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Preface 

During my experience of teaching aircraft structures I have felt the need for a text- 
book written specifically for students of aeronautical engineering. Although there 
have been a number of excellent books written on the subject they are now either 
out of date or too specialist in content to fulfil the requirements of an undergraduate 
textbook. My aim, therefore, has been to fill this gap and provide a completely self- 
contained course in aircraft structures which contains not only the fundamentals of 
elasticity and aircraft structural analysis but also the associated topics of airworthi- 
ness and aeroelasticity. 

The book is intended for students studying for degrees, Higher National Diplomas 
and Higher National Certificates in aeronautical engineering and will be found of 
value to those students in related courses who specialize in structures. The subject 
matter has been chosen to provide the student with a textbook which will take him 
from the beginning of the second year of his course, when specialization usually 
begins, up to and including his final examination. I have arranged the topics so 
that they may be studied to an appropriate level in, say, the second year and then 
resumed at a more advanced stage in the final year; for example, the instability of 
columns and beams may be studied as examples of structural instability at second 
year level while the instability of plates and stiffened panels could be studied in the 
final year. In addition, I have grouped some subjects under unifying headings to 
emphasize their interrelationship; thus, bending, shear and torsion of open and 
closed tubes are treated in a single chapter to underline the fact that they are just 
different loading cases of basic structural components rather than isolated topics. I 
realize however that the modern trend is to present methods of analysis in general 
terms and then consider specific applications. Nevertheless, I feel that in cases 
such as those described above it is beneficial for the student’s understanding of the 
subject to see the close relationships and similarities amongst the different portions 
of theory. 

Part I of the book, ‘Fundamentals of Elasticity’, Chapters 1-6, includes sufficient 
elasticity theory to provide the student with the basic tools of structural analysis. 
The work is standard but the presentation in some instances is original. In Chapter 
4 I have endeavoured to clarify the use of energy methods of analysis and present a 
consistent, but general, approach to the various types of structural problem for 
which energy methods are employed. Thus, although a variety of methods are dis- 
cussed, emphasis is placed on the methods of complementary and potential energy. 



x Preface 

Overall, my intention has been to give some indication of the role and limitations of 
each method of analysis. 

Part 11, ‘Analysis of Aircraft Structures’, Chapters 7-1 1 , contains the analysis of the 
thin-walled, cellular type of structure peculiar to aircraft. In addition, Chapter 7 
includes a discussion of structural materials, the fabrication and function of structural 
components and an introduction to structural idealization. Chapter 10 discusses the 
limitations of the theory presented in Chapters 8 and 9 and investigates modifications 
necessary to account for axial constraint effects. An introduction to computational 
methods of structural analysis is presented in Chapter 11 which also includes some 
elementary work on the relatively modern finite element method for continuum 
structures. 

Finally, Part 111, ‘Airworthiness and Aeroelasticity’, Chapters 12 and 13, are self 
explanatory. 

Worked examples are used extensively in the text to illustrate the theory while 
numerous unworked problems with answers are listed at the end of each chapter; 
S.I. units are used throughout. 

I am indebted to the Universities of London (L.U.) and Leeds for permission to 
include examples from their degree papers and also the Civil Engineering Department 
of the University of Leeds for allowing me any facilities I required during the prepara- 
tion of the manuscript. I am also extremely indebted to my wife, Margaret, who will- 
ingly undertook the onerous task of typing the manuscript in addition to attending to 
the demands of a home and our three sons, Andrew, Richard and Antony. 

T.H.G. Megson 



Preface to Second Edition 

The publication of a second edition has given me the opportunity to examine the 
contents of the book in detail and determine which parts required alteration and 
modernization. Aircraft structures, particularly in the field of materials, is a rapidly 
changing subject and, while the fundamentals of analysis remain essentially the 
same, clearly an attempt must be made to keep abreast of modern developments. 
At the same time I have examined the presentation making changes where I felt it 
necessary and including additional material which I believe will be useful for students 
of the subject. 

The first five chapters remain essentially the same as in the first edition except for 
some minor changes in presentation. 

In Chapter 6, Section 6.12 has been rewritten and extended to include flexural- 
torsional buckling of thin-walled columns; Section 6.13 has also been rewritten to 
present the theory of tension field beams in a more logical form. 

The discussion of composite materials in Chapter 7 has been extended in the light of 
modern developments and the sections concerned with the function and fabrication of 
structural components now include illustrations of actual aircraft structures of differ- 
ent types. The topic of structural idealization has been removed to Chapter 8. 

Chapter 8 has been retitled and the theory presented in a different manner. Matrix 
notation is used in the derivation of the expression for direct stress due to unsymme- 
trical bending and the ‘bar’ notation discarded. The theory of the torsion of closed 
sections has been extended to include a discussion of the mechanics of warping, 
and the theory for the secondary warping of open sections amended. Also included 
is the analysis of combined open and closed sections. Structural idealization has 
been removed from Chapter 7 and is introduced here so that the effects of structural 
idealization on the analysis follow on logically. An alternative method for the calcu- 
lation of shear flow distributions is presented. 

Chapter 9 has been retitled and extended to the analysis of actual structural com- 
ponents such as tapered spars and beams, fuselages and multicell wing sections. The 
method of successive approximations is included for the analysis of many celled wings 
and the effects of cut-outs in wings and fuselages are considered. In addition the cal- 
culation of loads on and the analysis of fuselage frames and wing ribs is presented. In 
addition to the analysis of structural components composite materials are considered 
with the determination of the elastic constants for a composite together with their use 
in the fabrication of plates. 



xii Preface to Second Edition 

Chapter 10 remains an investigation into structural constraint, although the pre- 
sentation has been changed particularly in the case of the study of shear lag. The 
theory for the restrained warping of open section beams now includes general systems 
of loading and introduces the concept of a moment couple or bimoment. 

Only minor changes have been made to Chapter 11 while Chapter 12 now includes 
a detailed study of fatigue, the fatigue strength of components, the prediction of 
fatigue life and crack propagation. Finally, Chapter 13 now includes a much more 
detailed investigation of flutter and the determination of critical flutter speed. 

I am indebted to Professor D. J. Mead of the University of Southampton for 
many useful comments and suggestions. I am also grateful to Mr K. Broddle of 
British Aerospace for supplying photographs and drawings of aircraft structures. 

T.H.G. Megson 
1989 



Preface to Third Edition 

The publication of a third edition and its accompanying solutions manual has allowed 
me to take a close look at the contents of the book and also to test the accuracy of the 
answers to the examples in the text and the problems set at the end of each chapter. 

I have reorganized the book into two parts as opposed, previously, to three. Part I, 
Elasticity, contains, as before, the first six chapters which are essentially the same except 
for the addition of two illustrative examples in Chapter 1 and one in Chapter 4. 

Part 11, Chapters 7 to 13, is retitled Aircraft structures, with Chapter 12, Airworthi- 
ness, now becoming Chapter 8, Airworthiness and airframe loads, since it is logical 
that loads on aircraft produced by different types of manoeuvre are considered 
before the stress distributions and displacements caused by these loads are calculated. 

Chapter 7 has been updated to include a discussion of the latest materials used in 
aircraft construction with an emphasis on the different requirements of civil and 
military aircraft. 

Chapter 8, as described above, now contains the calculation of airframe loads 
produced by different types of manoeuvre and has been extended to consider the 
inertia loads caused, for example, by ground manoeuvres such as landing. 

Chapter 9 (previously Chapter 8) remains unchanged apart from minor corrections 
while Chapter 10 (9) is unchanged except for the inclusion of an example on the 
calculation of stresses and displacements in a laminated bar; an extra problem has 
been included at the end of the chapter. 

Chapter 11 (lo), Structural constraint, is unchanged while in Chapter 12 (1 1) the 
discussion of the finite element method has been extended to include the four node 
quadrilateral element together with illustrative examples on the calculation of element 
stiffnesses; a further problem has been added at the end of the chapter. 

Chapter 13, Aeroelasticity, has not been changed from Chapter 13 in the second 
edition apart from minor corrections. 

I am indebted to, formerly, David Ross and, latterly, Matthew Flynn of Arnold for 
their encouragement and support during this project. 

T.H.G. Megson 
1999 





Part I Elasticity 





1 

Basic elasticity 

We shall consider, in this chapter, the basic ideas and relationships of the theory of 
elasticity that are necessary for the development of the analytical work in the 
remainder of the book. The treatment is divided into three broad sections: stress, 
strain and stress-strain relationships. The third section is deferred until the end of 
the chapter to emphasize the fact that the analysis of stress and strain, for example 
the equations of equilibrium and compatibility, does not assume a particular 
stress-strain law. In other words, the relationships derived in Sections 1.1 to 1.14 
inclusive are applicable to non-linear as well as linearly elastic bodies. 

Consider the arbitrarily shaped, three-dimensional body shown in Fig. 1.1. The body 
is in equilibrium under the action of externally applied forces P i ,  P2..  . and is 
assumed to comprise a continuous and deformable material so that the forces are 
transmitted throughout its volume. Thus, at any internal point 0 there is a resultant 
force 6P. The particle of material at 0 subjected to the force SP is in equilibrium so 
that there must be an equal but opposite force 6P (shown dotted in Fig. 1.1) acting on 
the particle at the same time. If we now divide the body by any plane nn containing 0 
then these two forces SP may be considered as being uniformly distributed over a 
small area 6 A  of each face of the plane at the corresponding points 0 as in Fig. 1.2. 
The stress at 0 is then defined by the equation 

The directions of the forces 6P in Fig. 1.2 are such as to produce tensile stresses on 
the faces of the plane nn. It must be realized here that while the direction of SP is 
absolute the choice of plane is arbitrary, so that although the direction of the stress 
at 0 will always be in the direction of 6P its magnitude depends upon the actual 
plane chosen since a different plane will have a different inclination and therefore a 
different value for the area 6A. This may be more easily understood by reference to 
the bar in simple tension in Fig. 1.3. On the cross-sectional plane mm the uniform 
stress is given by P I A ,  while on the inclined plane m'm' the stress is of magnitude 
PIA'. In both cases the stresses are parallel to the direction of P. 



4 Basic elasticity 

Fig. 1.1 Internal force at a point in an arbitrarily shaped body. 

Generally, the direction of SP is not normal to the area SA, in which case it is usual 
to resolve SP into two components: one, SP,, normal to the plane, the other SPs, 
acting in the plane itself (see Fig. 1.2). The stresses associated with these components 
are a normal or direct stress defined as 

and a shear stress deiined as 
SPs T =  lim - 

6A-0  SA 
The resultant stress is computed from its components by the normal rules of vector 

addition, namely 

Resultant stress = d m  

Fig. 

n 

p3 

1.2 Internal force Components at the point 0. 



1.2 Notation for forces and stresses 5 

Fig. 1.3 Values of stress on different planes in a uniform bar. 

However, to be strictly accurate, stress is not a vector quantity for, in addition to 
magnitude and direction, we must specify the plane on which the stress acts. Stress is 
therefore a tensor, its complete description depending on the two vectors of force and 
surface of action. 

1 . 2  Notation for forces and stresses 
It is usually convenient to refer the state of stress at a point in a body to an orthogonal 
set of axes Oxyz. In this case we cut the body by planes parallel to the direction of the 
axes. The resultant force SP acting at the point 0 on one of these planes may then be 
resolved into a normal component and two in-plane components as shown in Fig. 1.4, 
thereby producing one component of direct stress and two components of shear 
stress. 

The direct stress component is specified by reference to the plane on which it 
acts but the stress components require a specification of direction in addition to the 
plane. We therefore allocate a single subscript to direct stress to denote the plane 
on which it acts and two subscripts to shear stress, the first specifying the plane, 
the second direction. Thus in Fig. 1.4, the shear stress components are rzx and rzy 
acting on the z plane and in the x and y directions respectively, while the direct 
stress component is oz. 

We may now completely describe the state of stress at a point 0 in a body by 
specifying components of shear and direct stress on the faces of an element of side 
Sx, by, Sz, formed at 0 by the cutting planes as indicated in Fig. 1.5. 

The sides of the element are infinitesimally small so that the stresses may be 
assumed to be uniformly distributed over the surface of each face. On each of the 
opposite faces there will be, to a first simplification, equal but opposite stresses. 
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Fig. 1.4 Components of stress at a point in a body. 

We shall now define the directions of the stresses in Fig. 1.5 as positive. Thus, 
normal stresses directed away from their related surfaces are tensile and positive, 
opposite compressive stresses are negative. Shear stresses are positive when they act 
in the positive direction of the relevant axis in a plane on which the direct tensile 
stress is in the positive direction of the axis. If the tensile stress is in the opposite 

't 

Fig. 1.5 Sign conventions and notation for stresses at a point in a body. 



1.3 Equations of equilibrium 7 

direction then positive shear stresses are in directions opposite to the positive direc- 
tions of the appropriate axes. 

Two types of external force may act on a body to produce the internal stress system 
we have already discussed. Of these, surface forces such as P I ,  P2 . . . , or hydrostatic 
pressure, are distributed over the surface area of the body. The surface force per unit 
area may be resolved into components parallel to our orthogonal system of axes and 
these are generally given the symbols X, Y and Z. The second force system derives 
from gravitational and inertia effects and the forces are known as body forces. 
These are distributed over the volume of the body and the components of body 
force per unit volume are designated X ,  Y and 2. 

Generally, except in cases of uniform stress, the direct and shear stresses on opposite 
faces of an element are not equal as indicated in Fig. 1.5 but differ by small amounts. 
Thus if, say, the direct stress acting on the z plane is a, then the direct stress acting on 
the z +  Sz plane is, from the first two terms of a Taylor’s series expansion, 

We now investigate the equilibrium of an element at some internal point in an 
elastic body where the stress system is obtained by the method just described. 

In Fig. 1.6 the element is in equilibrium under forces corresponding to the stresses 
shown and the components of body forces (not shown). Surface forces acting on the 
boundary of the body, although contributing to the production of the internal stress 
system, do not directly feature in the equilibrium equations. 

a, + (aaJaz)Sz. 

Fig. 1.6 Stresses on the faces of an element at a point in an elastic body. 
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Taking moments about an axis through the centre of the element parallel to the z 
axis 

SX 

- (ry,.~6y)6x6z-=0 6Y 
2 

which simplifies to 

Dividing through by SxSySz and taking the limit as 6x and Sy approach zero 

(1.4) I r x y  = Tyx 

Similarly 7 x 2  = 7,x  

Tyz = 7.y 

Now considering the equilibrium of the element in the x direction 

- ryxSxSz+ (., r +-SZ 2 ) SxSy 
- rzXSxSy + XSxSySz = 0 

which gives 

Or, writing T~~ = T~~ and T,, = r,, from Eqs (1.4) 

Similarly 

J 80, a7,, %y -+-+-+z=o dz ax ay 
The equations of equilibrium must be satisfied at all interior points in a deformable 

body under a three-dimensional force system. 

Most aircraft structural components are fabricated from thin metal sheet so that 
stresses across the thickness of the sheet are usually negligible. Assuming, say, that 
the z axis is in the direction of the thickness then the three-dimensional case of 
Section 1.3 reduces to a two-dimensional case in which c,, r,, and ryz are all zero. 



1.5 Boundary conditions 9 

This condition is known as plane stress; the equilibrium equations then simplify to 

I do, k y  -+-+x=o 
a x  ay 
aoy dry, 
-+-+Y=O 
dy a x  

1.5 Boi 
The equations of equilibrium (1.5) (and also (1.6) for a two-dimensional system) 
satisfy the requirements of equilibrium at all internal points of the body. Equilibrium 
must also be satisfied at all positions on the boundary of the body where the compo- 
nents of the surface force per unit area are 2, r and Z.  Thus, the triangular element 
of Fig. 1.7 at the boundary of a two-dimensional body of unit thickness is in equili- 
brium under the action of surface forces on the element AB of the boundary and 
internal forces on internal faces AC and CB. 

Summation of forces in the x direction gives 

26s - O.,6,V - Ty.,6X + xi 6X6y = 0 

which, by taking the limit as Sx approaches zero, becomes 
- dY dx 

X=o, -+rVx-  
ds . ds 

The derivatives dylds and dxlds are the direction cosines 1 and m of the angles that 
a normal to AB makes with the x and y axes respectively. Hence 

- 
X = oxl + ryxm 

Y = uym + rJ.  
- 

and in a similar manner 

a three-dimensional body, namely 
A relatively simple extension of this analysis produces the boundary conditions for 

Y t  

01 - x  
Fig. 1.7 Stresses on the faces of an element at the boundaly of a two-dimensional body. 
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0 

where I, m and n become the direction cosines of the angles that a normal to the 
surface of the body makes with the x, y and z axes respectively. 

1.6 Determination of stresses on inclined planes 

The complex stress system of Fig. 1.6 is derived from a consideration of the actual 
loads applied to a body and is referred to a predetermined, though arbitrary, 
system of axes. The values of these stresses may not give a true picture of the severity 
of stress at that point so that it is necessary to investigate the state of stress on other 
planes on which the direct and shear stresses may be greater. 

We shall restrict the analysis to the two-dimensional system of plane stress defined 
in Section 1.4. 

Figure 1.8(a) shows a complex stress system at a point in a body referred to axes 
Ox, Oy. All stresses are positive as defined in Section 1.2. The shear stresses T~~ 

and rYx were shown to be equal in Section 1.3. We now, therefore, designate them 
both rxY. The element of side Sx, Sy and of unit thickness is small so that stress 
distributions over the sides of the element may be assumed to be uniform. Body 
forces are ignored since their contribution is a second-order term. 

Suppose that we require to find the state of stress on a plane AB inclined at an angle 
8 to the vertical. The triangular element EDC formed by the plane and the vertical 
through E is in equilibrium under the action of the stresses shown in Fig. 1.8(b), 
where a, and T are the direct and shear components of the resultant stress on AB. 
Then resolving forces in a direction perpendicular to ED we have 

a,ED = a,EC cos 8 + a,CD sin 8 + T,,EC sin 8 + T,,CD cos 8 

Dividing through by ED and simplifying 

a, = ax cos2 8 + aY sin2 8 + T ~ ,  sin 28 

TED = a,EC sin 8 - ayCD cos 8 - T,,EC cos 8 + T,,CD sin 8 
Now resolving forces parallel to ED 

E 

(a) (b) 
Fig. 1.8 (a) Stresses on a two-dimensional element; (b) stresses on an inclined plane a t  the point. 
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Again dividing through by ED and simplifying 

(1.9) 
( s x  - Cy) . sin 28 - rXy cos 28 

2 
7 =  

..- ... - . 

1.7 Prir icipal stresses 
For given values of a,, ay and T,,, in other words given loading conditions, an varies 
with the angle 8 and will attain a maximum or minimum value when dan/d8 = 0. 
From Eq. (1.8) 

5 = -2a, cos 8 sin 8 + 20, sin 8 cos 8 + 2ryy cos 28 = 0 
do 

Hence 

- ( u . ~  - u,,) sin 28 + 2TsJ cos 28 = 0 

or 

(1.10) 

Two solutions, 8 and 8 + n/2, are obtained from Eq. (1.10) so that there are two 
mutually perpendicular planes on which the direct stress is either a maximum or a 
minimum. Further, by comparison of Eqs (1.10) and (1.9) it will be observed that 
these planes correspond to those on which there is no shear stress. The direct stresses 
on these planes are called principal stresses and the planes themselves, principal planes. 

From Eq. (1.10) 
2Tcy a, - ay 

sin28 = Jm.’ ‘Os 28= JW 
and 

sin 2(8 + n/2) = dv, - 2?xy cos 2(8 + n/2) = 4 U . Y  - Uy) 

(0, - cy) + 4?xy JW 
Rewriting Eq. (1.8) as 

U .  
an = % ( l + c o s 2 0 ) + - ~ ( 1  -cos28)+rx,sin28 

ahd substituting for (sin28, cos 28} and {sin2(8 + 7r/2), cos 2(8 + n/2)} in turn gives 
2 2 

(1.11) 0 . Y  + 0.v 
01  = ~ 

and 

where aI is the maximum or major principal stress and olI is the minimum or minor 
principal stress. Note that a1 is algebraically the greatest direct stress at the point 
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while aI1 is algebraically the least. Therefore, when aII is negative, i.e. compressive, it is 
possible for oII to be numerically greater than oI. 

The maximum shear stress at this point in the body may be determined in an 
identical manner. From Eq. (1.9) 

- d r  
- - (a, - cy) cos 28 + 2rxy sin 28 = 0 
de 

giving 

(1.13) 

It follows that 

-(ax - ay) 2TXy 

(0, - a,) 

sin 20 = Jm' c0s28 = 4 7  a x  - a y )  +4T?y 

-2rXy , C O q e  + +) = sin 2(0 + ~ / 2 )  = 
J K 7 - X  J i L 7 G i  

Substituting these values in Eq. (1.9) gives 

Tmax,min = * t  d ~ a x  - a y ) 2  + 4~;y (1.14) 

Here, as in the case of principal stresses, we take the maximum value as being the 
greater algebraic value. 

Comparing Eq. (1.14) with Eqs (1.11) and (1.12) we see that 

(1.15) 

Equations (1.14) and (1.15) give the maximum shear stress at the point in the body in 
the plane of the given stresses. For a three-dimensional body supporting a two- 
dimensional stress system this is not necessarily the maximum shear stress at the point. 

Since Eq. (1.13) is the negative reciprocal of Eq. (1.10) then the angles 28 given by 
these two equations differ by 90" or, alternatively, the planes of maximum shear stress 
are inclined at 45" to the principal planes. 

The state of stress at a point in a deformable body may be determined graphically by 
Mohr's circle of stress. 

In Section 1.6 the direct and shear stresses on an inclined plane were shown to be 
given by 

an = a.Y cos2 8 + ay sin2 0 + rYy sin 20 (Eq. (1 .8))  
and 

(ax - Cy) . sin 20 - T~~ cos 28 
2 

r =  
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Fig. 1.9 (a) Stresses on a triangular element; (b) Mohr’s circle of stress for stress system shown in (a). 

respectively. The positive directions of these stresses and the angle 8 are defined in 
Fig. 1.9(a). Equation (1.8) may be rewritten in the form 

Squaring and zdding this equation to Eq. (1.9) we obtain 

[an - 4 ( a x  + .,)I2 + r2 = [i ( g x  - + <v 
which represents the equation of a circle of radius 4- and having its 
centre at the point ((ax - aJ,)/2! 0). 

The circle is constructed by locating the points Q ~ ( U - ~ , T , ~ )  and Q2(a,, - T ~ ~ )  

referred to axes Om- as shown in Fig. 1.9(b). The centre of the circle then lies at C 
the intersection of Q1Q2 and the Om axis; clearly C is the point ((ax - a,)/2,0) and 
the radius of the circle is 4 J(ax - fly)* + h$, as required. CQ‘ is now set off at an 
angle 28 (positive clockwise) to CQ1, Q‘ is then the point (ann? -7) as demonstrated 
below. From Fig. 1.9(b) we see that 

ON = OC + CN 

or, since OC = (a, + ay)/2, CN = CQ’cos(p - 28) and CQ’ = CQ1 we have 
ax + uy 

an = ~ + CQ, (cos p cos 28 + sin p sin 28) 2 
But 

(ax - ffy) CQ1=- and CPI = cos p - 
Hence 

a, = ~ cos 28 + CPl tan p sin 28 
2 
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which, on rearranging, becomes 

on = ox cos2 e + uy sin2 e + Txy sin 2e 

as in Eq. (1.8). Similarly it may be shown that 

Q'N = rxu cos 28 - ( ~ g~ ") sin20 = --7 

as in Eq. (1.9). Note that the construction of Fig. 1.9(b) corresponds to the stress 
system of Fig. 1.9(a) so that any sign reversal must be allowed for. Also, the On 
and OT axes must be constructed to the same scale or the equation of the circle is 
not represented. 

The maximum and minimum values of the direct stress, viz. the major and minor 
principal stresses nI and q1, occur when N (and Q') coincide with B and A respec- 
tively. Thus 

q = OC + radius of circle 

or 

and in the same fashion 

The principal planes are then given by 28 = P ( q )  and 28 = P + r(uI1). 

with D and E at the upper and lower extremities of the circle. 
Also the maximum and minimum values of shear stress occur when Q' coincides 

At these points Q'N is equal to the radius of the circle which is given by 

Hence ~,,,,h = f f z/(a, - cy)' + 4 ~ 2 ~  as before. The planes of maximum and mini- 
mum shear stress are given by 28 = P + r /2  and 28 = ,8 + 3 ~ 1 2 ,  these being inclined 
at 45" to the principal planes. 

Example 1.1 
Direct stresses of 160 N/mm2, tension, and 120 N/mm2, compression, are applied at a 
particular point in an elastic material on two mutually perpendicular planes. The 
principal stress in the material is limited to 200 N/mm2, tension. Calculate the allow- 
able value of shear stress at the point on the given planes. Determine also the value of 
the other principal stress and the maximum value of shear stress at the point. Verify 
your answer using Mohr's circle. 
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B 

t 
cy (-120N/mrn2) 

Fig. 1.10 Stress system for Example 1 . I .  

The stress system at the point in the material may be represented as shown in 
Fig. 1.10 by considering the stresses to act uniformly over the sides of a triangular 
element ABC of unit thickness. Suppose that the direct stress on the principal 
plane AB is U. For horizontal equilibrium of the element 

U~~ cos e = U x ~ ~  + T x . , , ~ ~  

which simplifies to 

rXy tan 8 = u - C J ~  

Considering vertical equilibrium gives 

uAB sin e = uyAC + T,,BC 

(ii) 

or 

Txy cot e = - 

Hence from the product of Eqs (i) and (ii) 
2 

Txy = (. - S x ) ( U  - (4 
2 Now substituting the values nX = 160N/mm2, gy = -120N/mm and u = c1 = 

200 N/mm2 we have 

T~~ = f 113 N/mm2 

Replacing cot B in Eq. (ii) by 1/ tan 8 from Eq. (i) yields a quadratic equation in u 

(iii) 

and 74,; 

2 - U(Ux - Uy)  + UxUy - Try 2 = 0 

The numerical solutions of Eq. (iii) corresponding to the given values of ox, 
are the principal stresses at the point, namely 

2 aI = 200 N/mm2 (given), aJr = - 160 N/mm 
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Fig. 1.11 Solution of Example 1 . I  using Mohr's circle of stress. 

Having obtained the principal stresses we now use Eq. (1.15) to find the maximum 
shear stress, thus 

The solution is rapidly verified from Mohr's circle of stress (Fig. 1.11). From the 
arbitrary origin 0, OP1 and 0P2 are drawn to represent o .~  = 160N/mm2 and 
ay = -120N/mm2. The mid-point C of PIP2 is then located. OB = uI = 200N/ 
mm2 is marked out and the radius of the circle is then CB. OA is the required principal 
stress. Perpendiculars PIQl and P2Q2 to the circumference of the circle are equal to 
&T~,, (to scale) and the radius of the circle is the maximum shear stress. 

The external and internal forces described in the previous sections cause linear and 
angular displacements in a deformable body. These displacements are generally 
defined in terms of strain. Longitudinal or direct strains are associated with direct 
stresses 0 and relate to changes in length while shear strains define changes in angle 
produced by shear stresses. These strains are designated, with appropriate suffixes, 
by the symbols E and y respectively and have the same sign as the associated stresses. 

Consider three mutually perpendicular line elements OA, OB and OC at a point 0 
in a deformable body. Their original or unstrained lengths are Sx, Sy and Sz respec- 
tively. If, now, the body is subjected to forces which produce a complex system of 
direct and shear stresses at 0, such as that in Fig. 1.6, then the line elements will 
deform to the positions O'A', O'B' and O'C' shown in Fig. 1.12. 

The coordinates of 0 in the unstrained body are (x, y ,  z )  so that those of A, B and C 
are (x + Sx, y ,  z ) ,  (x, y + by, z )  and (x, y ,  z + Sz). The components of the displacement 
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Fig. 1.12 Displacement of line elements OA, OB and OC. 

of 0 to 0’ parallel to the x,  y and z axes are u, v and w. These symbols are used to 
designate these diplacements throughout the book and are defined as positive in 
the positive directions of the axes. We again employ the first two terms of a Taylor’s 
series expznsion to determine the components of the displacements of A, B and C. 
Thus, the displacement of A in a direction parallel to the x axis is zi + (dzr/dx)Sx. 
The remaining components are found in an identical manner and are shown in 
Fig. 1.12. 

We now define direct strain in more quantitative terms. If a line element of length L 
at a point in a body suffers a change in length AL then the longitudinal strain at that 
point in the body in the direction of the line element is 

. AL 
E = lim - 

L - 0  L 
The change in length of the element OA is (O’A’ - OA) so that the direct strain at 

0 in the x direction is obtained from the equation 

(1.16) 
O‘A‘ - OA O’A’ - Sx - - 

OA SX 
E, = 

Now 
dV dw 

- u>’ + (V - v ) ~  + ( W + ~ S X  - w 

or 
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which may be written when second-order terms are neglected 

O’A’ = Sx( 1 + 2 g ) ’  

Applying the binomial expansion to this expression we have 

O’A’ = Sx (1 +E) (1.17) 

in which squares and higher powers of &/ax are ignored. Substituting for O‘A’ in 
Eq. (1.16) we have 

It follows that 

E, = - 

& =- 
aY i1 (1.18) 

The shear strain at a point in a body is defined as the change in the angle between 
two mutually perpendicular lines at the point. Therefore, if the shear strain in the x-7 
plane is T,~ then the angle between the displaced line elements O’A’ and O’C‘ in 
Fig. 1.12 is 7r/2 - yxz radians. 

T,=. From the trigonometrical relationships for a triangle 
Now cos A’O’C’ = cos(7r/2 - yxz) = sin yxz and as yxz is small then cos A 1 “  0 C = 

(O’A’)2 + (O‘C’)2 - (A’C’)2 
2 (0’ A’ ) (O’C’) 

COS A’O’C’ = (1.19) 

We have previously shown, in Eq. (1.17), that 

O’A‘= Sx(l+$) 

Similarly 

o’c‘ = Sz( 1 +E) 
But for small displacements the derivatives of u, w and w are small compared with 1, 
so that, as we are concerned here with actual length rather than change in length, we 
may use the approximations 

O’A’ M Sx, O’C’ M Sz 

Again to a first approximation 

( A C )  “ 2  = ( Sz--Sx ) 2  + ( Sx--Sz )?  

Substituting for O’A’, O’C‘ and A’C‘ in Eq. (1.19) we have 

(ax2) + (q2 - [Sz - (aw/ax)SxI2 - [Sx - (au/az)Sz]2 
COS A‘O‘C’ = 

2SxSz 
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Expanding and neglecting fourth-order powers gives 

2( aw/ax)SxSz + 2( du/dz)SxSz 
COS A'O'C' = 

2sxsz 
or 

Similarly 

dw au 
"ixz = - + - ax az  

a v  au 
Y x y  = - + - ax ay 

aw a v  
7,; = - + - 

ay dz J 
(1.20) 

It must be emphasized that Eqs (1.18) and (1.20) are derived on the assumption that 
the displacements involved are small. Normally these linearized equations are 
adequate for most types of structural problem but in cases where deflections are 
large, for example types of suspension cable etc., the full, non-linear, large deflection 
equations, given in many books on elasticity, must be employed. 

...~ , , .  . .-.*,  .,. , . . ,  p- -=J--y'*y- 
1 .10 Compatibility equations 

In Section 1.9 we expressed the six components of strain at a point in a deformable 
body in terms of the three components of displacement at that point, u, v and w. 
We have supposed that the body remains continuous during the deformation so 
that no voids are formed. It follows that each component, u, v and w, must be a 
continuous, single-valued function or, in quantitative terms 

If voids were formed then displacements in regions of the body separated by the 
voids would be expressed as different functions of x, y and z.  The existence, therefore, 
of just three single-valued functions for displacement is an expression of the continu- 
ity or compatibility of displacement which we have presupposed. 

Since the six strains are defined in terms of three displacement functions then they 
must bear some relationship to each other and cannot have arbitrary values. These 
relationships are found as follows. Differentiating r,, from Eqs (1.20) with respect 
to x and y gives 

a2y,yy a2 dv a2 au +-- - 
~ -- - 
axay axay ax axay ay 

or since the functions of u and v are continuous 

which may be written, using Eq. (1.18) 

a2y,, a*&,. d2E, 
axay ax* ay2 

- +- (1.21) 
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In a similar manner 
2 d r,, - d2E, a 2 E -  - -  - +L 
ayaz az2 ay2 

(1.22) 

(1.23) 

If we now differentiate rx, with respect to x and z and add the result to T:.,, differ- 
entiated with respect t o y  and x, we obtain 

or 

Substituting from Eqs (1.18) and (1.21) and rearranging 

Similarly 

and 

(1.24) 

(1.25) 

(1.26) 

Equations ( I  .21)-( 1.26) are the six equations of strain compatibility which must be 
satisfied in the solution of three-dimensional problems in elasticity. 

Although we have derived the compatibility equations and the expressions for strain 
for the general three-dimensional state of strain we shall be mainly concerned with 
the two-dimensional case described in Section 1.4. The corresponding state of strain, 
in which it is assumed that particles of the body suffer displacements in one plane 
only, is known as plane strain. We shall suppose that this plane is, as for plane stress, 
the xy plane. Then E _ ,  "/.uz and -yr_ become zero and Eqs ( I .  18) and (1.20) reduce to 

d U  dV 
E! = - 

d X  aY E, = -, (1.27) 

and 

dv du 
T.yy = - + - ax ay 

( 1.28) 
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Further, by substituting E, = yxz = yyz = 0 in the six equations of compatibility 
and noting that E,, E, and y,, are now purely functions of x and y ,  we are left with 
Eq. (1.21), namely 

d2&, @E, 8 TXY - 
axay ax2 +ay2 

2 

as the only equation of compatibility in the two-dimensional or plane strain case. 

Having defined the strain at a point in a deformable body with reference to an arbi- 
trary system of coordinate axes we may calculate direct strains in any given direction 
and the change in the angle (shear strain) between any two originally perpendicular 
directions at that point. We shall consider the two-dimensional case of plane strain 
described in Section 1.1 1. 

An element in a two-dimensional body subjected to the complex stress system of 
Fig. 1.13(a) will distort into the shape shown in Fig. l.l3(b). In particular, the 
triangular element ECD will suffer distortion to the shape E’C‘D’ with corresponding 
changes in the length FC and angle EFC. Suppose that the known direct and shear 
strains associated with the given stress system are E,, E, and yxy (the actual relation- 
ships will be investigated later) and that we require to find the direct strain E, in a 
direction normal to the plane ED and the shear strain y produced by the shear 
stress acting on the plane ED. 

To a first order of approximation 

(1.29) 
C’D’ = CD( 1 + E,) 

C’E’ = CE( 1 + E ~ )  

E’D‘ = ED(1 + ~,+,p) 

where E ~ + ~ / ~  is the direct strain in the direction ED. From the geometry of the 
triangle E’C’D’ in which angle E’C’D’ = 7r/2 - y,, 

(E’D’)2 = (C’D’)2 + (C E ) - 2(C’D’)(C’E’) C O S ( T / ~  - yXy) I ‘ 2  

Y Y 

Fig. 1.13 (a) Stress system on rectangular element; (b) distorted shape of element due to stress system in (a). 
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or substituting from Eqs (1.29) 

(ED)2(1 + E , + + ) ~  = (CD)2( 1 + E , ) ~  + (CE)2( 1 + E ~ ) ~  

-2(CD)(CE)(l + ~ , ) ( 1  +~,,)siny,, 

Noting that (ED)2 = (CD)2 + (CE)2 and neglecting squares and higher powers of 
small quantities this equation may be rewritten 

~(ED)’E,+,/~ = 2(CD)2~, + 2(CE)2~y - 2(CE)(CD)yxy 

Dividing through by 2(ED)’ gives 

E, + r/2 = E, sin2 e + E,, cos2 e - COS e sin ey,, (1.30) 

The strain E, in the direction normal to the plane ED is found by replacing the angle 0 
in Eq. (1.30) by 8 - 7r/2. Hence 

E, = E~ COS’ e + sin2 e + -sin20 TXY 

Turning our attention now to the triangle C‘F’E’ we have 

(1.31) 
2 

(C‘E’)? = (C’F’)’ + - 2(C’F’)(F’E’) cos(7r/2 - 7 )  (1.32) 

in which 

C’E’ = CE( 1 + E,,) 

C’F‘ = CF( 1 + E,) 

F’E’ = FE(l + E,+,/z) 

Substituting for C’E’, C’F’ and F’E’ in Eq. (1.32) and writing cos(.rr/2 - y) = siny 
we find 

(CE)2(1 +E,,)’ = (CF)2(1 + En)2 + (FE)’(1 + En+,/2)2 

-2(CF)(FE)(1 +&,)(I +~n+lr/dsiny (1.33) 

All the strains are assumed to be small so that their squares and higher powers may be 
ignored. Further, siny M y and Eq. (1.33) becomes 

(CE)2(1 + 2 ~ y )  = (CF)’(1 + 2 ~ n )  + (FE)2(1 + 2~,+,/2) - 2(CF)(FE)y 

From Fig. l.l3(a), (CE)2 = (CF)2 + (FE)2 and the above equation simplifies to 

2(CE)2~,, = ~(CF)’E, + ~(FE)’E,+,/~ - 2(CF)(FE)y 

Dividing through by 2(CE)2 and transposing 
2 

E, sin’ e + E , + ~ / ~  COS e - E~ 

sin 9 cos 8 7 =  

Substitution of E, and E ~ + ~ ~ ~  from Eqs (1.31) and (1.30) yields 

- _  7 - ( E ~ - E ~ ) s i n 2 e - ~ , - o s 2 e  
2 2 2 

(1.34) 
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If we compare Eqs (1.3 1) and (1.34) with Eqs (1 .8) and (1.9) we observe that they may 
be obtained from Eqs (1.8) and (1.9) by replacing a, by E,, u, by E ~ ,  uy by E ~ ,  7.1. by 
yxy/2 and T by y/2. Therefore, for each deduction made from Eqs (1.8) and (1.9) 
concerning u, and 7 there is a corresponding deduction from Eqs (1.3 1) and (1.34) 
regarding E, and y/2. 

Thus, at a point in a deformable body, there are two mutually perpendicular planes 
on which the shear strain y is zero and normal to which the direct strain is a maximum 
or minimum. These strains are the principal strains at that point and are given (from 
comparison with Eqs (1.1 1) and (1.12)) by 

++ JGzFz E, + Ey 
E [  =- 

2 
(1.35) 

and 

EII = ~ - - (1.36) 
2 

If the shear strain is zero on these planes it follows that the shear stress must also 
be zero and we deduce, from Section 1.7, that the directions of the principal strains 
and principal stresses coincide. The related planes are then determined from 
Eq. (1.10) or from 

TXY tan 20 = ~ 

E, - El. 
(1.37) 

In addition the maximum shear strain at the point is 

( z )  =;JGZj%i (1.38) 
max 

or 

E1 - Err ( = 2 
{cf. Eqs (1.14) and (1.15)}. 

1__IN_-- 

1.14 Mi 

(1.39) 

We now apply the arguments of Section 1.13 to the Mohr circle of stress described in 
Section 1.8. A circle of strain, analogous to that shown in Fig. 1.9(b), may be drawn 
when ux, uy etc. are replaced by E,, E~ etc. as specified in Section 1.13. The horizontal 
extremities of the circle represent the principal strains, the radius of the circle, half the 
maximum shear strain and so on. 
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In the preceding sections we have developed, for a three-dimensional deformable 
body, three equations of equilibrium [Eqs (1.5)] and six strain-displacement relation- 
ships [Eqs (1.18) and (1.20)]. From the latter we eliminated displacements thereby 
deriving six auxiliary equations relating strains. These compatibility equations are 
an expression of the continuity of displacement which we have assumed as a pre- 
requisite of the analysis. At this stage, therefore, we have obtained nine independent 
equations towards the solution of the three-dimensional stress problem. However, the 
number of unknowns totals 15, comprising six stresses, six strains and three 
displacements. An additional six equations are therefore necessary to obtain a 
solution. 

So far we have made no assumptions regarding the force-displacement or stress- 
strain relationship in the body. This will, in fact, provide us with the required six 
equations but before these are derived it is worthwhile considering some general 
aspects of the analysis. 

The derivation of the equilibrium, strain-displacement and compatibility equa- 
tions does not involve any assumption as to the stress-strain behaviour of the 
material of the body. It follows that these basic equations are applicable to any 
type of continuous, deformable body no matter how complex its behaviour under 
stress. In fact we shall consider only the simple case of linearly elastic isotropic 
materials for which stress is directly proportional to strain and whose elastic proper- 
ties are the same in all directions. A material possessing the same properties at all 
points is said to be homogeneous. 

Particular cases arise where some of the stress components are known to be zero 
and the number of unknowns may then be no greater than the remaining equilibrium 
equations which have not identically vanished. The unknown stresses are then found 
from the conditions of equilibrium alone and the problem is said to be statically deter- 
minate. For example, the uniform stress in the member supporting a tensile load P in 
Fig. 1.3 is found by applying one equation of equilibrium and a boundary condition. 
This system is therefore statically determinate. 

Statically indeterminate systems require the use of some, if not all, of the other 
equations involving strain-displacement and stress-strain relationships. However, 
whether the system be statically determinate or not, stress-strain relationships are 
necessary to determine deflections. The role of the six auxiliary compatibility 
equations will be discussed when actual elasticity problems are formulated in 
Chapter 2. 

We now proceed to investigate the relationship of stress and strain in a three- 
dimensional, linearly elastic, isotropic body. 

Experiments show that the application of a uniform direct stress, say a,, does not 
produce any shear distortion of the material and that the direct strain E, is given by 
the equation 

9 u  
E, = - 

E 
(1.40) 

where E is a constant known as the modulus of elasticity or Young’s modulus. 
Equation (1.40) is an expression of Hooke’s Law. Further, E, is accompanied by 
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lateral strains 

(1.41) C X  Ey = -u- 
E ’  E 

in which u is a constant termed Poisson’s Ratio. 

Eqs (1.40). (1.41) and the principle of superposition (see Chapter 4, Section 4.9) 
For a body subjected to direct stresses ux, uv and uz the direct strains are, from 

1 

1 

E, = E [cr, - u(uy + uz)] 
Ey = E [ay - u(ax + a=)] (1.42) 

Suppose now that, at some arbitrary point in a material, there are principal strains 
and corresponding to principal stresses aI and uII. If these stresses (and strains) 

are in the direction of the coordinate axes x and y respectively, then T~~ = y,, = 0 and 
from Eq. [ 1.34) the shear strain on an arbitrary plane at the point inclined at an angle 
8 to the principal planes is 

y = ( E ~  - qI) sin 28 (1.43) 

Using the relationships of Eqs (1.42) and substituting in Eq. (1.43) we have 

1 
E 

y = - [(aI - uaII) - (oII - uaI)] sin 28 

or 

( 1.44) 

Using Eq. (1.9) and noting that for this particular case rxy = 0, a.x = oI and cy = aI, 

27 = (aI - aII) sin 28 

from which we may rewrite Eq. (1.44) in terms of 7 as 

(1.45) 

The term E/2( 1 + u) is a constant known as the rnodirlus of rigidily G. Hence 

y = r / G  

and the shear strains yyv, -yxz and -/,. are expressed in terms of their associated shear 
stresses as follows 

(1.46) 

Equations (1.46), together with Eqs (1.42), provide the additional six equations 
required to determine the 15 unknowns in a general three-dimensional problem 
in elasticity. They are, however, limited in use to a linearly elastic isotropic body. 
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For the case of plane stress they simplify to 

(1.47) 

It may be seen from the third of Eqs (1.47) that the conditions of plane stress and 
plane strain do not necessarily describe identical situations. 

Changes in the linear dimensions of a strained body may lead to a change in 
volume. Suppose that a small element of a body has dimensions Sx, Sy and Sz. 
When subjected to a three-dimensional stress system the element will sustain a 
volumetric strain e (change in volume/unit volume) equal to 

(1 + &,)ax( 1 + &,,)by( 1 + EZ)SZ - SxSySz  
S x S y S z  

e =  

Neglecting products of small quantities in the expansion of the right-hand side of the 
above equation yields 

e = E, + E,, + E, (1.48) 

Substituting for E,, E~ and E~ from Eqs (1.42) we find, for a linearly elastic, isotropic 
body 

1 
E e = - [a, + a,, + az - 2v(ax + ay + 41 

or 

In the case of a uniform hydrostatic pressure, a, = a,, = az = -p and 
3(1 - 2 ~ )  

E P e = -  (1.49) 

The constant E / 3 (  1 - 2v) is known as the bulk modulus or modulus of volume 
expansion and is often given the symbol K .  

An examination of Eq. (1.49) shows that v < 0.5 since a body cannot increase in 
volume under pressure. Also the lateral dimensions of a body subjected to uniaxial 
tension cannot increase so that v > 0. Therefore, for an isotropic material 
0 < v < 0.5 and for most isotropic materials v is in the range 0.25 to 0.33 below 
the elastic limit. Above the limit of proportionality v increases and approaches 0.5. 

Example 1.2 
A rectangular element in a linearly elastic isotropic material is subjected to tensile 
stresses of 83 N/mm2 and 65 N/mm2 on mutually perpendicular planes. Determine 
the strain in the direction of each stress and in the direction perpendicular to both 
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stresses. Find also the principal strains, the maximum shear stress, the maximum 
shear strain and their directions at the point. Take E = 200000N/mm2 and v = 0.3. 

If we assume that a, = 83 N/mm2 and ay = 65 N/mm2 then from Eqs (1.47) 

(83 - 0.3 x 65) = 3.175 x lop4 
1 

E, = ~ 

200 000 

E -- (65 - 0.3 x 83) = 2.005 x 
- 200000 

-0.3 
200 000 

e, = ~ (83 + 65) = -2.220 x lop4 

In this case, since there are no shear stresses on the given planes, a, and av are 
principal stresses so that E, and are the principal strains and are in the directions 
of a, and cy. It follows from Eq. (1.15) that the maximum shear stress (in the plane of 
the stresses) is 

83 - 65 
2 

rmax = = ~N/IYUII' 

acting on planes at 45" to the principal planes. 
Further, using Eq. (1.45), the maximum shear strain is 

2 x (1 +0.3) x 9 
200 000 'Ymax = 

so that -ymax = 1.17 x on the planes of maximum shear stress. 

Example 1.3 
At a particular point in a structural member a two-dimensional stress system exists 
where a, = 60 N/mm , ay = -40 N/mm' and rxy = 50 N/mm2. If Young's modulus 
E = 200000N/mm2 and Poisson's ratio v = 0.3 calculate the direct strain in the x 
and y directions and the shear strain at the point. Also calculate the principal strains 
at the point and their inclination to the plane on which a, acts; verify these answers 
using a graphical method. 

2 

From Eqs (1.47) 

E, = - (60 + 0.3 x 40) = 360 x lop6 
200 000 

(-40 - 0.3 x 60) = -290 x lop6 
1 

EY = - 
200 000 

From Eq. (1.45) the shear modulus, G, is given by 

- 2oo Oo0 = 76 923 N/mm2 G = -  E 
2(1+v)-2(1+0.3) 

Hence, from Eqs (1.47) 
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(-290 x 1 04, 

Y 

Q, (360 x 1 04, i x  650 x 1 04) 

Fig. 1.14 Mohr's circle of strain for Example 1.3. 

Now substituting in Eq. (1.35) for E,, E ,  and -yrY 

1 &I = 10- + \/(360 + 290)2 + 6502 

which gives 

&I = 495 x 

Similarly, from Eq. (1.36) 

EII = -425 x IOp6 

From Eq. (1.37) 

650 x 
360 x lop6 + 290 x lop6 = 

tan20 = 

Therefore 

20 = 45" or 225" 

so that 
0 = 22.5" or 112.5" 

The values of E ~ ,  and 0 are verified using Mohr's circle of strain (Fig. 1.14). Axes 
OE and Oy are set up and the points Q1 (360 x lop6,: x 650 x and Q2 
(-290 x lop6, - 4 x 650 x IOp6) located. The centre C of the circle is the intersection 
of Q1Q2 and the OE axis. The circle is then drawn with radius CQ1 and the points 
B(q)  and A(eII) located. Finally angle QICB = 20 and angle QICA = 20 + 7r. 

Stresses at a point on the surface of a piece of material may be determined by measur- 
ing the strains at the point, usually by electrical resistance strain gauges arranged in 
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Fig. 1.1 5 Strain gauge rosette. 

the form of a rosette, as shown in Fig. 1.15. Suppose that are the principal 
strains at the point, then if E,, &b and E, are the measured strains in the directions 8, 
(8 + a) ,  (8 + a + p) to we have, from the general direct strain relationship of 
Eq. (1.3 1) 

(1 S O )  

E~ becomes qI and -yxy is zero since the x and y directions have 

and 

E, = E ~ C O S  2 8 + cII sin 2 8 

since E, becomes 
become principal directions. Rewriting Eq. (1.50) we have 

1 + COSM 1 - cos 28 
% = E I (  2 ) + E I I (  2 ) 

or 
E, = $ + + 4 - cII) COS 28 (1.51) 

Similarly 

&b = $ (€1 + EII) + $ (E1 - EII) cos 2(8 + a) (1.52) 

and 

E, = ; (EI + EI1) + 4 (EI - EII) cos 2(e + a + p) (1.53) 

Therefore if E,, &b and E, are measured in given directions, i.e. given angles a and p, 
then and 8 are the only unknowns in Eqs (lSl) ,  (1.52) and (1.53). 

in Eqs (1.47). 
Thus 

The principal stresses are now obtained by substitution of and 

(1.54) 1 
E 

&I = - (Cq - vq1) 

and 

Solving Eqs (1.54) and (1.55) gives 
E 

0 1  = - - 9 (&I + %I) 

(1.55) 

(1.56) 
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Fig. 1.16 Experimental values of principal strain using Mohr's circle. 

and 

(1.57) 

A typical rosette would have Q = ,O = 45" in which case the principal strains are 
most conveniently found using the geometry of Mohr's circle of strain. Suppose 
that the arm a of the rosette is inclined at some unknown angle 8 to the maximum 
principal strain as in Fig. 1.15. Then Mohr's circle of strain is as shown in Fig. 
1.16; the shear strains +yay +yb and 7, do not feature in the analysis and are therefore 
ignored. From Fig. 1.16 

oc= + ( & , + E c )  

CN = E ,  - 0 C  = ; ( E ,  - E , )  

QN= CM = ~ b  - O C = E ~  - $ ( E ,  +E,) 

The radius of the circle is CQ and 

CQ = dCN2 + QN2 

Hence 

which simplifies to 
1 

C Q = ~  J( E, - qJ2 + (E, - Eb)2 

Therefore which is given by 
= OC + radius of circle 

is 

(1.58) 
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Also 

i.e. 

cII = OC - radius of circle 

Finally the angle 8 is given by 

i.e. 
2Eb  - E, - E, tan28 = 

Ea - E ,  

A similar approach may be adopted for a 60” rosette. 

(1.59) 

( 1.60) 

Example 1.4 
A bar of solid circular cross-section has a diameter of 50 mm and carries a torque, T ,  
together with an axial tensile load, P. A rectangular strain gauge rosette attached to 
the surface of the bar gave the following strain readings: E, = 1000 x 1K6, 
Eb = -200 x where the gauges ‘a’ and ‘cy are in line 
with, and perpendicular to, the axis of the bar respectively. If Young’s modulus, E, 
for the bar is 70 000 N/mm2 and Poisson’s ratio, v, is 0.3, calculate the values of T 
and P. 

and E, = -300 x 

Substituting the values of E,, &b and c, in Eq. (1.58) 

€1 = -(lo00 - 300) +- J( 1000 + 200)2 + (-200 + 300)’ 
2 Jz 

which gives 

E1 = 1202 x 

Similarly, from Eq. (1.59) 

EII = -502 x 

Now substituting for and sI1 in Eq. (1.56) 

70 000 x 
CTI = (-502 + 0.3 x 1202) = -80.9N/mm2 

1 - (0.3)2 

Similarly, from Eq. (1.57) 

cII = - 10.9 N / m 2  

Since Q, = 0, Eqs (1.1 1) and (1.12) reduce to 
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and 

(ii) 

respectively. Adding Eqs (i) and (ii) we obtain 

01 + a11 = a, 

Thus 

ax = 80.9 - 10.9 = 70N/mm2 

For an axial load P 

2 p  P 
ax = 70N/mm = - = 

A n x 502/4 

whence 

P = 137.4kN 

Substituting for a, in either of Eqs (i) or (ii) gives 

7.1. = 29.7N/mm2 

From the theory of the torsion of circular section bars 

Tr T x 25 
J I T X  504/32 

T , ~  = 29.7N/mm = - = 

from which 

T =0.7kNm 

Note that P could have been found directly in this particular case from the axial 
strain. Thus, from the first of Eqs (1.47) 

a, = EE, = 70000 x 1000 x lop6 = 70N/mm2 

as before. 

1 Timoshenko, S. and Goodier, J. N., Theory of Elasticity, 2nd edition, McGraw-Hill Book 
Company, New York, 1951. 

2 Wang, C. T., Applied Elasticity, McGraw-Hill Book Company, New York, 1953. 

P.l.l A structural member supports loads which produce, at a particular point, a 
direct tensile stress of 80 N/mm2 and a shear stress of 45 N/mm2 on the same plane. 
Calculate the values and directions of the principal stresses at the point and also the 
maximum shear stress, stating on which planes this will act. 
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A m .  or = 100.2N/mm2, 0 = 24" 11' 

a11 = -20.2 N/IIUII~, 6' = 114" 11' 

T,,, = 60.2N/mm2, at 45" to principal planes 

P.1.2 At a point in an elastic material there are two mutually perpendicular 
planes, one of which carries a direct tensile stress at 50N/mm2 and a shear stress 
of 40N/mm2, while the other plane is subjected to a direct compressive stress of 
35 N/mm2 and a complementary shear stress of 40 N/mm2. Determine the principal 
stresses at the point, the position of the planes on which they act and the position 
of the planes on which there is no normal stress. 

ar = ~ ~ . ~ N / I I u I I ~ ,  e = 210 38' 

aII = -50.9N/mm2; 0 = 111" 38' 

No normal stress on planes at 70" 21' and -27" 5' to vertical. 

P.1.3 Listed below are varying combinations of stresses acting at a point and 
referred to axes x and y in an elastic material. Using Mohr's circle of stress determine 
the principal stresses at the point and their directions for each combination. 

a, N / m 2  ay N / m 2  7.u N / m 2  
(i) +54 +30 +5 
(ii) +30 +54 -5 

(iii) -60 -36 +5 
(iv) +30 -50 +30 

A m .  (i) aI = +55N/mm2, arI = +29N/mm2, a1 at 11.5" to x axis. 
(ii) or = +55 N/mm2, aII = +29 N/mm2, aII at 11 .5" to x axis. 
(iii) or = -34.5N/mm2; arI = -61 N/mm2, aI at 79.5" to x axis. 
(iv) aI = +40N/mm2, aII = -60N/mm2, aI at 18.5" to x axis. 

P.1.4 The state of stress at a point is caused by three separate actions, each of 
which produces a pure, unidirectional tension of 10N/mm2 individually but in 
three different directions as shown in Fig. P.1.4. By transforming the individual 

IO N/rnrn2 

IO N/mrn2 IO N/rnm2 

IO N /mm2 IO N/rnrnz 

IO N/mrn2 
Fig. P.1.4 
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stresses to a common set of axes (x, y )  determine the principal stresses at the point and 
their directions. 

Ans. aI = aII = 15N/mm2. All directions are principal directions 

P.1.5 A shear stress T , ~  acts in a two-dimensional field in which the maximum 
allowable shear stress is denoted by T~~ and the major principal stress by aI. 

Derive, using the geometry of Mohr's circle of stress, expressions for the maximum 
values of direct stress which may be applied to the x and y planes in terms of the three 
parameters given above. 

c y  = 01 - rmax - d d a x  - <y 

P.1.6 A solid shaft of circular cross-section supports a torque of 50 kNm and a 
bending moment of 25 kNm. If the diameter of the shaft is 150 mm calculate the 
values of the principal stresses and their directions at a point on the surface of the 
shaft. 

A ~ S .  aI = 1 2 1 . 4 ~ / m m ~ ,  e = 31043' 

aII = - 4 6 . 4 ~ / m ~ ,  e = 121043' 

P.1.7 An element of an elastic body is subjected to a three-dimensional stress 
system a,, ay and a,. Show that if the direct strains in the directions x,  y and z are 
E,, and .zZ then 

ay = Xe + ~GE,, a, = Xe + ~GE,, a, = Xe + ~ G E ,  

where 
uE 

A =  
(1 + Y ) ( l  - 2 4  

and e = E, + + E, 

the volumetric strain. 

P.1.8 Show that the compatibility equation for the case of plane strain, viz. 

may be expressed in terms of direct stresses a, and cry in the form 

P.1.9 In Fig. P.1.9 the direct strains in the directions a, by c are -0.002, -0.002 

Ans. = +0.00283, = -0.00283, 8 = -22.5" or +67.5" 

P.1.10 The simply supported rectangular beam shown in Fig. P. 1.10 is subjected 
to two symmetrically placed transverse loads each of magnitude Q. A rectangular 
strain gauge rosette located at a point P on the centroidal axis on one vertical face 

and +0.002 respectively. If I and I1 denote principal directions find E ~ . ,  qI and 0. 
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It 

Fig. P.1.9 

Equal distances QAQ Equal distances 
/ /  QwQ "i- 

/ I /  
I 

Fig. P.1.10 

of the beam gave strain readings as follows: E, = -222 x &b = -213 x lop6, 
E, = +45 x The longitudinal stress at the point P due to an external compres- 
sive force is 7 N/mm'. Calculate the shear stress T at the point P in the vertical plane 
and hence the transverse load Q. 

(Q = 2bdr/3 where b = breadth, d = depth of beam) 

E = 31 000N/mm2, v = 0.2 

Ans. T = 3.17N/mm2, Q = 95.1 kN 



Two-d i mens i ona I pro b I ems 
in elasticity 

Theoretically we are now in a position to solve any three-dimensional problem 
in elasticity having derived three equilibrium conditions, Eqs (1.5), six strain- 
displacement equations, Eqs (1.18) and (1.20), and six stress-strain relationships, 
Eqs (1.42) and (1.46). These equations are sufficient, when supplemented by 
appropriate boundary conditions, to obtain unique solutions for the six stress, 
six strain and three displacement functions. It is found, however, that exact 
solutions are obtainable only for some simple problems. For bodies of arbitrary 
shape and loading, approximate solutions may be found by numerical methods 
(e.g. finite differences) or by the Rayleigh-Ritz method based on energy principles 
(Chapter 5) .  

Two approaches are possible in the solution of elasticity problems. We may 
solve initially either for the three unknown displacements or for the six unknown 
stresses. In the former method the equilibrium equations are written in terms 
of strain by expressing the six stresses as functions of strain (see Problem 
P. 1.7). The strain-displacement relationships are then used to form three equa- 
tions involving the three displacements u, v and w. The boundary conditions 
for this method of solution must be specified as displacements. Determination 
of u, v and w enables the six strains to be computed from Eqs (1.18) and 
(1.20); the six unknown stresses follow from the equations expressing stress as 
functions of strain. It should be noted here that no use has been made of the 
compatibility equations. The fact that u, and UT are determined directly ensures 
that they are single-valued functions, thereby satisfying the requirement of 
compatibility. 

In most structural problems the object is usually to find the distribution of 
stress in an elastic body produced by an external loading system. It is therefore 
more convenient in this case to determine the six stresses before calculating any 
required strains or displacements. This is accomplished by using Eqs (1.42) and 
(1.46) to rewrite the six equations of compatibility in terms of stress. The resulting 
equations, in turn, are simplified by making use of the stress relationships 
developed in the equations of equilibrium. The solution of these equations auto- 
matically satisfies the conditions of compatibility and equilibrium throughout the 
body. 
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-_ ---.- I ,  -- 
2.1 Two-dimensional problems 

For the reasons discussed in Chapter 1 we shall confine our actual analysis to the two- 
dimensional cases of plane stress and plane strain. The appropriate equilibrium 
conditions for plane stress are given by Eqs (1.6), viz. 

8a.x 8Txy - + - + x = o  ax ay 
aay dry, 
-+-+Y=O 
aY aY 

and the required stress-strain relationships obtained from Eqs (1.47), namely 
1 

1 
E 

E, = E(c, - YO,) 

Ey = -(cy - uc,) 

2( 1 + u) 
r x y  = E T x y  

We find that although E, exists, Eqs (1.22)-(1.26) are identically satisfied leaving 
Eq. (1.21) as the required compatibility condition. Substitution in Eq. (1.21) of the 
above strains gives 

&,, a2 a2 2(1 + v)- = -(ay - vu,) +-(a, - vuy) 
axay ax2 aY2 

From Eqs (1.6) 

and 

Adding Eqs (2.2) and (2.3), then substituting in Eq. (2.1) for 2a2rXy/axay, we have 

or 

The alternative two-dimensional problem of plane strain may also be formulated in 
the same manner. We have seen in Section 1.1 1 that the six equations of compatibility 
reduce to the single equation (1.21) for the plane strain condition. Further, from the 
third of Eqs (1.42) 

a, = u(c, + cy) (since E, = 0 for plane strain) 
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so that 

and 

Also 

Substituting as before in Eq. (1.21) and simplifying by use of the equations of 
equilibrium we have the compatibility equation for plane strain 

(g+&)(n.x+oy) = -- 1 I - u ( a x  a,> -+- ax d Y  

The two equations of equilibrium together with the boundary conditions, from Eqs 
(1.7), and one of the compatibility equations (2.4) or (2.5) are generally sufficient for 
the determination of the stress distribution in a two-dimensional problem. 

The solution of problems in elasticity presents difficulties but the procedure may be 
simplified by the introduction of a stress function. For a particular two-dimensional 
case the stresses are related to a single function of x and y such that substitution 
for the stresses in terms of this function automatically satisfies the equations of 
equilibrium no matter what form the function may take. However, a large proportion 
of the infinite number of functions which fulfil this condition are eliminated by the 
requirement that the form of the stress function must also satisfy the two-dimensional 
equations of compatibility, (2.4) and (2.5), plus the appropriate boundary conditions. 

For simplicity let us consider the two-dimensional case for which the body forces 
are zero. The problem is now to determine a stress-stress function relationship 
which satisfies the equilibrium conditions of 

and a form for the stress function giving stresses which satisfy the compatibility 
equation 
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The English mathematician Airy proposed a stress function 4 defined by the 
equations 

Clearly, substitution of Eqs (2.8) into Eqs (2.6) verifies that the equations of 
equilibrium are satisfied by this particular stress-stress function relationship. Further 
substitution into Eq. (2.7) restricts the possible forms of the stress function to those 
satisfying the biharmonic equation 

a44 a44 a4q5 
ax4 ax2ay2 ay4 
-+2- + - = O  

The final form of the stress function is then determined by the boundary conditions 
relating to the actual problem. Thus, a two-dimensional problem in elasticity with 
zero body forces reduces to the determination of a function 4 of x and y ,  which 
satisfies Eq. (2.9) at all points in the body and Eqs (1.7) reduced to two-dimensions 
at all points on the boundary of the body. 

The task of finding a stress function satisfying the above conditions is extremely 
difficult in the majority of elasticity problems although some important classical 
solutions have been obtained in this way. An alternative approach, known as the 
inverse method, is to specify a form of the function 4 satisfying Eq. (2.9), assume 
an arbitrary boundary and then determine the loading conditions which fit the 
assumed stress function and chosen boundary. Obvious solutions arise in which q5 
is expressed as a polynomial. Timoshenko and Goodier' consider a variety of 
polynomials for 4 and determine the associated loading conditions for a variety of 
rectangular sheets. Some of these cases are quoted here. 

Example 2.1 
Consider the stress function 

4 =  AX^ + B X ~  + c y 2  

where A ,  B and C are constants. Equation (2.9) is identically satisfied since each term 
becomes zero on substituting for 4. The stresses follow from 

@q5 u x =  - = 2 c  
aY2 

To produce these stresses at any point in a rectangular sheet we require loading 
conditions providing the boundary stresses shown in Fig. 2.1. 
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4 

A 
+- 

ux=22c -- 
+- 

I- 

A 
4 t f t t t ' .  

_I -7- -- I 
I -c i X 
* r x y = - B  

Example 2.2 
A more complex polynomial for the stress function is 

Ax3 Bx2y Cxy2 Dy3 
6 2 2 6 4=---+--- +-+- 

As before 

, J + S t t + l  

&4- 
a~ ax~ay2 ay4= O 

so that the compatibility equation (2.9) is identically satisfied. The stresses are given by 

We may choose any number of values of the coefficients A, B, C and D to produce a 
variety of loading conditions on a rectangular plate. For example, if we assume 
A = B = C = 0 then uX = Dy, uy = 0 and rxy = 0, so that for axes referred to an 
origin at the mid-point of a vertical side of the plate we obtain the state of pure 
bending shown in Fig. 2.2(a). Alternatively, Fig. 2.2(b) shows the loading conditions 
corresponding to A = C = D = 0 in which a, = 0, ay = By and rxy = -Bx. 

By assuming polynomials of the second or third degree for the stress function we 
ensure that the compatibility equation is identically satisfied whatever the values of 
the coefficients. For polynomials of higher degrees, compatibility is satisfied only if 
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(a)  (b) 

Fig. 2.2 (a) Required loading conditions on rectangular sheet in Example 2.2 for A = B = C = 0; (b) as in (a) 
butA = C = D =  0. 

the coefficients are related in a certain way. Thus, for a stress function in the form of a 
polynomial of the fourth degree 

Ax4 Bx3y C x 2 g  Dxy3 Ey4 
6 '12 +-+- $=-+- 

12 6 2 
and 

Substituting these values in Eq. (2.9) we have 

E = -(2C + A )  

The stress components are then 

a24 
aY2 

ox = - = Cx2 + Dxy - (2C + A)y2 

x + Bxy + Cy2 8 4  
E'- ax2 g - - = A  

DY2 
5=------  axay 2 2 

2 c x y  - - #q5 - B 2  

The coefficients A,  B, C and D are arbitrary and may be chosen to produce various 
loading conditions as in the previous examples. 

The obvious disadvantage of the inverse method is that we are determining 
problems to fit assumed solutions, whereas in structural analysis the reverse is the 
case. However, in some problems the shape of the body and the applied loading 
allow simplifying assumptions to be made, thereby enabling a solution to be obtained. 
St. Venant suggested a semi-inverse method for the solution of this type of problem in 
which assumptions are made as to stress or displacement components. These assump- 
tions may be based on experimental evidence or intuition. St. Venant first applied the 
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method to the torsion of solid sections (Chapter 3) and to the problem of a beam 
supporting shear loads (Section 2.6). 

~ -- - - ”  

nci 
In the examples of Section 2.3 we have seen that a particular stress function form may 
be applicable to a variety of problems. Different problems are deduced from a given 
stress function by specifying, in the first instance, the shape of the body and then 
assigning a variety of values to the coefficients. The resulting stress functions give 
stresses which satisfy the equations of equilibrium and compatibility at all points 
within and on the boundary of the body. It follows that the applied loads must be 
distributed around the boundary of the body in the same manner as the internal 
stresses at the boundary. Thus, in the case of pure bending (Fig. 2.2(a)) the applied 
bending moment must be produced by tensile and compressive forces on the ends 
of the plate, their magnitudes being dependent on their distance from the neutral 
axis. If this condition is invalidated by the application of loads in an arbitrary fashion 
or by preventing the free distortion of any section of the body then the solution of the 
problem is no longer exact. As this is the case in practically every structural problem it 
would appear that the usefulness of the theory is strictly limited. To surmount this 
obstacle we turn to the important principle of St. Venant which may be summarized 
as stating: 

that while statically equivalent systems of forces acting on a body produce substan- 
tially diferent local efects the stresses at sections distant from the surface of loading 
are essentially the same. 

Thus, at a section AA close to the end of a beam supporting two point loads P the 
stress distribution varies as shown in Fig. 2.3, whilst at the section BB, a distance 
usually taken to be greater than the dimension of the surface to which the load is 
applied, the stress distribution is uniform. 

We may therefore apply the theory to sections of bodies away from points of 
applied loading or constraint. The determination of stresses in these regions requires, 
for some problems, separate calculation (see Chapter 1 1 ) .  

Fig. 2.3 Stress distributions illustrating St. Venant‘s principle. 
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-?.- --.--r-- ------ -vI -nr . - - - -  - 
-E”i&3acements 
Having found the components of stress, Eqs (1.47) (for the case of plane stress) are 
used to determine the components of strain. The displacements follow from Eqs 
(1.27) and (1.28). The integration of Eqs (1.27) yields solutions of the form 

u 1 E,X + u - by 

v = ~~y + c + bx 
(2.10) 

(2.11) 

in which a, b and c are constants representing movement of the body as a whole or 
rigid body displacements. Of these a and c represent pure translatory motions of 
the body while b is a small angular rotation of the body in the x y  plane. If we 
assume that b is positive in an anticlockwise sense then in Fig. 2.4 the displacement 
v’ due to the rotation is given by 

V‘ = P’Q’ - PQ 

= OP sin(8 + b )  - OP sin 8 

which, since b is a small angle, reduces to 

V’ = hx 

Similarly 

u’ = -by as stated 

I 

P‘ /” 

0 

Fig. 2.4 Displacements produced by rigid body rotation. 

In his semi-inverse solution of this problem St. Venant based his choice of stress 
function on the reasonable assumptions that the direct stress is directly proportional 
to bending moment (and therefore distance from the free end) and height above the 
neutral axis. The portion of the stress function giving shear stress follows from the 
equilibrium condition relating a, and T,~. Thus, the appropriate stress function for 
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Fig. 2.5 Bending of an end-loaded cantilever. 

the cantilever beam shown in Fig. 2.5 is 

Bxy3 
6 f$ = A x y + -  

where A and B are unknown constants. Hence 

b (ii) I 
T x y = - - = - A - -  $4 BY2 J 

axay 2 

Substitution for f$ in the biharmonic equation shows that the form of the stress 
function satisfies compatibility for all values of the constants A and B. The actual 
values of A and B are chosen to satisfy the boundary condition, viz. T,~ = 0 along 
the upper and lower edges of the beam, and the resultant shear load over the free 
end is equal to P. 

From the first of these 

BY2 b 
at y = f- 

2 2 
T~,, = -A --= 0 

giving 

Bb2 A = - - -  
8 

From the second 
bI2 

- J T , ~  dy = P (see sign convention for 7-yy) 
-b/2 

or 

- dy = P 
-b/2 
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from which 

The stresses follow from Eqs (ii) 

l2Pxy Px a,=----- 
b3 I Y  

- 

u,, = 0 (iii) 

where I = b3/12 the second moment of area of the beam cross-section. 

subject to the following conditions. 

shear stress T~~ given by Eqs (iii). 

as those given by Eqs (iii). 

We note from the discussion of Section 2.4 that Eqs (iii) represent an exact solution 

( 1 )  That the shear force Pis distributed over the free end in the same manner as the 

(2) That the distribution of shear and direct stresses at the built-in end is the same 

(3) That all sections of the beam, including the built-in end, are free to distort. 

In practical cases none of these conditions is satisfied, but by virtue of St. Venant's 
principle we may assume that the solution is exact for regions of the beam away from 
the built-in end and the applied load. For many solid sections the inaccuracies in these 
regions are small. However, for thin-walled structures, with which we are primarily 
concerned, significant changes occur and we shall consider the effects of axial 
constraint on this type of structure in Chapter 11. 

We now proceed to determine the displacements corresponding to the stress system 
of Eqs (iii). Applying the strain-displacement and stress-strain relationships, Eqs 
(1.27), (1.28) and (1.47), we have 

du ux Pxy _ -  -- E, = - = - 
dx E EI 
dv vux vPxy 

du dv ryy P 

E =-=--=- (v) dy E EI 

= - + - = - = - - ( b ' - 4  8 IG Y2)  (vi) 
xy d y  d x  G 

Integrating Eqs (iv) and (v) and noting that E, and sY are partial derivatives of the 
displacements, we find 

Px2y uPxy2 
u = - -  +fib),  v=- 2EI + f 2 ( x )  (vii) 

where fi ( y )  andfi(x) are unknown functions of x and y .  Substituting these values of 
u and Y in Eq. (vi) 

2EI 

px2 ' f i ( Y )  vpY2 ah(x) - P (b2 - 4y2) - 
81G +-+- -- 

2EI 8y 2EI ax 
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Separating the terms containing x and y in this equation and writing 

we have 

The term on the r.h.s. of this equation is a constant which means that F1 (x)  and F2( y )  
must be constants, otherwise a variation of either x or y would destroy the equality. 
Denoting Fl ( x )  by C and F2( y )  by D gives 

Pb2 
8IG 

C + D = - -  

and 

so that 

and 

Py3 uPy3 
h ( Y )  = a - = + D Y + H  

Therefore from Eqs (vii) 

Px2y uPy3 Py3 + - + Dy + H u=- - - -  
2EI 6EI 6IG 

uPxy2 Px3 
v =  - +-+Cx+F 2EI 6EI 

(viii) 

The constants C ,  D, F and H are now determined from Eq. (viii) and the displacement 
boundary conditions imposed by the support. system. Assuming that the support 
prevents movement of the point K in the beam cross-section at the built-in end 
then u = v = 0 at x = I ,  y = 0 and from Eqs (ix) and (x) 

pi3 
H = 0 ,  F = - - - C l  

6EI 
If we now assume that the slope of the neutral plane is zero at the built-in end then 

&/ax = 0 at x = I ,  y = 0 and from Eq. (x) 

PI2 C = - -  
2EI 

It follows immediately that 
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and, from Eq. (viii) 

PI2 Pb2 
2EI 8IG 

D = - - -  

Substitution for the constants C, D, F and H in Eqs (ix) and (x) now produces the 
equations for the components of displacement at any point in the beam. Thus 

(xi) u = - - - -  

vPxy2 Px3 P12x PI3 
v =  - +--- +- 2EI 6EI 2EI 3EI 

The deflection curve for the neutral plane is 

px3  PI^^ pi3 
b ) y = O  =E-=+= 

(xii) 

(xiii) 

from which the tip deflection ( x  = 0) is P13/3EI. This value is that predicted by simple 
beam theory (Section 9.1) and does not include the contribution to deflection of the 
shear strain. This was eliminated when we assumed that the slope of the neutral plane 
at the built-in end was zero. A more detailed examination of this effect is instructive. 
The shear strain at any point in the beam is given by Eq. (vi) 

P 
yxy = - - (b2 - 4y2)  

8ZG 

and is obviously independent of x .  Therefore at all points on the neutral plane the 
shear strain is constant and equal to 

Pb2 y =-- 
xy 8IG 

which amounts to a rotation of the neutral plane as shown in Fig. 2.6. The deflection 
of the neutral plane due to this shear strain at any section of the beam is therefore 
equal to 

Pb2 
8IG 
- ( I - X )  

Fig. 2.6 Rotation of neutral plane due to shear in end-loaded cantilever. 
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P b2/8 I G 

-. r/r  ~ -;g--.-. I 

L - - - - .- - - 

(a) ( b )  

Fig. 2.7 (a) Distortion of cross-section due to shear; (b) effect on distortion of rotation due to shear. 

and Eq. (xiii) may be rewritten to include the effect of shear as 

Px3 P12x PI3 Pb2 
(z l )y=o = 6EI - E 3EI 8IG + - + - (1 - x) (xiv) 

Let us now examine the distorted shape of the beam section which the analysis 
assumes is free to take place. At the built-in end when x = 1 the displacement of 
any point is, from Eq. (xi) 

vPy3 +--- Py3 Pb2y 
6EI 61G 8IG 

u=- 

The cross-section would therefore, if allowed, take the shape of the shallow reversed S 
shown in Fig. 2.7(a). We have not included in Eq. (xv) the previously discussed effect 
of rotation of the neutral plane caused by shear. However, this merely rotates the 
beam section as indicated in Fig. 2.7(b). 

The distortion of the cross-section is produced by the variation of shear stress over 
the depth of the beam. Thus the basic assumption of simple beam theory that plane 
sections remain plane is not valid when shear loads are present, although for long, 
slender beams bending stresses are much greater than shear stresses and the effect 
may be ignored. 

It will be observed from Fig. 2.7 that an additional direct stress system will be 
imposed on the beam at the support where the section is constrained to remain 
plane. For most engineering structures this effect is small but, as mentioned 
previously, may be significant in thin-walled sections. 

1 Timoshenko, S. and Goodier, J. N., Theory of Elasticity, 2nd edition, McGraw-Hill Book 
Company, New York, 1951. 

P.2.1 A metal plate has rectangular axes Ox, Oy marked on its surface. The point 
0 and the direction of Ox are fixed in space and the plate is subjected to the following 
uniform stresses: 
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compressive, 3p, parallel to Ox, 
tensile, 2p, parallel to Oy, 
shearing, 4p, in planes parallel to Ox and Oy 
in a sense tending to decrease the angle xOy 

Determine the direction in which a certain point on the plate will be displaced; the 
coordinates of the point are (2 ,3)  before straining. Poisson~s ratio is 0.25. 

A m .  19.73" to Ox 

P.2.2 What do you understand by an Airy stress function in two dimensions? A 
beam of length 1, with a thin rectangular cross-section, is built-in at the end x = 0 and 
loaded at the tip by a vertical force P (Fig. P.2.2). Show that the stress distribution, as 
calculated by simple beam theory, can be represented by the expression 

q5 = Ay3 + By3x + C ~ X  

as an Airy stress function and determine the coefficients A ,  B, C .  

Ans. A = 2Pl/ td3,  B = -2P/td3, C = 3P/2td 

Y I  

Fig. P.2.2 

P.2.3 A thin rectangular plate of unit thickness (Fig. P.2.3) is loaded along 
the edge y = +d by a linearly varying distributed load of intensity MJ = p x  with 

Fig. P.2.3 



50 Two-dimensional problems in elasticity 

corresponding equilibrating shears along the vertical edges at x = 0 and 1. As a 
solution to the stress analysis problem an Airy stress function q5 is proposed, where 

+=-- [5(x3 - Z2x)(y + d ) 2 ( y  - 2d) - 3yx(y2 - d2)2] 
120d3 

Show that q5 satisfies the internal compatibility conditions and obtain the distribution 
of stresses within the plate. Determine also the extent to which the static boundary 
conditions are satisfied. 

PX 
ax = - [5y(x2 - z2) - ioy3 + 6dZy] 

20d3 

ay = E(  - 3yd2 - 2d3) 
4d3 
-P 

40d3 Txy = - [5(3x2 - Z2)(y2 - d2)  - 5y4 + 6y2d2 - $1 
The boundary stress function values of T~~ do not agree with the assumed constant 
equilibrating shears at x = 0 and 1. 

P.2.4 A two-dimensional isotropic sheet, having a Young’s modulus E and linear 
coefficient of expansion a, is heated non-uniformly, the temperature being T ( x ,  y ) .  
Show that the Airy stress function 4 satisfies the differential equation 

V2(V2q5 + EaT) = 0 

where 

is the Laplace operator. 



Torsion of solid sections 

The elasticity solution of the torsion problem for bars of arbitrary but uniform cross- 
section is accomplished by the semi-inverse method (Section 2.3) in which assump- 
tions are made regarding either stress or displacement components. The former 
method owes its derivation to Prandtl, the latter to St. Venant. Both methods are 
presented in this chapter, together with the useful membrane analogy introduced 
by Prandtl. 

Consider the straight bar of uniform cross-section shown in Fig. 3.1. It is subjected to 
equal but opposite torques T at each end, both of which are assumed to be free from 
restraint so that warping displacements w, that is displacements of cross-sections 
normal to and out of their original planes, are unrestrained. Further, we make the 
reasonable assumptions that since no direct loads are applied to the bar 

a, = a), = az = 0 

Fig. 3.1 Torsion of a bar of uniform, arbitrary cross-section. 
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and that the torque is resisted solely by shear stresses in the plane of the cross-section 
giving 

rXy = 0 

To verify these assumptions we must show that the remaining stresses satisfy the 
conditions of equilibrium and compatibility at all points throughout the bar and, 
in addition, fulfil the equilibrium boundary conditions at all points on the surface 
of the bar. 

If we ignore body forces the equations of equilibrium, (lS), reduce, as a result of 
our assumptions, to 

The first two equations of Eqs (3.1) show that the shear stresses T,~ and T~~ are functions 
of x and y only. They are therefore constant at all points along the length of the bar 
which have the same x and y coordinates. At this stage we turn to the stress function 
to simplify the process of solution. Prandtl introduced a stress function 4 defined by 

which identically satisfies the third of the equilibrium equations (3.1) whatever form 
4 may take. We therefore have to find the possible forms of 4 which satisfy the 
compatibility equations and the boundary conditions, the latter being, in fact, the 
requirement that distinguishes one torsion problem from another. 

From the assumed state of stress in the bar we deduce that 

= E, = yxy = 0 (see Eqs (1.42) and (1.46)) E, = 

Further, since T~~ and ry2 and hence yxz and yyz are functions of x and y only then the 
compatibility equations (1.21)-( 1.23) are identically satisfied as is Eq. (1.26). The 
remaining compatibility equations, (1.24) and (1.25), are then reduced to 

= O  - a ( -- a r Y r  I 

-(--%) a a r y z  a?, = o  
ax ax ay 

ay ax 
Substituting initially for yyz and rxz from Eqs (1.46) and then for T ~ ~ ( =  ryz) and 
r,,(= r,.) from Eqs (3.2) gbes 

or 
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Fig. 3.2 Formation of the direction cosines I and rn of the normal to the surface of the bar. 

where Vz is the two-dimensional Laplacian operator 

The parameter V2q5 is therefore constant at any section of the bar so that the function 
q5 must satisfy the equation 

$4 $4 
ax2 ay2 
- + - = constant = F (say) (3-4) 

at all points within the bar. 
Finally we must ensure that 4 f a l s  the boundary conditions specified by Eqs (1.7). 

On the cylindrical surface of the bar there are no externally applied forces so that 
X = Y = = 0. The direction cosine n is also zero and therefore the first two 
equations of Eqs (1.7) are identically satisfied, leaving the third equation as the 
boundary condition, viz. 

ryzm + I-J = 0 (3.5) 

The direction cosines I and m of the normal N to any point on the surface of the bar 
are, by reference to Fig. 3.2 

dY dx I = -  m=-- 
ds ' dr 

Substituting Eqs (3.2) and (3.6) into Eq. (3.5) we have 
84 dx d+dy -- +--=o 
dx ds dy ds 

or 

Thus 4 is constant on the surface of the bar and since the actual value of this constant 
does not affect the stresses of Eq. (3.2) we may conveniently take the constant to be 
zero. Hence on the cylindrical surface of the bar we have the boundary condition 

$ = O  (3-7) 
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On the ends of the bar the direction cosines of the normal to the surface have the 
values I = 0, m = 0 and n = 1. The related boundary conditions, from Eqs (1.7), are 
then 

x = rz.y 

Y = rzy 

Z = O  

- 

We now observe that the forces on each end of the bar are shear forces which are 
distributed over the ends of the bar in the same manner as the shear stresses are 
distributed over the cross-section. The resultant shear force in the positive direction 
of the x axis, which we shall call S,, is then 

S, = / I X d x d y  = j j r z x d x d y  

or, using the relationship of Eqs (3.2) 

S, = 1 $ dx dy = j dx I$ dy = 0 

as q5 = 0 at the boundary. In a similar manner, Sy, the resultant shear force in they 
direction, is 

It follows that there is no resultant shear force on the ends of the bar and the forces 
represent a torque of magnitude, referring to Fig. 3.3 

in which we take the sign of T as being positive in the anticlockwise sense. 

Fig. 3.3 Derivation of torque on cross-section of bar. 
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Rewriting this equation in terms of the stress function 4 

Integrating each term on the right-hand side of this equation by parts, and noting 
again that 4 = 0 at all points on the boundary, we have 

We are therefore in a position to obtain an exact solution to a torsion problem if a 
stress function 4(x, y) can be found which satisfies Eq. (3.4) at all points within the 
bar and vanishes on the surface of the bar, and providing that the external torques 
are distributed over the ends of the bar in an identical manner to the distribution 
of internal stress over the cross-section. Although the last proviso is generally 
impracticable we know from St. Venant’s principle that only stresses in the end 
regions are affected; therefore, the solution is applicable to sections at distances 
from the ends usually taken to be greater than the largest cross-sectional dimension. 
We have now satisfied all the conditions of the problem without the use of stresses 
other than rzy and T,,, demonstrating that our original assumptions were justified. 

Usually, in addition to the stress distribution in the bar, we require to know the 
angle of twist and the warping displacement of the cross-section. First, however, 
we shall investigate the mode of displacement of the cross-section. We have seen 
that as a result of our assumed values of stress 

&x = Ey = E, = TXY = 0 

au - av aw av au - --=-=-+-=o 
ax ay az ax ay 

which result leads to the conclusions that each cross-section rotates as a rigid body 
in its own plane about a centre of rotation or twist, and that although cross- 
sections suffer warping displacements normal to their planes the values of this 
displacement at points having the same coordinates along the length of the bar are 
equal. Each longitudinal fibre of the bar therefore remains unstrained, as we have 
in fact assumed. 

Let us suppose that a cross-section of the bar rotates through a small angle 6 about 
its centre of twist assumed coincident with the origin of the axes Oxy (see Fig. 3.4). 
Some point P(r, a )  will be displaced to P’(r, a + e), the components of its displace- 
ment being 

It follows, from Eqs (1.18) and the second of Eqs (1.20), that 

u = -resina, v = &osa 

or 
u =  -ey, v =  ex 

Referring to Eqs (1.20) and (1.46) 
(3.9) 
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't 

Fig. 3.4 Rigid body displacement in the cross-section of the bar. 

Rearranging and substituting for u and from Eqs (3.9) 

dw rzx dB dw r7 dB -- -A_- - - + - y ,  - ax G dz d y  G dzX 
- (3.10) 

For a particular torsion problem Eqs (3.10) enable the warping displacement w of 
the originally plane cross-section to be determined. Note that since each cross-section 
rotates as a rigid body 0 is a function of z only. 

Differentiating the first of Eqs (3.10) with respect toy, the second with respect to x 
and subtracting we have 

Expressing rzx and rzy in terms of 4 gives 

or, from Eq. (3.4) 

de 
dz -2G- = V2$ = I; (constant) (3.11) 

It is convenient to introduce a torsion constant J defined by the general torsion 
equation 

dB 
dz 

T = GJ- (3.12) 

The product GJ is known as the torsional rigidity of the bar and may be written, from 
Eqs (3.8) and (3.1 1) 

(3.13) 
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- x  

Fig. 3.5 Lines of shear stress. 

Consider now the line of constant q5 in Fig. 3.5. If s is the distance measured along 
this line from some arbitrary point then 

dq5dy dq5 dx 
dS dy ds dx ds 
_-  84 -o=--+-- 

Using Eqs (3.2) and (3.6) we may rewrite this equation as 

(3.14) 

From Fig. 3.5 the normal and tangential components of shear stress are 

r2, = rZx1 + rzyrn, rzs = rzyl - rzxm (3.15) 

Comparing the first of Eqs (3.15) with Eq. (3.14) we see that the normal shear stress is 
zero so that the resultant shear stress at any point is tangential to a line of constant 4. 
These are known as lines of shear stress or shear lines. 

Substituting q5 in the second of Eqs (3.15) we have 

dq5 84 
-s ax ay 

r- =--/--m 

which may be written, from Fig. 3.5, as 

dq5d.x dq5dy 84 
-' ax dn dy dn dn 

r - =  =-- (3.16) 

where, in this case, the direction cosines I and rn are defined in terms of an elemental 
normal of length Sn. 

Thus we have shown that the resultant shear stress at any point is tangential to the 
line of shear stress through the point and has a value equal to minus the derivative of 
4 in a direction normal to the line. 

Example 3.1 
To illustrate the stress function method of solution we shall now consider the 
torsion of a cylindrical bar having the elliptical cross-section shown in Fig. 3.6. 
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Fig. 3.6 Torsion of a bar of elliptical cross-section. 

The semi-major and semi-minor axes are u and b respectively, so that the equation of 
its boundary is 

x2 y' - + - = I  
u2 b2 

If we choose a stress function of the form 

4=c (:: - + - - 1  ;: ) 
then the boundary condition 4 = 0 is satisfied at every point on the boundary and the 
constant C may be chosen to fuKl the remaining requirement of compatibility. Thus, 
from Eqs (3.11) and (i) 

2C(-$+$) = - 2 G x  de 

or 
de h b 2  
dz (a2 + b2) 

C = -G- 

giving 

(ii) 

(iii) 

Substituting this expression for 9 in Eq. (3.8) establishes the relationship between 
the torque T and the rate of twist 

T = -2G- de dz (a2 *b2 + b 2 )  ( ' J J l d . d y + ~ l l y 2 ~ d y - J l d x d y )  a2 

The first and second integrals in this equation are the second moments of area 
Iyy = 7ru3b/4 and I,, = 7rub3/4, while the third integral is the area of the cross-section 
A = nub. Replacing the integrals by these values gives 

dB m3b3 
dz (a2 + b2) 

T = G -  
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from which (see Eq. (3.12)) 

7ra3b3 
J =  (VI  (a2 + b2) 

The shear stress distribution is obtained in terms of the torque by substituting for 
the product G dO/dz in Eq. (iii) from Eq. (iv) and then differentiating as indicated by 
the relationships of Eqs (3.2). Thus 

2 Tx 
TZY = ~ 

rub3 ’ 7ra3b 
2TY rZx = -~ 

So far we have solved for the stress distribution, Eqs (vi), and the rate of twist, 
Eq. (iv). It remains to determine the warping distribution w over the cross-section. 
For this we return to Eqs (3.10) which become, on substituting from the above for 
rzx, rzy and dO/dz 

X 
2Ty T (a2+b2) dw - 2Tx T (a2 + h 2 )  - - - dw 

dx 7rab3G+G m3b3 y7  % =-E 7ra3b3 
- -- 

or 

(vii) 

Integrating both of Eqs (vii) 

T(b2 - a2) 
7ra3 b3 G 

T(b2 - a2) 
nu3 b3 G X Y  +f2 ( X I  W =  y x + f i b ) ,  w =  

The warping displacement given by each of these equations must have the same value 
at identical points (x ,y ) .  It follows thatfi(y) =f2(x) = 0. Hence 

T(b2 - a2) 
nu3 b3 G W =  X Y  (viii) 

Lines of constant w therefore describe hyperbolas with the major and minor axes of 
the elliptical cross-section as asymptotes. Further, for a positive (anticlockwise) 
torque the warping is negative in the first and third quadrants ( a  > b) and positive 
in the second and fourth. 

v-- --I 

3.2 St. Venant warping function-solution 
In formulating his stress function solution Prandtl made assumptions concerned with 
the stress distribution in the bar. The alternative approach presented by St. Venant 
involves assumptions as to the mode of displacement of the bar; namely, that 
cross-sections of a bar subjected to torsion maintain their original unloaded shape 
although they may suffer warping displacements normal to their plane. The first 
of these assumptions leads to the conclusion that cross-sections rotate as rigid 
bodies about a centre of rotation or twist. This fact was also found to derive from 
the stress function approach of Section 3.1 so that, referring to Fig. 3.4 and Eq. 
(3.9), the components of displacement in the x and y directions of a point P in the 
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cross-section are 

u =  -ey, u=ex  
It is also reasonable to assume that the warping displacement w is proportional to the 
rate of twist and is therefore constant along the length of the bar. Hence we may 
define w by the equation 

(3.17) 

where $(x,  y )  is the warping function. 
The assumed form of the displacements u, u and w must satisfy the equilibrium 

and force boundary conditions of the bar. We note here that it is unnecessary to 
investigate compatibility as we are concerned with displacement forms which are 
single valued functions and therefore automatically satisfy the compatibility 
requirement. 

The components of strain corresponding to the assumed displacements are 
obtained from Eqs (1.18) and (1.20) and are 

E ,  = Ey = E,  = yxy = 0 

A~ ax az dz ax 
+y-=-+-=- dw du de(&) -- y) 

(3.18) 

The corresponding components of stress are, from Eqs (1.42) and (1.46) 

a x = u  Y = , = r x y = 0 )  
r z x = G - ( - - y )  de a$ I 
rzy = c e  dz ( 3 + x >  ay J 

dz ax b (3.19) 

Ignoring body forces we see that these equations identically satisfy the first two of the 
equilibrium equations (1.5) and also that the third is fuMled if the warping function 
satisfies the equation 

(3.20) 

The direction cosine n is zero on the cylindrical surface of the bar and so the first 
two of the boundary conditions (Eqs (1.7)) are identically satisfied by the stresses 
of Eqs (3.19). The third equation simplifies to 

(3.21) 

It may be shown, but not as easily as in the stress function solution, that the shear 
stresses defined in terms of the warping function in Eqs (3.19) produce zero resultant 
shear force over each end of the bar'. The torque is found in a similar manner to that 
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in Section 3.1 where, by reference to Fig. 3.3, we have 

or 

T = ."I dz 1 [ ($ + X ) X  - (2 - y)y] dxdy 

By comparison with Eq. (3.12) the torsion constant J is now, in terms of + 
(3.22) 

(3.23) 

The warping function solution to the torsion problem reduces to the determination 
of the warping function +which satisfies Eqs (3.20) and (3.21). The torsion constant 
and the rate of twist follow from Eqs (3.23) and (3.22); the stresses and strains from 
Eqs (3.19) and (3.18) and, finally, the warping distribution from Eq. (3.17). 

___ ,..- "" ..... " ,-,. _. . " 

Prandtl suggested an extremely useful analogy relating the torsion of an arbitrarily 
shaped bar to the deflected shape of a membrane. The latter is a thin sheet of material 
which relies for its resistance to transverse loads on internal in-plane or membrane 
forces. 

Suppose that a membrane has the same external shape as the cross-section of a 
torsion bar (Fig. 3.7(a)). It supports a transverse uniform pressure q and is restrained 
along its edges by a uniform tensile force Nlunit length as shown in Fig. 3.7(a) and 
(b). It is assumed that the transverse displacements of the membrane are small so 
that N remains unchanged as the membrane deflects. Consider the equilibrium of an 
element SxSy of the membrane. Referring to Fig. 3.8 and summing forces in the z direc- 
tion we have 

N 

(a) (b) 
Fig. 3.7 Membrane analogy: in-plane and transverse loading. 
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Fig. 3.8 Equilibrium of element of membrane. 

or 

(3.24) 

Equation (3.24) must be satisfied at all points within the boundary of the membrane. 
Furthermore, at all points on the boundary 

w = o  (3.25) 

and we see that by comparing Eqs (3.24) and (3.25) with Eqs (3.11) and (3.7) w is 
analogous to q5 when q is constant. Thus if the membrane has the same external 
shape as the cross-section of the bar then 

W(X,Y) = +(X,Y) 

and 

The analogy now being established, we may make several useful deductions relating 
the deflected form of the membrane to the state of stress in the bar. 

Contour lines or lines of constant w correspond to lines of constant q5 or lines of 
shear stress in the bar. The resultant shear stress at any point is tangential to the 
membrane contour line and equal in value to the negative of the membrane slope, 
awlan, at that point, the direction n being normal to the contour line (see 
Eq. (3.16)). The volume between the membrane and the xy plane is 

Vol= j j w d x d y  

and we see that by comparison with Eq. (3.8) 
T = 2V0l 
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The analogy therefore provides an extremely useful method of analysing torsion bars 
possessing irregular cross-sections for which stress function forms are not known. 
Hetenyi2 describes experimental techniques for this approach. In addition to the strictly 
experimental use of the analogy it is also helpful in the visual appreciation of a parti- 
cular torsion problem. The contour lines often indicate a form for the stress function, 
enabling a. solution to be obtained by the method of Section 3.1. Stress concentrations 
are made apparent by the closeness of contour lines where the slope of the membrane is 
large. These are in evidence at sharp internal corners, cut-outs, discontinuities etc. 

on of a narrow rectangular strip 
In Chapter 9 we shall investigate the torsion of thin-walled open section beams; the 
development of the theory being based on the analysis of a narrow rectangular 
strip subjected to torque. We now conveniently apply the membrane analogy to the 
torsion of such a strip shown in Fig. 3.9. The corresponding membrane surface has 
the same cross-sectional shape at all points along its length except for small regions 
near its ends where it flattens out. If we ignore these regions and assume that the 
shape of the membrane is independent of y then Eq. (3.1 1) simplifies to 

d0 
dx2 - dz 
!!.!!! - -2G- 

Integrating twice 
d0 
dz 

4 = -G-.x~ + B X +  c 
Substituting the boundary conditions = 0 at x = f t / 2  we have 

t’ 

__ 
I I 

I_ X 

(3.26) 

Fig. 3.9 Torsion of a narrow rectangular strip. 
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Although q5 does not disappear along the short-edges of the strip and therefore does 
not give an exact solution, the actual volume of the membrane differs only slightly 
from the assumed volume so that the corresponding torque and shear stresses are 
reasonably accurate. Also, the maximum shear stress occurs along the long sides of 
the strip where the contours are closely spaced, indicating, in any case, that conditions 
in the end region of the strip are relatively unimportant. 

The stress distribution is obtained by substituting Eq. (3.26) in Eqs (3.2), thus 
de 
dz rzy = 2Gx- , rzx = 0 (3.27) 

the shear stress varying linearly across the thickness and attaining a maximum 
de 

rzr,max = f G t -  
dz (3.28) 

at the outside of the long edges as predicted. The torsion constant J follows from the 
substitution of Eq. (3.26) into Eq. (3.13), giving 

S t 3  J = -  
3 (3.29) 

and 
3T - - 
S t 3  

rzy,max - 

These equations represent exact solutions when the assumed shape of the deflected 
membrane is the actual shape. This condition arises only when the ratio s / t  
approaches infinity; however, for ratios in excess of 10 the error is of the order of 
only 6 per cent. Obviously the approximate nature of the solution increases as s / t  
decreases. Therefore, in order to retain the usefulness of the analysis, a factor p is 
included in the torsion constant, viz. 

J = -  Pt3 
3 

Values of p for Merent types of section are found experimentally and quoted in 
various  reference^^'^. We observe that as s / t  approaches infinity p approaches unity. 

The cross-section of the narrow rectangular strip of Fig. 3.9 does not remain plane 
after loading but suffers warping displacements normal to its plane; this warping may 
be determined using either of Eqs (3.10). From the first of these equations 

a w  de 
ax - yz -_  

since rzx = 0 (see Eqs (3.27)). Integrating Eq. (3.30) we obtain 
d6 
dz w = xy- + constant 

(3.30) 

(3.31) 

Since the cross-section is doubly symmetrical w = 0 at x = y = 0 so that the constant 
in Eq. (3.31) is zero. Therefore 

d6 w=xy- 
dz (3.32) 

and the warping distribution at any cross-section is as shown in Fig. 3.10. 
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Warping of 
cross-section -- 

Fig. 3.10 Warping of a thin rectangular strip. 

We should not close this chapter without mentioning alternative methods of 
solution of the torsion problem. These in fact provide approximate solutions for 
the wide range of problems for which exact solutions are not known. Examples of 
this approach are the numerical finite difference method and the Rayleigh-Ritz 
method based on energy principles5. 
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Problems 
P.3.1 Show that the stress function 4 = k(r2 - a2)  is applicable to the solution 

of a solid circular section bar of radius a. Determine the stress distribution in the 
bar in terms of the applied torque, the rate of twist and the warping of the cross- 
section. 

Is it possible to use this stress function in the solution for a circular bar of hollow 
section? 
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A m .  r = Tr/Ip where Ip = 7ra4/2, 

de/& = 2T/&a4, 

P.3.2 Deduce a suitable warping function for the circular section bar of P.3.1 and 

w = 0 everywhere 

hence derive the expressions for stress distribution and rate of twist. 
Tr de T 

IP ' rzs = -' I, dz GI, 
- TY Tx 

Ans. @ = 0, rzx = -- 

P.3.3 Show that the warping function @ = kxy, in which k is an unknown constant, 

I,' rzy = - 

may be used to solve the torsion problem for the elliptical section of Example 3.1. 

P.3.4 Show that the stress function 

1 27 ' I  2a 
(2 + y 2 )  - - (X3 - 3XY ) - -2 

is the correct solution for a bar having a cross-section in the form of the equilateral 
triangle shown in Fig. P.3.4. Determine the shear stress distribution, the rate of 
twist and the warping of the cross-section. Find the position and magnitude of the 
maximum shear stress. 

Fig. P.3.4 

Am. dz 

rZx = - G E  dZ (y  + %) 
a dB 

r,, (at centre of each side) = - - G -  
2 d z  

de - 15&T - 
d z - G a 4  

w = L de ( y 3  - 3*y) 
2a dz 
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Fig. P.3.5 

P.3.5 Determine the maximum shear stress and the rate of twist in terms of the 
applied torque T for the section comprising narrow rectangular strips shown in 
Fig. P.3.5.  

A ~ s .  T~,,, = 3T/(2a + b)t2,  dO/dz = 3T/G(2a + b)t3 



Energy methods of 
s t  r uct u ra I ana I ys i s 

In Chapter 2 we have seen that the elasticity method of structural analysis embodies 
the determination of stresses and/or displacements by employing equations of 
equilibrium and compatibility in conjunction with the relevant force-displacement 
or stress-strain relationships. A powerful alternative but equally fundamental 
approach is the use of energy methods. These, while providing exact solutions for 
many structural problems, find their greatest use in the rapid approximate solution 
of problems for which exact solutions do not exist. Also, many structures which 
are statically indeterminate, that is they cannot be analysed by the application of 
the equations of statical equilibrium alone, may be conveniently analysed using an 
energy approach. Further, energy methods provide comparatively simple solutions 
for deflection problems which are not readily solved by more elementary means. 

Generally, as we shall see, modern analysis' uses the methods of total comple- 
mentary energy and total potential energy. Either method may be employed to solve 
a particular problem, although as a general rule deflections are more easily found 
using complementary energy, and forces by potential energy. 

Closely linked with the methods of potential and complementary energy is the 
classical and extremely old principle of virtual work embracing the principle of virtual 
displacements (real forces acting through virtual displacements) and the principle of 
virtual forces (virtual forces acting through real displacements). Virtual work is in fact 
an alternative energy method to those of total potential and total complementary 
energy and is practically identical in application. 

Although energy methods are applicable to a wide range of structural problems and 
may even be used as indirect methods of forming equations of equilibrium or 
compatibility'>2, we shall be concerned in this chapter with the solution of deflection 
problems and the analysis of statically indeterminate structures. We shall also include 
some methods restricted to the solution of linear systems, viz. the unit loadmethod, the 
principle of superposition and the reciprocal theorem. 

Figure 4.l(a) shows a structural member subjected to a steadily increasing load P .  As 
the member extends, the load P does work and from the law of conservation of energy 
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Complementary energy C 

(a) (b) 

Fig. 4.1 (a) Strain energy of a member subjected to simple tension; (b) load-deflection curve for a non- 
linearly elastic member. 

this work is stored in the member as strain energy. A typical load-deflection curve for 
a member possessing non-linear elastic characteristics is shown in Fig. 4.l(b). The 
strain energy U produced by a load P and corresponding extension y is then 

U =  Pdy 1 
and is clearly represented by the area OBD under the load-deflection curve. Engesser 
(1889) called the area OBA above the curve the complementary energy C, and from 
Fig. 4.l(b) 

C =  ydP (4.2) I 
Complementary energy, as opposed to strain energy, has no physical meaning, being 
purely a convenient mathematical quantity. However, it is possible to show that 
complementary energy obeys the law of conservation of energy in the type of situation 
usually arising in engineering structures, so that its use as an energy method is valid. 

Differentiation of Eqs (4.1) and (4.2) with respect to y and P respectively gives 
dC 
dP-' 

P, -- 
dU -= 
dY 

Bearing these relationships in mind we can now consider the interchangeability of 
strain and complementary energy. Suppose that the curve of Fig. 4.l(b) is represented 
by the function 

P = by" 

where the coefficient b and exponent n are constants. Then 

U = Pdy = tJo P P  (x-'"dP 
C =  JIydP=n[by"dy 
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Fig. 4.2 Load-deflection curve for a linearly elastic member. 

Hence 

-=P, dU 
dY n 

dP=n(h )  dU 1 P 'I" = - y  1 

d C  dC 
-- dP - y, - = bny" = nP 

dY 

(4.3) 

(4.4) 

When n = 1 

and the strain and complementary energies are completely interchangeable. Such a 
condition is found in a linearly elastic member; its related load-deflection curve 
being that shown in Fig. 4.2. Clearly, area OBD(U) is equal to area OBA(C). 

It will be observed that the latter of Eqs (4.5) is in the form of what is commonly 
known as Castigliano's first theorem, in which the differential of the strain energy 
U of a structure with respect to a load is equated to the deflection of the load. To 
be mathematically correct, however, it is the differential of the complementary 
energy C which should be equated to deflection (compare Eqs (4.3) and (4.4)). 

In the spring-mass system shown in its unstrained position in Fig. 4.3(a) we normally 
define the potential energy of the mass as the product of its weight, Mg,  and its height, 
h, above some arbitrarily fixed datum. In other words it possesses energy by virtue of 
its position. After deflection to an equilibrium state (Fig. 4.3(b)), the mass has lost an 
amount of potential energy equal to Mgy. Thus we may associate deflection with a 
loss of potential energy. Alternatively, we may argue that the gravitational force 
acting on the mass does work during its displacement, resulting in a loss of energy. 
Applying this reasoning to the elastic system of Fig. 4.l(a) and assuming that the 
potential energy of the system is zero in the unloaded state, then the loss of potential 
energy of the load P as it produces a deflection y is Py. Thus, the potential energy V of 
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t Mass M 

1” t 
(a) (b) 

Fig. 4.3 (a) Potential energy of a spring-mass system; (b) loss in potential energy due to change in position. 

P in the deflected equilibrium state is given by 
v = -Py 

We now define the totalpotential energy (TPE) of a system in its deflected equilibrium 
state as the sum of its internal or strain energy and the potential energy of the applied 
external forces. Hence, for the single member-force configuration of Fig. 4.l(a) 

T P E = U + V =  P d y - P y  s: 
For a general system consisting of loads P I ,  P2 ,  . . . , Pn producing corresponding 
displacements (i.e. displacements in the directions of the loads: see Section 4.10) 
A , ,  A2 , .  . . , A, the potential energy of all the loads is 

and the total potential energy of the system is given by 

Suppose that a particle (Fig. 4.4(a)) is subjected to a system of loads PI,  P2, . . . , P,  
and that their resultant is PR. If we now impose a small and imaginary displacement, 
i.e. a virtual displacement, 6R,  on the particle in the direction of P R ,  then by the law of 
conservation of energy the imaginary or virtual work done by P R  must be equal to the 
sum of the virtual work done by the loads P I ,  P 2 , .  . . , P,. Thus 

PR6R = PI61 + P262 + ‘ ’ ’ + Pn6n (4.7) 
where SI, S2, . . . , 6, are the virtual displacements in the directions of PI, P2,. . . , P, 
produced by SR. The argument is valid for small displacements only since a significant 
change in the geometry of the system would induce changes in the loads themselves. 



72 Energy methods of structural analysis 

Actual displaced 

(a) ( b )  

Fig. 4.4 (a) Principle of virtual displacements; (b) principle of virtual forces. 

For the case where the particle is in equilibrium the resultant PR of the forces must 
be zero and Eq. (4.7) reduces to 

PIS1 + P2S2 + . + P,S, = 0 

or 
n c PrSr = 0 

r = l  

The principle of virtual work may therefore be stated as: 

A particle is in equilibrium under the action of a force system if the total virtual work 
done by the force system is zero for a small virtual displacement. 

This statement is often termed the principle of virtual displacements. 
An alternative formulation of the principle of virtual work forms the basis of the 

application of total complementary energy (Section 4.5) to the determination of 
deflections of structures. In this alternative approach, small virtual forces are applied 
to a system in the direction of real displacements. 

Consider the elastic body shown in Fig. 4.4(b) subjected to a system of real loa& 
which may be represented by P .  Due to P the body will be displaced such that 
points 1,2,. . . , n  move through displacements A l ,  A2 , .  . . ,A ,  to I t ,  2', . . . ,n'. Now 
suppose that small imaginary loads SPI , 6P2, . . . , SP, were in position and acting in 
the directions of A l l  A2, .  . . ,A, before P was applied; since SP1, SP2,.  . . , SP, are 
imaginary they will not affect the real displacements. The total imaginary, or virtual, 
work SW* done by these loads is then given by 

n 
SW* =AlSPl  + A2SP2+. . .+AnSP,  = C A J P , .  

which, by the law of conservation of energy, is equal to the imaginary, or virtual, 
strain energy stored SU*. This is due to small imaginary internal forces SP, produced 
by the external imaginary loads, moving through real internal displacements y and 

r =  1 
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is given by 

Therefore, since S W* = SU* 

(4.9) 

Equation (4.9) is known as the principle of virtual forces. Comparison of the right- 
hand side of Eq. (4.9) with Eq. (4.2) shows that SU* represents an increment in 
complementary energy; by the same argument the left-hand side may be regarded 
as virtual complementary work. 

Although we are not concerned with the direct application of the principle of 
virtual work to the solution of structural problems it is instructive to examine possible 
uses of Eqs (4.8) and (4.9). The virtual displacements of Eq. (4.8) must obey the 
requirements of compatibility for a particular structural system so that their relation- 
ship is unique. Substitution of this relationship in Eq. (4.8) results in equations of 
statical equilibrium. Conversely, the known relationship between forces may be 
substituted in Eq. (4.9) to form equations of geometrical compatibility. Note that 
the former approach producing equations of equilibrium is a displacement method, 
the latter giving equations of compatibility of displacement, a force method. 

4.4 The principle of the stationary value of the 
total potential energy 

In the previous section we derived the principle of virtual work by considering virtual 
displacements (or virtual forces) applied to a particle or body in equilibrium. Clearly, 
for the principle to be of any value and for our present purpose of establishing the 
principle of the stationary value of the total potential energy, we need to justify its 
application to elastic bodies generally. 

An elastic body in equilibrium under externally applied loads may be considered to 
consist of a system of particles on each of which acts a system of forces in equilibrium. 
Thus, for any virtual displacement the virtual work done by the forces on any particle 
is, from the previous discussion, zero. It follows that the total virtual work done by all 
the forces on the system vanishes. However, in prescribing virtual displacements for 
an elastic body we must ensure that the condition of compatibility of displacement 
within the body is satisfied and also that the virtual displacements are consistent 
with the known physical restraints of the system. The former condition is satisfied 
if, as we saw in Chapter 1, the virtual displacements can be expressed in terms of 
single valued functions; the latter condition may be met by specifying zero virtual 
displacements at support points. This means of course that reactive forces at supports 
do no work and therefore, conveniently, do not enter the analysis. 

Let us now consider an elastic body in equilibrium under a series of external 
loads, PI, Pz, . . . , P,, and suppose that we impose small virtual displacements 
SAl, SA2,. . . , SA, in the directions of the loads. The virtual work done by the loads 
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is then 

2 PrSAr 
r= 1 

This work will be accompanied by an increment of strain energy SU in the elastic body 
since by specifying virtual displacements of the loads we automatically impose virtual 
displacements on the particles of the body itself, as the body is continuous and is 
assumed to remain so. This increment in strain energy may be regarded as negative 
virtual work done by the particles so that the total work done during the virtual 
displacement is 

n 

-SU i- PrSAr 
r = l  

The body is in equilibrium under the applied loads so that by the principle of virtual 
work the above expression must be equal to zero. Hence 

n 
SU - PJA, = 0 

r = l  
(4.10) 

The loads Pr remain constant during the virtual displacement; therefore, Eq. (4.10) 
may be written 

n 
SU - S P,Ar = 0 

r = l  

or, from Eq. (4.6) 

S(U+ V )  = 0 (4.11) 

Thus, the total potential energy of an elastic system has a stationary value for all small 
displacements if the system is in equilibrium. It may also be shown that if the 
stationary value is a minimum the equilibrium is stable. A qualitative demonstration 
of this fact is sac ien t  for our purposes, although mathematical proofs exist'. In 
Fig. 4.5 the positions A, B and C of a particle correspond to different equilibrium 
states. The total potential energy of the particle in each of its three positions is 
proportional to its height h above some arbitrary datum, since we are considering a 

Fig. 4.5 States of equilibrium of a particle. 
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single particle for which the strain energy is zero. Clearly at each position the first 
order variation, a( U + V ) / a u ,  is zero (indicating equilibrium), but only at B where 
the total potential energy is a minimum is the equilibrium stable. At A and C we 
have unstable and neutral equilibrium respectively. 

To summarize, the principle of the stationary value of the total potential energy may 
be stated as: 

The total potential energy of an elastic system has a stationary value for all smull 
displacements when the system is in equilibrium; further, the equilibrium is stable if 
the stationary value is a minimum. 

This principle may often be used in the approximate analysis of structures where an 
exact analysis does not exist. We shall illustrate the application of the principle in 
Example 4.1 below, where we shall suppose that the displaced form of the beam is 
unknown and must be assumed; this approach is called the Rayleigh-Ritz method 
(see also Sections 5.6 and 6.5). 

Example 4. I 
Determine the deflection of the mid-span point of the linearly elastic, simply sup- 
ported beam shown in Fig. 4.6; the flexural rigidity of the beam is EI. 

The assumed displaced shape of the beam must satisfy the boundary conditions for 
the beam. Generally, trigonometric or polynomial functions have been found to be 
the most convenient where, however, the simpler the function the less accurate the 
solution. Let us suppose that the displaced shape of the beam is given by 

TZ w = wB sin- 
L 

in which Q is the displacement at the mid-span point. From Eq. (i) we see that w = 0 
when z = 0 and z = L and that v = WB when z = L/2. Also dvldz = 0 when z = L/2 
so that the displacement function satisfies the boundary conditions of the beam. 

The strain energy, U, due to bending of the beam, is given by (see Ref. 3) 

A wl B 

(ii) 

C 

////// 

Fig. 4.6 Approximate determination of beam deflection using total potential energy. 
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Also 

(iii) 
d2v 

M = -EI -  
dz2 

(see Eqs (9.20)) 

Substituting in Eq. (iii) for v from Eq. (i) and for M in Eq. (ii) from Eq. (iii) 

EI ‘v;7r4 7rz 

L 
u=-  lo L4sin - dz 

which gives 

7r4 EIv; u=----- 
4L3 

The total potential energy of the beam is then given by 

7r4 EIv; 
4L3 TPE=U+V=--  W V B  

Then, from the principle of the stationary value of the total potential energy 

w=o a( u + V )  - 7 r 4 E I V ~  ~- - 
d V B  2 ~ 3  

whence 

WL3 
= 0.02053 - 

2 WL’ 
7r4 EI EI 

?/B = ~ 

The exact expression for the mid-span displacement is (Ref. 3) 

WL3 
= 0.02083 ~ 

W L 3  
EI 

VB =- 
48 EI 

Comparing the exact (Eq. (v)) and approximate results (Eq. (iv)) we see that the 
difference is less than 2 per cent. Further, the approximate displacement is less than 
the exact displacement since, by assuming a displaced shape, we have, in effect, 
forced the beam into taking that shape by imposing restraint; the beam is therefore 
stiffer. 

4.5 The principle of the stationary value of the 
total complementary energy 

Consider an elastic system in equilibrium supporting forces P, , P2, . . . P,, which 
produce real corresponding displacements A,,  A2,. . . A,,. If we impose virtual 
forces SP, , SP2, . . . , CiP,, on the system acting through the real displacements then 
the total virtual work done by the system is, by the argument of Section 4.4 

The first term in the above expression is the negative virtual work done by the 
particles in the elastic body, while the second term represents the virtual work of 
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the externally applied virtual forces. From the principle of virtual forces, i.e. Eq. (4.9) 

- lv0, y d P  + k A r 6 P r  = 0 
r =  1 

(4.12) 

Comparing Eq. (4.12) with Eq. (4.2) we see that each term represents an increment in 
complementary energy; the first, of the internal forces, the second, of the external 
loads. Thus Eq. (4.12) may be rewritten 

S( ci + C,) = 0 (4.13) 

where 
P 

VOI 0 
C i = [  y d P  and C e = - e A r P r  

r =  1 

(4.14) 

C, is in fact the complement of the potential energy V of the external loads. We shall 
now call the quantity (Ci + C,) the total complementary energy C of the system. 

The displacements specified in Eq. (4.12) are real displacements of a continuous 
elastic body; they therefore obey the condition of compatibility of displacement so 
that Eqs (4.12) and (4.13) are, in exactly the same way as Eq. (4.9), equations of 
geometrical compatibility. The principle of the stationary value of the total complemen- 
tary energy may then be stated as: 

For an elastic body in equilibrium under the action of applied forces the true internal 
forces (or stresses) and reactions are those for  which the total complementary energy 
has a stationary value. 

In other words the true internal forces (or stresses) and reactions are those which 
satisfy the condition of compatibility of displacement. This property of the total 
complementary energy of an elastic system is particularly useful in the solution of 
statically indeterminate structures, in which an infinite number of stress distributions 
and reactive forces may be found to satisfy the requirements of equilibrium. 

4.6 Application to deflection problems 
Generally, deflection problems are most readily solved by the complementary energy 
approach, although for linearly elastic systems there is no difference between the 
methods of complementary and potential energy since, as we have seen, complemen- 
tary and strain energy then become completely interchangeable. We shall illustrate 
thc method by reference to the deflections of frames and beams which may or may 
not possess linear elasticity. 

Let us suppose that we require to find the deflection A2 of the load P2 in the simple 
pin-jointed framework consisting, say, of k members and supporting loads 
PI, P2, .  . . , Pn, as shown in Fig. 4.7. From Eqs (4.14) the total complementary 
energy of the framework is given by 

k r F  n 

c=CJ,' X i  dFi - ArP, 
i =  1 r =  1 

(4.15) 
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Fig. 4.7 Determination of the deflection of a point on a framework by the method of complementary energy. 

where X i  is the extension of the ith member, Fi the force in the ith member and A, the 
corresponding displacement of the rth load P,. From the principle of the stationary 
value of the total complementary energy 

from which 

(4.16) 

(4.17) 

Equation (4.16) is seen to be identical to the principle of virtual forces in which virtual 
forces SF and SP act through real displacements X and A. Clearly the partial 
derivatives with respect to P2 of the constant loads P I ,  P 2 , .  . . , P, vanish, leaving 
the required deflection A, as the unknown. At this stage, before A, can be evaluated, 
the load-displacement characteristics of the members must be known. For linear 
elasticity 

where Li, Ai and Ei are the length, cross-sectional area and modulus of elasticity of the 
ith member. On the other hand, if the load-displacement relationship is of a non- 
linear form, say 

Fi = b(Xi)c 
in which b and c are known, then Eq. (4.17) becomes 

The computation of A, is best accomplished in tabular form, but before the proce- 
dure is illustrated by an example some aspects of the solution merit discussion. 

We note that the support reactions do not appear in Eq. (4.15). This convenient 
absence derives from the fact that the displacements A I ,  A,, . . . , A, are the real 
displacements of the frame and fulfil the conditions of geometrical compatibility 
and boundary restraint. The complementary energy of the reaction at A and the 
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vertical reaction at B is therefore zero, since both of their corresponding displace- 
ments are zero. If we examine Eq. (4.17) we note that Xi  is the extension of the ith 
member of the framework due to the applied loads P I ,  P2,.  . . P,. Therefore, the 
loads Fj in the substitution for Xi in Eq. (4.17) are those corresponding to the loads 
P I ;  P2, .  . . , P,,. The term dFi/aP2 in Eq. (4.17) represents the rate of change of Fi 
with P2 and is calculated by applying the load P2 to the unloaded frame and determin- 
ing the corresponding member loads in terms of Pz. This procedure indicates a 
method for obtaining the displacement of either a point on the frame in a direction 
not coincident with the line of action of a load or, in fact, a point such as C which 
carries no load at all. We place at the point and in the required direction aJictitious 
or dummy load, say Pf ,  the original loads being removed. The loads in the members 
due to Pf are then calculated and aF/dPf  obtained for each member. Substitution in 
Eq. (4.17) produces the required deflection. 

It must be pointed out that it is not absolutely necessary to remove the actual loads 
during the application of Pf. The force in each member would then be calculated in 
terms of the actual loading and Pf .  Fi follows by substituting Pf  = 0 and dFi/aPf is 
found by differentiation with respect to Pf. Obviously the two approaches yield the 
same expressions for Fi and aFi/dPf,  although the latter is arithmetically clumsier. 

Example 4.2 
Calculate the vertical deflection of the point B and the horizontal movement of D in 
the pin-jointed framework shown in Fig. 4.8(a). All members of the framework are 

(C) 

Fig. 4.8 (a) Actual loading of framework; (b) determination of vertical deflection of B; (c) determination of 
horizontal deflection of D. 



Table 4.1 

0 0 0 @ 0 @ 0 @ x  106 @ x  106 
Member L (mm) F (N) FB,f (N) aF&f /apBqf FD,f (N) aFDsf laPD.f FaFB.fIapB,f F~FDD,fIm,,f 

AE 4000J2 -6OOOOJ2 -2J2pB,f/3 -2J213 0 0 320J2 0 
EF 4000 -60 000 -2pB,f/3 -213 0 0 160 0 
FD 4000J2 -80000J2 -d2PB.f/3 - ~ 2 1 3  0 0 640J213 0 

CB 4000 80 000 PB,f/3 113 

EB 4000 20 000 2PB,f 13 213 0 0 16013 0 
0 0 - 160J2/3 0 FB 4000J2 -20000J2 d2pB.f 13 ~ 2 1 3  

DC 4000 80 000 PB,f13 113 pDsf 1 32013 320 
PD,f 1 32013 320 

1 48013 240 BA 4000 60 000 2pB,f/3 213 pD,f 

0 0 0 0 FC 4000 100 000 0 0 
C = 1268 C = 880 
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linearly elastic and have cross-sectional areas of 1 8 0 0 ~ ' .  E for the material of the 
members is 200 000 N/mm2. 

The members of the framework are linearly elastic so that Eq. (4.17) may be written 

or, since each member has the same cross-sectional area and modulus of elasticity 

A -XF.L.- 1 8Fi 
A E .  l a p  r=l 

(ii) 

The solution is completed in Table 4.1, in which F are the member forces due to the 
actual loading of Fig. 4.8(a), FB,f are the member forces due to the fictitious load PB,f 
in Fig. 4.8(b) and FD,f are the forces in the members produced by the fictitious load 
PD,p in Fig. 4.8(c). We take tensile forces as positive and compressive forces as 
negative. 

The vertical deflection of B is 

= 3.52mm 1268 x lo6 
AB:v = 1800 x 200 000 

and the horizontal movement of D is 

= 2 . 4 4 ~  
880 x lo6 

= 1800 x 200 000 

The positive values of AB," and AD.h  indicate that the deflections are in the directions 
of PB,f and PD,p 

The analysis of beam deflection problems by complementary energy is similar to 
that of pin-jointed frameworks, except that we assume initially that displacements 
are caused primarily by bending action. Shear force effects are discussed later in 
the chapter. Figure 4.9 shows a tip loaded cantilever of uniform cross-section and 
length L. The tip load P produces a vertical deflection A, which we require to find. 

'Centre of curvature at section z 

Fig. 4.9 Beam deflection by the method of complementary energy. 
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The total complementary energy C of the system is given by 

C = ~ L ~ ~ d O d M -  PA, (4.18) 

in which J ,  de dM is the complementary energy of an element Sz of the beam. This 
element subtends an angle Sf3 at its centre of curvature due to the application of the 
bending moment M .  From the principle of the stationary value of the total comple- 
mentary energy 

or 

(4.19) 

elastic beam. To 
- 0) and bending 

Equation (4.19) is applicable to either a non-linear or linearly 
proceed further, theifore, we require the load-displacement ( M  
moment-load ( M  - P) relationships. It is immaterial for the purposes of this illustra- 
tive problem whether the system is linear or non-linear, since the mechanics of the 
solution are the same in either case. We choose therefore a linear M - 0 relationship 
as this is the case in the majority of the problems we consider. Hence from Fig. 4.9 

, 

se = K S Z  

or 

from simple beam theory 

where the product modulus of elasticity x second moment of area of the beam cross 
section is known as the bending orpexural rigidity of the beam. Also 

M = Pz 

so that 
dM 

Substitution for de, M and dM/dP in Eq. (4.19) gives 

or 

The fictitious load method of the framework example may be employed in the 
solution of beam deflection problems where we require deflections at positions on 
the beam other than concentrated load points. Suppose that we are to find the tip 
deflection AT of the cantilever of the previous example in which the concentrated 
load has been replaced by a uniformly distributed load of intensity w per unit 
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w/un i t length Pf . -1 
AT 

t 
L I 

Fig. 4.10 Deflection of a uniformly loaded cantilever by the method of complementary energy. 

length (see Fig. 4.10). First we apply a fictitious load Pf at the point where the deflec- 
tion is required. The total complementary energy of the system is 

C = IL  1; dt'dM - ATP, - Awdz c 
where the symbols take their previous meanings and A is the vertical deflection of any 
point on the beam. Then 

(4.20) 

As before 
M 
EI 

dt' = - dz 

but 

Hence 

W 2  
M = P f Z  + - (Pf = 0) 2 

Substituting in Eq. (4.20) for de, M and dM/dPf, and remembering that Pf = 0, we 
have 

giving 

wL4 
AT =- 

8 EI 

It will be noted that here, unlike the method for the solution of the pin-jointed 
framework, the fictitious load is applied to the loaded beam. There is, however, no 
arithmetical advantage to be gained by the former approach although the result 
would obviously be the same since M would equal w2/2 and aM/aPf  would have 
the value z. 
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I p  + L p  +* 
4 0,t 2 C,t 

- 
2 - L 

+ L 

: z  

Fig. 4.1 1 Deflection of a simply supported beam by the method of complementary energy. 

Example 4.3 
Calculate the vertical displacements of the quarter and mid-span points B and C of 
the simply supported beam of length L and flexural rigidity EI loaded, as shown in 
Fig. 4.1 1. 

The total complementary energy C of the system including the fictitious loads PB.f 
and Pc,f is 

L 
c = IL jbMdsdM - PB,& - PqAC - lo Awdz 

- = / L d e ~ - A ~ = O  dC dM 

--=hdsap,,-AC=O dC dM 

(0 

Hence 

(ii) 
apB;f 

and 

aPc,f 

Assuming a linearly elastic beam, Eqs (ii) and (iii) become 

From A to B 

(iii) 

thus 
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From B to C 

giving 

From C to D 

so that 

= i ( L  - z) -=$(L-z),  - 
dPB,f apt,, 

dM dM 

Substituting these values in Eqs (iv) and (v) and remembering that PB,f = Pc,f = 0 we 
have, from Eq. (iv) 

from which 

1 19wL4 
B - 24 576EI 

A -  

Similarly 

5wL4 
A,=- 

384EI 
The fictitious load method of determining deflections may be streamlined for 

linearly elastic systems and is then termed the unit loud method; this we shall discuss 
later in the chapter. 

In a statically determinate structure the internal forces are determined uniquely by 
simple statical equilibrium considerations. This is not the case for a statically indeter- 
minate system in which, as we have already noted, an infinite number of internal force 
or stress distributions may be found to satisfy the conditions of equilibrium. The true 
force system is, as we demonstrated in Section 4.5, the one satisfying the conditions of 
compatibility of displacement of the elastic structure or, alternatively, that for which 
the total complementary energy has a stationary value. We shall apply the principle to 
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B C 

Fig. 4.12 Analysis of a statically indeterminate framework by the method of complementary energy. 

a variety of statically indeterminate structures, beginning with the relatively simple 
singly-redundant pin-jointed frame shown in Fig. 4.12 in which each member has 
the same value of the product AE. 

The first step is to choose the redundant member. In this example no advantage is 
gained by the choice of any particular member, although in some cases careful 
selection can result in a decrease in the amount of arithmetical labour. Taking BD 
as the redundant member we assume that it sustains a tensile force R due to the 
external loading. The total complementary energy of the framework is, with the 
notation of Eq. (4.15) 

C = 21: AidFi - PA 
i= 1 

Hence 

dC dFi 
dR . dR 
- = Ai - = 0 

1=  1 

or, assuming linear elasticity 

I k  dFi -E F ~ L ~ ~  = o 
A E .  

1 = 1  

(4.21) 

(4.22) 

The solution is now completed in Table 4.2 where, as in Table 4.1, positive signs 
indicate tension. 

Table 4.2 

0 0 
Member Length 

0 
F 
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Hence from Eq. (4.22) 
4.83lU + 2.707PL = 0 

or 
R = -0.56P 

Substitution for R in column @ of Table 4.2 gives the force in each member. Having 
determined the forces in the members then the deflection of any point on the frame- 
work may be found by the method described in Section 4.6. 

Unlike the statically determinate type, statically indeterminate frameworks may be 
subjected to self-straining. Thus, internal forces are present before external loads are 
applied. Such a situation may be caused by a local temperature change or by an initial 
lack of fit of a member. Suppose that the member BD of the framework of Fig. 4.12 is 
short by a known amount AR when the framework is assembled but is forced to fit. 
The load R in BD will then have suffered a displacement AR in addition to that caused 
by the change in length of BD produced by the load P.  The total complementary 
energy is then 

and 

dC dFi 
- = 
d R  r = l  . dR X i -  - AR = 0 

or 

1 8Fi 
AR = -E A E .  ~ ~ 1 , ~ -  d R  

r=l  
(4.23) 

Obviously the summation term in Eq. (4.23) has the same value as in the previous case 
so that 

AE 
R = -0.56P + - 

4.831, AR 
Hence the forces in the members are due to both applied loads and an initial lack of 
fit. 

Some care should be given to the sign of the lack of fit AR. We note here that the 
member BD is short by an amount AR so that the assumption of a positive sign for AR 
is compatible with the tensile force R.  If BD were initially too long then the total 
complementary energy of the system would be written 

C = x j : A i d F i - P A - R ( - A R )  k 

i =  1 

giving 

1 aFi 
- A R  = -E FiLi- 

A E .  
1 = 1  
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Fig. 4.1 3 Framework of Example 4.4. 

Example 4.4 
Calculate the loads in the members of the singly redundant pin-jointed framework 
shown in Fig. 4.13. The members AC and BD are 30 mm2 in cross-section, and all 
other members are 20mm2 in cross-section. The members AD, BC and DC are 
each 800 mm long. E = 200 000 N/mm2. 

From the geometry of the framework AFD = CTD = 30"; therefore BD = AC = 
800fimm. Choosing CD as the redundant member and proceeding from Eq. (4.22) 
we have 

0 
L e  FiLi aFi --= 
E Ai dR i= 1 

From Table 4.3 we have 

- -268 + 129.2R = 0 
i= 1 

Hence R = 2.1 N and the forces in the members are tabulated in column 0 of 
Table 4.3. 

Table 4.3 (Tension positive) 

0 0 0 @ 
Member L ( m m )  A ( m 2 )  F ( N )  

@ 0 
Force (N) 

0 
6'FIaR (FL/A)aF/aR 

AC 800J3 30 50 - J3R/2  -J3/3/2 -2000 + 20J3R 48.2 
CB 800 20 86.6 + R/2  112 1732 + 10R 87.6 

-1.8 BD 800J3 30 -J3R/2  -J3/3/2 20J3R 
CD 800 20 R 1 40R 2.1 
AD 800 20 RI2 112 IOR 1 .o 

C = -268 + 129.2R 

Example 4.5 
A plane, pin-jointed framework consists of six bars forming a rectangle ABCD 
4000 mm by 3000 mm with two diagonals, as shown in Fig. 4.14. The cross-sectional 
area of each bar is 200 mm2 and the frame is unstressed when the temperature of each 
member is the same. Due to local conditions the temperature of one of the 3000 mm 
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Fig. 4.14 Framework of Example 4.5. 

members is raised by 30°C. Calculate the resulting forces in all the members if the 
coefficient of linear expansion Q! of the bars is 7 x 10-6/"C. E = 200000N/mm2. 

Suppose that BC is the heated member, then the increase in length of 
BC = 3000 x 30 x 7 x lop6 = 0.63 mm. Therefore, from Eq. (4.23) 

dFi FiLi - 
dR 

1 
200 x 200000. 

-0.63 = 
2=1 

Substitution from the summation of column @ in Table 4.4 into Eq. (i) gives 
-0.63 x 200 x 200000 

48 000 
= -525N R =  

Column @ of Table 4.4 is now completed for the force in each member. 
So far, our analysis has been limited to singly redundant frameworks, although the 

same procedure may be adopted to solve a multi-redundant framework of, say, nz 
redundancies. Thus, instead of a single equation of the type (4.21) we would have 
m simultaneous equations 

from which the m unknowns R1, R 2 , .  . . , R, would be obtained. The forces F in the 
members follow, being expressed initially in terms of the applied loads and 
R17R27. . . ,R,,- 

Other types of statically indeterminate structure are solved by the application of 
total complementary energy with equal facility. The propped cantilever of Fig. 4.15 

Table 4.4 (Tension positive) 

G3 
Force ( N )  

64 000R/9 -700 
3 OOOR -525 

64 000R/9 -700 
3 OOOR -525 

AB 4000 4R/3 413 

CD 4000 4R/3 413 
BC 3000 R 1 

DA 3000 R 1 
AC 5000 -5R/3 -513 125 000R/9 875 
DB 5000 -5R/3 -513 125 000R/9 875 

C = 48 OOOR 
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Fig. 4.15 Analysis of a propped cantilever by the method of complementary energy. 

is an example of a singly redundant beam structure for which total complementary 
energy readily yields a solution. 

The total complementary energy of the system is, with the notation of Eq. (4.18) 

c = j L  I rdOdM - PAC - RBAB 

where Ac and AB are the deflections at C and B respectively. Usually, in problems of 
this type, AB is either zero for a rigid support, or a known amount (sometimes in 
terms of RB) for a sinking support. Hence, for a stationary value of C 

from which equation RB may be found; RB being contained in the expression for the 
bending moment M .  

Obviously the same procedure is applicable to a beam having a multiredundant 
support system, viz. a continuous beam supporting a series of loads P1, Pz, . . . , P,,. 
The total complementary energy of such a beam would be given by 

where Rj and A, are the reaction and known deflection (at least in terms of Rj) of the 
jth support point in a total of m supports. The stationary value of C gives 

producing m simultaneous equations for the m unknown reactions. 
The intention here is not to suggest that continuous beams are best or most readily 

solved by the energy method; the moment distribution method produces a more rapid 
solution, especially for beams in which the degree of redundancy is large. Instead the 
purpose is to demonstrate the versatility and power of energy methods in their ready 
solution of a wide range of structural problems. A complete investigation of this 
versatility is impossible here due to restriction of space; in fact, whole books have 
been devoted to this topic. We therefore limit our analysis to problems peculiar to 
the field of aircraft structures with which we are primarily concerned. The remaining 
portion of this section is therefore concerned with the solution of frames and rings 
possessing varying degrees of redundancy. 

The frameworks we considered in the earlier part of this section and in Section 4.6 
comprised members capable of resisting direct forces only. Of a more general type are 
composite frameworks in which some or all of the members resist bending and shear 
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loads in addition to direct loads. It is usual, however, except for the thin-walled 
structures in Part I1 of this book, to ignore deflections produced by shear forces. 
We only consider, therefore, bending and direct force contributions to the internal 
complementary energy of such structures. The method of analysis is illustrated in 
the following example. 

Example 4.6 
The simply supported beam ABC shown in Fig. 4.16 is stiffened by an arrangement of 
pin-jointed bars capable of sustaining axial loads only. If the cross-sectional area 
of the beam is AB and that of the bars is A,  calculate the forces in the members of 
the framework assuming that displacements are caused by bending and direct force 
action only. 

L /2 L / 2  - -  

Cross- sectional 

E R  R D  
Fig. 4.16 Analysis of a trussed beam by the method of complementary energy. 

We observe that if the beam were only capable of supporting direct loads then the 
structure would be a relatively simple statically determinate pin-jointed framework. 
Since the beam resists bending moments (we are ignoring shear effects) the system 
is statically indeterminate with a single redundancy, the bending moment at any 
section of the beam. The total complementary energy of the framework is given, 
with the notation previously developed, by 

If we suppose that the tensile load in the member ED is R then, for C to have a 
stationary value 

(ii) 

At this point we assume the appropriate load-displacement relationships; again we 
shall take the system to be linear so that Eq. (ii) becomes 

li FiLi 3Fi 
(iii) 

2 = 1  
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Table 4.5 (Tension positive) 

0 
Member 

0 
Length 

0 
Area 

@ 
F 

AB -R/2 -1 12 ~ 1 4 ~ ~  
-R/2 -112 ~ 1 4 ~ ~  

AB =I2 
BC Ll2 
CD LI2 
DE LIZ 
BD LIZ 
EB LI2 
A€ LI2 

AB 
A R 1 RIA 
A R 1 RIA 
A -R -1 RIA 
A -R -1 RIA 
A R 1 RIA 

The two terms in Eq. (iii) may be evaluated separately, bearing in mind that only the 
beam ABC contributes to the first term while the complete structure contributes to the 
second. Evaluating the summation term by a tabular process we have Table 4.5. 

Summation of column @ in Table 4.5 gives 

r = l  

The bending moment at any section of the beam between A and F is 

3 d 3  d M  d3 
M = - P z - - R z ,  hence -= -- 

4 2 d R  2 z  
between F and B 

P d3 d M  d3 
4 2 d R  2 

M = - ( L  - z )  - -Rz, hence - = - -2 

and between B and C 

P fi d M  d3 
4 2 d R  2 

M = - ( L - z )  - - R ( L - z ) ,  hence -= - - ( L - z )  

Thus 

&=A{ 

giving 

-ll&PL3 RL3 +- 768EI 16EI 
dz= 

Substituting from Eqs (iv) and (v) into Eq. (iii) 

1 1 d 3 ~ ~ ~  m3 RL A+IOAB +- 768EI 16EI+4E ( ABA ) = O  
- 
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from which 

Hence the forces in each member of the framework. The deflection A of the load P or 
any point on the framework may be obtained by the method of Section 4.6. For 
example, the stationary value of the total complementary energy of Eq. (i) gives A, i.e. 

Although braced beams are still found in modern light aircraft in the form of 
braced wing structures a much more common structural component is the ring 
frame. The role of this particular component is discussed in detail in Chapter 7; it 
is therefore suflicient for the moment to say that ring frames form the basic shape 
of semi-monocoque fuselages reacting shear loads from the fuselage skins, point 
loads from wing spar attachments and distributed loads from floor beams. Usually 
a ring is two-dimensional supporting loads applied in its own plane. Our analysis is 
limited to the two-dimensional case. 

A two-dimensional ring has redundancies of direct load, bending moment and 
shear at any section, as shown in Fig. 4.17. However, in some special cases of loading 
the number of redundancies may be reduced. For example, on a plane of symmetry 
the shear loads and sometimes the normal or direct loads are zero, while on a 
plane of antisymmetry the direct loads and bending moments are zero. Let us consider 
the simple case of a doubly symmetrical ring shown in Fig. 4.18(a). At a section in the 
vertical plane of symmetry the internal shear and direct loads vanish, leaving one 
redundancy, the bending moment MA (Fig. 4.180)).  Note that in the horizontal 
plane of symmetry the internal shears are zero but the direct loads have a value 

el 

Fig. 4.17 Internal force system in a two-dimensional ring. 
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(a) 

Fig. 4.18 Doubly symmetric ring. 

(b) 

P/2. The total complementary energy of the system is (again ignoring shear strains) 

C = j  ring rdOdM-Z(;A) 0 

taking the bending moment as positive when it increases the curvature of the ring. In 
the above expression for C,  A is the displacement of the top, A, of the ring relative to 
the bottom, B. Assigning a stationary value to C we have 

or assuming linear elasticity and considering, from symmetry, half the ring 

Thus since 

- 1  M=MA--RsinO, -- 
P dM 
2 dMA 

and we have 

or 

from which 
PR MA=- 
l r  
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Fig. 4.19 Distribution of bending moment in a doubly symmetric ring. 

The bending moment distribution is then 

and is shown diagrammatically in Fig. 4.19. 
Let us now consider a more representative aircraft structural problem. The circular 

fuselage frame of Fig. 4.20(a) supports a load P which is reacted by a shear flow q 
(i.e. a shear force per unit length: see Chapter 9), distributed around the circumference 
of the frame from the fuselage skin. The value and direction of this shear flow are 
quoted here but are derived from theory established in Section 9.4. From our previous 
remarks on the effect of symmetry we observe that there is no shear force at the 
section A on the vertical plane of symmetry. The unknowns are therefore the bending 
moment M A  and normal force NA. We proceed, as in the previous example, by 
writing down the total complementary energy C of the system. Thus, neglecting 
shear strains 

M 
C = jring Io dB dM - PA 

in which A is the deflection of the point of application of P relative to the top of the 
frame. Note that M A  and NA do not contribute to the complement of the potential 
energy of the system since, by symmetry, the rotation and horizontal displacements 
at A are zero. From the principle of the stationary value of the total complementary 
energy 

(ii) 

and 

(iii) 
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4 

Fig. 4.20 Determination of bending moment distribution in a shear and direct loaded ring. 

The bending moment at a radial section inclined at an angle 0 to the vertical diameter 
is, from Fig. 4.20(c) 

M = MA + N*R( 1 - COS 0) + qBDR da J-1 
or 

@ P  M = M A + N A R ( l  -cos@) + -sina[R-Rcos(8-a)]Rda So XR 
which gives 

PR 
M = MA + N*R( 1 - cos@) + -( 1 - cos@ - $@sin@) (iv) 

lr 
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Hence 

Assuming that the fuselage frame is linearly elastic we have, from Eqs (ii) and (iii) 

Substituting from Eqs (iv) and (v) into Eqs (vi) gives two simultaneous equations 
PR 
27r 

7PR 
87r 

- MA + NAR 

-MA+$NAR 

These equations may be written in matrix form as follows 

so that 

or 

-1/2 { zf} = [ -i/R { -7/8} 

which gives 
PR -3P 

NA = - 
4.rr 47r MA = -, 

The bending moment distribution follows from Eq. (iv) and is 
PR 
27r 

M = -(1 - $cos0 - 0sin0) 

(vii) 

(viii) 

The solution of Eqs (ix) involves the inversion of the matrix 

[: 3RR/2] 

which may be carried out using any of the standard methods detailed in texts on 
matrix analysis. In this example Eqs (vi$ and (viii) are clearly most easily solved 
directly; however, the matrix approach illustrates the technique and serves as a 
useful introduction to the more detailed discussion in Chapter 12. 

Example 4.7 
A two-cell fuselage has circular frames with a rigidly attached straight member across 
the middle. The bending stiffness of the lower half of the frame is 2EI, whilst that of 
the upper half and also the straight member is EI. 
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€I 

(a) (b) 

Fig. 4.21 Determination of bending moment distribution in an antisymmetrical fuselage frame. 

Calculate the distribution of the bending moment in each part of the frame for the 
loading system shown in Fig. 4.21(a). Illustrate your answer by means of a sketch and 
show clearly the bending moment carried by each part of the frame at the junction 
with the straight member. Deformations due only to bending strains need be taken 
into account. 

The loading is antisymmetrical so that there are no bending moments or normal 
forces on the plane of antisymmetry; there remain three shear loads SA, SD and 
Sc, as shown in Fig. 4.21(b). The total complementary energy of the half frame is 
then (neglecting shear strains) 

where aB and AB are the rotation and deflection of the frame at B caused by the 
applied moment Mo and concentrated load Mo/r respectively. From antisymmetry 
there is no deflection at A, D or C so that S A ,  S, and Sc make no contribution to 
the total complementary energy. In addition, overall equilibrium of the half frame 
gives 

(ii) 

Assigning stationary values to the total complementary energy and considering the 
half frame only, we have 

and 
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or assuming linear elasticity 

(iii) 

In AB 

In DB 
dM 

- 0 ,  - = x  
aiw 
as, as, 

M = S , x  and -- 

In CB 

Thus 
dM aM 

as, as, 
- -r sin r$ and - = -r sin q5 -- 

Substituting these expressions in Eqs (iii) and integrating we have 

3.356SA + S, = Mo/r 

SA + 2.178s~ = Mo/r 
(iv) 

( 4  

which, with Eq. (ii), enable SA, SD and S,  to be found. In matrix form these equations 
are written 

from which we obtain 

which give 

SA = O.186M0/r, S,  = 0.44MO/r, Sc = 0.373Mo/r 

(vii) 

Again the square matrix of Eqs (vi) has been inverted to produce Eqs (vii). 
The bending moment distribution with directions of bending moment is shown in 

Fig. 4.22. 
So far in this chapter we have considered the application of the principles of the 

stationary values of the total potential and complementary energies of elastic systems 
in the analysis of various types of structure. Although the majority of the examples 
used to illustrate the methods are of linearly elastic systems it was pointed out that 
generally they may be used with equal facility for the solution of non-linear systems. 
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-ve B.M. (Decreasing Curvature) 

(a) 

Fig. 4.22 Distribution of bending moment in frame of Example 4.7. 

0.187 M, 

2 

moment M, 

(b) 

In fact, the question of whether a structure possesses linear or non-linear character- 
istics arises only after the initial step of writing down expressions for the total poten- 
tial or complementary energies. However, a great number of structures are linearly 
elastic and possess unique properties which enable solutions, in some cases, to be 
more easily obtained. The remainder of this chapter is devoted to these methods. 

In Section 4.6 we discussed the dummy or fictitious load method of obtaining 
deflections of structures. For a linearly elastic structure the method may be stream- 
lined as follows. 

Consider the framework of Fig. 4.7 in which we require, say, to find the vertical 
deflection of the point C. Following the procedure of Section 4.6 we would place a 
vertical dummy load Pf at C and write down the total complementary energy of 
the framework, viz. 

k n 

Xi dFi - Alpr 
i= 1 r = l  

For a stationary value of C 

from which 

dFi 
A, = c Xi - as before 

i =  1 apf 

(See Eq. (4.15)) 

(4.24) 

(4.25) 
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If instead of the arbitrary dummy load P f  we had placed a unit load at C, then the load 
in the ith linearly elastic member would be 

Therefore, the term dFi/6’Pf in Eq. (4.25) is equal to the load in the ith member due to 
a unit load at C, and Eq. (4.25) may be written 

(4.26) 

where Fi,o is the force in the ith member due to the actual loading and Fi,l is the 
force in the ith member due to a unit load placed at the position and in the direction 
of the required deflection. Thus, in Example 4.2 columns @ and @in Table 4.1 would 
be eliminated, leaving column @ as FB,l and column 0 as FD.l. Obviously column @ 
is Fo. 

Similar expressions for deflection due to bending and torsion of linear structures 
follow from the well-known relationships between bending and rotation and torsion 
and rotation. Hence, for a member of length L and flexural and torsional rigidities EI 
and GJ respectively 

(4.27) 

where Mo is the bending moment at any section produced by the actual loading and 
M I  is the bending moment at any section due to a unit load applied at the position and 
in the direction of the required deflection. Similarly for torsion. 

Generally, shear deflections of slender beams are ignored but may be calculated 
when required for particular cases. Of greater interest in aircraft structures is the 
calculation of the deflections produced by the large shear stresses experienced by 
thin-walled sections. This problem is discussed in Chapter 9. 

Example 4.8 
A steel rod of uniform circular cross-section is bent as shown in Fig. 4.23, AB and BC 
being horizontal and CD vertical. The arms AB, BC and CD are of equal length. The 
rod is encastrk at A and the other end D is free. A uniformly distributed load covers 
the length BC. Find the components of the displacement of the free end D in terms of 
EI and GJ.  

Since the cross-sectional area A and modulus of elasticity E are not given we shall 
assume that displacements due to axial distortion are to be ignored. We place, in turn, 
unit loads in the assumed positive directions of the axes xyz. 

First, consider the displacement in the direction parallel to the x axis. From Eqs 
(4.27) 
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whnit length 

+ 
1 

Fig. 4.23 Deflection of a bent rod. 

Employing a tabular procedure 

MO 

Plane xy X Z  y z  

CD 0 0  0 

CB 0 0 -wz2/2 

BA -WlX 0 0 

Hence 

M1 TO Tl -- - 
xy xz y z  xy xz yz xy xz y z  

y o 0  0 0  0 0 0 0  

o z o  0 0  0 1 0 0  

1 1 0 0 0 wl”2 0 0 0 

or 

W P  A 
2EI x -  

Similarly 

A y = w f ( - + - )  11 1 

A,= w ? ( - + - )  1 1 

24EI 2GJ 

6EI 2GJ 
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x w - T - - *  --m- 1 

m-u pe r p os i tG- 
An extremely useful principle employed in the analysis of linearly elastic structures is 
that of superposition. The principle states that if the displacements at all points in an 
elastic body are proportional to the forces producing them, i.e. the body is linearly 
elastic, the,effect on such a body of a number of forces is the sum of the effects of 
the forces applied separately. We shall make immediate use of the principle in the 
derivation of the reciprocal theorem in the following section. 

The reciprocal theorem is an exceptionally powerful method of analysis of linearly 
elastic structures and is accredited in turn to Maxwell, Betti and Rayleigh. However, 
before we establish the theorem we first consider a useful property of linearly elastic 
systems resulting from the principle of superposition. The principle enables us to 
express the deflection of any point in a structure in terms of a constant coefficient 
and the applied loads. For example, a load P I  applied at a point 1 in a linearly elastic 
body will produce a deflection AI  at the point given by 

Ai = QllPl 

in which the influence orflexibility coefficient a l l  is defined as the deflection at the 
point 1 in the direction of P I ,  produced by a unit load at the point 1 applied in the 
direction of P1. Clearly, if the body supports a system of loads such as those 
shown in Fig. 4.24, each of the loads P I ,  Pz ,  . . . , P,, will contribute to the deflection 
at the point 1. Thus, the corresponding deflection A, at the point 1 (i.e. the total deflec- 
tion in the direction of P i  produced by all the loads) is then 

AI = a l l P l  + a 1 2 P 2 + ~ ~ ~ + a l , P ,  

where aI2 is the deflection at the point 1 in the direction of P I ,  produced by a unit load 
at the point 2 in the direction of the load P2 and so on. The corresponding deflections 

Fig. 4.24 Linearly elastic body subjected to loads f , ,  f z ,  f3 , .  . . , f,,. 
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at the points of application of the complete system of loads are then 

(4.28) 

or, in matrix form 

which may be written in shorthand matrix notation as 

- P I  = [ A I - w  
Suppose now that an elastic body is subjected to a gradually applied force P1 at a 

point 1 and then, while P1 remains in position, a force P2 is gradually applied at 
another point 2. The total strain energy U of the body is given by 

The third term on the right-hand side of Eq. (4.29) results from the additional work 
done by P1 as it is displaced through a further distance a12P2 by the action of P2. If we 
now remove the loads and apply P2 followed by P1 we have 

By the principle of superposition the strain energy stored is independent of the order 
in which the loads are applied. Hence 

u, = u2 

and it follows that 

a12 = a21 (4.31) 

Thus in its simplest form the reciprocal theorem states that: 

The deflection at a point 1 in a given direction due to a unit load at apoint 2 in a second 
direction is equal to the deflection at the point 2 in the second direction due to a unit 
load at the point 1 in the first direction. 

In a similar manner, we derive the relationship between moments and rotations, 

The rotation at a point 1 due to a unit moment at a point 2 is equal to the rotation at 
the point 2 produced by a unit moment at the point 1. 

thus: 
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Finally we have: 

The rotation at a point 1 due to a unit load at a point 2 is numerically equal to the 
deflection at the point 2 in the direction of the unit load due to a unit moment at 
the point 1. 

Example 4.9 
A cantilever 800 mm long with a prop 500 mm from the wall deflects in accordance 
with the following observations when a point load of 40 N is applied to its end. 

Dist. (mm) 0 100 200 300 400 500 600 700 800 
Def. (mm) 0 -0.3 -1.4 -2.5 -1.9 0 2.3 4.8 10.6 

What will be the angular rotation of the beam at the prop due to a 30N load 
applied 200mm from the wall, together with a 10N load applied 350mm from the 
wall? 

The initial deflected shape of the cantilever is plotted as shown in Fig. 4.25(a) and 
the deflections at D and E produced by the 40 N load determined. The solution then 
proceeds as follows. 

Deflection at D due to 40N load at C = -1.4mm. 
Hence from the reciprocal theorem the deflection at C due to a 40N load at 

It follows that the deflection at C due to a 30 N load at D = - 2 x 1.4 = -1.05 mm. 
Similarly the deflection at C due to a 10 N load at E = - f x 2.4 = -0.6 mm. 
Therefore, the total deflection at C, produced by the 30 N and 10 N loads acting 

simultaneously (Fig. 4.25(b)), is - 1.05 - 0.6 = - 1.65 mm from which the angular 
rotation of the beam at B, OB, is given by 

D = -1.4mm. 

1 1.65 
OB = tan- - = tan-' 0.0055 

300 

or 

C 

(a) (b)  

Fig. 4.25 (a) Given deflected shape of propped cantilever; (b) determination of the deflection of C. 
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Example 4.10 
An elastic member is pinned to a drawing board at its ends A and B. When a moment 
M is applied at A, A rotates 0.4, B rotates and the centre deflects S1. The same 
moment M applied to B rotates B, Oc and deflects the centre through 62. Find the 
moment induced at A when a load W is applied to the centre in the direction of 
the measured deflections, both A and B being restrained against rotation. 

Fig. 4.26 Model analysis of a fixed beam. 

The three load conditions and the relevant displacements are shown in Fig. 4.26. 
Thus from Fig. 4.26(a) and (b) the rotation at A due to M at B is, from the reciprocal 
theorem, equal to the rotation at B due to M at A. Hence 

eA(b) = OB 

It follows that the rotation at A due to MB at B is 
MB 

eA(c),l  = MeB 

Also the rotation at A due to unit load at C is equal to the deflection at C due to unit 
moment at A. Therefore 

I-_ eA(c) 2 61 - 
W M  

or 
W 

eA(c),2 = z61 (ii) 

where 6A(c),2 is the rotation at A due to W at C .  Finally the rotation at A due to MA at 
A is, from Fig. 4.26(a) and (c) 

(iii) 

The total rotation at A produced by M A  at A, W at C and MB at B is, from Eqs (i), (ii) 
and (iii) 
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since the end A is restrained from rotation. Similarly the rotation at B is given by 

MB MA - o c + - 6 2 + - e B = o  A4 M M 
Solving Eqs (iv) and (v) for MA gives 

The fact that the arbitrary moment M does not appear in the expression for the 
restraining moment at A (similarly it does not appear in MB),  produced by the 
load W ,  indicates an extremely useful application of the reciprocal theorem, 
namely the model analysis of statically indeterminate structures. For example, the 
fixed beam of Fig. 4.26(c) could possibly be a full-scale bridge girder. It is then 
only necessary to construct a model, say of Perspex, having the same flexural rigidity 
EZ as the full-scale beam and measure rotations and displacements produced by an 
arbitrary moment M to obtain fixing moments in the full-scale beam supporting a 
full-scale load. 

F 

A uniform temperature applied across a beam section produces an expansion of the 
beam, as shown in Fig. 4.27, provided there are no constraints. However, a linear 
temperature gradient across the beam section causes the upper fibres of the beam 
to expand more than the lower ones, producing a bending strain as shown in 
Fig. 4.28 without the associated bending stresses, again provided no constraints are 
present. 

Consider an element of the beam of depth h and length 6z subjected to a linear 
temperature gradient over its depth, as shown in Fig. 4.29(a). The upper surface of 

Expansion 

Fig. 4.27 Expansion of beam due to uniform temperature. 

P 
I% 

Fig. 4.28 Bending of beam due to linear temperature gradient. 
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I t  6 z  (1 + at) 

R 

(a) (b) 

Fig. 4.29 (a) Linear temperature gradient applied to beam element; (b) bending of beam element due to 
temperature gradient. 

the element will increase in length to 6z( 1 + at), where a is the coefficient of linear 
expansion of the material of the beam. Thus from Fig. 4.29(b) 

R R + h  -= 
Sz Sz(1 +at) 

giving 

R = h/a t  

Also 

so that, from Eq. (4.32) 
Szat 60 = - 

h 

(4.32) 

(4.33) 

We may now apply the principle of the stationary value of the total complementary 
energy in conjunction with the unit load method to determine the deflection A,, due 
to the temperature of any point of the beam shown in Fig. 4.28. We have seen that the 
above principle is equivalent to the application of the principle of virtual work where 
virtual forces act through real displacements. Therefore, we may specify that the 
displacements are those produced by the temperature gradient while the virtual 
force system is the unit load. Thus, the deflection ATe,B of the tip of the beam is 
found by writing down the increment in total complementary energy caused by the 
application of a virtual unit load at B and equating the resulting expression to zero 
(see Eqs (4.13) and (4.18)). Thus 
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or 

wher the bending moment at any section due to th 
de from Eq. (4.33) we have 

at 
ATe,B = IL  dz 

(4.34) 

unit load. Substituting for 

(4.35) 

where t can vary arbitrarily along the span of the beam, but only linearly with depth. 
For a beam supporting some form of external loading the total deflection is given by 
the superposition of the temperature deflection from Eq. (4.35) and the bending 
deflection from Eqs (4.27); thus 

(4.36) 

Example 4.17 
Determine the deflection of the tip of the cantilever in Fig. 4.30 with the temperature 
gradient shown. 

Spanwise variation of t 

Fig. 4.30 Beam of Example 4.1 1 

Applying a unit load vertically downwards at B, M I  = 1 x z. Also the temperature 
t at a section z is to(I - z)/Z. Substituting in Eq. (4.35) gives 

Integrating Eq. (i) gives 

(i.e. downwards) 

1 Charlton, T. M., Energy Principles in Applied Statics, Blackie, London, 1959. 
2 Gregory, M. S. ,  Introduction to Extremum Principles, Buttenvorths, London, 1969. 
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P.4.1 Find the magnitude and the direction of the movement of the joint C of the 
plane pin-jointed frame loaded as shown in Fig. P.4.1. The value of LIAE for each 
member is 1 /20 mm/N. 

Ans. 5.24mm at 14.7" to left of vertical. 

Fig. P.4.1 

P.4.2 A rigid triangular plate is suspended from a horizontal plane by three 
vertical wires attached to its corners. The wires are each 1 mm diameter, 1440mm 
long, with a modulus of elasticity of 196 000 N/mm2. The ratio of the lengths of the 
sides of the plate is 3:4:5. Calculate the deflection at the point of application due 
to a lOON load placed at a point equidistant from the three sides of the plate. 

Ans. 0.33mm. 

P.4.3 The pin-jointed space frame shown in Fig. P.4.3 is attached to rigid 
supports at points 0, 4, 5 and 9, and is loaded by a force P in the x direction and a 
force 3P in the negative y direction at the point 7. Find the rotation of member 27 
about the z axis due to this loading. Note that the plane frames 01234 and 56789 
are identical. All members have the same cross-sectional area A and Young's 
modulus E. 

Ans. 382P19AE. 

P.4.4 A horizontal beam is of uniform material throughout, but has a second 
moment of area of 1 for the central half of the span L and 1 / 2  for each section in 
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Y 

Fig. P.4.3 

both outer quarters of the span. The beam carries a single central concentrated 
load .P. 

(a) Derive a formula for the central deflection of the beam, due to P, when simply 

(b) If both ends of the span are encastrk determine the magnitude of the fixed end 

A m .  3PL3/128EI, 5PL/48 (hogging). 

P.4.5 The tubular steel post shown in Fig. P.4.5 supports a load of 250 N at the 
free end C. The outside diameter of the tube is l O O m m  and the wall thickness is 
3mm. Neglecting the weight of the tube find the horizontal deflection at C. The 
modulus of elasticity is 206 000 N/mm2. 

supported at each end of the span. 

moments. 

A m .  53.3mm. 

Fig. P.4.5 
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P.4.6 A simply supported beam AB of span L and uniform section carries a 
distributed load of intensity varying from zero at A to wo/unit length at B according 
to the law 

w=””(l-&) L 

per unit length. If the deflected shape of the beam is given approximately by the 
expression 

n-2 2x2 
21 = u1 sin- + u2 sin- L L 

evaluate the coefficients ul and a2 and find the deflection of the beam at mid-span. 

Ans. a1 = 2w0L4(7? + 4)/EIr7, a2 = -w0L4/16EI2, O.O0918woL4/EI. 
P.4.7 A uniform simply supported beam, span L, carries a distributed loading 

which vanes according to a parabolic law across the span. The load intensity is 
zero at both ends of the beam and wo at its mid-point. The loading is normal to a 
principal axis of the beam cross-section and the relevant flexural rigidity is EI. 
Assuming that the deflected shape of the beam can be represented by the series 

im 
Y = ai sin- 

33 

i = l  ‘ 
find the coefficients ui and the deflection at the mid-span of the beam using the first 
term only in the above series. 

Am. ai = 32w0L4/EI7r7i7 (iodd), w0L4/94.4EI. 
P.4.8 Figure P.4.8 shows a plane pin-jointed framework pinned to a rigid founda- 

tion. All its members are made of the same material and have equal cross-sectional 
area A,  except member 12 which has area A&. 

4 a  5a 
Fig. P.4.8 
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Under some system of loading, member 14 carries a tensile stress of 0.7N/mm2. 
Calculate the change in temperature which, if applied to member 14 only, would 
reduce the stress in that member to zero. Take the coefficient of linear expansion as 
Q: = 24 x 10-6/"C and Young's modulus E = 70 000 N/mmz. 

Ans. 5.6"C. 

P.4.9 The plane, pin-jointed rectangular framework shown in Fig. P.4.9(a) has 
one member (24) which is loosely attached at joint 2: so that relative movement 
between the end of the member and the joint may occur when the framework is 
loaded. This movement is a maximum of 0.25mm and takes place only in the 
direction 24. Figure P.4.9(b) shows joint 2 in detail when the framework is 
unloaded. Find the value of the load P at which member 24 just becomes an effective 
part of the structure and also the loads in all the members when P is 10 000 N. All 
bars are of the same material ( E  = 70000N/mm2) and have a cross-sectional area 
of 300mm2. 

Ans. P = 2947N: F12 = 2481.6N(T), F23 = 1861.2N(T), F34 = 2481.6N(T), 
F41 = 5638.9N(C), F1, = 9398.1N(T), F24 = 3102.ON(C). 

/0.25mrn 
600 mm 

I 

I- 

I 

Fig. P,4.9 

P.4.10 The plane frame ABCD of Fig. P.4.10 consists of three straight members 
with rigid joints at B and C, freely hinged to rigid supports at A and D. The flexural 
rigidity of AB and CD is twice that of BC. A distributed load is applied to AB, varying 
linearly in intensity from zero at A to w per unit length at B. 

Determine the distribution of bending moment in the frame, illustrating your 
results with a sketch showing the principal values. 

MB = 7w12/45, Mc = 8w12/45. Cubic distribution on AB, linear on BC Ans. 
and CD. 
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Fig. P.4.10 

P.4.11 A bracket BAC is composed of a circular tube AB, whose second moment 
of area is 1.51, and a beam AC, whose second moment of area is I and which has 
negligible resistance to torsion. The two members are rigidly connected together at 
A and built into a rigid abutment at B and C as shown in Fig. P.4.11. A load P is 
applied at A in a direction normal to the plane of the figure. 

Determine the fraction of the load which is supported at C. Both members are of 
the same material for which G = 0.38E. 

Ans. 0.72P. 

A 

Fig. P.4.11 

P.4.12 In the plane pin-jointed framework shown in Fig. P.4.12, bars 25, 35, 15 
and 45 are linearly elastic with modulus of elasticity E.  The remaining three bars 
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obey a non-linear elastic stress-strain law given by 

E=T[l+ (31 
E 

where r is the stress corresponding to strain E .  Bars 15,45 and 23 each have a cross- 
sectional area A,  and each of the remainder has an area of A l a .  The length of 
member 12 is equal to the length of member 34 = 2L. 

If a vertical load Po is applied at joint 5 as shown, show that the force in the member 
23, i.e. FZ3, is given by the equation 

any'+' + 3 . 5 ~  + 0.8 = 0 

where 
x = F23/Po and (Y = Po/Ar0 

Fig. P.4.12 

P.4.13 Figure P.4.13 shows a plan view of two beams, AB 9150mm long and DE 
6100mm long. The simply supported beam AB carries a vertical load of 100000N 
applied at F,  a distance one-third of the span from B. This beam is supported at C 
on the encastrk beam DE. The beams are of uniform cross-section and have the 
same second moment of area 83.5 x lo6 mm4. E = 200 000 N/mm2. Calculate the 
deflection of C .  

A m .  5.6mm. 

Fig. P.4.13 
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P.4.14 The plane structure shown in Fig. P.4.14 consists of a uniform continuous 
beam ABC pinned to a fixture at A and supported by a framework of pin-jointed 
members. All members other than ABC have the same cross-sectional area A .  For 
ABC, the area is 4A and the second moment of area for bending is A 2 / 1 6 .  The 
material is the same throughout. Find (in terms of w, A ,  a and Young’s modulus 
E)  the vertical displacement of point D under the vertical loading shown. Ignore 
shearing strains in the beam ABC. 

A m .  30232wa2/3AE. 

1.5 w h i t  length 

l i l l i l l  0 

Fig. P.4.14 

P.4.15 The fuselage frame shown in Fig. P.4.15 consists of two parts, ACB and 
ADB, with frictionless pin joints at A and B. The bending stiffness is constant in 
each part, with value EI for ACB and xEI for ADB. Find x so that the maximum 
bending moment in ADB will be one half of that in ACB. Assume that the deflections 
are due to bending strains only. 

Ans. 0.092. 

Fig. P.4.15 

P.4.16 A transverse frame in a circular section fuel tank is of radius r and 
constant bending stiffness EI. The loading on the frame consists of the hydrostatic 
pressure due to the fuel and the vertical support reaction P, which is equal to the 
weight of fuel carried by the frame, shown in Fig. P.4.16. 
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t '  

Fig. P.4.16 

Taking into account only strains due to bending, calculate the distribution of 
bending moment around the frame in terms of the force P, the frame radius r and 
the angle 0. 

Ans. M = Pr(0.160 - 0 . 0 8 0 ~ 0 ~ 0  - 0.1590sin0). 

P.4.17 The frame shown in Fig. P.4.17 consists of a semi-circular arc, centre B, 
radius a, of constant flexural rigidity EI jointed rigidly to a beam of constant flexural 
rigidity 2EZ. The frame is subjected to an outward loading as shown arising from an 
internal pressure po. 

Find the bending moment at points A, B and C and locate any points of contra- 
flexure. 

A is the mid point of the arc. Neglect deformations of the frame due to shear and 
noi-mal forces. 

Ans. MA = -0.057pod, MB = -0.292poa2, Mc = 0.208poa2. 
Points of contraflexure: in AC, at 51.7' from horizontal; in BC, 0.764~ from B. 

Fig. P.4.17 

P.4.18 The rectangular frame shown in Fig. P.4.18 consists of two horizontal 
members 123 and 456 rigidly joined to three vertical members 16, 25 and 34. All 
five members have the same bending stiffness EZ. 
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Fig. P.4.18 

The frame is loaded in its own plane by a system of point loads P which are 
balanced by a constant shear flow q around the outside. Determine the distribution 
of the bending moment in the frame and sketch the bending moment diagram. In 
the analysis take bending deformations only into account. 

A m .  Shears only at mid-points of vertical members. On the lower half of the 
frame S4, = 0.27P to right, SS2 = 0.69P to left, = 1.08P to left; the bending 
moment diagram follows. 

P.4.19 A circular fuselage frame shown in Fig. P.4.19, of radius r and constant 
bending stiffness EI, has a straight floor beam of length r d ,  bending stiffness EI, 
rigidly fixed to the frame at either end. The frame is loaded by a couple T applied 
at its lowest point and a constant equilibrating shear flow q around its periphery. 
Determine the distribution of the bending moment in the frame, illustrating your 
answer by means of a sketch. 

In the analysis, deformations due to shear and end load may be considered 
negligible. The depth of the frame cross-section in comparison with the radius r 
may also be neglected. 

Am. MI4 = T(0.29 sine - 0.160), = 0.30Tx/r, 
M4, = T(0.59sine - 0.166) 

1 

Fig. P.4.19 



Problems 119 

Fig. P.4.20 

P.4.20 A thin-walled member BCD is rigidly built-in at D and simply supported 
at the same level at C ,  as shown in Fig. P.4.20. 

Find the horizontal deflection at B due to the horizontal force F. Full account must 
be taken of deformations due to shear and direct strains, as well as to bending. 

The member is of uniform cross-section, of area A, relevant second moment of area 
in bending Z = A?/400 and ‘reduced‘ effective area in shearing A‘ = A/4. Poisson’s 
ratio for the material is v = 1/3. 

Give the answer in terms of F,  r, A and Young’s modulus E.  

Ans. 448FrlEA. 

P.4.21 Figure P.4.21 shows two cantilevers, the end of one being vertically above 
the other and connected to it by a spring AB. Initially the system is unstrained. A 
weight W placed at A causes a vertical deflection at A of SI and a vertical deflection 
at B of 6,. When the spring is removed the weight W at A causes a deflection at A of 
6,. Find the extension of the spring when it is replaced and the weight W is transferred 
to B. 

Ans. &(Si - S,)/(S3 - SI). 

Fig. P.4.21 

P.4.22 A beam 2400mm long is supported at two points A and B which are 
144Omm apart; point A is 360- from the left-hand end of the beam and point B is 
600 mm from the right-hand end; the value of EZ for the beam is 240 x lo8 N mm2. 
Find the slope at the supports due to a load of 2000N applied at the mid-point of AB. 

Use the reciprocal theorem in conjunction with the above result, to find the 
deflection at the mid-point of AB due to loads of 3000N applied at each of the 
extreme ends of the beam. 

Ans. 0.011,15.8mm. 
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P.4.23 Figure P.4.23 shows a frame pinned to its support at A and B. The frame 
centre-line is a circular arc and the section is uniform, of bending stiffness EI and 
depth d .  Find an expression for the maximum stress produced by a uniform tempera- 
ture gradient through the depth, the temperatures on the outer and inner surfaces 
being respectively raised and lowered by amount T .  The points A and B are unaltered 
in position. 

Ans. 1.30ETa. 

Fig. P.4.23 

P.4.24 A uniform, semi-circular fuselage frame is pin-jointed to a rigid portion of 
the structure and is subjected to a given temperature distribution on the inside as 
shown in Fig. P.4.24. The temperature falls linearly across the section of the frame 
to zero on the outer surface. Find the values of the reactions at the pin-joints and 
show that the distribution of the bending moment in the frame is 

0.59EIaOo COS ?/J 
h M =  

given that: 

(a) the temperature distribution is 
9 = 80cos2?/J for - ~ / 4  < ?/J < ~ / 4  

8 = 0  for - ~ / 4  > I I ,  > n/4 

Fig. P.4.24 
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(b) bending deformations only are to be taken into account. 

Q = coefficient of linear expansion of frame material 

h = depth of cross-section 
r = mean radius of frame 

EI = bending rigidity of frame 



Bending of thin plates 

Generally, we define a thin plate as a sheet of material whose thickness is small 
compared with its other dimensions but which is capable of resisting bending, in 
addition to membrane forces. Such a plate forms a basic part of an aircraft structure, 
being, for example, the area of stressed skin bounded by adjacent stringers and ribs in 
a wing structure or by adjacent stringers and frames in a fuselage. 

In this chapter we shall investigate the effect of a variety of loading and support 
conditions on the small deflection of rectangular plates. Two approaches are 
presented: an ‘exact’ theory based on the solution of a differential equation and an 
energy method relying on the principle of the stationary value of the total potential 
energy of the plate and its applied loading. The latter theory will subsequently be 
used in Chapter 6 to determine buckling loads for unstiffened and stiffened panels. 

The thin rectangular plate of Fig. 5.1 is subjected to pure bending moments of 
intensity M ,  and M y  per unit length uniformly distributed along its edges. The 
former bending moment is applied along the edges parallel to the y axis, the latter 
along the edges parallel to the x axis. We shall assume that these bending moments 
are positive when they produce compression at the upper surface of the plate and 
tension at the lower. 

If we further assume that the displacement of the plate in a direction parallel to the 
z axis is small compared with its thickness t and that sections which are plane before 
bending remain plane after bending, then, as in the case of simple beam theory, the 
middle plane of the plate does not deform during the bending and is therefore a 
neutralplane. We take the neutral plane as the reference plane for our system of axes. 

Let us consider an element of the plate of side SxSy and having a depth equal to the 
thickness t of the plate as shown in Fig. 5.2(a). Suppose that the radii of curvature of 
the neutral plane n are px and pv in the xz and y z  planes respectively (Fig. 5.2(b)). 
Positive curvature of the plate corresponds to the positive bending moments which 
produce displacements in the positive direction of the z or downward axis. Again, 
as in simple beam theory, the direct strains E, and E), corresponding to direct stresses 
a, and oy of an elemental lamina of thickness Sz a distance z below the neutral plane 
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Fig. 5.1 Plate subjected to pure bending. 

are given by 
1 Z 

E x = - ,  Ey’-  
P x  PY 

Referring to Eqs (1.47) we have 
1 1 

&,=-(cJx-vcry); E E y = - ( c r y - V c r x )  E (5.2) 

Substituting for E, and from Eqs (5.1) into Eqs (5.2) and rearranging gives 

EZ 

Ez 
cr =-(’+;) 1 - 2  py 

(5.3) 

(a) (b) 

Fig. 5.2 (a) Direct stress on lamina of plate element; (b) radii of curvature of neutral plane. 



124 Bending of thin plates 

As would be expected from our assumption of plane sections remaining plane the 
direct stresses vary linearly across the thickness of the plate, their magnitudes depend- 
ing on the curvatures (i.e. bending moments) of the plate. The internal direct stress 
distribution on each vertical surface of the element must be in equilibrium with the 
applied bending moments. Thus 

and 

Substituting for ux and cy from Eqs (5.3) gives 

M x =  Jli2 --(‘+;)dz Ez2 
- t / 2  1 - lJ2 px 

Let 

r/2 Ez2 Et3 
- t / 2  1 - 3 

D = J  - dz= 
12(1 - 3) 

Then 

My = D ( ;  + ;) 

(5.4) 

in which D is known as theflexural rigidity of the plate. 
If w is the deflection of any point on the plate in the z direction, then we may relate 

w to the curvature of the plate in the same manner as the well-known expression for 
beam curvature. Hence 

1 - a2w 1 a2w 
Px a$’ P,=-- ay” 

the negative signs resulting from the fact that the centres of curvature occur above the 
plate in which region z is negative. Equations (5.5) and (5.6) then become 

M x = - D ( S + ~ * )  dY2 (5.7) 
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Fig. 5.3 Anticlastic bending 

Equations (5.7) and (5.8) define the deflected shape of the plate provided that M ,  and 
My are known. If either M, or My is zero then 

d2W - a 2 W  d2W - d2W 
ax2 - 8Y2 ay2 - dX2 
- -v- or - -v- 

and the plate has curvatures of opposite signs. The case of My = 0 is illustrated in 
Fig. 5.3. A surface possessing two curvatures of opposite sign is known as an 
anticlastic surface, as opposed to a synclastic surface which has curvatures of the 
same sign. Further, if M ,  = My = M then from Eqs (5.5) and (5.6) 

1 1 1  

PX Py P 
- - - - _  - -  

Therefore, the deformed shape of the plate is spherical and of curvature 

- - d * - v - 7 .  -_ = 

g 
In general, the bending moments applied to the plate will not be in planes 
perpendicular to its edges. Such bending moments, however, may be resolved in 
the normal manner into tangential and perpendicular components, as shown in 
Fig. 5.4. The perpendicular components are seen to be M ,  and My as before, while 

Fig. 5.4 Plate subjected to bending and twisting. 
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Y 

(a 1 (b) 

Fig. 5.5 (a) Plate subjected to bending and twisting; (b) tangential and normal moments on an arbitraty 
plane. 

the tangential components Mxy and MYx (again these are moments per unit length) 
produce twisting of the plate about axes parallel to the x and y axes. The system of 
sufhes and the sign convention for these twisting moments must be clearly under- 
stood to avoid confusion. Mxy is a twisting moment intensity in a vertical x plane 
parallel to the y axis, while Myx is a twisting moment intensity in a vertical y plane 
parallel to the x axis. Note that the first suffix gives the direction of the axis of 
the twisting moment. We also define positive twisting moments as being clockwise 
when viewed along their axes in directions parallel to the positive directions of 
the corresponding x or y axis. In Fig. 5.4, therefore, all moment intensities are 
positive. 

Since the twisting moments are tangential moments or torques they are resisted by 
a system of horizontal shear stresses T,?, as shown in Fig. 5.6. From a consideration of 
complementary shear stresses (see Fig. 5.6) Mxy = -My,, so that we may represent a 
general moment application to the plate in terms of M,, My and Mxy as shown in 
Fig. 5.5(a). These moments produce tangential and normal moments, Mt and M,, 
on an arbitrarily chosen diagonal plane FD. We may express these moment intensities 
(in an analogous fashion to the complex stress systems of Section 1.6) in terms of M,, 
My and MXy. Thus, for equilibrium of the triangular element ABC of Fig. 5.5(b) in a 
plane perpendicular to AC 

M,AC = MxAB cos a + MyBC sin Q - MxyAB sin a - MXyBC cos a 

giving 

M, = M, cos2 a + My sin2 a - Mxy sin 2a (5.10) 

Similarly for equilibrium in a plane parallel to CA 
MtAC = M,AB sin a - MYBC cos Q + MxyAB cos Q - MxyBC sin Q 

or 

( M x  - sin 2a + Mxy cos 2a 
2 

Mt = (5.11) 
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(Compare Eqs (5.10) and (5.1 1) with Eqs (1.8) and (1.9).) We observe from Eq. (5.11) 
that there are two values of a, differing by 90” and given by 

2 M x y  

Mx - My 
tan20 = - 

for which Mt = 0, leaving normal moments of intensity M, on two mutually 
perpendicular planes. These moments are termed principal moments and their 
corresponding curvatures principal curvatures. For a plate subjected to pure bending 
and twisting in which M,, My and Mxy are invariable throughout the plate, the 
principal moments are the algebraically greatest and least moments in the plate. It 
follows that there are no shear stresses on these planes and that the corresponding 
direct stresses, for a given value of z and moment intensity, are the algebraically 
greatest and least values of direct stress in the plate. 

Let us now return to the loaded plate of Fig. 5.5(a). We have established, in 
Eqs (5.7) and (5.8), the relationships between the bending moment intensities M ,  
and My and the deflection w of the plate. The next step is to relate the twisting 
moment Mxy to w. From the principle of superposition we may consider Mxy 
acting separately from M, and My.  As stated previously Mxy is resisted by a 
system of horizontal complementary shear stresses on the vertical faces of sections 
taken throughout the thickness of the plate parallel to the x and y axes. Consider 
an element of the plate formed by such sections, as shown in Fig. 5.6. The complemen- 
tary shear stresses on a lamina of the element a distance z below the neutral plane are, 
in accordance with the sign convention of Section 1.2, ?xy. Therefore, on the face 
ABCD 

D 

Fig. 5.6 Complementary shear stresses due to twisting moments Mv. 
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Fig. 5.7 Determination of shear strain 5. 

and on the face ADFE 
t l2  

MxySx = - rxySxzdz I, 
giving 

or in terms of the shear strain yxy and modulus of rigidity G 

(5.12) 

Referring to Eqs (1.20), the shear strain yxy is given by 
av au 

yxy = - + - 
ax  ay 

We require, of course, to express -yxy in terms of the deflection w of the plate; this may 
be accomplished as follows. An element taken through the thickness of the plate will 
suffer rotations equal to dw/dx and aw/ay in the xz and yz planes respectively. 
Considering the rotation of such an element in the xz plane, as shown in Fig. 5.7, 
we see that the displacement u in the x direction of a point a distance z below the 
neutral plane is 

Similarly, the displacement in the y direction is 
dW 

aY 
v =  --z 

Hence, substituting for u and v in the expression for -yxy we have 

a 2 W  
-yxy = -22- 

axay 
(5.13) 
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whence from Eq. (5.12) 

or 

M - G t 3  6% 
xy 6 axay 

Replacing G by the expression E/2( 1 + v) established in Eq. (1.45) gives 

Et3 @w 
M,.. = 12( 1 + v) axay 

Multiplying the numerator and denominator of this equation by the factor (1 - v) 
yields 

a 2 W  
Mxy = D(1 - v)- 

axay 
(5.14) 

Equations (5.7), (5.8) and (5.14) relate the bending and twisting moments to the 
plate deflection and are analogous to the bending moment-curvature relationship 
for a simple beam. 

The relationships between bending and twisting moments and plate deflection are 
now employed in establishing the general differential equation for the solution of a 
thin rectangular plate, supporting a distributed transverse load of intensity q per 
unit area (see Fig. 5.8). The distributed load may, in general, vary over the surface 
of the plate and is therefore a function of x and y .  We assume, as in the preceding 
analysis, that the middle plane of the plate is the neutral plane and that the plate 
deforms such that plane sections remain plane after bending. This latter assumption 
introduces an apparent inconsistency in the theory. For plane sections to remain 

z 

Fig. 5.8 Plate supporting a distributed transverse load. 
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Fig. 5.9 Plate element subjected to bending, twisting and transverse loads. 

plane the shear strains yxz and yyz must be zero. However, the transverse load 
produces transverse shear forces (and therefore stresses) as shown in Fig. 5.9. We 
therefore assume that although -yxz = rxz/G and yyz = ryi/G are negligible the 
corresponding shear forces are of the same order of magnitude as the applied load 
q and the moments M,, My and Mxy. This assumption is analogous to that made 
in a slender beam theory in which shear strains are ignored. 

The element of plate shown in Fig. 5.9 supports bending and twisting moments as 
previously described and, in addition, vertical shear forces Q, and Qy per unit length 
on faces perpendicular to the x and y axes respectively. The variation of shear stresses 
rxz and ryz along the small edges Sx, Sy of the element is neglected and the resultant 
shear forces QxSy and Qy6x are assumed to act through the centroid of the faces of the 
element. From the previous sections 

In a similar fashion 

t l2  t /2  
Q, = j-t12 T~ h, Qy = jPtl2 ryZ dz (5.15) 

For equilibrium of the element parallel to Oz and assuming that the weight of the 
plate is included in q 

or, after simplification 

de, a Q y  
ax  ay 

+-+q=o (5.16) 
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Taking moments about the x axis 

Simplifying this equation and neglecting small quantities of a higher order than those 
retained gives 

aiwXy aM, 
ax a y  

+ Q , = O  

Similarly taking moments about the y axis we have 

aMx 
a y  ax + Q , = O  

Substituting in Eq. (5.16) for Q, and Qy from Eqs (5.18) and (5.17) we obtain 

a2Mx #M,, +---- #My #MXy 
- -4 --- ax2 axay ay2 axay 

or 

(5.17) 

(5.18) 

(5.19) 

Replacing M,, Mxy and My in Eq. (5.19) from Eqs (5.7), (5.14) and (5.8) gives 

(5.20) 

This equation may also be written 

or 

The operator (#/ax2 + # / a y 2 )  is the well-known Laplace operator in two dimen- 
sions and is sometimes written as V2. Thus 

Generally, the transverse distributed load q is a function of x and y so that the 
determination of the deflected form of the plate reduces to obtaining a solution of 
Eq. (5.20), which satisfies the known boundary conditions of the problem. The 
bending and twisting moments follow from Eqs (5.7), (5.8) and (5.14), and the 
shear forces per unit length Qx and Q, are found from Eqs (5.17) and (5.18) by 
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substitution for M,, My and Mxy in terms of the deflection w of the plate; thus 

a a2w 
Q a M x  a M x y  - -D - (- + e) 

ax ay ax ax2 ayz x -  

Q aM, dMXY 
- ay ax 

(5.21) 

(5.22) 

Direct and shear stresses are then calculated from the relevant expressions relating 
them to M,, My,  Mxy, Q, and Qy. 

Before discussing the solution of Eq. (5.20) for particular cases we shall establish 
boundary conditions for various types of edge support. 

I 

5.3.1 The simply supported edge 

Let us suppose that the edge x = 0 of the thin plate shown in Fig. 5.10 is free to rotate 
but not to deflect. The edge is then said to be simply supported. The bending moment 
along this edge must be zero and also the deflection w = 0. Thus 

The condition that w = 0 along the edge x = 0 also means that 

aw a2w - 
ay ay2 - O  

along this edge. The above boundary conditions therefore reduce to 

(5.23) 

Fig. 5.10 Plate of dimensions a x b. 
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_1___1_1__ 

5.3.2 The built-in edge 

If the edge x = 0 is built-in or firmly clamped so that it can neither rotate nor deflect, 
then, in addition to MI, the slope of the middle plane of the plate normal to this edge 
must be zero. That is 

(5.24) 

5.3.3 The free edge 

Along a free edge there are no bending moments, twisting moments or vertical 
shearing forces, so that if x = 0 is the free edge then 

(MJx=o = 0, ( M x y ) x = o  = 0, (QX),=o = 0 
giving, in this instance, three boundary conditions. However, Kirchhoff (1850) 
showed that only two boundary conditions are necessary to obtain a solution of 
Eq. (5.20), and that the reduction is obtained by replacing the two requirements of 
zero twisting moment and zero shear force by a single equivalent condition. Thomson 
and Tait (1883) gave a physical explanation of how this reduction may be effected. 
They pointed out that the horizontal force system equilibrating the twisting 
moment Mxy may be replaced along the edge of the plate by a vertical force system. 

Consider two adjacent elements Syl and Sy2 along the edge of the thin plate of 
Fig. 5.1 1. The twisting moment Mx,,6yl on the element byl may be replaced by 
forces Mxy a distance Syl apart. Note that Mxy, being a twisting moment per unit 
length, has the dimensions of force. The twisting moment on the adjacent element 
Sy2 is [Mxy+ (aMxy/dy)Gy]by2. Again this may be replaced by forces 

X 
Y 

Fig. 5.1 1 Equivalent vertical force system. 
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Mxy + (dMx,,/dy)Sy. At the common surface of the two adjacent elements there is 
now a resultant force (aMx,,/ay)by or a vertical force per unit length of aMxy/ay.  
For the sign convention for Q, shown in Fig. 5.9 we have a statically equivalent 
vertical force per unit length of (Q, - 8Mx,,/ay).  The separate conditions for a free 
edge of (Mxy)x=o = 0 and (Qx)x=o  = 0 are therefore replaced by the equivalent 
condition 

(ex-%) x=o = O  

or in terms of deflection 

Also, for the bending moment along the free edge to be zero 

(5.25) 

(5.26) 

The replacement of the twisting moment Mxy along the edges x = 0 and x = a of a 
thin plate by a vertical force distribution results in leftover concentrated forces at the 
corners of Mxy as shown in Fig. 5.11. By the same argument there are concentrated 
forces Myx produced by the replacement of the twisting moment Myx. Since 
Mxy = -My,, then resultant forces 2Mxy act at each corner as shown and must be 
provided by external supports if the corners of the plate are not to move. The 
directions of these forces are easily obtained if the deflected shape of the plate is 
known. For example, a thin plate simply supported along all four edges and uni- 
formly loaded has a w l a x  positive and numerically increasing, with increasing y 
near the corner x = 0, y = 0. Hence #w/axay is positive at this point and from 
Eq. (5.14) we see that Mxy is positive and Myx negative; the resultant force 2Mv is 
therefore downwards. From symmetry the force at each remaining corner is also 
2Mxy downwards so that the tendency is for the corners of the plate to rise. 

Having discussed various types of boundary conditions we shall proceed to obtain 
the solution for the relatively simple case of a thin rectangular plate of dimensions 
a x b, simply supported along each of its four edges and carrying a distributed load 
q(x,  y ) .  We have shown that the deflected form of the plate must satisfy the differential 
equation 

a4w a4w a4w q ( x , y )  
a# a x ~ a y 2  ay4 D 
-+2-+-=- 

with the boundary conditions 
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Navier (1820) showed that these conditions are satisfied by representing the deflection 
w as an infinite trigonometrical or Fourier series 

m w  mrx nry w =  EA,,,,sin- sin a m = l  n = l  
(5.27) 

in which m represents the number of half waves in the x direction and n the 
corresponding number in the y direction. Further, A,,, are unknown coefficients 
which must satisfy the above differential equation and may be determined as follows. 

We may also represent the load q(x, y) by a Fourier series, thus 

mrx nry 
q(x,y) = C a m n s i n - s i n b  

m = l  n = l  a 

m w  

(5.28) 

A particular coefficient amtnt is calculated by first multiplying both sides of Eq. (5.28) 
by sin(m'rx/a) sin(n'ry/b) and integrating with respect to x from 0 to a and with 
respect to y from 0 to b. Thus 

m'rx . n'ry 
a b 

q(x,y)sin-sin- dxdy 

. mrx m'rx nry n'ry 
sin - sin - dx dy 

= m = l  2 n = l  T/:jIamsin-sin- a a b b 

- ab 
4 

- 

since 

a 
2 

_ -  - when m = m '  

and 

. nry . n'ry 
sin-sin- dy = 0 when n # n' so" b b 

b 
2 

_ -  - when n = n '  

It follows that 

4 a b  m'rx n'ry 
am!,# = - 1 1 q(x, y) sin - sin- dx dy 

ab o o a b 
(5.29) 

Substituting now for w and q(x, y) from Eqs (5.27) and (5.28) into the differential 
equation for w we have 
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This equation is valid for all values of x and y so that 

or in alternative form 

giving 

1 amn A ,=-  dD [(m2/a2) + (n2/b2)I2 

Hence 

in which am, is obtained from Eq. (5.29). Equation (5.30) is the general solution for a 
thin rectangular plate under a transverse load q(x, y). 

Example 5.1 
A thin rectangular plate a x b is simply supported along its edges and carries a uni- 
formly distributed load of intensity 40. Determine the deflected form of the plate 
and the distribution of bending moment. 

Since q(x, y) = qo we find from Eq. (5.29) that 

mxx . m y  16% am, = %r sin-sin- dxdy = - 
a b o o  a b Gmn 

where in and n are odd integers. For m or n even, am, = 0. Hence from Eq. (5.30) 

0) 
16q0 2 2 sin(m.rrx/a) sin(nry/b) w = -  

2 b2 2 40 m=1,3,5 n=1,3,5 mn[(m2/a2> + (n  / 11 
The maximum deflection occurs at the centre of the plate where x = a/2, y = b/2. 
Thus 

(ii) 

This series is found to converge rapidly, the first few terms giving a satisfactory 
answer. For a square plate, taking Y = 0.3, summation of the first four terms of the 
series gives 

a4 
w,, = 0.0443% - 

Et3 
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Substitution for MI from Eq. (i) into the expressions for bending moment, Eqs (5.7) 
and (5.8), yields 

[(m2/a2) + v(n2/h2)]  . m7rx n7ry 
sin - sin (iii) 

mn[(m2/a2)  + ( n 2 / b 2 ) 1 2  a 

mn[(m2/a2)  + ( n 2 / h 2 ) 1 2  a 

[v (m2/a2)  + (n2 /h2) ]  . m7rx . n7ry 
sin - sin - (iv) h 

M,. = - 

Maximum values occur at the centre of the plate. For a square plate a = h and the first 
five terms give 

M,,,,, = M,,,,, = 0.0479qoa2 

Comparing Eqs (5.3) with Eqs (5.5) and (5.6) we observe that 

12M,z 12M"Z , ay=- 
t3 

a,y = - 
t 3  

Again the maximum values of these stresses occur at the centre of the plate at 
z = f t / 2  so that 

6MX 6 M ,  
t2 

a2 
ax,rnax = g y p a x  = 0.287q0 - 

t2 

ax,rnax = - t2 > ay,rnax = - 

For the square plate 

The twisting moment and shear stress distributions follow in a similar manner. 

So far our discussion has been limited to small deflections of thin plates produced by 
different forms of transverse loading. In these cases we assumed that the middle or 
neutral plane of the plate remained unstressed. Additional in-plane tensile, compres- 
sive or shear loads will produce stresses in the middle plane, and these, if of sufficient 
magnitude, will affect the bending of the plate. Where the in-plane stresses are small 
compared with the critical buckling stresses it is sufficient to consider the two systems 
separately; the total stresses are then obtained by superposition. On the other hand, if 
the in-plane stresses are not small then their effect on the bending of the plate must be 
considered. 

The elevation and plan of a small element SxSy of the middle plane of a thin 
deflected plate are shown in Fig. 5.12. Direct and shear forces per unit length pro- 
duced by the in-plane loads are given the notation Nx, Ny and Nxy and are assumed 
to be acting in positive senses in the directions shown. Since there are no resultant 
forces in the x or y directions from the transverse loads (see Fig. 5.9) we need only 
include the in-plane loads shown in Fig. 5.12 when considering the equilibrium of 
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Y 

aNx 

S X  

.- 
a x  6 X  

Fig. 5.12 In-plane forces on plate element. 

the element in these directions. For equilibrium parallel to Ox 

aw a2w a W  N,+-SX SYCOS -+-SX -N,~YCOS- ( 2 ) (ax  ax2 ) ax 

SX - NYxSx = 0 

For small deflections awlax and (awlax) + (#w/a?)Sx are small and the cosines of 
these angles are therefore approximately equal to one. The equilibrium equation thus 
simplifies to 

Similarly for equilibrium in they direction we have 

(5.31) 

(5.32) 

Note that the components of the in-plane shear loads per unit length are, to a first 
order of approximation, the value of the shear load multiplied by the projection of 
the element on the relevant axis. 

The determination of the contribution of the shear loads to the equilibrium of the 
element in the z direction is complicated by the fact that the element possesses 
curvature in both xz and yz planes. Therefore, from Fig. 5.13 the component in the 
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Y 

Fig. 5.13 Component of shear loads in the z direction. 

z direction due to the Nxy shear loads only is 

or 

a2 w aNxy aw 
sxsy + - - axsy 

Nxy axay ax ay 
neglecting terms of a lower order. Similarly, the contribution of N,,x is 

d N  aw 
sxsy + -25 - sxsy d2W 

Nyx axay ay ax 
The components arising from the direct forces per unit length are readily obtained 

from Fig. 5.12, namely 

or 

a2W aN, dw 
N, - SXSY + - - 6 x 6 ~  

ax2 ax ax 
and similarly 

The total force in the z direction is found from the summation of these expressions 
and is 

d2W 8Nxy aw 
ax ay aXaE' ay ax + SxSy + 2Nxy - SxSy + - - Sxby 
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in which Nyf is equal to and is replaced by N,,.. Using Eqs (5.31) and (5.32) we reduce 
this expression to 

(N,$ + NJ $ + 2Nx, - axay 

Since the in-plane forces do not produce moments along the edges of the element 
then Eqs (5.17) and (5.18) remain unaffected. Further, Eq. (5.16) may be modified 
simply by the addition of the above vertical component of the in-plane loads to 
qbxby. Therefore, the governing differential equation for a thin plate supporting 
transverse and in-plane loads is, from Eq. (5.20) 

Example 5.2 
Determine the deflected form of the thin rectangular plate of Example 5.1 
if, in addition to a uniformly distributed transverse load of intensity qo, it supports 
an in-plane tensile force N,  per unit length. 

The uniform transverse load may be expressed as a Fourier series (see Eq. (5.28) 
and Example 5.1), viz. 

w co 1 . mrx . nry 
sin - sin - 16qo q = 7 C  m=1,3,5 n=1,3:5 C z  a b 

Equation (5.33) then becomes, on substituting for q 

a4W -+2-+--2-=- 
ax4 ax2dy2 ay4 D ax’ $0 

nry (i) -sin - sin - 
mn a b 

a4w @w N d2w 16q0 2 2 1 mrx 

m=1,3,5 n=1,3,5 

The appropriate boundary conditions are 

a2W 

ax2 
w = - = O  at x = O  and a 

w = - = O  a2 w at y = O  and b 
aY2 

These conditions may be satisfied by the assumption of a deflected form of the plate 
given by 

w = 2 2Am,sin-sin- mrx nry 
n h 

Substituting this expression into Eq. (i) gives 

for odd rn and n 1670 
Am, = 

A,,, = 0 for even m and n 
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Therefore 

. m m  n r y  
sin - sin (ii) 

1 
a 2 2 2  

Ml = - ( t2 I i2)  I N x m 2 ]  

.lr2Da2 

Comparing Eq. (ii) with Eq. (i) of Example 5.1 we see that, as a physical inspection 
would indicate, the presence of a tensile in-plane force decreases deflection. Con- 
versely a compressive in-plane force would increase the deflection. 

--e- ,.S.+.Y.T 

aving 
Suppose that a thin plate has an initial curvature so that the deflection of any point in 
its middle plane is wo. We assume that wo is small compared with the thickness of the 
plate. The application of transverse and in-plane loads will cause the plate to deflect a 
further amount w1 so that the total deflection is then w = wo + w l .  However, in the 
derivation of Eq. (5.33) we note that the left-hand side was obtained from expressions 
for bending moments which themselves depend on the change of curvature. We 
therefore use the deflection w1 on the left-hand side, not w. The effect on bending 
of the in-plane forces depends on the total deflection w so that we write Eq. (5 .33 )  

The effect of an initial curvature on deflection is therefore equivalent to the applica- 
tion of a transverse load of intensity 

Thus, in-plane loads alone produce bending provided there is an initial curvature. 
Assuming that the initial form of the deflected plate is 

r n m  . n r y  
sln b wo = 2 2 A,, sin- 

a m = l  n = l  
(5.35) 

then by substitution in Eq. (5.34) we find that if Nx is compressive and N,. = N.yy = 0 

mnx . n r y  
3- w1 = 2 2 Bmn sin- 

a m=l n = l  
(5.36) 

where 

AmnNx 
Bmn=( , T ~ D  a 2 ) [ m  + (n2a2/mb2)12 - N ,  

We shall return to the consideration of initially curved plates in the discussion of the 
experimental determination of buckling loads of flat plates in Chapter 6. 
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Two types of solution are obtainable for thin plate bending problems by the applica- 
tion of the principle of the stationary value of the total potential energy of the plate 
and its external loading. The first, in which the form of the deflected shape of the plate 
is known, produces an exact solution; the second, the Rayleigh-Ritz method, assumes 
an approximate deflected shape in the form of a series having a finite number of terms 
chosen to satisfy the boundary conditions of the problem and also to give the kind of 
deflection pattern expected. 

In Chapter 4 we saw that the total potential energy of a structural system comprised 
the internal or strain energy of the structural member, plus the potential energy of the 
applied loading. We now proceed to derive expressions for these quantities for the 
loading cases considered in the preceding sections. 

5.6.1 Strain energy produced by bending and twisting 

In thin plate analysis we are concerned with deflections normal to the loaded surface 
of the plate. These, as in the case of slender beams, are assumed to be primarily due to 
bending action so that the effects of shear strain and shortening or stretching of the 
middle plane of the plate are ignored. Therefore, it is sufficient for us to calculate 
the strain energy produced by bending and twisting only as this will be applicable, 
for the reason of the above assumption, to all loading cases. It must be remembered 
that we are only neglecting the contributions of shear and direct strains on the deflec- 
tion of the plate; the stresses producing them must not be ignored. 

Consider the element Sx x Sy of a thin plate a x b shown in elevation in the xz plane 
in Fig. 5.14(a). Bending moments M ,  per unit length applied to its Sy edge produce a 
change in slope between its ends equal to (d2w/dx2)6x. However, since we regard the 
moments M ,  as positive in the sense shown, then this change in slope, or relative 

U 

dw 
ax 

t 
z 

-+- aw a yj - s x  
ax ax ax 

0- 

t 
z 

\ 
a 
ax +- sx  

(a) (b) 

Fig. 5.14 (a) Strain energy of element due to bending; (b) strain energy due to twisting. 
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rotation, of the ends of the element is negative as the slope decreases with increasing x .  
The bending strain energy due to M ,  is then 

-Mx6Y( 1 - s s x )  a 2 W  

2 

Similarly, in the yz plane the contribution of My to the bending strain energy is 

( $ ) 1 
2 
-M,,SX --sy 

The strain energy due to the twisting moment per unit length, Mxy, applied to the by 
edges of the element, is obtained from Fig. 5.14(b). The relative rotation of the by 
edges is (#w/axay)sx so that the corresponding strain energy is 

Finally, the contribution of the twisting moment Mxy on the Sx edges is, in a similar 
fashion 

1 @W - MXYSX - 6y 
2 axay 

The total strain energy of the element from bending and twisting is thus 

) sxsy 
a2w a 2 W  1 2 ( - M, - M y @  + 2Mxy- axay 

Substitution for M,, My  and Mxy from Eqs (5.7), (5.8) and (5.14) gives the total strain 
energy of the element as 

which on rearranging becomes 

Hence the total strain energy U of the rectangular plate a x b is 

Note that if the plate is subject to pure bending only, then M,, = 0 and from Eq. 
(5.14) @w/axay = 0, so that Eq. (5.37) simplifies to 
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5.6.2 Potential energy of a transverse load 

An element Sx x Sy of the transversely loaded plate of Fig. 5.8 supports a load qSxSy. 
If the displacement of the element normal to the plate is w then the potential energy 
SV of the load on the element referred to the undeflected plate position is 

SV = -wqSxSy (See Section 4.2) 

Therefore, the potential energy V of the total load on the plate is given by 
a b  

0 0  
V =  -1 1 wqdxdy (5.39) 

5.6.3 Potential energy of in-plane loads 

We may consider each load N,, Ny and Nxy in turn, then use the principle of super- 
position to determine the potential energy of the loading system when they act 
simultaneously. Consider an elemental strip of width Sy along the length a of the 
plate in Fig. 5.15(a). The compressive load on this strip is N,Sy and due to the bending 
of the plate the horizontal length of the strip decreases by an amount A, as shown in 
Fig. 5.15(b). The potential energy SV, of the load NJy,  referred to the undeflected 
position of the plate as the datum, is then 

SV, = -N,ASy (5.40) 

From Fig. 5.15(b) the length of a small element Sa of the strip is 

Sa = (Sx2 + SW2) t  

and since awlax is small then 

Sa M sx [1+; (g )’I 
Hence 

giving 

and 

a = d + J o T ( a x >  d l  dw dx 

A = a - d = j  a f l  -(-) dw d~ 
0 2 ax 

Since 

jr (g ) ’ dx only differs from j:i ( g ) * d x  
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a' 

T 
z 

(b) 
Fig. 5.1 5 (a) In-plane loads on plate; (b) shortening of element due to bending. 

by a term of negligible order we write 

A=/:-(-) 1 dw = dx 
2 8 x  

(5.41) 

The potential energy V, of the N,  loading follows from Eqs (5.40) and (5.41), thus 

V,  = - 1 r N,  (g ) dxdy 
2 0 0  

Similarly 

(5.42) 

(5.43) 

The potential energy of the in-plane shear load Nxv may be found by considering 
the work done by N.yy during the shear distortion corresponding to the deflection w 
of an element. This shear strain is the reduction in the right angle C2ABl to the 
angle CIABl of the element in Fig. 5.16 or, rotating C2A with respect to AB, to 
AD in the plane CIAB1, the angle DACl. The displacement C2D is equal to 
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Fig. 5.1 6 Calculation of shear strain corresponding to bending deflection. 

(aw/dy)Sy and the angle DC2Cl is awlax .  Thus C1D is equal to 

aw aw -- 
a x  aybY 

and the angle DACl representing the shear strain corresponding to the bending 
displacement w is 

aw aw 
a x  a y  
-- 

so that the work done on the element by the shear force NxySx is 
1 aw aw - NXySx - - 
2 a x  a y  

Similarly, the work done by the shear force Nxy6y is 
1 aw aw 
- N  S -- 
2 xy y a x  a y  

and the total work done taken over the complete plate is 

It follows immediately that the potential energy of the Nxy loads is 

a w a w  
xy 2 0 0 a x  ay 

V =-'r/ 2Nxy- -  dx dy (5.44) 

and for the complete in-plane loading system we have, from Eqs (5.42), (5.43) and 
(5.44), a potential energy of 

v = -'rr 2 0 0  [.. ( g)2 + Ny( $)2 + a x  ay 
(5.45) 
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We are now in a position to solve a wide range of thin plate problems provided that 
the deflections are small, obtaining exact solutions if the deflected form is known or 
approximate solutions if the deflected shape has to be 'guessed'. 

Considering the rectangular plate of Section 5.3, simply supported along all four 
edges and subjected to a uniformly distributed transverse load of intensity qo, we 
know that its deflected shape is given by Eq. (5.27), namely 

mrx m y  w = 2 gAmnsin-sin- a 
b m = l  n = l  

The total potential energy of the plate is, from Eqs (5.37) and (5.39) 

Substituting in Eq. (5.46) for IC' and realizing that 'cross-product' terms integrate to 
zero, we have 

c o c o  2 m ~ x  2 n ~ - v  
sin - U+V=s"s"{4c 0 0 m = l n = l  EA:n[~4($+$)zsin - a b 

sin --cos - -2(1- v)- (sin - 

-qo EArn, 

m2n27r4 2 m r x  . 2nry 
a2P a b a 

a 

x x  

nz=l n = l  

The term multiplied by 2( 1 - v) integrates to zero and the mean value of sin2 or cos' 
over a complete number of half waves is 4, thus integration of the above expression 
yields 

(5.47) 
4ab 3c, 03 U + V = T C  D " "  E A ;  

nz=1.3,5 n=1:3,5 ni=1,3,5 n=1,3:5 - 
From the principle of the stationary value of the total potential energy we have 

a(U+V) D n4ab (rnn ; z ) 2  4ab 
= - 2 A m n T  -+- - q o r = O  

a A m n  2 r m n  

so that 
16% A, = 

r6Dmn[(m2/d)  + (n2/b2)]' 

giving a deflected form 

sin (mTx/a) sin( m y /  b) 
+ ( n 2 / b 2 ) 1 2  

which is the result obtained in Eq. (i) of Example 5.1. 
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The above solution is exact since we know the true deflected shape of the plate in 
the form of an infinite series for w. Frequently, the appropriate infinite series is not 
known so that only an approximate solution may be obtained. The method of 
solution, known as the Rayleigh-Rifz method, involves the selection of a series for 
w containing a finite number of functions of x and y .  These functions are chosen to 
satisfy the boundary conditions of the problem as far as possible and also to give 
the type of deflection pattern expected. Naturally, the more representative the 
‘guessed’ functions are the more accurate the solution becomes. 

Suppose that the ‘guessed’ series for w in a particular problem contains three 
different functions of x and y .  Thus 

w = Alf i (X,Y)  + A2f2(X,Y) + A3h(X,Y) 
where A l ,  A2 and A3 are unknown coefficients. We now substitute for w in the 
appropriate expression for the total potential energy of the system and assign station- 
ary values with respect to A I ,  A2 and A3 in turn. Thus 

= O  8 ( U +  V) 
= 0, a( u + V )  

8 A  1 8A2 8-43 
= 0, 

giving three equations which are solved for A l ,  A2 and A3.  
To illustrate the method we return to the rectangular plate a x by simply supported 

along each edge and carrying a uniformly distributed load of intensity qo. Let us 
assume a shape given by 

8 ( U +  V )  

7rx 7ry w = A l l  sin-sin- a b  
This expression satisfies the boundary conditions of zero deflection and zero curva- 
ture (Le. zero bending moment) along each edge of the plate. Substituting for w in 
Eq. (5.46) we have 

7rx 7ry 
a b  

4 
(2 + b2)2 sin2- sin2 - - 2( 1 - v) 

whence 

so that 

7r4 sin 27rx -sin 27ry - - - c o s z ~ c o s 2 ~ ] }  7r4 

[&? a b a2b2 a b 

8 ( ~ +  V) ~ ~ ~ ~ 7 r ~  4ab (a + b2)’ - qo- - 0 9 -  
=- 

aAll 4a3b3 
and 

1 6qoa4b4 
7r6D(a2 + b2)’ All  = 
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giving 

16qoa4b4 T X  . 7ry 
W =  sin - sin - 

T6D(a2 +b2)2  a b 

At the centre of the plate w is a maximum and 

16qoa4b4 
7r6D(a2 + b2)2 Wmax = 

For a square plate and assuming v = 0.3 

a4 
Et3 

wmaX = 0.0455qo - 

which compares favourably with the result of Example 5.1. 
In this chapter we have dealt exclusively with small deflections of thin plates. For a 

plate subjected to large deflections the middle plane will be stretched due to bending so 
that Eq. (5.33) requires modification. The relevant theory is outside the scope of this 
book but may be found in a variety of references. 

Jaeger, J. C., Elementary Theory of Elastic Plates, Pergamon Press, New York, 1964. 
Timoshenko, S. P. and Woinowsky-Krieger, S., Theory of Plates and Shells, 2nd edition, 

Timoshenko, S. P. and Gere, J. M., Theory of Elastic Stability, 2nd edition, McGraw-Hill Book 

Wang, Chi-Teh, Applied Elasticity, McGraw-Hill Book Company, New York, 1953. 

McGraw-Hill Book Company, New York, 1959. 

Company, New York, 1961. 

P.5.1 

Ans. a,,,,, = f600N/mm2, = f300N/mm2. 

P.5.2 For the plate and loading of problem P.5.1 find the maximum twisting 
moment per unit length in the plate and the direction of the planes on which this 
occurs. 

Ans. 2.5 Nm/mm at 45" to the x and y axes. 

P.5.3 The plate of the previous two problems is subjected to a twisting moment of 
5 N m/mm along each edge, in addition to the bending moments of M ,  = 10 N mjmm 
and My = 5 N m/mm. Determine the principal moments in the plate, the planes on 
which they act and the corresponding principal stresses. 

Ans. 13.1 Nm/mm, 1.9Nm/mm, a = -31.7", a = +58.3", *786N/mm2, 
f l  14N/mm2. 

A plate 10 mm thick is subjected to bending moments M ,  equal to 10 N m/mm 
and My equal to 5 N m/mm. Calculate the maximum direct stresses in the plate. 
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P.5.4 A simply supported square plate a x a carries a distributed load according 
to the formula 

where qo is its intensity at the edge x = a. Determine the deflected shape of the 
plate. 

( - I ) ~ + ’  mrx nry Ans. w -  *4oa4 2 2 sin - sin - 

P.5.5 An elliptic plate of major and minor axes 2a and 2b and of small thickness t 
is clamped along its boundary and is subjected to a uniform pressure difference p 
between the two faces. Show that the usual differential equation for normal displace- 
ments of a thin flat plate subject to lateral loading is satisfied by the solution 

r6D m=1,2,3 n=1.3,5 mn(m2+n2)2 a U 

where wo is the deflection at the centre which is taken as the origin. 
Determine wo in terms of p and the relevant material properties of the plate and 

hence expressions for the greatest stresses due to bending at the centre and at the 
ends of the minor axis. 

3PU - 3) 
2 ~ t 3  -+-+- 3 2  

Am. w O =  

(d a2b2 b4 

f3pa2b2(b2 + v2) 
9(3b4 + 2a2b2 + 3d) ’ 

k3pa2b2(d + vb2) 
uyulmax = t2(3b4 + 2a2b2 + 3d) 

Centre, ~;r,,.,= = 

Ends of minor axis 

ux,max = 

P.5.6 Use the energy method to determine the deflected shape of a rectangular 
plate a x b, simply supported along each edge and carrying a concentrated load W 
at a position ((’17) referred to axes through a comer of the plate. The deflected 
shape of the plate can be represented by the series 

*6pa4b2 &6pb4d 
9(3b4 + 2a2b2 + 3d) ’ = t-(3b4 ’ + 2a2b2 + 3a4) 

m m  nry w =  2 2Amnsin-  U sin 
m = l  n = l  

m..5 nrrr;l 4Wsin- sin 
U Ans. A,,,,, = 

r4Dab[ (m2/d )  + (n2/b2)I2 

P.5.7 If, in addition to the point load W, the plate of problem P.5.6 supports an 
in-plane compressive load of Nx per unit length on the edges x = 0 and x = a, 
calculate the resulting deflected shape. 



Problems 151 

mr6 n v  4W sin - sin - 
a b Ans. A ,  = 

~ b h ~ [ ( $ + $ ) ~ - ~ ]  m2 N,  

P.5.8 A square plate of side a is simply supported along all four sides and is 
subjected to a transverse uniformly distributed load of intensity qo. It is proposed 
to determine the deflected shape of the plate by the Rayleigh-Ritz method employing 
a 'guessed' form for the deflection of 

in which the origin is taken at the centre of the plate. 

central deflection assuming Y = 0.3. 
Comment on the degree to which the boundary conditions are satisfied and find the 

0.0389q0a4 
Et3 

Ans. 

P.5.9 A rectangular plate a x b, simply supported along each edge, possesses a 
small initial curvature in its unloaded state given by 

7rx . 7ry wo = All  sin-sin- 
a b  

Determine, using the energy method, its final deflected shape when it is subjected to a 
compressive load N, per unit length along the edges x = 0, x = a. 
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Structural instability 

A large proportion of an aircraft’s structure comprises thin webs stiffened by slender 
longerons or stringers. Both are susceptible to failure by buckling at a buckling stress 
or critical stress, which is frequently below the limit of proportionality and seldom 
appreciably above the yield stress of the material. Clearly, for this type of structure, 
buckling is the most critical mode of failure so that the prediction of buckling loads of 
columns, thin plates and stiffened panels is extremely important in aircraft design. In 
this chapter we consider the buckling failure of all these structural elements and also 
the flexural-torsional failure of thin-walled open tubes of low torsional rigidity. 

Two types of structural instability arise: primary and secondary. The former 
involves the complete element, there being no change in cross-sectional area while 
the wavelength of the buckle is of the same order as the length of the element. 
Generally, solid and thick-walled columns experience this type of failure. In the 
latter mode, changes in cross-sectional area occur and the wavelength of the buckle 
is of the order of the cross-sectional dimensions of the element. Thin-walled columns 
and stiffened plates may fail in this manner. 

The first significant contribution to the theory of the buckling of columns was made as 
early as 1744 by Euler. His classical approach is still valid, and likely to remain so, for 
slender columns possessing a variety of end restraints. Our initial discussion is 
therefore a presentation of the Euler theory for the small elastic deflection of perfect 
columns. However, we investigate first the nature of buckling and the difference 
between theory and practice. 

It is common experience that if an increasing axial compressive load is applied to a 
slender column there is a value of the load at which the column will suddenly bow or 
buckle in some unpredetermined direction. This load is patently the buckling load of 
the column or something very close to the buckling load. Clearly this displacement 
implies a degree of asymmetry in the plane of the buckle caused by geometrical 
and/or material imperfections of the column and its load. However, in our theoretical 
stipulation of a perfect column in which the load is applied precisely along the 
perfectly straight centroidal axis, there is perfect symmetry so that, theoretically, 
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posit ion 

P 

posit ion 

Fig. 6.1 Definition of buckling load for a perfect column. 

there can be no sudden bowing or buckling. We therefore require a precise definition 
of buckling load which may be used in our analysis of the perfect column. 

If the perfect column of Fig. 6.1 is subjected to a compressive load P, only 
shortening of the column occurs no matter what the value of P. However, if the 
column is displaced a small amount by a lateral load F then, at values of P below 
the critical or buckling load, PCR, removal of F results in a return of the column to 
its undisturbed position, indicating a state of stable equilibrium. At the critical 
load the displacement does not disappear and, in fact, the column will remain in 
any displaced position as long as the displacement is small. Thus, the buckling load 
P C R  is associated with a state of neutral equilibrium. For P > PCR enforced lateral 
displacements increase and the column is unstable. 

Consider the pin-ended column AB of Fig. 6.2.  We assume that it is in the displaced 
state of neutral equilibrium associated with buckling so that the compressive load P 
has attained the critical value PCR. Simple bending theory (see Section 9.1) gives 

or 

Fig. 6.2 Determination of buckling load for a pin-ended column 
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so that the differential equation of bending of the column is 

d2v PcR 
-+-v=o dzz EI 

The well-known solution of Eq. (6.2) is 
v = Acospz+ Bsinpz 

where p2 = PcR/EI and A and B are unknown constants. The boundary conditions 
for this particular case are v = 0 at z = 0 and 1. Thus A = 0 and 

Bsinpl= 0 

For a non-trivial solution @e. v # 0) then 
sinpl=O or pl=n.rr wheren= 112131... 

giving 

or 

Note that Eq. (6.3) cannot be solved for v no matter how many of the available 
boundary conditions are inserted. This is to be expected since the neutral state of 
equilibrium means that v is indeterminate. 

The smallest value of buckling load, in other words the smallest value of P which 
can maintain the column in a neutral equilibrium state, is obtained by substituting 
n = 1 in Eq. (6.4). Hence 

Other values of PCR corresponding to n = 2 ,3 , .  . . are 

These higher values of buckling load cause more complex modes of buckling such as 
those shown in Fig. 6.3. The different shapes may be produced by applying external 
restraints to a very slender column at the points of contraflexure to prevent lateral 
movement. If no restraints are provided then these forms of buckling are unstable 
and have little practical meaning. 

PCR_ - 
1/2 

I -  

PCH = 4 r 2 E I / L 2  P C R =  ~ T ~ E I / L '  

Fig. 6.3 Buckling loads for different buckling modes of a pin-ended column. 



The critical stress, uCR, corresponding to P C R ,  

2 E  
(W2 DCR = - 
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is, from Eq. (6.5) 

(6.6) 

where r is the radius of gyration of the cross-sectional area of the column. The term 
l / r  is known as the slenderness ratio of the column. For a column that is not doubly 
symmetrical, r is the least radius of gyration of the cross-section since the column will 
bend about an axis about which the flexural rigidity EI is least. Alternatively, if 
buckling is prevented in all but one plane then EI is the flexural rigidity in that plane. 

Equations (6.5) and (6.6) may be written in the form 

and 

(6.7) 

where I ,  is the efective length of the column. This is the length of a pin-ended column 
that would have the same critical load as that of a column of length 1, but with 
different end conditions. The determination of critical load and stress is carried out 
in an identical manner to that for the pin-ended column except that the boundary 
conditions are different in each case. Table 6.1 gives the solution in terms of effective 
length for columns having a variety of end conditions. In addition, the boundary 
conditions referred to the coordinate axes of Fig. 6.2 are quoted. The last case in 
Table 6.1 involves the solution of a transcendental equation; this is most readily 
accomplished by a graphical method. 

Table 6.1 

Ends Lll  Boundary conditions 

Both pinned 
Both fixed 
One fixed, the other free 
One fixed, the other pinned 

1 .o 
0.5 
2.0 
0.6998 

v =  0 at z = 0 and I 
v = 0 at z = 0 and z = I .  dvldz = 0 at z = I 
v = 0 and dv/d-. = 0 at z = 0 
dvldr = 0 at I’ = 0, v = 0 at z = 1 and z = 0 

~~~~ ~ ~ ~ ~~ ~ ~~ ~ ~~ ~ 

Let us now examine the buckling of the perfect pin-ended column of Fig. 6.2 in 
greater detail. We have shown, in Eq. (6.4), that the column will buckle at discrete 
values of axial load and that associated with each value of buckling load there is a 
particular buckling mode (Fig. 6.3). These discrete values of buckling load are 
called eigenvalues, their associated functions (in this case Y = Bsinnm/l) are called 
eigenfunctions and the problem itself is called an eigenvalue problem. 

Further, suppose that the lateral load F in Fig. 6.1 is removed. Since the column is 
perfectly straight, homogeneous and loaded exactly along its axis, it will suffer only 
axial compression as P is increased. This situation, theoretically, would continue 
until yielding of the material of the column occurred. However, as we have seen, 
for values of P below PcR the column is in stable equilibrium whereas for P > PCR 
the column is unstable. A plot of load against lateral deflection at mid-height 
would therefore have the form shown in Fig. 6.4 where, at the point P = PCR, it is 
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I ~ P=Pc, (bifurcation point) 

0 
Lateral deflection at mid-height 

Fig. 6.4 Behaviour of a perfect pin-ended column. 

theoretically possible for the column to take one of three deflection paths. Thus, if the 
column remains undisturbed the deflection at mid-height would continue to be zero 
but unstable (Le. the trivial solution of Eq. (6.3), u = 0) or, if disturbed, the 
column would buckle in either of two lateral directions; the point at which this 
possible branching occurs is called a bifurcation point; further bifurcation points 
occur at the higher values of PcR(4~2EI /12 ,  9.ir2EI/12,. . .). 

We have shown that the critical stress, Eq. (6.8), depends only on the elastic modulus 
of the material of the column and the slenderness ratio l / r .  For a given material the 
critical stress increases as the slenderness ratio decreases; i.e. as the column becomes 
shorter and thicker. A point is then reached when the critical stress is greater than the 
yield stress of the material so that Eq. (6.8) is no longer applicable. For mild steel 
this point occurs at a slenderness ratio of approximately 100, as shown in Fig. 6.5. 

t 

I I I * 
100 200 300 

( l / d  

0 '  

Fig. 6.5 Critical stress-slenderness ratio for a column. 
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E 

Fig. 6.6 Elastic moduli for a material stressed above the elastic limit. 

We therefore require some alternative means of predicting column behaviour at low 
values of slenderness ratio. 

It was assumed in the derivation of Eq. (6.8) that the stresses in the column 
remained within the elastic range of the material so that the modulus of elasticity 
E(= dc/da) was constant. Above the elastic limit da/de depends upon the value of 
stress and whether the stress is increasing or decreasing. Thus, in Fig. 6.6 the elastic 
modulus at the point A is the tangent rnoduhs Et if the stress is increasing but E if the 
stress is decreasing. 

Consider a column having a plane of symmetry and subjected to a compressive load 
P such that the direct stress in the column PIA is above the elastic limit. If the column 
is given a small deflection, v, in its plane of symmetry, then the stress on the concave 
side increases while the stress on the convex side decreases. Thus, in the cross-section 
of the column shown in Fig. 6.7(a) the compressive stress decreases in the area A ,  and 
increases in the area A2, while the stress on the line nn is unchanged. Since these 

(a) (b) 

Fig. 6.7 Determination of reduced elastic modulus. 
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changes take place outside the elastic limit of the material, we see, from our remarks 
in the previous paragraph, that the modulus of elasticity of the material in the area 
Al  is E while that in A2 is Et. The homogeneous column now behaves as if it were 
non-homogeneous, with the result that the stress distribution is changed to the 
form shown in Fig. 6.7(b); the linearity of the distribution follows from an assump- 
tion that plane sections remain plane. 

As the axial load is unchanged by the disturbance 

Also, P is applied through the centroid of each end section a distance e from nn so 
that /: c x ( y l  + e )  dA + r uv(y2 - e)  dA = -Pv (6.10) 

From Fig. 6.7(b) 
f f 1  ff2 

ffx = -Y1, ffv = -Y2 4 d2 
(6.1 1) 

The angle between two close, initially parallel, sections of the column is equal to the 
change in slope d2v/dz2 of the column between the two sections. This, in turn, must be 
equal to the angle 64 in the strain diagram of Fig. 6.7(c). Hence 

and Eq. (6.9) becomes, from Eqs (6.1 1) and (6.12) 

(6.12) 

(6.13) 

Further, in a similar manner, from Eq. (6.10) 

d2 $ (. y: dA + Et r yf dA) + e 2 (. y1 dA - Et J” 0 y2 d A) = - Pv (6.14) 

The second term on the left-hand side of Eq. (6.14) is zero from Eq. (6.13). Therefore 
we have 

in which 

Il =Jd ’y ;dA 0 and I 2 , s d , y g d A  0 

(6.15) 

the second moments of area about nn of the convex and concave sides of the column 
respectively. Putting 

EJ = EI1 + EtIz 
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or 

E , = E - - + E t T  I1 I2 
I (6.16) 

where E, is known as the reduced modulus, gives 

d2v 
d22  

E,I-+ PV = 0 

Comparing this with Eq. (6.2) we see that if P is the critical load PCR then 

~ E , I  
1: 

PCR = - 

and 

(6.17) 

(6.18) 

The above method for predicting critical loads and stresses outside the elastic range is 
known as the reduced modulus theory. From Eq. (6.13) we have 

E y1 dA - Et y2dA = 0 J: (6.19) 

which, together with the relationship d = dl + d2, enables the position of nn to be 
found. 

It is possible that the axial load P is increased at the time of the lateral disturbance 
of the column such that there is no strain reversal on its convex side. The compressive 
stress therefore increases over the complete section so that the tangent modulus 
applies over the whole cross-section. The analysis is then the same as that for 
column buckling within the elastic limit except that Et is substituted for E .  Hence 
the tangent modulus theory gives 

and 

(6.20) 

(6.21) 

By a similar argument, a reduction in P could result in a decrease in stress over the 
whole cross-section. The elastic modulus applies in this case and the critical load and 
stress are given by the standard Euler theory; namely, Eqs (6.7) and (6.8). 

In Eq. (6.16), I1 and 12 are together greater than I while E is greater than Et. It 
follows that the reduced modulus E, is greater than the tangent modulus Et. 
Consequently, buckling loads predicted by the reduced modulus theory are greater 
than buckling loads derived from the tangent modulus theory, so that although we 
have specified theoretical loading situations where the different theories would 
apply there still remains the difficulty of deciding which should be used for design 
purposes. 
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Extensive experiments carried out on aluminium alloy columns by the aircraft 
industry in the 1940s showed that the actual buckling load was approximately 
equal to the tangent modulus load. Shanley (1947) explained that for columns with 
small imperfections, an increase of axial load and bending occur simultaneously. 
He then showed analytically that after the tangent modulus load is reached, the 
strain on the concave side of the column increases rapidly while that on the convex 
side decreases slowly. The large deflection corresponding to the rapid strain increase 
on the concave side, which occurs soon after the tangent modulus load is passed, 
means that it is only possible to exceed the tangent modulus load by a small 
amount. It follows that the buckling load of columns is given most accurately for 
practical purposes by the tangent modulus theory. 

Empirical formulae have been used extensively to predict buckling loads, although 
in view of the close agreement between experiment and the tangent modulus theory 
they would appear unnecessary. Several formulae are in use; for example, the 
Rankine, Straight-line and Johnson's parabolic formulae are given in many books 
on elastic stability'. 

Obviously it is impossible in practice to obtain a perfectly straight homogeneous 
column and to ensure that it is exactly axially loaded. An actual column may be 
bent with some eccentricity of load. Such imperfections influence to a large degree 
the behaviour of the column which, unlike the perfect column, begins to bend 
immediately the axial load is applied. 

Let us suppose that a column, initially bent, is subjected to an increasing axial load 
P as shown in Fig. 6.8. In this case the bending moment at any point is proportional 
to the change in curvature of the column from its initial bent position. Thus 

d2v d2vo 
dz2 dz2 

EI- - EI- == -Pv 

which, on rearranging, becomes 

d2v d2vo 
- + A v = -  
dz2 dz2 

(6.22) 

(6.23) 

Z 
Fig. 6.8 Initially bent column. 
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where X2 = P / E I .  The final deflected shape, v, of the column depends upon the form 
of its unloaded shape, vo. Assuming that 

nrz 
v0 = A, sin- 1 

X 

(6.24) 
n=l 

and substituting in Eq. (6.23) we have 

n7rz 
1 

-+ d2v X-v -- $gn2A,sin- 
n= 1 dz2 

The general solution of this equation is 

ca n2An n m  - sin I 
n2 - a 

v = Bcos Xz + D sin Xz + 
n = l  

where B and D are constants of integration and cy = X212/2. The boundary condi- 
tions are v = 0 at z = 0 and I ,  giving B = D = 0 whence 

3o n ’ ~ ,  nrz 
u = =sinI 

R = l  
(6.25) 

Note that in contrast to the perfect column we are able to obtain a non-trivial solution 
for deflection. This is to be expected since the column is in stable equilibrium in its 
bent position at all values of P .  

An alternative form for a is 

(see Eq. (6.5)) 

Thus a is always less than one and approaches unity when P approaches PCR so that 
the first term in Eq. (6.25) usually dominates the series. A good approximation, 
therefore, for deflection when the axial load is in the region of the critical load is 

or at the centre of the column where z = 1/2 

(6.26) 

(6.27) 

in which A I  is seen to be the initial central deflection. If central deflections 
6(= v - A I )  are measured from the initially bowed position of the column then 
from Eq. (6.27) we obtain 

which gives on rearranging 

(6.28) 

and we see that a graph of 6 plotted against 6 / P  has a slope, in the region of the critical 
load, equal to PCR and an intercept equal to the initial central deflection. This is the 
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well known Southwell plot for the experimental determination of the elastic buckling 
load of an imperfect column. 

Timoshenko' also showed that Eq. (6.27) may be used for a perfectly straight 
column with small eccentricities of column load. 

Stresses and deflections in a linearly elastic beam subjected to transverse loads as 
predicted by simple beam theory, are directly proportional to the applied loads. 
This relationship is valid if the deflections are small such that the slight change in 
geometry produced in the loaded beam has an insignificant effect on the loads 
themselves. This situation changes drastically when axial loads act simultaneously 
with the transverse loads. The internal moments, shear forces, stresses and deflections 
then become dependent upon the magnitude of the deflections as well as the magni- 
tude of the external loads. They are also sensitive, as we observed in the previous 
section, to beam imperfections such as initial curvature and eccentricity of axial 
load. Beams supporting both axial and transverse loads are sometimes known as 
beam-columns or simply as transversely loaded columns. 

We consider first the case of a pin-ended beam carrying a uniformly distributed 
load of intensity MI per unit length and an axial load P as shown in Fig. 6.9. The 
bending moment at any section of the beam is 

d2u 
2 2  dz2 

2 wlz wz 
= pu + - - - = -EI - 

giving 

-+-u=-(z d2u P w 2  -1z) 
dz2 EI 2EI 

(see Section 9.1) 

(6.29) 

The standard solution of Eq. (6.29) is 

I w/ u n i t length I 
I L I 

Fig. 6.9 Bending of a uniformly loaded beam-column. 
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where A and B are unknown constants and A' = P / E I .  Substituting the boundary 
conditions v = 0 at z = 0 and 1 gives 

W W 
A = - ,  B =  ( 1  - cos X I )  

X2P X2P sin X I  
so that the deflection is determinate for any value of w and P and is given by 

v = -  X2 P [ cosXz+ ('~i-~~)sinXz] + & ( z 2 - l z - $ - )  (6.30) 

In beam-columns, as in beams, we are primarily interested in maximum values of 
stress and deflection. For this particular case the maximum deflection occurs at the 
centre of the beam and is, after some transformation of Eq. (6.30) 

v m a = ~ ( s e c 2 - i )  A1 -8p w12 

The corresponding maximum bending moment is 

w12 
M,,, = -Puma - - 8 

or, from Eq. (6.31) 

(6.31) 

(6.32) 

We may rewrite Eq. (6.32) in terms of the Euler buckling load PCR = d E I / 1 2  for a 
pin-ended column. Hence 

(6.33) 

As P approaches PCR the bending moment (and deflection) becomes infinite. 
However, the above theory is based on the assumption of small deflections (otherwise 
d2v/d2 would not be a close approximation for curvature) so that such a deduction is 
invalid. The indication is, though, that large deflections will be produced by the 
presence of a compressive axial load no matter how small the transverse load 
might be. 

Let us consider now the beam-column of Fig. 6.10 with hinged ends carrying a 
concentrated load W at a distance u from the right-hand support. For 

and for 

d2v W 
d.9 - I z 2 1 - a, EI - - -M = -Pv - - ( I  - u> (1  - z) 

(6.34) 

(6.35) 

Writing 

X2 = P / E I  
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Y +  

Fig. 6.10 Beam-column supporting a point load. 

Eq. (6.34) becomes 

d2v Wa - + A  v =  -- 
d z 2  EII 

the general solution of which is 

(6.36) 
Wa 
PI 

w = A cos Xz + Bsin X Z  - -z 

Similarly, the general solution of Eq. (6.35) is 

(6.37) v = C cos Xz + D sin Az - - ( I  - a)(, - z) 

where A,  By C and D are constants which are found from the boundary conditions as 
follows. 

When z = 0, v = 0, therefore from Eq. (6.36) A = 0. At z = I ,  w = 0 giving, from 
Eq. (6.37), C = -DtanXI. At the point of application of the load the deflection 
and slope of the beam given by Eqs (6.36) and (6.37) must be the same. Hence, 
equating deflections 

W 
PI 

Wa Wa 
PI PI 

B sin X(1 - a) - - ( I  - a) = D[sin X(1- a) - tan XI cos X(1 - a)] - - ( I  - a) 

and equating slopes 
Wa W 
PI PI 

BXcosX(1-a) --= DX[cosX(I-a)+tanXIsinX(I-a)] +-(I-a) 

Solving the above equations for B and D and substituting for A ,  By C and D in Eqs 
(6.36) and (6.37) we have 

W sin Xa Wa 
PI PA sin XI sink--z for z < I - a  V =  

W sin X(1 - a) W 
PA sin XI PI 

V =  sinX(I-2)--(I-a)(/-z) for z 2 l - a  (6.39) 

(6.38) 

These equations for the beam-column deflection enable the bending moment and 
resulting bending stresses to be found at all sections. 

A particular case arises when the load is applied at the centre of the span. 
The deflection curve is then symmetrical with a maximum deflection under the 
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Y +  

Fig. 6.1 1 Beam-column supporting end moments. 

load of 
w XI Wl v,,, =-tan--- 

2PX 2 4P 
Finally, we consider a beam-column subjected to end moments M A  and MB in 

addition to an axial load P (Fig. 6.11). The deflected form of the beam-column 
may be found by using the principle of superposition and the results of the previous 
case. First, we imagine that MB acts alone with the axial load P. If we assume that the 
point load W moves towards B and simultaneously increases so that the product 
Wu = constant = MB then, in the limit as a tends to zero, we have the moment M B  
applied at B. The deflection curve is then obtained from Eq. (6.38) by substituting 
Xu for sin Xa (since Xu is now very small) and MB for Wa. Thus 

V =% (7&) sin Xz 
(6.40) 

In a similar way, we find the deflection curve corresponding to M A  acting alone. Sup- 
pose that W moves towards A such that the product W(I - a )  = constant = MA. 
Then as ( I  - a) tends to zero we have sin X ( 1 -  a)  = X ( I  - a)  and Eq. (6.39) becomes 

MA sinX(1- z) ( I  - z) 
v=-[ P sin XI --I I (6.41) 

The effect of the two moments acting simultaneously is obtained by superposition of 
the results of Eqs (6.40) and (6.41). Hence for the beam-column of Fig. 6.11 

(6.42) 

Equation (6.42) is also the deflected form of a beam-column supporting eccentrically 
applied end loads at A and B. For example, if eA and eB are the eccentricities of P at 
the ends A and B respectively, then M A  = PeA, MB = PeB, giving a deflected form of 

MB (sinXz z )  I 7 [ sinX(1 -z) (I-z) 
P sinX1 I sin XI --I 1 

v=- 

(6.43) 

Other beam-column configurations featuring a variety of end conditions and 

sin Xz sin X ( 1  - z) (I - z) 
v = e B ( , X r - 5 )  sin XI --I 1 

loading regimes may be analysed by a similar procedure. 

The fact that the total potential energy of an elastic body possesses a stationary value 
in an equilibrium state may be used to investigate the neutral equilibrium of a buckled 
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Y t  

Fig. 6.12 Shortening of a column due to buckling. 

column. In particular, the energy method is extremely useful when the deflected form 
of the buckled column is unknown and has to be ‘guessed’. 

First, we shall consider the pin-ended column shown in its buckled position in 
Fig. 6.12. The internal or strain energy U of the column is assumed to be produced 
by bending action alone and is given by the well known expression 

or alternatively, since EZ d2v/& = -M 

(6.44) 

(6.45) 

The potential energy V of the buckling load PCR, referred to the straight position of 
the column as the datum, is then 

v = -PCR6 

where 6 is the axial movement of PcR caused by the bending of the column from its 
initially straight position. By reference to Fig. 5.15(b) and Eq. (5.41) we see that 

giving 

(6.46) 

The total potential energy of the column in the neutral equilibrium of its buckled state 
is therefore 

or, using the alternative form of U from Eq. (6.45) 

(6.47) 

(6.48) 

We have seen in Chapter 5 that exact solutions of plate bending problems are 
obtainable by energy methods when the deflected shape of the plate is known. An 
identical situation exists in the determination of critical loads for column and thin 
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plate buckling modes. For the pin-ended column under discussion a deflected form of 
m n m  w = x A , s i n -  I n = l  

(6.49) 

satisfies the boundary conditions of 

and is capable, within the limits for which it is valid and if suitable values for the 
constant coefficients A, are chosen, of representing any continuous curve. We are 
therefore in a position to find PCR exactly. Substituting Eq. (6.49) into Eq. (6.48) gives 

4 0 3  2 u+v=-J  EI (5) ( x n ’ A , s i n E )  d~ 
I 2 0  n= 1 

-kj: (;)2( 
n = l  2 

(6.50) 

The product terms in both integrals of Eq. (6.50) disappear on integration, leaving 
only integrated values of the squared terms. Thus 

r4EI 03 4 2 $ P C R T n Z A :  U + V = -En A, - - 
n=1 41 n = 1  413 

(6.51) 

Assigning a stationary value to the total potential energy of Eq. (6.51) with respect to 
each coefficient A, in turn, then taking An as being typical, we have 

from which 

as before. 
2 EIn2 

P PCR =- 

We see that each term in Eq. (6.49) represents a particular deflected shape with a 
corresponding critical load. Hence the first term represents the deflection of the 
column shown in Fig. 6.12, with PCR = 7?EI/I2. The second and third terms 
correspond to the shapes shown in Fig. 6.3, having critical loads of 42EI/I2 and 
97?EI/I2 and so on. Clearly the column must be constrained to buckle into these 
more complex forms. In other words the column is being forced into an unnatural 
shape, is consequently stiffer and offers greater resistance to buckling as we observe 
from the higher values of critical load. Such buckling modes, as stated in Section 
6.1, are unstable and are generally of academic interest only. 

If the deflected shape of the column is known it is immaterial which of Eqs (6.47) or 
(6.48) is used for the total potential energy. However, when only an approximate 
solution is possible Eq. (6.47) is preferable since the integral involving bending 
moment depends upon the accuracy of the assumed form of w, whereas the corre- 
sponding term in Eq. (6.48) depends upon the accuracy of d2w/dz2. Generally, for 
an assumed deflection curve w is obtained much more accurately than d2w/dz2. 
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I- 1 

Fig. 6.13 Buckling load for a built-in column by the energy method. 

Suppose that the deflection curve of a particular column is unknown or extremely 
complicated. We then assume a reasonable shape which satisfies, as far as possible, 
the end conditions of the column and the pattern of the deflected shape (Rayleigh- 
Ritz method). Generally, the assumed shape is in the form of a finite series involving 
a series of unknown constants and assumed functions of z. Let us suppose that v is 
given by 

w =  A1fi(z) +-42fi(z) +A3h(Z)  
Substitution in Eq. (6.47) results in an expression for total potential energy in terms of 
the critical load and the coefficients A l ,  A2 and A3 as the unknowns. Assigning 
stationary values to the total potential energy with respect to A l ,  A2 and A3 in turn 
produces three simultaneous equations from which the ratios A l l &  Al/A3 and 
the critical load are determined. Absolute values of the coefficients are unobtainable 
since the deflections of the column in its buckled state of neutral equilibrium are 
indeterminate. 

As a simple illustration consider the column shown in its buckled state in Fig. 6.13. 
An approximate shape may be deduced from the deflected shape of a tip-loaded 
cantilever. Thus 

This expression satisfies the end-conditions of deflection, viz. v = 0 at z = 0 and 
w = vo at z = 1. In addition, it satisfies the conditions that the slope of the column 
is zero at the built-in end and that the bending moment, i.e. d2v/dz, is zero at the 
free end. The bending moment at any section is M = PCR(v0 - w) so that substitution 
for M and v in Eq. (6.47) gives 

Integrating and substituting the limits we have 

Hence 
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from which 
42 EI EI 

PCR = - = 2.471 - 
1 712 12 

This value of critical load compares with the exact value (see Table 6.1) of 
7r2EI/412 = 2.467EI/12; the error, in this case, is seen to be extremely small. 
Approximate values of critical load obtained by the energy method are always greater 
than the correct values. The explanation lies in the fact that an assumed deflected 
shape implies the application of constraints in order to force the column to take up 
an artificial shape. This, as we have seen, has the effect of stiffening the column 
with a consequent increase in critical load. 

It will be observed that the solution for the above example may be obtained by 
simply equating the increase in internal energy ( U )  to the work done by the external 
critical load (- V ) .  This is always the case when the assumed deflected shape contains 
a single unknown coefficient, such as vo in the above example. 

-,-%%I.- . I  ,--+=-. m--~.?..-7.-*-w. r . 
hin plates 

A thin plate may buckle in a variety of modes depending upon its dimensions, the 
loading and the method of support. Usually, however, buckling loads are much 
lower than those likely to cause failure in the material of the plate. The simplest 
form of buckling arises when compressive loads are applied to simply supported 
opposite edges and the unloaded edges are free, as shown in Fig. 6.14. A thin plate 
in this configuration behaves in exactly the same way as a pin-ended column so 
that the critical load is that predicted by the Euler theory. Once this critical load is 
reached the plate is incapable of supporting any further load. This is not the case, 
however, when the unloaded edges are supported against displacement out of the 
xy plane. Buckling, for such plates, takes the form of a bulging displacement of the 
central region of the plate while the parts adjacent to the supported edges remain 
straight. These parts enable the plate to resist higher loads; an important factor in 
aircraft design. 

At this stage we are not concerned with this post-buckling behaviour, but rather 
with the prediction of the critical load which causes the initial bulging of the central 

Fig. 6.14 Buckling of a thin flat plate. 
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area of the plate. For the analysis we may conveniently employ the method of total 
potential energy since we have already, in Chapter 5, derived expressions for strain 
and potential energy corresponding to various load and support configurations. In 
these expressions we assumed that the displacement of the plate comprises bending 
deflections only and that these are small in comparison with the thickness of the 
plate. These restrictions therefore apply in the subsequent theory. 

First we consider the relatively simple case of the thin plate of Fig. 6.14, loaded 
as shown, but simply supported along all four edges. We have seen in Chapter 5 
that its true deflected shape may be represented by the infinite double trigonometrical 
series 

mnx n r y  w =  2 T A , s i n -  a S i n b  
m = l  n = l  

Also, the total potential energy of the plate is, from Eqs (5.37) and (5.45) 

The integration of Eq. (6.52) on substituting for w is similar to those integrations 
carried out in Chapter 5. Thus, by comparison with Eq. (5.47) 

The total potential energy of the plate has a stationary value in the neutral equili- 
brium of its buckled state (Le. N, = Nx,CR). Therefore, differentiating Eq. (6.53) 
with respect to each unknown coefficient A ,  we have 

and for a non-trivial solution 

1 m2 n2 ' 
Nx,CR = 220- -+- 

m2 ( a2 b 2 )  
(6.54) 

Exactly the same result may have been deduced from Eq. (ii) of Example 5.2, where 
the displacement w would become infinite for a negative (compressive) value of N, 
equal to that of Eq. (6.54). 

We observe from Eq. (6.54) that each term in the infinite series for displacement 
corresponds, as in the case of a column, to a different value of critical load (note, 
the problem is an eigenvalue problem). The lowest value of critical load evolves 
from some critical combination of integers m and n, i.e. the number of half-waves 
in the x and y directions, and the plate dimensions. Clearly n = 1 gives a minimum 
value so that no matter what the values of m, a and b the plate buckles into a half 
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or 

k g D  
b2 Nx.CR - 

where the plate buckling coeficient k is given by the minimum value of 

k =  -+- 
(:b Zb)’  

(6.55) 

(6.56) 

for a given value of a/b .  To determine the minimum value of k for a given value of a/b  
we plot k as a function of a / b  for different values of m as shown by the dotted curves 
in Fig. 6.15. The minimum value of k is obtained from the lower envelope of the 
curves shown solid in the figure. 

It can be seen that m varies with the ratio a / b  and that k and the buckling load are a 
minimum when k = 4 at values of a /b  = 1,2,3,. . . . As a /b  becomes large k 
approaches 4 so that long narrow plates tend to buckle into a series of squares. 

The transition from one buckling mode to the next may be found by equating 
values of k for the m and m + 1 curves. Hence 

mb a ( m + l ) b +  U 

’= &qzq 

-+-= 
a mb a (m + l )b  

giving 

b 
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Fig. 6.16 (a) Buckling coefficients for flat plates in compression; (b) buckling coefficients for flat plates in 
bending; (c) shear buckling coefficients for flat plates. 
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Substituting m = 1, we have a / b  = fi = 1.414, and for m = 2, a / b  = v% = 2.45 and 
so on. 

For a given value of a / b  the critical stress, o C R  = Nx,CR/ t ,  is found from Eqs (6.55) 
and (5.4). Thus 

OCR = (6.57) 

In general, the critical stress for a uniform rectangular plate, with various edge sup- 
ports and loaded by constant or linearly varying in-plane direct forces (N.y, N,,)  or 
constant shear forces (N1,) along its edges, is given by Eq. (6.57). The value.of k 
remains a function of a / b  but depends also upon the type of loading and edge 
support. Solutions for such problems have been obtained by solving the appropriate 
differential equation or by using the approximate (Rayleigh-Ritz) energy method. 
Values of k for a variety of loading and support conditions are shown in Fig. 6.16. 
In Fig. 6.16(c), where k becomes the shear buckling coeficient, b is always the smaller 
dimension of the plate. 

We see from Fig. 6.16 that k is very nearly constant for a / b  > 3. This fact is 
particularly useful in aircraft structures where longitudinal stiffeners are used to 
divide the skin into narrow panels (having small values of b), thereby increasing 
the buckling stress of the skin. 

For plates having small values of b / t  the critical stress may exceed the elastic limit of 
the material of the plate. In such a situation, Eq. (6.57) is no longer applicable since, 
as we saw in the case of columns, E becomes dependent on stress as does Poisson's 
ratio u. These effects are usually included in a plasticity correction factor r] so that 
Eq. (6.57) becomes 

12( 1 - "2) 
ffCR = (6.58) 

where E and u are elastic values of Young's modulus and Poisson's ratio. In the 
linearly elastic region 11 = 1 ,  which means that Eq. (6.58) may be applied at all 
stress levels. The derivation of a general expression for r ]  is outside the scope of 
this book but one2 giving good agreement with experiment is 

r]=-- l - - u ~ E , [ l  -+- l ( 1  -+--  3 E t ) i ]  
1 - u ; E  2 2 4 4 E s  

where Et and E, are the tangent modulus and secant modulus (stress/strain) of the 
plate in the inelastic region and ue and up are Poisson's ratio in the elastic and inelastic 
ranges. 
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for a flat plat 
In Section 6.3 we saw that the critical load for a column may be determined 
experimentally, without actually causing the column to buckle, by means of the 
Southwell plot. The critical load for an actual, rectangular, thin plate is found in a 
similar manner. 

The displacement of an initially curved plate from the zero load position was found 
in Section 5.5, to be 

c o x  mrx  . nry  
wl = xBmnsin-sin- 

n h 

where 

We see that the coefficients Bmn increase with an increase of compressive load intensity 
Nx. It follows that when N ,  approaches the critical value, Nx,CR, the term in the series 
corresponding to the buckled shape of the plate becomes the most significant. For a 
square plate n = 1 and m = 1 give a minimum value of critical load so that at the 
centre of the plate 

or, rearranging 

Thus, a graph of wl plotted against w l / N x  will have a slope, in the region of the 
critical load, equal to Nx,CR. 

We distinguished in the introductory remarks to this chapter between primary and 
secondary (or local) instability. The latter form of buckling usually occurs in the 
flanges and webs of thin-walled columns having an effective slenderness ratio, l e / r ,  
<20. For l e / r  > 80 this type of column is susceptible to primary instability. In the 
intermediate range of l e / r  between 20 and 80, buckling occurs by a combination of 
both primary and secondary modes. 

Thin-walled columns are encountered in aircraft structures in the shape of 
longitudinal stiffeners, which are normally fabricated by extrusion processes or by 
forming from a flat sheet. A variety of cross-sections are employed although each 
is usually composed of flat plate elements arranged to form angle, channel, Z- or 
‘top hat’ sections, as shown in Fig. 6.17. We see that the plate elements fall into 
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(a) (b)  ( C )  ( d )  
Fig. 6.17 (a) Extruded angle; (b) formed channel; (c) extruded Z; (d) formed 'top hat'. 

two distinct categories: flanges which have a free unloaded edge and webs which are 
supported by the adjacent plate elements on both unloaded edges. 

In local instability the flanges and webs buckle like plates with a resulting change in 
the cross-section of the column. The wavelength of the buckle is of the order of the 
widths of the plate elements and the corresponding critical stress is generally indepen- 
dent of the length of the column when the length is equal to or greater than three 
times the width of the largest plate element in the column cross-section. 

Buckling occurs when the weakest plate element, usually a flange, reaches its 
critical stress, although in some cases all the elements reach their critical stresses 
simultaneously. When this occurs the rotational restraint provided by adjacent 
elements to each other disappears and the elements behave as though they are 
simply supported along their common edges. These cases are the simplest to analyse 
and are found where the cross-section of the column is an equal-legged angle, T-, 
cruciform or a square tube of constant thickness. Values of local critical stress for 
columns possessing these types of section may be found using Eq. (6.58) and an 
appropriate value of k.  For example, k for a cruciform section column is obtained 
from Fig. 6.16(a) for a plate which is simply supported on three sides with one 
edge free and has a/b  > 3 .  Hence k = 0.43 and if the section buckles elastically 
then 7 = 1 and 

cCR = 0.388E (i)2 - (v=0.3)  

It must be appreciated that the calculation of local buckling stresses is generally 
complicated with no particular method gaining universal acceptance, much of the 
information available being experimental. A detailed investigation of the topic is 
therefore beyond the scope of this book. Further information may be obtained 
from all the references listed at the end of this chapter. 

It is clear from Eq. (6.58) that plates having large values of b / t  buckle at low values of 
critical stress. An effective method of reducing this parameter is to introduce stiffeners 
along the length of the plate thereby dividing a wide sheet into a number of smaller 
and more stable plates. Alternatively, the sheet may be divided into a series of wide 
short columns by stiffeners attached across its width. In the former type of structure 
the longitudinal stiffeners carry part of the compressive load, while in the latter all the 



176 Structural instability 

load is supported by the plate. Frequently, both methods of stiffening are combined to 
form a grid-stiffened structure. 

Stiffeners in earlier types of stiffened panel possessed a relatively high degree of 
strength compared with the thin skin resulting in the skin buckling at a much lower 
stress level than the stiffeners. Such panels may be analysed by assuming that the 
stiffeners provide simply supported edge conditions to a series of flat plates. 

A more efficient structure is obtained by adjusting the stiffener sections so that 
buckling occurs in both stiffeners and skin at about the same stress. This is achieved 
by a construction involving closely spaced stiffeners of comparable thickness to the 
skin. Since their critical stresses are nearly the same there is an appreciable interaction 
at buckling between skin and stiffeners so that the complete panel must be considered 
as a unit. However, caution must be exercised since it is possible for the two 
simultaneous critical loads to interact and reduce the actual critical load of the 
structure3 (see Example 6.2). Various modes of buckling are possible, including 
primary buckling where the wavelength is of the order of the panel length and 
local buckling with wavelengths of the order of the width of the plate elements of 
the skin or stiffeners. A discussion of the various buckling modes of panels having 
Z-section stiffeners has been given by Argyris and Dunne4. 

The prediction of critical stresses for panels with a large number of longitudinal 
stiffeners is difficult and relies heavily on approximate (energy) and semi-empirical 
methods. Bleich’ and Timoshenko’ give energy solutions for plates with one and 
two longitudinal stiffeners and also consider plates having a large number of 
stiffeners. Gerard and Becker6 have summarized much of the work on stiffened 
plates and a large amount of theoretical and empirical data is presented by Argyris 
and Dunne in the Handbook of Aeronautics4. 

For detailed work on stiffened panels, reference should be made to as much as 
possible of the above work. The literature is, however, extensive so that here we 
present a relatively simple approach suggested by Gerard’. Figure 6.18 represents a 
panel of width w stiffened by longitudinal members which may be flats (as shown), 
Z-, I-, channel or ‘top hat’ sections. It is possible for the panel to behave as an 
Euler column, its cross-section being that shown in Fig. 6.18. If the equivalent 
length of the panel acting as a column is I, then the Euler critical stress is 

as in Eq. (6.8). In addition to the column buckling mode, individual plate elements 
comprising the panel cross-section may buckle as long plates. The buckling stress is 

I. W 

Fig. 6.18 Stiffened panel. 
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then given by Eq. (6.58), viz. 

uCR = 12( rlkn2E 1 - "2) M2 
where the values of k ,  t and b depend upon the particular portion of the panel being 
investigated. For example, the portion of skin between stiffeners may buckle as a plate 
simply supported on all four sides. Thus, for a / h  > 3 ,  k = 4 from Fig. 6.16(a) and, 
assuming that buckling takes place in the elastic range 

2 47r2 E 
uCR = 12(1 - " 2 )  (E) 

A further possibility is that the stiffeners may buckle as long plates simply supported 
on three sides with one edge free. Thus 

0.43x2E 2 

uCR = 12(1 - "2) (2) 
Clearly, the minimum value of the above critical stresses is the critical stress for the 
panel taken as a whole. 

The compressive load is applied to the panel over its complete cross-section. To 
relate this load to an applied compressive stress cA acting on each element of the 
cross-section we divide the load per unit width, say N,., by an equivalent skin 
thickness i, hence 

NX 
U A  = T 

t 
where 

and A,, is the stiffener area. 
The above remarks are concerned with the primary instability of stiffened panels. 

Values of local buckling stress have been determined by Boughan, Baab and Gallaher 
for idealized web, Z- and T- stiffened panels. The results are reproduced in Rivello7 
together with the assumed geometries. 

Further types of instability found in stiffened panels occur where the stiffeners are 
riveted or spot welded to the skin. Such structures may be susceptible to interrivet 
buckling in which the skin buckles between rivets with a wavelength equal to the 
rivet pitch, or wrinkling where the stiffener forms an elastic line support for the 
skin. In the latter mode the wavelength of the buckle is greater than the rivet pitch 
and separation of skin and stiffener does not occur. Methods of estimating the 
appropriate critical stresses are given in Rivello7 and the Handbook of Aeronautics4. 

The previous discussion on plates and stiffened panels investigated the prediction of 
buckling stresses. However, as we have seen, plates retain some of their capacity to 
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carry load even though a portion of the plate has buckled. In fact, t h ~  ultimate load is 
not reached until the stress in the majority of the plate exceeds the elastic limit. The 
theoretical calculation of the ultimate stress is diffcult since non-linearity results from 
both large deflections and the inelastic stress-strain relationship. 

Gerard' proposes a semi-empirical solution for flat plates supported on all four 
edges. After elastic buckling occurs theory and experiment indicate that the average 
compressive stress, Fa, in the plate and the unloaded edge stress, ne, are related by the 
following expression 

(6.59) 

where 

DCR = 12(1 k2E - d) u2 b 

and al is some unknown constant. Theoretical work by Stowell' and Mayers and 
Budianskyg shows that failure occurs when the stress along the unloaded edge is 
approximately equal to the compressive yield strength, u,.+ of the material. Hence 
substituting uCy for oe in Eq. (6.59) and rearranging gives 

1 - n  
*f (6.60) 

where the average compressive stress in the plate has become the average stress at 
failure af. Substituting for uCR in Eq. (6.60) and putting 

a12(' -4 

[12(1 - d)]'-" = a  

yields 

or, in a simplified form 

(6.61) 

(6.62) 

where 0 = aKnI2. The constants ,6' and m are determined by the best fit of Eq. (6.62) to 
test data. 

Experiments on simply supported flat plates and square tubes of various alumi- 
nium and magnesium alloys and steel show that p = 1.42 and m = 0.85 fit the results 
within f10 per cent up to the yield strength. Corresponding values for long clamped 
flat plates are p = 1.80, m = 0.85. 

extended the above method to the prediction of local failure stresses 
for the plate elements of thin-walled columns. Equation (6.62) becomes 

(6.63) 
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Angle 

L 
Basic section 

g = 2  

Tube T -section Cruciform 
I 

g = 4 cuts+ a flanges g = 3 flanges 
= 12 

g = 4 flanges 

g = 1 cut + 6 flanges = 7 g = 1 cut + 4 flanges = 5 

Fig. 6.19 Determination of empirical constant g. 

where A is the cross-sectional area of the column, Pg and m are empirical constants 
and g is the number of cuts required to reduce the cross-section to a series of flanged 
sections plus the number of flanges that would exist after the cuts are made. Examples 
of the determination of g are shown in Fig. 6.19. 

The local failure stress in longitudinally stiffened panels was determined by 
Gerard":I3 using a slightly modified form of Eqs (6.62) and (6.63). Thus, for a section 
of the panel consisting of a stiffener and a width of skin equal to the stiffener spacing 

(6.64) 

where tsk and tSt are the skin and stiffener thicknesses respectively. A weighted yield 
stress I?,, is used for a panel in which the material of the skin and stiffener have 
different yield stresses, thus 

where tis the average or equivalent skin thickness previously defined. The parameter g 
is obtained in a similar manner to that for a thin-walled column, except that the 
number of cuts in the skin and the number of equivalent flanges of the skin are 
included. A cut to the left of a stiffener is not counted since it is regarded as belonging 
to the stiffener to the left of that cut. The calculation of g for two types of skin/stiffener 
combination is illustrated in Fig. 6.20. Equation (6.64) is applicable to either mono- 
lithic or built up panels when, in the latter case, interrivet buckling and wrinkling 
stresses are greater than the local failure stress. 

The values of failure stress given by Eqs (6.62), (6.63) and (6.64) are associated with 
local or secondary instability modes. Consequently, they apply when IJr < 20. In the 
intermediate range between the local and primary modes, failure occurs through a 
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Stiffener cuts = 1 
Stiffener flanges = 4 

Skin cuts = 1 
Skin flanges = - 2 

9 =a 
1 ,ri- i1 

I / I 
Cut not included 

Stiffener cuts = 3 
Stiffener flanges = 8 

Skin cuts = 2 
Skin flanges = 4 - 

j-t I frt ~ J-L 
g 'E 

I /  I 

Cut not included 

Fig. 6.20 Determination of g for two types of stiffenerkkin combination 

combination of both. At the moment there is no theory that predicts satisfactorily 
failure in this range and we rely on test data and empirical methods. The NACA 
(now NASA) have produced direct reading charts for the failure of 'top hat', Z- 
and Y-section stiffened panels; a bibliography of the results is given by Gerard' '. 

It must be remembered that research into methods of predicting the instability and 
post-buckling strength of the thin-walled types of structure associated with aircraft 
construction is a continuous process. Modern developments include the use of the 
computer-based finite element technique (see Chapter 12) and the study of the 
sensitivity of thin-walled structures to imperfections produced during fabrication; 
much useful information and an extensive bibliography is contained in Murray3. 

It is recommended that the reading of this section be delayed until after Section 1 1.5 
has been studied. 

In some instances thin-walled columns of open cross-section do not buckle in bend- 
ing as predicted by the Euler theory but twist without bending, or bend and twist simul- 
taneously, producing flexural-torsional buckling. The solution of t h s  type of problem 
relies on the theory presented in Section 11.5 for the torsion of open section beams 
subjected to warping (axial) restraint. Initially, however, we shall establish a useful 
analogy between the bending of a beam and the behaviour of a pin-ended column. 

The bending equation for a simply supported beam carrying a uniformly distribu- 
ted load of intensity wy and having Cx and C y  as principal centroidal axes is 

(see Section 9.1) 
d4v 

EI.y.x - = w 
dz4 

(6.65) 

Also, the equation for the buckling of a pin-ended column about the Cx axis is (see 
Eq. (6.1)) 

(6.66) 
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Differentiating Eq. (6.66) twice with respect to z gives 

d4v d2v 
EIxx- = -P CR Q dz4 

(6.67) 

Comparing Eqs (6.65) and (6.67) we see that the behaviour of the column may be 
obtained by considering it as a simply supported beam carrying a uniformly 
distributed load of intensity wJ given by 

Similarly, for buckling about the Cy axis 

d2u 
dz 

w, = -PCR 7 

(6.68) 

(6.69) 

Consider now a thin-walled column having the cross-section shown in Fig. 6.21 and 
suppose that the centroidal axes Cxy are principal axes (see Section 9.1); S(xs,yS) is 
the shear centre of the column (see Section 9.3) and its cross-sectional area is A .  Due 
to the flexural-torsional buckling produced, say, by a compressive axial load P the 
cross-section will suffer translations u and v parallel to Cx and Cy respectively and 
a rotation 8, positive anticlockwise, about the shear centre S. Thus, due to translation, 
C and S move to C’ and S’ and then, due to rotation about S’, C’ moves to C”. The 

Fig. 6.21 Flexural-torsional buckling of a thin-walled column. 
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total movement of Cy uc, in the x direction is given by 
1 ” l  I1 uc = u+  C’D = u+ C’C”sina (S C C N 90”) 

But 

c‘c” = clsle = cse 

uC =u+BCSsina=u+ysf3 

Hence 

Also the total movement of C in the y direction is 

vc = v - D C ” = v - C ’ C 1 ’ c o ~ ~ = v - B C S c o ~ a  

(6.70) 

so that 

vc = v - xse (6.71) 

Since at this particular cross-section of the column the centroidal axis has been 
displaced, the axial load P produces bending moments about the displaced x and y 
axes given, respectively, by 

M, = pVc = P(V - xse) (6.72) 

and 

iwY = pUc = P ( U  + yse) 

From simple beam theory (Section 9.1) 

and 

d2u 
EI - = -M - -p( y y  dz2 Y - u+Yse) 

(6.73) 

(6.74) 

(6.75) 

where I,, and Iyy are the second moments of area of the cross-section of the column 
about the principal centroidal axes, E is Young’s modulus for the material of the 
column and z is measured along the centroidal longitudinal axis. 

The axial load P on the column will, at any cross-section, be distributed as a 
uniform direct stress CT. Thus, the direct load on any element of length 6s at a point 
B(xB,~B) is atds acting in a direction parallel to the longitudinal axis of the 
column. In a similar manner to the movement of C to C” the point B will be displaced 
to B”. The horizontal movement of B in the x direction is then 

UB = u + ~ ‘ ~ = ~ + ~ l ~ ’ l ~ ~ ~ p  
But 

BIB” = S’B’B = SB8 

Hence 
UB = u+OSBcosP 
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or 

U B = U + ( Y S - Y B ) @  

Similarly the movement of B in the y direction is 

vg = v - (xs - xB)6 

(6.76) 

(6.77) 

Therefore, from Eqs (6.76) and (6.77) and referring to Eqs (6.68) and (6.69), we 
see that the compressive load on the element 6s at B, at&, is equivalent to lateral 
loads 

d’ 
dz2 

-at&- [u + ( y s  - YB)e]  in the x direction 

and 

d2 
d z 2  

-at&- [v - (xs  - xB)O] in the y direction 

The lines of action of these equivalent lateral loads do not pass through the displaced 
position S’ of the shear centre and therefore produce a torque about S’ leading to the 
rotation 8. Suppose that the element 6s at B is of unit length in the longitudinal z 
direction. The torque per unit length of the column ST(z) acting on the element at 
B is then given by 

d2 

d2 
dz2 

6 T ( z )  = - at6sdZ, [U + (YS -vB)e](.h -YB)  

(6.78) 

Integrating Eq. (6.78) over the complete cross-section of the column gives the torque 
per unit length acting on the column, i.e. 

+ d 6 s - [ V  - (xs - xB)e](xs - X B )  

Expanding Eq. (6.79) and noting that a is constant over the cross-section, we obtain 

(6.80) 
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Equation (6.80) may be rewritten 

In Eq. (6.81) the term Ixx + Iyy + A ( 4  + y;) is the polar second moment of area Io of 
the column about the shear centre S .  Thus Eq. (6.81) becomes 

P d28 
(6.82) 

Substituting for T(z)  from Eq. (6.82) in Eq. (11.64), the general equation for the 
torsion of a thin-walled beam, we have 

d2v d2u 
dz dz2 - 

P X S T  + Pys-  - 0 (6.83) 

Equations (6.74), (6.75) and (6.83) form three simultaneous equations which may be 
solved to determine the flexural-torsional buckling loads. 

As an example, consider the case of a column of length L in which the ends are 
restrained against rotation about the z axis and against deflection in the x and y 
directions; the ends are also free to rotate about the x and y axes and are free 
to warp. Thus u = v = 8 = 0 at z = 0 and z = L. Also, since the column is free to 
rotate about the x and y axes at its ends, M, = My = 0 at z = 0 and z = L, and 
from Eqs (6.74) and (6.75) 

d2v d2u - = - = 0 at z = 0 and z = L 
dz2 dz2 

Further, the ends of the column are free to warp so that 

0 at z = 0 and z = L (see Eq. (11.54)) 
d28 
dz2 - 
_-  

An assumed buckled shape given by 

(6.84) 21 = A2 sin - , 

in which A l ,  A2 and A3 are unknown constants, satisfies the above boundary 
conditions. Substituting for u, v and 8 from Eqs (6.84) into Eqs (6.74), (6.75) and 
(6.83), we have 

7rZ 7rZ 7rz 
u = A I  sin - , 8 = A3 sin - 

L L L 

(6.85) 1 ( P - ~ ) A ~ - P X ~ A ~ = O  2EIXX 

( P - 9 ) A 1 + P y s A 3 = O  
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0 P - ~ E I J L ~  -Pxs 
P - ~ E I , , J L ~  0 PYS 

PYS - Pxs IOPIA - .rr2ET/L2 - GJ 

= O  (6.86) 

d’v 
dz- 

d2 u 

EI, 7 = - PV 

EI,,,, = -Pu 

d48 P d28 
d24 ( A ) G =  

El?-- G J - I o -  

(6.87) 

(6.88) 

(6.89) 

Equations (6.87), (6.88) and (6.89), unlike Eqs (6.74), (6.75) and (6.83), are uncoupled 
and provide three separate values of buckling load. Thus, Eqs (6.87) and (6.88) give 
values for the Euler buckling loads about the x and y axes respectively, while Eq. 
(6.89) gives the axial load which would produce pure torsional buckling; clearly the 
buckling load of the column is the lowest of these values. For the column whose 
buckled shape is defined by Eqs (6.84), substitution for v, u and 6’ in Eqs (6.87), 
(6.88) and (6.89) respectively gives 

Example 6.1 
A thin-walled pin-ended column is 2m long and has the cross-section shown in 
Fig. 6.22. If the ends of the column are free to warp determine the lowest value of 
axial load which will cause buckling and specify the buckling mode. Take 
E = 75 000 N/mm2 and G = 21 000 N/mm2. 

Since the cross-section of the column is doubly-symmetrical, the shear centre 
coincides with the centroid of area and xs = ys  = 0; Eqs (6.87), (6.88) and (6.89) 
therefore apply. Further, the boundary conditions are those of the column whose 
buckled shape is defined by Eqs (6.84) so that the buckling load of the column is 
the lowest of the three values given by Eqs (6.90). 

The cross-sectional area A of the column is 

A = 2.5(2 x 37.5f75) = 375mm’ 
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PYS -Pxs Io ( P  - PcR(e) ) / A  

Fig. 6.22 Column seclion of Example 6.1. 

= o  (6.91) 
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If the column has, say, Cx as an axis of symmetry, then the shear centre lies on this 
axis and y s  = 0. Equation (6.91) thereby reduces to 

(6.92) 

The roots of the quadratic equation formed by expanding Eqs (6.92) are the values of 
axial load which will produce flexural-torsional buckling about the longitudinal and 
x axes. If PCR(,,,,) is less than the smallest of these roots the column will buckle in pure 
bending about the y axis. 

Example 6.2 
A column of length l m  has the cross-section shown in Fig. 6.23. If the ends of the 
column are pinned and free to warp, calculate its buckling load; E = 70 OOON/mm2, 
G = 30 000 N/mm2. 

Fig. 6.23 Column section of Example 6.2. 

In this case the shear centre S is positioned on the C x  axis so that y s  = 0 and 
Eq. (6.92) applies. The distance X of the centroid of area C from the web of the section 
is found by taking first moments of area about the web. Thus 

2( 100 + 100 + 1OO)X = 2 x 2 x 100 x 50 

which gives 

i = 33.3mm 

The position of the shear centre S is found using the method of Example 9.5; this gives 
x s  = -76.2mm. The remaining section properties are found by the methods specified 
in Example 6.1 and are listed below 

A = 600mm2 Zxx = 1.17 x 106mm4 
J = 800mm4 

= 0.67 x 106mm4 
I? = 2488 x 106mm6 Zo = 5.32 x 106mm4 
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From Eqs (6.90) 

P ~ ~ ( ~ ~ )  = 4.63 x io5 N, P ~ ~ ( ~ ~ . ~ )  = 8.08 x io5 N, P ~ ~ ( ~ )  = 1.97 x io5 N 

Expanding Eq. (6.92) 

( P  - P C R ( . ~ . ~ ) ) ( P  - P C R ( 8 ) ) z O / A  - p2xg = 0 (i) 

Rearranging Eq. (i) 

P2(1 - A x t / z O )  - P ( p C R ( . ~ . ~ )  + PCR(B))  + PCR(s.~)pCR(8) = (ii) 

Substituting the values of the constant terms in Eq. (ii) we obtain 

P 2  - 29.13 x 105P + 46.14 x 10" = 0 (iii) 

The roots of Eq. (iii) give two values of critical load, the lowest of which is 

P = 1.68 x 10'N 

It can be seen that this value of flexural-torsional buckling load is lower than any of 
the uncoupled buckling loads PCR(xx), PCR(yy) or PcR(e). The reduction is due to the 
interaction of the bending and torsional buckling modes and illustrates the cautionary 
remarks made in the introduction to Section 6.10. 

The spans of aircraft wings usually comprise an upper and a lower flange connected 
by thin stiffened webs. These webs are often of such a thickness that they buckle under 
shear stresses at a fraction of their ultimate load. The form of the buckle is shown in 
Fig. 6.24(a), where the web of the beam buckles under the action of internal diagonal 
compressive stresses produced by shear, leaving a wrinkled web capable of supporting 
diagonal tension only in a direction perpendicular to that of the buckle; the beam is 
then said to be a complete tensionJield beam. 

W 

ut 

A Qc ff 

D ut 

(a) ( W  

1 
Fig. 6.24 Diagonal tension field beam 



6.1 3 Tension field beams 189 

Yll l  

6.1 3.1 Complete diagonal tension 
is--- _.__*___- 

The theory presented here is due to H. Wagner'"4. 
The beam shown in Fig. 6.24(a) has concentrated flange areas having a depth d 

between their centroids and vertical stiffeners which are spaced uniformly along the 
length of the beam. It is assumed that the flanges resist the internal bending 
moment at any section of the beam while the web, of thickness t ,  resists the vertical 
shear force. The effect of this assumption is to produce a uniform shear stress 
distribution through the depth of the web (see Section 9.7) at any section. Therefore, 
at a section of the beam where the shear force is S,  the shear stress r is given by 

S 
td 

r=-  (6.93) 

Consider now an element ABCD of the web in a panel of the beam, as shown in 
Fig. 6.24(a). The element is subjected to tensile stresses, at, produced by the diagonal 
tension on the planes AB and CD; the angle of the diagonal tension is a. On a vertical 
plane FD in the element the shear stress is r and the direct stress a,. Now considering 
the equilibrium of the element FCD (Fig. 6.24(b)) and resolving forces vertically, we 
have (see Section 1.6) 

a,CDt sin a = TFDt 

which gives 

27 
sin 2a 

- 7 a, = - 
sin a cos a 

(6.94) 

or, substituting for r from Eq. (6.93) and noting that in this case S = W at all sections 
of the beam 

2 w  
td sin 2a 

a, = 

Further, resolving forces horizontally for the element 
azFDt = atCDt cos a 

whence 
7 a, = a, cos- a 

or, substituting for at from Eq. (6.94) 
r 

a, = - tan a 
or, for this particular beam, from Eq. (6.93) 

W 
a, = ~ td tan a 

FCD 

(6.95) 

(6.96) 

(6.97) 

Since T and at are constant through the depth of the beam it follows that 0; is constant 
through the depth of the beam. 

The direct loads in the flanges are found by considering a length z of the beam as 
shown in Fig. 6.25. On the plane mm there are direct and shear stresses az and r acting 
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Fig. 6.25 Determination of flange forces. 

in the web, together with direct loads FT and FB in the top and bottom flanges 
respectively. FT and FB are produced by a combination of the bending moment Wz 
at the section plus the compressive action (a,) of the diagonal tension. Taking 
moments about the bottom flange 

aztd2 
2 WZ = FTd - - 

Hence, substituting for a- from Eq. (6.97) and rearranging 
wz w F==-+- d 2tana 

Now resolving forces horizontally 
FB - FT + aztd = O 

which gives, on substituting for nz and FT from Eqs (6.97) and (6.98) 
wz w 
d 2tana 

FB=--- 

(6.98) 

(6.99) 

The diagonal tension stress a, induces a direct stress a,, on horizontal planes at any 
point in the web. Thus, on a horizontal plane HC in the element ABCD of Fig. 6.24 
there is a direct stress a,, and a complementary shear stress 7, as shown in Fig. 6.26. 

B 

Fig. 6.26 Stress system on a horizontal plane in the beam web. 
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From a consideration of the vertical equilibrium of the element HDC we have 

ayHCt = a,CDt sin a 

which gives 
2 au = a, sin a 

Substituting for at from Eq. (6.94) 
aJ = Ttana! (6.100) 

or, from Eq. (6.93) in which S = W 
W 

a,, = -tan a 
. td 

(6.101) 

The tensile stresses a,, on horizontal planes in the web of the beam cause compression 
in the vertical stiffeners. Each stiffener may be assumed to support half of each 
adjacent panel in the beam so that the compressive load P in a stiffener is given by 

P = a,tb 

which becomes, from Eq. (6.101) 
Wb P =--ana 
d 

(6.102) 

If the load P is sufficiently high the stiffeners will buckle. Tests indicate that they 
buckle as columns of equivalent length 

or I,  = d / d m  
I ,  = d 

forb < 1.5d 

for b > 1.5d 
(6.103) 

In addition to causing compression in the stiffeners the direct stress a,, produces 
bending of the beam flanges between the stiffeners as shown in Fig. 6.27. Each 
flange acts as a continuous beam carrying a uniformly distributed load of intensity 
aut. The maximum bending moment in a continuous beam with ends fixed against 
rotation occurs at a support and is wL2/12 in which w is the load intensity and L 
the beam span. In this case, therefore, the maximum bending moment M,,, occurs 

Fig. 6.27 Bending of flanges due to web stress. 
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at a stiffener and is given by 
uytb 2 

MmaX =- 12 
or, substituting for gy from Eq. (6.101) 

wb2 tan a 
12d M m a x  = (6.104) 

Midway between the stiffeners this bending moment reduces to Wb2 tan a/24d. 
The angle a adjusts itself such that the total strain energy of the beam is a minimum. 

If it is assumed that the flanges and stiffeners are rigid then the strain energy comprises 
the shear strain energy of the web only and a = 45". In practice, both flanges and 
stiffeners deform so that a is somewhat less than 45", usually of the order of 40" 
and, in the type of beam common to aircraft structures, rarely below 38". For 
beams having all components made of the same material the condition of minimum 
strain energy leads to various equivalent expressions for Q, one of which is 

(6.105) tan a=- 
ut + % 

in which uF and as are the uniform direct compressive stresses induced by the diagonal 
tension in the flanges and stiffeners respectively. Thus, from the second term on the 
right-hand side of either of Eqs (6.98) or (6.99) 

2 Ot +'F 

W 
2AF tan a 

CF = 

in which AF is the cross-sectional area of each flange. Also, from Eq. (6.102) 
wb 

us = -tana 
ASd 

(6.106) 

(6.107) 

where As is the cross-sectional area of a stiffener. Substitution of at from Eq. (6.95) 
and oF and crs from Eqs (6.106) and (6.107) into Eq. (6.105), produces an equation 
which may be solved for a. An alternative expression for a, again derived from a 
consideration of the total strain energy of the beam, is 

(6.108) 

Example 6.3 
The beam shown in Fig. 6.28 is assumed to have a complete tension field web. If the 
cross-sectional areas of the flanges and stiffeners are, respectively, 350mm2 and 
300mm2 and the elastic section modulus of each flange is 750mm3, determine the 
maximum stress in a flange and also whether or not the stiffeners will buckle. The 
thickness of the web is 2mm and the second moment of area of a stiffener about 
an axis in the plane of the web is 2000 mm4; E = 70 000 N/mm2. 

From Eq. (6.108) 

= 0.7143 4 1 + 2  x 400/(2 x 350) 
1 + 2 x 300/300 tan a =  
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400mm 

1200 mm -I 
Fig. 6.28 Beam of Example 6.3. 

so that 

Q! = 42.6" 

The maximum flange stress will occur in the top flange at the built-in end where the 
bending moment on the beam is greatest and the stresses due to bending and diagonal 
tension are additive. Thus, from Eq. (6.98) 

5 x 1200 5 
400 -k 2 tan 42.6" 

FT = 

i.e. 

FT = 17.7 kN 

Hence the direct stress in the top flange produced by the externally applied bending 
moment and the diagonal tension is 17.7 x 103/350 = 50.7N/mm2. In addition to 
this uniform compressive stress, local bending of the type shown in Fig. 6.27 
occurs. The local bending moment in the top flange at the built-in end is found 
using Eq. (6.104), i.e. 

5 x lo3 x 3002 tan42.6" 
12 x 400 

= 8.6 x 104Nmm Mnax = 

The maximum compressive stress corresponding to this bending moment occurs at 
the lower extremity of the flange and is 8.6 x 104/750 = 114.9N/mm2. Thus the 
maximum stress in a flange occurs on the inside of the top flange at the built-in end 
of the beam, is compressive and equal to 114.9 + 50.7 = 165.6N/mm2. 

The compressive load in a stiffener is obtained using Eq. (6.102), i.e. 
5 x 300 tan 42.6" 

400 
= 3.4 kN P =  

Since, in this case, b < 1.5d, the equivalent length of a stiffener as a column is given by 
the first of Eqs (6.103). Thus 

1, = 400/d4 - 2 x 300/400 = 253 mm 



194 Structural instability 

From Eqs (6.7) the buckling load of a stiffener is then 

= 22.0 kN 7? x 70000 x 2000 
2532 PCR = 

Clearly the stiffener will not buckle. 
In Eqs (6.107) and (6.108) it is implicitly assumed that a stiffener is f d y  effective in 

resisting axial load. This will be the case if the centroid of area of the stiffener lies in 
the plane of the beam web. Such a situation arises when the stiffener consists of two 
members symmetrically arranged on opposite sides of the web. In the case where the 
web is stiffened by a single member attached to one side, the compressive load P is 
offset from the stiffener axis thereby producing bending in addition to axial load. 
For a stiffener having its centroid a distance e from the centre of the web the combined 
bending and axial compressive stress, a,, at a distance e from the stiffener centroid is 

P Pe2 
a, = - +- 

As As? 
in which r is the radius of gyration of the stiffener cross-section about its neutral axis 
(note: second moment of area I = Ar2). Thus 

a -'[1+(;)2] - As 

or 
P 

a, = - 
Ase 

where 

(6.109) 

and is termed the effective stiffener area. 

- 6.13.2 Incomplete diagonal tension 

In modern aircraft structures, beams having extremely thin webs are rare. They 
retain, after buckling, some of their ability to support loads so that even near failure 
they are in a state of stress somewhere between that of pure diagonal tension and the 
pre-buckling stress. Such a beam is described as an incomplete diagonal tensionfield 
beam and may be analysed by semi-empirical theory as follows. 

It is assumed that the nominal web shear T ( =  S / t d )  may be divided into a 'true 
shear' component T~ and a diagonal tension component TDT by writing 

TDT = k7, T~ = (1 - k)7 (6.110) 

where k, the diagonal tension factor, is a measure of the degree to which the diagonal 
tension is developed. A completely unbuckled web has k = 0 whereas k = 1 for a web 
in complete diagonal tension. The value of k corresponding to a web having a critical 
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Effective 
depth 

d 

shear stress TCR is given by the empirical expression 

k = tanh 0.5log- ( ;R) 
(6.1 11) 

The ratio r / r c R  is known as the loading ratio or buckling stress ratio. The buckling 
stress TCR may be calculated from the formula 

(6.1 12) 

where k,, is the coefficient for a plate with simply supported edges and & and Rb are 
empirical restraint coefficients for the vertical and horizontal edges of the web panel 
respectively. Graphs giving k,,, Rd and Rb are reproduced in Kuhn14. 

The stress equations (6.106) and (6.107) are modified in the light of these assump- 
tions and may be rewritten in terms of the applied shear stress r as 

kr  cot a 
(TF 

(2A,/td) + 0.5(1 - k) 

k r  tan a (Ts = 
(As/tb) + 0.5( 1 - k) 

(6.113) 

(6.114) 

Further, the web stress ut given by Eq. (6.94) becomes two direct stresses: crl along the 
direction of a given by 

2kr 
sin 2a 

(TI =- + r(l - k) sin2a (6.115) 

and CQ perpendicular to this direction given by 

a, = -r(1 - k) sin2a (6.116) 

The secondary bending moment of Eq. (6.104) is multiplied by the factor k, while the 
effective lengths for the calculation of stiffener buckling loads become (see Eqs 
(6.103)) 

or 

where d, is the actual stiffener depth, as opposed to the effective depth d of the web, 
taken between the web/flange connections as shown in Fig. 6.29. We observe that 
Eqs (6.1 13)-(6.116) are applicable to either incomplete or complete diagonal tension 

I, = d,/Jl + k2(3 - 2b/d,) for b < 1.5d 

I, = d, for b > 1% 

0 0 0 0 0 0 0  

St if fener 
depth 

_- 

web 

Fig. 6.29 Calculation of stiffener buckling load. 
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Fig. 6.30 Effect of taper on diagonal tension field beam calculations. 

field beams since, for the latter case, k = 1 giving the results of Eqs (6.106), (6.107) 
and (6.94). 

In some cases beams taper along their lengths, in which case the flange loads are no 
longer horizontal but have vertical components which reduce the shear load carried 
by the web. Thus, in Fig. 6.30 where d is the depth of the beam at the section 
considered, we have, resolving forces vertically 

w -  ( ~ T + F g ) S i n @ - a t ( d C O S a ) S i n a = O  (6.117) 

For horizontal equilibrium 

(FT - FB) COS /3 - gttd COS' = 0 (6.118) 

Taking moments about B 

wz - FTd COS @ + $gttd2 Cos2 a = 0 (6.1 19) 

Solving Eqs (6.117), (6.118) and (6.119) for q, FT and FB 

at = td 2w sin 2 a  (1 -$tan@) 

1 --tan@ FT=-[z+?(  W )] 
d cos @ 

1 - -tan@ 
F B = - [ z - F (  W )] 

d cos @ 

Equation (6.102) becomes 

(6.120) 

(6.121) 

(6.122) 

(6.123) 

Also the shear force S at any section of the beam is, from Fig. 6.30 
s w - (FT + &j) sinp 

or, substituting for FT and FB from Eqs (6.121) and (6.122) 

S =  W 1 --tan/3 G )  (6.124) 
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P.6.1 The system shown in Fig. P.6.1 consists of two bars AB and BC, each of 
bending stiffness EZ elastically hinged together at B by a spring of stiffness K (i.e. 
bending moment applied by spring = K x change in slope across B). 

Regarding A and C as simple pin-joints, obtain an equation for the first buckling 
load of the system. What are the lowest buckling loads when (a) K + 00, (b) 
EZ + 00. Note that B is free to move vertically. 

A m .  pKltan p l .  

P le. 0- 
P A B d S t i f  f ness K C 

v 
I 

2 1 
* - - 

Fig. P.6.1 
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P.6.2 A pin-ended column of length 1 and constant flexural stiffness EZ is 

Considering symmetric modes of buckling only, obtain the equation whose roots 

Ans. 

reinforced to give a flexural stiffness 4EZ over its central half (see Fig. P.6.2). 

yield the flexural buckling loads and solve for the lowest buckling load. 

tanp1/8 = l / d ,  P = 24.2EZ/12. 

€I 4EI E I  
P - 3  P 

Fig. P.6.2 

P.6.3 A uniform column of length 1 and bending stiffness EZ is built-in at one end 
and free at the other and has been designed so that its lowest flexural buckling load 
is P (see Fig. P.6.3). 

Subsequently it has to carry an increased load, and for this it is provided with a 
lateral spring at the free end. Determine the necessary spring stiffness k so that the 
buckling load becomes 4P. 

Am. k = 4 P p / ( p l -  tan p l ) .  

Fig. P.6.3 

P.6.4 A uniform, pin-ended column of length I and bending stiffness EZ has an 
initial curvature such that the lateral displacement at any point between the 
column and the straight line joining its ends is given by 

42 
v o = a - ( l - z )  (see Fig. P.6.4) P 

Show that the maximum bending moment due to a compressive end load P is 
given by 

Mmax = -- 8aP (swy  - 1) 
(W2 

where 

X2 = PIE1 
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t v  I vo 

Fig. P.6.4 

P.6.5 The uniform pin-ended column shown in Fig. P.6.5 is bent at the centre so 
that its eccentricity there is 6. If the two halves of the column are otherwise straight 
and have a flexural stiffness EI, find the value of the maximum bending moment 
when the column carries a compression load P. 

Fig. P.6.5 

P.6.6 A straight uniform column of length I and bending stiffness EI is subjected 
to uniform lateral loading w/unit length. The end attachments do not restrict rotation 
of the column ends. The longitudinal compressive force P has eccentricity e from the 
centroids of the end sections and is placed so as to oppose the bending effect of the 
lateral loading, as shown in Fig. P.6.6. The eccentricity e can be varied and is to be 
adjusted to the value which, for given values of P and w, will result in the least 
maximum bending moment on the column. Show that 

e = ( w / P p 2 )  tan2 p1/4 

p2 = PIE1 
where 

Deduce the end moment which will give the optimum condition when P tends to 

Ans. w12/16. 

zero. 

w/unit length 

1 2 i l l l i  i l l 1  .- 1 
e P  P e  

Z 

Fig. P.6.6 
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P.6.7 The relation between stress u and strain E in compression for a certain 
material is 

10.5 x 1 0 6 ~  = a+ 21 000 - 
(49:OO) l6 

Assuming the tangent modulus equation to be valid for a uniform strut of this 
material, plot the graph of ab against l / r  where fsb is the flexural buckling stress, 1 
the equivalent pin-ended length and r the least radius of gyration of the cross-section. 

Estimate the flexural buckling load for a tubular strut of this material, of 1.5 units 
outside diameter and 0.08 units wall thickness with effective length 20 units. 

Ans. 14 454 force units. 

P.6.8 A rectangular portal frame ABCD is rigidly fixed to a foundation at A and 
D and is subjected to a compression load P applied at each end of the horizontal 
member BC (see Fig. P.6.8). If the members all have the same bending stiffness EI 
show that the buckling loads for modes which are symmetrical about the vertical 
centre line are given by the transcendental equation 

- Xa = -? 1 ( I ; )  a tan ($) 
2 

where 

X2 = P/EI 

Fig. P.6.8 

P.6.9 A compression member (Fig. P.6.9) is made of circular section tube, 
diameter d, thickness t .  The member is not perfectly straight when unloaded, 
having a slightly bowed shape which may be represented by the expression 

v = Ssin (7) 
Show that when the load P is applied, the maximum stress in the member can be 
expressed as 
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Fig. P.6.9 

where 

(Y = P / P ~ ,  P, = ~ E I / P  
Assume r is small compared with d so that the following relationships are applicable: 

Cross-sectional area of tube = rdt. 
Second moment of area of tube = r d 3 t / 8 .  

P.6.10 Figure P.6.10 illustrates an idealized representation of part of an aircraft 
control circuit. A uniform, straight bar of length a and flexural stiffness EI is built- 
in at the end A and hinged at B to a link BC, of length b, whose other end C is 
pinned so that it is free to slide along the line ABC between smooth, rigid guides. 
A, B and C are initially in a straight line and the system carries a compression 
force P, as shown. 

Fig. P.6.10 

Assuming that the link BC has a sufficiently high flexural stiffness to prevent its 
buckling as a pin-ended strut, show, by setting up and solving the differential 
equation for flexure of AB, that buckling of the system, of the type illustrated in 
Fig. P.6.10, occurs when P has such a value that 

tan Xa = X(a + b) 
where 

X2 = P/EI  

P.6.11 A pin-ended column of length I has its central portion reinforced, the 
second moment of its area being I2 while that of the end portions, each of length a, 
is I I .  Use the energy method to determine the critical load of the column, assuming 
that its centre-line deflects into the parabola w = kz(1- z)  and taking the more 
accurate of the two expressions for the bending moment. 
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In the case where I2 = 1.611 and a = 0.21 find the percentage increase in strength 
due to the reinforcement, and compare it with the percentage increase in weight on 
the basis that the radius of gyration of the section is not altered. 

Ans. P C R  = 14.96EII/l2, 52%, 36%. 

P.6.12 A tubular column of length I is tapered in wall-thickness so that the area 
and the second moment of area of its cross-section decrease uniformly from AI and Il 
at its centre to 0.2A1 and 0.211 at its ends. 

Assuming a deflected centre-line of parabolic form, and taking the more correct 
form for the bending moment, use the energy method to estimate its critical load 
when tested between pin-centres, in terms of the above data and Young’s modulus 
E. Hence show that the saving in weight by using such a column instead of one 
having the same radius of gyration and constant thickness is about 15%. 

Ans. 7.01EIl/12. 

P.6.13 A uniform column (Fig. P.6.13), of length I and bending stiffness EI, is 
rigidly built-in at the end z = 0 and simply supported at the end z = 1. The column 
is also attached to an elastic foundation of constant stiffness k/unit length. 

“ t  

- 2  

\ ‘ k/unit length 

Fig. P.6.13 

Representing the deflected shape of the column by a polynomial 
P 

v = a,,$, where q = z/ l  
n = O  

determine the form of this function by choosing a minimum number of terms p such 
that all the kinematic (geometric) and static boundary conditions are satisfied, 
allowing for one arbitrary constant only. 

Using the result thus obtained, find an approximation to the lowest flexural 
buckling load P C R  by the Rayleigh-Ritz method. 

Ans. P c R  = 21.05EZ/12 + 0.09k12. 

P.6.14 A thin square plate of side a and thickness t is simply supported along each 

T X  Ty wo = Ssin-sin- 
a a  

edge, and has a slight initial curvature giving an initial deflected shape 
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Fig. P.6.14 

If the plate is subjected to a uniform compressive stress a in the x-direction (see 
Fig. P.6.14), find an expression for the elastic deflection w normal to the plate. 
Show also that the deflection at the mid-point of the plate can be presented in the 
form of a Southwell plot and illustrate your answer with a suitable sketch. 

Ans. 
T X  Ty 

w = [ ( ~ t s / ( 4 2 ~ / 2  - at)] sin-sin- 
a a  

P.6.15 A uniform flat plate of thickness t has a width b in the y direction and 
length I in the x direction (see Fig. P.6.15). The edges parallel to the x axis are 
clamped and those parallel to the y axis are simply supported. A uniform compressive 
stress (T is applied in the x direction along the edges parallel to the y axis. Using an 
energy method, find an approximate expression for the magnitude of the stress a 
which causes the plate to buckle, assuming that the deflected shape of the plate is 
given by 

. mrx 2 ~ y  w = all sin- sin I 

Fig. P.6.15 
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For the particular case I = 2b, find the number of half waves m corresponding to the 
lowest critical stress, expressing the result to the nearest integer. Determine also the 
lowest critical stress. 

A ~ s .  

P.6.16 A panel, comprising flat sheet and uniformly spaced Z-section stringers, a 
part of whose cross-section is shown in Fig. P.6.16, is to be investigated for strength 
under uniform compressive loads in a structure in which it is to be stabilized by frames 
a distance 1 apart, 1 being appreciably greater than the spacing b. 

(a) State the modes of failure which you would consider and how you would 
determine appropriate limiting stresses. 

(b) Describe a suitable test to verify your calculations, giving particulars of the 
specimen, the manner of support, and the measurements you would take. The 
latter should enable you to verify the assumptions made, as well as to obtain the 
load supported. 

m = 3, CTCR = [6E/( 1 - G)] ( t /b )2  

Fig. P.6.16 

P.6.17 Part of a compression panel of internal construction is shown in 
Fig. P.6.17. The equivalent pin-centre length of the panel is 500mm. The material 
has a Young’s modulus of 70 000 N/mm2 and its elasticity may be taken as falling 
catastrophically when a compressive stress of 300 N/mm2 is reached. Taking 
coefficients of 3.62 for buckling of a plate with simply supported sides and of 0.385 
with one side simply supported and one free, determine (a) the load per mm width 
of panel when initial buckling may be expected and (b) the load per mm for ultimate 
failure. Treat the material as thin for calculating section constants and assume that 
after initial buckling the stress in the plate increases parabolically from its critical 
value in the centre of sections. 

Am. 613.8 N/mm, 844.7N/mm. 

3mm 
1 , 

I 4 
I 

3.5 mm 

Fig. P.6.17 
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‘li 
T 

Fig. P.6.18 

P.6.18 Figure P.6.18 shows the doubly symmetrical cross-section of a thin-walled 
column with rigidly fixed ends. Find an expression, in terms of the section dimensions 
and Poisson’s ratio, for the column length for which the purely flexural and the purely 
torsional modes of instability would occur at the same axial load. 

In which mode would failure occur if the length were less than the value found? The 
possibility of local instability is to be ignored. 

A m .  I = ( 2 7 r b 2 / t ) d m .  Torsion. 

P.6.19 A column of length 21 with the doubly symmetric cross-section shown in 
Fig. P.6.19 is compressed between the parallel platens of a testing machine which 
fully prevents twisting and warping of the ends. 

Using the data given below, determine the average compressive stress at which the 
column first buckles in torsion 

I = 500 mm; b = 25.0 mm, t = 2.5 mm, E = 70 000 N/mm2, EIG = 2.6 

AYE. OCR = 282 N / m 2 .  

Fig. P.6.19 
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1.5 rnrn 

1.5 rnrn 

- 

1.5 rnrn 
-* 

M 
Fig. P.6.20 

P.6.20 A pin-ended column of length 1.0m has the cross-section shown in Fig. 
P.6.20. If the ends of the column are free to warp determine the lowest value of 
axial load which will cause the column to buckle, and specify the mode. Take 
E = 70 000 N/mm2 and G = 25 000 N/mm2. 

Ans. 5527 N. Column buckles in bending about an axis in the plane of its web. 

P.6.21 A pin-ended column of height 3.0m has a circular cross-section of 
diameter 80mm, wall thickness 2.0mm and is converted to an open section by a 
narrow longitudinal slit; the ends of the column are free to warp. Determine the 
values of axial load which would cause the column to buckle in (a) pure bending 
and (b) pure torsion. Hence determine the value of the flexural-torsional buckling 
load. Take E = 70 000 N/mm'. and G = 22 000 N/mm2. 

Note: the position of the shear centre of the column section may be found using the 
method described in Chapter 9. 

Ans. (a) 3.09 x 104N, (b) 1.78 x 104N, 1.19 x 104N. 

P.6.22 A simply supported beam has a span of 2.4m and carries a central 
concentrated load of 10 kN. The flanges of the beam each have a cross-sectional 
area of 300mm2 while that of the vertical web stiffeners is 280mm'. If the depth of 
the beam, measured between the centroids of area of the flanges, is 350 mm and the 
stiffeners are symmetrically arranged about the web and spaced at 300 mm intervals, 
determine the maximum axial load in a flange and the compressive load in a stiffener. 

It may be assumed that the beam web, of thickness 1.5 mm, is capable of resisting 
diagonal tension only. 

Ans. 19.9 kN, 3.9 kN. 

P.6.23 The spar of an aircraft is to be designed as an incomplete diagonal tension 
beam, the flanges being parallel. The stiffener spacing will be 250mm, the effective 
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depth of web will be 750mm, and the depth between web-to-flange attachments is 
725 mm. 

The spar is to carry an ultimate shear force of 100 000 N. The maximum permissible 
shear stress is 165N/mm2, but it is also required that the shear stress should not 
exceed 15 times the critical shear stress for the web panel. 

Assuming a to be 40" and using the relationships below: 

(i) Select the smallest suitable web thickness from the following range of standard 
thicknesses. (Take Young's Modulus E as 70 000 N/mm'.) 

0.7mm, 0.9mm, 1.2mm, 1.6mm 

(ii) Calculate the stiffener end load and the secondary bending moment in the 

The shear stress buckling coefficient for the web may be calculated from the 

flanges (assume stiffeners to be symmetrical about the web). 

expression 

K = 7.70[1 + 0.75(b/d)'] 

The relationship between the diagonal tension factor and buckling stress ratio is 
b and d having their usual significance. 

T/TCR 5 7 9 11 13 15 
k 0.37 0.40 0.42 0.48 0.51 0.53 

Note that a is the angle of diagonal tension measured from the spanwise axis of the 

A m .  1.2mm, 130As/(l +0.0113As), 238910Nmm. 

beam, as in the usual notation. 





Part II Aircraft Structures 





Principles of stressed 
skin construction 

With the present chapter we begin the purely aeronautical section of the book, where 
we consider structures peculiar to the field of aeronautical engineering. These struc- 
tures are typified by arrangements of thin, load bearing skins, frames and stiffeners, 
fabricated from lightweight, high strength materials of which aluminium alloys are 
the most widely used examples. 

As a preliminary to the analysis of the basic aircraft structural forms presented in 
subsequent chapters we shall discuss general principles of stressed skin construction 
from the viewpoint of materials and the loading, function and fabrication of struc- 
tural components. 

Several factors influence the selection of the structural material for an aircraft, but 
amongst these strength allied to lightness is probably the most important. Other 
properties having varying, though sometimes critical significance are stiffness, tough- 
ness, resistance to corrosion, fatigue and the effects of environmental heating, ease of 
fabrication, availability and consistency of supply and, not least important, cost. 

The main groups of materials used in aircraft construction have been wood, steel, 
aluminium alloys with, more recently, titanium alloys, and fibre-reinforced compo- 
sites. In the field of engine design, titanium alloys are used in the early stages of a 
compressor while nickel-based alloys or steels are used for the hotter later stages. 
As we are concerned primarily with the materials involved in the construction of 
the airframe, discussion of materials used in engine manufacture falls outside the 
scope of this book. Before we consider the individual groups in detail it is interesting 
and instructive to examine briefly the history of aircraft materials from the birth of the 
industry, at the beginning of the 20th century, to the present day. 

The first generation of conventional powered aircraft were constructed of wood 
and canvas. Spruce and birch were the most widely used timbers with tensile strengths 
of 70N/mm2 and 100N/mm2 respectively, specific gravities of 0.4 and 0.63 and 
Young’s moduli of 9000 N/mm2 and 14 250 N/mm2. Although these strength/ 
weight ratios compare favourably with modern heat-treated aluminium alloys, 
natural wood had disadvantages. Changes in shape and dimensions resulted from 
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moisture absorption and loss caused by changes in atmospheric humidity, while its 
structural properties exhibited the inconsistency common to natural products. 
Further, pronounced anisotropy caused by its grain structure gave a variation in 
the value of Young’s modulus in the ratio of 150: 1 depending on the direction of 
loading in relation to the grain. Associated effects were ratios of shear modulus 
and Poisson’s ratio of the order of 20: 1 and 40: 1 respectively. 

The introduction of plywood and the development of synthetic resin adhesives 
brought improvements in the strength of spars and skins and enabled anisotropy to 
be eliminated or at worst controlled. However, the large amount of wood required 
for military aircraft construction, during the 1914-18 war, revealed one of its most 
serious limitations. The most suitable forms were imported from overseas, requiring 
a large volume of shipping which was otherwise needed for the transport of food and 
troops. To avoid a similar critical situation arising at a future date the Air Ministry, in 
1924, prohibited the use of wood for the main load carrying parts of the structure. 
This decision obviously hastened the introduction of alternative metallic materials 
in airframe construction, although wood continued to make a significant contribution 
for many years. In fact, during the 1939-45 war a particularly successful high perfor- 
mance aircraft, the de Havilland Mosquito, was built entirely of wood. It must be 
admitted, however, that the special circumstances of the time were the cause of 
this. There was a shortage of factories and skilled workers for metal fabrication, 
whereas the furniture industry was able to supply manpower and equipment. More- 
over, wood could be adapted to rapid methods of construction and designers had 
acquired a substantial amount of experience in dealing with the problem of 
anisotropy in bulk timber. Furthermore, improvements in adhesives, for example 
the introduction of the Redux adhesives based on phenolformaldehyde thermosetting 
resin and the polyvinyl formal thermoplastic resin as a composite adhesive system, led 
to improved wood-wood, acceptable wood-metal and even metal-metal bonds. 

Despite this relatively modern successful use of wood it became inevitable that its 
role as an important structural material should come to an end. The increased wing 
loadings and complex structural forms of present day turbojet aircraft cause high 
stress concentrations for which wood is not well adapted. Its anisotropy presents 
difficult problems for the designer while wooden aircraft require more maintenance 
than those constructed of metal. It is particularly unsuitable for use in tropical 
conditions where, as we have noted, large changes in humidity have serious effects 
on shape and dimensions. Attacks on the wood by termites is an additional problem. 

The fist practical all-metal aircraft was constructed in 1915 by Junkers in Germany, 
of materials said to be ‘iron and steel’. Steel presented the advantages of a high 
modulus of elasticity, high proof stress and high tensile strength. Unfortunately 
these were accompanied by a high specific gravity, almost three times that of the 
aluminium alloys and about ten times that of plywood. Designers during the 1930s 
were therefore forced to use steel in its thinnest forms, the usual preference being 
for a steel having a 0.1 per cent proof stress of 1000 N/mm2. To ensure stability against 
buckling of the thin plate, intricate shapes for spar sections were devised; typical exam- 
ples of these are shown in Fig. 7.1. Common gauges of the material were 33 to 16 SWG 
(i.e. approximately 0.25 mm to 1.63 mm), with a composition of 0.5 per cent carbon, 
1.5 per cent manganese steel to Specification DTD 137, a nickel chrome steel to 
Specification DTD 54A or a 12 per cent chromium steel to DTD 46A. 
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Fig. 7.1 Typical spar sections fabricated from thin steel sheet. 

In 1909 Alfred Wilm, in Germany, accidentally discovered that an aluminium alloy 
containing 3.5 per cent copper, 0.5 per cent magnesium and silicon and iron as 
unintended impurities spontaneously hardened after quenching from about 480°C. 
The patent rights of this material were acquired by Durener Metallwerke who 
marketed the alloy under the name Duralumin. For half a century this alloy has 
been used in the wrought heat-treated, naturally aged condition possessing mechan- 
ical properties of 0.1 per cent proof stress not less than 230 N/mm’, tensile strength 
not less than 390N/mm2 and an elongation at fracture not less than 15 per cent. 
However, the improvements in these properties produced by artificial ageing at a 
raised temperature of, for example, 175°C were not exploited in the aircraft industry 
until about 1934. Artificially aged duralumin has a 0.1 per cent proof stress of not less 
than 370N/mm2, a tensile strength not less than 460N/mm2 and an elongation of 8 
per cent. 

In addition to the development of duralumin (first used as a main structural 
material by Junkers in 1917) three other causes contributed to the replacement of 
steel by aluminium alloy. These were a better understanding of the process of heat 
treatnent, the introduction of extrusions in a wide range of sections and the use of 
pure aluminium cladding to provide greater resistance to corrosion. By 1938, three 
groups of aluminium alloys dominated the field of aircraft construction and, in 
fact, they retain their importance to the present day. The groups are separated by 
virtue of their chemical composition, to which they owe their capacity for strengthen- 
ing under heat treatment. 

The first group is contained under the general name duralumin having a typical 
composition of: 4 per cent copper, 0.5 per cent magnesium, 0.5 per cent manganese, 
0.3 per cent silicon, 0.2 per cent iron, with the remainder aluminium. The naturally 
aged version was covered by Air Ministry Specification DTD 18 issued in 1924, 
while artificially aged duralumin came under Specification DTD 11 1 in 1929. Typical 
properties of the two types have been quoted above although DTD 11 1 provided for 
slight reductions in 0.1 per cent proof stress and tensile strength. 

The second group of aluminium alloys differs from duralumin chiefly by the 
introduction of 1 to 2 per cent of nickel, a high content of magnesium and possible 
variations in the amounts of copper, silicon and iron. Y‘ alloy, the oldest member 
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of the group, has a typical composition of: 4 per cent copper, 2 per cent nickel, 1.5 per 
cent magnesium, the remainder being aluminium and was covered by Specification 
DTD 58A issued in 1927. Its most important property was its retention of strength 
at high temperatures, which meant that it was a particularly suitable material for 
aero engine pistons. Its use in airframe construction has been of a limited nature 
only. Research by Rolls-Royce and development by High Duty Alloys Ltd produced 
the ‘RR’ series of alloys. Based on Y alloy, the RR alloys had some of the nickel 
replaced by iron and the copper reduced. One of the earliest of these alloys, RR56, 
had approximately half of the 2 per cent nickel replaced by iron, the copper content 
reduced from 4 to 2 per cent, and was used for forgings and extrusions in aero engines 
and airframes. Specification DTD 130, issued in 1930, listed minimum mechanical 
properties for RR56 of 0.1 per cent proof stress 310N/mm’, tensile strength of 
400 N/mm2 and elongation of 10 per cent. 

The third and latest group depends upon the inclusion of zinc and magnesium for 
their high strength. Covered by Specification DTD 363 issued in 1937, these alloys had 
a nominal composition: 2.5 per cent copper, 5 per cent zinc, 3 per cent magnesium and 
up to 1 per cent nickel with mechanical properties, 0.1 per cent proof stress 510N/mm2, 
tensile strength 585 N/mm2 and an elongation of 8 per cent. In modern versions of 
this alloy nickel has been eliminated and provision made for the addition of 
chromium and further amounts of manganese. 

Of the three basic structural materials described above, namely wood, steel and 
aluminium alloy, only wood is no longer of significance except in the form of 
laminates for non-structural bulkheads, floorings and furnishings. Most modern 
aircraft, for example Concorde, still rely on modified forms of the high strength 
aluminium alloys which were introduced during the early part of the 20th century. 
Steels are used where high strength, high stiffness and wear resistance are required. 
Other materials, such as titanium and fibre-reinforced composites first used about 
1950, are finding expanding uses in airframe construction. All these and some 
additional materials are now discussed in detail. 

7.1.1 Aluminium alloys 

We have noted that airframe construction has depended for many years on the three 
groups of aluminium alloys: (i) the nickel free duralumins, (ii) the derivatives of Y 
alloy and (iii) the aluminium-zinc-magnesium group. Alloys from each group 
have been used extensively for airframes, skins and other stressed components, the 
choice of alloy being influenced by factors such as strength (proof and ultimate 
stress), ductility, ease of manufacture (e.g. in extrusion and forging), resistance to 
corrosion and amenability to protective treatment, fatigue strength, freedom from 
liability to sudden cracking due to internal stresses and resistance to fast crack 
propagation under load. Clearly, different types of aircraft have differing require- 
ments. A military aircraft, for instance, having a relatively short life measured in 
hundreds of hours, does not call for the same degree of fatigue and corrosion 
resistance as a civil aircraft with a required life of 30 000 hours or more. 

Unfortunately, as one particular property of aluminium alloys is improved, other 
desirable properties are sacrificed. For example, the extremely high static strength of 
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the aluminium-zinc-magnesium alloys was accompanied for many years by a sudden 
liability to crack in an unloaded condition due to the retention of internal stresses in 
bars, forgings and sheet after heat treatment. Although variations in composition 
have eliminated this problem to a considerable extent other deficiencies showed them- 
selves. Early Viscount service experience produced large numbers of stress-corrosion 
failures of forgings and extrusions. The problem became so serious that in 1953 it was 
decided to replace as many aluminium-zinc-manganese components as possible with 
the aluminium-4 per cent copper Alloy L65 and to prohibit the use of forgings in 
zinc-bearing alloy in all future designs. However, improvements in the stress-corro- 
sion resistance of the aluminium-zinc-magnesium alloys have resulted in recent 
years from British, American and German research. Both British and American 
opinions agree on the benefits of including about 1 per cent copper but disagree on 
the inclusion of chromium and manganese, while in Germany the addition of silver 
has been found extremely beneficial. Improved control of casting techniques has 
brought further improvements in resistance to stress corrosion. The development 
of aluminium-zinc-magnesium-copper alloys, called the 7000 series, has largely 
met the requirement for aluminium alloys possessing high strength, good fatigue 
crack growth resistance and adequate toughness. Further development will concen- 
trate on the production of materials possessing higher specific properties, bringing 
benefits in relation to weight saving rather than increasing strength and stiffness. 

The duralumin alloys possess a lower static strength than the above zinc-bearing 
alloys, but are preferred for portions of the structure where fatigue considerations 
are of primary importance such as the under-surfaces of wings where tensile fatigue 
loads predominate. Experience has shown that the naturally aged version of 
duralumin has important advantages over the fully heat-treated forms in fatigue 
endurance and resistance to crack-propagation. Furthermore, the inclusion of a 
higher percentage of magnesium was found, in America, to produce, in the naturally 
aged condition, mechanical properties between those of the normal naturally aged 
and artificially aged duralumin. This alloy, designated 2024 (aluminium-copper 
alloys form the 2000 series) has the nominal composition: 4.5 per cent copper, 1.5 
per cent magnesium, 0.6 per cent manganese, with the remainder aluminium, and 
appears to be a satisfactory compromise between the various important, but some- 
times conflicting, mechanical properties. 

Interest in aluminium-magnesium-silicon alloys has recently increased, although 
they have been in general use in the aerospace industry for decades. The reasons 
for this renewed interest are that they are potentially cheaper than ahminiam- 
copper alloys and, being weldable, are capable of reducing manufacturing costs. In 
addition, variants, such as the IS0  6013 alloy, have improved property levels and, 
generally, possess a similar high fracture toughness and resistance to crack propaga- 
tion as the 2000 series alloys. 

Frequently, a particular form of an alloy is developed for a particular aircraft. 
An outstanding example of such a development is the use of Hiduminium RR58 
as the basis for the main structural material, designated CMOO1, for Concorde. 
Hiduminium RR58 is a complex aluminium-copper-magnesium-nickel-iron alloy 
developed during the 1939-45 war specifically for the manufacture of forged compo- 
nents in gas turbine aero engines. The chemical composition of the version used in 
Concorde was decided on the basis of elevated temperature, creep, fatigue and tensile 
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testing programmes and has the detailed specification of: 

%Cu %Mg %Si %Fe %Ni %Ti %A1 
- 

Remainder Minimum 2.25 1.35 0.18 0.90 1.0 
Maximum 2.70 1.65 0.25 1.20 1.30 0.20 

Generally, CMOO 1 is found to possess better overall strength/fatigue characteristics 
over a wide range of temperatures than any of the other possible aluminium alloys. 

The latest aluminium alloys to find general use in the aerospace industry are the 
aluminium-lithium alloys. Of these, the aluminium-lithium-copper-manganese 
alloy, 8090, developed in the UK, is extensively used in the main fuselage structure 
of GKN Westland Helicopters’ most recent design EH101; it has also been qualified 
for Eurofighter 2000 (now named the Typhoon) but has yet to be embodied. In the 
USA the aluminium-lithium-copper alloy, 2095, has been used in the fuselage 
frames of the F16 as a replacement for 2124, resulting in a fivefold increase in fatigue 
life and a reduction in weight. Aluminium-lithium alloys can be successfully welded, 
possess a high fracture toughness and exhibit a high resistance to crack propagation. 

7.1.2 Steel 

The use of steel for the manufacture of thin-walledy box-section spars in the 1930s has 
been described previously in this section. Clearly, its high specific gravity prevented its 
widespread use in aircraft construction, but it has retained some value as a material 
for castings for small components demanding high tensile strengths, high stiffness 
and high resistance to wear. Such components include undercarriage pivot brackets, 
wing-root attachments, fasteners and tracks. 

Although the attainment of high and ultra-high tensile strengths presents no 
difficulty with steel, it is found that other properties are sacrificed and that it is 
difficult to manufacture into finished components. To overcome some of these 
difficulties types of steel known as maraging steels were developed in 1961, from 
which carbon is either eliminated entirely or present only in very small amounts. 
Carbon, while producing the necessary hardening of conventional high tensile 
steels, causes brittleness and distortion; the latter is not easily rectsable as machining 
is difficult and cold forming impracticable. Welded fabrication is also almost impos- 
sible or very expensive. The hardening of maraging steels is achieved by the addition 
of other elements such as nickel, cobalt and molybdenum. A typical maraging steel 
would have these elements present in the proportions: nickel 17-19 per cent, cobalt 
8-9 per cent, molybdenum 3-3.5 per cent, with titanium 0.15-0.25 per cent. The 
carbon content would be a maximum of 0.03 per cent, with traces of manganese, 
silicon, sulphur, phosphorus, aluminium, boron, calcium and zirconium. Its 0.2 per 
cent proof stress would be nominally 1400N/mm2 and its modulus of elasticity 
180 000 N/mm2. 

The main advantages of maraging steels over conventional low alloy steels are: 
higher fracture toughness and notched strength, simpler heat treatment, much 
lower volume change and distortion during hardening, very much simpler to weld, 
easier to machine and better resistance to stress corrosion/hydrogen embrittlement. 
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On the other hand, the material cost of maraging steels is three or more times greater 
than the cost of conventional steels, although this may be more than offset by the 
increased cost of fabricating a complex component from the latter steel. 

Maraging steels have been used in: aircraft arrester hooks, rocket motor cases, 
helicopter undercarriages, gears, ejector seats and various structural forgings. 

In addition to the above, steel in its stainless form has found applications primarily 
in the construction of super- and hypersonic experimental and research aircraft, 
where temperature effects are considerable. Stainless steel formed the primary struc- 
tural material in the Bristol 188, built to investigate kinetic heating effects, and also in 
the American rocket aircraft, the X-15, capable of speeds of the order of Mach 5-6. 

The use of titanium alloys increased significantly in the 198Os, particularly in the 
construction of combat aircraft as opposed to transport aircraft. This increase has 
continued in the 1990s to the stage where, for combat aircraft, the percentage of 
titanium alloy as a fraction of structural weight is of the same order as that of 
aluminium alloy. Titanium alloys possess high specific properties, have a good fatigue 
strength/tensile strength ratio with a distinct fatigue limit, and some retain consider- 
able strength at temperatures up to 4O0"-50O0C. Generally, there is also a good 
resistance to corrosion and corrosion fatigue although properties are adversely 
affected by exposure to temperature and stress in a salt environment. The latter 
poses particular problems in the engines of carrier-operated aircraft. Further dis- 
advantages are a relatively high density so that weight penalties are imposed if the 
alloy is extensively used, coupled with high primary and high fabrication costs, 
approximately seven times those of aluminium and steel. 

In spite of this, titanium alloys were used in the airframe and engines of Concorde, 
while the Tornado wing carry-through box is fabricated from a weldable medium 
strength titanium alloy. Titanium alloys are also used extensively in the F15 and 
F22 American fighter aircraft and are incorporated in the tail assembly of the 
Boeing 777 civil airliner. Other uses include forged components such as flap and 
slat tracks and undercarriage parts. 

New fabrication processes (e.g. superplastic forming combined with diffusion 
bonding) enable large and complex components to be produced, resulting in a reduc- 
tior. in production man-hours and weight. Typical savings are 30 per cent in man- 
hours, 30 per cent in weight and 50 per cent in cost compared with conventional 
riveted titanium structures. It is predicted that the number of titanium components 
fabricated in this way for aircraft will increase significantly and include items such 
as access doors, sheet for areas of hot gas impingement etc. 

7.1.4 Plastics 

Plain plastic materials have specific gravities of approximately unity and are therefore 
considerably heavier than wood although of comparable strength. On the other hand, 



2 18 Principles of stressed skin construction 

their specific gravities are less than half those of the aluminium alloys so that they find 
uses as windows or lightly stressed parts whose dimensions are established by 
handling requirements rather than strength. They are also particularly useful as 
electrical insulators. 

7.1.5 Glass 

The majority of modern aircraft have cabins pressurized for flight at high altitudes. 
Windscreens and windows are therefore subjected to loads normal to their midplanes. 
Glass is frequently the material employed for this purpose in the form of plain or 
laminated plate or heat-strengthened plate. The types of plate glass used in aircraft 
have a modulus of elasticity between 70 000 and 75 000 N/mm2 with a modulus of 
rupture in bending of 45 N/mm2. Heat strengthened plate has a modulus of rupture 
of about four and a half times this figure. 

7.1.6 Composite materials 

Composite materials consist of strong fibres such as glass or carbon set in a matrix of 
plastic or epoxy resin, which is mechanically and chemically protective. The fibres 
may be continuous or discontinuous but possess a strength very much greater than 
that of the same bulk materials. For example, carbon fibres have a tensile strength 
of the order of 2400 N/mm2 and a modulus of elasticity of 400 000 N/mm2. 

A sheet of fibre-reinforced material is anisotropic, that is, its properties depend on 
the direction of the fibres. Generally, therefore, in structural form two or more sheets 
are sandwiched together to form a lay-up so that the fibre directions match those of 
the major loads. 

In the early stages of the development of composite materials glass fibres were used 
in a matrix of epoxy resin. This glass reinforced plastic (GRP) was used for radomes 
and helicopter blades but found limited use in components of fixed wing aircraft due 
to its low stiffness. In the 1960s, new fibrous reinforcements were introduced; Kevlar, 
for example, is an aramid material with the same strength as glass but is stiffer. Kevlar 
composites are tough but poor in compression and difficult to machine, so they were 
used in secondary structures. Another composite, using boron fibre and developed 
in the USA, was the first to possess sufficient strength and stiffness for primary 
structures. 

These composites have now been replaced by carbon fibre reinforced plastics 
(CFRP), which have similar properties to boron composites but are very much 
cheaper. Typically, CFRP has a modulus of the order of three times that of GRP, 
one and a half times that of a Kevlar composite and twice that of aluminium alloy. 
Its strength is three times that of aluminium alloy, approximately the same as that 
of GRP, and slightly less than that of Kevlar composites. CFRP does, however, 
suffer from some disadvantages. It is a brittle material and therefore does not yield 
plastically in regions of high stress concentration. Its strength is reduced by impact 
damage which may not be visible and the epoxy resin matrices can absorb moisture 
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Fig. 7.2 Sectional view of Helicopter Main Rotor blade (courtesy Roy. Aero. SOC. Aerospace magazine). 

over a long period which reduces its matrix dependent properties, such as its 
compressive strength; this effect increases with increase of temperature. Further, 
the properties of CFRP are subject to more random variation than those of metals. 
All these factors must be allowed for in design. On the other hand, the stiffness of 
CFRP is much less affected than its strength by the above and it is less prone to fatigue 
damage than metals. It is estimated that replacing 40% of an aluminium alloy 
structure by CFRP would result in a 12% saving in total structural weight. 

CFRP is included in the wing, tailplane and forward fuselage of the latest Harrier 
development, is used in the Tornado taileron and has been used to construct a 
complete Jaguar wing and engine bay door for testing purposes. The use of CFRP 
in the fabrication of helicopter blades has led to significant increases in their service 
life, where fatigue resistance rather than stiffness is of primary importance. Figure 
7.2 shows the structural complexity of a Sea King helicopter rotor blade which 
incorporates CFRP, GRP, stainless steel, a honeycomb core and foam filling. An 
additional advantage of the use of composites for helicopter rotor blades is that the 
moulding techniques employed allow variations of cross-section along the span, 
resulting in substantial aerodynamic benefits. This approach is being employed in 
the fabrication of the main rotor blades of the GKN Westland Helicopters EH101. 

A composite (fibreglass and aluminium) is used in the tail assembly of the Boeing 
777 while the leading edge of the Airbus A3 10-300/A320 fin assembly is of conven- 
tional reinforced glass fibre construction, reinforced at the nose to withstand bird 
strikes. A complete composite airframe was produced for the Beechcraft Starship 
turboprop executive aircraft which, however, was not a commercial success due to 
its canard configuration causing drag and weight penalties. 

The development of composite materials is continuing with research into the 
removal of strength-reducing flaws and local imperfections from carbon fibres. 
Other matrices such as polyetheretherketone, which absorbs much less moisture 
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than epoxy resin, has an indefinite shelf life and performs well under impact, are being 
developed; fabrication, however, requires much higher temperatures. Metal matrix 
composites such as graphite-aluminium and boron-aluminium are light-weight 
and retain their strength at higher temperatures than aluminium alloys, but are 
expensive to produce. 

Generally, the use of composites in aircraft construction appears to have reached a 
plateau, particularly in civil subsonic aircraft where the fraction of the structure 
comprising composites is approximately 15%. This is due largely to the greater 
cost of manufacturing composites compared with aluminium alloy structures since 
composites require hand crafting of the materials and manual construction processes. 
These increased costs are particularly important in civil aircraft construction and are 
becoming increasingly important in military aircraft. 

The structure of an aircraft is required to support two distinct classes of load: the first, 
termed ground load.7, includes all loads encountered by the aircraft during movement 
or transportation on the ground such as taxiing and landing loads, towing and 
hoisting loads; while the second, air loads, comprises loads imposed on the structure 
during flight by manoeuvres and gusts. In addition, aircraft designed for a particular 
role encounter loads peculiar to their sphere of operation. Carrier born aircraft, for 
instance, are subjected to catapult take-off and arrested landing loads; most large 
civil and practically all military aircraft have pressurized cabins for high altitude 
flying; amphibious aircraft must be capable of landing on water and aircraft designed 
to fly at  high speed at low altitude, e.g. the Tornado, require a structure of above 
average strength to withstand the effects of flight in extremely turbulent air. 

The two classes of loads may be further divided into surface forces which act upon 
the surface of the structure, e.g. aerodynamic and hydrostatic pressure, and hoc{i, 
forces which act over the volume of the structure and are produced by gravitational 
and inertial effects. Calculation of the distribution of aerodynamic pressure over the 
various surfaces of an aircraft’s structure is presented in numerous texts on aero- 
dynamics and will therefore not be attempted here. We shall, however, discuss the 
types of load induced by these various effects and their action on the different 
structural components. 

Basically, all air loads are the resultants of the pressure distribution over the sur- 
faces of the skin produced by steady flight, manoeuvre or gust conditions. Generally, 
these resultants cause direct loads, bending, shear and torsion in all parts of the 
structure in addition to local, normal pressure loads imposed on the skin. 

Conventional aircraft usually consist of fuselage, wings and tailplane. The fuselage 
contains crew and payload, the latter being passengers, cargo, weapons plus fuel, 
depending on the type of aircraft and its function; the wings provide the lift and 
the tailplane is the main contributor to directional control. In addition, ailerons, 
elevators and the rudder enable the pilot to manoeuvre the aircraft and maintain 
its stability in flight, while wing flaps provide the necessary increase of lift for take- 
off and landing. Figure 7.3 shows typical aerodynamic force resultants experienced 
by an aircraft in steady flight. 
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Vertical ta i l  providing 
directional control 

rizontal tail countering 
e aircraft’s tendency to 

pitch in a vertical plane 

Aircraft weight 

Fig. 7.3 Principal aerodynamic forces on an aircraft during flight. 

The force on an aerodynamic surface (wing, vertical or horizontal tail) results from a 
differential pressure distribution caused by incidence, camber or a combination of both. 
Such a pressure distribution, shown in Fig. 7.4(a), has vertical (lift) and horizontal 
(drag) resultants acting at a centre of pressure (CP). (In practice, lift and drag are 
measured perpendicular and parallel to the flight path respectively.) Clearly the posi- 
tion of the CP changes as the pressure distribution varies with speed or wing incidence. 
However, there is, conveniently, a point in the aerofoil section about which the moment 
due to the lift and drag forces remains constant. Thus we replace the lift and drag forces 
acting at the CP by lift and drag forces acting at the aerodynamic centre (AC) plus a 
constant moment Mo as shown in Fig. 7.4(b). (Actually, at high Mach numbers the 
position of the aerodynamic centre changes due to compressibility effects.) 

While the chordwise pressure distribution fixes the position of the resultant aero- 
dynamic load in the wing cross-section, the spanwise distribution locates its position 
in relation, say, to the wing root. A typical distribution for a wing/fuselage combination 
is shown in Fig. 7.5. Similar distributions occur on horizontal and vertical tail surfaces. 

We see therefore that wings, tailplane and the fuselage are each subjected to direct, 
bending, shear and torsional loads and must be designed to withstand critical 

+L i f t  

Drag 

(a) (b) 
Fig. 7.4 (a) Pressure distribution around an aerofoil; (b) transference of lift and drag loads to the aerodynamic 
centre. 
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Lift - resultants. 

Fig. 7.5 Typical lift distribution for a wingfiuselage combination. 

combinations of these. Note that manoeuvres and gusts do not introduce different 
loads but result only in changes of magnitude and position of the type of existing 
loads shown in Fig. 7.3. Over and above these basic in-flight loads, fuselages may 
be pressurized and thereby support hoop stresses, wings may carry weapons and/or 
extra fuel tanks with resulting additional aerodynamic and body forces contributing 
to the existing bending, shear and torsion, while the thrust and weight of engines may 
affect either fuselage or wings depending on their relative positions. 

Ground loads encountered in landing and taxiing subject the aircraft to concen- 
trated shock loads through the undercarriage system. The majority of aircraft have 
their main Undercarriage located in the wings, with a nosewheel or tailwheel in the 
vertical plane of symmetry. Clearly the position of the main undercarriage should 
be such as to produce minimum loads on the wing structure compatible with the 
stability of the aircraft during ground manoeuvres. This may be achieved by locating 
the undercarriage just forward of the flexural axis (see Section 1 1.1) of the wing and as 
close to the wing root as possible. In this case the shock landing load produces a given 
shear, minimum bending plus torsion, with the latter being reduced as far as practic- 
able by offsetting the torque caused by the vertical load in the undercarriage leg by a 
torque in an opposite sense due to braking. 

Other loads include engine thrust on the wings or fuselage which acts in the plane of 
symmetry but may, in the case of engine failure, cause severe fuselage bending 
moments, as shown in Fig. 7.6; concentrated shock loads during a catapult launch; 
and hydrodynamic pressure on the fuselages or floats of seaplanes. 

j, Vertical tail load 
balancing moment 
due to unsymmetrical 
engine thrust 

Fig. 7.6 Fuselage and wing bending caused by an unsymmetrical engine load. 
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In Chapter 8 we shall examine in detail the calculation of ground and air loads for a 
variety of cases. 

7.3 Function of structural components 
The basic functions of an aircraft’s structure are to transmit and resist the applied 
loads; to provide an aerodynamic shape and to protect passengers, payload, systems 
etc. from the environmental conditions encountered in flight. These requirements, in 
most aircraft, result in thin shell structures where the outer surface or skin of the 
shell is usually supported by longitudinal stiffening members and transverse frames 
to enable it to resist bending, compressive and torsional loads without buckling. 
Such structures are known as semi-monocoque, while thin shells which rely entirely 
on their skins for their capacity to resist loads are referred to as monocoquc’. 

First, we shall consider wing sections which, while performing the same function, 
can differ widely in their structural complexity, as can be seen by comparing Figs 
7.7 and 7.8. In Fig. 7.7, the wing of the small, light passenger aircraft, the De Havil- 
land Canada Twin Otter, comprises a relatively simple arrangement of two spars, 
ribs, stringers and skin, while the wing of the Harrier in Fig. 7.8 consists of numerous 
spars, ribs and skin. However, no matter how complex the internal structural arrange- 
ment the different components perform the same kind of function. The shape of 
the cross-section is governed by aerodynamic considerations and clearly must be 
maintained for all combinations of load; this is one of the functions of the ribs. 
They also act with the skin in resisting the distributed aerodynamic pressure loads; 
they distribute concentrated loads (e.g. undercarriage and additional wing store 
loads) into the structure and redistribute stress around discontinuities, such as under- 
carriage wells, inspection panels and fuel tanks, in the wing surface. Ribs increase the 
column buckling stress of the longitudinal stiffeners by providing end restraint and 
establishing their column length; in a similar manner they increase the plate buckling 
stress of the skin panels. The dimensions of ribs are governed by their spanwise 
position in the wing and by the loads they are required to support. In the outer 
portions of the wing, where the cross-section may be relatively small if the wing 
is tapered and the loads are light, ribs act primarily as formers for the aerofoil 
shape. A light structure is sufficient for this purpose whereas at sections closer to 
the wing root, where the ribs are required to absorb and transmit large concentrated 
applied loads, such as those from the undercarriage, engine thrust and fuselage 
attachment point reactions, a much more rugged construction is necessary. Between 
these two extremes are ribs which support hinge reactions from ailerons, flaps and 
ot‘her control surfaces, plus the many internal loads from fuel, armament and systems 
installations. 

The primary function of the wing skin is to form an impermeable surface for 
supporting the aerodynamic pressure distribution from which the lifting capability 
of the wing is derived. These aerodynamic forces are transmitted in turn to the ribs 
and stringers by the skin through plate and membrane action. Resistance to shear 
and torsional loads is supplied by shear stresses developed in the skin and spar 
webs, while axial and bending loads are reacted by the combined action of skin and 
stringers. 
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Although the thin skin is efficient for resisting shear and tensile loads, it buckles 
under comparatively low compressive loads. Rather than increase the skin thickness 
and suffer a consequent weight penalty, stringers are attached to the skin and ribs, 
thereby dividing the skin into small panels and increasing the buckling and failing 
stresses. This stabilizing action of the stringers on the skin is, in fact, reciprocated 
to some extent although the effect normal to the surface of the skin is minimal. 
Stringers rely chiefly on rib attachments for preventing column action in this direc- 
tion. We have noted in the previous paragraph the combined action of stringers 
and skin in resisting axial and bending loads. 

The role of spar webs in developing shear stresses to resist shear and torsional loads 
has been mentioned previously; they perform a secondary but significant function in 
stabilizing, with the skin, the spar flanges or caps which are therefore capable of 
supporting large compressive loads from axial and bending effects. In turn, spar 
webs exert a stabilizing influence on the skin in a similar manner to the stringers. 

While the majority of the above remarks have been directed towards wing 
structures, they apply, as can be seen by referring to Figs 7.7 and 7.8, to all the 
aerodynamic surfaces, namely wings, horizontal and vertical tails, except in the 
obvious cases of undercarriage loading, engine thrust etc. 

Fuselages, while of different shape to the aerodynamic surfaces, comprise members 
which perform similar functions to their counterparts in the wings and tailplane. 
However, there are differences in the generation of the various types of load. Aero- 
dynamic forces on the fuselage skin are relatively low; on the other hand, the fuselage 
supports large concentrated loads such as wing reactions, tailplane reactions, under- 
carriage reactions and it carries payloads of varying size and weight, which may cause 
large inertia forces. Furthermore, aircraft designed for high altitude flight must 
withstand internal pressure. The shape of the fuselage cross-section is determined 
by operational requirements. For example, the most efficient sectional shape for a 
pressurized fuselage is circular or a combination of circular elements. Irrespective 
of shape, the basic fuselage structure is essentially a single cell thin-walled tube 
comprising skin, transverse frames and stringers; transverse frames which extend 
completely across the fuselage are known as bulkheads. Three different types of 
fuselage are shown in Figs 7.7, 7.8 and 7.9. In Fig. 7.7 the fuselage is unpressurized 
so that, in the passenger-carrying area, a more rectangular shape is employed to 
maximize space. The Harrier fuselage in Fig. 7.8 contains the engine, fuel tanks etc 
SO that its cross-sectional shape is, to some extent, predetermined, while in Fig. 7.9 
the passenger-carrying fuselage of the British Aerospace 146 is pressurized and 
therefore circular in cross-section. 

<- - -~ -----a --.- - ' ~ 

7.4 Fabrication of structural components 
The introduction of all-metal, stressed skin aircraft resulted in methods and types of 
fabrication which remain in use to the present day. However, improvements in engine 
performance and advances in aerodynamics have led to higher maximum lift, higher 
speeds and therefore to higher wing loadings so that improved techniques of fabrica- 
tion are necessary, particularly in the construction of wings. The increase in wing 
loading from about 350N/m2 for 1917-18 aircraft to around 4800N/m2 for 
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1 Starboard all-moving tailplane 
2 Tailplane composite construction 
3 Tail radome 
4 Military equlpment 
5 Tail pitch control air valve 
6 Yaw control air valves 
7 Tail 'bullet' fairing 
8 Reaction control system air ducting 
9 Trim tab actuator 

10 Rudder trim tab 
11 Rudder composite construction 
12 Rudder 
13 Antenna 
14 Fin tip aerial falrlng 
15 Upper broad band communications antenna 
16 Port tailplane 
17 Graphite epoxy tailplane skin 
18 Port side temperature probe 
19 MAD compensator 
20 Formation lighting strip 
21 Fin construction 
22 Fin attachment joint 
23 Tailplane pivot seallng plate 
24 Aerlals 
25 Ventral fin 
26 Tail bumper 
27 Lower broad band communications antenna 
28 Tailplane hydraulic jack 
29 Heat exchanger air exhaust 
30 Aft fuselage frames 
31 Rudder hydraulic actuator 
32 Avionics equlpment alr conditionlng plant 
33 Avlonlcs equlpment racks 
34 Heat exchanger ram air intake 
35 Electrical system circuit breaker panels, port 

and starboard 
38 Avionic equipment 
37 Chaff and flare dispensers 
38 Dlspenser electronic control units 
39 Ventral airbrake 
40 Alrbrake hydraulic Jack 
41 Formation lighting strip 
42 Avionics bay access door, port and starboard 
43 Avionics equipment racks 
44 Fuselage frame and stringer construction 
45 Rear fuselage fuel tank 
46 Main undercarriage wheel bay 
47 Wing root fillet 
48 Wlng sparlfuselage attachment joint 
49 Water filler cap 
50 Engine fire extinguisher bottle 
51 Anti-colllsion light 
52 Water tank 
53 Flap hydraulic actuator 
54 Flap hinge fitting 
55 Nimonic fuselage heat shleld 

56 Main undercarriage bay doors (closed after 
cycling of mainwheels) 

57 Flap vane composite construction 
58 Flap composite construction 
59 Starboard slotted flap, lowered 
60 Outrigger wheel fairing 
61 Outrlgger leg doors 
62 Starboard aileron 
63 Aileron composite construction 
64 Fuel jettison 
65 Formation lighting panel 
86 Roll control airvalve 
67 Wing tip fairing 
68 Starboard navigation light 
69 Radar warnlng aerlal 
70 Outboard pylon 
71 Pylon attachment joint 
72 Graphite epoxy composite wing construction 
73 Aileron hydraulic actuator 
74 Starboard outrigger wheel 
75 BL755 6OO-lb (272-kg) cluster bomb (CBU) 
76 Intermediate pylon 
77 Reaction control air ducting 
78 Alleron control rod 
79 Outrlgger hydraulic retraction jack 
80 Outrigger leg strut 
81 Leg pivot fixing 
82 Multi-spar wing construction 
83 Leadingedge wlng fence 
84 Outrigger pylon 
85 Missile launch rail 
86 AIM-9L Sldewlnder air-to-air mlsslle 
87 External fuel tank, 300 US gal (1 135 I) 
88 Inboard pylon 
89 Aft retracting twin mainwheels 
90 Inboard pylon attachment joint 
91 Rear (hot stream) swivelling exhaust nozzle 
92 Position of pressure refuelling connection on 

port side 
93 Rear nozzle bearing 
94 Centre fuselage flank fuel tank 
95 Hydraulic reservoir 
96 Nozzle bearing cooling air duct 
97 Engine exhaust divider duct 
98 Wing panel centre rib 
99 Centre section integral fuel tank 

100 Port wing Integral fuel tank 
101 Flapvane 
102 Port slotted flap, lowered 
103 Outrigger wheel fairing 
104 Port outrigger wheel 
105 Torque scissor links 
106 Port aileron 
107 Aileron hydraullc actuator 
108 Aileronlairvalve interconnection 
109 Fuel jettison 

110 Formation lighting panel 
111 Port roll control air valve 
112 Port navigation light 
113 Radar warning aerial 
114 Port wing reaction control air duct 
115 Fuel pumps 
116 Fuel system plplng 
117 Port wlng leading-edge fence 
118 Outboard pylon 
119 BL755 cluster bombs (maximum load, seven) 
120 Intermediate pylon 
121 Port outrigger pylon 
122 Missile launch rail 
123 AlMBL Sidewinder air-to-air misslle 
124 Port ieadlng-edge root extension (LERX) 
125 Inboard pylon 
126 Hydraulic pumps 
127 APU intake 
128 Gas turbine starterlauxiliary power unit 

(APU) 
129 Alternator coollng air exhaust 
130 APU exhaust 
131 Engine fuel control unit 
132 Engine bay venting ram air Intake 
133 Rotary nozzle bearing 
134 Nozzle fairing construction 
135 Ammunition tank, 100 rounds 
136 Cartridge case collector box 
137 Ammunition feed chute 
138 Fuel vent 
139 Gun pack strake 
140 Fuselage centrellne pylon 
141 Zero scarf forward (fan air) nozzle 
142 Ventral gun pack (two) 
143 Aden 25-mm cannon 
144 Engine drain mast 
145 Hydraulic system ground connectors 
146 Forward fuselage flank fuel tank 
147 Engine electronic control unlla 
148 Engine accessory equipment gearbox 
149 Gearbox driven alternator 
150 Rolls-Royce Pegasus 11 Mk 105 vectored 

thrust turbofan 
151 Formation llghting strips 
152 Engine oil tank 
159 Bleed air soill duct 
154 Air conditioning intake scoops 
155 Cockpit air conditioning system heat 

exchanger 
156 Engine compressorlfan face 
157 Heat exchanger discharge to intake duct 
158 Nose undercarriage hydraulic retraction iack 
159 intake blow-in doors 
160 Englne bay ventlng alr scoop 
161 Cannon muzzle fairing 
162 Lift augmentation retractable cross-dam 

163 
164 
165 
166 
167 
168 

169 
170 
171 
172 
173 
174 
175 
176 
177 
176 
179 
180 

181 
182 

183 
184 

185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
1% 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
21 1 
212 
213 
214 

Cross-dam hydraulic jack 
Nosewheel 
Nosewheel forks 
Landlngltaxying lamp 
Retractable boarding step 
Nosewheel doors (closed after cycling of 
undercarrlage) 
Nosewheel door jack 
Boundary layer bleed air duct 
Nose undercarriage wheel bay 
Kick-in boarding steps 
Cockplt rear pressure bulkhead 
Starboard side console panel 
Martin-Baker Type 12 ejectlon seat 
Safety harness 
Election seat headrest 
Port engine air intake 
Probe hydraulic jack 
Retractable in-flight refuelling probe (bolt-on 

Cockplt canopy cover 
Miniature detonating cord (MDC) canopy 
breaker 
Canopy frame 
Englne throttle and nozzle angle control 
levers 
Pilot's head-up display 
Instrument panel 
Moving map display 
Control column 
Central warning system Dane1 
Cockplt pressure floor 
Underfloor control runs 
Formation lighting strips 
Aileron trim actuator 
Rudder pedals 
Cockpit section composite construction 
Instrument panel shroud 
One-plece wrap-around windscreen panel 
Ram air intake (cockpit fresh alr) 
Front pressure bulkhead 
Incidence vane 
Air data computer 
Pitot tube 
Lower IFF aerial 
Nose pitch control air valve 
Pltch trlm control actuator 
Electrical system equipment 
Yaw vane 
Upper IFF aerial 
Avionic equipment 
ARBS heat exchanger 
MlRLS sensors 
Hughes Angle Rate Bombing System (ARBS) 
Composite constructlon nose cone 
ARBS glazed aperture 

pack) 
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Fig. 7.9 British Aerospace 146 (courtesy of British Aerospace). 

modern aircraft, coupled with a drop in the structural percentage of the total weight 
from 30-40 per cent to 22-25 per cent, gives some indication of the improvements in 
materials and structural design. 

For purposes of construction, aircraft are divided into a number of sub-assemblies. 
These are built in specially designed jigs, possibly in different parts of the factory or 
even different factories, before being forwarded to the final assembly shop. A typical 
breakdown into sub-assemblies of a medium-sized civil aircraft is shown in Fig. 7.10. 
Each sub-assembly relies on numerous minor assemblies such as spar webs, ribs, 
frames, and these, in turn, are supplied with individual components from the detail 
workshop. 

Although the wings (and tailsurfaces) of fixed wing aircraft generally consist of 
spars, ribs, skin and stringers, methods of fabrication and assembly differ. The 
wing of the aircraft of Fig. 7.7 relies on fabrication techniques that have been 
employed for many years. In this form of construction the spars comprise thin 
aluminium alloy webs and flanges, the latter being extruded or machined and are 
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Fig. 7.10 Typical sub-assembly breakdown. 

bolted or riveted to the web. The ribs are formed in three parts from sheet metal by 
large presses and rubber dies and have flanges round their edges so that they can be 
riveted to the skin and spar webs; cut-outs around their edges allow the passage of 
spanwise stringers. Holes are cut in the ribs at positions of low stress for lightness 
and to accommodate control runs, fuel and electrical systems. 

Finally, the skin is riveted to the rib flanges and longitudinal stiffeners. Where the 
curvature of the skin is large, for example at the leading edge, the aluminium alloy 
sheets are passed through ‘rolls’ to pre-form them to the correct shape. A further, 
aerodynamic, requirement is that forward chordwise sections of the wing should be 
as smooth as possible to delay transition from laminar to turbulent flow. Thus, 
countersunk rivets are used in these positions as opposed to dome-headed rivets 
nearer the trailing edge. 

The wing is attached to the fuselage through reinforced fuselage frames, frequently 
by bolts. In some aircraft the wing spars are continuous through the fuselage depend- 
ing on the demands of space. In a high wing aircraft (Fig. 7.7) deep spars passing 
througn the fuselage would cause obstruction problems. In this case a short third 
spar provides an additional attachment point. The ideal arrangement is obviously 
where continuity of the structure is maintained over the entire surface of the wing. 
In most practical cases this is impossible since cut-outs in the wing surface are 
required for retracting undercarriages, bomb and gun bays, inspection panels etc. 
The last are usually located on the under surface of the wing and are fastened to 
stiffeners and rib flanges by screws, enabling them to resist direct and shear loads. 
Doors covering undercarriage wells and weapon bays are incapable of resisting 
wing stresses so that provision must be made for transferring the loads from skin, 
flanges and shear webs around the cut-out. This may be achieved by inserting 
strong bulkheads or increasing the spar flange areas, although, no matter the 
method employed, increased cost and weight result. 
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Fig. 7.1 1 Wing ribs for the European Airbus (courtesy of British Aerospace). 

The different structural requirements of aircraft designed for differing operational 
roles lead to a variety of wing constructions. For instance, high-speed aircraft require 
relatively thin wing sections which support high wing loadings. To withstand the 
correspondingly high surface pressures and to obtain sufficient strength, much thicker 
skins are necessary. Wing panels are therefore frequently machined integrally with 
stringers from solid slabs of material, as are the wing ribs. Figure 7.11 shows wing 
ribs for the European Airbus in which web stiffeners, flanged lightness holes and 
skin attachment lugs have been integrally machined from solid. This integral 
method of construction involves no new design principles and has the advantages 
of combining a high grade of surface finish, free from irregularities, with a more 
efficient use of material since skin thicknesses are easily tapered to coincide with 
the spanwise decrease in bending stresses. 

An alternative form of construction is the sandwich panel, which comprises a light 
honeycomb or corrugated metal core sandwiched between two outer skins of the 
stress-bearing sheet (see Fig. 7.12). The primary function of the core is to stabilize 
the outer skins, although it may be stress-bearing as well. Sandwich panels are capable 
of developing high stresses, have smooth internal and external surfaces and require 
small numbers of supporting rings or frames. They also possess a high resistance to 
fatigue from jet efflux. The uses of this method of construction include lightweight 
‘planks’ for cabin furniture, monolithic fairing shells generally having plastic facing 
skins, and the stiffening of flying control surfaces. Thus, for example, the ailerons 
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Typical flat panel edging methods 

Typical flat panel joints and corners 

Typical fastening methods 

Fig. 7.1 2 Sandwich panels (courtesy of Ciba-Geigy Plastics). 
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and rudder of the British Aerospace Jaguar are fabricated from aluminium honey- 
comb, while fibreglass and aluminium faced honeycomb are used extensively in the 
wings and tail surfaces of the Boeing 747. Some problems, mainly disbonding and 
internal corrosion, have been encountered in service. 

The general principles relating to wing construction are applicable to fuselages, 
with the exception that integral construction is not used in fuselages for obvious 
reasons. Figures 7.7, 7.8 and 7.9 show that the same basic method of construction 
is employed in aircraft having widely differing roles. Generally, the fuselage frames 
that support large concentrated floor loads or loads from wing or tailplane attach- 
ment points are heavier than lightly loaded frames and require stiffening, with 
additional provision for transmitting the concentrated load into the frame and 
hence the skin. 

With the frames in position in the fuselage jig, stringers, passing through cut-outs, 
are riveted to the frame flanges. Before the skin is riveted to the frames and stringers, 
other subsidiary frames such as door and window frames are riveted or bolted in 
position. The areas of the fuselage in the regions of these cut-outs are reinforced by 
additional stringers, portions of frame and increased skin thickness, to react to the 
high shear flows and direct stresses developed. 

On completion, the various sub-assemblies are brought together for final assembly. 
Fuselage sections are usually bolted together through flanges around their periph- 
eries, while wings and the tailplane are attached to pick-up points on the relevant 
fuselage frames. Wing spars on low wing civil aircraft usually pass completely 
through the fuselage, simplifying wing design and the method of attachment. On 
smaller, military aircraft, engine installations frequently prevent this so that wing 
spars are attached directly to and terminate at the fuselage frame. Clearly, at these 
positions frame/stringer/skin structures require reinforcement. 

P.7.1 Review the historical development of the main materials of aircraft 

P.7.2 Contrast and describe the contributions of the aluminium alloys and steel 

P.7.3 Examine possible uses of new materials in future aircraft manufacture. 
P.7.4 Describe the main features of a stressed skin structure. Discuss the 

structural functions of the various components with particular reference either to 
the fuselage or to the wing of a medium sized transport aircraft. 

construction. 

to aircraft construction during the period 1945-70. 



Airworthiness and 
airframe loads 

The airworthiness of an aircraft is concerned with the standards of safety incorpo- 
rated in all aspects of its construction. These range from structural strength to the 
provision of certain safeguards in the event of crash landings, and include design 
requirements relating to aerodynamics, performance and electrical and hydraulic 
systems. The selection of minimum standards of safety is largely the concern of 
airworthiness authorities who prepare handbooks of official requirements. In the 
UK the relevant publications are Av.P.970 for military aircraft and British Civil 
Airworthiness Requirements (BCAR) for civil aircraft. The handbooks include 
operational requirements, minimum safety requirements, recommended practices 
and design data etc. 

In this chapter we shall concentrate on the structural aspects of airworthiness which 
depend chiefly on the strength and stiffness of the aircraft. Stiffness problems may be 
conveniently grouped under the heading aeroelasticity and are discussed in Chapter 
13. Strength problems arise, as we have seen, from ground and air loads, and their 
magnitudes depend on the selection of manoeuvring and other conditions applicable 
to the operational requirements of a particular aircraft. 

The control of weight in aircraft design is of extreme importance. Increases in weight 
require stronger structures to support them, which in turn lead to further increases in 
weight and so on. Excesses of structural weight mean lesser amounts of payload, 
thereby affecting the economic viability of the aircraft. The aircraft designer is 
therefore constantly seeking to pare his aircraft’s weight to the minimum compatible 
with safety. However, to ensure general minimum standards of strength and safety, 
airworthiness regulations (Av.P.970 and BCAR) lay down several factors which 
the primary structure of the aircraft must satisfy. These are the limit load, which is 
the maximum load that the aircraft is expected to experience in normal operation, 
the proof load, which is the product of the limit load and the proof factor (1.0- 
1.25), and the ultimate load, which is the product of the limit load and the ultimate 

factor (usually 1.5). The aircraft’s structure must withstand the proof load without 
detrimental distortion and should not fail until the ultimate load has been achieved. 
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nl (limit load) 

- Flight 
speed 
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Fig. 8.1 Flight envelope. 

The proof and ultimate factors may be regarded as factors of safety and provide for 
various contingencies and uncertainties which are discussed in greater detail in 
Section 8.2. 

The basic strength and fight performance limits for a particular aircraft are 
selected by the airworthiness authorities and are contained in theflight envelope or 
Y-n diagram shown in Fig. 8.1. The curves OA and OF correspond to the stalled 
condition of the aircraft and are obtained from the well known aerodynamic 
relationship 

Lift = n w = f p v ~ s c ~ : ~ ~  

Thus, for speeds below VA (positive wing incidence) and VF (negative incidence) the 
maximum loads which can be applied to the aircraft are governed by CL,max. As the 
speed increases it is possible to apply the positive and negative limit loads, 
corresponding to nl and n3, without stalling the aircraft so that AC and FE represent 
maximum operational load factors for the aircraft. Above the design cruising speed 
V,, the cut-off lines CDI and D2E relieve the design cases to be covered since it is 
not expected that the limit loads will be applied at maximum speed. Values of nl ,  
n2 and n3 are specified by the airworthiness authorities for particular aircraft; typical 
load factors laid down in BCAR are shown in Table 8.1. 

A particular flight envelope is applicable to one altitude only since CL,max is 
generally reduced with an increase of altitude, and the speed of sound decreases 
with altitude thereby reducing the critical Mach number and hence the design 
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Table 8.1 

Category 

Load factor n Normal Semi-aerobatic Aerobatic 

nl 2.1 + 24000/( W +  10000) 4.5 6.0 

n3 1 .o 1.8 3.0 
n2 0.75nl but n2 < 2.0 3.1 4.5 

diving speed V,. Flight envelopes are therefore drawn for a range of altitudes from 
sea level to the operational ceiling of the aircraft. 

Several problems require solutions before values for the various load factors in the 
flight envelope can be determined. The limit load, for example, may be produced 
by a specified manoeuvre or by an encounter with a particularly severe gust (gust 
cases and the associated gust envelope are discussed in Section 8.6). Clearly some 
knowledge of possible gust conditions is required to determine the limiting case. 
Furthermore, the fixing of the proof and ultimate factors also depends upon the 
degree of uncertainty of design, variations in structural strength, structural deteriora- 
tion etc. We shall now investigate some of these problems to see their comparative 
influence on load factor values. 

8.2.1 Limit load 

An aircraft is subjected to a variety of loads during its operational life, the main 
classes of which are: manoeuvre loads, gust loads, undercarriage loads, cabin pressure 
loads, buffeting and induced vibrations. Of these, manoeuvre, undercarriage and 
cabin pressure loads are determined with reasonable simplicity since manoeuvre 
loads are controlled design cases, undercarriages are designed for given maximum 
descent rates and cabin pressures are specified. The remaining loads depend to a 
large extent on the atmospheric conditions encountered during flight. Estimates of 
the magnitudes of such loads are only possible therefore if in-flight data on these 
loads is available. It obviously requires a great number of hours of flying if the experi- 
mental data are to include possible extremes of atmospheric conditions. In practice, 
the amount of data required to establish the probable period of flight time before 
an aircraft encounters, say, a gust load of a given severity, is a great deal more 
than that available. It therefore becomes a problem in statistics to extrapolate the 
available data and calculate the probability of an aircraft being subjected to its 
proof or ultimate load during its operational life. The aim would be for a zero or 
negligible rate of occurrence of its ultimate load and an extremely low rate of occur- 
rence of its proof load. Having decided on an ultimate load, then the limit load may be 
fixed as defined in Section 8.1 although the value of the ultimate factor includes, as we 
have already noted, allowances for uncertainties in design, variation in structural 
strength and structural deterioration. 
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8.2.2 Uncertainties in design and structural deterioration ----- E--- 

Neither of these presents serious problems in modern aircraft construction and 
therefore do not require large factors of safety to minimize their effects. Modem 
methods of aircraft structural analysis are refined and, in any case, tests to determine 
actual failure loads are carried out on representative full scale components to verify 
design estimates. The problem of structural deterioration due to corrosion and 
wear may be largely eliminated by close inspection during service and the application 
of suitable protective treatments. 

8.2.3 Variation in structural strength 

To minimize the effect of the variation in structural strength between two apparently 
identical components, strict controls are employed in the manufacture of materials 
and in the fabrication of the structure. Material control involves the observance 
of strict limits in chemical composition and close supervision of manufacturing 
methods such as machining, heat treatment, rolling etc. In addition, the inspection 
of samples by visual, radiographic and other means, and the carrying out of 
strength tests on specimens, enable below limit batches to be isolated and rejected. 
Thus, if a sample of a batch of material falls below a specified minimum strength 
then the batch is rejected. This means of course that an actual structure always 
comprises materials with properties equal to or better than those assumed for 
design purposes, an added but unallowed for ‘bonus’ in considering factors of 
safety. 

Similar precautions are applied to assembled structures with regard to dimension 
tolerances, quality of assembly, welding etc. Again, visual and other inspection 
methods are employed and, in certain cases, strength tests are carried out on 
sample structures. 

8.2.4 Fatigue 

Although adequate precautions are taken to ensure that an aircraft’s structure 
possesses sufficient strength to withstand the most severe expected gust or manoeuvre 
load, there still remains the problem of fatigue. Practically all components of the 
aircraft’s structure are subjected to fluctuating loads which occur a great many 
times during the life of the aircraft. It has been known for many years that materials 
fail under fluctuating loads at much lower values of stress than their normal static 
failure stress. A graph of failure stress against number of repetitions of this stress 
has the typical form shown in Fig. 8.2. For some materials, such as mild steel, the 
curve (usually known as an S-N curve or diagram) is asymptotic to a certain 
minimum value, which means that the material has an actual infinite life stress. 
Curves for other materials, for example aluminium and its alloys, do not always 
appear to have asymptotic values so that these materials may not possess an inhite 
life stress. We shall discuss the implications of this a little later. 



8.2 load factor determination 237 

I I I I I I 

IO io2 io3 lo4 io5 io6 lo7 

No. of repetitions 

Fig. 8.2 Typical form of S-N diagram. 

Prior to the mid-1940s little attention had been paid to fatigue considerations in the 
design of aircraft structures. It was felt that sufficient static strength would eliminate 
the possibility of fatigue failure. However, evidence began to accumulate that several 
aircraft crashes had been caused by fatigue failure. The seriousness of the situation 
was highlighted in the early 1950s by catastrophic fatigue failures of two Comet 
airliners. These were caused by the once-per-flight cabin pressurization cycle which 
produced circumferential and longitudinal stresses in the fuselage skin. Although 
these stresses were well below the allowable stresses for single cycle loading, stress 
concentrations occurred at the corners of the windows and around rivets which 
raised local stresses considerably above the general stress level. Repeated cycles of 
pressurization produced fatigue cracks which propagated disastrously, causing an 
explosion of the fuselage at high altitude. 

Several factors contributed to the emergence of fatigue as a major factor in design. 
For example, aircraft speeds and sizes increased, calling for higher wing and other 
loadings. Consequently, the effect of turbulence was magnified and the magnitudes 
of the fluctuating loads became larger. In civil aviation, airliners had a greater utiliza- 
tion and a longer operational life. The new ‘zinc rich’ alloys, used for their high static 
strength properties, did not show a proportional improvement in fatigue strength, 
exhibited high crack propagation rates and were extremely notch sensitive. 

Despite the fact that the causes of fatigue were reasonably clear at that time its elim- 
ination as a threat to aircraft safety was a different matter. The fatigue problem has two 
major facets: the prediction of the fatigue strength of a structure and a knowledge of the 
loads causing fatigue. Information was lacking on both counts. The Royal Aircraft 
Establishment (RAE) and the aircraft industry therefore embarked on an extensive 
test programme to determine the behaviour of complete components, joints and other 
detail parts under fluctuating loads. These included fatigue testing by the RAE of some 
50 Meteor 4 tailplanes at a range of temperatures, plus research, also by the RAE, into 
the fatigue behaviour of joints and connections. Further work was undertaken by some 
universities and by the industry itself into the effects of stress concentrations. 

In conjunction with their fatigue strength testing, the RAE initiated research to 
develop a suitable instrument for counting and recording gust loads over long periods 
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of time. Such an instrument was developed by J. Taylor in 1950 and was designed so 
that the response fell off rapidly above 10 Hz. Crossings of g thresholds from 0.2g to 
1.8g at 0.lg intervals were recorded (note that steady level flight is 1g flight) during 
experimental flying at the RAE on three different aircraft over 28 000 km, and the 
best techniques for extracting information from the data established. Civil airlines 
cooperated by carrying the instruments on their regular air services for a number 
of years. Eight different types of aircraft were equipped so that by 1961 records 
had been obtained for regions including Europe, the Atlantic, Africa, India and the 
Far East, representing 19 000 hours and 8 million km of flying. 

Atmospheric turbulence and the cabin pressurization cycle are only two of the 
many fluctuating loads which cause fatigue damage in aircraft. On the ground the 
wing is supported on the undercarriage and experiences tensile stresses in its upper 
surfaces and compressive stresses in its lower surfaces. In flight these stresses are 
reversed as aerodynamic lift supports the wing. Also, the impact of landing and 
ground manoeuvring on imperfect surfaces cause stress fluctuations while, during 
landing and take-off, flaps are lowered and raised, producing additional load cycles 
in the flap support structure. Engine pylons are subjected to fatigue loading from 
thrust variations in take-off and landing and also to inertia loads produced by lateral 
gusts on the complete aircraft. 

A more detailed investigation of fatigue and its associated problems is presented in 
Section 8.7 after the consideration of basic manoeuvre and gust loads. 

The maximum loads on the components of an aircraft’s structure generally occur 
when the aircraft is undergoing some form of acceleration or deceleration, such as 
in landings, take-offs and manoeuvres within the flight and gust envelopes. Thus, 
before a structural component can be designed, the inertia loads corresponding to 
these accelerations and decelerations must be calculated. For these purposes we 
shall suppose that an aircraft is a rigid body and represent it by a rigid mass, 111, 

as shown in Fig. 8.3. We shall also, at this stage, consider motion in the plane of 
the mass which would correspond to pitching of the aircraft without roll or yaw. 
We shall also suppose that the centre of gravity (CG) of the mass has coordinates 
2, 3 referred to x and y axes having an arbitrary origin 0; the mass is rotating 
about an axis through 0 perpendicular to the +XJ’ plane with a constant angular 
velocity w. 

The acceleration of any point, a distance r from 0, is w2r and is directed towards 0. 
Thus, the inertia force acting on the element, bm, is w’rSm in a direction opposite to 
the acceleration, as shown in Fig. 8.3. The components of this inertia force, parallel to 
the x and y axes, are w2rSm cos 6 and w2rSn? sin 6 respectively, or, in terms of .Y and J’, 

w2xSm and w2ySm. The resultant inertia forces, F,  and F,., are then given by 

F, = w xdm = S ’  
F,. = w ydm = wL ydm s? ’J’ 
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0 CG (F, 8 )  

L k k J  
Fig. 8.3 Inertia forces on a rigid mass having a constant angular velocity. 

in which we note that the angular velocity u is constant and may therefore be taken 
outside the integral sign. In the above expressions J x drn and J y dm are the moments 
of the mass, nz, about the y and x axes respectively, so that 

Fy = w 2 m  (8.1) 

F,, = J J i n  (8.2) 

and 

If the CG lies on the x axis, J = 0 and F,, = 0. Similarly, if the CG lies on the y axis, 
Fy = 0. Clearly, if 0 coincides with the CG, X = J = 0 and F, = F,. = 0. 

Suppose now that the rigid body is subjected to an angular acceleration (or 
deceleration) Q! in addition to the constant angular velocity, w, as shown in Fig. 8.4. 
An additional inertia force, curSrn, acts on the element Srn in a direction perpendicular 
to r and in the opposite sense to the angular acceleration. This inertia force has 
components ar6m cos e and tur6nt sin 8, i.e. axbin and aySi71, in the y and x directions 
respectively. Thus, the resultant inertia forces, Fy and F', are given by 

F y =  aydrn=cr ydm J S  

Fig. 8.4 Inertia forces on a rigid mass subjected to  an angular acceleration. 
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and 

a x d m = - a  xdm s 
for a in the direction shown. Then, as before 

F, = aJm 

Fy = aXm 
and 

Also, if the CG lies on the x axis, J = 0 and Fx = 0. Similarly, if the CG lies on the y 
axis, X = 0 and Fy = 0. 

The torque about the axis of rotation produced by the inertia force corresponding 
to the angular acceleration on the element Sm is given by 

 ST^ = a46m 

Thus, for the complete mass 

To= a r 2 d m = a  4 d m  s s 
The integral term in this expression is the moment of inertia, Io, of the mass about the 
axis of rotation. Thus 

To = a10 (8.5) 
Equation (8.5) may be rewritten in terms of ICG, the moment of inertia of the mass 
about an axis perpendicular to the plane of the mass through the CG. Hence, using 
the parallel axes theorem 

10 = m(TI2 + ICG 

where F is the distance between 0 and the CG. Then 

10 = m[(jsl2 + (J)'] + ICG 

To = m[(X)' + (J)2]a + ICGQ 

and 

(8.6) 

Example 8. I 
An aircraft having a total weight of 45 kN lands on the deck of an aircraft carrier and 
is brought to rest by means of a cable engaged by an arrester hook, as shown in 
Fig. 8.5. If the deceleration induced by the cable is 3g determine the tension, T ,  in 
the cable, the load on an undercarriage strut and the shear and axial loads in the 
fuselage at the section AA; the weight of the aircraft aft of AA is 4.5 kN. Calculate 
also the length of deck covered by the aircraft before it is brought to rest if the touch- 
down speed is 25 m/s. 

The aircraft is subjected to a horizontal inertia force ma where m is the mass of the 
aircraft and a its deceleration. Thus, resolving forces horizontally 

T cos IO" - ma = 0 
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Fig. 8.5 Forces on the aircraft of Example 8.1. 

i.e. 

which gives 
T = 137.1 kN 

Now resolving forces vertically 

R- W-TsinlO"=O 
i.e. 

R = 45 + 131.1 sin 10" = 68.8 kN 

Assuming two undercarriage struts, the load in each strut will be (R/2)/cos2Oo = 
36.6 kN. 

Let N and S be the axial and shear loads at the section AA, as shown in Fig. 8.6. 
The inertia load acting at the centre of gravity of the fuselage aft of AA is mla, where 
ml is the mass of the fuselage aft of AA. Thus 

4.5 
g 

mla=-3g= 13.5kN 

Resolving forces parallel to the axis of the fuselage 

N - T + mlacos 10" - 4.5 sin 10" = 0 

N -  137.1 + 13.5~0~10~-4 .5s in1O0=O 
1.e. 

4.5 kN 

Fig. 8.6 Shear and axial loads at the section AA of the aircraft of Example 8.1. 
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whence 

N = 124.6 kN 

Now resolving forces perpendicular to the axis of the fuselage 

S - rnlusin 10" - 4.5~0s 10" = 0 

i.e. 

so that 

S - 13.5 sin lo" - 4.5 cos 10" = 0 

S = 6.8kN 

Note that, in addition to the axial load and shear load at the section AA, there will 
also be a bending moment. 

Finally, from elementary dynamics 

v2 = vi + 2as 

where vo is the touchdown speed, v the final speed (= 0) and s the length of deck 
covered. Then 

2 
210 = -2us 

i.e. 

which gives 

252 = -2(-3 x 9.81)s 

s = 10.6m 

Example 8.2 
An aircraft having a weight of 250 kN and a tricycle undercarriage lands at a vertical 
velocity of 3.7m/s, such that the vertical and horizontal reactions on the main wheels 
are 1200 kN and 400 kN respectively; at this instant the nose wheel is 1 .Om from the 
ground, as shown in Fig. 8.7. If the moment of inertia of the aircraft about its CG is 
5.65 x lo8 N s2 mm determine the inertia forces on the aircraft, the time taken for its 
vertical velocity to become zero and its angular velocity at this instant. 

Nose wheel 

1.0m @ 400kN ' I 25OkNv Tl200kN 

r 

I. 5.0m 4 / 1 0 m  

Fig. 8.7 Geometry of the aircraft of Example 8.2. 
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The horizontal and vertical inertia forces ma, and ma, act at the CG, as shown in 
Fig. 8.7; pn is the mass of the aircraft and a, and a,, its accelerations in the horizontal 
and vertical directions respectively. Then, resolving forces horizontally 

ma, - 400 = 0 

whence 
ma, = 400 kN 

Now resolving forces vertically 

ma, + 250 - 1200 = 0 

which gives 
ma, = 950 kN 

Then 

- 3.8g 
950 - 950 
m 250/g 

a, = - 

Now taking moments about the CG 

I C G ~  - 1200 x 1.0 - 400 x 2.5 = 0 

from which 
I c ~ a  = 2200 m kN 

Hence 

(iii) 

From Eq. (i), the aircraft has a vertical deceleration of 3.8g from an initial vertical 
velocity of 3.7m/s. Therefore, from elementary dynamics, the time, f ,  taken for the 
vertical velocity to become zero, is given by 

v = vo + a,t (iv) 

in which v = 0 and vo = 3.7m/s. Hence 
0 = 3.7 - 3.8 x 9.81t 

whenc.e 
t = 0.099 s 

In a similar manner to Eq. (iv) the angular velocity of the aircraft after 0.099 s is 
given by 

W = W o + a f  

in which wo = 0 and a = 3.9 rad/s2. Hence 
w = 3.9 x 0.099 

i.e. 
w = 0.39 rad/sec. 
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We shall now consider the calculation of aircraft loads corresponding to the flight 
conditions specified by flight envelopes. There are, in fact, an infinite number of 
flight conditions within the boundary of the flight envelope although, structurally, 
those represented by the boundary are the most severe. Furthermore, it is usually 
found that the corners A, C, D1, DZ, E and F (see Fig. 8.1) are more critical than 
points on the boundary between the corners so that, in practice, only the six 
conditions corresponding to these corner points need be investigated for each flight 
envelope. 

In symmetric manoeuvres we consider the motion of the aircraft initiated by move- 
ment of the control surfaces in the plane of symmetry. Examples of such manoeuvres 
are loops, straight pull-outs and bunts, and the calculations involve the determination 
of lift, drag and tailplane loads at given flight speeds and altitudes. The effects of 
atmospheric turbulence and gusts are discussed in Section 8.6. 

8.4.1 Level flight 

Although steady level flight is not a manoeuvre in the strict sense of the word, it is a 
useful condition to investigate initially since it establishes points of load application 
and gives some idea of the equilibrium of an aircraft in the longitudinal plane. The 
loads acting on an aircraft in steady flight are shown in Fig. 8.8, with the following 
notation. 

L is the lift acting at the aerodynamic centre of the wing, 
D is the aircraft drag, 
Mo is the aerodynamic pitching moment of the aircraft less its horizontal tail, 
P is the horizontal tail load acting at the aerodynamic centre of the tail, usually 

W is the aircraft weight acting at  its centre of gravity, 
T is the engine thrust, assumed here to act parallel to the direction of flight in order 

taken to be at approximately one-third of the tailplane chord, 

to simplify calculation. 

L A  ~ I 

centre 
Fig. 8.8 Aircraft loads in level flight. 
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The loads are in static equilibrium since the aircraft is in a steady, unaccelerated, 
level fight condition. Thus for vertical equilibrium 

L + P -  w=o (8.7) 
for horizontal equilibrium 

T - D = O  

and taking moments about the aircraft’s centre of gravity in the plane of symmetry 

La - Db - Tc - Mo -PI = 0 (8.9) 
For a given aircraft weight, speed and altitude, Eqs (8.7), (8.8) and (8.9) may be solved 
for the unknown lift, drag and tail loads. However, other parameters in these 
equations, such as Mo, depend upon the wing incidence a which in turn is a function 
of the required wing lift so that, in practice, a method of successive approximation is 
found to be the most convenient means of solution. 

As a first approximation we assume that the tail load P is small compared with the 
wing lift L so that, from Eq. (8.7), L M W .  From aerodynamic theory with the usual 
notation 

Hence 

+pv2sc, M w (8.10) 

Equation (8.10) gives the approximate lift coefficient CL and thus (from CL - a 
curves established by wind tunnel tests) the wing incidence a. The drag load D follows 
(knowing V and a) and hence we obtain the required engine thrust T from Eq. (8.8). 
Also Mo, a, b, c and I may be calculated (again since V and a are known) and Eq. (8.9) 
solved for P. As a second approximation this value of P is substituted in Eq. (8.7) to 
obtain a more accurate value for L and the procedure is repeated. Usually three 
approximations are sufficient to produce reasonably accurate values. 

In most cases P, D and T are small compared with the lift and aircraft weight. 
Therefore, from Eq. (8.7) L M W and substitution in Eq. (8.9) gives, neglecting D 
and T 

(8.11) 

We see from Eq. (8.1 1) that if a is large then P will most likely be positive. In other 
words the tail load acts upwards when the centre of gravity of the aircraft is far aft. 
When a is small or negative, that is, a forward centre of gravity, then P will probably 
be negative and act downwards. 

8.4.2 General case of a symmetric manoeuvre 
l * - l l l l _ - - - - - s . _ ~ _ - ~  _YI ._I_Y_-_..-_-*I,_I_Y_LIY.I-Ylli 

In a rapid pull-out from a dive a downward load is applied to the tailplane, causing the 
aircraft to pitch nose upwards. The downward load is achieved by a backward 
movement of the control column, thereby applying negative incidence to the elevators, 
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Fig. 8.9 Aircraft loads in a pull-out from a dive. 

or horizontal tail if the latter is all-moving. If the manoeuvre is carried out rapidly the 
forward speed of the aircraft remains practically constant so that increases in lift and 
drag result from the increase in wing incidence only. Since the lift is now greater than 
that required to balance the aircraft weight the aircraft experiences an upward 
acceleration normal to its flight path. This normal acceleration combined with the 
aircraft's speed in the dive results in the curved flight path shown in Fig. 8.9. As the 
drag load builds up with an increase of incidence the forward speed of the aircraft 
falls since the thrust is assumed to remain constant during the manoeuvre. It is 
usual, as we observed in the discussion of the flight envelope, to describe the 
manoeuvres of an aircraft in terms of a manoeuvring load factor n. For steady level 
flight n = 1, giving lg  flight, although in fact the acceleration is zero. What is implied 
in this method of description is that the inertia force on the aircraft in the level flight 
condition is 1 .O times its weight. It follows that the vertical inertia force on an aircraft 
carrying out an ng manoeuvre is n W. We may therefore replace the dynamic condi- 
tions of the accelerated motion by an equivalent set of static conditions in which the 
applied loads are in equilibrium with the inertia forces. Thus, in Fig. 8.9, n is the 
manoeuvre load factor whilef is a similar factor giving the horizontal inertia force. 
Note that the actual normal acceleration in this particular case is (n - 1)g. 

For vertical equilibrium of the aircraft, we have, referring to Fig. 8.9 where the 
aircraft is shown at the lowest point of the pull-out 

(8.12) L + P+ Tsiny - nW = 0 

For horizontal equilibrium 

T COSY +fw - D = 0 (8.13) 

and for pitching moment equilibrium about the aircraft's centre of gravity 

La - Db - Tc - Mo - PI = 0 (8.14) 

Equation (8.14) contains no terms representing the effect of pitching acceleration of 
the aircraft; this is assumed to be negligible at this stage. 
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Again the method of successive approximation is found to be most convenient for 
the solution of Eqs (8.12), (8.13) and (8.14). There is, however, a difference to the pro- 
cedure described for the steady level flight case. The engine thrust T is no longer 
directly related to the drag D as the latter changes during the manoeuvre. Generally, 
the thrust is regarded as remaining constant and equal to the value appropriate to 
conditions before the manoeuvre began. 

Example 8.3 
The curves C,, a and CM,CG for a light aircraft are shown in Fig. 8.10(a). The aircraft 
weight is 8000 N, its wing area 14.5 m2 and its mean chord 1.35 m. Determine the lift, 
drag, tail load and forward inertia force for a symmetric manoeuvre corresponding to 
n = 4.5 and a speed of 60 m/s. Assume that engine-off conditions apply and that the 
air density is 1.223 kg/m2. Figure 8.10(b) shows the relevant aircraft dimensions. 

As a first approximation we neglect the tail load P. Therefore, from Eq. (8.12), since 
T = 0, we have 

L z n W  (i> 

0.20 

0.15 

0. IO 

0.05 

0 

20 

15 

10 

5 

0 

(b) 
Fig. 8.10 (a) C,, cy, CMgG - C, curves for Example 8.3; (b) geometry of Example 8.3. 
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Hence 
4.5 x 8000 

i x 1.223 x 602 x 14.5 
N = 1.113 

L 

i p V 2 S  
cL=---- 

From Fig. 8.10(a), a = 13.75" and C M , c G  = 0.075. The tail arm I, from Fig. 8.10(b), is 

1 =4.18cos(a-2)+0.31sin(a-2)  (ii) 

Substituting the above value of a gives 1 = 4.123m. In Eq. (8.14) the terms 
La - Db - Mo are equivalent to the aircraft pitching moment MCG about its centre 
of gravity. Thus, Eq. (8.14) may be written 

M C G  - P1 0 
or 

PI = i p v 2 s c c M M , C G  (iii) 

where c = wing mean chord. Substituting P from Eq. (iii) into Eq. (8.12) we have 

= n W  

or dividing through by 4pV2S 

We now obtain a more accurate value for CL from Eq. (iv) 
1.35 

4.123 
CL = 1.113 -- x 0.075 = 1.088 

giving a = 13.3" and C M , c G  = 0.073. 
Substituting this value of a into Eq. (ii) gives a second approximation for I ,  namely 

1 = 4.161 m. 
Equation (iv) now gives a third approximation for CL, i.e. CL = 1.099. Since the 

three calculated values of CL are all extremely close further approximations will 
not give values of CL very much different to those above. Therefore, we shall take 
CL = 1.099. From Fig. 8.10(a) CD = 0.0875. 

The values of lift, tail load, drag and forward inertia force then follow: 

Lift L = ipV2SCL = 4 x 1.223 x 602 x 14.5 x 1.099 = 35000N 

Tailload P = n W - L = 4 . 5 ~ 8 0 0 0 - 3 5 0 0 0 =  l000N 

Drag D = i p V 2 S C D  = i x 1.223 x 602 x 14.5 x 0.0875 = 2790N 

Forward inertia force fW = D (from Eq. (8.13)) = 2790 N 

In Section 8.4 we determined aircraft loads corresponding to a given manoeuvre load 
factor n. Clearly it is necessary to relate this load factor to given types of manoeuvre. 
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Two cases arise: the first involving a steady pull-out from a dive and the second, a 
correctly banked turn. Although the latter is not a symmetric manoeuvre in the 
strict sense of the word, it gives rise to normal accelerations in the plane of symmetry 
and is therefore included. 

8.5.1 Steady pull-out 

Let us suppose that the aircraft has just begun its pull-out from a dive so that it is 
describing a curved flight path but is not yet at its lowest point. The loads acting 
on the aircraft at this stage of the manoeuvre are shown in Fig. 8.11, where R is 
the radius of curvature of the flight path. In this case the lift vector must equilibrate 
the normal (to the flight path) component of the aircraft weight and provide the force 
producing the centripetal acceleration V 2 / R  of the aircraft towards the centre of 
curvature of the flight path. Thus 

or, since L = n W (see Section 8.4) 

At the lowest point of the pull-out, e = 0, and 

V2 
n = - + I  

gR 

(8.15) 

(8.16) 

V 
Fig. 8.1 1 Aircraft loads and acceleration during a steady pull-out. 
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We see from either Eq. (8.15) or Eq. (8.16) that the smaller the radius of the flight 
path, that is the more severe the pull-out, the greater the value of n. It is quite possible 
therefore for a severe pull-out to overstress the aircraft by subjecting it to loads which 
lie outside the flight envelope and which may even exceed the proof or ultimate loads. 
In practice, the control surface movement may be limited by stops incorporated in 
the control circuit. These stops usually operate only above a certain speed giving 
the aircraft adequate manoeuvrability at lower speeds. For hydraulically operated 
controls 'artificial feel' is built in to the system whereby the stick force increases 
progressively as the speed increases; a necessary precaution in this type of system 
since the pilot is merely opening and closing valves in the control circuit and therefore 
receives no direct physical indication of control surface forces. 

Alternatively, at low speeds, a severe pull-out or pull-up may stall the aircraft. 
Again safety precautions are usually incorporated in the form of stall warning devices 
since, for modern high speed aircraft, a stall can be disastrous, particularly at low 
altitude. 

- 8.5.2 Correctly banked turn 
-__.)1_--- I 

In this manoeuvre the aircraft flies in a horizontal turn with no sideslip at constant 
speed. If the radius of the turn is R and the angle of bank 4, then the forces acting 
on the aircraft are those shown in Fig. 8.12. The horizontal component of the lift 
vector in this case provides the force necessary to produce the centripetal acceleration 
of the aircraft towards the centre of the turn. Thus 

wv2 
gR 

Lsin4 =- 

and for vertical equilibrium 
Leos+= w 

or 
L =  Wsec4 

(8.17) 

(8.18) 

(8.19) 

Fig. 8.12 Correctly banked turn. 
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From Eq. (8.19) we see that the load factor n in the turn is given by 

n = sec4 (8.20) 

Also, dividing Eq. (8.17) by Eq. (8.18) 

V 2  
t a n 4 = -  

g R  
(8.21) 

Examination of Eq. (8.21) reveals that the tighter the turn the greater the angle of 
bank required to maintain horizontal flight. Furthermore, we see from Eq. (8.20) 
that an increase in bank angle results in an increased load factor. Aerodynamic 
theory shows that for a limiting value of n the minimum time taken to turn through 
a given angle at a given value of engine thrust occurs when the lift coefficient CL is a 
maximum; that is, with the aircraft on the point of stalling. 

In Section 8.4 we considered aircraft loads resulting from prescribed manoeuvres in 
the longitudinal plane of symmetry. Other types of in-flight load are caused by air 
turbulence. The movements of the air in turbulence are generally known as gusts 
and produce changes in wing incidence, thereby subjecting the aircraft to sudden or 
gradual increases or decreases in lift from which normal accelerations result. These 
may be critical for large, high speed aircraft and may possibly cause higher loads 
than control initiated manoeuvres. 

At the present time two approaches are employed in gust analysis. One method, 
which has been in use for a considerable number of years, determines the aircraft 
response and loads due to a single or ‘discrete’ gust of a given profile. This profile 
is defined as a distribution of vertical gust velocity over a given finite length or 
given period of time. Examples of these profiles are shown in Fig. 8.13. 

Early airworthiness requirements specified an instantaneous application of gust 
velocity u, resulting in the ‘sharp-edged’ gust of Fig. 8.13(a). Calculations of normal 
acceleration and aircraft response were based on the assumptions that the aircraft’s 
flight is undisturbed while the aircraft passes from still air into the moving air of 
the gust and during the time taken for the gust loads to build up; that the aerodynamic 
forces on the aircraft are determined by the instantaneous incidence of the particular 
lifting surface and finally that the aircraft’s structure is rigid. The second assumption 
here relating the aerodynamic force on a lifting surface to its instantaneous incidence 
neglects the fact that in a disturbance such as a gust there is a gradual growth of 
circulation and hence of lift to a steady state value (Wagner effect). This in general 
leads to an overestimation of the upward acceleration of an aircraft and therefore 
of gust loads. 

The ‘sharp-edged’ gust was replaced when it was realized that the gust velocity built 
up to a maximum over a period of time. Airworthiness requirements were modified on 
the assumption that the gust velocity increased linearly to a maximum value over a 
specified gust gradient distance H .  Hence the ‘graded’ gust of Fig. 8.13(b). In the 
UK, H is taken as 30.5 m. Since, as far as the aircraft is concerned, the gust velocity 
builds up to a maximum over a period of time it is no longer allowable to ignore the 
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Fig. 8.13 (a) Sharp-edged gust; (b) graded gust; (c) 1 - cosine gust. 

change of flight path as the aircraft enters the gust. By the time the gust has attained 
its maximum value the aircraft has developed a vertical component of velocity and, 
in addition, may be pitching depending on its longitudinal stability characteristics. 
The effect of the former is to reduce the severity of the gust while the latter may 
either increase or decrease the loads involved. To evaluate the corresponding gust 
loads the designer may either calculate the complete motion of the aircraft during 
the disturbance and hence obtain the gust loads, or replace the ‘graded‘ gust by an 
equivalent ‘sharp-edged’ gust producing approximately the same effect. We shall 
discuss the latter procedure in greater detail later. 

The calculation of the complete response of the aircraft to a ‘graded’ gust may be 
obtained from its response to a ‘sharp-edged’ or ‘step’ gust, by treating the former as 
comprising a large number of small ‘steps’ and superimposing the responses to each of 
these. Such a process is known as convolution or Duhamel integration. This 
treatment is desirable for large or unorthodox aircraft where aeroelastic (structural 
flexibility) effects on gust loads may be appreciable or unknown. In such cases the 
assumption of a rigid aircraft may lead to an underestimation of gust loads. The 
equations of motion are therefore modified to allow for aeroelastic in addition to 
aerodynamic effects. For small and medium-sized aircraft having orthodox aero- 
dynamic features the equivalent ‘sharp-edged’ gust procedure is satisfactory. 

While the ‘graded’ or ‘ramp’ gust is used as a basis for gust load calculations, other 
shapes of gust profile are in current use. Typical of these is the ‘1 - cosine’ gust of 
Fig. 8.13(c), where the gust velocity u is given by u(t)  = (U/2)[1 - cos(~t/T)]. 
Again the aircraft response is determined by superimposing the responses to each 
of a large number of small steps. 

Although the ‘discrete’ gust approach still finds widespread use in the calculation 
of gust loads, alternative methods based on power spectrd analysis are being 
investigated. The advantage of the power spectral technique lies in its freedom 
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Still air 
‘ I  

from arbitrary assumptions of gust shapes and sizes. It is assumed that kast velocity is 
a random variable which may be regarded for analysis as consisting of a large number 
of sinusoidal components whose amplitudes vary with frequency. The power spectrum 
of such a function is then defined as the distribution of energy over the frequency 
range. This may then be related to gust velocity. To establish appropriate amplitude 
and frequency distributions for a particular random gust profile requires a large 
amount of experimental data. The collection of such data has been previously referred 
to in Section 8.2. 

Calculations of the complete response of an aircraft and detailed assessments of the 
‘discrete’ gust and power spectral methods of analysis are outside the scope of this 
book. More information may be found in Refs 1,2,3 and 4 at the end of the chapter. 
Our present analysis is confined to the ‘discrete’ gust approach, in which we consider 
the ‘sharp-edged’ gust and the equivalent ‘sharp-edged’ gust derived from the ‘graded’ 
gust. 

U 

The simplifying assumptions introduced in the determination of gust loads resulting 
from the ‘sharp-edged’ gust, have been discussed in the earlier part of this section. In 
Fig. 8.14 the aircraft is flying at a speed V with wing incidence olo in still air. After 
entering the gust of upward velocity u, the incidence increases by an amount 
tan-’ u/ V ,  or since u is usually small compared with V ,  u/ V .  This is accompanied 
by an increase in aircraft speed from V to ( V2 + u2$, but again this increase is 
neglected since u is small. The increase in wing lift AL is then given by 

(8.22) 

where dCL/da is the wing lift-curve slope. Neglecting the change of lift on the 
tailplane as a first approximation, the gust load factor An produced by this change 

Fig. 8.14 Increase in wing incidence due to a sharp-edged gust. 
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of lift is 
4 pvS(dCL/aa)u 

W 
An = (8.23) 

where W is the aircraft weight. Expressing Eq. (8.23) in terms of the wing loading, 
w = W / S ,  we have 

(8.24) 

This increment in gust load factor is additional to the steady level flight value n = 1. 
Therefore, as a result of the gust, the total gust load factor is 

; pV(dCL/aa)u 
n = l +  

W 

Similarly, for a downgust 

f pV(dCL/da)u 
n = l -  

W 

(8.25) 

(8.26) 

If flight conditions are expressed in terms of equivalent sea-level conditions then V 
becomes the equivalent airspeed (EAS), VE, u becomes uE and the air density p is 
replaced by the sea-level value po. Equations (8.25) and (8.26) are written 

and 

(8.27) 

(8.28) 

We observe from Eqs (8.25)-(8.28) that the gust load factor is directly proportional to 
aircraft speed but inversely proportional to wing loading. It follows that high-speed 
aircraft with low or moderate wing loadings are most likely to be affected by gust 
loads. 

The contribution to normal acceleration of the change in tail load produced by the 
gust may be calculated using the same assumptions as before. However, the change in 
tailplane incidence is not equal to the change in wing incidence due to downwash 
effects at the tail. Thus if A P  is the increase (or decrease) in tailplane load, then 

AP = tPo V ~ S ~ A C , , ~  (8.29) 

where ST is the tailplane area and ACL,T the increment of tailplane lift coefficient 
given by 

(8.30) 

in which d C ~ , ~ / d a  is the rate of change of tailplane lift coefficient with wing 
incidence. From aerodynamic theory 

acL,T dCL,T -- --(&E) 
&k! &T 
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where dCL,T/aaT is the rate of change of CL,T with tailplane incidence and &/aa the 
rate of change of downwash angle with wing incidence. Substituting for ACL:T from 
Eq. (8.30) into Eq. (8.29), we have 

For positive increments of wing lift and tailplane load 

A n W  = AL -k AP 

or, from Eqs (8.27) and (8.31) 

A n  = i PO YE ( ~ C L / ~ Q ) ~ E  ( + 2 :;;fa) 
W 

8.6.2 The 'graded' gust 

(8.31) 

(8.32) 

The 'graded' gust of Fig. 8.13(b) may be converted to an equivalent 'sharp-edged' gust 
by multiplying the maximum velocity in the gust by a gust alleviation factor, F.  Thus 
Eq. (8.27) becomes 

(8.33)  PO ~ E ( ~ C L / ~ ~ ) F U E  
n = l +  , I  It' 

Similar modifications are carried out on Eqs (8.25), (8.26), (8.28) and (8.32). The gust 
alleviation factor allows for some of the dynamic properties of the aircraft, including 
unsteady lift, and has been calculated taking into account the heaving motion (that is, 
the up and down motion with zero rate of pitch) of the aircraft only5. 

Horizontal gusts cause lateral loads on the vertical tail or fin. Their magnitudes 
may be calculated in an identical manner to those above, except that areas and 
values of lift curve slope are referred to the vertical tail. Also, the gust alleviation 
factor in the 'graded' gust case becomes Fl and includes allowances for the aero- 
dynamic yawing moment produced by the gust and the yawing inertia of the aircraft. 

-_-.ll..--=_"*-._"-_._.__ 

8.6.3 Gust envelope 
-=_̂ I~_I_II_II1-"---.~----,------- 

Airworthiness requirements usually specify that gust loads shall be calculated at 
certain combinations of gust and flight speed. The equations for gust load factor in 
the above analysis show that n is proportional to aircraft speed for a given gust 
velocity. Therefore, we may plot a gust envelope similar to the flight envelope of 
Fig. 8.1, as shown in Fig. 8.15. The gust speeds f U 1 ,  f U 2  and &Us are high, 
medium and low velocity gusts respectively. Cut-offs occur at points where the 
lines corresponding to each gust velocity meet specific aircraft speeds. For example, 
A and F denote speeds at which a gust of velocity &U, would stall the wing. 

The lift coefficient-incidence curve is, as we noted in connection with the flight 
envelope, affected by compressibility and therefore altitude so that a series of gust 
envelopes should be drawn for different altitudes. An additional variable in the 
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I 

E 
Fig. 8.15 Typical gust envelope. 

equations for gust load factor is the wing loading w. Further gust envelopes should 
therefore be drawn to represent different conditions of aircraft loading. 

Typical values of U1, U2 and U, are 20m/s, 15.25m/s and 7.5m/s. It can be seen 
from the gust envelope that the maximum gust load factor occurs at the cruising 
speed Vc. If this value of n exceeds that for the corresponding fight envelope case, 
that is nl,  then the gust case will be the most critical in the cruise. Let us consider a 
civil, non-aerobatic aircraft for which nl = 2.5, w = 2400N/m2 and aCL/acw = 5.0/ 
rad. Taking F = 0.715 we have, from Eq. (8.33) 

n = l +  
!j x 1.223Vc x 5.0 x 0.715 x 15.25 

2400 
giving n = 1 + 0.0139Vc, where the cruising speed Vc is expressed as an equivalent 
airspeed. For the gust case to be critical 

1 + 0.0139Vc > 2.5 

or 
Vc > 108m/s 

Thus, for civil aircraft of this type having cruising speeds in excess of 108 m/s, the gust 
case is the most critical. This would, in fact, apply to most modern civil airliners. 

Although the same combination of V and n in the flight and gust envelopes will 
produce the same total lift on an aircraft, the individual wing and tailplane loads 
will be different, as shown previously (see the derivation of Eq. (8.33)). This situation 
can be important for aircraft such as the Airbus, which has a large tailplane and a 
centre of gravity forward of the aerodynamic centre. In the aght  envelope case the 
tail load is downwards whereas in the gust case it is upwards; clearly there will be a 
sign5cant difference in wing load. 

The transference of manoeuvre and gust loads into bending, shear and torsional 
loads on wings, fuselage and tailplanes has been discussed in Section 7.2. Further 
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loads arise from aileron application, in undercarriages during landing, on engine 
mountings and during crash landings. Analysis and discussion of these may be 
found in Ref. 6 .  

7 - *  

8.7 Fatig 
Fatigue is defined as the progressive deterioration of the strength of a material or 
structural component during service such that failure can occur at much lower 
stress levels than the ultimate stress level. As we have seen, fatigue is a dynamic 
phenomenon which initiates small (micro) cracks in the material or component and 
causes them to grow into large (macro) cracks; these, if not detected, can result in 
catastrophic failure. 

Fatigue damage can be produced in a variety of ways. Cyclic fatigue is caused by 
repeated fluctuating loads as described in Section 8.2. Corrosion fatigue is fatigue 
accelerated by surface corrosion of the material penetrating inwards so that the 
material strength deteriorates. Small-scale rubbing movements and abrasion of adja- 
cent parts cause fretting fatigue, while thermal fatigue is produced by stress fluctuations 
induced by thermal expansions and contractions; the latter does not include the effect 
on material strength of heat. Finally, high frequency stress fluctuations, due to vibrd- 
tions excited by jet or propeller noise, cause sonic or acoustic fatigue. 

Clearly an aircraft's structure must be designed so that fatigue does not become a 
problem. For aircraft in general, BCAR require that the strength of an aircraft 
throughout its operational life shall be such as to ensure that the possibility of a 
disastrous fatigue failure shall be extremely remote (that is, the probability of failure 
is less than under the action of the repeated loads of variable magnitude 
expected in service. BCAR also require that the principal parts of the primary 
structure of the aircraft be subjected to a detailed analysis and to load tests which 
demonstrate a sefe life, or that the parts of the primary structure have fail-mfi. 
characteristics. These requirements do not apply to light aircraft provided that zinc 
rich aluminium alloys are not used in their construction and that wing stress levels 
are kept low, Le. provided that a 3.05m/s upgust causes no greater stress than 
14 N/mm2. 

8.7.1 Safe life and fail-safe structures 

The danger of a catastrophic fatigue failure in the structure of an aircraft may be elimi- 
nated completely or may become extremely remote if the structure is designed to have a 
safe life or to be fail-safe. In the former approach, the structure is designed to have a 
minimum life during which it is known that no catastrophic damage will occur. At the 
end of this life the structure must be replaced even though there may be no detectable 
signs of fatigue. If a structural component is not economically replaceable when its safe 
life has been reached the complete structure must be written off. Alternatively, it is 
possible for easily replaceable components such as undercarriage legs and mechanisms 
to have a safe life less than that of the complete aircraft since it would probably be 
more economical to use, say, two light-weight undercarriage systems during the life 
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of the aircraft rather than carry a heavier undercarriage which has the same safe life as 
the aircraft. 

The fail-safe approach relies on the fact that the failure of a member in a redundant 
structure does not necessarily lead to the collapse of the complete structure, provided 
that the remaining members are able to carry the load shed by the failed member and 
can withstand further repeated loads until the presence of the failed member is 
discovered. Such a structure is called a fail-safe structure or a damage tolerant 
structure. 

Generally, it is more economical to design some parts of the structure to be fail-safe 
rather than to have a long safe life since such components can be lighter. When failure 
is detected, either through a routine inspection or by some malfunction, such as fuel 
leakage from a wing crack, the particular aircraft may be taken out of service and 
repaired. However, the structure must be designed and the inspection intervals 
arranged such that a failure, for example a crack, too small to be noticed at one 
inspection must not increase to a catastrophic size before the next. The determination 
of crack propagation rates is discussed later. 

Some components must be designed to have a safe life; these include landing gear, 
major wing joints, wing-fuselage joints and hinges on all-moving tailplanes or on 
variable geometry wings. Components which may be designed to be fail-safe include 
wing skins which are stiffened by stringers and fuselage skins which are stiffened by 
frames and stringers; the stringers and frames prevent skin cracks spreading 
disastrously for a sufficient period of time for them to be discovered at a routine 
inspection. 

8.7.2 Designing against fatigue 

Various precautions may be taken to ensure that an aircraft has an adequate fatigue 
life. We have seen in Chapter 7 that the early aluminium-zinc alloys possessed high 
ultimate and proof stresses but were susceptible to early failure under fatigue loading; 
choice of materials is therefore important. The naturally aged aluminium-copper 
alloys possess good fatigue resistance but with lower static strengths. Modern 
research is concentrating on alloys which combine high strength with high fatigue 
resistance. 

Attention to detail design is equally important. Stress concentrations can arise 
at sharp corners and abrupt changes in section. Fillets should therefore be 
provided at re-entrant corners, and cut-outs, such as windows and access panels, 
should be reinforced. Rivets should not be used in areas of high stress and stiffeners 
should be bonded to plates rather than attached by rivets. In machined panels the 
material thickness should be increased around bolt holes, while holes in primary 
bolted joints should be reamered to improve surface finish; surface scratches and 
machine marks are sources of fatigue crack initiation. Joggles in highly stressed 
members should be avoided while asymmetry can cause additional stresses due to 
bending. 

In addition to sound structural and detail design, an estimation of the number, 
frequency and magnitude of the fluctuating loads an aircraft encounters is necessary. 
The fatigue load spectrum begins when the aircraft taxis to its take-off position. 
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During taxiing the aircraft may be manoeuvring over uneven ground with a full 
payload so that wing stresses, for example, are greater than in the static case. Also, 
during take-off and climb and descent and landing the aircraft is subjected to the 
greatest load fluctuations. The undercarriage is retracted and lowered; flaps are 
raised and lowered; there is the impact on landing; the aircraft has to carry out 
manoeuvres; and, finally, the aircraft, as we shall see, experiences a greater number 
of gusts than during the cruise. 

The loads corresponding to these various phases must be calculated before the 
associated stresses can be obtained. Thus, for example, during take-off, wing bending 
stresses and shear stresses due to shear and torsion are based on the total weight of 
the aircraft including full fuel tanks, and maximum payload all factored by 1.2 to 
allow for a bump during each take-off on a hard runway or by 1.5 for a take-off 
from grass. The loads produced during level flight and symmetric manoeuvres are 
calculated using the methods described in Sections 8.4 and 8.5. From these values 
distributions of shear force, bending moment and torque may be found in, say: the 
wing by integrating the lift distribution. Loads due to gusts are calculated using the 
methods described in Section 8.6. Thus, due to a single equivalent sharp-edged gust 
the load factor is given either by Eq. (8.25) or Eq. (8.26). 

Although it is a relatively simple matter to determine the number of load fluctua- 
tions during a ground-air-ground cycle caused by standard operations such as 
raising and lowering flaps, retracting and lowering the undercarriage etc., it is more 
difficult to estimate the number and magnitude of gusts an aircraft will encounter. 
For example, there is a greater number of gusts at low altitude (during take-off, 
climb and descent) than at high altitude (during cruise). Terrain (sea, flat land, 
mountains) also affects the number and magnitude of gusts as does weather. The 
use of radar enables aircraft to avoid cumulus where gusts are prevalent, but has 
little effect at low altitude in the climb and descent where clouds cannot easily be 
avoided. The ESDU (Engineering Sciences Data Unit) has produced gust data 
based on information collected by gust recorders carried by aircraft. These show, 
in graphical form ( I l o  versus h curves, h is altitude), the average distance flown at 
various altitudes for a gust having a velocity greater than f3.05 m/s to be encoun- 
tered. In addition, gustfrequency curves give the number of gusts of a given velocity 
per 1000 gusts of velocity 3.05m/s. Combining both sets of data enables the gust 
exceedmzce to be calculated, i.e. the number of gust cycles having a velocity greater 
than or equal to a given velocity encountered per kilometre of flight. 

Since an aircraft is subjected to the greatest number of load fluctuations during 
taxi-take-off-climb and descent-standoff-landing while little damage is caused 
during cruise, the fatigue life of an aircraft does not depend on the number of 
flying hours but on the number of flights. However, the operational requirements 
of aircraft differ from class to class. The Airbus is required to have a life free from 
fatigue cracks of 24000 fights or 30000 hours, while its economic repair life is 
48 000 flights or 60 000 hours; its landing gear, however, is designed for a safe life 
of 32000 flights, after which it must be replaced. On the other hand the BAe 146, 
with a greater number of shorter fights per day than the Airbus, has a specified 
crack free life of 40 000 fights and an economic repair life of 80 000 flights. Although 
the above figures are operational requirements, the nature of fatigue is such that it is 
unlikely that all of a given type of aircraft will satisfy them. Thus, of the total number 
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of Airbus aircraft, at least 90% will achieve the above values and 50% will be better; 
clearly, frequent inspections are necessary during an aircraft’s life. 

8.7.3 Fatigue strength of components 
-II 

In Section 8.2 we discussed the effect of stress level on the number of cycles to failure 
of a material such as mild steel. As the stress level is decreased the number of cycles to 
failure increases, resulting in a fatigue endurance curve (the S-N curve) of the type 
shown in Fig. 8.2. Such a curve corresponds to the average value of N at each 
stress amplitude since there will be a wide range of values of N for the given stress; 
even under carefully controlled conditions the ratio of maximum N to minimum N 
may be as high as 10: 1. Two other curves may therefore be drawn, as shown in 
Fig. 8.16, enveloping all or nearly all the experimental results; these curves are 
known as the conjidence limits. If 99.9% of all the results lie between the curves, 
i.e. only 1 in 1000 falls outside, they represent the 99.9% confidence limits. If 
99.99999% of results lie between the curves only 1 in lo7 results will fall outside 
them and they represent the 99.99999% confidence limits. 

The results from tests on a number of specimens may be represented as a histogram 
in which the number of specimens failing within certain ranges R of N is plotted 
against N. Then if N,, is the average value of N at a given stress amplitude the 
probability of failure occurring at N cycles is given by 

(8.34) 

in which c is the standard deviation of the whole population of N values. The 
derivation of Eq. (8.34) depends on the histogram approaching the profile of a 
continuous function close to the normal distribution, which it does as the interval 
NavIR becomes smaller and the number of tests increases. The cumulative probability, 
which gives the probability that a particular specimen will fail at or below N cycles, is 
defined as 

(8.35) 

Stress 
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1 c 
N cycles 

Fig. 8.16 5-N diagram. 



8.7 Fatigue 261 

Fig. 8.1 7 Goodman diagram. 

The probability that a specimen will endure more than N cycles is then 1 - P ( N ) .  The 
normal distribution allows negative values of N ,  which is clearly impossible in a 
fatigue testing situation. Other distributions, extreme value distributions, are more 
realistic and allow the existence of minimum fatigue endurances and fatigue limits. 

The damaging portion of a fluctuating load cycle occurs when the stress is tensile; 
this causes cracks to open and grow. Therefore, if a steady tensile stress is super- 
imposed on a cyclic stress the maximum tensile stress during the cycle will be increased 
and the number of cycles to failure will decrease. Conversely, if the steady stress is 
compressive the maximum tensile stress will decrease and the number of cycles to 
failure will increase. An approximate method of assessing the effect of a steady 
mean value of stress is provided by a Goodman diagram, as shown in Fig. 8.17. 
This shows the cyclic stress amplitudes which can be superimposed upon different 
mean stress levels to give a constant fatigue life. In Fig. 8.17, Sa is the allowable 
stress amplitude, Saq0 is the stress amplitude required to produce fatigue failure at N 
cycles with zero mean stress, S,  is the mean stress and S,, the ultimate tensile stress. 
If S, = S,, any cyclic stress will cause failure, while if S, = 0 the allowable stress 
amplitude is Sa.o. The equation of the straight line portion of the diagram is 

(8.36) 

Experimental evidence suggests a non-linear relationship for particular materials. 
Equation (8.36) then becomes 

(8.37) 

in which in lies between 0.6 and 2. 
In practical situations, fatigue is not caused by a large number of identical stress 

cycles but by many different stress amplitude cycles. The prediction of the number 
of cycles to failure therefore becomes complex. Miner and Palmgren have proposed 
a linear cumulative damage law as follows. If N cycles of stress amplitude Sa cause 
fatigue failure then 1 cycle produces 1/N of the total damage to cause failure. There- 
fore, if r different cycles are applied in which a stress amplitude Si ( j  = 1: 2, . . . , r )  
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would cause failure in Ni cycles the number of cycles nj required to cause total fatigue 
failure is given by 

(8.38) 

Although S-N curves may be readily obtained for different materials by testing a 
large number of small specimens (coupon tests), it is not practicable to adopt the 
same approach for aircraft components since these are expensive to manufacture 
and the test programme too expensive to run for long periods of time. However, 
such a programme was initiated in the early 1950s to test the wings and tailplanes 
of Meteor and Mustang fighters. These were subjected to constant amplitude loading 
until failure with different specimens being tested at different load levels. Stresses were 
measured at points where fatigue was expected (and actually occurred) and S-N 
curves plotted for the complete structure. The curves had the usual appearance and 
at low stress levels had such large endurances that fatigue did not occur; thus a fatigue 
limit existed. It was found that the average S-N curve could be approximated to by 
the equation 

Sa = 10.3( 1 + l O O O / d Z )  (8.39) 

in which the mean stress was 90 N/mm2. In general terms, Eq. (8.39) may be written as 

s, = S,(l+ C / d Z )  ( 8 . 4 )  
in which S ,  is the fatigue limit and C is a constant. Thus Sa + S,  as N + cy). 
Equation (8.40) may be rearranged to give the endurance directly, i.e. 

(8.41) 

which shows clearly that as Sa + S,, N --+ cy). 

It has been found experimentally that N is inversely proportional to the mean stress 
as the latter varies in the region of 90N/mm2 while C is virtually constant. This 
suggests a method of determining a ‘standard’ endurance curve (corresponding to a 
mean stress level of 90N/mm2) from tests carried out on a few specimens at other 
mean stress levels. Suppose S,  is the mean stress level, not 90 N/mm2, in tests carried 
out on a few specimens at an alternating stress level Sa:,, where failure occurs at a 
mean number of cycles N,. Then assuming that the S-N curve has the same form 
as Eq. (8.40) 

(8.42) 

in which C = 1000 and Smqm is the fatigue limit stress corresponding to the mean 
stress S,. Rearranging Eq. (8.42) we have 

(8.43) 

The number of cycles to failure at a mean stress of 90 N/mm2 would have been, from 
the above 

Sm N =-N, 
90 



8.7 Fatigue 263 

The corresponding fatigue limit stress would then have been, from a comparison with 
Eq. (8.43) 

s L , m  = s a q m / ( l  + c/@) (8.45) 

Tie  standard endurance curve for the component at a mean stress of 90N/mm2 is 
from Eq. (8.40) 

sa = s;,m(l + C / f i )  (8.46) 

Substituting in Eq. (8.46) for Sk,m from Eq. (8.45) we have 

(1 + C / f i )  sa:m s -  
a - (1 + c/m) 

(8.47) 

in which N' is given by Eq. (8.44). 
Equation (8.47) will be based on a few test results so that a 'safe' fatigue strength is 

mually taken to be three standard deviations below the mean fatigue strength. Hence 
we introduce a scatter factor K,, ( > 1 )  to allow for this; Eq. (8.47) then becomes 

(1  + C / a )  Sa,m s -  
a - Kn(l + C/m) 

(8.48) 

K, varies with the number of test results available and for a coefficient of variation of 
0.1, K,, = 1.45 for six specimens, K,, = 1.445 for 10 specimens, K,, = 1.44 for 20 speci- 
mens and for 100 specimens or more K,, = 1.43. For typical S-N curves a scatter 
factor of 1.43 is equivalent to a life factor of 3 to 4. 

We have seen that an aircraft suffers fatigue damage during all phases of the ground- 
air-ground cycle. The various contributions to this damage may be calculated 
separately and hence the safe life of the aircraft in terms of the number of flights 
calculated. 

In the ground-air-ground cycle the maximum vertical acceleration during take-off 
is 1.2g for a take-off from a runway or 1.5g for a take-off from grass. It is assumed 
that these accelerations occur at zero lift and therefore produce compressive 
(negative) stresses, -STo, in critical components such as the undersurface of wings. 
The maximum positive stress for the same component occurs in level fight (at lg) 
and is +S1,. The ground-air-ground cycle produces, on the undersurface of the 
wing, a fluctuating stress SGAG = (SI, + ST0)/2 about a mean stress S G A G ( ~ ~ ~ ~ )  = 
(S1, - STo)/2. Suppose that tests show that for this stress cycle and mean stress, 
failure occurs after NG cycles. For a life factor of 3 the safe life is NG/3 so that the 
damage done during one cycle is 3 /NG.  This damage is multiplied by a factor of 
1.5 to allow for the variability of loading between different aircraft of the same 
type so that the damage per flight DGAG from the ground-air-ground cycle is 
given by 

DGAG = 4 . 5 / N ~  (8.49) 
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Fatigue damage is also caused by gusts encountered in flight, particularly during the 
climb and descent. Suppose that a gust of velocity u, causes a stress S, about a mean 
stress corresponding to level flight, and suppose also that the number of stress cycles 
of this magnitude required to cause failure is N(S,);  the damage caused by one cycle is 
then l/N(S,). Thus, from the Palmgren-Miner hypothesis, when sufficient gusts of 
this and all other magnitudes together with the effects of all other load cycles produce 
a cumulative damage of 1.0, fatigue failure will occur. It is therefore necessary to 
know the number and magnitude of gusts likely to be encountered in flight. 

Gust data have been accumulated over a number of years from accelerometer 
records from aircraft flying over different routes and terrains, at different heights 
and at different seasons. The ESDU data sheets7 present the data in two forms, as 
we have previously noted. First Zlo against altitude curves show the distance which 
must be flown at a given altitude in order that a gust (positive or negative) having 
a velocity 2 3.05m/s be encountered. It follows that l/Zlo is the number of gusts 
encountered in unit distance (1 km) at a particular height. Secondly, gust frequency 
distribution curves, r(ue) against u,, give the number of gusts of velocity u, for 
every 1000 gusts of velocity 3.05 m/s. 

From these two curves the gust exceedance E(ue) is obtained; E(u,) is the number 
of times a gust of a given magnitude (u,) will be equalled or exceeded in 1 km of flight. 
Thus, from the above 

number of gusts 2 3.05m/s per km = l/Zlo 

number of gusts equal to u, per 1000 gusts equal to 3.05m/s = r(ue) 

Hence 

number of gusts equal to ue per single gust equal to 3.05m/s = r(u,)/1000 

It follows that the gust exceedance E(u,) is given by 

(8.50) 

in which llo is dependent on height. A good approximation for the curve of r(ue) 
against u, in the region u, = 3.05 m/s is 

= 3.23 105~i5.26 (8.51) 

Consider now the typical gust exceedance curve shown in Fig. 8.18. In 1 km of flight 
there are likely to be E(u,) gusts exceeding u, m/s and E(ue) - SE(u,) gusts exceeding 
ue + Sue m/s. Thus, there will be SE(u,)fewer gusts exceeding u, + Sue m/s than ue m/s 
and the increment in gust speed Sue corresponds to a number -SE(u,) of gusts at a 
gust speed close to u,. Half of these gusts will be positive (upgusts) and half negative 
(downgusts) so that if it is assumed that each upgust is followed by a downgust of 
equal magnitude the number of complete gust cycles will be -SE(u,)/2. Suppose 
that each cycle produces a stress S(ue) and that the number of these cycles required 
to produce failure is N(S,:,). The damage caused by one cycle is then l/N(Su,e) 
and over the gust velocity interval Sue the total damage SD is given by 

(8.52) 
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Fig. 8.18 Gust exceedance curve. 

Integrating Eq. (8.52) over the whole range of gusts likely to be encountered, we 
obtain the total damage D, per km of flight. Thus 

(8.53) 

Further, if the average block length journey of an aircraft is R,, the average gust 
damage per flight is D,RaV. Also, some aircraft in a fleet will experience more gusts 
than others since the distnbution of gusts is random. Therefore if, for example, it is 
found that one particular aircraft encounters 50% more gusts than the average its 
gust fatigue damage is 1.5Dg/km. 

The gust damage predicted by Eq. (8.53) is obtained by integrating over a complete 
gust velocity range from zero to infinity. Clearly there will be a gust velocity below 
which no fatigue damage will occur since the cyclic stress produced will be below 
the fatigue limit stress of the particular component. Equation (8.53) is therefore 
rewritten 

(8.54) 

in which uf is the gust velocity required to produce the fatigue limit stress. 
We have noted previously that more gusts are encountered during climb and 

descent than during cruise. Altitude therefore affects the amount of fatigue damage 
caused by gusts and its effects may be determined as follows. Substituting for the 
gust exceedance E(ue) in Eq. (8.54) from Eq. (8.50) we obtain 

or 
1 D,  =--$ per km 

4 0 
(8.55) 
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in which llo is a function of height h and 

Suppose that the aircraft is climbing at a speed V with a rate of climb ROC. The time 
taken for the aircraft to climb from a height h to a height h + Sh is Sh/ROC during 
which time it travels a distance VShIROC. Hence, from Eq. (8.55) the fatigue 
damage experienced by the aircraft in climbing through a height Sh is 

The total damage produced during a climb from sea level to an altitude H at a 
constant speed V and rate of climb ROC is 

(8.56) 

Plotting l/llo against h from ESDU data sheets for aircraft having cloud warning 
radar and integrating gives 

9000 dh 6000 dh 
- = 3.4 

16000 110 
- = 14, 

j3000 111) 
- = 303; 

From the above 
per cent of the total damage in the climb occurs in the first 3000 m. 

example, the change in wing stress produced by a gust may be represented by 

dh/llo = 320.4, from which it can be seen that approximately 95 

An additional factor influencing the amount of gust damage is forward speed. For 

= klueV, (see Eq. (8.24)) (8.57) 

in which the forward speed of the aircraft is in EAS. From Eq. (8.57) we see that the 
gust velocity uf required to produce the fatigue limit stress S ,  is 

uf = Sco/kl Ve (8.58) 

The gust damage per km at different forward speeds V, is then found using Eq. (8.54) 
with the appropriate value of uf as the lower limit of integration. The integral may be 
evaluated by using the known approximate forms of N(S,,J and E(u,) from Eqs 
(8.48) and (8.50). From Eq. (8.48) 

m s a  = su,e = K, (1 + c / J G )  
from which 

where Su?, = kl Veu, and S;,, = kl VeuF Also Eq. (8.50) is 
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or, substituting for r(ue) from Eq. (8.51) 

3.23 105~;5.’6 

E(ue) = 1000/~0 

Equation (8.54) then becomes 

) dtle 
D, = - 1; ( g)2 ( Su,e 7 SA:-) ’ ( -3.23 x 5.26 x 105u;5.’6 

Sqrn 10001~0 

Substituting for and Skqm we have 

or 

D, = 16.99 x lo2 ( - :)2 Jm (u;: 2u;5.26 + u;6.26) due 
2/10 ur u2 Uf 

from which 

or, in terms of the aircraft speed Ve 

(8.59) 

It can be seen from Eq. (8.59) that gust damage increases in proportion to V:/e5.26 so 
that increasing forward speed has a dramatic effect on gust damage. 

The total fatigue damage suffered by an aircraft per flight is the sum of the damage 
caused by the ground-air-ground cycle, the damage produced by gusts and the 
damage due to other causes such as pilot induced manoeuvres, ground turning and 
braking, and landing and take-off load fluctuations. The damage produced by 
these other causes can be determined from load exceedance data. Thus, if this extra 
damage per fight is De,,, the total fractional fatigue damage per flight is 

Dtotal = DGAG + D g R a v  + Dextra 

or 

Dtotal = 4.5/NG + DgRav -k Dextra 

and the life of the aircraft in terms of flights is 

Nflighr = l/l)total 

8.7.5 Crack propagation 

(8.60) 

(8.61) 

We have seen that the concept of fail-safe structures in aircraft construction relies on 
a damaged structure being able to retain sufficient of its load-carrying capacity to 
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Fig. 8.19 Basic modes of crack growth. 

prevent catastrophic failure, at least until the damage is detected. It is therefore 
essential that the designer be able to predict how and at what rate a fatigue crack 
will grow. The ESDU data sheets provide a useful introduction to the study of 
crack propagation; some of the results are presented here. 

The analysis of stresses close to a crack tip using elastic stress concentration factors 
breaks down since the assumption that the crack tip radius approaches zero results in 
the stress concentration factor tending to infinity. Instead, linear elastic fracture 
mechanics analyses the stress field around the crack tip and identifies features of 
the field common to all cracked elastic bodies. 

There are three basic modes of crack growth, as shown in Fig. 8.19. Generally, the 
stress field in the region of the crack tip is described by a two-dimensional model 
which may be used as an approximation for many practical three-dimensional loading 
cases. Thus, the stress system at a distance I ( I  < u) from the tip of a crack of length 
2 4  shown in Fig. 8.20, can be expressed in the form 

(8.62) 

in whichf(8) is a different function for each of the three stresses and K is the stress 
intensity factor; K is a function of the nature and magnitude of the applied stress 
levels and also of the crack size. The terms (2xr)f andf(8) map the stress field in 
the vicinity of the crack and are the same for all cracks under external loads that 
cause crack openings of the same type. 

Equation (8.62) applies to all modes of crack opening, with K having different 
values depending on the geometry of the structure, the nature of the applied loads 
and the type of crack. However, if K has the same value for different types of 
crack and applied stress levels the stress fields around each crack will be identical. 
Since the mode of cracking shown in Fig. 8.19(a) is the most common the remaining 
analysis applies to this type of crack. 

Experimental data show that crack growth and residual strength data are better 
correlated using K than any other parameter. K may be expressed as a function of 
the nominal applied stress S and the crack length in the form 

K = S(.rru)fa (8.63) 
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s 

S 

Fig. 8.20 Stress field in the vicinity of a crack. 

in which a is a non-dimensional coefficient usually expressed as the ratio of crack 
length to any convenient local dimension in the plane of the component; for a 
crack in an infinite plate under an applied uniform stress level S remote from the 
crack, a = 1 .O. Alternatively, in cases where opposing loads P are applied at points 
close to the plane of the crack 

(8.64) 

in which P i s  the load/unit thickness. Equations (8.63) and (8.64) may be rewritten as 

K = Koa (8.65) 

where &, is a reference value of the stress intensity factor which depends upon the 
loading. For the simple case of a remotely loaded plate in tension 

KO = S ( ~ a ) i  (8.66) 

and Eqs (8.65) and (8.63) are identical so that for a given ratio of crack length to plate 
width a is the same in both formulations. In more complex cases, for example the in- 
plane bending of a plate of width 2b and having a central crack of length 2u 

3Ma I KO = 3 ( T U ) ?  (8.67) 

in which M is the bending moment per unit thickness. Comparing Eqs (8.67) and 
(8.63), we see that S = 3Ma/4b3 which is the value of direct stress given by 5asic 
bending theory at a point a distance f a / 2  from the central axis. However, if S was 
specified as the bending stress in the outer fibres of the plate, i.e. at &b, then 
S = 3M/2b2; clearly the different specifications of S require different values of a. 
On the other hand the final value of K must be independent of the form of presentation 
used. Use of Eqs (8.63), (8.64) and (8.65) depends on the form of the solution for KO and 
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care must be taken to ensure that the formula used and the way in which the nominal 
stress is defined are compatible with those used in the derivation of a. 

There are a number of methods available for determining the value of K and a. In 
one method the solution for a component subjected to more than one type of loading 
is obtained from available standard solutions using superposition or, if the geometry 
is not covered, two or more standard solutions may be compounded7. Alternatively, a 
finite element analysis may be used. 

In certain circumstances it may be necessary to account for the effect of plastic flow 
in the vicinity of the crack tip. This may be allowed for by estimating the size of the 
plastic zone and adding this to the actual crack length to form an effective crack 
length 2al. Thus, if rp is the radius of the plastic zone, al = a + rp and Eq. (8.63) 
becomes 

(8.68) 

in which K p  is the stress intensity factor corrected for plasticity and a1 corresponds to 
al. Thus for rp/t > 0.5, i.e. a condition of plane stress 

2 
r -- or rp =; (I> a2 (Ref. 9) (8.69) 

in which fy is the yield proof stress of the material. For r p / t  < 0.02, a condition of 
plane strain 

(8.70) 

For intermediate conditions the correction should be such as to produce a 
conservative solution. 

Having obtained values of the stress intensity factor and the coefficient a, fatigue 
crack propagation rates may be estimated. From these, the life of a structure 
containing cracks or crack-like defects may be determined; alternatively, the loading 
condition may be modified or inspection periods arranged so that the crack will be 
detected before failure. 

Under constant amplitude loading the rate of crack propagation may be repre- 
sented graphically by curves described in general terms by the law 

da - =f(R, A K )  (Ref. 10) 
dN 

(8.71) 

in which A K  is the stress intensity factor range and R = Smin/Smax. If Eq. (8.63) is 
used 

A K  = (Smax - Smi,)(ra)'a (8.72) 

Equation (8.72) may be corrected for plasticity under cyclic loading and becomes 

A K ~  = (Smax - Smin)(ral)fal (8.73) 

in which u1 = a + rp, where, for plane stress 

(Ref. 11) 
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The curves represented by Eq. (8.71) may be divided into three regions. The first 
corresponds to a very slow crack growth rate (< m/cycle) where the curves 
approach a threshold value of stress intensity factor AK,, corresponding to 
4 x lO-”m/cycle, i.e. no crack growth. In the second region (10-8-10-6m/cycle) 
much of the crack life takes place and, for small ranges of A K ,  Eq. (8.71) may be 
represented by 

du 
- = C(AK)” 
d N  

(Refs 10, 12) (8.74) 

in which C and n depend on the material properties; over small ranges of da/dN and 
AK,  C and n remain approximately constant. The third region corresponds to crack 
growth rates > 

An attempt has been made to describe the complete set of curves by the relationship 
m/cycle, where instability and final failure occur. 

(Ref. 13) 
da - C(AK)” 
dN- (1  - R)Kc - A K  

(8.75) 

in which K, is the fracture toughness of the material obtained from toughness tests. 
Integration of Eqs (8.74) or (8.75) analytically or graphically gives an estimate of 
the crack growth life of the structure, that is, the number of cycles required for a 
crack to grow from an initial size to an unacceptable length, or the crack growth 
rate or failure, whichever is the design criterion. Thus, for example, integration of 
Eq. (8.74) gives, for an infinite width plate for which Q = 1.0 

for n > 2. An analytical integration may only be carried out if n is an integer and Q is 
in the form of a polynomial, otherwise graphical or numerical techniques must be 
employed. 
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P.8.1 The aircraft shown in Fig. P.8.l(a) weighs 135 kN and has landed such that 
at  the instant of impact the ground reaction on each main undercarriage wheel is 
200 kN and its vertical velocity is 3.5 mjs. 

Fig. P.8.1 

If each undercarriage wheel weighs 2.25 kN and is attached to an oleo strut, as 
shown in Fig. P.8.l(b), calculate the axial load and bending moment in the strut; 
the strut may be assumed to be vertical. Determine also the shortening of the strut 
when the vertical velocity of the aircraft is zero. 

Finally, calculate the shear force and bending moment in the wing at  the section 
AA if the wing, outboard of this section, weighs 6.6 kN and has its centre of gravity 
3.05 m from AA. 

193.3 kN, 29.0 k N m  (clockwise); 0.32m; 19.5 kN, 59.6 kN m (anticlockwise). 

Determine, for the aircraft of Example 8.2, the vertical velocity of the nose 

Ans. 

P.8.2 
wheel when it hits the ground. 

Ans. 3.1 mjs. 

P.8.3 Figure P.8.3 shows the flight envelope at sea-level for an aircraft of wing 
span 27.5 m, average wing chord 3.05 m and total weight 196 000 N. The aerodynamic 
centre is 0.91 5 m forward of the centre of gravity and the centre of lift for the tail unit 
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is 16.7m aft'of the CG. The pitching moment coefficient is 
CM,o = -0.0638 (nose-up positive) 

both CM.o and the position of the aerodynamic centre are specified for the complete 
aircraft less tail unit. 

" t  

V m/s 

Fig. P.8.3 

For steady cruising fight at sea-level the fuselage bending moment at the CG is 
600 000 Nm. Calculate the maximum value of this bending moment for the given 
flight envelope. For this purpose it may be assumed that the aerodynamic loadings 
on the fuselage itself can be neglected, i.e. the only loads on the fuselage structure 
aft of the CG are those due to the tail lift and the inertia of the fuselage. 

Ans. i 549500Nm at n = 3.5, V = 152.5m/s. 

P.8.4 An aircraft weighing 238000N has wings 88.5m2 in area for which 
C, = 0.0075 + 0.045C;. The extra-to-wing drag coefficient based on wing area is 
0.0128 and the pitching moment coefficient for all parts excluding the tailplane 
about an axis through the CG is given by C M  - c  = (0.427C~ - 0.061) m. The 
radius from the CG to the line of action of the tail lift may be taken as constant at 
12.2 m. The moment of inertia of the aircraft for pitching is 204 000 kg m2. 

During a pull-out from a dive with zero thrust at 215 m/s EAS when the flight path 
is at 40" to the horizontal with a radius of curvature of 1525 m, the angular velocity of 
pitch is checked by applying a retardation of 0.25 rad/sec2. Calculate the manoeuvre 
load factor both at the CG and at the tailplane CP, the forward inertia coefficient and 
the tail lift. 

Ans. IZ = 3.78(CG), IZ = 5.19 at TP, f = -0.370, P = 18 925N. 

P.8.5 An aircraft flies at sea level in a correctly banked turn of radius 610 m at a 
speed of 168 m/s. Figure P.8.5 shows the relative positions of the centre of gravity, 
aerodynamic centre of the complete aircraft less tailplane and the tailplane centre 
of pressure for the aircraft at zero lift incidence. 
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Tail CP 
I 

Thrust 
line + 

I '/ b.915rn 
7.625m 

AC 
Fig. P.8.5 

Calculate the tail load necessary for equilibrium in the turn. The necessary data are 
given in the usual notation as follows: 

Weight W = 133 500N dCL/da! = 4.5/rad 

Wing area S = 46.5m2 CD = 0.01 + 0.05Ci 

Wing mean chord C = 3.0m CM,o = -0.03 

Ans. 73 160N. 

P.8.6 The aircraft for which the stalling speed V, in level flight is 46.5m/s has a 
maximum allowable manoeuvre load factor nl of 4.0. In assessing gyroscopic effects 
on the engine mounting the following two cases are to be considered: 

(a) pull-out at maximum permissible rate from a dive in symmetric flight, the angle 

(b) steady, correctly banked turn at the maximum permissible rate in horizontal 

Find the corresponding maximum angular velocities in yaw and pitch. 

Ans. (a) Pitch, 0.37 rad/sec; (b) Pitch, 0.41 rad/sec, Yaw, 0.103 rad/sec. 

P.8.7 A tail-first supersonic airliner, whose essential geometry is shown in 
Fig. P.8.7, flies at 610m/s true airspeed at an altitude of 18300m. Assuming that 
thrust and drag forces act in .the same straight line, calculate the tail lift in steady 
straight and level flight. 

of the flight path to the horizontal being limited to 60" for this aircraft; 

flight. 

CG Tail CP 

c- 

W centre 
I 50 rn 1 

Fig. P.8.7 
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If, at the same altitude, the aircraft encounters a sharp-edged vertical up-gust of 
18m/s true airspeed, calculate the changes in the lift and tail load and also the 
resultant load factor n. 

The relevant data in the usual notation are as follows: 

Wing: S = 280m’, 

Tail: S T  = 28m2, 

aCL/aa = 1.5 

aC~,T/aa = 2.0 

Weight W = 1600000N 

CM,O = - 0.01 

Mean chord E = 22.8 m 

At 18 300m 

p = 0.116kg/m3 

A m .  P = 267 852N, AP = 36257N, AL = 271 931 N, n = 1.19 

P.8.8 An aircraft of all up weight 145 000 N has wings of area 50 m2 and mean 
chord 2.5m. For the whole aircraft CD = 0.021 + O.O41C;, for the wings 
dCL/da = 4.8, for the tailplane of area 9.0m2, dCL,T/da = 2.2 allowing for the 
effects of downwash: and the pitching moment coefficient about the aerodynamic 
centre (of complete aircraft less tailplane) based on wing area is C,, = -0.032. 
Geometric data are given in Fig. P.8.8. 

During a steady glide with zero thrust at 250m/s EAS in which CL = 0.08: the 
aircraft meets a downgust of equivalent ‘sharp-edged’ speed 6 m/s. Calculate the 
tail load: the gust load factor and the forward inertia force, po = 1.223 kg/m3. 

P = -28 902 N (down), n = -0.64, forward inertia force = 40 703 N. Ans. 

Datum for a parallel to no lift line of wings 

CP of TIP _a_- 

i I 8.5 m 

Fig. P.8.8 
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Bending, shear and torsion 
of open and closed, 
thin-walled beams 

In Chapter 7 we discussed the various types of structural component found in air- 
craft construction and the various loads they support. We saw that an aircraft is 
basically an assembly of stiffened shell structures ranging from the single cell 
closed section fuselage to multicellular wings and tail-surfaces each subjected to 
bending, shear, torsional and axial loads. Other, smaller portions of the structure 
consist of thin-walled channel, T-, Z-, 'top hat' or I-sections, which are used to 
stiffen the thin skins of the cellular components and provide support for internal 
loads from floors, engine mountings etc. Structural members such as these are 
known as open section beams, while the cellular components are termed closed 
section beams; clearly, both types of beam are subjected to axial, bending, shear 
and torsional loads. 

In this chapter we shall investigate the stresses and displacements in thin-walled 
open and single cell closed section beams produced by bending, shear and torsional 
loads, and, in addition, we shall examine the effect on the analysis of idealizing 
such sections when they have been stiffened by stringers. 

We shall show that the value of direct stress at a point in the cross-section of a beam 
subjected to bending depends on the position of the point, the applied loading and the 
geometric properties of the cross-section. It follows that it is of no consequence 
whether or not the cross-section is open or closed. We therefore derive the theory 
for a beam of arbitrary cross-section and then discuss its application to thin-walled 
open and closed section beams subjected to bending moments. 

The basic assumption of the theory is that plane sections of beams remain plane 
after displacement produced by the loading. We shall, in addition, make the simplify- 
ing assumptions that the material of the beam is homogeneous and linearly elastic. 
However, before we derive an expression for the direct stress distribution in a 
beam subjected to bending we shall establish sign conventions for moments, forces 
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and displacements, investigate the effect of choice of section on the positive directions 
of these parameters and discuss the determination of the components of a bending 
moment applied in any longitudinal plane. 

I-IY.II*IIII-"-PICI.- 

9.1 .I Sign conventions and notation 
"- e--- 

Forces, moments and displacements are referred to an arbitrary system of axes O x y ~ ,  
of which Oz is parallel to the longitudinal axis of the beam and Oxy  are axes in the 
plane of the cross-section. We assign the symbols M, S, P, T and w to bending 
moment, shear force, axial or direct load, torque and distributed load intensity respec- 
tively, with suffixes where appropriate to indicate sense or direction. Thus, M, is a 
bending moment about the x axis, S, is a shear force in the x direction and so on. 
Figure 9.1 shows positive directions and senses for the above loads and moments 
applied externally to a beam and also the positive directions of the components of 
displacement u, w and w of any point in the beam cross-section parallel to the x, y 
and z axes respectively. A further condition defining the signs of the bending moments 
M, and My is that they are positive when they induce tension in the positive xy  quad- 
rant of the beam cross-section. 

Fig. 9.1 Notation and sign convention for forces, moments and displacements. 

If we refer internal forces and moments to that face of a section which is seen 
when viewed in the direction z 0  then, as shown in Fig. 9.2, positive internal forces 
and moments are in the same direction and sense as the externally applied loads 
whereas on the opposite face they form an opposing system. The former system, 
which we shall use, has the advantage that direct and shear loads are always positive 
in the positive directions of the appropriate axes whether they are internal loads or 
not. It must be realized, though, that internal stress resultants then become 
equivalent to externally applied forces and moments and are not in equilibrium 
with them. 
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A bending moment M applied in any longitudinal plane parallel to the z axis may be 
resolved into components M ,  and My by the normal rules of vectors. However, a 
visual appreciation of the situation is often helpful. Referring to Fig. 9.3 we see 
that a bending moment M in a plane at an angle 8 to Ox may have components of 
differing sign depending on the size of 8. In both cases, for the sense of M shown 

M, = Msin8 

which give, for 8 < ~ 1 2 ,  M, and My positive (Fig. 9.3(a)) and for 8 > ~ 1 2 ,  M, 
positive and My negative (Fig. 9.3(b)). 

Fig. 9.3 Resolution of bending moments. 
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9.1.3 Direct stress distribution due to bending 
--a-----.-.--.--pp- I - - Y - I _ I - - Y I y Y I I _ y I - - ~ ~ , m  *..IICILI..."~.CIII 

Consider a beam having the arbitrary cross-section shown in Fig. 9.4(a). The beam 
supports bending moments M, and My and bends about some axis in its cross-section 
which is therefore an axis of zero stress or a neutral axis (NA). Let us suppose that the 
origin of axes coincides with the centroid C of the cross-section and that the neutral 
axis is a distancep from C. The direct stress a: on an element of area SA at a point 
( x ,  )I) and a distance E from the neutral axis is, from the third of Eqs (1.42) 

a= = E&? (9.1) 
If the beam is bent to a radius of curvature p about the neutral axis at this particular 
section then, since plane sections are assumed to remain plane after bending, and by a 
comparison with symmetrical bending theory 

E & =-  
P 

Substituting for E= in Eq. (9.1) we have 

EE a, = - 
P 

The beam supports pure bending moments so that the resultant normal load on any 
section must be zero. Hence 

P 

Therefore, replacing az in this equation from Eq. (9.2) and cancelling the constant 
E / p  gives 

JdA = 0 

Y Y 
4 

N 

(a) (b) 

Fig. 9.4 Determination of neutral axis position and direct stress due to bending. 
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i.e. the first moment of area of the cross-section of the beam about the neutral axis is 
zero. It follows that the neutral axis passes through the centroid of the cross-section 
as shown in Fig. 9.4(b). 

Suppose that the inclination of the neutral axis to Cx is a (measured clockwise from 
Cx), then 

< = x s i n a + y c o s a  (9.3) 

az= -(xsina+ycosa) (9-4) 

and from Eq. (9.2) 
E 
P 

The moment resultants of the internal direct stress distribution have the same sense as 
the applied moments Mx and My.  Thus 

r r 

Substituting for a= from Eq. (9.4) in Eqs (9.5) and defining the second moments of 
area of the section about the axes Cx, Cy as 

Zxx = y2dA, 1 
gives 

E sin a E cos a E sina E cos a 
Mx =- zxy + p zxx, My =- ZYY +p ZXY P P 

or, in matrix form 

from which 

i.e. 

1 

so that, from Eq. (9.4) 

Alternatively, Eq. (9.6) may be rearranged in the form 

Mx(ZyyY - Ixyx) My (ZXXX - ZxyY) 

IxxZyy - z:y Zx.xZyy - c y  
a, = + (9.7) 

From Eq. (9.7) it can be seen that if, say, My = 0 the moment Mx produces a stress 
which varies with both x and y; similarly for My if Mx = 0. 
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In the case where the beam cross-section has either (or both) Cx or Cy as an axis of 
symmetry the product second moment of area Ixy is zero and Cxy are principal axes. 
Equation (9.7) then reduces to 

Further, if either M,, or M, is zero then 

(9.9) 

Equations (9.8) and (9.9) are those derived for the bending of beams having at least a 
singly symmetrical cross-section. It may also be noted that in Eqs (9.9) a= = 0 when, 
for the first equation, y = 0 and for the second equation when x = 0. Therefore, in 
symmetrical bending theory the x axis becomes the neutral axis when M,, = 0 and 
the y axis becomes the neutral axis when Mx = 0. Thus we see that the position of 
the neutral axis depends on the form of the applied loading as well as the geometrical 
properties of the cross-section. 

There exists, in any unsymmetrical cross-section, a centroidal set of axes for which 
the product second moment of area is zero. These axes are then principal axes and the 
direct stress distribution referred to these axes takes the simplified form of Eqs (9.8) or 
(9.9). It would therefore appear that the amount of computation can be reduced if 
these axes are used. This is not the case, however, unless the principal axes are obvious 
from inspection since the calculation of the position of the principal axes, the princi- 
pal sectional properties and the coordinates of points at which the stresses are to be 
determined consumes a greater amount of time than direct use of Eqs (9.6) or (9.7) for 
an arbitrary, but convenient set of centroidal axes. 

9.1.4 Position of the neutral axis 

The neutral axis always passes through the centroid of area of a beam’s cross-section 
but its inclination a (see Fig. 9.4(b)) to the x axis depends on the form of the applied 
loading and the geometrical properties of the beam’s cross-section. 

At all points on the neutral axis the direct stress is zero. Therefore, from Eq. (9.6) 

where xh:A and J J ~ A  are the coordinates of any point on the neutral axis. Hence 

JJNA - - MJxx - M.Jx.v 
XNA M.rIy.v - M/.xy 

or, referring to Fig. 9.4(b) and noting that when a is 
opposite sign 

- - 

My?rx - MxIxy 
MJyy - MJxy 

tana = 

positive x ~ A  and yNA are of 

(9.10) 
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Example 9.1 
A beam having the cross-section shown in Fig. 9.5 is subjected to a bending moment 
of 1500 N m in a vertical plane. Calculate the maximum direct stress due to bending 
stating the point at which it acts. 

8omLL 8 r n m q  I' 
F- 

" 

Fig. 9.5 Cross-section of beam in Example 9.1. 

The position of the centroid of the section may be found by taking moments of 
areas about some convenient point. Thus 

( 1 2 0 ~ 8 + 8 0 ~ 8 ) J =  1 2 0 ~ 8 ~ 4 + 8 0 ~ 8 ~ 4 8  

giving 

J = 21.6mm 

and 

(120 x 8 +80 x 8 ) X =  80 x 8 x 4+ 120 x 8 x 24 

giving 

X = 1 6 ~  

The next step is to calculate the section properties referred to axes Cxy. Hence 

+ 80 x 8 x (26.4)2 
8 x (80)3 

12 
120 ('I3 + 120 x 8 x ( 17.6)2 + 

12 r x x  = 

= 1.09 x 106mm4 

80 x (8)3 +80 x 8 x (12)2 (120)3 + 120 x 8 x (8)2 + 
12 12 

ryy = 

= 1.31 x 106mm4 

Ixy = 120 x 8 x 8 x 17.6 + 80 x 8 x (-12) x (-26.4) 

= 0.34 x 106mm4 
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Since M, = 1500 N m and My = 0 we have, from Eq. (9.7) 

0, = 1 . 5 ~  - 0 . 3 9 ~  

in which the units are N and mm. 

y = -66.4mm. Thus 
By inspection of Eq. (i) we see that a, will be a maximum at F where x = -8 mm, 

mzz:max = -96 N/mm2 (compressive) 

In some cases the maximum value cannot be obtained by inspection so that values of 
CJ- at several points must be calculated. 

9.1.5 Load intensity, shear force and bending moment 
relationships, general case 

Consider an element of length Sz of a beam of unsymmetrical cross-section subjected 
to shear forces, bending moments and a distributed load of varying intensity, all in 
the yz plane as shown in Fig. 9.6. The forces and moments are positive in accordance 
with the sign convention previously adopted. Over the length of the element we 
may assume that the intensity of the distributed load is constant. Therefore, for 
equilibrium of the element in the y direction 

(.. + SSZ) + wy sz - sy = 0 

from which 

8% w,, = -- 
dZ 

Taking moments about A we have 

( M x + T S z )  - (S,+%Sz)Sz- w , 2 -  (S# M,=O 

Y 

Fig. 9.6 Equilibrium of beam element supporting a general force system in the yz plane. 
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or, when second-order terms are neglected 

We may combine these results into a single expression 

as. azMx 

as, - azMy 

--w -A=- 
y -  az a2 

Similarly for loads in the xz plane 

-wx = - -- 
az az2 

9.1.6 Deflections due to bending 

(9.11) 

(9.12) 

We have noted that a beam bends about its neutral axis whose inclination relative to 
arbitrary centroidal axes is determined from Eq. (9.10). Suppose that at some section 
of an unsymmetrical beam the deflection normal to the neutral axis (and therefore an 
absolute deflection) is C, as shown in Fig. 9.7. In other words the centroid C is 
displaced from its initial position CI through an amount C to its final position CF. 
Suppose also that the centre of curvature R of the beam at this particular section is 
on the opposite side of the neutral axis to the direction of the displacement C and 
that the radius of curvature is p. For this position of the centre of curvature and 
from the usual approximate expression for curvature we have 

(9.13) 

The components u and 21 of C are in the negative directions of the x and y axes 

u = -Csina, 21 = -Ccosa (9.14) 

respectively, so that 

R (centre of  curvature) 
9 t’ I 

Loaded 

Fig. 9.7 Determination of beam deflection due to bending. 
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Differentiating Eqs (9.14) twice with respect to z and then substituting for C from 
Eq. (9.13) we obtain 

In the derivation of Eq. (9.6) we see that 

(9.15) 

(9.16) 

Substituting in Eqs (9.16) for sinalp and cosalp from Eqs (9.15) and writing 
ut' = d2u/d3, v" = d2v/d3 we have 

(9.17) 

It is instructive to rearrange Eqs (9.17) as follows 

{ zi} = - E [  2 t] { :I} (see derivation of Eq. (9.6)) (9.18) 

i.e. 

(9.19) 

The first of Eqs (9.19) shows that M, produces curvatures, that is deflections, in 
both the xz and yz planes even though M - 0; similarly for My when M x  = 0. 
Thus, for example, an unsymmetrical beam will deflect both vertically and horizon- 
tally even though the loading is entirely in a vertical plane. Similarly, vertical and 
horizontal components of deflection in an unsymmetrical beam are produced by 
horizontal loads. 

For a beam having either Cx or Cy (or both) as an axis of symmetry, IXy = 0 and 
Eqs (9.17) reduce to 

y :  

(9.20) 

which are the equations of symmetrical bending theory. 

Example 9.2 

are L, I,T and LY. 

Determine the horizontal and vertical components of the tip deflection of the canti- 
lever shown in Fig. 9.8. The second moments of area of its unsymmetrical section 

From Eqs (9.17) 
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X 

z 

Fig. 9.8 Determination of the deflection of a cantilever. 

In this case Mx = W ( L  - z), My = 0 so that Eq. (i) simplifies to 

I 1  
( L  - 2) 

W r ,  
m x z y y  - I$) 

u =  

Integrating Eq. (ii) with respect to z 

ut = w z x y  ( L Z - T + A )  2 

U =  m x z y y  wzxy - e y )  ( L $ - $ + R z + B  2 6 1 
W x x I y y  - z.$) 

and 

(iv) 

in which u' denotes du/& and the constants of integration A and B are found from 
the boundary conditions, viz. u' = 0 and u = 0 when z = 0. From the first of these and 
Eq. (iii), A = 0, while from the second and Eq. (iv), B = 0. Hence the deflected shape 
of the beam in the xz plane is given by 

U =  wIxy ( L p J  (VI 
E V x x 4 J y  - 

At the free end of the cantilever (z = L) the horizontal component of deflection is 

W I X Y L 3  (vi) 

- W I Y Y L 3  (vii) 

3 m C J y y  - z:y) 
Uf.e. = 

Similarly, the vertical component of the deflection at the free end of the cantilever is 

3 W J y y  - z:y) 
%e. = 

The actual deflection Sf., at the free end is then given by 

(ii) 

(iii) 

6f.e. = ( d e .  + &e.>' 

at an angle of tan-' uf.e,/vf..e. to the vertical. 
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Note that if either Cx or Cy were an axis of symmetry, Ixy = 0 and Eqs (vi) and (vii) 
reduce to 

- WL’ 
vf.e. = - 

3EIxx 
Uf.e. = 0,  

the well-known results for the bending of a cantilever having a symmetrical cross- 
section and carrying a concentrated vertical load at its free end. 

We may exploit the thin-walled nature of aircraft structures to make simplifying 
assumptions in the determination of stresses and deflections produced by bending. 
Thus, the thickness t of thin-walled sections is assumed to be small compared with 
their cross-sectional dimensions so that stresses may be regarded as being constant 
across the thickness. Furthermore, we neglect squares and higher powers o f t  in the 
computation of sectional properties and take the section to be represented by the 
mid-line of its wall. As an illustration of the procedure we shall consider the channel 
section of Fig. 9.9(a). The section is singly symmetric about the x axis so that IxJ = 0. 
The second moment of area lYX is then given by 

[2(i2 - t /2)l3 
I X.Y - - 2 [ (b  +:2/2)t3 + (b + i) th’] + c 12 

Expanding the cubed term we have 

Ixx = 2 [ (b  +:2/2)p + (b +;) th’] +A [(Z)’ (n’ - 3h-2+ 3hq - 
3 t t2 t3)1 

which reduces, after powers of 8 and upwards are ignored, to 

(a) (b) 

Fig. 9.9 (a) Actual thin-wailed channel section; (b) approximate representation of section. 
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Fig. 9.10 Second moments of area of an inclined thin section. 

The second moment of area of the section about Cy is obtained in a similar 
manner. 

We see, therefore, that for the purpose of calculating section properties we may 
regard the section as being represented by a single line, as shown in Fig. 9.9(b). 

Thin-walled sections frequently have inclined or curved walls which complicate the 
calculation of section properties. Consider the inclined thin section of Fig. 9.10. Its 
second moment of area about a horizontal axis through its centroid is given by 

So: a12 
= 2 Jo ty2 ds = 2 t (s  sin p)’ ds 

from which 

a3 t sin’ p 
12 I x x  = 

Similarly 

a3 t cos2 p 
IYY = 12 

The product second moment of area is 

a12 
Ixy = 2 1  txyds 

= 2 JY t (s  cos p) (s sin p> ds 

which gives 

We note here that these expressions are approximate in that their derivation neglects 
powers of ? and upwards by ignoring the second moments of area of the element 6s 
about axes through its own centroid. 
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X - - .  X - 

Fig. 9.1 1 Second moment of area of a semicircular section. 

for the semicircular section of Fig. 9.11 is 
Properties of thin-walled curved sections are found in a similar manner. Thus, JYx 

Expressing y and s in terms of a single variable 8 simplifies the integration, hence 

Ixx = ~ ~ t ( r c o s 8 ) * r d B  

from which 
rr3 t I =- 

2 xx 

Example 9.3 
Determine the direct stress distribution in the thin-walled Z-section shown in Fig. 
9.12, produced by a positive bending moment M,. 

The section is antisymmetrical with its centroid at the mid-point of the vertical web. 
Therefore, the direct stress distribution is given by either of Eqs (9.6) or (9.7) in which 
My = 0. From Eq. (9.7) 

Fig. 9.12 Z-section beam of Example 9.3. 
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The section properties are calculated as follows 

h3 t 

Substituting these values in Eq. (i) 

(ii) 

On the top flange y = h/2,0 < x < h / 2  and the distribution of direct stress is given by 

M X  

h3 t 

M X  

h3 t 

uz = - (6.863, - 10.30~) 

uz = - (3.43h - 10.30~) 

which is linear. Hence 
1.72Mx 

h3 t 
UZJ = -~ (compressive) 

3.43Mx 
uz,2 = +- (tensile) 

h3 t 
In the web h/2 < y < -h/2 and x = 0. Again the distribution is of linear form and is 
given by the equation 

uz = %6.86y 
h t  

whence 
3.43M, 

h3 t 
cz,2 = +- (tensile) 

and 
3.43Mx 

h3 t 
a,,3 = -- (compressive) 

The distribution in the lower flange may be deduced from antisymmetry; the complete 
distribution is then as shown in Fig. 9.13. 

9.1.8 Applicability of bending theory 

The expressions for direct stress and displacement derived in the above theory are 
based on the assumptions that the beam is of uniform, homogeneous cross-section 
and that plane sections remain plane after bending. The latter assumption is strictly 
true only if the bending moments M, and My are constant along the beam. Variation 
of bending moment implies the presence of shear loads and the effect of these is to 
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3 
Fig. 9.13 Distribution of direct stress in Z-section beam of Example 9.3. 

deform the beam section into a shallow, inverted 's' (see Section 2.6). However, shear 
stresses in beams whose cross-sectional dimensions are small in relation to their 
lengths are comparatively low so that the basic theory of bending may be used 
with reasonable accuracy. 

In thin-walled sections shear stresses produced by shear loads are not small and 
must be calculated, although the direct stresses may still be obtained from the basic 
theory of bending so long as axial constraint stresses are absent; this effect is discussed 
in Chapter 1 1. Deflections in thin-walled structures are assumed to result primarily 
from bending strains; the contribution of shear strains may be calculated separately 
if required. 

e 6 Istress, ̂ st r a i'n an d-dEplace me nt re la t i o ns h i ps 
for open and single cell closed section thin-walled 
beams 

We shall establish in this section the equations of equilibrium and expressions for 
strain which are necessary for the analysis of open section beams supporting shear 
loads and closed section beams carrying shear and torsional loads. The analysis of 
open section beams subjected to torsion requires a different approach and is discussed 
separately in Section 9.6. The relationships are established from first principles for the 
particular case of thin-walled sections in preference to the adaption of Eqs (1.6), 
(1.27) and (1.28) which refer to different coordinate axes; the form, however, will 
be seen to be the same. Generally, in the analysis we assume that axial constraint 
effects are negligible, that the shear stresses normal to the beam surface may be 
neglected since they are zero at each surface and the wall is thin, that direct and 
shear stresses on planes normal to the beam surface are constant across the thickness, 
and finally that the beam is of uniform section so that the thickness may vary with 
distance around each section but is constant along the beam. In addition, we ignore 
squares and higher powers of the thickness t in the calculation of section constants. 
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(a) (bl  

Fig. 9.14 (a) General stress system on element of a closed or open section beam; (b) direct stress and shear 
flow system on the element. 

The parameter s in the analysis is distance measured around the cross-section from 
some convenient origin. 

An element 6s x 6z x t of the beam wall is maintained in equilibrium by a system of 
direct and shear stresses as shown in Fig. 9.14(a). The direct stress a, is produced by 
bending moments or by the bending action of shear loads while the shear stresses are 
due to shear and/or torsion of a closed section beam or shear of an open section beam. 
The hoop stress us is usually zero but may be caused, in closed section beams, by inter- 
nal pressure. Although we have specified that t may vary with s, this variation is small 
for most thin-walled structures so that we may reasonably make the approximation 
that t is constant over the length 6s. Also, from Eqs (1.4), we deduce that 
rrs = rsz = r say. However, we shall find it convenient to work in terms of shear 
flow q, i.e. shear force per unit length rather than in terms of shear stress. Hence, in 
Fig. 9.14(b) 

q = rt (9.21) 

For equilibrium of the element in the z direction and neglecting body forces (see 
and is regarded as being positive in the direction of increasing s. 

Section 1.2) 

(a, + z 6 r ) * 6 s  - azt6s + ( 2 )  q + - &  sz - qsz = 0 

which reduces to 
a4 aaz 
as az - + t - = O  

Similarly for equilibrium in the s direction 

(9.22) 

(9.23) 

The direct stresses a, and us produce direct strains E, and E,, while the shear stress r 
induces a shear strain y(= T~~ = T,,). We shall now proceed to express these strains in 
terms of the three components of the displacement of a point in the section wall (see 
Fig. 9.15). Of these components v, is a tangential displacement in the xy plane and is 
taken to be positive in the direction of increasing s; w,, is a normal displacement in the 
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X 

z 
Fig. 9.15 Axial, tangential and normal components of displacement of a point in the beam wall. 

xy plane and is positive outwards; and w is an axial displacement which has been 
defined previously in Section 9.1. Immediately, from the third of Eqs (1.18), we have 

dW 

az 
& =- (9.24) 

It is possible to derive a simple expression for the direct strain E, in terms of ut, wn, s 
and the curvature 1/r in the xy plane of the beam wall. However, as we do not require 
E, in the subsequent analysis we shall, for brevity, merely quote the expression 

aV, vn & =-+- 
as r 

(9.25) 

The shear strain y is found in terms of the displacements w and ut by considering the 
shear distortion of an element 6s x Sz of the beam wall. From Fig. 9.16 we see that the 
shear strain is given by 

7 = 41 + 4 2  

or, in the limit as both 6s and Sz tend to zero 

(9.26) 

Fig. 

Distorted shape 
of element due \---**- 

to shear f:. 1 --._ 
L. 
I . 

4 
-. -.._ 

9.16 Determination of shear strain y in terms of tangential and axial components of displacement. 
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Fig. 9.17 Establishment of displacement relationships and position of centre of twist of beam (open or 
closed). 

In addition to the assumptions specijied in the earlier part of this section, we further 
assume that during any displacement the shape of the beam cross-section is main- 
tained by a system of closely spaced diaphragms which are rigid in their own plane 
but are perfectly flexible normal to their own plane (CSRD assumption). There is, 
therefore, no resistance to axial displacement w and the cross-section moves as a 
rigid body in its own plane, the displacement of any point being completely specified 
by translations u and 21 and a rotation 6 (see Fig. 9.17). 

At first sight this appears to be a rather sweeping assumption but, for aircraft struc- 
tures of the thin shell type described in Chapter 7 whose cross-sections are stiffened by 
ribs or frames positioned at frequent intervals along their lengths, it is a reasonable 
approximation for the actual behaviour of such sections. The tangential displacement 
vt of any point N in the wall of either an open or closed section beam is seen from Fig. 
9.17 to be 

v, = p6 + ucos $ + vsin $ (9.27) 

where clearly u, w and B are functions of z only (w may be a function of z and s). 
The origin 0 of the axes in Fig. 9.17 has been chosen arbitrarily and the axes suffer 

displacements u, w and 0. These displacements, in a loading case such as pure torsion, 
are equivalent to a pure rotation about some point R(xR,YR) in the cross-section 
where R is the centre of twist. Thus, in Fig. 9.17 

and 

(9.28) 

p R  = p - xR sin 1(, + yR cos $ 

which gives 
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and 
dv, de de de 
- = p - - XR sin +- + yR  cos +- 
dz dz dz dz 

Also from Eq. (9.27) 

de du dv . 3 = p -  + -cos + -sm + 
dz dz dz dz 

Comparing the coefficients of Eqs (9.29) and (9.30) we see that 

dvldz duldz 
dO/dz I Y R  =- dQ/dz 

XR = -- 

(9.29) 

(9.30) 

(9.31) 

The open section beam of arbitrary section shown in Fig. 9.18 supports shear loads S, 
and Sy such that there is no twisting of the beam cross-section. For this condition to 
be valid the shear loads must both pass through a particular point in the cross-section 
known as the shear centre (see also Section 11.5). 

Since there are no hoop stresses in the beam the shear flows and direct stresses 
acting on an element of the beam wall are related by Eq. (9.22), i.e. 

aq do, -+t-=o as dz 

We assume that the direct stresses are obtained with sufficient accuracy from basic 
bending theory so that from Eq. (9.6) 

-- a c z  - [(aM,/az)Ixx - (awaz)r.Xyl + [ ( a M x / w r y y  - (dMy/wx,l 
dZ IxxI,, - I:, Ixxryy - I& 

't 

Fig. 9.18 Shear loading of open section beam. 



296 Open and closed, thin-walled beams 

Using the relationships of Eqs (9.11) and (9.12), i.e. aMy/az  = S, etc., this expression 
becomes 

( S X Z X X  - S y Z x y )  + ( S y Z y y  - S x Z x y )  
Y -- - 

az zx,zyy - z:y z x x z y y  - E y  

Substituting for &Jaz in Eq. (9.22) gives 

(9.32) 

Integrating Eq. (9.32) with respect to s from some origin for s to any point around the 
cross-section, we obtain 

(9.33) 

If the origin for s is taken at the open edge of the cross-section, then q = 0 when s = 0 
and Eq. (9.33) becomes 

For a section having either Cx or Cy as an axis of symmetry Zxy = 0 and Eq. (9.34) 
reduces to 

Example 9.4 
Determine the shear flow distribution in the thin-walled 2-section shown in Fig. 9.19 
due to a shear load Sy applied through the shear centre of the section. 

- 
2 

Fig. 9.19 Shear-loaded Z-section of Example 9.4: 
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The origin for our system of reference axes coincides with the centroid of the 
section at the mid-point of the web. From antisymmetry we also deduce by inspection 
that the shear centre occupies the same position. Since S, is applied through the shear 
centre then no torsion exists and the shear flow distribution is given by Eq. (9.34) in 
which S, = 0, i.e. 

or 

(Ix, txds - I,, tY ds) SY 
qs = IxxI,, - I$ 

The second moments of area of the section have previously been determined in 
Example 9.3 and are 

Substituting these values in Eq. (i) we obtain 

s, 
qs = - (10.32~ - 6.84~) ds 

h3 1 0  
(ii) 

On the bottom flange 12, y = -h/2 and x = -h/2 + sl, where 0 < s1 < h/2. Therefore 

giving 

(iii) 

Hence at 1 (sl = 0) ,  q1 = 0 and at 2 (sl = h/2), q2 = 0.42SJh. Further examination 
of Eq. (iii) shows that the shear flow distribution on the bottom flange is parabolic 
with a change of sign (Le. direction) at s1 = 0.336h. For values of s1 < 0.336h, q12 
is negative and therefore in the opposite direction to sl. 

In the web 23, y = -h/2 + s2, where 0 < s2 < h and x = 0. Thus 

We note in Eq. (iv) that the shear flow is not zero when s2 = 0 but equal to the value 
obtained by inserting s1 = h / 2  in Eq. (iii), i.e. q2 = 0.42Sy/h. Integration of Eq. (iv) 
yields 

S 
q23 = (0.42h2 + 3.42h.Y~ - 3.424) 

This distribution is symmetrical about Cx with a maximum value at s2 = h/2(y = 0) 
and the shear flow is positive at all points in the web. 

The shear flow distribution in the upper flange may be deduced from antisymmetry 
so that the complete distribution is of the form shown in Fig. 9.20. 
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0.42 S,/h 

Fig. 9.20 Shear flow distribution in Z-section of Example 9.4. 

9.3.1 Shear centre 

We have defined the position of the shear centre as that point in the cross-section 
through which shear loads produce no twisting. It may be shown by use of the 
reciprocal theorem that this point is also the centre of twist of sections subjected to 
torsion. There are, however, some important exceptions to this general rule as we 
shall observe in Section 1 1.1. Clearly, in the majority of practical cases it is impossible 
to guarantee that a shear load will act through the shear centre of a section. Equally 
apparent is the fact that any shear load may be represented by the combination of the 
shear load applied through the shear centre and a torque. The stresses produced by 
the separate actions of torsion and shear may then be added by superposition. It is 
therefore necessary to know the location of the shear centre in all types of section 
or to calculate its position. Where a cross-section has an axis of symmetry the 
shear centre must, of course, lie on this axis. For cruciform or angle sections of the 
type shown in Fig. 9.21 the shear centre is located at the intersection of the sides 
since the resultant internal shear loads all pass through these points. 

Example 9.5 
Calculate the position of the shear centre of the thin-walled channel section shown in 
Fig. 9.22. The thickness t of the walls is constant. 

sc 

sc I+ 
Fig. 9.21 Shear centre position for type of open section beam shown. 
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t 
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h 
2 

2u’ 
Fig. 9.22 Determination of shear centre position of channel section of Example 9.5 

The shear centre S lies on the horizontal axis of symmetry at some distance &, say, 
from the web. If we apply an arbitrary shear load Sy through the shear centre then the 
shear flow distribution is given by Eq. (9.34) and the moment about any point in the 
cross-section produced by these shear flows is equivalent to the moment of the applied 
shear load. Sy appears on both sides of the resulting equation and may therefore be 
eliminated to leave &. 

For the channel section, Cx is an axis of symmetry so that Ixy = 0. Also S, = 0 and 
therefore Eq. (9.34) simplifies to 

where 

I x x -  -2bt (;y - +-=- ‘:1 ;;( I + -  ?) 
Substituting for I,, in Eq. (i) we have 

‘”h3(1+6b/h) - I Z S y  Pds o 
(ii) 

The amount of computation involved may be reduced by giving some thought to 
the requirements of the problem. In this case we are asked to find the position of 
the shear centre only, not a complete shear flow distribution. From symmetry it is 
clear that the moments of the resultant shears on the top and bottom flanges about 
the mid-point of the web are numerically equal and act in the same rotational 
sense. Furthermore, the moment of the web shear about the same point is zero. We 
deduce that it is only necessary to obtain the shear flow distribution on either the 
top or bottom flange for a solution. Alternatively, choosing a web/flange junction 
as a moment centre leads to the same conclusion. 
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On the bottom flange, y = -h /2  so that from Eq. (ii) we have 

6S, 
q12 = h2(1 + 6 b / h )  s1 

(iii) 

Equating the clockwise moments of the internal shears about the mid-point of the web 
to the clockwise moment of the applied shear load about the same point gives 

or, by substitution from Eq. (iii) 

from which 

3b2 
Is = h(1 + 6h/h) 

In the case of an unsymmetrical section, the coordinates (Js, qs) of the shear centre 
referred to some convenient point in the cross-section would be obtained by first 
determining Es in a similar manner to that of Example 9.5 and then finding qs by 
applying a shear load S, through the shear centre. In both cases the choice of a 
web/flange junction as a moment centre reduces the amount of computation. 

hear of closed section beams 
The solution for a shear loaded closed section beam follows a similar pattern to that 
described in Section 9.3 for an open section beam but with two important differences. 
First, the shear loads may be applied through points in the cross-section other than 
the shear centre so that torsional as well as shear effects are included. This is possible 
since, as we shall see, shear stresses produced by torsion in closed section beams have 
exactly the same form as shear stresses produced by shear, unlike shear stresses due to 
shear and torsion in open section beams. Secondly, it is generally not possible to 
choose an origin for s at which the value of shear flow is known. Consider the 
closed section beam of arbitrary section shown in Fig. 9.23. The shear loads S, and 
S,. are applied through any point in the cross-section and, in general, cause direct 
bending stresses and shear flows which are related by the equilibrium equation 
(9.22). We assume that hoop stresses and body forces are absent. Thus 

dq do; -+r-=o as az 
From this point the analysis is identical to that for a shear loaded open section beam 
until we reach the stage of integrating Eq. (9.33), namely 
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Fig. 9.23 Shear of closed section beams. 

Let us suppose that we choose an origin for s where the shear flow has the unknown 
value qs,o. Integration of Eq. (9.33) then gives 

or 

We observe by comparison of Eqs (9.35) and (9.34) that the first two terms on the 
right-hand side of Eq. (9.35) represent the shear flow distribution in an open section 
beam loaded through its shear centre. This fact indicates a method of solution for a 
shear loaded closed section beam. Representing this 'open' section or 'basic' shear 
Aow by qb,  we may write Eq. (9.35) in the form 

4.7 = q b  + qs,O (9.36) 

We obtain qb by supposing that the closed beam section is 'cut' at some convenient 
point thereby producing an 'open' section (see Fig. 9.24(b)). The shear flow 

Fig. 9.24 (a) Determination of q,,o; (b) equivalent loading on 'open'section beam. 
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distribution (qb) around this ‘open’ section is given by 

as in Section 9.3. The value of shear flow at the cut (s = 0) is then found by equating 
applied and internal moments taken about some convenient moment centre. Thus, 
from Fig. 9.24(a) 

SxVO - SyCO = f p q h  = fpqb dS + qs,O fp dS 

where denotes integration completely around the cross-section. In Fig. 9.24(a) 

SA = ~SSP 

so that 

dA=$ pds f f  
Hence 

pds = 2A f 
where A is the area enclosed by the mid-line of the beam section wall. Hence 

SxVO - S&O = f Pqb dS f 2Aqs,O (9.37) 

If the moment centre is chosen to coincide with the lines of action of Sx and Sy then 
Eq. (9.37) reduces to 

= Pqb dS f 2Aqs,0 (9.38) f 
The unknown shear flow qs,o follows from either of Eqs (9.37) or (9.38). 

It is worthwhile to consider some of the implications of the above process. 
Equation (9.34) represents the shear flow distribution in an open section beam for 
the condition of zero twist. Therefore, by ‘cutting’ the closed section beam of Fig. 
9.24(a) to determine qb, we are, in effect, replacing the shear loads of Fig. 9.24(a) 
by shear loads Sx and Sy acting through the shear centre of the resulting ‘open’ section 
beam together with a torque T as shown in Fig. 9.24(b). We shall show in Section 9.5 
that the application of a torque to a closed section beam results in a constant shear 
flow. In this case the constant shear flow qs,o corresponds to the torque but will 
have different values for different positions of the ‘cut’ since the corresponding 
various ‘open’ section beams will have different locations for their shear centres. 
An additional effect of ‘cutting’ the beam is to produce a statically determinate 
structure since the qb shear flows are obtained from statical equilibrium considera- 
tions. It follows that a single cell closed section beam supporting shear loads is 
singly redundant. 
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9.4.1 Twist and warping of shear loaded closed section beams 

Shear loads which are not applied through the shear centre of a closed section beam 
cause cross-sections to twist and warp; that is, in addition to rotation, they suffer out 
of plane axial displacements. Expressions for these quantities may be derived in terms 
of the shear flow distribution qs as follows. Since q = rt and r = (see Chapter 1) 
then we can express qs in terms of the warping and tangential displacements ti' and ut 
of a point in the beam wall by using Eq. (9.26). Thus 

Substituting for aV,/dz from Eq. (9.30) we have 

dw de du dv 
Gt ds dz dz dz 
- qs = - +p- + -cos + + -sin+ 

(9.39) 

(9.40) 

Integrating Eq. (9.40) with respect to s from the chosen origin for s and noting that G 
may also be a function of s, we obtain 

dwp de dtr dv -ds= -&+- pds+- cos+&+- sin$ds 1; tt j o  ds dzlo dzjo dz l o  
or 

which gives I$&= ( W , - W ~ ) + ~ A O ~ - + - ( ( ~ , - X O ) + ~ ; ~ ~ - ~ O )  d6' du dv (9.41) 
dz dz 

where Aos is the area swept out by a generator, centre at the origin of axes, 0, froin 
the origin for s to any point s around the cross-section. Continuing the integration 
completely around the cross-section yields, from Eq. (9.41) 

f g d s  = 2A-  d6' 
dz 

from which 

Substituting for the rate of twist in Eq. (9.41) from Eq. 
obtain the warping distribution around the cross-section 

(9.42) 

(9.42) and rearranging, we 

(9.43) du dv AT f z t  dz dz 
- - -ds - - (x, - xO) - -bs -yo)  

Using Eqs (9.31) to replace du/dz and dv/dz in Eq. (9.43) we have 



304 Open and closed, thin-walled beams 

The last two terms in Eq. (9.44) represent the effect of relating the warping displace- 
ment to an arbitrary origin which itself suffers axial displacement due to warping. In 
the case where the origin coincides with the centre of twist R of the section then 
Eq. (9.44) simpliiies to 

(9.45) 

In problems involving singly or doubly symmetrical sections, the origin for s may be 
taken to coincide with a point of zero warping which will occur where an axis of sym- 
metry and the wall of the section intersect. For unsymmetrical sections the origin for s 
may be chosen arbitrarily. The resulting warping distribution will have exactly the 
same form as the actual distribution but will be displaced axially by the unknown 
warping displacement at the origin for s. This value may be found by referring to 
the torsion of closed section beams subject to axial constraint (see Section 11.3). In 
the analysis of such beams it is assumed that the direct stress distribution set up by 
the constraint is directly proportional to the free warping of the section, i.e. 

u = constant x w 

Also, since a pure torque is applied the resultant of any internal direct stress system 
must be zero, in other words it is self-equilibrating. Thus 

Resultant axial load = utds 

where u is the direct stress at any point in the cross-section. Then, from the above 
assumption 

f 
o =  w t d s  f 

or 

so that 

9.4.2 Shear centre 

(9.46) 

The shear centre of a closed section beam is located in a similar manner to that 
described in Section 9.3 for open section beams. Therefore, to determine the coordi- 
nate ts (referred to any convenient point in the cross-section) of the shear centre S of 
the closed section beam shown in Fig. 9.25, we apply an arbitrary shear load S, 
through S ,  calculate the distribution of shear flow qs due to S,, and then equate 
internal and external moments. However, a difficulty arises in obtaining qs,o since, 
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Fig. 9.25 Shear centre of a closed section beam. 

at this stage, it is impossible to equate internal and external moments to produce an 
equation similar to Eq. (9.37) as the position of S,, is unknown. We therefore use the 
condition that a shear load acting through the shear centre of a section produces zero 
twist. It follows that dO/dz in Eq. (9.42) is zero so that 

or 

which gives 

If Gt = constant then Eq. (9.47) simplifies to 

(9.47) 

(9.48) 

The coordinate qs is found in a similar manner by applying S, through S .  

Example 9.6 
A thin-walled closed section beam has the singly symmetrical cross-section shown in 
Fig. 9.26. Each wall of the section is flat and has the same thickness t and shear 
modulus G. Calculate the distance of the shear centre from point 4. 

The shear centre clearly lies on the horizontal axis of symmetry so that it is only 
necessary to apply a shear load Sy through S and to determine &. If we take the x 
reference axis to coincide with the axis of symmetry then lT,. = 0, and since S, = 0 
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1 9a 6a 

Fig. 9.26 Closed section beam of Example 9.6. 

Eq. (9.35) simplifies to 
S q --2 t 

s - p Yd.S+%,O Ixx 0 

3 

in which 

I,, = 2 [ 1; t ( $SI>’ dsl + 1: f ( As2>’ ds2] 

Evaluating this expression gives I,, = 1 152a3t. 

for the wall 41 
The basic shear flow distribution qb is obtained from the first term in Eq. (i). Thus, 

In the wall 12 

which gives 

(iii) 

The q b  distributions in the walls 23 and 34 follow from symmetry. Hence from 
Eq. (9.48) 

giving 

qs,o = - ” (58.7;) 
1 1 52a3 
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Taking moments about the point 2 we have 

or 

S p a  sin e 1 loa  (- ?s: + 5 8 . 7 ~ ~ )  dsl 
SY(& + 9a) = 1152a3 0 

We may replace sin 6’ by sin(O1 - 0,) = sin el cos O2 - cos O1 sin Q2 where sin O1 = 
15/17, cosO2 = 8/10, cosQ1 = 8/17 and sine2 = 6/10. Substituting these values 
and integrating Eq. (v) gives 

& = -3.35a 

which means that the shear centre is inside the beam section. 

A closed section beam subjected to a pure torque T as shown in Fig. 9.27 does not, in 
the absence of an axial constraint, develop a direct stress system. It follows that the 
equilibrium conditions of Eqs (9.22) and (9.23) reduce to dq/ds = 0 and dq /dz  = 0 
respectively. These relationships may only be satisfied simultaneously by a constant 
value of q. We deduce, therefore, that the application of a pure torque to a closed 
section beam results in the development of a constant shear flow in the beam wall. 
However, the shear stress 7 may vary around the cross-section since we allow the 
wall thickness t to be a function of s. The relationship between the applied torque 
and this constant shear flow is simply derived by considering the torsional equilibrium 
of the section shown in Fig. 9.28. The torque produced by the shear flow acting on an 
element 6s of the beam wall is pq6s. Hence 

or, since q is constant and f p d s  = 2A (as before) 

T = 2Aq 

X 

z 

(9.49) 

Fig. 9.27 Torsion of a closed section beam 
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't 

Fig. 9.28 Determination of the shear flow distribution in a closed section beam subjected to torsion. 

Note that the origin 0 of the axes in Fig. 9.28 may be positioned in or outside the 
cross-section of the beam since the moment of the internal shear flows (whose resul- 
tant is a pure torque) is the same about any point in their plane. For an origin outside 
the cross-section the term $p ds will involve the summation of positive and negative 
areas. The sign of an area is determined by the sign ofp which itself is associated with 
the sign convention for torque as follows. If the movement of the foot of p along the 
tangent at any point in the positive direction of s leads to an anticlockwise rotation of 
p about the origin of axes, p is positive. The positive direction of s is in the positive 
direction of q which is anticlockwise (corresponding to a positive torque). Thus, in 
Fig. 9.29 a generator OA, rotating about 0, will initially sweep out a negative area 
since P A  is negative. At B, however, p B  is positive so that the area swept out by the 
generator has changed sign (at the point where the tangent passes through 0 and 
p = 0). Positive and negative areas cancel each other out as they overlap so that as 
the generator moves completely around the section, starting and returning to A 
say, the resultant area is that enclosed by the profile of the beam. 

Fig. 9.29 Sign convention for swept areas. 
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The theory of the torsion of closed section beams is known as the Bredt-Batho 
rlteory and Eq. (9.49) is often referred to as the Bredt-Batho formula. 

9.5.1 Displacements associated with the Bredt-Batho shear flow 

The relationship between q and shear strain established in Eq. (9.39), namely 

q = G t  (E -+- 2) 
is valid for the pure torsion case where q is constant. Differentiating this expression 
with respect to z we have 

or 

(9.50) 

In the absence of direct stresses the longitudinal strain div/az( = E,) is zero so that 

Hence from Eq. (9.27) 

d28 d’u d% 
d z 2  d z 2  dz2 

p -  + -cos + + -sin @ = 0 (9.51) 

For Eq. (9.51) to hold for all points around the section wall, in other words for all 
values of + 

d2 8 d2u d2v 
dz- 7 = 0 ,  -- & 2 - 0 ,  -- dz2 - 

It follows that 8 = Az + B, u = Cz + D, v = Ez + F,  where A,  B, C ,  D ,  E and F are 
unknown constants. Thus 8, w and v are all linear functions of z. 

Equation (9.42), relating the rate of twist to the variable shear flow qs developed in 
a shear loaded closed section beam, is also valid for the case qs = q = constant. Hence 

d6’ 

which becomes, on substituting for q from Eq. (9.49) 

(9.52) 

The warping distribution produced by a varying shear flow, as defined by Eq. (9.45) 
for axes having their origin at the centre of twist, is also applicable to the case of a 



3 10 Open and closed, thin-walled beams 

a 
t 

constant shear flow. Thus 

Replacing q from Eq. (9.49) we have 

(9.53) 

where 

The sign of the warping displacement in Eq. (9.53) is governed by the sign of the 
applied torque T and the signs of the parameters So, and Aos. Having specified 
initially that a positive torque is anticlockwise, the signs of So, and Aos are fixed in 
that So, is positive when s is positive, i.e. s is taken as positive in an anticlockwise 
sense, and Aos is positive when, as before, p (see Fig. 9.29) is positive. 

We have noted that the longitudinal strain E ,  is zero in a closed section beam sub- 
jected to a pure torque. This means that all sections of the beam must possess identical 
warping distributions. In other words longitudinal generators of the beam surface 
remain unchanged in length although subjected to axial displacement. 

Example 9.7 
Determine the warping distribution in the doubly symmetrical rectangular, closed 
section beam, shown in Fig. 9.30, when subjected to an anticlockwise torque T. 

From symmetry the centre of twist R will coincide with the mid-point of the cross- 
section and points of zero warping will lie on the axes of symmetry at the mid-points 
of the sides. We shall therefore take the origin for s at the mid-point of side 14 and 
measure s in the positive, anticlockwise, sense around the section. Assuming the 
shear modulus G to be constant we rewrite Eq. (9.53) in the form 

2 

3t--54 I t l 4  

Fig. 9.30 Torsion of a rectangular section beam. 
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where 

In Eq. (i) 

wo=O,  S = 2  -+- and A = a b  (: t) 
From 0 to 1 , 0  < s1 < b/2  and 

Note that Sos and Aos are both positive. 

Substitution for So, and Aos from Eq. (ii) in Eq. (i) shows that the warping distribu- 
tion in the wall 01, wol, is linear. Also 

which gives 
I V ]  =-(----) T b a  

8abG tb 
(iii) 

The remainder of the warping distribution may be deduced from symmetry and the 
fact that the warping must be zero at points where the axes of symmetry and the 
walls of the cross-section intersect. It follows that 

w2 = -w1 = -w3 = w4 

giving the distribution shown in Fig. 9.31. Note that the warping distribution will take 
the form shown in Fig. 9.31 as long as Tis  positive and b/tb > a/t , .  If either of these 
conditions is reversed w1 and w3 will become negative and H:., and w4 positive. In the 
case when b/tb = a / t ,  the warping is zero at all points in the cross-section. 

Fig. 9.31 Warping distribution in the rectangular section beam of Example 9.7. 
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2 

t a 1 
Fig. 9.32 Arbitrary origin for s. 

Suppose now that the origin for s is chosen arbitrarily at, say, point 1 .  Then, from 
Fig. 9.32, So, in the wall 12 = q / t ,  and Aos = $ s I b / 2  = Slb/4 and both are positive. 
Substituting in Eq. (i) and setting wo = 0 

so that +vi2 varies linearly from zero at 1 to 

I T b a  U 
wp=-2  -+- 

2abG ( t b  t u )  [ 2(b/tb + u/t,)t,  4 

at 2. Thus 

or .;=--(----) T b a  
4abG tb 

Similarly 

The warping distribution therefore varies linearly from a value 
-T(b/rb - a/tu)/4abG at 2 to zero at 3 .  The remaining distribution follows from 
symmetry so that the complete distribution takes the form shown in Fig. 9.33. 

Comparing Figs 9.31 and 9.33 it can be seen that the form of the warping distribu- 
tion is the same but that in the latter case the complete distribution has been displaced 
axially. The actual value of the warping at the origin for s is found using Eq. (9.46). 
Thus 

(vii) 



9.5 Torsion of closed section beams 3 13 

4 

Fig. 9.33 Warping distribution produced by selecting an arbitrary origin for s. 

Substituting in Eq. (vii) for wi2 and )vi3 from Eqs (iv) and (vi) respectively and 
evaluating gives 

(viii) 

Subtracting this value from the values of w:(= 0) and d’(= -T(b/ tb  - a/tU)/4abG) 
we have 

as before. Note that setting wo = 0 in Eq. (i) implies that wo, the actual value of 
warping at the origin for s, has been added to all warping displacements. This 
value must therefore be subtracted from the calculated warping displacements (i.e. 
those based on an arbitrary choice of origin) to obtain true values. 

It is instructive at this stage to examine the mechanics of warping to see how it 
arises. Suppose that each end of the rectangular section beam of Example 9.7 rotates 
through opposite angles 8 giving a total angle of twist 28 along its length L. The 
corner 1 at one end of the beam is displaced by amounts a8/2 vertically and b8/2 
horizontally as shown in Fig. 9.34. Consider now the displacements of the web and 
cover of the beam due to rotation. From Figs 9.34 and 9.35(a) and (b) it can be 
seen that the angles of rotation of the web and the cover are, respectively 

4b = ( a e / 2 ) / ( ~ / 2 )  = ae/L  

and 
4, = (b8 /2 ) / (L /2 )  = bB/L 

The axial displacements of the corner 1 in the web and cover are then 
b a8 a be 
2 L ’  2 L  

respectively, as shown in Figs 9.35(a) and (b). In addition to displacements produced by 
twisting, the webs and covers are subjected to shear strains ’yb and corresponding to 

_ _  _ _  
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Fig. 9.34 Twisting of a rectangular section beam. 

the shear stress system given by Eq. (9.49). Due to yb the axial displacement of corner 1 
in the web is ybb/2 in the positive z direction while in the cover the displacement is 
yaa/2 in the negative z direction. Note that the shear strains yb and ya correspond to 
the shear stress system produced by a positive anticlockwise torque. Clearly the total 
axial displacement of the point 1 in the web and cover must be the same so that 

b a 0  b a b e  a -- -+^lYb-=- - - ^ la -  
2 L  2 2 L  2 

from which 

The shear strains are obtained from Eq. (9.49) and are 
T T 

l̂a==' yb =- 

I_ 
7- 

a012 

Fig. 9.35 

Displacement due to rotation 

(b) Cover 

Displacement due to shear strain 

(a) Web 

Displacements due to twist and shear strain. 
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whence 

TL 

The total angle of twist from end to end of the beam is 28, therefore 

28 T / 2 a  2b\ 

or 

as in Eq. (9.52). 

corner 1 gives the warping wl at 1. Thus 
Substituting for 8 in either of the expressions for the axial displacement of the 

a b  TL f a  b\ T a 

i.e. 

wl=-(----) T b a  
8abG tb 

as before. It can be seen that the warping of the cross-section is produced by a com- 
bination of the displacements caused by twisting and the displacements due to the 
shear strains; these shear strains correspond to the shear stresses whose values are 
fixed by statics. The angle of twist must therefore be such as to ensure compatibility 
of displacement between the webs and covers. 

9.5.2 Condition for zero warping at a section 

The geometry of the cross-section of a closed section beam subjected to torsion may 
be such that no warping of the cross-section occurs. From Eq. (9.53) we see that this 
condition arises when 

or 

Differentiating Eq. (9.54) with respect to s gives 

(9.54) 



316 Open and closed, thin-walled beams 

or 

(9.55) 
2A 
6 pRGt = - = constant 

A closed section beam for which pRGt = constant does not warp and is known as a 
Neuber beam. For closed section beams having a constant shear modulus the condi- 
tion becomes 

P R t  = constant (9.56) 

Examples of such beams are: a circular section beam of constant thickness; a 
rectangular section beam for which ath = ht, (see Example 9.7); and a triangular 
section beam of constant thickness. In the last case the shear centre and hence the 
centre of twist may be shown to coincide with the centre of the inscribed circle so 
that pR for each side is the radius of the inscribed circle. 

An approximate solution for the torsion of a thin-walled open section beam may be 
found by applying the results obtained in Section 3.4 for the torsion of a thin 
rectangular strip. If such a strip is bent to form an open section beam, as shown in 
Fig. 9.36(a), and if the distance s measured around the cross-section is large compared 
with its thickness t then the contours of the membrane, i.e. lines of shear stress, are 
still approximately parallel to the inner and outer boundaries. It follows that the 
shear lines in an element 6s of the open section must be nearly the same as those in 
an element SJJ of a rectangular strip as demonstrated in Fig. 9.36(b). Equations 

- n  

(a) (b) 
Fig. 9.36 (a) Shear lines in a thin-walled open section beam subjected to torsion; (b) approximation of 
elemental shear lines to  those in a thin rectangular strip. 
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(3.27), (3.28) and (3.29) may therefore be applied to the open beam but with reduced 
accuracy. Referring to Fig. 9.36(b) we observe that Eq. (3.27) becomes 

dB 
dz rzs = 2Gn -, r,,, = 0 

Eq. (3.28) becomes 

(9.57) 

(9.58) 

and Eq. (3.29) is 

1 
(9.59) 

st3 
J = C -  or J = -  t3ds 

In Eq. (9.59) the second expression for the torsion constant is used if the cross-section 
has a variable wall thickness. Finally, the rate of twist is expressed in terms of the 
applied torque by Eq. (3.12), viz. 

3 3 Lt 

d0 
dz 

T = G J -  (9.60) 

The shear stress distribution and the maximum shear stress are sometimes more COR- 

veniently expressed in terms of the applied torque. Therefore, substituting for de/& 
in Eqs (9.57) and (9.58) gives 

2n tT 
T ~ ~ , ~ ~ ~  = f - J J rZs = - T ,  (9.61) 

We assume in open beam torsion analysis that the cross-section is maintained by 
the system of closely spaced diaphragms described in Section 9.2 and that the beam 
is of uniform section. Clearly, in this problem the shear stresses vary across the thick- 
ness of the beam wall whereas other stresses such as axial constraint stresses which we 
shall discuss in Chapter 11 are assumed constant across the thickness. 

L l _ - _ _ _ l P - - -  

9.6.1 Warping of the cross-section 
.,...I--- --- 
We saw in Section 3.4 that a thin rectangular strip suffers warping across its thickness 
when subjected to torsion. In the same way a thin-walled open section beam will warp 
across its thickness. This warping, wt, may be deduced by comparing Fig. 9.36(b) with 
Fig. 3.10 and using Eq. (3.32), thus 

d0 wt = ns- 
dz 

(9.62) 

In addition to warping across the thickness, the cross-section of the beam will warp in 
a similar manner to that of a closed section beam. From Fig. 9.16 

(9.63) 
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Referring the tangential displacement wt to the centre of twist R of the cross-section 
we have, from Eq. (9.28) 

Substituting for dwt/dz in Eq. (9.63) gives 

from which 

(9.64) 

(9.65) 

On the mid-line of the section wall rzs = 0 (see Eq. (9.57)) so that, from Eq. (9.65) 

Integrating this expression with respect to s and taking the lower limit of integration 
to coincide with the point of zero warping, we obtain 

(9.66) 

From Eqs (9.62) and (9.66) it can be seen that two types of warping exist in an open 
section beam. Equation (9.66) gives the warping of the mid-line of the beam; this is 
known as primary warping and is assumed to be constant across the wall thickness. 
Equation (9.62) gives the warping of the beam across its wall thickness. This is 
called secondary warping, is very much less than primary warping and is usually 
ignored in the thin-walled sections common to aircraft structures. 

Equation (9.66) may be rewritten in the form 

or, in terms of the applied torque 

W ,  = -2A (see Eq. (9.60)) 

(9.67) 

(9.68) 

in which A R  = 4 s: pR ds is the area swept out by a generator, rotating about the 
centre of twist, from the point of zero warping, as shown in Fig. 9.37. The sign of 
w,, for a given direction of torque, depends upon the sign of AR which in turn depends 
upon the sign O f p R ,  the perpendicular distance from the centre of twist to the tangent 
at any point. Again, as for closed section beams, the sign of p R  depends upon the 
assumed direction of a positive torque, in this case anticlockwise. Therefore, p R  
(and therefore AR)  is positive if movement of the foot of p R  along the tangent in 
the assumed direction of s leads to an anticlockwise rotation of p R  about the centre 
of twist. Note that for open section beams the positive direction of s may be 
chosen arbitrarily since, for a given torque, the sign of the warping displacement 
depends only on the sign of the swept area AR. 
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Fig. 9.37 Warping of an open section beam. 

Example 9.8 
Determine the maximum shear stress and the warping distribution in the channel 
section shown in Fig. 9.38 when it is subjected to an anticlockwise torque of 
10 N m. G = 25 000 N/mm'. 

From the second of Eqs (9.61) it can be seen that the maximum shear stress occurs 
in the web of the section where the thickness is greatest. Also, from the first of Eqs 

J = i ( 2  x 25 x 1 S 3  + 50 x 2S3) = 316.7mm4 

(9.59) 

so that 

2.5 x io x io3 
= &78.9 N/mm' 

316.7 
Tmn = f 

Fig. 9.38 Channel section of Example 9.8. 
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The warping distribution is obtained using Eq. (9.68) in which the origin for s (and 
hence AR) is taken at the intersection of the web and the axis of symmetry where the 
warping is zero. Further, the centre of twist R of the section coincides with its shear 
centre S whose position is found using the method described in Section 9.3; this gives 
Cs = 8.04mm. In the wall 0 2  

A R  = 4 x 8.04~1 ( p R  is positive) 
so that 

= -0.Ols1 
io io3 

~ 0 2  = -2 x 4 x 8.04~1 x 
25000 x 316.7 

i.e. the warping distribution is linear in 0 2  and 
~2 = -0.01 x 25 = -0.25mm 

In the wall 21 

AR = 4 x 8.04 x 25 -4 x 25s2 

in which the area swept out by the generator in the wall 21 provides a negative con- 
tribution to the total swept area AR. Thus 

io io3 
25 000 x 3 16.7 

~ 2 1  = -25(8.04 - ~ 2 )  

or 
~ 2 1  = -0.03(8.04 - ~ 2 )  (ii) 

Again the warping distribution is linear and varies from -0.25 mm at 2 to f0.54 mm 
at 1. Examination of Eq. (ii) shows that w~~ changes sign at s., = 8.04mm. The 
remaining warping distribution follows from symmetry and the complete distribution 
is shown in Fig. 9.39. In unsymmetrical section beams the position of the point of zero 

4 

Fig. 9.39 Warping distribution in channel section of Example 9.8. 
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8.04mm 2.5mm 

1.5 mrn i, t- s3 4 

M 
Fig. 9.40 Determination of points of zero warping. 

warping is not known but may be found using the method described in Section 1 1.5 
for the restrained warping of an open section beam. From the derivation of Eq. 
(1 1.56) we see that 

(9.69) 

in which ARqO is the area swept out by a generator rotating about the centre of twist 
from some convenient origin and Ak is the value of AR,O at the point of zero warping. 
As an illustration we shall apply the method to the beam section of Example 9.8. 

Suppose that the position of the centre of twist (i.e. the shear centre) has already 
been calculated and suppose also that we choose the origin for s to be at the point 
1. Then, in Fig. 9.40 

tds = 2 x 1.5 x 25 +2.5 x 50 = 2O0mm2 

In the wall 12 

A12 = 4 x 25sl (ARo for the wall 12) 

from which 

A2 = 4 x 25 x 25 = 312.5m’ 

Also 

A23 = 312.5 - 4 x 8.04~2 

and 

(ii) 

A3 = 312.5 -4 x 8.04 x 50 = 111.5mm’ 



322 Open and closed, thin-walled beams 

Finally 

A34 = 1 1 1.5 + 4 x 25s3 (iii) 

Substituting for AI2, A23 and A34 from Eqs (i), (ii) and (iii) in Eq. (9.69) we have 

2Ak = [ 61 25 x 1.15~1 dsl + 2(312.5 - 4.02s2)2.5ds2 
200 

1 + j y  2( 1 1 1.5 + 1 2 . 5 4  1.5 ds3 

Evaluation of Eq. (iv) gives 

2Ak = 424mm2 

We now examine each wall of the section in turn to determine points of zero warping. 
Suppose that in the wall 12 a point of zero warping occurs at a value of s1 equal to s ~ , ~ .  
Then 

2 x 4 x 25sl,o = 424 

from which 

q 0  = 16.96mm 

so that a point of zero warping occurs in the wall 12 at a distance of 8.04mm from the 
point 2 as before. In the web 23 let the point of zero warping occur at s2 = s ~ , ~ .  Then 

2 x 4 x 25 x 25 - 2 x 4 x 8.04~2.0 = 424 

which gives ~ 2 , ~  = 25mm (i.e. on the axis of symmetry). Clearly, from symmetry, a 
further point of zero warping occurs in the flange 34 at a distance of 8.04mm from 
the point 3. The warping distribution is then obtained directly using Eq. (9.68) in 
which 

A R  = AR,O - Ak 

In some cases the cross-section of a beam is formed by a combination of open and 
closed components. For example, a wing section in the region of an undercarriage 
bay could take the form shown in Fig. 9.41 in which the nose portion is a single 
cell closed section and the cut-out forms an open channel section. Such composite 
sections may be analysed using, where appropriate, a combination of the methods 

Fig. 9.41 Wing section comprising open and closed components 
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previously described in this chapter. We shall examine the different loading conditions 
in turn. 

9.7.1 Bending 

It is immaterial what form the cross-section of a beam takes; the direct stresses due to 
bending are given by either of Eqs (9.6) or (9.7). 

9.7.2 Shear 

The methods described in Sections 9.3 and 9.4 are used to determine the shear stress 
distribution although, unlike the completely closed section case, shear loads must be 
applied through the shear centre of the combined section, otherwise shear stresses of 
the type described in Section 9.6 due to torsion will arise. Where shear loads do not 
act through the shear centre its position must be found and the loading system 
replaced by shear loads acting through the shear centre together with a torque; the 
two loading cases are then analysed separately. Again we assume that the cross- 
section of the beam remains undistorted by the loading. 

Example 9.9 
Determine the shear flow distribution in the beam section shown in Fig. 9.42, when it 
is subjected to a shear load in its vertical plane of symmetry. The thickness of the walls 
of the section is 2 mm throughout. 

I - 
Y i 

s4 
t -  

C X 

1 8 

5 9 4 
s5 - 

_ -  
200 mm I 1OOmm 

Fig. 9.42 Beam section of Example 9.9. 
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The centroid of area C lies on the axis of symmetry at some distance J from the 
upper surface of the beam section. Taking moments of area about this upper surface 

(4 x 100 x 2 + 4  x 200 x 2)y= 2 x 100 x 2 x 50+2 x 200 x 2 x 100 

+ 200 x 2 x 200 

which gives J = 75 mm. 
The second moment of area of the section about C x  is given by 

i.e. 
Ixx = 14.5 x 1 0 6 m 4  

The section is symmetrical about C y  so that Ixy = 0 and since Sx = 0 the shear flow 
distribution in the closed section 3456 is, from Eq. (9.35) 

Also the shear load is applied through the shear centre of the complete section, i.e. 
along the axis of symmetry, so that in the open portions 123 and 678 the shear 
flow distribution is, from Eq. (9.34) 

(ii) 

We note that the shear flow is zero at the points 1 and 8 and therefore the analysis may 
conveniently, though not necessarily, begin at either of these points. Thus, referring to 
Fig. 9.42 

loo lo3 2(-25 +SI) dsl 
q12 = - 14.5 x lo6 o 

i.e. 

q12 = -69.0 x 10-4(-50~1 +s: )  (iii) 
whence q2 = -34.5N/mm. 

Examination of Eq. (iii) shows that q12 is initially positive and changes sign when 
s1 = 50mm. Further, q12 has a turning value (dq12/ds1 = 0) at s1 = 25mm of 
4.3 N/mm. In the wall 23 

q23 = -69.0 x 1 0 - ~  2 x 75ds2 - 34.5 r 
i.e. 

q23 = -1.04,~2 - 34.5 

Hence q23 varies linearly from a value of -34.5 N/mm at 2 to -138.5 N/mm at 3 in the 
wall 23. 

(iv) 
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The analysis of the open part of the beam section is now complete since the shear 
flow distribution in the walls 67 and 78 follows from symmetry. To determine the 
shear flow distribution in the closed part of the section we must use the method 
described in Section 9.4 in which the line of action of the shear load is known. 
Thus we ‘cut’ the closed part of the section at some convenient point, obtain the qb 
or ‘open section’ shear flows for the complete section and then take moments as in 
Eqs (9.37) or (9.38). However, in this case, we may use the symmetry of the section 
and loading to deduce that the final value of shear flow must be zero at the mid- 
points of the walls 36 and 45, i.e. qs = qs,o = 0 at these points. Hence 

403 = -69.0 x 1 0 -  2 x 75&3 4r 
and q3 = - 104 N/mm in the wall 03. It follows that for equilibrium of shear flows at 3, 
q3, in the wall 34, must be equal to -138.5 - 104 = -242.5N/mm. Hence 

q34 = -69.0 x 1 0 -  2(75 - ~ 4 )  ds4 - 242.5 4r 
which gives 

q34 = - 1 . 0 4 ~ ~  + 69.0 x - 242.5 (vi) 
Examination of Eq. (vi) shows that q34 has a maximum value of -281.7 N/mm at 
s4 = 75mm; also q4 = -172.5N/mm. Finally, the distribution of shear flow in the 
wall 94 is given by 

q94 = -69.0 x lop4 2(-125) ds5 
L j  

i.e. 

q94 = 1.73s5 

The complete distribution is shown in Fig. 9.43. 

9.7.3 Torsion 

(vii) 

Generally, in the torsion of composite sections, the closed portion is dominant since 
its torsional stiffness is far greater than that of the attached open section portion 
which may therefore be frequently ignored in the calculation of torsional stiffness; 
shear stresses should, however, be checked in this part of the section. 

Example 9.10 
Find the angle of twist per unit length in the wing whose cross-section is shown in 
Fig. 9.44 when it is subjected to a torque of 10kNm. Find also the maximum 
shear stress in the section. G = 25 000 N/mm2. 

Wall 12 (outer) = 900mm. Nose cell area = 20 OOOmm2. 
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172.5 

Fig. 9.43 Shear flow distribution in beam of Example 9.9 (all shear flows in Wmm). 

1.5mrn 1 2 rnm 

I 
2 4 

I 600 mm - 1  
Fig. 9.44 Wing section of Example 9.10. 

It may be assumed, in a simplified approach, that the torsional rigidity GJ of the 
complete section is the sum of the torsional rigidities of the open and closed portions. 
For the closed portion the torsional rigidity is, from Eq. (9.52) 

4A2G 4 x 200002 x 25000 
(GJ)cl = = (900 + 300)/1.5 

which gives 

(GJ),, = 5000 x lo7 Nmm2 

The torsional rigidity of the open portion is found using Eq. (9.59), thus 

st3 
3 

25000 x 900 x Z3 
3 (GJ),, = G - = 

i.e. 

(GJ),, = 6 x 107Nmm2 
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The torsional rigidity of the complete section is then 

G J = 5 0 0 0 x  1 0 7 + 6 x  1O7=5O06x 107Nmm2 

In all unrestrained torsion problems the torque is related to the rate of twist by the 
expression 

d8 
dz 

T = G J -  

The angle of twist per unit length is therefore given by 

= 0.0002 rad/mm 
de T 10 x lo6 
dz - 

- - 
- 5006 x lo7 

Substituting for T in Eq. (9.49) from Eq. (9.52), we obtain the shear flow in the closed 
section. Thus 

from which 

qcl = 250N/mm 

The maximum shear stress in the closed section is then 250/1.5 = 166.7N/mm2. 

from Eq. (9.58) and is 
In the open portion of the section the maximum shear stress is obtained directly 

T,,,,,~ = 25 000 x 2 x 0.0002 = 10 N/mm2 

It can be seen from the above that in terms of strength and stiffness the closed portion 
of the wing section dominates. This dominance may be used to determine the warping 
distribution. Having first found the position of the centre of twist (the shear centre) 
the warping of the closed portion is calculated using the method described in Section 
9.5. The warping in the walls 13 and 34 is then determined using Eq. (9.67), in which 
the origin for the swept area A R  is taken at the point 1 and the value of warping is that 
previously calculated for the closed portion at 1. 

So far in this chapter we have been concerned with relatively uncomplicated struc- 
tural sections which in practice would be formed from thin plate or by the extrusion 
process. While these sections exist as structural members in their own right they are 
frequently used, as we saw in Chapter 7, to stiffen more complex structural shapes 
such as fuselages, wings and tail surfaces. Thus a two spar wing section could take 
the form shown in Fig. 9.45 in which Z-section stringers are used to stiffen the thin 
skin while angle sections form the spar flanges. Clearly the analysis of a section of 
this type would be complicated and tedious unless some simplifying assumptions 
were made. Generally, the number and nature of these simplifying assumptions deter- 
mine the accuracy and the degree of complexity of the analysis; the more complex the 
analysis the greater the accuracy obtained. The degree of simplification introduced is 
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Fig. 9.45 Typical wing section. 

governed by the particular situation surrounding the problem. For a preliminary 
investigation, speed and simplicity are often of greater importance than extreme 
accuracy; on the other hand a final solution must be as exact as circumstances allow. 

Complex structural sections may be idealized into simpler 'mechanical model' forms 
which behave, under given loading conditions, in the same, or very nearly the same, 
way as the actual structure. We shall see, however, that different models of the same 
structure are required to simulate actual behaviour under ditferent systems of loading. 

In the wing section of Fig. 9.45 the stringers and spar flanges have small cross- 
sectional dimensions compared with the complete section. Thus, the variation in 
stress over the cross-section of a stringer due to, say, bending of the wing would be 
small. Furthermore, the difference between the distances of the stringer centroids 
and the adjacent skin from the wing section axis is small. It would be reasonable to 
assume therefore that the direct stress is constant over the stringer cross-sections. 
Thus we could replace the stringers and spar flanges by concentrations of area, 
known as booms, over which the direct stress is constant and which are located 
along the mid-line of the skin, as shown in Fig. 9.46. In wing and fuselage sections 
of the type shown in Fig. 9.45, the stringers and spar flanges carry most of the direct 
stresses while the skin is mainly effective in resisting shear stresses although it also 
carries some of the direct stresses. The idealization shown in Fig. 9.46 may therefore 
be taken a stage further by assuming that all direct stresses are carried by the booms 
while the skin is effective only in shear. The direct stress carrying capacity of the skin 
may be allowed for by increasing each boom area by an area equivalent to the direct 
stress carrying capacity of the adjacent skin panels. The calculation of these equiva- 
lent areas will generally depend upon an initial assumption as to the form of the dis- 
tribution of direct stress in a boom/skin panel. 

Suppose that we wish to idealize the panel of Fig. 9.47(a) into a combination of 
direct stress carrying booms and shear stress only carrying skin as shown in Fig. 
9.47(b). In Fig. 9.47(a) the direct stress carrying thickness tD of the skin is equal to 

Fig. 9.46 Idealization of a wing section. 
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(a) Actual 

Fig. 9.47 Idealization of a panel. 

(b) Idealized 

its actual thickness t while in Fig. 9.47(b) tD = 0. Suppose also that the direct stress 
distribution in the actual panel vanes linearly from an unknown value aI to an 
unknown value a2. Clearly the analysis should predict the extremes of stress g1 and 
a2 although the distribution of direct stress is obviously lost. Since the loading 
producing the direct stresses in the actual and idealized panels must be the same 
we can equate moments to obtain expressions for the boom areas B1 and B2. Thus, 
taking moments about the right-hand edge of each panel 

whence 

Similarly 

B 2 = y ( 2 + 2 )  

(9.70) 

(9.71) 

In Eqs (9.70) and (9.71) the ratio of a1 to a2, if not known, may frequently be 
assumed. 

The direct stress distribution in Fig. 9.47(a) is caused by a combination of axial load 
and bending moment. For axial load only 01 /a2 = 1 and B1 = B2 = tDb/2; for a pure 
bending moment a1/g2 = -1 and B1 = B2 = tDb/6.  Thus, different idealizations of 
the same structure are required for different loading conditions. 

Example 9.11 
Part of a wing section is in the form of the two-cell box shown in Fig. 9.48(a) in which 
the vertical spars are connected to the wing skin through angle sections all having a 
cross-sectional area of 300mm’. Idealize the section into an arrangement of direct 
stress carrying booms and shear stress only carrying panels suitable for resisting bend- 
ing moments in a vertical plane. Position the booms at the spar/skin junctions. 

The idealized section is shown in Fig. 9.48(b) in which, from symmetry, B1 = Bg, 
B2 = B j ,  B3 = B4. Since the section is required to resist bending moments in a vertical 
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Fig. 9.48 Idealization of a wing section. 

plane the direct stress at any point in the actual wing section is directly proportional 
to its distance from the horizontal axis of symmetry. Further, the distribution of 
direct stress in all the panels will be linear so that either of Eqs (9.70) or (9.71) may 
be used. We note that, in addition to contributions from adjacent panels, the boom 
areas include the existing spar flanges. Hence 

or 
2.0 x 600 ( ;;l) 

B1 = 300 + 3.0x400(2-l)+ 6 6 2+- 

which gives 

Also 

B1(= B6) = 1050mm2 

i.e. 
1.5 x 600 ( KM)) 

2+- 
2.0 x 600 ( 2M) 2.5 x 300 

2+- + (2-1)+ 6 6 6 
B2 = 2 x 300 + 

from which 
B2(= Bs) = 1 7 9 1 . 7 ~  2 

Finally 

i.e. 
1.5 x 600 ( k%) 2.0 x 200 

2+- + (2 - 1) 6 
B3 = 300 + 

so that 
B3(= B4) = 891.7mm 2 
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an 
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'ect of idealization on the analysis of open 
d closed section beams 

The addition of direct stress carrying booms to open and closed section beams will 
clearly modify the analyses presented in the earlier part of this chapter. Before 
considering individual cases we shall discuss the implications of structural idealiza- 
tion. Generally, in any idealization, different loading conditions require different 
idealizations of the same structure. In Example 9.11, the loading is applied in a 
vertical plane. If, however, the loading has been applied in a horizontal plane the 
assumed stress distribution in the panels of the section would have been different, 
resulting in different values of boom area. 

Suppose that an open or closed section beam is subjected to given bending or 
shear loads and that the required idealization has been completed. The analysis 
of such sections usually involves the determination of the neutral axis position 
and the calculation of sectional properties. The position of the neutral axis is 
derived from the condition that the resultant load on the beam cross-section is 
zero, i.e. 

a, dA = 0 (see Section 9.1) 

The area A in this expression is clearly the direct stress carrying area. It follows that 
the centroid of the cross-section is the centroid of the direct stress carrying area of the 
section, depending on the degree and method of idealization. The sectional proper- 
ties, Zy,y etc., must also refer to the direct stress carrying area. 

9.9.1 Bending of open and closed section beams 

The analysis presented in Section 9.1 applies and the direct stress distribution is 
given by any of Eqs (9.6), (9.7) or (9.9), depending on the beam section being inves- 
tigated. In these equations the coordinates ( x , y )  of points in the cross-section are 
referred to axes having their origin at the centroid of the direct stress carrying area. 
Furthermore, the section properties I,,, IFF and Zyy are calculated for the direct 
stress carrying area only. 

In the case where the beam cross-section has been completely idealized into direct 
stress carrying booms and shear stress only carrying panels, the direct stress dis- 
tribution consists of a series of direct stresses concentrated at the centroids of the 
booms. 

Example 9.12 
The fuselage section shown in Fig. 9.49 is subjected to a bending moment of 100 kN m 
applied in the vertical plane of symmetry. If the section has been completely idealized 
into a combination of direct stress carrying booms and shear stress only carrying 
panels, determine the direct stress in each boom. 
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Fig. 9.49 Idealized fuselage section of Example 9.12. 

The section has Cy as an axis of symmetry and resists a bending moment 
M, = 100 kN m. Equation (9.6) therefore reduces to 

The origin of axes Cxy coincides with the position of the centroid of the direct stress 
carrying area which, in this case, is the centroid of the boom areas. Thus, taking 
moments of area about boom 9 

(6 x 640 + 6 x 600 f 2  x 620 + 2 x 850)J = 640 x 1200 + 2 x 600 x 1140 

+ 2  x 600 x 960+2 x 600 x 768 

+ 2 x 6 2 0 ~ 5 6 5 + 2 ~ 6 4 0 ~ 3 3 6  

+ 2  x 640 x 144+2 x 850 x 38 
which gives 

J = 540mm 

The solution is now completed in Table 9.1. 
From column @ 

I,, = 1854 x 106mm4 

and column 0 is completed using Eq. (i). 

9.9.2 Shear of open section beams 
- I I I - l l l * - , - , - * - - - X . - ~ ~ - ~ - ~ ~ " ~ - " - - ~ - - ~ I - 1 I I . L . - I * ~ X  

The derivation of Eq. (9.34) for the shear flow distribution in the cross-section of an 
open section beam is based on the equilibrium equation (9.22). The thickness r in this 
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Table 9.1 

0 
Boom 

0 
B [mm2) 

0 
uz (N/mm2) 

1 +660 640 278 x lo6 35.6 
2 +600 600 216 x IO6 32.3 
3 +420 600 106 x IO6 22.6 
4 +228 600 31 x lo6 12.3 
5 + 25 620 0.4 x lo6 1.3 
6 -204 640 27 x 106 -11.0 
7 -396 640 100 x 106 -21.4 
8 -502 8 50 214 x IO6 -27.0 
9 - 540 640 187 x IO6 -29.0 

equation refers to the direct stress carrying thickness iD of the skin (see Section 9.8). 
Equation (9.34) may therefore be rewritten 

in which t D  = t if the skin is fully effective in carrying direct stress or tD = 0 if the skin 
is assumed to carry only shear stresses. Again the section properties in Eq. (9.72) refer 
to the direct stress carrying area of the section since they are those which feature in 
Eqs (9.6) and (9.7). 

Equation (9.72) makes no provision for the effects of booms which cause disconti- 
nuities in the skin and therefore interrupt the shear flow. Consider the equilibrium of 
the rth boom in the elemental length of beam shown in Fig. 9.50(a) which carries 
shear loads S, and S,, acting through its shear centre S. These shear loads produce 
direct stresses due to bending in the booms and skin and shear stresses in the skin. 
Suppose that the shear flows in the skin adjacent to the rth boom of cross-sectional 

(a) ( b) 

Fig. 9.50 (a) Elemental length of shear loaded open section beam with booms; (b) equilibrium of boom 
element. 
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area Br are q1 and q2. Then, from Fig. 9.50(b) 

which simplifies to 

(9.73) 

Substituting for cz in Eq. (9.73) from Eq. (9.6) we have 

or, using the relationships of Eqs (9.11) and (9.12) 

Equation (9.74) gives the change in shear flow induced by a boom which itself is 
subjected to a direct load (czBr) .  Each time a boom is encountered the shear flow 
is incremented by this amount so that if, at any distance s around the profile of the 
section, n booms have been passed, the shear flow at the point is given by 

(9.75) 

Example 9.13 
Calculate the shear flow distribution in the channel section shown in Fig. 9.51 
produced by a vertical shear load of 4.8 kN acting through its shear centre. Assume 
that the walls of the section are only effective in resisting shear stresses while the 
booms, each of area 300mm2, carry all the direct stresses. 

The effective direct stress carrying thickness tD of the walls of the section is zero so 
that the centroid of area and the section properties refer to the boom areas only. Since 
C x  (and C y  as far as the boom areas are concerned) is an axis of symmetry Ixy = 0; 
also Sx = 0 and Eq. (9.75) thereby reduces to 

in which Ixx = 4 x 300 x 2002 = 48 x lo6 mm4. Substituting the values of S, and I,, 
in Eq. (i) gives 

(ii) 
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12 N/mm 

S 

4.8 kN 

1200 mm 

Fig. 9.51 Idealized channel section of Example 9.13. 

At the outside of boom 1, qs = 0. As boom 1 is crossed the shear flow changes by an 
amount given by 

Aql = x 300 x 200 = -6N/mm 

Hence qI2 = -6N/mm since, from Eq. (i), it can be seen that no further changes in 
shear flow occur until the next boom (2) is crossed. Hence 

q23 = -6 - lop4 x 300 x 200 = -12N/mm 

q34 = -12 - lop4 x 300 x (-200) = -6N/mm 

Similarly 

while, finally, at the outside of boom 4 the shear flow is 

-6 - x 300 x (-200) = 0 

as expected. The complete shear flow distribution is shown in Fig. 9.52. 

Fig. 9.52 Shear flow in channel section of Example 9.1 3. 
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It can be seen from Eq. (i) in Example 9.13 that the analysis of a beam section which 
has been idealized into a combination of direct stress carrying booms and shear stress 
only carrying skin gives constant values of the shear flow in the skin between the 
booms; the actual distribution of shear flows is therefore lost. What remains is in 
fact the average of the shear flow, as can be seen by referring to Example 9.13. 
Analysis of the unidealized channel section would result in a parabolic distribution 
of shear flow in the web 23 whose resultant is statically equivalent to the externally 
applied shear load of 4.8 kN. In Fig. 9.52 the resultant of the constant shear flow 
in the web 23 is 12 x 400 = 4800N = 4.8 kN. It follows that this constant value of 
shear flow is the average of the parabolically distributed shear flows in the unidealized 
section. 

The result, from the idealization of a beam section, of a constant shear flow 
between booms may be used to advantage in parts of the analysis. Suppose that 
the curved web 12 in Fig. 9.53 has booms at its extremities and that the shear flow 
q12 in the web is constant. The shear force on an element Ss of the web is q&, 
whose components horizontally and vertically are qlzSscos 4 and qIzSs sin 4. The 
resultant, parallel to the x axis, S,, of q12 is therefore given by 

or 

S, = q12[cosQds 

which, from Fig. 9.53, may be written 

(9.76) 

Fig. 9.53 Curved web with constant shear flow. 
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Siniilarly the resultant of q12. parallel to the y axis is 

SJ = q12b2. - Y l )  (9.77) 

Thus the resultant: in a given direction, of a constant shear flow acting on a web is the 
value of the shear flow multiplied by the projection on that direction of the web. 

The resultant shear force S on the web of Fig. 9.53 is 

s = Js:.s;l= q12 J(x2 - x1)2 + b2. - yl)  2 

i.e. 

s = 412L12 (9.78) 

Therefore, the resultant shear force acting on the web is the product of the shear flow 
and the length of the straight line joining the ends of the web; clearly the direction of 
the resultant is parallel to this line. 

The moment M y  produced by the shear flow q12 about any point 0 in the plane of 
the web is, from Fig. 9.54 

(9.79) 

in which A is the area endosed by the web and the lines joining the ends of the web to 
the point 0. This result may be used to determine the distance of the line of action of 
the resultant shear force from any point. From Fig. 9.54 

Se = 2Aq12 

from which 

Fig. 9.54 Moment produced by a constant shear flow. 
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120 240mm - 
- mmt+ 

Substituting for q12 from Eq. (9.78) gives 

~ 240mm ~ 

9.9.3 Shear loading of closed section beams 
p_ 

Arguments identical to those in the shear of open section beams apply in this case. 
Thus, the shear flow at any point around the cross-section of a closed section beam 
comprising booms and skin of direct stress carrying thickness tD is, by a comparison 
of Eqs (9.75) and (9.35) 

Note that the zero value of the ‘basic’ or ‘open section’ shear flow at the ‘cut’ in a skin 
for which tD = 0 extends from the ‘cut’ to the adjacent booms. 

Example 9.14 
The thin-walled single cell beam shown in Fig. 9.55 has been idealized into a 
combination of direct stress carrying booms and shear stress only carrying walls. If 
the section supports a vertical shear load of 10 kN acting in a vertical plane through 
booms 3 and 6, calculate the distribution of shear flow around the section. 

Boom areas: B1 = Bs = 200mm B2 = 8, = 250mm B3 = Bs = 400mm , B4 = 2 2 2 

B5 = l o o m 2 .  

The centroid of the direct stress carrying area lies on the horizontal axis of 
symmetry so that Ixy = 0. Also, since tD = 0 and only a vertical shear load is applied, 

t ’O kN 

n 

Fig. 9.55 Closed section of beam of Example 9.14. 
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Eq. (9.80) reduces to 

in which 

[y+y = 2(200 x 302 + 250 x 100’ + 400 x 100’ + 100 x 502) = 13.86 x lo6 mm4 

Equation (i) then becomes 

10 x io3 
Bryr + qs,o 

r = l  “ = - 13.86 x lo6 

i.e. 
n 

qs = -7.22 x 1 0 - ~  B , ~ ,  + (ii) 

‘Cutting’ the beam section in the wall 23 (any wall may be chosen) and calculating the 
‘basic’ shear flow distribution qb from the h s t  term on the right-hand side of Eq. (ii) 
we have 

r = l  

qb:23 = 

qb,34 = -7.22 X 10-4(400 X 100) = -28.9N/mm 

qb,4j = -28.9 - 7.22 x io-4(ioo x 50) = -32.5N/m.m 

qb,56 = qb:34 = -28.9 N/mm (by symmetry) 

qb.67 = qb;23 = (by 

qb.21 = -7.22 X 10-4(250 X 100) = -18.1N/mm 

qb.18 = -18.1 - 7.22 x 10-4(200 x 30) = -22.4N/mm 

qb:87 = qb:21 = - 1 8 a 1  N/mm (by 

Taking moments about the intersection of the line of action of the shear load and the 
horizontal axis of symmetry and referring to the results of Eqs (9.76) and (9.77) we 
have, from Eq. (9.38) 

0 = [qb,81 X 60 x 480 + 2qbT12(240 x 100 + 70 x 240) + 2qb,23 x 240 x 100 

-2qb.43 x 120 x 100 - qb;54 x 100 x 1201 + 2 x 972OOqs,0 

Substituting the above values of q b  in this equation gives 
qs,o = -5.4N/= 

the negative sign indicating that qs,0 acts in a clockwise sense. 
In any wall the final shear flow is given by qs = qb + qs,o so that 

q21 = -18.1 + 5.4 = -12.7N/~n.m = q87 

q23 = -5.4N/mm = q67 
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37. 

Fig. 9.56 Shear flow distribution Wmm in walls of the beam section of Example 9.14. 

q34 = -34.3N/mm = q56 

q45 = -37.9N/= 

and 
q g l  = 1 7 . 0 N / ~  

giving the shear flow distribution shown in Fig. 9.56. 

9.9.4 Torsion of open and closed section beams 

No direct stresses are developed in either open or closed section beams subjected to a 
pure torque unless axial constraints are present. The shear stress distribution is there- 
fore unaffected by the presence of booms and the analyses presented in Sections 9.5 
and 9.6 apply. 

9.9.5 Alternative method for the calculation of shear 
flow distribution 

Equation (9.73) may be rewritten in the form 

apr 
q2-41 =-& (9.81) 

in which P, is the direct load in the rth boom. This form of the equation suggests an 
alternative approach to the determination of the effect of booms on the calculation of 
shear flow distributions in open and closed section beams. 

Let us suppose that the boom load varies linearly with z. This will be the case for a 
length of beam over which the shear force is constant. Equation (9.81) then becomes 

42 - ql = -APr (9.82) 

in which APr is the change in boom load over unit length of the rth boom. AP, may be 
calculated by first determining the change in bending moment between two sections of 
a beam a unit distance apart and then calculating the corresponding change in boom 
stress using either of Eqs (9.6) or (9.7); the change in boom load follows by multiply- 
ing the change in boom stress by the boom area B,. Note that the section properties 
contained in Eqs (9.6) and (9.7) refer to the direct stress carrying area of the beam 
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n 
P 
N 

Fig. 9.57 Alternative solution to Example 9.13. 

section. In cases where the shear force is not constant over the unit length of beam the 
method is approximate. 

We shall illustrate the method by applying it to Example 9.13. In Fig. 9.51 the shear 
load of 4.8 kN is applied to the face of the section which is seen when a view is taken 
along the z axis towards the origin. Thus, when considering unit length of the beam, 
we must ensure that this situation is unchanged. Fig. 9.57 shows a unit (1 mm say) 
length of beam. The change in bending moment between the front and rear faces 
of the length of beam is 4.8 x 1 kNmm which produces a change in boom load 
given by (see Eq. (9.6)) 

4.8 io3 200 3oo = 6 N  
48 x lo6 

AP, = 

The change in boom load is compressive in booms 1 and 2 and tensile in booms 3 
and 4. 

Equations (9.81), and hence Eq. (9.82), are based on the tensile load in a boom 
increasing with increasing z. If the tensile load had increased with decreasing c the 
right-hand side of these equations would have been positive. It follows that in the 
case where a compressive load increases with decreasing z, as for booms 1 and 2 in 
Fig. 9.57, the right-hand side is Eegative; similarly for booms 3 and 4 the right- 
hand side is positive. Thus 

q12 = -6N/= 

q23 = -6 + q12 = -12N/mm 

and 
q34 = +6 + q23 = -6N/mm 

giving the same solution as before. Note that if the unit length of beam had been taken 
to be 1 m the solution would have been q12 = -6000N/m, q23 = -12000N/m, 
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9.10 Deflection of open and closed sectio 
Bending, shear and torsional deflections of thin-walled beams are readily obtained by 
application of the unit load method described in Section 4.8. 

The displacement in a given direction due to torsion is given directly by the last of 
Eqs (4.27), thus 

(9.83) 

where J ,  the torsion constant, depends on the type of beam under consideration. For 
an open section beam J is given by either of Eqs (9.59) whereas in the case of a closed 
section beam J = 4A2/($ds/t) (Eq. (9.52)) for a constant shear modulus. 

Expressions for the bending and shear displacements of unsymmetrical thin-walled 
beams may also be determined by the unit load method. They are complex for the 
general case and are most easily derived from first principles by considering the 
complementary energy of the elastic body in terms of stresses and strains rather 
than loads and displacements. In Chapter 4 we observed that the theorem of the prin- 
ciple of the stationary value of the total complementary energy of an elastic system is 
equivalent to the application of the principle of virtual work where virtual forces act 
through real displacements. We may therefore specify that in our expression for total 
complementary energy the displacements are the actual displacements produced by 
the applied loads while the virtual force system is the unit load. 

Considering deflections due to bending, we see, from Eq. (4.12), that the increment 
in total complementary energy due to the application of a virtual unit load is 

where o ~ , ~  is the direct bending stress at any point in the beam cross-section corre- 
sponding to the unit load and E , , ~  is the strain at the point produced by the actual 
loading system. Further, AM is the actual displacement due to bending at the point 
of application and in the direction of the unit load. Since the system is in equilibrium 
under the action of the unit load the above expression must equal zero (see Eq. (4.12)). 
Hence 

From Eq. (9.6) and the third of Eqs (1.42) 

(9.84) 

where the suffixes 1 and 0 refer to the unit and actual loading systems and x, J' are the 
coordinates of any point in the cross-section referred to a centroidal system of axes. 
Substituting for o ~ , ~  and E , , ~  in Eq. (9.84) and remembering that jA .Y* dA = I,,., 
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y2 dA = Ixx and SA xy dA = Iry , we have 

+(MX.lIYY - M y , l I x y ) ( K , O I y y  - M y ? o I x , ) I x x  

+ [ ( K v * l I r x  - M x , l I x y ) ( M x , o I y y  - M y : ~ I . v y )  

+ ( M x : J y y  - ~ y , l I x y w y ~ o I x x  - ~ x . o L y ) l I T y l  dz (9.85) 

For a section having either the x or y axis as an axis of symmetry, Ixy = 0 and Eq. 
(9.85) reduces to 

(9.86) 

The derivation of an expression for the shear deflection of thin-walled sections by 
the unit load method is achieved in a similar manner. By comparison with Eq. (9.84) 
we deduce that the deflection As, due to shear of a thin-walled open or closed section 
beam of thickness t, is given by 

As = J L  ( jxction 71YOtdS dz (9.87) 

where T~ is the shear stress at an arbitrary point s around the section produced by a 
unit load applied at the point and in the direction As, and ̂ lo is the shear strain at the 
arbitrary point corresponding to the actual loading system. The integral in paren- 
theses is taken over all the walls of the beam. In fact, both the applied and unit 
shear loads must act through the shear centre of the cross-section, otherwise 
additional torsional displacements occur. Where shear loads act at other points 
these must be replaced by shear loads at the shear centre plus a torque. The thickness 
t is the actual skin thickness and may vary around the cross-section but is assumed to 
be constant along the length of the beam. Rewriting Eq. (9.87) in terms of shear flows 
q1 and qo. we obtain 

) 

as = JL (Isection Grds qo4' ) dz 
(9.88) 

where again the suffixes refer to the actual and unit loading systems. In the cases of 
both open and closed section beams the general expressions for shear flow are long 
and are best evaluated before substituting in Eq. (9.88). For an open section beam 
comprising booms and walls of direct stress carrying thickness tD we have, from 
Eq. (9.75) 

(9.89) 
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and 

(9.90) 

Similar expressions are obtained for a closed section beam from Eq. (9.80). 

Example 9.15 
Calculate the deflection of the free end of a cantilever 2000 mm long having a channel 
section identical to that in Example 9.13 and supporting a vertical, upward load of 
4.8 kN acting through the shear centre of the section. The effective direct stress carry- 
ing thickness of the skin is zero while its actual thickness if 1 mm. Young's modulus E 
and the shear modulus G are 70 000 N/mm2 and 30 000 N/mm2 respectively. 

The section is doubly symmetrical (i.e. the direct stress carrying area) and supports 
a vertical load producing a vertical deflection. Thus we apply a unit load through the 
shear centre of the section at the tip of the cantilever and in the same direction as the 
applied load. Since the load is applied through the shear centre there is no twisting 
of the section and the total deflection is given, from Eqs (9.86), (9.88)' (9.89) and 
(9.90), by 

where Mxp = -4.8 x 103(2000 - z), Mx,l = -1(2000 - z) 

and z is measured from the built-in end of the cantilever. The actual shear flow dis- 
tribution has been calculated in Example 9.13. In this case the q1 shear flows may 
be deduced from the actual distribution shown in Fig. 9.52, i.e. 

41 = qo/4.8 x lo3 
Evaluating the bending deflection, we have 

4.8 x 103(2000 - z)'dz 
= 3.81 ~~lfn 

70000 x 48 x lo6 

The shear deflection As is given by 

(62 x 200 + 122 x 400 + 62 x 200 dz 1 
= 1.Omm 

The total deflection A is then AM + As = 4.81 mm in a vertical upward direction. 
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. 
/ / 

/ E 

Problems 
P.9.1 Figure P.9.1 shows the section of an angle purlin. A bending moment of 

3000 N m is applied to the purlin in a plane at an angle of 30" to the vertical y axis. 
If the sense of the bending moment is such that its components M y  and M,. both 
produce tension in the positive xy quadrant, calculate the maximum direct stress in 
the purlin stating clearly the point at which it acts. 

Ans. oz,max = -63.3 N/mm' at C .  

Y4 

A L L  
IO mm 

E 

Fig. P.9.1 

P.9.2 A uniform thin-walled beam ABD of open cross-section (Fig. P.9.2) is 
simply supported at points B and D with its web vertical. It carries a downward 
vertical force W at the end A in the plane of the web. 

't 
't 

C I 

41 15 

Fig. P.9.2 
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Derive expressions for the vertical and horizontal components of the deflection of 
the beam midway between the supports B and D. The wall thickness t and Young’s 
modulus E are constant throughout. 

Ans. u = 0.186W13/Ea3t, v = 0.177Wl3/Ea3t. 

P.9.3 A uniform beam of arbitrary, unsymmetrical cross-section and length 21 is 
built-in at one end and simply supported in the vertical direction at a point half-way 
along its length. This support, however, allows the beam to deflect freely in the 
horizontal x direction (Fig. P.9.3). 

For a vertical load W applied at the free end of the beam, calculate and draw the 
bending moment diagram, putting in the principal values. 

Ans. Mc = 0, MB = WI, MA = - W1/2. Linear distribution. 

Yt 

w l  
Fig. P.9.3 

P.9.4 A beam, simply supported at each end, has a thin-walled cross-section 
shown in Fig. P.9.4. If a uniformly distributed loading of intensity w/unit length 
acts on the beam in the plane of the lower, horizontal flange, calculate the maximum 

’t 

per unitlength 

Fig. P.9.4 
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direct stress due to bending of the beam and show diagrammatically the distribution 
of the stress at the section where the maximum occurs. 

The thickness t is to be taken as small in comparison with the other cross-sectional 
dimensions in calculating the section properties Ixx, Iyy and Ixy. 

Ans. uZ-;- = uz,3 = 13w12/384a2t, ui:l = w12/96a2t, 

uzT2 =-w12/48a2t 

P.9.5 A thin-walled cantilever with walls of constant thickness t has the cross- 
section shown in Fig. P.9.5. It is loaded by a vertical force W at the tip and a 
horizontal force 2W at the mid-section, both forces acting through the shear 
centre. Determine and sketch the distribution of direct stress, according to the 
basic theory of bending, along the length of the beam for the points 1 and 2 of the 
cross-section. 

The wall thickness t can be taken as very small in comparison with d in calculating 
the sectional properties I,,, Ixy etc. 

Ans. ui:] (mid-point) = -0.05 WZ/td2, 

uiF2 (mid-point) = -0.63 Wl/td2, 

uz,l (built-in end) = -1.85 Wl/td2 

(built-in end) = 0.1 Wl/td2 

Fig. P.9.5 

P.9.6 A uniform cantilever of arbitrary cross-section and length I has section 
properties, JYX, Iyy and lYy with respect to the centroidal axes shown in Fig. P.9.6. 
It is loaded in the vertical (yz) plane with a uniformly distributed load of intensity 
wlunit length. The tip of the beam is hinged to a horizontal link which constrains 
it to move in the vertical direction only (provided that the actual deflections 
are small). Assuming that the link is rigid, and that there are no twisting effects: 
calculate: 

(a) the force in the link; 
(b) the deflection of the tip of the beam. 

Ans. (a) 3wZIxy/81xx; (b) wf/8EIxx.  
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Fig. P.9.6 

P.9.7 A thin-walled cantilever has a constant cross-section of uniform thickness 
with the dimensions shown in Fig. P.9.7. It is subjected to a system of point loads 
acting in the planes of the walls of the section in the directions shown. 

Calculate the direct stresses according to the basic theory of bending at the points 1 , 
2 and 3 of the cross-section at the built-in end and half-way along the beam. Illustrate 
your answer by means of a suitable sketch. 

The thickness is to be taken as small in comparison with the other cross-sectional 
dimensions in calculating the section properties Ixx, IxY etc. 

Ans. At built-in end, u2,] = -11.4N/mm2, uz,2 = -18.9N/mmZ, 

a,,3 = 39.1 N/mmz 

Half-way, uz,l = -20.3 N/mm2, u2:2 = -1.1 N/mm2, 
(T,,~ = 15.4N/mm2 

Fig. P.9.7 

P.9.8 A uniform thin-walled beam has the open cross-section shown in Fig. P.9.8. 
The wall thickness t is constant. Calculate the position of the neutral axis and 
the maximum direct stress for a bending moment M, = 3.5Nm applied about the 
horizontal axis Cx. Take r = 5 mm, t = 0.64mm. 

Ans. a = 51.9", a,,,,, = 101 N/mm2. 
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Fig. P.9.8 

P.9.9 A beam has the singly symmetrical, thin-walled cross-section shown in Fig. 
P.9.9. The thickness t of the walls is constant throughout. Show that the distance of 
the shear centre from the web is given by 

p2 sin (Y cos (Y 

1 + 6p + 2p3 sin2 (Y 
& = -d 

where 
p = d /h  

-- I I 

Fig. P.9.9 

P.9.10 A beam has the singly symmetrical, thin-walled cross-section shown in 
Fig. P.9.10. Each wall of the section is flat and has the same length a and thickness 
t .  Calculate the distance of the shear centre from the point 3. 

Ans. 5a cos a/8. 



350 Open and closed, thin-walled beams 

a 

4 

Fig. P.9.10 

1 

3 --- 

5 

P.9.11 Determine the position of the shear centre S for the thin-walled, open 
cross-section shown in Fig. P.9.11. The thickness t is constant. 

Ans. m / 3 .  

Fig. P.9.11 

P.9.12 Figure P.9.12 shows the cross-section of a thin, singly symmetrical 
I-section. Show that the distance ts of the shear centre from the vertical web is 
given by 

- Es - 3 P U  - PI 
d - (1 + 12p) 

where p = d/h .  The thickness tis taken to be neghgibly small in comparison with the 
other dimensions. 
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Fig. P.9.12 

P.9.13 A thin-walled beam has the cross-section shown in Fig. P.9.13. The thick- 
ness of each flange varies linearly from tl at the tip to t2 at the junction with the web. 
The web itself has a constant thickness t3 .  Calculate the distance Es from the web to 
the shear centre S .  

A ~ S .  d2(2t l  + l2)/[3d(tl + t.) + ht3] 

Fig. P.9.13 

P.9.14 Figure P.9.14 shows the singly symmetrical cross-section of a thin-walled 
open section beam of constant wall thickness t ,  which has a narrow longitudinal slit at 
the corner 15. 

4 

Fig. P.9.14 
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Calculate and sketch the distribution of shear flow due to a vertical shear force S, 
acting through the shear centre S and note the principal values. Show also that the 
distance & of the shear centre from the nose of the section is tS = 1/2( 1 + a/b). 

Am. q2 = q4 = 3bSY/2h(b + a), q3 = 3SY/2h. Parabolic distributions. 

P.9.15 Show that the position of the shear centre S with respect to the intersection 
of the web and lower flange of the thin-walled section shown in Fig. P.9.15, is given 
by 

5's = -45a/97, 7s = 46a/97 

Fig. P.9.15 

P.9.16 Figure P.9.16 shows the regular hexagonal cross-section of a thin-walled 
beam of sides a and constant wall thickness t .  The beam is subjected to a transverse 
shear force S,  its line of action being along a side of the hexagon, as shown. 

Find the rate of twist of the beam in terms oft, a, S and the shear modulus G. Plot 
the shear flow distribution around the section, with values in terms of S and a. 

Fig. P.9.16 
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Ans. dO/dz = 0.192S/Gta2 (clockwise) 

q1 = -OXS/a, 

q4 = q6  = 0.13S/a, 

q2 = qs = -0.47S/a, 

q5 = 0.18S/a 

q3 = 47 = -0.17S/a 

Parabolic distributions, q positive clockwise. 

P.9.17 Figure P.9.17 shows the cross-section of a single cell, thin-walled beam 
with a horizontal axis of symmetry. The direct stresses are carried by the booms B1 
to B4, while the walls are effective only in carrying shear stresses. Assuming that 
the basic theory of bending is applicable, calculate the position of the shear centre 
S .  The shear modulus G is the same for all walls. 

Cell area = 135000mm2. Boom areas: B1 = B4 = 450mm , B2 = B3 = 550mm . 2 2 

Wall Length (mm) Thickness (mm) 

12, 34 
23 
41 

500 
580 
200 

0.8 
1 .o 
1.2 

Ans. 197.2mm from vertical through booms 2 and 3. 

100 mm 

100 mm 

- - ----- -- 
1.0 mm 100 mm 

0.8 mm 

500 mm 

Fig. P.9.17 

P.9.18 A thin-walled closed section beam of constant wall thickness t has the 
cross-section shown in Fig. P.9.18. 

Fig. P.9.18 
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Assuming that the direct stresses are distributed according to the basic theory of 
bending, calculate and sketch the shear flow distribution for a vertical shear force 
S,, applied tangentially to the curved part of the beam. 

Ans. qol = S,,( 1.61 cos 8 - 0.80)/r 

q12 = Sy(0.57SS - 1.14rs - 0.33) / r  

P.9.19 A uniform thin-walled beam of constant wall thickness t has a cross- 
section in the shape of an isosceles triangle and is loaded with a vertical shear force 
Sy applied at the apex. Assuming that the distribution of shear stress is according 
to the basic theory of bending, calculate the distribution of shear flow over the 
cross-section. 

Illustrate your answer with a suitable sketch, marking in carefully with arrows the 
direction of the shear flows and noting the principal values. 

Ans. q12 = SY(33/d  - h - 3d)/h(h + 2d) 

q23 = S,,(-6$ + 6h~2 - h2)/h2(h + 2d) 

3 

Fig. P.9.19 

P.9.20 Find the position of the shear centre of the rectangular four boom beam 
section shown in Fig. P.9.20. The booms carry only direct stresses but the skin is 
fully effective in carrying both shear and direct stress. The area of each boom is 
lO0mm2. 

Ans. 142.5 mm from side 23. 

3 
I 1 4  
I- 240 mm I 

Fig. P.9.20 
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I 250 mm 

P.9.21 A uniform, thin-walled, cantilever beam of closed rectangular cross- 
section has the dimensions shown in Fig. P.9.21. The shear modulus G of the top 
and bottom covers of the beam is 18 000 N/mm2 while that of the vertical webs is 
26 000 N / m '  . 

The beam is subjected to a uniformly distributed torque of 20 Nm/mm along its 
length. Calculate the maximum shear stress according to the Bredt-Batho theory 
of torsion. Calculate also, and sketch, the distribution of twist along the length of 
the cantilever assuming that axial constraint effects are negligible. 

A m .  T~~ = 83.3N/mm2, 0 = 8.14 x lop9 

t 
2.1 mm 2.1 mm -- 

1.2mm 
1 

1 1  11.2 mm 

Fig. P.9.21 

P.9.22 A single cell, thin-walled beam with the double trapezoidal cross-section 
shown in Fig. P.9.22, is subjected to a constant torque T = 90 500 N m and is con- 
strained to twist about an axis  through the point R. Assuming that the shear stresses 
are distributed according to the Bredt-Batho theory of torsion, calculate the distribu- 
tion of warping around the cross-section. 

Illustrate your answer clearly by means of a sketch and insert the principal values of 
the warping displacements. 

The shear modulus G = 27 500 N/mm2 and is constant throughout. 

AFZS. Wi = -Wg = - 0 . 5 3 m ,  W2 = -W5 = O.O5mm, W3 = -W4 = 0 . 3 8 m .  
Linear distribution. 
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1.25 mm 3 1.25 mm 
r- 

1.25 mm 

500mm d+ 890 mm 

Fig. P.9.22 

P.9.23 A uniform thin-walled beam is circular in cross-section and has a constant 
thickness of 2.5 mm. The beam is 2000 mm long, carrying end torques of 450 N m and, 
in the same sense, a distributed torque loading of 1 .O N m/mm. The loads are reacted 
by equal couples R at sections 500 mm distant from each end (Fig. P.9.23). 

Calculate the maximum shear stress in the beam and sketch the distribution of twist 
along its length. Take G = 30 000 N/mm2 and neglect axial constraint effects. 

A m .  r,, = 24.2N/mm2, 8 = -0.85 .x 10-82rad, 0 < z < 500mm, 

8 = 1.7 x 10-8(1450~ - z2/2) - 12.33 x rad, 500 < z < 1 O O O m m  

Fig. P.9.23 

P.9.24 A uniform closed section beam, of the thin-walled section shown in Fig. 
P.9.24, is subjected to a twisting couple of 4500Nm. The beam is constrained to 
twist about a longitudinal axis through the centre C of the semicircular arc 12. For 
the curved wall 12 the thickness is 2 mm and the shear modulus is 22 000 N/mm2. 
For the plane walls 23, 34 and 41, the corresponding figures are 1.6mm and 
27 500 N/mm2. (Note: Gt = constant.) 

Calculate the rate of twist in radians/mm. Give a sketch illustrating the distribution 
of warping displacement in the cross-section and quote values at points 1 and 4. 
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Fig. P.9.24 

A m .  de/& = 29.3 x rad/mm, w3 = -w4 = -0.19 mm, 

wz = - ~1 = - 0 . 0 5 6 m  

P.9.25 A uniform beam with the doubly symmetrical cross-section shown in Fig. 
P.9.25, has horizontal and vertical walls made of different materials which have shear 
moduli G, and Gb respectively. If for any material the ratio mass density/shear 
modulus is constant find the ratio of the wall thicknesses tu and tb, so that for a 
given torsional stiffness and given dimensions a, b the beam has minimum weight 
per unit span. Assume the Bredt-Batho theory of torsion is valid. 

If this thickness requirement is satisfied find the a /b  ratio (previously regarded as 
fixed), which gives minimum weight for given torsional stiffness. 

Ans. tb/ta = Gu/Gb, b / a  = 1. 

Fig. P.9.25 

P.9.26 Figure P.9.26 shows the cross-section of a thin-walled beam in the form of 
a channel with lipped flanges. The lips are of constant thickness 1.27 mm while the 
flanges increase linearly in thickness from 1.27mm where they meet the lips to 
2.54mm at their junctions with the web. The web has a constant thickness of 
2.54 mm. The shear modulus G is 26 700 N/mmz throughout. 

The beam has an enforced axis of twist RR' and is supported in such a way that 
warping occurs freely but is zero at the mid-point of the web. If the beam carries a 
torque of 100Nm, calculate the maximum shear stress according to the St. Venant 



358 Open and closed, thin-walled beams 

~225 m m l  50mm 
I 

- -  

100 

2.54 mm 1.27 mm 

Fig. P.9.26 

theory of torsion for thin-walled sections. Ignore any effects of stress concentration at 
the corners. Find also the distribution of warping along the middle line of the section, 
illustrating your results by means of a sketch. 

h s .  Tma = f 297.4N/m2, W1 = - 5 . 4 8 m  = -Wg, 

w2 = 5.48mm = -w5, w3 = 17.98mm = -w4 

P.9.27 The thin-walled section shown in Fig. P.9.27 is symmetrical about the x 
axis. The thickness to of the centre web 34 is constant, while the thickness of the 
other walls varies linearly from to at points 3 and 4 to zero at the open ends 1, 6, 7 
and 8. 

Determine the St. Venant torsion constant J for the section and also the maximum 
value of the shear stress due to a torque T .  If the section is constrained to twist about 
an axis through the origin 0, plot the relative warping displacements of the section 
per unit rate of twist. 
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1 

X 

6 

P.9.28. A uniform beam with the cross-section shown in Fig. P.9.28(a) is sup- 
ported and loaded as shown in Fig. P.9.28(b). If the direct and shear stresses are 
given by the basic theory of bending, the direct stresses being carried by the booms 
and the shear stresses by the walls, calculate the vertical deflection at the ends of 
the beam when the loads act through the shear centres of the end cross-sections, 
allowing for the effect of shear strains. 

100 mrn 7 7 -  
100 mm t- ___ - t  

t2.5mm 2 

t 1 
100 mrn 

___ 
A 
I 75 rnrn 

100 mm 
A 
! 75 rnrn 
t 

Fig. P.9.28(a) 
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4450 N 

v v 
n a 

$4450 N 
I- - -  _ -  + 

A 

Fig. P.9.28(b) 

t /2  
I 
,i 

t/2 

Take E = 69 000 N/mm2 and G = 26 700 N/mm2 

Boom areas: 1, 3,4, 6 = 650mm2, 2, 5 = 1300mm2 

Am. 3.4mm. 

P.9.29 A cantilever, length L, has a hollow cross-section in the form of a doubly 
symmetric wedge as shown in Fig. P.9.29. The chord line is of length c, wedge 
thickness is t, the length of a sloping side is a/2  and the wall thickness is constant 
and equal to to. Uniform pressure distributions of magnitudes shown act on the 

i 1.2po/unit area polunit area 
4 - -  + 

c/2 c/2 

1 

Fig. P.9.29 
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faces of the wedge. Find the vertical deflection of point A due to this given loading. 
If G=0.4E,  t /c=0.05 and L = 2 c  show that this deflection is approximately 
5600p0c2/Et0. 

P.9.30 A rectangular section thin-walled beam of length L and breadth 3b, depth 
b and wall thickness t is built in at one end (Fig. P.9.30). The upper surface of the 
beam is subjected to a pressure which vanes linearly across the breadth from a 
value po  at edge AB to zero at edge CD. Thus, at any given value of x the pressure 
is constant in the z direction. Find the vertical deflection of point A. 

Ans. po  L' (9 L2/80 Eb2 + 1 609/2000G) / r. 

X 

, 

I 

Fig. P.9.30 

t- 3 b  



Stress analysis of 
aircraft components 

In Chapter 9 we established the basic theory for the analysis of open and closed 
section thin-walled beams subjected to bending, shear and torsional loads. In addi- 
tion, methods of idealizing stringer stiffened sections into sections more amenable 
to analysis were presented. We now extend the analysis to actual aircraft components 
including tapered beams, fuselages, wings, frames and ribs; also included are the 
effects of cut-outs in wings and fuselages. Finally, an introduction is given to the 
analysis of components fabricated from composite materials. 

Aircraft structural components are, as we saw in Chapter 7, complex, consisting 
usually of thin sheets of metal stiffened by arrangements of stringers. These structures 
are highly redundant and require some degree of simplification or idealization before 
they can be analysed. The analysis presented here is therefore approximate and the 
degree of accuracy obtained depends on the number of simplifying assumptions 
made. A further complication arises in that factors such as warping restraint, 
structural and loading discontinuities and shear lag significantly affect the analysis; 
we shall investigate these effects in some simple structural components in Chapter 
11. Generally, a high degree of accuracy can only be obtained by using computer- 
based techniques such as the finite element method (see Chapter 12). However, the 
simpler, quicker and cheaper approximate methods can be used to advantage in 
the preliminary stages of design when several possible structural alternatives are 
being investigated; they also provide an insight into the physical behaviour of 
structures which computer-based techniques do not. 

Major aircraft structural components such as wings and fuselages are usually tapered 
along their lengths for greater structural efficiency. Thus, wing sections are reduced 
both chordwise and in depth along the wing span towards the tip and fuselage 
sections aft of the passenger cabin taper to provide a more efficient aerodynamic 
and structural shape. 

The analysis of open and closed section beams presented in Chapter 9 assumes that 
the beam sections are uniform. The effect of taper on the prediction of direct stresses 
produced by bending is minimal if the taper is small and the section properties are 
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calculated at the particular section being considered; Eqs (9.6)-(9.10) may therefore 
be used with reasonable accuracy. On the other hand, the calculation of shear stresses 
in beam webs can be significantly affected by taper. 

Consider first the simple case of a beam positioned in the y z  plane and comprising two 
flanges and a web; an elemental length Sz of the beam is shown in Fig. 10.1. At the 
section z the beam is subjected to a positive bending moment My and a positive 
shear force Sy. The bending moment resultants Pz,l and P3:2 are parallel to the z 
axis of the beam. For a beam in which the flanges are assumed to resist all the 
direct stresses, Pz,l = M x / h  and Pz,2 = -Mx/h.  In the case where the web is assumed 
to be fully effective in resisting direct stress, PZ;~ and PQ are determined by multiply- 
ing the direct stresses oZ,] and found using Eq. (9.6) or Eq. (9.7) by the flange areas 
B1 and B2. PZ,] and Pz,2 are the components in the z direction of the axial loads PI and 
P2 in the flanges. These have components Py,l and Py,2 parallel to the y axis given by 

(10.1) 

in which, for the direction of taper shown, Sy2 is negative. The axial load in flange 0 
is given by 

Substituting for P,,l from Eqs (10.1) we have 

(10.2) 

Fig. 10.1 Effect of taper on beam analysis. 
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Similarly 

(10.3) 

The internal shear force S, comprises the resultant Sy!w, of the web shear flows 
together with the vertical components of PI and P2. Thus 

or 

so that 

SYl SY2 Syvw = s, - PZJ - SZ - Pr,2- SZ 

(10.4) 

(10.5) 

Again we note that Sy2 in Eqs (10.4) and (10.5) is negative. Equation (10.5) may be 
used to determine the shear flow distribution in the web. For a completely idealized 
beam the web shear flow is constant through the depth and is given by Sy,,/h. For 
a beam in which the web is fully effective in resisting direct stresses the web shear 
flow distribution is found using Eq. (9.75) in which Sy is replaced by SY,+,, and 
which, for the beam of Fig. 10.1 , would simplify to 

S 
q s -  - - 3 ( [ tDy ds + B l y l )  

I x x  

or 
S 

4 s -  - - .22 I x x  ( [ tDy ds + B2y2) 

(10.6) 

(10.7) 

Example 10.1 
Determine the shear flow distribution in the web of the tapered beam shown in Fig. 
10.2, at a section midway along its length. The web of the beam has a thickness of 

't 
400mm2 t '  1 

2 rnm 

400 mm2 
Section AA 

(a) 

Fig. 10.2 Tapered beam of Example 10.1. 



10.1 Tapered beams 365 

2 mm and is fully effective in resisting direct stress. The beam tapers symmetrically 
about its horizontal centroidal axis and the cross-sectional area of each flange is 
400 mm2. 

The internal bending moment and shear load at the section AA produced by the 
externally applied load are, respectively 

Mx = 20 x 1 = 20kNm, S, = -2OkN 

The direct stresses parallel to the z axis in the flanges at this section are obtained either 
from Eq. (9.6) or Eq. (9.7) in which M,, = 0 and Zx, = 0. Thus, from Eq. (9.6) 

MXY 
I n  

uz = - 

in which 

Ixx = 2 x 400 x 1502 + 2 x 3003/12 

i.e. 

Zxx = 22.5 x 1 0 6 m 4  

Hence 

The components parallel to the z axis of the axial loads in the flanges are therefore 

PI - 7  1 = -Pz-2 = 133.3 x 400 = 53 320 N 

The shear load resisted by the beam web is then, from Eq. (10.5) 

6Yl 6Y2 S,.,," = -20 x lo3 - 53 320- + 53 320- 
6Z 6Z 

in which, from Figs 10.1 and 10.2, we see that 

- 0.05 6y1 - -100 6Y2 - 100 
sz 2 x 103 6,. 2 x 103 

- -0.05, - - --- 

Hence 

S,.:w, = -20 x lo3 + 53 320 x 0.05 + 53 320 x 0.05 = -14668N 

The shear flow distribution in the web follows either from Eq. (10.6) or Eq. (10.7) and 
is (see Fig. 10.2(b)) 

412 = 22.5 14''' x lo6 ([q150-s)ds+400 x 150 

i.e. 

412 = 6.52 x + 300s + 60000) (ii) 

The maximum value of q12 occurs when s = 150mm and q12 (max) = 53.8 N/mm. 
The values of shear flow at points 1 (s = 0) and 2 (s = 300mm) are q1 = 39.1 N/mm 
and q2 = 39.1 N/mm; the complete distribution is shown in Fig. 10.3. 
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53.8 

Fig. 10.3 Shear flow (N/mm) distribution at  Section AA in Example 10.1 

10.1.2 Open and closed section beams 

We shall now consider the more general case of a beam tapered in two directions along 
its length and comprising an arrangement of booms and skin. Practical examples of 
such a beam are complete wings and fuselages. The beam may be of open or closed 
section; the effects of taper are determined in an identical manner in either case. 

Figure 10.4(a) shows a short length 6z of a beam carrying shear loads S, and Sy at 
the section z; Sx and Sy are positive when acting in the directions shown. Note that if 
the beam were of open cross-section the shear loads would be applied through its 
shear centre so that no twisting of the beam occurred. In addition to shear loads 
the beam is subjected to bending moments M x  and M y  which produce direct stresses 
a, in the booms and skin. Suppose that in the rth boom the direct stress in a direction 
parallel to the z axis is ai,r, which may be found using either Eq. (9.6) or Eq. (9.7). The 
component P,:, of the axial load P, in the rth boom is then given by 

Pqr = ai,rBr (10.8) 

where B, is the cross-sectional area of the rth boom. 
From Fig. 10.4(b) 

Further, from Fig. 10.4(c) 

or, substituting for Py,, from Eq. (10.9) 

The axial load Pr is then given by 

Pr = + p ' , r  + p I , r ) 1 ' 2  

or, alternatively 

(10.9) 

(10.10) 

(10.11) 

(10.12) 
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(a) 

z X 

( b) ( C )  

Fig. 10.4 Effect of taper on the analysis of open and closed section beams. 

The applied shear loads S, and SJ are reacted by the resultants of the shear flows in 
the skin panels and webs, together with the components Px,r and PY,, of the axial loads 
in the booms. Therefore, if S.r,M, and S,,,,v are the resultants of the skin and web shear 
iiows and there is a total of rn booms'in the section 

m nz 

sx = Sx,w + Px:r, s y  = sy,,v + Py,r (10.13) 
r = l  r =  1 

Substituting in Eqs (10.13) for P.,,r and P,,,r from Eqs (10.10) and (10.9) we have 

sx = s.x:w + P:,r - 1 s y  = sy:w + pz,r I' sY (10.14) sx, 
6z r =  1 sz r = l  

Hence 

(10.15) 
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Fig. 10.5 Modification of moment equation in shear of closed section beams due to boom load. 

The shear flow distribution in an open section beam is now obtained using Eq. (9.75) 
in which S, is replaced by Sx,w and Sy by Sy,w from Eqs (10.15). Similarly for a closed 
section beam, S, and Sy in Eq. (9.80) are replaced by Sx,w and Sy,w. In the latter case 
the moment equation (Eq. (9.37)) requires modification due to the presence of the 
boom load components P,,, and PY,,. Thus from Fig. 10.5 we see that Eq. (9.37) 
becomes 

m m 
( 10.16) 

Equation (10.16) is directly applicable to a tapered beam subjected to forces posi- 
tioned in relation to the moment centre as shown. Care must be taken in a particular 
problem to ensure that the moments of the forces are given the correct sign. 

ds 
SxVO - SyCO = f q b p  7 -t 2Aqs,0 - px,r'% + Py& 

r = l  r = l  

Example 10.2 
The cantilever beam shown in Fig. 10.6 is uniformly tapered along its length in both x 
and y directions and carries a load of 100 kN at its free end. Calculate the forces in the 

Y 

(a) 

Fig. 10.6 (a) Beam of Example 10.2; (b) section 2 m from built-in end. 
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booms and the shear flow distribution in the walls at a section 2m from the built-in 
end if the booms resist all the direct stresses while the walls are effective only in shear. 
Each corner boom has a cross-sectional area of 900mm2 while both central booms 
have cross-sectional areas of 1200 mm'. 

The internal force system at a section 2 m from the built-in end of the beam is 
S,. = 100kN, S, = 0,  M, = -100 x 2 = -200kNm, My = 0 

The beam has a doubly symmetrical cross-section so that I&, = 0 and Eq. (9.6) 
reduces to 

M X Y  
I X X  

gz = - 

in which, for the beam section shown in Fig. 10.6(b) 

lYX = 4 x 900 x 300' + 2 x 1200 x 3002 = 5.4 x lo8 IIIITI~ 

Then 

-200 x lo6 
5.4 x 109 Yr gz,r  = 

or 

u ~ ! ~  = -0.37~~ 
Hence 

P,,, = -0.37yrBr 

(ii) 

(iii) 

The value of Pz,r is calculated from Eq. (iii) in column 0 in Table 10.1; P,,, and Pv>r 
follow from Eqs (10.10) and (10.9) respectively in columns @ and 0. The axial load 
P,., column 0, is given by [a2 + @' + @2]1/2 and has the same sign as P,:, (see 
Eq. (10.12)). The moments of PX,r and Py,r are calculated for a moment centre at 
the centre of symmetry with anticlockwise moments taken as positive. Note that in 
Table 10.1 Px>, and P,,,r are positive when they act in the positive directions of the 
section x and y axes respectively; the distances qr and & of the lines of action of 
Px:r and P,,,, from the moment centre are not given signs since it is simpler to 
determine the sign of each moment, PX.,q, and PJ3&, by referring to the directions 
of P,, and Py., individually. 

Table 10.1 

0 0 @ @ @ a  a @ @  0 
Pz,  6x,/6r 6y,lSz Px,r Py,, P,. 5, rlr P x , J r  P?& 

0 
Boom (kN) (kN) (kN) (kN) (m) (m) (kNm) (kNm) 

1 -100 0.1 -0.05 -10 5 -101.3 0.6 0.3 3 -3 
2 -133 0 -0.05 0 6.7 -177.3 0 0.3 0 0 
3 -100 -0.1 -0.05 10 5 -101.3 0.6 0.3 -3 3 
4 100 -0.1 0.05 -10 5 101.3 0.6 0.3 -3 3 
5 133 0 0.05 0 6.7 177.3 0 0.3 0 0 
6 100 0.1 0.05 I O  5 101.3 0.6 0.3 3 -3 
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From column @ 

From column @ 

From column @ 

From Eqs (10.15) 

Sx,w = 0, Sy,w = 100 - 33.4 = 66.6 kN 

The shear flow distribution in the walls of the beam is now found using the method 
described in Section 9.9. Since, for this beam, Zxy = 0 and Sx = Sx,w = 0, Eq. (9.80) 
reduces to 

We now ‘cut’ one of the walls, say 16. The resulting ‘open section’ shear flow is 
given by 

66.6 x IO3 
5.4 x 108 BrYr 

r = l  
q b  = - 

or 

Thus 

qb.16 = 

qb.12 = 0 - 1.23 X X 900 X 300 = -33.2N/mm 

qb,23 = -33.2 - 1.23 x x 1200 x 300 = -77.5N/mm 

qb,34 = -77.5 - 1.23 x x 900 x 300 = -110.7N/mm 

qb.45 = -77.5 N/mm (from symmetry) 

qb,56 = -33.2 N/mm (from symmetry) 

giving the distribution shown in Fig. 10.7. Taking moments about the centre of 
symmetry we have, from Eq. (10.16) 

-100 x lo3 x 600 = 2 x 33.2 x 600 x 300 + 2 x 77.5 x 600 x 300 

+ 110.7 x 600 x 600 + 2 x 1200 x 600qs,0 
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33.2 77.5 

110.7 Izll 6 33.2 77.5 4 i 

Fig. 10.7 'Open section'shear flow (Wmm) distribution in beam section of Example 10.2. 

Fig. 10.8 Shear flow (Wrnm) distribution in beam section of Example 10.2. 

from which qs,O = -97.0 N/mm (Le. clockwise). The complete shear flow distribution 
is found by adding the value of qs,o to the q b  shear flow distribution of Fig. 10.7 and is 
shown in Fig. 10.8. 

-=-.-* 1 

10.1.3 Beams having variable stringer areas 
w=l"--=lp_: -I____ --u- 

In many aircraft, structural beams, such as wings, have stringers whose cross-sectional 
areas vary in the spanwise direction. The effects of this variation on the determination 
of shear flow distribution cannot therefore be found by the methods described in 
Section 9.9 which assume constant boom areas. In fact, as we noted in Section 9.9, 
if the stringer stress is made constant by varying the area of cross-section there is 
no change in shear flow as the stringer/boom is crossed. 

The calculation of shear flow distributions in beams having variable stringer areas 
is based on the alternative method for the calculation of shear flow distributions 
described in Section 9.9 and illustrated in the alternative solution of Example 9.13. 
The stringer loads Pz., and P_,,J are calculated at two sections z1 and z2 of the beam 
a convenient distance apart. We assume that the stringer load varies linearly along 
its length so that the change in stringer load per unit length of beam is given by 

The shear flow distribution follows as previously described. 

Example 10.3 
Solve Example 10.2 by considering the differences in boom load at sections of the 
beam either side of the specified section. 



372 Stress analysis of aircraft components 

In this example the stringer areas do not vary along the length of the beam but the 
method of solution is identical. 

We are required to find the shear flow distribution at a section 2 m from the built-in 
end of the beam. We therefore calculate the boom loads at sections, say 0.1 m either 
side of this section. Thus, at a distance 2.1 m from the built-in end 

M, = -100 x 1.9 = -190kNm 

The dimensions of this section are easily found by proportion and are width = 1.18 m, 
depth = 0.59 m. Thus the second moment of area is 

I,, = 4 x 900 x 295’ + 2 x 1200 x 295’ = 5.22 x lo8 1ll111~ 

and 

-190 x lo6 
5.22 x lo8 Y r  

= -0 .364~~ 0z : r  = 

Hence 
Pi = P3 = -P4 = -P6 = -0.364 X 295 X 900 = -96642N 

and 

P2 -Ps = -0.364 x 295 x 1200 = -128 856N 

At a section 1.9 m from the built-in end 
M, = -100 x 2.1 = -2lOkNm 

and the section dimensions are width = 1.22m, depth = 0.61 m so that 

I,, = 4 x 900 x 305’ + 2 x 1200 x 305’ = 5.58 x lo8 mm4 

and 

-210 x lo6 
= -0 .376~~ 

5.58 x lo8 Yr  0 z > r  = 

Hence 
Pi = P3 = -P4 = -P6 = -0.376 x 305 x 900 = -103212N 

and 
P2 = -Ps = -0.376 x 305 x 1200 = -137616N 

Thus, there is an increase in compressive load of 103 212 - 96 642 = 6570 N in booms 1 
and 3 and an increase in tensile load of 6570 N in booms 4 and 6 between the two sections. 
Also, the compressive load in boom 2 increases by 137 616 - 128 856 = 8760N while 
the tensile load in boom 5 increases by 8760N. Therefore, the change in boom load 
per unit length is given by 

6570 AP1 = AP3 = -AP4 = -AP6 = - 
200 

32.85 N 

and 
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Fig. 10.9 Change in boom loads/unit length of beam. 

The situation is illustrated in Fig. 10.9. Suppose now that the shear flows in the panels 
12,23,24, etc. are 912, 923, q34, etc. and consider the equilibrium of boom 2, as shown 
in Fig. 10.10, with adjacent portions of the panels 12 and 23. Thus 

423 4- 43.8 - 912 = 0 

or 

923 q12 - 43.8 
Similarly 

934 = 923 - 32.85 = q12 - 76.65 
945 = 934 + 32.85 = 912 - 43.8 

The moment resultant of the internal shear flows, together with the moments of the 
components Py;, of the boom loads about any point in the cross-section, is equivalent 
to the moment of the externally applied load about the same point. We note from 

Fig. 10.10 Equilibrium of boom. 
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Example 10.2 that for moments about the centre of symmetry 

Therefore, taking moments about the centre of symmetry 

100 x lo3 x 600 = 2qI2 x 600 x 300 + 2(qI2 - 43.8)600 x 300 

+ (912 - 76.65)600 x 600 + (q12 + 32.85)600 x 600 

from which 

qI2  = 62.5N/mm 

whence 

q23 = 19.7N/mm, q34 = -13.2N/mm, q45 = 19.7N/mm 

q56 = 63.5 N/mm, q61 = 96.4 N/mm 

so that the solution is almost identical to the longer exact solution of Example 10.2. 
The shear flows q12, q 2 3  etc. induce complementary shear flows qI2, q23 etc. in the 

panels in the longitudinal direction of the beam; these are, in fact, the average 
shear flows between the two sections considered. For a complete beam analysis 
the above procedure is applied to a series of sections along the span. The distance 
between adjacent sections may be taken to be any convenient value; for actual 
wings distances of the order of 350mm to 700mm are usually chosen. However, 
for very small values small percentage errors in P,,l and P2,2 result in large percentage 
errors in AP. On the other hand, if the distance is too large the average shear flow 
between two adjacent sections may not be quite equal to the shear flow midway 
between the sections. 

Aircraft fuselages consist, as we saw in Chapter 7, of thin sheets of material stiffened 
by large numbers of longitudinal stringers together with transverse frames. Generally 
they carry bending moments, shear forces and torsional loads which induce axial 
stresses in the stringers and skin together with shear stresses in the skin; the resistance 
of the stringers to shear forces is generally ignored. Also, the distance between 
adjacent stringers is usually small so that the variation in shear flow in the connecting 
panel will besmall. It is therefore reasonable to assume that the shear flow is constant 
between adjacent stringers so that the analysis simplifies to the analysis of an idealized 
section in which the stringers/booms carry all the direct stresses while the skin is 
effective only in shear. The direct stress carrying capacity of the skin may be allowed 
for by increasing the stringer/boom areas as described in Section 9.9. The analysis of 
fuselages therefore involves the calculation of direct stresses in the stringers and the 
shear stress distributions in the skin; the latter are also required in the analysis of 
transverse frames. as we shall see in Section 10.4. 
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10.2.1 Bending 

The skin/stringer arrangement is idealized into one comprising booms and skin as 
described in Section 9.9. The direct stress in each boom is then calculated using 
either Eq. (9.6) or Eq. (9.7) in which the reference axes and the section properties 
refer to the direct stress carrying areas of the cross-section. 

Example 10.4 
The fuselage of a light passenger carrying aircraft has the circular cross-section shown 
in Fig. 10.11(a). The cross-sectional area of each stringer is 100mm2 and the vertical 
distances given in Fig. 10.1 l(a) are to the mid-line of the section wall at the corre- 
sponding stringer position. If the fuselage is subjected to a bending moment of 
200 kNm applied in the vertical plane of symmetry, at this section, calculate the 
direct stress distribution. 

(a) 

Fig. 10.1 1 (a) Actual fuselage section; (b) idealized fuselage section. 

The section is first idealized using the method described in Section 9.9. As an 
approximation we shall assume that the skin between adjacent stringers is flat so that 
we may use either Eq. (9.70) or Eq. (9.71) to determine the boom areas. From symmetry 

B5 = BI3.  From Eq. (9.70) 
B1 Bg, Bz = Bg = Blo = B16, B3 = B7 = B11 = B15, B4 = B6 = Blz = B14 and 

0.8 x 149.6 (2 + :) + 0.8 X 149.6 ( ;;) 
2+- 6 6 

B1 = loo+ 

i.e. 

Oa8 149.6 ( 2+- ;if::) x 2 = 216.6mm2 
6 

B1 = 100 + 

Similarly B2 = 216.6mm2, B3 = 216.6mm2, B4 = 216.7mm2. We note that stringers 
5 and 13 lie on the neutral axis of the section and are therefore unstressed; the 
calculation of boom areas B5 and B13 does not then arise. 
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Table 10.2 

1 
2, 16 
3, 15 
4, 14 
5, 13 
6, 12 
7, 11 
8, 10 
9 

381.0 
352.0 
269.5 
145.8 
0 

-145.8 
-269.5 
-352.0 
-381.0 

302.4 
279.4 
213.9 
115.7 
0 

-115.7 
-213.9 
-279.4 
-302.4 

For this particular section Zxy = 0 since Cx (and Cy)  is an axis of symmetry. 
Further, My = 0 so that Eq. (9.6) reduces to 

in which 

Zxx = 2 x 216.6 x 381.02 + 4 x 216.6 x 352.02 + 4 x 216.6 x 26952 

+ 4 x 216.7 x 145.82 = 2.52 x lo8 mm4 

The solution is completed in Table 10.2. 

10.2.2 Shear 

For a fuselage having a cross-section of the type shown in Fig. lO.ll(a), the 
determination of the shear flow distribution in the skin produced by shear is basically 
the analysis of an idealized single cell closed section beam. The shear flow distribution 
is therefore given by Eq. (9.80) in which the direct stress carrying capacity of the skin 
is assumed to be zero, i.e. t D  = 0, thus 

Equation (10.17) is applicable to loading cases in which the shear loads are not 
applied through the section shear centre so that the effects of shear and torsion are 
included simultaneously. Alternatively, if the position of the shear centre is known, 
the loading system may be replaced by shear loads acting through the shear centre 
together with a pure torque, and the corresponding shear flow distributions may be 
calculated separately and then superimposed to obtain the final distribution. 

Example 10.5 
The fuselage of Example 10.4 is subjected to a vertical shear load of 100 kN applied at 
a distance of 150 mm from the vertical axis of symmetry as shown, for the idealized 
section, in Fig. 10.12. Calculate the distribution of shear flow in the section. 
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Fig. 10.12 Idealized fuselage section of Example 10.5. 

As in Example 10.4, Ixy = 0 and, since S, = 0, Eq. (10.17) reduces to 

in which = 2.52 x 10' mm4 as before. Thus 

-100 x io3 
BrYr + 4s.o 

r = l  "' 2.52 x 10' 

or 
n 

qs = -3.97 x Bry, + qs,o (ii) 

The first term on the right-hand side of Eq. (ii) is the 'open section' shear flow qb.  We 
therefore 'cut' one of the skin panels, say 12, and calculate q b .  The results are 
presented in Table 10.3. 

Note that in Table 10.3 the column headed Boom indicates the boom that is crossed 
when the analysis moves from one panel to the next. Note also that, as would be 
expected, the qb shear flow distribution is symmetrical about the Cx axis. The 
shear flow q,s,o in the panel 12 is now found by taking moments about a convenient 
moment centre, say C. Thus from Eq. (9.37) 

r = l  

100 x IO3 x 150 = qbpds+2Aq,v.o (iii) 

in which A = T x 381.02 = 4.56 x 105mm2. Since the qb shear flows are constant 
between the booms, Eq. (iii) may be rewritten in the form (see Eq. (9.79)) 

f 
100 x io3 x 150 = -2A17qb,12 - 2A23qb.23 - .' ' - 2A16 lqb.16 I + 2Aqy:O (iv) 

in which A I 2 ;  . . A161 are the areas subtended by the skin panels 12: 23,. . . , 16 1 
at the centre C of the circular cross-section and anticlockwise moments are taken as 
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Table 10.3 

Skin panel Boom B, (mm’) Y ,  (m) qb ( N / m )  

1 2  
2 3  
3 4  
4 5  
5 6  
6 7  
7 8  
8 9  
1 16 

16 15 
15 14 
14 13 
13 12 
12 11 
11 10 
10 9 

- 
2 
3 
4 
5 
6 
1 
8 
1 

16 
15 
14 
13 
12 
11 
10 

- 
216.6 
216.6 
216.7 

216.1 
216.6 
216.6 
216.6 
216.6 
216.6 
216.6 

216.7 
216.6 
216.6 

- 

- 

- 
352.0 
269.5 
145.8 
0 

-145.8 
-269.5 
-352.0 

381.0 
352.0 
269.5 
145.8 
0 

-145.8 
-269.5 
-352.0 

0 
-30.3 
-53.5 
-66.0 
-66.0 
-53.5 
-30.3 

0 
-32.8 
-63.1 
-86.3 
-98.8 
-98.8 
-86.3 
-63.1 
-32.8 

positive. Clearly A12 = A23 = . - -  = A I 6 ,  = 4.56 x 105/16 = 285OOmm’. Equation 
(iv) then become 

100 X lo3 X 150 2 x 28 500(-qb,, - qbz - . ’ ’ - qb161) + 4-56 lo5q3,0 (v) 

Substituting the values of q b  from Table 10.3 in Eq. (v), we obtain 

100 x lo3 x 150 = 2 x 28 500(-262.4) + 2 x 4.56 x 105q3,0 

from which 
qs;o = 32.8 N/mm (acting in an anticlockwise sense) 

The complete shear flow distribution follows by adding the value of qs;o to the qb shear 
flow distribution, giving the final distribution shown in Fig. 10.13. The solution may 

Fig. 10.13 Shear flow (Wmm) distribution in fuselage section of Example 10.5. 
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be checked by calculating the resultant of the shear flow distribution parallel to the Cy 
axis. Thus 

2[(98.8 + 66.0)145.8 + (86.3 + 53.51123.7 + (63.1 + 30.3)82.5 + (32.8 - 0)29.0] 

x lop3 = 99.96 kN 

which agrees with the applied shear load of 100 kN. The analysis of a fuselage which is 
tapered along its length is carried out using the method described in Section 10.1 and 
illustrated in Example 10.2. 

10.2.3 Torsion 

A fuselage section is basically a single cell closed section beam. The shear flow 
distribution produced by a pure torque is therefore given by Eq. (9.49) and is 

(10.18) 
T q = -  

2A 
It is immaterial whether or not the section has been idealized since, in both cases, the 
booms are assumed not to carry shear stresses. 

Equation (10.18) provides an alternative approach to that illustrated in Example 10.5 
for the solution of shear loaded sections in which the position of the shear centre is 
known. In Fig. 10.11 the shear centre coincides with the centre of symmetry so that 
the loading system may be replaced by the shear load of 100 kN acting through the 
shear centre together with a pure torque equal to 100 x lo3 x 150 = 15 x lo6 Nmm 
as shown in Fig. 1C.14. The shear flow distribution due to the shear load may be 
found using the method of Example 10.5 but with the left-hand side of the moment 
equation (iii) equal to zero for moments about the centre of symmetry. Alternatively, 
use may be made of the symmetry of the section and the fact that the shear flow is 

100 kN 
I 

Fig. 10.14 Alternative solution of Example 10.5. 
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constant between adjacent booms. Suppose that the shear flow in the panel 21 is qZl .  
Then from symmetry and using the results of Table 10.3 

49 8 = 49 I O  = q l 6  1 = q2 1 

q32 = q S 7  ‘?loll = q1516 = 30.3 + q21 

q43 = q76 = 411 12 = q1415 = 53.5 + 921 

q54 = 9 6 5  = 912 13 = q13 14 = 66.0 + q21 

The resultant of these shear flows is statically equivalent to the applied shear load so 
that 

4(29.oq21 + 82.5932 + 123.7q43 + 145.8q54) = 100 x lo3 

Substituting for 932, q43 and q54 from the above we obtain 

4(381q21 + 18740.5) = 100 x lo3 

whence 
q21 = 16.4N/mm 

and 

932 = 46.7 N/mm, q43 = 69.9 N/mm, q54 = 83.4N/mm etc. 

The shear flow distribution due to the applied torque is, from Eq. (10.18) 

= 16.4N/mm 
15 x lo6 

= 2 x 4.56 x 105 
acting in an anticlockwise sense completely around the section. This value of shear 
flow is now superimposed on the shear flows produced by the shear load; this gives 
the solution shown in Fig. 10.13, i.e. 

q21 = 16.4 + 16.4 = 32.8 N/mm 

q 1 6 1  = 16.4 - 16.4 = 0 etc. 

We have seen in Chapters 7 and 9 that wing sections consist of thin skins stiffened by 
combinations of stringers, spar webs and caps and ribs. The resulting structure 
frequently comprises one, two or more cells and is highly redundant. However, as 
in the case of fuselage sections, the large number of closely spaced stringers allows 
the assumption of a constant shear flow in the skin between adjacent stringers so 
that a wing section may be analysed as though it were completely idealized as long 
as the direct stress carrying capacity of the skin is allowed for by additions to the 
existing stringer/boom areas. We shall investigate the analysis of multicellular wing 
sections subjected to bending, torsional and shear loads, although, initially, it will 
be instructive to examine the special case of an idealized three-boom shell. 

The wing section shown in Fig. 10.15 has been idealized into an arrangement of 
direct-stress carrying booms and shear-stress-only carrying skin panels. The part of 
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Fig. 10.15 Three-boorn wing section. 

the wing section aft of the vertical spar 3 1 performs an aerodynamic role only and is 
therefore unstressed. Lift and drag loads, S,  and Sx, induce shear flows in the skin 
panels which are constant between adjacent booms since the section has been com- 
pletely idealized. Thus, resolving horizontally and noting that the resultant of the 
internal shear flows is equivalent to the applied load, we have 

sx = -412112 + q23l23 (10.19) 

Now resolving vertically 

sy = q31 (h12 + h23) - 412h12 - q23h23 

sxqO + sycO = -2A12q12 - 2A23q23 

(10.20) 

(10.21) 

Finally, taking moments about, say, boom 3 

(see Eqs (9.78) and (9.79)). In the above there are three unknown values of shear flow, 
q12, q23, q31 and three equations of statical equilibrium. We conclude therefore that a 
three-boom idealized shell is statically determinate. 

We shall return to the simple case of a three-boom wing section when we examine 
the distributions of direct load and shear flows in wing ribs. Meanwhile, we shall 
consider the bending, torsion and shear of multicellular wing sections. 

__II -_I__ 

10.3.1 Bending 
w-111-w 

Bending moments at any section of a wing are usually produced by shear loads at 
other sections of the wing. The direct stress system for such a wing section 
(Fig. 10.16) is given by either Eq. (9.6) or Eq. (9.7) in which the coordinates ( x , y )  
of any point in the cross-section and the sectional properties are referred to axes 
Cxy in which the origin C coincides with the centroid of the direct stress carrying 
area. 
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Fig. 10.16 Idealized section of a multicell wing. 

Example 10.6 
The wing section shown in Fig. 10.17 has been idealized such that the booms carry all 
the direct stresses. If the wing section is subjected to a bending moment of 300 kNm 
applied in a vertical plane, calculate the direct stresses in the booms. 

Boom areas: B1 = B6 = 2580mm2, B2 = B5 = 3880mm2, B3 = B4 = 3230mm2 

We note that the distribution of the boom areas is symmetrical about the horizontal 
x axis. Hence, in Eq. (9.6), Ixy = 0. Further, Mx = 300kNm and My = 0 so that 
Eq. (9.6) reduces to 

MXY 
I X X  

a, = - 

in which 

IxX = 2(2580 x 1652 + 3880 x 2302 + 3230 x 2002) = 809 x 106mm4 

Hence 

The solution is now completed in Table 10.4 in which positive direct stresses are 
tensile and negative direct stresses compressive. 

Fig. 10.17 Wing section of Example 10.6. 
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Table 10.4 

165 61.2 
230 85.3 
200 74.2 

-200 -74.2 
-230 -85.3 
-165 -61.2 

10.3.2 Torsion 

The chordwise pressure distribution on an aerodynamic surface may be represented 
by shear loads (lift and drag loads) acting through the aerodynamic centre together 
with a pitching moment Mo (see Section 7.2). This system of shear loads may be 
transferred to the shear centre of the section in the form of shear loads S, and S,> 
together with a torque T .  It is the pure torsion case that is considered here. In the 
analysis we assume that no axial constraint effects are present and that the shape 
of the wing section remains unchanged by the load application. In the absence of 
axial constraint there is no development of direct stress in the wing section so that 
only shear stresses are present. It follows that the presence of booms does not 
affect the analysis in the pure torsion case. 

The wing section shown in Fig. 10.18 comprises N cells and carries a torque T 
which generates individual but unknown torques in each of the N cells. Each cell 
therefore develops a constant shear flow q ~ !  qrI, .  . . ! qR!. . . , q ~  given by Eq. (9.49). 

The total is therefore 
N 

(10.22) T = 2 ~ ~ 4 ~  
R =  1 

Although Eq. (10.22) is sufficient for the solution of the special case of a single cell 
section, which is therefore statically determinate, additional equations are required 
for an N-cell section. These are obtained by considering the rate of twist in each 
cell and the compatibility of displacement condition that all N cells possess the 
same rate of twist dO/dz; this arises directly from the assumption of an undistorted 
cross-section. 

Fig. 10.18 Multicell wing section subjected to torsion. 
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w - q R - 1  ~ R - ~ R + I  - - 
3 4 

qR 

Fig. 10.19 Shear flow distribution in the Rth cell of an N-cell wing section. 

Consider the Rth cell of the wing section shown in Fig. 10.18. The rate of twist in 
the cell is, from Eq. (9.42) 

(10.23) 

The shear flow in Eq. (10.23) is constant along each wall of the cell and has the values 
shown in Fig. 10.19. Writing J d s / t  for each wall as 6, Eq. (10.23) becomes 

or, rearranging the terms in square brackets 

In general terms, this equation may be rewritten in the form 

(10.24) 

in which 6R-I,R is J&/t for the wall common to the Rth and (R - 1)th cells, 6, is 
J&/t for all the walls enclosing the Rth cell and ~ 5 , + , , ~  is Jds/t for the wall 
common to the Rth and (R + 1)th cells. 

The general form of Eq. (10.24) is applicable to multicell sections in which the cells 
are connected consecutively, that is, cell I is connected to cell 11, cell I1 to cells I and I11 
and so on. In some cases, cell I may be connected to cells I1 and I11 etc. (see problem 
P.10.9) so that Eq. (10.24) cannot be used in its general form. For this type of section 
the term $q(&/t)  should be computed by considering Jq(ds/t) for each wall of a 
particular cell in turn. 

There are N equations of the type (10.24) which, with Eq. (10.22), comprise the 
N + 1 equations required to solve for the N unknown values of shear flow and the 
one unknown value of do/&. 

Frequently, in practice, the skin panels and spar webs are fabricated from materials 
possessing different properties such that the shear modulus G is not constant. The 
analysis of such sections is simplified if the actual thickness t of a wall is converted 
to a modulus-weighted thickness t* as follows. For the Rth cell of an N-cell wing 
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section in which G varies from wall to wall, Eq. (10.23) takes the form 
de 1 r ds 

This equation may be rewritten as 

(10.25) 

in which GREF is a convenient reference value of the shear modulus. Equation (10.25) 
is now rewritten as 

1 ds dB 
dz ~ A R G R E F  +R 't' 
- -- 

in which the modulus-weighted thickness t* is given by 

(10.26) 

(10.27) 

Then, in Eq. (10.24), 6 becomes Jds/t*. 

Example 10.7 
Calculate the shear stress distribution in the walls of the three-cell wing section shown 
in Fig. 10.20, when it is subjected to an anticlockwise torque of l l .3kNm.  

Wall Length (mm) Thickness (mm) G (Nlmm2) area (mm2) 

12: 1650 1.22 
12' 508 2.03 
13,24 775 1.22 
34 380 1.63 
35,46 508 0.92 
56 254 0.92 

24 200 

24 200 

AI = 258 000 

A111 = 161 000 
27 600 ,411 = 355000 

27 600 
20 700 
20 700 

Note: The superscript symbols o and i are used to distinguish between outer and inner walls connecting the same two 
booms. 

Since the wing section is loaded by a pure torque the presence of the booms has no 
effect on the analysis. 

II 300 Nm n 

Fig. 10.20 Wing section of Example 10.7. 



386 Stress analysis of aircraft components 

Choosing GREF = 27 600N/mm2 then, from Eq. (10.27) 

x 1.22 = 1.07mm 24 200 
27 600 

t i p  = - 

Similarly 
tf3 = r;4 = 1.07mm, t& = t i 6  = t& = 0.69mm 

Hence 

Similarly 
61zi = 250, 613 = 6% = 725, 634 233, 635 = 646 = 736, b56 = 368 

Substituting the appropriate values of 6 in Eq. (10.24) for each cell in turn gives the 
following. 

For cell I 

For cell I1 

[-250qI + qII(250 + 725 + 233 + 725) - 233q11~] (ii) 
de 1 
dz - 2 x 355 OOOGREF 
_-  

For cell 111 

(iii) 
1 

[-233q11+ q111(736 i- 233 + 736 + 368)] 
d6’ -= 
dz 2 x 161 OOOGREF 

In addition, from Eq. (10.22) 

11.3 x lo6 = 2(258 OOOqI + 355 OOOqII + 161 O O O ~ I I I )  (3 
Solving Eqs (i) to (iv) simultaneously gives 

qr = 7.1N/mm, qIr = 8.9N/mm, qIII = 4.2N/mm 

The shear stress in any wall is obtained by dividing the shear flow by the actual wall 
thickness. Hence the shear stress distribution is as shown in Fig. 10.21. 

Fig. 10.21 Shear stress (Wrnm’) distribution in wing section of Example 10.7. 
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10.3.3 Shear 

Initially we shall consider the general case of an N-cell wing section comprising 
booms and skin panels, the latter being capable of resisting both direct and shear 
stresses. The wing section is subjected to shear loads S, and S, whose lines of 
action do not necessarily pass through the shear centre S (see Fig. 10.22); the resulting 
shear flow distribution is therefore due to the combined effects of shear and torsion. 

The method for determining the shear flow distribution and the rate of twist is 
based on a simple extension of the analysis of a single cell beam subjected to shear 
loads (Sections 9.4 and 9.9). Such a beam is statically indeterminate, the single 
redundancy being selected as the value of shear flow at an arbitrarily positioned 
‘cut’. Thus, the N-cell wing section of Fig. 10.22 may be made statically determinate 
by ‘cutting’ a skin panel in each cell as shown. While the actual position of these ‘cuts’ 
is theoretically immaterial there are advantages to be gained from a numerical point 
of view if the ‘cuts’ are made near the centre of the top or bottom skin panel in each 
cell. Generally, at these points, the redundant shear flows are small so that the 
final shear flows differ only slightly from those of the determinate structure. The 
system of simultaneous equations from which the final shear flows are found will 
then be ‘well conditioned’ and will produce reliable results. The solution of an ‘ill 
conditioned’ system of equations would probably involve the subtraction of large 
numbers of a similar size which would therefore need to be expressed to a large 
number of significant figures for reasonable accuracy. Although this reasoning does 
not apply to a completely idealized wing section since the calculated values of 
shear flow are constant between the booms, it is again advantageous to ‘cut’ either 
the top or bottom skin panels for, in the special case of a wing section having a 
horizontal axis of symmetry, a ‘cut’ in, say, the top skin panels will result in the 
‘open section’ shear flows (qb) being zero in the bottom skin panels. This decreases 
the arithmetical labour and simplifies the derivation of the moment equation, as 
will become obvious in Example 10.8. 

The above remarks regarding the ‘cutting’ of multicell wing sections are applicable 
only to this method of analysis. In the approximate analysis of multicell wing sections 

ES Moment centre 
\ 

I- = = :I 

- x  
70 

1 * A - e - 
I t I t 

s, 
Fig. 10.22 N-cell wing section subjected to shear loads. 
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& 
Fig. 10.23 Redundant shear flow in the Rth cell of an N-cell wing section subjected to shear. 

by the method of successive approximations ‘cuts’ are sometimes made in the spar 
webs although in some cases ‘cutting’ the top or bottom skin panels produces a 
more rapid convergence in the numerical iteration process. This approximate 
method is extremely useful when the number of cells is large since, in the above 
approach, it is clear that the greater the number of cells the greater the number of 
simultaneous equations requiring solution. 

The ‘open section’ shear flow q b  in the wing section of Fig. 10.22 is given by Eq. 
(9.75), i.e. 

We are left with an unknown value of shear flow at each of the ‘cuts’, i.e. qs,o,I, 
qs,o,II, . . . , qs,O,N plus the unknown rate of twist de/& which, from the assumption 
of an undistorted cross-section, is the same for each cell. Therefore, as in the torsion 
case, there are N + 1 unknowns requiring N + 1 equations for a solution. 

Consider the Rth cell shown in Fig. 10.23. The complete distribution of shear flow 
around the cell is given by the summation of the ‘open section’ shear flow qb and the 
value of shear flow at the ‘cut’, qs,O,R. We may therefore regard qs,O,R as a constant 
shear flow acting around the cell. The rate of twist is again given by Eq. (9.42); thus 

By comparison with the pure torsion case we deduce that 

in which q b  has previously been determined. There are N equations of the type (10.28) 
so that a further equation is required to solve for the N + 1 unknowns. This is 
obtained by considering the moment equilibrium of the Rth cell in Fig. 10.24. 

The moment Mq,R produced by the total shear flow about any convenient moment 
centre 0 is given by 

M ~ , R  = f qRp0 ds (see Section 9.5) 
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U ’  I I I ‘  
Fig. 10.24 Moment equilibrium of Rth cell. 

Substituting for qR in terms of the ‘open section’ shear flow qb and the redundant 
shear flow qs‘s;O,R, we have 

Mq,R = f R  %PO dS + qs,O,R fRPO dS 

or 

Mq,R = f R  qbP0 ds f 2ARqs,0:R 

The sum of the moments from the individual cells is equivalent to the moment of the 
externally applied loads about the same point. Thus, for the wing section of Fig. 10.22 

(10.29) 

If the moment centre is chosen to coincide with the point of intersection of the lines of 
action of S, and S,, Eq. (10.29) becomes 

(10.30) 

Example 10.8 
The wing section of Example 10.6 (Fig. 10.17) carries a vertically upward shear load 
of 86.8 kN in the plane of the web 572. The section has been idealized such that the 
booms resist all the direct stresses while the walls are effective only in shear. If the 
shear modulus of all walls is 27 600 N / m 2  except for the wall 78 for which it is 
three times this value, calculate the shear flow distribution in the section and the 
rate of twist. Additional data are given below. 

Wall Length (mm) Thickness (mm) Cell area (mm’) 
~~ 

12, 56 1023 1.22 AI = 265000 
23 1274 1.63 AI1 = 213 000 
34 2200 2.03 A111 = 413 000 

483 400 2.64 
572 460 2.64 
61 330 1.63 
78 1270 1.22 
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Choosing GREF as 27 600 N/mm2 then, from Eq. (10.27) 

x 1.22 = 3.66mm 
3 x 27600 

27 600 
t;, = 

Hence 

1270 
3.66 

67, = - - - 347 

Also 

612 = 656 = 840, 623 = 783, 634 = 1083, 63, = 57, 684 = 95, 687 = 347, 

627 = 68, 675 106, 616 = 202 

We now ‘cut’ the top skin panels in each cell and calculate the ‘open section’ shear 
flows using Eq. (9.75) which, since the wing section is idealized, singly symmetrical 
(as far as the direct stress carrying area is concerned) and is subjected to a vertical 
shear load only, reduces to 

where, from Example 10.6, Ixx = 809 x 106mm4. Thus, from Eq. (i) 

86.8 x IO3 
809 x lo6 r = l  

n 

B , ~ ,  = - 1.07 x 1 0 - ~  B , ~ ,  
r = l  

q b  = - (ii) 

Since q b  = 0 at each ‘cut’, then qb = 0 for the skin panels 12,23 and 34. The remaining 
q b  shear flows are now calculated using Eq. (ii). Note that the order of the numerals in 
the subscript of qb indicates the direction of movement from boom to boom. 

qb:27 = -1.07 x 

qb,J6 = -1.07 x 

x 3880 x 230 = -95.5N/mm 

x 2580 x 165 = -45.5N/mm 

qb$5 -45.5 - 1.07 x io-4 x 2580 x (-165) = 0 

qb.57 = .-1.07 X 

qb;38 = -1.07 X 

qb.48 = - 1.07 X lop4 X 3230 x (-200) = 69.0 N/mm 

Therefore, as ,,83 = qb.48 (or qb,72 = qb,57), &7g = 0. The distribution of the shear 
flows is show n Fig. 10.25. The values of 6 and qb are now substituted in Eq. (10.28) 
for each cell in turn. 

For cell I 

X 3880 X (-230) = 95.5N/= 

X 3230 X 200 = -b9.0N/mm 

[qs,o:l( 1083 + 95 + 57) - 57qS,o,11 + 69 x 95 + 69 x 571 (iii) 
d0 1 
dz - 2 x 265 OOOGREF 
_ -  
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Fig. 10.25 q b  distribution (N/mm). 

For cell I1 

+95.5 x 68 - 69 x 571 

For cell I11 

+45.5 x 202 - 95.5 x 68 - 95.5 x 1061 (VI 

The solely numerical terms in Eqs (iii) to (v) represent fR qb(ds/t) for each cell. Care 
must be taken to ensure that the contribution of each q b  value to this term is 
interpreted correctly. The path of the integration follows the positive direction of 
qS,o in each cell, i.e. anticlockwise. Thus, the positive contribution of qb,83 to 
f I  qb(ds/t) becomes a negative contribution to fII  qb(ds/r) and so on. 

The fourth equation required for a solution is obtained from Eq. (10.30) by taking 
moments about the intersection of the x axis and the web 572. Thus 

0 = -69.0 x 250 x 1270 - 69.0 x 150 x 1270 + 45.5 x 330 x 1020 

+2 x 265 OOOqS,o,I + 2 x 213 OOOqS,o,II + 2 x 413 OOOqS,o,III 

qs:o,r = 5.5 N/mm! 4S,O,II = 10.2 N/-, %,O:III = 16.5 N/= 

(vi> 

Simultaneous solution of Eqs (iii)-(vi) gives 

Superimposing these shear flows on the q b  distribution of Fig. 10.25, we obtain the 
final shear flow distribution. Thus 

q34 5 .5N/m~1.  q23 = @7 10.2N/=, q12 = q56 16.5N/mm 

g61 = 62.0 N/mm, q57 = 79.0 N/mm, q72 = 89.2 N/mm 

q48 74.5N/1nm, q83 = 64.3N/mm 

Finally, from any of Eqs (iii)-(v) 

de 
- = 1.16 x 10-6rad/mm 
dz 
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10.3.4 Shear centre 

The position of the shear centre of a wing section is found in an identical manner to 
that described in Section 9.4. Arbitrary shear loads Sx and Sy are applied in turn 
through the shear centre S, the corresponding shear flow distributions determined 
and moments taken about some convenient point. The shear flow distributions are 
obtained as described previously in the shear of multicell wing sections except that 
the N equations of the type (10.28) are sufficient for a solution since the rate of 
twist de/& is zero for shear loads applied through the shear centre. 

10.3.5 Tapered wings 

Wings are generally tapered in both spanwise and chordwise directions. The effects on 
the analysis of taper in a single cell beam have been discussed in Section 10.1. In a 
multicell wing section the effects are dealt with in an identical manner except that 
the moment equation (10.16) becomes, for an N-cell wing section (see Figs 10.5 
and 10.22) 

Example 10.9 
A two-cell beam has singly symmetrical cross-sections 1.2 m apart and tapers symme- 
trically in the y direction about a longitudinal axis (Fig. 10.26). The beam supports 
loads which produce a shear force Sy = lOkN and a bending moment 

1 1 

Fig. 10.26 Tapered beam of Example 10.9. 
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M ,  = 1.65 kNm at the larger cross-section; the shear load is applied in the plane of 
the internal spar web. If booms 1 and 6 lie in a plane which is parallel to the yz 
plane calculate the forces in the booms and the shear flow distribution in the walls 
at the larger cross-section. The booms are assumed to resist all the direct stresses 
while the walls are effective only in shear. The shear modulus is constant throughout, 
the vertical webs are all l.0mm thick while the remaining walls are all 0.8 mm thick. 

~ o o m  areas: B~ = B~ = B~ = B6 = 600mm2, B2 = B~ = 9OOmm' 

At the larger cross-section 

I,, = 4 x 600 x 902 + 2 x 900 x 902 = 34.02 x 106mm4 

The direct stress in a boom is given by Eq. (9.6) in which Ixv = 0 and MJ = 0, i.e. 

whence 

or 

1.65 x 106y B 
34.02 x lo6 

= 0.08yrB,. p,,, = 

The value of P,,, is calculated from Eq. (i) in column 0 of Table 10.5; P.y,r and Py., 
follow from Eqs (10.10) and (10.9) respectively in columns @ and 0. The axial load 
P,  is given by [a2 + O2 + a2I1l2 in column 0 and has the same sign as PZ,, (see Eq. 
(10.12)). The moments of P,,r and P,,,, columns @ and 0, are calculated for a 
moment centre at the mid-point of the internal web taking anticlockwise moments 
as positive. 

From column @ 

(as would be expected from symmetry). 

Table 10.5 

1 2619.0 0 0.0417 0 109.2 2621.3 400 90 0 43680 
2 3928.6 0.0833 0.0417 327.3 163.8 3945.6 0 90 -29457 0 
3 2619.0 0.1250 0.0417 327.4 109.2 2641.6 200 90 -29466 21840 
4 -2619.0 0.1250 -0.0417 -327.4 109.2 -2641.6 200 90 -29466 21840 
5 -3928.6 0.0833 -0.0417 -327.3 163.8 -3945.6 0 90 -29457 0 
6 -2619.0 0 -0.0417 0 109.2 -2621.3 400 90 0 -43680 
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From column @ 

6 
P,,r = 764.4 N 

r = l  

From column @ 

From column @ 

c P y:r ( r =-43680Nmm 
r =  I 

From Eqs (10.15) 

Sx,w = 0, Sy,w = 10 x lo3 - 764.4 = 9235.6N 

Also, since Cx is an axis of symmetry, I,, = 0 and Eq. (9.75) for the ‘open section’ 
shear flow reduces to 

or 

9235’6 c B r y r  = -2.715 x 10-42Bryr  
r = l  r =  1 qb = - 34.02 x lo6 

‘Cutting’ the top walls of each cell and using Eq. (ii), we obtain the qb  distribution 
shown in Fig. 10.27. Evaluating 6 for each wall and substituting in Eq. (10.28) gives 

for cell I 

6 0 5 0 4  

Fig. 10.27 qb (Wmrn) distribution in beam section of Example 10.9 (view along z axis towards C). 
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4.6 2 2.5 
1 

12.2 

4 
2.5 - 4.6 - 6 

Fig. 10.28 Shear flow (Wmm) distribution in tapered beam of Example 10.9. 

Taking moments about the mid-point of web 25 we have, using Eq. (10.31) 

0 = -14.7 x 180 x 400 + 14.7 x 180 x 200 + 2 x 36000q,:031 + 2 X 72oooq,,0.~1 

-117846-43680 

or 

0 = -690 726 + 72000q,,o,~ + 144OOOq,,o,I~ 

Solving Eqs (iii)-(v) gives 

qs,o.r = 4.6 N / m 7  4S,O,II = 2.5 N/mm 
and the resulting shear flow distribution is shown in Fig. 10.28. 

10.3.6 Method of successive approximations - torsion 

It is clear from the torsion and shear loading of multicell wing sections that the greater 
the number of cells the greater the number of simultaneous equations requiring 
solution. Some modem aircraft have wings comprising a relatively large number of 
cells, for example, the Harrier wing shown in Fig. 7.8, so that the arithmetical 
labour involved becomes extremely tedious unless a computer is used; an approxi- 
mate but much more rapid method may therefore be preferable. The method of 
successive approximations provides a simple and rapid method for calculating the 
shear flow in many-celled wing sections and may be used with slight differences of 
treatment for both the pure torsion and shear loading cases. Initially we shall consider 
a wing section subjected to a pure torque. 

The mechanics of the method may be illustrated by considering the simple two-cell 
wing section shown in Fig. 10.29 and which carries a pure torque T.  First we assume 

Fig. 10.29 Method of successive approximations applied to a two-cell wing section. 
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Fig. 10.30 Shear flows giving G(dB/dz) = I for the separated cells of a two-cell wing section. 

that each cell acts independently and that cell I is subjected to a constant shear flow qI 
such that G(dB/dz) for cell I is equal to unity. From Eqs (9.49) and (9.52) 

where 

s - ds / t  
1 - 1 1  

Hence 

2 4  
61 

41 = - 

Similarly, for G(dB/dz) to be unity for cell I1 

We now have the situation shown in Fig. 10.30 where the two cells are separate and 

Imagine now that the two cells are rejoined with the interior web as a common part of 
both cells. The action of qII is to reduce the rate of twist in cell I by applying, in effect, 
a clockwise torque to cell I opposing the anticlockwise torque corresponding to qI. 
Thus, G(de/dz)I is not now equal to G(dB/dz)II so that the assumption of an 
undistorted cross-section is invalidated and the shear flows qr and qII are therefore 
not the true shear flows. 

To correct this situation we again suppose that the cells are separated and apply 
constant shear flows qf and qfI around cells I and I1 respectively to counteract 
the effect of qII (shown dotted) on cell I and qI on cell 11. The total shear flows 
now acting on each cell are shown in Fig. 10.31. Note that the effect of a shear 
flow acting on one wall of a cell, e.g. qII applied to the internal web and acting 
on cell I, is counteracted by a constant shear flow applied around the complete cell. 
Thus 
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---.--- 

Fig. 10.31 First correction shear flows applied to give G(dB/dz) = 1 for the separated cells of a two-cell wing 
section. 

where = Jds/ t  for the wall common to cells I and 11. Hence 

4,II  
4: = 411 - 

61 

Similarly 

(10.32) 

(10.33) 

Since 4 and qfI are expressed in terms of the shear flows in adjacent cells they are 
referred to as correction carry over shear f low .  The factors 61.11/61 and 61,1~/6~~ are 
known as correction carry over factors and may be written as 

6I:II 6I:Il 
CIJI = - 1 %,I = - 

611 61 
(10.34) 

We are now in a similar position to that at the beginning of the example with the wing 
section divided into two separate cells in which G(dB/dz) = 1 but which are now 
subjected to shear flows of, in cell I, qI, qII (on the internal web) and qf and, in cell 
11, qII, qr (on the internal web) and qfI. On rejoining the cells we see that qfI from 
cell I1 acts on the internal web wall of cell I and qf from cell I acts on the internal 
web wall of cell I1 thereby destroying the equality and unit value of G(dB/dz) for 
each cell. We therefore apply second correction shear flows 4 f l  and d1 completely 
around the separated cells I and I1 respectively where, from Eqs (10.32), (10.33) 
and (10.34) 

4: = qf1C11,1, q:1 = 4CI:II  

Clearly the second correction shear flows are smaller than the first so that if the 
procedure is repeated a number of times the correction carry over shear flows rapidly 
become negligible. In practice, the number of corrections made depends on the 
accuracy required. The final shear flows in each cell corresponding to G(dB/dz) M 1 
are then 

qI(fina1) = 41 + 4; + d + d" + . * . 
qII(find) = 411 + 41 + 4'1 + d'i + . . . 
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The actual shear flows are obtained by factoring the final shear flows by the ratio of 
the applied torque to the torque corresponding to the final shear flows, Le. 

Example 10.10 
Solve Example 10.7 using the method of successive approximations. 

From Example 10.7 

61 = 1542 + 250 = 1792 

611 = 250 + 725 + 233 + 725 = 1933 

6111 = 736 + 233 + 736 + 368 = 2073 

61,~ = 250 

611,111 = 233 

Hence, from Eqs (10.34) 
250 
1933 

250 
1792 

233 
2073 

233 
1933 

CI,II = - = 0.129 

CII!J = - = 0.140 

C,,,J,, = - = 0.1 12 

CII1,II = - = 0.121 

Also 

258000 = 287.9N/mm ‘I = 1792 

‘I1 = 1933 
355 Oo0 = 367.3 N/mm 

The remainder of the solution is completed in Table 10.6. Note that the assumed 
values of qI, qII and qIII are rounded off since the method is approximate. 

The solution is virtually identical to that of Example 10.7. Note that the variation 
in shear modulus is treated in the same way as that in Example 10.7, i.e. a reference 
value is chosen and the actual thicknesses converted to modulus weighted thicknesses 
t*; 6 is then Jds/t*. 
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Table 10.6 

CS 
Assumed q (N/mm) 
coq 
coq 
coq 
coq 
Final q (N/mm) 
2Aq (Nmm) 
Total T (Nmm) 
Actual q (N/mm) 
( T =  11.3kNm) 

Cell I 

0.129 
288 

51.38 
5.20 
0.93 
0.09 

1.78 x 10' 

345.6 

7.1 

Cell 11 

0.149 0.112 
367 

37.15 18.76 
6.63 4.97 
0.67 0.25 
0.12 0.07 

435.6 
3.09 x 10' 
5.51 x IO* 
8.9 

Cell I11 

0.121 
155 
41.10 
2.10 
0.56 
0.03 

198.8 
0.64 x 10' 

4.1 

-..*ll*.l-...-* 

10.3.7 Method of successive approximations - shear 
l*lm"l...-. __1_1_ I"----.--. 

The method is restricted to shear loads applied through the shear centre of the wing 
section so that the rate of twist in each cell is zero. Having determined the position of 
the shear centre from the resulting shear flow distribution, the case of a wing section 
subjected to shear loads not applied through the shear centre is solved by replacing 
the actual loading system by shear loads acting through the shear centre together 
with a pure torque; the two separate solutions are then superimposed. 

Consider the three-cell wing section subjected to a shear load S, applied through its 
shear centre shown in Fig. 10.32; the section comprises booms and direct stress 
carrying skin. The lirst step is to 'cut' each cell to produce an 'open section' beam 
(Fig. 10.33). While it is theoretically immaterial where the 'cuts' are made a more 
rapid convergence in the solution is obtained if the top or bottom skin panels are 

t sv 

Fig. 10.32 Three-cell wing section subjected to a shear load through its shear centre. 

Fig. 10.33 'Open section'shear flows (qt,). 
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Fig. 10.34 Constant shear flows applied to each cell to counteract the twisting effect of q, shear flows. 

‘cut’. This is due to the fact that, in a section carrying a shear load without twist, the 
spar webs carry the greater shear flows so that the ‘open section’ shear flows in the 
webs will be closer to the h a 1  values than if the webs were ‘cut’, giving a more 
rapid convergence in the successive approximation procedure. Clearly the reverse is 
the case if a horizontal shear load is applied. The ‘open section’ shear flow distribu- 
tion is obtained using Eq. (9.75) in which S, = 0, i.e. 

(10.35) 

If we now imagine that each cell is separate and closed, the above q b  shear flows will 
cause each cell to twist. We therefore apply constant shear flows 4, qfI and dII to cells 
I, I1 and I11 respectively to reduce this twist to zero (Fig. 10.34). On rejoining the cells 
it is clear that dI will cause twist in cell I by its action on the web common to cells I 
and 11, that qi will cause twist in cell I1 and so on. We therefore apply a second system 
of corrective shear flows 4, d1, dI1 to the separated cells I, I1 and I11 respectively. 
However, since the cells are not separate these additional shear flows cause twist in 
adjacent cells so that a third system of constant corrective shear flows is required. 
This procedure is repeated until the corrective shear flows become negligibly small. 
The totals qI,  qII and qIII of the corrective shear flows are then given by 

qI =d+d+qr(l+-- 
411 = 41 + a: + 4 + . . . 

qIII = 411 + 411 + qYi1 + . . * 
so that the final shear flow distribution is 

q(fina1) = q b  -k 41 + 411 + qIII (10.36) 

It should be noted that all the shear flows in Eq. (10.36) do not act on every wall of the 
wing section. For example, on the spar web common to cells I and I1 the final shear 
flow is the sum of qb, qI and qII. 

The equations from which the actual values of qI, qII and qIII are obtained are 
derived as follows. Consider cell 11, with its final shear flow acting as shown in 
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Fig. 10.35 Final shear flow system in Cell II. 

Fig. 10.35. Since the cell does not twist then, from Eq. (9.42) 

dB 1 ds -=- q - = o  
dz 2AIIGf11 t 

or 

Hence, from Fig. 10.35 and taking anticlockwise torques as positive 
ds 

fII q b  7 - qI1611 + qIbI,II f ~ I I I ~ I I I . 1 1  = 0 

giving 

(10.37) 

The first term on the right-hand side of Eq. (10.37) represents the proportion of the 
'open section' shear flow q b  which acts as a constant shear flow around the cell to 
cancel out the twist due to qb; the second and third terms counteract the twist due 
to qr and qllI. Rewriting Eq. (10.37) 

411 = QiI + C1,rrqr + CI1I:lIqIII (10.38) 

in which CIqII is the correction carry over factor from cell I to cell I1 and CIIIqII is the 
correction carry over factor from cell 111 to cell 11. 

As a first approximation in the solution we neglect the effect of the shear flows in 
adjacent cells so that 

411 = 41 
Similarly 

41 = rlf? qIII = 4 h  

Substituting these values in Eq. (10.38) we have 

(10.39) 

(10.40) 
or 

411 = 41 + 41 
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Similarly and simultaneously, corrections qy and dII are applied to the approxima- 
tions for qI and qIII which in turn affect qII. Thus, when the corrective shear flows 
become negligibly small we have 

Similar expressions are derived for qI and qIII. 

Example 10. I I 
Determine the shear flow distribution in the singly symmetrical three-cell wing section 
shown in Fig. 10.36 when it carries a shear load of 100 kN applied through its shear 
centre and hence find the distance of the shear centre from the spar web 34. Assume 
that all direct stresses are resisted by the booms while the skin is effective only in 
shear. The shear modulus G is constant throughout 

2 2 Boom areas: B1 = B6 = 2500mm , B2 = B5 = 3800mm B3 = B4 = 3200mm2 

Cell areas: AI  = 265 000 mm2, A11 = 580 000 m 2 ,  AIII = 410 000 mm2 

Wall 12, 56 23,45 34" 16 25 34' 
Length (mm) 1025 1275 2200 330 460 400 
Thickness (mm) 1.25 1.65 2.25 1.65 2.65 2.65 

Initially we calculate SI, SI, etc. and the correction carry over factors CI,II, CII,I etc. 

SI=-+-= 2200 400 1128.7 
2.25 2.65 

Similarly 

t IOokN 
I 7 n L 

6 

1270 rnrn 1020 rnrn 

Fig. 10.36 Three-cell wing section of Example 10.1 1. 
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Fig. 10.37 Open section shear flow (N/mm) distribution in wing section of Example 10.1 1. 

Similarly 

CII,I = 0.134, CII,JII = 0.086, CIII~II = 0.093 

The wing section has the x axis as an axis of symmetry, is completely idealized and 
carries a vertical shear load only so that Eq. (10.35) reduces to 

in which 

Z, = 2 x 2500 x 1652 + 2 x 3800 x 2302 + 2 x 3200 x 2002 = 7.94 x 10’ mm4 

Thus 

-100 x io3 I2 C B,Y, = - 1 .26 x 10-~  BJI, 
r = l  qb = 7.94 x 108 r = l  

‘Cutting’ the top skin panel in each cell, we obtain, using Eq. (i), the q b  shear flow 
distribution shown in Fig. 10.37. From Fig. 10.37 

qb 7 = 

ds 

= 12 166.0N/mm 2.65 

tII q b  7 = 6945.7 N/mm 

$11, qb 7 = -6218.9 N/mm 
ds 

The solution is now completed in Table 10.7. 

opposite sense to qb. The final shear flow distribution is shown in Fig. 10.38. 

(1 1.4 x 400 + 73.6 x 400 + 2 x 4.4 x 30 + 103.0 x 460 + 2 x 2.7 x 65 

Note that in Table 10.7 a negative sign is used to indicate that 4 etc. are in the 

A check on the vertical equilibrium of the wing section gives 

+54.7 x 330)/103 = lOOkN 

Now taking moments about the centre of spar web 34 

100 x lo3& = 2AIqI + 2AIIqIl+ 2A111qI11f 110.1 x 460 x 1270 + 52 x 330 x 2290 

which gives Es = 946.8 mm. 
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Table 10.7 
~ ~ 

cell I 

I qb w t  12 166.0 
6 1128.7 
cs 0.08 
6[= -(I4bW)/4 -10.78 
c o q  -0.50 
c o q  -0.08 
c o q  -0.01 
Corrective shear flows -11.37 

Cell I1 

6945.7 
1870.0 

0.134 0.086 
-3.71 

-0.86 0.29 
-0.04 -0.03 
-0.01 0 

-4.36 

Cell I11 

-6218.9 
2013.6 

0.093 
3.09 

-0.32 
-0.05 

0 
2.73 

I 54.7 

Fig. 10.38 Final shear flow (N/mm) distribution in wing section of Example 10.1 1. 

Note that for convenience of calculation, the moments due to the ‘open section’ 
shear flows and the corrective shear flows are computed separately. 

10.3.8 Deflections 

Deflections .of multicell wings may be calculated by the unit load method in an 
identical manner to that described in Section 9.10 for open and single cell beams. 

Example 10.12 
Calculate the deflection at the free end of the two-cell beam shown in Fig. 10.39 allow- 
ing for both bending and shear effects. The booms carry all the direct stresses while 
the skin panels, of constant thickness throughout, are effective only in shear. 

Take E = 69 000 N/mm2 and G = 25 900 N/mm2 

Boom areas: -B, = B3 = B4 = B6 = 650mm , B2 = B5 = 1300mm2 2 

The beam cross-section is symmetrical about a horizontal axis and carries a vertical 
load at its free end through the shear centre. The deflection A at the free end is then, 
from Eqs (9.86) and (9.88) 
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2mm 
3 1 

mm 

Fig. 10.39 Deflection of two-cell wing section. 

where 

M , , ~  = -44.5 x 103(2000 - z), M , , ~  = 42000 - Z) 

and 

I,, = 4 x 650 x 1252 + 2 x 1300 x 1252 = 81.3 x 106mm4 

also 

sy,o = 44.5 x io3 N, sy,l = 1 

The qo and q1 shear flow distributions are obtained as previously described (note 
de/& = 0 for a shear load through the shear centre) and are 

q0,12 = 9.6N/mm, 40.23 = -5.8N/mm, qO,43 = 50.3N/mm 

40~45 = -5.8N/mm, 40.56 = 9 . 6 N / m ,  = 54.1 N / m  

qo.52 = 73.6N/mm at all sections of the beam 

The q1 shear flows in this case are given by q0/44.5 x lo3. Thus 

(9A2 x 250 x 2 + 5.g2 x 500 x 2 
4041 1 - ds = S section Gt 25900 x 2 x 44.5 x lo3 

+ 50.32 x 250 + 54.12 x 250 + 73.6’ x 250) 

= 1.22 

Hence, from Eq. (i) 

200044.5 103(2000 - z ) ~  dz + J,’” 1.22 x 
dz 

69000 x 81.3 x lo6 
giving 

A = 23.5mm 
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250 rnrn 250 rnrn 

Aircraft are constructed primarily from thin metal skins which are capable of resisting 
in-plane tension and shear loads but buckle under comparatively low values of in- 
plane compressive loads. The skins are therefore stiffened by longitudinal stringers 
which. resist the in-plane compressive loads and, at the same time, resist small 
distributed loads normal to the plane of the skin. The effective length in compression 
of the stringers is reduced, in the case of fuselages, by transverse frames or bulkheads 
or, in the case of wings, by ribs. In addition, the frames and ribs resist concentrated 
loads in transverse planes and transmit them to the stringers and the plane of the skin. 
Thus, cantilever wings may be bolted to fuselage frames at the spar caps while under- 
carriage loads are transmitted to the wing through spar and rib attachment points. 

Generally, frames and ribs are themselves fabricated from thin sheets of metal and 
therefore require stiffening members to distribute the concentrated loads to the thin 
webs. If the load is applied in the plane of a web the stiffeners must be aligned with 
the direction of the load. Alternatively, if this is not possible, the load should be 
applied at the intersection of two stiffeners so that each stiffener resists the component 
of load in its direction. The basic principles of stiffener/web construction are 
illustrated in Example 10.13. 

_ _  t 

250 rnm 

Example 10.13 
A cantilever beam (Fig. 10.40) carries concentrated loads as shown. Calculate the 
distribution of stiffener loads and the shear flow distribution in the web panels 
assuming that the latter are effective only in shear. 

We note that stiffeners HKD and JK are required at the point of application of the 
4000 N load to resist its vertical and horizontal components. A further transverse 
stiffener GJC is positioned at the unloaded end J of the stiffener JK since stress 

rnrn 

rnrn 
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(a) 

H 
(b) 

Fig. 10.41 Free body diagrams of stiffeners JK and HKD in the beam of Example 10.13. 

concentrations are produced if a stiffener ends in the centre of a web panel. We note 
also that the web panels are only effective in shear so that the shear flow is constant 
throughout a particular web panel; the assumed directions of the shear flows are 
shown in Fig. 10.40. 

It is instructive at this stage to examine the physical role of the different structural 
components in supporting the applied loads. Generally, stiffeners are assumed to 
withstand axial forces only so that the horizontal component of the load at K is 
equilibrated locally by the axial load in the stiffener JK and not by the bending of 
stiffener HKD. By the same argument the vertical component of the load at K is 
resisted by the axial load in the stiffener HKD. These axial stiffener loads are 
equilibrated in turn by the resultants of the shear flows q1 and q2 in the web panels 
CDKJ and JKHG. Thus we see that the web panels resist the shear component of 
the externally applied load and at the same time transmit the bending and axial 
load of the externally applied load to the beam flanges; subsequently, the flange 
loads are reacted at the support points A and E. 

Consider the free body diagrams of the stiffeners JK and HKD shown in 
Figs 10.41(a) and (b). 

From the equilibrium of stiffener JK we have 

(ql - q2) x 250 = 4000 sin 60" = 3464.1 N (i) 
and from the equilibrium of stiffener HKD 

200q1 + 100q2 = 4000 COS 60" = 2000 N (ii) 
Solving Eqs (i) and (ii) we obtain 

q1 = 11.3 N/mm, q2 = -2.6 N/mm 

The vertical shear force in the panel BCGF is equilibrated by the vertical resultant of 
the shear flow q3. Thus 

3ooq3 = 4000 COS 60" = 2000 N 

whence 
q 3  = 6.7N/mm 
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C 

G 

Fig. 10.42 Equilibrium of stiffener CJG in the beam of Example 10.13. 

Alternatively, q3 may be found by considering the equilibrium of the stiffener CJG. 
From Fig. 10.42 

3ooq3 = 200ql + looqz 

or 

3ooq3 = 200 X 11.3 - 100 X 2.6 

from which 

43 = 6.7N/= 

The shear flow q4 in the panel ABFE may be found using either of the above methods. 
Thus, considering the vertical shear force in the panel 

3ooq4 = 4000 COS 60" + 5000 = 7000 N 

whence 

44 = 23.3 N / m  

Alternatively, from the equilibrium of stiffener BF 
3OOq4 - 3OOq3 = 5OOON 

whence 

44 = 23.3 N / m  

The flange and stiffener load distributions are calculated in the same way and are 
obtained from the algebraic summation of the shear flows along their lengths. For 
example, the axial load PA at A in the flange ABCD is given by 

PA = 250ql + 25oq3 + 25oq4 
or 

PA = 250 x 11.3 + 250 x 6.7 + 250 x 23.3 = 10 325N (Tension) 

Similarly 

PE = -250q2 - 25093 - 25oq4 

i.e. 
PE = 250 x 2.6 - 250 x 6.7 - 250 x 23.3 = -6850N (Compression) 
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10325 N 

2825 N 
Tension 

6.7 - 11.3 - D A 23.3 

23.3 
Shear flows in Wrnm 

2.6 ,, - F 6.7 G 

Fig. 10.43 Load distributions in flanges of the beam of Example 10.13. 

The complete load distribution in each flange is shown in Fig. 10.43. The stiffener load 
distributions are calculated in the same way and are shown in Fig. 10.44. 

The distribution of flange load in the bays ABFE and BCGF could have been 
obtained by considering the bending and axial loads on the beam at any section. 
For example, at the section AE we can replace the actual loading system by a bending 
moment 

MAE = 5000 x 250 + 2000 x 750 - 3464.1 x 50 = 2 576 800 N IIUII 

and an axial load acting midway between the flanges (irrespective of whether or not 
the flange areas are symmetrical about this point) of 

P = 3464.1 N 

6.7 

E 

3464 N 

11.3 

2260 N 
J J r K  K 

2.6 

H 
(Tension) Shear flows in Nlmm 

Fig. 10.44 Load distributions in stiffeners of the beam of Example 10.13. 
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Fig. 10.45 Structural arrangement for an out of plane load. 

Thus 
576 +-- 3464'1 - 10 321 N (Tension) 
300 2 

PA = 

and 
-2 576 800 3464.1 

300 2 
+-- - -6857 N (Compression) PE = 

This approach cannot be used in the bay CDHG except at the section CJG since the 
axial load in the stiffener JK introduces an additional unknown. 

The above analysis assumes that the web panels in beams of the type shown in 
Fig. 10.40 resist pure shear along their boundaries. In Section 6.13 we saw that 
thin webs may buckle under the action of such shear loads producing tension field 
stresses which, in turn, induce additional loads in the stiffeners and flanges of 
beams. The tension field stresses may be calculated separately by the methods 
described in Section 6.13 and then superimposed on the stresses determined as 
described above. 

So far we have been concerned with web/stiffener arrangements in which the loads 
have been applied in the plane of the web so that two stiffeners were sufficient to resist 
the components of a concentrated load. Frequently, loads have an out-of-plane 
component in which case the structure should be arranged so that two webs meet 
at the point of load application with stiffeners aligned with the three component 
directions (Fig. 10.45). In some situations it is not practicable to have two webs 
meeting at the point of load application so that a component normal to a web 
exists. If this component is small it may be resisted in bending by an in-plane stiffener, 
otherwise an additional member must be provided spanning between adjacent frames 
or ribs, as shown in Fig. 10.46. In general, no normal loads should be applied to an 
unsupported web no matter how small their magnitude. 

10.4.1 Fuselage frames 

We have noted that fuselage frames transfer loads to the fuselage shell and provide 
column support for the longitudinal stringers. The frames generally take the form 
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Fig. 10.46 Support of load having a component normal to a web. 

of open rings so that the interior of the fuselage is not obstructed. They are connected 
continuously around their peripheries to the fuselage shell and are not necessarily 
circular in form but will usually be symmetrical about a vertical axis. 

A fuselage frame is in equilibrium under the action of any external loads and the 
reaction shear flows from the fuselage shell. Suppose that a fuselage frame has a 
vertical axis of symmetry and carries a vertical external load W ,  as shown in 
Fig. 10.47(a) and (b). The fuselage shell/stringer section has been idealized such 
that the fuselage skin is effective only in shear. Suppose also that the shear force in 
the fuselage immediately to the left of the frame is Sy,l and that the shear force in 
the fuselage immediately to the right of the frame is S,,,2; clearly, Sy,2 = S,,: - 
W .  Sy,l and S,,2 generate shear flow distributions q1 and q2 respectively in the fuselage 
skin, each given by Eq. (10.17) in which Sx,l = Sx,2 = 0 and Ixy = 0 (Cy is an axis of 
symmetry). The shear flow qf transmitted to the periphery of the frame is equal to the 
algebraic sum of q1 and q2, i.e. 

4f = 41 - 42 

W I 
c 

X 

(a) 

Fig. 10.47 Loads on a fuselage frame. 
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Thus, substituting for q1 and q2 obtained from Eq. (10.17) and noting that 
S,,,2 = S,,l - W, we have 

in which qs,o is calculated using Eq. (9.37) where the shear load is W and 

-w 
qb = BrYr 

I x x  r = l  

The method of determining the shear flow distribution applied to the periphery of a 
fuselage frame is identical to the method of solution (or the alternative method) of 
Example 10.5. 

Having determined the shear flow distribution around the periphery of the frame, 
the frame itself may be analysed for distributions of bending moment, shear force and 
normal force, as described in Section 4.7. 

10.4.2 Wing ribs 

Wing ribs perform similar functions to those performed by fuselage frames. They 
maintain the shape of the wing section, assist in transmitting external loads to the 
wing skin and reduce the column length of the stringers. Their geometry, however, 
is usually different in that they are frequently of unsymmetrical shape and possess 
webs which are continuous except for lightness holes and openings for control runs. 

Wing ribs are subjected to loading systems which are similar to those applied to 
fuselage frames. External loads applied in the plane of the rib produce a change in 
shear force in the wing across the rib; this induces reaction shear flows around its 
periphery. These are calculated using the methods described in Chapter 9 and in 
Section 10.3. To illustrate the method of rib analysis we shall use the example of a 
three-flange wing section in which, as we noted in Section 10.3, the shear flow 
distribution is statically determinate. 

Example 10.14 
Calculate the shear flows in the web panels and the axial loads in the flanges of the 
wing rib shown in Fig. 10.48. Assume that the web of the rib is effective only in 
shear while the resistance of the wing to bending moments is provided entirely by 
the three flanges 1,2 and 3. 

Since the wing bending moments are resisted entirely by the flanges 1,2 and 3, the 
shear flows developed in the wing skin are constant between the flanges. Using the 
method described in Section 10.3 for a three-flange wing section we have, resolving 
forces horizontally 

600q12 - 600q23 = 12 000 N (9 
Resolving vertically 

3ooq31 - 3ooq23 15 000 N 
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300 rnrn 300 mrn 

Fig. 10.48 Wing rib of Example 10.14. 

Taking moments about flange 3 
2(50000+95000)q23 + 2  x 95000q12 = -15000 x 300Nmm (iii) 

Solution of Eqs (i), (ii) and (iii) gives 
q12 = 1 3 . 0 N / ~ ,  q23 = -7.ON/m, 431 = 4 3 . 0 N / m  

Consider now the nose portion of the rib shown in Fig. 10.49 and suppose that the 
shear flow in the web immediately to the left of the stiffener 24 is q l .  The total vertical 
shear force Sy,l at this section is given by 

Sy,l = 7.0 x 300 = 2100N 

The horizontal components of the rib flange loads resist the bending moment at this 
section. Thus 

2 x 50 000 x 7.0 = 2333.3 
300 px,4 = px,2 = 

The corresponding vertical components are then 
Py,2 = Py,4 = 2333.3 tan 15" = 625.2N 

Thus the shear force carried by the web is 2100 - 2 x 625.2 = 849.6N. Hence 
849.6 
300 

41 = - = 2 . 8 N / m  

py.4 p 4  
- 4 '  

Fig. 10.49 Equilibrium of nose portion of the rib. 
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- 
7.0 N/rnrn 

320 rnm I 
Fig. 10.50 Equilibrium of rib forward of intermediate stiffener 56. 

The axial loads in the rib flanges at this section are given by 

Pz = P4 = (2333.32 + 625.22)''2 = 2415.6N 

The rib flange loads and web panel shear flows, at a vertical section immediately to the 
left of the intermediate web stiffener 56, are found by considering the free body 
diagram shown in Fig. 10.50. At this section the rib flanges have zero slope so that 
the flange loads P5 and P6 are obtained directly from the value of bending moment 
at this section. Thus 

P5=P6=2[(50000+46000) ~ 7 . 0 - 4 9 0 0 0 ~  13.0]/320=218.8N 

The shear force at this section is resisted solely by the web. Hence 
32092 = 7.0 x 300 + 7.0 x 10 - 13.0 x 10 = 2040N 

so that 
42 6.4N/- 

The shear flow in the rib immediately to the right of stiffener 56 is found most simply 
by considering the vertical equilibrium of stiffener 56 as shown in Fig. 10.51. Thus 

320q3 = 6.4 x 320 + 15000 

which gives 
q3 = 53.3N/mm 

Fig. 10.51 Equilibrium of stiffener 56. 
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15000N I 

Fig. 10.52 Equilibrium of the rib forward of stiffener 31. 

Finally, we shall consider the rib flange loads and the web shear flow at a section 
immediately forward of stiffener 31. From Fig. 10.52, in which we take moments 
about the point 3 

M3=2[(50000+95000) x 7 . 0 - 9 5 0 0 0 ~  13.0]+15000x300=4.06x 106Nmm 

The horizontal components of the flange loads at this section are then 

4.06 x lo6 
300 

= 13 533.3N PX,l = px,3 = 

and the vertical components are 

Py,l = Py,3 = 3626.2N 

Hence 

PI = P3 = J13 533.32 + 3626.22 = 14010.7N 

The total shear force at this section is 15 000 + 300 x 7.0 = 17 100 N. Therefore, the 
shear force resisted by the web is 17 100 - 2 x 3626.2 = 9847.6N so that the shear 
flow g3 in the web at this section is 

9847.6 
93 =- = 32.8 N/mm 

So far we have considered wings and fuselages to be closed boxes stiffened by 
transverse ribs or frames and longitudinal stringers. In practice it is necessary to 
provide openings in these closed stiffened shells. Thus, wings may have openings 
on their undersurfaces to accommodate retractable undercarriages; other openings 
might be required for fuel tanks, engine nacelles and weapon installations. Fuselage 
structures have openings for doors, cockpits, bomb bays, windows in passenger 
cabins etc. Other openings provide means of access for inspection and maintenance. 
These openings or 'cut-outs' produce discontinuities in the otherwise continuous shell 
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structure so that loads are redistributed in the vicinity of the cut-out affecting loads in 
the skin, stringers, ribs and frames of the wing and fuselage. Frequently these regions 
must be heavily reinforced resulting in unavoidable weight increases. 

10.5.1 Cutats in wings 

Initially we shall consider the case of a wing subjected to a pure torque in which one 
bay of the wing has the skin on its undersurface removed. The method is best 
illustrated by a numerical example. 

Example 10.15 
The structural portion of a wing consists of a three-bay rectangular section box which 
may be assumed to be h l y  attached at all points around its periphery to the aircraft 
fuselage at its inboard end. The skin on the undersurface of the central bay has been 
removed and the wing is subjected to a torque of lOkNm at its tip (Fig. 10.53). 
Calculate the shear flows in the skin panels and spar webs, the loads in the corner 
h g e s  and the forces in the ribs on each side of the cut-out assuming that the spar 
h g e s  carry all the-direct loads while the skin panels and spar webs are effective 
only in shear. 

If the wing structure were continuous and the effects of restrained warping at the 
built-in end ignored, the shear flows in the skin panels would be given by 
Eq. (9.49), i.e. 

= 31.3N/m~l 
T 10 x lo6 q = - -  

2A - 2 x 200 x 800 

Statio 

I 
Fig. 10.53 Three-bay wing structure with cut-out of Example 10.1 5. 
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Fig. 10.54 Differential bending of front spar. 

and the flanges would be unloaded. However, the removal of the lower skin panel in 
bay @ results in a torsionally weak channel section for the length of bay @ which 
must in any case still transmit the applied torque to bay (iJ and subsequently to 
the wing support points. Although open section beams are inherently weak in torsion 
(see Section 9.6), the channel section in this case is attached at its inboard and 
outboard ends to torsionally stiff closed boxes so that, in effect, it is built-in at 
both ends. We shall examine the effect of axial constraint on open section beams 
subjected to torsion in Chapter 11. An alternative approach is to assume that the 
torque is transmitted across bay @ by the differential bending of the front and 
rear spars. The bending moment in each spar is resisted by the flange loads P as 
shown, for the front spar, in Fig. 10.54(a). The shear loads in the front and rear 
spars form a couple at any station in bay @ which is equivalent to the applied 
torque. Thus, from Fig. 10.54(b) 

800s = 10 x 106Nmm 

i.e. 

S = 12500N 

The shear flow q1 in Fig. 10.54(a) is given by 

12 500 
200 41 = - = 62.5 N/mm 

Midway between stations 1500 and 3000 a point of contraflexure occurs in the front 
and rear spars so that at this point the bending moment is zero. Hence 

200P = 12 500 x 750 N lzl~ll 

so that 

P = 46 875N 
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4500 

Fig. 10.55 Loads on bay @ of the wing of Example 10.15. 

Alternatively, P may be found by considering the equilibrium of either of the spar 
flanges. Thus 

2P = 1500ql = 1500 x 62.5N 

whence 

P = 46875N 

The flange loads P are reacted by loads in the flanges of bays (iJ and 0. These flange 
loads are transmitted to the adjacent spar webs and skin panels as shown in Fig. 10.55 
for bay 0 and modify the shear flow distribution given by Eq. (9.49). For equilibrium 
of flange 1 

1500q2 - 150093 = P 46 875 N 

or 

42 - q3 = 31.3 6) 
The resultant of the shear flows q2 and q3 must be equivalent to the applied torque. 
Hence, for moments about the centre of symmetry at any section in bay 0 and 
using Eq. (9.79) 

200 x 800q2 + 200 x 800q3 = 10 x lo6 N mm 
or 

q2 + q 3  = 62.5 
Solving Eqs (i) and (ii) we obtain 

92 = 46.9N/mm, 93 = 15.6N/n~n 

Comparison with the results of Eq. (9.49) shows that the shear flows are increased by 
a factor of 1.5 in the upper and lower skin panels and decreased by a factor of 0.5 in 
the spar webs. 
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Fig. 10.56 Distribution of load in the top flange of the front spar of the wing of Example 10.1 5. 

46.9 

I 

The flange loads are in equilibrium with the resultants of the shear flows in the 
adjacent skin panels and spar webs. Thus, for example, in the top flange of the 
front spar 

P(st.4500) = 0 

P(st.3000) = 1500q2 - 1500q3 = 46 875 N (Compression) 

P(~t.2250) = 15ooq2 - 1500q3 - 750ql = 0 

The loads along the remainder of the flange follow from antisymmetry giving the 
distribution shown in Fig. 10.56. The load distribution in the bottom flange of the 
rear spar will be identical to that shown in Fig. 10.56 while the distributions in the 
bottom flange of the front spar and the top flange of the rear spar will be reversed. 
We note that the flange loads are zero at the built-in end of the wing (station 0). 
Generally, however, additional stresses are induced by the warping restraint at the 
built-in end; these are investigated in Chapter 11. The loads on the wing ribs on 
either the inboard or outboard end of the cut-out are found by considering the 
shear flows in the skin panels and spar webs immediately inboard and outboard of 
the rib. Thus, for the rib at station 3000 we obtain the shear flow distribution 
shown in Fig. 10.57. The shear flows in the wing rib panels and the loads in the flanges 
and stiffeners are found as previously described in Section 10.4. 

In Example 10.15 we implicitly assumed in the analysis that the local effects of the 
cut-out were completely dissipated within the length of the adjoining bays which 
were equal in length to the cut-out bay. The validity of this assumption relies on 
St. Venant’s principle (Section 2.4). It may generally be assumed therefore that the 
effects of a cut-out are restricted to spanwise lengths of the wing equal to the 
length of the cut-out on both inboard and outboard ends of the cut-out bay. 

- 
46.9 

Fig. 10.57 Shear flows (Wmm) on wing rib at station 3000 in the wing of Example 10.1 5. 
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We shall now consider the more complex case of a wing having a cut-out and 
subjected to shear loads which produce both bending and torsion. Again the 
method is illustrated by a numerical example. 

Example IO. 16 
A wing box has the skin panel on its undersurface removed between stations 2000 and 
3000 and carries lift and drag loads which are constant between stations 1000 and 4000 
as shown in Fig. 10.58(a). Determine the shear flows in the skin panels and spar webs 
and also the loads in the wing ribs at the inboard and outboard ends of the cut-out bay. 
Assume that all bending moments are resisted by the spar flanges while the skin panels 
and spar webs are effective only in shear. 

The simplest approach is first to determine the shear flows in the skin panels and 
spar webs as though the wing box were continuous and then to apply an equal and 
opposite shear flow to that calculated around the edges of the cut-out. The shear 
flows in the wing box without the cut-out will be the same in each bay and are 
calculated using the method described in Section 9.9 and illustrated in Example 
9.14. This gives the shear flow distribution shown in Fig. 10.59. 

We now consider bay @ and apply a shear flow of 75.9 N/mm in the wall 34 in the 
opposite sense to that shown in Fig. 10.59. This reduces the shear flow in the wall 34 to 
zero and, in effect, restores the cut-out to bay 0. The shear flows in the remaining 
walls of the cut-out bay will no longer be equivalent to the externally applied shear 

120 kN WO mm2 

20 kN 

4 

- I_ 
m m m  I m m m  

Station 4 
4Ooo 

la1 lbl 

Fig. 10.58 Wing box of Example 10.16. 

Fig. 10.59 Shear flow (Wmm) distribution at any station in the wing box of Example 10.1 6 without cut-out. 
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Fig. 10.60 Correction shear flows in the cut-out bay of the wing box of Example 10.16. 

loads so that corrections are required. Consider the cut-out bay (Fig. 10.60) with the 
shear flow of 75.9 N/mm applied in the opposite sense to that shown in Fig. 10.59. The 
correction shear flows d2, d2 and d4 may be found using statics. Thus, resolving 
forces horizontally we have 

800d2 = 800 x 75.9N 

whence 

4 2  = 7 5 . 9 N / m  

Resolving forces vertically 

200632 = 504'12 - 50 X 75.9 - 30044 = O 

and taking moments about 0 in Fig. 10.58(b) we obtain 

2 x 52000& - 2 x 40000q'32 + 2 x 52000 x 75.9 - 2 x 60000qi4 = 0 

Solving Eqs (i) and (ii) gives 

qi2 = 117.6N/mm, d4 = 53.1 N/mm 

(i) 

(ii) 

The final shear flows in bay @ are found by superimposing d2, q i 2  and 4 4  on the 
shear flows in Fig. 10.59, giving the distribution shown in Fig. 10.61. Alternatively, 
these shear flows could have been found directly by considering the equilibrium of 
the cut-out bay under the action of the applied shear loads. 

The correction shear flows in bay @ (Fig. 10.60) will also modify the shear flow 
distributions in bays (iJ and 0. The correction shear flows to be applied to those 
shown in Fig. 10.59 for bay 0 (those in bay @ will be identical) may be found by 
determining the flange loads corresponding to the correction shear flows in bay @ . 

4 

Fig. 10.61 Final shear flows (Wmm) in the cut-out bay of the wing box of Example 10.16. 
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It can be seen from the magnitudes and directions of these correction shear flows (Fig. 
10.60) that at any section in bay @ the loads in the upper and lower flanges of the 
front spar are equal in magnitude but opposite in direction; similarly for the rear 
spar. Thus, the correction shear flows in bay @ produce an identical system of 
flange loads to that shown in Fig. 10.54 for the cut-out bays in the wing structure 
of Example 10.15. It follows that these correction shear flows produce differential 
bending of the front and rear spars in bay 0 and that the spar bending moments 
and hence the flange loads are zero at the mid-bay points. Thus, at station 3000 the 
flange loads are 

P I  = (75.9 + 53.1) x 500 = 64 500N (Compression) 

P4 = 64 500 N (Tension) 

Pz = (75.9 + 117.6) x 500 = 96 750 N (Tension) 

P3 = 96750N (Tension) 

These flange loads produce correction shear flows &, d3, d3 and dl in the skin 
panels and spar webs of bay @) as shown in Fig. 10.62. Thus for equilibrium of 
flange 1 

1OOOd1+ 1000& = 64 500 N (iii) 
and for equilibrium of flange 2 

1000& + lOOO& = 96750N 64 
For equilibrium in the chordwise direction at any section in bay @) 

80041 = 800d3 

96 750 N 

64 500 N 

2 

64 500 N 

3 

Station 4 
4000 

Fig. 10.62 Correction shear flows in bay 0 of the wing box of Example 10.16. 
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Fig. 10.63 Final shear flows in bay @ (and bay 0) of the wing box of Example 10.16. 

79.7 

Fig. 10.64 Shear flows (Wrnm) applied to the wing rib at  station 3000 in the wing box of Example 10.16. 

or 

d1 = d 3  

Finally, for vertical equilibrium at any section in bay @) 

30041 + 50& + 5oq& - 200& = 0 (vi) 
Simultaneous solution of Eqs (iii)-(vi) gives 

qgl = d3 = 38.0N/mm, d3 = 58.8N/mm, dl = 26.6N/mm 

Superimposing these correction shear flows on those shown in Fig. 10.59 gives the 
final shear flow distribution in bay @) as shown in Fig. 10.63. The rib loads at stations 
2000 and 3000 are found as before by adding algebraically the shear flows in the skin 
panels and spar webs on each side of the rib. Thus, at station 3000 we obtain the shear 
flows acting around the periphery of the rib as shown in Fig. 10.64. The shear flows 
applied to the rib at the inboard end of the cut-out bay will be equal in magnitude but 
opposite in direction. 

Note that in this example only the shear loads on the wing box between stations 
1000 and 4000 are given. We cannot therefore determine the final values of the 
loads in the spar flanges since we do not know the values of the bending moments 
at these positions caused by loads acting on other parts of the wing. 

10.5.2 Cut-outs in fuselages 
y_ 

Large openings in fuselage structures such as those required for cockpits, bomb bays 
and doors are treated in the same way as cut-outs in wing structures. In some 
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Window 
cut-out 

I I 
Fig. 10.65 Fuselage panel with windows. 

situations, for example door openings in passenger aircraft, it is not possible to 
provide rigid frames on either side of the opening because the cabin space must not 
be restricted. In these cases a rigid frame is inserted to resist the shear loads and 
transmit loads around the opening. 

The effects of smaller cut-outs, such as those required for rows of windows in 
passenger aircraft, may be found approximately as follows. Figure 10.65 shows a 
fuselage panel provided with cut-outs for windows which are spaced a distance I 
apart. The panel is subjected to an average shear flow qav which would be the value 
of the shear flow in the panel without cut-outs. Considering a horizontal length of 
the panel through the cut-outs we see that 

4111 = q a v l  

or 

(10.41) 
I 

41 = -4av 
11 

Now considering a vertical length of the panel through the cut-outs 

or 
(10.42) 
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The shear flows q3 may be obtained by considering either vertical or horizontal 
sections not containing the cut-out. Thus 

q3l1 + q2lw = qavl 
Substituting for q2 from Eq. (10.42) and noting that 1 = lI + 1, and d = dl + dw, we 
obtain 

(10.43) 

- * f i w v  rc___RI "P ---' ~~ . 
=aminated composite s t s  

An increasingly large proportion of the structures of many modern aircraft are 
fabricated from composite materials. These, as we saw in Chapter 7, consist of 
laminas in which a stiff, high strength filament, for example carbon fibre, is embedded 
in a matrix such as epoxy, polyester etc. The use of composites can lead to consider- 
able savings in weight over conventional metallic structures. They also have the 
advantage that the direction of the filaments in a multi-lamina structure may be 
aligned with the direction of the major loads at a particular point resulting in a 
more efficient design. In this section we shall derive expressions for the elastic 
constants of a composite and consider the analysis of a simple lamina subjected to 
transverse and in-plane loads. 

10.6.1 Elastic constants 

A simple lamina of a composite structure can be considered as orthotropic with two 
principal material directions in its own plane: one parallel, the other perpendicular to 
the direction of the filaments; we shall designate the former the longitudinal direction 
(I), the latter the transverse direction (t). 

In Fig. 10.66 a portion of a lamina containing a single filament is subjected to a 
stress, q, in the longitudinal direction which produces an extension Al. If it is 
assumed that plane sections remain plane during deformation then the strain q 

- - 
I I AI 

Fig. 10.66 Determination of El. 
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corresponding to a1 is given by 
A1 

E1 = - I 
and 

= El&] 

(10.44) 

(10.45) 

where El is the modulus of elasticity of the lamina in the direction of the flament. 
Also, using the suffixes f and m to designate filament and matrix parameters, we 
have 

af = EfEl, 0, = E,E~ (10.46) 

Further, if A is the total area of cross-section of the lamina in Fig. 10.66, Af is the 
cross-sectional area of the filament and A ,  the cross-sectional area of the matrix 
then, for equilibrium in the direction of the filament 

o1A = UfAf + amA, 

or, substituting for q, af and a, from Eqs (10.45) and (10.46) 
E~E~A = EfEfAf + Em€lAm 

so that 

Writing Af/A = vf and A,/A = v,, Eq. (10.47) becomes 

El = VfEf + VmEm 

(10.47) 

(10.48) 
Equation (10.48) is generally referred to as the law of mixtures. 

A similar approach may be used to determine the modulus of elasticity in the 
transverse direction (Et). In Fig. 10.67 the total extension in the transverse direction 
is produced by q and is given by 

Etlt = Em& + Eflf 

t t f U i t  t t 

Fig. 10.67 Determination of Et. 
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or 

which gives 

Rearranging this we obtain 

(10.49) 

The major Poisson’s ratio qt may be found by referring to the stress system of 
Fig. 10.66 and the dimensions given in Fig. 10.67. The total displacement in the 
transverse direction produced by ul is given by 

A t  = YtEllt 

i.e. 

A t  = YtEllt = U , E ~ I ~  + VfEllf 

from which 

Yt = vmvm + W f  (10.50) 

The minor Poisson’s ratio ut] is found by referring to Fig. 10.67. The strain in the 
longitudinal direction produced by the transverse stress at is given by 

at ut ut ufl- = urn- = q- 
Et Et E f  

From the last two of Eqs (10.51) 

m 
E f  

E m  
q = - u  

Substituting in Eq. (10.50) 

or, from Eq. (10.48) 

Now substituting for urn in the first two of Eqs (10.51) 
ut1 Yt -=- 
E t  Et 

or 

(10.51) 

(10.52) 
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80mm 
f * 

Fig. 10.68 Determination of Glt. 

Finally, the shear modulus qt(= Gd) is determined by assuming that the constituent 
materials are subjected to the same shear stress qt as shown in Fig. 10.68. The 
displacement A, produced by shear is 

in which G, and Gf are the shear moduli of the matrix and filament respectively. Thus 

whence 

(10.53) 

Example IO. 17 
A laminated bar whose cross-section is shown in Fig. 10.69 is 500mm long and com- 
prises an epoxy resin matrix reinforced by a carbon filament having moduli equal to 
5000 N/mm2 and 200 000 N/mm2 respectively; the corresponding values of Poisson’s 
ratio are 0.2 and 0.3. If the bar is subjected to an axial tensile load of 100 kN, deter- 
mine the lengthening of the bar and the reduction in its thickness. Calculate also the 
stresses in the epoxy resin and the carbon filament. 

Fig. 10.69 Cross-section of the bar of Example 10.1 7. 
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From Eq. (10.48) the modulus of the bar is given by 

80 x 40 
80 x 50 

+ 5000 x - E1 = 200000 x - 80 x 10 
80 x 50 

i.e. 

El = 44000N/m111' 

The direct stress, q, in the longitudinal direction is given by 

= 25.0 N / m 2  100 x io3 
a1 = 

80 x 50 

Therefore, from Eq. (10.45), the longitudinal strain in the bar is 

25.0 
44 000 

&I = - = 5.68 x 1 0 - ~  

The lengthening, A,, of the bar is then 

AI = 5.68 x x 500 

i.e. 

A1 = 0.284- 

The major Poisson's ratio for the bar is found from Eq. (10.50). Thus 

x 0.3 = 0.22 
'80 x 10 

x 0.2 + - 
vlt =m 80 x 50 

80 x 40 

Hence the strain in the bar across its thickness is 

&, = -0.22 5.68 10-~  = -1.25 10 -~  

The reduction in thickness, A,, of the bar is then 

A, = 1.25 x x 50 

i.e. 
A, = 0.006111m 

The stresses in the epoxy and the carbon are found using Eqs (10.46). Thus 

nrn (epoxy) = 5000 x 5.68 x 

of (carbon) = 200000 x 5.68 x 

= 2.84N/mm2 

= 113.6N/mm2 

10.6.2 Composite plates 

In Chapter 5 we considered thin plates subjected to a variety of loading conditions. 
We shall now extend the analysis to a lamina comprising a filament and matrix of 
the type shown in Fig. 10.66. 
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Suppose the lamina of Fig. 10.66 is subjected to stresses 01, at and qt acting 
simultaneously. From Eqs (1.42) and (1.46) 

at et = - - q t -  

71t 
7lt = - 

Et 

Glt 

Solving the first two of Eqs (10.54), we obtain 

Also 71t = Gltylt I 
Equations (10.55) may be written in matrix form as 

(10.54) 

(10.55) 

(10.56) 

in which 

c21 = 

c22 = 

c33 = G t  

(= CI2 ,  see Eq. (10.52)) 
1 - YPtI 

Et 
1 - YPtl 

Suppose now that the longitudinal and transverse directions coincide with the x and y 
axes respectively of the plates in Chapter 5. Equations (10.56) then become 

(10.57) 

From Eqs (1.27), (1.28) and the derivation of Eq. (5.13) we see that 

a'w . a 2 W  a ' W  
E, = -z-, EY = -z-, rxy = -2z- ax2 aY2 axay 
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so that Eqs (10.57) may be rewritten as 

From Section 5.3 
rtl2 1-112 tl2 

ayz dz, Mxy = - J ‘ T,~Z dz 
-t/2 M, = J ’ axzdz, M~ = I, 412 

Substituting for a,, cy and rxy from Eqs (10.58) and integrating, we obtain 

Writing Cllt3/12 as Dll, C12t3/12 as D12 

Similarly 

and 

(10.58) 

(10.59) 

(10.60) 

(10.61) 

For a lamina subjected to a distributed load of intensity q per unit area we see, by 
substituting for M,, My and Mxy from Eqs (10.59)-(10.61) into Eq. (5.19), that 

(10.62) 

Further, for a lamina subjected to in-plane loads in addition to q we obtain, by a 
comparison of Eq. (10.62) with Eq. (5.33) 

- a 2 W  a 2 W  a 2 W  
-q+Nx-+2N -+N - ax2 ’ay’ xya~ay (10.63) 

Problems involving laminated plates are solved in a similar manner to those included 
in Chapter 5 after the calculation of the modiiied flexural rigidities D1 1, Ol2, DZ2 etc. If 
the principal material directions 1 and t do not coincide with the x and y directions in 
the above equations, in-plane shear effects are introduced which modify Eqs (10.62) 
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and (10.63) (Ref. 1). The resulting equations are complex and require numerical 
methods of solution. 

Generally, composite structures consist of several laminas with the direction of the 
filaments arranged so that they lie in the directions of the major loads. Thus, for a 
loading system which comprises two mutually perpendicular loads, it is necessary 
to build or lay-up a laminate with sufficient plies in both directions to withstand 
each load. Such an arrangement is known as a cross-ply laminate. The analysis of 
multi-ply laminates is complex and is normally carried out using finite difference or 
finite element methods. 

1 Calcote, L. R., The Analysis of Laminated Composite Structures, Van Nostrand Reinhold 
Co., New York, 1969. 

Datoo, M. H., Mechanics of Fibrous Composites, Elsevier Applied Science, London, 1991. 

P.10.1 A wing spar has the dimensions shown in Fig. P.10.1 and carries a 
uniformly distributed load of 15 kN/m along its complete length. Each flange has a 
cross-sectional area of 500mm2 with the top flange being horizontal. If the flanges 
are assumed to resist all direct loads while the spar web is effective only in shear, 
determine the flange loads and the shear flows in the web at sections 1 m and 2m 
from the free end. 

A m .  1 m from free end: Pu = 25 kN (tension), PL = 25.1 kN (compression), 

2 m from free end: Pu = 75 kN (tension), PL = 75.4 kN (compression), 
q = 41.7 N/mm. 

q = 56.3 N/mm. 

lrn 
c -1 

Fig. P.10.1 



Problems 433 

P.10.2 If the web in the wing spar of P.10.1 has a thickness of 2mm and is fully 
effective in resisting direct stresses, calculate the maximum value of shear flow in the 
web at a section 1 m from the free end of the beam. 

Ans. 46.8 N/mm. 

P.10.3 Calculate the shear flow distribution and the stringer and flange loads in 
the beam shown in Fig. P.10.3 at a section 1.5m from the built-in end. Assume 
that the skin and web panels are effective in resisting shear stress only; the beam 
tapers symmetrically in a vertical direction about its longitudinal axis. 

A m .  913 = q42 = 36.9 N/mm, q35 = 464 = 7.3 N/mm, qZ1 = 96.2 N/mm, 
465 = 22.3 N/mm. 

P’ = -Pi = 133.3 kN. P4 = P6 = -P3 = -Ps = 66.7kN 

250rnm 

Fig. P.10.3 

mrn 

P.10.4 The doubly symmetrical fuselage section shown in Fig. P.10.4 has been 
idealized into an arrangement of direct stress carrying booms and shear stress 
carrying skin panels; the boom areas are all 150mm’. Calculate the direct stresses 
in the booms and the shear flows in the panels when the section is subjected to a 
shear load of 50 kN and a bending moment of 100 kN m. 

Ans. u=,~  = = 180N/mm , uz,2 = a,,lo = = -oz.7 = 144.9N/mm2, 
02,3 = oz,g = -o,p = -ffzZ,8 = 6 0 N / m 2 .  

2 

q21 = q65 = 1.9N/mm, q32 = q54 = 12.8 N/mm, q43 = 17.3 N/=, 

q67 = ql0 = 11.6 N/mm, q78 = q9 = 22.5 N/mm, qg9 = 27.0 N/mm 
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~ 400 mm - - 400 rnrn . . 400 mm 

X 
m 

6 

Fig. P.10.4 

P.10.5 Determine the shear flow distribution in the fuselage section of P.10.4 by 
replacing the applied load by a shear load through the shear centre together with a 
pure torque. 

P.10.6 The central cell of a wing has the idealized section shown in Fig. P.10.6. If 
the lift and drag loads on the wing produce bending moments of - 120 000 N m  and 
-30000Nm respectively at the section shown, calculate the direct stresses in the 
booms. Neglect axial constraint effects and assume that the lift and drag vectors 
are in vertical and horizontal planes 

Boom areas: B1 = B4 = B5 = B8 = 1OOOmm 2 

B2 = B3 = B6 = B7 = 600mm2 

AFZS. ~1 = -190.7N/m2, 02 = -181.7N/mm2, 6 3  = -172.8N/mm2, 

U4 = -163.8 N/lIUll2, 6 5  = 14ON/mI'Il2, 6 6  = 164.8 N/Inm2, 

U7 = 189.6N/m2, Us = 214.4N/m2 

Fig. P.10.6 

P.10.7 Figure P. 10.7 shows the cross-section of a two-cell torque box. If the shear 
stress in any wall must not exceed 140 N / m 2 ,  find the maximum torque which can be 
applied to the box. 
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Fig. P.10.7 

If this torque were applied at one end and resisted at the other end of such a box of 
span 2500mm, find the twist in degrees of one end relative to the other and the 
torsional rigidity of the box. The shear modulus G = 26 600 N/mm2 for all walls. 

Data: 

Shaded areas: A34 = 6450111m', A16 = 7 7 5 0 1 1 ~ ~ ~  
Wall lengths: 
Wall thickness: 

~3~ = 250mm, $16 = 300mm 
t I 2  = 1.63mm, t34 = 0.56mm 
t23 = t45 = t56 = 0.92mm 
161 = 2.03- 
t25 = 2.54mm 

Ans. T = 102417Nm, f3 = 1.46", GJ = 10 x 10'2Nmm2/rad. 

P.10.8 Determine the torsional stiffness of the four-cell wing section shown in 
Fig. P.10.8. 

Data: 

Wall 12 23 34 
78 67 56 45' 45' 36 27 18 

Peripheral length (mm) 762 812 812 1525 356 406 356 254 
Thickness (mm) 0.915 0.915 0.915 0.711 1.220 1.625 1.220 0.915 

Cell areas (mm') AI = 161 500, A11 = 291 000 
AI11 291 000, Alv = 226 000 

A m .  522.5 x 106GNmm2/rad. 

Fig. P.10.8 
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P.10.9 Determine the shear flow distribution for a torque of 56 500 N m for the 
three cell section shown in Fig. P.10.9. The section has a constant shear modulus 
throughout. 

Wall Length (mm) Thickness (mm) Cell Area (mm') 
~ ~~ 

12" 1084 1.220 
1 2L 2160 1.625 
14,23 127 0.915 
34u 797 0.915 
34L 797 0.915 

I 108400 
I1 202 500 
I11 528 000 

Ans. qI2u = 25.4N/mm, = 33.5N/mm, 914 = q 3 2  = 8.1N/mm, 

q43u = 13.4N/m~i, q34~ = ~ . ~ N / I I U J I  

Fig. P.10.9 

P.10.10 The idealized cross-section of a two-cell thin-walled wing box is shown in 
Fig. P.10.10. If the wing box supports a load of 44500N acting along the web 25, 
calculate the shear flow distribution. The shear modulus G is the same for all walls 
of the wing box. 

~~ 

Wall Length (mm) Thickness (mm) Boom Area (mm2) 
~ ~~ ~ 

16 254 1.625 
25 406 2.032 
34 202 1.220 
12,56 641 0.915 
23,45 175 0.559 

Cell areas: AI = 232 000 mm2, ,411 = 258 000 mm2 

_____ 

1. 6 1290 
2, 5 1936 
334 645 

Ans. q16 = 3 3 . 9 N / m ,  q65  = 421 = 1.1 N/IIUn, 

q45 = q23 = 7.2N/mm, 
q25  = 73.4N/mm 

q34 = 20.8 N/mm, 
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44500 N 

I II 

1 1 

Fig. P.lO.10 

P.10.11 Figure P. 10.11 shows a singly symmetric, two-cell wing section in which 
all direct stresses are carried by the booms, shear stresses alone being carried by the 
walls. All walls are flat with the exception of the nose portion 45. Find the position of 
the shear centre S and the shear flow distribution for a load of S,  = 66 750 N through 
S. Tabulated below are lengths, thicknesses and shear moduli of the shear carrying 
walls. Note that dotted line 45 is not a wall. 

Wall Length (mm) Thickness (mm) G (N/mm2) Boom Area (mrn') 

34, 56 380 0.915 20 700 1, 3, 6, 8 1290 
12.23,61,18 356 0.915 24 200 2,4,  5: 1 645 
36,81 306 1.220 24 800 
45 610 1.220 24 800 

Nose area N, = 51 500mm' 

4 3 3 

153 

I53 

Fig. P.10.11 

+--I-- + ___-  x - - - -  --- X\WN+- - - -- 
' mm 

mm 

P.10.12 A singly symmetric wing section consists of two closed cells and one 
open cell (see Fig. P.10.12). The webs 25, 34 and the walls 12, 56 are straight, while 
all other wdls are curved. All walls of the section are assumed to be effective in 
carrying shear stresses only, direct stresses being carried by booms 1 to 6. Calculate 
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304 

2 

TI f 

I 1- I 

762 mm 508 mm 

mm 

Fig. P.10.12 

the distance xs of the shear centre S aft of the web 34. The shear modulus G is the 
same for all walls. 

Wall Length (mm) Thickness (mm) Boom Area (mm2) Cell Area (mm’) 

12, 56 510 0.559 1,6 645 I 93 000 
23,45 165 0.915 2, 5 1290 I1 258 000 
34: 1015 0.559 3,4 1935 
38 304 2.030 
25 304 1.625 

Ans. 241.4mm. 

P.10.13 A portion of a tapered, three-cell wing has singly symmetrical idealized 
cross-sections 1OOOmm apart as shown in Fig. P.10.13. A bending moment 
M ,  = 1800 N m and a shear load Sy = 12 000 N in the plane of the web 52 are applied 
at the larger cross-section. Calculate the forces in the booms and the shear flow 
distribution at this cross-section. The modulus G is constant throughout. Section 
dimensions at the larger cross-section are given below. 

Wall Length (mm) Thickness (mm) Boom Area (mm2) Cell Area (mm’) 

12, 56 600 1 .o 
23,45 800 1 .o 
34: 1200 0.6 
3 4l 320 2.0 
25 320 2.0 
16 210 1.5 

1,6 600 I 100000 
2, 5 800 I1 260 000 
3, 4 800 111 180000 

E 
E 
0 
(u 

E 
E 
0 -- 
(u 

I- 790 mm \, 590mm A 
Fig. P.10.13 
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Ans. P i  = - P 6  = 1200N, P 2  = - P 5  = 2424N, P 3  = - P 4  = 2462N, 

q 1 2  = q 5 6  = 3.74N/mm7 

q43i = 12.16N/m11; 
q 2 3  = q45 = 3.11 N/mm, q340 = 0.06N/mm, 

q 5 2  = 14.58 N/mm, 961  = 11.22 N/mm 

P.10.14 Solve P. 10.8 using the method of successive approximations. 

P.10.15 A multispar wing has the singly symmetrical cross-section shown in 
Fig. P.10.15 and carries a vertical shear load of 100 kN through its shear centre. If 
the booms resist all the direct stresses and the skin panels and spar webs are effective 
only in shear: determine the shear flow distribution in the section and the distance of 
the shear centre from the spar web 47. The shear modulus G is constant throughout 
and all booms have a cross-sectional area of 2000 mm2. 

Cell areas (mm2): 

I I1 I11 IV V 
120000 215000 250000 215000 155000 

Wall 56' 45,67 43,78 32,89 12,910 
Lengths (mm) 1500 605 603 605 605 
Thickness (mm) 2.5 3 .O 3 .O 3 .O 2.5 

All spar webs have a thickness of 3.0mm. 

z h .  q650 = 9.1 N / m ,  q65' = 54.6N/m11, q 5 4  = q 7 6  = 8.2N/~nm, 

q74 = 65.9 N/mm, q43 = qs7 = 0.1 N/mm, qS3 = 66.2 N/mm, 

q 2 3  = qsg = 7.7 N/mm, q 9 2  = 57.3 N / m ,  

q 1 2  = q 9 1 0  = q l o l  = 5.9N/mm 

404.5 mm in cell I11 

lOOkN 

300 mm 

Fig. P.10.15 

P.10.16 The beam shown in Fig. P.10.16 is simply supported at each end and 
carries a load of 6000 N. If all direct stresses are resisted by the flanges and stiffeners 
and the web panels are effective only in shear, calculate the distribution of axial load 
in the flange ABC and the stiffener BE and the shear flows in the panels. 
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1 

300 mm 

A B C 

D 

j', kN 

I 
1OOOmm I 2000mm 1 

/ 

300 mm 

Fig. P.10.16 

Ans. q(ABEF) = 4N/mm, q(BCDE) = 2N/mm. 

PBE increases linearly from zero at B to 6000 N (tension) at E 

Pm and PCB increase linearly from zero at A and C to 4000N (compression) at B 

P.10.17 Calculate the shear flows in the web panels and direct load in the flanges 
and stiffeners of the beam shown in Fig. P.10.17 if the web panels resist shear stresses 
only. 

Ans. q1 = 21.6N/mm, q2 = -1.6N/mm, q3 = 10N/mm. 

Pc = 0, 

PF = 0, 

PB = 6480 N (tension), 

PG = 480N (tension), 

PA = 9480 N (tension) 

PH = 2520N (compression) 

PE in BEG = 2320N (compression), PD in ED = 6928 N (tension) 

PD in CD = 4320N (tension), PD in DF = 320N (tension) 

mm 

mm 

Fig. P.10.17 
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P.10.18 A three-flange wing section is stiffened by the wing rib shown in 
Fig. P.lO.18. If the rib flanges and stiffeners carry all the direct loads while the rib 
panels are effective only in shear, calculate the shear flows in the panels and the 
direct loads in the rib flanges and stiffeners. 

Ans. ql = 4.0 N/mm, q 2  = 26.0 N/mm, q3 = 6.0 N/mm. 

Pz in 12 = -P3 in 43 = 1200N (tension), P5 in 154 = 2000N (tension), 
P3 in 263 = 8000 N (compression), 
P6 in 263 = 6000 N (compression) 

P5 in 56 = 12 000 N (tension), 

2 1 

8000 N 

Fig. P.10.18 

P.10.19 A portion of a wing box is built-in at one end and carries a shear load of 
2000N through its shear centre and a torque of 1000 N m  as shown in Fig. P.10.19. 
If the skin panel in the upper surface of the inboard bay is removed, calculate the 

Fig. P.10.19 
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shear flows in the spar webs and remaining skin panels, the distribution of load in the 
spar flanges and the loading on the central rib. Assume that the spar webs and skin 
panels are effective in resisting shear stresses only. 

Ans. Bay (iJ : q in spar webs = 7.5 N/mm 

Bay @ : q in spar webs = 1.9 N/mm, in skin panels = 9.4 N/mm 

Flange loads (2): at built-in end = 1875 N (compression) 

at central rib = 5625 N (compression) 

Rib loads: q (horizontal edges) = 9.4 N/mm, 

q (vertical edges) = 9.4 N/mm 

P.10.20 A bar, whose cross-section is shown in Fig. P.10.20, comprises a 
polyester matrix and Kevlar filaments; the respective moduli are 3000 N/mm2 and 
140000N/mm2 with corresponding Poisson’s ratios of 0.16 and 0.28. If the bar is 
l m  long and is subjected to a compressive axial load of 500kN, determine the 
shortening of the bar, the increase in its thickness and the stresses in the polyester 
and Kevlar. 

Ans. 3.26mm, 0.032 mm, 9.78 N/mm2, 456.4N/mm2 

polyester I T i m m  
polyester 

Kevlar 

polyester 

Fig. P.10.20. 



Structural constraint 

The analysis presented in Chapters 9 and 10 relies on elementary theory for the deter- 
mination of stresses and displacements produced by axial loads, shear forces and 
bending moments and torsion. Thus, no allowance is made for the effects of restrained 
warping produced by structural or loading discontinuities in the torsion of open or 
closed section beams, or for the effects of shear strains on the calculation of direct 
and shear stresses in beams subjected to bending and shear. 

In this chapter we shall examine some relatively simple examples of the above 
effects; more complex cases require analysis by computer-based techniques such as 
the finite element method. 

Structural constraint stresses in either closed or open beams result from a restriction 
on the freedom of any section of the beam to assume its normal displaced shape 
under load. Such a restriction arises when one end of the beam is built-in although 
the same effect may be produced practically, in a variety of ways. Thus, the root 
section of a beam subjected to torsion is completely restrained from warping into 
the displaced shape indicated by Eq. (9.52) and a longitudinal stress system is induced 
which, in a special case discussed later, is proportional to the free warping of the 
beam. 

A slightly different situation arises when the beam supports shear loads. The stress 
system predicted by elementary bending theory relies on the basic assumption of 
plane sections remaining plane after bending. However, for a box beam comprising 
thin skins and booms, the shear strains in the skins are of sufficient magnitude to 
cause a measurable redistribution of direct load in the booms and hence previously 
plane sections warp. We shall discuss the phenomenon of load redistribution resulting 
from shear, known as shear lag, in detail later in the chapter. The prevention of this 
warping by some form of axial constraint modifies the stress system still further. 

The most comprehensive analysis yet published of multi- and single cell beams 
under arbitrary loading and support conditions is that by Argyris and Dunne'. 
Their work concentrates in the main on beams of idealized cross-section and while 
the theory they present is in advance of that required here, it is beneficial to examine 
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some of the results of their analysis. We shall limit the present discussion to closed 
beams of idealized cross-section. 

The problem of axial constraint may be conveniently divided into two parts. In the 
first, the shear stress distribution due to an arbitrary loading is calculated exclusively 
at the built-in end of the beam. In the second, the stress (and/or load) distributions are 
calculated along the length of the beam for the separate loading cases of torsion and 
shear. Obviously the shear stress systems predicted by each portion of theory must be 
compatible at the built-in end. 

Argyris and Dunne showed that the calculation of the shear stress distribution at a 
built-in end is a relatively simple problem, the solution being obtained for any loading 
and beam cross-section by statics. More complex is the determination of the stress 
distributions at sections along the beam. These stresses, for the torsion case, are 
shown to be the sum of the stresses predicted by elementary theory and stresses 
caused by systems of self-equilibrating end loads. For a beam supporting shear 
loads the total stresses are again the s u m  of those corresponding to elementary bend- 
ing theory and stresses due to systems of self-equilibrating end loads. 

For an n-boom, idealized beam, Argyris and Dunne found that there are n - 3 self- 
equilibrating end load, or eigenload, systems required to nullify n - 3 possible modes 
of warping displacement. These eigenloads are analogous to, say, the buckling loads 
corresponding to the different buckled shapes of an elastic strut. The fact that, 
generally, there are a number of warping displacements possible in an idealized 
beam invalidates the use of the shear centre or flexural axis as a means of separating 
torsion and shear loads. For, associated with each warping displacement is an axis of 
twist that is different for each warping mode. In practice, a good approximation is 
obtained if the torsion loads are referred to the axis of twist corresponding to the 
lowest eigenload. Transverse loads through this axis, the zero warping axis, produce 
no warping due to twist, although axial constraint stresses due to shear will still be 
present. 

In the special case of a doubly symmetrical section the problem of separating the 
torsion and bending loads does not arise since it is obvious that the torsion loads 
may be referred to the axis of symmetry. Double symmetry has the further effect of 
dividing the eigenloads into four separate groups corresponding to (n/4) - 1 pure 
flexural modes in each of the xz and yz planes, ( 4 4 )  pure twisting modes about 
the centre of symmetry and (44) - 1 pure warping modes which involve neither 
flexure nor twisting. Thus, a doubly symmetrical six boom beam supporting a 
single shear load has just one eigenload system if the centre boom in the top and 
bottom panels is regarded as being divided equally on either side of the axis of 
symmetry thereby converting it, in effect, into an eight boom beam. 

It will be obvious from the above that, generally, the self-equilibrating stress 
systems cannot be proportional to the free warping of the beam unless the free 
warping can be nullified by just one eigenload system. This is true only for the four 
boom beam which, from the above, has one possible warping displacement. If, in 
addition, the beam is doubly symmetrical then its axis of twist will pass through 
the centre of symmetry. We note that only in cases of doubly symmetrical beams 
do the zero warping and flexural axes coincide. 

A further special case arises when the beam possesses the properties of a Neuber 
beam (Section 9.5) which does not warp under torsion. The stresses in this case are 
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the elementary torsion theory stresses since no constraint effects are present. When 
bending loads predominate, however, it is generally impossible to design an efficient 
structure which does not warp. 

In this chapter the calculation of spanwise stress distributions in closed section 
beams is limited to simple cases of beams having doubly symmetrical cross-sections. 
It should be noted that simplifications of this type can be misleading in that some of 
the essential characteristics of beam analysis, for example the existence of the n - 3 
self-equilibrating end load systems, vanish. 

Bear stress distribution at a built-in end of a 
x e d  section beam 

This special case of structural constraint is of interest due to the fact that the shear 
stress distribution at the built-in end of a closed section beam is statically determinate. 
Figure 11.1 represents the cross-section of a thin-walled closed section beam at its 
built-in end. It is immaterial for this analysis whether or not the section is idealized 
since the expression for shear flow in Eq. (9.39), on which the solution is based, is 
applicable to either case. The beam supports shear loads S,x and Sy which generally 
will produce torsion in addition to shear. We again assume that the cross-section 
of the beam remains undistorted by the applied loads so that the displacement of 
the beam cross-section is completely defined by the displacements u, v, w and the rota- 
tion 8 referred to an arbitrary system of axes Oxy. The shear flow q at any section of 
the beam is then given by Eq. (9.40), that is 

d0 du dv 
- + - cos$ + - sin$ + - 
dz dz dz 

Fig. 11.1 Cross-section of a thin-walled beam at the built-in end. 
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At the built-in end, aw/as is zero and hence 

(11.1) 

in which de/&, du/dz and dw/dz are the unknowns, the remaining terms being 
functions of the section geometry. 

The resultants of the internal shear flows q must be statically equivalent to the 
applied loading, so that 

1 qcos$ds = S, f 
I qsinqds = S, (11.2) 

Substitution for q from Eq. (1 1.1) in Eqs (1 1.2) yields 

E 1 tp cos $ ds + tcos @ sin $ ds = - 
dz dz G 

(11.3) dz dz 

G tpcos$ds+- tpsin$ds= dv dz f 
Equations (1 1.3) are solved simultaneously for dO/dz, du/dz and dw/dz. These values 
are then substituted in Eq. (1 1.1) to obtain the shear flow, and hence the shear stress 
distribution. 

Attention must be paid to the signs of $, p and q in Eqs (1 1.3). Positive directions for 
each parameter are suggested in Fig. 11.1 although alternative conventions may be 
adopted. In general, however, there are rules which must be obeyed, these having 
special importance in the solution of multicell beams. Briefly, these are as follows. The 
positive directions of q and s are the same but may be assigned arbitrarily in each wall. 
Then p is positive if movement of the foot of the perpendicular along the positive 
direction of the tangent leads to an anticlockwise rotation of p about 0. $ is the 
clockwise rotation of the tangent vector necessary to bring it into coincidence with 
the positive direction of the x axis. 

Example 11. I 
Calculate the shear stress distribution at the built-in end of the beam shown in Fig. 
11.2(a) when, at this section, it carries a shear load of 22 000 N acting at a distance 
of lOOmm from and parallel to side 12. The modulus of rigidity G is constant 
throughout the section. 

Wall 12 34 23 
Length (mm) 375 125 500 
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I.Ornm 2 
22 000 N 

1.6rnrn - 4 
1.0 rnrn 

100 rnrn 

(a) (b) 

vL U 

Fig. 11.2 (a) Beam cross-section at built-in end; (b) notation and sign convention. 

It is helpful at the start of the problem to sketch the notation and sign convention 
as shown in Fig. 11.2(b). The walls of the beam are flat and therefore p and $J are 
constant along each wall. Also the thickness of each wall is constant so that the 
shear flow q is independent of s in each wall. Let point 1 be the origin of the axes, 
then, writing 13‘ = dO/dz, u’ = du/& and v‘ = dv/dz, we obtain from Eq. (1 1.1) 

q12 = 1.6Gv’ (i) 
q23 = i . o ~ ( m  x 0.8868’ - 0.886~’ - 0.5~’) (E) 
q34 = i . 2 ~ p o o  x 0.866e’ - .~r) (iii) 

q41 = 1.OGu’ (4 
For horizontal equilibrium 

500 x 0.886q41 - 500 x O.866q23 = 0 

giving 

q41 = q23 

For vertical equilibrium 

375q12 - 125q34 - 25oq23 = 22 000 

For moment equilibrium about point 1 
500 x 375 x 0.886q23 + 125 x 500 x 0.886q34 = 22000 x 100 

or 

3q23 + q34 = 40.6 (vii) 

Substituting for qlz etc. from Eqs (i), (ii), (iii) and (iv) into Eqs (v), (vi) and (vii), and 
solving for 8‘, u‘ alid v’, gives 8‘ = 0.122/G, u‘ = 9.71/G, v‘ = 42.9/G. The values of#, 
u’ and v’ are now inserted in Eqs (i), (ii), (iii) and (iv), giving qI2 = 68.5N/mm, 
q23 = 9.8 N/mm, q34 = 11.9 N/mm, q41 = 9.8 N/mm from which 

q2 = 42.8 N/mm2, ~ 2 3  = 7-41 = 9.8 N/mm2: r34 = 9.9 N/mm2 
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Fig. 11.3 Built-in end of a beam section having a curved wall. 

We note in Example 11.1 that there is a discontinuity of shear flow at each of the 
corners of the beam. This implies the existence of axial loads at the corners which 
would, in practice, be resisted by booms, if stress concentrations are to be avoided. 
We see also that in a beam having straight walls the shear flows are constant along 
each wall so that, from Eq. (9.22), the direct stress gradient ao,/az = 0 in the walls 
at the built-in end although not necessarily in the booms. Finally, the centre of 
twist of the beam section at the built-in end may be found using Eq. (9.31), i.e. 

V’ U’ 
XR = -- g l  Y R = Y  

which, from the results of Example 11.1, givexR = -351.6mmYyR = 79.6mm. Thus, 
the centre of twist is 351.6 mm to the left of and 79.6 mm above corner 1 of the section 
and will not, as we noted in Section 1 1.1 , coincide with the shear centre of the section 
as determined by the elementary theory of Chapter 9. 

The method of analysis of beam sections having curved walls is similar to that of 
Example 11.1 except that in the curved walls the shear flow will not be constant 
since both p and q$ in Eq. (11.1) will generally vary. Consider the beam section 
shown in Fig. 11.3 in which the curved wall 23 is semicircular and of radius r. In 
the wall 23, p = r and q$ = 180 + 4, so that Eq. (11.1) gives 

q 2 3  = Gt(rf3‘ - u’ cos q5 - v’ sin q5) 

The resultants of q 2 3  are then 

Horizontally: 1: 4 2 3  cos 4r dq5 

Vertically: 4 2 3  sin 4r dq5 

Moment (about 0): j: q 2 3 r 2  dq5 

The shear flows in the remaining walls are constant and the solution proceeds as 
before. 
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.%-̂-" ----- - 
11.3 Thir 

to t 
;-walled rectangular section beam subjected 
orsion 

In Example 9.7 we determined the warping distribution in a thin-walled rectangular 
section beam which was not subjected to structural constraint. This free warping 
distribution (wo) was found to be linear around a cross-section and uniform along 
the length of the beam having values at the corners of 

The effect of structural constraint, such as building one end of the beam in, is to 
reduce this free warping to zero at the built-in section so that direct stresses are 
induced which subsequently modify the shear stresses predicted by elementary torsion 
theory. These direct stresses must be self-equilibrating since the applied load is a pure 
torque. 

The analysis of a rectangular section beam built-in at one end and subjected to a 
pure torque at the other is simplified if the section is idealized into one comprising 
four corner booms which are assumed to carry all the direct stresses together with 
shear-stress-only carrying walls. The assumption on which the idealization is based 
is that the direct stress distribution at any cross-section is directly proportional to 
the warping which has been suppressed. Thus, the distribution of direct stress is 
linear around any cross-section and has values equal in magnitude but opposite in 
sign at opposite corners of a wall. This applies at all cross-sections since the free 
warping will be suppressed to some extent along the complete length of the beam. 
In Fig. 1 1.4(b) all the booms will have the same cross-sectional area from anti- 
symmetry and, from Eq. (9.70) or Eq. (9.71) 

at, hth 1 
B = -(2 - 1) +-(2 - 1) =-(at ,  + hth) 

6 6 6 
To the boom area B will be added existing concentrations of area such as connecting 
angle sections at the corners. The contributions of stringers may be included by allow- 
ing for their direct stress carrying capacity by increasing the actual wall thickness by 
an amount equal to the total stringer area on one wall before idealizing the section. 

We have seen in Section 9.8 that the effect of structural idealization is to reduce 
the shear flow in the walls of a beam to a constant value between adjacent booms. 

R 

a 

(a) (b) 

Fig. 11.4 Idealization of a rectangular section beam subjected to torsion: (a) actual; (b) idealized. 
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't 

isplacement due to 

z 

Fig. 11.5 Idealized rectangular section beam built-in at one end and subjected to a torque at the other. 

In Fig. 1 1.5 suppose that the shear flows in the covers and webs at any section are qa 
and q b  respectively; from antisymmetry the shear flows in both covers will be qa and in 
both webs q b .  The resultant of these shear flows is equivalent to the applied torque so 
that 

b U 

2 2 qpds = 2qaa-+2qbb- 

or 

= ab(% + q b )  

We now use Eq. (9.39), i.e. 

(11.4) 

q = G t  -+- (E E) 
to determine qa and q b .  Since the beam cross-section is doubly symmetrical the axis of 
twist passes through the centre of symmetry at any section so that, from Eq. (9.28) 

Therefore for the covers of the beam 

(11.5) 

(11.6) 

and for the webs 
aq - n de 
dz 2 dz (11.7) 
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I 

Fig. 11.6 Shear distortion of (a) an element of the top cover; (b) an element of the right hand web. 

The elements of length Sz of the covers and webs of the beam will warp into the shapes 
shown in Fig. 11.5 if T is positive (anticlockwise) and b/tb > a/t , .  Clearly there must 
be compatibility of displacement at adjacent edges of the elements. From Fig. 11.6(a) 

and from Fig. 1 1.6(b) 
aw w - - 
as -b/2 

(11.8) 

(11.9) 

Substituting for aw/ds and av,/az in Eq. (9.39) separately for the covers and webs, we 
obtain 

Now substituting for q, and q b  in Eq. (1 1.4) we have 

Rearranging 

de 4w(bt, - atb) 2T 
dz 
_ -  - 

ab(bt, + atb) + abG(bt, + atb) 

If we now substitute for dO/dz from Eq. (1 1.11) into Eqs (1 1.10) we have 

-4WGtbt, Tta 4WGtbta Ttb 
bt, + atb + b(bt, + atb) q b  = = bt, + atb + a(bt, + atb) ' 

(1 1.10) 

(1 1.1 1) 

(11.12) 

Equations (1 1.1 1) and (1 1.12) give the rate of twist and the shear flows (and hence 
shear stresses) in the beam in terms of the warping w and the applied torque T.  
Their derivation is based on the compatibility of displacement which exists at the 
cover/boom/web junctions. We shall now use the further condition of equilibrium 
between the shears in the covers and webs and the direct load in the booms to 
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Fig. 11.7 Equilibrium of boom element. 

obtain expressions for the warping displacement and the distributions of boom stress 
and load. Thus, for the equilibrium of an element of the top right-hand boom shown 
in Fig. 11.7 

( a , + ~ & ' ) B -  aZB+qa&-qb&=O 

i.e. 

Now 
aw 

az = E - 
a2 

a 2 W  

aZ2 

(see Chapter 1) 

Substituting for a, in Eq. (1 1.13) we obtain 

B E - + q , - q b = o  

Replacing 4, and qb from Eqs (1 1.12) gives 

T (bt, - atb) w = -- d2W 8Gtbt, 
89 bt, + atb ab (bta + atb) 

B E - -  

or 

a2w 2 T (bt, - atb) -- p w = - -  
a9 abBE (bt, + atb) 

(11.13) 

(1 1.14) 

(11.15) 
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where 
2 8Gtbt, 
= BE(bt, + atb) 

The differential equation ( 1  1.15) is of standard form and its solution is 

T b a  w =  Ccoshpz+Dsinhpz+- --- 
8abG ( t b  t o )  

(11.16) 

in which the last term is seen to be the free warping displacement wo of the top right- 
hand corner boom. The constants C and D in Eq. ( 1  1.16) are found from the bound- 
ary conditions of the beam. In this particular case the warping w = 0 at the built-in 
end and the direct strain dw/dz = 0 at the free end where there is no direct load. 
From the first of these 

and from the second 

D = wo tanhpL 

Thus 

w = wo( 1 - cosh pz + tanh pL sinh pz) ( 1 I. 17) 

or rearranging 

1 cash p(L - Z) 
cosh p L  

(11.18) 

The variation of direct stress in the boom is obtained from a, = Edw/dz and Eq. 
(11.18), i.e. 

sinh p(L - z)  
cosh pL 

aZ = ~EwO 

and the variation of boom load P is then 

sinhp(L - z) 
cosh p L  

P = BCT, B~EwO 

(11.19) 

(1 1.20) 

Substituting for w in Eqs ( 1  1.12) and rearranging, we obtain the shear stress distribu- 
tion in the covers and webs. Thus 

1 (bt, - atb) coshp(L - Z) qa  T 7 --=- 
a -  ta 2abt, [' + (bt, + atb) cosh pL 

(11.21) 

( 1  1.22) 

Inspection of Eqs ( 1  1.21) and (1 1.22) shows that the shear stress distributions each 
comprise two parts. The first terms, T/2abta and T/2abtb, are the shear stresses 
predicted by elementary theory (see Section 9 . 9 ,  while the hyperbolic second terms 
represent the effects of the warping restraint. Clearly, for an anticlockwise torque 
and bt, > atb, the effect of this constraint is to increase the shear stress in the 



454 Structural constraint 

t‘ 

z 
L 

Fig. 11.8 Shear stress distributions along the beam of Fig. 1 1.5. 

covers over that predicted by elementary theory and decrease the shear stress in the 
webs. It may also be noted that for bt, to be greater than atb for the beam of Fig. 
11.5, in which a > b, then ta must be appreciably greater than t b  so that 
T/2abta < T/hbtb. Also at the built-in end (z = 0) ,  Eqs (11.21) and (11.22) reduce 
to r, = T/a(bt, + atb) and 7-b = T/b(bta + atb) so that even though Tb is reduced 
by the axial constraint and r, increased, r b  is still greater than 7,. It should also be 
noted that these values of r, and 76 at the built-in end may be obtained using the 
method of Section 11.2 and that these are the values of shear stress irrespective of 
whether the section has been idealized or not. In other words, the presence of inter- 
mediate stringers and/or direct stress carrying walls does not affect the shear flows 
at the built-in end since the direct stress gradient at this section is zero (see Section 
11.2 and Eq. (9.22)) except in the comer booms. Finally, when both z and L 
become large, i.e. at the free end of a long, slender beam 

and r b  +- 
T T 

7, -+ - 2abt, 2abtb 

The above situation is shown in Fig. 11.8. 
In the particular case when bt, = atb we see that the second terms on the right-hand 

side of Eqs (1 1.21) and (1 1.22) disappear and no constraint effects are present; the 
direct stress of Eqs (11.19) is also zero since wo = 0 (see Example 9.7). 

The rate of twist is obtained by substituting for w from Eq. (11.18) in Eq. (11.11). 
Thus 

] (11.23) 

in which we see that again the expression on the right-hand side comprises the rate of 
twist given by elementary theory, T(b/tb + a/t,)/2a2bZG (see Section 9.5), together 
with a correction due to the warping restraint. Clearly the rate of twist is always 
reduced by the constraint since (bt, - atb)’ is always positive. Integration of Eq. 
(1 1.23) gives the distribution of angle of twist along the length of the beam, the 
boundary condition in this case being 8 = 0 at z = 0. 

d8 - 
- dz-2a2bZG L ( b + ~ ) [ l - ( b t , + U t b )  tb CoshpL 

bt, - atb ’ coshp(L - z) 
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A problem closely related to the restrained torsion of rectangular section beams is 
that generally known as shear fag. We have seen in Chapter 9 that torsion induces 
shear stresses in the walls of beams and these cause shear strains which produce warp- 
ing of the cross-section. When this warping is restrained, direct stresses are set up 
which modify the shear stresses. In a similar manner the shear strains in the thin 
walls of beams subjected to shear loads cause cross-sections to distort or warp so 
that the basic assumption of elementary bending theory of plane sections remaining 
plane is no longer valid. The direct and shear stress distributions predicted by elemen- 
tary theory therefore become significantly inaccurate. Further modifications arise 
when any form of structural constraint prevents the free displacement of the cross- 
sections of a beam. Generally, shear lag becomes a problem in wide, relatively 
shallow, thin-walled beams such as wings in which the shear distortion of the thin 
upper and lower surface skins causes redistribution of stress in the stringers and 
spar caps while the thicker and shallower spar webs experience little effect. 

Consider the box beam shown in Fig. 11.9. Elementary bending theory predicts 
that the direct stress at any section AA would be uniform across the width of the 
covers so that the stringers and web flanges would all be subjected to the same 
stress. However, the shear strains at the section cause the distortion shown so that 
the intermediate stringers carry lower stresses than the web flanges. Since the resultant 
of the direct stresses must be equivalent to the applied bending moment this means 
that the direct stresses in the web flanges must be greater than those predicted by 
elementary bending theory. Our investigation of the shear lag problem will be 
restricted to idealized six- and eight-boom doubly symmetrical rectangular section 
beams subjected to shear loads acting in the plane of symmetry and in which the 
axis of twist, the flexural axis and the zero warping axis coincide; the shear loads 
therefore produce no twist and hence no warping due to twist. In the analysis we 
shall assume that the cross-sections of beams remain undistorted in their own plane. 

Figure 11.10 shows an idealized six-boom beam built-in at one end and carrying a 
shear load at the other; the corner booms have a cross-sectional area B while the 
central booms have a cross-sectional area A .  At any section the vertical shear load 

Fig. 11.9 Shear distortion in the covers of a box beam. 
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Fig. 11.10 Six-boom beam subjected to a shear load. 

is shared equally by the two webs. Also, since the beam has been idealized, the shear 
flow at any section will be constant between the booms so that, for a web, the situa- 
tion is that shown in the free body diagram of Fig. 1 1.1 1; in addition, the corner 
booms are subjected to equal and opposite loads PB. The complementary shear 
flows SJ2h are applied to the corner booms as shown so that the top cover, say, is 
subjected to loads as shown in Fig. 11.12. We assume that suitable edge members 
are present at the free end of the cover to equilibrate the shear flows; we also 
assume that strains in the transverse direction are neghgible. 

It is advantageous to adopt a methodical approach in the analysis. Thus, use may 
be made of the symmetry of the cover so that only one edge boom, one panel and the 

Fig. 11.1 1 Loads on webs and corner booms of the beam of Fig. 1 1.10. 
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L 

Fig. 11.12 Topcoverof the beamof Fig. 11.10. 

central boom need be considered as long as the symmetry is allowed for in the 
assumed directions of the panel shear flows q, as shown in Fig. 11.12. Further, the 
origin for z may be taken to be at either the free or built-in end. A marginally simpler 
solution is obtained if the origin is taken to be at the free end, in which case the 
solution represents that for an infinitely long panel. Considering the equilibrium of 
an element of an edge boom (Fig. 11.13), in which we assume that the boom load 
is positive (tension) and increases with increasing z, we have 

or 

Similarly, for an element of the central boom (Fig. 11.14) 

a P A  -+2q=o 
dZ 

(1 1.24) 

(1 1.25) 

Now considering the overall equilibrium of a length z of the cover (Fig. 11.15), we have 

2PB + P A  +-z SY - 0  - (1 1.26) h 

Fig. 11 . I3  Equilibrium of boom element. 
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Fig. 11.14 Equilibrium of element of central boom. 

Fig. 11 . I 5  Equilibrium of a length z of cover. 

We now consider the compatibility condition which exists in the displacements of 
elements of the booms and adjacent elements of the panels. Figure 11.16(a) shows 
the displacements of the cover and an element of a panel and the adjacent elements 
of theboom. Note that the element of the panel is distorted in amanner 

Id shape 

(a) 

Fig. 11 . I6  Compatibility condition. 

which 

t 
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agrees with the assumed directions of the shear flows in Fig. 11.12 and that the shear 
strain increases with z. From Fig. 1 1.16(b) 

in which and are the direct strains in the elements of boom. Thus, rearranging and 
noting that y is a function of z only when the section is completely idealized, we have 

Now 

PB & A = - ,  PA 7=-  4 EB = - 
BE ’ AE Gt 

so that Eq. (11.27) becomes 

( 1  1.27) 

(11.28) 

We now select the unknown to be determined initially. Generally, it is simpler math- 
ematically to determine either of the boom load distributions, PB or PA, rather than 
the shear flow q. Thus, choosing PA, say, as the unknown, we substitute in Eq. ( 1  1.28) 
for q from Eq. ( 1  1.25) and for PB from Eq. ( 1  1.26). Hence 

1 #PA - Gt ( PA S,Z PA)  - - - - - - - - - - - 
2 dz2 dE 2B 2Bh A 

Rearranging, we obtain 

GtS,, z 
P -- a9 dEAB A - dEBh 

d2PA Gt(2B + A )  -- 

or 

a 2 p A  ~ 2 p  - GtS,z 
a22 dEBh A - -  -- (11.29) 

in which X2 = Gt(2B + A)/dEAB. The solution of  Eq. (11.29) is of  standard form 
and is 

S,A 
h(2B + A )  

PA =CcoshXz+DsinhXz- 

The constants C and D are determined from the boundary conditions of the cover of 
the beam namely, PA = 0 when z = 0 and y = q/Gt = -(aPA/&)/2Gt = 0 when 
z = L (see Eq. (1 1.25)). From the iirst of these C = 0 and from the second 

S,, A 
Xh(2B + A )  cosh XL 

D =  

Thus (.- sinh Xz 
h(2B + A )  X cosh XL PA = - (1 1.30) 
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The direct stress distribution uA(= PA/A) follows, i.e. 
sinh Xz 

UA = - ( 1 1 . 3 1 )  

The distribution of load in the edge booms is obtained by substituting for PA from 
Eq. (11.30) in Eq. (11.26), thus 

SYB (. I A s i n h k )  
h(2B + A )  2BX coshXL 

PB = - 

whence 

A sinhXz 
f f B  = - 

Finally, from either pairs of Eqs (11.25) and (11.30) or (11.24) and (11.32) 

S Y  A cosh Xz 
' = 2 h ( 2 B + A )  ('-a) 

so that the shear stress distribution T(= q / t )  is 

SYA cosh Xz 
= 2ht(2B + A )  (' - a) 

(1 1.32) 

(1 1.33) 

(11.34) 

(1 1.35) 

Elementary theory (Chapter 9) gives 

and 

SY A 
= 2h(2B + A) 

so that, as in the case of the torsion of a four boom rectangular section beam, the 
solution comprises terms corresponding to elementary theory together with terms 
representing the effects of shear lag and structural constraint. 

Many wing structures are spliced only at the spars so that the intermediate stringers 
are not subjected to bending stresses at the splice. The situation for a six boom 
rectangular section beam is then as shown in Fig. 11.17. The analysis is carried out 
in an identical manner to that in the previous case except that the boundary condi- 
tions for the central stringer are PA = 0 when z = 0 and z = L. The solution is 

h(2B + A )  

z+- 7 h(2B + A )  2B sinhXL 

PA = - 

S y B  ( AL sinhXz) 
PB = - 

S y A  (1-XL- cash Xz 
= 2h(2B + A )  

(1 1.36) 

( 1  1.37) 

(1 1.38) 

where X2 = Gt(2B + A)/dEAB. Examination of Eq. ( 1  1.38) shows that q changes sign 
when cosh Xz = (sinh xL)/XL, the solution of which gives a value of z less than L, i.e. 
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Fig. 11.17 Rectangular section beam supported at corner booms only. 

q changes sign at some point along the length of the beam. The displaced shape of the 
top cover is therefore as shown in Fig. 11.18. Clearly, the final length of the central 
stringer is greater than in the previous case and appreciably greater than the final 
length of the spar flanges. The shear lag effect is therefore greater than before. In 
some instances this may be beneficial since a larger portion of the applied bending 
moment is resisted by the heavier section spar flanges. These are also restrained 
against buckling in two directions by the webs and covers while the lighter section 
stringers are restrained in one direction only. The beam is therefore able to withstand 
higher bending moments than those calculated from elementary theory. 

In certain situations beams, or parts of beams, carry loads which cause in-plane 
bending of the covers. An example is shown in Fig. 11.19 where the loads P cause 
bending in addition to axial effects. Shear lag modifies the stresses predicted by 
elementary theory in a similar manner to the previous cases. From symmetry we 

Displaced 
I 

I I  

I 
\ 

I 
I 

I 

1 
I 

I 

shape 

Fig. 11.18 Displaced shape of top cover of box team of Fig. 11 . I  7. 
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Fig. 11.19 Beam subjected to combined bending and axial load. 

can consider either the top or bottom cover in isolation as shown in Fig. 11.2O(a). 
In this case the load P causes bending as well as extension of the cover so that at 
any section z the beam has a slope dv/& (Fig. 11.20(b)). We shall again assume 
that transverse strains are negligible and that the booms carry all the direct load. 

Initially, as before, we choose directions for the shear flows in the top and bottom 
panels. Any directions may be chosen since the question of symmetry does not arise. 
The equilibrium of an element Sz of each boom is first considered giving 

0 " f  

-- 42 aPB2 - 41 -42, r= apA 
dZ az - -41, -- aPBl (1 1.39) 

where PSI is the load in boom 1 and PBz is the load in boom 2. Longitudinal and 
moment equilibrium about boom 2 of a length z of the cover give, respectively 

+ P m  PA = P ,  P~12d + PAd = P2d (1 1.40) 
The compatibility condition now includes the effect of bending in addition to 
extension, as shown in Fig. 11.21. Note that the panel is distorted in a manner 

I- L I 
(a) 

Fig. 11.20 Coverof beamof Fig. 11.19. 
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t 
Fig. 11.21 Compatibility condition for combined bending and axial load. 

which agrees with the assumed direction of shear flow and that y1 and 
with z. Thus 

increase 

where y1 and v are functions of z only. Thus 

Similarly, for an element of the lower panel 

Subtraction of Eq. (1 1.42) from Eq. (1 1.41) eliminates d2v/ck2, i.e. 

1 
d7 dz d 
dyl dyz - -@&A - EB1 - E B 2 )  

or, as before 

dql dq2 - Gt ( 2 p A  pB1 p B 2 )  

dz dz dE A B B 

(1 1.41) 

( 1 1.42) 

(1 1.43) 

In this particular problem the simplest method of solution is to choose PA as the 
unknown since, from Eqs (1 1.39) 

dql dq2 - 
dz dz az2 
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Also substituting for PSI and PB2 from Eqs (1 1.40), we obtain 

PGt 

or 

a2PA ~ 2 p  - PGt 
a9 dEB A - - -  -- (11.44) 

where X2 = Gt(2B + A)/dEAB. The solution of Eq. (11.44) is of standard form 
and is 

PA PA = CcoshAz+DsinhXz+- 
2 B + A  

(1 1.45) 

.The boundary conditions are PA = 0 when z = 0 and q1 = q2 = 0 = dPA/az  at the 
built-in end (no shear loads are applied). Hence 

PA =- (1 - cosh X Z  + tanh XL sinh X z )  
2 B + A  

or, rearranging 

cash X(L - Z)  

cosh XL 
P -- [ l -  

C A  = - [ l -  

A - 2 B + A  

Hence 

cash X(L - Z) 
cosh XL 2 B + A  

Substituting for PA in the second of Eqs (1 1.40), we have 

1 4B + A cash X(L - Z )  

P -  ” - 2(2B + A )  [-+ A coshXL 

whence 

1 4B + A cash X(L - Z) 
nB1 = 2 B ( t +  A )  [ A+ coshXL 

Also from Eqs (1 1.40) 

so that 

1 cash X(L - Z) P -  
cosh AL 

and 
-PA [ - cash X(L - z)] 

2B(2B + A )  cosh XL 
nB2 = 

(1 1.46) 

(1 1.47) 

(1 1.48) 

(1 1.49) 

(1 1.50) 

(1 1.51) 



11.5 Constraint of open section beams 465 

Finally, the shear flow distributions are obtained from Eqs (1 1.39), thus 

-dPBI - PAX sinh X(L - z )  
d z  2(2B+A) coshXL 

- 41 =- 

aPB2 - -PAX sinh X(L - z )  
d z  2(2B+A) coshXL q2=-- 

(1 1.52) 

(1 1.53) 

Again we see that each expression for direct stress, Eqs (1 1.47), (11.49) and (1 1.51), 
comprises a term which gives the solution from elementary theory together with a 
correction for the shear lag effect. The shear flows q1 and q2 are self-equilibrating, 
as can be seen from Eqs (1 1.52) and (1 1.53), and are entirely produced by the shear 
lag effect (ql  and q2 must be self-equilibrating since no shear loads are applied). 

LcllllllrrrJrwr- I 

11.5 Constraint of open section beams 
Instances of open section beams occurring in isolation are infrequent in aircraft 
structures. The majority of wing structures do, however, contain cut-outs for 
undercarriages, inspection panels and the like, so that at these sections the wing is 
virtually an open section beam. We saw in Chapter 10 that one method of analysis 
for such cases is to regard the applied torque as being resisted by the differential 
bending of the front and rear spars in the cut-out bay. An alternative approach is 
to consider the cut-out bay as an open section beam built-in at each end and subjected 
to a torque. We shall now investigate the method of analysis of such beams. 

If such a beam is axially unconstrained and loaded by a pure torque T the rate of 
twist is constant along the beam and is given by 

d0 
T = GJ- 

dz 
(from Eq. (9.59)) 

We also showed in Section 9.6 that the shear stress varies linearly across the thickness 
of the beam wall and is zero at the middle plane (Fig. 11.22). It follows that although 
the beam and the middle plane warp (we are concerned here with primary warping), 
there is no shear distortion of the middle plane. The mechanics of this warping are 
more easily understood by reference to the thin-walled I-section beam of Fig. 
11.23(a). A plan view of the beam (Fig. 11.23(b)) reveals that the middle plane of 
each flange remains rectangular, although twisted, after torsion. We now observe 
the effect of applying a restraint to one end of the beam. The flanges are no longer 
free to warp and will bend in their own planes into the shape shown in plan in 

@-- Middle plane 

Fig. 11.22 Shear stress distribution across the wall of an open section beam subjected to torsion. 



466 Structural constraint 

Fig. 11.23 (a) Torsion of I-section beam; (b) plan view of beam showing undistorted shape of flanges. 

Fig. 11.24. Obviously the beam still twists along its length but the rate of twist is no 
longer constant and the resistance to torsion is provided by the St. Venant shear stres- 
ses (unrestrained warping) plus the resistance of the flanges to bending. The total 
torque may therefore be written T = TJ + Tr, where TJ = GJ d8/dz from the uncon- 
strained torsion of open sections but in which d8/dz is not constant, and Tr is 
obtained from a consideration of the bending of the flanges. It will be instructive 
to derive an expression for Tr for the I-section beam of Fig. 11.25 before we turn 
our attention to the case of a beam of arbitrary section. 

Suppose that at any section z the angle of twist of the I-beam is 8. Then the lateral 
displacement u of the lower flange is 

h 
U = 8 -  2 

Fig. 11.24 Bending effect of axial constraint on flanges of I-section beam subjected to torsion. 
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t Y  

z 

Fig. 11 2 5  Torsion of I-section beam fully built-in at  one end. 

and the bending moment MF in the plane of the flange is given by 

d2u 
MF = -EIF - 

dz2 
(see Section 9.1 for sign convention) 

where I, is the second moment of area of theflange cross-section about they axis. It is 
assumed here that displacements produced by shear are negligible so that the lateral 
deflection of the flange is completely due to the self-equilibrating direct stress system 
c7r set up by the bending of the flange. We shall not, however, assume that the shear 
stresses in the flange are negligible. The shear S,  in the flange is then 

d3 u dMF - SF =-- - E I F T  
dz dz 

or substituting for u in terms of 8 and h 

h d38 
2 dz3 

SF = -EIF - - 

Similarly, there is a shear force in the top flange of the same magnitude but opposite in 
direction. Together they form a couple which represents the second part Tr of the 
total torque, thus 

and the expression for the total torque may be written 

de h2 d38 
dz 2 dz T = G J - -  EIF - 7 

The insight into the physical aspects of the problem gained in the above will be found 
helpful in the development of the general theory for the arbitrary section beam shown 
in Fig. 11.26. 
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t’ 

Fig. 11.26 Torsion of an open section beam fully built-in at one end. 

The theory, originally developed by Wagner and Kappus, is most generally known 
as the Wagner torsion bending theory. It assumes that the beam is long compared 
with its cross-sectional dimensions, that the cross-section remains undistorted by 
the loading and that the shear strain T~~ of the middle plane of the beam is negligible 
although the stresses producing the shear strain are not. From similar assumptions is 
derived, in Section 9.6, an expression for the primary warping w of the beam, viz. 

In the presence of axial constraint, de/dz is no longer constant so that the longitudi- 
nal strain aw/az is not zero and direct (also shear) stresses are induced. Thus 

(11.54) 

The or stress system must be self-equilibrating since the applied load is a pure torque. 
Therefore, at any section the resultant end load is zero and IC or,tds = 0 ( IC denotes integration around the beam section 1 
or, from Eq. (11.54) and observing that d29/d? is a function of z only 

2 A ~ t  ds = 0 (11.55) 

The limits of integration of Eq. (1 1.55) present some difficulty in that AR is zero when 
w is zero at an unknown value of s. Let 

2 . 4 ~  = 2 A ~ , o  - 2Ak 

where AR.0 is the area swept out from s = 0 and A; is the value of AR!O at w = 0 (see 
Fig. 11.27). Then in Eq. (1 1.55) 
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Fig. 11.27 Computation of swept area AR. 

and 

giving 

( 1  1.56) 

The axial constraint shear flow system, qr, is in equilibrium with the self- 
equilibrating direct stress system. Thus, from Eq. (9.22) 

aqr d0-r - + t - = o  
as dz 

- - - I -  dqr - a0r 
dS dZ 

Hence 

Substituting for mr from Eq. (1 1.54) and noting that qr = 0 when s = 0, we have 

d3 B 
qr = 2AREt 2 ds 

or 

Now 

or, from Eq. (1 1.57) 

(1 1.57) 
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The integral in this equation is evaluated by substituting p~ = (d/ds)(2A~) and 
integrating by parts. Thus 

At each open edge of the beam qr, and therefore $ 2ARtds, is zero so that the 
integral reduces to - Jc 4Ait ds, giving 

(1 1.58) 

where r R  = sc 4Ait ds, the torsion-bending constant, and is purely a function of the 
geometry of the cross-section. The total torque T, which is the sum of the St. 
Venant torque and the Wagner torsion bending torque, is then written 

de d3 8 
dz dz 

T = G J -  - E r R  7 (1 1.59) 

(Note: Compare Eq. (1 1.59) with the expression derived for the I-section beam.) 

tD of the beam wall so that r R ,  for a beam with n booms, may be generally written 
In the expression for r R  the thickness t is actually the direct stress carrying thickness 

n 

where B, is the cross-sectional area of the rth boom. The calculation of r R  enables the 
second order differential equation in dO/dz (Eq. (1 1.59)) to be solved. The constraint 
shear flows, qr, follow from Eqs (1 1.57) and (1 1.56) and the longitudinal constraint 
stresses from Eq. (1 1.54). However, before illustrating the complete method of 
solution with examples we shall examine the calculation of r R .  

So far we have referred the swept area AR, and hence r R ,  to the centre of twist of the 
beam without locating its position. This may be accomplished as follows. At any 
section of the beam the resultant of the qr shear flows is a pure torque (as is the 
resultant of the St. Venant shear stresses) so that in Fig. 11.28 IC qr sin $ds = Sy = 0 

Fig. 11.28 Determination of the position of the centre of twist. 
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Therefore, from Eq. (1 1.57) 

Now 

dY d sin$=--, - ( U R ) = P R  
ds ds 

and the above expression may be integrated by parts, thus 

The first term on the right-hand side vanishes as si 2ARt ds is zero at each open edge 
of the beam, leaving 

y 2 A ~ t  ds = 0 

Again integrating by parts 

The integral in the first term on the right-hand side of the above equation may be 
recognized, from Chapter 9, as being directly proportional to the shear flow produced 
in a singly symmetrical open section beam supporting a shear load Sy. Its value is 
therefore zero at each open edge of the beam. Hence 

Similarly, for the horizontal component S, to be zero 

(11.60) 

(1 1.61) 

Equations (11.60) and (11.61) hold if the centre of twist coincides with the shear 
centre of the cross-section. To summarize, the centre of twist of a section of an 
open section beam carrying a pure torque is the shear centre of the section. 

We are now in a position to calculate rR. This may be done by evaluating sc 4Ait ds 
in which 2AR is given by Eq. (1 1 S6). In general, the calculation may be lengthy unless 
the section has flat sides in which case a convenient analogy shortens the work 
considerably. For the flat-sided section in Fig. 11.29(a) we first plot the area 2AR:o 
swept out from the point 1 where we choose s = 0 (Fig. 11.29(b)). The swept area 
AR,O increases linearly from zero at 1 to (1/2)pI2dl2 at 2 and so on. Note that move- 
ment along side 23 produces no increment of 2kfR,o as p23 = 0. Further, we adopt a 
sign convention for p such that p is positive if movement in the positive s direction 
of the foot of p along the tangent causes anticlockwise rotation about R. The 
increment of 2AR.0 from side 34 is therefore negative. 
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2AR10 

c s  
1-34 5 6 

di2 d23 Etc. 

(a) (b) 

Fig. 11.29 Computation of torsion bending constant rR: (a) dimensions of flat-sided open section beam; (b) 
variation of 2AR,o around beam section. 

In the derivation of Eq. (1 1.56) we showed that 

Suppose now that the line 1’2’3‘. . .6‘ is a wire of varying density such that the weight 
of each element 6s’ is tSs. Thus the weight of length 1‘2’ is tdI2 etc. They coordinate of 
the centre of gravity of the ‘wire’ is then 

Comparing this expression with the previous one for 2AL, y and J are clearly analo- 
gous to 2AR,o and 2Ak respectively. Further 

Expanding and substituting 

2Ak IC t ds for jc 2AR,ot ds 

gives 

r R  = (2A~,o)~tds  - (2AL)’ tds (1 1.62) 

Thus, in Eq. (1 1.62), r R  is analogous to the moment of inertia of the ‘wire’ about an 
axis through its centre of gravity parallel to the s axis. 

I I 
Example 11.2 
An open section beam of length L has the section shown in Fig. 11.30. The beam is 
M y  built-in at one end and carries a pure torque T. Derive expressions for the 
direct stress and shear flow distributions produced by the axial constraint (the or 
and qr systems) and the rate of twist of the beam. 
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2 

Fig. 11.30 Section of axially constrained open section beam under torsion. 

The beam is loaded by a pure torque so that the axis of twist passes through the 
shear centre S(R) of each section. We shall take the origin for s at the point 1 and 
initially plot 2AR-o against s to determine r R  (see Fig. 11.31). The position of the 
centre of gravity, (2A’,), of the wire 1’2’3‘4’ is found by taking moments about the 
s axis. Thus 

t(2d+h)2A’,  = td - + th - + rd - (3 (7)  (hqd) 
from which 

hd(h + d )  
2(h + 2d)  

3A‘, = 
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r R  follows from the moment of inertia of the ‘wire’ about an axis through its centre of 
gravity. Hence 

which simplifies to 

td3h2 2h+d 
r R  =- 12 (-) h+2d 

Equation (1 1.59), that is 

de d3 8 
dz dz 

T=GJ--EE~RT 

may now be solved for dO/dz. Rearranging and writing p2 = GJ/ErR we have 

d38 2d8 T -- dz3 z=-p 
The solution of Eq. (iii) is of standard form, i.e. 

(ii) 

(iii) 

de T 
dz GJ 
--- - + Acoshpz + Bsinhpz 

The constants A and B are found from the boundary conditions. 

dO/dz = 0 at the built-in end. 

load. Therefore, from Eq. (1 1.54), d’O/d2 = 0 at the free end. 

(1) At the built-in end the warping w = 0 and since w = -2ARd8/dz then 

(2) At the free end gr = 0, as there is no constraint and no externally applied direct 

From (1) 

From (2) 

so that 

or 

A = -T/GJ 

B = (T/GJ) tanh pL 

d0 T 
- = - (1 - coshpz + tanhpLsinh pz) 
dz G J  

dz GJ cosh p L  1 
The first term in Eq. (iv) is seen to be the rate of twist derived from the St. Venant torsion 
theory. The hyperbolic second term is therefore the modification introduced by the 
axial constraint. Equation (iv) may be integrated to find the distribution of angle of 
twist 8, the appropriate boundary condition being 8 = 0 at the built-in end. Thus 

(4 1 sinh p ( L  - z) sinh p L  - 
GJ p cosh p L  p cosh pL 
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z z = L  

Fig. 11.32 Stiffening effect of axial constraint. 

and the angle of twist, at the free end of the beam is 

e i = : E = = ( 1 - 7 )  TL tanh pL 

Plotting 6 against z (Fig. 1 1.32) illustrates the stiffening effect of axial constraint on 
the beam. 

The decrease in the effect of axial constraint towards the free end of the beam is 
shown by an examination of the variation of the St. Venant ( TJ)  and Wagner (Tr) 
torques along the beam. From Eq. (iv) 

and 

d38 coshp(L - z) 
dz3 cosh pL 

Tr = - E r R  - = T 

(vii) 

(viii) 

Tj and Tr are now plotted against z as fractions of the total torque T (Fig. 11.33). At 
the built-in end the entire torque is carried by the Wagner stresses, but although the 
constraint effect diminishes towards the free end it does not disappear entirely. This is 
due to the fact that the axial constraint shear flow, qr, does not vanish at z = L, for at 
this section (and all other sections) d38/dz3 is not zero. 

Fig. 11.33 Distribution of St. Venant and torsion-bending torques along the length of the open section beam 
shown in Fig. 11.30. 
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(a)  

Fig. 11.34 Distribution of axial constraint direct stress around the section. 

Equations (iii) to (viii) are, of course, valid for open section beams of any cross- 
section. Their application in a particular case is governed by the value of the torsion 
bending constant r R  and the St. Venant torsion constant J [= (h + 2d)t3/3 for this 
example]. With this in mind we can proceed, as required by the example, to derive 
the direct stress and shear flow distributions. The former is obtained from Eqs 
(11.54) and (iv). Thus 

T sinh p ( L  - z) 
GJ coshpL =  ARE - p 

or writing J = G J / E r R  and rearranging 

sinh p ( L  - z )  
cr = - {L T U R  cosh pL 

GJTR 

In Eq. (ix) E, G ,  J and r R  are constants for a particular beam, T is the applied torque, 
AR is a function of s and the hyperbolic term is a function of z. It follows that at a 
given section of the beam the direct stress is proportional to -2AR, and for the 
beam of this example the direct stress distribution has, from Fig. 11.31, the form 
shown in Figs 11.34(a) and (b). In addition, the value of cr at a particular value of 
s varies along the beam in the manner shown in Fig. 11.35. 

I- 

d& 
Fig. 11.35 Spanwise distribution of axial constraint direct stress. 
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Fig. 11.36 Calculation of axial constraint shear flows. 

Finally, the axial constraint shear flow, qr, is obtained from Eq. (11.57), namely 

At any section z, qr is proportional to 
ring to Fig. 11.36, 2AR = 2 4 0  - 2Afi so that in flange 12 

2&t ds and is computed as follows. Refer- 

Hence 

[ 2 A ~ t d S = t  h d  hd - h + d  [ 4 2 ( h + Z d ) " ]  
so that 

Similarly 

d38 h'd't 
dz3 4(h + 2 d )  

qr,l = 0 and qr,2 = - E -  

" - 4(h hZd2t + 2 d )  1 
whence 

d38 h2d2t d38 h'd't 
q r : z = - E ~  4 ( h + 2 d ) '  q r ~ = E ~ 4 ( , 3 + 2 d )  

Note that in the above d38/& is negative (Eq. (viii)). Also at the mid-point of 
the web where s2 = h/2,  qr = 0.  The distribution on the lower flange follows from 
antisymmetry and the distribution of qr around the section is of the form shown in 
Fig. 11.37. 

The spanwise variation of qr has the same form as the variation of Tr since 

d38 
dz3 

Tr = -ErR - 
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Fig. 11.37 Distribution of axial constraint shear flows. 

giving 

qr = -- “r 2ARtds from Eq. (11.57) 
rR 0 

Hence for a given value of s, ($2A~tds) ,  qr is proportional to Tr (see Fig. 11.33). 

11.5.1 Distributed torque loading 

We now consider the more general case of a beam carrying a distributed torque load- 
ing. In Fig. 11.38 an element of a beam is subjected to a distributed torque of intensity 
T,(z), i.e. a torque per unit length. At the section z the torque comprises the St. Venant 
torque Tj  plus the torque due to axial constraint Tr. At the section z + Sz the torque 
increases to T + ST(= Tj + STj + Tr + STr) so that for equilibrium of the beam 
element 

Tj + STj + Tr + STr + T~(z)SZ - Tj - Tr = 0 
or 

-T~(z)SZ = STj + STr = ST 

. \ \  

= TJ + 

\ 

T +  6T 

6TJ + T,. + 

Fig. 11.38 Beam carrying a distributed torque loading. 
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Hence 

Now 

dTJ dTr d T  
dz dz &- 

T,(Z) = -+- - 

dB 
dz TJ = G J -  (Eq. (9.60)) 

and 

d30 Tr = -Er  - 
d z 3  

(Eq. (1 1.58)) 

so that Eq. (1 1.63) becomes 

d46' d2B E r  - - GJ - - T ~ ( ~ )  d# &2 - 

( 1  1.63) 

(11.64) 

The solution of Eq. (11.64) is again of standard form in which the constants of 
integration are found from the boundary conditions of the particular beam under 
consideration. 

11.5.2 Extension of the theory to allow for general 
Il_i-_l---: 

systems of loading -".-.-- 

So far we have been concerned with open section beams subjected to torsion in which, 
due to constraint effects, axial stresses are induced. Since pure torsion can generate 
axial stresses it is logical to suppose that certain distributions of axial stress applied 
as external loads will cause twisting. The problem is to determine that component 
of an applied direct stress system which causes twisting. 

Figure 11.39 shows the profile of a thin-walled open section beam subjected to a 
general system of loads which produce longitudinal, transverse and -rotational 

A 
SY 

Fig. 11.39 Cross-section of an open section beam subjected to a general system of loads. 
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displacements of its cross-section. In the analysis we assume that the cross-section of 
the beam is undistorted by the loading and that displacements corresponding to the 
shear strains are negligible. In Fig. 11.39 the tangential displacement ut is given by 
Eq. (9.27), i.e. 

ut = pR8 + ucos$ + usin$ (1 1.65) 

Also, since shear strains are assumed to be negligible, Eq. (9.26) becomes 

(1 1.66) 

Substituting for vt in Eq. (1 1.66) from Eq. (1 1.65) and integrating from the origin for s 
to any point s around the cross-section, we have 

d8 du dv 
dz dz dz W, - W O  = --2AR,o - -(x - X O )  - - ( y  -yo) (11.67) 

where 2 4 0  = p~ ds. The direct stress at any point in the wall of the beam is given 
by 

Thus, from Eq. (1 1.67) 

Now AR,O = Ak + A R  (Fig. 11.39) so that Eq. (1 1.68) may be rewritten 

d28 d2u d2v 
dz2 dz2 dz2 

uZ = fi (z) - E - ~ A R  - E - x - E - (1 1.69) 

in which 

The axial load P on the section is given by 

where Jc denotes integration taken completely around the section. From Eq. (11.55) 
we see that sc 2 A ~ t  dr = 0. Also, if the origin of axes coincides with the centroid of the 
section Jc txds = Jc tyds = 0 and J tyds = 0 so that 

P = a2tds =fi(z)A (1 1.70) I 
in which A is the cross-sectional area of the material in the wall of the beam. 

The component of bending moment, M,, about the x axis is given by 
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Substituting for CT? from Eq. (1 1.69) we have 
d2 u d2v 

Mx = f i ( z )  IC tyds - 2ARtyds - EGIC txydS - .-Ic d? ty’ds 

We have seen in the derivation of Eqs (11.60) and (11.61) that Jc2ARtyds = 0. Also 
since 

tyrds=O! jcfxyds=Ixy, jcty2ds=I, 

(11.71) d2u d2v 
M, = - E -  I - E D  I,, dz2 x” 

Similarly 

(1 1.72) d2u d2v 
c2tx& = - E s  I& - E- I . dz2 x’ 

Equations (1 1.71) and (11.72) are identical to Eqs (9.19) so that from Eqs (9.17) 

E -  d2u = MxIxs - M  y2 I x x ,  E -  d2v = -My Iyy + My IxJ (1 1.73) 
dz2 Ixx Iyy - I,, dz2 Ixx Iyy - I$ 

The first differential, d2$/dz2, of the rate of twist in Eq. (1 1.69) may be isolated by 
multiplying throughout by 2ARt and integrating around the section. Thus 

l c ~ z 2 A R t d s  = f i ( z )  

As before 

and 

jc 2ARt ds = 0, jc 2ARtx ds = 2ARty ds = 0 I 

or -=-Ic d2B 0,2A~t dS 
d z 2  ErR 

Substituting in Eq. (1 1.69) from Eqs (1 1.70), (1 1.73) and (1 1.74), we obtain 

( 1 1.74) 
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The second two terms on the right-hand side of Eq. (1 1.75) give the direct stress due to 
bending as predicted by elementary beam theory (see Eq. (9.6)); note that the above 
approach provides an alternative method of derivation of Eq. (9.6). 

Comparing the last term on the right-hand side of Eq. (1 1.75) with Eq. (1 1.54), we 
see that 

= Or ~ A R  Se Uz 2 A ~ t  ds 
r R  

It follows therefore that the external application of a direct stress system a, induces a 
self-equilibrating direct stress system Or. Also, the first differential of the rate of twist 
(d26/dzz) is related to the applied a, stress system through the term Jeaz2ARtds.  
Thus, if sc az2ARt ds is interpreted in terms of the applied loads at a particular section 
then a boundary condition exists (for d26/d2) which determines one of the constants 
in the solution of either Eq. (1 1.59) or Eq. (1 1.64). 

11.5.3 Moment couple (bimoment) 

The units of sc a,2ARtds are force x (distance)2 or moment x distance. A simple 
physical representation of this expression would thus consist of two equal and 
opposite moments applied in parallel planes some distance apart. This combination 
has been termed a moment couple’ or a bimoment3 and is given the symbol Mr or 
B,. Equation (11.75) is then written 

(1 1.76) 

As a simple example of the determination of Mr consider the open section beam 
shown in Fig. 11.40 which is subjected to a series of concentrated loads P I ,  
P 2 , .  . . , Pk, . . . , Pn parallel to its longitudinal axis. The term azt ds in Jc a,2ARt ds 
may be regarded as a concentrated load acting at a point in the wall of the beam. 
Thus, Sc az2ARt ds becomes E;= Pk2Aw, and hence 

MXIYY - MYIXY M ~ ~ A R  
A IxxIyy  - Ix:, >,+ ( IxxIyy  - I2y ) Y + T  
p (My Ixx - M x L y  a,=-+ 

n 

Mr is determined for a range of other loading systems in Ref. 2. 

(1 1.77) 

Fig. 11.40 Open section beam subjected to concentrated loads parallel to its longitudinal axis. 
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- 

B 
(a) 

Fig. 11.41 Column of Example 11.3. 

Example 11.3 

t---l 100rnrn 

The column shown in Fig. 11.41(a) carries a vertical load of 100kN. Calculate the 
angle of twist at the top of the column and the distribution of direct stress at its 
base. E = 200 000 N/mm2 and GIE = 0.36. 

The centre of twist R of the column cross-section coincides with its shear centre at 
the mid-point of the web 23. The distribution of 2AR is obtained by the method 
detailed in Example 11.2 and is shown in Fig. 11.42. The torsion bending constant 
r R  is given by Eq. (ii) of Example 11.2 and has the value 2.08 x 10'omm6. The 
St. Venant torsion constant J = Cst3/3 = 0.17 x 105mm4 so that d m  (= ,LL 

in Eq. (iii) of Example 11.2) = 0.54 x Since no torque is applied to the 

Fig. 11.42 Distribution of area 2AR in the column of Example 11.3. 
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column the solution of Eq. (iii) in Example 11.2 is 

(i) 
d8 - = Ccoshpz + D s i n h p  dz 

At the base of the column warping of the cross-section is suppressed so that, from 
Eq. (9.65), dO/dz = 0 when z = 0. Substituting in Eq. (i) gives C = 0. The moment 
couple at the top of the column is obtained from Eq. (1 1.77) and is 

Mr = P ~ A R  = -100 x 2.5 x IO3 = -25 x lo5 kNmm2 

Therefore, from Eq. (11.74) and noting that Jc uz2ARtds = Mr, we have 

- _  d28 - 2'5 lo5 lo3 - 0.06 1 0 - 6 / ~ ~ 2  
dz2 200000 x 2.08 x 1O'O - 

at z = 3000mm. Substitution in the differential of Eq. (i) gives D = 0.04 x 
that Eq. (i) becomes 

so 

= 0.04 x sinh 0.54 x 10-32 
dz 

Integration of Eq. (ii) gives 

8 = 0.08  COS^ 0.54 x 10P3z + F 

At the built-in end (z = 0) 8 = 0 so that F = -0.08. Hence 

8 = 0.08(~0sh0.54 x 10-3~ - 1) 

At the top of the column (z = 3000mm) the angle of twist is then 

8(top) = 0.08cosh0.54 x x 3000 = 0.21 rad(l2.01") 

(ii) 

(iii) 

The axial load is applied through the centroid of the cross-section so that no bending 
occurs and Eq. (1 1.76) reduces to 

At the base of the column 

(see Eq. (1 1.74)) 

Therefore, from Eq. (ii) 

(Mr)==o = -200000 x 2.08 x 10" x 0.02 x loP6 = -83.2 x 106Nmm' 

The direct stress distribution at the base of the column is then, from Eq. (iv) 

100 x io3 83.2 x io6 - 
400 x 5 2.08 x 

uz = - 

or 

uz = -so - 4.0 x 1 0 - ~ 2 ~ ~  
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The direct stress distribution is therefore linear around the base of the column (see 
Fig. 11.42) with 

a,, = a,, = 20.0N/mm2 

a,, = or, = -68.0N/mm2 

11.5.4 Shear flow due to Mr 

The self-equilibrating shear flow distribution, qr, produced by axial constraint is 
given by 

(see derivation of Eq. (I  1.27)) 

From the last term on the right-hand side of Eqs (1 1.76) 

dUr - d k f r  ~ A R  - -- - 
dz dz r R  

From Eq. (1 1.74) 

d28 
dz2 

Mr = - E r R -  

so that 

Hence 

and 

(see Eq. (11.58)) 

(as before) 

7.- 

rences 
1 Argyris, J. H. and Dunne, P. C. ,  The general theory of cylindrical and conical tubes under 

torsion and bending loads, J .  Roy. Aero. SOC., Parts I-IV, Feb. 1947, Part V, Sept. and Nov. 
1947, Part VI, May and June 1949. 

2 Megson, T. H. G., Extension of the Wagner torsion bending theory to allow for general 
systems of loading, The Aeronautical Quarterly, Vol. XXVI, Aug. 1975. 

3 Vlasov, V. Z., Thin-walled elastic beams, Israel Program for Scientific Translations, 
Jerusalem, 196 1. 



486 Structural constraint 

______p .__ ..I . - ~  -a. 

P.l l . l  A thin-walled beam with the singly symmetrical cross-section shown in 
Fig. P.11.1, is built-in at one end where the shear force Sy = 11 1 250 N is applied 
through the web 25. Assuming the cross-section remains undistorted by the loading, 
determine the shear flow and the position of the centre of twist at the built-in end. The 
shear modulus G is the same for all walls. 

Ans. 

Fig. P. l l . l  

q12 = q56 = 46.6 N/mm, 
932 = q54 = 1.4N/mm1 
XR = -630.1 mm, 

952 = 180.8 N/mm, 
q43 = 74.6N/mm7 

Y R  = 0 (relative to mid-point of 52) 

127 

I27 

I .  ' 3 0 5 m m  I 254 m m q  

P.11.2 I thin-walled two-cell beam with the singly symmetrica, cross-section 
shown in Fig. P. 1 1.2 is built-in at one end where the torque is 1 1 000 N m. Assuming 
the cross-section remains undistorted by the loading, determine the distribution of 
shear flow and the position of the centre of twist at the built-in end. The shear 
modulus G is the same for all walls. 

1.2 mm 
I 

- 

Fig. P.11.2 
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Am. 912 = q45 = 44.1 N/=, 
q51 = 80.2N/mm, 

q23 = q34 = 4 2 . 9 N / m ,  
qx = 3 7 . 4 N / m ,  

XR = 79.5mm, YR = 0 (referred to mid-point of web 24) 

P.11.3 A singly symmetrical, thin-walled, closed section beam is built-in at one 
end where a shear load of 10000N is applied as shown in Fig. P.11.3. Calculate 
the resulting shear flow distribution at the built-in end if the cross-section of the 
beam remains undistorted by the loading and the shear modulus G and wall thickness 
t are each constant throughout the section. 

Ans. 912 = 3992.9/R N/n~m, 923 = 71 1.3/R N/IIUTI: 

431 = (1502.4 - 1 8 9 4 . 7 ~ 0 ~ 4  - 2102.1 sinq5)/R N/mm 

1 
Fig. P.11.3 

P.11.4 A uniform, four-boom beam, built-in at one end, has the rectangular 
cross-section shown in Fig. P. 11.4. The walls are assumed to be effective only in 
shear, the thickness and shear modulus being the same for all walls while the 
booms, which are of equal area, carry only direct stresses. Assuming that the cross- 
section remains undistorted by the loading, calculate the twist at the free end due 
to a uniformly distributed torque loading T = 20 N m/mm along its entire length. 
Take G = 20000N/mm2 and G / E  = 0.36. 

A m .  5.9" anticlockwise. 

00 mm2 

1.0 mm 

Fig. P.11.4 
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P.11.5 Figure P.11.5 shows the doubly symmetrical idealized cross-section of a 
uniform box beam of length 1. Each of the four corner booms has area B and Young’s 
modulus E ,  and they constitute the entire direct stress carrying area. The thin walls all 
have the same shear modulus G.  The beam transmits a torque T from one end to the 
other, and at each end warping is completely suppressed. Between the ends, the shape 
of the cross-section is maintained without further restriction of warping. 

Obtain an expression for the distribution of the end load along the length of one of 
the corner booms. Assuming btl > at2, indicate graphically the relation between 
torque direction and tension and compression in the boom end loads. 

1 (CoshpI - 1) 
Ans. P = ”” (btl - at2) - sinhpz + sinhpl cosh pz 

8abGtl t2  

where 

p2 = 8Gtlt2/BE(at2 + b t l )  

e t 
t2-4- 

Boom area 8 

Fig. P.11.5 

P.11.6 In the panel shown in Fig. P.11.6 the area, A,, of the central stringer is to be 
designed so that the stress in it is 80% of the constant stress, ce, in the edge members, 
each of area B. 

Assuming that the sheet, which is of constant thickness, t ,  carries only shear stress 
and that transverse strains are prevented, derive expressions for A, and B in terms of 

,,SI u n i t length 

Fig. P.11.6 



Problems 489 

the applied loads and the appropriate elastic moduli, E for the longitudinal members 
and G for the sheet. 

Evaluate these expressions in the case where P = 450 000 N; P, = 145 000 N; S = 
350N/mm; ae = 275N/mm2; I = 1250mm; b = 250mm; t = 2.5mm and G = 0.38E. 
Find the fraction of the total tension at the abutment which is carried by the stringer. 

1.25Ps 
A b -  Lz-- +-, 

A m .  '-:b( ;) a, 

P.11.7 A symmetrical panel has the form shown in Fig. P. 1 1.7. The longerons are 
of constant area, B1 for the edge member and B2 for the central members, and the 
sheet is of uniform thickness t .  The panel is assembled without stress. 

Obtain an expression for the distribution of end load in the central longeron if it is 
then raised to a temperature T (constant along its length) above the edge members. 
Also give the longitudinal displacement, at one end of the panel, of the central 
longeron relative to the edge members. 

Assume that end loads are carried only by the longerons, that the sheet carries only 
shear, and that transverse members are provided to prevent transverse straining and 
to ensure shear effectiveness of the sheet at the ends of the panel. 

PI cosh pz - tanh-sinhp - 1 2 
Am. 

aT 1 
Disp. = - tanhp- 

P 2 

where 

Fig. P.11.7 

P.11.8 The flat panel shown in Fig. P. 11.8 comprises a sheet of uniform thickness 
t, a central stringer of constant area A and edge members of varying area. The panel 
is supported on pinned supports and is subjected to externally applied shear flows 
SI and S,, together with end loads and P2,0 as shown. The areas of the edge 



490 Structural constraint 

S1 u1 =constant 

-. 
._I 

L 

p1,o + 

\ 
u2 = constant 

Fig. P.11.8 

members vary such that the direct stresses 01 and az in the edge members are 
constant. 

Assuming that transverse strains are prevented, that the sheet transmits shear stress 
only and that each part has suitable end members to take the complementary shear 
stresses, derive expressions for the variation of direct stress a3 in the stringer and 
for the variation of shear flow in the upper panel in terms of the dimensions given 
and the elastic moduli E and G for the material. 

1 sinh pz 
sinh pl 

Ans. a3 = (T) [l -coshpz-- (1  - cosh,d) 

1 cosh pz 
q1 = A ( T ) p [ s i n h p z + -  sinh p l  (1 - coshpl) 

where 
p2 = 2GtlbAE 

P.11.9 A uniform cantilever of length 1 has the doubly symmetrical cross-section 
shown in Fig. P.11.9. The section shape remains undistorted in its own plane after 
loading. Direct stresses on the cross-section are carried only in the concentrated 
longeron areas shown, and the wall thickness dimensions given relate only to shearing 
effects. All longerons have the same Young’s modulus E and all walls the same 
effective shear modulus G. 

Fig. P.11.9 

I 
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The root of the cantilever is built-in, warping being completely suppressed there, 
and a shearing force S is applied at the tip in the position indicated. 

Derive an expression for the resultant end load in a corner longeron. Also calculate 
the resultant deflection of the tip, including the effects of both direct and shear strains. 

Ans. P = -- 

where p2 = 4Gr/3dBE (top right hand) (origin for z at free end) 

P.11.10 An axially symmetric beam has the thin-walled cross-section shown in 
Fig. P. 11.10. If the thickness t is constant throughout and making the usual assump- 
tions for a thin-walled cross-section, show that the torsion bending constant r R  
calculated about the shear centre S is 

TfE -+ 3 4- 

Fig. P.11.10 

P.l l . l l  A uniform beam has the point-symmetric cross-section shown in 
Fig. P. 1 1.1 1. Making the usual assumptions for a thin-walled cross-section, show 

_- 

Fig. P . l l . l l  
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that the torsion-bending constant I? calculated about the shear centre S is I?=  

P.11.12 The thin-walled section shown in Fig. P.11.12 consists of two semi- 
circular arcs of constant thickness t .  Show that the torsion bending constant about 
the shear centre S is 

as t sin2 2a. The thickness t is constant throughout. 

t' 

Fig. P.11.12 

P.11.13 A thin-walled, I-section beam, of constant wall thickness t ,  is mounted as 
a cantilever with its web horizontal. At the tip, a downward force is applied in the 
plane of one of the flanges, as shown in Fig. P. 1 1.13. Assuming the necessary results 
of the elementary theory of bending, the St. Venant theory of torsion and the Wagner 
torsion-bending theory, determine the distribution of direct stress over the cross- 
section at the supported end. 

Take 

E / G  = 2.6, P =200N 

h =75mm, d=37.5mm 

t =2.5mm, 1 =375mm 
2 

0 6  = -05 = 18.9N/mm , Ans. -ol =03 = 108.9N/mm2, 

CT~ = a 4  = ~ ~ 2 2 4  = 0 

Fig. P.ll .I 3 
t f  
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P.11.14 An open section beam of length 21, whose ends are free to warp, consists 
of two uniform portions of equal length I ,  as shown in Fig. P. 1 1.14. The cross-sections 
of the two halves are identical except that the thickness in one half is t and in the other 
2t. If the St. Venant torsion constant and the torsion-bending constant for the portion 
of thickness t are J and r respectively, show that when the beam is loaded by a 
constant torque T the relative twist between the free ends is given by 

9 -  TI 
2p1( 10 cosh2 p l  - 1) 

where 

p2 = GJ/EI' and G = shear modulus (constant throughout) 

Fig. P.lt.14 



Matrix methods of 
structura I analysis 

Actual aircraft structures consist of numerous components generally arranged in an 
irregular manner. These components are usually continuous and therefore, theoreti- 
cally, possess an infinite number of degrees of freedom and redundancies. Analysis is 
then only possible if the actual structure is replaced by an idealized approximation or 
model. This procedure has been discussed to some extent in Chapter 9 where we noted 
that the greater the simplification introduced by the idealization the less complex but 
more inaccurate became the analysis. In aircraft design, where structural weight is of 
paramount importance, an accurate knowledge of component loads and stresses is 
essential so that at some stage in the design these must be calculated as accurately 
as possible. This accuracy may only be achieved by considering an idealized structure 
which closely represents the actual structure. Standard methods of structural analysis, 
some of which we have discussed in the preceding chapters, are inadequate for coping 
with the necessary degree of complexity in such idealized structures. It was this 
situation which led, in the late 1940s and early 1950s, to the development of matrix 
methods of analysis and at the same time to the emergence of high-speed, electronic, 
digital computers. Conveniently, matrix methods are ideally suited for expressing 
structural theory and for expressing the theory in a form suitable for numerical 
solution by computer. 

A structural problem may be formulated in either of two different ways. One 
approach proceeds with the displacements of the structure as the unknowns, the 
internal forces then follow from the determination of these displacements, while in 
the alternative approach forces are treated as being initially unknown. In the language 
of matrix methods these two approaches are known as the stijiness (or displacement) 
method and the flexibility (or force) method respectively. The most widely used of 
these two methods is the stiffness method and for this reason, we shall concentrate 
on this particular approach. Argyris and Kelsey ', however, showed that complete 
duality exists between the two methods in that the form of the governing equations 
is the same whether they are expressed in terms of displacements or forces. 

Generally, as we have previously noted, actual structures must be idealized to 
some extent before they become amenable to analysis. Examples of some simple 
idealizations and their effect on structural analysis have been presented in Chapter 
9 for aircraft structures. Outside the realms of aeronautical engineering the represen- 
tation of a truss girder by a pin-jointed framework is a well known example of the 
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idealization of what are known as ‘skeletal’ structures. Such structures are assumed to 
consist of a number of elements joined at points called nodes. The behaviour of each 
element may be determined by basic methods of structural analysis and hence the 
behaviour of the complete structure is obtained by superposition. Operations such 
as this are easily carried out by matrix methods as we shall see later in this chapter. 

A more difficult type of structure to idealize is the continuum structure; in this 
category are dams, plates, shells and, obviously, aircraft fuselage and wing skins. A 
method, extending the matrix technique for skeletal structures, of representing con- 
tinua by any desired number of elements connected at their nodes was developed 
by Clough et aL2 at the Boeing Aircraft Company and the University of Berkeley 
in California. The elements may be of any desired shape but the simplest, used in 
plane stress problems, are the triangular and quadrilateral elements. We shall discuss 
thefinite element method, as it is known, in greater detail later. 

Initially, we shall develop the matrix stiffness method of solution for simple skeletal 
and beam structures. The fundamentals of matrix algebra are assumed. 

Generally we shall consider structures subjected to forces, Fr,l, Fy,l, Fz, l ,  Fy,2, F,.,2, 
Fr,2,. . . , F,.+ Fy,,, F,,,, at nodes 1, 2, .  . ., n at which the displacements are u l ,  V I ,  

wl, u2, u2, w 2 , .  . . , u,, u,, w,. The numerical suffixes specify nodes while the algebraic 
suffixes relate the direction of the forces to an arbitrary set of axes, x, y ,  z .  Nodal 
displacements u, u, w represent displacements in the positive directions of the x, y 
and z axes respectively. The forces and nodal displacements are written as column 
matrices (alternatively known as column vectors) 

which, when once -established for a particular problem, may be abbreviated to 

{ F ) ,  (6) 
The generalized force system { F }  can contain moments M and torques T in 

addition to direct forces in which case (6) will include rotations 6. Therefore, in 
referring simply to a nodal force system, we imply the possible presence of direct 
forces, moments and torques, while the corresponding nodal displacements can be 
translations and rotations. For a complete structure the nodal forces and nodal 
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displacements are related through a stzfjness matrix [ K ] .  We shall see that, in general 

{ F )  = [KI{S) (12.1) 

where [K] is a symmetric matrix of the form 

(12.2) 

The element k ,  (that is the element located on row i and in columnj) is known as the 
stzfness influence coeficient (note k ,  = kji). Once the stiffness matrix [K] has been 
formed the complete solution to a problem follows from routine numerical calcula- 
tions that are carred out, in most practical cases, by computer. 

:ness matrix for an elastic spring 
The formation of the stiffness matrix [K] is the most crucial step in the matrix solution 
of any structural problem. We shall show in the subsequent work how the stiffness 
matrix for a complete structure may be built up from a consideration of the stiffness 
of its individual elements. First, however, we shall investigate the formation of [K]  
for a simple spring element which exhibits many of the characteristics of an actual 
structural member. 

The spring of stiffness k shown in Fig. 12.1 is aligned with the x axis and supports 
forces Fx,, and Fx,2 at its nodes 1 and 2 where the displacements are u1 and u2. We 
build up the stiffness matrix for this simple case by examining different states of 
nodal displacement. First we assume that node 2 is prevented from moving such 
that u1 = u1 and u2 = 0. Hence 

F Y J  = ku1 

and from equilibrium we see that 

Fx,2 = -Fx,l = -kul (12.3) 

which indicates that FY,2 has become a reactive force in the opposite direction to F.Y,l. 
Secondly, we take the reverse case where u1 = 0 and u2 = u2 and obtain 

FY,2 = kU2 = -&1 ( 12.4) 

Fig. 12.1 Determination of stiffness matrix for a single spring. 
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By superposition of these two conditions we obtain relationships between the applied 
forces and the nodal displacements for the state when uI = u1 and u2 = u2. Thus 

Writing Eqs (12.5) in matrix form we have 

(12.5) 

(12.6) 

and by comparison with Eq. (12.1) we see that the stiffness matrix for this spring 
element is 

[ K ]  = [ -"] 
-k  k 

which is a symmetric matrix of order 2 x 2. 

(12.7) 

Bearing in mind the results of the previous section we shall now proceed, initially by 
a similar process, to obtain the stiffness matrix of the composite two-spring system 
shown in Fig. 12.2. The notation and sign convention for the forces and nodal dis- 
placements are identical to those specified in Section 12.1. 

First let us suppose that u1 = uI  and u2 = u3 = 0. By comparison with the single 
spring case we have 

(12.8) 

Secondly, we put ul = u3 = 0 and u2 = u2. Clearly, in this case, the movement of 

FY.1 = kaul = -Fr,2 

but, in addition, Fr33 = 0 since u2 = u3 = 0. 

node 2 takes place against the combined spring stiffnesses k ,  and kb.  Hence 

(12.9) 

Hence the reactive force Fr,l (=-kau2)  is not directly affected by the fact that node 2 is 
connected to node 3, but is determined solely by the displacement of node 2. Similar 
conclusions are drawn for the reactive force Fy:u,3. 

Finally, we set uI  = u2 = 0, u3 = u3 and obtain 

1 Fy.2 = (ka  f kb)U2 

F y , I  = -k,tt2, F y 1 3  = -kbU2 

(12. I O )  

Fig. 12.2 Stiffness matrix for a two-spring system 
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Superimposing these three displacement states we have, for the condition u1 = ul ,  
u2 = 242, u3 = u3 

(12.11) 1 
{ ::} = [ -: k:-: 4.1 { ::} 

Fx,1 = kau1 - kau2 
Fx,2 = - k u l  -k (ka -k kb)u2 - kbu3 
Fx,3 = -kbU2 -k kbU3 

Writing Eqs (12.11) in matrix form gives 

ka -ka 
(12.12) 

Comparison of Eq. (12.12) with Eq. (12.1) shows that the stiffness matrix [Kl of this 
two-spring system is 

ka -ka 
[q = -k, ka+kb (12.13) [ 0 -kb 4.1 

Equation (12.13) is a symmetric matrix of order 3 x 3. 
It is important to note that the order of a stiffness matrix may be predicted from a 

knowledge of the number of nodal forces and displacements. For example, Eq. (12.7) 
is a 2 x 2 matrix connecting two nodal forces with two nodal displacements; Eq. 
(12.13) is a 3 x 3 matrix relating three nodal forces to three nodal displacements. 
We deduce that a stiffness matrix for a structure in which n nodal forces relate to n 
nodal displacements will be of order n x n. The order of the stiffness matrix does 
not, however, bear a direct relation to the number of nodes in a structure since it is 
possible for more than one force to be acting at any one node. 

So far we have built up the stiffness matrices for the single- and two-spring assem- 
blies by considering various states of displacement in each case. Such a process would 
clearly become tedious for more complex assemblies involving a large number of 
springs so that a shorter, alternative, procedure is desirable. From our remarks in 
the preceding paragraph and by reference to Eq. (12.2) we could have deduced at 
the outset of the analysis that the stiffness matrix for the two-spring assembly 
would be of the form 

kll kl2 k13 
[lul = k21 k22 [ k31 k32 

The element kl  of this matrix relates the force at node 1 I the displacemen 

(12.14) 

at node 1 
and so on. Hence, remembering the stiffness matrix for the single spring (Eq. (12.7)) 
we may write down the stiffness matrix for an elastic element connecting nodes 1 and 
2 in a structure as 

kll kl2 
[K121 = [ k21 k22]  

(12.15) 
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and for the element connecting nodes 2 and 3 as 

(12.16) 

In our two-spring system the stiffness of the spring joining nodes 1 and 2 is ka and that 
of the spring joining nodes 2 and 3 is kb. Therefore, by comparison with Eq. (12.7), we 
may rewrite Eqs (12.15) and (12.16) as 

(12.17) 

Substituting in Eq. (12.14) gives 
ka -ka 0 

[K]  = -ka ka+kb -kb] [ 0 -kb kb 

which is identical to Eq. (12.13). We see that only the kZ2 term (linking the force at 
node 2 to the displacement at node 2) receives contributions from both springs. 
This results from the fact that node 2 is directly connected to both nodes 1 and 3 
while nodes 1 and 3 are each joined directly only to node 2. Also, the elements kI3  
and k31 of [K]  are zero since nodes 1 and 3 are not directly connected and are therefore 
not affected by each other’s displacement. 

The formation of a stiffness matrix for a complete structure thus becomes a relatively 
simple matter of the superposition of individual or element stiffness matrices. The 
procedure may be summarized as follows: terms of the form kii on the main diagonal 
consist of the sum of the stiffnesses of all the structural elements meeting at node i while 
off-diagonal terms of the form kii consist of the sum of the stiffnesses of all the elements 
connecting node i to node j .  

An examination of the stiffness matrix reveals that it possesses certain properties. 
For example, the sum of the elements in any column is zero, indicating that the con- 
ditions of equilibrium are satisfied. Also, the non-zero terms are concentrated near the 
leading diagonal while all the terms in the leading diagonal are positive; the latter 
property derives from the physical behaviour of any actual structure in which positive 
nodal forces produce positive nodal displacements. 

Further inspection of Eq. (12.13) shows that its determinant vanishes. As a result the 
stiffness matrix [K] is singular and its inverse does not exist. We shall see that this means 
that the associated set of simultaneous equations for the unknown nodal displacements 
cannot be solved for the simple reason that we have placed no limitation on any of the 
displacements 141 , y or u3. Thus the application of external loads results in the system 
moving as a rigid body. Sufficient boundary conditions must therefore be specified to 
enable the system to remain stable under load. In this particular problem we shall 
demonstrate the solution procedure by assuming that node 1 is fixed, i.e. u1 = 0. 

The first step is to rewrite Eq. (12.13) in partitioned form as 

= (12.18) .o. ..; ............ ...... 
-ka i ka +kb 
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In Eq. (12.18) Fx,, is the unknown reaction at node 1, u1 and u2 are unknown nodal 
displacements, while Fx,2 and F,,3 are known applied loads. Expanding Eq. (1 2.18) by 
matrix multiplication we obtain 

{ F x , l }  = [-ka Ol{ ;;}, { 
= [yb 21 { ;; } (12.19) 

F X . 3  

Inversion of the second of Eqs (12.19) gives u2 and u3 in terms of F,,? and F,-,3. 
Substitution of these values in the first equation then yields fY,, . 

Thus 

{ u 2 }  = - k b ] - ' {  ::h} 

u3 -kb kb 

or 

Hence 

which gives 

F Y . 1  = - K . 2  - F Y . 3  

as would be expected from equilibrium considerations. In problems where reactions 
are not required, equations relating known applied forces to unknown nodal dis- 
placements may be obtained by deleting the rows and columns of [ K ]  corresponding 
to zero displacements. This procedure eliminates the necessity of rearranging rows 
and columns in the original stiffness matrix when the fixed nodes are not conveniently 
grouped toget her. 

Finally, the internal forces in the springs may be determined from the force- 
displacement relationship of each spring. Thus, if Sa is the force in the spring joining 
nodes 1 and 2 then 

Sa = ka(u2 - u , )  

Similarly for the spring between nodes 2 and 3 

Sb = kb(u3 - u 2 )  

12.4 Matrix analysis of pin-jointed frameworks 
The formation of stiffness matrices for pin-jointed frameworks and the subsequent 
determination of nodal displacements follow a similar pattern to that described for 
a spring assembly. A member in such a framework is assumed to be capable of carry- 
ing axial forces only and obeys a unique force-deformation relationship given by 

A E  
L 

F = - 6  
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where F is the force in the member, Sits change in length, A its cross-sectional area, L 
its unstrained length and E its modulus of elasticity. This expression is seen to be 
equivalent to the spring-displacement relationships of Eqs (12.3) and (12.4) so that 
we may immediately write down the stiffness matrix for a member by replacing k 
by AEIL in Eq. (12.7). Thus 

or 

(12.20) 

so that for a member aligned with the x axis, joining nodes i and j subjected to nodal 
forces Fy>i and FXJ, we have 

(12.21) 

The solution proceeds in a similar manner to that given in the previous section for a 
spring or spring assembly. However, some modification is necessary since frameworks 
consist of members set at various angles to one another. Figure 12.3 shows a member 
of a framework inclined at an angle 8 to a set of arbitrary reference axes x,  y .  We shall 
refer every member of the framework to this global coordinate system, as it is known, 
when we are considering the complete structure but we shall use a member or Iocal 
coordinate system 3, 7 when considering individual members. Nodal forces and 
displacements referred to local coordinates are written as F, U etc so that Eq. 
(12.21) becomes, in terms of local coordinates 

- 
(12.22) 

where the element stiffness matrix is written K]. 
noted that and 
forces. However, and 

In Fig. 12.3 external forces and are applied to nodes i andj. It should be 
do not exist since the member can only support axial 

have components FX7+ Fy,i and F,,, FJqj respectively, 

Fig. 12.3 Local and global coordinate systems for a member of a plane pin-jointed framework. 
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so that, whereas only two force components appear for the member in terms of local 
coordinates, four components are present when global coordinates are used. There- 
fore, if we are to transfer from local to global coordinates, Eq. (12.22) must be 
expanded to an order consistent with the use of global coordinates, i.e. 

-- 
Equation (12.23) does not change the basic relationship between Fx,i, Fx,j and i& 
defined in Eq. (12.22). 

as 

From Fig. 12.3 we see that 

and 

Writing X for cos 8 an 

or, in abbreviated form 

- 
Fx,i = Fx,i cos 8 + Fy,i sin 8 

= -Fx:i sin 8 + Fy,i cos 8 

- 
Fx,j =FxJcos8+ FY;,,sin8 

Fy,j =-Fx,jsin8+ Fy,jcos8 
- 

,u for sin 8 we express the above equations in matrix form as 

-k 0 0 - p X  I B : ] { ; y , j ,  

IF1 = [ m F }  (12.25) 

where [TI is known as the transformation matrix. A similar relationship exists between 
the sets of nodal displacements. Thus, again using our shorthand notation 

= [TI{S} (12.26) 

Substituting now for { F }  and {J} in Eq. (12.23) from Eqs (12.25) and (12.26), we have 

[TI{F} = [K,l[~I{S} 
Hence 

{F} = [T-'l[K,l[Tl{S} (12.27) 

It may be shown that the inverse of the transformation matrix is its transpose, i.e. 

[T-'] = [TIT 

{Fl= [TITm[7-l{s> 
Thus we rewrite Eq. (12.27) as 

(12.28) 
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The nodal force system referred to global coordinates, { F }  is related to the corre- 
sponding nodal displacements by 

if7 = [Ki,{S) (12.29) 

where [ICi,.] is the member stiffness matrix referred to global coordinates. Comparison 
of Eqs (12.28) and (12.29) shows that 

[Kg1 = [TlTrn[T1 

Substituting for [TI from Eq. (12.24) and [K,] from Eq. (12.23), we obtain 

(12.30) 

By evaluating A(= cos@) and p(= sine) for each member and substituting in Eq. 
(12.30) we obtain the stiffness matrix, referred to global coordinates, for each 
member of the framework. 

In Section 12.3 we determined the internal force in a spring from the nodal displa- 
cements. Applying similar reasoning to the framework member we may write down 
an expression for the internal force SU in terms of the local coordinates. Thus 

Now 
- 
tlj = xuj + pvj 

ui = XUf + pvj 
- 

Hence 
- 
uj - = X(Uj  - ui) + p(vj - Wi) 

Substituting in Eq. (12.31) and rewriting in matrix form, we have 

(12.31) 

(12.32) 

Example 12.1 
Determine the horizontal and vertical components of the deflection of node 2 and the 
forces in the members of the pin-jointed framework shown in Fig. 12.4. The product 
AE is constant for all members. 

We see in this problem that nodes 1 and 3 are pinned to a h e d  foundation and are 
therefore not displaced. Hence, with the global coordinate system shown 

u1 = 211 = u3 = v3 = 0 

The external forces are applied at node 2 such that FX,2 = 0, F Y , ~  = - W ;  the nodal 
forces at 1 and 3 are then unknown reactions. 
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t’ 

Fig. 12.4 Pin-jointed framework of Example 12.1. 

The first step in the solution is to assemble the stiffness matrix for the complete 
framework by writing down the member stiffness matrices referred to the global coor- 
dinate system using Eq. (12.30). The direction cosines X and p take different values 
for each of the three members, therefore remembering that the angle is measured 
anticlockwise from the positive direction of the x axis we have the following: 

Member 0 x P 

1-2 
1-3 
2-3 

0 1 0 
90 0 1 

135 - l /& l/& 

The member stiffness matrices are therefore 
1 0 - 1 0  0 0 0  0 

0 0  0 
0 - 1 0  1 

The next stage is to add the member stiffness matrices to obtain the stiffness matrix 
for the complete framework. Since there are six possible nodal forces producing six 
possible nodal displacements the complete stiffness matrix is of the order 6 x 6. 
Although the addition is not difficult in this simple problem care must be taken, 
when solving more complex structures, to ensure that the matrix elements are 
placed in the correct position in the complete stiffness matrix. This may be achieved 
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-Li r - l  Ll -[ 4 2 ;  ; 2 2 1  

[-; 2 ;  2 

I I  

I 1  
I I k73 I 

1 :  

k33 k32 I I  I 

I 1  1 :  I 1 1 I  -L 3 -2-I L-2  ZJ 

k22 
I 1  1 1  I 1 
L-2  2J L 5 - 2-I 

1-1 r 1 - 11 
1 1  
- 1  

I I I  

by expanding each member stiffness matrix to the order of the complete stiffness 
matrix by inserting appropriate rows and columns of zeros. Such a method is, how- 
ever, time and space consuming. An alternative procedure is suggested here. The 
complete stiffness matrix is of the form shown in Eq. (ii) 

(ii) 

The complete stiffness matrix has been divided into a number of submatrices in which 
[kI1] is a 2 x 2 matrix relating the nodal forces cy,l, F5.,] to the nodal displacements ul,  

v1 and so on. It is a simple matter to divide each member stiffness matrix into sub- 
matrices of the form [kll;, as shown in Eqs (iii). All that remains is to insert each 
submatrix into its correct position in Eq. (ii), adding the matrix elements where 
they overlap; for example, the [kllj submatrix in Eq. (ii) receives contributions 
from [K12] and [KI3]. The complete stiffness matrix is then of the form shown in 
Eq. (iv). It is sometimes helpful, when considering the stiffness matrix separately, 
to write the nodal displacement above the appropriate column (see Eq. (iv)). We 
note that [K] is symmetrical, that all the diagonal terms are positive and that the 
sum of each row and column is zero 

(iii) 
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- - 

u1 v1 u2 v2 u3 v3 
1 0 -1 0 0 0 '  
0 1  0 0 0 -1 

1 1 1 1 -1 0 I + - - - - -  - 

1 1 1 1 

1 1 1 1 

1 1 1 1 

2 J z  2 4  2 J z  2 J z  

2.\/2 2Jz 2Jz 2 J 2  

2 4  2 J 2  2 J z  2 J z  

2 a  2 J z  2 4  2 J z .  

- - -- 0 0 -- 

0 0 -- 

0 -1 

- - -- 

1 +- - -- -- 

--1 -1- 

0 0  

0 1  {:I:} 
- 0 -1 - 

2.41 = o  
211 = 0 

u2 
v2 

u3 = 0 
v3 = 0 

If we now delete rows and columns in the stiffness matrix corresponding to zero 
displacements, we obtain the unknown nodal displacements u2 and v2 in terms of 
the applied loads Fx,2(= 0) and Fv,2(=- W ) .  Thus 

1 1 
1+- -- 

2 4  2Jz 

2Jz 2 J 2  
-- - 

Inverting Eq. (v) gives 

from which 

(vi) 

(vii) 

(viii) 

The reactions at nodes 1 and 3 are now obtained by substituting for u2 and v2 from 
Eq. (vi) into Eq. (iv). Thus 

0 O l  
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giving 

Fx,l = - Fx,2 - FY,2 = W 

Fy,l = 0 

Fy,3 1 Fy>2 = - W 

Fy,3 = w 
Finally, the forces in the members are found from Eqs (12.32), (vii) and (viii) 

= - w (compression) 
A E  

s12 = t [ l  01 

= 0 (as expected) 
AE 

s13 = l1 

L -.__ - ." - ..1-- 1 I - T  . r  m d i c % s n - t z  statically indeterminate frameworks 
The matrix method of solution described in the previous sections for spring and pin- 
jointed framework assemblies is completely general and is therefore applicable to any 
structural problem. We observe that at no stage in Example 12.1 did the question of 
the degree of indeterminacy of the framework arise. It follows that problems 
involving statically indeterminate frameworks (and other structures) are solved in 
an identical manner to that presented in Example 12.1, the stiffness matrices for 
the redundant members being included in the complete stiffness matrix as before. 

-" %". ", 

Matrix anal) 
The procedure for the matrix analysis of space frames is similar to that for plane pin- 
jointed frameworks. The main difference lies in the transformation of the member 
stiffness matrices from local to global coordinates since, as we see from Fig. 12.5, 
axial nodal forces and have each now three global components cy.;, Fv,i, 
Fz,i and Fx,j ,  Fy,j ,  Fz,j respectively. The member stiffness matrix referred to global 
coordinates is therefore of the order 6 x 6 so that [ICii] of Eq. (12.22) must be 
expanded to the same order to allow for this. Hence 

- AE [K. . ]  = ~ 

" L  

ui v; w; uj vj wj 

1 0  0 -1 0 0 
0 0 0  0 0 0  
0 0 0  0 0 0  

- 1 0 0  1 0 0  
0 0 0  0 0 0  
0 0 0  0 0 0  

(12.33) 
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‘A, pf u, 0 0 0- 

A, p, u, 0 0 0 

A, p2 u, 0 0 0 
0 0 0 A, pj vj 
0 0 0 A, p, v, 
0 0 0 A, pz u,- 

Fig. 12.5 Local and global coordinate systems for a member in a pin-jointed space frame. 

In Fig. 12.5 the member ij is of length L, cross-sectional area A and modulus 
of elasticity E.  Global and local coordinate systems are designated as for the two- 
dimensional case. Further, we suppose that 

e,, = angle between x and 2 
8, = angle between x and j j  

e,, = angle between z and j j  

Therefore, nodal forces referred to the two systems of axes are related as follows 

(12.34) 

- 
F, = F, COS exj + F,, COS e,, + F, COS e,? 
F~ = F~ cos e,, + cos e,, + F, COS e,,: 
F~ = F, cos ezj + F,, cos e,, + F, COS ezi 
- 
- 

Writing 

A, = cos e,,, A, = COS e,,, A, = COS e, 
pj  = cos e,,,, p- - COS e - pF = COS e,, 
uj = cos eaf, v, = COS e,,, uz = COS e=? 

Y - YY’ 

we may express Eq. (12.34) for nodes i and j  in matrix form as 

(12.35) 

(12.36) 
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or in abbreviated form 

{PI = [TI{F) 

The derivation of [ICii] for a member of a space frame proceeds on identical lines to 
that for the plane frame member. Thus, as before 

T -  
[Kijl = [TI [KjI[Tl 

Substituting for [TI and [q] from Eqs (12.36) and (12.33) gives 

A E  [K..]  = - 
V L  

(12.37) 

All the suffixes in Eq. (12.37) are X so that we may rewrite the equation in simpler 
form, namely 

A E  [K..]  = - 
V L  

x2 SYM 

2 
AP P2 

-A2 -xp -xu ; x2 
-xp - p  -pu ; xp p2 

xu pu u 
............................................... 

2 

2 ; xu pu u 2 -xu -pu -u 

(12.38) 

where A, p and u are the direction cosines between the x, y, z and X axes respectively. 
The complete stiffness matrix for a space frame is assembled from the member 

stiffness matrices in a similar manner to that for the plane frame and the solution 
completed as before. 

!ss matrix for a uniform beam 
Our discussion so far has been restricted to structures comprising members capable of 
resisting axial loads only. Many structures, however, consist of beam assemblies in 
which the individual members resist shear and bending forces, in addition to axial 
loads. We shall now derive the stiffness matrix for a uniform beam and consider 
the solution of rigid jointed frameworks formed by an assembly of beams, or beam 
elements as they are sometimes called. 

Figure 12.6 shows a uniform beam ij of flexural rigidity EZ and length L subjected 
to nodal forces FV,;, F,,j and nodal moments Mi, Mi in the xy plane. The beam suffers 
nodal displacements and rotations vir vi and O;, 6,. We do not include axial forces here 
since their effects have already been determined in our investigation of pin-jointed 
frameworks. 
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Fig. 12.6 Forces and moments on a beam element. 

The stiffness matrix [Kv] may be built up by considering various deflected states for 
the beam and superimposing the results, as we did initially for the spring assemblies 
of Figs 12.1 and 12.2 or, alternatively, it may be written down directly from the well- 
known beam slope-deflection equations3. We shall adopt the latter procedure. From 
slope-deflection theory we have 

6EI 4EI 6EI 2EI 
M . -  - - v . + - e i + - v . + - e j  

I -  L2 L L2 L 

and 

6EI 2EI 6EI 4EI M ---v.+-e.+-v.+-e. 
j -  ~ 2 1  ~1 L ~ J  L J  

Also, considering vertical equilibrium we obtain 

Fy,i + Fy,  j = 0 

and from moment equilibrium about node j we have 

Fy,iL + Mi + Mj = 0 

Hence the solution of Eqs (12.39), (12.40), (12.41) and (12.42) gives 

12EI 6EI 12EI 6EI -F . = F  . = - - w i + - e i + - v j + - e .  
L3 L2 L3 L2 Y?Z Y J  

(12.39) 

(12.40) 

(12.41) 

(12.42) 

(12.43) 

Expressing Eqs (12.39), (12.40) and (12.43) in matrix form yields 

1 2 1 ~ ~  - 6 1 ~ ~  - 1 2 1 ~ ~  - 6 1 ~ ~  

- 1 2 1 ~ ~  -6/L2 6 1 ~ ~  4/L 1 2 1 ~ ~  6/L2 6 1 ~ ~  2/L 1 { ;} (12.44) 

-6/L2 2/L 6/L2 4/L 

which is of the form 

{PI = [K&51 

where [Kv] is the stiffness matrix for the beam. 
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It is possible to write Eq. (12.44) in an alternative form such that the elements of 
[KJ are pure numbers. Thus 

12 -6 -12 -6 
- 6 4  6 2  

-12 6 12 6 
- 6 2  6 4  

This form of Eq. (12.44) is particularly useful in numerical calculations for an assem- 
blage of beams in which EI/L3 is constant. 

Equation (12.44) is derived for a beam whose axis is aligned with the x axis so that 
the stiffness matrix defined by Eq. (12.44) is actually the stiffness matrix referred 
to a local coordinate system. If the beam is positioned in the xy plane with its axis 
arbitrarily inclined to the x axis then the x and y axes form a global coordinate 
system and it becomes necessary to transform Eq. (12.44) to allow for this. The 
procedure is similar to that for the pin-jointed framework member of Section 12.4 
in that [K,] must be expanded to allow for the fact that nodal displacements iij and 
Uj, which are irrelevant for the beam in local coordinates, have components uj, vi 
and uj, vj in global coordinates. Thus 

= EI 

ui vi 8i uj vj 

o 1 2 1 ~ ~  - 6 1 ~ ~  o - 1 2 1 ~ ~  - 6 1 ~ ~  

o - 1 2 1 ~ ~  6 1 ~ ~  o 1 2 1 ~ ~  6 1 ~ ~  

0 0  0 0 0  0 

0 -6/L2 4/L 0 6/L2 2/L 
0 0  0 0 0  0 

0 -6/L2 2/L 0 6/L2 4/L , 

(12.45) 

We may deduce the transformation matrix [TI from Eq. (12.24) if we remember 
that although u and w transform in exactly the same way as in the case of a pin- 
jointed member the rotations B remain the same in either local or global coordinates. 
Hence 

[TI = 

' A  / .Lo  0 0 0  
- / . L A O  0 0 0  
0 0 1  0 0 0  
0 0 0  x p o  
0 0 0 - / . L A O  

- 0  0 0  0 0 1  

where A and p have previously been defined. Thus since 

(12.46) 

(see Section 12.4) 
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[Kg] = EI 

- 1 2 J / ~ ~  SYM 
- 1 2 ~ ~ 1 ~ ~  1 2 ~ ~ 1 ~ ~  

-12p2/~3 1 2 ~ ~ 1 ~ ~  - 6 p / ~ 2  1 2 p 2 / ~ 3  
1 2 ~ ~ 1 ~ ~  - 1 2 ~ ~ 1 ~ ~  6 x 1 ~ ~  - 1 2 ~ ~ 1 ~ ~  1 2 ~ ~ 1 ~ ~  

6p/L2 -6X/L2 4/L 

- 6p/L2 -6X/L2 2/L 6p/L2 6X/L2 4XIL 
(12.47) 

Again the stiffness matrix for the complete structure is assembled from the member 
stiffness matrices, the boundary conditions are applied and the resulting set of 
equations solved for the unknown nodal displacements and forces. 

The internal shear forces and bending moments in a beam may be obtained in terms 
of the calculated nodal displacements. Thus, for a beam joining nodes i andj  we shall 
have obtained the unknown values of vi, Bi and vi, 0,. The nodal forces Fy,i and Mi are 
then obtained from Eq. (12.44) if the beam is aligned with the x axis. Hence 

Similar expressions are obtained for the forces at nodej. From Fig. 12.6 we see that 
the shear force S, and bending moment M in the beam are given by 

(12.49) 

Substituting Eqs (12.48) into Eqs (12.49) and expressing in matrix form yields 

6 

(12.50) 

12 6 
L2 L3 

{2}=E' [12z  -x - - 6 6 4 -- 12 x + -  6 -- 6 2  

The matrix analysis of the beam in Fig. 12.6 is based on the condition that no 
external forces are applied between the nodes. Obviously in a practical case a beam 
supports a variety of loads along its length and therefore such beams must be 
idealized into a number of beam-elements for which the above condition holds. The 
idealization is accomplished by merely specifying nodes at points along the beam 
such that any element lying between adjacent nodes cames, at the most, a uniform 
shear and a linearly varying bending moment. For example, the beam of Fig. 12.7 
would be idealized into beam-elements 1-2, 2-3 and 3-4 for which the unknown 
nodal displacements are v2, S2, 03, v4 and 0, (q = 

Beams supporting distributed loads require special treatment in that the distributed 
load is replaced by a series of statically equivalent point loads at a selected number of 
nodes. Clearly the greater the number of nodes chosen, the more accurate but more 

-- -- 12 

L3 L2 -zx+z L3 L2 L 2 X + Z  

= v3 = 0). 



12.7 Stiffness matrix for a uniform beam 513 

L 
4 - dunit length 

- wL - wL - wL 
4 4 4 

w W 

2 3 4 

- 128 I28 

- wL - wL - wL wL 
4 4 4 8 

w W 

2 3 4 

Fig. 12.8 Idealization of a beam supporting a uniformly distributed load. 

complicated and therefore time consuming will be the analysis. Figure 12.8 shows a 
typical idealization of a beam supporting a uniformly distributed load. Details of 
the analysis of such beams may be found in Martin4. 

Many simple beam problems may be idealized into a combination of two beam- 
elements and three nodes. A few examples of such beams are shown in Fig. 12.9. If 
we therefore assemble a stiffness matrix for the general case of a two beam-element 
system we may use it to solve a variety of problems simply by inserting the appro- 
priate loading and support conditions. Consider the assemblage of two beam- 
elements shown in Fig. 12.10. The stiffness matrices for the beam-elements 1-2 and 
2-3 are obtained from Eq. (12.44); thus 

Fig. 12.9 Idealization of beams into beam-elements. 



- L O  Lb -- 
i 

Fig. 12.10 Assemblage of two beam-elements. 

The complete stiffness matrix is formed by superimposing [K12] and [K23] as described 
in Example 12.1. Hence 

[K]  = E 

0 0 

0 0 

(12.53) 

Example 12.2 
Determine the unknown nodal displacements and forces in the beam shown in Fig. 
12.1 1. The beam is of uniform section throughout. 

IW 

Fig. 12.11 Beam of Example 12.2. 
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The beam may be idealized into two beam-elements, 1-2 and 2-3. From Fig. 12.11 
we see that v1 = v3 = 0, FJ,2 = - W ,  M2 = +M. Therefore, eliminating rows and 
columns corresponding to zero displacements from Eq. (12.53), we obtain 

Fy,2 = - W 27/2L3 9/2L2 6/L' -3/2L2 
9/2L2 6/L 2 / L  
6/L2 2 / L  4 / L  0 

-3/2L2 1 /L  0 2 / L  
Equation (i) may be written such that the elements of [Kl are pure numbers 

Fy,z = - W 27 9 12 -3 212 

9 12 4 ( M 3 / L  = 0 -3 12 4 2 0 8 !][ iz} 
Expanding Eq. (iij by matrix multiplication we have 

and 

Equation (iv) gives 

Substituting Eq. (v) in Eq. (iii) we obtain 

L3 -4 -2 { c L } = z [ - 2  3 ] {  M;} 
from which the unknown displacements at node 2 are 

4 WL3 2ML' 
v2=------ 9 EI 9 EI 

2WL2 1 M L  +-- " = G T  3 EI 
In addition, from Eq. (v) we find that 

5WL2 1 M L  
9 EI 6 EI 

0, = --+-- 

4WL2 1 M L  o3 = - -- - -- 
9 EI 3 EI 

It should be noted that the solution has been obtained by inverting two 2 x 2 matrices 
rather than the 4 x 4 matrix of Eq. (ii). This simplification has been brought about by 
the fact that M I  = M3 = 0. 
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The internal shear forces and bending moments can now be found using Eq. 
(12.50). For the beam-element 1-2 we have 

or 

2 1 M  
3 3 L  

sr,,2 = - w - -- 
and 

M 1 2 = E I [ ( ~ ~ - $ ) ~ l +  ( - $ x + t ) Q I  

which reduces to 

_. 
12.8 Finite element method for continuum structures 

In the previous sections we have discussed the matrix method of solution of structures 
composed of elements connected only at nodal points. For skeletal structures consist- 
ing of arrangements of beams these nodal points fall naturally at joints and at positions 
of concentrated loading. Continuum structures, such as flat plates, aircraft skins, shells 
etc, do not possess such natural subdivisions and must therefore be artificially idea- 
lized into a number of elements before matrix methods can be used. These finite 
elements, as they are known, may be two- or three-dimensional but the most com- 
monly used are two-dimensional triangular and quadrilateral shaped elements. The 
idealization may be carried out in any number of different ways depending on such 
factors as the type of problem, the accuracy of the solution required and the time 
and money available. For example, a coarse idealization involving a small number 
of large elements would provide a comparatively rapid but very approximate solution 
while a jine idealization of small elements would produce more accurate results but 
would take longer and consequently cost more. Frequently, graded meshes are used 
in which small elements are placed in regions where high stress concentrations are 
expected, for example around cut-outs and loading points. The principle is illustrated 
in Fig. 12.12 where a graded system of triangular elements is used to examine the stress 
concentration around a circular hole in a flat plate. 

Although the elements are connected at an infinite number of points around their 
boundaries it is assumed that they are only interconnected at their corners or nodes. 
Thus, compatibility of displacement is only ensured at the nodal points. However, in 
the finite element method a displacement pattern is chosen for each element which 
may satisfy some, if not all, of the compatibility requirements along the sides of 
adjacent elements. 
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Fig. 12.12 Finite element idealization of a flat plate with a central hole. 

Since we are employing matrix methods of solution we are concerned initially with 
the determination of nodal forces and displacements. Thus, the system of loads on the 
structure must be replaced by an equivalent system of nodal forces. Where these loads 
are concentrated the elements are chosen such that a node occurs at the point of 
application of the load. In the case of distributed loads, equivalent nodal concen- 
trated loads must be calculated4. 

The solution procedure is identical in outline to that described in the previous 
sections for skeletal structures; the differences lie in the idealization of the structure 
into finite elements and the calculation of the stiffness matrix for each element. The 
latter procedure, which in general terms is applicable to all finite elements, may be 
specified in a number of distinct steps. We shall illustrate the method by establishing 
the stiffness matrix for the simple one-dimensional beam-element of Fig. 12.6 for 
which we have already derived the stiffness matrix using slope-deflection. 

12.8.1 Stiff ness matrix for a beam-element 

The first step is to choose a suitable coordinate and node numbering system for the 
element and define its nodal displacement vector {CY} and nodal load vector {Fe}. 
Use is made here of the superscript e to denote element vectors since, in general, a 
finite element possesses more than two nodes. Again we are not concerned with 
axial or shear displacements so that for the beam-element of Fig. 12.6 we have 

Since each of these vectors contains four terms the element stiffness matrix [K"] will be 
of order 4 x 4. 
In the second step we select a displacement function which uniquely defines the 

displacement of all points in the beam-element in terms of the nodal displacements. 
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This displacement function may be taken as a polynomial which must include four 
arbitrary constants corresponding to the four nodal degrees of freedom of the 
element. Thus 

v(x) = a1 + Q2X + a32 + a4x3 (12.54) 

Equation (12.54) is of the same form as that derived from elementary bending theory 
for a beam subjected to concentrated loads and moments and may be written in 
matrix form as 

or in abbreviated form as 

{V(X>) = [f(x>1{4 (12.55) 

The rotation 8 at any section of the beam-element is given by av/ax; therefore 

e = a2 + 2 a 3 ~  + 3a4x2 (12.56) 

From Eqs (12.54) and (12.56) we can write down expressions for the nodal displace- 
ments vi, Bi and vj, 0, at x = 0 and x = L respectively. Hence 

vi = a1 
ei = a2 

vj = a1 + a2L + a3L2 + a4L3 

e, = a2 + 2a3L + 3a4L2 

(12.57) 

Writing Eqs (12.57) in matrix form gives 

1 0  0 

(12.58) 
1 L L2 

or 

(0 = [-4l{a) (12.59) 

The third step follows directly from Eqs (12.58) and (12.55) in that we express the 
displacement at any point in the beam-element in terms of the nodal displacements. 
Using Eq. (12.59) we obtain 

{a> = [-4-11{0 
Substituting in Eq. (12.55) gives 

(12.60) 
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where [A-'1 is obtained by inverting [A] in Eq. (12.58) and may be shown to be given 
by 

r 1  0 0 0 1  
1 0 I o  -3/L2 -2/L 3/L2 -1/L 

[A-'I = (12.62) 

1 2/L3 1/L2 -2/L3 1 / L q  

In step four we relate the strain {E(.)} at any point x in the element to the displace- 
ment {.(.)} and hence to the nodal displacements {g}. Since we are concerned here 
with bending deformations only we may represent the strain by the curvature 
a2w/dx2. Hence from Eq. (12.54) 

(12.63) 

or in matrix form 

(12.64) 

which we write as 

{E> = [Cl{a) (12.65) 

Substituting for {a} in Eq. (12.65) from Eq. (12.60) we have 

{E} = [cI[A-'l{@} (12.66) 

Step five relates the internal stresses in the element to the strain { E }  and hence, 
using Eq. (12.66), to the nodal displacements (6"). In our beam-element the stress 
distribution at any section depends entirely on the value of the bending moment M 
at that section. Thus we may represent a 'state of stress' {a} at any section by the 
bending moment M ,  which, from simple beam theory, is given by 

a2W 

ax2 M = E I -  

(12.67) 

{a} = [DI{E) (12.68) 

The matrix [D] in Eq. (12.68) is the 'elasticity' matrix relating 'stress' and 'strain'. In 
this case [D] consists of a single term, the flexural rigidity EI of the beam. Generally, 
however, [D] is of a higher order. If we now substitute for { E }  in Eq. (12.68) from Eq. 
(12.66) we obtain the 'stress' in terms of the nodal displacements, i.e. 

{a> = [Dl[cl[A-' l{@) (12.69) 
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[BIT = 

The element stiffness matrix is finally obtained in step six in which we replace the 
internal 'stresses' {a} by a statically equivalent nodal load system {Fe}, thereby 
relating nodal loads to nodal displacements (from Eq. (12.69)) and defining the 
element stiffness matrix [IC]. This is achieved by employing the principle of the 
stationary value of the total potential energy of the beam (see Section 4.4) which com- 
prises the internal strain energy U and the potential energy V of the nodal loads. Thus 

- 6 12x -_ L2 +z 
4 6x --+_ 
L L2 

6 12x 
L2 L3 

1 
U + V = - {&}T{a}d(Vol) - {6"}T{F'} 2 1.1 

(12.70) 

Substituting in Eq. (12.70) for { E }  from Eq. (12.66) and {a} from Eq. (12.69) we have 

U + I/ = - {6"}T[A-']T[~T[D][~[A-1]{~}d(~~l) - {a"}T{Fe} (12.71) 

The total potential energy of the beam has a stationary value with respect to the nodal 
displacements {6"}T; hence, from Eq. (12.71) 

1 
2 Iv0l 

[A-']T[CIT[D][q[A-1]{6e}d(~~1) - {Fe} = 0 (12.72) a(u+ V )  

whence 

or writing [C][A-'] as [B] we obtain 

from which the element stiffness matrix is clearly 

[K"I = [ J vol ~ ~ l T [ o l ~ ~ l ~ ~ ~ ~ ~ ) ]  
From Eqs (12.62) and (12.64) we have 

1 0 0 
0 1 0 

-3/L2 -2/L 3/L2 -1/L 
21~3 i p . 2  -21~3 i/L2 

[B] = [q[A-'] = [O 0 2 6x1 

or 

(12.73) 

(12.74) 

(12.75) 

(12.76) 
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- 6 12x- +- L2 L3 
4 6x --+- 
L L2 

6 12x 
L2 L3 

2 6x --+- 
- L L 2 -  

-- 

Hence 

L 

0 
= J 

which gives 

6 12x 4 6x 6 [EI] --+- --+- [ L' L3 L L2 

12 -6L -12 -6L 
EI -6L 4L2 6L 2L2 

-6L 2L2 6L 4L2 
[R1=z[ -12 6L 12 6L 1 

Equation (12.77) is identical to the stiffness matrix (see Eq. (12.44)) for the uniform 
beam of Fig. 12.6. 

Finally, in step seven, we relate the internal 'stresses', {cr}, in the element to the 
nodal displacements {@}. This has in fact been achieved to some extent in Eq. 
(1 2.69), namely 

(12.77) 

(0) = [~1[C1[A-'I{Se) 
or, from the above 

(01 = [Dl[B1{Se) 

(4 = [II{@l 
Equation (12.78) is usually written 

(12.78) 

(12.79) 

in which [HI = [D][B] is the stress-displacement matrix. For this particular beam- 
element [D] = EI and [B] is defined in Eq. (12.76). Thus 

] (12.80) 6 12 4 6  6 1 2  'H] = - - + -x - - + --x - - - L2 L3x --+--x [ L2 L3 L L' L L2 

12.8.2 Stiffness matrix for a triangular finite element 

Triangular finite elements are used in the solution of plane stress and plane strain 
problems. Their advantage over other shaped elements lies in their ability to represent 
irregular shapes and boundaries with relative simplicity. 

In the derivation of the stiffness matrix we shall adopt the step by step procedure of 
the previous example. Initially, therefore, we choose a suitable coordinate and node 
numbering system for the element and define its nodal displacement and nodal force 
vectors. Figure 12.13 shows a triangular element referred to axes Oxy and having 
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I - X  
0 

Fig. 12.13 Triangular element for plane elasticity problems. 

nodes i, j and k lettered anticlockwise. It may be shown that the inverse of the [A] 
matrix for a triangular element contains terms giving the actual area of the element; 
this area is positive if the above node lettering or numbering system is adopted. The 
element is to be used for plane elasticity problems and has therefore two degrees of 
freedom per node, giving a total of six degrees of freedom for the element, which 
will result in a 6 x 6 element stiffness matrix [PI. The nodal forces and displacements 
are shown and the complete displacement and force vectors are 

(12.81) 

We now select a displacement function which must satisfy the boundary conditions 
of the element, i.e. the condition that each node possesses two degrees of freedom. 
Generally, for computational purposes, a polynomial is preferable to, say, a trigono- 
metric series since the terms in a polynomial can be calculated much more rapidly by a 
digital computer. Furthermore, the total number of degrees of freedom is six, so that 
only six coefficients in the polynomial can be obtained. Suppose that the displacement 
function is 

(12.82) 

The constant terms, al and a4, are required to represent any in-plane rigid body 
motion, i.e. motion without strain, while the linear terms enable states of constant 
strain to be specified; Eqs (12.82) ensure compatibility of displacement along the 



12.8 Finite element method for continuum structures 523 

edges of adjacent elements. Writing Eqs (12.82) in matrix form gives 

{%;} = [o 0 0 1 x y 

Comparing Eq. (12.83) with Eq. (12.55) we see that it is of the form 

(12.83) 

(12.84) 

Substituting values of displacement and coordinates at each node in Eq. (12.84) we 
have, for node i 

] {a> {;}=[ 0 0 0 1 x ; y ,  
1 x i y , o  0 0 

Similar expressions are obtained for nodes j and k so that for the complete element we 
obtain 

From Eq. (12.81) and by comparison with Eqs (12.58) 
(12.85) takes the form 

{fl} = [AI{d  
Hence (step 3) we obtain 

b (12.85) 

d (12.59) we see that Eq. 

{a} = [ A - l ] { f l }  (compare with Eq. (12.60)) 
The inversion of [A] ,  defined in Eq. (12.85), may be achieved algebraically as illustrated 
in Example 12.3. Alternatively, the inversion may be carried out numerically for a parti- 
cdar element by computer. Substituting for {a}  from the above into Eq. (12.84) gives 

(compare with Eq. (12.61)). 
The strains in the element are 

(12.86) 

(12.87) 
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From Eqs (1.18) and (1.20) we see that 
dU aV all dv 

Ex = - rxy =-+- ax? ay a x  

Substituting for u and v in Eqs (12.88) from Eqs (12.82) gives 

E, =a2 

Ey = a 6  

r x y  = Q3 + Q5 

or in matrix form 

{ E } =  [" 0 0 1 0  0 0 0 0 0 o,[q 1 

0 0 1 0 1 0  
a5 

a6 

(12.88) 

(12.89) 

which is of the form 

{ E }  = [C]{a} (see Eqs (12.64) and (12.65)) 
Substituting for {a}(= [A-']{6e}) we obtain 

{ E }  = [C'l[A-']{Se} (compare with Eq. (12.66)) 
or 

{ E }  = [B]{Se} (see Eq. (12.76)) 
where [q is defined in Eq. (12.89). 

four, to the nodal displacements {g}. For plane stress problems 
In step five we relate the internal stresses {a} to the strain { E }  and hence, using step 

{u} = {;} (12.90) 
7"y 

and 
ux va, 

E, = - - - 
E E  

(see Chapter 1) - a y  -vox 

E y - 7 7 - E  

Thus, in matrix form, 

--v 0 

{E} = { :} =; [ :v 1 0 I( z }  (12.91) 
YXY 0 2(1+v) Tx, 
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- - 
0 

= U 1 0 

U 
1 -  

1 - u  

(1 - 2 4  
2(1 - u)- 0 -  0 

- 

It may be shown that 

{ ;} (12.93) 
/xy 

which has the form of Eq. (12.68), i.e. 

(4 = [Dl{&> 
Substituting for { E }  in terms of the nodal displacements {$} we obtain 

{o} = [D][B]{a"} (see Eq. (12.69)) 
In the case of plane strain the elasticity matrix [D] takes a different form to that 
defined in Eq. (12.92). For this type of problem 

ffx uffy U f f ;  
Ex=----- E E E  

Eliminating a, and solving for ff.y, cy and T~~ gives 

which again takes the form 

{ff} = [DliE} 
Step six, in which the internal stresses {a} are replaced by the statically equivalent 

nodal forces {F'} proceeds, in an identical manner to that described for the beam-ele- 
ment. Thus 

as in Eq. (12.74), whence 

In this expression [B] = [q[A-']  where [A] is defined in Eq. (12.85) and [C] in Eq. 
(12.89). The elasticity matrix [D] is defined in Eq. (12.92) for plane stress problems 
or in Eq. (12.93) for plane strain problems. We note that the [q, [A] (therefore [B]) 
and [D] matrices contain only constant terms and may therefore be taken outside 
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the integration in the expression for [e], leaving only Jd(vo1) which is simply the 
area, A,  of the triangle times its thickness t .  Thus 

(12.94) 

Finally the element stresses follow from Eq. (12.79), i.e. 

where [HI = [D][B] and [D] and [B] have previously been defined. It is usually found 
convenient to plot the stresses at the centroid of the element. 

Of all the finite elements in use the triangular element is probably the most versatile. 
It may be used to solve a variety of problems ranging from two-dimensional flat plate 
structures to three-dimensional folded plates and shells. For three-dimensional 
applications the element stiffness matrix [Ke] is transformed from an in-plane xy 
coordinate system to a three-dimensional system of global coordinates by the use 
of a transformation matrix similar to those developed for the matrix analysis of 
skeletal structures. In addition to the above, triangular elements may be adapted 
for use in plate flexure problems and for the analysis of bodies of revolution. 

Example 12.3 
A constant strain triangular element has corners 1(0,0), 2(4,0) and 3(2,2) referred to 
a Cartesian Oxy axes system and is 1 unit thick. If the elasticity matrix [D] has ele- 
ments Dll = DZz = a, D12 = D21 = by Dl3 = 0 2 3  = D31 = 0 3 2  = 0 and D33 = cy 
derive the stiffness matrix for the element. 

From Eqs (12.82) 

i.e. 

i.e. 

i.e. 

From Eq. (i) 

and from Eqs (ii) and (iv) 

u3 = al + 2a2 + 2a3 

(ii) 



12.8 Finite element method for continuum structures 527 

- du 
d X  

av 
dY 

dtl a v  -+- 
-ay a x  

- 

- 

Then, from Eqs (iii), (iv) and (v) 

2u3 - u1 - u2 
4 

a3 = 

Substituting for al ,  a2 and a3 in the first of Eqs (12.82) gives 

- 

) Y  u = u l + ( 7 ) x + (  u2 - u1 
2u3 - 4 U I  - 2.42 

4 v2 -1 -1 -1 1 2 0 
u3 

or 

u =  ( 1 - , - + +  X ( ; - $ ) " f ; u 3  V 

Similarly 

Now from Eqs (12.88) 

du u1 u2 
&, = - = -- + - 

a x  4 4 

and 

Hence 

Also 

Hence 

(vii) 

(viii) 

k (ix) 

1 -a -b a -b 0 2b 
-b -U b -U 0 2a 
--c -c --c c 2c 0 
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1 [4T[wl = 16 

- a + c  b + c  -a+c b - c  -2c -2b 
b + c  a + c  -b+c a-c -2c -2a 
-a+c -b+c a + c  -b-c  -2c 2b 

a-c -b -c  a + c  2c -2a - 

-2c -2c -2c 2c 4c 0 
- -2b -2a 2b -2a 0 4a 

1 
4 [Ke] =- 

-2c -2c -2c 2c 4c 0 
-2b -2a 2b -2a 0 4a 

- a + c  -b+c a + c  -b -c  -2c 2b 
b - c  a-c -b-c  a+c 2c -2a 

12.8.3 Stiffness matrix for a quadrilateral element 

Y A  

Quadrilateral elements are frequently used in combination with triangular elements to 
build up particular geometrical shapes. 

Figure 12.14 shows a quadrilateral element referred to axes Oxy and having corner 
nodes, i, j ,  k and I ;  the nodal forces and displacements are also shown and the 

t Fy,Il v, 

F., i* ui 
i 

> 
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displacement and force vectors are 

, (12.95) 

As in the case of the triangular element we select a displacement function which 
satisfies the total of eight degrees of freedom of the nodes of the element; again this 
displacement function will be in the form of a polynomial with a maximum of eight 
coefficients. Thus 

(12.96) 

The constant terms, al and a5? are required, as before, to represent the in-plane rigid 
body motion of the element while the two pairs of linear terms enable states of con- 
stant strain to be represented throughout the element. Further, the inclusion of the xy 
terms results in both the u(x,  y )  and v(x, y )  displacements having the same algebraic 
form so that the element behaves in exactly the same way in the x direction as it does 
in the y direction. 

1 u(x, v )  = a1 + a2x + a3y + a4xy 
v (x ,y )  = a5 + (Y6x f a7y f a8Xy 

Writing Eqs (12.96) in matrix form gives 

1 { ::::;;} = [ 0 0 0  0 l x y x y  
1 x y x y o o o o  

or 

f f 7  

(12.97) 

(12.98) 

Now substituting the coordinates and values of displacement at each node we obtain 

- 1  xi yi 
0 0 0  
1 xj Yj  
0 0 0  

0 0 0  
1 X I  Y i  
0 0 0  

xk Y k  

0 0 0  0 
1 xi yi Xi-vi 

0 0 0  0 

0 0 0  0 

0 0 0  0 

1 xj yj xjyj 

xk Y k  XkYk 

1 X I  Yl -w4 

b (12.99) 
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which is of the form 

(0 = [Al{a> 
Then 

( 12.100) 

The inversion of [A] is illustrated in Example 12.4 but, as in the case of the triangular 
element, is most easily carried out by means of a computer. The remaining analysis 
is identical to that for the triangular element except that the { E }  - {a} relationship 
(see Eq. (12.89)) becomes 

{ E } =  0 [: o y o o  
0 0 0 0  
1 x 0 1  

0 
1 
0 

(12.101) 

Example 12.4 
A rectangular element used in a plane stress analysis has corners whose coordinates 
(in metres), referred to an Oxy axes system, are 1(-2, - l) ,  2(2, - l ) ,  3(2,1) and 
4(-2,l); the displacements (also in metres) of the corners were 

~1 = 0.001, ~2 = 0.003, ~3 = -0.003, ~4 = 0 
211 = -0.004, 212 = -0.002, 213 = 0.001, 214 = 0.001 

If Young's modulus E = 200000N/mm2 and Poisson's ratio v = 0.3, calculate the 
stresses at the centre of the element. 

From the first of Eqs (12.96) 

u1 =a1 - 2a2 - a3 + 2a4 = 0.001 

u2 = a1 + 2a2 - a3 - 2a4 = 0.003 

u3 = a1 + 2a2 + a3 + 2a4 = -0.003 

U4 =a1 -2a2 +a3 -2a4 = 0 

Subtracting Eq. (ii) from Eq. (i) 

a 2  - a 4  = 0.0005 

Now subtracting Eq. (iv) from Eq. (iii) 
 CY^ + a 4  = -0.00075 

Then subtracting Eq. (vi) from Eq. (v) 
a 4  = -0.000625 (vii) 
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whence, from either of Eqs (v) or (vi) 

a' = -0.000125 (viii) 

Adding Eqs (i) and (ii) 

CY1 - a 3  = 0.002 

Adding Eqs (iii) and (iv) 

C X ~  + a3 = -0.0015 

Then adding Eqs (ix) and (x) 

( ~ 1  = 0.00025 

and, from either of Eqs (ix) or (x) 

a3 = -0.00175 (xii) 
The second of Eqs (12.96) is used to determine a5, Q6, a7, (Yg in an identical manner to 
the above. Thus 

a5 = -0.001 

a7 = 0.002 

0 6  = 0.00025 

a8 = -0.00025 

Now substituting for q, C X ~ ,  . . . , Qg in Eqs (12.96) 

ui = 0.00025 - 0.000125~ - 0.00175~ - 0 . 0 0 0 6 2 5 ~ ~  

and 

~j = -0.001 + 0.00025~ + 0 .002~  - 0 . 0 0 0 2 5 ~ ~  

Then, from Eqs (12.88) 

au 
E x = - -  - -0.000125 - 0.000625j~ 

ax 
av 
aY 

E,. = - = 0.002 - 0.00025~ 

au av 
ay ax yxy = - + - = -0.0015 - 0.000625~ - 0.00025~ 

Therefore, at the centre of the element (x = 0, y = 0) 

E, = -0.000125 

E). = 0.002 

rx,, = -0.0015 

so that, from Eqs (12.92) 

2ooooo (-0.000125 + (0.3 x 0.002)) 
E 

= -(E.y + V&J = - 
1 - 9  1-0.3' 
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i.e. 

and 

i.e. 

a, = 104.4N/mm2 

(0.002 + (0.3 x 0.000125)) 
E 200 000 
- 1 - 0.32 cy = (Ey + V&,) = ~ 

cy = 43 1.3 N/EIIII~ 

E l  E 
x-(l-v)yxy=- 

2(1 +v)rx1' 7.y = - 1-v2 2 
Thus 

2ooooo x (-0.0015) 7;cr = 2( 1 + 0.3) 

rxy = -115.4N/mm2 
i.e. 

The application of the finite element method to three-dimensional solid bodies is a 
straightforward extension of the analysis of two-dimensional structures. The basic 
three-dimensional elements are the tetrahedron and the rectangular prism, both 
shown in Fig. 12.15. The tetrahedron has four nodes each possessing three degrees 
of freedom, a total of 12 for the element, while the prism has 8 nodes and therefore 
a total of 24 degrees of freedom. Displacement functions for each element require 
polynomials in x, y and z; for the tetrahedron the displacement function is of the 
first degree with 12 constant coefficients, while that for the prism may be of a 
higher order to accommodate the 24 degrees of freedom. A development in the 
solution of three-dimensional problems has been the introduction of curvilinear 
coordinates. This enables the tetrahedron and prism to be distorted into arbitrary 
shapes that are better suited for fitting actual boundaries. For more detailed discus- 
sions of the finite element method reference should be made to the work of Jenkins5, 
Zienkiewicz6 and to the many research papers published on the method. 

New elements and new applications of the finite element method are still being devel- 
oped, some of which lie outside the field of structural analysis. These fields include soil 
mechanics, heat transfer, fluid and seepage flow, magnetism and electricity. 

Fig. 12.1 5 Tetrahedron and rectangular prism finite elements for three-dimensional problems. 
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1 Argyris, J. H. and Kelsey, S., Energy Theorems and Structural Analysis, Butterworth 
Scientific Publications, London, 1960. 

2 Clough, R. W., Turner, M. J.,  Martin, H. C. and Topp, L. J., Stiffness and deflection 
analysis of complex structures. J.  Aero. Sciences, 23(9), 1956. 

3 Megson, T. H. G., Structural and Stress Analysis, Arnold, London, 1996. 
4 Martin, H. C., Introduction to Matrix Methods of Structural Analysis, McGraw-Hill Book 

Company, New York, 1966. 
5 Jenkins, W. M., Matrix and Digital Computer Methods in Structural Analysis, McGraw-Hill 

Publishing Co. Ltd., London, 1969. 
6 Zienkiewicz, 0. C. and Cheung, Y. K., The Finite Element Method in Structural and 

Continuum Mechanics, McGraw-Hill Publishing Co. Ltd., London, 1967. 

Zienkiewicz, 0. C. and Holister, G. S., Stress Analysis, John Wiley and Sons Ltd., London, 1965. 

P.12.1 Figure P. 12.1 shows a square symmetrical pin-jointed truss 1234, pinned 
to rigid supports at 2 and 4 and loaded with a vertical load at 1. The axial rigidity 
EA is the same for all members. 

Use the stiffness method to find the displacements at nodes 1 and 3 and hence solve 
for all the internal member forces and support reactions. 

! P  
Fig. P.12.1 
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Ans. v1 = -PL/.\/ZAE, v3 = -0.293PL/AE, SI2 = P / 2  = SI4 

S23 = -0.207P = S43, 

Fx,2 = -Fxq4 = 0.207P, 

5'13 = 0.293P 

Fy,2 = Fy,4 = P / 2  

P.12.2 Use the stiffness method to find the ratio H I P  for which the displacement 
of node 4 of the plane pin-jointed frame shown loaded in Fig. P.12.2 is zero, and for 
that case give the displacements of nodes 2 and 3 .  

All members have equal axial rigidity EA. 

Ans. H I P  =0.449, v2 = -4P1/(9 + 2 A ) A E  

v3 = - 6PL/(9  + 2 a ) A E  

I' 

1 
Fig. P.12.2 

P.12.3 Form the matrices required to solve completely the plane truss shown in Fig. 
P.12.3 and determine the force in member 24.41  members have equal axial rigidity. 

Ans. S24 = 0. 

Fig. P.12.3 
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P.12.4 The symmetrical plane rigid jointed frame 1234567, shown in Fig. P.12.4, 
is fixed to rigid supports at 1 and 5 and supported by rollers inclined at 45" to the 
horizontal at nodes 3 and 7. It carries a vertical point load P at node 4 and a uniformly 
distributed load w per unit length on the span 26. Assuming the same flexural rigidity 
EI for all members, set up the stiffness equations which, when solved, give the nodal 
displacements of the frame. 

Explain how the member forces can be obtained. 

2 z z 
Fig. P.12.4 

P.12.5 The frame shown in Fig. P.12.5 has the planes xz and yz as planes of 
symmetry. The nodal coordinates of one quarter of the frame are given in Table 
P.12.5(i). 

In this structure the deformation of each member is due to a single effect, this being 
axial, bending or torsional. The mode of deformation of each member is given in 
Table P. 12.5(ii), together with the relevant rigidity. 

Fig. P.12.5 
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Table P.12.5(i) 

Node X Y z 

2 0 0 0 
3 L 0 0 
I L 0.8L 0 
9 L 0 L 

Table P.12.5(ii) 

Bending Torsional 

23 - EI - 
37 - - GJ = 0.8EI 

- EI 
L= 

EA = 6fi- - 29 

Use the direct stzrness method to find all the displacements and hence calculate the 
forces in all the members. For member 123 plot the shear force and bending moment 
diagrams. 

Briefly outline the sequence of operations in a typical computer program suitable 
for linear frame analysis. 

Ans. S29 = S28 = A P / 6  (tension) 

M3 = -MI = PL/9 (hogging), M2 = 2PL/9 (sagging) 

SF12 = -SF23 = P/3 

Twisting moment in 37, PL/18 (anticlockwise). 

P.12.6 Given that the force-displacement (stiffness) relationship for the beam 
element shown in Fig. P.12.6(a) may be expressed in the following form: 

obtain the force-displacement (stiffness) relationship for the variable section beam 
(Fig. P.12.6(b)), composed of elements 12, 23 and 34. 

Such a beam is loaded and supported symmetrically as shown in Fig. P.12.6(c). 
Both ends are rigidly fixed and the ties FB, CH have a cross-section area al and 
the ties EB, CG a cross-section area q. Calculate the deflections under the loads, 
the forces in the ties and all other information necessary for sketching the bending 
moment and shear force diagrams for the beam. 

Neglect axial effects in the beam. The ties are made from the same material as the 
beam. 
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L L L 
4 b 

Y 

Fig. P.12.6 

A m .  

Fy,l I "1 

vg = vc = -5PL3/144EI, eB = -ec = P L ~ ~ E I  

Si = 2 P / 3 ,  S2 = &P/3 

FJ ,A  = P/3:  MA = -PL/4 

P.12.7 The symmetrical rigid jointed grillage shown in Fig. P. 12.7 is encastrk at 6 ,  
7 , 8  and 9 and rests on simple supports at 1 ,2 ,4  and 5. It is loaded with a vertical point 
load P at 3. 

Use the stiffness method to find the displacements of the structure and hence calcu- 
late the support reactions and the forces in all the members. Plot the bending moment 
diagram for 123. All members have the same section properties and GJ = 0.8EI. 
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Fig. P.12.7 

Ans. Fy,l =Fy,5 = -PI16 

Fy,z = Fy,4 = 9P/ 16 

MZ1. =M45 = -P1/16 (hogging) 

MZ3 =M43 = -PI112 (hogging) 

Twisting moment in 62, 82, 74 and 94 is P1/96. 

P.12.8 It is required to formulate the stiffness of a triangular element 123 with 
coordinates (0, 0) ,  (a, 0) and (0, a) respectively, to be used for 'plane stress' problems. 

(a) Form the [B] matrix. 
(b) Obtain the stiffness matrix [K']. 
Why, in general, is a finite element solution not an exact solution? 

P.12.9 It is required to form the stiffness matrix of a triangular element 123 for 
use in stress analysis problems. The coordinates of the element are (1, l) ,  (2,l) and 
(2,2) respectively. 

(a) Assume a suitable displacement field explaining the reasons for your choice. 
(b) Form the [B] matrix. 
(c) Form the matrix which gives, when multiplied by the element nodal displace- 

ments, the stresses in the element. Assume a general [D] matrix. 

P.12.10 It is required to form the stiffness matrix for a rectangular element of side 

(a) Assume a suitable displacement field. 
(b) Form the [q matrix. 

2a x 2b and thickness t for use in 'plane stress' problems. 

(c) Obtain Jvol [qT [Dl [q d v. 
Note that the stiffness matrix may be expressed as 
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P.12.11 A square element 1234, whose corners have coordinates x, y (in metres) 
of (- 1 ,  -l), (1 - l), (1,l) and (- 1 1) respectively, was used in a plane stress finite 
element analysis. The following nodal displacements (mm) were obtained: 

~ 1 = 0 . 1 ,  ~ 2 = 0 . 3 ,  ~ 3 ~ 0 . 6 ,  ~ 4 ~ 0 . 1  
~ l = O . l ,  ~ 2 ~ 0 . 3 ,  ~ 3 = 0 . 7 ,  ~ 4 ~ 0 . 5  

If Young’s modulus E = 200000N/mm2 and Poisson’s ratio v = 0.3, calculate the 
stresses at the centre of the element. 

Ans. ux = 51.65N/mm2, uy = 55.49N/mm2, rxJ = 13.46N/mm2. 



Elementary aeroelasticity 

Aircraft structures, being extremely flexible, are prone to distortion under load. When 
these loads are caused by aerodynamic forces, which themselves depend on the geo- 
metry of the structure and the orientation of the various structural components to the 
surrounding airflow, then structural distortion results in changes in aerodynamic 
load, leading to further distortion and so on. The interaction of aerodynamic and 
elastic forces is known as aeroelasticity. 

Two distinct types of aeroelastic problem occur. One involves the interaction 
of aerodynamic and elastic forces of the type described above. Such interactions 
may exhibit divergent tendencies in a too flexible structure, leading to failure, or, 
in an adequately stiff structure, converge until a condition of stable equilibrium is 
reached. In this type of problem static or steady state systems of aerodynamic 
and elastic forces produce such aeroelastic phenomena as divergence and control 
reversal. The second class of problem involves the inertia of the structure as 
well as aerodynamic and elastic forces. Dynamic loading systems, of which 
gusts are of primary importance, induce oscillations of structural components. 
If the natural or resonant frequency of the component is in the region of the 
frequency of the applied loads then the amplitude of the oscillations may 
diverge, causing failure. Also, as we observed in Chapter 8, the presence of 
fluctuating loads is a fatigue hazard. For obvious reasons we refer to these prob- 
lems as dynamic. Included in this group are flutter, buffeting and dynamic 
response. 

The various aeroelastic problems may be conveniently summarized in the form of a 
‘tree’ as follows 

Aeroelasticity a Dynamic . . . Dynamic 
Static stability.. . Static 

stability 4-7 I 
Load Divergence Control Flutter Buffeting Dynamic 

distribution reversal response 
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In this chapter we shall concentrate on the purely structural aspects of aeroelasticity; 
its effect on aircraft static and dynamic stability is treated in books devoted primarily 
to aircraft stability and control''2. 

r i o a d  di stribution and divergence 
Redistribution of aerodynamic loads and divergence are closely related aeroelastic 
phenomena; we shall therefore consider them simultaneously. It is essential in the 
design of structural components that the aerodynamic load distribution on the com- 
ponent is known. Wing distortion, for example, may produce significant changes in 
lift distribution from that calculated on the assumption of a rigid wing, especially 
in instances of high wing loadings such as those experienced in manoeuvres and 
gusts. To estimate actual lift distributions the aerodynamicist requires to know the 
incidence of the wing at all stations along its span. Obviously this is affected by 
any twisting of the wing which may be present. 

Let us consider the case of a simple straight wing with the centre of twist (or flexural 
centre, see Chapters 9 and 10) behind the aerodynamic centre (see Fig. 13.1). The 
moment of the lift vector about the centre of twist causes an increase in wing incidence 
which produces a further increase in lift, leading to another increase in incidence and 
so on. At speeds below a critical value, called the divergence speed, the increments in 
lift converge to a condition of stable equilibrium in which the torsional moment of the 
aerodynamic forces about the centre of twist is balanced by the torsional rigidity of 
the wing. The calculation of lift distribution then proceeds from a knowledge of the 
distribution of twist along the wing. For a straight wing the redistribution of lift 
usually causes an outward spanwise movement of the centre of pressure, resulting 
in greater bending moments at the wing root. In the case of a swept wing a reduction 
in streamwise incidence of the outboard sections due to bending deflections causes a 
movement of the centre of pressure towards the wing root. 

All aerodynamic surfaces of the aircraft suffer similar load redistribution due to 
distortion. 

13.1 .I Wing torsional divergence (two-dimensional case) 

The most common divergence problem is the torsional divergence of a wing. It is 
useful, initially, to consider the case of a wing of area S without ailerons and in a 

Li f t  
A 

Wing twist, Centre of twist 

I 
Aerodynamic centre 

Fig. 13.1 Increase of wing incidence due to wing twist. 
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L 

t 

AC 

Fig. 13.2 Determination of wing divergence speed (two-dimensional case). 

two-dimensional flow, as shown in Fig. 13.2. The torsional stiffness of the wing, which 
we shall represent by a spring of stiffness K ,  resists the moment of the lift vector, L, 
and the wing pitching moment Mo, acting at the aerodynamic centre of the wing 
section. For moment equilibrium of the wing section about the aerodynamic centre 
we have 

Mo + Lec = KO (13.1) 

where ec is the distance of the aerodynamic centre forward of the flexural centre 
expressed in terms of the wing chord, c, and 8 is the elastic twist of the wing. From 
aerodynamic theory 

MO = ~ ~ v ’ s c c M , ~ ,  L = 4pv2scL 
Substituting in Eq. (13.1) yields 

$ ~ V ~ S ( C C M , O  + ecCL) = KO 

or, since 

in which (Y is the initial wing incidence or, in other words, the incidence corresponding 
to given flight conditions assuming that the wing is rigid and CL.o is the wing lift 
coefficient at zero incidence, then 

-pv2s C C M , ~  + eCL:, + ec- (a + e) = Ke 2 l [  acL aa 1 
where aCL/aa is the wing lift curve slope. Rearranging gives 

or 

(13.2) 
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Equation (13.2) shows that divergence occurs (Le. 6 becomes infinite) when 

1 2 a c L  K = -pV Sec- 
2 d a  

The divergence speed v d  is then 

(13.3) 

We see from Eq. (13.3) that vd may be increased either by stiffening the wing (increas- 
ing K )  or by reducing the distance ec between the aerodynamic and flexural centres. 
The former approach involves weight and cost penalties so that designers usually 
prefer to design a wing structure with the flexural centre as far forward as possible. 
If the aerodynamic centre coincides with or is aft of the flexural centre then the 
wing is stable at all speeds. 

-- 13.1.2 Wing _ _ U . r _ l l . _ _ I I m . - " - _ _ U - ~ - - ~ ~  torsional divergence (finite wing) ..__*.I____ 

1.- 

We shall consider the simple case of a straight wing having its flexural axis nearly 
perpendicular to the aircraft's plane of symmetry (Fig. 13.3(a)). We shall also 
assume that wing cross-sections remain undistorted under the loading. Applying 
strip theory in the usual manner, that is we regard a small element of chord c and 
spanwise width 6z as acting independently of the remainder of the wing and consider 
its equilibrium, we have from Fig. 13.3(b), neglecting wing weight 

( T  +g&) - T + ALec + AM, = 0 (13.4) 

AY 

Line of 
ACs 

z 

Flexural axis 

dz 
(bl 

Fig. 13.3 Determination of wing divergence speed (three-dimensional case). 
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where T is the applied torque at any spanwise section z and AL and AMo are the lift 
and pitching moment on the elemental strip acting at its aerodynamic centre. As Sz 
approaches zero, Eq. (13.4) becomes 

dT dL dMo -+ ec-+- = 0 dz d z d z  (13.5) 

In Eq. (13.4) 

AL = -pV2cSz-(a 1 OCl + e) 
2 Sa 

where dcl /acu is the local two-dimensional lift curve slope and 

in which c,,~ is the local pitching moment coefficient about the aerodynamic centre. 
Also from torsion theory (see Chapter 3) T = GJ dO/dz. Substituting for L, Mo and T 
in Eq. (13.5) gives 

(13.6) d28 4 pV2ec2 (acl /&)e - - $ p V2e? (del /da)a - i pV2c2c,,o -+ 
dz2 

- 
GJ GJ GJ 

Equation (13.6) is a second-order differential equation in 0 having a solution of the 
standard form 

(13.7) 

where 

and A and B are unknown constants that are obtained from the boundary conditions; 
namely, 6 = 0 when z = 0 at the wing root and de/& = 0 at z = s since the torque is 
zero at the wing tip. From the first of these 

and from the second 

Hence 

+ a  (tanhsinAz+cosXz- 1) 
6 = [ e(zTaa) I 

or rearranging 

(13.8) 

(13.9) 
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Therefore, at divergence when the elastic twist, 6, becomes infinite 

cos As = 0 

so that 
7r 

h = ( 2 n + 1 ) -  for n=0,1,2,  ...:oo (13.10) 

The smallest value corresponding to the divergence speed vd occurs when n = 0, thus 
2 

As = 7r/2 

or 

from which 

A2 = 3/4s2  

(13.11) 

Mathematical solutions of the type given in Eq. (13.10) rarely apply with any 
accuracy to actual wing or tail surfaces. However, they do give an indication of the 
order of the divergence speed, vd .  In fact, when the two-dimensional lift-curve 
slope, d c l / a a ,  is used they lead to conservative estimates of v d .  It has been shown 
that when acl/aa is replaced by the three-dimensional lift-curve slope of the finite 
wing, values of Vd become very close to those determined from more sophisticated 
aerodynamic and aeroelastic theory. 

The lift distribution on a straight wing, accounting for the elastic twist, is found by 
introducing a relationship between incidence and lift distribution from aerodynamic 
theory. In the case of simple strip theory the local wing lift coefficient, c1 , is given by 

in which the distribution of elastic twist 6 is known from Eq. (13.9). 

----- P -1 ____.- 
13.1.3 Swept wing divergence 

In the calculation of divergence speeds of straight wings the flexural axis was taken to 
be nearly perpendicular to the aircraft’s plane of symmetry. Bending of such wings 
has no influence on divergence, this being entirely dependent on the twisting of the 
wing about its flexural axis. This is no longer the case for a swept wing where the 
spanwise axes are inclined to the aircraft’s plane of symmetry. Let us consider the 
swept wing of Fig. 13.4. The wing lift distribution causes the wing to bend in an 
upward direction. Points A and B on a line perpendicular to the reference axis will 
deflect by approximately the same amount, but this will be greater than the deflection 
of A’ which means that bending reduces the streamwise incidence of the wing. The 
corresponding negative increment of lift opposes the elastic twist, thereby reducing 
the possibility of wing divergence. In fact, the divergence speed of swept wings is so 
high that it poses no problems for the designer. Diederich and Budiansky in 1948 
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Reference 
\ 

axis ii"p 
Fig. 13.4 Effect of wing sweep on wing divergence speed. 

showed that wings with moderate or large sweepback cannot diverge. The opposite of 
course is true for swept-forward wings where bending deflections have a destabilizing 
effect and divergence speeds are extremely low. The determination of lift distributions 
and divergence speeds for swept-forward wings is presented in Ref. 3. 

The flexibility of the major aerodynamic surfaces (wings, vertical and horizontal tails) 
adversely affects the effectiveness of the corresponding control surfaces (ailerons, 
rudder and elevators). For example, the downward deflection of an aileron causes 
a nose down twisting of the wing which consequently reduces the aileron incidence. 
Thus, the wing twist tends to reduce the increase in lift produced by the aileron deflec- 
tion, and thereby the rolling moment to a value less than that for a rigid wing. The 
aerodynamic twisting moment on the wing due to aileron deflection increases as 
the square of the speed but the elastic restoring moment is constant since it depends 
on the torsional stiffness of the wing structure. Therefore, ailerons become markedly 
less effective as the speed increases until, at a particular speed, the aileron reversal 
speed, aileron deflection does not produce any rolling moment at all. At higher 
speeds reversed aileron movements are necessary in that a positive increment of 
wing lift requires an upward aileron deflection and vice versa. 

Similar, less critical, problems arise in the loss of effectiveness and reversal of the 
rudder and elevator controls. They are complicated by the additional deformations 
of the fuselage and tailplane-fuselage attachment points, which may be as important 
as the deformations of the tailplane itself. We shall concentrate in this section on the 
problem of aileron effectiveness and reversal. 

13.2.1 Aileron effectiveness and reversal (two-dimensional case) 

We shall illustrate the problem by investigating, as in Section 13.1, the case of a wing- 
aileron combination in a two-dimensional flow. In Fig. 13.5 an aileron deflection < 
produces changes A L  and A M ,  in the wing lift, L, and wing pitching moment M,; 
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L + AL 

Spring stiffness K 

V 
____t 

t- 
Fig. Aileron effectiveness and reversal speed (two-dimensional tax,. 

these in turn cause an elastic twist, 8, of the wing. Thus 

(13.12) 

where aCL/aa has been previously defined and aCL/a( is the rate of change of lift 
coefficient with aileron angle. Also 

in which aCM,o/at  is the rate of change of wing pitching moment coefficient with 
aileron deflection. The moment produced by these increments in lift and pitching 
moment is equilibrated by an increment of torque AT about the flexural axis. Hence 

Isolating e from Eq. (13.14) gives 

pv2sc[(acL/a t )e  f a c M , O / a d <  e =  
K - $pv2Sce(aCL/aa) 

Substituting for B in Eq. (13.12) we have 

i f v 2 s c { ( a c L / a t ) e  f acM,O/%) acL I acL] E 
K - 3 p V2Sce ( dCL/da)  aa at 

which simplifies to 

(13.15) 
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The increment of wing lift is therefore a linear function of aileron deflection and 
becomes zero, that is aileron reversal occurs, when 

Hence the aileron reversal speed, Vr, is, from Eq. (13.17) 

(1 3.17) 

(13.18) 

We may define aileron effectiveness at speeds below the reversal speed in terms of 

aileron effectiveness = AL/ALR (13.19) 

the lift ALR produced by an aileron deflection on a rigid wing. Thus 

where 

(1 3.20) 

Hence, substituting in Eq. (13.19) for AL from Eq. (13.16) and ALR from Eq. (13.20), 
we have 

Equation (13.21) may be expressed in terms of the wing divergence speed Vd and 
aileron reversal speed V, , using Eqs (1 3.3) and (1 3.18) respectively; hence 

1 - V’/V? 
1 - V’/Vi 

aileron effectiveness = (13.22) 

We see that when V, = V,, which occurs when aCL/at = -(acM,o/at)/e, then the 
aileron is completely effective at all speeds. Such a situation arises because the 
nose-down wing twist caused by aileron deflection is cancelled by the nose-up twist 
produced by the increase in wing lift. 

Although the analysis described above is based on a two-dimensional case it is 
sometimes used in practice to give approximate answers for finite wings. The 
method is to apply the theory to a representative wing cross-section at an arbitrary 
spanwise station and use the local wing section properties in the formulae. 

13.2.2 Aileron effectiveness and reversal (finite wing) 

We shall again apply strip theory to investigate the aeroelastic effects of aileron deflec- 
tion on a finite wing. In Fig. 13.6(a) the deflection of the aileron through an angle t 
produces a rolling velocity p radlsec, having the sense shown. The wing incidence at 
any section z is thus reduced due to p by an amount p z /  V.  The downward aileron 
deflection shown here coincides with an upward deflection on the opposite wing, 
thereby contributing to the rolling velocity p .  The incidence of the opposite wing is 
therefore increased by this direction of roll. Since we are concerned with aileron 
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Fig. 13.6 Aileron effectiveness and reversal speed (finite wing). 

effects we consider the antisymmetric lift and pitching moment produced by aileron 
deflection. Thus, in Fig. 13.6(b), the forces and moments are changes from the level 
flight condition. 

The lift AL on the strip shown in Fig. 13.6(b) is given by 

(13.23) 

where dcl /aa has been previously defined and ac, /a< is the rate of change of local 
wing lift coefficient with aileron angle. The function fa(.) represents aileron forces 
and moments along the span; for 0 < z < sl,fa(z) = 0 and for s1 < z < S , f a ( Z )  = 1. 
The pitching moment AMo on the elemental strip is given by 

( 1 3.24) AM0 = 1 T p V 2 ? 6 z - f a ( z ) E  a c m  o 
a< 

in which acm,/a< is the rate of change of local pitching moment coefficient with 
aileron angle. 

Considering the moment equilibrium of the elemental strip of Fig. 13.6(b) we 
obtain, neglecting wing weight 

c ~ z  + ALec + AMo = 0 dz 
or substituting for AL and AMo from Eqs (13.23) and (13.24) 

(13.25) 
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Substituting for T in Eq. (13.26) from torsion theory (7‘ = GJd8/dz) and rearranging 
we have 

d28 ;pv2ec‘acl/aa ;pv2c2 [ acl PZ acl 
d z 2  

e=- e -  - - e-fa(z)C - *f,cz)(] (13.27) 
GJ GJ aa v at aC -+ 

Writing 

we obtain 

It may be shown that the solution of Eq. (13.28), satisfying the boundary conditions 

8 = 0  a t z = O  and dO/dz=O a t z = s  

is 

] (13.29) sinXz 5 sin X(s - sl) 
cos xr x [fa(z){ 1 - cos X(z - SI)} - 

where 

cos X(z - sl) = 0 when z < s1 

The spanwise variation of total local wing lift coefficient is given by strip theory as 

(13.30) 

where 8 is known from Eq. (13.29) and a is the steady flight wing incidence. 
The aileron effectiveness is often measured in terms of the wing-tip helix angle 

(ps/  V )  per unit aileron displacement during a steady roll. In this condition the rolling 
moments due to a given aileron deflection, [, wing twist and aerodynamic damping 
are in equilibrium so that from Fig. 13.6(a) and Eq. (13.23) and noting that ailerons 
on opposite wings both contribute to the rolling, we have 

from which 

(13.31) 

(13.32) 
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Substituting for 8 from Eq. (13.29) into Eq. (13.32) gives 

Hence 

1 sinX(s - sl) . 
sin Xz q{ (%+: 2) [r,e){l -cosx(z-s ] ) )  - cos As 

(13.33) 

Therefore, aileron effectiveness (ps /  V ) / <  is given by 

Integration of the right-hand side of the above equation gives 

1 8cm.o  
- e(acl /aa)  

-- < 
(13.34) 

The aileron reversal speed occurs when the aileron effectiveness is zero. Thus, equat- 
ing the numerator of Eq. (13.34) to zero, we obtain the transcendental equation 

(%+: %) (COSXS - C O S X S ~ )  + cosXs = 0 (13.35) 
a€ 

Alternative methods of obtaining divergence and control reversal speeds employ 
matrix or energy procedures. Details of such treatments may be found in Ref. 3. 

The remainder of this chapter is concerned with dynamic problems of aeroelasticity, 
of whichflutter is of primary importance. Flutter has been defined as the dynamic 
instability of an elastic body in an airstream and is produced by aerodynamic 
forces which result from the deflection of the elastic body from its undeformed 
state. The determination of critical or Jlutter speeds for the continuous structure of 
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Fig. 13.7 Oscillation of a masdspring system. 

an aircraft is a complex process since such a structure possesses an infinite number of 
natural or normal modes of vibration. Simplifying assumptions, such as breaking 
down the structure into a number of concentrated masses connected by weightless 
elastic beams (lumped mass concept) are made, but whatever method is employed 
the natural modes and frequencies of vibration of the structure must be known 
before flutter speeds and frequencies can be found. We shall discuss flutter and 
other dynamic aeroelastic phenomena later in the chapter; for the moment we shall 
consider methods of calculating normal modes and frequencies of vibration of a 
variety of beam and mass systems. 

Let us suppose that the simple mass/spring system shown in Fig. 13.7 is displaced 
by a small amount xo and suddenly released. The equation of the resulting motion in 
the absence of damping forces is 

m x + k x = O  ( 13.36) 

where k is the spring stiffness. We see from Eq. (13.36) that the mass, m, oscillates with 
simple harmonic motion given by 

x = xo sin(wt + E )  (13.37) 

in which 3 = k / m  and E is a phase angle. The frequency of the oscillation is w / 2 ~  
cycles per second and its amplitude xo. Further, the periodic time of the motion, 
that is the time taken by one complete oscillation, is ~ K / w .  Both the frequency and 
periodic time are seen to depend upon the basic physical characteristics of the 
system, namely the spring stiffness and the magnitude of the mass. Therefore, 
although the amplitude of the oscillation may be changed by altering the size of 
the initial disturbance, its frequency is k e d .  This frequency is the normal or natural 
frequency of the system and the vertical simple harmonic motion of the mass is its 
normal mode of vibration. 

Consider now the system of n masses connected by (n - 1) springs, as shown in 
Fig. 13.8. If we specify that motion may only take place in the direction of the 
spring axes then the system has n degrees of freedom. It is therefore possible to set 
the system oscillating with simple harmonic motion in n different ways. In each of 
these n modes of vibration the masses oscillate in phase so that they all attain 
maximum amplitude at the same time and pass through their zero displacement 
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Fig. 13.8 Oscillation of an n masdspring system. 

positions at the same time. The set of amplitudes and the corresponding frequency 
take up different values in each of the n modes. Again these modes are termed 
normal or natural modes of vibration and the corresponding frequencies are called 
normal or natural frequencies. 

The determination of normal modes and frequencies for a general spring/mass 
system involves the solution of a set of n simultaneous second-order differential 
equations of a type similar to Eq. (13.36). Associated with each solution are two 
arbitrary constants which determine the phase and amplitude of each mode of 
vibration. We can therefore relate the vibration of a system to a given set of initial 
conditions by assigning appropriate values to these constants. 

A useful property of the normal modes of a system is their orthogonality, which is 
demonstrated by the provable fact that the product of the inertia forces in one mode 
and the displacements in another results in zero work done. In other words displace- 
ments in one mode cannot be produced by inertia forces in another. It follows that the 
normal modes are independent of one another so that the response of each mode to an 
externally applied force may be found without reference to the other modes. Thus, by 
considering the response of each mode in turn and adding the resulting motions we 
can find the response of the complete system to the applied loading. Another useful 
characteristic of normal modes is their ‘stationary property’. It can be shown that 
if an elastic system is forced to vibrate in a mode that is slightly different from a 
true normal mode the frequency is only very slightly different to the corresponding 
natural frequency of the system. Reasonably accurate estimates of natural frequencies 
may therefore be made from ‘guessed’ modes of displacement. 

We shall proceed to illustrate the general method of solution by determining 
normal modes and frequencies of some simple beam/mass systems. Two approaches 
are possible: a stiyness or displacement method in which spring or elastic forces are 
expressed in terms of stiffness parameters such as k in Eq. (13.36); and aflexibility 
or force method in which elastic forces are expressed in terms of the flexibility 6 of 
the elastic system. In the latter approach 6 is defined as the deflection due to unit 
force; the equation of motion of the spring/mass system of Fig. 13.7 then becomes 

(13.38) m x + - = O  

Again the solution takes the form x = xo sin(wt + E )  but in this case ~3 = l/rnS. 
Clearly by our definitions of k and 6 the product k6 = 1 .  In problems involving 
rotational oscillations m becomes the moment of inertia of the mass and S the rotation 
or displacement produced by unit moment. 

Let us consider a spring/mass system having a finite number, n, degrees of freedom. 
The term spring is used here in a general sense in that the n masses ml, 

X 

6 
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m2, .... mi, .... m, may be connected by any form of elastic weightless member. Thus, 
if mi is  the mass at a point i where the displacement is xi and 6, is the displacement at 
the point i due to a unit load at a point j (note from the reciprocal theorem 6, = S,), 
the n equations of motion for the system are 

mlxlS11 + m2x2S12 + + mixiSli + + rnnjt,S1, + x1 = 0 

mlxlS21 + m2x2622 + + mixi62i + + mnxnS2, + x2 = 0 

mljilSil + m2x2Siz + ... + mixiSii + ... + mnxn,4 + xi = 0 

mlxlS,l + m2x2Sn2 + ... + mixiSni + ... + mnxnS,, + x,, = 0 

... ... 

... ... 
............................................................................................. (1 3.39) 1 ............................................................................................. 

or 
n 

mjxjS, + xi = 0 (i = 1,2, .... n) 
j =  1 

(13.40) 

Since each normal mode of the system oscillates with simple harmonic motion, 
then the solution for the ith mode takes the form x = xf sin(wt + E )  so that jii = 
- J x f  sin(wt + E )  = -w2xi. Equation (13.40) may therefore be written as 

n 
- J C m j s i j x j  +xi  = o (i = 1,2,. .. ,n) ( 1  3.41) 

j =  1 

For a non-trivial solution, that is xi # 0, the determinant of Eqs (13.41) must be zero. 
Hence 

(Jm1611 - 1) dm2612 ... w2mi sli ... w2mn s~,, 
w2mlS21 (w2m2S22 - 1 )  ... w2miS2i ... w2mn 6% 

.................................................................................................................. 

I = O  
2 w2ml ail w2m2si2 ... (w2miSii - 1 )  ... w m,S, 

I .................................................................................................................. I 

2 I w2mlsn1 Jm26n2 ... w miSni ... (w2wI,,~,,,, - 1) I 
(13.42) 

The solution of Eqs (13.42) gives the normal frequencies of vibration of the system. 
The corresponding modes may then be deduced as we shall see in the following 
examples. 

Example 13.1 
Determine the normal modes and frequencies of vibration of a weightless cantilever 
supporting masses m/3 and m at points 1 and 2 as shown in Fig. 13.9. The flexural 
rigidity of the cantilever is EI. 

The equations of motion of the system are 

(m/3)ij1611 + mij2Sl2 + w1 = 0 

(rn/3)ij lS2,  + mij2S22 + wz = 0 
(9 
(ii) 
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Fig. 13.9 Massheam system for Example 13.1. 

where wl  and v2 are the vertical displacements of the masses 

1 

at any instant of time. 
In this example, displacements are-assumed to be caused by bending strains only; 
the flexibility coefficients Sll, S2, and S12(= 621) may therefore be found by the 
unit load method described in Section 4.8. From the first of Eqs (4.27) we deduce 
that 

(iii) 

where Mi is the bending moment at any section z due to a unit load at the point i and 
Mi is the bending moment at any section z produced by a unit load at the point j .  
Therefore, from Fig. 13.9 

M1 = l(1-z) O < Z < l  

M2 = 1(1/2 - z) 

M2=0 112 < z < 1 

0 < z < 112 

Hence 

Integrating Eqs (iv), (v) and (vi) and substituting limits, we obtain 

513 s - 6  - 13 i3 
611 =E 7 622 =- 24EI ’ l2 - 21 - 48EI 

Each mass describes simple harmonic motion in the normal modes of oscillation so 
that w1 = v’: sin(wt + E )  and v2 = v! sin(wt + E ) .  Hence iil = -w w1 and 3 2  = -&2. 

Substituting for ij,, w2, Sll, S2, and S12(= in Eqs (i) and (ii) and writing 
X = nzI3 / (3  x 48EI), we obtain 

2 

(1 - 1 6 X u 2 ) v l  - 15Xw2v1 = 0 (4 
5XW2Vl - (1 - ~ X W ’ ) W ~  = 0 (viii) 
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For a non-trivial solution 

(1 - 1 6 d )  -15Xw’ 
-( 1 - 6XJ)  

Expanding this determinant we have 

or 
-(1 - 16Xw2)(1 - 6XJ)  + 75(Xw2)’ = 0 

21(AJ)’ - 22xw2 + 1 = 0 

Inspection of Eq. (ix) shows that 

x w 2 =  1/21 or 1 
Hence 

2 3 x48EI  3 x 48EI 
w =  or 

21m13 m13 
The normal or natural frequencies of vibration are therefore 

h=g-; w2-6F m13 
The system is therefore capable of vibrating at two distinct frequencies. To determine 
the normal mode corresponding to each frequency we first take the lower frequencyfi 
and substitute it in either Eq. (vii) or Eq. (viii). From Eq. (vii) 

- 1 5Xw2 - 15 x (1/21) 

which is a positive quantity. Therefore, at the lowest natural frequency the cantilever 
oscillates in such a way that the displacement of both masses has the same sign at the 
same instant of time. Such an oscillation would take the form shown in Fig. 13.10. 
Substituting the second natural frequency in Eq. (vii) we have 

- - 
~2 1 - 16Xw2 - 1 - 16 x (1/21) 

15 - -- v1 15Xw’ -= 
~2 1 - 1 6 h 2  1 -  16 

which is negative so that the masses have displacements of opposite sign at any instant 
of time as shown in Fig. 13.11. 

Fig. 13.10 The first natural mode of the massheam system of Fig. 13.9. 
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Fig. 13.1 1 The second natural mode of the massheam system of Fig. 13.9. 

Example 13.2 
Find the lowest natural frequency of the weightless beam/mass system shown in 
Fig. 13.12. For the beam GJ = (2/3)EI. 

The equations of motion are 

mij1611 + 4WZW261~ + w1 = 0 

mv1621 + 4mv2622 + v2 = 0 

In this problem displacements are caused by bending and torsion so that 

From Fig. 13.12 we see that 

M1= l x  O < X < l  

M1 = l(21- z) 0 < z < 21 

M2=1(1-z) O < Z < l  

M2 = o  I < z < 2 1 ,  O < X < l  

TI = 11 O<Z<21 

Ti = O  O < X < l  

T2 = 0 0<-7<21, O < X < l  

(i 1 
(ii) 

(iii) 

Fig. 13.1 2 Massheam system for Example 13.2. 
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Hence 

dz 

(21 - z)(Z - z) dz j o  EI 
612 = 62, = 

from which we obtain 

61 1 3  51 6 1 1 = E ,  622=-, s l z = 6 2 1 = -  3EI 6EI 
Writing X=mZ3/6EI and solving Eqs (i) and (ii) in an identical manner to the 
solution of Eqs (i) and (ii) in Example 13.1 results in a quadratic in Xu2, namely 

1 8 8 ( X ~ ~ ) ~  - 44Xw2 + 1 = 0 (vii) 
Solving Eq. (vii) we obtain 

4 4 f d 4 4 2 - 4 x 1 8 8 x 1  
376 

X l 3  = 

which gives 

xW2 = 0.21 or 0.027 

The lowest natural frequency therefore corresponds to Xu2 = 0.027 and is 

27r 

Example 13.3 
Determine the natural frequencies of the system shown in Fig. 13.13 and sketch the 
normal modes. The flexural rigidity EI of the weightless beam is 1.44 x lo6 N m2, 
1 = 0.76 m, the radius of gyration r of the mass m is 0.152 m and its weight is 1435 N. 

Fig. 13.13 Massheam system for Example 13.3. 
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In this problem the mass possesses an inertia about its own centre of gravity (its 
radius of gyration is not zero) which means that in addition to translational displace- 
ments it will experience rotation. The equations of motion are therefore 

rni jSl l  + rnr’ijb,, + u = o (9 
mij521+ rnr2e;SZ2 + e = o (ii) 

where u is the vertical displacement of the mass at any instant of time and e is the rota- 
tion of the mass from its stationary position. Although the beam supports just one 
mass it is subjected to two moment systems; M1 at any section z due to the weight 
of the mass and a constant moment M2 caused by the inertia couple of the mass as 
it rotates. Thus 

Hence 

from which 

413 21 312 
2EI 511 =E’ 522 =E’ 512 = 521 =- 

Each mode will oscillate with simple harmonic motion so that 

v = vo sin(wt + E ) :  e = eo sin(wt + E )  

and 
2 e = - &  

Substituting in Eqs (i) and (ii) gives 

(1 - u 2 r n G ) u  - u-mr 7 2 -e  312 = o 
2EI (4 

(vii) 
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Inserting the values of m, r, I and EI we have 

1435 x 4 x 0.763 1435 x 0.1522 x 3 x 0.762 w2e = o (viii) 

8 = 0 (ix) 

(l -9.81 x 3 x 1.44 x lo6 w2)v- 9.81 x 2 x 1.44 x lo6 
1435 x 3 x 0.762 1435 x 0.1522 x 2 x 0.76 

"+ (l - 9.81 x 1.44 x lo6 w2) 9.81 x 2 x 1.44 x lo6 
- 

or 

(1 - 6 x 10-5w2)v - 0.203 x 10-5w28 = 0 

-8.8 x lO-'w%+ (1 - 0.36 x 10-5w2)8 = 0 
(4 
(4 

Solving Eqs (x) and (xi) as before gives 

w =  122 or 1300 
from which the natural frequencies are 

61 650 h=--, h=- 
7r 7r 

From Eq. (x) 

v - 0.203 x lOP5w2 
8 - 1 - 6 x 10-5w2 

which is positive at the lowest natural frequency, corresponding to w = 122, and 
negative for w = 1300. The modes of vibration are therefore as shown in Fig. 13.14. 

So far we have restricted our discussion to weightless beams supporting concen- 
trated, or otherwise, masses. We shall now investigate methods of determining 
normal modes and frequencies of vibration of beams possessing weight and therefore 
inertia. The equations of motion of such beams are derived on the assumption that 
vibration occurs in one of the principal planes of the beam and that the effects of 
rotary inertia and shear displacements may be neglected. 

Figure 13.15(a) shows a uniform beam of cross-sectional area A vibrating in a 
principal plane about some axis Oz. The displacement of an element 6z of the 
beam at any instant of time t is v and the moments and forces acting on the element 
are shown in Fig. 13.15(b). Taking moments about the vertical centre line of the 

- 

Fig. 13.14 The first two natural modes of vibration of the beadmass system of Fig. 13.13. 
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Fig. 13.15 Vibration of a beam possessing mass. 

element gives 

from which, neglecting second-order terms, we obtain 

a M x  s,. = - 
dZ 

Considering the vertical equilibrium of the element 

(Sy +2&) - S, - pA6z- d2V = 0 
at2 

so that 

From basic bending theory (see Eqs (9.20)) 

It follows from Eqs (13.43), (13.44) and (13.45) that 

a2 

(13.43) 

( 13.44) 

(13.45) 

(1 3.46) 

Equation (13.46) is applicable to both uniform and non-uniform beams. In the latter 
case the flexural rigidity, EI, and the mass per unit length, pA, are functions of 3. For 
a beam of uniform section, Eq. (13.46) reduces to 

6% a2v 
az4 at2 - 

EI - + PA-  - 0 (13.47) 

In the normal modes of vibration each element of the beam describes simple harmonic 
motion; thus 

v(z: t )  = V ( z )  sin(wr + E )  (13.48) 
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where V ( z )  is the amplitude of the vibration at any section z. Substituting for TJ from 
Eq. (13.48) in Eq. (13.47) yields 

V = O  
d4 V PAW’ 
d# EI 

( 13.49) 

Equation (13.49) is a fourth-order differential equation of standard form having the 
general solution 

V = Bsin Xz + Ccos X Z  + D sinh X Z  + F cosh Xz (1 3 .SO) 
where 

4 PAJ =- 
EI 

and B, C, D and F are unknown constants which are determined from the boundary 
conditions of the beam. The ends of the beam may be: 

(1) simply supported or pinned, in which case the displacement and bending 
moment are zero, and therefore in terms of the function V(z )  we have V = 0 and 
d2V/& = 0; 

(2) fixed, giving zero displacement and slope, that is V = 0 and dV/dz = 0; 
(3) free, for which the bending moment and shear force are zero, hence 

d2V/d2 = 0 and, from Eq. (13.43), d3V/dz3 = 0. 

Example 13.4 
Determine the first three normal modes of vibration and the corresponding natural 
frequencies of the uniform, simply supported beam shown in Fig. 13.16. 

Since both ends of the beam are simply supported, V = 0 and d2 V/d2 = 0 at z = 0 
and z = L. From the first of these conditions and Eq. (13.50) we have 

O = C + F  6) 
and from the second 

0 = -X2C + X2F (ii) 
Hence C = F = 0. Applying the above boundary conditions at z = L gives 

0 = BsinXL+DsinhXL (iii) 
and 

0 = -X2B sin XL + X2D sinh XL 6.1 

Fig. 13.16 Beam of Example 13.4. 
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Fig. 13.17 First three normal modes of vibration of the beam of Example 13.4. 

The only non-trivial solution (XL # 0)  of Eqs (iii) and (iv) is D = 0 and sin XL = 0. 
It follows that 

XL=nr n =  112131...  

Therefore 

IZ= 11213!... 

and the normal modes of vibration are given by 
nrz 
L 

v(z, t )  = B, sin-sin(w,t + E,) 

with natural frequencies 

(vii) 

The first three normal modes of vibration are shown in Fig. 13.17. 

Example 13.5 
Find the first three normal modes and corresponding natural frequencies of the 
uniform cantilever beam shown in Fig. 13.18. 

The boundary conditions in this problem are V = 0, dV/dz = 0 at z = 0 and 
d2V/dz2 = 0, d3V/dz3 = 0 at z =  L. Substituting these in turn in Eq. (13.50) 
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Y 

Fig. 13.18 Cantilever beam of Example 13.5. 

we obtain 

O = C + F  

O = A B + x D  
6) 
(ii) 

0 = -X2BsinXL- X2CcosXL+X2DsinhXL+X2FcoshAL (iii) 

0 = -X3Bcos XL + X3C sin XL + X3D cosh XL + X3F sinh AL (iv) 

From Eqs (i) and (ii), C = -F and B = -D. Thus, replacing F and D in Eqs (iii) and 
(iv) we obtain 

B(- sin XL - sinh XL) + C(  - cos XL - cosh XL) = 0 

B(-  cos XL - cosh XL) + C(sin XL - sinh XL) = 0 

(v) 

(vi) 

and 

Eliminating B and C from Eqs (v) and (vi) gives 

(- sin XL - sinh XL) (sinh XL - sin XL) + (cos XL + cosh XL)2 = 0 

Expanding this equation, and noting that sin2 XL + cos2 XL = 1 and 
cosh2 XL - sinh’ XL = 1, yields the frequency equation 

cosXLcoshXL+ 1 = 0 (vii) 

Equation (vii) may be solved graphically or by Newton’s method. The first three roots 
X I ,  X2 and X3 are given by 

AIL = 1.875, X2L = 4.694, X3L = 7.855 

from which are found the natural frequencies corresponding to the first three normal 
modes of vibration. The natural frequency of the rth mode ( r  2 4) is obtained from 
the approximate relationship 

X,L = ( r  - ;)7r 

and its shape in terms of a single arbitrary constant K, is 
V,(z) = K,[coshX,z - cos X,z - k,(sinhX,z - sin X,z)] 
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Fig. 13.19 The first three normal modes of vibration of the cantilever beam of Example 13.5. 

where 
cos X,L + cosh X,L 
sin X,L + sinh X,L ' k, = r =  1,2,3, . .  

Figure 13.19 shows the first three normal mode shapes of the cantilever and their 
associated natural frequencies. 

13.3.1 Approximate methods for determinina natural freauencies 

The determination of natural frequencies and normal mode shapes for beams of non- 
uniform section involves the solution of Eq. (13.46) and fulfilment of the appropriate 
boundary conditions. However, with the exception of a few special cases, such 
solutions do not exist and the natural frequencies are obtained by approximate 
methods such as the Rayleigh and Rayleigh-Ritz methods which are presented 
here. (A review of several methods is given in Ref. 3.) Rayleigh's method is 
discussed first. 

A beam vibrating in a normal or combination of normal modes possesses kinetic 
energy by virtue of its motion and strain energy as a result of its displacement from 
an initial unstrained condition. From the principle of conservation of energy the 
sum of the kinetic and strain energies is constant with time. In computing the 
strain energy U of the beam we assume that displacements are due to bending strains 
only so that 
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where 

d2V A4 = -EI-  azz (see Eq. (13.45)) 

Substituting for from Eq. (1 3.48) gives 

d2 V M = -EZ-sin(wt + E) 
# 

so that from Eq. (13.51) 

1 
2 U=-sin2(wt+E) (13.52) 

For a non-uniform beam, having a distributed mass pA(z) per unit length and 
carrying concentrated masses, ml ,  m2, m3,. . . , m, at distances zl, z2, z3,. . . , z, from 
the origin, the kinetic energy KE may be written as 

Substituting for v(z) from Eq. (13.48) we have 

KE = -u2 1 cos2(wt + E )  [ JLpA(z) V2 dz + 2 m . r  V(Z~)}~] 

r = l  2 

Since KE + U = constant, say C,  then 

-sin2(wt+E)jLEI(-) 1 d2V dz+2dcos2(wt+E) 1 
I 7 dz2 

x [ j L p A ( i ) v 2 d z + g m r { V ( ~ r ) } 2 ]  r =  1 = C 

Inspection of Eq. (13.54) shows that when (wt + E )  = O , T ,  27r,. 

1 
-w2 [ JL pA(z) V2 dz + 2 mr{ V ( Z ~ ) } ~ ]  = C 2 r =  1 

and when 

(ut + E )  = 7r/2,3~/2,5~/2;. . . 
then 

i jLEI(  =) d2V dz = C 

( 13.53) 

(13.54) 

(13.55) 

( 13.56) 

In other words the kinetic energy in the mean position is equal to the strain energy in 
the position of maximum displacement. From Eqs (13.55) and (13.56) 

(13.57) 
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Equation (13.57) gives the exact value of natural frequency for a particular mode if 
V ( z )  is known. In the situation where a mode has to be ‘guessed’, Rayleigh’s principle 
states that if a mode is assumed which satisfies at least the slope and displacement 
conditions at the ends of the beam then a good approximation to the true natural 
frequency will be obtained. We have noted previously that if the assumed normal 
mode differs only slightly from the actual mode then the stationary property of the 
normal modes ensures that the approximate natural frequency is only very slightly 
different to the true value. Furthermore, the approximate frequency will be higher 
than the actual one since the assumption of an approximate mode implies the 
presence of some constraints which force the beam to vibrate in a particular fashion; 
this has the effect of increasing the frequency. 

The Rayleigh-Ritz method extends and improves the accuracy of the Rayleigh 
method by assuming a finite series for V(z ) ,  namely 

n 

W )  = B,VS(Z) (13.58) 

where each assumed function Vs(z) satisfies the slope and displacement conditions at 
the ends of the beam and the parameters B, are arbitrary. Substitution of V ( z )  in 
Eq. (13.57) then gives approximate values for the natural frequencies. The parameters 
Bs are chosen to make these frequencies a minimum, thereby reducing the effects of 
the implied constraints. Having chosen suitable series, the method of solution is to 
form a set of equations 

s=l 

0, s = 1 , 2 , 3  ,..., n 8 3  
8B.Y 
-= (13.59) 

Eliminating the parameter B, leads to an nth-order determinant in w2 whose roots 
give approximate values for the first n natural frequencies of the beam. 

Example 13.6 
Determine the first natural frequency of a cantilever beam of length, L, flexural 
rigidity EZ and constant mass per unit length PA. The cantilever carries a mass 2m 
at the tip, where MI = PAL. 

An exact solution to this problem may be found by solving Eq. (13.49) with the 
appropriate end conditions. Such a solution gives 

w1 = 1 . 1 5 8 2 E  

2nd will serve as a comparison for our approximate answer. As an assumed mode 
shape we shall take the static deflection curve for a cantilever supporting a tip load 
since, in this particular problem, the tip load 2m is greater than the mass PAL of 
the cantilever. If the reverse were true we would assume the static deflection curve 
for a cantilever carrying a uniformly distributed load. Thus 

V ( z )  = a(3Lz2 - z3) (i) 
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where the origin for z is taken at the built-in end and a is a constant term which 
includes the tip load and the flexural rigidity of the beam. From Eq. (i) 

d2 V V ( L )  = 2aL3 and - dz2 - - 6a(L - '1 

Substituting these values in Eq. (13.57) we obtain 

2 w1 = 
36EIa2 $ ( L  - z ) ~  dz 

pAa2 Jk(3L - z ) ~ z ~  dz + 2m(2ai3)2 

Evaluating Eq. (ii) and expressing pA in terms of m we obtain 

(ii) 

w1 = 1.1584dZ EI 
(iii) 

which value is only 0.02 per cent higher than the true value given above. The 
estimation of higher natural frequencies requires the assumption of further, more 
complex, shapes for V ( z ) .  

It is clear from the previous elementary examples of normal mode and natural 
frequency calculation that the estimation of such modes and frequencies for a 
complete aircraft is a complex process. However, the aircraft designer is not restricted 
to calculation for the solution of such problems, although the advent of the digital 
computer has widened the scope and accuracy of this approach. Other possible 
methods are to obtain the natural frequencies and modes by direct measurement 
from the results of a resonance test on the actual aircraft or to carry out a similar 
test on a simplified scale model. Details of resonance tests are discussed in Section 
13.4. Usually a resonance test is impracticable since the designer requires the 
information before the aircraft is built, although this type of test is carried out on 
the completed aircraft as a design check. The alternative of building a scale model 
has found favour for many years. Such models are usually designed to be as light 
as possible and to represent the stiffness characteristics of the full-scale aircraft. 
The inertia properties are simulated by a suitable distribution of added masses. A 
full description of model construction, testing techniques and the estimation of 
normal modes and frequencies is given in Ref. 3 .  The calculation of normal modes 
and frequencies is also treated in Refs 3 and 4. 

13.4 to "wutter' 
We have previously defined flutter as the dynamic instability of an elastic body in an 
airstream. It is found most frequently in aircraft structures subjected to large 
aerodynamic loads such as wings, tail units and control surfaces. Flutter occurs at 
a critical or flutter speed Vf which in turn is defined as the lowest airspeed at which 
a given structure will oscillate with sustained simple harmonic motion. Flight at 
speeds below and above the flutter speed represents conditions of stable and unstable 
(that is divergent) structural oscillation respectively. 

Generally, an elastic system having just one degree of freedom cannot be unstable 
unless some peculiar mechanical characteristic exists such as a negative spring force or 
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a negative damping force. However, it is possible for systems with two or more 
degrees of freedom to be unstable without possessing unusual characteristics. The 
forces associated with each individual degree of freedom can interact, causing 
divergent oscillations for certain phase differences. The flutter of a wing in which 
the flexural and torsional modes are coupled is an important example of this type 
of instability. Some indication of the physical nature of wing bending-torsion flutter 
may be had from an examination of aerodynamic and inertia forces during a 
combined bending and torsional oscillation in which the individual motions are 90' 
out of phase. In a pure bending or pure torsional oscillation the aerodynamic 
forces produced by the effective wing incidence oppose the motion; the geometric 
incidence in pure bending remains constant and therefore does not affect the 
aerodynamic damping force, while in pure torsion the geometric incidence produces 
aerodynamic forces which oppose the motion during one half of the cycle but assist it 
during the other half so that the overall effect is nil. Thus, pure bending or pure 
torsional oscillations are quickly damped out. This is not the case in the combined 
oscillation when the maximum twist occurs at zero bending and vice versa; that is, 
a 90" phase difference. 

Consider the wing shown in Fig. 13.20 in various stages of a bending-torsion 
osciiiation. At the position of zero bending the twisting of the wing causes a positive 
geometric incidence and therefore an aerodynamic force in the same direction as the 
motion of the wing. A similar but reversed situation exists as the wing moves in a 
downward direction; the negative geometric incidence due to wing twist causes a 
downward aerodynamic force. It follows that, although the effective wing incidence 
produces aerodynamic forces which oppose the motion at all stages, the aerodynamic 
forces associated with the geometric incidence have a destabilizing effect. At a certain 
speed - the flutter speed V, - this destabilization action becomes greater than the 
stabilizing forces and the oscillations diverge. In practical cases the bending and 
torsional oscillations would not be as much as 90" out of phase; however, the same 
basic principles apply. 

Flexural axis t 
Positive ' geometric %% Negative geometric incidence producing positive lift 

incidence producing 
negative lift 

Motion 1 -  
of wing 

Fig. 13.20 Coupling of bending and torsional oscillations and destabilizing effect of geometric incidence. 
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The type of flutter described above, in which two distinctly different types of 
oscillating motion interact such that the resultant motion is divergent, is known as 
classical flutter. Other types of flutter, non-classical flutter, may involve only one 
type of motion. For example, stallingflutter of a wing occurs at a high incidence 
where, for particular positions of the spanwise axis of twist, self-excited twisting 
oscillations occur which, above a critical speed, diverge. 

Another non-classical form of flutter, aileron buzz, occurs at high subsonic speeds 
and is associated with the shock wave on the wing forward of the aileron. If the 
aileron oscillates downwards the flow over the upper surface of the wing accelerates, 
intensifying the shock and resulting in a reduction in pressure in the boundary layer 
behind the shock. The aileron, therefore, tends to be sucked back to its neutral 
position. When the aileron rises the shock intensity reduces and the pressure in the 
boundary layer increases, tending to push the aileron back to its neutral position. 
At low frequencies these pressure changes are approximately 180" out of phase 
with the aileron deflection and therefore become aerodynamic damping forces. At 
higher frequencies a component of pressure appears in phase with the aileron velocity 
which excites the oscillation. If this is greater than all other damping actions on the 
aileron a high frequency oscillation results in which only one type of motion, rotation 
of the aileron about its hinge, is present, i.e. aileron buzz. Aileron buzz may be 
prevented by employing control jacks of sufficient stiffness to ensure that the natural 
frequency of aileron rotation is high. 

Bufeting is produced most commonly in a tailplane by eddies caused by poor 
airflow in the wing wake striking the tailplane at a frequency equal to its natural 
frequency; a resonant oscillation having one degree of freedom could then occur. 
The problem may be alleviated by proper positioning of the tailplane and clean 
aerodynamic design. 

- 13.4.1 Coupling 

We have seen that the classical flutter of an aircraft wing involves the interaction of 
flexural and torsional motions. Separately neither motion will cause flutter but 
together, at critical values of amplitude and phase angle, the forces produced by 
one motion excite the other; the two types of motion are then said to be coupled. 
Various forms of coupling occur: inertial, aerodynamic and elastic. 

The cross-section of a small length of wing is shown in Fig. 13.21. Its centre of gravity 
is a distance gc ahead of its flexural axis, c is the wing section chord and the mass of the 
small length of wing is m. If the length of wing is subjected to an upward acceleration j ;  
an accompanying inertia force my acts at its centre of gravity in a downward direction, 
thereby producing a nose down torque about the flexural axis of mygc, causing the wing 
to twist. The vertical motion therefore induces a twisting motion by virtue of the inertia 
forces present, i.e. inertial coupling. Conversely, an angular acceleration ti about the 
flexural axis causes a linear acceleration of gc& at the centre of gravity with a corre- 
sponding inertia force of mgcii. Thus, angular acceleration generates a force producing 
translation, again inertial coupling. Note that the inertia torque due to unit linear accel- 
eration (mgc) is equal to the inertia force due to unit angular acceleration (mgc); the 
inertial coupling therefore possesses symmetry. 



Centre of gravity 

\ 

13.4 Introduction to 'flutter' 57 1 

I Y  

Flexural axis I 

Fig. 13.21 Inertial coupling of a wing. 

Aerodynamic coupling is associated with changes of lift produced by wing rotation 
or translation. A change of wing incidence, that is a rotation of the wing, induces a 
change of lift which causes translation while a translation of velocity 3, say, results 
in an effective change in incidence, thereby yielding a lift which causes rotation. 
These aerodynamic forces, which oscillate in a flutter condition, act through a 
centre analogous to the aerodynamic centre of a wing in steady motion; this centre 
is known as the centre of independence. 

Consider now the wing section shown in Fig. 13.22 and suppose that the wing 
stiffness is represented by a spring of stiffness k positioned at its flexural axis. Suppose 
also that the displacement of the wing is defined by the vertical deflection y of an 
arbitrary point 0 (Fig. 13.22(a)) and a rotation a about 0 (Fig. 13.22(b)). In Fig. 
13.22(a) the vertical displacement produces a spring force which causes a clockwise 
torque (kyd) on the wing section about 0, resulting in an increase in wing incidence 
a. In Fig. 13.22(b) the clockwise rotation a about 0 results in a spring force k d a  
acting in an upward direction on the wing section, thereby producing translations 
in the positive y direction. Thus, translation and rotation are coupled by virtue of 
the elastic stiEness of the wing, hence elastic coupling. We note that, as in the case 
of inertial coupling, elastic coupling possesses symmetry since the moment due to 

Flexural axis 

1- 
L* 

(a) 

Fig. 13.22 Elastic coupling of a wing. 
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unit displacement (kd) is equal to the force produced by the unit rotation (kd). Also, if 
the arbitrarily chosen point 0 is made to coincide with the flexural axis, d = 0 and the 
coupling disappears. 

From the above it can be seen that flutter will be prevented by uncoupling the two 
constituent motions. Thus, inertial coupling is prevented if the centre of gravity 
coincides with the flexural axis, while aerodynamic coupling is eliminated when the 
centre of independence coincides with the flexural axis. This, in fact, would also 
eliminate elastic coupling since 0 in Fig. 13.22 would generally be the centre of 
independence. Unfortunately, in practical situations, the centre of independence is 
usually forward of the flexural axis, while the centre of gravity is behind it giving 
conditions which promote flutter. 

13.4.2 Determination of critical flutter speed 

Consider a wing section of chord c oscillating harmonically in an airflow of velocity V 
and density p and having instantaneous displacements, velocities and accelerations of, 
rotationally, a, d!, &, and, translationally, y ,  j ,  9. The oscillation causes a reduction in 
lift from the steady state lift4 so that, in effect, the lift due to the oscillation acts 
downwards. The downward lift corresponding to a, d! and & is, respectively 

1,pcv2a = L,a 

lbPC2Vd! = L&& 

I . .  c3& = L&& 
CYP 

in which I,, I&, lii! are non-dimensional coefficients analogous to the lift-curve slopes in 
steady motion. Similarly, downward forces due to the translation of the wing section 
occur and are 

IypcV2y/c = Lyy 

Ijpc2vj/c = Lyj 

I.. c3 " c - L *- 
y P  Y l  - yY 

Thus, the total aerodynamic lift on the wing section due to the oscillating motion is 
given by 

L = Lyy + LyJj + Lyy + L,a + L&d! + L&& ( 1  3.60) 

We have previously seen that rotational and translational displacements produce 
moments about any chosen centre. Thus, the total nose up moment on the wing 
section is 

M = Myy + Myj + M j j  + M,a + Mbd! + Mcii (13.61) 

where 

Myy = lypc2 V2y/c  

~~j = iypc3 v$lc 



13.4 Introduction to 'flutter' 573 

Mean position 

1 Centre of gravity 

-\ 
Flexural axis 

Fig. 13.23 Flutter of a wing section. 

Myy = 1ypc4y/c 
2 2  

3 

M,a = m,pc V a / c  

M&ci = m&pc Vcilc 

~ ~ i i  = m6pc4ii/c 

in which m, etc. 
coefficients. 

re analogous to the steady motion local pitching moment 

Now consider the wing section shown in Fig. 13.23. The wing section is oscillating 
about a mean position and its flexural and torsional stiffnesses are represented by 
springs of stiffness k and ke respectively. Suppose that its instantaneous displacement 
from the mean position is y, which is now taken as positive downwards. In additior, to 
the aerodynamic lift and moment forces of Eqs (13.60) and (13.61) the wing section 
experiences inertial and elastic forces and moments. Thus, if the mass of the wing 
section is m and Io is its moment of inertia about 0, instantaneous equations of 
vertical force and moment equilibrium may be written as follows. For vertical force 
equilibrium 

L - my i- mgcii - ky = 0 (1  3.62) 

and for moment equilibrium about 0 
M - I0&+mgcy - kea = 0 (13.63) 

Substituting for L and M from Eqs (13.60) and (13.61) we obtain 
(m - Ly) j  - LFj + (k  - L,)y - (mgc + Lh)2i! - L&& - L,a = 0 

(-mgc - M j ) j  - M j j  - M,y + (Io - M&)ii - M&ci + (ke - M,)a = 0 

( 1 3.64) 

(13.65) 

The terms involving y in the force equation and a in the moment equation are known 
as direct terms, while those containing a in the force equation and y in the moment 
equation are known as coupling terms. 

The critical flutter speed Vf  is contained in Eqs (13.64) and (13.65) within the terms 
L,, L j ,  L,, L&, My,  My,  M,  and Mb. Its value corresponds to the condition that these 
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equations represent simple harmonic motion. Above this critical value the equations 
represent divergent oscillatory motion, while at lower speeds they represent damped 
oscillatory motion. For simple harmonic motion 

iwt 
y = yo e'"', a = a. e 

Substituting in Eqs (13.64) and (13.65) and rewriting in matrix form we obtain 

-w (m - L?) - i d j ,  + k - Ly J ( m g c  + Lii) - iwL& - La 

w2(mgc + M j )  - iwMl - M), - J ( I o  - M6) - iwM& + ke - M, I{ E} = O  [ '  
(13.66) 

The solution of Eq. (13.66) is most readily obtained by computer4 for which several 
methods are available. One method represents the motion of the system at a general 
speed V by 

(6+iw)t , a=ao (6+w)z Y'Yoe 
in which S + iw is one of the complex roots of the determinant of Eq. (13.66). For any 
speed V the imaginary part w gives the frequency .of the oscillating system while S 
represents the exponential growth rate. At low speeds the oscillation decays (6 is 
negative) and at high speeds it diverges (6 is positive). Zero growth rate corresponds 
to the critical flutter speed V,, which may therefore be obtained by calculating 6 for a 
range of speeds and determining the value of Vf for S = 0. 

13.4.3 Prevention of flutter 

We have previously seen that flutter can be prevented by eliminating inertial, 
aerodynamic and elastic coupling by arranging for the centre of gravity, the centre 
of independence and the flexural axis of the wing section to coincide. The means by 
which this may be achieved are indicated in the coupling terms in Eqs (13.64) and 
(1 3.65). 

In Eq. (13.65) the inertial coupling term is mgc + My in which My is usually very 
much smaller than mgc. Thus, inertial coupling may be virtually eliminated by 
adjusting the position of the centre of gravity of the wing section through mass 
balancing so that it coincides with the flexural axis, i.e. gc = 0. The aerodynamic 
coupling term M j j  vanishes, as we have seen, when the centre of independence 
coincides with the flexural axis. Further, the terms M,J and L&d! are very small 
and may be neglected so that Eqs (13.64) and (13.65) now reduce to 

(m - Lji)ji - Lpj  + (k - Ly)y - L,a = 0 (13.67) 

and 
(Io - Me)& - Mbd! + (ke - Ma)a  = 0 (1 3.68) 

The remaining coupling term L,a cannot be eliminated since the vertical force 
required to maintain flight is produced by wing incidence. 

Equation (13.68) governs the torsional motion of the wing section and contains no 
coupling terms so that, since all the coefficients are positive at speeds below the wing 
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section torsional divergence speed, any torsional oscillation produced, say, by a gust 
will decay. Also, from Eq. (13.67), it would appear that a vertical oscillation could be 
maintained by the incidence term Loo. However, rotational oscillations, as we have 
seen from Eq. (13.68), decay so that the lift force L,a is a decaying force and 
cannot maintain any vertical oscillation. 

In practice it is not always possible to prevent flutter by eliminating coupling terms. 
However, increasing structural stiffness, although carrying the penalty of increased 
weight, can raise the value of V, above the operating speed range. Further, arranging 
for the centre of gravity of the wing section to be as close as possible to and forward of 
the flexural axis is beneficial. Thus, wing mounted jet engines are housed in pods well 
ahead of the flexural axis of the wing. 

The previous analysis has been concerned with the flutter of a simple two degrees of 
freedom model. In practice the structure of an aircraft can oscillate in many different 
ways. For example, a wing has fundamental bending and torsional modes of 
oscillation on which secondary or overtone modes of oscillation are superimposed. 
Also it is possible for fuselage bending oscillations to produce changes in wing 
camber thereby affecting wing lift and for control surfaces oscillating about their 
hinges to produce aerodynamic forces on the main surfaces. 

The equations of motion for an actual aircraft are therefore complex with a number 
N ,  say, of different motions being represented ( N  can be as high as 12). There are, 
therefore, N equations of motion which are aerodynamically coupled. At a given 
speed, solution of these N equations yields N different values of S + iw corresponding 
to the N modes of oscillation. Again, as in the simple two degrees of freedom case, the 
critical flutter speed for each mode may be found by calculating S for a range of speeds 
and determining the value of speed at which S = 0. 

A similar approach is used experimentally on actual aircraft. The aircraft is flown 
at a given steady speed and caused to oscillate either by exploding a small detonator 
on the wing or control surface or by a sudden control jerk. The resulting oscillations 

Decay 

ra: I 

Fig. 13.24 Experimental determination of flutter speed. 
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are recorded and analysed to determine the decay rate. The procedure is repeated at 
increasing speeds with smaller increments being used at higher speeds. The measured 
decay rates are plotted against speed, producing a curve such as that shown in Fig. 
13.24. This curve is then extrapolated to the zero decay point which corresponds to 
Vf. Clearly this approach requires as accurate as possible a preliminary estimation 
of flutter speed since induced oscillations above the flutter speed diverge leading to 
possibly catastrophic results. 

Other experimental work involves wind tunnel tests on flutter models, the results 
being used to check theoretical calculations” 

13.4.5 Control surface flutter 

If a control surface oscillates about its hinge, oscillating forces are induced on the 
main surface. For example, if a wing oscillates in bending at the same time as the 
aileron oscillates about its hinge, flutter can occur provided there is a phase difference 
between the two motions. In similar ways elevator and rudder flutter can occur as the 
fuselage oscillates in bending. Other forms of control surface flutter involve more 
than two different types of motion. Included in this category are wing bending/aileron 
rotation/tab rotation and elevator rotation/fuselage bending/rigid body pitching and 
translation of the complete aircraft. 

It can be shown4 that control surface flutter can be prevented by eliminating the 
inertial coupling between the control rotation and the motion of the main surface. 
This may be achieved by mass balancing the control surface whereby weights are 
attached to the control surface forward of the hinge line. 

All newly designed aircraft are subjected early in the life of a prototype to a ground 
resonance test to determine actual normal modes and frequencies. The primary 
objects of such tests are to check the accuracy of the calculated normal modes on 
which the flutter predictions are based and to show up any unanticipated peculiarities 
in the vibrational behaviour of the aircraft. Usually the aircraft rests on some 
low frequency support system or even on its deflated tyres. Electrodynamic exciters 
are mounted in pairs on the wings and tail with accelerometers as the measuring 
devices. The test procedure is generally first to discover the resonant frequencies 
by recording amplitude and phase of a selected number of accelerometers over a 
given frequency range. Having obtained the resonant frequencies the aircraft is 
then excited at each of these frequencies in turn and all accelerometer records 
taken simultaneously. 

Babister, A. W., Aircraft Stability and Control, Pergamon Press, London, 1961. 
Duncan, W. J., The Principles of the Control and Stability of Aircraft, Cambridge University 
Press, Cambridge, 1959. 
Bisplinghoff, R. L., Ashley, H., and Halfman, R. L., Aeroelasticity, Addison-Wesley 
Publishing Co. Inc., Cambridge, Mass., 1955. 
Dowell, E. H. et al., A Modern Course in Aeroelasticity, Sijthoff and Noordhoff, Alphen a m  
den Rijn, Netherlands, 1978. 
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P.13.1 An initially untwisted rectangular wing of semi-span s and chord c has its 
flexural axis normal to the plane of symmetry, and is of constant cross-section with 
torsional rigidity GJ.  The aerodynamic centre is ec ahead of the flexural axis, the 
lift-coefficient slope is a and the pitching moment coefficient at zero lift is Cm.o. At 
speed V in air of density p the wing-root incidence from zero lift is ao. 

Using simple strip-theory, i.e. ignoring downwash effects, show that the incidence 
at a section distant y from the plane of symmetry is given by 

COS X(S - Y )  Cm.0 a o + e =  (2+ao) -~ 

cos As ea 
where 

ea+pv2c2 
GJ 

A =  

Hence, assuming Cm,o to be negative, find the condition giving the speed at which the 
lift would be reduced to zero. 

Ans. V = d- ~ G J  
2pec2s2a 

P.13.2 The rectangular wing shown in Fig. P. 13.2 has a constant torsional rigidity 
GJ and an aileron of constant chord. The aerodynamic centre of the wing is at a 
constant distance ec ahead of the flexural axis while the additional lift due to 
operation of the aileron acts along a line a distance hc aft of the flexural axis; the 
local, two-dimensional lift-curve slopes are al for the wing and a2 for aileron deflec- 
tion. Using strip theory and considering only the lift due to the change of incidence 
arising from aileron movement, show that the aileron reversal speed is given by 

[ (ks) - s2] tan Xks 1; y sin Ay dy - tan As ( e  + h)  y cos Xy dy = y sin Xy dy - .I 2h cos Xks 

where 
X2 = ;pV2alec2/GJ 

axis 

I 

Fig. P.13.2 

I 
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P.13.3 Figure P.13.3 shows a massless beam ABCD of length 31 and uniform 
bending stiffness EI which carries concentrated masses 2m and m at the points B 
and D respectively. The beam is built-in at end A and simply supported at C .  In 
addition, there is a hinge at B which allows only shear forces to be transmitted 
between sections AB and BCD. 

Calculate the natural frequencies of free, undamped oscillations of the system and 
determine the corresponding modes of vibration, illustrating your results by suitably 
dimensioned sketches. 

Ans. L p  g& 1 3EI 
27r 4mB’ 

2rn Hinae rn 

D 

\/ - 
‘B 

I I 

Fig. P.13.3 

P.13.4 Three massless beams 12, 23 and 24 each of length 1 are rigidly joined 
together in one plane at the point 2, 12 and 23 being in the same straight line with 
24 at right angles to them (see Fig. P.13.4). The bending stiffness of 12 is 3EI while 
that of 23 and 24 is EI. The beams carry masses m and 2m concentrated at the 
points 4 and 2 respectively. If the system is simply supported at 1 and 3 determine 
the natural frequencies of vibration in the plane of the figure. 

27r 

Fig. P.13.4 

P.13.5 Two uniform circular tubes AB and BC are rigidly jointed at right angles 
at B and built-in at A (Fig. P.13.5). The tubes themselves are massless but carry a 
mass of 20 kg at C which has a polar radius of gyration of 0.Xa about an axis through 
its own centre of gravity parallel to AB. Determine the natural frequencies and modes 
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r = 0.25 a 

I 
Fig. P.13.5 

of vibration for small oscillations normal to the plane containing AB and BC. The 
tube has a mean diameter of 25 mm and wall thickness 1.25 mm. Assume that for 
the material of the tube E = 70000N/mm’, G = 28000N/mm2 and a = 250mm. 

A m .  0.09 Hz, 0.62 Hz. 

P.13.6 A uniform thin-walled cantilever tube, length L, circular cross-section of 
radius a and thickness t ,  carries at its tip two equal masses m. One mass is attached 
to the tube axis while the other is mounted at the end of a light rigid bar at a distance 
of 2a from the axis (see Fig. P.13.6). Neglecting the mass of the tube and assuming the 
stresses in the tube are given by basic bending theory and the Bredt-Batho theory of 
torsion, show that the frequencies w of the coupled torsion flexure oscillations which 
occur are given by 

[l + 2x & (1 + 2x + 2x741 
1 - r n ~ ~  

where 
3E h A = - -  
G L2 

Fig. P.13.6 
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P.13.7 Figure P.13.7 shows the idealized cross-section of a single cell tube with 
axis of symmetry xx and length 1525 mm in which the direct stresses due to bending 
are carried only in the four booms of the cross-section. The walls are assumed to carry 
only shear stresses. The tube is built-in at the root and carries a weight of 4450 N at its 
tip; the centre of gravity of the weight coincides with the shear centre of the tube cross- 
section. Assuming that the direct and shear stresses in the tube are given by basic 
bending theory, calculate the natural frequency of flexural vibrations of the weight 
in a vertical direction. The effect of the weight of the tube is to be neglected and it 
should be noted that it is not necessary to know the position of the shear centre of 
the cross-section. The effect on the deflections of the shear strains in the tube walls 
must be included 

E = 70000N/mm2, G = 26 500N/mm2, boom areas 970mm2 

Ans. 12.1 Hz. 

I 525 rnrn -I 
1.25 rnrn 

1.0 mrn 
I.Ornrn 

600 mm 

Fig. P.13.7 

P.13.8 A straight beam of length 1 is rigidly built-in at its ends. For one quarter of 
its length from each end the bending stiffness is 4E1 and the mass/unit length is 2m: 
for the central half the stiffness is EI and the mass m per unit length. In addition, the 
beam carries three mass concentrations, $ml at $ 1  from each end and am1 at the 
centre, as shown in Fig. P.13.8. 

Use an energy method or other approximation to estimate the lowest frequency 
of natural flexural vibration. A first approximation solution will suffice if it is 
accompanied by a brief explanation of a method of obtaining improved accuracy. 

Ans. 3 . 7 g  
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Bending of thin plates, see Plates 
Bending of wings. see Stress analysis of 

aircraft components 
Bending rigidity of a beam, see Flexural 

rigidity 
Betti, E. 103 
Bifurcation point, see Columns 
Biharmonic equation 39 
Bimoment 482 
Body forces 7 
Boundary conditions 

in columns 155 
in elasticity problems 9, 10 
in thin plates 132-4 

Bredi-Batho theory 307-9 
Buckling 

coefficients for thin plates 171-3 
columns, see Columns 
experimental determination for a flat plate 

flexural-torsional buckling of thin-walled 

inelastic buckling of thin plates 173 
interrivet buckling of stiffened panels 177 
local instability 174, 175 
of stiffened panels 175-7 
thin plates 169-73, 174 
wrinkling stiffened panels 177 

174 

columns 180-8 

Buffeting, see Flutter 
Bulk modulus 26 

Carbon fibre reinforced plastics 218, 219 
Castigliano’s first theorem 70 
Centre of pressure of a wing 221 
Centre of twist of open and closed section 

beams 294.295 

Closed section beams 
shear centre 304-6 
shear stress distribution at a built-in end 

stress, strain and displacement 

subject to bending 276-91 
subject to shear, see Shear of closed 

subject to torsion, see Torsion of closed 

twist and warping 303, 304. 309-16 

beam columns 162-5 
bifurcation point 156 
boundary conditions 155 
buckling load for a pin-ended column 

buckling modes 154 
critical slenderness ratio 156 
definition of buckling load 153 
eccentrically loaded 162 
effect of initial imperfections 160-2 
effective length 155 
eigenvalues 155 
energy method 165-9 
Euler buckling 152-6 
flexural-torsional buckling 180-8 
inelastic buckling 156-60 
local instability of thin-walled columns 

neutral equilibrium state 153 
polar second moment of area of a 

thin-walled column 184 
reduced elastic modulus 159 
slenderness ratio 155 
Southwell plot 162 
tangent modulus 157, 159 

445-8 

relationships 29 1-5 

section beams 

section beams 

Columns 

153-5 

174, 175 

Combined open and closed section beams 
322-7 
subjected to bending 323 
subjected to shear 323-5 
subjected to torsion 325-7 

Compatibility equations 19,20 
two-dimensional 21, 37, 38 

Complementary energy 69, 70, 76-100, 108 
Complex stress system 10-16 
Components of stress 4 
Composite materials 218-20 

carbon fibre reinforced plastics 218, 219 
glass-reinforced plastics 218 
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Composite materials cont. 
Kevlar 218 
lay-up 218,432 

Contour lines 62, 63 
Corresponding displacements 71, 103 
Crack propagation, see Fatigue 
Curved web with constant shear flow 336-8 
Cut-outs in wings and fuselages, see Stress 

analysis of aircraft components 

Deflections of beams due to bending 284-7 
Deflection of open and closed section beams 

due to bending, shear and torsion 342-4 
multicell wings 404,405 
unit load method 342-4 

Deflection of thin plates 122-49 
Diagonal tension, see Tension field beams 
Displacements in two-dimensional problems 

on elasticity 43 
Divergence, see Aeroelasticity 
Duralumin 213, 215 

Effect of structural idealization on analysis, 

Effective length of a column, see Columns 
Eigenloads, see Structural constraint 
Eigenvalues, functions, see Columns 
Elastic constants for composite plates 

Elasticity 

see Structural idealization 

425-32 

basic 3-35 
two-dimensional problems 36-48 

Castigliano’s first theorem 70 
complementary energy 69, 70, 76-100, 

fictitious or dummy load method 79-85 
for buckling of columns 165-9 
for bending of thin plates 142-9 
potential energy 70, 71, 73-6, 144-9, 

principle of stationary value of total 

Energy methods 68-109 

108 

165-9 

complementary energy 68-70, 76-100, 
108, 109 

principle of stationary value of total 
potential energy 73-6, 142-9, 165-9 

principle of superposition 69, 103 
principle of virtual displacements 71 -3 
principle of virtual forces 71-3 
principle of virtual work 71-3 
reciprocal theorem 68, 103-7 

strain energy 68, 69, 142, 143 
total complementary energy 68, 76-100, 

total potential energy 68,71,73-6, 144-9, 

unit load method 68, 85, 100-2, 342-4, 

108 

165-9 

404,405 
Equilibrium equations 7-9, 37 
Euler buckling of columns 152-6 
Experimental determination of buckling 

Experimental measurement of surface strains 
load of a flat plate 174 

28-32 

Fabrication of structural components 
225-32 
fuselages 232 
integral construction 230 
sandwich panels 230,23 1 
sub-assembly 228, 229 
Wings 228-30 

Factors of safety - flight envelope 233-5 
Fail-safe structures, see Fatigue 
Failure stress in plates and stiffened panels 

Fatigue 236-8,257-71 
acoustic fatigue 257 
crack propagation 267-71 

basic modes of crack growth 268 
fracture toughness 271 
stress field 269 
stress intensity factor 269 

cyclic fatigue 257 
designing against fatigue 258-60 
fatigue load spectrum 258 
fatigue strength of components 260-3 

confidence limits 260 
cumulative probability 260 
extreme value distribution 261 
Goodman diagram 261 
Miner and Palmgren linear cumulative 

damage law 261,262 
scatter factor 263 
S-N curve 236,237 

gust exceedance 259,264 
gust frequency curves 259 
prediction of aircraft fatigue life 263-7 
safe life and fail-safe structures 257, 258 
stress concentrations 258 
thermal fatigue 257 

177-80 

Fictitious or dummy load method 79-85 
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Finite-element method, see Matrix methods 
Flexibility coefficient 103 
Flexural axis 444 
Flexural rigidity 

of a beam 82 
of a plate 124 

Flexural-torsional buckling of thin-walled 
columns 180-8 

Flight envelope, see Airworthiness 
Flutter 540, 568-76 

aileron buzz 570 
buffeting 570 
classical flutter 570 
control surface flutter 575, 576 

ground resonance test 576 
mass balancing 576 

aerodynamic 571 
centre of independence 571 
elastic 571, 572 
inertial 570 

coupling 570-2 

determination of critical flutter speed 

experimental determination of flutter 

prevention 574-5 
stalling flutter 570 
wing bending-torsion flutter 569 

body forces 7 
internal at a point 4 
internal components 4 
notation 5-7 
surface forces 7 

572-4 

speed 575 

Force 4 

Fourier series for plate deflection 135 
Function of structural components 223-5 

fuselage components 225 
nionocoque structures 223 
semi-monocoque structures 223 
tail unit 225 
wing components 223-5 

Fuselage components 225 
Fuselages, analysis, see Stress analysis of 

aircraft components 
Fuselage frames and wing ribs, see Stress 

analysis of aircraft components 

Glass, see Materials of aircraft construction 
Glass reinforced plastic 218, 219 
Goodman diagram 261 
Ground resonance tests, see Flutter 

Gust loads, see Airworthiness 

Hiduminium RR58 215,216 
Homogeneous materials 24 
Hooke’s law 24 

Inelastic buckling of columns, see Columns 
Inelastic buckling of plates 173 

plasticity correction factor 173 
secant modulus 173 
tangent modulus 173 

Inertia loads aircraft 238-43 
Influence coefficient, see Flexibility 

Instability of stiffened panels 175-7 
Integral construction 230 
Interrivet buckling in stiffened panels 177 
Inverse method for elasticity problems 

Isotropic materials 24 

coefficient 

39-42 

Kevlar 218 
Kirchhoff, G.R. 133 

Laminated composite structures, see Stress 

Laplacian operator 53, 131 
Law of mixtures 426 
Limit load, see Airworthiness 
Load factors, see Airworthiness 
Load intensity, shear force and bending 

Loads on structural components 220-3 

analysis of aircraft components 

moment relationships 283, 284 

aerodynamic forces 221-3 
aerodynamic centre 221 
centre of pressure 221 
drag 221 
lift 221, 222 
pitching moment 221 
yawing moment 221 

air loads 220 
body forces 220 
ground loads 220 
surface forces 220 
see also Airworthiness; Fatigue 

174, 175 
Local instability of thin-walled columns 

Lumped mass concept 552 

Maraging steels 216 
Mass balancing, see Flutter 
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Materials of aircraft construction 21 1-20 
aluminium alloys 214-16 
composite materials 2 18-20 
glass 218 
history 211-14 
plastics 217, 218 
steel 216,217 
titanium 217 

analysis of pin-jointed frameworks 500-7 
analysis of space frames 507-9 
application to statically indeterminate 

finite element method 516-32 

Matrix methods 494-532 

frameworks 507 

displacement functions 
beam element 5 18 
triangular element 522 
quadrilateral element 529 

stiffness matrix for a beam element 

stiffness matrix for a quadrilateral 

stiffness matrix for a triangular element 

tetrahedron and rectangular prism 

517-21 

element 528-30 

521-8 

elements 532 
flexibility method 494 
notation 495,496 
stiffness influence coefficient 496 
stiffness matrix 496 
stifkess matrix for a uniform beam 509-16 
stiffness matrix for an elastic spring 496, 

497 
for two elastic springs in line 497-500 

stiffness method 494 
Maxwell, J.C. 103 
Membrane analogy 61-3 
Miner and Palmgren’s linear cumulative 

Model analysis of a fixed beam 106, 107 
Modulus of elasticity 24 
Modulus of rigidity, shear modulus 25 
Modulus of volume expansion, bulk 

Mohr’s circle of strain 23, 28 
Mohr’s circle of stress 12-16 
Moment couple (bimoment) 482 
Monocoque structures 223 

damage law, see Fatigue 

modulus 26 

Neuber beams 316 
Neutral axis 281 

Open section beams 

constraint 
general systems of loading, see Structural 

shear centre 298-300 
stress, strain and displacement 

relationships 291-5 
subjected to bending 276-91 
subjected to constraint, see Structural 

subjected to distributed torque loading 

subjected to shear, see Shear of open 

subjected to torsion, see Torsion of open 

Oscillations of mass/spring and mass/beam 

constraint 

478,479 

section beams 

section beams 

systems, see Structural vibration 

Plane strain 20, 21 
Plane stress 8, 9 
Plastics, see Materials of aircraft 

construction 
Plates, thin 

anticlastic bending 125 
anticlastic surface 125 
bending and twisting 125-9 
bending of plates having a small initial 

curvature 141 
boundary conditions 132-4 
buckling 169-78 
buckling coefficients 171-3 
combined bending and in-plane loading 

composite, see Stress analysis of aircraft 

energy method (Rayleigh-Rib) 142-9 
experimental determination of buckling 

failure stress in plates and stiffened panels 

flexural rigidity 124 
Fourier series 135 
inelastic buckling 173 
instability of stiffened panels 175-7 
interrivet buckling 177 
Kirchhoff, G.R. 133 
maximum values of stress 137 
neutral plane 122 
plasticity correction factor 173 
potential energy of transverse load 144 

137-41 

components 

load 174 

177-80 

of in-plane loads 144-6 
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principal curvatures 127 
principal moments 127 
pure bending 122-5 
secant modulus 173 
strain energy in bending and twisting 142, 

subjected to a distributed transverse load 

synclastic surface 125 
tangent modulus 173 
total potential energy 147 

limiting value 26 

walled column 184 

143 

129-37 

Poisson's ratio 25 

Polar second moment of area of a thin- 

Potential energy 70, 71, 73-6, 144-9, 165-9 
Prandtl stress function, see Torsion of solid 

Principal axes of a beam section 81 
Principal planes 11 
Principal strains 23 
Principal stresses 11, 12 
Principle of stationary value of total 

sections 

complementary energy 76, 77 
application to deflection problems 77-85 
application to statically indeterminate 

systems 85-100 
Principle of stationary value of total 

Principle of superposition 103 
Principle of virtual work 71-3 

virtual displacements 7 1, 72 
virtual forces 72, 73 

potential energy 73-6, 142-9 

Principles of stressed skin construction 
21 1-32 

Rayleigh, Lord 103, 565 
Rayleigh-Ritz method 

bending of a beam 75 
buckling of columns 168 
oscillation of beams 565-8 
thin plates 142-9 

Reciprocal theorem 68 
Reduced elastic modulus of a column 159 

Safe life structures, see Fatigue 
St. Venant, B. de 

principle 42 
semi-inverse method 41, 43-8 
warping function, see Torsion of solid 

sections 

Sandwich panels 230,23 1 
Secant modulus 173 
Second moments of area of inclined and 

Semi-inverse method for elasticity problems 

Semi-monocoque structures 223 
Shear centre 295,298-300, 304-7, 392 
Shear lag, see Structural constraint 
Shear lines 57 
Shear of closed section beams 300-7 

shear flow distribution 340, 341 

curved thin sections 288,289 

41,43-8 

alternative method for the calculation of 

shear centre 304-7 
shear flow distribution 300-2 
twist and warping 303,304 

aircraft components 

alternative method for the calculation of 

shear centre 298-300 
shear flow distribution 295-8 

components 

a closed section beam 445-8 

Shear of fuselages, see Stress analysis of 

Shear of open section beams 295-300 

shear flow distribution 340, 341 

Shear of wings, see Stress analysis of aircraft 

Shear stress distribution at a built-in end of 

Slenderness ratio of a column, see Columns 
Southwell plot 

columns 162 
plates 174 

axial loads 162-5 

construction 

Stability of beams under transverse and 

Stainless steel, see Materials of aircraft 

Statically determinate systems 24 
Statically indeterminate systems 24, 85-100 
Stiffened panels 175-80 

failure stress 177-80 
instability 175-7 

definition 17 
experimental measurement 28-32 
longitudinal or direct strain 16- 18 
maximum shear strain 23 
Mohr's circle 23, 28 
plane strain 20, 37, 38 
principal strains 23 
shear strain 16, 18, 19 
strain gauge rosette 29 
strains on inclined planes 21, 22 

Strain 16-32 
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Strain cont. 
volumetric strain 26 

Strain energy 68-71, 142, 143, 166 
in simple tension 69 

Strain gauge rosette 29 
Stress 3-16 

as a tensor 5 
complex stress systems 10-16 
components at a point 4, 6 
definition 3 ,4  
maximum shear stress 12 
Mohr's circle 12-16 
normal or direct stress 4 
notation for stresses 5-7 
plane stress 8, 9 
principal stresses, planes 11, 12 
resultant of shear and normal stress 4 
shear stress 4 
sign conventions 6 
stresses on inclined planes 10, 11, 12-14 
tensile stress 3 

Stress analysis of aircraft components 
362-432 
cut-outs in wings and fuselages 415-25 
fuselages 374-80 

bending 375, 376 
shear 376-9 
torsion 379, 380 

fuselage frames and wing ribs 406-15 
laminated composite structures 425-32 

composite plates 429-32 
elastic constants 425-9 
law of mixtures 426 

tapered beams 362-74 
beams having variable stringer areas 

open and closed section beams 

single web beam 363-6 

bending 381-3 
deflections 404,405 
idealized three-boom shell 380, 381 
method of successive approximations 

shear 387-92 
shear centre 392 
tapered wings 392-5 
torsion 383-6 

Stress concentrations 63, 258 
Stress functions 38, 39 

371-4 

366-71 

Wings 380-405 

395-404 

Stress, strain and displacement relationships 
for open and single cell closed section 
beams 291-5 

Stress-strain relationships 24-8, 37 
Structural constraint 443-85 

constraint of open section beams 465-85 
general systems of loading 479-82 
moment couple (bimoment) 482 
position of centre of twist 470,471 
subject to distributed torque loading 

torsion-bending constant, 470-4 
torsion of a beam of arbitrary section 

torsion of an I-section beam 465-7 
wire analogy 472-4 

general aspects 443-5 
eigenload 444 
flexural axis 444 
zero warping axis 444 

beam subjected to combined bending 

beam supported at corner booms only 

six-boom beam subjected to shear 

478,479 

467-78 

shear lag 455-65 

and axial load 461-5 

460,461 

455-60 
shear stress distribution at the built-in end 

of a closed section beam 445-8 
thin-walled rectangular section beam 

subjected to torsion 449-54 
direct stress distribution 453 
idealization 449 
rate of twist 454 
shear stress distribution 453,454 
warping 453 

booms 328 
effect of idealization on analysis 331-41 

bending of open and closed section 

curved web with constant shear flow 

shear of closed section beams 338-40 
shear of open section beams 332-8 
torsion of open and closed section 

of a panel carrying a linearly varying 
direct stress 328, 329 

of a wing section 327,328 
Structural instability 153-97 

Structural idealization 327-41 

beams 331,332 

336-8 

beams 340 
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of columns, see Columns 
of plates, see Plates 
primary 153 
secondary 153 

approximate methods 565-8 
flutter, flutter speeds, see Flutter 
lumped mass concept 552 
normal modes 552 
oscillation of a mass/spring system 552-4 

Structural vibration 551-68 

flexibility method 553 
stiffness method 553 

system 554-7 
oscillation of a mass/weightless cantilever 

oscillation of a uniform beam 560-5 
Surface forces 7 
Symmetric manoeuvre loads, see 

Airworthiness 
Synclastic surface 125 

Tail unit components 225 
Tangent modulus 157, 159, 173 
Tapered beams, see Stress analysis of 

Temperature effects 107-9 
Tension field beams 188-97 

aircraft components 

complete diagonal tension 189-94 
diagonal tension factor 194 
effect of taper 196 
incomplete diagonal tension 194-6 
loading (buckling stress) ratio 195 

Titanium 217 
Torsion of a thin-walled rectangular section 

beam, see Structural constraint 
Torsion of closed section beams 307-16 

Bredt-Batho theory 307-9 
condition for zero warping 315, 316 
displacements 309-15 
Neuber beams 316 
shear flow distribution 307 
warping distribution 309-16 

aircraft components 

point of zero warping 320-2 
shear stress distribution 317 
subjected to constraint, see Structural 

constraint 
torsion constant 3 17 
warping 3 17-22 

primary 318 

Torsion of fuselages, see Stress analysis of 

Torsion of open section beams 316-22 

secondary 3 17,3 18 
Torsion of solid sections 51-65 

bar of elliptical cross-section 57-9 
contour lines 62, 63 
Laplacian operator 53 
membrane analogy 61-3 
narrow rectangular strip 63-5 
Prandtl stress function solution 51-9 
St. Venant warping function solution 59-61 
shear lines (lines of shear stress) 57 
stress concentrations 63 
torsion constant 56, 59, 61. 64 
torsional rigidity 56 
warping displacement 59, 64 
warping function 60 

Torsion of wings, see Stress analysis of 
aircraft components 

Total complementary energy 68, 76-100, 
108 
of a beam subjected to a temperature 

of an end loaded cantilever 81,82 
of a multi-redundant system 90 
of a pin-jointed framework 77-81 
of a propped cantilever 89, 90 
of ring frames 93-100 
of a statically indeterminate framework 

of a trussed beam 91-3 
of a uniformly loaded cantilever 82, 83 

Total potential energy 68, 71, 73-6, 144-9, 

gradient 107-9 

86-9 

165-9 
of a thin plate 147, 170 

Twist and warping of a closed section beam 
303, 304, 309-15 

Unit load method 68, 100-2, 342-4,404, 
405 
deflection of open and closed section 

deflection of multicell wings 404,405 
beams 342-4 

Vibrations, see Structural vibrations 
Virtual work 68, 71-3 

displacements 7 1, 72 
forces 72, 73 

Volumetric strain 26 

Wagner, theory for tension field beams 
188-96 
torsion bending theory 468-78 
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Warping 
bars of solid section 59,64 
condition for zero warping in a closed 

section beam 315, 316 
of a closed section beam 309-16 
of a rectangular section beam 453 
narrow rectangular strip 64,65 
warping of open section beams 317-22 

primary 318 
secondary 3 18 

zero warping axis 444 
Wing bending torsion flutter 569 
Wing components 223-5 

Wing ribs 223,225,229,230 
see also Stress analysis of aircraft 

components 
Wing torsional divergence 541-5 
Wings, analysis, see Stress analysis of 

Wire analogy for torsion bending constant 

Wrinkling in stiffened panels 177 

aircraft components 

472-4 

Young’s modulus 24 

Zero warping axis 444 
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contained course in aircraft structures. Starting with the structural 
mechanics of aircraft this book goes on to cover elasticity, aeroelasticity 
and airworthiness. 
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