6= —-22.5° or +67.5°

P.1.10 The simply supported rectangular beam shown in Fig. P.1.10 is subjected
to two symmetrically placed transverse loads each of magnitude Q. A rectangular
strain gauge rosette located at a point P on the centroidal axis on one vertical face
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Fig. P.1.9

Equal distances
o /1L jo
|

Centroidal P 300 mm
axis

AN | e

Fig. P.1.10

of the beam gave strain readings as follows: e, = —222 x 1075, ¢, = —213 x 1075,
€, = +45 x 1075, The longitudinal stress o at the point P due to an external compres-
sive force is 7N/mm?. Calculate the shear stress T at the point P in the vertical plane
and hence the transverse load Q.

(Q =2bdt/3 where b = breadth, d = depth of beam)
E =31000N/mm?, »=0.2
Ans. T=3.17N/mm?, Q=95.1kN
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Two-dimensional problems
in elasticity

Theoretically we are now in a position to solve any three-dimensional problem
in elasticity having derived three equilibrium conditions, Eqs (1.5), six strain-
displacement equations, Eqs (1.18) and (1.20), and six stress—strain relationships,
Eqs (1.42) and (1.46). These equations are sufficient, when supplemented by
appropriate boundary conditions, to obtain unique solutions for the six stress,
six strain and three displacement functions. It is found, however, that exact
solutions are obtainable only for some simple problems. For bodies of arbitrary
shape and loading, approximate solutions may be found by numerical methods
(e.g. finite differences) or by the Rayleigh—Ritz method based on energy principles
(Chapter 9).

Two approaches are possible in the solution of elasticity problems. We may
solve initially either for the three unknown displacements or for the six unknown
stresses. In the former method the equilibrium equations are written in terms
of strain by expressing the six stresses as functions of strain (see Problem
P.1.7). The strain—displacement relationships are then used to form three equa-
tions involving the three displacements u, v and w. The boundary conditions
for this method of solution must be specified as displacements. Determination
of u, v and w enables the six strains to be computed from Egs (1.18) and
(1.20); the six unknown stresses follow from the equations expressing stress as
functions of strain. It should be noted here that no use has been made of the
compatibility equations. The fact that u, v and w are determined directly ensures
that they are single-valued functions, thereby satisfying the requirement of
compatibility.

In most structural problems the object is usually to find the distribution of
stress in an elastic body produced by an external loading system. It is therefore
more convenient in this case to determine the six stresses before calculating any
required strains or displacements. This is accomplished by using Eqs (1.42) and
(1.46) to rewrite the six equations of compatibility in terms of stress. The resulting
equations, in turn, are simplified by making use of the stress relationships
developed in the equations of equilibrium. The solution of these equations auto-
matically satisfies the conditions of compatibility and equilibrium throughout the
body.
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2.1 Two-dimensional problems

For the reasons discussed in Chapter 1 we shall confine our actual analysis to the two-
dimensional cases of plane stress and plane strain. The appropriate equilibrium
conditions for plane stress are given by Eqs (1.6), viz.

do,  O7y,

x Ty~
ox "oy T
9o, Oy _ g
dy Oy -

and the required stress—strain relationships obtained from Egs (1.47), namely

1
Ex = E(U.\' - VU)')
1
€y = E(U}‘ - VU.V)
2(1+v
Ixy = ( E ) Ty

We find that although e, exists, Eqs (1.22)—(1.26) are identically satisfied leaving
Eq. (1.21) as the required compatibility condition. Substitution in Eq. (1.21) of the
above strains gives

(‘)27}, H?
2(1+ V)M‘/ = W(O’}. —vo,) + 5}}3(0" —voy) (2.1)
From Eqgs (1.6)
2
Py o, X (2.2)

oydx ~ 0x*  Ox
and

327}}. _ 820), oY

ot X = Ty 23
Ix0y oyt Oy (Tix = 7yy) (2.3)
Adding Egs (2.2) and (2.3), then substituting in Eq. (2.1) for 2077, /0xdy, we have

ox 6Y> Po, 00, do, &o,
= +

(] oYt
(r+ ”)< ox "oy ) "o T o T o

or

<82 e )¢ ay) (2.4)

47 3= —(1 bbbl el
8x2+é)y2)(0"+0)) ( +y)<(9x+ dy

The alternative two-dimensional problem of plane strain may also be formulated in
the same manner. We have seen in Section .11 that the six equations of compatibility

reduce to the single equation (1.21) for the plane strain condition. Further, from the
third of Eqs (1.42)

0. =v(o,+0o,) (since e. = 0 for plane strain)
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so that
l 2
e = (1 =)o~ v(1 4 v)o]
and
1 2
&y =11 =)oy = (1 + 1)
Also
2(1 +v)
Ty = TTA‘)'

Substituting as before in Eq. (1.21) and simplifying by use of the equations of
equilibrium we have the compatibility equation for plane strain

i_}.ﬁ ( + )—_L ,a_X.Jrgi
ox*  9y? AR N N Oy

The two equations of equilibrium together with the boundary conditions, from Eqs
(1.7), and one of the compatibility equations (2.4) or (2.5) are generally sufficient for
the determination of the stress distribution in a two-dimensional problem.

(2.5)

2.2 Stress functions

The solution of problems in elasticity presents difficulties but the procedure may be
simplified by the introduction of a stress function. For a particular two-dimensional
case the stresses are related to a single function of x and y such that substitution
for the stresses in terms of this function automatically satisfies the equations of
equilibrium no matter what form the function may take. However, a large proportion
of the infinite number of functions which fulfil this condition are eliminated by the
requirement that the form of the stress function must also satisfy the two-dimensional
equations of compatibility, (2.4) and (2.5), plus the appropriate boundary conditions.

For simplicity let us consider the two-dimensional case for which the body forces
are zero. The problem is now to determine a stress—stress function relationship
which satisfies the equilibrium conditions of

do, 87'.\;\‘ _
Ox dy

- 2
do, 01 (26)
— 4 —
dy = Ox

and a form for the stress function giving stresses which satisfy the compatibility
equation

»F
(5;§+a—yz)(0x+0y) =0 (2.7)



2.3 Inverse and semi-inverse methods

The English mathematician Airy proposed a stress function ¢ defined by the
equations

¢ ¢ O
Oy = Wﬁ g, = 5}5» Ty = —‘5\‘5} (2-8)
Clearly, substitution of Eqs (2.8) into Eqs (2.6) verifies that the equations of
equilibrium are satisfied by this particular stress—stress function relationship. Further
substitution into Eq. (2.7) restricts the possible forms of the stress function to those
satisfying the hiharmonic equation

o, To 0o
oxt T Toxroyr oyt
The final form of the stress function is then determined by the boundary conditions
relating to the actual problem. Thus, a two-dimensional problem in elasticity with
zero body forces reduces to the determination of a function ¢ of x and y, which

satisfies Eq. (2.9) at all points in the body and Eqs (1.7) reduced to two-dimensions
at all points on the boundary of the body.

(2.9)

2.3 Inverse and semi-inverse methods

The task of finding a stress function satisfying the above conditions is extremely
difficult in the majority of elasticity problems although some important classical
solutions have been obtained in this way. An alternative approach, known as the
inverse method, is to specify a form of the function ¢ satisfying Eq. (2.9), assume
an arbitrary boundary and then determine the loading conditions which fit the
assumed stress function and chosen boundary. Obvious solutions arise in which ¢
is expressed as a polynomial. Timoshenko and Goodier' consider a variety of
polynomials for ¢ and determine the associated loading conditions for a variety of
rectangular sheets. Some of these cases are quoted here.

Example 2.1
Consider the stress function
¢ = Ax> + Bxy + C)*

where A4, B and C are constants. Equation (2.9) is identically satisfied since each term
becomes zero on substituting for ¢. The stresses follow from

o
Oy = W = 2C
i)
_ Do
Ty = oxdy

To produce these stresses at any point in a rectangular sheet we require loading
conditions providing the boundary stresses shown in Fig. 2.1.
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ox=2C - >

Fig. 2.1 Required loading conditions on rectangular sheet in Example 2.1.

Example 2.2
A more complex polynomial for the stress function is
Ax Bx2y ny2 Dy3

=% t7 T2 T

As before
do_ d'o _d'¢
ox* ooyt Byt
so that the compatibility equation (2.9) is identically satisfied. The stresses are given by

=0

o)
Oy = W’—-CX‘I‘D}’
8¢
0'y= a—xz-=Ax+By
8¢
¥ oy T T

We may choose any number of values of the coefficients 4, B, C and D to produce a
variety of loading conditions on a rectangular plate. For example, if we assume
A =B=C=0 then 0, = Dy, 0, =0 and 7, =0, so that for axes referred to an
origin at the mid-point of a vertical side of the plate we obtain the state of pure
bending shown in Fig. 2.2(a). Alternatively, Fig. 2.2(b) shows the loading conditions
corresponding to 4 = C = D = 0 in which o, =0, 0, = By and 7,;, = —Bx.

By assuming polynomials of the second or third degree for the stress function we
ensure that the compatibility equation is identically satisfied whatever the values of
the coefficients. For polynomials of higher degrees, compatibility is satisfied only if
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y Y| oy=pbrg T B
g | gy
N =~

TI O-X=Dy a-x=Dy i l Txy B‘L
b X

i

n 1

(a) {b)

Fig. 2.2 (a) Required loading conditions on rectangular sheet in Example 2.2 for A= 8= C = 0; (b) asiin (a)
butA=C=D=0.

the coefficients are related in a certain way. Thus, for a stress function in the form of a
polynomial of the fourth degree

_Ax4 Bx’y Cx%? Dxy’ E_y4

=7t 3 6 12
and
o
—‘f: 4, 2—6:";,=4c, aiff=2E
Ox Ox*0y* Oy
Substituting these values in Eq. (2.9) we have
E=—-(2C+ 4)
The stress components are then
Oy = gz_yqzb = Cx® 4 Dxy — (2C + A)y*
oy = %=Ax2+3xy+Cy2
&8¢  BX Dy*

i~ T M

The coefficients 4, B, C and D are arbitrary and may be chosen to produce various
loading conditions as in the previous examples.

The obvious disadvantage of the inverse method is that we are determining
problems to fit assumed solutions, whereas in structural analysis the reverse is the
case. However, in some problems the shape of the body and the applied loading
allow simplifying assumptions to be made, thereby enabling a solution to be obtained.
St. Venant suggested a semi-inverse method for the solution of this type of problem in
which assumptions are made as to stress or displacement components. These assump-
tions may be based on experimental evidence or intuition. St. Venant first applied the

4



42 Two-dimensional problems in elasticity

method to the torsion of solid sections (Chapter 3) and to the problem of a beam
supporting shear loads (Section 2.6).

2.4 St. Venant's principle

In the examples of Section 2.3 we have seen that a particular stress function form may
be applicable to a variety of problems. Different problems are deduced from a given
stress function by specifying, in the first instance, the shape of the body and then
assigning a variety of values to the coefficients. The resulting stress functions give
stresses which satisfy the equations of equilibrium and compatibility ar all points
within and on the boundary of the body. It follows that the applied loads must be
distributed around the boundary of the body in the same manner as the internal
stresses at the boundary. Thus, in the case of pure bending (Fig. 2.2(a)) the applied
bending moment must be produced by tensile and compressive forces on the ends
of the plate, their magnitudes being dependent on their distance from the neutral
axis. If this condition is invalidated by the application of loads in an arbitrary fashion
or by preventing the free distortion of any section of the body then the solution of the
problem is no longer exact. As this is the case in practically every structural problem it
would appear that the usefulness of the theory is strictly limited. To surmount this
obstacle we turn to the important principle of St. Venant which may be summarized
as stating:

that while statically equivalent systems of forces acting on a body produce substan-
tially different local effects the stresses at sections distant from the surface of louding
are essentially the same.

Thus, at a section AA close to the end of a beam supporting two point loads P the
stress distribution varies as shown in Fig. 2.3, whilst at the section BB, a distance
usually taken to be greater than the dimension of the surface to which the load is
applied, the stress distribution is uniform.

We may therefore apply the theory to sections of bodies away from points of
applied loading or constraint. The determination of stresses in these regions requires,
for some problems, separate calculation (see Chapter 11).

, , A

s —

7 i '
i ! b
- | |

Fig. 2.3 Stress distributions illustrating St. Venant's principle.
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2.5 Displacements

Having found the components of stress, Eqs (1.47) (for the case of plane stress) are
used to determine the components of strain. The displacements follow from Eqs
(1.27) and (1.28). The integration of Eqs (1.27) yields solutions of the form

u=c.x+a—by (2.10)
v=¢g,y+c+bx (2.11)

in which a, b and ¢ are constants representing movement of the body as a whole or
rigid body displacements. Of these ¢ and ¢ represent pure translatory motions of
the body while b is a small angular rotation of the body in the xy plane. If we
assume that b is positive in an anticlockwise sense then in Fig. 2.4 the displacement
v/ due to the rotation is given by

v =P'Q - PQ
= OPsin(6 + b) — OPsind
which, since b is a small angle, reduces to
v = bx

Similarly

i = —by as stated

b

At

|

!

|

L

| |

il ;
0 Q Q

Fig. 2.4 Displacements produced by rigid body rotation.

2.6 Bending of an end-loaded cantilever

In his semi-inverse solution of this problem St. Venant based his choice of stress
function on the reasonable assumptions that the direct stress is directly proportional
to bending moment (and therefore distance from the free end) and height above the
neutral axis. The portion of the stress function giving shear stress follows from the
equilibrium condition relating o, and 7,. Thus, the appropriate stress function for
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y
Unit width
Z , P 4"
v
X
7 i
. —
Fig. 2.5 Bending of an end-loaded cantilever.
the cantilever beam shown in Fig. 2.5 is
Bxv?
¢ = Axy+—- 0
where 4 and B are unknown constants. Hence
8¢ )
Ty = 52- = Bxy
& ..
Oy =5 = 0 > (i)
i R s
¥ oxdy 2 )

Substitution for ¢ in the biharmonic equation shows that the form of the stress
function satisfies compatibility for all values of the constants 4 and B. The actual
values of 4 and B are chosen to satisfy the boundary condition, viz. 7, = 0 along
the upper and lower edges of the beam, and the resultant shear load over the free
end is equal to P.

From the first of these

2

Tx,=—A—BTy=0 aty=:|:§
giving
Bb?
A=-=

From the second

b/2
- Jl’b/7 Tyy dy = P (see sign convention for 7,)

or

b2 ( BK* By
- Z _Zay=r
J—b/2< 8 2 ) Y
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from which
12P
B=-— —53—
The stresses follow from Eqs (ii)
_ 12Pxy _ ﬂx_
Ox = b3 - I y
o, =0 (iii)

__RP s 4y P
Txy - 8b3 (b 4y ) - 81(b 4}’2)

where I = b°/12 the second moment of area of the beam cross-section.
We note from the discussion of Section 2.4 that Eqs (iii) represent an exact solution
subject to the following conditions.

(1) That the shear force P is distributed over the free end in the same manner as the
shear stress 7, given by Eqs (iii).

(2) That the distribution of shear and direct stresses at the built-in end is the same
as those given by Eqgs (iii).

(3) That all sections of the beam, including the built-in end, are free to distort.

In practical cases none of these conditions is satisfied, but by virtue of St. Venant’s
principle we may assume that the solution is exact for regions of the beam away from
the built-in end and the applied load. For many solid sections the inaccuracies in these
regions are small. However, for thin-walled structures, with which we are primarily
concerned, significant changes occur and we shall consider the effects of axial
constraint on this type of structure in Chapter 11.

We now proceed to determine the displacements corresponding to the stress system
of Eqs (iii). Applying the strain—displacement and stress—strain relationships, Eqs
(1.27), (1.28) and (1.47), we have

_Ou_ o,  Pxy

“=o%"E H )
_Ov_ wve, vPxy

T8 E  EH ®
_Ou Ov Ty P o 5 .

’ny'—_a—-—};-'_a_ G - SIG(b ——4y) (Vl)

Integrating Eqs (iv) and (v) and noting that ¢, and ¢, are partial derivatives of the
displacements, we find
Px? y _ I/ny2

u=—ﬁ+f1(y), V=oEr + fa(x) (vii)

where f1(y) and f5(x) are unknown functions of x and y. Substituting these values of
u and v in Eq. (vi)
_ P 9fi(y) vy Oh(x) P

o oy2 2
BT oy TR T Tox - sl V)
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Separating the terms containing x and y in this equation and writing

PX  8f(x) Fy(y) = vPy? Py Bfi(y)

B = =25 o5 25T 201G T oy
we have
Pb?
Fl(x)+F2(J’)=—m

The term on the r.h.s. of this equation is a constant which means that F, (x) and F,(y)
must be constants, otherwise a variation of either x or y would destroy the equality.
Denoting F\(x) by C and F,(y) by D gives

P
C+D=- —STG- (Vlll)
and
ohx) _P2Z . () _BY vPY
Ox 2EI' 7 8y 2IG 2EI
so that
3
f(x) = + Cx+F
and
_ Py3 uPy3
") =g~ egr TPV HH
Therefore from Eqs (vii)
Px’y I/Py3 Py .
“=~2Er ~eEr Teig T TH (ix)
_ I/ny Px?
V= ST +6E +Cx+F x)

The constants C, D, F and H are now determined from Eq. (viii) and the displacement
boundary conditions imposed by the support system. Assuming that the support
prevents movement of the point K in the beam cross-section at the built-in end
then u=v=0at x =1/, y =0 and from Egs (ix) and (x)

PP

If we now assume that the slope of the neutral plane is zero at the built-in end then
Av/0x=0atx =1, y =0 and from Eq. (x)
”
2EI

It follows immediately that

_ PP
T 2EI
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and, from Eq. (viii)
_ PP PY
" 2EI 8IG

Substitution for the constants C, D, F and H in Egs (ix) and (x) now produces the
equations for the components of displacement at any point in the beam. Thus

__szy_uPy"'_l_P_y3 _}_)[_2__P_b2 (xi)
2EI ~ 6EI ' 6IG ' \2EI 381G )’
vPxy* Px* PPx PP .
=ttt (xii)
2EI  6EI 2EI 3EI
The deflection curve for the neutral plane is
()0 = L2 PEx 2L (xii)
Uy=0=6EI " ZEI ' 3EI

from which the tip deflection (x = 0) is P> /3EI. This value is that predicted by simple
beam theory (Section 9.1) and does not include the contribution to deflection of the
shear strain. This was eliminated when we assumed that the slope of the neutral plane
at the built-in end was zero. A more detailed examination of this effect is instructive.
The shear strain at any point in the beam is given by Eq. (vi)

P
Yay = — m

and is obviously independent of x. Therefore at all points on the neutral plane the
shear strain is constant and equal to

-4y

Pb?
Yxy = —m
which amounts to a rotation of the neutral plane as shown in Fig. 2.6. The deflection

of the neutral plane due to this shear strain at any section of the beam is therefore
equal to

PLY/BIG

Fig. 2.6 Rotation of neutral plane due to shear in end-loaded cantilever.
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- PbY8IG

(a) {b)

Fig. 2.7 (a) Distortion of cross-section due to shear; (b) effect on distortion of rotation due to shear.

and Eq. (xiii) may be rewritten to include the effect of shear as

P PPx N pP N Ph’ (
6EI 2EI 3El 8IG

Let us now examine the distorted shape of the beam section which the analysis
assumes is free to take place. At the built-in end when x =/ the displacement of
any point is, from Eq. (xi)

(W0 = ¥) (xiv)

1/Py3 Py3 szy

"= SET T6IG 3IG

The cross-section would therefore, if allowed, take the shape of the shallow reversed S

shown in Fig. 2.7(a). We have not included in Eq. (xv) the previously discussed effect

of rotation of the neutral plane caused by shear. However, this merely rotates the
beam section as indicated in Fig. 2.7(b).

The distortion of the cross-section is produced by the variation of shear stress over
the depth of the beam. Thus the basic assumption of simple beam theory that plane
sections remain plane is not valid when shear loads are present, although for long,
slender beams bending stresses are much greater than shear stresses and the effect
may be ignored.

It will be observed from Fig. 2.7 that an additional direct stress system will be
imposed on the beam at the support where the section is constrained to remain
plane. For most engineering structures this effect is small but, as mentioned
previously, may be significant in thin-walled sections.

(xv)

Reference

1 Timoshenko, S. and Goodier, J. N., Theory of Elasticity, 2nd edition, McGraw-Hill Book
Company, New York, 1951.

Problems

P.2.1 A metal plate has rectangular axes Ox, Oy marked on its surface. The point
O and the direction of Ox are fixed in space and the plate is subjected to the following
uniform stresses:



Problems

compressive, 3p, parallel to Ox,

tensile, 2p, parallel to Oy,

shearing, 4p, in planes parallel to Ox and Oy
in a sense tending to decrease the angle xOy

Determine the direction in which a certain point on the plate will be displaced; the
coordinates of the point are (2, 3) before straining. Poisson’s ratio is 0.25.

Ans. 19.73° to Ox

P.2.2 What do you understand by an Airy stress function in two dimensions? A
beam of length /, with a thin rectangular cross-section, is built-in at the end x = 0 and
loaded at the tip by a vertical force P (Fig. P.2.2). Show that the stress distribution, as
calculated by simple beam theory, can be represented by the expression

¢ = Ay’ + By’x + Cyx
as an Airy stress function and determine the coefficients 4, B, C.
Ans. A =2PI/td®, B=-2P/td’, C=3P/2d

MO\

B
|

Fig. P.2.2

P.2.3 A thin rectangular plate of unit thickness (Fig. P.2.3) is loaded along
the edge v = +d by a linearly varying distributed load of intensity w = px with

y M
4

Fig. P.2.3
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corresponding equilibrating shears along the vertical edges at x=0 and /. As a
solution to the stress analysis problem an Airy stress function ¢ is proposed, where

¢ = [5(° — Px)(y + d)*(y — 2d) — 3yx(* - d*)?]

120d3

Show that ¢ satisfies the internal compatibility conditions and obtain the distribution
of stresses within the plate. Determine also the extent to which the static boundary
conditions are satisfied.

px 2 2 3 2
X
o, = —p—3(y3—3yd2—2d3)

Ty =15 d3 P 15352 — P)(5* — d2) — Sy* + 6)°d% —

The boundary stress function values of 7,, do not agree with the assumed constant
equilibrating shears at x =0 and /.

P.2.4 A two-dimensional isotropic sheet, having a Young’s modulus E and linear
coefficient of expansion a, is heated non-uniformly, the temperature being T'(x, y).
Show that the Airy stress function ¢ satisfies the differential equation

V3(V?¢ + EaT) =
where
& 62
2
Vi=s2tap

is the Laplace operator.



Torsion of solid sections

The elasticity solution of the torsion problem for bars of arbitrary but uniform cross-
section is accomplished by the semi-inverse method (Section 2.3) in which assump-
tions are made regarding either stress or displacement components. The former
method owes its derivation to Prandtl, the latter to St. Venant. Both methods are
presented in this chapter, together with the useful membrane analogy introduced
by Prandtl.

3.1 Prandtl stress function solution

Consider the straight bar of uniform cross-section shown in Fig. 3.1. It is subjected to
equal but opposite torques 7 at each end, both of which are assumed to be frec from
restraint so that warping displacements w, that is displacements of cross-sections
normal to and out of their original planes, are unrestrained. Further, we make the
reasonable assumptions that since no direct loads are applied to the bar

or=0,=0.=0

Fig. 3.1 Torsion of a bar of uniform, arbitrary cross-section.
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Torsion of solid sections

and that the torque is resisted solely by shear stresses in the plane of the cross-section
giving
Ty =0

To verify these assumptions we must show that the remaining stresses satisfy the
conditions of equilibrium and compatibility at all points throughout the bar and,
in addition, fulfil the equilibrium boundary conditions at all points on the surface
of the bar.

If we ignore body forces the equations of equilibrium, (1.5), reduce, as a result of
our assumptions, to

Ot 0,

e Omy: _ OTyx +% _0

8z ' 6x | Oy (3-1)

The first two equations of Eqs (3.1) show that the shear stresses 7, and 7,, are functions
of x and y only. They are therefore constant at all points along the length of the bar
which have the same x and y coordinates. At this stage we turn to the stress function
to simplify the process of solution. Prandtl introduced a stress function ¢ defined by

9¢ _ 99 _
ox —Tzys dy = Tax (3.2)

which identically satisfies the third of the equilibrium equations (3.1) whatever form
¢ may take. We therefore have to find the possible forms of ¢ which satisfy the
compatibility equations and the boundary conditions, the latter being, in fact, the
requirement that distinguishes one torsion problem from another.

From the assumed state of stress in the bar we deduce that

Ex =€, =€, =Y, =0 (see Egs (1.42) and (1.46))
Further, since 7, and 7, and hence 7,, and v, are functions of x and y only then the

compatibility equations (1.21)—(1.23) are identically satisfied as is Eq. (1.26). The
remaining compatibility equations, (1.24) and (1.25), are then reduced to

Ox Ox Oy
B (0 01 _,
Oy \ Ox dy |

Substituting initially for +,, and ~,, from Eqs (1.46) and then for 7,,(= 7,,) and

Tyo(= Ty,) from Eqgs (3.2) gives
2(22-2)-

x \ Ox*  9)?
Lo (P, P\ _,
Oy \ 0x* Oy
or
92y _Oyrs-
55V 8=0 —5 V=0 (3.3)



3.1 Prandtl stress function solution

Fig. 3.2 Formation of the direction cosines / and m of the normal to the surface of the bar.

where V2 is the two-dimensional Laplacian operator

&
0x>  9y?
The parameter V¢ is therefore constant at any section of the bar so that the function
¢ must satisfy the equation
% gz—yf = constant = F (say) (3.4)
at all points within the bar.

Finally we must ensure that ¢ fulfils the boundary conditions specified by Eqs (1.7).
On the cylindrical surface of the bar there are no externally applied forces so that
X =Y =2Z =0. The direction cosine # is also zero and therefore the first two
equations of Eqs (1.7) are identically satisfied, leaving the third equation as the
boundary condition, viz.

Ty + Tyl = 0 (3.5)

The direction cosines / and m of the normal N to any point on the surface of the bar
are, by reference to Fig. 3.2

l=%, m=—% (3.6)
Substituting Eqgs (3.2) and (3.6) into Eq. (3.5) we have
0o dx 08dy
Ox ds Oy ds
or
7]
o

Thus ¢ is constant on the surface of the bar and since the actual value of this constant
does not affect the stresses of Eq. (3.2) we may conveniently take the constant to be
zero. Hence on the cylindrical surface of the bar we have the boundary condition

=0 (3.7)
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54 Torsion of solid sections

On the ends of the bar the direction cosines of the normal to the surface have the
values / = 0, m = 0 and n = 1. The related boundary conditions, from Eqs (1.7), are

then
X=r1,
Y=,
Z=0

We now observe that the forces on each end of the bar are shear forces which are
distributed over the ends of the bar in the same manner as the shear stresses are
distributed over the cross-section. The resultant shear force in the positive direction
of the x axis, which we shall call S,, is then

S, = ijdxdy = JJszdxdy
or, using the relationship of Egs (3.2)

SX=JI%§dxdy=dejg—fdy=0

as ¢ = 0 at the boundary. In a similar manner, S, the resultant shear force in the y

direction, is
0%
Sy = —J dyJ—é;dx—O

It follows that there is no resultant shear force on the ends of the bar and the forces
represent a torque of magnitude, referring to Fig. 3.3

T= JJ.(szx - szy) dxdy

in which we take the sign of T as being positive in the anticlockwise sense.

l7(=rzy)

Fig. 3.3 Derivation of torque on cross-section of bar.
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Rewriting this equation in terms of the stress function ¢

T= —JJ%xdxdy - Jjg—fydxdy

Integrating each term on the right-hand side of this equation by parts, and noting
again that ¢ = 0 at all points on the boundary, we have

T=2“¢dxdy (3.8)

We are therefore in a position to obtain an exact solution to a torsion problem if a
stress function ¢(x, y) can be found which satisfies Eq. (3.4) at all points within the
bar and vanishes on the surface of the bar, and providing that the external torques
are distributed over the ends of the bar in an identical manner to the distribution
of internal stress over the cross-section. Although the last proviso is generally
impracticable we know from St. Venant’s principle that only stresses in the end
regions are affected; therefore, the solution is applicable to sections at distances
from the ends usually taken to be greater than the largest cross-sectional dimension.
We have now satisfied all the conditions of the problem without the use of stresses
other than 7,, and 7.,, demonstrating that our original assumptions were justified.

Usually, in addition to the stress distribution in the bar, we require to know the
angle of twist and the warping displacement of the cross-section. First, however,
we shall investigate the mode of displacement of the cross-section. We have seen
that as a result of our assumed values of stress

Ex =€ =& ="y =0
It follows, from Eqgs (1.18) and the second of Eqgs (1.20), that

ou_ov_ow_ov on
Ox 8y 0z Ox' Oy

which result leads to the conclusions that each cross-section rotates as a rigid body
in its own plane about a centre of rotation or twist, and that although cross-
sections suffer warping displacements normal to their planes the values of this
displacement at points having the same coordinates along the length of the bar are
equal. Each longitudinal fibre of the bar therefore remains unstrained, as we have
in fact assumed.

Let us suppose that a cross-section of the bar rotates through a small angle 8 about
its centre of twist assumed coincident with the origin of the axes Oxy (see Fig. 3.4).
Some point P(r, o) will be displaced to P'(r,a + ), the components of its displace-
ment being

=0

u= —rfsinc, v=rfcosa
or
u=—_6y, v=0x (3.9
Referring to Egs (1.20) and (1.46)
Ou 8w 7, ow Ov Ty

et T 6 Ty e G
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Fig. 3.4 Rigid body displacement in the cross-section of the bar.

Rearranging and substituting for ¥ and v from Egs (3.9)

ow 1, d6 ow T, df
For a particular torsion problem Eqs (3.10) enable the warping displacement w of
the originally plane cross-section to be determined. Note that since each cross-section
rotates as a rigid body 8 is a function of z only.
Differentiating the first of Eqs (3.10) with respect to y, the second with respect to x
and subtracting we have

1 (87'”_%) ,48

TG\ 0y Oox dz
Expressing 7., and 7;, in terms of ¢ gives
o P9 i
0x?  Oy? dz
or, from Eq. (3.4)
do 2
—ZGE = V*¢ = F (constant) (3.11)
It is convenient to introduce a torsion constant J defined by the general torsion
equation
de
T=Glg (3.12)

The product GJ is known as the torsional rigidity of the bar and may be written, from
Eqgs (3.8) and (3.11)

GJ = —%quﬁdxdy (3.13)
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T‘ y

8n T

o

¢= Constant
Fig. 3.5 Lines of shear stress.

Consider now the line of constant ¢ in Fig. 3.5. If s is the distance measured along
this line from some arbitrary point then
08 _o_00dy 0 dx
ds  Oyds Oxds

Using Eqgs (3.2) and (3.6) we may rewrite this equation as

0¢ .
s = Toxl +Tym =0 (3.14)

From Fig. 3.5 the normal and tangential components of shear stress are

0

Ton = Toxl + Ty, Toy = Tl — T,m (3.15)

Comparing the first of Eqgs (3.15) with Eq. (3.14) we see that the normal shear stress is
zero so that the resultant shear stress at any point is tangential to a line of constant ¢.
These are known as lines of shear stress or shear lines.

Substituting ¢ in the second of Eqs (3.15) we have

8¢ O¢

Tos = ——m

- ax' By
which may be written, from Fig. 3.5, as
Opdx Opdy @

= T ox dn dydn  on
where, in this case, the direction cosines / and m are defined in terms of an elemental
normal of length én.
Thus we have shown that the resultant shear stress at any point is tangential to the
line of shear stress through the point and has a value equal to minus the derivative of
¢ in a direction normal to the line.

(3.16)

Example 3.1
To illustrate the stress function method of solution we shall now consider the
torsion of a cylindrical bar having the elliptical cross-section shown in Fig. 3.6.
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58 Torsion of solid sections

e
N

Fig. 3.6 Torsion of a bar of elliptical cross-section.

The semi-major and semi-minor axes are a and b respectively, so that the equation of
its boundary is

2 | 5 .
a B

If we choose a stress function of the form
X2 y2 .
¢=C<Zz'+'b—2—1) (l)

then the boundary condition ¢ = 0 is satisfied at every point on the boundary and the
constant C may be chosen to fulfil the remaining requirement of compatibility. Thus,

from Eqs (3.11) and (i)
1 1 do
2C<z§ + ﬁ) = —ZGa—z_'
or
dg b N
C==CL@+» @
giving

¢:

do b (x2 » 1) (i)

= —" (T 7
Z @+ \2 TR
Substituting this expression for ¢ in Eq. (3.8) establishes the relationship between
the torque 7 and the rate of twist

T= 40%(—‘12“27”;—) (%ijzdxdy+bizjjy2dxdy—JJ dxdy)

The first and second integrals in this equation are the second moments of area
I, = wa’b/4 and I, = wab’ /4, while the third integral is the area of the cross-section
A = wab. Replacing the integrals by these values gives

dé wa*b’

T=Gg @+ @iv)
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from which (see Eq. (3.12))

3,3

wa b
J=— /
(a® + h?) )

The shear stress distribution is obtained in terms of the torque by substituting for
the product Gd@/dz in Eq. (iii) from Eq. (iv) and then differentiating as indicated by
the relationships of Egs (3.2). Thus

2Ty _ 2Tx

T:\' -
: 7wl h

(vi)

R
So far we have solved for the stress distribution, Eqgs (vi), and the rate of twist,
Eq. (iv). It remains to determine the warping distribution w over the cross-section.
For this we return to Eqs (3.10) which become, on substituting from the above for
T-y» Tz, and df/dz
ow 2Ty T (d> + %) ow  2Tx T (& +b) ‘

ox  wah’G G wdh h _()_y T 1dhG G wd’hd

or
(A)H’ B T 2 2\ (‘)N’ B T 2 2\ ..
a = m (b —d )V, Fy = W (b —a ).\ (Vll)
Integrating both of Egs (vii)
T(h* — o) . T(h —d?) :
W= WJ’—\’ +h(), w= W«\'y +/2(x)

The warping displacement given by each of these equations must have the same value
at identical points (x, y). It follows that fi(y) = f>(x) = 0. Hence
T(h* — %)
W= et XY viil
7’ b G & (viu)
Lines of constant w therefore describe hyperbolas with the major and minor axes of
the elliptical cross-section as asymptotes. Further, for a positive (anticlockwise)
torque the warping is negative in the first and third quadrants (¢ > b) and positive
in the second and fourth.

3.2 St. Venant warping function solution

In formulating his stress function solution Prandtl made assumptions concerned with
the stress distribution in the bar. The alternative approach presented by St. Venant
involves assumptions as to the mode of displacement of the bar; namely, that
cross-sections of a bar subjected to torsion maintain their original unloaded shape
although they may suffer warping displacements normal to their plane. The first
of these assumptions leads to the conclusion that cross-sections rotate as rigid
bodies about a centre of rotation or twist. This fact was also found to derive from
the stress function approach of Section 3.1 so that, referring to Fig. 3.4 and Eq.
(3.9), the components of displacement in the x and y directions of a point P in the
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60 Torsion of solid sections

cross-section are
u=-6y, v=_~0x

It is also reasonable to assume that the warping displacement w is proportional to the
rate of twist and is therefore constant along the length of the bar. Hence we may
define w by the equation

dg
W=7 %(x) (3.17)

where (x, y) is the warping function.

The assumed form of the displacements #, v and w must satisfy the equilibrium
and force boundary conditions of the bar. We note here that it is unnecessary to
investigate compatibility as we are concerned with displacement forms which are
single valued functions and therefore automatically satisfy the compatibility
requirement.

The components of strain corresponding to the assumed displacements are
obtained from Eqgs (1.18) and (1.20) and are

Ex =€, =6 =", =0
0w ou_do(0y_
T = ox T oz dz\ox ” (3.18)
Oow Ov db [0y
Yzy —(9_y+5_£ (3_y+x)
The corresponding components of stress are, from Eqgs (1.42) and (1.46)

Oy =0,=0;="Ty =0

y
Gdz(Bx y) (3.19)
o
=G— P ( By + x)
Ignoring body forces we see that these equations identically satisfy the first two of the
equilibrium equations (1.5) and also that the third is fulfilled if the warping function
satisfies the equation
a%p Y
x2 6y2
The direction cosine # is zero on the cylindrical surface of the bar and so the first

two of the boundary conditions (Eqs (1.7)) are identically satisfied by the stresses
of Egs (3.19). The third equation simplifies to

(G (@ ow

It may be shown, but not as easily as in the stress function solution, that the shear
stresses defined in terms of the warping function in Eqs (3.19) produce zero resultant
shear force over each end of the bar'. The torque is found in a similar manner to that

=Vi=0 (3.20)
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in Section 3.1 where, by reference to Fig. 3.3, we have

T= [ [(T:_|-x - T:xy) dx dy

df P o ,
e[ (e o

By comparison with Eq. (3.12) the torsion constant J is now, in terms of 1

JzJJ[(%+x)x—<%—y>y] dxdy (3.23)

The warping function solution to the torsion problem reduces to the determination
of the warping function v which satisfies Eqs (3.20) and (3.21). The torsion constant
and the rate of twist follow from Eqs (3.23) and (3.22); the stresses and strains from
Eqgs (3.19) and (3.18) and, finally, the warping distribution from Eq. (3.17).

or

3.3 The membrane analogy

Prandtl suggested an extremely useful analogy relating the torsion of an arbitrarily
shaped bar to the deflected shape of a membrane. The latter is a thin sheet of material
which relies for its resistance to transverse loads on internal in-plane or membrane
forces.

Suppose that a membrane has the same external shape as the cross-section of a
torsion bar (Fig. 3.7(a)). It supports a transverse uniform pressure ¢ and is restrained
along its edges by a uniform tensile force N/unit length as shown in Fig. 3.7(a) and
(b). It is assumed that the transverse displacements of the membrane are small so
that N remains unchanged as the membrane deflects. Consider the equilibrium of an
element dx8y of the membrane. Referring to Fig. 3.8 and summing forces in the z direc-
tion we have

Oow ow  Fw S ow Ow  Fw .
_ N&y‘a—:{_‘ — N&y(——a‘; — W&\”) — Néxa—y — N(Sx(—a—y — 6y2 6x) + (1(5.\(5')) =0

y

(b)

Fig. 3.7 Membrane analogy: in-plane and transverse loading.
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Fig. 3.8 Equilibrium of element of membrane.

or

Fw  w

a—x2+W=V2w= —% (3'24)

Equation (3.24) must be satisfied at all points within the boundary of the membrane.
Furthermore, at all points on the boundary

w=0 (3.25)

and we see that by comparing Eqs (3.24) and (3.25) with Eqs (3.11) and (3.7) w is
analogous to ¢ when g is constant. Thus if the membrane has the same external
shape as the cross-section of the bar then

w(x,y) = ¢(x,)
and

9_ _p_>cY
N F—ZGdZ

The analogy now being established, we may make several useful deductions relating
the deflected form of the membrane to the state of stress in the bar.

Contour lines or lines of constant w correspond to lines of constant ¢ or lines of
shear stress in the bar. The resultant shear stress at any point is tangential to the
membrane contour line and equal in value to the negative of the membrane slope,
Ow/On, at that point, the direction n being normal to the contour line (see
Eg. (3.16)). The volume between the membrane and the xy plane is

Vol=Jdexdy

and we see that by comparison with Eq. (3.8)
T =2Vol
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The analogy therefore provides an extremely useful method of analysing torsion bars
possessing irregular cross-sections for which stress function forms are not known.
Hetényi® describes experimental techniques for this approach. In addition to the strictly
experimental use of the analogy it is also helpful in the visual appreciation of a parti-
cular torsion problem. The contour lines often indicate a form for the stress function,
enabling a solution to be obtained by the method of Section 3.1. Stress concentrations
are made apparent by the closeness of contour lines where the slope of the membrane is
large. These are in evidence at sharp internal corners, cut-outs, discontinuities etc.

3.4 Torsion of a narrow rectangular strip

In Chapter 9 we shall investigate the torsion of thin-walled open section beams; the
development of the theory being based on the analysis of a narrow rectangular
strip subjected to torque. We now conveniently apply the membrane analogy to the
torsion of such a strip shown in Fig. 3.9. The corresponding membrane surface has
the same cross-sectional shape at all points along its length except for small regions
near its ends where it flattens out. If we ignore these regions and assume that the
shape of the membrane is independent of y then Eq. (3.11) simplifies to
d’¢  _ df

-

Integrating twice

da
d):—G—\'2+Bx+C

dz”
Substituting the boundary conditions ¢ = 0 at x = +¢/2 we have
b= Aog {.\'2 - <é>2] (3.26)

Y
[ AW\

s/2

X
s/2

t
~——

Fig. 3.9 Torsion of a narrow rectangular strip.
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Although ¢ does not disappear along the short-edges of the strip and therefore does
not give an exact solution, the actual volume of the membrane differs only slightly
from the assumed volume so that the corresponding torque and shear stresses are
reasonably accurate. Also, the maximum shear stress occurs along the long sides of
the strip where the contours are closely spaced, indicating, in any case, that conditions
in the end region of the strip are relatively unimportant.

The stress distribution is obtained by substituting Eq. (3.26) in Egs (3.2), thus

Ty = 2Gx%, T =0 (3.27)
the shear stress varying linearly across the thickness and attaining a maximum
dé
Trymax = :I:Gta (3.28)

at the outside of the long edges as predicted. The torsion constant J follows from the
substitution of Eq. (3.26) into Eq. (3.13), giving

_sf

7=3

(3.29)

and
T
B

These equations represent exact solutions when the assumed shape of the deflected
membrane is the actual shape. This condition arises only when the ratio s/t
approaches infinity; however, for ratios in excess of 10 the error is of the order of
only 6 per cent. Obviously the approximate nature of the solution increases as s/¢

decreases. Therefore, in order to retain the usefulness of the analysis, a factor p is
included in the torsion constant, viz.

Tzy,max =

pst’

3

Values of p for different types of section are found experimentally and quoted in
various references>*. We observe that as s/t approaches infinity u approaches unity.

The cross-section of the narrow rectangular strip of Fig. 3.9 does not remain plane
after loading but suffers warping displacements normal to its plane; this warping may
be determined using either of Eqs (3.10). From the first of these equations

ow do
since 7., = 0 (see Eqs (3.27)). Integrating Eq. (3.30) we obtain
w= xy% + constant (3.31)

Since the cross-section is doubly symmetrical w = 0 at x = y = 0 so that the constant
in Eq. (3.31) is zero. Therefore

W= xyg (3.32)

and the warping distribution at any cross-section is as shown in Fig. 3.10.
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Fig. 3.10 Warping of a thin rectangular strip.

We should not close this chapter without mentioning alternative methods of
solution of the torsion problem. These in fact provide approximate solutions for
the wide range of problems for which exact solutions are not known. Examples of
this approach are the numerical finite difference method and the Rayleigh—Ritz
method based on energy principles’.
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Problems

P.3.1 Show that the stress function ¢ = k(r* — a”) is applicable to the solution
of a solid circular section bar of radius a. Determine the stress distribution in the
bar in terms of the applied torque, the rate of twist and the warping of the cross-
section.

Is it possible to use this stress function in the solution for a circular bar of hollow

section?

65
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Ans. T=Tr/I, where I,= nd /2,
d9/dz = 2T /Gna*, w =0 everywhere

P.3.2 Deduce a suitable warping function for the circular section bar of P.3.1 and
hence derive the expressions for stress distribution and rate of twist.

_ Q Tx Tr d@ T

s Togy =7 Tas =75 T =77
L’ 7L T 46

Ans. =0, 7, =

P.3.3 Show that the warping function ¢ = kxy, in which k is an unknown constant,
may be used to solve the torsion problem for the elliptical section of Example 3.1.

P.3.4 Show that the stress function

6= -G |50 +7) - =30 - 7.

is the correct solution for a bar having a cross-section in the form of the equilateral
triangle shown in Fig. P.3.4. Determine the shear stress distribution, the rate of
twist and the warping of the cross-section. Find the position and magnitude of the
maximum shear stress.

v}
ollp /

g/

A
a
Fig. P34
dé 3x% 3y
Ans. sz—GEZ"(x—E_l_Z)
- dé 3xy
e
: a do
Tmax (at centre of each side) = — 365
do _ 15V3T
dz  Ga*

_1d8/[ 4



Problems

Fig. P.3.5

P.3.5 Determine the maximum shear stress and the rate of twist in terms of the
applied torque T for the section comprising narrow rectangular strips shown in
Fig. P.3.5.

Ans.  Tyax = 3T/(2a + b)*, d6/dz = 3T/G(2a+ b)?F

67



Energy methods of
structural analysis

In Chapter 2 we have seen that the elasticity method of structural analysis embodies
the determination of stresses and/or displacements by employing equations of
equilibrium and compatibility in conjunction with the relevant force—-displacement
or stress—strain relationships. A powerful alternative but equally fundamental
approach is the use of energy methods. These, while providing exact solutions for
many structural problems, find their greatest use in the rapid approximate solution
of problems for which exact solutions do not exist. Also, many structures which
are statically indeterminate, that is they cannot be analysed by the application of
the equations of statical equilibrium alone, may be conveniently analysed using an
energy approach. Further, energy methods provide comparatively simple solutions
for deflection problems which are not readily solved by more elementary means.

Generally, as we shall see, modern analysis' uses the methods of total comple-
mentary energy and total potential energy. Either method may be employed to solve
a particular problem, although as a general rule deflections are more casily found
using complementary energy, and forces by potential energy.

Closely linked with the methods of potential and complementary energy is the
classical and extremely old principle of virtual work embracing the principle of virtual
displacements (real forces acting through virtual displacements) and the principle of
virtual forces (virtual forces acting through real displacements). Virtual work is in fact
an alternative energy method to those of total potential and total complementary
energy and is practically identical in application.

Although energy methods are applicable to a wide range of structural problems and
may even be used as indirect methods of forming equations of equilibrium or
compatibility'?, we shall be concerned in this chapter with the solution of deflection
problems and the analysis of statically indeterminate structures. We shall also include
some methods restricted to the solution of linear systems, viz. the unit load method, the
principle of superposition and the reciprocal theorem.

4.1 Strain energy and complementary energy

Figure 4.1(a) shows a structural member subjected to a steadily increasing load P. As
the member extends, the load P does work and from the law of conservation of energy
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ATTANN Load Complementary energy C
p A ~ B
5|
l T T Strain energy U
Yy
Li
i :

P 0 8y—>{ |-— Y Deflection
(@) (b)

Fig. 4.1 (a) Strain energy of a member subjected to simpie tension; (b} load—deflection curve for a non-
linearly elastic member.

this work is stored in the member as strain energy. A typical load—deflection curve for
a member possessing non-linear elastic characteristics is shown in Fig. 4.1(b). The
strain energy U produced by a load P and corresponding extension y is then

U=rP® 4.1)
0

and is clearly represented by the area OBD under the load—deflection curve. Engesser
(1889) called the area OBA above the curve the complementary energy C, and from
Fig. 4.1(b)

P
c:Jyu’ (4.2)
0

Complementary energy, as opposed to strain energy, has no physical meaning, being
purely a convenient mathematical quantity. However, it is possible to show that
complementary energy obeys the law of conservation of energy in the type of situation
usually arising in engineering structures, so that its use as an energy method is valid.
Differentiation of Egs (4.1) and (4.2) with respect to y and P respectively gives
dU d
w_p 49¢_,
dy dp
Bearing these relationships in mind we can now consider the interchangeability of

strain and complementary energy. Suppose that the curve of Fig. 4.1(b) is represented
by the function

P=p

where the coefficient » and exponent » are constants. Then

'y 112 7 P\!/"
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Load
p A B
c
)
o D
Y Deflection
Fig. 4.2 Load-deflection curve for a linearly elastic member.
Hence
dU du 1 /PN 1
PN P — = — — - -y 43
ay ~ " dp n<b> n’ 43)
dC dC
= F = bmy" = nP (4.4)
When n=1
dUu dC p
dy —dy
WU dC “3)
ar~ap =’

and the strain and complementary energies are completely interchangeable. Such a
condition is found in a linearly elastic member; its related load—deflection curve
being that shown in Fig. 4.2. Clearly, area OBD(U) is equal to area OBA(C).

It will be observed that the latter of Egs (4.5) is in the form of what is commonly
known as Castigliano’s first theorem, in which the differential of the strain energy
U of a structure with respect to a load is equated to the deflection of the load. To
be mathematically correct, however, it is the differential of the complementary
energy C which should be equated to deflection (compare Eqs (4.3) and (4.4)).

4.2 Total potential energy

In the spring—mass system shown in its unstrained position in Fig. 4.3(a) we normally
define the potential energy of the mass as the product of its weight, Mg, and its height,
h, above some arbitrarily fixed datum. In other words it possesses energy by virtue of
its position. After deflection to an equilibrium state (Fig. 4.3(b)), the mass has lost an
amount of potential energy equal to Mgy. Thus we may associate deflection with a
loss of potential energy. Alternatively, we may argue that the gravitational force
acting on the mass does work during its displacement, resulting in a loss of encrgy.
Applying this reasoning to the elastic system of Fig. 4.1(a) and assuming that the
potential energy of the system is zero in the unloaded state, then the /oss of potential
energy of the load P as it produces a deflection y is Py. Thus, the potential energy V' of
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N

(a) (b)

Fig. 4.3 (a) Potential energy of a spring—mass system; (b) loss in potential energy due to change in position.

P in the deflected equilibrium state is given by
V=—-Py
We now define the total potential energy (TPE) of a system in its deflected equilibrium

state as the sum of its internal or strain energy and the potential energy of the applied
external forces. Hence, for the single member—force configuration of Fig. 4.1(a)

¥
TPE:U+V=J Pdy — Py
0

For a general system consisting of loads Py, P,,..., P, producing corresponding
displacements (i.e. displacements in the directions of the loads: see Section 4.10)
A A,, ..., A, the potential energy of all the loads is

V= Z v, = Z (-P.A,)

r=1 r=1

and the total potential energy of the system is given by

TPE=U+V=U+> (-PA,) (4.6)

r=1

4.3 Principle of virtual work

Suppose that a particle (Fig. 4.4(a)) is subjected to a system of loads P, P,,.... P,
and that their resultant is Pg. If we now impose a small and imaginary displacement,
1.e. a virtual displacement, by, on the particle in the direction of Py, then by the law of
conservation of energy the imaginary or virtual work done by Pr must be equal to the
sum of the virtual work done by the loads Py, P,..., P,. Thus

PRéR:Plél+P262+"'+P116n (47)
where 6, 6,,...,6, are the virtual displacements in the directions of P, P,,.... P,

produced by éz. The argument is valid for small displacements only since a significant
change in the geometry of the system would induce changes in the loads themselves.
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P

Actual displaced
position

A Y

(a) (b}

Fig. 4.4 (3) Principle of virtual displacements; (b) principle of virtual forces.

For the case where the particle is in equilibrium the resultant Py of the forces must
be zero and Eq. (4.7) reduces to

P161+P262+"'+P,,6n=0

or
n
> P6 =0 (4.8)
r=1

The principle of virtual work may therefore be stated as:

A particle is in equilibrium under the action of a force system if the total virtual work
done by the force system is zero for a small virtual displacement.

This statement is often termed the principle of virtual displacements.

An alternative formulation of the principle of virtual work forms the basis of the
application of total complementary energy (Section 4.5) to the determination of
deflections of structures. In this alternative approach, small virtual forces are applied
to a system in the direction of real displacements.

Consider the elastic body shown in Fig. 4.4(b) subjected to a system of rea! loads
which may be represented by P. Due to P the body will be displaced such that
points 1,2,...,n move through displacements A, A,,...,A, to I',2,..., 7. Now
suppose that small imaginary loads 6P;,68P,,...,8P, were in position and acting in
the directions of A, A,,...,A, before P was applied; since 6Py, 6P,,...,5P, are
imaginary they will not affect the real displacements. The total imaginary, or virtual,
work §W* done by these loads is then given by

n
SW* = A6Py + DgbPy + -+ D,6P, =D A6P,

r=1

which, by the law of conservation of energy, is equal to the imaginary, or virtual,
strain energy stored §U*. This is due to small imaginary internal forces 6P, produced
by the external imaginary loads, moving through real internal displacements y and
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is given by
oU" = [ r»dpP
vol

Therefore, since SW"* = 6U”

"
5 A,.éP,:[ ydP (4.9)
Jvol

r=1

Equation (4.9) is known as the principle of virtual forces. Comparison of the right-
hand side of Eq. (4.9) with Eq. (4.2) shows that §U" represents an increment in
complementary energy; by the same argument the left-hand side may be regarded
as virtual complementary work.

Although we are not concerned with the direct application of the principle of
virtual work to the solution of structural problems it is instructive to examine possible
uses of Eqs (4.8) and (4.9). The virtual displacements of Eq. (4.8) must obey the
requirements of compatibility for a particular structural system so that their relation-
ship is unique. Substitution of this relationship in Eq. (4.8) results in equations of
statical equilibrium. Conversely, the known relationship between forces may be
substituted in Eq. (4.9) to form equations of geometrical compatibility. Note that
the former approach producing cquations of equilibrium is a displacement method,
the latter giving equations of compatibility of displacement, a force method.

4.4 The principle of the stationary value of the
total potential energy

In the previous section we derived the principle of virtual work by considering virtual
displacements (or virtual forces) applied to a particle or body in equilibrium. Clearly,
for the principle to be of any value and for our present purpose of establishing the
principle of the stationary value of the total potential energy, we need to justify its
application to elastic bodies generally.

An elastic body in equilibrium under externally applied loads may be considered to
consist of a system of particles on each of which acts a system of forces in equilibrium.
Thus, for any virtual displacement the virtual work done by the forces on any particle
is, from the previous discussion, zero. It follows that the total virtual work done by all
the forces on the system vanishes. However, in prescribing virtual displacements for
an elastic body we must ensure that the condition of compatibility of displacement
within the body is satisfied and also that the virtual displacements are consistent
with the known physical restraints of the system. The former condition is satisfied
if, as we saw in Chapter 1, the virtual displacements can be expressed in terms of
single valued functions; the latter condition may be met by specifying zero virtual
displacements at support points. This means of course that reactive forces at supports
do no work and therefore, conveniently, do not enter the analysis.

Let us now consider an elastic body in equilibrium under a series of external
loads, Py, P,,...,P,, and suppose that we impose small virtual displacements
6A |, 87, ..., 8, in the directions of the loads. The virtual work done by the loads
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is then

SN
r=1

This work will be accompanied by an increment of strain energy 6U in the elastic body
since by specifying virtual displacements of the loads we automatically impose virtual
displacements on the particles of the body itself, as the body is continuous and is
assumed to remain so. This increment in strain energy may be regarded as negative
virtual work done by the particles so that the total work done during the virtual
displacement is

~§U+ P,6A,

n
r=1

The body is in equilibrium under the applied loads so that by the principle of virtual
work the above expression must be equal to zero. Hence

n
§U - P,6A, =0 (4.10)
r=1

The loads P, remain constant during the virtual displacement; therefore, Eq. (4.10)
may be written
8U—-6) PA, =0

r=1

or, from Eq. (4.6)
SU+V)=0 (4.11)

Thus, the total potential energy of an elastic system has a stationary value for all small
displacements if the system is in equilibrium. It may also be shown that if the
stationary value is a minimum the equilibrium is stable. A qualitative demonstration
of this fact is sufficient for our purposes, although mathematical proofs exist'. In
Fig. 4.5 the positions A, B and C of a particle correspond to different equilibrium
states. The total potential energy of the particle in each of its three positions is
proportional to its height # above some arbitrary datum, since we are considering a

TPE

(u+Vv)=£n

Fig. 4.5 States of equilibrium of a particle.
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single particle for which the strain energy is zero. Clearly at each position the first
order variation, (U + V)/8u, is zero (indicating equilibrium), but only at B where
the total potential energy is a minimum is the equilibrium stable. At A and C we
have unstable and neutral equilibrium respectively.

To summarize, the principle of the stationary value of the total potential energy may
be stated as:

The total potential energy of an elastic system has a stationary value for all small
displacements when the system is in equilibrium; further, the equilibrium is stable if
the stationary value is a minimum.

This principle may often be used in the approximate analysis of structures where an
exact analysis does not exist. We shall illustrate the application of the principle in
Example 4.1 below, where we shall suppose that the displaced form of the beam is
unknown and must be assumed; this approach is called the Rayleigh—Ritz method
(see also Sections 5.6 and 6.5).

Example 4.1
Determine the deflection of the mid-span point of the linearly elastic, simply sup-
ported beam shown in Fig. 4.6; the flexural rigidity of the beam is EL

The assumed displaced shape of the beam must satisfy the boundary conditions for
the beam. Generally, trigonometric or polynomial functions have been found to be
the most convenient where, however, the simpler the function the less accurate the
solution. Let us suppose that the displaced shape of the beam is given by

v=up sin% ()
in which vy is the displacement at the mid-span point. From Eq. (i) we see that v = 0
when z =0 and z = L and that v = vg when z = L/2. Also dv/dz =0 when z = L/2

so that the displacement function satisfies the boundary conditions of the beam.
The strain energy, U, due to bending of the beam, is given by (see Ref. 3)

M .
U= L Y77 dz (ii)
w
A B C
1 Y |
é; NEr %
_—»Z
L/2 L/2 J
| |

Fig. 4.6 Approximate determination of beam deflection using total potential energy.
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Also
d*v
dz?
Substituting in Eq. (iii) for v from Eq. (i) and for M in Eq. (ii) from Eq. (iii)
£l va;7r4 . 2 WZ
2o ML

M=-El (see Egs (9.20)) (i)

dz

which gives

_ 7(’4E1’U12;
4L
The total potential energy of the beam is then given by
45002
" Elvg
TPE: (_/+ V:T— W’UB

Then, from the principle of the stationary value of the total potential energy

ou+Vv) 7 Elvg

Ovg 2L}
whence
2w’ wL’
vg = —— = 0.02053 i
Up e 0.020 7 (1v)
The exact expression for the mid-span displacement is (Ref. 3)
wL wL?
i ? 7
U A8E] 0.02083 El (\)

Comparing the exact (Eq. (v)) and approximate results (Eq. (1v)) we see that the
difference is less than 2 per cent. Further, the approximate displacement is less than
the exact displacement since, by assuming a displaced shape, we have, in effect.
forced the beam into taking that shape by imposing restraint; the beam is therefore
stiffer.

4.5 The principle of the stationary value of the
total complementary energy

Consider an clastic system in equilibrium supporting forces Py, P,..... P, which
produce real corresponding displacements A, A, ... A,. If we impose virtual
forces 6P,.0P5, . ... 6P, on the system acting through the real displacements then

the total virtual work done by the system is, by the argument of Section 4.4

n
—| ydP+3 AP,
.[\ ol ;

The first term in the above expression is the negative virtual work done by the
particles in the elastic body, while the second term represents the virtual work of
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the externally applied virtual forces. From the principle of virtual forces, i.e. Eq. (4.9)

—| ydP+S"A6P, =0 4.12
J\roly Z ( )

r=1

Comparing Eq. (4.12) with Eq. (4.2) we see that each term represents an increment in
complementary cnergy; the first, of the internal forces, the second, of the external
loads. Thus Eq. (4.12) may be rewritten

§(Ci+C) =0 (4.13)

where

. P n
C = ‘dP and C, =-S5 AP, 4.14
: .Ivol .IO ! Z ( )

r=1

C, is in fact the complement of the potential energy V of the external loads. We shall
now call the quantity (C; + C,) the total complementary energy C of the system.

The displacements specified in Eq. (4.12) are real displacements of a continuous
elastic body; they therefore obey the condition of compatibility of displacement so
that Eqs (4.12) and (4.13) are, in exactly the same way as Eq. (4.9), equations of
geometrical compatibility. The principle of the stationary value of the total complemen-
tary energy may then be stated as:

For an elastic body in equilibrivvn under the action of applied forces the true internal
Jforces (or stresses) and reactions are those for which the total complementary energy
has a stationary value.

In other words the true internal forces (or stresses) and reactions are those which
satisfy the condition of compatibility of displacement. This property of the total
complementary energy of an elastic system is particularly useful in the solution of
statically indeterminate structures, in which an infinite number of stress distributions
and reactive forces may be found to satisfy the requirements of equilibrium.

4.6 Application to deflection problems

Generally, deflection problems are most readily solved by the complementary energy
approach, although for linearly elastic systems there is no difference between the
methods of complementary and potential energy since, as we have seen, complemen-
tary and strain energy then become completely interchangeable. We shall illustrate
the method by reference to the deflections of frames and beams which may or may
not possess linear elasticity.

Let us suppose that we require to find the deflection A, of the load P, in the simple
pin-jointed framework consisting, say, of k& members and supporting loads
P\,P,, ..., P, as shown in Fig. 4.7. From Eqs (4.14) the total complementary
energy of the framework is given by

k F, n
C= AdE — ST AP, 4.15
, ehi=3 @19

i r=1

77
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A

\ //% e

Fig. 4.7 Determination of the deflection of a point on a framework by the method of complementary energy.

where J; is the extension of the ith member, F; the force in the ith member and A, the
corresponding displacement of the rth load P,. From the principle of the stationary
value of the total complementary energy

Z’\'ap Ay =0 (4.16)

from which

Ay = Z,\, 6P2 (4.17)

Equation (4.16) is seen to be identical to the principle of virtual forces in which virtual
forces 6F and 6P act through real displacements A and A. Clearly the partial
derivatives with respect to P, of the constant loads Py, P,,..., P, vanish, leaving
the required deflection A, as the unknown. At this stage, before A, can be evaluated,
the load—displacement characteristics of the members must be known. For linear
elasticity

FiL;

AE;

where L;, A; and E; are the length, cross-sectional area and modulus of elasticity of the
ith member. On the other hand, if the load—displacement relationship is of a non-
linear form, say

Ai=

Fy=b(\)°
in which b and ¢ are known, then Eq. (4.17) becomes

k 1/¢
Fi OF;
%=3-(%) o
The computation of A, is best accomplished in tabular form, but before the proce-
dure is illustrated by an example some aspects of the solution merit discussion.

We note that the support reactions do not appear in Eq. (4.15). This convenient
absence derives from the fact that the displacements A, A,,..., A, are the real
displacements of the frame and fulfil the conditions of geometrical compatibility
and boundary restraint. The complementary energy of the reaction at A and the
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vertical reaction at B is therefore zero, since both of their corresponding displace-
ments are zero. If we examine Eq. (4.17) we note that ); is the extension of the ith
member of the framework due to the applied loads Py, P,,..., P,. Therefore, the
loads F; in the substitution for ); in Eq. (4.17) are those corresponding to the loads
P, P,,...,P,. The term OF;/0P, in Eq. (4.17) represents the rate of change of F;
with P, and is calculated by applying the load P, to the unloaded frame and determin-
ing the corresponding member loads in terms of P,. This procedure indicates a
method for obtaining the displacement of either a point on the frame in a direction
not coincident with the line of action of a load or, in fact, a point such as C which
carries no load at all. We place at the point and in the required direction a fictitious
or dummy load, say Py, the original loads being removed. The loads in the members
due to Pg are then calculated and 8F /0P, obtained for each member. Substitution in
Eq. (4.17) produces the required deflection.

It must be pointed out that it is not absolutely necessary to remove the actual loads
during the application of P. The force in each member would then be calculated in
terms of the actual loading and P;. F; follows by substituting P = 0 and 9F;/dP; is
found by differentiation with respect to P;. Obviously the two approaches yield the
same expressions for F; and OF;/0P;, although the latter is arithmetically clumsier.

Example 4.2
Calculate the vertical deflection of the point B and the horizontal movement of D in
the pin-jointed framework shown in Fig. 4.8(a). All members of the framework are

40000 N
E F E F
£
o
8
I A D A D
B c B! C
7 | 00000 N 72272 777777 ¥ Pe,s 7

|
| 4000mm | 4000 mm | 4000 mm
(a) {b)

A D PD,'

(c)

Fig. 4.8 (a) Actual loading of framework; (b) determination of vertical deflection of B; (c) determination of
horizontal deflection of D.
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Table 4.1

0] o) ® ® ® ® ®x10° ©x10°
Member L (mm) F (N) FB,(' (N) BFB';'/BPB‘T FD'f (N) 6FD,f/6PDJ FL8FM/6PM FwFle/aPD‘r
AE 4000,/2 —60000,/2 —2¢/2Py¢/3 -2,/2/3 0 0 320,/2 0
EF 4000 —60000 —2Py /3 -2/3 0 0 160 0
FD 4000,/2 —80000,/2 —V/2Pg /3 —V2/3 0 0 640,/2/3 0
DC 4000 80000 Py/3 1/3 Pps 1 320/3 320
CB 4000 80000 Pyg/3 1/3 Pp¢ 1 320/3 320
BA 4000 60000 2Pp;/3 2/3 Ppy 1 480/3 240
EB 4000 20000 2Pg¢/3 2/3 0 0 160/3 0
FB 4000,/2 ~20000,/2 V2Pgg/3 V2/3 0 0 —1604/2/3 0
FC 4000 100000 0 0 0 0 0

X = 1268 ¥ =880
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linearly elastic and have cross-sectional areas of 1800 mm?. E for the material of the
members is 200 000 N/mm?.

The members of the framework are linearly elastic so that Eq. (4.17) may be written

k
A= 3B OF 0

or, since each member has the same cross-sectional area and modulus of elasticity

1 ¢ OF
A=— g il i
AE;F, i5p (i)

The solution is completed in Table 4.1, in which F are the member forces due to the
actual loading of Fig. 4.8(a), Fy s are the member forces due to the fictitious load Py
in Fig. 4.8(b) and Fp are the forces in the members produced by the fictitious load
Ppy in Fig. 4.8(c). We take tensile forces as positive and compressive forces as
negative.

The vertical deflection of B is

1268 x 10°
A8y = 1800 x 200000 — 002 ™
and the horizontal movement of D is
6
Apy = 80X 10" _ 5 g m

= 1800 x 200000

The positive values of Ag, and Apy, indicate that the deflections are in the directions
of Pgsand Ppy.

The analysis of beam deflection problems by complementary energy is similar to
that of pin-jointed frameworks, except that we assume initially that displacements
are caused primarily by bending action. Shear force effects are discussed later in
the chapter. Figure 4.9 shows a tip loaded cantilever of uniform cross-section and
length L. The tip load P produces a vertical deflection A, which we require to find.

Radius of curvature 1.
of beam at sectionz K ;

'*y‘\se
l
Centre of curvature at section z

Fig. 4.9 Beam deflection by the method of complementary energy.
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The total complementary energy C of the system is given by
M
C=J J dfdM — PA, (4.18)
L

0

in which [}/ d0dM is the complementary energy of an element 6z of the beam. This
element subtends an angle 66 at its centre of curvature due to the application of the
bending moment M. From the principle of the stationary value of the total comple-

mentary energy

acC dM

P JLdGF_AV =0
or

dM
A, = L o5 (4.19)

Equation (4.19) is applicable to either a non-linear or linearly elastic beam. To
proceed further, therefore, we require the load—displacement (M — #) and bending
moment—load (M — P) relationships. It is immaterial for the purposes of this illustra-
tive problem whether the system is linear or non-linear, since the mechanics of the
solution are the same in either case. We choose therefore a linear M — 0 relationship
as this is the case in the majority of the problems we consider. Hence from Fig. 4.9

60 = Kéz

or

M 1 EI .
dé = BT dz (E = from simple beam theory)

where the product modulus of elasticity x second moment of area of the beam cross
section is known as the bending or flexural rigidity of the beam. Also

M=Pz
so that

dM

dpP
Substitution for df, M and dM/dP in Eq. (4.19) gives

LP22
A, =] 224
v jo ET ¢

=z

or

P
3EI

The fictitious load method of the framework example may be employed in the
solution of beam deflection problems where we require deflections at positions on
the beam other than concentrated load points. Suppose that we are to find the tip
deflection At of the cantilever of the previous exampie in which the concentrated
load has been replaced by a uniformly distributed load of intensity w per unit

A, =
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w/unit length P,

Fig. 4.10 Deflection of a uniformly loaded cantilever by the method of complementary energy.

length (see Fig. 4.10). First we apply a fictitious load P; at the point where the deflec-
tion is required. The total complementary energy of the system is

M L
C=J J d0dM—ATPf—J Awdz
LJo 0

where the symbols take their previous meanings and A is the vertical deflection of any
point on the beam. Then

oC L oM
—= ——Ar=0 4.2
OP¢ Jo a9 or; T (4.20)
As before
M
d0 = —E-:i dZ
but
M=Pf2+%2- (Pf=0)
Hence
oM _
oP;

Substituting in Eq. (4.20) for d6, M and 8M /3Py, and remembering that P = 0, we
have

L yz®
ar=| g
giving
wL*
Ar=3Er

It will be noted that here, unlike the method for the solution of the pin-jointed
framework, the fictitious load is applied to the loaded beam. There is, however, no
arithmetical advantage to be gained by the former approach although the result
would obviously be the same since M would equal wz*/2 and M /dP; would have
the value z.
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i wlL
Pttt

1Pa,¢ |Pes  w/unit length
i
wil
%Pﬁ.f"'%’%,f"'—z' L
4 L
2 N
L
I

Fig. 4.11 Deflection of a simply supported beam by the method of complementary energy.

Example 4.3

Calculate the vertical displacements of the quarter and mid-span points B and C of
the simply supported beam of length L and flexural rigidity EI loaded, as shown in

Fig. 4.11.
The total complementary energy C of the system including the fictitious loads Py ¢
and Pcis
M L
C= I J dodM — PB,fAB - PC,fAC - J Awd:z (l)
LJo 0
Hence
ac | oM .
=| d0——-Ag=0 if
8Pp; J. 0Py < ° a
and
ac | oM
—=| df —Ac=0 i
8Pce JL 0Py © (i)
Assuming a linearly elastic beam, Eqs (ii) and (iii) become
1 (L oM .
AB = ETJO Mc‘)_PB—f dz (IV)
1 (L oM
AC_EJQ Mb—}Edz (V)
From A to B
wL wz?
M= (%PBJ +%Pc,f +—2—)Z —T
thus
oM oM
—_— =22 —=zZ
OPys *7 OPcs *
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From B to C
wL wz? L
M = <%PB,f+%PC.f+7)Z— 2 — PB'r<Z_Z>
giving
oM . oM
= - L— s :lz
From C to D
wlL W
M= (%PB.,«+%P<-.f-+7)<L—z> -SL-2
so that
oM ! oM
=L -, =l -
5p,, d\E2 gp k)

Substituting these values in Egs (iv) and (v) and remembering that Pg; = P = 0 we
have, from Eq. (iv)

\ L/4 Lz wz* L2 fwlz  wZ?
Ap = — — = )34 —— )L -2)dz
B EI{JO ( 2 2)4ZZ+L/4< 2 2)4( )

L wlz w2’ |
_— (L —2)dz
+JL/Z( 22 >4( ?) }

from which
B 119wL?
B 24576E1
Similarly
B Swl?
€ 384E1

The fictitious load method of determining deflections may be streamlined for
linearly elastic systems and is then termed the unit load method; this we shall discuss
later in the chapter.

4.7 Application to the solution of statically
indeterminate systems

In a statically determinate structure the internal forces are determined uniquely by
simple statical equilibrium considerations. This is not the case for a statically indeter-
minate system in which, as we have already noted, an infinite number of internal force
or stress distributions may be found to satisfy the conditions of equilibrium. The true
force system is, as we demonstrated in Section 4.5, the one satisfying the conditions of
compatibility of displacement of the elastic structure or, alternatively, that for which
the total complementary energy has a stationary value. We shall apply the principle to
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86 Energy methods of structural analysis

Fig. 4.12 Analysis of a statically indeterminate framework by the method of complementary energy.

a variety of statically indeterminate structures, beginning with the relatively simple
singly-redundant pin-jointed frame shown in Fig. 4.12 in which each member has
the same value of the product AE.

The first step is to choose the redundant member. In this example no advantage is
gained by the choice of any particular member, although in some cases careful
selection can result in a decrease in the amount of arithmetical labour. Taking BD
as the redundant member we assume that it sustains a tensile force R due to the
external loading. The total complementary energy of the framework is, with the
notation of Eq. (4.15)

k F
oy Y

i

Hence
8C & | OF,
B—R_; i35 =0 (4.21)
or, assuming linear elasticity
1 & OF,
E; Filigp="0 (4.22)

The solution is now completed in Table 4.2 where, as in Table 4.1, positive signs
indicate tension.

Table 4.2

® @ ® ® ®

Member Length F OF /38R FLOF/BR

AB L —R/\2 —1/y2 RL/2

BC L —R/\/2 ~1/y2 RL/2

CD L —(P+R//2) —1/y2 L(P+R//2)/ V2
DA L —R/\/2 —1/y/2 RL/2

AC V2L V2P+R 1 L(2P + \/2R)

BD V2L R 1 V2RL

X =4.83RL +2.707PL
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Hence from Eq. (4.22)
4.83RL+2.707PL =0

or
R = -0.56P

Substitution for R in column (3) of Table 4.2 gives the force in each member. Having
determined the forces in the members then the deflection of any point on the frame-
work may be found by the method described in Section 4.6.

Unlike the statically determinate type, statically indeterminate frameworks may be
subjected to self-straining. Thus, internal forces are present before external loads are
applied. Such a situation may be caused by a local temperature change or by an initial
lack of fit of a member. Suppose that the member BD of the framework of Fig. 4.12 is
short by a known amount Ap when the framework is assembled but is forced to fit.
The load R in BD will then have suffered a displacement Ay in addition to that caused
by the change in length of BD produced by the load P. The total complementary
energy is then

F
C=ZL NdF; — PA — RAg

i=1]

and

aC . BF,
a_R=;’\"6—R_AR_O

or
A ——l—f:FLQﬂ (4.23)
RTAE<""""5R '

Obviously the summation term in Eq. (4.23) has the same value as in the previous case
so that

AE
R=—0.56P+ 227 Ar

Hence the forces in the members are due to both applied loads and an initial lack of
fit.

Some care should be given to the sign of the lack of fit Az. We note here that the
member BD is short by an amount A so that the assumption of a positive sign for Ay
is compatible with the tensile force R. If BD were initially too long then the total
complementary energy of the system would be written

-3

0

F;
AidF; — PA — R(—AR)
giving

1 & OF;
~An =52 Filigg
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Fig. 4.13 Framework of Example 4.4.

Example 4.4

Calculate the loads in the members of the singly redundant pin-jointed framework
shown in Fig. 4.13. The members AC and BD are 30 mm? in cross-section, and all
other members are 20 mm? in cross-section. The members AD, BC and DC are
each 800 mm long. E = 200 000 N/mm?>.

From the geometry of the framework ABD = CBD = 30°; therefore BD = AC =
800v/3 mm. Choosing CD as the redundant member and proceeding from Eq. (4.22)

we have
1 ¢~ F,L; OF, .
F2 4 9R ' ®
From Table 4.3 we have
3
F,L; 8F, _ N
2 4, R = —268+1292R =0

Hence R=2.1N and the forces in the members are tabulated in column () of
Table 4.3.

Table 4.3 (Tension positive)

@ @ ® , @ ® ® @
Member L (mm) A4 (mm®) F(N) OF /R (FL/A)OF/8R Force (N)
AC 8003 30 50— 3IR/2  —/3/2  —2000+20,/3R 482
CB 800 20 86.6 + R/2 1/2 1732 + 10R 87.6
BD 800,/3 30 —V3R/2 ~V3/2 204/3R -18
CD 800 20 R 1 40R 2.1
AD 800 20 R/2 1/2 10R 1.0
¥ =-268 4+ 129.2R
Example 4.5

A plane, pin-jointed framework consists of six bars forming a rectangle ABCD
4000 mm by 3000 mm with two diagonals, as shown in Fig. 4.14. The cross-sectional
area of each bar is 200 mm? and the frame is unstressed when the temperature of each
member is the same. Due to local conditions the temperature of one of the 3000 mm
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A B
R
R
D c

Fig. 4.14 Framework of Example 4.5.

members is raised by 30°C. Calculate the resulting forces in all the members if the
coefficient of linear expansion a of the bars is 7 x 1076/°C. E = 200 000 N/mm?.

Suppose that BC is the heated member, then the increase in length of
BC = 3000 x 30 x 7 x 10~® = 0.63 mm. Therefore, from Eq. (4.23)

—063——1—iFL8—Fi @
T 200 x 2000004 AR

Substitution from the summation of column (5 in Table 4.4 into Eq. (i) gives

—0.63 x 200 x 200000
R= 48000 = BN
Column @ of Table 4.4 is now completed for the force in each member.

So far, our analysis has been limited to singly redundant frameworks, although the
same procedure may be adopted to solve a multi-redundant framework of, say, m
redundancies. Thus, instead of a single equation of the type (4.21) we would have
m simultaneous equations

0C & OF _
E:ZA,GR;O (Gi=12,...,m)
i=] J

from which the m unknowns Ry, R, ..., R,, would be obtained. The forces F in the
members follow, being expressed initially in terms of the applied loads and
RI)RZV"’Rm-

Other types of statically indeterminate structure are solved by the application of
total complementary energy with equal facility. The propped cantilever of Fig. 4.15

Table 4.4 (Tension positive)

© @ ® @ ® ®
Member L (mm) F(N) 8F /OR FLOF/GR Force (N)
AB 4000 4R/3 4/3 64000R/9 —700

BC 3000 R 1 3000R —525

CD 4000 4R/3 4/3 64000R/9 —700

DA 3000 R 1 3000R —525

AC 5000 —5R/3 -5/3 125000R/9 875

DB 5000 —5R/3 -5/3 125000R/9 875

2 =48000R




90 Energy methods of structural analysis

| - :

Fig. 4.15 Analysis of a propped cantilever by the method of complementary energy.

is an example of a singly redundant beam structure for which total complementary
energy readily yields a solution.
The total complementary energy of the system is, with the notation of Eq. (4.18)

M
C=J J dad.M—'PAc*RBAB
Lo

where Ac and Ay are the deflections at C and B respectively. Usually, in problems of
this type, Agp is either zero for a rigid support, or a known amount (sometimes in
terms of Ry) for a sinking support. Hence, for a stationary value of C

ocC oM
BR_B_JLdOER_B_AB =0
from which equation Rg may be found; Rg being contained in the expression for the
bending moment M.

Obviously the same procedure is applicable to a beam having a multiredundant
support system, viz. a continuous beam supporting a series of loads Py, P5,..., P,.
The total complementary energy of such a beam would be given by

LJo j=1 r=1

where R; and A; are the reaction and known deflection (at least in terms of R;) of the
Jjth support point in a total of m supports. The stationary value of C gives

acC oM
R~ J 5%

producing m simultaneous equations for the m unknown reactions.

The intention here is not to suggest that continuous beams are best or most readily
solved by the energy method; the moment distribution method produces a more rapid
solution, especially for beams in which the degree of redundancy is large. Instead the
purpose is to demonstrate the versatility and power of energy methods in their ready
solution of a wide range of structural problems. A complete investigation of this
versatility is impossible here due to restriction of space; in fact, whole books have
been devoted to this topic. We therefore limit our analysis to problems peculiar to
the field of aircraft structures with which we are primarily concerned. The remaining
portion of this section is therefore concerned with the solution of frames and rings
possessing varying degrees of redundancy.

The frameworks we considered in the earlier part of this section and in Section 4.6
comprised members capable of resisting direct forces only. Of a more general type are
composite frameworks in which some or all of the members resist bending and shear

—Aj=0 (j=1,2,...,m)
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loads in addition to direct loads. It is usual, however, except for the thin-walled
structures in Part II of this book, to ignore deflections produced by shear forces.
We only consider, therefore, bending and direct force contributions to the internal
complementary energy of such structures. The method of analysis is illustrated in
the following example.

Example 4.6

The simply supported beam ABC shown in Fig. 4.16 is stiffened by an arrangement of
pin-jointed bars capable of sustaining axial loads only. If the cross-sectional area
of the beam is Ag and that of the bars is 4, calculate the forces in the members of
the framework assuming that displacements are caused by bending and direct force
action only.

L/2 | L/2
L/4 |P
A l F B Cross-sectional
Area 4
(3 A S A
600
1
3 -
iP r{ig
Cross- sectional
Area 4
E R R D

Fig. 4.16 Analysis of a trussed beam by the method of complementary energy.

We observe that if the beam were only capable of supporting direct loads then the
structure would be a relatively simple statically determinate pin-jointed framework.
Since the beam resists bending moments (we are ignoring shear effects) the system
is statically indeterminate with a single redundancy, the bending moment at any
section of the beam. The total complementary energy of the framework is given,
with the notation previously developed, by

c:JABCL d0dM+ZJ ) dF, — PA (i)

If we suppose that the tensile load in the member ED is R then, for C to have a
stationary value

oc .
3R JABC + E )\, 6 R (ii)

At this point we assume the appropriate load—displacement relationships; again we
shall take the system to be linear so that Eq. (ii) becomes

jL M oM k F.L; OF,

oEia_R Z+i=1A’—_E5-E= (iii)
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Table 4.5 (Tension positive)

@ @ ©) O] 6) ®

Member Length Area F 8F/OR (F/A)OF /6R
AB L/2 Ap —R/2 ~1/2 R/4Ay

BC L/2 Ag ~R/2 -1/2 R/4Ay

CcD L/2 A R 1 R/A

DE L/2 A R 1 R/A

BD L/2 A -R -1 R/A

EB L/2 A -R -1 R/A

AE L/2 A R 1 R/A

The two terms in Eq. (iii) may be evaluated separately, bearing in mind that only the

beam ABC contributes to the first term while the complete structure contributes to the

second. Evaluating the summation term by a tabular process we have Table 4.5.
Summation of column (® in Table 4.5 gives

SELOF_RL(1 10 )
“—~ 4;E OR T 4E\Adz A
The bending moment at any section of the beam between A and F is
3 V3 oM V3
M—ZPZ-—TRZ, hence -'a—R——TZ
between F and B
P V3 M 3
M—‘Z(L—Z)'—TRZ, hence a—R——TZ
and between B and C
P V3 oM 3
M—Z(L—Z)—TR(L—Z), hence ﬁ'__T(L_Z)
Thus
LM oM 1 ([ (3 Vv3_\V3
Liia_Rdz_ﬁ{Jo ‘(ZPZ‘TRZ)T“‘Z
L/2 P \/'3_ \/5
+JL/4 [Z(L_Z)—T :I(—TZ dz
L
| —[f(L—z)—ﬁR(L- )]—3(L—z)dz}
Lz L4 2

giving

LM M —11v3PL®  RIL?
Jo E1 9R = TesEr T 16EI ®
Substituting from Eqs (iv) and (v) into Eq. (iii)
_LV3PL?  RL* RL(A+1045) _,
768EI ' 16EI ' 4E AgA B
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from which

B 11v/3PL% 454
T 48[L2ApA + 4I(A + 104p)]

Hence the forces in each member of the framework. The deflection A of the load P or
any point on the framework may be obtained by the method of Section 4.6. For
example, the stationary value of the total complementary energy of Eq. (i) gives A, i.e.

aC M I OF,
a_P_JABcda'éFJ“,.:Zl’\’EJ“A‘O

Although braced beams are still found in modern light aircraft in the form of
braced wing structures a much more common structural component is the ring
frame. The role of this particular component is discussed in detail in Chapter 7; it
is therefore sufficient for the moment to say that ring frames form the basic shape
of semi-monocoque fuselages reacting shear loads from the fuselage skins, point
loads from wing spar attachments and distributed loads from floor beams. Usually
a ring is two-dimensional supporting loads applied in its own plane. Our analysis is
limited to the two-dimensional case.

A two-dimensional ring has redundancies of direct load, bending moment and
shear at any section, as shown in Fig. 4.17. However, in some special cases of loading
the number of redundancies may be reduced. For example, on a plane of symmetry
the shear loads and sometimes the normal or direct loads are zero, while on a
plane of antisymmetry the direct loads and bending moments are zero. Let us consider
the simple case of a doubly symmetrical ring shown in Fig. 4.18(a). At a section in the
vertical plane of symmetry the internal shear and direct loads vanish, leaving one
redundancy, the bending moment M, (Fig. 4.18(b)). Note that in the horizontal
plane of symmetry the internal shears are zero but the direct loads have a value

Fig. 4.17 Internal force system in a two-dimensional ring.
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P

N

P

(a) (b)
Fig. 4.18 Doubly symmetric ring.

P/2. The total complementary energy of the system is (again ignoring shear strains)

M P
C=J J d0dM—2<—A)
ring JO 2

taking the bending moment as positive when it increases the curvature of the ring. In
the above expression for C, A is the displacement of the top, A, of the ring relative to
the bottom, B. Assigning a stationary value to C we have

oc _ J‘ 40 oM _

or assuming linear elasticity and considering, from symmetry, half the ring

0

TR
J MM o,
1] EI BMA
Thus since
P_ . oM
M—MA—E.RSIIIG, WZ_I

and we have
m P
j (MA —ERsinH)Rd0= 0
0

or

2 0

from which

My="—
Y
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Fig. 4.19 Distribution of bending moment in a doubly symmetric ring.

The bending moment distribution is then

M=PR(-1——Sm0)
T 2

and is shown diagrammatically in Fig. 4.19.

Let us now consider a more representative aircraft structural problem. The circular
fuselage frame of Fig. 4.20(a) supports a load P which is reacted by a shear flow ¢
(i.e. a shear force per unit length: see Chapter 9), distributed around the circumference
of the frame from the fuselage skin. The value and direction of this shear flow are
quoted here but are derived from theory established in Section 9.4. From our previous
remarks on the effect of symmetry we observe that there is no shear force at the
section A on the vertical plane of symmetry. The unknowns are therefore the bending
moment M, and normal force N,. We proceed, as in the previous example, by
writing down the total complementary energy C of the system. Thus, neglecting
shear strains

M
C=J j dédM — PA @

ring JO
in which A is the deflection of the point of application of P relative to the top of the
frame. Note that M, and N, do not contribute to the complement of the potential
energy of the system since, by symmetry, the rotation and horizontal displacements
at A are zero. From the principle of the stationary value of the total complementary
energy

ocC oM ..
aMs Lng 53 =0 (i)
and
oCc oM
W = e 20, = w
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(¢)
Fig. 4.20 Determination of bending moment distribution in a shear and direct loaded ring.

The bending moment at a radial section inclined at an angle 8 to the vertical diameter
is, from Fig. 4.20(c)

0
M =My + NpoR(1 —cos ) +J gBDR dc
0
or
o p
M = My + NoR(1 — cosf) + j ﬁsina[R — Rcos(f — o)|Rda
0
which gives

M=MA+NAR(1—cos0)+£;_£(l—cos0—%05in0) @iv)
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Hence
;Aj;i:l, g}i‘é:R(l—cosG) v)
Assuming that the fuselage frame is linearly elastic we have, from Eqs (ii) and (iii)
2J0%;7MARd0=2 O%%RM:O (vi)
Substituting from Eqgs (iv) and (v) into Egs (vi) gives two simultaneous equations
-g—f — My +NaR (vii)
—%=MA +3NsR (viii)
These equations may be written in matrix form as follows
PR (-1/2 1 R My i
S S R [hvg' 0
so that
{MA} _ PR [1 R ]-‘{—1/2}
Na m |1 3R/2 -7/8
or
0 S R 7
Ny T |-2/R 2/R]|-7/8
which gives

PR —
My PRy 3P

4’ AT T4p
The bending moment distribution follows from Eq. (iv) and is

M=%(l—%cos€—0sin0) ®)

The solution of Eqgs (ix) involves the inversion of the matrix

i nal

which may be carried out using any of the standard methods detailed in texts on
matrix analysis. In this example Eqs (vii) and (viii) are clearly most easily solved
directly; however, the matrix approach illustrates the technique and serves as a
useful introduction to the more detailed discussion in Chapter 12.

Example 4.7

A two-cell fuselage has circular frames with a rigidly attached straight member across
the middle. The bending stiffness of the lower half of the frame is 2EJ, whilst that of
the upper half and also the straight member is EI.
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El

~| R

{a) (b)

Fig. 4.21 Determination of bending moment distribution in an antisymmetrical fuselage frame.

Calculate the distribution of the bending moment in each part of the frame for the
loading system shown in Fig. 4.21(a). Illustrate your answer by means of a sketch and
show clearly the bending moment carried by each part of the frame at the junction
with the straight member. Deformations due only to bending strains need be taken
into account.

The loading is antisymmetrical so that there are no bending moments or normal
forces on the plane of antisymmetry; there remain three shear loads S, Sp and
Sc, as shown in Fig. 4.21(b). The total complementary energy of the half frame is
then (neglecting shear strains)

M M, .
C=J J d0dM — Myag ——Ap )
half frame JO r
where ag and Ap are the rotation and deflection of the frame at B caused by the
applied moment M, and concentrated load M, /r respectively. From antisymmetry
there is no deflection at A, D or C so that S, Sp and S¢ make no contribution to
the total complementary energy. In addition, overall equilibrium of the half frame
gives

M, .
Sa + Sp + Sc =To (ii)

Assigning stationary values to the total complementary energy and considering the
half frame only, we have

gy
aSA B balf frame aSA B
and
9C _ J M _
OSp  Jnaifframe OSp
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or assuming linear elasticity

M M M M
— = ds= ——=——ds=0
Lalfframe EI 0Sp Lalfframe EI 0Sp (t)
In AB
M=—-S,rsinf and —_—=-rsinf oM _ 0
oA EN " 8Sp
In DB
oM oM
M= d —/—=0, ——=
Spx an XN T X
In CB
M = Scrsing = (% —Sp — SD>rsin¢
Thus
oM . 0 .
5. = —~rsing and 35, = —rsin¢g
Substituting these expressions in Eqgs (iii) and integrating we have
3.3568, + Sc = My/r (IV)
Sa +2.1785¢c = My /r V)

which, with Eq. (ii), enable S, Sp and Sc to be found. In matrix form these equations
are written

My/r 1 i 1 Sa
My/r » = 1335 0 1 Sp (vi)
My/r 1 0 2.178 Sc
from which we obtain
Sa 0 0345 —0.159] [ My/r
Sp =11 —-0.187 -0.373 My/r (vii)
Sc 0 —0.159  0.532 \ My/r

which give
Sa =0.186M,/r, Sp=044M,/r, Sc=0373My/r

Again the square matrix of Eqgs (vi) has been inverted to produce Eqgs (vii).

The bending moment distribution with directions of bending moment is shown in
Fig. 4.22.

So far in this chapter we have considered the application of the principles of the
stationary values of the total potential and complementary energies of elastic systems
in the analysis of various types of structure. Although the majority of the examples
used to illustrate the methods are of linearly elastic systems it was pointed out that
generally they may be used with equal facility for the solution of non-linear systems.
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—ve B.M. (Decreasing curvature)
0.187M,

; ( E=)osam

External
moment M, )
0.373M,

C

+ve B.M(increasing curvature) !
(a) (b)

Fig. 4.22 Distribution of bending moment in frame of Example 4.7.

In fact, the question of whether a structure possesses linear or non-linear character-
istics arises only after the initial step of writing down expressions for the total poten-
tial or complementary energies. However, a great number of structures are linearly
elastic and possess unique properties which enable solutions, in some cases, to be
more easily obtained. The remainder of this chapter is devoted to these methods.

4.8 Unit load method

In Section 4.6 we discussed the dummy or fictitious load method of obtaining
deflections of structures. For a linearly elastic structure the method may be stream-
lined as follows.

Consider the framework of Fig. 4.7 in which we require, say, to find the vertical
deflection of the point C. Following the procedure of Section 4.6 we would place a
vertical dummy load P; at C and write down the total complementary energy of
the framework, viz.

k F, n
C= ZJ AdF; =Y AP, (See Eq. (4.15))
i=170 r=1
For a stationary value of C
oC & oF
=N N - Ac=0 4.24
dP ; top, ¢ (424)
from which
k
F.
Ac=)Y "X\ OFi s before (4.25)

P

i=1



4.8 Unit load method

Ifinstead of the arbitrary dummy load P; we had placed a unit load at C, then the load
in the ith linearly elastic member would be
OF;

FX"—‘a—P;l

Therefore, the term §F;/8P; in Eq. (4.25) is equal to the load in the ith member due to
a unit load at C, and Eq. (4.25) may be written

k

F;oF; L;
Ac=Y - 4.26
c ; AL (4.26)
where Fjg is the force in the ith member due to the actual loading and F;; is the
force in the ith member due to a unit load placed at the position and in the direction
of the required deflection. Thus, in Example 4.2 columns @) and () in Table 4.1 would
be eliminated, leaving column (3) as F ; and column (7) as Fp ;. Obviously column (3)
is Fo.

Similar expressions for deflection due to bending and torsion of linear structures
follow from the well-known relationships between bending and rotation and torsion
and rotation. Hence, for a member of length L and fiexural and torsional rigidities EI
and GJ respectively

MyM, T,T)
Appg = | D21 .
= | Mot dn A= e (4.27)

where M is the bending moment at any section produced by the actual loading and
M, is the bending moment at any section due to a unit load applied at the position and
in the direction of the required deflection. Similarly for torsion.

Generally, shear deflections of slender beams are ignored but may be caiculated
when required for particular cases. Of greater interest in aircraft structures is the
calculation of the deflections produced by the large shear stresses experienced by
thin-walled sections. This problem is discussed in Chapter 9.

Example 4.8

A steel rod of uniform circular cross-section is bent as shown in Fig. 4.23, AB and BC
being horizontal and CD vertical. The arms AB, BC and CD are of equal length. The
rod is encastré at A and the other end D is free. A uniformly distributed load covers
the length BC. Find the components of the displacement of the free end D in terms of
EI and GJ.

Since the cross-sectional area 4 and modulus of elasticity E are not given we shall
assume that displacements due to axial distortion are to be ignored. We place, in turn,
unit loads in the assumed positive directions of the axes xyz.

First, consider the displacement in the direction parallel to the x axis. From Eqs

4.27)
_ [ MM, JToTl
A"‘L 7 St
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B
w/unit length
z
1 X
1
z”’ y
Df\i
LT
\
1
Fig. 4.23 Deflection of a bent rod.
Employing a tabular procedure
Mo Ml TO Tl
i e - - ~ ~ s ~ N
Plane xy xz yz Xy Xz yz xy xz @ yz xy xz yz
CD 0 0 0 y 0 0 0 0 0 0 0 0
CB 0 0 —w?/2 0 z 0 00 0 I 0 0
BA —wix 0 0 I 1 0 0 0 wPf/2 0 0 0
Hence
T wPx
A= ———d
* Jo EI
or
wl*
Ax=—oFr
Similarly

11
By = Wﬂ(24EI+2_G7>

1 1
Az— Wﬁ(mﬁ‘m)



4.10 The reciprocal theorem

4.9 Principle of superposition

An extremely useful principle employed in the analysis of linearly elastic structures is
that of superposition. The principle states that if the displacements at all points in an
elastic body are proportional to the forces producing them, i.e. the body is linearly
elastic, the effect on such a body of a number of forces is the sum of the effects of
the forces applied separately. We shall make immediate use of the principle in the
derivation of the reciprocal theorem in the following section.

4.10 The reciprocal theorem

The reciprocal theorem is an exceptionally powerful method of analysis of linearly
elastic structures and is accredited in turn to Maxwell, Betti and Rayleigh. However,
before we establish the theorem we first consider a useful property of linearly elastic
systems resulting from the principle of superposition. The principle enables us to
express the deflection of any point in a structure in terms of a constant coefficient
and the applied loads. For example, a load P, applied at a point | in a linearly elastic
body will produce a deflection A, at the point given by

Ay =ay Py

in which the influence or flexibility coefficient a,, is defined as the deflection at the
point 1 in the direction of Py, produced by a unit load at the point 1 applied in the
direction of P;. Clearly, if the body supports a system of loads such as those
shown in Fig. 4.24, each of the loads P, P,..., P, will contribute to the deflection
at the point 1. Thus, the corresponding deflection A, at the point 1 (i.e. the total deflec-
tion in the direction of P| produced by all the loads) is then

Ay =ay Py +apPr+ - +a,P,

where a; is the deflection at the point | in the direction of Py, produced by a unit load
at the point 2 in the direction of the load P, and so on. The corresponding deflections

Ps

Fig. 4.24 Linearly elastic body subjected to loads Py, Py, Ps,....P,.

103



104 Energy methods of structural analysis

at the points of application of the complete system of loads are then
Ay =apPy +apPr+apP;+ - +appPy,
Az = 021P1 +a22P2+a23P3 + "'+02nP,,
Ay = a3 P +apP; +anPy+ -+ a3, Py, (4.28)

An=aan] + @y Py + a3 Py + - +ap, Py,

or, in matrix form

A ay ap apa - ay | (P
A, ay ap a3 - G| | P
Ay p= a3y an a - a, |\ Ps
An Q. G2 Gz Gy P n

which may be written in shorthand matrix notation as
{A} = [4[{P}

Suppose now that an elastic body is subjected to a gradually applied force P, at a
point 1 and then, while P; remains in position, a force P, is gradually applied at
another point 2. The total strain energy U of the body is given by

P P
U, = 71(0111[’1) +72 (anP>) + Pi(a;nPy) (4.29)

The third term on the right-hand side of Eq. (4.29) results from the additional work
done by P, asit is displaced through a further distance a,, P, by the action of P,. If we
now remove the loads and apply P, followed by P; we have

U, =%(022P2) +%(011P1) + P(az1 Py) (4.30)
By the principle of superposition the strain energy stored is independent of the order
in which the loads are applied. Hence
Uy =U,
and it follows that
app = az (4.31)
Thus in its simplest form the reciprocal theorem states that:

The deflection at a point I in a given direction due to a unit load at a point 2 in a second
direction is equal to the deflection at the point 2 in the second direction due to a unit
load at the point 1 in the first direction.

In a similar manner, we derive the relationship between moments and rotations,
thus:

The rotation at a point 1 due to a unit moment at a point 2 is equal to the rotation at
the point 2 produced by a unit moment at the point 1.



4.10 The reciprocal theorem

Finally we have:

The rotation at a point 1 due to a unit load at a point 2 is numerically equal to the
deflection at the point 2 in the direction of the unit load due to a unit moment at
the point 1.

Example 4.9
A cantilever 800 mm long with a prop 500 mm from the wall deflects in accordance
with the following observations when a point load of 40N is applied to its end.

Dist. (mm) 0 100 200 300 400 500 600 700 800
Def. (mm) 0 -03 —-14 25 -19 0 23 48 106

What will be the angular rotation of the beam at the prop due to a 30N load
applied 200 mm from the wall, together with a 10N load applied 350 mm from the
wall?

The initial deflected shape of the cantilever is plotted as shown in Fig. 4.25(a) and
the deflections at D and E produced by the 40 N Joad determined. The solution then
proceeds as follows.

Defiection at D due to 40N load at C = —1.4mm.

Hence from the reciprocal theorem the deflection at C due to a 40N load at
D =~1.4mm.

It follows that the deflection at C due toa 30 N load at D = —% x 1.4 = —1.05mm.

Similarly the deflection at C due to a 10N load at E = —% X 2.4 = —0.6 mm.

Therefore, the total deflection at C, produced by the 30N and 10N loads acting
simultaneously (Fig. 4.25(b)), is —1.05 ~ 0.6 = —1.65mm from which the angular
rotation of the beam at B, fp, is given by

fp = tan™! 13% = tan™' 0.0055

or
BB =0° 19,
40N 30N ION C
A D E B | Na B/Gir
§ N § D E
260 mm A

“~350mm

(a) (b)

Fig. 4.25 (a) Given deflected shape of propped cantilever; (b) determination of the deflection of C.
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Example 4.10

An elastic member is pinned to a drawing board at its ends A and B. When a moment
M is applied at A, A rotates 05, B rotates fg and the centre deflects §;. The same
moment M applied to B rotates B, ¢ and deflects the centre through 6,. Find the
moment induced at A when a load W is applied to the centre in the direction of
the measured deflections, both A and B being restrained against rotation.

m M
A 6 8 B A 8,
P D

c C

(a) (b)

W
YA B
Ma

Fig. 4.26 Model analysis of a fixed beam.

The three load conditions and the relevant displacements are shown in Fig. 4.26.
Thus from Fig. 4.26(a) and (b) the rotation at A due to M at B is, from the reciprocal
theorem, equal to the rotation at B due to M at A, Hence

Oa) =08
It follows that the rotation at A due to My at B is
M, .
Oaen =37 O @

Also the rotation at A due to unit load at C is equal to the deflection at C due to unit
moment at A. Therefore

Oac2 _ 61
w M
or
W ..
Oa)2 = H(jl (ii)

where 05,2 is the rotation at A due to W at C. Finally the rotation at A due to M at
A is, from Fig. 4.26(a) and (c)

Oa)3 = 7} Oa (iii)

The total rotation at A produced by M, at A, W at C and My at B is, from Eqs (i), (ii)
and (iii)

W Ma

M, .
Oa(c)1 +6A(0)2 + a3 = 7&7303 +X/I‘61 +t7 fa=0 (iv)



4.11 Temperature effects

since the end A is restrained from rotation. Similarly the rotation at B is given by

w M
M(Sz +_‘/‘4A9B:0 (\’)

Solving Eqs (iv) and (v) for M, gives

Mpg
By,
m T

My = W(M)

Or0c — 0

The fact that the arbitrary moment M does not appear in the expression for the
restraining moment at A (similarly it does not appear in My), produced by the
load W, indicates an extremely useful application of the reciprocal theorem,
namely the model analysis of statically indeterminate structures. For example, the
fixed beam of Fig. 4.26(c) could possibly be a full-scale bridge girder. It is then
only necessary to construct a model, say of Perspex, having the same flexural rigidity
EI as the full-scale beam and measure rotations and displacements produced by an
arbitrary moment M to obtain fixing moments in the full-scale beam supporting a
full-scale load.

4.11 Temperature effects

A uniform temperature applied across a beam section produces an expansion of the
beam, as shown in Fig. 4.27, provided there are no constraints. However, a linear
temperature gradient across the beam section causes the upper fibres of the beam
to expand more than the lower ones, producing a bending strain as shown in
Fig. 4.28 without the associated bending stresses, again provided no constraints are
present.

Consider an element of the beam of depth /4 and length éz subjected to a linear
temperature gradient over its depth, as shown in Fig. 4.29(a). The upper surface of

ZAA B t
e H
i
_____ )
4 ‘—4 '
Expansion

Fig. 4.27 Expansion of beam due to uniform temperature.

A Orep !

_ _ y ]
S B ;

Fig. 4.28 Bending of beam due to linear temperature gradient.

AT
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f d3z(1+af)

4 |

(a) {b)

Fig. 4.29 (a) Linear temperature gradient applied to beam element; (b) bending of beam element due to
temperature gradient.

the element will increase in length to 6z(1 + atf), where a is the coefficient of linear
expansion of the material of the beam. Thus from Fig. 4.29(b)

R R+h

6z 6z(1 + aut)

giving

R=h/at (4.32)
Also

60 = 6z/R
so that, from Eq. (4.32)

66 = 6_zha_t (4.33)

We may now apply the principle of the stationary value of the total complementary
energy in conjunction with the unit load method to determine the deflection A, due
to the temperature of any point of the beam shown in Fig. 4.28. We have seen that the
above principle is equivalent to the application of the principle of virtual work where
virtual forces act through real displacements. Therefore, we may specify that the
displacements are those produced by the temperature gradient while the virtual
force system is the unit load. Thus, the deflection A, g of the tip of the beam is
found by writing down the increment in total complementary energy caused by the
application of a virtual unit load at B and equating the resulting expression to zero
(see Eqs (4.13) and (4.18)). Thus

6C=j Mldo—lATe,B=0
L



References

or
ATC.B = J Ml d9 (434)
L

where M, is the bending moment at any section due to the unit load. Substituting for
dé from Eq. (4.33) we have

Agep = [ M, - (4.35)

Jr h
where ¢ can vary arbitrarily along the span of the beam, but only linearly with depth.
For a beam supporting some form of external loading the total deflection is given by

the superposition of the temperature deflection from Eq. (4.35) and the bending
deflection from Eqs (4.27); thus

B MO ol

Example 4.11

Determine the deflection of the tip of the cantilever in Fig. 4.30 with the temperature
gradient shown.

Spanwise variation of ¢

7

n Tk ||

7 B O
h . .

Z T 5 Depth variation of f

' l
7 B —
AT

Fig. 4.30 Beam of Example 4.11.

Applying a unit load vertically downwards at B, M, = 1 x z. Also the temperature
r at a section z is #,(/ — z)//. Substituting in Eq. (4.35) gives

d 83 ’0 .
Atep = JOZTz 7(/ —z)dz ()
Integrating Eq. (i) gives
(!I()/z .
Atep = (i.c. downwards)

6h
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Problems

P.4.1 Find the magnitude and the direction of the movement of the joint C of the
plane pin-jointed frame loaded as shown in Fig. P.4.1. The value of L/AE for each
member is 1/20 mm/N.

Ans.  5.24mm at 14.7° to left of vertical.

E
E
o
<
it
7 B C
E A | 1920 mm
£ / T }
o 1080 mm ION
Z
— AN

Fig. P.4.1

P.4.2 A rigid trniangular plate is suspended from a horizontal plane by three
vertical wires attached to its corners. The wires are each | mm diameter, 1440 mm
long, with a modulus of elasticity of 196000 N/mm?. The ratio of the lengths of the
sides of the plate is 3:4:5. Calculate the deflection at the point of application due
to a 100 N load placed at a point equidistant from the three sides of the plate.

Ans. 0.33mm.

P.4.3 The pin-jointed space frame shown in Fig. P.4.3 is attached to rigid
supports at points 0, 4, 5 and 9, and is loaded by a force P in the x dircction and a
force 3P in the negative y direction at the point 7. Find the rotation of member 27
about the z axis due to this loading. Note that the plane frames 01234 and 56789
are identical. All members have the same cross-sectional area 4 and Young's
modulus E.

Ans. 382P/9AE.

P.4.4 A horizontal beam is of uniform material throughout, but has a second
moment of area of / for the central half of the span L and //2 for each section in



Problems

Fig. P4.3

both outer quarters of the span. The beam carries a single central concentrated
load P.

(a) Derive a formula for the central deflection of the beam, due to P, when simply
supported at each end of the span.

(b) If both ends of the span are encastré determine the magnitude of the fixed end
moments.

Ans. 3PL?/128EI, 5PL/48 (hogging).

P.4.5 The tubular steel post shown in Fig. P.4.5 supports a load of 250 N at the
free end C. The outside diameter of the tube is 100 mm and the wall thickness is
3Imm. Neglecting the weight of the tube find the horizontal deflection at C. The
modulus of elasticity is 206 000 N/mm?.

TR

Ww=250 N

Ans. 53.3mm.

4R R = 1500 mm

Z4
Fig. P4.5

[N
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P4.6 A simply supported beam AB of span L and uniform section carries a
distributed load of intensity varying from zero at A to wy/unit length at B according

to the law
ZWOZ 4
Y=L (1 - ZL)

per unit length. If the deflected shape of the beam is given approximately by the
expression

in i + a, sin 2z
v = @, sin— —
L Akl

evaluate the coefficients @; and a, and find the deflection of the beam at mid-span.
Ans.  ay = 2woL*(n* +4)/EIT’, a, = —woL*/16EIT°, 0.00918woL*/EI.

P.4.7 A uniform simply supported beam, span L, carries a distributed loading
which varies according to a parabolic law across the span. The load intensity is
zero at both ends of the beam and wy at its mid-point. The loading is normal to a
principal axis of the beam cross-section and the relevant flexural rigidity is EI.
Assuming that the deflected shape of the beam can be represented by the series

X, inz
v= ; a; SlIlT
find the coefficients a; and the deflection at the mid-span of the beam using the first
term only in the above series.
Ans. a; = 32woL*/EIx"i (iodd), woL*/94.4EI.

P.4.8 Figure P.4.8 shows a plane pin-jointed framework pinned to a rigid founda-
tion. All its members are made of the same material and have equal cross-sectional
area A, except member 12 which has area AV2.

12a

Fig. P4.8
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Under some system of loading, member 14 carries a tensile stress of 0.7 N/mmz.
Calculate the change in temperature which, if applied to member 14 only, would
reduce the stress in that member to zero. Take the coefficient of linear expansion as
a =24 x 107%/°C and Young’s modulus E = 70 000 N/mm?>.

Ans.  5.6°C.

P.4.9 The plane, pin-jointed rectangular framework shown in Fig. P.4.9(a) has
one member (24) which is loosely attached at joint 2, so that relative movement
between the end of the member and the joint may occur when the framework is
loaded. This movement is a maximum of (.25mm and takes place only in the
direction 24. Figure P.4.9(b) shows joint 2 in detail when the framework is
unloaded. Find the value of the load P at which member 24 just becomes an effective
part of the structure and also the loads in all the members when P is 10000 N. All
bars are of the same material (E = 70000 N/mm?) and have a cross-sectional area
of 300 mm®.

Ans. P=294TN: Fi, =2481.6N(T), Fy = 1861.2N(T), Fy, =2481.6N(T),
Fy = 5638.9N(C), Fy3 = 9398.1 N(T), Fa, = 3102.0N(C).

—_—

600 mm L /}\ N

N
[
[~

(a) (b)
Fig. P4.9

P.4.10 The plane frame ABCD of Fig. P.4.10 consists of three straight members
with rigid joints at B and C, freely hinged to rigid supports at A and D. The flexural
rigidity of AB and CD is twice that of BC. A distributed load is applied to AB, varying
linearly in intensity from zero at A to w per unit length at B.

Determine the distribution of bending moment in the frame, illustrating your
results with a sketch showing the principal values.

Ans. My = Twi*/45, Mc = 8wi?/45. Cubic distribution on AB, linear on BC
and CD.

13
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W
l B c
\ EI
2€T 2EI 1
A DAd__ ¥y
1//’ %ﬁ
' 21/3 !

Fig. P.4.10

P.4.11 A bracket BAC is composed of a circular tube AB, whose second moment
of area is 1.57, and a beam AC, whose second moment of area is I and which has
negligible resistance to torsion. The two members are rigidly connected together at
A and built into a rigid abutment at B and C as shown in Fig. P.4.11. A load P is
applied at A in a direction normal to the plane of the figure.

Determine the fraction of the load which is supported at C. Both members are of
the same material for which G = 0.38E.

Ans. 0.72P.
A
I-5]
43
I
B C
a
Fig. P.4.11

P.4.12 1n the plane pin-jointed framework shown in Fig. P.4.12, bars 25, 35, 15
and 45 are linearly elastic with modulus of elasticity E. The remaining three bars
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obey a non-linear elastic stress—strain law given by

=2+ (%) ]

where 7 is the stress corresponding to strain e. Bars 15, 45 and 23 each have a cross-
sectional area 4, and each of the remainder has an area of 4/v/3. The length of
member 12 is equal to the length of member 34 = 2L.

If a vertical load Py is applied at joint 5 as shown, show that the force in the member
23, i.e. Fys, is given by the equation

X +35x4+08=0.

where

X = F23/P0 and a= Po/AT()

Fig. P.4.12

P.4.13 Figure P.4.13 shows a plan view of two beams, AB 9150 mm long and DE
6100 mm long. The simply supported beam AB carries a vertical load of 100000 N
applied at F, a distance one-third of the span from B. This beam is supported at C
on the encastré beam DE. The beams are of uniform cross-section and have the
same second moment of area 83.5 x 10°mm*. E = 200000 N/mm2. Calculate the
deflection of C.

Ans. 5.6 mm.

oz
e
%
rﬂE
c F
Ao— X oB
I 3050|mm | 3050mm } 3050mﬁ_%
S
If)E

Fig. P.4.13
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P.4.14 The plane structure shown in Fig. P.4.14 consists of a uniform continuous
beam ABC pinned to a fixture at A and supported by a framework of pin-jointed
members. All members other than ABC have the same cross-sectional area 4. For
ABC, the area is 44 and the second moment of area for bending is 44”/16. The
material is the same throughout. Find (in terms of w, 4, a and Young’s modulus
E) the vertical displacement of point D under the vertical loading shown. Ignore
shearing strains in the beam ABC.

Ans.  30232wa’/3AE.

3wa 1.5 w/unit length
Py o4 ob 4oy
o] [o
B A Y
3a
4a i 4a !

Fig. P.4.14

P.4.15 The fuselage frame shown in Fig. P.4.15 consists of two parts, ACB and
ADB, with frictionless pin joints at A and B. The bending stiffness is constant in
each part, with value EI for ACB and xEI for ADB. Find x so that the maximum
bending moment in ADB will be one half of that in ACB. Assume that the deflections
are due to bending strains only.

Ans. 0.092.

Fig. P4.15

P.4.16 A transverse frame in a circular section fuel tank is of radius r and
constant bending stiffness EI. The loading on the frame consists of the hydrostatic
pressure due to the fuel and the vertical support reaction P, which is equal to the
weight of fuel carried by the frame, shown in Fig. P.4.16.



Problems

Fig. P4.16

Taking into account only strains due to bending, calculate the distribution of
bending moment around the frame in terms of the force P, the frame radius r and
the angle 6.

Ans. M = Pr(0.160 — 0.080 cos  — 0.1590sin 6).

P.4.17 The frame shown in Fig. P.4.17 