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Preface
Officially, VLSI is the acronym of very large scale integration. When I was a

graduate student in the early 1980s, unofficially VLSI was the acronym for very
large salary income. When my teaching career began at Northeastern University,
Boston, Massachusetts, in the late 1980s, my students complained that VLSI was
very long student involvement.

Two decades have passed since Carver Mead and Lynn Conway published their
classic book Introduction to VLSI Systems. Many excellent books have been written
for the subject of VLSI design. I have used a number of them in my undergraduate
and graduate VLSI design courses. These books apparently have served the purpose
of introducing VLSI design techniques to my electrical/computer engineering
students. However, in this period of time, VLSI design has evolved from full-custom
layouts to IP (intellectual property) cores and SOC (silicon on a chip) designs. I have
been longing for a book that would provide a complete overview of the VLSI
technologies. This book was written to quench such a desire.

This book is written to provide a complete and congregated view of VLSI
engineering, which ranges from CMOS logic design to physical design automation to
fault tolerant array processors. It is my hope that this book can provide the reader
with the foundation to pursue answers to the important questions below:

• What is VLSI?
• How to VLSI?
• When to VLSI?
• What to VLSI?
Chapters 1 to 7 describe, from a digital circuit engineer’s view, the basic CMOS

design techniques. Physical pictures about CMOS circuits such as the benefits and
limitations of using simplified models are emphasized. Chapter 8 discusses the top-
down design process of two projects, a simple microprocessor and a field
programmable gate array (FPGA). These projects provide opportunities for students
to put together the knowledge that they have learned from this course as well as from
other computer engineering/science courses. They also provide an ideal platform to
explore the important tradeoffs and compromises facing VLSI designers every day.

Chapter 9 introduces the testing of VLSI circuits. This is followed by an
overview of the working principles of physical design automation tools in Chapter
10. CAD tools have become an indispensable part of VLSI design process. An
understanding of the strength and weakness of available CAD tools is an important
factor in creating high performance circuits.

The remaining chapters of the book build on the foundation laid by the first nine
chapters and concentrate on providing answers to the last two questions. The
message that VLSI is a tool to develop innovative algorithms and architectures to
solve problems that are previously intractable is conveyed. Chapter 11 presents
parallel processing in a more conventional view. The design and application of VLSI
array processors are discussed in Chapter 12 and Chapter 13.
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VLSI design is a subject that involves a broad range of knowledge. Every
chapter in this book can be expanded into a full-blown reference book on the subject
it discusses. Only then, it would not be able to conveniently serve the purpose of a
textbook. In order to maintain a depth while broadening its width, I have used
individual term projects to complement class discussion.

After reading Chapter 1, every student selects one topic in VLSI design to
perform an independent term project. For students who want to pursue a research
thesis in VLSI Engineering, they can use this opportunity to initiate their research
projects. Students can identify specific areas in VLSI to study and research along the
structured lectures. This teaching approach has served my students extremely well in
the last decade, regardless of their plans and goals (standard cell designers, ASIC
designers, system engineers, application engineers, CAD tool developers, academic
and industrial researchers, etc.).

I have suggested to my students the following steps in pursuing this individual
term project. First, perform a literature research. A number of VLSI related journals,
magazines, conference proceedings, and web-sites are listed at the end of Chapter 1.
In the second step, identify a term project topic. Three types of term projects have
been pursued. The first type is a design project. The design and verification of a
simple microprocessor have been chosen by some students (see Chapter 8). The
design can actually be started once Chapter 3 is covered so that it can be taped out to
MOSIS (a brokerage service for silicon foundries) before the end of the semester.

The second type of project involves the programming of CAD tools. Tools such
as placement and routing have been popular candidates for this type of project. The
third type of project is to study a few technical publications on a VLSI design topic
and write a literature research report.

The authoring of a book is a big project. This is especially true in my case after I
left my teaching position at Northeastern University to work for MIT Lincoln
Laboratory in the Summer of 1999. The understanding and encouragement of the
CRC Press staff have been indispensable to the completion of this book. I am
indebted to numerous VLSI experts in this field; their knowledge and techniques
have been drawn on heavily to form this book. I would also like to thank the
thousands of students who had taken my courses, especially those (about a hundred)
who have used its draft copy in doing so. Last, but not least, the strong support of my
wife, Cecily, and my son, Alex, is truly appreciated.

M. Michael Vai, Ph. D.
Lexington, Massachusetts

Summer, 2000
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Chapter 1 Introduction

The story begins …
Our story began in 1948 when William Shockley, John Bardeen, and Walter H.

Brattain of Bell Laboratories invented the transistor. Currently, a majority of
integrated circuits are built with a type of transistor called the metal-oxide-
semiconductor field-effect transistor (MOSFET).

An integrated circuit (IC) is a tiny semiconductor chip, on which a complex of
electronic components and their interconnections are fabricated with a set of pattern
defining masks.1 The technique of fabricating an IC with a set of masks is somewhat
analogous to that of creating a photograph with a negative. We describe a typical IC
fabrication process in Chapter 3.

The concept of fabricating multiple electronic devices and their interconnections
entirely on a small semiconductor chip was proposed shortly after the transistor was
invented. ICs began to become commercially available in the early 1960s. IC design
and fabrication technologies have been developed at a phenomenal rate since then.

The evolution of IC technology is measured by the number of components
integrated on a single chip. The IC industry has gone through the milestones of small
scale integration (SSI), medium scale integration (MSI), large scale integration (LSI),
and very large scale integration (VLSI).

 Fig. 1.1 shows the approximate number of transistors available on a single chip
in each of these periods.

Integration Scale Number of Components Examples
SSI < 10 transistors Logic gates
MSI 10 - 1,000 transistors Adders, counters
LSI 1,000 - 10,000 transistors Multipliers

VLSI > 10,000 transistors Microprocessors

Fig. 1.1  Integration scales.

In 1965, Gordon Moore (a cofounder of Intel) made an observation and
prediction on the development of semiconductor technology. His prediction is that
the effectiveness of semiconductor technology, as roughly measured by the maximum
number of transistors on a chip, approximately doubles every eighteen months. This
forecast, now commonly known as “Moore’s law,” has been accurate for the last four
decades. A depiction of Moore’s law is shown in Fig. 1.2. Note that the y-axis is

                                                          
1 Both terms “integrated circuit” and “chip” will be used interchangeably in this book.
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drawn in a logarithmic scale. The rapid advance of IC technology is evident from the
fact that the on-chip transistor count has increased one million times in three decades.
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Fig. 1.2  Moore’s law.

The exponential growth of IC technology is also evident in the smallest
manufacturable feature size (minimum line width), which has been reduced from
around 10 µm in the 1970s to less than 0.2 µm in 2000 and continues to decrease.
One micrometer (µm), also called a micron, equals 1 × 10-6 m and is commonly used
as the basic length unit in IC design. The use of an even smaller length unit, the
nanometer (nm), is getting increasingly popular. One µm equals 1000 nm. Physicists
predict that the lower bound of feature size is around 0.05 µm (50 nm) for the current
form of MOSFET ICs.

While Fig. 1.1 shows that any circuits with more than 10,000 transistors are
considered to be in the VLSI category, currently millions of transistors are routinely
integrated into a single chip. For example, the Intel Pentium III processor has 28
million transistors and is fabricated with a technology that provides a minimum
feature size of 0.18 µm. It operates at 700 MHz and performs 2000 million
instructions per second (MIPS).

The creation of a VLSI circuit involves a large number of activities such as logic
design, modeling, simulation, testing, and fabrication, each of which can in turn be
divided into many tasks. A broad spectrum of knowledge ranging from solid state
physics to logic circuit design is required to successfully carry out all these steps.
The rapid advancement of manufacturing capability has apparently enabled the
growth of integration density. However, without the methodology specifically
developed for the design of VLSI circuits, the potential of advanced manufacturing
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techniques would not have been realized. We will describe the VLSI design
methodology in the next section.

1.1 VLSI Design Methodology

The VLSI design methodology developed by Mead and Conway and others in
the late 1970s released the IC designers from the details of semiconductor
manufacturing, so they could concentrate their efforts on coping with the circuit
functionality.2 This design methodology, illustrated in Fig. 1.3 as an exchange of
information between the IC designers (design team) and semiconductor engineers
(silicon foundry), is largely responsible for the success of the IC industry in the last
two decades. The third participant of the IC industry is the computer-aided design
(CAD) tool providers who develop software tools to support design activities. Fig.
1.3 also shows that CAD tool providers often optimize their tools for specific
fabrication processes.

Silicon
foundry

IC
design
team

Design rules
Simulation models
and parameters
Mask layouts
Integrated circuits

CAD
tool

provider Software toolsProcess information

Fig. 1.3  Relationship between a silicon foundry,
an IC design team, and a CAD tool provider.

Fig. 1.3 shows that the design and fabrication of an IC are typically performed
by two separate teams with different expertise  a silicon foundry (an IC
manufacturer that provides fabrication services to clients) and an IC design team. A
silicon foundry develops and provides design rules compatible with its fabrication
technology to its clients. Design rules are a set of dimensional rules (e.g., minimum
line widths, minimum spacings, etc.) determined by considering the physical
limitations of a fabrication process. Furthermore, simulation models of the active and

                                                          
2 C. A. Mead and L. A. Conway, Introduction to VLSI Systems, Addison-Wesley, 1980.
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passive devices fabricated by a certain process are developed and made available to
the logic designers.

The IC designers use CAD tools to create mask layouts which represent how
components and connections should be formed on a semiconductor wafer. These
designs, after being simulated and verified, are delivered to the silicon foundry,
which produces ICs according to these mask layouts.

The chance of successfully fabricating a chip design that conforms to the design
rules is very high. However, the reader should realize that a successfully processed
chip is not necessarily equivalent to a functionally correct one. The principle of
“garbage in, garbage out” applies. The function and performance of a chip can be
predicted by simulation with reasonable accuracy.

The most important design principle emphasized in the VLSI design
methodology is to divide-and-conquer. Instead of dealing with an entire VLSI circuit
altogether at the same time, the designer partitions it into smaller and thus more
manageable parts. These parts may further be broken down into even smaller
building blocks. The partitioning of a VLSI system into increasingly smaller
subsystems so that they can be handled efficiently is called the hierarchical design
methodology. CAD tools have been developed to automate the steps in a hierarchical
design.

In this chapter, we provide a general overview of the VLSI design process. It is
the intention of the chapter to provide the reader with a qualitative understanding of
the steps involved in the VLSI design process. The details of these steps are
explained and discussed in later chapters.

1.2 VLSI Design  An Overview

The time will come when we want to discuss the process of designing
sophisticated VLSI systems. At this moment, we need a representative, yet relatively
simple circuit to demonstrate a typical design process. The design of an arithmetic
adder is selected here for this purpose. The reader should notice the similarities and
differences between the design of a VLSI chip and a printed circuit board system.

Technology
It is reasonable to assume that a design should begin by studying the

characteristics of available fabrication processes. This overview thus begins with an
introduction to the IC fabrication technology. However, as explained in the last
section, the modern IC design methodology separates the designers from the
semiconductor processing tasks so there is no urgent need to select a specific IC
fabrication technology at the initial phase of the design. A general knowledge of the
fabrication process is sufficient at this point.

The major materials that are used to build semiconductor devices and integrated
circuits include silicon (Si), germanium (Ge), and gallium arsenic (GaAs). Silicon is
by far the most popular material for VLSI fabrication. All signs indicate that, in the
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foreseeable future, silicon will continue to be the preferred semiconductor material of
IC manufacturers, especially those targeting the digital IC market.

Two types of silicon based device, the bipolar junction transistor (BJT) and the
metal-oxide-semiconductor field-effect transistor (MOSFET), have been used to
construct logic circuits. The complementary MOSFET (CMOS) technology, which
employs both n-channel and p-channel transistors to form logic circuits, has the
following advantages over the bipolar technology and dominates digital logic ICs:

• The nature of a CMOS circuit allows it to operate with low power and thus
a higher integration density is possible.

• A MOSFET occupies a smaller area than a BJT, which also leads to a
higher circuit density.

• A MOSFET has a very high input impedance and can be modeled as a
switch. This feature simplifies the design and analysis of CMOS logic
circuits.

• CMOS circuits have the largest logic swings and thus excellent noise
margins.

Chapter 2 will further discuss the design and analysis of CMOS logic circuits.
While the CMOS technology has a number of preferable features, logic circuits
based on BJTs, such as transistor-transistor logic (TTL) and emitter-coupled logic
(ECL), have the advantages of high speed and large current capability. Both BJTs
and MOSFETs can coexist in the same circuit. This technology, called the BiCMOS
technology, offers the high speed of BJTs and the low power advantage of CMOS
technology. A brief introduction to the BiCMOS technology is presented in Chapter
6.

The CMOS technology requires both n-channel and p-channel MOSFETs to
coexist on the same substrate. In order to do this, a portion of the substrate must be
converted to accommodate the transistors of the opposite type. The n-well CMOS
technology uses a p-type wafer as the substrate in which n-channel transistors can be
formed directly. P-channel transistors are formed in an n-well which is created by
converting a portion of the p-type wafer from being hole (p-type carrier) rich into
electron (n-type carrier) rich. Other possibilities include the p-well CMOS
technology and the twin-well CMOS technology. More details on these will be
presented in Chapter 3.

Two important properties of a selected CMOS technology are its minimum
manufacturable feature size and the number of available routing layers. Typically, the
minimum feature size of a CMOS technology determines the shortest transistor
channel length possible. For example, the shortest transistor channel length is about
0.25 µm in a 0.25 µm-CMOS technology. Generally speaking, a smaller feature size
implies faster transistors and a higher circuit density.

Another important property of a CMOS technology is the number of available
routing layers for component interconnections. Routing layers insulated from each
other by silicon dioxide (SiO2) allow a wire to cross over another line without
making undesired contacts. Connecting paths called vias can be formed between two
routing layers to make inter-layer connections as required. A typical CMOS process
has 3 to 7 layers available for the routing purpose.
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Behavioral (Functional) Design
The first step in designing a circuit is usually to specify a behavioral (functional)

representation of the circuit. This involves a description of how the circuit should
communicate with the outside world. Typical issues at this representation level
include the number of input-output (I/O) terminals and their relations. A well-defined
behavioral description of a circuit has a major benefit. It allows the designer to
optimize a design by choosing a circuit from a set of structurally different, yet
functionally identical ones that conform to the desired behavioral representation.

Let us use the adder design to contemplate the behavioral issues that the designer
has to resolve. One way to appreciate the behavioral representation problem is to
imagine the role of a VLSI designer who has received the assignment of designing,
say, a “fast, low-power adder.” The designer must develop specific technical
specifications of this adder. The reader should keep in mind that a VLSI design
process is highly iterative and none of the specifications initially selected for the
circuit is final until a satisfactory IC is produced.

The input operands of the adder can be 16-bit or 32-bit, unsigned or signed,
integer or fraction, fixed point or floating point numbers. Note that these variations
are just a few of many possibilities. The choice of a number system apparently has
significant effects on the design complexity and performance of the adder. For
example, adding two unsigned n-bit integers together produces an (n + 1)-bit sum
and this observation determines the width of the adder output. Alternatively, the sum
can be limited to be an n-bit integer. An “overflow” flag is raised if the result is too
large to be represented by n bits. There are apparently many other decisions to be
made but we will not get into the details here. A graphical behavioral representation
of our example adder is illustrated in Fig. 1.4. We choose to add two 32-bit unsigned
integers (a and b) to produce a 33-bit sum (s).

s <= a + b

a

b

s

32

32

33

Fig. 1.4  Graphical behavioral representation of an adder.

Instead of the graphical representation shown in Fig. 1.4, the adder can also be
represented by a hardware description language model. A hardware description
language is a programming language with a syntax specially designed to allow the
description of circuits. Currently, the most popular hardware description languages
are VHDL (Very high speed integrated circuit Hardware Description Language) and
Verilog.
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For example, in VHDL, the adder given in Fig. 1.4 may be described as

-- Interface
ENTITY adder IS
  PORT (a, b: IN unsigned(0 to 31);
    s: OUT unsigned(0 to 32));
END adder;

-- Behavioral representation
ARCHITECTURE behavioral OF adder IS
BEGIN
  s <= a + b;
END behavioral;

It is beyond the scope of this book to explain how to write VHDL models, but
the reader with some software programming knowledge should not have much
difficulty understanding the above code by considering the following key points.3
Any line that begins with “--” is a comment line. All VHDL keywords are
capitalized in the code examples. The line “s <= a + b;” specifies that the sum
of a and b is assigned (<=) to s. The above VHDL code consists of two parts. The
first part, consisting of the first five lines, is the “interface” defined for the adder. It
specifies that the adder has three ports. Ports a and b are 32-bit unsigned inputs and
port s is a 33-bit unsigned output. The second part describes the relationship
between the inputs and output of the adder, which simply states that output s is the
sum of inputs a and b.

Timing information can also be included in a behavioral model. For example, we
can specify that the delay of this adder is, say, 5 nanoseconds (ns). In the VHDL
code, an “after” clause may be added to the behavioral description line so that it
reads

s <= a + b AFTER 5 ns;

Structural (Architectural) Design
CAD tools typically allow a circuit to be represented at multiple abstraction

levels. Components described at different abstraction levels can be assembled
together to form a system. Such a system can be simulated with a mixed-level
simulator. The adder behavioral representation described above can therefore be
simulated, as a stand-alone unit or along with other units in the same system, to
verify its correctness. Simulation plays an important role in the design process to
ensure the correctness of the intermediate and final structural (architectural)
representations.

The ultimate target of a VLSI design process is to produce a set of physical
masks of the circuit so that it can be fabricated at the silicon foundry. Toward this

                                                          
3 See the end of this chapter for some excellent books on VHDL and Verilog.
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end, the behavioral representation of a circuit has to be converted to these masks by a
synthesis process. Both manual and computer-aided syntheses are possible. A
computer-aided synthesis process is conceptually similar to the compilation of a high
level programming language into machine code and thus is occasionally referred to
as silicon compilation.

We must now synthesize the architecture of the adder. The adder behavioral
representation did not specify how the function s <= a + b is to be implemented
in hardware. The first step in the synthesis process is thus to select an architecture (or
in a more abstract sense, an algorithm) to perform the addition. A number of
candidate architectures can be used to find the sum of two unsigned integer numbers.

For example, the sum can be formed with a ripple-carry addition structure, or for
a better speed, with a carry-look-ahead addition structure. Still more possible
addition structures exist. In either case, the structural representation of the adder is a
description of the building blocks needed to implement the selected structure.
According to the hierarchical design methodology, any building block can be built
out of other building blocks. This relation repeats until all building blocks are
manageable basic units.

In the rest of this overview, we assume that the ripple-carry addition structure
illustrated in Fig. 1.5, which consists of 32 1-bit full adders (FAs), is chosen. The
same information can also be conveyed with a hardware description language model
(see Problem 1.6).

FA

a(31)
b(31)

FA

a(30)
b(30)

FA

a(1)
b(1)

FA

a(0)
b(0)

'0'

s(32) s(31) s(30) s(1) s(0)

Fig. 1.5  Ripple-carry adder.
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Logic Design
Moving down the building block hierarchy, we now work on the 1-bit full adder.

We first present the behavioral representation of this building block.
Fig. 1.6 shows the input/output (I/O) interface of a 1-bit full adder. The full

adder sums up three input bits (a, b, and cin) and produces a sum bit (s) and a carry-
out bit (cout).

Sum
module

Carry
module

s

cout

a
b
cin 

Fig. 1.6  I/O interface of a 1-bit full adder.

There are a variety of ways to describe the behavioral model of this full adder.
For example, we can represent the sum function as the Boolean equation:

ins a b c= ⊕ ⊕ (1.1)

Alternatively, we may want to represent the carry function as the following truth
table:

a b cin cout

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

The behavioral and structural representation of the full adder can also be
described in VHDL as follows.

-- Interface of a full adder (Part 1)
ENTITY full_adder IS
  PORT (a, b, cin: IN BIT; s, cout: OUT BIT);
END full_adder;

-- Behavioral representation of a full adder (Part 2)
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ARCHITECTURE behavioral OF full_adder IS
-- carry() and sum()
  FUNCTION carry(a, b, cin: BIT) RETURN BIT IS
    BEGIN
      RETURN (a AND b) OR (b AND cin) OR (a AND cin);
    END carry;
  FUNCTION sum(a, b, cin: BIT) RETURN BIT IS
    BEGIN
      RETURN a XOR b XOR cin;
    END sum;
-- Relationship between the outputs and inputs
-- with propagation delay information
BEGIN
  s <= sum(a, b, cin) AFTER 1 ns;
  cout <= carry(a, b, cin) AFTER 0.8 ns;
END behavioral;

-- Structural representation of a full adder (Part 3)
ARCHITECTURE structural OF full_adder IS
-- Component list
COMPONENT xor_cell
  PORT (a, b: IN BIT; z: OUT BIT);
END COMPONENT;
COMPONENT or_cell
  PORT (a, b: IN BIT; z: OUT BIT);
END COMPONENT;
COMPONENT and_cell
  PORT (a, b: IN BIT; z: OUT BIT);
END COMPONENT;

-- Sources of components
FOR ALL:xor_cell USE ENTITY WORK.lib_xor(structural);
FOR ALL:or_cell USE ENTITY WORK.lib_or(structural);
FOR ALL:and_cell USE ENTITY WORK.lib_and(structural);

-- Internal wires
SIGNAL wire1, wire2, wire3, wire4, wire5: BIT;

-- Connections
BEGIN
  a1: xor_cell PORT MAP(a, b, wire1);
  a2: xor_cell PORT MAP(wire1, cin, s);
  a3: and_cell PORT MAP(a, b, wire2);
  a4: and_cell PORT MAP(a, cin, wire3);
  a5: and_cell PORT MAP(b, cin, wire4);
  a6: or_cell PORT MAP(wire2, wire3, wire5);
  a7: or_cell PORT MAP(wire4, wire5, cout);
END structural
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Part 1 of the above VHDL code defines the interface of a 1-bit full adder which
has 3 input bits (a, b, and cin) and 2 output bits (s and cout). Part 2 is a
behavioral representation showing the logical relationships between the input and
output bits. Note the definitions of functions carry()and sum()as well as the use
of function calls along with propagation delays.

Part 3 is a structural representation of the 1-bit full adder. It begins with a list of
components (building blocks) (xor_cell, and_cell, and or_cell) and
continues to specify the sources of these components (WORK.lib_xor,
WORK.lib_and, and WORK.lib_or). A number of internal signal wires are
defined, which is followed by a description of how the building block instances are
connected. For example, the statement

a2: xor_cell PORT MAP (wire1, cin, s);

prescribes the use of a building block xor_cell with its ports a, b, and z
connected to signals wire1, cin, and s, respectively. The reader is encouraged to
convert the above structural representation into a logic gate schematic diagram (see
Problem 1.5).

Physical Design
The physical design step is concerned with the creation of mask layouts. A set of

mask layouts for a building block or even a complete IC can be manually
implemented. This approach, called a full-custom design, creates a layout of
geometrical entities indicating the transistor dimensions, locations, and their
connections.

Computer-aided-design (CAD) tools have been developed to facilitate the design
of full-custom ICs. For example, a design rule checker can be used to verify that a
layout conforms to the design rules, and a routing tool can be employed to perform
the wiring of the transistors.

The advantage of a full-custom design is that it allows the designer to fully
control the circuit layout so that it can be optimized. However, these benefits only
come at the cost of a very high design complexity. The full-custom design approach
is thus usually reserved for small circuits such as the library cells to be described
below, and the performance-critical part of a larger circuit. In some cases when a
circuit such as a microprocessor is to be mass-produced, it may be worth the many
man-months necessary to lay out a chip with a full-custom approach to achieve
optimized results.

With millions of transistors involved, it is extremely difficult to manually lay out
the entire chip. Another approach to converting a circuit into a physical layout uses a
library of basic logic circuits, called standard-cells, in the process. This is not unlike
the design of a printed circuit board system using components from standard logic
families.

Standard-cell libraries are commercially available for specific fabrication
processes. Sources of cell libraries are silicon foundries and independent design
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houses. A library usually contains basic logic gates (e.g., inverter, NAND, NOR,
etc.), which can be assembled by the designer to form desired functions, and pre-
designed, ready to use functional blocks (e.g., full-adder, register, etc.). According to
the standard-cell approach, the behavioral representation of a design is synthesized
into a structural representation that consists of only standard-cells available in the
library. A layout is then created by arranging and interconnecting the standard-cells
required in the design.

Compared to the full-custom approach, the complexity of designing a circuit is
greatly reduced in the standard-cell approach since the designer can view the
standard-cells as “black-box” components. For example, consider a cell designed in
the standard-cell style, of which the physical design is shown in Fig. 1.7a.4 The
designer only needs the cell dimensions (height and width) and the locations of the
signal and power lines to use it in a physical design process. The designer’s view of
the cell in Fig. 1.7a is shown in Fig. 1.7b. This view hides all the transistors and
shows only the input/output signal lines (A, B, C, D, and F) and the power lines (VDD
and VSS). This cell is designed to allow all signal connections to be made at both the
top and bottom edges of the cell. The power lines are accessible on both sides of the
cell. Please note that standard-cells also allow signal connections to be placed
internal of the cell. We will further discuss these design styles in Chapter 3.

Standard-cells in a library are typically designed to have an identical height,
which is called a standard height. In contrast, the widths of standard-cells are
determined by their functions. A more complicated standard-cell needs a larger area
so its width is longer than that of a less complicated one. The identical heights of
standard-cells allow them to be conveniently arranged in a row when a physical
layout is created, as shown in Fig. 1.8.

The connections to a standard-cell may also be standardized. We have shown an
example of standardized connections in Fig. 1.7b. In this case, the power lines (VDD
and VSS) of a standard-cell run horizontally on the top and the bottom of the cell,
respectively. With this property, all the standard-cells in a row have their power lines
abutted and connected.

If the signal wires (e.g., I/O, clock, etc.) of a standard-cell are brought from the
interior of the cell to its top and/or bottom edges, the interconnections between
standard-cells can also be made at predetermined locations, called pins, along the top
and bottom edges of a standard-cell.5 This property allows the interconnections
between standard-cells to be made readily at their cell boundaries since the location
of a signal wire can be determined by simply specifying its pin number.

                                                          
4 We discuss the details of creating physical designs in Chapter 3.
5 Not to be confused with the pins on an IC package.
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+ VDD
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+ F+ D+ C+ B+ A
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A B C D F
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Fig. 1.7   (a) Physical design; (b) Designer’s view of a standard cell.

Cell 1 Cell 2 Cell 3 Cell 4Height 

Fig. 1.8  Arrangement of standard-cells in a row.

For example, the standard-cell in Fig. 1.7b has enough width to hold twelve pin
positions, six at the top and six at the bottom. Only ten of these pin positions are
used. The two leftmost pin positions, one at the top and one at the bottom, are not in
use. Another example of pin arrangement at the boundary of a standard-cell is shown
in Fig. 1.9. Out of the eight positions available at the top of the cell, only pins 1, 4,
and 8 are connected to the internal structure of the cell. Also, note that only pins 2, 4,
and 7 are used at the bottom of the cell.
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VDD

GND

1 3 6 7Pin No.
(Top)

2 4 5

Pin No.
(Bottom)

8

1 3 6 72 4 5 8

Fig. 1.9  Pin numbers in a standard-cell.

The building blocks of a circuit have to be arranged on the available chip area
with all the associated signals connected. At this point, the circuit is represented by a
netlist  a list of interconnections (i.e., nets) that must be connected. Fig. 1.10
shows a circuit diagram along with its netlist.

a
b
cin

s

(a, XOR[1].IN1)
(b, XOR[1].IN2)
(XOR[1].OUT, XOR[2].IN1)
(cin, XOR[2].IN2)
(s, XOR[2].OUT)
(XOR[1].Vdd, XOR[2].Vdd)
(XOR[1].GND, XOR[2].GND)

Fig. 1.10  Logic diagram of a circuit and its netlist.

The task of arranging the building blocks on the layout, called the floorplanning
or placement process, attempts to determine the best location for each building block.
The term floorplanning is reserved to describe the task of a rough placement, in
which the exact shapes of the building blocks are still being determined. The criteria
for judging a placement result include the overall area of the circuit and the estimated
interconnection lengths (which determine propagation delays). The routing process
takes the result of a placement and automatically completes the interconnections. We
describe placement and routing processes in Chapter 10.

The computational complexity of the placement and routing process goes up
exponentially as the problem size (e.g., the number of building blocks) increases.
The placement and routing problems, as well as many other VLSI design problems,
belong to the class of combinatorial optimization problems. In a combinatorial
optimization problem, the only way one could identify the truly optimal solution
would be to try out all possible solutions  in general, an impossible task. Designers
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typically settle for pseudo-optimization by acquiring sufficiently good results within
a limitation set by the available time and effort.

The standard-cell layout style allows the placement and routing of a circuit to be
highly simplified. Fig. 1.11 shows an example of placement and routing of a
standard-cell circuit. It has been noted above that since all cells have the same height,
the placement tool readily places them in rows. All the cells in the same row have
their power lines automatically connected.

The space reserved between two rows of cells, called a channel, is used for the
routing purpose. There are many CAD algorithms, called channel routers, developed
to perform routing in a channel. Some of them will be described in Chapter 10.

The height of a routing channel is adjustable by varying the separation distance
between two rows of cells. The availability of at least two routing layers (with
insulation between them) allows unrelated interconnections to cross within the
channel. In the illustration of Fig. 1.11, each interconnection running in the channel
consists of vertical and horizontal segments. All horizontal segments run in one metal
layer and all vertical segments run in another metal layer. Vias are provided to
connect them together.

If there is a need to route a signal from one channel to another, a special
feedthrough cell, which provides a conducting path from its top edge to its bottom
edge, can be used. The use of a feedthrough cell is demonstrated in Fig. 1.11.

VDD VSS

Standard cells

Standard cells

Routing
channel
Feedthrough
cell

Vias
Metal 1
Metal 2

Power rails

To bonding
pads

Fig. 1.11  Placement and routing of standard-cells.

Fig. 1.11 also shows the distribution of power in a standard-cell layout. Two
main power rails (VDD and VSS) run vertically on opposite sides of the cell rows. They
connect the power lines of the standard-cell rows to an external power supply.

If a fabrication technology provides more than two routing layers, a number of
them can be reserved exclusively for the interconnections between cells. This allows
a large amount of or all inter-cell connections to be routed above the cells to form
over-the-cell routing. The pure routing area (channels and feedthroughs), which does
not contribute to the circuit density, can thus be minimized.
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The benefits of a standard-cell design come from the restrictions imposed on the
building blocks. The standard height requirement has limited the functions available
in a standard-cell library since the implementation of a complex function could
require a very wide cell. The use of very wide cells is inefficient in the placement
process. Another limitation of standard cells is in their performance since they were
designed to meet the requirements of a range of applications.

When it is desired to use a building block with a more complex functionality,
one can create a macro-cell (custom cell) that has no dimensional restriction posed
on its height and width. With the requirement of having a fixed height removed, the
design of a macro-cell is more flexible so a more complicated functionality is
possible. Registers, register files, arithmetic-logic units, multipliers, random-access
memories, read-only memories, among others, are candidates for macro-cells. While
it seems natural to design macro-cells with the full-custom approach for optimal
results, standard-cells can also be assembled into macro-cells.

The physical layout of a circuit using macro-cells is similar to that of standard-
cells except the building blocks can no longer be efficiently placed in rows. This
results in a more complicated placement and routing procedure.  Fig. 1.12 shows a
macro-cell based floorplan. After placement, the space between the building blocks
is  partitioned into rectangular regions called switchboxes. The routing of macro-
cells is carried out in two steps. The first step, called global routing, determines
approximately how the nets should be connected through the switchboxes. This is
followed by a detailed routing step, called switchbox routing, which operates
similarly to channel routing except pins are located on all four sides of a switchbox.
Fig. 1.13 shows an example of switchbox routing. Similarly, if certain routing layers
are reserved for inter-cell connections, many of them can be routed above the macro-
cells to reduce the pure routing areas.

Macro-cells

Switchboxes

Cell 1 Cell 2

Cell 3 Cell 4

Cell 5

Fig. 1.12  Floorplan of a layout using macro-cells.
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pins

Fig. 1.13  Switchbox routing example.

Bringing the macro-cell concept one step ahead, more complicated building
blocks such as microprocessors, digital signal processors, memory modules, etc. can
be integrated on the same chip. These building blocks are called intellectual property
cores (IP cores), which can be optimized, verified, and documented to allow efficient
reuses. IP cores can exist in different formats. A hard IP core is the mask information
of the circuit, custom built, optimized, and verified for a specific application. A soft
IP core is the behavioral description (e.g., VHDL) of a circuit, which can be
parameterized and synthesized for different technologies. A hard IP core usually
provides a better performance than a soft IP core but the latter is more flexible. A
middle ground between hard IP core and soft IP core can be taken to produce firm IP
cores. The firm IP core approach provides a register transfer level (RTL) description
of a circuit, which specifies the operations to be performed on operands stored in
registers. A design created using IP cores is called a system-on-a-chip (SOC) design,
which has the advantage of a shorter design time by allowing previous designs to be
reused.

 Simulation
A chip design must be simulated many times at different levels of abstraction to

ensure its correctness before it is ready for fabrication. The objective of simulation is
to verify the functionality of a circuit and to predict its performance. As a circuit can
be represented at different levels, circuit simulation can also be done at multiple
levels ranging from transistor level to behavioral level. The transistor level
simulation provides the most accurate result. However, the accuracy is only obtained
at the cost of a more time consuming simulation.

For small circuits, transistor level simulation can be used and the basic elements
in such a simulation are transistors, resistors, capacitors, and inductors (included only
for analog circuits). This level of simulation gives the most accurate result at the cost
of long simulation times.

Alternatively, transistors can be modeled as switches with propagation delays in
a switch level simulation. This level significantly reduces the simulation time and
frequently yields acceptable results.

If there is no need to determine the internal condition of a building block, it can
be modeled at the behavioral level. Mixed level simulation, in which different parts
of a system are represented differently, is commonly used to analyze a complex
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system. The critical parts of the system can be modeled at transistor or switch level
while the rest of the circuit can be modeled at behavioral level.

Fabrication
When the layout of a circuit is complete, it is sent to a silicon foundry for

fabrication. The details of silicon processing are described in Chapter 3. Fig. 1.14
illustrates a highly simplified IC fabrication process. The layout of a circuit
submitted for fabrication is replicated in an array on a set of masks. Each mask is
used in a photolithographic processing step to delineate a transistor feature or an
interconnection feature on the wafer. This photolithographic processing step is
repeated with different masks until all transistors and their connections are formed.
The finished wafer is tested, sawed into individual chips, and packaged.

The fabrication process described above may be prohibitively expensive, both in
terms of fabrication cost and time, for circuits which are unlikely to be manufactured
in large quantities. Many VLSI designs are in the category of application-specific
integrated circuits (ASICs). An ASIC is a circuit which performs a specific function
in a particular application. In the ASIC market, it is important to reduce the
manufacturing cost and the time to market. Special architectures have been created
for these ASIC designs.

Mask

Wafer

Photolithographic processing

Finished
wafer Die

Packaged IC

Chip Layout

Fig. 1.14  Simplified fabrication process of an integrated circuit.

One of these architectures is the mask-programmed gate-array (or simply gate-
array), which consists of an array of unconnected gate cells prefabricated on a chip.
Fig. 1.15 shows the floorplan of a gate array. The ring of bonding pads at the chip
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boundary is provided for package connections, of which the discussion is coming up
shortly. The example of a gate cell is shown in Fig. 1.16. In forming an ASIC, one
can personalize a gate array by adding appropriate metal interconnections to it. For
example, Fig. 1.17 shows the customization of a gate cell into a two-input NAND
gate.

Bonding
pad

Routing
channel

Gate cell

Fig. 1.15  Floorplan of an MPGA.

nMOS
transistors

pMOS
transistors

VDDVSS

Fig. 1.16  Example of a gate cell in a gate array.

Metal interconnections added

Fig. 1.17  Customization of a gate-cell.
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Since all layers other than the metal layers in a gate-array are prefabricated, the
turn-around time, defined as the time elapsed between the submission of a design and
the receipt of chips, is reduced. The cost of a gate-array is also lower than that of a
full-custom chip since gate-arrays can be mass produced and used in many different
designs. Only a small number of processing steps are involved in a personalization.
Another non-trivial advantage of gate-arrays is that they are often manufactured with
the most advanced technology (see Problem 1.12). However, designs using gate-
arrays are more restrictive than full-custom designs since all transistors are of fixed
sizes.

In 1985, Xilinx introduced a gate-array structure that is programmable by the
end users. To distinguish its product from those requiring foundry personalization,
Xilinx called its product Field Programmable Gate-Array (FPGA). Different
companies such as Actel, Altera, etc. have also developed their versions of the
FPGA. Fig. 1.18 shows the floorplan of a typical FPGA. Each configurable logic
block can be programmed by the user to implement any logic function of its inputs. A
register is included in the configurable logic block to facilitate the implementation of
sequential logic. The I/O blocks can be configured into an input terminal, an output
terminal, or a bi-directional terminal. The routing between I/O blocks and logic
blocks, as well as among the logic blocks themselves, is provided by the configurable
interconnects which run in the routing channels between logic blocks. An FPGA is
configured by downloading configuration bits that describe and program logic
functions and interconnections.

Configurable
logic block

Configurable
interconnect

Configurable I/O blocks and bonding pads

Fig. 1.18  Floorplan of a typical FPGA.

Packaging
One important area in IC manufacturing is packaging. Connections (e.g., power,

signals, etc.) between the circuit and the outside world must be provided. Fig. 1.19
illustrates that a chip consists of the circuit design itself and a ring of bonding pads,
called a pad-frame. The signal and power connections of the circuit are connected to
the bonding pads. The size of a bonding pad is typically 100 × 100 µm2. This
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relatively large size is necessary to accommodate the operating tolerances of
automatic bonding equipment. A signal buffer and a protection circuit are provided
for each connection between a bonding pad and the circuit. The protection circuit
protects the circuit against potential damages (e.g., static electricity).

Bonding
pads

Chip

Circuit

Fig. 1.19  Chip layout including a circuit and a ring of bonding pads (pad frame).

Fig. 1.20 shows the use of bonding wires to connect bonding pads to the pins of
an IC package after the chip is mounted inside. In order to fully utilize the processing
power of a chip, enough I/O pins must be provided. The package shown in Fig. 1.20
is called a dual-in-line package, which has a severe limitation on the number of pins
available. VLSI chips require other packages that can provide more pins.

Chip

Pin

Bonding
wire

Pad

PackageConductor

Fig. 1.20  Chip mounted in an IC package.

Fig. 1.21 shows a pin grid array (PGA) package, which arranges pins at the
bottom of the package and can provide 400 or more pins. A more advanced package
called a ball grid array (BGA) package has a similar array but has replaced the pins
with solder bumps (balls). Another important issue with packaging is its capability of
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heat dissipation. Manufacturer’s specifications should be carefully evaluated before a
package is selected.

Pin

Fig. 1.21  Bottom view of a pin grid array (PGA) package.

Testing
Manufactured chips normally have to go through at least two tests before

acceptance. There are two principal causes of failure, design errors and
manufacturing defects. A wafer test is applied to visually check, identify, and mark
faulty chips. The wafer is then sawed into individual circuit chips and the marked
faulty chips are discarded. Each good chip is mounted on a supporting base of an IC
package. Wires are used to connect the bonding pads on the chip and the pins on the
package.

The packaged ICs then undergo a functional test to separate acceptable parts
from failed ones. In the fabrication of a prototype, analysis must be performed to
determine the causes of detected failures. After design errors have been identified
and eliminated, the chip goes into production. During IC production, a certain
number of chips can be expected to fail the acceptance test and be discarded along
the way. The percentage of acceptable parts obtained from a wafer is called the yield.
If the yield drops below an acceptable level (e.g., 90%), the wafer processing steps
should be investigated to improve the manufacturing quality.

The functional test of a circuit requires its internal nodes to be accessible so that
test signals can be injected (controllability), and responses at the internal nodes can
be monitored (observability). Unlike a printed circuit board, an integrated circuit has
a very limited degree of controllability and observability. Accordingly, VLSI design
methodology must embody the important concept of design-for-testability (DFT).
Instead of considering the testing of a VLSI circuit as a step isolated from the rest of
the design process, the need for testing has to be taken into account throughout the
design process. Special approaches have been developed to improve the testability of
circuits. For example, registers can be placed at critical testing points so that they can
be cascaded into a scanning shift register to permit the control and observation of
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internal signals. An approach called boundary scan, which builds circuitry into an
integrated circuit to assist in the test, maintenance, and support of assembled printed
circuit boards, has been developed into IEEE standard 1149.1.6

Another problem facing designers is the complexity of testing. Consider the
testing of a combinational logic circuit. If this circuit has n inputs, there are 2n

possible input combinations. A straightforward testing approach is to apply each of
these input combinations (test vectors) in sequence to check out the circuit. This
testing approach, called exhaustive testing, is only possible for very small circuits.
The problem is further complicated if a sequential circuit is to be tested. The outputs
of a sequential circuit are functions of not only its current inputs, but also its history
of operations. The objective of a test scheme development for a circuit is to identify
the smallest set of test vectors necessary to verify the circuit functions. Testing of
VLSI circuits, which has been a major research topic in the field of VLSI
engineering, will be discussed in Chapter 9.

1.3 Summary

In this chapter the typical design steps for producing a VLSI circuit have been
presented. Fig. 1.22 summarizes these steps in a flow chart. Two design flows are
evident in the chart. The top-down design flow takes an abstract, behavioral
representation of the design target and synthesizes it into a structural representation
which consists of a set of building blocks and their interconnections. A behavioral
representation generally has a number of different, yet functionally equivalent
implementations. Mixed level simulation can be used to verify and evaluate different
implementations.

The second half of the design process, which is a bottom-up design flow, takes
the structural representation and transforms it into a physical layout. A full-custom
design uses hand-crafted layouts to maximize the performance, but its complexity
restricts its use to small circuits and to performance critical portions of a larger
system. A standard-cell design takes advantage of a pre-designed, universal standard-
cell library to reduce design complexity. A number of features, such as the identical
heights of the cells in a library and the standardized I/O and power rail locations,
allow efficient placement and routing tools to be developed.

                                                          
6 IEEE: Institute of Electrical and Electronics Engineers (http://www.ieee.org).

http://www.ieee.org
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Fig. 1.22  VLSI circuit design flow.

Instead of fabricating a circuit from scratch, the mask-programmed gate array
provides quick turn around time by prefabricating an array of unconnected transistors
on a wafer. It is then personalized by adding the metal interconnections according to
the specific implementation. The field programmable gate-array (FPGA) goes even
further by providing a fully packaged device that is user programmable for
application specific integrated circuits (ASICs).

Testing has a very important role in the VLSI design process. Due to the limited
controllability and observability of VLSI circuits, testability has to be emphasized
throughout the design process instead of being treated as an afterthought.

1.4 To Probe Further

An overview of many VLSI design issues has been introduced in this chapter.
While many of these subjects will be discussed further in later chapters, it is
impossible for a book of this size to give an in-depth coverage to every one of them.
Furthermore, the VLSI design methodology and IC fabrication technology advance
rapidly. We have thus provided at the end of each chapter a list of resources to probe
further on the subjects discussed in that chapter.7

                                                          
7 Reasonable effort has been used to verify the web sites listed in this book. However, please note

that the availability of a web site and its contents are beyond our control. The inclusion of a commercial
web site does not represent any form of endorsement from the author or the publisher. All product names
mentioned are the trademarks of their respective owners.
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International Technology Roadmap for Semiconductors:
• A lot of information about developments in semiconductor technologies can be

found in the web site: http://www.itrs.net/ntrs/publntrs.nsf

Moore’s Law:
• R. R. Schaller, “Moore’s Law: past, present, and future,” IEEE Spectrum, June

1997, pp. 53-59.

VHDL:
• J. Bhasker, A VHDL Primer, 3rd Edition., Prentice-Hall, 1999.

• J. R. Armstrong, Chip-Level Modeling With VHDL, Prentice-Hall, 1989.

Verilog:
• D. E. Thomas, and P. Moorby, The Verilog Hardware Description Language,

Kluwer Academic Publishers, 1991.

FPGAs:
• S. M. Trimberger, ed., Field-Programmable Gate Array Technology, Kluwer

Academic Publishers, 1994.

• http://www.xilinx.com

• http://www.altera.com

• http://www.actel.com

Microprocessors/Digital Signal Processors:
• http://www.intel.com

• http://www.motorola.com

• http://www.ti.com

Silicon Foundries:
• http://www.mosis.org

• http://www.tsmc.com

• http://www.umc.com

http://www.itrs.net/ntrs/publntrs.nsf
http://www.xilinx.com
http://www.altera.com
http://www.actel.com
http://www.intel.com
http://www.motorola.com
http://www.ti.com
http://www.mosis.org
http://www.tsmc.com
http://www.umc.com
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IP Cores/SOC:
• http://www.design-reuse.com

• H. Chang et al., Surviving the SOC Revolution: A Guide to Platform-Based
Design, Kluwer Academic Publishers, 1999.

• L. M. Silveira, S. Devadas, and R. Reis, Ed., VLSI: Systems on a Chip, IFIP
TC10 WG10.5 Tenth International Conference on Very Large Scale Integration
(VLSI’99), December 1-4, 1999, Lisboa, Portugal, Kluwer Academic
Publishers, 1999

CAD Tools:
• http://www.mentor.com

• http://www.cadence.com

• http://www.synopsys.com

• http://www.avanticorp.com

Journals, Magazines, and Proceedings:
• http://www.ieee.org

• http://www.acm.org

• ACM/IEEE Design Automation Conference, Proceedings (http://www.dac.com)

• Advanced Research in VLSI, Proceedings

• Great Lakes Symposium on VLSI, Proceedings

• IEEE Circuits and Devices Magazine

• IEEE Custom Integrated Circuits Conference, Proceedings

• IEEE Design &  Test of Computers

• IEEE International Conference on Computer-Aided Design, Digest of Technical
Papers (www.iccad.com)

• IEEE International Symposium on Circuits and Systems, Proceedings

• IEEE Journal of Solid-State Circuits

• IEEE Spectrum

• IEEE Transactions on Circuits and Systems

http://www.design-reuse.com
http://www.mentor.com
http://www.cadence.com
http://www.synopsys.com
http://www.avanticorp.com
http://www.ieee.org
http://www.acm.org
http://www.dac.com
http://www.iccad.com)
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• IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems

• IEEE Transactions on Very Large Scale Integration (VLSI) Systems

• International Conference on Computer Design, Proceedings

• International Test Conference, Proceedings

1.5 Problems

1.1 According to Moore’s law, what would be the potential capacity of a memory
chip in 2005 if the most advanced technology in 2000 produces 1 giga-bits per
memory chip?

1.2 Many researchers currently predict that “the lower bound of feature size is
around 0.05 µm for the current form of MOSFET ICs.” Research and find out
the problems a fabrication process would have to cope with at that feature
size.

1.3 Research and explain why BJT-based logic circuits have higher speed and
larger current capability than MOSFET-based counterparts.

1.4 Based on the information provided in this chapter and your personal
experience, describe the similarities and differences between designing an
integrated circuit and a printed circuit board.

1.5 Draw a gate level schematic diagram of the 1-bit full adder implementation
described by the VHDL structural representation listed in page 10.

1.6 Write a pseudo VHDL structural representation for a 4-bit ripple-carry adder.

1.7 The Boolean equations of a 1-bit full adder are given below:

iiii ABCCBACBACBAS +++= ; C AB BC ACo i i= + + .
Design a 1-bit full adder using each of the following approaches:
• An implementation using only 2-input NAND gates.
• An implementation using only 2-input NOR-gates.
• A read only memory (ROM) based implementation.
• A multiplexer based implementation.
Give schematic diagrams of these designs at appropriate levels. Which one
would be your choice of implementation for the 32-bit ripple carry adder
described in this chapter? Justify your selection by considering the following
evaluation criteria:
• Design complexity.
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• Cost of fabrication (PC board, chips, sockets, etc.).
• Circuit performance (power, speed, size, reliability, etc.).

1.8 You have just started to work as a VLSI designer. Your first assignment is to
implement a multiplication unit. Develop specifications for this multiplication
unit.

1.9 Create a flow chart to illustrate the steps involved in the design process of the
multiplication unit in Problem 1.8. Show any iterations (loops) in your flow
chart explicitly.

1.10 A microprocessor has a 32-bit program counter and sixteen 32-bit general
registers. What is the minimum number of different states this microprocessor
has? Using a tester that is capable of making 200 million tests a second, how
long will it take to check out all these states?

1.11 This problem refers to the “finished wafer” shown in Fig. 1.14. Assuming all
complete chips are good circuits, what is the yield of this process? Notice that
your result is the upper bound of yield.

1.12 Give a reason why gate-array and FPGA designers often have access to
advanced fabrication technologies earlier than full-custom designers.

1.13 Determine the number of different ways to place 5 building blocks (e.g., logic
gates) of identical shapes and sizes into 5 slots (each slot can hold at most one
building block) on a chip. Repeat for a chip of 10 building blocks and 10 slots.
Plot the number of possible placement arrangements as a function of n, the
number of building blocks.
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Chapter 2 CMOS Logic Circuits

Logic circuits with a touch of CMOS …
CMOS logic circuits are made of n-channel and p-channel MOSFETs. Unlike

their bipolar transistor based counterparts (e.g., emitter-coupled logic circuits),
CMOS logic circuits can be built exclusively with transistors and do not require the
use of resistors and diodes. A MOSFET has a very high resistance when it is turned
off. This unique property allows the designer to use highly simplified MOSFET
switch models in the design and analysis of CMOS logic circuits.

Sophisticated MOSFET models have been developed for and used in computer-
aided circuit simulators to accurately simulate MOSFET circuits. We will see in
Chapter 4 that such elaborate MOSFET models are indispensable in the
determination of logic circuit transient behaviors. The “drawback” of these models,
however, is that their usage involves a large amount of complicated computation.

For example, the MOSFET model employed in the popular circuit simulator
SPICE has more than 40 parameters.1 We introduce a SPICE model for a MOSFET
in Chapter 4. The readers who have experience with SPICE can testify that the
analysis of a circuit consisting of just a few hundred transistors can be a very time
consuming process. A simplified and efficient modeling approach is definitely
needed to tackle VLSI design problems involving the simulation of millions of
transistors.

Initially, we model a MOSFET as a simple digital-signal-controlled switch. We
then demonstrate the use of this simple switch model in the design and analysis of
CMOS logic functions. This switch model will be enhanced in Chapter 4 by
incorporating with it some non-idealistic MOSFET behaviors. The enhanced model
can be used to estimate the propagation delay and power dissipation of CMOS
circuits.

2.1 nMOS Switch Model

Fig. 2.1 shows the physical structure of an n-channel MOSFET, hereinafter
referred to as an nMOS transistor, along with its circuit symbol. The nMOS transistor
is fabricated on a p-type substrate. Two heavily doped n+ regions are created in the
substrate to form a source (S) and a drain (D). The structure of a MOSFET is
symmetrical so the source and drain of an nMOS transistor are interchangeable with
no changes in device characteristics. However, for the sake of circuit analysis, one of

                                                          
1 SPICE (Simulation Program with Integrated Circuit Emphasis) was originally developed by the

Integrated Circuits Group of the Electronics Research Laboratory and the Department of Electrical
Engineering and Computer Sciences at the University of California, Berkeley, California. SPICE has
since become the synonym of computer-aided circuit analysis.
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the n+ regions, usually the one at a potential higher than another, is labeled as the
drain.

G

D

S

B
n+ n+

L
p-type Substrate

W
Oxide (SiO2)

Substrate
Body (B)

Source (S)

Gate (G) Drain (D)

Fig. 2.1  Physical structure and circuit symbol of an nMOS transistor.

As shown in Fig. 2.1, a polysilicon gate (G) sits on top of a channel area (the
area between the two n+ regions) with a thin (on the order of 10-2 µm) layer of
insulating silicon dioxide (SiO2) sandwiched in between.2 Historically, the gate was
made of metal. The name metal-oxide-semiconductor (MOS) reflects the structure
consisting of metal (gate), oxide (silicon dioxide), and semiconductor (silicon).
Currently the gate is no longer made of metal but the name MOSFET has survived.

From the viewpoint of VLSI designers, an nMOS transistor is characterized by
its channel length (L) and width (W) defined by the dimensions of its gate (see Fig.
2.1). Since the switching speed of a transistor is inversely proportional to its channel
length, it is usually desirable to keep the channel length L as short as possible. In
most cases, the channel length L is set at the minimum feature size of the fabrication
process  the width of the narrowest wire that the process can produce. The most
advanced fabrication process in 2000 can produce a feature size of about 0.15 µm.

The relationship between the channel width and the transistor characteristic is
more complicated. We will get back to this subject in Chapter 4. It is sufficient to
understand for now that the channel width W is a parameter selectable by the
designer to produce desired circuit properties. The channel width ranges from below
one micron to several hundred microns.

Fig. 2.1 also shows that an nMOS transistor has a fourth terminal that is
connected to the substrate body (B). The substrate must be connected to the lowest
potential (VSS or GND) in a circuit to prevent the p-n junctions (i.e., diodes) formed
between the n+ regions and the p-type substrate from being forward-biased and
turned on. A forward-biased p-n junction in a MOSFET, even if it happens
momentarily, may induce a serious problem called latch-up. We will further discuss
the latch-up problem in Chapter 4.

All nMOS transistor substrate body contacts in an IC are connected together and
set at an appropriate potential. This arrangement allows the simplified circuit symbol

                                                          
2 Polysilicon is non-crystalline silicon doped to act as a conducting material.
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in Fig. 2.2 to be used. The symbol depicts an nMOS transistor as a three terminal
device and omits its body terminal.

G

D

S

Fig. 2.2  Simplified nMOS transistor symbol.

In a highly simplified view, an nMOS transistor operates in one of two states. If
the voltage between its gate and source (vGS) is below a positive threshold voltage
(Vtn), the transistor is in a cut-off state so that a high resistance (on the order of 1012

Ω) exists between its drain and source. The threshold voltage Vtn is a physical
property of the transistor and is usually between 0.5 V and 1 V. Alternatively, if vGS
> Vtn, the nMOS transistor turns on to provide a conducting path (on the order of 103

Ω) between its drain and source.
The nMOS switch model can be derived by considering the nMOS circuit shown

in Fig. 2.3. Only vI = VDD (the power supply node, a “high” voltage above Vtn
representing logic-1) and vI = VSS (the ground, a “low” voltage below Vtn representing
logic-0) are considered in this nMOS switch model. The power supply VDD ranges
from 5 V to 1 V. The use of a lower VDD in a CMOS circuit decreases its power
dissipation at the cost of a lower speed as well as a reduced noise margin.
Experimental low power systems using a VDD as low as 400 mV have been reported.

+-
+-

G
D

B

S

VDD
vI

iD

Fig. 2.3  Circuit for deriving the nMOS switch model.

VSS is also called GND and is typically set at 0 V. When a zero bias voltage (vI =
0 or logic-0) is applied to the gate, vGS = 0 < Vtn so the nMOS transistor is in its cut-
off state (iD ≅ 0). Alternatively, if vI is raised to VDD (logic-1) so that vGS > Vtn, the
nMOS transistor turns on (iD > 0). Eventually we will improve this switch model by
incorporating an effective channel resistance, but at this point we simply assume that
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the transistor is a perfect switch (i.e., no resistance) when it is turned on. Fig. 2.4
summarizes the operation of an nMOS switch when its gate is set to logic-0 and
logic-1, respectively.

0 1
D S D S

Fig. 2.4  Two operating modes of the digitally controlled nMOS switch model.

2.2 pMOS Switch Model

G

S

D

B
p+ p+

L
n-type Substrate

W
Oxide (SiO2)

Substrate
Body (B)

Source (S)

Gate (G) Drain (D)

Fig. 2.5  Physical structure and circuit symbol of a pMOS transistor.

Fig. 2.5 shows the physical structure and circuit symbol of a pMOS transistor. A
pMOS transistor is similar to an nMOS transistor except in the following ways. Two
heavily doped p+ regions in the n-type substrate form a source and a drain. The
MOSFET structural symmetry allows the source and drain of a pMOS transistor to
be interchangeable. In a circuit analysis, the p+ region with a potential higher than
another is considered the source. The substrate body of a pMOS transistor is always
connected to VDD or the highest potential in a circuit to reverse-bias the p-n junctions
(i.e., diodes) between the p+ regions and the n substrate. This allows the three
terminal device symbol in Fig. 2.6 to be used to represent a pMOS transistor, since
the substrate body is always connected appropriately.
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G

S

D

Fig. 2.6  Simplified pMOS transistor symbol.

The most significant difference between a pMOS transistor and an nMOS
transistor is that the pMOS transistor has a negative threshold voltage (Vtp). The
typical value of the threshold voltage Vtp is between -0.5 V and -1.2 V. A pMOS
transistor turns on when its gate to source voltage vGS is below its threshold voltage
Vtp.

+-
+-

G
S

B

D

VDD
vI

iD

Fig. 2.7  Circuit for deriving the pMOS switch model.

A pMOS circuit is set up in Fig. 2.7 to derive the pMOS switch model. The
reader should compare Fig. 2.3 and Fig. 2.7 to observe their differences in terminal
label assignments and in the directions of current iD.  Again, only vI = VDD (logic-1)
and vI = VSS (logic-0) are considered in the pMOS switch model. A voltage vI = 0V
(logic-0), which is equivalent to vGS = -VDD < Vtp, turns on the pMOS transistor (iD >
0). On the other hand, if vI = VDD (logic-1), vGS = 0V > Vtp  so the pMOS transistor
turns off. The operation of the simplified pMOS switch model is summarized in Fig.
2.8.

1 0
S D S D

Fig. 2.8  Two operating modes of the digitally controlled pMOS switch model.

In summary, the MOSFET switch model considers both the nMOS and pMOS
transistors as “perfect” switches controlled by digital signals applied to their gates.
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The operations of both nMOS and pMOS transistors according to the switch model
are listed in Fig. 2.9.

vI Logic Level nMOS pMOS
VDD 1 ON OFF
VSS 0 OFF ON

Fig. 2.9 Switch model of MOSFETs

We can see, according to the MOSFET switch model, that nMOS and pMOS
transistors are complementary switches because a logic signal that turns on an nMOS
transistor turns off a pMOS transistor and vice versa. This complementary
relationship is captured in the pMOS circuit symbol that includes a circle (“bubble”)
at the gate of an “nMOS transistor.” A “bubble” is often used to represent an
inverting function in digital schematic diagrams. Fig. 2.10 illustrates this relationship
by showing that a pMOS switch is, in the context of switching logic, functionally
equivalent to an nMOS switch with an inverter attached to its gate.3

A A A A A

Fig. 2.10  Complementary relationship between nMOS and pMOS transistors.

2.3 CMOS Inverter

In Section 2.5, we describe the design of general CMOS complementary logic
circuits. In order to prepare for that, we use the idealized MOSFET switch model
shown in Fig. 2.9 to design and analyze a CMOS inverter. The techniques explored
in this design example can be readily extended and applied to any CMOS
complementary logic circuits. In fact, we will show in Chapter 4 that all
complementary logic circuits can essentially be viewed as generalized inverters.

The benefits and drawbacks of the idealized MOSFET switch model will
become obvious after we study the design example of an inverter. The simplified
model cannot be used to evaluate circuit performance such as delay time and power

                                                          
3 Of course, it is physically impossible to build a pMOS transistor this way.
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dissipation. However, it does allow a desired logic function to be readily
implemented.

The truth table of an inverter is given along with its logic symbol in Fig. 2.11.

A Z
0 1
1 0

A Z

Fig. 2.11  Truth table and logic symbol of an inverter.

Throughout the book we assume positive logic signals are used; so high and low
voltages are always associated with logic-1 and logic-0, respectively. We will further
assume that the high voltage is VDD and the low voltage is VSS. In all schematic
diagrams of this book we use arrows pointing upward ( ) and downward ( ) to
graphically represent VDD  and VSS, respectively.

Consider the first row in the inverter truth table. It states that output Z should be
a logic-1 whenever input A is a logic-0. For a switch based implementation, a logic-0
input should cause output Z to connect to logic-1, or VDD.4 This operation calls for a
path that conducts and connects output Z to VDD when A = 0. This path, called a
“pull-up” path since it “pulls” the output node Z “up” to VDD, is illustrated in Fig.
2.12.

In Fig. 2.12a, the switch is closed when A = 0 so Z is connected to VDD (1). In
Fig. 2.12b, when A = 1, the switch opens. This puts output node Z in a floating (i.e.,
open-circuit) state, a generally undesirable state in a logic circuit. The behavior of a
floating node in a CMOS circuit will be discussed in more detail.

A = 1

(a)

A = 0

VDD

(b)
Z

VDD

Z

Fig. 2.12  Pull-up path of an inverter: (a) A = 0; (b) A = 1.
                                                          

4 From this point on, if a signal is a logic-1 or logic-0, we simply state that it equals 1 or 0,
respectively.
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Now consider the second row in the inverter truth table. Whenever input A
equals 1, output Z should be 0. In other words, when input A = 1, output Z is
supposed to be connected to VSS (0). We call this a “pull-down” path since it “pulls”
the output node Z “down” to VSS. This pull-down path and its two operating states are
illustrated in Fig. 2.13. Output Z equals 0 when A = 1, and it is in a floating state
when A = 0.

A = 0

(a)

Z

A = 1

(b)

Z

VSS VSS

Fig. 2.13  Pull-down path of an inverter: (a) A = 0; (b) A = 1.

Finally, we put the pull-up and pull-down paths together and create the inverter
switch network shown in Fig. 2.14. Replacing the ideal switches with transistors, we
have the circuit shown in Fig. 2.15. Note that a pMOS transistor is used to implement
the pull-up path since it turns on when A = 0. In the pull-down path, an nMOS
transistor is used since it turns on when A = 1.

(a) (b)

A = 0

VDD

Z

VSS

A = 1

VDD

VSS

Z

Fig. 2.14  Switch network implementing an inverter: (a) A = 0; (b) A = 1.
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A Z

VDD

VSS

Fig. 2.15  CMOS inverter.

A logic function being designed often has several functionally equivalent
implementations. The designer has to evaluate them so that an appropriate choice can
be made according to the design requirements. At this time, we have yet to develop
adequate models for evaluating circuit performance, but the following observations
can be made. Three tangible performance measures are typically used to evaluate
VLSI designs: area, propagation delay, and power consumption. Other less tangible
evaluation criteria are design complexity, reliability, testability, and cost.

We discuss the physical layout and fabrication process of CMOS circuits in
Chapter 3. Before a layout is produced, the number of transistors in a circuit is often
used as a measure to estimate the area of a circuit. Note that while the circuit area is
generally proportional to the number of transistors, it also depends on other factors
such as the transistor dimensions and the interconnections between the transistors.
The exact area of a CMOS circuit can only be determined after its layout has been
created. The CMOS inverter in Fig. 2.15 includes two transistors.

As noted, the switch model that we used to design the inverter assumes that the
transistors are perfect switches that cause no propagation delay. This assumption is
apparently unrealistic; otherwise, we would have infinitely fast circuits. Our
enhanced switch model, to be described in Chapter 4, will provide a simple method
to estimate the speed of a circuit. Until then, we will use the number of gate levels as
a measure to estimate the delay time. The CMOS inverter is a single gate and thus it
has one level of delay. Naturally, different gates have different delay times so the
value of this delay estimation is limited.

The switch network in Fig. 2.14 shows that the inverter does not have a
conducting path between VDD and VSS when input A equals either 1 or 0. No
conducting path means no current flow, which implies that the inverter has no power
dissipation. This statement is only partially true since Fig. 2.14 does not depict the
inverter transient operation  when the voltage at node A changes from 0 to 1, or
vice versa. During such a transition, both transistors conduct at the same time so



38 CMOS Logic Circuits

power dissipation occurs. We will have more discussion on this in Chapter 4.
Nevertheless, we have just witnessed an important feature of the CMOS
complementary logic circuit  a CMOS logic circuit does not consume power when
it is in a steady state. This is one of the main reasons that the CMOS technology has
been so popular for low power applications.

2.4 CMOS Logic Structures

Many CMOS structures have been used to implement logic functions. The
diagram in Fig. 2.16 presents a listing of CMOS logic circuits that this book covers.
In this book, we discuss two main categories of CMOS logic circuits, static logic
circuits and dynamic logic circuits. A dynamic logic circuit produces its output by
storing charge in a capacitor. The output thus decays with time unless it is refreshed
periodically. In contrast, a static logic circuit holds its output indefinitely. In this
chapter, we introduce the design of CMOS complementary logic and pass-
transistor/transmission-gate logic circuits. The rest of the logic structures will be
described in detail in Chapter 6.

CMOS Logic Circuits

Static

Dynamic LogicComplementary Logic

Pass-Transistor Logic

Transmission-Gate Logic

Pseudo-nMOS Logic

Domino Logic

Dynamic

Fig. 2.16  Different structures of CMOS logic circuits.
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2.5 Complementary Logic

Fig. 2.17 shows the general structure of a CMOS complementary logic circuit. It
contains two complementary transistor networks. The complementary pull-up and
pull-down transistor networks, controlled by the same set of inputs, selectively
connect output Z to VDD and VSS, respectively. Due to the complementary relationship
between the pull-up and pull-down networks, an input combination that turns on the
pull-down network turns off the pull-up network, and vice versa. This eliminates the
possibility of having a floating output Z. We can see that the inverter is indeed an
example of a CMOS complementary logic circuit in which each transistor network
consists of only a single transistor.

VDD

Inputs Z

VSS

Pull-up
transistor
network

Pull-down
transistor
network

Fig. 2.17  General structure of CMOS complementary logic circuit.

X
A B

Z

Fig. 2.18  Serial switch network.

Switches can be combined in various ways to produce desired logic operations.
For example, consider the serial switch network shown in Fig. 2.18. We observe that
the network conducts only if switches A and B are both closed. Assume that switches
A and B are implemented with nMOS transistors which are turned on by A = 1 and B
= 1, respectively; then output Z can be written as
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Z = X(AB) + HiZ( AB )  (2.1)

where HiZ (high impedance) represents the floating condition at Z when the switch
network is turned off so Z is left unconnected. Alternatively, if pMOS transistors are
used to implement switches A and B, which are turned on by A = 0 and B = 0,
respectively, output Z takes the form of

). ( BAHiZ)BA(XZ += (2.2)

On the other hand, the parallel switch network shown in Fig. 2.19 conducts if
either switch C or switch D is closed. Implementing the switches with nMOS
transistors, output F can be written as

F = Y(C + D) + HiZ( C D+ ). (2.3)

Finally, if pMOS transistors are used in the parallel network,

F = Y( C D+ ) + HiZ( C D+ ). (2.4)

Y

C

D F

Fig. 2.19  Parallel switch network.

Based on (2.1) and (2.2), a Boolean product (AND) of variables can be formed
by the serial connection of switches controlled by these variables. Also, a Boolean
sum (OR) of variables can be created by the parallel connection of switches
controlled by these variables according to (2.3) and (2.4). Combinations of serial and
parallel connections are used to implement the pull-up and pull-down transistor
networks of a CMOS complementary logic circuit.

We begin the discussion of complementary logic circuit design by stating the
following guidelines:

• All switches in a pull-up network should be implemented by pMOS
transistors. All switches in a pull-down network should be implemented by
nMOS transistors.

• The number of switches connected in series should be kept less than 5.
The first guideline assures that the output of a logic circuit will have a maximum

logic swing (VDD to VSS) since pMOS and nMOS transistors are good switches for
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VDD and VSS, respectively. Reversal of their roles would produce “weak” outputs.5
For example, using an nMOS transistor to connect an output to VDD results in an
output voltage that is lower than VDD, a weak-1.

Fig. 2.20 illustrates a weak-1 output situation resulting from the use of an nMOS
transistor. Recall that an nMOS transistor conducts only when its gate-to-source
voltage vGS is higher than a threshold voltage Vtn. The output voltage vCL in Fig. 2.20
thus cannot reach beyond (VDD - Vtn) since that would cause the transistor to turn off.
Note that we have used a capacitor CL to represent the output of the circuit. We will
see that this is typical in a CMOS circuit.

CL
D S

G

VDD

vCL < VDD - Vtn

VDD

vGS = VDD - vCL

Fig. 2.20  Output connected to VDD through an nMOS transistor.

Similarly, a pMOS transistor used to connect an output to VSS results in a weak-0
output that cannot go below (VSS -Vtp). This is illustrated in Fig. 2.21.

CL
D S

G

vCL > 0 - Vtp

vGS = 0 - vCL
VSS

Fig. 2.21  Output connected to VSS through a pMOS transistor.

Fig. 2.22 graphically illustrates the reduction of logic swing in a logic circuit due
to the weak signals. In addition, weak signals increase power consumption since they
may not be able to turn transistors off completely. Note that there are exceptions to
this guideline. Despite the disadvantages of weak signals, a design can often be
simplified by accommodating weak signals. Buffers can be used to restore signal
strength as needed.

                                                          
5 A weak 1 signal has a voltage level that is less than VDD and a weak 0 signal has a voltage level

that is higher than VSS. The logic swing is thus reduced.
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The second guideline also arises from the desire of achieving a better
performance. A signal is delayed when it passes through a transistor. The delays of
serially connected transistors add up and contribute to the delay of the logic circuit.

We present a few examples to demonstrate the design of CMOS complementary
logic circuits.

VDD

VDD - Vtn

VSS - Vtp

VSS

Full logic
swing

Reduced
logic swing

Fig. 2.22  Full logic swing and reduced logic swing.

Example  2.1
Design a CMOS complementary logic circuit to implement a two-input NAND gate
( )F AB= , of which the logic symbol is shown in Fig. 2.23.

A
B F

Fig. 2.23  Logic symbol of a two-input NAND gate.

As we have shown above, MOSFET switch networks are used to implement
Boolean products and sums of variables. The pull-up network expression for
function F is the expression F itself. We thus rewrite logic function F into a pull-up
network expression that consists of only the sums and/or products of variables A, B,
A , and B .

The structure of the pull-up network is determined by

F AB A B= = + (2.5)

which is a Boolean sum of A and B . According to (2.4), we use a parallel network
of two pMOS transistors to implement the pull-up network. The result is shown in
Fig. 2.24. This network connects output F to VDD  (1) when A = 0 or B = 0.
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F

VDD

BA

Fig. 2.24  Pull-up network for F AB= .

When the pull-up network is turned off (by A = 1 and B = 1), a complementary
pull-down network connected to F has to be turned on to avoid the condition of F =
HiZ. The pull-down network for function F is determined by its complementary
function F . The structure of this pull-down transistor network is found to be

F AB= (2.6)

which is a Boolean product of A and B. According to (2.1), a serial switch network of
two nMOS transistors is used to implement the pull-down network. This is shown in
Fig. 2.25. The network turns on only if A = 1 and B = 1. When this happens, output F
is connected, through the conducting pull-down network, to VSS (0). We put the pull-
up and pull-down networks together into the two-input NAND gate shown in Fig.
2.26.

VSS

A

B

F

Fig. 2.25  Pull-down network for F AB= .
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F

VDD

BA

VSS

Fig. 2.26  Transistor schematic diagram of a two-input NAND gate.

Due to the complementary relationship between the pull-up network and pull-
down network in a logic circuit, De Morgan’s Theorem can be applied to one of the
networks to derive the structure of another network. According to De Morgan’s
Theorem, given two variables A and B,

AB A B= + (2.7)

and

A B A B+ =  (2.8)

Based on (2.7), the complementary structure of a serial nMOS structure (AB) in
the pull-down network is a parallel pMOS structure ( A B+ ) in the pull-up network.
In addition, (2.8) states that a parallel nMOS structure (A + B) in the pull-down
network should be matched with a serial pMOS structure ( AB ) in the pull-up
network. Similarly, it can be shown that parallel and serial pMOS structures in a pull-
up network are matched with serial and parallel nMOS structures in a pull-down
network, respectively. Fig. 2.27 summarizes the principles of creating a
complementary transistor network for a given one. These principles are demonstrated
with the design in Example 1.2.
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Pull-up network Pull-down network
pMOS transistor nMOS transistor
serial connection parallel connection

parallel connection serial connection

Fig. 2.27 Complementary pull-up and pull-down networks in a logic circuit.

Example 2.2
Design a CMOS complementary logic circuit to implement a two-input NOR
gate ( )F A B= + , of which the logic symbol is shown in Fig. 2.28.

A
B F

Fig. 2.28  Logic symbol of a two-input NOR gate.

The expression F A B= +  is first rewritten into a product of A  and B
( F AB= ). The pMOS serial network shown in Fig. 2.29 is used to implement this
product into a pull-up network. We can now create the pull-down network by
applying the principles in Fig. 2.27. According to Fig. 2.27, the two serial pMOS
transistors in the pull-up network are matched with two parallel nMOS transistors in
the pull-down network. The complete circuit of a 2-input NOR gate is shown in Fig.
2.30.

VDD

A

B

F

Fig. 2.29  Pull-up network for F A B= + .
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VDD

A

B

F

Fig. 2.30  CMOS two-input NOR gate.

The reader may have observed that, in the above example, F = A + B (i.e., the
pull-down network) is naturally expressed as a Boolean sum of A and B. It is thus
simpler to construct the pull-down network first and derive the complementary pull-
up network using Fig. 2.27. This observation is indeed valid. In general, out of the
two switching networks in a logic circuit, one would select and construct the one that
is more convenient to implement. A complementary network is then derived to
complete the design.

In many applications, a design problem is described in the form of a truth table
or a Boolean equation. In addition to apply Boolean algebra to derive a
complementary logic circuit, the Karnaugh map proves to be a valuable tool for
paper-and-pencil designs. Note that the Karnaugh map method is limited to small
designs with six or less variables since it becomes extremely unwieldy when more
than six variables are involved. Computerized methods such as the Quine-McCluskey
algorithm should be used in those cases (see references listed at the end of this
chapter).

We demonstrate the use of a Karnaugh map in the derivation of a
complementary logic circuit in the following example.

Example 2.3
Design a complementary logic circuit for F(ABCD) = Σm(0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10). Note that this expression indicates the minterms of the logic function F.

The truth table of F is given in Fig. 2.31.
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A B C D F
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

Fig. 2.31  Truth table of F in Example 2.3.

A four-variable Karnaugh map is created in Fig. 2.32 for function F(ABCD):

1

F
00 01 11 10

00

01

11

10

AB

CD 0

0

0

0

0

1

11

1

1

1

1

1

1

1

Fig. 2.32  Karnaugh map of F in Example 2.3.

According to its Karnaugh map, F A BC B D A B C D= + + = + +( ).  Note that
F, as a result of using a Karnaugh map, is expressed in product and sum terms of A ,
B , C , and D . The pull-up network can be readily created. However, we take a
different route here to demonstrate the use of a Karnaugh map in the construction of
CMOS logic circuits.

It can be readily seen that each square in the Karnaugh map that contains a 1 (1-
square) indicates an input combination that turns on the pull-up network. Similarly,
the squares that contain 0’s (0-squares) indicate the input combinations that turn on
the pull-down network. We replace the 0-squares and 1-squares in Fig. 2.32 with On-
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squares and Off-squares, respectively, to create the Karnaugh map in Fig. 2.33 for the
pull-down network.

Pull-down
00 01 11 10

00

01

11

10

AB

CD

On Off

Off

Off

On

On

On

On

OffOff

OffOff

OffOff

OffOff

Fig. 2.33  Karnaugh map for the pull-down network in Example 2.3.

The pull-down switch network for F is found by grouping the On-squares into prime
implicants using the regular Karnaugh map operation:

Pull-down: AB + ACD = A(B + CD). (2.9)

Notice that in (2.9), variable A, which is common in both prime implicants, was
extracted out as a common term to minimize the number of transistors in the pull-
down network. The pull-down network of function F and its complementary pull-up
network are shown in Fig. 2.35. The reader should study the relationship between the
pull-down and pull-up networks to fully understand the application of Fig. 2.27.

Alternatively, we can create the following Karnaugh map for the pull-up network
by replacing the 1- and 0-squares in the Karnaugh map for F by On- and Off-squares,
respectively:

Pull-up
01 11

11

AB

On

Off Off

On

OnOff

Off

OffOn

On

On

On

On

On

On

On

CD
01

00

1000

10

Fig. 2.34  Karnaugh map for the pull-up network in Example 2.3.

We can identify the prime implicants in Fig. 2.34 for the pull-up network as

Pull-up: A B C B D A B C D+ + = + +  ( ) (2.10)
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which, indeed, matches with the pull-up network shown in Fig. 2.35.

VDD

A B

C D

D

C

B

A

F

Fig. 2.35   Logic circuit for function ( )F A B CD= + .

The next example demonstrates the selection of an implementation from a
number of functionally equivalent ones. The objective in this example is to minimize
the number of transistors in the logic circuit.

Example 2.4
Design a CMOS complementary logic circuit for F = A + BC and minimize the
number of transistors used in the circuit.

The Karnaugh map of function F is shown in Fig. 2.36.
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F
00 01 11 10

0

1

BC

0

1

1

11
A

1

00

Fig. 2.36  Karnaugh map of F in Example 1.4.

The pull-down transistor network is found to be A B C( )+  by grouping the 0-
squares. We follow the guideline of using only nMOS transistors in the pull-down
network and assume that only signals A, B, and C are available. Inverters are then
needed to produce A , B , and C . This structure, which requires a total of 12
transistors (2 per inverter and 6 for the gate itself), is shown in Fig. 2.37. Two levels
of delay are involved, one in the inverters which work concurrently, and one in the
complementary gate itself.

VDD

F

A

B

C

A

B

C

A

B

A

B

C

C

Fig. 2.37  Logic circuit designed for Example 2.4.

Alternatively, if we implement the logic function Z = F = A BC+ , we will not
need the inverters at the inputs. The pull-down network for Z is A + BC. We simply
attach a single inverter at its output Z, and F is produced at the output of the inverter.
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Fig. 2.38 shows this structure which requires only 8 transistors, a 33% saving from
the circuit in Fig. 2.37. Note that both circuits have two levels of delay.

A

B

C

VDD

F

A

B C

F

Fig. 2.38  Minimized logic circuit for Example 2.4.

2.6 Pass-Transistor/Transmission-Gate Logic

Complementary logic circuits are guaranteed to work. As long as we use only
nMOS transistors in the pull-down network and pMOS transistors in the pull-up
network, full logic swing (VDD to VSS) signals are produced at their outputs. However,
if less than full logic swings can be accommodated in an application, or at least in a
portion of it, pass-transistor logic may offer some saving in the number of transistors
used in the circuit.

In a complementary logic circuit, the source of its output is always a constant
logic signal: VDD for the pull-up network and VSS for the pull-down network. Pass-
transistor logic also allows input signals and their complements to be passed on to the
circuit output. This property in many cases can significantly simplify the circuit. We
begin our discussion by contemplating the design of a 2-to-1 multiplexer (MUX), the
symbol of which is shown in Fig. 2.39.
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The operation of this 2-to-1 multiplexer is to selectively connect inputs i0 or i1 to
output Z according to the logic signal on selection line S. Following the design
method introduced in Section 2.5, we consider the multiplexer as a three-variable
logic function Z = f(S, i0, i1) and create the truth table shown in Fig. 2.40.

2-to-1
MUX

i0

i1

Z

S

Fig. 2.39  Symbol of a 2-to-1 multiplexer (MUX).

S i0 i1 Z
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Fig. 2.40  Truth table of a 2-to-1 MUX.

This truth table in Fig. 2.40 is converted into the Karnaugh map in Fig. 2.41 to
determine the pull-up and pull-down networks for Z:

Z
00 01 11 10

0

1

i0 i1

1

0

1

10
S

1

00

Fig. 2.41  Karnaugh map of a 2-to-1 MUX.

The Karnaugh map in Fig. 2.41 prescribes a logic function 10 SiiSZ +=  for the
multiplexer, of which the transistor schematic is shown in Fig. 2.42. This
complementary logic circuit, which is our first design for the multiplexer, involves 14



CMOS Logic Circuits 53

transistors (2 per inverter and 8 for the complementary gate itself) and 2 levels of
delay.

Alternatively, one can use the fact that Z = i0 when S = 0, and Z = i1 when S = 1
to rewrite the truth table of the 2-to-1 multiplexer as shown in Fig. 2.43. The reader
should notice the similarity of the truth table in Fig. 2.43 to that of an inverter (Fig.
2.11). The only difference between them is that, for the multiplexer, in each row
output Z is assigned an input variable (i0 or i1) instead of a constant (0 or 1) as in the
case of an inverter. In a manner similar to the design of the inverter (Section 2.3), we
create the pass-transistor logic circuit shown in Fig. 2.44 to selectively pass input
signals to its output.

i0i1

i1

S

i0

i0

i1i1

i0

S

S

S

SS

Z

Fig. 2.42  Complementary logic circuit for a 2-to-1 multiplexer.
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S Z
0 i0

1 i1

Fig. 2.43  Modified truth table of a 2-to-1 multiplexer.

S

Zi0

i1

Fig. 2.44   Pass-transistor logic for a 2-to-1 multiplexer.

The pass-transistor logic implementation of the 2-to-1 multiplexer has only 2
transistors and 1 level of propagation delay, which represents a big saving over its
counterpart complementary logic circuit (Fig. 2.42). In practice, many designers
prefer to use only nMOS transistors in a pass-transistor logic circuit. The justification
behind this design style is to avoid the big separation between nMOS and pMOS
transistors required by the design rules (see Chapter 3). Another reason to prefer
nMOS transistors over pMOS transistors is that nMOS transistors are inherently
faster (see Chapter 4). If the pMOS transistor in Fig. 2.44 is replaced with an nMOS
transistor, we would need an inverter to generate S for its control. This will bring the
transistor count to 4.

The drawback of this circuit lies in the fact that output Z cannot produce a full
logic swing (VDD to VSS) for certain input combinations. Recall the situations
discussed in connection with Fig. 2.20 and Fig. 2.21. The nMOS transistor degrades
a 1 passing through it. If S = 1 and i1 = 1, the voltage at output Z cannot reach above
(VDD - Vtn) and becomes a weak 1. On the other hand, a pMOS transistor degrades a 0
passing through it, so output Z can only go down to |Vtp|  a weak 0, if S = 0 and i0 =
0.

In many applications, however, pass-transistor logic is accepted as a valid
alternative to complementary logic. Special techniques have been developed to deal
with its less than perfect logic swings and other limitations. For example, the weak
signals can be restored by a following complementary logic stage. Fig. 2.45 shows an
approach to restore the logic level at the output of a pass-transistor (B). The pMOS
transistor is turned on whenever Z is 0, which reflects the fact that A is a 1; so B
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should also be a 1. The pMOS transistor pulls B up to VDD  and thus restores the
logic level.

Z
A

B

Fig. 2.45   Trickle transistor used to restore logic level.

Alternatively, the transistors in a pass-transistor logic circuit can be replaced
with transmission-gates (t-gates). A t-gate is built by connecting a pMOS transistor
and an nMOS transistor in parallel. The structure and the symbol of the t-gate are
shown in Fig. 2.46.

A

A

B Z

Schematic

B Z

A

A

Symbol

Fig. 2.46  Transmission-gate (t-gate) structure and its symbol.

A t-gate provides a non-clipping switch for both 0 and 1. Complementary
control signals (A and A ) are applied to the pMOS and nMOS transistors in a t-gate
so both transistors turn on and off simultaneously. A t-gate does not cause a voltage
drop to either the 1 or the 0 passing through it. The nMOS transistor, when turned
on, provides the path for the 0. The conducting pMOS transistor passes the 1. The
nMOS transistor provides a signal path between B and Z when B = 0. The pMOS
transistor, on the other hand, provides the signal path between B and Z when B = 1.

Fig. 2.47 shows the result of converting the 2-to-1 multiplexer of Fig. 2.44 into a
t-gate logic. An additional inverter (not shown) is needed to generate control signal
S . The transistor count of this circuit is six (inverter included), which is three times
that of the pass-transistor multiplexer.
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Z

i0

i1

S

S

S

Fig. 2.47  Transmission-gate logic for a 2-to-1 multiplexer.

The 2-to-1 multiplexer (MUX) can be used as a building block to create
multiplexers with more selectable inputs. Fig. 2.48 and Fig. 2.49 show the
construction of a 4-to-1 multiplexer and an 8-to-1 multiplexer, respectively. The
application of the VLSI hierarchical design methodology, which emphasizes the
partitioning of a large system into manageable building blocks, is apparent in these
two examples.

2-to-1
MUX

i0

i1

Z

S

2-to-1
MUX

i0

i1

Z

S

2-to-1
MUX

i0

i1

Z

S

S0 S1

Z

i0

i1

i2

i3

Fig. 2.48  4-to-1 multiplexer.

Multiplexers can be used as configurable logic components to implement desired
logic functions. For instance, the 8-to-1 multiplexer shown in Fig. 2.49 provides a
configurable structure for the implementation of any three-variable logic functions.

Fig. 2.50 demonstrates the use of an 8-to-1 multiplexer to implement the logic
function F = A + BC given in Example 2.4. Variables A, B, and C are applied to the
selection inputs S2, S1, and S0, respectively. The truth table is implemented by
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hardwiring each of the multiplexer inputs i0 – i7 to either 1 or 0, according to function
F. This implementation is straightforward. No optimization procedure is involved.

4-to-1
MUX

i0
i1 Z

S0 S1

i2
i3

4-to-1
MUX

i0
i1 Z

S0 S1

i2
i3

2-to-1
MUX

i0

i1

Z

S

Z

S0 S1 S2

i0
i1
i2
i3

i4
i5
i6
i7

Fig. 2.49  8-to-1 multiplexer.

8-to-1
MUX

i0
i1

Z

S0 S1

i2
i3
i4
i5
i6
i7

S2

0
0
0
1
1
1
1
1

C B A

Fig. 2.50  Multiplexer hard-wired to implement F A BC= + .

Multiplexer-based logic has been extensively used to build the configurable
logic blocks of field programmable gate arrays (FPGAs). Fig. 2.51 shows a register
which stores the outputs of a desired logic function. The outputs of this register are
applied to the selectable inputs of a multiplexer. The three input variables of the
logic function are applied to the multiplexer selection lines (S2S1S0) to select one of
the input lines (i7 – i0) as the output Z.
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8-to-1
MUX

i0
i1

Z

S0 S1

i2
i3
i4
i5
i6
i7

S2

 R
eg

is
te

r

Fig. 2.51  A multiplexer-based configurable logic block.

A multiplexer with n selection lines (S0 – Sn-1) can implement a general logic
function of n variables. In addition, if we apply some of the n variables and their
complements of a logic function to the multiplexer selectable input lines, the logic
function can also be implemented by a multiplexer with less than n selection lines.

The following example demonstrates the use of a 2-to-1 multiplexer, which has a
single selection line, to implement a two-input AND gate.

Example 2.5
Use a 2-to-1 multiplexer to implement a two-input AND gate (F = AB), the logic
symbol of which is shown in Fig. 2.52.

A
B

F

Fig. 2.52  Logic symbol of a two-input AND gate.

A B F
0 0 0
0 1 0
1 0 0
1 1 1

Fig. 2.53 Truth table of F = AB in Example 1.5.

Since a 2-to-1 multiplexer has only one selection line S, we arbitrarily choose to
assign input A to S. According to the truth table of F in Fig. 2.53, if A = 0, F equals 0
regardless of B’s value. On the other hand, when A = 1, F is an identical function of
B (i.e., F = B). The logic function F = AB can then be rewritten as ABAF += 0 and
implemented with a 2-to-1 multiplexer as shown in Fig. 2.54.
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2-to-1
MUX

i0

i1

Z

S

A

"0"

B
F

Fig. 2.54  2-to-1 multiplexer implementing a two-input AND gate.

Example 2.6
Use a 4-to-1 multiplexer to implement F A B C ABC= + +( ) .

F is a logic function of 3 variables but a 4-to-1 multiplexer has only 2 selection
lines. We first assign inputs A and B to the selection lines S1 and S0, respectively. The
relationship between F and the third input C in the truth table (Fig. 2.55) is then
analyzed.

A B C F
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

Fig. 2.55  Truth table of F A B C ABC= + +( ) .

It is readily seen from the first two row of the above truth table that when AB =
00, the value of F depends on C (i.e., F C= ). The dependency of F on C for the
other combinations of AB can be found in a similar manner. The truth table in Fig.
2.56 summarizes these relations.
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A B F
0 0 C
0 1 1
1 0 C
1 1 0

Fig. 2.56  Modified truth table of F A B C ABC= + +( )  in Example 1.6.

Fig. 2.57 shows the use of a 4-to-1 multiplexer to implement this function.

4-to-1
MUX

i0
i1 Z

S0 S1

i2
i3

AB

F
C
1

0
C

Fig. 2.57  F A B C ABC= + +( )  implemented with a 4-to-1 multiplexer.

Tri-state logic gates can be formed by attaching a t-gate to the output of a
regular logic gate. Fig. 2.58 shows the structure of a tri-state inverter. When the t-
gate is turned on, the circuit functions as an inverter. If the t-gate is turned off, Z is at
a high impedance state. Other tri-state logic gates can be built in a similar manner.

Z

Fig. 2.58  Tri-state inverter.

2.7 Summary

Among different CMOS logic structures, the complementary logic circuit is most
reliable. Both nMOS and pMOS transistors can be modeled as switches that are
turned on by digital signals 1 and 0, respectively. The simple switch model does not
have the capability to do delay and power estimation, but is adequate for the design
and analysis of CMOS logic circuits.
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Karnaugh maps provide a manual tool for the design of small complementary
logic circuits. The pull-up network of a logic circuit, which connects the output to
VDD (1) when turned on, has a structure determined by the prime implicants found by
grouping the “1-squares” in the Karnaugh map. On the other hand, the pull-down
network, which connects the output to VSS (0) when turned on, can be found by
identifying the prime implicants of the “0-squares” in the Karnaugh map. The
complementary relationship between the pull-up and pull-down networks allows one
network to be found by complementing the structure of the other.

Three tangible criteria are commonly used to evaluate and select an
implementation from functionally identical but structurally different circuits: area,
delay, and power dissipation. The exact area of a circuit is only available after the
circuit is laid out. The number of transistors in a circuit is thus commonly used to
estimate its area.

The number of logic stages indicates the levels of delay; so it can be used as an
estimate of circuit speed. Because the complementary logic circuit isolates the power
source from ground when the circuit is in a steady state, its static power dissipation
can normally be ignored.

The switch networks in a complementary logic circuit selectively connect its
output to constant logic signals (1 in the pull-up network and 0 in the pull-down
network). A pass-transistor network removes this restriction and allows the output to
be connected to 0, 1, an input, or an input’s complement. In many cases, a logic
function can be implemented with fewer transistors by a pass-transistor network than
a complementary one. Instead of pass-transistors, transmission gates may be used to
remedy the weak signal drawback of a pass-transistor circuit.

2.8 To Probe Further

MOSFET and CMOS electronics:
• S. Sedra and K. C. Smith, Microelectronic Circuits, 4th Edition, Oxford

University Press, 1998.

• K. Lee, M. Shur, T. A. Fjeldly, and T. Ytterdal, Semiconductor Device
Modeling for VLSI, Prentice-Hall, 1993.
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• G. W. Roberts and A. S. Sedra, SPICE, Oxford University Press, 1997.
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2.9 Problems

The following logic functions are to be used in Problems 2.1 to 2.7:
(i) F A B= ⊕
(ii) G = A B⊕
(iii)  (  )H AB CD A BCD B C= + +

(iv) ( )( )( )K A B C D E B D= + + + +
(v) L AB CD= +
(vi) M AB CD= +
(vii) N = AB CD+

(viii) P = AB CD+

2.1 Assume that only signals A, B, C, and D are available. Implement each of the
given logic functions as complementary logic circuits. Minimize the number
of transistors in each circuit.
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2.2 Assume that only signals A, B, C, and D are available. Implement each of the
given logic functions as complementary logic circuits. Minimize the number
of gate levels in each circuit.

2.3 Given a logic function Z, there are two ways to implement it as a
complementary logic circuit. A complementary logic gate can be developed
for Z. Alternatively, a complementary logic gate can be developed for Z with
an inverter attached to its output to produce Z. In either case, inverters may be
needed for the gate inputs to generate required input signals.
Design a method that inspects the Boolean expression of a logic function and
determines, for the objective of minimizing the number of transistors, the
appropriate way to implement the logic function. Test the validity of your
method with the given logic functions.

2.4 Implement the given logic functions as pass-transistor logic circuits. Compare
your designs (number of transistors, delay levels, design complexities, etc.)
with those developed in Problems 2.1 and 2.2.

2.5 Implement the given logic functions with an 8-to-1 multiplexer and inverters.
Compare your designs (number of transistors, delay levels, design
complexities, etc.) with those developed in Problems 2.1 and 2.2.

2.6 What is the output voltage (vo) in terms of VDD and Vtn of the circuit in Fig.
2.59?

vo

+

-

Fig. 2.59  Circuit for Problem 2.6.

2.7 What is the output voltage (vo) in terms of VDD and Vtn of the circuit in Fig.
2.60?



64 CMOS Logic Circuits

vo

+

-

Fig. 2.60  Circuit for Problem 2.7.

2.8 Consider the logic diagram given in Fig. 2.61.

F
A
B

C
D

Fig. 2.61 Circuit for Problem 2.8.

(a) Implement F as a complementary logic function. Minimize the number
of transistors.

(b) Implement F as a complementary logic function. Minimize the number
of delay levels.

(c) Use a 16-to-1 multiplexer to implement F.
(d) Use only standard-cells (inverters, two-input NAND gates, and two-

input NOR gates) to implement F.

2.9 Assume MOSFET transistors are perfect switches and identify the logic
function for the circuit in Fig. 2.62.
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A

F

A

B

C

Fig. 2.62 Circuit for Problem 2.9.

2.10 Explain why NAND and NOR gates are preferred to AND and OR gates in
CMOS technology.

2.11 Is the circuit shown in Fig. 2.63 a valid logic function? If yes, what is the logic
function F?  Note that the structures of its pull-up and pull-down networks do
not follow the rules given in Fig. 2.27.

A

B

VDD

A

B

A

B

A

B F

A

B

B

A

Fig. 2.63 Circuit for Problem 2.11.
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2.12 Design a minimized complementary logic circuit to implement a majority
voter. This voter should have three inputs and produce a 1 when two or more
of its inputs are 1’s.

2.13 Design a minimized complementary logic circuit for a two-bit binary
adder/subtractor. The circuit accepts two binary numbers (a1a0 and b1b0) and
one control signal (s). The output of this circuit has three bits (z2z1z0). When s
= 1, z2z1z0 = a1a0 - b1b0, otherwise z2z1z0 = a1a0 + b1b0. Note that z2 indicates a
“carry” in addition and a “borrow” in subtraction.

2.14 Use three 16-to-1 multiplexers as the major building blocks to implement the
adder/subtractor described in Problem 2.13. Minimize your design.

2.15 Use three 8-to-1 multiplexers as the major building blocks to implement the
adder/subtractor described in Problem 2.13. Minimize your design.

2.16 Design a minimized complementary logic circuit that accepts a 4-bit unsigned
binary number and outputs a 1 if and only if the number is (7)10 or less.

2.17 Use one 16-to-1 multiplexer as the major building block to implement the
circuit described in Problem 2.16. Minimize your design.

2.18 Use one 8-to-1 multiplexer as the major building block to implement the
circuit described in Problem 2.16. Minimize your design.

2.19 Design a minimized CMOS comparator that compares two 2-bit numbers A
and B. The comparator has a 2-bit output, which is 00 if A = B, 01 if A > B,
and 10 if A < B.

2.20 Design a minimized CMOS circuit that produces the 2’s complement of a 4-
bit number.

2.21 Design a minimized CMOS combinational multiplier that multiplies two 2-bit
numbers (a1a0, and b1b0).

2.22 Design a non-clipping 2-input AND gate with only five transistors (pMOS and
nMOS).

2.23 Design a non-clipping 2-input OR gate with only five transistors (pMOS and
nMOS).
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2.24 Identify the function of the circuit shown in Fig. 2.64.

a

a

b

b

c

c

d

d

e

e

z

Fig. 2.64  Circuit for Problem 2.24.

2.25 Design a CMOS circuit to implement the truth table shown in Fig. 2.65.  This
circuit has 4 data inputs (a0-a3), 4 control inputs (c0-c3), and 4 data outputs (z0-
z3).

c3 c2 c1 c0 z3 z2 z1 z0

0 1 1 1 a3 a2 a1 a0

1 0 1 1 a2 a1 a0 a3

1 1 0 1 a1 a0 a3 a2

1 1 1 0 a0 a3 a2 a1

Fig. 2.65 Truth table for Problem 2.25.
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Chapter 3 IC Layout and Fabrication

Sand turned into ICs …
As we have explained in Chapter 1, a significant amount of effort has been

applied to decouple the design of an IC from its fabrication. For example, one
significant milestone in the development of VLSI technology during the 70’s was the
creation of design rules to specify fabrication limitations as geometric constraints on
the layout. The concept of IC design rules allows design activities to be carried out
separately from the fabrication process. Furthermore, computer-aided design (CAD)
tools have been created to synthesize application-specific ICs (ASICs) from their
behavioral representations. Despite these and other efforts, an understanding of the
silicon IC fabrication technology is invaluable to the appreciation of many VLSI
research and design issues.

This chapter first introduces the necessary background of silicon IC fabrication
technology. Readers who desire to learn more about the subject can consult the
references listed at the end of this chapter. We then proceed to discuss the creation of
an IC physical layout, which is a geometric representation of the transistors in a
circuit and their interconnections. The relationship between a layout and its
corresponding IC physical structure is explained.

3.1 CMOS IC Fabrication

Despite that germanium (Ge) and gallium arsenic (GaAs) are also used to
fabricate integrated circuits, silicon (Si) is currently the most popular IC material.
Many researchers in the IC industry predict that the popularity of silicon will sustain
into the foreseeable future.

Silicon, which occurs naturally in the form of sand, makes up 28% of the Earth’s
crust. In addition to being an abundant material, silicon has a number of advantages
over other materials for IC fabrication. First, silicon has the physical properties
needed for creating transistors with good characteristics. Silicon wafers, on which
CMOS integrated circuits are built, can be produced using relatively simple and
inexpensive techniques. Silicon dioxide (SiO2) can be easily formed on the surface of
a silicon wafer as a diffusion barrier to selectively alter the electrical properties in the
wafer.

Semiconductor manufacturers usually purchase ready-to-use silicon wafers from
wafer foundries. Fig. 3.1 illustrates a typical silicon wafer production process. The
first step is to grow a single-crystal silicon ingot. Highly purified polycrystalline
silicon is molten. A carefully controlled amount of impurities is then added to
produce required electrical properties. A seed crystal is dipped into the molten
silicon to initiate the growth of a single crystal. The seed is slowly rotated and pulled



70 IC Layout and Fabrication

vertically out of the melt. The molten silicon attaches to the seed and forms an ingot
that assumes the crystal orientation of the seed. The diameter of the ingot is
determined by the rate of pulling and rotating the seed. The silicon ingot is then
sawed into wafers 10 to 30 cm in diameter and 400 to 600 µm thick. At least one of
the surfaces of the wafer is polished to a mirror finish free of scratches. The electrical
properties of the wafer are determined by the crystal orientation, and the
concentration and type of impurities added to the molten silicon.

Molten silicon

Growing crystal

Pulling direction

Ingot
Wafer

Fig. 3.1  Silicon wafer manufacturing process.

The creation of a circuit on a silicon wafer involves two major types of
operations: doping impurities into selected wafer regions to change electrical
properties and depositing patterned materials on the wafer surface.

Fig. 3.2 shows the steps of a selective doping. A layer of silicon dioxide (oxide
layer) is grown by oxidizing (SiO2 ← Si + O2) the surface of the wafer (Fig. 3.2a).
The oxide layer is then covered with a layer of photosensitive material called
photoresist (Fig. 3.2b). The photoresist-coated wafer is exposed to UV light or
electron beam through a mask that defines a pattern (Fig. 3.2c). The photoresist
residing in exposed regions softens. The softened photoresist is removed using a
chemical developer. This type of photoresist, which protects wafer regions
corresponding to the opaque regions on a mask, is called a positive photoresist. In
contrast, a negative photoresist allows the unexposed regions to be dissolved.

The wafer is treated in a chemical that removes unprotected silicon dioxide. The
photoresist-covered regions are inactive to the chemical. Windows, defined by the
pattern on the mask, are thus opened in the oxide layer (Fig. 3.2d).  Impurity atoms,
or dopants, are then introduced to the wafer surface but only accepted by the
patterned region with no oxide on top (Fig. 3.2e).  A diffusion area is thus created by
the dopants moved through the crystal lattice. The depth of the diffusion area is
determined by the temperature and time of doping. The most common p-type dopant
is boron (B). Phosphorus (P) and arsenic (As) are commonly used as n-type dopants.
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n
p-substrate

p-substrate

p-substrate

p-substrate

p-substrate

Thick oxide

Photoresist

Mask

UV light

Phosphorous diffusion

(a)

(b)

(c)

(d)

(e)

Fig. 3.2  Doping to a selected wafer region.

Another important process is to build a layer of patterned material such as
aluminum or polysilicon on top of the wafer. Polysilicon are used to form transistor
gates and short distance interconnections. Metal (aluminum) is used for the
distribution of power and signals.1 Fig. 3.3 illustrates this process. Multiple layers of
material, insulated from each other by silicon dioxide, can be formed on a wafer
surface.

                                                          
1 In 1997, IBM scientists developed a process to use copper instead of aluminum as conducting

material. Copper has better conductivity than aluminum.
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(d)

Mask

UV light

(c)

(b)

(a)

(e)

(f)

substrate

substrate

substrate

substrate

substrate

substrate

Existing layer
CVD oxide

New layer

Photoresist

Fig. 3.3  Creating layers on top of the wafer.

Unlike on the bare surface of a wafer, silicon dioxide cannot be formed on top of
a previously added layer by oxidizing the wafer. A process called chemical vapor
deposition (CVD) is used instead to form a solid layer on the wafer top by
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chemically reacting gases or vapors. For example, the insulating oxide layer is
formed by depositing silane gas and oxygen (Fig. 3.3a).

Alternatively, if CVD is performed with silane gas alone at less than 1000°C, a
layer of polycrystalline silicon (polysilicon) is formed. Polysilicon itself is not a good
conductor so it is heavily doped to provide an adequate conductivity. Alternatively, a
metal layer can be formed by heating aluminum in vacuum until it vapors and
deposits in the silicon surface (Fig. 3.3b). A photoresist layer exposed through a
mask is developed into a protective coating of the material deposited on the wafer so
that unwanted regions are etched away by chemicals (Fig. 3.3c - f).

These two operations are carried out multiple times to process a wafer into an
array of chips, which are then sawed out into chips and packaged. A simplified
CMOS process is explained with an example of creating an inverter. CMOS circuits
require both pMOS and nMOS transistors to be built on the same substrate.
Depending on the type of wafer, CMOS circuits can be built with n-well, p-well, or
twin-well processes. Alternatively, in the silicon on insulator (SOI) technology,
nMOS and pMOS transistors are built on a neutral substrate (i.e., insulator).

The foundation of an n-well process is a p-type wafer. A region on the p-type
wafer has to be doped and converted into n-type for the pMOS transistors.
Alternatively, an n-type wafer with p-type areas created for the nMOS transistors is
used in a p-well process. In a twin-well process, both well types are formed in a
relatively neutral wafer so it is most flexible but more complicated. Currently the n-
well process is more popular because it is compatible with the BiCMOS process that
incorporates BJTs in a MOSFET circuit to enhance its speed and current capability.

A typical CMOS process requires the use of ten or more masks, depending on
the number of polysilicon and metal layers needed. In the following discussion, we
present the fabrication of an inverter by showing the results of major processing
steps.

Fig. 3.4 provides four different views of an inverter. Fig. 3.4a shows the
transistor schematic that we have developed in Chapter 2. Fig. 3.4b shows a layout,
which is a composite view of the masks stacked together. Fig. 3.4c provides the top
view2 of the inverter manufactured according to the layout. Fig. 3.4d shows the cross
sectional view of the same inverter. We now proceed to look at the fabrication of
such an inverter.

                                                          
2 This top view is only illustrative since we pretend that we can see through the polysilicon and

metal layers.
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n-well
Active region
n+ select
p+ select
Polysilicon
Metal 1

n+ n+ n+p+ p+ p+

n-well

Contact hole(a)

(c)

(b)

n-well
n+ diffusion
p+ diffusion
Polysilicon
Metal 1

Contact hole

(d)

Fig. 3.4  CMOS inverter: (a) transistor schematic; (b) composite layout;
(c) top view; (d) cross sectional view.

The process of creating an n-well inverter (or in general, any n-well CMOS
circuits) can be divided into three stages. In the first stage, n-wells are formed and
active regions are defined for the transistors (Fig. 3.5). The transistors are created in
the second stage (Fig. 3.6). In the third stage, the metal interconnections are formed
(Fig. 3.7).
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n-well

(a)

n-well

(b)

n-well

(c)

p-substrate

Si3N4

Fig. 3.5 Creating an n-well for CMOS circuits.

Fig. 3.5 illustrates that n-wells, one for each group of p-MOS transistors, are
created with doping (Fig. 3.5a). Silicon nitride (Si3N4) is deposited on the substrate
and patterned with an active region mask to cover active areas defined for transistors
(Fig. 3.5b). A thick field oxide is grown everywhere on top of the substrate except
those areas covered by nitride (Fig. 3.5c). Fig. 3.5c shows the thick field oxide
created to isolate the pMOS and nMOS transistors to prevent a problem called latch-
up (to be described in Chapter 4) from occurring.

A misalignment between the transistor gate and channel will cause the transistor
to fail. A solution to this problem is the use of a technique called the self-aligned
process to create the transistors. In this technique, the polysilicon gate is created
before the diffusion of the drain and source. The polysilicon gate is then used as a
barrier when the doping is performed on the entire active region so that a channel
region is defined with the gate itself. This guarantees the alignment between the gate
and the channel.

The self-aligned process of creating transistors is illustrated in Fig. 3.6. A layer
of gate oxide is grown on the wafer. A layer of heavily doped polysilicon is
deposited and patterned with a mask to form the gates and short interconnections
(Fig. 3.6a). A layer of photoresist is patterned with an n+-select mask to allow the
sources and drains of nMOS transistors to be doped with phosphorous (Fig. 3.6b).
Notice the n+ well contact of the n-well prepared for pMOS transistors is also created
in the same step. Similarly, the pMOS transistors and the substrate contact of the
wafer are created by doping their drains and sources with boron (Fig. 3.6c).
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n+ n+ n+p+ p+ p+

n-well

(c)

Photoresist

Boron diffusion

n+ n+ n+

n-well

(b)

Phosphorous diffusion

n-well

(a)

Photoresist

Polysilicon

Fig. 3.6  Self-aligned process of creating transistors for the inverter.

The metallization process is shown in Fig. 3.7. A thick layer of oxide is
deposited over the entire wafer. Contact cuts, which provide the paths for
interconnecting different layers, are defined with a mask (Fig. 3.7a). These contact
cuts are often filled with tungsten to ensure connectivity. A thin layer of aluminum is
evaporated onto the substrate, patterned, and etched to form the interconnections
(Fig. 3.7b). A layer of thick CVD oxide (glass) is usually deposited on the finished
wafer as a protective layer (not shown).
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Fig. 3.7  Metallization process of a CMOS inverter.

Refer back to Fig. 3.4b, which shows two masks are required to form the
diffusion regions (i.e., source and drain) of a transistor. An active region mask is first
used to define the dimensions of the transistors. The doping is then actually done
with a select mask with openings that extend beyond the active regions. This way we
can ensure that the transistors are formed correctly. This can be seen by observing
the difference between the composite layout diagram (Fig. 3.4b) and the top view
(Fig. 3.4c). The active region masks define where the diffusion actually takes place
although the n+-select and p+-select masks cover areas extended beyond the
transistors. Also, there is no diffusion underneath the polysilicon gates (i.e., the
channels) although both the active and select masks include the channels to conform
to the self-aligned process.

It is often more convenient for a layout designer to think and work directly with
the transistor source/drain dimensions which are defined by the active region mask.
The symbolic layout style pioneered by the layout tool magic developed at
University of California, Berkeley allows the designer to create a transistor by
specifying only its active regions (n+ and p+ diffusions) and its gate.3 The select mask
and well mask for the transistors can be automatically generated according to the
design rules.

Fig. 3.8 demonstrates the relationship between a physical nMOS transistor and
its symbolic and composite layouts. Fig. 3.8a shows the top view of this nMOS
transistor. As noted, physically there is no diffusion in the channel underneath the
polysilicon gate. Fig. 3.8b is a symbolic transistor layout that specifies the n+

diffusion (active) areas and the gate. This symbolic layout can be converted into the
composite mask layout shown in Fig. 3.8c, which includes the active region, n+-
select, and polysilicon masks.

                                                          
3 Magic is a full-custom symbolic layout tool with interactive design rule checking and can be

downloaded from http://www.research.digital.com/wrl/projects/magic.

http://www.research.digital.com/wrl/projects/magic
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Active region
n+ select (composite)
or diffusion (symbolic)
Polysilicon
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Fig. 3.8  Relationship between a physical transistor and its layouts.

3.2 CMOS Design Rules

We have shown in Fig. 3.4 that a layout resembles the top view of the IC. The
layout design is thus 2-dimensional from the viewpoint of an IC designer. In fact,
designers normally do not control the depth dimension of an IC. The depth of a
transistor source or the thickness of a metal wire is determined by the fabrication
process. The layout designer only decides the dimensions and locations of the
transistors and interconnects them into the target circuit. The minimum feature size
of a technology is typically denoted by the narrowest width of a polysilicon wire that
it can produce. For instance, if the narrowest polysilicon wire in a technology is 1 µm
wide, it is called a 1 µm technology.

Design rules include width rules and spacing rules. They capture the physical
limitations of a fabrication process to ensure that a design that conforms to the design
rules can be successfully fabricated. Therefore, design rules release IC designers
from the details of fabrication so they can concentrate on the design instead. Note
that the successful fabrication of an IC does not automatically imply that it meets the
design criteria. It simply means that the transistors and their interconnections
specified in the layout are operational.

Mead and Conway developed a set of simplified design rules now known as the
scalable λ-based design rules, which are valid for a range of fabrication
technologies.4 In these rules, the minimum feature size of a technology is
characterized as 2 λ. All width and spacing rules are specified in terms of the
parameter λ. Suppose we have design rules that call for a minimum width of 2 λ and
a minimum spacing of 3 λ. If we select a 2 µm technology (i.e., λ = 1 µm), the above
rules are translated to a minimum width of 2 µm and a minimum spacing of 3 µm. On
the other hand, if a 1 µm technology (i.e., λ = 0.5 µm) is selected, then the same
width and spacing rules are now specified as 1 µm and 1.5 µm, respectively.

                                                          
4 C. A., Mead and L. A. Conway, Introduction to VLSI Systems. Addison-Wesley, 1980.
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Different fabrication technologies apparently require different design rules. The
scalable λ-based design rules are possible because they are created to be sufficiently
conservative for a range of fabrication technologies.

The readers should be aware of the drawbacks of scalable design rules: the
layouts produced according to scalable design rules are often larger than necessary.
In order to accommodate a range of fabrication processes, these rules are naturally
conservative. For example, a minimum spacing of 4 µm may be ordered although in
reality 3.2 µm is sufficient. This limitation is especially critical in a full-custom
design in which an optimized layout area is desired.

The usefulness of scalable λ-based design rules is limited for sub-micron
technologies. We demonstrate the use of scalable λ-based design rules to create
layouts since these rules are easier to learn and they are popular in MOSIS supported
projects.5 Technology specific design rules should be used in performance critical
designs.

MOSIS Design Rules
MOSIS publishes CMOS design rules for processes with a range of feature sizes.

Currently, MOSIS design rules can be found in their web page:
http://www.mosis.org.  The reader should download the design rules for a target
process as a reference. We use a subset of MOSIS’ scalable CMOS (SCMOS) design
rules to provide an overview of their use. This subset covers the rules for one
polysilicon layer, two metal layers, and enhancement-mode nMOS and pMOS
devices. SCMOS compatible fabrication processes with additional polysilicon and
metal layers are available through MOSIS. Design rules revised for better fit to sub-
micron (feature size < 1 µm) and deep sub-micron (feature size < 0.25 µm) processes
are also available.

We concentrate on a subset of the SCMOS rules used in a symbolic layout
process that was popularized by the computer-aided layout tool magic. In order to
maintain the tool independence of the following description, the discrepancy between
the symbolic and physical layouts will be pointed out when the situation warrants it.
The legends used in the illustrations of design rules are given in Fig. 3.9.

Polysilicon is used both as transistor gates (gate poly) and as short distance
interconnections (field poly). Fig. 3.10 shows that the minimum width of a
polysilicon wire is 2 λ (the minimum feature size) and two unrelated polysilicon
wires must be separated by at least 2 λ.

                                                          
5 MOSIS provides VLSI circuit prototyping services for academic, research, and commercial

institutes. See http://www.mosis.org.

http://www.mosis.org
http://www.mosis.org
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or n-diffusion
p+-select
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metal-2 polysilicon

active

contact cut
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Fig. 3.9   Legends for different IC mask layers.

Spacing: 2 λ

Width: 2 λ Polysilicon

Polysilicon

Fig. 3.10  Polysilicon design rules.

The following rules for diffusion regions are valid for both n-type and p-type
diffusion regions. Fig. 3.11 shows that the minimum width of a diffusion region is 3
λ. Two unrelated diffusion regions of the same type have to be separated by at least 3
λ.

Spacing: 3 λ

Width: 3 λ n-type (p-type)
diffusion

diffusion of the
same type

Fig. 3.11  Diffusion (n-type or p-type) design rules.

The largest spacing rule in the scalable λ-based design rules is the minimum
distance between diffusion regions of different types. They have to be separated by at
least 10 λ. The reason behind this large spacing is to avoid the latch-up problem,
which can cause a CMOS circuit to malfunction. Latch-up will be discussed in
Chapter 4.
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Fig. 3.12  Spacing between different types of diffusion.

In a symbolic layout, transistors are formed by crossing polysilicon wires and
diffusion regions. The action of running a polysilicon wire across a p-type diffusion
indicates a pMOS transistor. An nMOS transistor is specified by drawing a
polysilicon wire across an n-type diffusion. Only the active diffusion regions and
their types have to be specified in a symbolic layout. Both the select mask and well
mask can be generated, manually or automatically, at a later stage.

Fig. 3.13 illustrates the symbolic transistor design rules. The layout of two
serially connected pMOS transistors is demonstrated.6 The formation of a connection
between the first metal (metal-1) layer and the diffusion layer, called a diffusion-
contact, is also shown. The channel area is defined by the overlapping area of the
polysilicon wire and the diffusion. The polysilicon wire must extend beyond the
diffusion that it is crossing for at least 2 λ. A field poly wire must be separated from
a diffusion region for at least 1 λ. The diffusion region of a transistor must be
extended from its gate for at least 3 λ. The minimum size of a diffusion-contact is 4 λ
× 4 λ. Its details will be further discussed in a moment. A channel must be separated
from a diffusion-contact by at least 1 λ.

Fig. 3.13 also illustrates the application of the polysilicon wire separation rule (2
λ) in forming the two serially connected transistors. The two transistor gates are
separated by 2 λ. The diffusion area between these transistor gates serves as the drain
of the transistor at the top. At the same time, it is also the source of the lower
transistor. In other words, the diffusion region is used in this layout example as a
local interconnect between transistors.

                                                          
6 Identical design rules apply to the design of nMOS transistors.
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Fig. 3.13  Transistor (symbolic) design rules.

A composite layout generated from the symbolic layout in Fig. 3.13 is shown in
Fig. 3.14. The select area must be extended a minimum of 2 λ beyond the diffusion
(active) area it covers. Note that a p-select is used to create the p-diffusion areas for a
pMOS transistor and an n-select is needed to create the n-diffusion areas for an
nMOS transistor. In addition, a p-diffusion area must be built in an n-well that must
be extended at least 5 λ beyond the edges of its enclosed diffusion area.

Fig. 3.15 shows that metal-1 (the first metal layer) wires are required to have a
minimum width of 3 λ. Unrelated metal-1 wires are separated by at least 3 λ.

Fig. 3.16 shows that the minimum width of a metal-2 (the second metal layer)
wire is the same as that of a metal-1 wire (3 λ), but the spacing between unrelated
metal-2 wires is at least 4 λ.

Fig. 3.17 illustrates the design rules for interlayer contacts. An interlayer contact
can be made from a layer to the layer above or below it. Contacts are allowed
between substrate and metal-1, well and metal-1, n-diffusion and metal-1, p-diffusion
and metal-1, polysilicon and metal-1, metal-1 and metal-2. All contacts are made by
overlapping the two layers to be connected. A contact-cut, which is an opening in the
silicon dioxide between the two layers to be connected, is provided at the center of
the overlapped area. Metal such as tungsten is deposited in the contact-cut to form a
contact between the top and bottom layers.

The two contacting layers must overlap for a minimum area of 4 λ × 4 λ, with a
contact-cut of 2 λ × 2 λ or larger. The overlapped area must have a margin of at least
1 λ beyond its contact cuts. All available contacts and their design rules are given in
Fig. 3.17.
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Fig. 3.14  Select area and n-well design rules.

3 λ

3 λ Metal-1

Metal-1

Fig. 3.15  Metal-1 design rules.

A polysilicon-contact has to be separated from a metal-2 contact by at least 1 λ.
In contrast to the 3 λ separation rule between two unrelated diffusion regions, a
diffusion region must be separated from a diffusion-contact for at least 4 λ. A well-
contact can be abutted to the diffusion region in the same well but must be separated
from a transistor channel for at least 3 λ. The rules for well contacts also apply to
substrate-contacts. All metal-2 contacts (also called vias) must be formed on a “flat”
surface, which means that there should not be anything underneath them.
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4 λ

3 λ Metal-2

Metal-2

Fig. 3.16  Metal-2 design rules.

Additional design rules have been established to improve the yields of sub-
micron fabrication processes. Sub-micron fabrication processes often utilize CMP
(Chemical-Mechanical Polishing) to achieve planarity. Effective CMP requires a
minimum feature density, defined as the total area covered by the features on a layer
divided by the overall area, to be met on the polysilicon and metal layers. For
example, MOSIS specifies a minimum polysilicon layer density of 15% and a
minimum metal layer density of 30% for its 0.35 and smaller processes. These are
known as the minimum density rules. Dummy features can be added to a layout to fill
empty spaces to satisfy these rules.

The antenna rules prevent the potential damages induced by the charge collected
in the fabrication process on exposed polysilicon and metal features connected to a
transistor. The accumulated charge may develop potentials sufficiently high to
damage the thin oxide. The antenna rules require that the area of a polysilicon or
metal structure over field oxide divided by the area of the transistor gate (thin oxide
area) to be less than a given ratio. Since only the layer being processed can collect
charge, the antenna rules can be satisfied by breaking long polysilicon or metal
features into shorter segments joined by connections formed on a different layer.

3.3 Layout Examples

In this section, we demonstrate layout techniques by providing a number of
layout examples. Notice that an interactive design rule checker, such as the one
available in the layout tool magic, is very helpful for learning layout techniques since
it provides instant feedback to the designer. The reader should take advantage of a
layout editor with this function if one is available.
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Fig. 3.17  Contact design rules.
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Example 3.1
Design a symbolic layout for an inverter ( )Z A=  with minimum size transistors and
measure its area.

In IC design, the characteristics of a transistor are determined by its channel
dimensions. According to the λ-based design rules, the smallest transistor channel is
2 λ long (the minimum width of a polysilicon wire) and 3 λ wide (the minimum
width of a diffusion region). However, in Fig. 3.18, we have increased the width of a
transistor to 4 λ so that a diffusion-contact (4 λ × 4 λ required) can be readily made.
We often refer to these 2 λ × 4 λ transistors as the minimum size transistors.

An inverter formed of minimum size transistors is called a minimum size
inverter. An inverter layout in which the transistors are arranged vertically is shown
in Fig. 3.18. Note the use of well and substrate contacts. Its area, defined by the
smallest rectangle enclosing it, is measured to be 42 λ × 15 λ = 630 λ2.

A transistor level schematic can be extracted from a layout for verification and
simulation purposes. Note that signal identifiers (VDD, GND, A, and Z) are provided
on the layout to facilitate the simulation of this circuit. Showing along in Fig. 3.18 is
a “stick diagram” of this layout, which is a way to provide an abstract view of the
layout. Layout designers can use stick diagrams as a design-planning tool or as a
means of “paper and pencil” communication. Different colors can be used in a stick
diagram to indicate different layers.

Two slightly different layouts for the same inverter created in Fig. 3.18 are
shown in Fig. 3.19. Both of them have an area of 40 λ × 18 λ = 720 λ2. Note that the
well/substrate-contacts in the symbolic layout on the right do not abut the diffusion
area. The designer should always ensure that in the final composite layout each
well/substrate has at least one connection to the adequate voltage potential (VDD for
n-type well/substrate and VSS for p-type well/substrate). This is especially important
if masks are automatically generated from a symbolic layout.
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Fig. 3.18  Inverter symbolic layout and its stick diagram.

+ VDD

+ Z

+ GND

A +

40

35

30

25

20

15

10

5

0

0 5 10 15                          

+ VDD

+ Z

+ GND

A +

40

35

30

25

20

15

10

5

0

0 5 10 15

Fig. 3.19  Alternative symbolic layouts for a minimum size inverter.
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Example 3.2
Modify the inverter symbolic layout shown in Example 3.1 to allow two metal-1

lines to go through it for routing purposes.

The solution layout is shown in Fig. 3.20. As required, two metal-1 lines go
through the layout horizontally. The top one goes through the source of the pMOS
transistor and the bottom one passes through the source of the nMOS transistor.

+ VDD

+ Z

+ GND

A +

Fig. 3.20  Inverter symbolic layout allowing two horizontal metal-1 routing paths.

Example 3.3
Use a 2 λ × 16 λ pMOS transistor and a 2 λ × 8 λ nMOS transistor to create an
inverter symbolic layout.

The layout result is shown Fig. 3.21. Note the use of multiple contact-cuts
instead of a big one.
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+ VDD

+ Z

+ GND

A +

Fig. 3.21  Inverter symbolic layout with wider transistors.

Example 3.4
Create a symbolic layout for a two-input NAND gate F AB= . Use 2 λ × 4 λ
transistors.

Fig. 3.22 shows a layout of the NAND circuit, which is created, without much
planning, according to the transistor arrangement in its schematic.
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F

VDD

BA

VSS                 

+ A
+ B

+ F

+ GND

+ VDD

Fig. 3.22  Symbolic layout of a two-input NAND gate.

Example 3.5
Minimize the area of the two-input NAND gate given in Example 3.4 by rearranging
the transistors.

Fig. 3.23 shows an alternative layout of the same two-input NAND circuit. Note
that this layout arranges the pMOS transistors in a row and places it in parallel to a
row of nMOS transistors. This technique, commonly used in standard-cell layouts,
simplifies the routing of signal lines and allows the polysilicon wires forming the
transistor gates to be readily extended to both the top and bottom of the layout. The
area of this layout is about 12% smaller than the one in Fig. 3.22.
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+ VDD

A +
B +

+ GND

+ F

Fig. 3.23  An optimized symbolic layout of a 2-input NAND gate.

An input signal typically drives at least two transistors (one nMOS and one
pMOS) in a complementary CMOS circuit. A systematic approach is explained here
to arrange the transistors in a layout so that the corresponding pMOS and nMOS
transistors driven by the same signal are virtually facing each other across the n and p
diffusion spacing.

An example of this layout style has been shown in Fig. 3.23. This arrangement
greatly simplifies the routing of signal lines. It is especially attractive in the design of
standard-cells when their I/O pins are to be accessed from the top and bottom of the
cell (see Chapter 1). The important point in this approach is to arrange the transistors
in one of the switch networks (e.g., the pull-up network) as a horizontal sequence.
The transistors in the other switch network are then arranged to match the sequence.
We use the following example to illustrate this approach.

Example 3.6
Design a symbolic layout for a complementary CMOS circuit that implements
F A BC= + .

The transistor schematic for this function is given in Fig. 3.24. The design
objective in this example is to form two rows of transistors. All pMOS transistors
should be in one row and all nMOS transistors should be in another row.
Furthermore, the pMOS and nMOS transistors should be arranged in the same
sequence in their respective rows. We will see that this layout structure eliminates the
need to cross input signals.

The transistors in the pull-up and pull-down networks are traced to create two
paths, respectively. Without loss of generality, we assume that the first path is
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created in the pull-up network. The objective of creating this path in the pull-up
network is to walk through, without repeating, all pMOS transistors in the pull-up
network (Fig. 3.24). Such a path is shown on the pull-up network to consist of the
sequence:

transistor A → transistor B → transistor C.

We must now search for a path that goes through the pull-down network in the
same transistor sequence. This path is also shown in the schematic diagram. These
two paths determine the sequence of placing transistors in the rows as illustrated in
the layout.

F

A

B C

A

B

C

VDD

VSS

+ VDD

+ GND

+ FA +
+ B + C

Fig. 3.24  A symbolic layout of F A BC= + .

In general, a continuous path that goes through all transistors in a switch network
may not exist. In this case “breaks” can be inserted into the path. We demonstrate the
use of breaks in the following example.
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Example 3.7
Design the symbolic layout for the function F A BD C= + +  with 2 λ × 8 λ
transistors.

Refer to the transistor schematic diagram of this logic circuit in Fig. 3.25. No
continuous path can go through all the pull-up transistors. A break, indicated by a
dotted line, must be used to set up a path consisting of

transistor A → transistor B → transistor C → break → transistor D.

In the pull-down network, a matching path is found to be

transistor A → transistor B → break → transistor C → transistor D.

The symbolic layout of Fig. 3.25 follows these two sequences to arrange the
transistors.

F

A

B

C

D

A

B

D

C

VDD

VSS

+ VDD

+ F

+ VSS

+ D+ C+ BA +

Fig. 3.25  A symbolic layout of F A BD C= + + .
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This approach of arranging transistors into a row can be extended and applied to
a circuit in which more than two transistors are driven by the same signal. In such a
case, multiple transistor rows can be stacked to maintain the simplicity of input signal
routing (see Problem 3.11).

Standard-cells require their I/O pins to be accessible for routing purposes. So far
in our example designs, polysilicon lines are used for input purposes. Metal-2 has a
better conductivity than polysilicon and is commonly used in a channel/switchbox
routing (see Chapter 1). In the following examples we demonstrate a few possible
layout styles that provide metal-2 I/O pins.

Example 3.8
Redesign the function given in Example 3.7 into a standard-cell style layout with all
I/O pins accessible using metal-2. Double the transistor channel widths from the
original 8 λ in Example 3.7 into 16 λ.

Since a standard-cell is designed as a building block to be used in future designs,
normally wider transistors are used to provide a larger driving capability. Comparing
the layout in Fig. 3.26 with the layout created in Example 3.7, the main difference is
that each input signal wire (polysilicon) is provided with a metal-2 contact in the
middle of the cell. Since a contact between polysilicon and metal-2 is unavailable, a
polysilicon-metal-1 contact is created as an intermediate step.

Note that the layout illustrates how input D and output F are brought, through
metal-2 lines, to the top and bottom of the cell. We also demonstrate the inclusion of
a metal-2 feed-through (the leftmost metal-2 wire), which allows a path from a
routing channel to pass through a standard-cell into another channel.

The use of metal-2 wires to route signals to the contacts in the middle of the cell
creates a limitation. It blocks the use of metal-2 in the design of the layout itself. If
more than 2 metal layers are available, a few of them can be reserved for over-the-
cell routing. This approach allows inter-cell routing to be performed over the cells so
that pure routing area, which does not contribute to circuit density, can be reduced.
For example, the metal-2 contacts in the middle of the cell can be replaced with
metal 3 contacts if metal 3 is reserved for over-the-cell routing.
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+ F

+ VDD

+ GND

A +

B +

C +

D +

Fig. 3.26  Standard-cell design of F A BD C= + + .

An alternative layout for this standard-cell is given in Fig. 3.27, in which the
metal-2 I/O contacts are made at the top and bottom of the cell. This design style
should be used when metal layers are limited. Since routing is done at the borders of
the cell, all metal layers can be used within the cell. Avoiding over-the-cell routing
has the advantage of preventing unexpected cross coupling between the cell and the
overhead routing paths.
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+ VDD

+ GND

+ F+ D+ C+ B+ A

Fig. 3.27  Alternative standard-cell layout of F A BD C= + + .

The format a layout is described in a computer file depends on the CAD system
used. When a design is submitted to a silicon foundry for fabrication, the layout is
usually converted into either a Calma GDSII file or Caltech Intermediate Form (CIF)
file. GDSII is a binary format and CIF uses a plain ASCII format. References are
provided at the end of this chapter for information on these two layout specifications.
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3.4 Summary

A simplified manufacturing process of CMOS circuits is presented in this
chapter. In order to allow nMOS and pMOS transistors to coexist on the same
substrate, portions of the substrate are converted into a type different from the wafer.
There are two major operations in integrated circuit manufacturing. In one operation,
the properties of the substrate are selectively and locally modified. Another operation
selectively deposits materials on the surface of the substrate. An integrated circuit is
built by repeating these two operations with different masks created according to a
layout designed for the circuit.

While the advances of CAD tools have allowed VLSI designers to design at
behavioral or structural levels, full-custom hand-crafted layouts are needed for the
creation of library cells and performance critical circuits. Design rules represent the
manufacturing limits by a set of width rules and spacing rules. In this chapter, we
described a subset of basic scalable λ-based CMOS design rules. A symbolic layout
is often used in a design process since it simplifies the layout process and can be
translated into a composite layout for which masks are created accordingly. A
number of examples are presented to illustrate the use of these design rules to create
symbolic layouts. A systematic approach to arrange transistors for improved layout
density is explained.

3.5 To Probe Further

VLSI fabrication:
• S. M. Sze, ed., VLSI Technology, 2nd Edition, McGraw-Hill, 1988.

• S. A. Campbell, The Science and Engineering of Microelectronic Fabrication,
Oxford University Press, 1996.

Scalable λλ-based design rules and layout tools:
• C. A. Mead and L. A. Conway, Introduction to VLSI Systems. Addison-Wesley,

1980.

• J. K. Ousterhout, G. T. Hamachi, R. N. Mayo, W. S. Scott, and G. S. Taylor,
“Magic: A VLSI layout system,” Proceedings of 21st Design Automation
Conference, 1984, pp. 152-159.

• J. P. Uyemura, Physical Design of CMOS Integrated Circuits Using L-EDIT,
PWS, 1995.

• MOSIS λ-based design rules can be downloaded from http://www.mosis.org

http://www.mosis.org
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• Information about the popular full-custom layout tool magic can be found at
http://www.research.digital.com/wrl/projects/magic/magic.html

Prototype fabrication services:
• MOSIS provides prototyping to academic and commercial institutes. Visit

http://www.mosis.org for more information.

Commercial CAD tools:
• http://www.cadence.com (Cadence).

• http://www.mentor.com (Mentor Graphics).

• http://www.synopsys.com (Synopsys).

• http://www.avanticorp.com (Avant!).

GDSII and CIF layer specifications:
• C. A. Mead and L. A. Conway, Introduction to VLSI Systems, Addison-Wesley,

1980.

• Cadence Design Systems, Inc./Calma. GDSII Stream Format Manual, Feb.
1987, Release 6.0, Documentation No. B97E060.

3.6 Problems

For layout design problems, use a layout editor if one is available.

3.1 List three uses of SiO2 in a CMOS fabrication process.

3.2 Use the SCMOS design rules to draw a symbolic layout for a minimum size
transistor. Your answer should include the dimensions of its gate, source, and
drain.

3.3 Draw the cross sectional view of the layout shown in Fig. 3.28 along the
cutline K-K'. Follow the style used in Fig. 3.4 to show your solution.

http://www.research.digital.com/wrl/projects/magic/magic.html
http://www.mosis.org
http://www.cadence.com
http://www.mentor.com
http://www.synopsys.com
http://www.avanticorp.com
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+ VDD

+ GND

+ FA +
+ B + C

K K'

Fig. 3.28  Layout for Problem 3.3.

3.4 Identify the design errors in the layout of Fig. 3.29. The dimensions are given
in λ’s.

0 5 10 15 20 

0 
5 

10
 

15
 

20
 

Fig. 3.29  Layout for Problem 3.4.
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3.5 Identify the logic function(s) of the layout in Fig. 3.30.

Fig. 3.30  Layout for Problem 3.5.

3.6 Design a layout for a one-bit full-adder standard-cell. The height of this cell
should be 100 λ. Arrange the transistors into rows so that there is no crossing-
over of input signals. Minimize the area of your design.

3.7 Explain the importance of applying the polysilicon mask before the diffusion
mask in a typical CMOS fabrication process.

3.8 Create a CMOS cell for the logic function ( )Z A B C D= + . Use pMOS
transistors with L = 2 λ, W = 10 λ and nMOS transistors with L = 2 λ, W = 4
λ. Minimize the area of your design.

3.9 Design a standard-cell layout for a 2-to-1 multiplexer. The height of this cell
should be 100 λ.

3.10 Design a standard-cell layout for a 2-input XOR. The height of this cell
should be 100 λ. Minimize the area of your design.

3.11 Extend the transistor arrangement approach to circuits that have more than
two transistors driven by the same signal so that multiple transistor rows are
stacked to maintain the simplicity of input signal routing.

3.12 List the order of layer arrangement in a one-polysilicon, five-metal CMOS
process. Notice that vias are used to connect between metal-1 and metal-2,
metal-2 and metal-3, metal-3 and metal-4, and metal-4 and metal-5.
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Chapter 4 CMOS Circuit Characterization

To design a circuit that works is easy; to design one that
works well is hard …

An integrated circuit is commonly evaluated by its speed, power dissipation, and
size, not necessarily in this order. In Chapter 1 we introduced the use of transistor
count to estimate the size of an IC. Chapter 3 explained the determination of chip
area by measuring its layout. This chapter discusses the evaluation of propagation
delay and power dissipation. Since a function often has more than one way of
implementation, these criteria can be used, either individually or in combination, to
select a structure that suits a specific application.

We begin by reviewing MOSFET behaviors beyond what the simple switch
model introduced in Chapter 2 depicts. The use of a circuit-level simulator (SPICE)
to simulate and evaluate a CMOS circuit is briefly discussed. Following the
estimation of CMOS circuit parasitic resistance and capacitance values, we develop a
MOSFET resistive switch model. The use of this model in propagation delay
estimation is described.

Not all parasitic parameters are available until the physical layout of the design
is available. We present a simplified delay model called the τ-model which can be
used to explore propagation delay issues without getting involved with the physical
layout details. The use of this model to design optimized buffers for driving large
loads is demonstrated. The power dissipation evaluation of a CMOS circuit is
explained. Finally a potential problem in CMOS circuits called latch-up and its
prevention are discussed.

4.1 MOSFET Theory

The simple MOSFET switch model has allowed CMOS logic circuits to be
designed and analyzed easily. However, an enhanced model that incorporates some
non-idealistic MOSFET behaviors is needed in the estimation of delay time and
power dissipation. The following nMOS circuit, originally presented in Fig. 2.2 for
the introduction of the simple switch model, is reproduced in Fig. 4.1 for a more in-
depth analysis of the nMOS transistor.

Instead of restricting the operating voltages of the circuit in Fig. 4.1 to only VSS
and VDD, as we have previously done in the development of the simple switch model,
this circuit will now be analyzed with both vI and vD varying continuously and
independently between VDD and VSS. A family of curves showing the iD-vDS
characteristics of the nMOS transistor measured at different vI’s are given in Fig. 4.2.
Notice that vI = vGS, the gate to source voltage of the nMOS transistor.
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Fig. 4.1 Setup for measuring the iD-vDS characteristics of an nMOS transistor.
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vGS < Vtn (cut off)

vGS = Vtn + 1
vGS = Vtn + 2

vGS = Vtn + 3

vGS = Vtn + 4
SaturationLinear

vDS > vGS - VtvDS < vGS - Vt

Fig. 4.2  The iD-vDS characteristics for the nMOS transistor.

Fig. 4.2 shows the three operation regions of the nMOS transistor, which are
described as follows.

The cutoff region
The nMOS transistor is turned off, as correctly depicted by the simple switch

model, when vI = vGS ≤ Vtn, the threshold voltage of the transistor. In this cutoff
region, iD ≈ 0.

Now assume that the transistor is in its cutoff region and vI is gradually
increased. When vI is increased to above Vtn, a channel is induced under the gate and
the transistor turns on with iD > 0. The operation of an nMOS transistor when it is
turned on, however, is further divided into two distinct regions.
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The linear region
When the transistor is turned on and vDS is kept small enough, the channel is

continuous from the source to the drain. In order to maintain a channel continuously
between the source and drain ends, vGS and vGD must be kept above Vtn. Since vGD =
vGS – vDS, the condition of vGD > Vtn is transformed into vGS – vDS > Vtn. This is the
familiar condition for linear region operation,

vDS < vGS – Vtn. (4.1)

 In the linear region, the iD-vDS characteristics can be described by the following
equation:

i k
W
L

v V v vD n GS tn DS DS= − −





( )
1
2

2 , (4.2)

 where k
tn
n ox

ox
=

µ ε
 is a process dependent parameter called the transconductance

parameter, µn is the electron mobility (1350 cm2/V-s), εox is the gate oxide
permittivity (3.5 × 10-13 F/cm), tox is the thickness of the gate oxide (e.g., 0.02 µm),
W is the channel width, and L is the channel length.1  If vDS is sufficiently small, the
vDS

2 term can be ignored and iD is linearly dependent on vDS. This operation region is
thus referred to as the linear region.

The saturation region
For a fixed vGS, if vDS is increased to exceed (vGS – Vtn), the voltage difference

between the gate and the drain (VGD) drops below Vtn and the channel depth at the
drain end decreases to almost zero. Under this condition, the channel is said to be
pinched off and the current through the channel becomes independent of vDS and
essentially remains a constant. In other words, the channel current saturates. In the
saturation region, the iD-vDS characteristics can be described by the following
equation:

i k W
L

v VD n GS tn= −
1
2

2( ) (4.3)

which is independent of vDS.
In reality, this equation is only an approximation since as vDS increases beyond

(vGS – Vtn), the channel pinch-off point moves slightly away from the drain and the
effective channel length is reduced. This effect, known as channel-length modulation,

                                                          
1 The mobility is temperature dependent.
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results in a higher iD as vDS increases since the current is inversely proportional to the
channel length.

We can apply the duality principle between nMOS and pMOS transistors to
derive the operation regions of pMOS transistors. These operation regions are
presented along with their nMOS counterparts in Fig. 4.4. The circuit that is used to
determine the pMOS iD-vDS characteristics is shown in Fig. 4.3. For the convenience
of analyzing CMOS circuits, iD assumes a direction from source to drain for the
pMOS transistor, which is different from Fig. 4.1 (from drain to source).
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+
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-

Fig. 4.3 Setup for measuring the iD-vDS characteristics of a pMOS transistor.

Operating
Regions

nMOS
(vGS > 0, vDS > 0, Vtn > 0)

pMOS
(vGS < 0, vDS < 0, Vtp < 0)

Cutoff vGS ≤ Vtn, iD = 0 vGS ≥ Vtp, iD = 0
Linear vGS > Vtn
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Fig. 4.4 Operation regions of nMOS and pMOS transistors.

In Fig. 4.4, k
tp
p ox

ox
=

µ ε
 is the transconductance of the pMOS transistor. µp =

480 cm2/Vs and is the mobility of holes. In general, the transistors switched on in a
steady state CMOS circuit operate in their linear regions. An nMOS transistor,
operating in its linear region, has a channel resistance of
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Similarly, the pMOS transistor has a linear region channel resistance of

 r
v
i

k
W
L

v VDSp
DSp

Dp
p

p

p
GSp tp= = −













−
∂

∂

  
  

( )
1

 when vDSp = 0 (4.5)

Typically, µp = 0.4 µn, and thus the linear channel resistance of a pMOS
transistor is at least 2.5 times higher than an nMOS transistor with the same channel
length (L) and width (W). Notice the use of a subscript (n or p) in the above
equations to distinguish between nMOS and pMOS transistors.

4.2 Voltage Transfer Characteristic

While digital systems are designed to deal with only binary signals, practical
signals cannot jump from one level to another instantaneously. Instead, signals take a
finite time to change and experience propagation delays. It is thus important to
develop an understanding of what is going on in the CMOS circuit when signals
change before we develop an improved transistor switch model to evaluate delay
times.

Voltage transfer characteristic describes the voltage relationship between the
input and output signals of a circuit. We will use an inverter as a general CMOS
complementary structure to derive the voltage transfer characteristic of CMOS
complementary logic circuits. Notice that this discussion goes beyond the analysis of
an inverter since all complementary logic circuits operate in a manner similar to the
inverter.

Fig. 4.5 shows the inverter that we are going to analyze and its voltage transfer
function, which is divided into 5 regions (a to e). First recall that the simple switch
model is valid when a transistor is turned off so regions a and e can be readily
determined.

In region a, the nMOS transistor is off. During steady state, there is no current
flowing through the inverter so vZ = VDD. Therefore, vDSp = 0 > vGSp – Vtp, and the
pMOS transistor is in its linear operating mode. Symmetrically, in region e, the
pMOS transistor is off, vZ = 0 and the nMOS transistor is in its linear operating
mode.
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Fig. 4.5  CMOS inverter and its voltage transfer characteristic.

In regions b, c, and d, both nMOS and pMOS transistors are turned on and the
inverter is in transition. In order to help visualize the relationship between the
transistors, we superimposed the iD-vDS curve sets of the pMOS and nMOS
transistors in Fig. 4.6 by recognizing the following relations.

Dp Dni i= (4.6)

,  A GSn Z DSnv v v v= = (4.7)

,  A DD GSp Z DD DSpv V v v V v− = − = (4.8)

We provide a qualitative analysis of the voltage transfer characteristic with
respect to Fig. 4.6 before its quantitative development. In order to satisfy (4.6), for a
given vA, the circuit must operate at the intersecting point between the nMOS and
pMOS curves corresponding to vA.  If vA increases beyond Vtn, the nMOS transistor
begins to turn on and forms a voltage divider with the pMOS transistor, causing
output vZ to decrease.

Graphically we can see that the nMOS transistor is in its saturation region and
the pMOS transistor is in its linear region. This corresponds to region b. As vA
continues to increase, vZ continues to decrease and the circuit moves toward the
center of the graph (region c) in which both transistors are in saturation. Further
increasing the input voltage moves the circuit into region d in which the nMOS
transistor is in its linear mode and the pMOS transistor is in saturation. Finally, the
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circuit settles into region e when va goes beyond VDD + Vtp which turns off the pMOS
transistor.

vZ 

Region c Region bRegion d
iDn

iDp

VDD0

vGSnvGSp

Fig. 4.6 Relationship between the nMOS and pMOS transistors in an inverter.

We now derive the boundary points that separate regions and the expression of
vZ as a function of vA.

Region a:
The simplified transistor switch model is valid in this region. The nMOS

transistor is off and the pMOS transistor is in its linear region with vDSp = 0.

vA ≤ Vtn; vZ = VDD;  iDp = iDn = 0 (4.9)

Region b:
The nMOS transistor is turned on so vA ≥ Vtn. This establishes the lower bound

of vA in region b. The pMOS transistor is in its linear region, which implies vDSp ≥
vGSp – Vtp. This can be rewritten in terms of vA and vZ as vZ – VDD ≥ vA – VDD – Vtp.

The upper bound of vA in this region is thus established as (vZ + Vtp). The
relation of vA and vZ is given by the following current equation:

2
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= − =
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Substituting vA with (vZ + Vtp) in the above current equation determines the output
voltage when the inverter is leaving region b and going into region c. Alternatively,
the boundary between regions b and c can also be found by considering region c, as
we are going to demonstrate next.

Region c:
In this region both transistors are in saturation. Equating the current expressions

we have

2 21 1( ) ( )
2 2

p n
Dp p A DD tp n A tn Dn

p n

W W
i k v V V k v V i

L L
= − − = − = (4.11)

The above equation has only one variable vA, which implies that region c occurs
at a single value of vA. Due to the continuity of the voltage transfer characteristic, this
value, defined as the logic threshold Vth of the inverter, is also the upper bound of vA
in region b and the lower bound of vA in region d.

Region d:
The pMOS transistor is turned on so vGSp = vA – VDD ≤ Vtp or vA ≤ VDD + Vtp. The

nMOS transistor is in its linear region which implies vDSn ≤  vGSn – Vtn, which can be
rewritten in terms of vA and vZ as vZ ≤ vA – Vtn.

The lower bound of vA in this region is thus established as (vZ + Vtn). The relation
of vA and vZ is given by the following current equation:

2 21 1( ) ( )
2 2

pn
Dn n A m z z p A DD tp Dp

n p

WW
i k v V v v k v V V i

L L
 = − − = − − =  

(4.12)

Substituting vA with (vZ + Vtn) in the current equation determines the output
voltage when the inverter is leaving region d into region c. Alternatively, the
boundary between regions c and d can also be found by considering region c, as we
have shown previously in region c.

Region e:
Again, the simplified transistor switch model is valid in this region. The nMOS

transistor is in its linear region with vDSn = 0. The pMOS transistor is off.

vA ≥ VDD + Vtp; vZ = 0; iDp = iDn = 0 (4.13)

In Fig. 4.5 the input voltage at which both transistors are in saturation (region b)
is defined as the logic threshold Vth. Ideally the logic threshold Vth should be set at
the mid point of the logic swing or VDD/2. This occurs only when
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in which case the nMOS and pMOS transistors are said to be matched. If kp is 0.4
times the value of kn, the width of the pMOS transistor must be made 2.5 times that
of the nMOS transistor in order to satisfy the matching condition, assuming both
have the same channel length.

Two other points on the voltage transfer curve determine the noise margins of
the inverter. These are VIH, which is the lowest input voltage level considered to be a
logic 1, and  VIL, which is the highest input voltage level considered to be a logic 0.
VIH and VIL are defined as the two points on the transfer curve with unity incremental
gain (slope = –1 V/V).

The noise margin for high input, NMH, and the noise margin for low input, NML,
can now be determined as:

NMH = VOH – VIH; NML = VOL – VIL (4.15)

4.3 Circuit-Level Simulation

The use of simulation tools to verify and evaluate the operation of an IC is an
essential step in the design process. On the one hand it verifies that the design will
meet specifications. On the other hand a simulation provides additional insight into
the operation so that it can be fine tuned prior to its fabrication.

Due to the complexity of VLSI circuits, switch-level simulation which considers
transistors as switches is often used. In many cases, switch level simulation is still
inefficient and gate level or block level simulation has to be used. However, circuit-
level simulation is an indispensable tool to more accurately determine circuit
behaviors. Among the various circuit-level simulation programs, SPICE is by far the
most popular one. SPICE (Simulation Program with Integrated Circuit Emphasis)
was developed at the University of California, Berkeley, in the early 1970’s. It has
been developed into a number of free or low cost and commercial products.

It is not the objective here to explain to the reader how to use SPICE. There are
many good books on this subject and a few of them are listed at the end of this
chapter. We intend to describe the models that SPICE use for the MOSFET and to
illustrate the use of SPICE in the design of a CMOS logic circuit.

SPICE uses rather complicated MOSFET models in the simulation of CMOS
circuits. There are two issues in a SPICE device model. The first is the structure of
the model developed for a category of devices. The simulator used must support the
model structure to be used. Second, the values of a model specifically determined for
a fabrication technology must be obtained.

Semiconductor manufacturers spend a significant amount of effort to model their
products. MOSFET models are often the proprietary property of their developers. In
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order to facilitate the exploration of CMOS circuit characteristics using SPICE,
example values of two MOSFET models, one for nMOS transistors and one for
pMOS transistors, are provided below. Special MOSFET models have been
developed for deep sub-micron designs.2 The reader is reminded that circuit
simulation can only be as accurate as its models. Be sure to acquire and use the
models supplied by your selected IC manufacturer.

.MODEL nfet NMOS LEVEL=2 LD=0.12U TOX=200E-10
+NSUB=1.0E+16 VTO=0.8 KP=5.0E-5 GAMMA=0.45 PHI=0.6
+UO=700 VMAX=70000 XJ=0.6U LAMBDA=.02 NSS=0.0
+TPG=1.00 RSH=0 CGSO=0.9E-10 CGDO=0.9E-10 CJ=1.4E-4
+MJ=0.6 CJSW=6.5E-10 MJSW=0.3

.MODEL pfet PMOS LEVEL=2 LD=0.18U TOX=200E-10
+NSUB=1.5E+15 VTO=-0.7 KP=2.0E-5 GAMMA=0.45 PHI=0.6
+UO=250 VMAX=34600 XJ=0.4U LAMBDA=.04 NSS=0.0
+TPG=-1.00 RSH=0 CGSO=1.4E-10 CGDO=1.4E-10 CJ=2.4E-4
+MJ=0.5 CJSW=3.5E-10 MJSW=0.3

The description of a circuit to be simulated is called a SPICE deck.3 Each deck
should include the following parts: a list of the components and how they are
connected; component model parameters; power source; input signals; and control
cards instructing SPICE to perform simulation. A SPICE deck can be generated by
extracting the circuit and parasitic components from a layout. The parasitic
extraction of deep sub-micron (DSW) ICs is currently a major research problem.

We present the SPICE deck of an inverter, the schematic of which is shown in
Fig. 4.7, as an example of performing SPICE simulation. Each circuit node is labeled
with a unique number. VDD and VSS are conventionally labeled as 1 and 0,
respectively. Note that each transistor has its channel dimensions specified.

                                                          
2 See http://www-device.eecs.berkeley.edu/~bsim3/
3 In the 70s, circuit descriptions were put on a deck of punch cards. The cards became obsolete but

the name stayed.

http://www-device.eecs.berkeley.edu/~bsim3/
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* SPICE DECK created for a CMOS inverter Z=not(A)

M1 1 2 3 1 pfet L=1.0U W=4.0U
M2 3 2 0 0 nfet L=1.0U W=4.0U
C3 3 0 0.028000PF

*  A  2
*  GND 0
*  VDD 1
*  Z  3

* CMOS SPICE model parameters

.MODEL nfet NMOS LEVEL=2 LD=0.12U TOX=200E-10
+NSUB=1.0E+16 VTO=0.8 KP=5.0E-5 GAMMA=0.45 PHI=0.6
+UO=700 VMAX=70000 XJ=0.6U LAMBDA=.02 NSS=0.0
+TPG=1.00 RSH=0 CGSO=0.9E-10 CGDO=0.9E-10 CJ=1.4E-4
+MJ=0.6 CJSW=6.5E-10 MJSW=0.3

.MODEL pfet PMOS LEVEL=2 LD=0.18U TOX=200E-10
+NSUB=1.5E+15 VTO=-0.7 KP=2.0E-5 GAMMA=0.45 PHI=0.6
+UO=250 VMAX=34600 XJ=0.4U LAMBDA=.04 NSS=0.0
+TPG=-1.00 RSH=0 CGSO=1.4E-10 CGDO=1.4E-10 CJ=2.4E-4
+MJ=0.5 CJSW=3.5E-10 MJSW=0.3

* Power source
vps 1 0 dc 5

* Input waveform
vA 2 0 dc 0 pwl(0ns 0 0.01ns 5 10ns 5
+10.01ns 0 20ns 0 20.01ns 5 30ns 5)

* Perform a transient analysis with a step size
* of .1 ns for the duration of 40 ns.
.tran 0.1ns 40ns

* Provide values and plots for V(A) and V(Z)
.print tran v(2) v(3)
.plot tran v(2) v(3)

.end
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Fig. 4.7  Inverter circuit for SPICE simulation.

The waveforms of both the input (V(2) or V(A)) and output (V(3) or V(Z))
produced by a SPICE simulation are shown in Fig. 4.8.

0ns 10ns 20ns 30ns 40ns
-2.0v

0V

2.0V

4.0V

6.0V
V(2)

V(3)

Fig. 4.8  SPICE simulation result of an inverter.

4.4 Improved MOSFET Switch Model

In this section we seek to represent MOSFETs as resistive switches. A transistor
switch in the off state has a source-drain resistance which is high enough to be
considered as an open circuit in general applications. When the transistor is turned
on, we would like to model it as a resistance charging or discharging a capacitance.
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Timing models can then be developed to estimate the delays of logic circuits by
observing the switch behavior of the transistors. Fig. 4.9 illustrates this resistive
switch model applied to an NMOS transistor. The transistor in its on state is modeled
by a channel resistance Rn connected in series with a closed switch.

In order to develop an approach to determine the channel resistance of a
transistor switch model, we have to look at its dynamic behavior when it is switching.
The channel resistance of MOSFETs operating in the linear region were developed
and provided in equations (4.4) and (4.5). However, the discussion of the voltage
transfer characteristic has shown that a transistor, after it has been switched on, first
operates in its saturation region before settling in its linear region.

CL

CL

CL

Rn

on state

off state

vo

vo

vo

iD

iD

Fig. 4.9  Resistive switch model of an nMOS transistor.

We assume that the transistor gate is driven by an ideal step signal (zero rise
time) as shown in Fig. 4.9. Fig. 4.10 describes the dynamic behavior of the nMOS
transistor in response to the step signal. Assume that vo = VDD just prior to the rising
edge of the input signal (time = 0–). The transistor is operating at point A (cut off)
and iD = 0.  Right after the input signal has gone up to VDD (time = 0+), vGS = VDD and
the operating point of the transistor is moved up to point B.

The assumption of an ideal step signal implies that this jump is instantaneous. In
practice we need to satisfy this assumption by using signals that have reasonably fast
rise and fall times. As long as vGS remains at VDD, the operating point of the transistor
will have to move along its iD-vDS curve corresponding to vGS = VDD, which is the
trajectory shown in Fig. 4.10. Initially the transistor operates in its saturation region
until point C is reached. During this stage, the transistor is acting like a constant
current source and the capacitance CL is being discharged. At point C, vo = vDS = vGS
– Vtn = VDD – Vtn, which is the boundary between linear and saturation regions. From
this point on, the transistor works in its linear region and acts like a resistance,
through which the capacitance CL continues to be discharged. Eventually, point E is
reached, the switching is completed and the discharging current stops.
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iD

voVDD

VDD - Vtn

time = 0-

time = 0+

saturationlinear

A

BC
D

E
Vth

vGS = VDD

Fig. 4.10 Dynamic behavior of an nMOS transistor being turned on.

Fig. 4.10 shows two important points. First, if the input signal has a reasonably
fast rise time so that the time it takes for the transistor to go from point A to point B
is insignificant, the iD - vDS curve corresponding to vGS = VDD determines the current
discharging CL and thus the discharging time. The delay time for vo to respond to the
input change is proportional to the discharging time of CL. Second, there are two
stages involved with the discharging of CL. From point B to point C, the saturation
current is involved. From point C to point E, the linear current is involved.

Let us define the propagation delay of a CMOS circuit. This seemingly easy task
is complicated by the fact that a variety of definitions exist, each of which has its
merits. Again, an inverter is used as a general CMOS structure to present the
following discussion.

Our definition of propagation delay is shown in Fig. 4.11 in which the input and
output signals of an inverter ( )Z A=  are shown on the same time axis. At t1 input vA

goes across the logic threshold Vth of the inverter. The output vZ responds to the
change at vA and it crosses the logic threshold Vth of the next stage driven by the
inverter at t2. The high-to-low propagation delay (at the output) is defined as tPHL = t2
– t1. The low-to-high propagation delay (tPLH) is defined similarly.

Unless the pull-up and pull-down switch networks are matched, the logic
threshold Vth is a function of the transconductances and sizes of the transistors. For
the sake of a good noise margin, a reasonable design should not have a logic
threshold too far away from the mid point of the logic swing; so Vth = VDD/2 is often
assumed.
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time (ns)t1 t2

Vth

Vth

vA

vZ

Fig. 4.11 Definition of propagation delay.

To follow up with the discussion in Fig. 4.10, if we assume that the input is an
ideal signal, Vth = VDD/2, and Vtn = 0.2VDD, the high-to-low propagation delay tPHL
can be derived by considering the time it takes to discharge the capacitance CL from
VDD to VDD/2:

1.6
( / )

L
PHL

n n n DD

Ct
k W L V

= (4.16)

Similarly, we can derive the low-to-high propagation delay tPLH of a pMOS
transistor charging a capacitance CL with an initial voltage of 0 as

1.6
( / )

L
PLH

p p p DD

Ct
k W L V

= (4.17)

The reader is reminded that the usefulness of equations (4.16) and (4.17) is
limited to the specific definitions of tPHL and tPLH and various assumptions. According
to these equations the propagation delay is determined by the load capacitance CL.
Notice that the propagation delay can be manipulated by changing the circuit
parameters W, L, and VDD.

To provide a very simple RC model to estimate delay times, we also define tPHL
and tPLH using the resistive switch models shown in Fig. 4.12. In Fig. 4.12, the nMOS
transistor that is involved with discharging CL is replaced by a channel resistance Rn.
Similarly, a channel resistance Rp represents a pMOS transistor charging CL. We
define the propagation delays as

tPHL = Rn × CL (4.18)

tPLH = Rp × CL. (4.19)
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Fig. 4.12  RC timing models.

Comparing these equations with (4.18) and (4.19), respectively, gives the
following expressions for Rn and Rp, which are called the effective channel resistance
of the transistors:

1.6
( / )

n
n sn

n n n DD n

L
R R

k W L V W
= = (4.20)

1.6
( / )

p
p sp

p p p DD p

L
R R

k W L V W
= = (4.21)

Rsn and Rsp are called the n-channel sheet resistance and p-channel sheet
resistance, respectively, which are physical parameters determined by the
manufacturing process.

4.5 Resistance/Capacitance Estimation

In the previous section we have derived the use of effective channel resistance
and load capacitance in the calculation of propagation delay. Parasitic resistance and
capacitance are also very important in the estimation of propagation delays. We will
thus introduce the approach to estimate resistance and capacitance to be used in
propagation delay analysis.
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Resistance

W

L
T

Fig. 4.13 Determination of resistance value.

The resistance of a uniform piece of conducting material shown in Fig. 4.13 is
expressed as

R
T

L
W

= 










ρ
Ω, (4.22)

where ρ = resistivity, T = thickness, L = length, and W = width. Recall that VLSI
design is 2-dimensional from the designer’s viewpoint and thickness is determined by
the fabrication process so T may be considered a constant. Also, the resistivity ρ is a
physical property of the conductor material and is a constant. The above expression
can thus be rewritten as

R R
L

Ws= 




Ω,  (4.23)

where R
Ts =
ρ

 is called the sheet resistance (Ω/square or Ω/W ) of a specific

fabrication process. The resistance of a conductor can thus be found by multiplying
its sheet resistance Rs and length to width ratio L/W. The sheet resistance values of
the materials used in an example 1 µm CMOS processes are given in Fig. 4.14.
Notice that Fig. 4.14 also provides the effective sheet resistance values of both n-
channel and p-channel transistors, which should not be confused with that of n-
diffusion and p-diffusion areas. In general, effective channel sheet resistance
increases as VDD is reduced. The reader is again reminded to acquire and use
resistance and capacitance values for your selected fabrication process.
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Layer ΩΩ/square
Metal 1 and 2 0.05
n-type Diffusion 2
p-type Diffusion 2
Polysilicon 4
nMOS Channel (effective) 6 K
pMOS Channel (effective) 15 K
Capacitance fF/µµm2

nMOS and pMOS gate 1
Diffusion (area) 0.8
Diffusion (periphery) 0.3 (fF/µm)
Polysilicon 0.1
Metal 1 0.05
Metal 2 0.02

Fig. 4.14 Example resistance and capacitance values.

In a layout design, wires often consist of rectangular segments. The resistance of
these wires can be found by evaluating and adding the resistance of their rectangular
segments. This is demonstrated in the following example.

Example 4.1
Calculate the resistance of the polysilicon wire shown in Fig. 4.15. This polysilicon
wire is to be fabricated with a 1 µm technology.

current flow
3λ

11λ

19λ

4λ 19λ

3λ

Fig. 4.15  Resistance value calculation of a polysilicon wire.

The polysilicon wire is divided into three rectangular segments (19 λ × 3 λ, 11 λ
× 4 λ, and 19 λ × 3 λ). The total resistance of this wire, with Rs = 4 Ω/sq. for
polysilicon from Fig. 4.14, is calculated as
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Rpoly = × + +
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19
3

6167Ω Ω/ .square squares .

Notice that this is a slight overestimation of the wire resistance since the turning
corners have reduced resistance.4 We do not want to burden our estimation with
calculating the corner resistance separately due to the fact that they constitute only an
insignificant portion of the entire wire length. The estimated resistance of a path also
varies slightly depending on how it is broken up into segments.

Capacitance
Another important parasitic element in CMOS circuits is capacitance. Consider

the structure in Fig. 4.16, which has a conductor plate of area (L × W) placed on top
of a base conductor plate with a much larger area. These plates are separated by a
distance of T. This structure is ubiquitous in CMOS circuits and can be applied to all
layers deposited on top of the substrate. For example, the top plate could be a piece
of metal or polysilicon while the base plate is the substrate.

T

L
W

Carea

Cfringe

Fig. 4.16  Determination of capacitance value.

The calculation of the top plate capacitance with respect to the base can be
divided into two parts. The first part is the capacitance caused by the area of the top
plate which can be calculated as

Carea = Capacitance per unit area × L × W. (4.24)

The second part is the capacitance caused by the edges of the top plate, which is
called the fringe capacitance and can be calculated as

Cfringe = Capacitance per unit length × 2(L + W). (4.25)

Both parameters, “capacitance per unit area” and “capacitance per unit length”,
are dependent on the dielectric constant of the material separating the two plates and
the spacing T between the plates. Recall again that the vertical spacing between a
layer and the substrate is, from the viewpoint of a designer, a constant. These two
                                                          

4 A corner square has a sheet resistance of ~0.6 Rs.
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parameters can then be determined for each layer in a given manufacturing process.
In order to simplify the estimation of parasitic capacitance, we adopt the following
general equation

uC C L W= × ×  (4.26)

where Cu is the capacitance per unit area (pF/µm2 or fF/µm2) which has been
“adjusted” to cover both area and fringe capacitance.

Fig. 4.14 lists the unit area capacitance of each layer with respect to the
substrate. Layer to layer capacitance caused by overlapping two layers (e.g., metal 1
and metal 2) is normally small enough to be ignored unless the overlapping is
substantial which should be avoided if possible.

Notice that due to the different thicknesses of gate oxide and field oxide, the unit
area capacitance of a transistor gate is very different from that of a polysilicon wire.

With the exception of diffusion layers, the capacitance of all layers can be
estimated with equation (4.26). In the case of the diffusion layers, the fact that they
are buried in the substrate and the capacitance is caused by a depletion region
located at the junction requires them to be calculated with a different method.

L
W

T

Cja

Cjp

Fig. 4.17  Diffusion capacitance.

Fig. 4.17 shows the relationship of a diffusion slab within the substrate. Both the
periphery wall (Cjp) and the bottom (Cja) of the slab contribute to the parasitic
capacitance. The bottom capacitance is calculated by multiplying its area (L × W)
with the unit area capacitance. The periphery capacitance Cjp is, on the other hand,
calculated by multiplying its linear length (2(L × W)) with the unit length periphery
capacitance (pF/µm). This is another example of keeping the design in a 2-
dimensional space. The unit length periphery capacitance has the thickness T of the
diffusion slab figured in. The overall diffusion capacitance is thus

C C L W C L Wd u jp u ja= × + + × ×( ) ( )( ) ( )2 (4.27)
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Notice that the diffusion junction area capacitance assumes a zero bias across the
junction so that the depletion region (acting as a dielectric layer) is at its minimum
width to ensure a worst case estimation.

Example 4.2
Estimate the resistance and capacitance values for the symbolic layout of a two-input
NAND gate shown in Fig. 4.18. Assume a 1 µm technology with the values in Fig.
4.14 is used.

+ VDD

A +
B +

+ VSS

+ F

Fig. 4.18  Resistance and capacitance value estimation.

Effective channel resistance:

nMOS: Rn = 6 KΩ × 2 λ/4 λ = 3 KΩ

pMOS: Rp = 15 KΩ × 2 λ/4 λ = 7.5 KΩ

Input capacitance:

This is made of two parts, the gate capacitance and the poly capacitance. Each
input is connected to two transistor gates so

Cgate = 2 × 1 fF/µm2 × 2 λ × 0.5 µm/λ × 4 λ × 0.5 µm/λ = 4 fF
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The polysilicon input line has a dimension of 2 λ × 40 λ. Deducting 2 × 2 λ × 4 λ of
gate area from it, the remaining polysilicon line has a capacitance of

Cpoly = 0.1 fF/µm2 × 2 λ × 0.5 µm/λ × 32 λ × 0.5 µm/λ = 1.6 fF.

Cin = Cgate + Cpoly = 5.6 fF.

Output capacitance at node F:

There are three parts, the pMOS diffusion, the nMOS diffusion, and the metal
wire that connects them.

Cp-diff  = 0.8 fF/µm2 × (4 λ × 0.5 µm/λ × 6 λ × 0.5 µm/λ)
 + 0.3 fF/µm × 2 × (4 λ × 0.5 µm/λ + 6 λ × 0.5 µm/λ)
 = 7.8 fF

Cn-diff  = 0.8 fF/µm2 × (4 λ × 0.5 µm/λ × 5 λ × 0.5 µm/λ)
+ 0.33 fF/µm × 2 × (4 λ × 0.5 µm/λ + 5 λ × 0.5 µm/λ)

= 6.97 fF

Cmetal = 0.05 fF/µm2 × (2 × 2 + 6 × 1.5 + 1.5 × 2) µm2

= 0.8 fF

CF = Cp-diff + Cn-diff + Cmetal = 15.57 fF

In the estimation of Cmetal, it is important to realize that the diffusion-metal 1
contacts should not be included. In general, the contact capacitance is determined by
the material at the bottom of the contact. In this case, the diffusion-metal 1 contacts
were accounted for in the estimation of Cp-diff and Cn-diff. The reader should be aware
that Fig. 4.14 assumes a worst case scenario (minimum depletion region) for
diffusion capacitance values. Our CF value is thus a rather conservative estimation.
The real value of CF is likely to be lower than our estimation above.

Our discussion of capacitance has ignored the capacitance between parallel
wires. In sub-micron designs, and especially deep sub-micron designs, the
capacitance between two parallel wires becomes significant. This observation is
illustrated in Fig. 4.19. As the feature size is getting smaller and smaller, the
thickness (i.e., height) of the wires becomes relatively more and more significant.
The correct extraction of parasitic capacitance and resistance in deep sub-micron
designs is a major research area.



CMOS Circuit Characterization 123

(a) (b)

Fig. 4.19  Capacitance between two wires: (a) Before sub-micron;
(b) Deep sub-micron.

4.6 RC Timing Model

With the values of resistance and capacitance available for a circuit, the RC
timing model provides a very simple approach to estimate its propagation delay.
Delays can be found by considering the charging and discharging times of
capacitance nodes. Many switch-level simulators use this approach to verify logic
function and estimate delay time. Before we demonstrate this approach, we need to
introduce a method to estimate the delay of an RC tree. An example RC tree is shown
in Fig. 4.20 to explain this method.

R1

C1 C2 C3

C5C4

R2 R3

R4 R5

0 1 2 3

4 5

Fig. 4.20  RC tree.

The general formula for estimating the delay from node i to node j in an RC tree
is

t R Cdelay ik k
k

= ∑ (4.28)
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where Rik is the total resistance from node i to node k, Ck is the capacitance at node k,
and the summation index k goes through all the nodes in the path from node i to node
j.

Applying this formula to the RC tree in Fig. 4.20 yields the following
expressions:

tdelay(node 0 → node 3) = R1C1 + (R1 + R2)C2 + (R1 + R2 + R3)C3

tdelay(node 0 → node 5) = R1C1 + (R1 + R4)C4 + (R1 + R4 + R5)C5

A wire can be considered as a lump element so its parasitic resistance and
capacitance values can be found easily according to its dimensions. Alternatively, we
can convert it into an RC tree for evaluating its effect on propagation delay. Consider
a wire of length l µm and width w µm. To convert this wire into an RC tree, we
divide this wire into l segments, each of which has a length of, say, 1 µm. Every
segment has a resistance of Rpu (resistance per unit) and a capacitance of Cpu
(capacitance per unit). Now we calculate the RC delay of this wire using two
approaches:

Lump Element Approach

tdelay = Rpu × l × Cpu × l = l2RpuCpu (4.29)

RC Tree Approach

1

2

( 1)
2

delay pu pu pu pu pu pu

l

pu pu
i

pu pu

t R C R C lR C

i R C

l l R C

=

= × + × + + ×

 
= × 

 
+

= ×

∑

L

(4.30)

 If l is large, then the above expression can be approximated into

t
l

R Cdelay pu pu= ×
2

2
(4.31)

which is only half of the delay obtained with the lump element approach. Equation
(4.30) is the preferable way to estimate the RC delay of long lines.
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Example 4.3
Determine the worst case high-to-low and low-to-high propagation delays at nodes F
and Z for the circuit shown in Fig. 4.21.

A B

F Z

Fig. 4.21  Two-input NAND gate driving an inverter.

High-to-low propagation delay at Z:

Assume that the pMOS and nMOS transistors have effective channel resistance
Rp and Rn, respectively. The RC timing model for estimating the high-to-low
propagation delay at Z is shown in Fig. 4.22. CF and CZ are the total capacitance at
nodes F and Z, respectively. Notice that in order to estimate the worst case delay, we
assume that only one pMOS transistor in the first stage is turned on.

Rn

Rp

CZCF

+F Z

Fig. 4.22   RC model for determining tPHL(Z) and tPLH(F).
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From the RC timing model, tPLH(F) = RpCF, and tPHL(Z) = RpCF + RnCZ, in which
the first term RpCF is the low-to-high delay from the input to node F and the second
term RnCZ is the delay between nodes F and Z.

Low-to-high propagation delay at Z:

The RC equivalent circuit for this calculation is shown in Fig. 4.23. Capacitance
Cd is the parasitic capacitance between the two pull-down transistors in the first stage
of the circuit.

Rn

Rp

CZ

+
CFRn

Cd

F

Z

Fig. 4.23  RC model for determining tPHL(F) and tPLH(Z).

From the RC timing model,

tPHL(F) = (RnCd + 2RnCF)

tPLH(Z) = (RnCd + 2RnCF) + RpCZ.

The first two terms in tPLH(Z) constitute the delay from the input to node F
(tPHL(F)) and the third term is the delay between nodes F and Z.

4.7 Transistor Sizing

The logic function implemented by a CMOS logic circuit depends solely on the
way its transistors are connected rather than on the sizes of its transistors. In fact, a
circuit consisting of only minimum size transistors will function correctly. However,
the performance of such a minimum size design may not meet the design
requirements such as speed and logic threshold voltage.

Transistor sizing, which determines the transistor dimensions of a logic circuit,
is thus an important step in the design process. The objective of sizing is usually to
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provide the logic circuit with a desired performance. For example, we may want to
provide an equal current driving capability to both the pull-up and pull-down
networks so as to equalize tPHL and tPLH. Another possible objective is to select an
adequate logic threshold voltage (Vth) for a certain application.

In Section 4.2 we have derived the voltage transfer characteristic of the CMOS
inverter. Due to different electron and hole mobility values (µn and µp), the inverter
logic threshold Vth is located at the center of the logic swing (0 to VDD) only if the
pull-up and pull-down transistors are matched by widening the pMOS transistor to
compensate for its smaller mobility. In other words, the condition of

µ µp
p

p
n

n

n

W
L

W
L

= (4.32)

has to be satisfied for Vth = 0.5 VDD. If µp = 0.4 µn, also assume that Ln = Lp; then Wp
has to be sized at 2.5 Wn.5 Notice that the target of logic threshold voltage adjustment
is not always 0.5 VDD. In some applications, it is desirable to move Vth closer to one
end of the logic swing than to the other (see Problem 4.8).

Another way to look at this sizing issue is that, if both the inverter transistors
have the same dimensions, the effective n-channel resistance Rn is smaller than the
effective p-channel resistance Rp. If µp = 0.4 µn, then Rn = 0.4 Rp. This implies that
the low-to-high delay (tPLH) is 2.5 times longer than the high-to-low delay (tPHL).
Again, the low-to-high and high-to-low delay times of an inverter can be equalized
by widening the pMOS transistor to match with the nMOS transistor. For example,
the high-to-low and low-to-high delay times will be identical if Wp is set at 2.5Wn,
assuming Lp = Ln.

The sizing of the inverter can be extended to general logic circuits. When a logic
circuit with two or more inputs is sized, it is usually for its current driving capability
rather than its logic threshold because the latter varies according to the conducting
path between VDD and VSS selected by an input combination. However, as a general
rule of thumb, the logic threshold of a logic circuit under any input combination
should be reasonably close to VDD/2 so that a decent noise margin is available at
either end of the logic swing.

When a logic circuit has more than one possible pull-up (or pull-down) current
path, the idea of “worst case” should be emphasized. In the case of delay time
adjustment through transistor sizing, we have to ensure that the worst case current
path in the circuit satisfies the requirement. This ensures that the result circuit will
work at least as well as it is designed.

The consideration of an equivalent inverter for a logic circuit is helpful in
guiding a sizing process. The derivation of an equivalent inverter for a logic circuit is
based on the fact that the effective channel resistance of a MOSFET is proportional

                                                          
5 There is rarely a good reason to lengthen the channel of a transistor unless the objective is to create

a transistor to be used as a resistor. The minimum width (2 λ) of a polysilicon wire is the typical channel
length.
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to L/W, its length to width ratio. Thus, if a number of MOSFETs having length to
width ratios of L1/W1, L2/W3, L3/W3, … are serially connected in a current path, the
overall current path resistance will be
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W
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Now, if these serially connected MOSFETs are replaced with a single MOSFET that
has a length to width ratio
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the current driving capability will be maintained in the equivalent inverter.6
Similarly, we can show that the parallel connection of MOSFETs having length

to width ratios of L1/W1, L2/W3, L3/W3, … can be represented by a single MOSFET of
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As an example, two identical MOSFETs with L/W = 2 λ/4 λ result in an
equivalent Leq/Weq of 4 λ/4 λ when connected in series and one of 2 λ/8 λ when
connected in parallel.

Example 4.4
Size the transistors in a four-input NAND gate so that its worst case current driving
capability is equivalent to that of an inverter with Lp/Wp = 2 λ/10 λ = 0.2 and Ln/Wn =
2 λ/4 λ = 0.5. Assume that the channel length of all transistors is fixed at 2 λ.

Fig. 4.24 shows the sizing result. In the pull-down network, the equivalent
channel length Lneq = 2 λ + 2 λ +2 λ +2 λ = 8 λ and the equivalent channel width
Wneq = 16 λ so Lneq/Wneq = 0.5. In the pull-up network, the worst case occurs when
only one of four pMOS transistors turns on. In that case, Lpeq = 2 λ and Wpeq = 10 λ
so Lpeq/Wpeq = 0.2. If more than one pMOS transistor is turned on, the equivalent
Lpeq/Wpeq would be further reduced to below 0.2.

                                                          
6 Strictly speaking, this is only true if we ignore the parasitic capacitance between two transistors

connected in series.
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A B C D

A

B

C

D

Z

2/16

2/16

2/16

2/16

2/102/102/102/10

Fig. 4.24  Sizing result of a 4-input NAND gate.

Notice that since the equivalent inverter has matching transistors, its logic
threshold voltage is set at VDD/2. However, in the NAND gate, this is true only when
a single pMOS transistor is considered. The logic threshold voltage will be shifted
when more than one pMOS transistor is turned on simultaneously.

Example 4.5
Size the transistors in the circuit of Fig. 4.25 that implements a function
Z A B C D= + +( )  so that its worst case current driving capability is equivalent to
that of an inverter with Lp/Wp = 2 λ/10 λ = 0.2 and Ln/Wn = 2 λ/4 λ = 0.5. Assume
that the channel length of all transistors is fixed at 2 λ.

The transistor schematic for the function Z is shown in Fig. 4.25 with the
transistor sizes marked.

The worst current path in the pull-down network is 2 nMOS transistors
connected in series (B and C or B and D). Therefore, we select Ln/Wn = 2 λ/8 λ for
each of transistors B, C, and D. For transistor A, we select Ln/Wn = 2 λ/4 λ to match
with the equivalent inverter. Each of its three pull-down current paths has Leq/Weq =
0.5.
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Consider the pull-up network. The worst case circuit path has three transistors
connected in series (A, C, and D) and thus their sizes are determined to be Lp/Wp = 2
λ/30 λ. The size of transistor B is selected to be Lp/Wp = 2 λ/15 λ so that the current
path (A and B) it is in has an equivalent Leq/Weq = 0.2. Each of the two pull-up current
paths has Leq/Weq = 0.2.

A

B

C D

A

B

C

D

F

2/4

2/8

2/8 2/8

2/30
2/15

2/30

2/30

Fig. 4.25  Sizing result of Example 4.5.

4.8 ττ-Model

In order to estimate the timing of a circuit, we need to determine all the
resistance and capacitance values in the charging/discharging current paths. The
transistor gate capacitance and effective channel resistance values are relatively easy
to determine since all we need to know is the length and width of the channel. The
other parasitic elements such as the diffusion and wiring capacitance values are only
available after a layout is created.
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In many occasions all we need is a rough timing analysis of the circuit before
getting into its layout. A simplified timing model, called the τ-model, can be applied
to facilitate the estimation of delay times when a layout is unavailable. The τ-model
is based on the enhanced switch transistor model and its associated RC timing model
described earlier in this chapter. The only difference is that in the τ-model, only the
effective channel resistance and gate capacitance are considered while the diffusion
capacitance and wiring effects are ignored.

This simplification apparently has introduced errors into the timing analysis.
However, the τ-model is often used to analyze a circuit involving a large capacitance
load. In such a case, the load dominates the capacitance so that the diffusion and
wiring capacitance can be safely ignored. On the other hand, even in circumstances
when this condition cannot be satisfied, the τ-model provides a tool for the designer
to gain some insight of the timing relationship in the circuit.

Consider the circuit of Fig. 4.26, in which an inverter built with minimum size
transistors drives an identical size inverter. The L/W parameters of the transistors are
marked on the schematic diagram.

A B C
2/4

2/4 2/4

2/4

Fig. 4.26  Minimum size inverter driving another identical size inverter.

Let the n-channel resistance (2 λ × 4 λ) be Rn and the p-channel resistance (2 λ ×
4 λ) be Rp = 2.5 Rn. Also, let the gate capacitance of a 2 λ × 4 λ transistor be Cg. If
we ignore the diffusion capacitance and wiring effect according to the τ-model, we
have

t A B R CpHL n g( )→ = × 2

t A B R C R CpLH p g n g( ) .→ = × = ×2 2 5 2

We define the average delay time of the driver inverter as
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Now, consider the circuit in Fig. 4.27, which is similar to the one in Fig. 4.26
except that all the transistors are enlarged by doubling their channel widths.7

A B C
2/8

2/8 2/8

2/8

Fig. 4.27  Another example of an inverter driving an identical size inverter.

Doubling the transistor size reduces its effective channel resistance to 1/2 of its
original value (Rn or Rp). On the other hand, its gate capacitance has been doubled
from its original value (Cg). Therefore, we have for this modified circuit,

t A B R C R CpHL n g n g( ) .→ = × × =0 5 2 2 2

t A B R C R CpLH p g n g( ) .→ = × × =05 2 2 5
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=

2
2 5

2
35 (4.37)

The significance of this result is that while we have doubled the transistors in the
inverter, its average delay time in driving an identical inverter remains a constant.
One more example in Fig. 4.28 would really drive this point home. Again we
consider an inverter circuit driving an identical size inverter. This time the pMOS
transistor is matched with the nMOS transistor.

                                                          
7 The enlargement of a transistor, unless otherwise stated, refers to the widening of the channel

width while keeping the channel length unchanged.
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A B C
2/10

2/4 2/4

2/10

Fig. 4.28 Another example of an inverter driving an identical size inverter.

Due to the matching, both the pull-up and pull-down resistance are Rn. On the
other hand, while the nMOS transistor has a gate capacitance of Cg, the pMOS gate
capacitance has been increased to 2.5Cg. The average delay time of the first inverter
with the second one as a load is determined:

t A B R C C R CpHL n g g n g( ) ( . ) .→ = × + =25 35

t A B R C C R CpLH n g g n g( ) ( . ) .→ = × + =2 5 35

( )
t A B

t A B t A B
R Cavg

pLH pHL
n g( )

( )
.→ =

→ + →
=

2
35 (4.38)

Once again, the average delay time of the first inverter driving an identical
inverter remains unchanged. This constant delay time 3.5RnCg, which is defined as 1
τ, can be considered as a pseudo physical parameter of a fabrication process. We
summarize the result of the above discussion into the following statement: If we keep
the channel lengths at their minimum dimension (i.e., 2 λ), ignore the diffusion
capacitance and wiring effect, then an inverter driving an identical inverter has an
average delay time of τ = 3.5RnCg which is independent of the actual transistor sizes.

The application of the τ-model will be demonstrated in the following examples.
Let us define a unit (1×) inverter as the minimum size inverter (i.e., with 2 λ × 4 λ
transistors). An n× inverter is then a unit inverter enlarged n times (i.e., with 2 λ × 4n
λ transistors).
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Example 4.6
Fig. 4.29 shows a 1× inverter driving a 10× inverter. Find the average delay time of
the driving inverter.

1x 10x

Fig. 4.29 1× inverter driving a 10× inverter.

According to the τ-model, the average delay time of the driving 1× inverter is 10
τ. This is due to the fact that a 10× inverter has ten times the input capacitance of a
1× inverter.

Example 4.7
Find the average delay time of the driving inverter in Fig. 4.30.

2x 10x

Fig. 4.30  2× inverter driving a 10× inverter.

Since we increase the driving inverter into 2×, the channel resistance of its
transistors will be reduced to 0.5Rn and 0.5Rp. The average delay time of the 2×
inverter is thus also reduced to 5 τ.

Example 4.8
In Fig. 4.31, the 1× driving inverter has a fan-out of two 10× inverters. Find the

average delay time of the driving inverter.

1x 10x

10x

Fig. 4.31  1× inverter driving two 10× inverters.
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The τ-model can also be applied to estimate the delay time when the fan-out is
larger than one. From the viewpoint of load, this is equivalent to having a 20×
inverter connected and the average delay time of the 1× driving inverter is thus 20τ.

It should be noted that the τ-model, which has been described using inverters as
examples, can be readily extended to other complementary logic circuits.

4.9 Driving Large Loads

The usefulness of the τ-model is evident in cases when a CMOS circuit is used
to drive a large capacitance load which has a value that is many times larger than the
input capacitance of an inverter. Consider the non-inverting buffer in Fig. 4.32. Both
inverters are of the same size (1×). Assume that CL >> 2Cg, where Cg is the 2 λ × 4 λ
gate capacitance.

1x

CL

1x

Fig. 4.32  Non-inverting buffer driving a large load.

The average delay time of the non-inverting buffer can be estimated easily using
the τ-model. Assume that the 1× inverter has an input capacitance of Cin. If we
substitute the load CL with an inverter that has an input capacitance of CL, the
average delay of the non-inverting buffer will not be affected at all. This is shown in
Fig. 4.33. The inverter replacing the load will be a (CL/Cin)× inverter and thus the
average delay of the non-inverting buffer is (1 + (CL/Cin)) τ.

1x1x

(CL/Cin)xNon-inverting buffer

Fig. 4.33  Replacing a large load with a  (CL/Cin)× inverter.

To appreciate the sizing of the buffer for delay time adjustment, let us assume that
(CL/Cin) = 100 and thus the average delay of the buffer driving the load CL is 101 τ. If
this is considered to be too slow for a certain application, the second inverter in the
buffer can be enlarged to provide more current to charge/discharge CL more rapidly.
For example, we replace the second inverter with a 100× inverter as shown in Fig.
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4.34; then the average delay time of the second inverter will be reduced from 100 τ
to only 1 τ. However, this simple solution does have a practical problem. The 100×
inverter, which has a shorter delay time itself, presents an input capacitance that is
100 times of a 1× inverter. Therefore, the first inverter will have a 100 times longer
delay time. The average delay of the entire buffer thus remains unchanged.

100x1x

(CL/Cin)xNon-inverting buffer

Fig. 4.34  Replacing the second inverter with a 100× inverter.

An optimal size, say, k×, of the second inverter to minimize the buffer delay can
be determined as follows. We assume that the first inverter is unchanged so that the
effect of modifying the buffer will not propagate to the stage driving the buffer. The
average delay of the buffer can be expressed as a function of k:
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which is minimized when k C
C

L

in
=  .

In our numerical example when (CL/Cin) = 100, k should be set at 10. The average
delay of this buffer is merely 20 τ.

In order not to overdesign the buffer, when the goal is to keep the delay at or
below a specified value other than the minimum delay time, equation (4.39) can also
be used to determine k. On the other hand, if the minimum delay time achievable by
the buffer is still too slow, more stages can be used. In Fig. 4.35, we use n inverters,
each of which is a times larger than its previous one, to drive CL. Again, in order not
to affect the stage before the buffer, the first inverter is kept as a 1× inverter.

 Cin is the input capacitance of the 1× inverter and CL = anCin. In order to
minimize the overall delay time, there are two parameters to be determined in this
buffer, the number of stages n and the stage enlargement a. The average delay time
of the buffer is

t naavg = τ  (4.40)

From the relationship CL = anCin,  we have
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ax

CL= anCin

1x an-1x

Stage 1 Stage 2 Stage n

Fig. 4.35  Chain of inverter stages driving a large load.

Substitute n into equation (4.40),
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which has a minimum when a = e, the natural number (e ≈ 2.718). If a = e,
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and the optimal delay time achievable by the technology is obtained. In practice, a is
chosen to be an integer between 2 and 10.

Again, the designer should not overdesign for unnecessary speed and the above
method can be alternatively used to determine the smallest buffer that can satisfy a
given delay constraint.

Example 4.9
The equivalent input capacitance Cin of an inverter is .01 pF and the delay time when
its load is an identical size inverter is 1.0 ns.  This inverter is used to drive an output
pin with a capacitance of CL = 11 pF.  For a minimum average delay time, how many
buffering inverters should be used? What is the minimum average delay time?

Assume that the size of the first inverter in the buffer is kept unchanged. To
achieve the minimum average delay time, n = ln(11/.01) ≈ 7 stages. So 6 additional
inverters should be added between the original inverter and CL. Notice that in this
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case since an even number of inverters were added to the circuit, no change to the
logic is needed.

Selecting a = 3, the average delay of the circuit including the original inverter is
estimated to be 7 × 3 × 1.0 ns = 21 ns.

4.10 Power Dissipation

Power dissipation is an important evaluation criterion of integrated circuits. For
battery-operated systems, a high power dissipation reduces the battery life. The
problem of heat dissipation will also have to be dealt with. CMOS complementary
logic circuits are known for their low power dissipation. We use an inverter as an
example to pursue the following power analysis for a complementary logic circuit.

When the CMOS inverter is in a steady state, regardless of whether the output is
a 1 or a 0, only half of the circuit is conducting and there is no closed path between
VDD and VSS. Since no current flows, the steady state power is 0 barring the small
leakage current.

When the CMOS inverter is in transition, we have seen in Fig. 4.5 that both
transistors are turned on so a current flows between VDD and VSS through them. This
is called the short-circuit current, which contributes to the dynamic power dissipation
in the CMOS inverter. A well-designed circuit operating with well-behaved signals
of reasonably fast rise time and fall time would go through the transition quickly. The
short-circuit power dissipation is thus less significant comparing to the dynamic
power caused by the current that flows through the transistors to charge or discharge
a load capacitance CL.

In the following derivation of an expression for estimating the dynamic power
dissipation, we assume that the input signal stays unchanged long enough for the
output voltage across CL to reach its final value. We will see that this assumption is
satisfied by the basic principle of designing a clock signal. The clock period should
be long enough to allow all transitions to complete.

When CL is being charged through a pMOS transistor with effective channel
resistance Rp, as depicted in Fig. 4.36, the voltage v(t) across CL rises from 0 to VDD.

The current flowing through the capacitance CL and the voltage across it are

i t V
R

eDD

p

t R Cp L( ) /= − (4.44)

and

/( ) (1 )p Lt R C
DDv t V e−= − (4.45)
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'0'
i(t)

CLv(t)
+

-

Fig. 4.36  Charging a load capacitance through a pMOS transistor.

The charge current i(t) comes from the power source VDD and becomes the
charge accumulated on CL. The energy drawn from the power source during the
charging period is thus

2

0 0

( ) ( )DD DD DD DD L DD L DDV i t dt V i t dt V Q V C V C V
∞ ∞

= = = =∫ ∫ (4.46)

where Q = CLVDD is the charge accumulated on the capacitance CL. The lower and
upper bounds of the integration in (4.22) are the result of assuming that the current
i(t) will flow until it stops when v(t) reaches its final value VDD.

At the end of the charging interval, the capacitor has the energy of

i t v t dt C V e e C VL DD
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0 0

20 5 0 5  (4.47)

stored on it. Therefore the energy of 05 2. C VL DD  is dissipated in the pMOS transistor.
On the other side of the transfer curve, when CL is discharged through the nMOS

transistor, the voltage across it drops from VDD to 0. The energy of 05 2. C VL DD  is thus
dissipated in the nMOS transistor.

Summarizing the operation of a CMOS inverter, 05 2. C VL DD  of energy is

dissipated when the output switches from 0 to 1 and another 05 2. C VL DD  of energy is
dissipated when the output switches from 1 to 0. Assume that the inverter is driven
by a free running clock of frequency f. This represents the worst case operating
scenario in which the inverter switches twice in a clock cycle. The average dynamic
power dissipation due to charging and discharging capacitance CL is

P fC VD L DD= 2 (4.48)
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It can be seen from (4.48) that the operating frequency of the circuit determines
its power dissipation. This relationship allows us to perform a tradeoff between speed
and power dissipation. Increasing the speed and thus the operating frequency
increases power dissipation. The term 2

DDLVC  in (4.48), which is called the delay-
power product, can be used as a figure of merit to evaluate VLSI technologies.

In a CMOS circuit all switching occur more or less simultaneously in a
synchronous (clocked) circuit. This results in a large surge in the power supply
current when the clock ticks. If the power supply cannot keep up with the demand of
current, glitches and spikes occur in the signals, which may affect the normal
operations of the circuit. The inductance of the package (pins, bond wires, etc.) may
present an obstacle to the supply of sufficient current. This problem can be treated by
incorporating bypass capacitors on chips. Typically the bypass capacitance is around
ten times of the total capacitance involved in the switching.

4.11 Latch-Up

The latch-up problem is probably the most significant drawback of CMOS
circuits. Fig. 4.37 shows a cross section of a CMOS structure illustrated with two
unexpected guests: two bipolar transistors. The pnp bipolar transistor consists of the
source/drain of the pMOS transistor, the n-well, and the substrate. The npn bipolar
transistor is formed of the source/drain of the nMOS transistor, the substrate, and the
n-well. The resistance of the n-well and the substrate are represented by Rw and Rb,
respectively.

n+ n+ n+p+ p+ p+

n-well

VDD VSS

Rw
Rb

Fig. 4.37  Parasitic bipolar transistors in a CMOS structure.

The bipolar transistors and the well and substrate resistance are extracted and
modeled in Fig. 4.38. Normally the p-n junctions of the transistors are reverse-biased
so the parasitic bipolar transistors are not conducting.
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Rw

Rb

Fig. 4.38  Parasitic transistors of a CMOS logic.

Latch-up is caused by an accidentally forward-biased p-n junction. This could be
the junction between the pMOS diffusion and the n-well, or the one between the
nMOS diffusion and the substrate. The p-n junctions in a CMOS circuit could be
forward-biased for a number of reasons. For instance, the drain, being the output of
the circuit, may receive a so-called “inductive kick” and goes beyond VDD. Forward-
biased junctions may also arise when an external energy source, such as radiation or
light, causes unwanted free electrons and holes to flow in the structure, which may
turn on the parasitic bipolar transistors.

Let us suppose the drain of the pMOS transistor is temporarily raised beyond
VDD. The p-n junction between the drain and the n-well is forward biased and the
parasitic pnp transistor conducts and pulls current from VDD to VSS.

The current created by the conducting pnp transistor causes a base-emitter
voltage drop on the substrate resistance Rb. If this voltage drop is large enough to
forward bias the p-n junction between the substrate and the nMOS transistor drain,
the npn transistor conducts and causes more current to flow through the structure.
This current creates a base-emitter voltage drop over the well resistance Rw. A large
enough voltage drop will maintain the conducting of the pnp transistor even though
the original cause of forward-bias current may now have disappeared.

The pnp transistor draws current to support the conducting of the npn transistor
and vice versa. A latch-up has occurred. Latch-up may disrupt the CMOS circuit
normal operation and can cause large currents to flow and destroy the devices.

A number of methods can be used to prevent latch-up from occurring. The
values of Rw and Rb should be reduced as much as possible, thereby lowering the
voltage drops across them. The gains of the parasitic bipolar transistors should be
reduced by increasing the spacing between the nMOS and pMOS transistors. This
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results in the most conservative spacing rule in the design rules. N-diffusion and p-
diffusion areas are separated by at least 10 λ.

4.12 Summary

In this chapter we have provided a review of MOSFET characteristics. Our
purpose was to provide an appropriate background for the simulation of CMOS
circuits. After giving a brief introduction to SPICE simulation, a MOSFET resistive
switch model was created for the estimation of propagation delay. The calculation of
parasitic resistance and capacitance values in CMOS circuits was described. The use
of a τ-model to gain some insight of CMOS propagation delay and to design buffers
for large capacitance loads was discussed. A way to estimate CMOS power
dissipation was described. The CMOS latch-up problem was explained and its
prevention provided.

4.13 To Probe Further
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• S. Sedra and K. C. Smith, Microelectronic Circuits, 4th Edition, Oxford

University Press, 1998.

• K. Lee, M. Shur, T. A. Fjeldly, and T. Ytterdal, Semiconductor Device
Modeling for VLSI, Prentice-Hall, 1993.
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• G. W. Roberts and A. S. Sedra, SPICE, Oxford University Press, 1997.

• S. Sedra and K. C. Smith, Microelectronic Circuits, 4th Edition, Oxford
University Press, 1998.

SPICE Models:
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RC Circuits:
• D. E. Scott, An Introduction to Circuit Analysis: A Systems Approach, McGraw-
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4.14 Problems

Assume that the 1 µm technology with the values given in Fig. 4.14 is used in the
following problems.

4.1 A polysilicon wire with a length of 80 λ and a width of 4 λ is used to connect
the output of a two-input NAND gate to an inverter input and a NOR gate
input. All pull-up transistors have Wp = 6 λ, Lp = 2 λ and all pull-down
transistors have Wn = 3 λ, Ln = 2 λ. Solve the following problems by
considering only gate capacitance, effective channel resistance, and the
resistance and capacitance of the polysilicon wire.
(a) Draw equivalent circuit(s) for evaluating the worst case high-to-low and

low-to-high delay times at the input of the inverter. Label the R’s and
C’s clearly and compute their values.

(b) Change the nMOS transistor dimensions of the NAND gate so that its
high-to-low delay time is less than 0.05ns.

(c) Change the pMOS transistor dimensions of the NAND gate so that the
low-to-high delay time is less than 0.05ns.

(d) Estimate the total power dissipation of this circuit if the inputs of the
NAND gate has a maximum switching rate of 50 MHz. Use the
transistor sizes found in parts (b) and (c).

4.2 This problem refers to the layout diagram given in problem 3.5 in Chapter 3.
Assume nodes B and D are now connected by a metal wire and determine
worst case tPHL and tPLH at node E.

4.3 Consider the following structures:
a) A diffusion line with a width of 4 λ.
b) A polysilicon line with a width of 2 λ.
c) A metal 1 line with a width of 4 λ.
d) A metal 2 line with a width of 4 λ.
Determine in each case the longest length of the structure that can be ignored
in propagation delay evaluation. (Hint: Apply the engineer’s rule of thumb: “A
term that contributes less than 10% to the final value can be ignored in the
calculation.”)

4.4 This refers to the problem described in Example 4.9. Now the technology
advances and this chip can be scaled down in size by a factor of 8.  Assume
that the equivalent inverter input capacitance and delay time are scaled down
with the size linearly.  Should the designer increase or reduce the number of
inverters in the chain? By how many? Will the minimal delay time to drive
this load be shorter or longer? By how much?
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4.5  Design an output buffer to be used to drive an external load of 50 pF. The
output stage that uses this buffer has Wp = Wn = 4 µm, Ln = Lp = 1 µm. Try to
find the fastest buffering scheme.

4.6 Redo problem 4.5 so that it will produce a delay of less than or equal to
0.4 ns.  Use resources wisely and do not overdesign your buffer.  In other
words, do not design an overly speedy buffer.

4.7 Calculate the average current drawn by 32 of the buffer created in problem 4.6
if they are used in a system with a clock rate of 200 MHz.  If the peak current
is approximately 2 times the average current, what is the size of the power
rails (VDD and VSS) required for these buffers if the allowable current density
of the metal layer is 1 mA/µm?

4.8 Determine the logic threshold voltage of an inverter if (a) Rn = 0.4 Rp; (b) Rn =
Rp; and (c) Rn = 2 Rp.

4.9 A polysilicon line has a maximum power density of 20 Watts/cm2.  It is used
in a circuit with Imax = 1 mA.  What would be the smallest allowed dimensions
of a polysilicon resistor with 1000 Ω?

4.10 Use the following parameters to carefully plot the voltage transfer function of
an inverter:
VDD = 5 V , Wp = Lp = Wn = Ln = 2.5 µm, Vtp = –1 V, Vtn = 1 V, tox = 0.05 µm.
For any other parameters, use typical values given in this chapter.

4.11 Repeat 4.10 but with Wp = 10 µm. The other parameters remain unchanged.

4.12 Describe the effects of scaling on circuit performance: area, speed, and power.
Assume that all dimensions of an IC, including those vertical to the substrate,
are scaled by dividing them by a constant factor α. Also assume that the
voltage (VDD) is scaled down by dividing by the same factor α.

4.13 Repeat Problem 4.12 but assume that the voltage (VDD) remains unchanged.

4.14 Determine τ for an inverter with Ln = Lp = 2 µm, Wn = Wp = 4 µm.

4.15 Determine τ for an inverter with Ln = Lp = 4 µm, Wn = Wp = 8 µm.

4.16 Compare the results of Problems 4.14 and 4.15 and comment on the following
statement: “If we consider only effective channel resistance and gate
capacitance, for a given technology, the average delay time of an inverter
driving an identical inverter is a constant τ.”
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4.17 All the transistors used in a multiple level circuit have dimensions of W = 6
µm and L = 6 µm. This circuit has a delay of 50 ns when its load is a minimum
size inverter (i.e., W = 4 µm and L = 2 µm). Consider only channel resistance
and gate capacitance in the following problems. If the load is replaced by a 50
pF capacitor, what is the delay time?

4.18 If two inverters are used to form a non-inverting buffer between the circuit and
the 150 pF capacitor, determine the dimensions of the transistors used in these
two inverters so that the delay time from the circuit input to the 150 pF
capacitor is minimized.

4.19 The τ-model is used to design the buffering problem.  The 1× inverter is made
of minimum size transistors.  Determine f and g so that the total delay of this
circuit is minimized.

f X g X
115 pF

1 X

Fig. 4.39   Buffer design problem for Problem 4.19.

4.20 Use a layout editor to create a CMOS 4-input composite gate
( ( )Z A B C D= + ).  Use transistors with L = 2 λ, W = 8 λ.  Perform a switch
level simulation of your composite gate. Perform a circuit level simulation of
your composite gate using SPICE.

4.21 Use your layout and simulation result from Problem 4.20 to derive the
effective channel resistance values and load capacitance values for the
technology used in your SPICE simulation.

4.22 All the transistors used in the circuit shown in Fig. 4.40 have W = 4 λ, L = 2 λ.
The part represented by the box (i.e., from the left edge to the right edge of the
box labeled as “Circuit”) has a delay of Tτ  (the delay of the “Buffer”
included). τ is the average delay time of an inverter driving an identical
inverter. What is the overall average delay time in terms of τ as a function of α
when the Driver is an α× inverter.
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Circuit Buffer Driver
50 pF

Fig. 4.40 Circuit for Problem 4.22.

4.23 Fig. 4.41 shows a partial layout of an inverter with minimum dimensions (not
drawn to the scale). Mark clearly the important dimensions (in λ's) on the
layout according to the scmos technology. Estimate the following values: the
input capacitance for this inverter; the drain capacitance for the transistors; the
output capacitance for this inverter; the channel resistance for this inverter.

Fig. 4.41  Layout for Problem 4.23.
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Chapter 5 Sequential Logic Circuits

The ability to remember …
The design and analysis of CMOS combinational logic circuits have been

explained in Chapters 2-4. A combinational logic circuit does not have memory so its
operation history has no effect on its behavior. The output of a combinational circuit
is thus completely determined by its present input. This simplicity limits the
applications of combinational logic circuits.

A television (TV) control is an excellent example to demonstrate the usefulness
of the ability to remember. When the user presses the “up” button on the TV remote
control, the TV responds and switches to the next available channel. Suppose the TV
was tuned to, say, Channel 5 before the button was pressed; it would now be tuned to
Channel 6. The user can press the “up” button again to tune the TV to Channel 7 and
so forth. In order for the TV to operate correctly, it must be aware of its present
channel to determine the next channel destination when the user presses the “up”
button. A combinational logic circuit cannot handle this type of application.

We need another type of logic circuits that we call sequential logic circuits. The
present state of a sequential logic circuit, which is determined by the operation
history of the circuit, is stored in its memory. The output of a sequential logic circuit
is produced according to its input and its state. Sequential logic circuits can solve
numerous problems that are beyond the capability of combinational logic circuits.

The TV control described above is apparently a sequential circuit. The present
state of the circuit is the channel to which the TV is tuned. Whenever the button on
the TV remote control is pressed (the input), the circuit decides the new channel (the
next state). A state transition then occurs. The TV is then tuned to the desired
channel (the output).

In this chapter, we discuss the design and analysis of CMOS sequential logic
circuits.

5.1 General Structure

We begin by reviewing the general structure of a sequential logic circuit. A
sequential logic circuit can operate with or without the control of a clock signal. A
clock signal is a periodic square wave that can be used to trigger state transitions.
Fig. 5.1 shows an example of a clock signal which has a cycle time (period) of Tcyc.
The clock frequency is thus

.
T

f
cyc

1
= (5.1)
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Tcyc

t1 t2

Rising
edge

Falling
edge

Fig. 5.1  Clock signal.

Each clock cycle is divided into two parts, t1 and t2. The clock signal level is
high during t1 and is low during t2. The duty cycle of a clock signal is defined as

1

1 2

Duty Cycle .t
t t

=
+

(5.2)

In addition to its frequency and duty cycle, a clock signal is qualified by
considering its rise time and fall time. Fig. 5.2 shows the definitions of rise time and
fall time. Rise time is the time the clock signal takes to go up from 10% to 90% of its
high value. Fall time is the time the clock signal takes to go down from 90% to 10%
of its high value. A good clock signal must have reasonably fast rise time and fall
time (typically below 1/10 of the clock cycle time).

One can use the levels (high and low) or the transitions (rising edge and fall
edge) of a clock signal to synchronize the state transitions in a sequential logic
circuit. A sequential logic circuit that utilizes a clock signal is called a synchronous
sequential logic circuit. A sequential logic circuit that is not synchronized by a clock
signal is said to be asynchronous. A brief introduction to asynchronous sequential
logic is provided in the next section. This serves as the background of designing a D-
latch, which is the basic CMOS memory element. The rest of the chapter then
concentrates on the design and analysis of synchronous sequential logic circuits.

0

VDD

0.1VDD

0.9VDD

rise time fall time
time

Fig. 5.2  Rise time and fall time.
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Fig. 5.3 shows the general structure of a synchronous sequential logic circuit.
The core of the circuit is a combinational logic circuit which accepts inputs (X and y)
and produces outputs (Z and Y).1 The output (Y) is stored in the memory as a state
variable. The number of bits in the state variable decides the number of available
states; so a sequential logic circuit is also called a finite state machine. A clock signal
triggers the capturing of state variables into the memory. The memory typically
consists of either level-triggered latches or edge-triggered flip-flops. We will discuss
the CMOS implementation of latches and flip-flops shortly.

Combinational
Logic 

Memory

X Z

Yy

Clock

Fig. 5.3   General structure of a sequential logic circuit.

In Fig. 5.3, X and Z are referred to as the input and output of the sequential logic
circuit, respectively. On the other hand, Y and y represent the next and present states
of the circuit, respectively. Two types of synchronous sequential circuits can be
created within this general structure  the Mealy machine and the Moore machine.
These two sequential circuit structures differ mainly in the ways they generate their
outputs.

The Mealy machine uses both its input and present state to generate its output.
The combinational circuit of a Mealy machine can be expressed as

( , )
( , ),

f
g

=
=

Z X y
Y X y

(5.3)

where f(•) and g(•) represent logic functions.
In contrast, the Moore machine uses only its present state to determine its output.

The combinational circuit of a Moore machine can be expressed as

( )
( , ).

f
g

=
=

Z y
Y X y

(5.4)

                                                          
1 Bold faced letters indicate a group of associated signals.
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A further discussion of these machines is beyond the scope of this book. Readers
who need a review of this subject can consult one of the digital logic design books
listed at the end of the chapter. We will only point out that a Mealy machine can be
converted into an equivalent Moore machine and vice versa. It can be seen from (5.4)
that all output changes in a Moore machine are synchronized to the clock, since
output Z is a function of the state only; so it can change only when the state changes.
In other words, output Z remains stable during input changes and produces no
unwanted glitches.2 On the other hand, a Mealy machine has the advantage of
offering the designer more flexibility in designing output (Z) and state variable (Y)
functions, since its output is a function of both its input and state. A Mealy machine
usually needs fewer states than its equivalent Moore machine.

5.2 Asynchronous Sequential Logic Circuits

Memory elements provide a temporary storage of state variables to be used at a
later time. The basic memory element employed in a CMOS sequential logic circuit
is the D-latch. While this chapter mainly deals with synchronous sequential circuits,
the D-latch is nevertheless an asynchronous sequential circuit.

In order to gain some insight into the design and use of a D-latch, we begin by
discussing the general structure of an asynchronous sequential circuit. The general
structure of an asynchronous sequential circuit is shown in Fig. 5.4.

Compare Fig. 5.3 and Fig. 5.4. An asynchronous sequential circuit feeds the next
state, Y, directly back to y, without going through memory elements. The lack of
memory elements and their controlling clock signal implies that the timing of state
transitions is determined solely by the combinational logic delay.

Combinational
logic

X Z

y Y

Fig. 5.4  General structure of an asynchronous sequential circuit.

Suppose we change X at time t. The state variable Y responds and changes at
time t + ∆t. Since Y is immediately reflected at y, its change could affect the
unfinished operation of the circuit and result in an incorrect circuit behavior.

                                                          
2 Glitches cause the circuit to switch unnecessarily and thus consume power.
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The propagation delays of individual bits in the state variable Y are thus critical
to the correct operation of the circuit. A number of reasons, such as manufacturing
and temperature variations, can cause these delays to vary from their nominal values.
A change in the responding order of the state variable bits may, as we will show
below, lead the circuit down different transition paths into different states. This is
called a state transition hazard.

Consider that a sequential logic circuit is currently at state y = 000. The circuit is
designed to respond to a certain input X and produce a new state Y = 011. The
transition between 000 and 011 involves the changes of two state variable bits.
Depending on the combinational logic delay, Y may go through one of two
intermediate states (010 or 001) before it reaches its final state (011). In the case of a
synchronous sequential logic circuit, one can adjust the clock speed to capture the
new state only after all state variable bits settle down so that delay variations cause
no hazard. An asynchronous sequential circuit, in contrast, may respond differently
to intermediate states 010 and 001 since they go right back to the input of the
combinational logic circuit. The designer must ensure that any possible intermediate
state will eventually evolve into the desired final state to avoid a state transition
hazard.

Consider the asynchronous sequential circuit shown in Fig. 5.5, in which the
output of an inverter is connected to its input. A simple analysis illustrated in Fig. 5.6
shows that this circuit cannot settle into a stable state. In other words, the circuit
oscillates.

A B

Fig. 5.5 Inverter connected into an asynchronous sequential logic circuit.
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vA VDD0

vB

Vth

VDD

Vth

vA = vB

V1

V2

V2

Fig. 5.6  Oscillation of an inverter with its output connected to its input.

Fig. 5.6 shows the ideal voltage transfer characteristic of an inverter. A straight
line with unity slope (i.e., vA = vB) is also included in Fig. 5.6. This straight line
represents the relationship that the voltage at A (vA) equals the voltage at B (vB). The
straight line intersects the voltage transfer curve at vA = vB = Vth (Vth is the logic
threshold voltage of the inverter). While this intersection represents a theoretically
stable operating point, in practice the circuit cannot operate at this point for any
period of time.

The reason is that interference or noise is inevitably present in any circuit.
Assume that the circuit starts at vA = vB = Vth. Let vA decrease by a small amount to
V1. The voltage at the output of the inverter will increase to V2. This results in vA = V2
which causes output vB to go to 0. Now vA = 0 so vB responds by going to VDD. The
change of vA from 0 to VDD produces a vB that is 0. From this point on, the circuit
output oscillates between 0 and VDD with a frequency determined by the inverter
delay. A trace showing the occurring and sustaining of this oscillating process is
shown in Fig. 5.6.

In the description above, we assumed an initial voltage decrement at vA. A
similar result would have been produced had we instead assumed a voltage increment
at vA. The reader is encouraged to verify this (see Problem 5.4).

The unstable asynchronous sequential logic circuit shown in Fig. 5.5 is called a
ring oscillator. As noted, the inverter delay determines the oscillation frequency. In
practice, a ring oscillator is often formed by connecting an odd number of inverters
into a loop. The more inverters used in the loop, the lower is its oscillating
frequency.

The ring oscillator is often used as a relatively simple means for measuring the
inverter propagation delay. The average delay of each inverter in the ring oscillator is
calculated as Tcyc/n, where Tcyc is the oscillation period and n is the number of
inverters in the loop. A ring oscillator made of five inverters is shown in Fig. 5.7.
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Output

Fig. 5.7  Ring oscillator consisting of 5 inverters.

A ring oscillator can be used as a low-cost, low-quality clock generator.
However, the oscillating frequency of a ring oscillator, being a function of the
inverter delay, is sensitive to manufacturing and temperature variations.

5.3 D-Latch

A memory element can be built by setting up an asynchronous sequential logic
circuit that has self-sustaining stable states. A stable state of an asynchronous
sequential circuit occurs when no further changes are possible. Refer to Fig. 5.4; if
we keep the input X unchanged, the circuit is in a stable state if and only if

Y(t + ∆t) = Y(t). (5.5)

A CMOS memory element that employs this principle is shown in Fig. 5.8, in
which two inverters are connected into a non-inverting and self-sustaining loop.

A B C

Fig. 5.8  Non-inverting loop formed by two inverters.

The circuit in Fig. 5.8 provides a non-inverting function from A to C so its
voltage transfer curve (vC vs. vA) takes the shape in Fig. 5.9. The unity slope straight
line represents the relationship that the voltages at A (vA) equal the voltage at C (vC)
since A and C are connected together. This figure can be analyzed in a manner
similar to what we did in Fig. 5.6. There are three intersection points between the
voltage transfer curve and the straight line, indicating three operating points. The
center operating point is unstable. A small increment in vA will cause the circuit to
shift toward vA = VDD which is a stable operating point.  On the other hand, if there is
a small decrement in vA, the operation of the circuit goes toward vA = 0 and stays
there. If we consider vA as the state of the circuit, it can stay at either 1 or 0; so the
circuit has two stable states.
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vA VDD0

vC

VDD

vA = vC

Unstable
operating point

Stable
operating point

Stable
operating point

Fig. 5.9  Operating points of a CMOS memory element.

Now we have a bistable CMOS memory element. In order to make it useful, we
must provide a way to set its state to a desired value. Fig. 5.10 shows a D-latch that
implements this function. A pass-transistor is used to feed an externally applied
signal (D) into the loop when its control signal L equals 1. In order to avoid a
fighting condition, in which a node is driven by two potentially opposite signals (D
and Q), to occur when L equals 1, another pass-transistor is provided to selectively
open and close the feedback loop. This structure can also be viewed as that the two
pass-transistors form a 2-to-1 multiplexer, which is used to feed either input D or
output Q as the input of the first inverter.

D
L Q

Q

L

Fig. 5.10  A D-latch.

Fig. 5.11 shows an alternative way of constructing a D-latch, which replaces the
nMOS pass-transistors driven by L  with a pMOS transistor so that no inverted
control signal is needed. The pass-transistors in a D-latch can also be replaced by
transmission-gates to avoid the occurrence of weak signals.
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D
L Q

Q

L

Fig. 5.11  An alternative D-latch utilizing a pMOS transistor.

The behavior of the D-latch is illustrated in the timing diagram of Fig. 5.12.
Initially L is set to 0 so the inverter loop is closed and isolated from input D. Output
Q has an initial value which is unknown to us; so it is indicated in the timing diagram
as a shaded area. When L is changed to 1, input D passes through the inverters and
appears at output Q after the inverter delays (not shown in the timing diagram). If
input D is changed when L = 1, output Q follows. The D-latch is thus said to be
transparent during the time when L equals 1. The last value of D before L is changed
to 0 is captured by the latch and retained at output Q until L is brought up to 1 again.

 

L

D

Q

Fig. 5.12  Behavior of the D-latch.

The use of D-latches as memory elements in a sequential circuit is demonstrated
in Fig. 5.13. Each bit of the state variable is stored in a D-latch.3 We have seen that
the D-latch responds to the level of control signal L so it is referred to as a level-
controlled device. This characteristic causes a few challenges in the use of D-latches
in a sequential circuit. We first explain the issues of using D-latches. In a moment we
will discuss the development of a more sophisticated memory element  the D-flip-
flop, which captures its data in response to the transitions (rising and falling edges)
of a clock signal.

                                                          
3 Only a single representative D-latch is shown in Fig. 5.13.
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Combinational
logic

X Z

y Y

Q D
L
clock

Fig. 5.13  Sequential logic circuit employing D-latches.

When the clock signal is high, the D-latch is transparent so the circuit shown in
Fig. 5.13 operates like an asynchronous sequential logic circuit. In order to avoid the
state transition hazard problem associated with asynchronous sequential logic
circuits, the clock signal must satisfy certain conditions, which we now describe with
respect to the timing diagram of the clock signal shown in Fig. 5.14.

t1

t2

Fig. 5.14  Clock signal for the sequential logic circuit in Fig. 5.13.

In order to guarantee the appropriate operation of a sequential logic circuit that
employs D-latches, the clock signal must satisfy the following conditions:

• t1 ≥ ∆latch; ∆latch is the delay of a D-latch. This condition ensures that the next
state variable Y has enough time to travel from D to Q so it can be latched
correctly.

• t1 < ∆C/L(min); ∆C/L(min) is the shortest delay of the combinational logic circuit.
This restriction is a direct result of the latch being transparent during t1. This
condition prevents the potential state transition hazard problem in an
asynchronous sequential logic circuit. When this condition is satisfied, the
changes caused by the new y still being latched will not come back to the
combinational circuit input in the same clock cycle.

• t2 ≥ ∆C/L(max); ∆C/L(max) is the longest delay of the combinational circuit. This
requirement allows the slowest signal to settle down before the next
transition. This ensures the latching of the correct new state variables.

• Input X should not be changed until the latches settle down at their outputs
(Q). This can be ensured by changing X during time interval t2. In this case,
t2 has to be lengthened according to the time of changing X so that this
change can propagate completely through the combinational logic circuit.
This prevents incorrect state transitions from occurring.
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The above requirements are quite restrictive since t1 must be long enough to
correctly latch the new state variable values, but not so long that erroneous values
can be stored. In general, it is very difficult to operate a circuit in such a manner
properly.

5.4 D-Flip-Flop

The design of a clock signal to be used in a sequential logic circuit can be
significantly simplified if we can ensure that the memory element is never (or almost
never) allowed to be transparent. This requires the use of an edge-triggered memory
element, which responds to the rising or falling edge of the clock signal. The D-flip-
flop is such a device. Unlike a level-controlled device, an edge-triggered memory
element captures data into storage at the extremely short time intervals when the
clock goes through its transitions.

The D-flip-flop shown in Fig. 5.15 is implemented by cascading two D-latches
controlled by complementary signals (L and L ). This structure is known as a master-
slave structure, in which the master D-latch receives a signal from outside and passes
it, under the control of the clock, to the slave D-latch. Since the master and slave D-
latches are controlled by complementary signals, the path from D to Q is never
allowed to be transparent.4

D
L

L

Q
Q

L

L

Master Slave

K

Fig. 5.15 Master-slave structure to form a D-flip-flop.

Fig. 5.16 illustrates the behavior of this D-flip-flop. The latch delay times are
ignored in this timing diagram. The output of the master D-latch (K) follows the
changes of input D when clock L is high. The slave D-latch accepts K as its input. As
noted, since the two D-latches are controlled by complementary signals, K is blocked
from entering the slave D-latch while it is changing. By the time when clock L

                                                          
4 This is only true in an ideal case.  In reality, the circuit may be transparent for a very brief time

due to the uneven delays of different signals. The designer has to ensure the transparent condition only
occurs for a very brief duration of time so that the correct D-flip-flop operation is not compromised. This
is usually very easy to achieve.
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changes to low, the last signal appearing at K is captured by the master D-latch. Now
K becomes the input of the slave D-latch. Note that although the slave D-latch is
transparent when clock L is low, its input is held steady by the master D-latch. The
overall behavior of the flip-flop is that the falling edge of L triggers it to capture
input D at that time into storage.

L

D

K

Q

Fig. 5.16  Behavior of a negative-edge-triggered D-flip-flop.

Since the flip-flop in Fig. 5.15 operates in synchronization with the falling edge
of signal L, it is called a negative-edge-triggered flip-flop. Similarly, a positive-edge-
triggered flip-flop can be formed by exchanging the control signals of the latches so
that the master and slave are transparent when L = 0 and L = 1, respectively. The
symbols of both types of flip-flops are illustrated in Fig. 5.17. We use the Greek
letter φ to indicate a clock signal. The triangle at the control input symbolizes the
edge-triggered property of the circuit.

D Q

Q

φ 

Negative edge-triggered flip-flop Positive edge-triggered flip-flop

D Q

Q

φ 

Fig. 5.17  Symbols of flip-flops.



Sequential Logic Circuits 159

5.5 One-Phase Clock Systems

Combinational
logic

X Z

y Y

Q D

φ

Fig. 5.18  Sequential circuit incorporating D-flip-flops.

The use of D-flip-flops in a sequential circuit is illustrated in Fig. 5.18.5 We
consider the timing diagram shown in Fig. 5.19 to design the clock φ used in a
sequential circuit incorporating negative edge-triggered D-flip-flops.

t1

t2

Fig. 5.19  Timing diagram for the design of an edge-triggering clock.

In order to ensure the appropriate operation of the circuit in Fig. 5.18, the clock
in Fig. 5.19 must satisfy the following conditions:

• t1 ≥ ∆latch(master); ∆latch(master) is the delay of the master D-latch. This allows
next state Y to travel from D to K (see Fig. 5.16) so that it can be latched by
the master D-latch correctly.

• t2 ≥ ∆latch(slave); ∆latch(slave) is the delay of the slave D-latch. This is required to
ensure that next state Y that has been latched by the master D-latch can
travel from K to Q (see Fig. 5.16). Next state Y can then be latched by the
slave D-latch correctly.

• t1 + t2 ≥ ∆C/L(max) + ∆latch(master) + ∆latch(slave); ∆C/L(max) is the longest delay time
of the combinational logic circuit. This condition allows the signals to settle
down before the next transition. When ∆C/L(max) >> (∆latch(master) + ∆latch(slave)),
this requirement can be simplified into t1 + t2 ≥ ∆C/L(max).

                                                          
5 Again, only a single representative D-flip-flop is shown in Fig. 5.18.
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• Any changes to input X are to be made after the falling edge of the clock
signal φ. This ensures that the input and state variable are in
synchronization.

The clock for a circuit employing positive-edge-triggered D-flip-flops can be
designed similarly by exchanging the restrictions for t1 and t2.

The benefit of using edge-triggered flip-flops instead of level-controlled latches
in a sequential circuit is that the upper bound restriction of the clock signal (the latch
should not be turned on longer than the shortest combinational circuit delay) is
removed. This implies that we can always find a valid clock signal for an edge-
triggered sequential circuit. All we need to do is to slow the clock down by
increasing its cycle time to satisfy the above conditions.

Since in many case, ∆C/L(max) >> (∆latch(master) + ∆latch(slave)), the length of the clock
cycle (t1 + t2) is commonly dominated by ∆C/L(max). If it is desirable to have a duty
cycle of 50% for clock φ, it can be achieved by setting the transition edge at the
middle of a clock cycle so that the clock stays at 1 and 0 for the same amount of
time.

The sequential circuits illustrated in Fig. 5.13 and Fig. 5.18 have only one stage
of functional unit (i.e., the combinational logic). Fig. 5.20 shows a sequential circuit
that has two stages of combinational logic (C/L). Note that each of the D-flip-flops in
Fig. 5.20 symbolizes a bank of memory elements, collectively called a register. The
registers, controlled with the same clock φ, are used to capture associated C/L
outputs so that they are available in the next clock cycle. Multiple stages of
functional units are commonly used in systems such as pipelines and array
processors. We have a detailed discussion on these and other systems later in this
book.

C/L C/LD Q

φ

D Q

Fig. 5.20 Sequential circuit with two stages of combinational logic.

5.6 Two-Phase, Non-Overlapping Clock Systems

The edge-triggered sequential circuit implementation shown in Fig. 5.20 is
straightforward. However, it is sometimes desirable to implement the registers with
latches instead of flip-flops, so that 50% of the memory elements, and thus their area,
power consumption, and delay, are eliminated. Recall that the difficulty of
determining the timing in a latch-based sequential circuit comes from the fact that the
latch is transparent when it is turned on by the control signal. When there is more
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than one C/L stage in the circuit, the problem of transparency can be easily resolved.
We can control the latch-based memory elements with a clock signal arrangement
that guarantees no continuous loops are formed at any time in the system.

We call such a system a two-phase, non-overlapping clock system. The system
employs two identical, but phase-shifted clock signals φ1 and φ2, such as those shown
in Fig. 5.21.

φ1

φ2

Fig. 5.21  Two-phase, non-overlapping clock signals.

The non-overlapping property of these clock signals ensures that the latches
driven by φ1 and φ2 will not be transparent simultaneously. When the φ1-controlled
latches are accepting data appearing at their inputs, the φ2-controlled latches are
operating in their self-sustaining modes, and vice versa. Theoretically, a clock signal
φ and its complementary signal φ  can be used in a two-phase, non-overlapping
clock system. However, the unavoidable delay introduced by the inverter used to
generate φ  violates the requirement of non-overlapping, as shown in Fig. 5.22.

φ

φ

φ φ

Fig. 5.22  Overlapping between φ and φ .

In practice, a small amount of overlapping between the clock signals, as long as
it is shorter than the shortest delay between two latch stages, can be tolerated. This
condition is usually satisfied since the clock overlapping caused by an inverter is
often smaller than that of the combinational circuit between two latch stages.

A more serious and challenging problem, called clock-skew, occurs in a two-
phase clock system if φ1 and φ2 travel through different paths with different delays.
The unequal path delays can bring the two clock signals significantly out of phase.
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The difference between the delays of φ1 and φ2 is defined as the amount of clock-
skew.

The clock signals in Fig. 5.21 have less than 50% duty cycles, so that an error
margin is introduced between the falling edge of φ1 and the rising edge of φ2.  A
similar error margin is also provided between the falling edge of φ2 and the rising
edge of φ1. These error margins must be set to be longer than the maximum amount
of clock-skew.

To understand how the two-phase, non-overlapping clock signals are used in a
latch-based sequential circuit, consider the output of a latch controlled by clock
signal φ1 as shown in Fig. 5.23.

D Q

φ1

φ1

φ2

stable stableQ

Fig. 5.23 Output Q of a latch controlled by φ1.

The shaded area in the waveform of Q may be unstable since φ1 is high; so the
latch is transparent. Shortly after the falling edge of φ1, Q becomes a stable signal
because the latch is closed (φ1 is low). Signal Q will remain stable until φ1 rises
again. In other words, Q is stable in the time interval when φ1 is low.

The non-overlapping property of the clock signals ensures that the rising and
falling of φ2 are complete during the time interval when φ1 is low. Therefore, the
output of a latch controlled by φ1 is guaranteed to be stable when a φ2-controlled
latch is accepting its input. We call the output of a φ1-controlled latch a stable-φ2 (s-
φ2) signal. No glitches can occur if we apply only s-φ2 signals to the inputs of φ2-
controlled latches.

Similarly, the output of a φ2-controlled latch is a stable-φ1 (s-φ1) signal. The
correct operations of φ1-controlled latches are guaranteed if we apply only s-φ1
signals to their inputs.

In summary, the timing problem of a latch-based sequential circuit is solved by
observing the following requirements:

• Only s-φ1 signals can be applied to the D inputs of φ1-controlled latches.
• Only s-φ2 signals can be applied to the D inputs of φ2-controlled latches.
• Different stable signals (s-φ1 and s-φ2 signals) must not be mixed in the

same combinational logic stage, which is defined as the logic from one latch
stage to the next latch stage.
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• The output of a combinational logic stage is of the same type as its inputs
(i.e., a combinational logic circuit accepting s-φ1 signals produces s-φ1

signals; a combinational logic circuit accepting s-φ2 signals produces s-φ2
signals).

Fig. 5.24 shows the assignment of clock signals to the latches in a sequential circuit
according to these requirements. In some circumstances, additional latches must be
added to satisfy the above stable signal requirements.

D Q
C/LC/L

D Q

D Q
C/L

φ1

φ1

φ2

sφ1sφ2 sφ2

sφ2

sφ1

sφ1

Fig. 5.24 Assignment of clock signals.

The timing of a two-phase, non-overlapping clock system is designed as follows.
Consider the timing diagram shown in Fig. 5.25.

t1

φ1

φ2

t2
t3

t4

Fig. 5.25  Design of a two-phase, non-overlapping clock system.

The appropriate operation of a latch-based multiple stage sequential circuit can
be obtained by satisfying the following timing requirements:

• t1, t3 ≥ ∆latch. This allows the latches to capture data correctly.
• t2, t4 ≥ maximum amount of clock-skew. This ensures that the non-

overlapping property will not be violated.
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• t1 + t2 ≥ ∆C/L(max) + ∆latch,, t3 + t4 ≥ ∆C/L(max) + ∆latch, where ∆C/L(max) is the
maximum delay of a combinational logic stage. This condition allows the
signals to settle down at the latch inputs before they are clocked in.

Based on the above timing requirements, the minimum clock cycle time (thus the
maximum clock frequency) is determined by the slowest combinational logic stage. It
is important to balance the stage delay times so that the fast stages do not sit idle
waiting for the slow stages to complete during each clock cycle. A technique called
retiming can be applied to relocate the latches for the purpose of balancing stage
delays.

An example of retiming is shown in Fig. 5.26. The original circuit is shown in
Fig. 5.26(a), in which stage 1 and stage 2 have delays of 100 ns and 50 ns,
respectively. The clock cycle time is thus determined to be 100 ns, which implies
stage 2 will be idle for half of the clock cycle. The retiming result is shown in Fig.
5.26(b). Stage 1 has been divided into stage 1a and stage 1b, which have delay times
of 75 ns and 25 ns, respectively.6 The latches are relocated between stages 1a and 1b.
The clock cycle time after retiming is 75 ns.

Stage 1 Stage 2LatchesLatches Latches

delay = 50 nsdelay = 100 ns

Stage 1a Stage 2LatchesLatches Latches

delay = 50 nsdelay = 75 ns

Stage
1b

delay = 25 ns

(a)

(b)

Fig. 5.26  Retiming example.

5.7 Clock Distribution

The distribution of clock signals to different parts of a chip is a major challenge
to VLSI designs. Any experienced designer can testify that the routing of clock
signals in a high performance circuit is always treated as a “full-custom” operation.
In addition to the skew problem we have mentioned above, other important issues in
the routing of clock signals are cross-talks and load balancing. A routing scheme
called the H-tree scheme and its variations can be used to distribute the clock signal

                                                          
6 This is an ideal case to simplify the explanation.
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to different parts of a chip so that every part has approximately the same distance
from the clock source. The H-tree routing scheme is illustrated in Fig. 5.27.

clock

Fig. 5.27  H-tree clock routing scheme.

5.8 Sequential Circuit Design

We conclude this chapter by going through a simple example to review the
general design process of sequential circuits. Readers who need further information
about sequential circuit design should consult one of the digital logic design books
listed at the end of the chapter.

Example 5.1
In this example, we design a sequential logic circuit that controls and maneuvers a
mobile robot lawn mower (Fig. 5.28). The robot is equipped with a light sensor and
an obstacle sensor. The light sensor detects the ambient light intensity. The obstacle
detects obstacles in the path of the robot. The outputs of the sensors are shown in
Fig. 5.29.
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Obstacle Sensor

Light Sensor

Fig. 5.28  Illustration of the robot lawn mower.

Sensor Signal Meaning
Light x 0: dark 1: bright

Obstacle y 0: obstacle free 1: obstacle detected

Fig. 5.29  The sensor signals and their meanings.

The sequential circuit uses two output signals (p and q) to control two robot motors,
respectively.  Each motor drives a wheel. A motor turns on if its control signal is 1
and turns off if the control signal is 0. The robot thus moves according to Fig. 5.30.

pq Left motor Right motor Robot
00 off off stops
01 off on turns left
10 on off turns right
11 on on goes straight

Fig. 5.30  Relations between control signals and robot movements.

The maneuver of the robot around obstacles is carried out using the following
algorithm:
• In order to avoid accidents, the robot stops moving when there is not enough

ambient light (x = 0). It resumes its movement when the lighting is adequate (x =
1).7

• The robot always goes straight (pq = 11) initially after it resumes its movement.

                                                          
7This feature is for the benefit of the humans around the robot.
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• The first obstacle in the robot’s path (y = 1) after it resumes its movement causes
the robot to turn left (i.e., pq = 01). The robot continues to turn until no obstacle
is detected.

• The robot remembers its previous turning direction. When a new obstacle is
detected, the robot turns in a direction different from its previous one. For
example, if the robot has turned right last time to avoid an obstacle, it turns left
until no obstacle is detected.

A state diagram is created in Fig. 5.31 to graphically capture the above
requirements for the sequential circuit. The state diagram is created as a Mealy
machine to reduce the number of states (see Problem 5.10 for a Moore machine
implementation). Note that the state assignment (i.e., assigning a binary code to a
state) can significantly affect the performance (circuit complexity, power
consumption, speed, etc.) of a finite state machine. We will not discuss state
assignment in this book, but readers are encouraged to review the related issues.

The circles in the state diagram indicate states, each of which is labeled with
s1s0, a two-bit state variable. There are four states. The arrows represent possible
state transitions, each of which is labeled with xy/pq, where xy is the sensor condition
that causes the transition and pq is the required motor control signal. For example, if
the robot is currently in state 00 and xy = 0- (i.e., x = 0 and y is a don’t care). The
machine remains in state 00 and produces 00 on its output.

00 01

1110

0-/00
10/11 11/01

10/11

11/01

11/10

10/11

0-/00
10/11

11/10

0-/00

0-/00

Fig. 5.31  Mealy machine state diagram for the mobile robot controller.

The meanings of individual states are listed in Fig. 5.32.
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State Meaning
00  Next obstacle will be avoided by turning left
01 Turning left
11 Next obstacle will be avoided by turning right
10 Turning right

Fig. 5.32 States of the mobile robot controller.

The state diagram is then converted into the state table shown in Fig. 5.33.

s1s0

xy = 0-
S1S0pq

xy = 10
S1S0pq

xy = 11
S1S0pq

00 0000 0011 0101
01 0000 1111 0101
11 0000 1111 1010
10 0000 0011 1010

Fig. 5.33  State table for the mobile robot controller.

The optimized Boolean equations for next state variables S1 and S0 and outputs p and
q are created using the Kanaugh maps in Fig. 5.34. The result Boolean equations are
shown in (5.6).

.yxxsq

,yxxsp

,yxsxysS

,yxsxysS

+=

+=

+=

+=

1

1

010

011

(5.6)

The block diagram for this mobile robot sequential circuit is shown in Fig. 5.35.
Two memory elements (e.g., D-flip-flops) are used to store the state variable. The
combinational circuit (C/L) implements the Boolean equations given in (5.6). It is
desirable to provide a reset function (not shown) so that the sequential circuit can be
brought into a known state as needed (e.g., at power-up). Any of the CMOS logic
circuit structures (e.g., complementary logic) described in Chapter 2 can be used.
The technique explained in Section 5.6 can be applied to determine the maximum
clock frequency (see Problems 5.9 and 5.10). A means must also be provided to reset
the robot, either manually or automatically at the power-up time.
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Fig. 5.34  Knaugh maps for mobile robot controller design.

C/L

Memory

Memory

x

S1

S0

p
q

s1

s0

clock

y

Fig. 5.35  Block diagram for the mobile robot controller circuit.

5.9 Summary

In this chapter, we have introduced two basic CMOS memory elements, the D-
latch and the D-flip-flop. The D-latch is a level-controlled device; so it is transparent
when its control signal is asserted. In contrast, the D-flip-flop is an edge-triggered
device, which captures an input signal into storage in response to the edge of a clock
signal. The use of both types of memory elements to construct sequential circuits has
been demonstrated. A number of approaches to use clock signals to synchronize the
operations of a sequential circuit have been described.
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5.10 To Probe Further

Sequential Circuit Design:
• J. F. Wakerly, Digital Design Principles and Practices, 2nd Edition, Prentice

Hall, 1994.

• V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit
Analysis & Design, Prentice-Hall, 1995.

• G. De Micheli, R. K. Brayton, and A. Sangiovanni-Vincentelli, “Optimal state
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4, 1985, pp. 269-285.

Two-Phase Clocking:
• D. Noice, R. Mathews, and J. Newkirk, “A clocking discipline for two-phase

digital systems,” Proceedings, International Conf. on Circuits and Computers,”
IEEE Computer Society, 1982, pp. 108-111.

Clock Distribution:
• E. G. Friedman, ed., Clock Distribution Networks in VLSI Circuits and Systems,

IEEE Press, 1995.

Retiming:
• C. E. Leiserson, F. M. Rose, and J. B. Saxe, “Optimizing synchronous circuitry

by retiming,” Proc. Third Caltech Conf. on VLSI, Randal Bryant, ed., Computer
Science Press, Rockville, MD, 1983, pp. 87-116.

5.11 Problems

5.1 Setup time and hold time are two important parameters of a clocked circuit.
Setup time and hold time specify the minimum amounts of time that the input
should be held stable before and after the triggering clock transition,
respectively. What is the setup time and hold time of the D-flip-flop in Fig.
5.15?

5.2 Explain why is it possible to have a negative setup time, which implies that the
input does not have to be ready until after the triggering clock transition.
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5.3 From the viewpoint of power consumption, explain why it is important to have
reasonable fast rise time and fall time.

5.4 Verify that for the circuit in Fig. 5.5, a voltage increment at vA causes
oscillation; assume that vA = vB initially.

5.5 Modify the D-flip-flop shown in Fig. 5.15 to include an asynchronous reset
function. This allows the sequential circuit to be brought into a known initial
state. Show a transistor level circuit diagram.

5.6 Modify the D-flip-flop shown in Fig. 5.15 into a JK-flip-flop.

5.7 Follow the guidelines described in this chapter to design a 2-phase non-
overlapping clock to be used in the sequential circuit of Fig. 5.26b.  Use the
latch shown in Fig. 5.10. The circuit should be operated in its highest possible
speed.

5.8 The block diagram shown in Fig. 5.36 suggests a way to implement a 64-bit
adder. Only a single one-bit full adder and a number of registers are used.
Show the state diagram, state and output equations for this 64-bit adder.
Design a 2-phase non-overlapping clock for this circuit and provide your
answer with a timing diagram. Assume all transistors are of the same size.
Consider only gate capacitance, effective channel resistance, and output
diffusion capacitance. All other parasitic elements are ignored. How long does
it take for your circuit to produce the sum?

1-bit

Full Adder

Shift Reg.

Shift Reg.

A

B

a b

RegShift Reg.S
Q

q

s

Fig. 5.36  64-bit adder.
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5.9 Use complementary logic to implement the combinational logic portion of
Fig. 5.35. Assume D-flip-flops are used and determine the maximum clock
frequency at which the sequential circuit operates correctly. Provide a reset
function.

5.10 Redesign the mobile robot lawn mower controller described in Example 5.1 as
a Moore machine. Determine the maximum clock frequency at which your
design operates correctly. Provide a reset function.

5.11 Design the control circuitry for a garage door opener. A single button controls
the opening and closing of the door. Pressing the button opens a closed door
or closes an opened door. For safety reasons, the direction of a moving door
should be reversed immediately if the button is pressed.

5.12 Design a combinational lock with three buttons, 1, 2, and R.  The numerical
buttons are used to enter a code and the R button is used to reset the lock.  To
open the lock, a user would first push the reset button R and then enter a code
of 3 digits.  If a mistake is made in the process, the R button can be used to
start over again. Your circuit should produce an output of 0 to open the lock
after the correct code has been entered. Show the design process and the
schematic circuit diagram of this lock for the code 1-2-1.

5.13 Use a minimum number of inverters and nMOS transistors to design a CMOS
positive-edge-triggered “toggle” flip-flop with an asynchronous reset (R).  A
toggle flip-flop is a storage device with a control input T.  If T = 1 when the
clock ticks, the state of the flip-flop changes; otherwise, it remains the same as
the previous state.

5.14 A sequential circuit has the following state and output equations:
Y X X y X y y Y X y X X y X y y X y y1 1 2 1 2 1 2 2 2 1 1 2 1 2 1 2 2 1 2= + = + +    Z =  , , .
y1, y2 are the current state variables. Y1, Y2 are the next state variables. X1, X2
are inputs. Z is the output. Implement this circuit with CMOS complementary
logic circuits and static D-flip-flops. The design objective is to operate this
circuit at the highest operating frequency. What is this frequency? Use
transistors with L = 1 µm and W = 4 µm.

5.15 This problem deals with the design of a control unit for a simple coin-operated
candy vending machine.  The candy costs 20¢, and the machine accepts
nickels (5¢) and dimes (10¢). Change should be returned if more than 20¢ is
deposited. No more than 25¢ can be deposited on a single purchase; therefore,
the maximum change is one nickel. A block diagram of the candy machine and
a state diagram for its control unit are given in Fig. 5.37 and Fig. 5.38,
respectively.
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The control unit has two inputs, N and D, which are outputs of the coin
detector. The coin detector generates a 1 on signal N if a nickel is deposited
and a 1 on signal D if a dime is deposited. The N and D lines automatically
reset to 0 on the next clock pulse. We shall assume that it is physically
impossible to insert two coins at the same time, and therefore we cannot have
N = D = 1 in the same clock period. The control unit has two outputs, R and
C. The candy is released by a 1 appearing on signal R, and a nickel in change
is released by a 1 appearing on signal C. The states of the control unit
represent the total amount of money deposited for the current purchase.
Design this candy machine control unit.

Coin 
Detector

Control 
Unit

N

D

Release 
Candy

Release 
Change

R

C

Fig. 5.37  Block diagram of a candy machine.

0¢ 5¢

10¢15¢

ND/RC

00/00

10/00
00/00

10/00

00/00
10/00

01/10

01/00

00/00

10/10,
01/11

01/00

Fig. 5.38  State diagram for a candy machine.
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Chapter 6 Alternative Logic Structures

Out of many, one …
The essentials of CMOS design and analysis have been covered in the previous

five chapters. A non-exhaustive list of CMOS structures has been shown in Chapter 2
(see Fig. 2.16). Complementary logic circuits and pass-transistor/transmission-gate
logic circuits have been introduced and used in the design examples. This chapter
presents several alternative CMOS logic structures, which include open-drain
circuits, pseudo-nMOS circuits, dynamic circuits, and BiCMOS circuits.

The availability of more than one way to implement a function offers a design
with extra dimensions of flexibility. Different logic structures can be used together in
the design of a system. We begin our discussion with a summary of complementary
logic circuits and pass-transistor/transmission-gate logic circuits, which we establish
as the baseline CMOS circuit structures. Complementary logic and pass-
transistor/transmission-gate logic are extensively used in standard cell libraries
because of their robustness.

6.1 Complementary Logic Circuits

Complementary logic circuits are named after the fact that each of them contains
two complementary transistor switch networks. The pull-up network, when turned
on, connects a 1 (VDD) to the gate output. The pull-down network, when turned on,
supplies a 0 (VSS) to the gate output.

The design of complementary logic circuits has been discussed in Chapter 2.
Complementary CMOS logic circuits have a number of properties:

• Easy to design.
• Simple to analyze.
• Robust operation.
• Variable supply voltage.
• Static circuit.
• Ratioless logic.
• Inverting logic gates (e.g., NAND, NOR, etc.) only.1

• 2n transistors (n nMOS and n pMOS) for an n-input gate.
• Input capacitance of 2 transistor gates for each input for an n-input gate.
• Maximum logic swing (VDD to VSS).
• Almost no static power dissipation.
• Power dissipation only during logic transition.

                                                          
1 A non-inverting logic gate can be formed by applying inverters at either the inputs or the output of

a complementary logic gate.
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Note that the above summary is a broad overview and exceptions to each point
do exist. It should only be used as a rule-of-thumb insight list by a designer to make
intelligent decisions.

6.2 Pass-Transistor/Transmission-Gate Logic

Pass-transistor/transmission-gate logic circuits provide a design with another
dimension of freedom by allowing input signals in addition to VDD and VSS to be
steered to their outputs. A summary of pass-transistor logic properties is provided as
follows.

• Inverting or non-inverting logic.
• Clipping logic (i.e., reduced logic swing).
• An nMOS pass-transistor produces weak-1 signals.
• A pMOS pass-transistor produces weak-0 signals.
• A pass-transistor should not be used to drive another pass-transistor.
• Potential floating hazards if not designed correctly.
• A 2n-to-1 multiplexer requires 1(2 2)n+ −  pass-transistors plus n inverters.
The weak signal problem can be resolved by replacing the pass-transistors with

t-gates (transmission-gates). Fig. 6.1 shows the effective on-resistance of a t-gate.

Effective
on-resistance

Input signal level 

pMOS nMOS

t-gate

Fig. 6.1  Effective on-resistance of a t-gate.

The properties of transmission-gate logic are listed below:
• Non-clipping switches.
• Twice as many transistors as an equivalent pass-transistor circuit.
• Complementary signals needed to control transmission-gates.
• Higher input capacitance than a pass-transistor counterpart.
• Higher power consumption (due to the extra inverters and higher input

capacitance).
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6.3 Pseudo-nMOS Logic

Removing one of the switch networks in a complementary logic circuit results in
an open-drain logic circuit. Usually the pull-up network is eliminated since pMOS
transistors are inherently slower than their nMOS counterparts. Fig. 6.2 shows an
example of an open-drain inverter, which is created by removing the pMOS transistor
(i.e., the pull-up network) of a complementary inverter.

A

Z

Fig. 6.2  An open-drain inverter.

It is easy to verify that the circuit in Fig. 6.2 only implements half of the inverter
function. When A = 1, the transistor turns on and pulls the output Z down to VSS (0).
The transistor is turned off when A = 0 so the output is floating. Due to the
capacitance load (not shown) at Z, the output retains its value for a time determined
by the small reverse-bias p-n junction current and the load capacitance value.

In order to correctly operate this open-drain logic circuit, a pull-up resistor must
be added between output Z and VDD to avoid the floating condition when A = 0. This
structure is illustrated in Fig. 6.3. When the pull-down transistor is off, Rpu is
responsible for the charging of the capacitance at Z so that it can be brought up to 1.
According to the RC timing model, the pull-up time is estimated by the product of
Rpu and the capacitance value at the output Z.

In Fig. 6.3, when A = 1, a voltage-divider is formed by the pull-up resistor Rpu
and the nMOS transistor. The result is that output voltage vZ depends on the ratio
between the pull-up resistance Rpu and the effective channel resistance of the nMOS
transistor Rn:

v V R
R RZ

DD n

pu n
=

+
, when A = 1. (6.1)
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A

Z
Rpu

Fig. 6.3 Open drain inverter with a pull-up resistor.

From (6.1), it can be seen that vZ cannot reach 0 unless Rn = 0. In theory, the
value of vZ can be brought closer to 0 by increasing the value of Rpu. However, in
practice we would keep the value of Rpu as low as possible to minimize its area and
improve the pull-up time of the circuit. The following analysis provides an approach
to determine the smallest value of Rpu that produces an acceptable 0 at output Z.

A

Z
Rpu

Fig. 6.4 Open-drain inverter driving another open-drain gate.

Assume that the output of an open-drain circuit is used to drive another open-
drain stage, as shown in Fig. 6.4. When the driver stage produces a 0 at its output Z
(i.e., A = 1), the necessary condition for vZ to be considered a 0 by the second stage is
that its value should be below the threshold voltage Vtn of the nMOS transistor.
Assume that Vtn = 0.2 VDD, we need

v V R
R R

VZ
DD n

pu n
DD=

+
< 0 2. . (6.2)
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The condition of (6.2) can be simplified and rewritten into

Rpu/Rn > 4 (6.3)

We call Rpu/Rn the pull-up to pull-down ratio. Typically we select this ratio to be a
value between 5 and 10.

In the CMOS technology, the pull-up resistor is implemented with a pMOS
transistor that is permanently turned on by having its gate connected to VSS. An
example of an open-drain inverter using a pMOS transistor as its pull-up resistor is
shown in Fig. 6.5. This structure is similar to the inverter in the now obsolete nMOS
technology and is thus called a pseudo-nMOS inverter.2

A

Z

L/W = 6/4

L/W = 2/4

Fig. 6.5  Pseudo-nMOS inverter.

Considering the fact that the effective channel resistivity of the pMOS transistor
is about 2.5 times that of the nMOS transistor, the pull-up to pull-down ratio is
satisfied by the following transistor dimension relationship:

3pu pd

pu pd

L L
W W

= , (6.4)

in which Lpu and Wpu are the effective channel length and channel width of the pull-
up transistor, respectively, and Lpd and Wpd are the effective channel length and width
of the pull-down network, respectively.

The transistor dimensions for a pseudo-nMOS inverter are given in Fig. 6.5. Fig.
6.6 shows the transistor dimensions for a pseudo-nMOS 2 input NAND gate. The
NAND gate has two nMOS transistors connected in series in the pull-down network.
The effective pull-down channel length is thus twice that of a single transistor
(Lpd/Wpd = 4/4). The condition of (6.4) requires the pull-up pMOS channel to be

                                                          
2 NMOS logic uses a depletion mode transistor with a negative threshold voltage as a pull-up

resistor.
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proportionally lengthened (Lpu/Wpu = 12/4) to satisfy the pull-up to pull-down ratio
requirement.

Fig. 6.7 shows the configuration of a pseudo-nMOS 2 input NOR gate. In the
case of a NOR gate, since the nMOS transistors are connected in parallel, the channel
dimensions of the pMOS transistor remain the same as in an inverter (Lpu/Wpu = 6/4).
This result comes from the worst case consideration in which only one nMOS
transistor is turned on. If both nMOS transistors are turned on, the overall pull-down
resistance will be reduced so the pull-up to pull-down ratio would be further
improved. For this reason, a NOR gate is often preferred over a NAND gate in
pseudo-nMOS logic circuits.

A

Z

B

L/W = 12/4

L/W = 2/4

L/W = 2/4

Fig. 6.6  Transistor dimensions of pseudo-nMOS NAND gate.

A

Z

B

L/W = 6/4

L/W = 2/4 L/W = 2/4

Fig. 6.7  Transistor dimensions of pseudo-nMOS NOR gate.
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A pseudo-nMOS logic gate of n inputs generally has (n + 1) transistors, which is
approximately a 50% reduction from the 2n transistors in a functionally identical
complementary logic circuit. However, the use of transistor counts to evaluate the
circuit areas can be misleading in this case since the pull-up transistor is larger
(sometimes significantly) than the transistors used in a complementary logic circuit.

The pseudo-nMOS logic has a reduced logic swing due to the voltage dividing
structure when the pull-down network is turned on. Another disadvantage is that the
pseudo-nMOS logic has non-zero static power dissipation if it outputs a 0. When the
pull-down network is turned on, a current path between VDD and VSS is formed so
power is dissipated although the circuit is not switching.

One unique property of pseudo-nMOS logic is its capability of forming
hardwired logic by connecting the outputs of two or more logic circuits together. For
example, hardwiring the outputs of two open-drain inverters and providing an
appropriate pull-up pMOS transistor combines the inverters into a NOR gate. This is
equivalent to forming an AND function between the inverter outputs. Hardwired
logic is not allowed in complementary logic since connecting outputs with unequal
signals create a fighting situation.

Fig. 6.8 illustrates an example application of this hardwiring capability of
pseudo-nMOS logic circuits. In this example, multiple service requesters are
connected to the same request line of a service provider. This type of circuit can be
used in the connection of peripheral devices to a mother board. Each service
requester connects to the request line through an open-drain stage. The request line is
normally high because of the pull-up pMOS transistor. The service provider monitors
the request line through an inverter.

A low signal on the request line indicates that one or more service requester has
turned on its output transistor that pulls down the request line. A priority scheme
such as daisy chaining (not shown) can then be used to identify the service requester
or to resolve the situation when two or more service requesters have pulled down the
request line simultaneously.

The advantage of this architecture is apparently in the fact that the operation is
independent of the number of service requesters connected to the request line. The
adding or removing of service requesters does not affect the operation. Notice that all
service requester output stages are connected in parallel, which allows the use of a
fixed size pMOS pull-up transistor.
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Service Requester Service Requester Service Requester Service Provider

Fig. 6.8  Request line connecting multiple service requesters and a service provider.

A summary of pseudo-nMOS logic circuit properties is provided here:
• Ratioed logic.
• Static power dissipation when output = 0.
• (n + 1) transistors for n-input gates.
• Reduced logic swing.
• Input capacitance of 1 transistor gate for each input of an n-input gate.
• Hard-wired logic possible.

6.4 Programmable Logic Array

One popular application of pseudo-nMOS logic structure is the implementation
of programmable logic arrays, which are programmable two-level logic circuits.
Programmable logic array (PLA) was a term originally created to describe a class of
standalone devices that allow users to program their functionalities. The capability of
these user programmable devices were quite limited and have been mostly replaced
by the significantly more powerful field programmable gate arrays (FPGAs). The
structure of a field programmable gate array will be discussed in Chapter 8.

In the context of VLSI design, the designers are not interested in using the PLA
structure to provide the user with programmability. Rather, we would like to develop
the PLA as a highly regular, multiple output logic structure for the purpose of
automatic layout generation.

Fig. 6.9 shows the block diagram of a PLA. It consists of two levels of
combinational logic functions and one level of input buffers. The input buffer
provides both inverting and non-inverting buffers for the inputs. The two levels of
combinational logic are used together to implement sum-of-products logic functions.
The block marked as “AND” is called the and-plane, which is responsible for the
generation of all product terms needed to form the logic functions. The block marked
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as “OR” is called the or-plane which OR’s selected product terms together to form
the desired logic functions.

AND OR

Input Buffers

Fig. 6.9  Block diagram of a PLA.

The pseudo-nMOS logic structure is chosen for its simplicity (only one
switching network to program) to implement PLAs in the CMOS technology. Both
the and-plane and or-plane are pseudo-nMOS NOR logic structures. A pseudo-
nMOS NOR structure has the advantage of a constant size pull-up. Since all the pull-
down transistors are connected in parallel, the pull-up size does not have to be
modified when the number of pull-down transistors is changed. Also, from the layout
point of view, it is physically easier to add or remove transistors when they are all
connected in parallel. The following example demonstrates the formation of a PLA.

Example 6.1
The following functions are to be implemented with a pseudo-nMOS PLA:
Z AB AB1 = +
Z AB2 =
Z A B3 = +

Z AB AB4 = +
The complexity of a PLA is determined by the numbers of its inputs, its product

terms, and its outputs. This example has 2 inputs (A and B) and 4 outputs (Z1, Z2, Z3,
and Z4). The product terms from the and-plane are shared in the or-plane. A product
term (e.g., AB), although it is needed in more than one output, has to be generated
only once.

Normally a multiple function minimization should be performed in the design of
a PLA. The goal is to minimize the number of unique product terms instead of
individual output functions. There are 6 unique product terms in this example. A
PLA implementation of this example is shown in Fig. 6.10.
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AB

AB

AB
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B

AB

Fig. 6.10  PLA implementation of Example 6.1.

The pull-up to pull-down ratio required by pseudo-nMOS circuits must be
followed in the design of a PLA. Notice that De Morgan’s Theorem has been applied
in the formation of the and-plane so that the required products are formed with NOR
functions. Due to the regularity of the PLA structure, its layout can be generated
automatically by assigning nMOS transistors to appropriate locations in the array
according to the given logic functions.

A simple analysis can show that the PLA structure does not utilize the silicon
area efficiently. For example, the transistor density of the and-plane is always at or
below 50% since a variable and its complement would never appear in a product
term at the same time.  A technique called PLA folding has been proposed to
improve the transistor density. For example, depending on the functions being
implemented, PLA folding looks for a way to physically place two inputs into a
column in the and-plane. PLA folding also manages to put two product terms in one



Alternative Logic Structures 185

row in the or-plane. Two outputs may also be folded into one column. Several
references to PLA folding techniques are given at the end of this chapter.

6.5 Dynamic CMOS Logic

The nodes of a CMOS circuit are commonly modeled as capacitors. The
capacitance values of them depend on the circuit geometry and, in the case of an
output node, the number of fan-outs. We called a node that is electrically isolated
from the rest of the circuit a floating node or a high impedance node.

Assume that a node with capacitance Cn has an initial voltage of V0 before it
becomes a floating node. The charge stored in Cn is Qn = CnV0. In an ideal case when
there is no leakage current, the amount of charge and thus the voltage will be held
indefinitely. In practice, a CMOS circuit has a small leakage current so Cn will
eventually be discharged. While the charge accumulated in Cn is being depleted, the
voltage on Cn changes accordingly.

The extremely low leakage current of a CMOS circuit allows a floating node to
retain a large portion of its charge for a period of time. Dynamic CMOS circuits rely
on this property to store signals on circuit nodes. Since the charge leaks away, the
storage nodes in a dynamic circuit need to be periodically refreshed. Refreshing is
typically done in synchronization with a clock signal. Since the storage nodes must
be refreshed before their values deteriorate, the clock should be running at or above a
minimum frequency.

In contrast, a static circuit does not have a minimum operating frequency
requirement.3 The stable output value of a static circuit is retained indefinitely as
long as the power is on and the inputs are not changed. The clock in a static circuit
can be slowed down or completely stopped. This is often desirable when a circuit is
being debugged since we can step through its state transitions, one clock cycle at a
time.

Before we discuss and analyze dynamic CMOS logic structures, we use the
following example to investigate the relationship between the node capacitance and
its minimum refreshing frequency.

Example 6.2
A CMOS circuit node has a capacitance of 0.01 pF. How long can a signal value

be held at this node? Calculate the minimum refreshing frequency of this circuit.

Assume the node is initially charged up to VDD = 2.5 V. The amount of charge
stored on the capacitance is Q1 = CV1 = 2.5 × 10-14 coulomb. If we can tolerate at
most a 0.5 V voltage drop, then the allowable amount of lost charge is  Q2 = CV2 = 5
× 10-15 coulomb. If the leakage current is 0.1 nA, then it will take

                                                          
3 All the circuits that we have discussed so far are static circuits.
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to cause a 0.5 V voltage drop at this node.
Consider that in every clock cycle, the capacitance will be loaded with a new

value. The minimum operating frequency of this circuit is then 20 MHz. Many
CMOS circuits operate at much higher clock frequencies (hundreds of MHz) so no
specific refreshing arrangement will be required.

Fig. 6.11 shows the basic structure of a dynamic CMOS logic gate. Similar to
the pseudo-nMOS logic circuit, a dynamic logic circuit eliminates one of the switch
networks from a complementary logic circuit. Usually the pMOS switch network is
eliminated, but there are exceptions. We will discuss this issue in more detail.

Two complementary transistor switches (Qp and Qe) are connected in series with
the pull-down network. A clock signal φ is used to synchronize the operation of the
dynamic logic structure. When φ is 0, transistor Qp is turned on so the output node Z
modeled by capacitance CZ is charged toward VDD. Note that CZ denotes the total
capacitance at node Z. We call this operation step the precharging phase. The clock φ
must stay at 0 long enough so that vZ = VDD at the end of the precharging phase. Since
transistor Qe is off during the entire precharging phase, no conducting current path
between VDD and VSS exists.

nMOS
pull-down
network

X

Z

φ

Qp

Qe

CZ

Fig. 6.11  Basic dynamic CMOS logic circuit structure.

The precharging phase ends when φ turns 1. Transistor Qp is turned off and
transistor Qe is turned on. The circuit then operates in its evaluation phase to
determine its output. Depending on the structure of the nMOS pull-down network
and input X, output Z either temporarily retains its value of 1 (VDD) or discharges to 0
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through the pull-down network and transistor Qe. We further analyze the behavior of
a dynamic circuit by considering the dynamic 2-input NAND gate shown in Fig.
6.12.

φ

A

B

Z

CZ

Qp

Qe

                   

φ

A

B

Z

Fig. 6.12  Waveform diagram of a dynamic 2-input NAND gate.

Fig. 6.12 shows the relationship between the clock φ, inputs A and B, and output
Z of a dynamic 2-input NAND gate. Consider the first clock cycle. When φ is 0,
output Z is precharged to 1. When φ turns high, the circuit goes into its evaluation
phase. In the evaluation phase, Qe is turned on. Since both inputs A and B are low,
the pull-down network is off. The output Z goes into a high impedance state and
holds the precharged value of 1, which is the expected result of a NAND gate.

In the second clock cycle, input A changes to 1 in the middle of the precharge
phase. This change causes a small dip in the waveform of output Z. The voltage dip
is caused by a situation called charge sharing. We will discuss charge sharing in more
detail. During the evaluation phase, the pull-down network is still off; so output Z is
1.

The third clock cycle illustrates a case where the output would be pulled down to
0. During the precharging phase, signal B turns high, which causes another small dip
in output Z. In the evaluation phase, Qe turns on to complete the pull-down current
path and output Z drops down to 0. Note that the output of a dynamic logic circuit is
only valid after the evaluation is completed.

The small dips occur when a pull-down transistor turns on during a precharging
phase caused by a situation called charge sharing. Consider the circuit in Fig. 6.13.
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A

B

Z

CZ

Cd

Fig. 6.13  Circuit illustrating charge sharing.

Assume the following initial condition: A = B = 0, Cd is discharged and CZ is
charged up to VDD. If now A is changed to 1 so Cz and Cd are connected in parallel, a
portion of the charge stored in CZ is distributed to Cd. The voltage at node Z
becomes:

v V C
C CZ

DD Z

Z d
=

+
(6.6)

Depending on the capacitance value of Cd, the voltage drop may or may not
affect the integrity of the signal at Z. For example, if Cd = CZ, then vZ is changed from
VDD into 0.5VDD. In a static circuit, charge sharing voltage dips are not important,
since the lost charge will be replenished and the signal restored. This is, however, not
the case in a dynamic circuit when the value holding node is at a high impedance
state. Any charge lost by charge sharing during the evaluation phase is lost and will
not be replenished until the next precharging phase.

The charge sharing problem can be resolved by ensuring that all input changes
are made within the precharging phase so that not only the output node, but also the
internal nodes of the pull-down network will be charged up.

A dynamic logic gate has (n + 2) transistors, where n is the number of inputs.
The advantage of a dynamic logic circuit over its pseudo nMOS logic counterpart is
that the control transistors do not have to satisfy the pull-up to pull-down ratio
requirement. Most importantly, the power saving advantage of CMOS circuits is
restored since the complementary switches Qp and Qe prevent a continuous current
path to form between VDD and VSS.

While dynamic logic circuits have a number of benefits, they are haunted by a
serious limitation. Dynamic logic circuits cannot be cascaded. In other words, a
dynamic logic circuit cannot be used to drive another dynamic logic circuit. To
appreciate the cause of this problem and its solution, consider the circuit in Fig. 6.14
in which a dynamic inverter is driven by another dynamic inverter.
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φ

A B

C

Fig. 6.14  Cascaded dynamic inverters.

The waveform of this circuit in Fig. 6.14 is shown in Fig. 6.15. During the first
clock cycle, both nodes B and C are first precharged to VDD in the precharging phase.
In the evaluation phase, since A = 0, B retains its charge so it is equal to 1. This turns
on the pull-down network of the second dynamic inverter. Along with the evaluation
transistor, the pull-down network of the second dynamic inverter completes the pull-
down path. Node C is discharged to logic 0. This result matches with the expected
one according to the function of this circuit.

A problem occurs after A changes to 1 in the precharging interval of the second
clock cycle. During the evaluation, the pull-down transistor of the first inverter stage
is turned on so node B begins to discharge. This operation itself is correct since B is
the complement of A. However, the discharging of node B cannot occur
instantaneously. Until B drops down to 0 (or at least below the threshold of an nMOS
transistor), the second inverter stage sees a 1 at its input. The second stage pull-down
network is thus turned on by B, which is still incorrect at this time. The voltage at C
thus drops as illustrated.



190 Alternative Logic Structures

φ

A

B

C

Fig. 6.15  Waveform of two cascading dynamic inverters.

When the discharging of B is completed at a later time, the correct value at B
turns off the pull-down network of the second inverter so the discharging stops.
However, the charge stored at node C is now partially gone and cannot be
replenished. The value at output C is thus corrupted. This problem is especially
serious if the interconnection between the two inverters has a long delay so that clock
φ makes its transition long before the correct B signal arrives at the input of the
second stage.

A number of solutions have been proposed to solve the problem of cascading
dynamic stages. All of them are based on the principle of postponing the evaluation
of a following stage until its previous stage has completed its evaluation. These
circuits are called domino logic circuits.

Before we move on to the discussion of domino logic, we summarize the
properties of dynamic logic circuits:
• An n-input logic gate requires (n + 2) transistors.
• Minimum clock frequency required.
• Input capacitance of 1 transistor gate for each input of an n-input gate.
• Propagation delay includes precharging time.
• Power dissipation even if the output remains low in multiple clock cycles.
• Cannot be cascaded.

6.6 Domino Logic

The simplest domino solution to the cascading problem of dynamic logic circuits
is to add a static inverter at the output of a dynamic logic stage. Such a domino
circuit is shown in Fig. 6.16. The static inverter ensures that the output of the circuit
is 0 at the end of the precharging phase, which will not incorrectly turn on the pull-
down transistors in the following stage. Only if the output of the dynamic circuit is
evaluated to a 0 will the static inverter produce a 1 to turn on the pull-down
transistors of the next stage. In other words, the following stage will not start its
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evaluation until the driver stage has completed its evaluation. The drawback of this
type of domino logic circuit is that it is only limited to non-inverting logic. Non-
inverting logic is not complete.4

 

nMOS
pull-down
network

X

Z

φ

Qp

Qe

Fig. 6.16 Non-inverting domino logic circuit.

Earlier in this section we have mentioned the possibility of using a pMOS pull-
up network to implement a dynamic logic circuit. This turns out to be a key to
achieve the domino effect. Fig. 6.17 shows the use of both pull-down based (nMOS)
and pull-up based (pMOS) dynamic stages to create a domino logic circuit (zipper
logic). This structure does not need a static inverter attached at a dynamic gate
output. Instead, the cascaded dynamic logic circuits are organized in a special
manner. A dynamic logic circuit consisting of an nMOS pull-down network is used
to drive a dynamic circuit implemented with a pMOS pull-up network. A dynamic
logic circuit consisting of a pMOS pull-up network is used to drive a dynamic circuit
implemented with an nMOS pull-down network. Also notice that the clock signal for
the stages implemented with pMOS pull-up networks is the complement of the clock
signal for the stages implemented with nMOS pull-down networks.

When φ = 0, the outputs of the first and third stages (with pull-down networks)
are precharged to 1 and the output of the second stage (with a pull-up network) is
precharged to 0. The precharged signal at node A keeps the pMOS transistors in the
second stage off during the precharging phase. In contrast, node B is precharged to 0
which keeps the nMOS transistors in the third stage off. Only after a stage has
completed its evaluation can a following stage begin to evaluate.

                                                          
4 A complete logic is one that can be used to implement any logic functions. For example, a 2-input

NAND gate is complete since any logic functions can be implemented by an appropriate number of
NAND gates.
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Fig. 6.17  Inverting domino logic circuits.

Other domino structures are also possible as long as the principle of orderly
evaluation is ensured.

6.7 Dynamic Memory Elements

In Chapter 5 we developed the basic memory elements for CMOS sequential
circuits, the D-latch and the D-flip-flop. In practice, we consider the D-latch to be a
static memory element since the stored data can be held indefinitely. However, this
static storage is actually achieved through an internal refreshing feedback path; so the
CMOS D-latch is sometimes called a pseudo-static D-latch.

The property of a dynamic circuit that uses fewer transistors than its static
counterpart can be extended to the design of memory elements. Fig. 6.18 shows the
structure of a dynamic D-latch, which has only half of the components of a pseudo-
static D-latch. The data are stored at the input capacitance of the inverter.

L
D Q

Fig. 6.18  Dynamic D-latch.

Two dynamic D-latches can be cascaded into a master-slave type edge-triggered
D-flip-flop. Fig. 6.19 shows a negative edge triggered D-flip-flop. When dynamic D-
latches or D-flip-flops are used in a sequential circuit, the minimum operating
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frequency of the circuit has to be determined in addition to the maximum operating
frequency. The minimum operating frequency is determined by the storage node with
the smallest capacitance value. The maximum operating frequency is constrained by
the combinational logic circuit with the longest propagation delay. Dynamic circuits
are often harder to analyze and more difficult to test. Another problem with dynamic
circuits is that they are susceptible to radiation. The energy of radiation may cause
unexpected leakage current to flow, which can upset dynamic circuits.

φ

D
φ

Q

Fig. 6.19  Negative edge triggered D-flip-flop.

6.8 BiCMOS Logic Circuits

In this section, we provide a brief introduction to the BiCMOS technology,
which combines bipolar and CMOS circuits on the same chip. The objective is to
provide the high current-driving capability of bipolar transistors to CMOS circuits.
CMOS, although a technology with all the desirable logic circuit properties such as
low power, high input impedance, and large logic swing, has a limited current-
driving capability.

The large transconductance of a bipolar transistor renders it capable of large
output currents and thus higher speeds. Emitter-coupled logic (ECL), a BJT-based
technology, is two to five times faster than CMOS at the expense of high power
dissipation. BiCMOS technology attempts to provide the best characteristics of both
worlds.

Fig. 6.20 shows the implementation of a BiCMOS inverter. The circuit operates
as follows. When vi is low, nMOS Q2 is turned off. BJT Q4 has no base current so it
is also turned off. On the other hand, pMOS Q1 turns on and supplies BJT Q3 with
base current, thus turning it on. BJT Q3 provides a large current to charge the load
capacitance and pulls vo up. When vi is high, Q1 and Q3 turn off, nMOS Q2 and BJT
Q4 turn on. A large output current quickly discharges the load capacitance and pulls
vo down.

Without resistor R1, vo cannot reach VDD since Q3 turns off when vo reaches a
value of VDD – 0.7 V since a BJT requires a forward bias of about 0.7 V across its
base-emitter junction. The incorporation of R1 provides a pull-up path to pull the
output node up to VDD through Q1. A similar function is provided by the
incorporation of resistor R2. Resistors in BiCMOS circuits are implemented with
nMOS transistors.
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Fig. 6.20 BiCMOS inverter.

The structure shown in Fig. 6.20 can be generalized to convert a complementary
CMOS logic circuit into a BiCMOS circuit. A BiCMOS two-input NAND gate is
shown in Fig. 6.21. The logic (i.e., pull-up and pull-down) is performed by the
CMOS part of the gate. The bipolar part of the gate functions as the output stage.

6.9 Summary

The proper operation of a complementary logic circuit is virtually guaranteed.
However, alternative logic structures allow a designer to optimize a design according
to specific criteria. After reviewing the properties of complementary logic circuits
and pass-transistor/transmission-gate logic circuit, a number of alternative CMOS
structures were introduced in this chapter.

The first logic circuit is the open-drain logic circuit which requires a pull-up
resistor of appropriate value to operate. A pseudo-nMOS logic circuit uses a pMOS
transistor to implement the pull-up resistor. The structure of a programmable logic
array (PLA) was introduced as an application of the pseudo-nMOS logic circuit.
Dynamic logic circuits and domino logic circuits were introduced. The structures of
dynamic latches and flip-flops were discussed. A brief introduction of BiCMOS logic
circuits was provided. Rule-of-thumb type features of different CMOS structures
were given.
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Fig. 6.21 BiCMOS 2-input NAND gate.
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6.11 Problems

6.1 Design a domino logic circuit for Z = A + BC .

6.2 Design a pseudo-nMOS circuit for Z A B= ⊕ . Indicate the dimensions of the
transistors.

6.3 Suggest a way to eliminate Qe, the evaluation transistor, in a dynamic circuit.

6.4 Develop a two-phase clock system to be used in cascaded dynamic logic
circuits. Explain how the two-phase clock system can ensure a correct
operation.
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6.5 Suggest a way to modify the PLA structure so that some of the outputs can be
fed back into the inputs to form a synchronous sequential circuit. Minimize the
number of additional components used in this modification.

6.6 Use the PLA structure developed in Problem 6.5 to implement a sequential
circuit, of which the state diagram is shown in Fig. 6.22.

Fig. 6.22  State diagram for problem 6.6.

6.7 Implement the following logic functions with a minimized PLA:
1 2 4 1 2 4 1 2 3 4

2 2 4 1 2 3 4 3 4

3 1 2 4 1 2 3 4 3 4

y x x x x x x x x x
y x x x x x x x x
y x x x x x x x x x

= + +

= + +
= + +

6.8 Design a BiCMOS circuit for a 2-input NOR gate. Use a circuit simulator to
verify your design.

6.9 Design a BiCMOS circuit for Z A BC= + .  Use a circuit simulator to verify
your design.

6.10 Design a multiplier to multiply two 2-bit numbers and produce a 4-bit product
using a minimized PLA.  Show a transistor level diagram for your PLA.

6.11 What is the logic function Z(a, b) implemented by the circuit given in Fig.
6.23?
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a

b

Z

Fig. 6.23  Circuit for Problem 6.11.

6.12 Create a truth table for the pseudo-nMOS circuit shown in Fig. 6.24.

Fig. 6.24  Circuit diagram for Problem 6.12.

6.13 Develop the structure of a dynamic PLA. Explain its operation.
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Chapter 7 Sub-System Design

Foundation …
Programmable logic array (PLA) was introduced in Chapter 6 as a general

building block to implement arbitrary logic functions. In this chapter, we continue to
discuss the design and use of building blocks beyond basic logic gates. These
building blocks include adders, full adder trees, multipliers, read-only memory
(ROM), and random-access memory (RAM). In most cases, a required building
block can be implemented in more than one way. Our discussion concentrates on
structures that are suitable for CMOS implementations.

The choice of a building block implementation often makes a significant
difference in the performance of an overall system design. Sometimes these
structurally different, functionally equivalent implementations are well documented,
such as in the case of standard-cells and IP cores (intellectual property). The
selection of a building block among them is then somewhat simplified since their
properties are fully known. In other situations such as in a full-custom design,
however, the designer often depends only on analytical results to choose an
appropriate structure.

The following objectives for creating VLSI structures have been advocated by
researchers since the beginning of the VLSI era:

• A VLSI structure should be divided into a number of building blocks, each
of which can be designed and analyzed independently of the rest of the
circuits. This architectural property, which is referred to as modularity,
enables the divide-and-conquer design methodology.

• A preferable VLSI structure consists of only a few types of building blocks,
which are replicated and assembled in a regular pattern. This property is
called the regularity. Only a few building blocks need to be created and
evaluated in the design of a regular architecture. This guideline is based on
the fact that silicon is cheap and design activity is expensive.

• A well-designed VLSI structure should avoid the use of long
communication paths since they cause long delay times. They also present
challenges to the routing procedure. This is called the guideline of local
communication. In an ideal case, nearest neighbor interconnections should
dominate the communication pattern.

A tessellation (tiling) technique can be used to lay out a VLSI system with high
degrees of modularity, regularity, and local communication. The building blocks
designed for tessellation are created to have built-in nearest neighbor
interconnections. Routing is automatically achieved by abutting building blocks
together.

The advantage of this type of layout structure is that very little routing external
to the building blocks is needed. A tessellated design also allows a VLSI structure to
be readily expanded to accommodate problems with larger operands (e.g., 32 bits vs.
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16 bits). Automatic layout generators called tilers have been created for these
structures.

Many interesting and powerful VLSI architectures, such as systolic and
wavefront arrays, have been developed with these objectives in mind for many
important applications (see Chapter 12).

7.1 Adders

Ripple-Carry Adder
Addition is a common arithmetic function that is covered by virtually every book

written for digital logic design. The basic element available for building an adder is a
full adder. Fig. 7.1 shows that a one-bit full adder accepts two 1-bit operands (ai, bi)
and one carry-in bit (ci-1) and produces a result consisting of 1 sum bit (si) and 1
carry-out bit (ci). An alternative view of the one-bit full adder is that it accepts three
1-bit operands and produces a two-bit sum.

Full
Adder

ai bi ci-1

ci si

Fig. 7.1  One-bit full-adder.

A number of one-bit full adders can be cascaded to form a ripple-carry adder
(see Fig. 7.2). The ripple-carry adder is extremely modular since it contains only
one-bit full adders. The structure is also very regular. All full adders in the ripple-
carry adder are connected to their neighbors in the same way. The interconnections
within the ripple-carry adder are limited to between neighboring full adders.

The full adder cell can be laid out to accept a carry-in bit (ci-1) from its right
edge and produces a carry-out bit (ci) at its left edge. This layout will facilitate the
use of tessellation to the design of a ripple-carry adder. Fig. 7.3 illustrates that when
two full adder cells are placed side by side, their power rails (VDD and VSS) as well as
their carry paths are connected. It is also quite simple to expand a ripple-carry adder.
An n-bit ripple-carry adder can be expanded to accept (n + m)-bit operands by
incorporating m additional full-adder cells.
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FA

a31

b31

FA

a30

b30

FA

a1

b1

FA

a0

b0
'0'

s32 s31 s30 s1 s0

Fig. 7.2  Ripple carry adder.

VDD

VSS

ci-1ci

ai bi

Full Adder

VDD

VSS

ci-1ci

Full Adder

Full Adder Full Adder

ai bi

Fig. 7.3  Full adder tessellation.

A ripple-carry adder has a computation time that is proportional to the number
of bits in its operands. The wider the operands, the longer does it take the ripple-
carry adder to complete its addition. Whether this presents a limitation or not on the
use of a ripple-carry adder naturally depends on the application on hand. A designer
must be able to balance the benefits and limitations of a specific structure so that an
intelligent building block selection can be made.

General expressions can be developed for the purpose of building block
evaluation and comparison. For example, the area (Arca), computation time (∆rca), and
power consumption (Prca) of an n-bit ripple-carry adder can be estimated as

Arca = nAFA (7.1)

∆rca = n∆FA (7.2)
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Prca = nPFA (7.3)

where AFA, PFA, and ∆FA are the area, computation time, and power consumption of
the one-bit full adder being used, respectively.

Carry Select Adder
The addition time of a ripple-carry adder can be improved with a modified

structure called the carry select adder. It retains the layout regularity of a ripple-carry
adder. The principle of a carry select adder is to use one ripple-carry adder to
execute an addition assuming that the carry-in is 1. Another ripple-carry adder is
used to execute the same addition assuming that the carry-in is 0. The real carry-in
computed in a previous stage is used to select one of the two sums with a
multiplexer. Fig. 7.4 shows an example of an 8-bit carry select adder with a 4-4
staging. The 4-4 staging specifies that two stages are to be used, each of which
performs the addition of 4 bits.

4-bit
Ripple-Carry Adder

4-bit
Ripple-Carry Adder

0

1

MUX

5

5

4 4
b7 - b4 a7 - a4

4-bit
Ripple-Carry Adder

c0

4 4
b3 - b0 a3 - a0

4
s3 - s0

c4

4
s7 - s4c8

Fig. 7.4  8-bit carry select adder.

All three 4-bit ripple-carry adders in the carry select adder work in parallel. The
addition time is thus the delay of the first stage 4-bit ripple-carry adder plus the delay
of a multiplexer. For longer operands, the use of stages with identical lengths does
not necessarily lead to an optimal delay. This is caused by the different delays of the
selecting carry bits which have to go through different levels of multiplexers. A



Sub-System Design 203

circuit level analysis can be performed to determine the best staging scheme for a
given technology (see Problem 7.1).

Carry-Lookahead Adder
The biggest limitation of a ripple-carry adder is in its long computation time

since the carry bit has to be propagated from one full adder to another. Many digital
design textbooks describe the use of a carry-lookahead operation to remove the
propagation of the carry.

 The carry-out bit ci at the ith full adder stage is calculated as

ci = aibi + (ai + bi) ci-1 (7.4)

There are two terms in (7.4). The first term aibi is called the carry generation
function, which decides whether a carry-out bit is generated at the ith stage. The OR
operation in the second term (ai + bi)ci-1 is called the carry propagation function,
which determines if a carry-in bit (ci-1) generated at a previous stage can propagate
through the ith stage to the next one. Applying (7.4) recursively we can express the
carry-out bits as functions of the operand bits only:

0 0 0

1 1 1 1 1 0 0

1 1 1 0 0 0 1 0

2 2 2 2 2 1 1 1 0 0 0 1 0

2 2 2 1 1 2 1 0 0 2 0 0 1 1 2 1 1 0 2 0 0 2 1 0

( )

( )( )

c a b
c a b a b a b

a b a a b a b b
c a b a b a b a a b a b b

a b a a b a a a b a a b b a b b a a b b a b b b

=

= + +

= + +
= + + + +

= + + + + + +

LL

(7.5)

According to (7.5), the carry-in bit of every stage can be generated
independently of the previous stages. A carry-lookahead adder applies this principle
to produce a sum. Theoretically the computation time of a carry-lookahead adder is
independent of the propagation of the carry value. In reality the carry-lookahead
circuit becomes excessively complicated for wide operands.

Assuming that we would like to maintain a fan-in of less than 10 for a CMOS
logic gate, the implementation of a carry-lookahead adder would run into some
significant limitations. It is observed in (7.5) that an n-bit carry-lookahead adder
requires logic gates which has as many as (n + 1) inputs. If we assume that the
maximum fan-in of a CMOS logic gate is 10, a carry-lookahead adder is then limited
to 8-bit operands.1 A longer adder can be constructed out of smaller carry-lookahead
adders with the carry rippling through them.

                                                          
1 While the fan-in limitation can be circumvented by implementing a multiple level logic circuit, the

propagation delay goes up with the number of levels in the circuit.
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Conditional Sum Adders
Various adder structures have been developed to utilize the switch-like

characteristic of MOSFETs. The conditional sum adder is such a structure that uses
pass-transistor logic to achieve an addition time significantly faster than a ripple-
carry adder.

Consider that we need to add ai and bi, which are the ith bits of operands A and
B, respectively. Recall that this operation cannot be completed until ci-1, the carry-out
of the (i - 1)th position, is available. In the conditional sum algorithm, instead of
waiting for the arrival of the carry value, conditional sum and conditional carry are
generated by considering both possible values of the carry-in bit. In the following
expressions, the result of adding ai, bi, and either a 0 or a 1 carry-in bit is a two bit
number ( C S C Si i i i

0 0 1 1 and ) .

0 0

1 1

0

1
i i i i

i i i i

C S a b

C S a b

= + +

= + +
(7.6)

where the superscript of a conditional result bit indicates the condition that it was
generated. Example 7.1 demonstrates the generation of these conditional results.

Example 7.1
Generate the conditional sum bits and conditional carry bits for adding A =

(1101101)2 and B = (0110110)2.

The results are shown below. Notice that all conditional sums and conditional
carries can be generated in parallel.

bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
A = 1 1 0 1 1 0 1
B = 0 1 1 0 1 1 0
S

C
i

i

0

0

1

0

0

1

1

0

1

0

0

1

1

0

1

0
S

C
i

i

1

1

0

1

1

1

0

1

0

1

1

1

0

1

0

1

Fig. 7.5  Conditional sums and conditional carries.

The sum of A and B can be found by using the ith carry-in bit to select the correct
conditional bits in the (i + 1)th bit position. This is demonstrated in Fig. 7.6.
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bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
A = 1 1 0 1 1 0 1
B = 0 1 1 0 1 1 0
S

C
i

i

0

0

1

0

0

1

1

0

1

0

0

1

1

0

1

0
S

C
i

i

1

1

0

1

1

1

0

1

0

1

1

1

0

1

0

1

c-1 = 0

Fig. 7.6  Addition with conditional sums and conditional carries.

In Fig. 7.6, we assume that the carry-in bit going into bit 0 (c-1) is 0; so
S C0

0
0
0 and are the correct results and they are selected. C0

0 = 0, which determines

that the correct sum bit and carry bit at bit 1 are S C1
0

1
0 and , respectively. The arrows

indicate the selection procedure. The sum of A and B is determined to be
(10100011)2.

There is no benefit in performing the conditional sum addition as shown in
Example 7.1 since it is essentially the same as a ripple carry addition with extra
overhead to create the conditional sum bits and carry bits. This is going to be
changed with a multiple level conditional sum addition. We illustrate this approach
in the next example.

Example 7.2
Consider two bits at a time and generate conditional sums and conditional

carries for the addition in Example 7.1.

The results are shown in Fig. 7.7. The grouping of bits began at the most
significant bit (bit 6). Each box contains two conditional sum bits and one
conditional carry bit. Notice that since the operands have 7 bits, bit 0 is grouped by
itself; so a one-bit box was created for it.

Fig. 7.8 shows how the 2-bit conditional sum and carry table is used to perform
the addition. Again, the arrows indicate the selection of conditional sums and
conditional carries. The sum of A and B is determined in 4 selections, which is only
one half of what was needed in Fig. 7.6 when only one bit position was considered at
a time.
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bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
A = 1 1 0 1 1 0 1
B = 0 1 1 0 1 1 0
S

C
i

i
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0
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0 1

0

1 0

1

1 1

0
S
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i

i

1

1
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1 0
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0 1

1

0 0

1

Fig. 7.7 Two-bit conditional sums and conditional carries.

bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
A = 1 1 0 1 1 0 1
B = 0 1 1 0 1 1 0
S

C
i

i

0

0

0

1

0 1

0

1 0

1

1 1

0
S

C
i

i

1

1

0

1

1 0

1

0 1

1

0 0

1

c-1 = 0

Fig. 7.8  Addition with 2-bit conditional sums and conditional carries.

We now introduce an efficient way to generate the two-bit conditional sum and
carry values. Consider the table in Fig. 7.9, which is a combination of Fig. 7.5 and
Fig. 7.7.

In Fig. 7.9, we have added another index (in parentheses) to indicate the level of
bit grouping. The number of bits grouped together is equal to 2j at level j. The
conditional sums and conditional carries at level j are labeled as )( and )( 00 jCjS ii ,
respectively. The second level (j = 1) of conditional sums and carries is generated
with the values created in the first level (j = 0).
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bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
A = 1 1 0 1 1 0 1
B = 0 1 1 0 1 1 0
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Fig. 7.9  Parallel determination of 2-bit conditional sums and conditional carries.

Fig. 7.9 shows how S Ci i
0 01 1( ) ( ) and are generated by considering the

conditional sums and carries in the first level. Take bits 6 and 5 as an example. Since
the assumed condition is C5 = 0, S C5

0
5
0 0(0) and ( ) are selected. C5

0 0 1( ) =  so

S C6
1

6
1 0(0) and ( ) are selected, which, along with S5

0 0( ) , form (1) (1), 0
5

0
6 SS  and

0
6 (1)C . All three groups of conditional sums and conditional carries at level two can

be generated concurrently.
Generalizing the principles that we have discussed above, we create the table in

Fig. 7.10 to complete the conditional sum addition algorithm.
The conditional sums and carries at level 3 (j = 2) are generated with the values

at level 2 (j = 1). Fig. 7.10 also shows how this three-level conditional sum addition
is used to find the sum of A and B. Now the number of selections in the critical
propagation delay path has been reduced to 3. The implementation of this three-level
carry-select adder is left as an exercise (see Problem 7.3). In Example 7.3 we present
an example of a two-level carry-select adder.
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 Fig. 7.10  Three levels of conditional sums and conditional carries.

Example 7.3
Develop a schematic diagram for a three-bit conditional sum adder.

The design is presented in Fig. 7.11. A two-level conditional sum adder is
needed to add two three-bit operands. Two types of building blocks are needed. The
conditional cells (CC) generate conditional sum bits and conditional carries at level
1. The 2-to-1 multiplexers provide the carry controlled selections.
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C2
0

CC

C2
1 S2

1

CC CC

C0
0C0

1 S0
1 S0

0C1
0C1
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0S2
0

a2 a1 a0b2 b1 b0

MUX MUX MUX MUX

MUXMUXMUX

MUX MUX c-1

c2 s2 s1 s0

Fig. 7.11  Two-level three-bit conditional sum adder.

7.2 Full Adder Tree

Assume that we would like to design a circuit to add n numbers (n > 2) together.
One possible approach to this design problem is to set up an adder along with an
accumulating register. If we initialize the accumulating register with the first number
and then add the other (n – 1) numbers to it, the final sum will be ready in (n – 1)
clock cycles. Let us look at an example.

Example 7.4
Design an adder to compute the sum of 4 four-bit numbers.

The first thing we have to determine is the length of the accumulating register so
that it will not overflow. Assume that the operands are unsigned numbers. The largest
value of a four-bit unsigned number is (15)10. Four of them will give a maximum sum
of (60)10. The number of bits needed for the accumulating register is thus

2log 60 6=   bits. This adder is shown in Fig. 7.12. A 6-bit adder and a 6-bit register
are used to form a circulating adder. To simplify the operation, the register is
provided with a “Clear” control line to initialize its value to “000000.” The four
operands are then added sequentially to the register.
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6-bit register

6-bit adder

φ

input operands

Clear

Fig. 7.12  Circulating adder.

If a ripple carry adder is used to implement the 6-bit adder then the expression
for delay time is:

),6(4 regFAadder ∆+∆×=∆ (7.7)

where ∆FA is the delay time of a one-bit full adder and ∆reg is the delay time of the
register.

Now we present a different approach called the full adder tree to add up these
four numbers. The full adder tree structure is a combinational circuit. The only type
of functional block that we are going to use is the 1-bit full adder.

The numbers to be added are labeled as:
A = a3a2a1a0;
B = b3b2b1b0;
C = c3c2c1c0;
D = d3d2d1d0.
Fig. 7.13 shows the structure of a full-adder tree that is used to add up these four

numbers by adding bits in the same column position together. The propagation delay
of the full adder tree is determined to be 6 ∆FA by identifying its critical path which is
marked by the bold-face arrows in Fig. 7.13.

We must point out that the circulating adder shown in Fig. 7.12 has one
advantage over the full adder tree illustrated in Fig. 7.13. It has the capability of
latching the result in the register. The full adder tree is a combinational circuit. It is
an interesting problem to determine general expressions for estimating the area and
delay time of a full adder tree that is used to add n m-bit numbers (see Problem 7.4).
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Fig. 7.13  Full adder tree.

7.3 Parallel Multipliers

High speed multiplication is another critical function in a range of VLSI
applications. In this section we discuss a number of VLSI oriented parallel
multipliers. These multipliers may be used when the conventional add-and-shift
multiplication (a sequential operation) cannot meet the design requirement.

Braun Array Multipliers
First we review the procedure of finding the product of A = am-1…a2a1a0 and B =

bn-1…b2b1b0. The decimal values of A and B can be expressed as

A av i
i
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=
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∑ 2
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(7.8)
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The product P of A and B has (m + n) bits. Its value is
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In the binary number system, the multiplication of a multiplicand bit ai by a
multiplier bit bj can be implemented by the logic AND function to produce a partial
product bit aibj. The above expression can thus be rewritten as

P a b pv i j
i j

k
k

k

m n

j

n

i

m

= =+

=

+ −

=

−
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−

∑∑∑ 2 2
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1

0

1

0

1

(7.11)

Realizing that the multiplication is simply the addition of the aibj’s (0 ≤ i ≤ m-1,
0 ≤ j ≤ n-1), a full adder tree can be built to calculate the product bits pk’s (0 ≤ k ≤
m+n-1). The result is a Braun array multiplier.

Example 7.5
Build a Braun array multiplier to perform the multiplication of A = a3a2a1a0 and

B = b3b2b1b0.

The expressions for the product bits are:
p0 = a0b0
p1 = a1b0 + a0b1 + c
p2 = a2b1 + a1b1 + a0b2 + c
p3 = a3b0 + a2b1 + a1b2 + a0b3 + c
p4 = a3b1 + a2b2 + a1b3 + c
p5 = a3b2 + a2b3 + c
p6 = a3b3 + c
p7 = c

where c is the carry from a previous column.
Fig. 7.14 shows a full adder tree created to perform the multiplication. We refer

to this type of multiplier as the Braun array multiplier. In the layout of a Braun  array
multiplier, we would like to arrange the full adder cells so that a rectangular array
can be formed.

Notice the modularity and regularity of this Braun array multiplier. Also, except
for the distribution of the input signals, all interconnections are limited to nearest
neighbors. Instead of forming the partial product bits (aibj) outside of the array
multiplier and feeding them in, AND functions are incorporated into the full adder
cells. Notice that all full adder cells in the same row use the same bj. Also, all full
adder cells in the same carry path use the same ai. This property allows a mesh of
signal lines to be formed between FA cells. Horizontal signal lines carry bj’s and
vertical signal lines carry ai’s. At each intersection of a horizontal signal line and a
vertical signal line, the ai signal and the bi signal are ANDed for the full adder cell.
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Fig. 7.14  Braun array multiplier.

The Braun array multiplier shown in Fig. 7.14 has the following properties:

16 12
6

bam AND FA

bam AND FA

A A A= +
∆ = ∆ + ∆

(7.12)

In (7.12), Abam and ∆bam are the area and delay time of the 4-bit by 4-bit Braun array
multiplier, respectively. AAND and ∆AND are the area and delay time of a two-input
AND gate, respectively. AFA and ∆FA are the area and delay time of a full adder,
respectively. The area and delay time expressions can be generalized for an m-bit by
n-bit Braun array multiplier (see Problem 7.6).

The Braun array multiplier performs unsigned multiplication. Many applications
require signed multiplication. Before we describe an array multiplier that performs
direct two’s complement multiplication, we look at a way that allows the Braun array
to do signed multiplication. In fact, this method is valid for any unsigned multipliers.

A two’s complement number (positive or negative) 1 2 1 0...n nX x x x x− −=  has the
value of

1
1

1
0

2 2
n

n i
v n i

i
X x x

−
−

−
=

= − + ∑ (7.13)

The product of 1 1 0...nA a a a−=  and 1 1 0...nB b b b−=  can be written as
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2 2 2 2
2 2 1 1

1 1 1 1
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2 2 2 2
n n n n

n n j n i i j
n n n j n i i j

j i i j
a b a b b a a b

− − − −
− + − + − +

− − − −
= = = =

− − +∑ ∑ ∑∑ (7.14)

The operations described in (7.14) can be performed in an unsigned array
multiplier provided that all partial products which involve a sign bit (an-1 or bn-1) and
a nonsign bit are complemented. An adjustment is carried out to the final result by
adding a correction term 22n-1 + 2n. This adjustment comes from the operation of
obtaining the two’s complement of a given number and is fixed for given word
lengths (see Problem 7.7).

The multiplication of A = 1101 (-3) and B = 0101 (5) is demonstrated in Fig.
7.15.

      1101 = -3
    X)0101 =  5
      0101
     1000
    0101
   0111
  01100001
+)10010000
  11110001 = -15 

adjustment

Fig. 7.15  Two’s complement multiplication with an unsigned multiplier.

Baugh-Wooley Array Multiplier
The Baugh-Wooley array multiplier was developed to perform two’s

complement multiplication. This approach does not need any pre-treatment or post-
treatment to be carried out. The multiplication of two numbers A and B was given in
(7.14). The negative terms in the expression can be transformed to avoid the use of
subtractors. This is done by observing the following relations:

2 2
1 2 1 2 2 2 2 1 1
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0 0

2 2
1 2 1 2 2 2 2 1 1
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0 0

(1 );  so 1
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(7.15)
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Apply (7.15) in (7.14) and realize that

2 1 2 2 2 1 2 2 2 12 2 2 2 2n n n n n− − − − −+ + + = (7.16)

in a 2n-bit 2’s complement addition, the product becomes
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(7.17)

The term 22n-1 can be created by adding a 1 to the most significant bit position of
the product. The Baugh-Wooley array multiplier implements (7.17) with a full adder
tree.

Modified Booth Multiplier
The modified Booth algorithm has been extensively used in multipliers with long

operands (> 16 bits). Its principle is based on recoding the two’s complement
operand (i.e., the multiplier B) to reduce the number of partial products to be added.
The reduction of partial products improves the performance of the multiplier.

The radix-2 modified Booth algorithm is based on partitioning the multiplier (B)
into overlapping groups of 3 bits. This grouping is based on the transformation
shown in (7.18)
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(7.18)

with b-1 = 0. Applying the grouping to a 16-bit multiplier produces eight groups:
15 14 13b b b , 13 12 11b b b , 11 10 9b b b , 9 8 7b b b , 7 6 5b b b , 5 4 3b b b , 3 2 1b b b , 1 0 1b b b− , where b-1 = 0.

The term (-2b2i+1+b2i+b2i-1) in (7.18) represents five signed values {-2, -1, 0, 1,
+2}. A partial product can then be generated for each three-bit group b2i+1b2ib2i-1
according to the table in Fig. 7.16.

An example of multiplying two 8-bit numbers using the modified Booth
algorithm is shown in Fig. 7.17. In order to add the partial products correctly, their
signs must be extended. The sign extensions prevent a rectangular array to be formed
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for the partial product addition. A simple approach has been developed to address the
sign extension problem.

For the sake of explanation, we use an example of multiplying two 8-bit numbers
to demonstrate the handling of sign extension bits. Fig. 7.18 uses the letter “S” to
mark the positions of the sign bits and their sign extension bits.

The processing of all the “S” bits is shown in Fig. 7.19. The calculation in Fig.
7.19 assumes that all the partial products are negative so all the “S” bits are 1’s.
Adding up all the “S” bits produces the sum of 10101011, which will be used as a
correction vector. In fact, for n-bit multiplication, the adding of the “S” bits will
produce an n-bit vector of 1010..1011.

The use of the correction vector is demonstrated in Fig. 7.20. No sign extension
will be performed during the accumulation of the partial products. The following
operations are used to conform to the assumption of all negative partial products. For
a positive partial product, its sign bit (MSB) is flipped to a 1. For a negative partial
product, its sign bit (MSB) is flipped to a 0. As shown, the correction vector is then
added to the sum of the partial products to generate the correct final result.

1 1i i iy y y+ − Encoded Digit Partial Product Generation
000 0 0 × A
001 +1 +1 × A
010 +1 +1 × A
011 +2 +2 × A
100 -2 -2 × A
101 -1 -1 × A
110 -1 -1 × A
111 0 0 × A

Fig. 7.16  Partial product generation

 

0000000010010110   100:-2A
11111101101010     011:+2A
111110110101       010:+1A
1110110101         010:+1A
1110011011001110 = -6450

10110101 = -75
01010110 = +86

Fig. 7.17  Modified Booth multiplication.
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        aaaaaaaa
        bbbbbbbb
SSSSSSSS********
SSSSSS**********
SSSS************
SS**************
****************

Fig. 7.18  Sign extension in modified Booth multiplication.

11111111
111111
1111
11
10101011

Fig. 7.19  Correction vector production.

       110010110   100:-2A
     001101010     011:+2A
   010110101       010:+1A
 010110101         010:+1A
0011101111001110 
10101011
1110011011001110 = -6450

10110101 = -75
01010110 = +86

Fig. 7.20  Adding of correction vector.

Wallace Tree Multiplier
A Wallace tree is a full adder tree structured specially for a quick addition of the

partial products. Fig. 7.21 shows the construction of a Wallace tree for a 16 × 16
multiplier. The modified Booth algorithm is used to generate 8 partial products,
which are to be added by a Wallace tree.



218 Sub-System Design

01 01 01 01 01 01 01 11

Partial
Products

1st stage 
4-2 compression

2nd stage
4-2 compression

1st stage 
4-2 compression

Sign Extension
Correction 

Final
Addition

Fig. 7.21  Wallace tree multiplication.

Fig. 7.21 shows the use of 4-2 compressors to convert 4 partial products into 2
partial products. The structure of a 4-2 compressor is based on carry save addition
and shown in Fig. 7.22. Each bit position of the 4-2 compressor is formed of two
full-adders, which takes in 4 bits and produces 1 sum and 1 carry bits. Note that the
internal carry bit does not propagate; so the delay of a 4-2 compressor is equal to that
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of two full adders, regardless of the length of the operands. Two parallel 4-2
compressors (stage 1) are used to convert the 8 partial products into 4 partial
products. A second stage 4-2 compressor is used to further reduce the 4 partial
products into 2 partial products. The sign extension correction vector is added into
the partial products using the carry save addition shown in Fig. 7.23. A carry save
adder compresses three inputs into two outputs. A final addition stage, usually a
carry-select adder, adds up the two final partial products to produce the product.

FA

FA

cin
cout

sc

sc

FA

FA

cin
cout

inputs

outputs

sc

sc

Fig. 7.22 4-2 compressor.

FA

inputs

outputs

sc
FA

sc
FA

sc

Fig. 7.23  Carry save adder.

7.4 Read-Only Memory

In contrast to the simple D-latches and D-flip-flops introduced in Chapter 5, the
design of high performance memories is extremely involved. High performance
memories are beyond the scope of this book. Memory module generators are
commercially available for the creation of on chip memories. We present the basic
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structures of both read-only memory (ROM) and random access memory (RAM) to
introduce their operating principles. A block diagram of a 2n ×1 bit memory system is
shown in Fig. 7.24. The memory array consists of 2k rows of 2n-k storage cells. A row
decoder addresses one row of bits out of 2k rows. The column decoder selects 1 bit
out of the 2n-k bits of the accessed row. A simple modification to the column decoder
would allow m bits to be addressed together as a word.

Column
Decoder

Row
Decoder

Data In Data Out

Multiplexers
Sense Amp.

Write Buffers

Address
n

k

n-k

2k rows

2n-k columns
Storage cell

Fig. 7.24  Memory structure.

ROM can be read but not written. The stored values are created in the design
process and cannot be changed. We can implement a ROM with a structure similar to
a PLA. The data to be stored in the ROM are converted into sum-of-products
expressions.  We demonstrate this design procedure in the following example.

Example 7.6
Design a ROM building block that contains the values listed in Fig. 7.25.

The required ROM is implemented as the PLA shown in Fig. 7.26. The and-
plane of the PLA in Fig. 7.26 implements a 3-to-8 decoder to select one of the rows
in the or-plane which implements an 8 × 2 read-only memory. The decoder produces
8 product terms, which are the min-terms of the three address bits (a2a1a0). The or-
plane simply indicates, for each output (d1, d0), which min-term corresponds to an
output of 1. The reader should verify that the structure in Fig. 7.26 contains the same
values as the data table. Instead of an and-plane structure, a complementary logic or
pass-transistor logic can also be used to build the decoder.



Sub-System Design 221

Address
(a2a1a0)

Data
(d1d0)

000 00
001 01
010 01
011 10
100 01
101 10
110 10
111 11

Fig. 7.25  Data values to be stored in a ROM.

7.5 Random Access Memory

While the design of high-speed, high-density RAM circuits is quite difficult, it is
relatively easy to create a small RAM cell array in an ASIC. In Chapter 5 we
introduced the use of D-latches and D-flip-flops to store state variables. A RAM cell,
which holds one bit of memory, is based on the same principle of these circuits.
However, special considerations must be applied to the implementation of storage
cells in a RAM array.  For example, consider the fact that a RAM cell has to be
duplicated many times in the array; it is imperative that its size and power dissipation
be minimized.

Fig. 7.27 shows a typical static RAM cell. The circuit is in fact a modified D-
latch equipped with 2 access transistors connected to the word line (W). An address
decoder (not shown) accepts an address and activates a word line to turn on the
access transistors of a selected RAM cell. The access transistors, when turned on,
connect the latch to the B and B  lines.
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a2 a0

d1 d0

a1

Fig. 7.26  Implementation of a ROM.
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Word Line (W)

B B

QQ

Fig. 7.27  RAM cell.

Assume that the RAM cell holds a 1 so Q = 1 and Q = 0. The cell is in a stable

state. The read operation begins by precharging lines B and B  to VDD/2 (or VDD).
The word (W) line is then asserted so the access transistors are turned on. Since Q =
1, line B is charged up through the access transistor. On the other side of the cell,
Q = 0 and line B  is discharged. In summary, the voltage on line B will rise and that

on line B  will fall. Thus, a differential voltage develops between these two lines.
A differential amplifier called a sense amplifier in a RAM circuit detects this

voltage difference (typically < 0.2 V) to produce a corresponding big voltage swing
on lines B and B . Fig. 7.28 shows the structure of a sense amplifier.

In order to minimize the size and power dissipation of a RAM cell, an individual
cell does not provide sufficient charging/discharging currents to set B and B  quickly
into their final values. The function of the sense amplifier is to assist the read
operation. The sense amplifier is a special latch provided with a pair of
complementary transistors. These pair of transistors connect the cross-coupling
inverters to VDD and VSS under the control of complementary signals (S and S ).

 Since B and B  are precharged to VDD/2, the sense amplifier initially works at
the high gain transition regions of their voltage transfer functions. When the pair of
complementary transistors are turned on, depending on the voltage difference
between B and B , the sense amplifier latch will quickly move to one of its two stable
states. Since a sense amplifier is shared by many RAM cells, we can afford to size it
appropriately so that it provides adequate driving power for the read operation.
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B B
S

S

Fig. 7.28  Sense amplifier.

Now assume that a 1 is stored in the cell so Q = 1 and we wish to overwrite it
with a 0. In the write operation, B is set to 0 and B  is set to 1. The cell is selected by
raising the word line. The voltage at Q  is raised from 0 toward VDD while the
voltage at Q is being pulled down from VDD  toward 0. The regenerative feedback
that causes the latch to switch will begin when either one reaches the logic threshold
of the inverters (e.g., VDD/2). Once this happens, the positive feedback takes over and
the latch moves into its new state. Notice that the lines B and B have capacitance
much higher than the inverters, so they are able to force the inverters into flipping
state.

The RAM cell we have just described is a static RAM (SRAM) cell, which has
the benefit of speed. However, the SRAM cell is larger in size and uses more power.
Another type of RAM cell uses the same principle of a dynamic D-latch. This
dynamic RAM (DRAM) cell is based on a single transistor design. The DRAM cell
is thus smaller and uses less power. It is also slower and requires the stored value to
be periodically refreshed.
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B
Word Line (W)

Fig. 7.29  One-transistor DRAM cell

As shown in Fig. 7.29, the single transistor DRAM cell actually contains one
transistor and one capacitor. Notice that unlike a dynamic D-latch, the DRAM cell
does not store its value on the gate capacitance of a transistor. The value is stored in
a specially formed capacitor, which is connected to the bit line B through the
transistor. The cell is selected by setting the word line W to 1. In a write operation, B
is set to the new value and the capacitor is forced to the same value. In a read
operation, B is first precharged before W is selected. The stored value in the
capacitor causes a sense amplifier (not shown) to set the value on B accordingly.

7.6 Summary

A good VLSI design should explore modularity, regularity, and local
communication. In this chapter we discussed the design of several important
functional building blocks. We introduced structures to perform addition and
multiplication, which are two important arithmetic functions. The implementation
and operation of memory elements were also introduced. Since a function can be
implemented with a number of structurally different circuits, the ability to select one
that meets with desirable performance criteria is important.

7.7 To Probe Further

Algorithms
• T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms,

McGraw-Hill/MIT Press, 1990.

Arithmetic Circuits
• K. Hwang, Computer Arithmetic: Principles, Architecture, and Design, John

Wiley and Sons, 1979.
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• J. J. F. Cavanagh, Computer Science Series: Digital Computer Arithmetic,
McGraw-Hill, 1984.

Memory
• D. A. Hodges and H. G. Jackson, Analysis and Design of Digital Integrated

Circuits, McGraw-Hill, 1983.

7.8 Problems

7.1 Perform an analysis on a 16-bit carry select adder to determine the optimal
staging for a given technology.

7.2 Design a cell that produces the conditional sum and carry bits for the
conditional sum adder.

7.3 Design an 8-bit conditional sum adder for maximum speed and minimum
hardware.

7.4 Derive general equations for the number of FA’s and propagation delay (in
terms of FA delay time) of an m-bit, n-operand FA tree.  (Hint: you may have
to sacrifice some performance for regularities).

7.5 Sketch the design of a 5 bit by 5 bit Braun array multiplier.

7.6 Derive general equations for estimating the area and propagation delay of an n
by m Braun array multiplier.

7.7 Prove that the operations described in (7.14) can be performed in an unsigned
array multiplier provided that all partial products which involve a sign bit (an-1
or bn-1) and a nonsign bit are complemented. An adjustment is carried out to
the final result by adding a correction term 22n-1 + 2n.

7.8 Sketch the design of a 5 bit by 5 bit Baugh-Wooley array multiplier.

7.9 Derive general equations for estimating the area and propagation delay of an n
by n Baugh-Wooley array multiplier.

7.10 Use 16 × 4-bit ROM's and a full adder tree to implement a multiplication
function of two 4-bit fractions.

7.11 Consider the design of a processor to be used in a synchronous pipeline
implementation of a digital filter.  The function is to perform Y AX B= + .
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Assume 16-bit signed operands (two’s complement numbers) are used and the
result is rounded up to 16 bits. Compare the relative merits of designing this
processor using the following approaches:
i) An appropriate array multiplier (Braun or Baugh-Wooley).
ii) A ROM implementation.
iii) A modified Booth encoded Wallace tree multiplier.
iv) A regular add-and-shift multiplier.

7.12 Sketch a full adder tree to add A = a1a0, B = b2b1b0, C = c3c2c1c0, and D =
d4d3d2d1d0. Minimize the delay time and the number of full adders used.

7.13 Design a circuit for producing partial products according to the modified
Booth encoding algorithm.

7.14 Design a 16-bit modified Booth encoded multiplier.

7.15 Design a 16-bit modified Booth encoded Wallace tree multiplier.
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Chapter 8 Chip Design

Block by block the chip is built…
This chapter illustrates the VLSI design methodology by discussing the top-

down design flows of two projects: a simple microprocessor (SM) and a field
programmable gate array (FPGA). Instead of a presentation of design solutions, we
introduce the design flows of these projects with the expectation that the reader will
assume an active role in shaping the final products. We point out critical issues in
each design step and discuss potential solutions so that the reader can research the
issues before moving to the next step. The quality of final products will be
determined by the many decisions that a designer makes at different times during the
design process.

The bottom-up flow of the design process, such as creating the layouts of
functional blocks, is left for the reader to tackle. The reader can use available design
tools to carry out the bottom-up design steps.

Both designs were undertaken many times as VLSI class projects. The SM
project demonstrates the important concept of datapath design, in which a system is
divided into a datapath unit and a control unit. We assume that the reader is
reasonably familiar with the structure and operations of a microprocessor. A number
of reference books are listed at the end of this chapter for those readers who need a
review of this important subject.

The design of a high performance microprocessor is unarguably a very
complicated task that will consume hundreds of man-months. However, our SM
project is simple enough to be carried out either as a full-custom design project or as
a standard-cell design project to develop essential top-down design concepts.

The second design project is to create an FPGA. We have briefly mentioned the
concept of an FPGA device in Chapter 1. An FPGA consists of an array of
programmable logic blocks that are connected with programmable interconnections.
An FPGA can be programmed by the user in minutes with a low cost programming
device. This feature has rendered FPGA a popular ASIC (application specific
integrated circuit) device. CAD tools developed by the FPGA manufacturer are used
to synthesize a design from its high level description into an FPGA implementation.
A reference about FPGA structures is also available at the end of the chapter.
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8.1 Microprocessor Design Project

Specifications:
As we have stated in Chapter 1, a project begins with the development of an

abstract description for the target design. The first task is to work with the client and
develop a set of specifications for the SM. At least three parameters must be decided
for the SM:

• The width (i.e., number of bits) of a word.
• The size of its address space.
• The instruction set.
We arbitrarily choose a word width of 16 bits for the SM. The SM address space

is chosen to be 216 words, which requires the use of 16-bit addresses. Other
parameters such as the SM throughput and power consumption may also be specified
by the client. Throughput is typically specified in terms of MIPS (million instructions
per second). It is not easy to accurately predict these properties at the initial phase of
a design. Both the throughput and power consumption requirements are thus used
qualitatively to guide the architecture selection in the design process. The final
design will be analyzed and simulated to determine if it meets the specifications.

Points to Ponder:
• What are the implications of choosing a different word width?

• What are the implications of providing SM with a memory space of a different
size?

• Suggest a few other parameters that should be included in the specifications to
guide the design process.

• Define the instruction set of your SM. In order to keep the design project
manageable, identify the essential instructions to be implemented. Essential
instructions are operations that cannot be readily carried out by other
instructions. The argument for a RISC (reduced instruction set computer) is that
the microprocessor can be better optimized if it provides only a few essential
instructions.

• Research and find out the definition of a low power microprocessor.

• Explain the relationship between throughput and power consumption in SM.
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Architecture and Algorithm:
We partition the SM into a datapath unit and a control unit. The concept of

dividing a system into a datapath unit and a control unit is essential in the design of
computing structures. The datapath unit provides the engine to process (e.g., add,
multiply, shift, AND, OR, etc.) the data stored in its internal registers or captured
from its I/O ports. The datapath unit is a combinational circuit.

Fig. 8.1 illustrates the physical relationship between the datapath unit and the
control unit, which suggests the flows of data and control signals should be routed
orthogonally, probably in two different routing layers.

Datapath

Input Data

Output Data

Control

Fig. 8.1   Relationship between datapath and control units.

The setting of the datapath unit is determined by control bits supplied by the
control unit in each clock cycle. Complicated operations often take multiple clock
cycles to complete and require a sequence of control bits to be applied to the
datapath unit. In addition, conditional operations may be involved, in which an
operation depends on the result of a previous one. This suggests that the control unit
is a finite state machine.

Fig. 8.2 shows the use of a finite-state machine to cycle through state sequences,
each of which provides the required control bits to the datapath. The instruction
stored in an instruction register sets up the control unit to produce an instruction
specific sequence. The flags reflect the result of a previous operation and determine
the control bit sequence for later clock cycles.

The control unit can be implemented in one of two forms. A hardwired control
unit can be implemented with a sequential circuit. Programmable logic arrays (PLA)
are popular for this purpose because of their capability of implementing sequential
circuits with a large number of inputs, products, and outputs. The modification of a
hardwired control unit (e.g., to accommodate a new instruction) is very difficult once
implemented. Hard-wired control units are thus commonly used in application
specific processors (e.g., digital filters) that perform fixed operations.
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Datapath

Finite-state machine

Flag 
register

Instruction
 register

Data in Data out

Control
bits

Flags Instruction

Fig. 8.2  Datapath controlled by a finite-state machine control unit.

An alternative approach called microprogramming implements the finite-state
machine with a memory unit. A structure that uses a microprogrammed control unit
to control a datapath is shown in Fig. 8.3. The memory stores the control bits in
different control sequences. The decoder determines the next address of the memory
by considering the instruction and the flags. Some control bits are also sent to the
decoder to participate in the determination of the next memory address.

Datapath

Memory

Flag 
register

Instruction
 register

Data in Data out

Control
bits

Flags Instruction

Decoder

Fig. 8.3  Datapath controlled by a microprogrammed control unit.

Registers are provided in the datapath to store data fetched from memory as well
as results. The information flow and processing among the data stored in the registers
are called register transfer operations. A pseudo programming language called the
register transfer language (RTL) is often used to describe the register transfer
operations. For example, the statement R1 ← R2 + R3 describes that the register
contents of R2 and R3 are added up and the sum is stored in register R1. Multiple
register transfer operations may be carried out in the same clock period as long as
they do not create a conflict on resources. Each RTL statement is an operation that
can be performed in parallel on a string of bits during one clock period.
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System Overview:
A top-level abstract representation of SM is shown in Fig. 8.4. The relationship

between SM and a memory system is also illustrated. Many details of SM have to be
specified before the top-down design flow is carried out. Fig. 8.4 shows that SM has
a reset signal, which is applied from outside to put the SM into a known state.

Each of the data and address buses has 16 bits. A memory system has its own
timing and handshaking requirements. These requirements are quite independent of
the microprocessor. Usually the microprocessor is designed to conform to the
memory system. For simplicity, we are only showing the read/write (R/W) control
signal, which specifies the mode of memory access (i.e., read or write).

The reset and read/write control signals form a minimum set of microprocessor
control signals. Other control signals can be added to facilitate the building of a
system based on SM.

Points to Ponder:
• Study a few microprocessors and suggest other control signals that should be

added to SM.

• Describe the communication between the SM and the memory system.

SM

Data bus

Address bus

Reset

16

R/W

16

Memory

16

16

Fig. 8.4  Relationship between SM and a memory system.

The operation of SM follows that of a typical stored-program, general-purpose
computer. After powered up, SM continuously monitors the reset signal. An asserted
reset signal causes the microprocessor to supply a predetermined address (e.g.,
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0000H1) on the address bus and initialize a read operation. The attached memory unit
places the value stored in memory location 0000H on the data bus, which is read in,
decoded, and executed. This instruction cycle is repeated until another reset signal is
detected. In our example design, SM instructions consist of one to two words.

Points to Ponder:
• What are the implications of having SM instructions that spread over several

words?

An example SM datapath unit is shown in Fig. 8.5. This structure represents a
baseline datapath, which can use many improvements. The reader can decide whether
the example datapath should be adopted as is or treated as a starting point for further
developments. The structures presented in this chapter should never be considered as
final designs. Standard solutions to design projects do not exist!

The core of our example datapath is an arithmetic logic unit (ALU) and a shifter,
which are supported by a number of registers, a decoder, and a few multiplexers. A
common clock signal synchronizes all registers.

We will describe the structure shown in Fig. 8.5 from a functional viewpoint.
Two 16-bit input registers RI1 and RI2 have their inputs connected to the data bus,
which is shared with the memory system (not shown). Registers RI1 and RI2 are
enabled by control signals k1 and k2, respectively. When a register is enabled, the
clock signal triggers it to capture and store the data presented on its input. General-
purpose registers R1-R7 are seven 16-bit registers for storing operands and
intermediate results. The inputs of all seven general-purpose registers are tied
together and connected to the output of the shifter. Any data to be stored into a
general-purpose register must go through the shifter, which is provided with a pass-
through function for this purpose. A 3-to-8 decoder, controlled by control signal D, is
used to enable at most one general-purpose register to latch in the shifter output.

Points to Ponder:
• Research and find out the typical number of general-purpose registers in a

microprocessor.

                                                          
1 0000H indicates a hexadecimal number 0000.
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Fig. 8.5  Example SM datapath.

The multiplexer MUX1, under the control of signal M1, chooses the input P  to
the ALU. Another multiplexer MUX2, under the control of signal M2, chooses the
input Q to the ALU. The selectable inputs to MUX1 are the contents of registers R1-
R7 and RI1. The selectable inputs to MUX2 are the contents of registers R1-R7 and
RI2.

The ALU is a multiple function combinational circuit. Control signal A
determines the ALU operation performed on P and Q. An output Y is produced.
Notice that there is no direct relationship between the SM instruction set and the
ALU functions. Similar to the design of an instruction set, a decision has to be made
on the available ALU operations. An extensive set of ALU operations simplifies the
control unit design at the expense of a larger and potentially slower datapath unit. We
will present as an example a small subset of possible ALU operations.

Conditional instructions (e.g., conditional branches) operate according to
previous operation results. We provide four 1-bit registers (flags) to reflect the
properties of result Y. The flag N indicates that Y is a negative number. The flag Z
indicates that Y = 0. The flag V indicates that the result is too large (overflow) or too
small (underflow) for Y to represent. The flag C indicates that a carry has been
generated by the operation.

The shifter is controlled by signal S, which specifies the mode of shifting. We
will describe a number of shifting operations, which include a pass-through (i.e., no
shift) operation so that data can go through without being modified.
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Register IR is an instruction register provided for the storage of an instruction
brought in from the memory. Control signal k3 enables IR to latch the output of the
shifter. The value of IR is decoded by the finite-state machine control (not shown in
Fig. 8.5) to produce a control sequence.

Output register RO also has its input connected to the output of the shifter. Its
output is connected to the data bus. RO is used to store a result into the memory. In
addition to the regular enable signal k4 which enables register RO to capture its input,
another control signal k6 is provided to set up a tri-state connection between register
RO and the data bus. This is necessary since both the datapath unit and the memory
unit are sharing the data bus. When k6 = 0, the output of RO is set at a high-
impedance state and is isolated from the data bus.

Address register AR provides an address to the address bus for specifying the
location in the memory to be accessed. The type of access, either a read or a write, is
determined by setting the level of a R/W control line (not shown). Similarly, register
AR has two control signals. Signal k5 is the regular enable signal and k7 is the tri-state
control signal.

In the example SM, it controls all bus operations and its clock is also used by the
memory system. A memory read cycle begins by signaling the memory system. For
example, the tri-state control signal k7 can be used for this purpose. The memory
system responds by putting the data on the data bus, which is latched into SM by the
next clock. The memory bus sequences are as follows:

On a read operation:
• Put an address in the AR register.
• Put the content of AR on the address bus. Signal the memory system to

begin a memory read access. This can be done by combining k7 and
read/write.

• Capture the datum on the data bus into the specified register.
On a write operation:
• Put an address in the AR register.
• Put the datum to be written in the RO register.
• Put the content of AR on the address bus. Put the content of RO on the data

bus. Signal the memory system to begin a memory write access. This can be
done by using k7 and read/write.

In summary, four registers, RI1, RI2, AR, and RO, provide an interface to the
memory system and input/output (I/O) devices via the external address and data
buses.

Fig. 8.6 describes our proposed operations of the ALU, MUX1, MUX2, shifter,
and decoder. Each of the binary control signals has 3 bits and allows the selection of
one out of 8 operations. This is an arbitrary choice but seems to be a reasonable
selection for the complexity of a class project.
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Code A M1 M2 S D
000 Y P= RI1

selected
RI2

selected
Bypass

001 Y P Q= + R1
selected

R1
selected

Logical Shift left2 R1
loaded

010 1Y P= + R2
selected

R2
selected

Logical Shift right R2
loaded

011 Y P Q= − R3
selected

R3
selected

Output = 0 R3
loaded

100 Y P= R4
selected

R4
selected

Arithmetic Shift Left R4
loaded

101 Y P Q= ∧ R5
selected

R5
selected

Arithmetic Shift
Right

R5
loaded

110 Y P Q= ∨ R6
selected

R6
selected

Rotate Left R6
loaded

111 Y P Q= ⊕ R7
selected

R7
selected

Rotate Right R7
loaded

Fig. 8.6  Control signals for ALU, MUX1, MUX2, shifter, and decoder.

In Fig. 8.6, Y P=  indicates that Y is the bitwise complement of P. Y P Q= ∧
indicates that Y is the result of performing a bitwise-and operation between P and Q.
Y P Q= ∨  indicates that Y is the result of performing a bitwise-or operation between
P and Q. Y P Q= ⊕  indicates that Y is the result of performing a bitwise exclusive-
or operation between P and Q.

Points to Ponder:
• Discuss the implications of using D-latches for the registers in the SM datapath

unit.

• Discuss the implications of using D-flip-flops for the registers in the SM
datapath unit.

• Determine the ALU operations that are adequate to implement your SM
instruction set.

• Are there any other flags that should be added to the SM datapath?

                                                          
2 Logical shift left is identical to arithmetic shift left. In the case of shifting right, logical shift

inserts a 0 as the most significant bit (MSB) of the result while arithmetic shift duplicates the MSB of the
original datum as the new MSB (i.e., sign extension).
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• Determine the shifter operations that should be included in your SM datapath
unit.

The essence of register transfer is that each operation in the datapath involves
source and destination registers. The clock period is chosen according to the slowest
datapath operation. Fig. 8.7 shows a few example register transfer operations that can
be performed in the example datapath. All control signals given in Fig. 8.7 are
represented as binary numbers. Control signals that are not needed for an operation
are marked with “-” to indicate that they are don’t care values. Combinational
circuits (e.g., ALU, shifter, etc.) receive don’t care control signals if they are not
involved with the operation. It is important to make sure that registers not involved
with an operation are not accidentally enabled to overwrite its contents. The logic of
a hard-wired control unit can be simplified by taking advantage of don’t care values.

Operation A M1 M2 S D k1k2k3k4k5k6k7

R1 ← R2 – R3 011 010 011 000 001 0000000
R2 ← Shift right (R5) 000 101 - 010 010 0000000
AR ← R7 000 111 - 000 000 0000100
Memory ← AR - - - - 000 0000001

 Fig. 8.7  Datapath operation examples.

The objective of the last example operation in Fig. 8.7 is to send the address
stored in register AR to the memory. We have seen that this is one of the steps to
fetch either an instruction or an operand from the memory. Signal k7 turns on the tri-
state buffer between the output of register AR and the address bus. Most of the
control signals are don’t cares.

Points to Ponder:
• Identify the critical path(s) in the SM datapath unit.

• Design a clock system for the SM datapath unit.

We take a bit-slice approach to design the ALU. A bit-slice design approach
develops a one-bit ALU building block that processes one bit of the operand. Sixteen
of these building blocks are cascaded into a full width ALU. This bit-slice approach
allows the design to be simplified. However, similar to the situation of a ripple carry
adder, there is a performance penalty on this bit-slice design approach.

We introduce two approaches to design the bit-slice ALU. The first approach is
to further divide the bit-slice ALU into an arithmetic unit and a logic unit. This
concept is illustrated in Fig. 8.8. The bit-slice arithmetic unit accepts input Pi, input
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Qi, and a carry bit Ci-1 coming from a previous stage. The ALU control signal A
consists of three bits. Two bits A0 and A1 decide the arithmetic operation to be
performed. The output of the bit-slice arithmetic unit is sent to a multiplexer. A carry
output bit Ci is also produced and sent to the next stage.

A bit-slice logic unit performs logic operations on input Pi and input Qi under
the control of bits A0 and A1. The output of the bit-slice logic unit is also sent to the
multiplexer. A third control bit A2 selects either the arithmetic output or the logic
output as the output Yi of the bit slice.

Bit-slice
logic
unit

Bit-slice
arithmetic

unit

Multiplexer
A2

A1

A0

Yi

Ci

Pi Qi Ci-1

Fig. 8.8  A bit slice of the ALU.

The second bit-slice ALU structure attempts to improve the performance by
designing the logic and arithmetic units as an integrated entity. If we scrutinize the
logic required to perform arithmetic operations, it becomes obvious that many of the
desired logic functions are implicitly included.

For example, consider the logic expressions for the sum bit (si) and carry output
bit (ci) of a full adder with inputs (ai, bi, and ci-1):

1

11

i i i i

i i i i i i i

s a b c
c a b a c b c

−

−−

= ⊕ ⊕

= + +
(8.1)

It is not difficult to see that if ci-1 = 0, si is the exclusive-or result of ai and bi. In
addition, ci is the logical and result of ai and bi. More logic functions can be
extracted out of the arithmetic functions.

Points to Ponder:
• Use the 1-bit full adder described in (8.1) as the major building block to create a

bit-slice ALU unit.
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• Create a schematic for the bit-slice ALU shown in Fig. 8.8.

The carry-out bit of the 16-bit ALU is captured into the flag register C. The sign
bit (MSB) of the result Y (2’s complement number representation) is captured into
the flag register N. An overflow occurs when adding two positive numbers produces
a negative number or adding two negative numbers produces a positive number. A
simple logic circuit that implements

15 14V C C= ⊕ (8.2)

is used to generate the signal latched into the flag register V, where C15 and C14 are
the carry-outs of bit positions 15 and 14, respectively. A 16-input AND function is
used to detect Y = 0 and its output is stored in flag register Z.

Points to Ponder:
• Consider the conditional operations (e.g., conditional branches) in a

microprocessor and explain how to determine whether a condition (e.g., branch
if P > Q) is satisfied by inspecting these four flags.

We choose to implement the shifter as a barrel shifter. Fig. 8.9 shows a partial
implementation of a barrel shifter. We illustrate the use of a group of switches to
implement a shifting function. The inputs (Y15 – Y0) runs horizontally and forms a
mesh with the vertical outputs (F15 – F0). Two groups of switches are shown. One
group of switches is represented by the single lines. Another group of switches is
represented by the double lines. Each switch connects an input line with an output
line.

If the group of single line switches is turned on, the shifter passes the input Y to
output F unchanged (i.e., corresponding to S = 000). If the group of double line
switches is turned on, the shifter rotates input Y to the right one bit position (i.e.,
corresponding to S = 110). Other groups of switches are added similarly to
implement the other shifter functions. A decoder can be used to generate the switch
control signals according to S. It is important that only one group of switches should
be turned on at a time.

Points to Ponder
• Create an efficient layout for the shifter. Use t-gates to implement the switches.

Now we turn our attention to the design of the control. Its design depends on the
choice of an instruction format. Fig. 8.10 shows an example instruction format.
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Y15

Y14

Y13

Y12

Y1

Y0

F15 F14 F13 F12 F1 F0

Fig. 8.9  Partial implementation of the shift register.

Op code
15 11 10 9 8 6 5 3 2 0- - - -

Addressing
Mode

Rp Rq Rd

Fig. 8.10  Instruction format.

According to Fig. 8.10, the 16-bit instruction is divided into 5 fields. The opcode
field (bit 15-bit 11) specifies the operation to be performed by an instruction. It has 5
bits so we can have up to 32 unique instructions. The next two bits are used to
specify an addressing mode. Fig. 8.11 shows 4 example addressing modes to be used
in SM. In addressing modes (01)2 and (11)2, the offset m or the constant will be
stored in the word following the instruction.

Bits 10, 9 Addressing Mode Address Calculation
00 (Rx) Address = Rx
01 m(Rx) Address = m + Rx
10 (Rx)[Ri] Address = Rx + Ri
11 constant Address = PC + 1

Fig. 8.11  Addressing modes.
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R7 is designated as the program counter (PC). The register number Rx is stored
in field Rp. The register number Ri is stored in field Rq. The field Rd specifies the
destination register.

As an example, let us look at a few examples.

Example 8.1
Determine the instruction for LOAD (R2)[R3], R5.

The instruction is interpreted as R5 ← Mem[R2+R3], which specifies the values
stored in R2 and R3 are added to form a memory address, at which the content is
loaded into R5. Assume that the op code for LOAD is 0000. The instruction is coded
into (0000 0100 1001 1101)2 or (049D)16.

Example 8.2
Code LOAD #10, R6 into an SM instruction.

The meaning of this instruction is to load the constant 10 into R6 (R6 ← 10).
Recall that the constant 10 is stored in the location following the instruction. The
addressing mode bits can be used to determine the appropriate operations. This
instruction is coded into two words: (0000 0110 0000 0110 0000 0000 0000 1010)2
or (0606 000A)16.

Points to Ponder
• How do we form an instruction to perform R6 ← R1 + R2? There is no

addressing mode specified for this and other similar operations.

Fig. 8.12 shows an example structure of the control unit for SM, which presents
the relationship between the instruction register IR, the datapath unit, and the
elements in the control unit. It is shown that the datapath unit receives the control
signals A (ALU), S (shifter), D (R1-R7), M1 (MUX1), M2 (MUX2), and enable
signals k1-k7. In return, the datapath provides the control unit with the flags and their
complements (N, ,N  Z, ,Z  V, ,V C, and C ). We will explain how these flags and
their complements are used in a moment.



Chip Design 243

Op Code Rp Rq Rd

Addressing
Mode

15    -   11 10 9

8 - 6 5 - 3 2 - 0

MUX5

MUX6

MUX7

MUX3 MPC Micro-Program
Memory

MUX4

0 1 NNZZVC

0 1 2 3 4 5 6 7

Datapath
UnitM1

M2 D

k1, k2, k3
k4, k5, k6, k7

A, S

load/inc

16

2

1411
5

L1

L2

L3

L4

L5

M1'

D'

NA

L1 - L5

IR

0
1
2

M2'

0

1

0

1

0

1

Fig. 8.12  Control unit of SM.

The control signals required for register transfer operations are stored as words
in the micro-program memory. Each word is a micro-instruction that specifies
operations that are to be carried out in one clock cycle. Our example micro-program
memory has 16-bit addresses and thus has 216 unique locations. The address of the
next micro-instruction in the micro-program memory is provided by a 16-bit micro-
program counter (MPC). MPC has 4 different ways of acquiring a new micro-
instruction address. MPC increments its current value by 1 if the control line
load/ inc = 0. Otherwise, MPC loads a new address through multiplexer MUX3.

Multiplexer MUX3 has three different inputs. The first input comes entirely
from the next address (NA) field in the micro-instruction being accessed. This allows
the address of the next micro-instruction to be completely specified in the current
micro-instruction. The second input combines 11 bits from NA and the 5-bit op code
(bits 15-11) in the instruction register IR. This allows the next micro-instruction to be
chosen by an instruction in IR. The third input combines 14 bits from NA and two
bits (bits 10 and 9) in IR that specifies an addressing mode. This allows micro-
instructions to operate differently according to their addressing modes.

Multiplexer MUX4 presents one of its 8 inputs as the MPC load/ inc  signal
according to its control signal L2. The output of MUX4 thus decides whether MPC
should be incremented by one or loaded from MUX3. The inputs to MUX4 are
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provided with 2 deterministic inputs (0 and 1) so the micro-instruction being
accessed can fully control the generation of the next address. Alternatively, the flags
(N, Z, V, C) can be used to determine the next address so that conditional operations
are possible.

Three other multiplexers MUX5, MUX6, and MUX7 provide the control signals
M1, M2, and D to the datapath unit. MUX5, controlled by control signal L3, chooses
between IR field Rp and micro-instruction field M1'. Similarly, MUX6 selects, under
the control of L6, either IR field Rq or micro-instruction M2' as M2. Multiplexer
MUX7 sends, under the control of L7, either IR field Rd or micro-instruction field D'
to the datapath unit as control signal D.

The micro-program memory contains the control sequences as a micro-program.
Each word of the MPC is partitioned into many fields. The use of these control
signals is demonstrated by the micro-programming example shown in Fig. 8.13. In
Fig. 8.13, all control signals (except k1-k7) and the MPC address are given in
hexadecimal numbers. Control signals k1-k7 are given in binary numbers. Notice that
additional control signals (e.g., R/W) for interfacing the memory have been omitted
to simplify the discussion.

Points to Ponder:
• Develop the microprogram for your instruction set.

The microprogram memory can be implemented by means of a read-only
memory (ROM). Once the design is completed, it should be simulated to verify its
functions.

8.2 Field Programmable Gate Array

While a full-custom IC has the potential of achieving the best performance
possible offered by a given fabrication process, its high design complexity often
makes it cost prohibitive. Programmable logic devices (PLD), such as the
programmable logic array (PLA) that we have introduced in Chapter 6, were
developed as user-programmable, general-purpose devices to implement logic as
two-level sum-of-products.

Two-level sum-of-products are inadequate for large designs. A mask-
programmed gate-array, or simply gate-array, is a chip that consists of an array of
prefabricated transistors. Gate-arrays are customized by wiring up the transistors to
form multi-level logic, which is done at the foundry with custom metal layer masks.
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MPC
Address L1 L2 L3 L4 L5 M1' M2' D' NA A S k1-k7

Instruction fetch:
AR ← R7 0000 - 0 0 - 0 7 - 0 - 0 0 0000100
BUS ← AR; R7 ← R7 + 1 0001 - 0 0 - 0 7 - 7 - 2 0 0000001
RI1 ← BUS 0002 - 0 - - 0 - - 0 - - - 1000000
IR ← RI1 0003 - 0 0 - 0 0 - 0 - 0 0 0010000

Interpretation:
determine next address 0004 1 1 - - 0 - - 0 0100 - - 0000000

….
LOAD:
addressing modes 0100 2 1 - - 0 - - 0 0200 - - 0000000
(other instructions)… ….

Mode 00: 0200 0 1 - - 0 - - 0 0204 - - 0000000
Mode 01: 0201 0 1 - - 0 - - 0 0208 - - 0000000
Mode 10: 0202 0 1 - - 0 - - 0 020C - - 0000000
Mode 11: 0203 0 1 - - 0 - - 0 020D - - 0000000
(Rx)
AR ← Rx 0204 - 0 1 - 0 - - 0 - 0 0 0000100
BUS ← AR 0205 - 0 - - 0 - - 0 - - - 0000001
RI1 ← BUS 0206 - 0 - - 0 - - 0 - - - 1000000
Rd ← RI1 0207 0 1 0 - 1 0 - - 0000 0 0 0000000
m(Rx)
AR ← R7 0208 - 0 0 - 0 7 - 0 - 0 0 0000100
BUS ← AR; R7 ← R7 + 1 0209 - 0 0 - 0 7 - 7 - 2 0 0000001
RI2 ← BUS 020A - 0 - - 0 - - 0 - - - 0100000
AR ← RI2 + Rx 020B 0 1 1 0 0 - 0 0 0205 1 0 0000100
(Rx)[Ri]
AR ← Ri + Rx 020C 0 1 1 1 0 - - 0 0205 1 0 0000100
constant
AR ← R7 020D - 0 0 - 0 7 - 0 - 0 0 0000100
BUS ← AR; R7 ← R7 + 1 020E 0 1 0 - 0 7 - 7 0206 2 0 0000001
… ….

Fig. 8.13  Microprogramming example.

A field programmable gate array (FPGA) is a general-purpose, multi-level
programmable logic device. Unlike the mask-programmed gate arrays, FPGAs are
programmable by their users with inexpensive software and hardware, often provided
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by the manufacturer of the FPGAs. A class of FPGAs, which are called SRAM-
programmed FPGAs, are reprogrammable and thus reusable.3 This feature proves to
be very powerful for the debugging of a design and has made FPGAs very popular.
SRAM FPGAs are programmed by loading configuration data into configuration
memory. Another class of FPGAs is anti-fuse-programmed. Anti-fuse works in a
manner opposite to fuses. An anti-fuse device irreversibly changes from a high to a
low resistance when a programming voltage is applied.

Points to Ponder:
• From the viewpoint of area, power, and speed, compare the SRAM-based FPGA

and the anti-fuse-programmed FPGA.

• An alternative to the FPGA is a device called CPLD (configurable
programmable logic device). The CPLD contains an array of PLA-like structures
interconnected by programmable routing resources. Research this device and
discuss its advantages and disadvantages.

An SRAM-based FPGA must be reprogrammed every time it is turned on since
the configuration data are lost when the power is turned off. A side effect of its
volatility is that an SRAM-based FPGA system needs an external memory for storage
of its configuration so that it can be initialized during power-up. The other side of
being volatile is that SRAM-based FPGAs are ideal for prototyping since they can be
reprogrammed without cost. The configuration memory can be replaced with
EPROM or EEPROM to preserve the configuration after the power is turned off.4

Traditionally, the entire FPGA must be programmed all together due to the fact
that the configuration data are sent in serially as a bit stream. This does not permit a
part of the array to be reconfigured without affecting the rest of the circuit. Partially
reconfigurable FPGAs are now also available. Since a portion of an FPGA can be
selectively modified, an implementation can be customized according to the task on
hand for better performance. In addition, an FPGA can be efficiently time-shared
between several applications. Similar to the concept of a cache memory, an
application specific configuration can be loaded into the FPGA on an as-needed
basis.

The cost of a FPGA is low since it can be mass-produced. Each part can be fully
tested by the manufacturers so that the yield, from the user’s view point, is virtually
100%. The biggest advantage of SRAM-based FPGAs is probably in the fact that
they are always fabricated with the most advanced technology developed for SRAM.
All logic of an FPGA is implemented in static logic. Provided with a means to turn
off the unused portion of the FPGA, the power dissipation can be kept reasonably
low and the standby current is virtually zero.

                                                          
3 SRAM: static random access memory.
4 EPROM: Electrically programmable read-only memory. EEPROM: Electrically erasable and

programmable read-only memory.
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Our second design example is an SRAM-based FPGA. Fig. 8.14 shows a general
floorplan of an SRAM-based FPGA. It contains an array of configurable logic blocks
(CLBs) connected with configurable interconnects (routing resources). These
programmable routing resources are provided to connect the CLBs together to form
the desired function. A ring of programmable I/O blocks are arranged along the
edges of the FPGA.

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O I/O I/O I/O I/O I/O I/O

I/O I/O I/O I/O I/O I/O I/O

Configurable
Logic Block (CLB)

Routing
Resources

Fig. 8.14  General floorplan of an FPGA.

A CLB allows an arbitrary logic function of its inputs to be implemented. A
single bit register can be incorporated into a CLB so that sequential circuits can be
readily constructed. The configurable interconnects allow the CLBs to be connected
to implement large, multi-level logic. The programmable I/O blocks can be
programmed to be an input port, an output port, or a bi-directional port, or a tri-state
port. They provide the communications between the pins of an FPGA chip and the
internal circuit. Special CAD tools have been developed to synthesize FPGA designs
from high-level behavioral description.

Points to Ponder:
• Design the specifications of a programmable I/O block.

• How does the rest of the circuit affect the design of the I/O block?

• Should a latch or a flip-flop be used to implement the single bit register?
The building blocks of an FPGA CLB include a lookup table (LUT),

programmable interconnect points (PIPs), a 1-bit register, several multiplexers, and a
configuration memory. An example structure of a CLB is shown in Fig. 8.15 along
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with the routing resources. Note that the configuration memory is not shown in Fig.
8.15.

The LUT can be used to implement any logic function of four inputs by storing
its truth table. Four multiplexers selectively connect the inputs of LUT to the vertical
routing interconnects so that the LUT can receive outputs of other CLBs. The output
of the LUT is sent to a single-bit register, which is represented as a D-flip-flop. A 2-
to-1 multiplexer chooses either the LUT output or the register output as the output of
the CLB. The CLB output can be connected to one or more of the vertical routing
interconnects by setting the PIPs.

LUT

MUX

MUX

MUX

MUX

D Q
MUX

clock

PIP

programmable
routing switch

Fig. 8.15  Block diagram of CLB and its relationship with the routing resource.

The four-input LUT can be implemented by a 16 × 1 SRAM memory. The
memory is used as a function generator to implement any of 216 logic functions of 4
inputs. The truth table of the desired function is loaded into the memory when the
CLB is configured. Since there is no difference between the four inputs to the LUT,
the assignment of input signals to physical input pins can be done in a way to
optimize the routing of signals.

The programmable routing switches provide the programmable connections
between the horizontal and vertical routing interconnects. The structure of a
programmable routing switch is shown in Fig. 8.16. The six PIPs are used to
configure a number of routing modes. In addition to providing the connection
between a horizontal routing path to a vertical routing path, the programmable
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routing switch also allows a routing interconnect to be broken into two sections. This
way different sections of the same routing interconnect can be used for different
routing paths. Each PIP is controlled by the output of a one-bit memory cell. If a 1 is
stored in the control memory cell, the PIP turns on and completes a connection.

Since each routing interconnect has to go through a number of PIPs, the delays
introduced by them can become significant. The long wire also contributes large
loading capacitance to the CLB.

PIP 

Fig. 8.16  Programmable routing switch.

Another chip level circuitry is the circuit for loading the configuration data to the
LUT and the control memory. The configuration data can be stored in registers. A
simple implementation is to connect all configuration registers into a shift register so
that the configuration data are loaded serially as a long control word. Alternatively,
the configuration memory can be implemented as a random access memory so that a
portion of the configuration data can be loaded without overwriting the rest. This
capability is required by a partially reconfigurable FPGA.

Points to Ponder:
• The structure in Fig. 8.15 shows that each CLB has four inputs. Research

commercial FPGA products and determine the number of inputs for your CLB.
What are the implications of having more or less inputs?

• Instead of running long routing interconnects all across the chip as shown in Fig.
8.15, some FPGA designs have provided routing wires of different lengths.
Shorter wires are used for local interconnections and longer wires are used for
global interconnections. Design a similar scheme for your FPGA routing
resources.

• Discuss the pros and cons of using pass-transistors to implement the PIP.
• What are the implications of using a random access memory to implement the

configuration memory?
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• The propagation delay due to an interconnect is significant because of the use of
PIPs to provide reconfigurability. Long wires should be buffered. The designer
may decide to provide buffering in the interconnect. Instead of providing
dedicated buffers for the long routing interconnects, a signal can be routed
through a CLB to achieve a similar effect. Discuss the advantages and
disadvantages of this approach.

In addition to the common criteria (i.e., area, speed, and power) that we use to
evaluate a design, a general-purpose logic device should also be evaluated by
considering its logic density and routability. The logic density is defined as the
amount of usable logic per unit chip area.

The configurable routing resource does not contribute to the logic density.
Theoretically the availability of more metal layers allows the wiring to be routed on
top of the configurable logic blocks instead of around them. However, the fact that
PIPs are needed to provide the programmable connections limits this option since
devices cannot overlap.

If the goal is to increase the logic density, minimizing routing resources may
seem to be an attractive option. However, a high raw density does not imply a high
usable density. The lack of routing resources renders many logic blocks inaccessible.

A higher degree of routability can be provided by adding more PIPs. However,
each PIP requires the area of a pass transistor plus that of a memory cell. These
overheads add to the size of the chip and reduce the density. As mentioned before,
these pips also have adverse effects on the signal speed.

Points to Ponder:
• The highest clock frequency that an FPGA can operate is determined by the

delay of a CLB and the propagation delay of sending the signal to a neighbor
CLB. Use this observation to guide the design of your FPGA.

8.3 Summary

In this chapter, we go through the top-down flow of two designs. The first design
is a simple microprocessor that demonstrates the concept of the datapath and control
approach. The second design is an FPGA, which represents a class of popular user
programmable logic devices.
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8.4 To Probe Further

Microprocessor Design:
• J. L. Hennessy and D. A. Patterson, Computer Organization and Design: The

Hardware/Software Interface, Morgan Kaufmann Publishers, 1994.

• M. M. Morris, Computer System Architectures, 3rd edition, Prentice Hall, 1993.

Field-Programmable Logic Arrays:
• S. M. Trimberger, ed., Field-Programmable Gate Array Technology, Kluwer

Academic Publishers, 1994.

• IEEE Design and Test of Computers, January – March, 1998. This is a special
edition on FPGAs.

Low Power Design:
• A. Bellaouar and M. Elmasry, Low-Power Digital VLSI Design Circuits and

Systems, Kluwer Academic Publishers, 1995.

• G. K. Yeap, Practical Low Power Digital VLSI Design, Kluwer Academic
Publishers, 1998.

Commercial FPGAs:
• http://www.xilinx.com

• http://www.altera.com

• http://www.actel.com

8.5 Problems

8.1 Complete the design of the SM.

8.2 Complete the design of the FPGA.

8.3 Design an alarm clock.

http://www.xilinx.com
http://www.altera.com
http://www.actel.com
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8.4 Design a floating point multiplier.

8.5 Design a jogging meter that calculates and records the jogging distance.

8.6 Design a bicycle meter that calculates traveling speed.

8.7 Design a BCD (0000 - 1001) counter with a 7 segment display output.
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Chapter 9 Testing

Final judgment …
The testing of a chip is an operation in which the chip-under-test is exercised

with carefully selected test patterns (stimuli). The responses of the chip to these test
patterns are captured and analyzed to determine if it works correctly. A faulty chip is
one that does not behave correctly. The incorrect operation of a chip may be caused
by design errors, fabrication errors, and physical failures, which are referred to as
faults. Fig. 9.1 lists a few example faults in each of these three categories.

Design errors Incomplete specifications
Incorrect logic implementations
Incorrect wiring
Design rule violations
Excessive delays
Glitches or hazards
Slow rise/fall times
Improper noise margins
Improper timing margins

Fabrication errors Shorts
Opens
Improper doping profiles
Mask misalignments
Incorrect transistor threshold voltages

Physical failures Electron migration
Cosmic radiation and α-particles

Fig. 9.1  Example faults found in integrated circuits.

In some cases, we are only interested in whether the chip-under-test behaves
correctly. For example, chips that have been fully debugged and put in production
normally require only a pass-or-fail test. The chips that fail the test are simply
discarded. We refer to this type of testing as fault detection.

In order to certify a prototype chip for production, the test must be more
extensive in nature to exercise the circuit as much as possible. The test of a prototype
also requires a more thorough test procedure called fault location. If incorrect
behaviors are detected, the causes of the errors must be identified and corrected.

An important problem in testing is test generation, which is the selection of test
patterns. A common assumption in test generation is that the chip-under-test is non-
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redundant. A circuit is non-redundant if there is at least one test pattern that can
distinguish a faulty chip from a fault-free one.

A non-redundant combinational circuit with n inputs is fault-free if and only if it
responds to all 2n input patterns correctly. Testing a chip by exercising it with all its
possible input patterns is called an exhaustive test. This test scheme has an
exponential time complexity so it is impractical except for very small circuits.

For example, 4.3 × 109 test patterns are needed to exhaustively test a 32-input
combinational circuit. Assume that we have a piece of automatic test equipment
(ATE) that can feed the circuit with test patterns and analyze its response at the rate
of 109 patterns per second (1 GHz).1 The test will take only 4.3 seconds to complete,
which is long but may be acceptable. However, the time required for an exhaustive
test quickly grows as the number of inputs increases. A 64-input combinational
circuit needs 1.8 × 1019 test patterns to be exhaustively tested. The same piece of test
equipment would need 570 years to go over all these test patterns.

The testing of sequential circuits is even more difficult than combinational
circuits. Since the response of a sequential circuit is determined by its operating
history, a sequence of test patterns rather than a single test pattern would be required
to detect the presence of a fault. There are also other problems in the testing of a
sequential circuit, such as the problem of bringing the circuit into a known state and
the problem of timing verification.

The first challenge in testing is thus to determine the smallest set of test patterns
that allows a chip to be fully tested. For chips that behave incorrectly, the second
challenge is to diagnose, or locate, the cause of the bad response. This operation is
difficult because many faults in a chip are equivalent; so they are indistinguishable by
output inspection. For example, if the output of an inverter incorrectly produces a 0,
the following faults are indistinguishable without a further investigation:

• There is a short between the inverter output and VSS.
• There is a short between the inverter input and VDD.
• The pull-down transistor (nMOS) of the inverter is permanently turned on.
• …
Fortunately, a truly exhaustive test is rarely needed. In addition, it is often

sufficient to determine that a functional block, instead of an individual signal line or
transistor, is the cause of an error. We begin with the discussion of popular fault
models that allow practical test procedures to be developed.

                                                          
1 This would be one of the top-of-the-line testers in 2000. The cost of such a tester is around 2

million US Dollars.
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9.1 Fault Models

As noted above, except for very small circuits, it is impractical to pursue an
exhaustive test. Instead, a test should consist of a set of test patterns that can be
applied in a reasonable amount of time. This test should provide the user with the
confidence that the chip-under-test is very likely to be fault free if it passes the test.
An important issue in the development of a test procedure is thus to evaluate the
effectiveness of a test. The quality of a test can be judged by an index called fault
coverage. Fault coverage is defined as the ratio between the number of faults a test
detects and the total number of possible faults. This is usually determined by means
of a simulated test experiment. This experiment, which is called a fault simulation,
uses a software model of the chip to determine its response to the test when faults are
present. A fault is detected by a test pattern if the circuit response is different from
the expected fault-free response.

Fault models are created to facilitate the generation of test patterns. A fault
model represents a subset of the faults that may occur in the chip-under-test. Several
fault models have been developed for representing faults in CMOS circuits. These
models can be divided into logic fault models, delay fault models, and current-based
fault models.

The most widely used logic fault models are the stuck-at fault, stuck-open fault,
and bridging fault models. Delay fault models incorporate the concept of timing into
fault models. Examples of delay fault models are the transition delay and path delay
fault models. The current-based fault models were developed by recognizing the very
low leakage current of a CMOS circuit. Many defects, such as opens, shorts, and
bridging, result in a significantly larger current flow in the circuit.

Many automatic test pattern generation (ATPG) algorithms are based on the
“single fault assumption.” This assumption assumes that at most one fault exists at
any time so the test generation complexity can be significantly reduced. We will
revisit this subject later in this chapter. Brief introductions to these fault models are
given below. We will discuss some of these models in detail.

Stuck-at Fault Model
The stuck-at fault model assumes that a design error or a fabrication defect will

cause a signal line to act as if it were shorted to VSS or VDD. If a line is shorted to VSS,
it is a constant 0 and is named a stuck-at-0 (s-a-0) fault. On the other hand, if a line is
shorted to VDD, it is a constant 1 and is called a stuck-at-1 (s-a-1) fault. The stuck-at
fault model is most effective if it is used at the inputs and outputs of a logic unit such
as a logic gate, a full adder, etc. The application of this fault model in a test is to
force a signal line to 1 for a s-a-0 fault and to 0 for a s-a-1 fault. The response of the
circuit is then analyzed.
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Stuck-Open Fault Model
The stuck-open (s-op) fault model attempts to model the behaviors of a circuit

with transistors that are permanently turned off. The result of having transistors that
would not be turned on is unique to CMOS circuits. A s-op fault changes a CMOS
combinational circuit into a sequential circuit. A two-step test is thus required. The
first step brings the signal line being tested to an initial value. The second step then
carries out the test in a way similar to the testing of stuck-at faults.

Bridging Fault Model
A bridging fault model represents the accidental connection of two or more

signal lines in a circuit. The most common consequence of a bridging fault is that the
shorted signal lines form wired logic so the original logic function is changed. It is
also possible that the circuit becomes unstable if there is an unwanted feedback in the
circuit. Bridging faults can be tested by applying opposite values to the signal lines
being tested.

Transition Delay Fault Model
The transition delay fault model is based on the stuck-at model. The application

of this fault model is similar to the stuck-at model except that the s-a-0 and s-a-1
values are replaced by 0-to-1 and 1-to-0 transitions. An observed signal line is forced
to a known value at some time before it is observed. A transition is then applied and
the signal line is observed along with a time assessment. Possible faults are slow-to-
rise (0-to-1 transition) faults and slow-to-fall (1-to-0 transition) faults. This fault
model is commonly used to model a functional block that has an excessive delay.

Path Delay Fault Model
The path delay fault model considers the total transition delay of a circuit path.

The only difference between the path delay fault model and the transition delay
model is that an entire path instead of a single signal node is targeted. The same
operation of assigning an initial value and observing a transition is used.

Current-Based Fault Model
Some faults cannot be detected by either the logical fault model or the delay

fault model. These defects, which do not cause a logical error but represent a
reliability problem, may cause a high leakage current. This defect induced leakage
current may be an order of magnitude larger than the normal CMOS quiescent
current. The current-based fault model is only applicable when the chip is in a static
state.

Our discussion begins with the stuck-at and stuck-open fault models. Fig. 9.2
shows a two-input NAND gate that is used to explain the modeling of physical
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defects as stuck-at and stuck-open faults. We label the four transistors in this circuit
as QpA, QpB, QnA, and QnB, respectively.

QnA

QnB

Z

QpA QpB

A

B

Fig. 9.2  CMOS NAND gate.

The stuck-at fault model is often used along with the further assumption that
there is at most one fault in the circuit, which is known as the single-fault
assumption. As mentioned above, the stuck-at fault model is often applied to the
inputs and outputs of a logic block. For a logic block with n inputs and m outputs,
2(n + m) single stuck-at faults are possible. If we consider only the inputs and output
of this NAND gate, six single stuck-at faults are possible:

• A: s-a-0.
• A: s-a-1.
• B: s-a-0.
• B: s-a-1.
• Z: s-a-0.
• Z: s-a-1.
By definition, if input A: s-a-1, the NAND gate sees A = 1, regardless of the

value placed on it. Many stuck-at faults of a circuit are equivalent and thus
indistinguishable. For example, input A: s-a-0 is equivalent to and thus
indistinguishable from output Z: s-a-1. When equivalent stuck-at faults are taken into
consideration, the number of single stuck-at faults in the NAND gate is reduced to
four: A: s-a-1, B: s-a-1, Z: s-a-1, and Z: s-a-0.2

A stuck-open fault occurs if transistor QnA is permanently opened. A possible
cause of this stuck-open fault is that either its source or drain is disconnected from

                                                          
2 Z: s-a-1 is equivalent to either A: s-a-0 or B: s-a-0.
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the rest of the circuit. In the presence of QnA: s-op, when AB = 11, output Z becomes
a high impedance state (HiZ) since it is connected neither to VSS nor to VDD. Output Z
thus retains its previous logic value; so the circuit acts like a sequential circuit. The
length of time before the value at Z changes is determined by the capacitance of node
Z and the leakage current.

The stuck-at and stuck-open fault models do not cover all physical faults in a
CMOS circuit. For example, consider a bridging between the source and drain of
transistor QnA. This is equivalent to a situation in which transistor QnA is turned on all
the time. When AB = 01, a voltage divider is formed by transistors QpA and QnB,
which drives output Z to an intermediate value between VDD and VSS. The value
perceived at Z is determined by the logic threshold of the stage accepting it as input.

Bridging faults are often difficult to detect. We use a slightly more complicated
logic function to demonstrate this problem. Fig. 9.3 shows a CMOS implementation
of Z AB CD= + . A bridging between nodes 1 and 2 causes the Z output to be
intermediate when ABCD = 1001 or ABCD = 0110. If the stage driven by Z perceives
this intermediate value as 1, the circuit continues to function as expected with a
substantially smaller noise margin.3 Otherwise, if Z is below the logic threshold of
the next stage, the bridging fault has converted the function to

( ) ( )Z A B D D B C= + + + .
Fig. 9.4 compares the NAND gate (Fig. 9.2) outputs at a few example faulty

conditions with their corresponding fault-free outputs. The last column (QnA:
bridged) depicts the output when the source and drain of transistor QnA are shorted.
In the next section, we will show that test patterns can be generated by comparing the
faulty and fault-free outputs of a circuit.

9.2 Test Generation (Stuck-at Faults)

Test generation deals with the selection of input combinations that can be used
to verify the correct operation of a chip. Consider a circuit with a function F(X) =
F(x1, …, xn), where X is an input vector representing n inputs x1, …, xn.

Suppose we would like to find a test pattern to detect a single stuck-at fault
occurring at an internal circuit node k (i.e., k ∉ X). The first observation is that node
k must be set to 0 in order to detect k: s-a-1 or 1 to detect k: s-a-0. The second
observation is that a test pattern Xk qualified to detect the specific k stuck-at fault
must satisfy the following condition. When Xk is applied to the circuit, the fault-free
response F(Xk) must be different from the incorrect output '( )kF X  caused by the
stuck-at fault at k. This is the basic principle of test generation.

                                                          
3 This is the kind of fault in which the current-based fault models are most useful. A larger than

normal current is produced by the short.
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Z

A

B

BA

DC

C

D
1 2

Fig. 9.3 CMOS implementation of Z AB CD= + .

AB Z
(fault-free)

Z
(A: s-a-1)

Z
(A: s-a-0)

Z
(QnA: s-op)

Z
(QnA: bridged)

00 1 1 1 1 1
01 1 0 1 1 X
10 1 1 1 1 1
11 0 0 1 HiZ 0

Fig. 9.4  A few possible faults in a CMOS NAND gate.

Normally it is impossible to directly inject a value at an internal node of a chip.
It is thus necessary to find an input combination Xk that can set k to the desired value.
If we can set the value of a node of a chip, either directly in the case of an input
node, or indirectly in the case of an internal node, the node is said to be controllable.

Unlike a board-based design, it is impractical to physically probe the internal
nodes of a chip for their values. In order to observe an internal node, some path must
be chosen to propagate the effect of a fault to the chip output. The test pattern Xk
must be chosen to sensitize a path from the node under test to an observable output.
If the value of a node can be determined, either directly in the case of an output, or
indirectly in the case of an internal node, it is said to be observable.
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Now we formalize the requirement of a test pattern that detects a stuck-at fault at
an input xi.  Xi is a test vector for detecting xi: s-a-1 if and only if

( ( ) '( )) 1i i ix F X F X• ⊕ = (9.1)

and a test vector for detecting xi: s-a-0 if and only if

( ( ) '( )) 1i i ix F X F X• ⊕ = (9.2)

where 1( ) ( ,..., ,..., )i i nF X F x x x= and 1'( ) ( ,..., ,..., )i i nF X F x x x= .
In (9.1), the term ix ensures that xi is set to 0. Similarly, in (9.2), the term xi

ensures that xi is set to 1. The exclusive-or term used in (9.1) and (9.2) is called the
Boolean difference of F(X) with respect to its input xi and can be written as

1 1
( ) ( ,..., ,..., ) ( ,..., ,... )i n i n

i

dF X F x x x F x x x
dx

= ⊕ (9.3)

which specifies that the variables other than xi must be assigned values so that the
output is sensitive to a change of xi.

The principles specified in (9.1) and (9.2) can be generalized to specify test
patterns for an internal node of a combinational circuit. This can be easily done by
rewriting 1( ,..., )nF x x as 1( ,..., , )nF x x k , in which k is the internal node for which a
test pattern is to be determined. The test pattern requirements are then generalized as
follows.

Xk is a test pattern for detecting k: s-a-1 if and only if

( ) 1dF Xk
dk

= (9.4)

and a test pattern for detecting k: s-a-0 if and only if

( ) 1dF Xk
dk

= (9.5)

As an example, consider a logic function 1 2 3 4F x x x x= + . Assume that k = x1x2

is an internal node of the circuit. We can rewrite the function as 3 4F k x x= +  and

1 2k x x= . The tests for k: s-a-1 are found by considering
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1 3 4 3 42

1 32 4

1 3 2 3 1 4 2 4

(( ) ( ))

( )

1

dFk x x k x x k x x
dk

x x x x
x x x x x x x x

= + ⊕ +

=

= + + +
=

(9.6)

The following test patterns x1x2x3x4 = 0-0-, -00-, 0--0, -0-0, in which the ‘-’ indicates
a don’t care value, satisfy (9.6) and are thus the tests for k: s-a-1.

The tests for k: s-a-0 are found by considering

1 2 3 4 3 4

1 2 3 4

1 2 3 1 2 4

(( ) ( ))

( )

1

dFk x x k x x k x x
dk

x x x x
x x x x x x

= + ⊕ +

=

= +
=

(9.7)

An analysis of (9.7) yields test patterns x1x2x3x4 = 110- and 11-0 for k: s-a-0.
The above test generation principles have been implemented in various

approaches. All these approaches are based on the assumption that the circuit-under-
test is non-redundant and has at most a single stuck-at fault. The single-fault
assumption may be justifiable for a fully debugged chip coming out of a production
line. This assumption does not apply to a prototype chip which may have more than
one fault caused by design errors or fabrication defects. However, most automatic
test pattern generation algorithms still adopt the single fault assumption since the
determination of test patterns can be significantly simplified. In practice, many
multiple faults will also be detected by a test set generated under the single fault
assumption. With the exception of stuck-open faults, a test set generated by
considering single stuck-at faults may also cover other faults such as the bridging
faults. Faults that are not detected in a fault simulation can be considered individually
so that their test patterns can be generated to enhance the test set.

9.3 Path Sensitization

Test generation involves two steps: fault activation and error propagation. Fault
activation requires setting the circuit primary inputs so that a s-a-v line has a value
v . Error propagation seeks primary input values to propagate the resulting error to a
primary output. Path sensitization is a direct implementation of (9.4) and (9.5). If the
fault locates at an internal node of the circuit, a difference at the node being tested
must be created. For example, a test vector that attempts to detect k: s-a-0 must set k
to 1.  A sensitized path must be found to propagate the difference from its origin to
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the output. The necessary conditions to create the difference at the tested node and to
propagate the fault along the sensitized path are then established.

Path sensitization can be applied as a manual approach to identify test vectors
for small circuits. The next section explains a computer-aided test generation
algorithm that implements the concept of path sensitization.

9.4 D-Algorithm

D-algorithm is the pioneer of many computer-aided test generation methods. D-
algorithm uses symbols D and D to represent errors. If we use D to denote a 0/1
error (0 is the expected value and 1 is the observed value), then D denotes a 1/0
error (1 is the expected value and 0 is the observed value). The meanings of D and
D  can be exchanged as long as their uses are consistent throughout a chip-under-
test. Error-free values 0/0 and 1/1 are simply denoted by 0 and 1, respectively.
Adding an unspecified (don’t care) value X, D-algorithm performs test generation by
carrying out 5-valued logic operations in the chip-under-test. The 5-valued logic
operations are shown in Fig. 9.5 (see Problem 9.2).

AND 0 1 D D X OR 0 1 D D X
0 0 0 0 0 0 0 0 1 D D X
1 0 1 D D X 1 1 1 1 1 1
D 0 D D 0 X D D 1 D 1 X
D 0 D 0 D X D D 1 1 D X
X 0 X X X X X X 1 X X X

Fig. 9.5  5-valued logic operations in D-algorithm.

Consider the problem of generating a test of c: s-a-0 in the 2-input NAND gate
shown in Fig. 9.6. The behavior of this faulty NAND gate is represented by the truth
table of Fig. 9.7, in which the X’s indicate don’t care values. This truth table simply
says that output c remains 0 regardless of the values of a and b.

a
b

c

Fig. 9.6  2-input NAND gate.

In order to detect c: s-a-0, we need to set c at 1 to create a D (or D , as long as it
is consistent throughout the circuit). The input pattern (ab) can be easily determined
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by selecting one from the NAND gate’s fault-free truth table that produces c = 1.
Three patterns (ab = 00, 01, and 10) are possible.

a b c: s-a-0
X X 0

Fig. 9.7  Truth table of a NAND gate with its output s-a-0.

Compact truth tables called singular covers are used in the D-algorithm. The
truth table of a logic gate can be simplified by incorporating the don’t care value (X).
A singular cover of a logic gate can be generated by inspecting any two rows in the
original truth table with identical outputs. In this inspection, any input on which the
output does not depend is marked as a don’t-care (X). The results of these inspections
are collected to form the gate’s singular cover. Fig. 9.8 shows the singular cover for a
two-input NAND gate. According to the singular cover of a two-input NAND gate,
the input patterns that set c = 1 are 0X and X0.

a b ab
0 X 1
X 0 1
1 1 0

Fig. 9.8  Singular cover for two-input NAND gate.

A pattern formed by an input combination of a logic circuit and the logic
circuit’s response to this input combination is called a cube. For example, the rows
(0X1, X01, 110, 001, etc.) in the singular covers shown in Fig. 9.8 are cubes. A
primitive D-cube of a fault is a cube that brings the effect of a fault to the output of
the logic circuit. It is used to generate a difference (i.e., D) at the faulty node to be
tested.

In the ongoing example of determining a test pattern for c: s-a-0 (Fig. 9.6), if we
set the inputs of the NAND gate to ab = 0X or X0, c = D.  The primitive D-cubes for
c: s-a-0 are thus 0XD and X0D.

A primitive D-cube for a logic function can be constructed by selecting one cube
from the fault-free singular cover and one cube from the singular cover of the faulty
circuit, which should have different output values. These two cubes are then
intersected according to the intersecting rules given in Fig. 9.9, which describes the
result of intersecting two values in corresponding positions of two cubes.
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Intersect (∧) 0 1 X
0 0 D 0
1 D 1 1
X 0 1 X

Fig. 9.9  Intersecting rules.

Applying this intersection operation to XX0 (a cube from the faulty NAND gate
with c: s-a-0, see Fig. 9.7) and 0X1 (a cube from the fault-free NAND gate, see Fig.
9.8), we have primitive D-cube 0XD  (or 0XD). Similarly, intersecting XX0 and X01
produces primitive D-cube 0X D  (or X0D). This result is consistent with the one
found by observation.

A primitive D-cube can also be found for a faulty input of a logic function.
Suppose we would like to find a primitive D-cube for b: s-a-0 for the 2-input NOR
gate shown in Fig. 9.10. The singular cover of the NOR gate with b: s-a-0 is shown in
Fig. 9.11. The singular cover of the fault-free NOR gate is shown in Fig. 9.12.

a
b

c

Fig. 9.10  Two-input NOR gate.

a b c
0 X 1
1 X 0

Fig. 9.11  Singular cover for NOR gate with b: s-a-0.

a b c
0 0 1
1 X 0
X 1 0

Fig. 9.12  Singular cover for fault-free NOR gate.

The primitive D-cube for b: s-a-0 is generated as follows. Since b: s-a-0, it must
be set to 1 to create a difference at b. Cube X10 fits with this description and is
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selected. It is then intersected with cube 0X1 from the faulty gate singular cover. This
produces primitive D-cube 01D.

D-algorithm uses propagation D-cubes to sensitize a path which propagates the
difference D or D caused by a fault to a primary output. Propagation D-cubes can be
found by inspecting a gate’s singular cover. All cubes that cause the output to depend
only on one or more of its inputs are propagation D-cubes.

The propagation D-cubes of a logic function can be systematically constructed
by intersecting cubes with different output values in its singular cover. For example,
the propagation D-cubes of a 2-input NAND gate (Fig. 9.6) is abc = 1D D , D1 D ,
and DD D .

The use of D-algorithm to determine test patterns follows the steps shown below.
1) Select a primitive D-cube for the fault of which test vectors are to be

determined.
2) Select propagation D-cubes from the logic gates in the path from the faulty

node to the output. This allows the difference (D or D ) to be propagated to
the output so that it can be observed. This is called the forward trace
operation.

3) For all other logic blocks that are not involved with the sensitized path, try
to match the cubes in their singular cover with the values determined so far.
A consistent set of input values is the valid test vector. If a consistent set of
input values cannot be found, no test vector can be found for this fault (e.g.,
the circuit is redundant).

An example is used here to demonstrate the use of D-algorithm to identify test
vectors.

Example 9.1
Use D-algorithm to generate test patterns for g: s-a-1 in the circuit shown in Fig.
9.13.

a
b

c
d

e

f

g

h
Z

s-a-1
1

2

3

4
5

Fig. 9.13  Example circuit for D-algorithm.

The signal line g is the output of a 2-input NAND gate (gate 3). The primitive
D-cube for gate 3 is thus selected to be aeg = 11D. The D at g must be propagated to
the primary output Z through gate 5. Gate 5 has propagation D-cubes ghZ = 1D D ,
D1 D , etc. We select D1 D as the propagation D-cube of gate 5 to match with the
primitive D-cube of gate 3. The rest of the signals are selected from the singular
covers of gates 1, 2, 4 to be consistent with the signals determined so far. The steps
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of D-algorithm are shown in Fig. 9.14. Notice that the selection of a cube in each
step must be consistent with the values selected in previous steps. The test patterns
are found to be 101X (i.e., 1010 and 1011). Other test patterns can be found by
selecting a different singular cover cube for gate 4.

a b c d e f g h Z
Primitive D-cube (gate 3) 1 1 D
Propagation D-cube (gate 5) D 1 D
Singular cover (gate 1) 0 1
Singular cover (gate 4) X 0 1
Singular cover (gate 2) 1 0

Fig. 9.14  D-algorithm.

9.5 Test Generation for Other Fault Models

Stuck-Open Faults
Recall that a stuck-open fault transforms a CMOS combinational circuit into a

sequential circuit. In order to detect a stuck-open fault, the observable node must be
first driven to a known initial value. Consider finding the test sequence for QnA: s-op
in the NAND gate in Fig. 9.2. Setting AB = 00, 01 or 10 will drive output Z to an
initial value of 1 when a second test vector of AB = 11 is applied. A fault free circuit
produces Z = 0 in response to this test sequence. On the other hand, Z = 1 when QnA:
s-op.

Bridging Faults
When two normally unconnected signal lines are shorted, we have a bridging

fault. A general model for a bridging fault between two lines a and b is shown in Fig.
9.15. Once a bridging fault occurs between signals a and b, these values become
unobservable. We consider the values of a and b in the model their driven values, not
observed values.
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a

b

Bridging fault

a

b

F(a, b)

Fig. 9.15  Bridging fault model.

If a and b are identical, the function F(a, b) assumes the same value. When a
and b have opposite values, the value F(a, b) is indeterminate.4 This situation can be
verified by considering two inverters with their outputs tied together (see problem).
Indeterminate signal values are very difficult to detect since its value may depend on
the following stage’s logic threshold.

If there exists at least one path between the bridged lines, the short causes a
feedback bridging fault. A combination circuit can be converted into a sequential
circuit by the presence of a feedback bridging fault and thus requires a test sequence
to detect the fault.

However, it is easy to show that a bridged signal driven by opposite signals
causes an abnormal current to flow through the circuit, which can be detected by a
current-based test.

9.6 Test Generation Example

The task is to generate a set of test patterns for the full adder shown in Fig. 9.16.

Full Adder

a
b
c

d

e

Fig. 9.16 Full adder.

The full adder circuit has 3 inputs (a, b, and c) and 2 outputs (d and e). Outputs
d and e are its carry and sum outputs, respectively. Since it has 3 inputs, it can be
exhaustively tested by all 8 possible input combinations from 000 to 111. Assume
that the single stuck-at fault model is used to determine a set of test patterns.

                                                          
4 This statement is only valid in a CMOS circuit. In other technologies (e.g., TTL), a short between

two lines form a hardwired AND or OR.
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The fault list of the full adder is:
• a: s-a-1.
• b: s-a-1.
• c: s-a-1.
• d: s-a-1.
• e: s-a-1.
• a: s-a-0.
• b: s-a-0.
• c: s-a-0.
• d: s-a-0.
• e: s-a-0.
Fig. 9.17 lists all test patterns for each of these stuck-at faults. The fault

coverage of each test pattern is summarized in the fault matrix shown in Fig. 9.18.
Inspecting the fault matrix reveals that we only need two patterns abc = 000 and 111
to detect any single stuck-at faults at the inputs and outputs of the full adder.

It is a big reduction of test vectors obtained according to the single stuck-at fault
model. But, how well does this test do when it is used in practice? For the sake of
this example, we assume that the full adder is implemented by the circuit shown in
Fig. 9.19, which is a typical standard cell implementation of the full adder.

Signal m is not directly accessible. We will determine a test vector to detect m:
s-a-0. We need a test vector that will set m to 1, an opposite value of its stuck-at
fault. Input vector 000 will do that. Since signal m is not directly observable, it must
be propagated to either output d or e. In order to reflect any change of signal m at
output d, the remaining 2 inputs of NAND gate must be set to 1, which is also
achieved by test vector 000. In other words, vector 000 detects this internal fault m:
s-a-0.

In order to detect a fault m: s-a-1, m must be set to 0. Vector 111 satisfies this
requirement. However, it does not provide the necessary values on the other inputs of
the NAND gate to propagate the change at m to output d. So the fault m: s-a-1 is not
detectable by the test vectors determined by considering single stuck-at faults at the
inputs and outputs of the full adder. The detection of m: s-a-1 requires the inputs of
the NAND gate that produces d to be 011.

The above example demonstrates the attempt to identify a minimum number of
tests to verify the correctness of a chip. First, a number of critical nodes (e.g., the
inputs and outputs of the full adder in Example 9.2) are selected to generate test
vectors. This produces a set of test vectors. A process called fault simulation is then
performed to evaluate the fault coverage of this test set. Faults not considered by the
initial fault model (e.g., the internal stuck-at faults and stuck-open faults in Example
9.2) are injected into the circuit simulated by a circuit simulator. We call this a fault
simulation. The test vectors are applied to the simulated faulty circuit to determine if
the fault introduced can be detected by at least one of them. If it does, the fault is
covered. Otherwise, new test vectors can be added to enhance the fault coverage,
which is defined to indicate the percentage of faults that are detected by the test
vectors.
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Fault Test Patterns
(abc)

Fault-free
output (de)

Faulty output
(de)

a: s-a-1 000 00 01
001 01 10
010 01 10
011 10 11

b: s-a-1 000 00 01
001 01 10
100 01 10
101 10 11

c: s-a-1 000 00 01
010 01 10
100 01 10
110 10 11

a: s-a-0 111 11 10
100 01 00
101 10 01
110 10 01

b: s-a-0 111 11 10
010 01 00
011 10 01
110 10 01

c: s-a-0 111 11 10
001 01 00
011 10 01
101 10 01

d: s-a-1 000 00 10
001 01 11
010 01 11
100 01 11

e: s-a-1 110 10 11
000 00 01

d: s-a-0 011 10 00
101 10 00
110 10 00
111 11 01

e: s-a-0 001 01 00
010 01 00
100 01 00
111 11 10

Fig. 9.17  Test patterns for all stuck-at faults in a full adder.
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Test
vector

a
s-a-1

b
s-a-1

c
s-a-1

a
s-a-0

b
s-a-0

c
s-a-0

d
s-a-1

e
s-a-1

d
s-a-0

e
s-a-0

000 1 1 1 1 1
001 1 1 1 1 1
010 1 1 1 1 1
011 1 1 1
100 1 1 1 1 1
101 1 1 1 1
110 1 1 1 1 1
111 1 1 1 1 1

Fig. 9.18  Fault matrix.

a b c

d

e

m

n

p

Fig. 9.19  A gate level implementation of a full adder.

9.7 Sequential Circuit Testing

Testing sequential circuits is difficult because their behaviors depend not only
on present input values but also on past inputs. Conceptually, a sequential circuit can
be modeled as a sequence of identical combinational circuits. Techniques developed
for combinational circuit test generation can then be applied. This approach is
illustrated in Fig. 9.20. We represent the sequential circuit with n identical
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combinational circuits. The ith combinational circuit receives input x(i) and state y(i –
1). The output z(i) is observable. Therefore, the ith combinational circuit corresponds
to the sequential circuit at the ith clock cycle.

Combinational
logic

Flip-flops
or latches

x z

y

Combinational
logic

x(1) z(1)

y(1)
Combinational

logic

x(n) z(n)

y(n)

Flip-flops
or latches

Flip-flops
or latches

Fig. 9.20 Sequential circuit modeled as combinational circuit for test generation.

A fault occurring in the original sequential circuit transforms into n identical
faults in the combinational circuit model; so it has to be treated as a multi-fault
detection problem. This technique is thus only realizable for sequential circuits with
a few states.

Techniques have been developed to simplify the testing of sequential circuits by
increasing in testability (i.e., controllability and observability). The next section
describes a number of design-for-testability approaches.

9.8 Design-for-Testability

A VLSI chip naturally has limited controllability and observability. One
principle in which all IC designers agree is that a design must be made testable by
providing adequate controllability and observability.5 These properties must be well
planned for in the design phase of the chip and not as an afterthought. This practice is
referred to as design-for-testability (DFT).

The testability of a circuit can be improved by increasing its controllability and
observability. For example, the test of a sequential circuit can be significantly

                                                          
5 Unfortunately, many designers choose to ignore this principle since design-for-testability adds to

their design effort.
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simplified if its state is controllable and observable. If we make the registers storing
the state values control points, the controllability of the combinational logic’s
“hidden” inputs is improved. On the other hand, if we make the flip-flops observation
points, the observability of the combinational logic’s “hidden” outputs is increased.

This is usually done by modifying the registers so that they doubled as test
points. In a test mode, the registers can be reconfigured to form a scan register (i.e.,
shift register). This allows test patterns to be scanned in as well as responses to be
scanned out. A single long scan register may cause a long test time since it takes time
to scan values in and out. In this case, multiple scan registers can be formed so that
different parts of the circuits can be tested concurrently. Even though a scan-based
approach is normally applied to the registers required in the function, additional
registers can be added solely for the purpose of DFT.

IEEE has developed a standard (IEEE Std1149.1) for specifying how circuitry
may be built into an integrated circuit to provide testability. The circuitry provides a
standard interface through which communication of instructions and test data are
done. This is called the IEEE Standard Test Access Port and Boundary-Scan
Architecture.

Another problem of a sequential circuit testing is that we need to bring the
circuit into a known state. If the initialization (i.e., reset) of a circuit fails, it is very
difficult to test the circuit. Therefore, an easy and fool-proof way to initialize a
sequential circuit is a necessary condition for testability. The scan-based test-point
DFT approach allows registers to be initialized by scanning in a value.

If a circuit incorporates free-running clock generators or pulse generators, it is
extremely hard to test. A solution is to provide a means to turn off these circuits and
provide the necessary signals externally.

A number of other DFT techniques are also possible. These include the inclusion
of switches to disconnect feedback paths and the partitioning of large combination
circuits into small circuits. Remember the cost of testing a circuit goes up
exponentially with its number of inputs. For example, partitioning a circuit with 100
inputs into 2 circuits, each of which has 50 inputs, can reduce the size of its test
pattern space from 2100 to 251 (2×250).

Most DFT techniques usually require additional hardware to be included to the
design. This modification affects the performance of the chip. For example, the area,
power, number of pins, and delay time are increased by the implementation of a scan-
based design. A more subtle point is that DFT increases the chip area and logic
complexity, which may reduce the yield. A careful balance between the amount of
testability and its penalty on performance must be applied.

9.9 Built-In Self-Test

Built-in self-test (BIST) is the concept that a chip can be provided with the
capability to test itself. There are several ways to accomplish this objective. One way
is that the chip tests itself during normal operation. In other words, there is no need
to place the chip under test into a special test mode. We call this the on-line BIST.
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We can further divide on-line BIST into concurrent on-line BIST and non-concurrent
on-line BIST. Concurrent on-line BIST performs the test simultaneously with normal
functional operation. This is usually accomplished with coding techniques (e.g.,
parity check). Non-concurrent BIST performs the test when the chip is idle.

Off-line BIST tests the chip when it is placed in a test mode. An on-chip pattern
generator and a response analyzer can be incorporated into the chip to eliminate the
need for external test equipment. We discuss a few components that are used to
perform off-line BIST below.

Test patterns developed for a chip can be stored on chip for BIST purposes.
However, the storage of a large set of test patterns increases the chip area
significantly and is impractical. A pseudo-random test is carried out instead. In a
pseudo-random test, pseudo-random numbers are applied to the circuit under test as
test patterns and the responses compared to expected values. A pseudo-random
sequence is a sequence of numbers that is characteristically very similar to random
numbers. However, pseudo-random numbers are generated mathematically and are
deterministic. This way the expected responses of the chip to these patterns can be
predetermined and stored on chip. We discuss the structure of a linear feedback shift
register shortly, which can be used to generate a sequence of pseudo-random
numbers.

The storage of the chip’s correct responses to pseudo-random numbers also has
to be avoided for the same reason of avoiding the storage of test patterns. An
approach called signature analysis was developed for this purpose. A component
called a signature register can be used to compress all responses into a single vector
(signature) so that the comparison can be done easily. Signature registers are also
based on linear feedback shift registers.

Linear Feedback Shift Register
Linear feedback shift registers (LFSR) are used in BIST both as a generator of

pseudo-random patterns and as a compressor of responses. Consider the feedback
shift register shown in Fig. 9.21, which illustrates the sequence it generates. Each box
represents a flip-flop. The flip-flops are synchronized by a common clock and form a
rotating shift register. Assume that the initial value in the shift register is 110. It is
shown that the shift register goes through a 3-pattern sequence 110 → 011 → 101.
The sequence repeats afterward.
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1 1 0

0 1 1

1 0 1

1 1 0

Fig. 9.21  Shift register with feedback.

A shift register with n flip-flops can produce at most 2n different patterns. This is
easy to see if we connect the n flip-flops into an n-bit counter.

Exclusive-OR network

a0 a1 a2 a3 an-1

x1 x2 x3 xn-1 xn

an

Fig. 9.22  Linear feedback shift register.

Fig. 9.22 shows the general structure of a linear feedback shift register. Each box
represents a D-flip-flop. All flip-flops are synchronized by a common clock (not
shown). The exclusive-or network in the feedback path performs modulo-2 addition
of the values (x’s) in the flip-flops. The value at each stage is a function of the initial
state of the linear feedback shift register and of the feedbacks. A linear feedback shift
register with n stages can be described by its characteristic polynomial:

1 2 1
1 2 1 0( ) ...n n

n nP x a x a x a x a x a−
−= + + + + + (9.8)

in which ai (i = 1 to n) is either 1 or 0 and a0 = 1.
By suitably choosing the characteristic polynomial, we can build an n-stage

linear feedback shift register, which when initialized to a nonzero value runs
autonomously and generates an output sequence whose period is 2n-1. A linear
feedback shift register that implements 3( ) 1P x x x= + +  has three stages with the
following settings:

a3 = 1.
a2 = 0.
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a1 = 1.
a0 = 1.
This linear feedback shift register produces a sequence of 7 non-zero binary

patterns as shown in Fig. 9.23.

0 0 1

1 0 0

1 1 0

1 1 1

0 1 1

1 0 1

0 1 0

Fig. 9.23  Linear feedback shift register as a pseudo-random pattern generator.

Signature Analyzer
The idea of a signature analyzer is to compress a sequence of data into a unique

code.  It uses a linear feedback shift register provided with an extra input in the
exclusive-or network to accept a sequence of bits to be compressed. After the entire
sequence has been clocked through, the state of the shift register is called a signature.
Apparently the signature depends on the initial state of the shift register as well as the
input sequence. In most cases the shift register is initialized to be all zeroes.

We modify the linear feedback shift register shown in Fig. 9.23 to provide an
external input to the exclusive-or feedback network. The result, which is a three-bit
signature analyzer, is shown in Fig. 9.24. It is shown that two sequences, supposedly
coming from a circuit under test, produce different signatures after they are clocked
through the linear feedback shift register. It can be seen that the signature can be used
to indicate the presence of a fault. Instead of storing and comparing a long sequence
of data, a signature is all that is needed to carry out a built-in self-test.
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0 0 0

1 0 0

1 1 0

1 1 1

1 1 1

1 1 1

0 1 1

100110

0 0 0

1 0 0

1 1 0

0 1 1

0 0 1

0 0 0

0 0 0

101110

Fig. 9.24  Signature analyzer.

When a sequence of n bits is encoded by an m-bit signature (m < n), more than
one sequence will map into one signature. There are 2n unique sequences and 2m

unique signatures in this situation. In average, each signature will represent 2n/2m =
2n-m sequences. The probability of declaring an incorrect sequence correct since it
produces the expected signature is

2 1
2 1

n m

n

− −
−

(9.9)

The denominator in (9.9) is the number of incorrect sequences. The numerator is
the number of incorrect sequences that would map into the signature identical with
that of the correct sequence. Normally, n >>m > 1; so (9.9) can be approximated as

2 2
2

n m
m

n

−
−= (9.10)

The probability of drawing an incorrect conclusion from using a signature analyzer
can then be made arbitrarily small by choosing a large m. Normally m = 16 would
give an acceptable error probability. When the signature is incorrect, the circuit is not
functioning properly. If the signature is correct, we can only conclude that the circuit
has a high probability to be functioning correctly.

Multiple data sequences can be combined and compressed with a signature
analyzer with multiple inputs to produce a multiple-input signature. We conclude this
section with Fig. 9.25, which shows the use of a pseudo-random pattern generator
and a signature analyzer to test a circuit.
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Pseudo-random
pattern generator

Circuit
under test

Signature
analyzer

Signature

Test patterns Responses

Fig. 9.25  Setup of a pseudo-random pattern generator and a signature analyzer to
test a circuit.

9.10 Summary

The complexity of exhaustively testing a chip grows exponentially with the
number of inputs. A number of fault models were introduced for the generation of
test patterns. Among them, the most popular fault model is the single stuck-at fault
model. This chapter described the determination of test patterns for stuck-at faults.
The concepts of fault simulation and fault coverage were introduced. The testability
of a chip can be increased by improving its controllability and observability. The use
of linear feedback shift registers to build pseudo-random pattern generators and
signature analyzers for built-in self test was explained.

9.11 To Probe Further
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• J. P. Roth, “Diagnosis of automata failures: a calculus and a method,” IBM

Journal of Research and Development, vol. 10, no. 7, July 1966, pp. 278-291.
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• F. F. Sellers, M. Y. Hsiao, and C. L. Bearnson, “Analyzing errors with the

Boolean difference,” IEEE Trans. on Computer, July 1968, pp. 676-683.

Pseudo-Random pattern generator:
• P. H. Bardel, W. H. McAnney, and J. Savir, Built-in Test for VLSI:

Pseudorandom Techniques, NY: John Wiley & Sons, Inc., 1987.
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Boundary Scan:
• http://standards.ieee.org/reading/ieee/std_public/description/testtech/1149.1-

1990_desc.html

• IEEE Standard Tests Access Port and Boundary-Scan Architecture, IEEE
Standard 1149.1 1990, IEEE Standards Board, 1990.

• K. P. Parker, The Boundary-Scan Handbook, 2nd Edition, Analog and Digital,
Kluwer Academic Publishers, 1998.

Design-For-Testability:
• L. Crouch, Design for Test For Digital IC’s and Embedded Core Systems,

Prentice-Hall, 1999.

• M. Abromovici, M. A. Breuer, and A. D. Friedman, Digital Systems Testing and
Testable Design, Computer Science Press, 1990.

Built-In Self-Test:
• J. Rajski and J. Tyszer, Arithmetic Built-In Self-Test for Embedded Systems,

Prentice-Hall, 1998.

IDDQ Test:
• R. K. Gulati and C. F. Hawkins, eds., IDDQ Testing of VLSI Circuits–A Special

Issue of Journal of Electronic Testing: Theory and Applications, Kluwer
Academic Publishers, 1995.

9.12 Problems

9.1 Find the pseudo-random sequences in 4-bit LFSRs defined by the following
polynomials. (a) x4+x3+x2+1; (b) x4+x2+x; (c) x4+x3+1; (d) x4+x3+x2.

9.2 Verify the 5-value logic operations for D-algorithm given in Fig. 9.5.

9.3 Develop a test set that detects all single stuck-at faults in Fig. 9.26.

http://standards.ieee.org/reading/ieee/std_public/description/testtech/1149.1-1990_desc.html
http://standards.ieee.org/reading/ieee/std_public/description/testtech/1149.1-1990_desc.html
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A

B

C

F

G

D

E

Fig. 9.26  Circuit for Problem 9.3.

9.4 Find the singular cover for a logic function Z a b c= ⋅ + .

9.5 Find the propagation D-cube for the logic function Z a b c= ⋅ + .

9.6 Find the primitive D-cube for Z a b c= ⋅ +  when Z: s-a-1.

9.7 Show that ( )d F G dF dG
dx dx dx
⊕

= ⊕ .



http://taylorandfrancis.com


281

Chapter 10 Physical Design Automation

Means to an end …
Sophisticated computer-aided design (CAD) tools have become the necessities

of IC designers to deal with the complexity of today’s VLSI systems. Physical design
process is a collective term indicating the operations involved in the production of
layout (mask) information for the fabrication of VLSI systems. We go behind the
scene in this chapter to explore the CAD tools used in the physical design process.

A non-exhaustive list of physical design tools includes layout editors, layout
generators, design rule checkers (DRC), layout-versus-schematics verifiers (LVS),
circuit extraction tools, and place-and-route tools. Layout editors and generators aid
the time consuming and error prone layout production process. They are used to
create library cells, and, in some situations, complete full-custom chip layouts.
Design rule checkers and layout-versus-schematics verifiers ensure layout
correctness. Circuit extraction tools generate simulation models from layouts. Place-
and-route tools convert building block netlists (e.g., high-level synthesizer results)
into physical layouts.

10.1 Layout Generators and Editors

In an ASIC design environment, structural representations are generated from
behavioral models. The output of a synthesis system is typically a netlist of standard-
cells. Place-and-route tools are then used to assemble these standard-cells into a
layout. We explain place-and-route tools in Section 10.2.

As explained in Chapter 3, standard-cells are limited to relatively simple logic
functions. The performance of standard-cells are inherently limited since they are
designed to be used in a range of applications. In order to improve the performance
of a standard-cell based ASIC, the same logic function can be designed in different
ways to accommodate different applications. For example, different versions of a
standard-cell logic function can be designed to provide different driving capabilities.

Certain higher level functions (e.g., random access memory, multiplication, etc.)
have structural regularity. These regularly structured library cells can be generated
on-the-fly when they are needed. Layout generators, also called module generators,
use templates and leaf cells (basic cells) to generate regular parameterized layouts.

Consider an array multiplier as an example (see Chapter 8). It is less practical to
store multipliers of all different sizes such as 8-bit by 8-bit, 16-bit by 16-bit, etc.
Instead, an array multiplier template, which specifies the number of full adders (leaf
cells) and their interconnections, can be used with a layout generator to create
multiplier layouts of desired sizes.

Layout generators are specialized tools. Targeting toward the parameterized
production of a single circuit structure allows a layout generator to provide optimized
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results. In contrast, layout editors are general-purpose tools used to design library
cells and leaf cells. A layout editor provides its user with an interactive color-
painting environment to create geometrical shapes. Different colors are used to
represent different mask layers. Some systems allow only Manhattan geometry,
which is inspired by the North-South, East-West street layout in Manhattan, New
York, whereas others allow the use of arbitrary angles (non-Manhattan geometry). A
rectilinear grid is usually super-imposed on the layout area for the easy drawing of
precise shapes. Shapes can be selected, grouped, copied, and pasted. They can also
be rotated, mirrored, and scaled.

Basic place-and-route functions could be provided in a layout editor to assemble
cells into hierarchical layouts. Other useful layout editor features include design rule
checking (DRC), electrical rule checking (ERC), layout compaction, and circuit
extraction. The public domain layout editor magic (see Chapter 3) provides
incremental DRC capability to interactively check for design rule violations while
shapes are being added to a layout. In the design of a large circuit, performing DRC
interactively may take away computing power from other activities such as the
display of a large layout. Most design methodologies thus treat DRC as a post-layout
process. Tools have also been developed to perform ERC to detect electrical errors
such as the use of polysilicon (instead of metal) as power rails and inadequate
substrate/well contacts. In sub-micron designs, layouts should also be checked to
verify that they do not violate minimum density rules and antenna rules (see Section
3.2).

Circuit extraction is an important layout function for design verification. A
circuit extraction process determines the transistor dimensions, parasitic
capacitance/resistance, and connectivity of a layout under design. The extraction of
parasitic capacitance/resistance is a difficult problem, especially in deep sub-micron
designs (i.e., 0.25 µm or below). In deep sub-micron designs, the capacitance
between interconnects becomes dominant (see Section 4.5).

Some circuit extraction tools flatten the entire circuit (i.e., remove the hierarchy)
before it is extracted. More advanced circuit extraction tools perform the extraction
hierarchically. An extracted circuit that preserves its original hierarchy provides a
more efficient model for further operations (e.g., simulation). In addition to
providing a model for simulation, an extracted netlist can be verified against a
schematic by an LVS tool.

Layout compaction attempts to move the geometrical objects in a layout to
minimize the layout area, while enforcing design rule correctness. The use of layout
compaction is not limited to reducing the overall chip area by removing unnecessary
spaces in a layout. Since design rules must be enforced in the compaction process,
compaction has also been applied as the basic technology in the migration of a layout
to a different technology. For example, a design created for fabrication process A can
be migrated into a layout that conforms with the design rules of fabrication process
B. While there are still limitations in the capability of compaction tools, their uses
have become increasingly popular as the industry emphasizes the importance of
reuse. For example, compaction tools have been used to migrate standard-cell
libraries to a new fabrication technology.
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The movement of an object in a compaction process is naturally a two-
dimensional problem. Two-dimensional movements provide a compaction process
the potential of achieving better results; however, it is a very hard problem. Most
layout compaction algorithms thus break the problem into two one-dimensional
compaction problems. First, the compaction is performed along one direction (e.g.,
horizontal), followed by a compaction in the perpendicular direction. All
interconnections are assumed stretchable. Smallest movable objects are identified
and shifted by the correct amount without breaking any connections. User specified
constraints such as transistor dimensions are preserved.

10.2 Placement and Routing

Modern VLSI designs rely heavily on library cells. The layout process is thus
simplified to the arrangement and wiring of required library cells. Placement
arranges a set of building blocks (e.g., standard cells) on a chip surface. Routing
defines wiring paths to interconnect electrically equivalent building block pins.

Placement and routing, both combinational in nature, are hard problems. An
optimal solution can only be reached by exhaustively searching the solution space of
the problem. An exhaustive search problem cannot be solved in polynomial time with
a single processor. Computer scientists call this type of problems “NP-complete”
problems or “NP-hard” problems.1 Many placement and routing tools are thus based
on “practical” heuristic algorithms to deal with the very large number of building
blocks in VLSI circuits.

These heuristic algorithms have been the subjects of many research efforts.
Insights to their operations and limitations are valuable to the use of these heuristic
and thus non-deterministic tools.

10.3 Floorplanning and Placement

According to the divide-and-conquer design technique, a large VLSI circuit is
somehow partitioned into subcircuits. The physical design process thus views the
circuit under design as a set of building blocks interconnected by a set of signal nets.
The objective of placement is to optimally arrange this set of building blocks within a
limited chip area subject to various positional and electrical constraints.

The arrangement of building blocks is usually done in two phases. A preparation
phase, called floorplanning, is often applied to define the building block and thus the
layout hierarchy. This can be viewed as a generalized placement, which is commonly
used to determine the shape and dimensions of each building block by rearranging its
components. The overall layout area can be estimated in this phase.

The placement phase specifies exact building block locations. The placement
result is fed to a routing tool to complete the interconnections. Floorplanning and
                                                          

1 NP stands for non-polynomial.
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placement are similar in many aspects. The following discussion refers to both as
“placement” in the most general sense. When adequate, differences between
floorplanning and placement are pointed out.

The input of a placement process is usually a set of n rectangular building
blocks. A feasible placement solution divides a placement area into n non-
overlapping slots for placing the building blocks. Fig. 10.1 shows several feasible
placements for a design case of four building blocks.

1 2
3 4 1

2
3
4

1 2
3
4

Fig. 10.1  Several feasible placements for four building blocks.

The number of feasible placements for a given problem is very large, even for a
small number of building blocks. Consider the simplified placement problem
illustrated in Fig. 10.2. Six building blocks (1–6) are to be placed into an area
divided into 6 equally sized slots (A–F). Each slot can hold any one building block.
The total number of feasible placements for this simple problem is 6! = 6 × 5 × 4 × 3
× 2 × 1 = 720.

A B
C D
E F

1 2
4 3

6

5

Fig. 10.2  Simple placement problem.

In order to select good placements from many feasible solutions, an objective
function can be used to measure the quality of placements. First, a placement must
allow the required routing to be achieved within a given area. Since modern design
methodology often treats placement and routing as two separate processes, routing
space must be reserved by the placement algorithm. It is not uncommon that a
seemingly good placement failing the 100% routable requirement is ripped up and
redone. A placement may be measured by its overall area and overall interconnection
length. The delays of critical circuit paths can also be used as a criterion. An
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objective function may also include penalty terms to represent violations such as
overlapping building blocks.

 Before routing, overall area and overall interconnection length are not available.
Good estimations of these measures during the placement process are important. The
smallest bounding rectangle enclosing all placed building blocks is normally used to
approximate the overall area. An efficient and popular estimation of a wire length is
illustrated in Fig. 10.3. The smallest bounding rectangle that encloses all nodes
belonging to a signal net is determined. The length of the wire is estimated as one-
half the perimeter of the rectangle. If there are critical paths with delays to be
minimized, the objective function may assign higher cost factors to them so their
effects are appropriately emphasized.

Building block

Node

Estimated
wire length

Fig. 10.3  Estimate of wire length.

Constructive Placement
Constructive placement approaches build a feasible placement by starting from a

seed building block. The remaining building blocks are chosen one at a time and
added to the placement. Often the building blocks are ordered according to their
connectivities, defined as the number of connections, with the blocks in the existing
placement. The one that has the maximum number of connections with the existing
placement is chosen to be placed next. This step is repeated until the placement is
complete. We will describe an approach called min-cut that can be used to organize
the building blocks for constructive placement.

An example constructive placement procedure is demonstrated in Fig. 10.4. A
seed building block is chosen. This selection could be random or based on the
connectivity with the I/O pads. We place this seed building block into the lower left
corner of the placement area. A cost figure of the existing placement, typically a
function of the overall wiring length, is computed. A building block selected from the
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group to be placed is added to the placement and the cost figure is updated
accordingly. The location of the newly added building block is chosen to minimize
the cost increase. The placement should grow evenly on its upper, diagonal, and right
sides simultaneously.

Growth 
Direction

Placement
Area

Fig. 10.4  Constructive floorplanning approach.

Min-Cut Placement
The min-cut algorithm is a graph theory based two-way partitioning algorithm.

This algorithm has been applied to placement and is a popular approach for
floorplanning. It can be viewed as a refinement of constructive placement described
above.

Fig. 10.5 illustrates a min-cut placement process. Given a circuit, an imaginary
vertical cutline c1 is used to partition the building blocks into two groups A and B so
that the number of interconnections between these two groups is minimized. The
objective is to keep the strongly connected building blocks in the same group so that
their interconnection lengths are minimized.

The process is repeated on groups A and B. Group A is partitioned into two
groups A1 and A2 using a horizontal cutline c2. Similarly, group B is partitioned into
two groups B1 and B2 using a horizontal cutline c3. More partitioning can be
introduced until each group contains only one building block. Each partitioning step
should attempt to balance the overall areas of the two groups generated.

c1

A B

c1

A1 B1

A2 B2

c2
c3

Fig. 10.5  Min-cut placement.
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The constructive placement approach described above needs an algorithm to
select the building block to be placed next. Often the min-cut algorithm is used to
order the building blocks into a linear list in a way so that a line drawn between any
consecutive building blocks in the list will cut a minimum number of signal nets. An
approach similar to what we described above can be used with only vertical cutlines
applied. Fig. 10.6 illustrates such a list in which B1 to Bn are building blocks ordered
by cutlines c1 to cn-1.

B1 B2 Bn

c1 c2 cn-1

Fig. 10.6  Min-cut linear list for constructive placement.

Iterative Improvement Placement
Iterative improvement is one of the most popular placement methods. The basic

iterative improvement approach is characterized by a way of initial solution
generation, a way of perturbing an existing placement into a new one, a cost function
to evaluate a solution, and a criterion to accept a solution.

An initial solution is created in the first step of this approach.  There are many
ways to generate an initial placement solution. For example, building blocks can be
randomly placed on the chip area. A constructive placement approach can also be
used to generate an initial solution.

The objective function of an iterative improvement approach can include any
terms that we described above, such as the overall area and overall interconnection
length. Notice that overlapping building blocks are usually not allowed in a layout.
The objective function could include the overlapping area as a penalty term with a
variable weight. This variable weight can be initially set to a small value so that
overlapping is temporarily acceptable at the beginning of the process. This will
simplify the generation of placement solutions. The algorithm must ensure that
building block overlaps are eliminated in the final placement. This goal may be
achieved by gradually increasing the penalty weight during the process so that
overlaps are completely rejected when the final solution is produced.

A change to a placement can be made by moving a building block or
interchanging locations of two building blocks. In some cases, the orientation of a
building block can also be changed by rotation and flipping. Usually a random
process is used to perturb a placement into another. For example, a pair of blocks
may be chosen randomly for exchanging.

Every time a new placement is generated, it is evaluated by computing its cost
according to the objective function. There are two possible outcomes. The cost of the
new placement may be lower than that of the original one. In this case, the placement
is improved. It is accepted and used for further improvements. Alternatively, the cost
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of the new placement may be unchanged from or even higher than that of the original
placement. Traditionally, an iterative improvement approach accepts only solutions
that have lowered the cost. Solutions with increased costs are rejected. The original
solution is kept and another new solution is generated. Since only cost improving
solutions are accepted, this is called a greedy algorithm.

A greedy algorithm has an inherent shortcoming. It is possible that a solution
achieved has a cost higher than that of the optimum but no perturbation can cause a
further cost reduction. In such a situation, the algorithm is trapped at a local
minimum. Fig. 10.7 shows this situation of a greedy algorithm. Since only downhill
moves are accepted, the search may end up in a local minimum if no moves can bring
it out of the cost function valley.

Configurations

Cost
Local
minimumGlobal

minimum

Uphill moves

Downhill
moves

Fig. 10.7  Trapping at a local minimum.

A probabilistic hill climbing technique called simulated annealing has been
introduced into the iterative improvement placement. The objective is to escape from
local minima. A simulated annealing process is analogous to the process of annealing
which attempts to bring a piece of metal into a highly ordered low energy state. In an
annealing process, the metal is heated to a high temperature until it is melted into a
liquid state. It is then cooled down very slowly. It has been shown in physics that if
the initial heating puts the metal into a sufficiently random state, and if the cooling is
slow enough to ensure a thermal equilibrium, then the atoms in the metal will move
into positions corresponding to a global energy minimum.

Simulated annealing considers the building blocks to be placed as the atoms
which are to be moved into a global cost minimum. Usually it starts with a random
initial placement. An altered placement is generated. The resulting change in cost,
∆c, is calculated. A down-hill move results in ∆c < 0 and is accepted. If ∆c ≥ 0,
indicating an up-hill move, it is accepted with probability

c
tP e

∆
−

= (10.1)

in which t is the simulated temperature. It can be seen that for the same ∆c value, the
probability of accepting a cost increasing move is higher at higher temperature t.
Simulated annealing decreases the temperature t as it proceeds so that the probability
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of accepting cost increasing moves decreases. This allows the search to climb out of
local minima in search for a global minimum.

Simulated annealing is an important algorithm and is applicable to many
combinational optimization problems in VLSI design. The quality of its result
depends on the initial value of temperature used and the cooling schedule, which are
often experimentally determined. The higher the initial temperature and the slower
the cooling schedule the better is the result. The computational time required to
generate the solution is proportional to the steps in which the temperature is
decreased.

As an example, a simulated annealing process can be set up by choosing an
initial temperature ti such that ~90% of moves are accepted. The decrement of
temperature is controlled by

ti+1 = αti (10.2)

where ti+1 and ti are the next and current temperatures, respectively, and α is typically
a number between 0.8 and 0.95. The annealing process should stay at a temperature
long enough so that a sufficient number of moves are tried out to explore the solution
space. A rule of thumb is to generate n moves for each building block involved in the
placement, where n is 20% to 50% of the total number of blocks to be placed.

Force-Directed Placement
A numerical optimization technique based on the concept of Hooke’s law in

physics can be used to solve a placement problem. The placement problem is
transformed into a set of simultaneous linear equations, which can be solved to
determine the ideal coordinates of the building blocks.

According to Hooke’s law, if two masses are connected by a spring, the force
pulling each other is proportional to the distance separating them. The basic idea
behind the force-directed placement is that building blocks connected by a signal net
exert forces proportional to their distance on one another. In physics, a spring
constant is defined to represent the strength of the spring so that the force with which
two masses pull each other is k × d, where k is the spring constant and d is the
distance. Similarly, in a force directed placement approach, a weight wij is assigned
to the interconnection between two blocks i and j. For example, a stronger weight
indicates more signal nets. Alternatively, a higher weight can be assigned to a more
critical signal net. The force of attraction between the blocks is proportional to wij ×
dij, where dij is the distance between blocks i and j.

If a block is connected to several blocks, it will experience a total force exerted
by these blocks. If the block is allowed to move freely, it would move in the direction
until the resultant force on it is zero. Based on this principle, numerical technique can
be used to solve the optimization problem. A set of simultaneous linear equations can
be set up to determine ideal coordinates for the blocks.

When there are a lot of blocks involved, it is less practical to apply the above
approach. The force directed method could then be generalized into a constructive
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placement method. Every time a building block is selected to be added to the existing
placement, its zero-force location is computed. Since the ideal location may be
occupied by a block previously placed, the process can be further enhanced by
performing iterative improvement on the solution obtained.

10.4 Routing

The result of a placement process specifies the exact locations and orientations
of building blocks. The next step is to perform a routing process. The objective is to
determine the geometric layouts of all signal nets. Traditionally, signal nets must be
routed within routing spaces reserved during the placement procedure, which are the
regions on the chip area not occupied by the building blocks. With the availability of
five or more metal layers, this is no longer the case. If the building blocks were
created with two or three metal layers, over the block routing with the remaining
metal layers would be possible. Even though the separation of intra-block and inter-
block routing layers ensures that no unwanted electrical connections would be
formed accidentally, special attention must be paid to issues such as signal coupling.

In some cases, the objective of the routing problem is to minimize the total wire
length, while completing all the connections. This requirement can also be enhanced
by making sure that each signal net meets its timing budget. Special signal nets such
as clocks, and power and ground lines require special treatment. The routing problem
is very hard since in a VLSI circuit, there are tens of thousands of nets to be routed
and each of them may be routed in hundreds of possible ways.

A typical routing process is carried out in three steps. The routing space is
divided into routing regions. These routing regions must meet the requirements of the
router to be used. A global router is used to decide a route for each net by specifying
roughly which routing regions it should go through. The result of the global routing
is to partition a given routing problem into a set of detailed routing problems. A
detailed router determines the actual layout of signal nets in each routing region.
Wire segments and vias are created to realize the required interconnections.
Specialized routers have been designed to route power/ground lines and clock
signals.

Shortest Path Problem
All routing algorithms more or less depend on the capability of finding the

shortest path between two signal nodes in the routing region. One of the signal nodes
is selected as the starting point, from which paths are explored until the destination
node is reached. The path exploration is commonly solved as a breadth-first search
problem. An example shortest path problem is illustrated in Fig. 10.8.
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Fig. 10.8  Shortest path problem.

The problem in Fig. 10.8 is to find the shortest path between the starting node
and the destination node. The starting node is marked with a cost of zero. Paths are
extended in all possible directions from marked nodes to adjacent nodes. Each
adjacent node is then marked with the cost (i.e., the weight) associated with the edge
connecting the node to the previous node plus the cost of the previous node. The cost
of a node can be updated if the new cost is less than the cost already on the node. The
marking process continues until all nodes are marked and no further changes are
possible. The result of applying this procedure to Fig. 10.8 is shown in Fig. 10.9. The
shortest distance between the starting and destination nodes has been determined to
be 9.

1 5

2
4

6

1 3

Starting node

Destination node

0 1

2 6

6
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Fig. 10.9  Marking of a shortest path problem.

Upon the completion of the marking, every node in the graph is marked with the
lowest cost to it from the starting node. The shortest path is then identified by tracing
back from the destination node to the starting node. This can be done by repeatedly
finding the neighboring node that is marked with a cost equal to that of the current
node minus the cost of the connecting edge. The shortest path is indicated with thick
lines in Fig. 10.9. In general, multiple shortest paths may exist between the starting
and destination nodes.

Detailed Routing
Detailed routing deals with the determination of wiring paths in a given routing

region. A few of the popular detailed routing algorithms are presented before we
move on to a discussion of global routing.
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Maze Routing
Maze routing is a general-purpose routing algorithm which finds a path between

two points in the routing space. The routing region is modeled as a grid graph. A
routing surface is considered a collection of square cells arranged into a rectangular
array. The size of the square cells is defined according to the design rules so that
wires can be routed through adjacent cells without violating the rules for wire width
and spacing. Cells that are already occupied by wiring, building blocks, etc. are
marked as blocked. Fig. 10.10 shows the grid model of an example routing space.
The blocked cells are shaded in the grid model.

Given a grid graph, and a number of interconnecting terminals, the maze routing
problem is to find a path connecting these terminals. We describe below a 2-
dimensional maze routing algorithm based on the breadth-first search shortest path
algorithm. More general maze routing problems have to consider higher dimensional
(> 2) grid graphs; however, the techniques we are to describe essentially remain the
same.

The Lee algorithm is the most widely used algorithm for finding a path between
any two cells on a planar rectangular grid. It is very simple and guarantees the
finding of an optimal solution if it exists.

The Lee algorithm can be divided into three phases. The first phase is to perform
a breadth-first search. This search can be viewed as a wavefront expanding and
propagating from the source (i.e., starting cell). The source is labeled ‘0’ and the
wavefront propagates to all the unblocked cells adjacent to the source. Every
unblocked cell adjacent to the source is marked with the label ‘1’. Then every
unblocked cell adjacent to cells with the label ‘1’ is marked with the label ‘2’. In
general, every unblocked cell adjacent to cells with the label ‘n’ is labeled as ‘(n +
1)’. This wavefront expansion process continues until the target (i.e., destination cell)
is reached. If there is no more expansion possible before the target is reached, no
route between the source and target is possible. Fig. 10.11 shows the labeling of a
wavefront expansion process.

The second phase of the Lee algorithm is to back trace from the target to the
source. This can be done by following the labels in descending order from the target
created in the wavefront expansion phase. Notice that generally more than one path
may exist, but due to the nature of a breadth first search, any of these paths is
guaranteed to be the shortest distance path between the source and the target. The
shortest path identified by the back tracing step is illustrated in Fig. 10.12.

The Lee algorithm requires a large amount of storage space and its performance
degrades rapidly when the size of the grid graph increases. There have been
numerous attempts to modify the algorithm to improve its performance and reduce its
memory requirements. References to a few of these variations are listed at the end of
the chapter.

One variation of the Lee algorithm that is worth mentioning is the creation of a
parameter called expansion distance. Recall in the Lee algorithm, only the cells
immediately adjacent to a labeled cell is explored at each wavefront expansion step.
This is referred to as an expansion distance of one. The adoption of different
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expansion distances provides maze routing algorithms with different flavors. One of
these maze routing algorithms with an expansion distance greater than one is the line-
probe routing that we will discuss next.

Line-Probe Routers
Line-probe routers were proposed as an alternative to the Lee algorithm. The

routing space is modeled as lists of lines. The basic principle of a line-probe router is
to project wires (i.e., line-probes) as far as possible in both the horizontal and
vertical directions from both the source and the target. If a line-probe is stopped by
some obstacles, the algorithm chooses an escape point along the current line-probe to
send additional line-probes out. This continues until the line-probes originated out of
the source intersect the line-probes originated from the target. The routing is
determined by tracing a sequence of lines which connect the source and the target.

The line-probing procedure can be accomplished by setting an expansion
distance of ∞ (infinite) in the maze routing algorithm. In the wavefront expansion
phase, a labeled cell is expanded in all 4 directions until an obstacle or another
labeled cell is reached. Every grid node on the line segments generated is an
“escape” point, from which further expansion is performed. This continues until the
target is reached. A backtracing phase determines the path. Fig. 10.13 shows the
result of a line-probe routing. Similar to the breadth-first search, the line-probe
routing algorithm guarantees to find a path if one exists. However, the route found
may not be the shortest one. In contrast, the result route is guaranteed to have a
minimum number of turns.
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(a)

(b)

Fig. 10.10  (a) Routing space; (b) Grid graph model for maze routing.
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Fig. 10.11 Labeling for the wavefront expansion in the Lee algorithm.
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Fig. 10.12  Shortest path found with the Lee algorithm.

0 1

Source

Target

1 1 1 1 1 1 11 1 1 11 1 1
2
2
2
2
2
2
2

2
2
2

2
2
2
2
2
2
2

2

2
2

3
3
3
3
3
3

3
3

33
3
3

3
3

3

3333333333333

333333

333333

333
3 3

33
333

Fig. 10.13  Line-probe maze routing.

While in practice it is rarely used, it is interesting to note that the quality of a
route, defined by its distance and number of turns, can be traded off by choosing an
expansion distance between 1 and ∞.

Rectilinear Steiner Tree Routing
The routing algorithms presented so far deal with the routing of a signal net

between two nodes. A straightforward way to extend the maze routing algorithm to
route n-terminal nets (n > 2) is to decompose them into multiple two-terminal nets.
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These two-terminal nets are then routed by a maze routing or line-probe routing
algorithm. Fig. 10.14 demonstrates the result of this approach. This simple extension
of the maze routing approach may produce a path that is longer than necessary since
there is no interaction between the two-terminal nets. The quality of the routing result
depends on how the nets are decomposed into subnets and the order of routing of the
subnets. Generally suboptimal results are produced.

A slightly more complicated extension of the Lee algorithm can be used to
determine the shortest path for an n-terminal net. This is called the Rectilinear
Steiner Tree approach. The biggest advantage of this approach is to allow a later
route to be connected to any point on a route completed earlier.

A
C

B

Fig. 10.14  An n-terminal net routed by a maze routing algorithm.

We explain the rectilinear Steiner tree routing approach with the n-terminal
routing problem shown in Fig. 10.14, which is to determine the routing of a net that
connects three nodes A, B, and C. One of the nodes is arbitrarily chosen to perform
the wavefront expansion until a second node is labeled. Fig. 10.15 shows the
wavefront expansion from node A to node C.
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Fig. 10.15  Expansion from node A.
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After the second node is identified, a wavefront expansion is performed from the
second node to the first node. A modified labeling scheme is applied in this
wavefront expansion. The second node (C in our example) is labeled with the label
assigned to it in the first wavefront expansion and the wavefront expansion is done
with descending labels. Fig. 10.16 shows this descending labeling wavefront
expansion from node C to node A.

Now we have two sets of labels, one from the wavefront expansion originated
from the first node (A in our example) and one from the wavefront expansion
originated from the second node (C in our example). These two sets of labels are
superimposed together. Only cells with identical labels from both wavefront
expansions retain their labels. The other labels are erased. The cells of which their
labels are kept define a restricted routing area between the first (A) and second (C)
nodes, which encloses all shortest paths between them. The restricted routing area for
the ongoing example is illustrated in Fig. 10.17.

An ascending labeling wavefront expansion is then carried out for the third node
(B) until the restricted routing area defined for the first and second nodes is met. The
wavefront expansion for node B is shown in Fig. 10.17.
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Fig. 10.16  Descending labeling wavefront expansion from node C.
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A line-probe routing is then performed from the point where the wavefront
expansion of the third node intersects the restricted routing area. Three routes are
determined from the intersection to the three nodes, respectively. The result is a
Steiner tree routing path. The Steiner tree routing path for the ongoing example is
shown in Fig. 10.18.

C

B

A

Fig. 10.18  Steiner tree routing path.

Channel Routing
One important group of detailed routing algorithms is channel routers. A channel

is a rectangular routing region bounded by two parallel rows of terminals (or pins).
The locations of these terminals are fixed along the top and bottom of the channel.
The top of a channel is called the top boundary. The bottom of a channel is called the
bottom boundary. Each terminal is assigned a number which represents the net to
which that terminal belongs to. Vacant terminals are assigned with the number 0. A
vacant terminal does not belong to any net and therefore requires no electrical
connection. The channel may also have pins in the middle to make connections with
higher routing layers.

Unlike the maze routers described above, channel routers consider all nets to be
routed in a channel in parallel. Fig. 10.19 shows the elements used in a routing
channel. A channel routing problem is specified by the following parameters: channel
length which is defined as the horizontal dimension of the routed channel, top and
bottom terminal lists, and the number of layers.

A channel routing can be performed with only two routing layers. Generally,
vertical segments (branches) of routing paths in a channel are on the same layer. The
horizontal segments (trunks) of routing paths in a channel are on the other layer. The
lines along which the trunks are placed are called tracks.

The main objective of channel routing is to minimize the channel height, the
total number of vias, and to minimize the length of any particular net. Each channel
is initially assigned a height by the routing area partitioning process and the channel
routing’s task is to complete the routing within the assigned space. If it cannot
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complete the routing in the assigned height, the channel has to expand which makes
the initial placement invalid.

Top

Bottom Terminal

Track

Trunk

Via

Branch
1
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2 2

Fig. 10.19  Elements of a routing channel.

Left-Edge Channel Routing Algorithm
The left-edge channel routing algorithm was the first algorithm developed for

channel routing. At least two routing layers are used. The algorithm reserves one
routing layer for trunks (horizontal wire segments) and another layer for branches
(vertical wire segment). This implies that a via has to be used whenever a net changes
direction. The basic left-edge algorithm restricts each signal net to have at most one
trunk.

The trunks of the signal nets are sorted in ascending order of their left endpoints.
The algorithm then allocates tracks to the trunks by considering them one at a time
according to their sorted order. An example of routing four signal nets in a channel is
shown in Fig. 10.20. The four trunks (A to D) are first sorted according to their left
endpoints. After assigning the trunks to the tracks, the branches can be easily added.

In order to fill the track as much as possible, multiple trunks should share a
single track if possible. Fig. 10.21 shows an improvement of the above example. The
number of tracks in the channel is reduced to two.

Consider the channel routing problem shown in Fig. 10.22. If we switch the
track assignments for trunks A and B so that trunk B is on top of trunk A, an
unroutable situation occurs. This is called a vertical constraint, which specifies that
trunk A must be placed above trunk B. Vertical constraints are usually represented in
the form of a directed graph as shown in Fig. 10.23. Another vertical constraint exists
between trunks B and C. This vertical constraint forces the use of three tracks to
complete the routing. Fig. 10.24 shows the use of a “dogleg” segment to reduce the
number of tracks to two. Fig. 10.25 shows that doglegs can also be used to solve
circular vertical constraints.
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Fig. 10.20  Basic left-edge channel routing.
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Fig. 10.21 Improved left-edge channel routing.



Physical Design Automation 301

1

12

2 3

3

A

B
C

Fig. 10.22 Vertical constraints.
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Fig. 10.23  Graphical representation of the vertical constraints in Fig. 10.22.
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Fig. 10.24 Application of a dogleg.
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Fig. 10.25 Circular vertical constraints resolved by a dogleg.

Greedy Channel Router
The left-edge algorithm and its variations route the channel one track at a time.

The greedy channel router divides a given channel into a number of vertical routing
regions called columns. The router attempts to route the channel column by column.
This algorithm routes the nets by working across the channel from left to right. The
routing within a column is completed before proceeding to the next column. In each
column, the router applies a number of “greedy” steps to route the nets in a given
column. Doglegs are allowed in any column of the channel.

In the first step, the terminals at the top and bottom of the column are brought to
a trunk. Such a connection is made by using the empty track closest to the terminal,
or a track that already carries the net. An example of this step is shown in Fig. 10.26.
A trunk A is created for the top terminal while the bottom terminal is connected to
trunk B which was created in a previous column. Note the use of vias to switch a
branch to a trunk.

A

B

Fig. 10.26  Bringing terminals to the trunks (step 1).

The second step tries to collapse any split signal nets (trunks of the same net
present on two different tracks) using a branch. The third step tries to reduce the
range of the distance between two tracks of the same net. The fourth step tries to
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move the nets closer to the destination. An example of the second step is shown in
Fig. 10.27.

A

B

A

Fig. 10.27  Collapsing split nets (step 2).

Since not all split nets can be collapsed in a column, the third step is thus to
reduce the distance between split nets. An example is shown in Fig. 10.28. Step 2 is
applied in this example to collapse net A. The vertical segment used to collapse net A
blocks the collapsing of net B. Step 3 is thus used to bring the two segments of net B
closer together.

A

B

A

B

Fig. 10.28  Reducing range of split nets (step 3).

The fourth step attempts to bring all nets closer to their destinations. For
example, if the terminal of a net is located on the top of the channel, the router tries
to move the net to a higher track. An example is shown in Fig. 10.29.

The fifth step is to create a new track if a terminal failed to enter the channel in
step 1. The terminal is then brought to the new track and the routing continues. Due
to the greedy nature of this channel router, there is no guarantee on the quality of its
routing result. The completion of a routing channel is also not guaranteed.
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A

B

B

Fig. 10.29  Bringing a net closer to its destination (step 4).

Switchbox Routing Algorithm
The switchbox routing problem is an extension to the channel routing problem.

In addition to having terminals on the top and bottom of the routing area as in a
channel, a switchbox is a rectangular routing area with terminals on all four sides of
the region. It may also have connections in the middle to make connections with
upper layers. The greedy channel routing algorithm has been extended to perform
switchbox routing. For example, an additional step can be added to the greedy
channel router to bring the terminals located on the left side of the switchbox into the
first column.

Global Routing
The objective of a global routing process is to divide a large routing problem

into a number of smaller, more manageable routing problems. The entire routing
space, space that is not occupied by the building blocks and the space above building
blocks allowing over-the-block routing, is partitioned into routing regions (e.g.,
routing channels and routing switchboxes). Each routing region has a limited
capacity which is defined by the maximum number of nets that can pass through the
region. The objective of global routing is to assign each net to a set of routing areas.

The maze routing algorithm can be adopted to perform a global routing. An
example is shown in Fig. 10.30. A graph model is superimposed on the result of a
placement process. The routing areas are represented as nodes and adjacent routing
areas are connected with edges. The edges have weights that model the length and
capacity of the routing areas. The weights can be updated dynamically to reflect the
cost of routing a net through it due to congestion. In Fig. 10.30, in addition to
performing the routing in the space between building blocks, the routing above one
of the building blocks is allowed. A node is placed on top of this building block to
reflect this condition. A shortest path algorithm can be used to determine the route of
a net.
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Building
block

Fig. 10.30  Global routing graph.

Ideally, a minimum Steiner tree path should be determined for each net.
Unfortunately, this problem is NP-complete. Heuristic techniques have thus been
developed to produce acceptable results.

As in the Lee algorithm, nets are sequentially selected for routing. The edge
weights are updated after each net is routed. If a net involves more than two
terminals, the minimum distance Steiner tree algorithm can be applied. An initial
global routing solution is produced after all the signal nets have been routed.

An initial global routing solution can be iteratively improved by repeatedly
modifying the current routing solution. A routing solution can be modified by
selecting and deleting connections, and reconnecting them using alternate paths.
Different approaches have been developed to select and reroute nets. For example,
nets in channels with maximum density are rerouted.

10.5 Summary

Physical design deals with the generation of layout information for fabrication.
Layout tools are available for the design of library cells and custom designs. A layout
generator can be developed to generate parameterized regular layout structure. Tools
have been developed to verify that a layout conforms with the design rules, electrical
rules, minimum density rules, and antenna rules specified for a given fabrication
process.

Placement and routing are two important procedures in the physical design of an
integrated circuit. An understanding of place-and-route algorithms allows a designer
to use the CAD tools intelligently and obtain better results.

An abstract placement is called floorplanning, which is used to plan the shapes
of building blocks. A number of placement algorithms have been discussed. An
iterative improvement placement algorithm has the problem of being trapped into a
local minimum of its cost function. This is due to the fact that these algorithms only
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pursue short-term gains. A probabilistic hill-climbing algorithm called simulated
annealing was introduced. Simulated annealing attempts to escape from local minima
by accepting some cost-increasing solutions in a controlled manner.

In the field of routing, we have presented maze routing algorithms which serve
as the foundation of many global and detailed routing algorithms. Channel routing
and switchbox routing algorithms have been discussed. The availability of more than
two metal layers has increased the flexibility and capability of detailed routing.
However, the downside is that the routing complexity is also increased.

No routing algorithm can guarantee a complete routing in a given routing area.
When a routing cannot be completed, nets have to be selected to be ripped up and
rerouted. The key is to select wires which allow failures to be routed in alternate
paths. The placement result may also have to be modified to reduce net congestion in
certain routing regions.

10.6 To Probe Further

Physical Design Automation:
Each of these books has excellent coverage for the topics that we have discussed

in this chapter. They also provide extensive lists of references for individual subjects
in physical design automation.

• N. Sherwani, Algorithms for VLSI Physical Design Automation, 3rd Edition,
Kluwer Academic Publishers, 1999.

• B. T. Preas and M. J. Lorenzetti, ed., Physical Design Automation of VLSI
Systems, The Benjamin/Cummings Publishing Company, Inc., 1988.

• S. M. Sait and H. Youssef, VLSI Physical Design Automation Theory and
Practice

Commercial Physical Design Tools:
• http://www.mentor.com

• http://www.cadence.com

Magic Layout Tools:
• http://www.research.digital.com/wrl/projects/magic

http://www.mentor.com
http://www.cadence.com
http://www.research.digital.com/wrl/projects/magic
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Commercial Compaction Tools:
• http://www.sagantec.com

• http://www.rubicad.com

Simulated Annealing:
• S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization by simulated

annealing,” Science, vol. 220, no. 4598, 1983, pp. 671-680.

Layout Editor:
• J. K. Ousterhout, G. Hamachi, R. Mayo, W. Scott, and G. Taylor, “Magic: a

VLSI layout system,” Proc. 21st Design Automation Conf., June 1984, pp. 152-
159.

Layout Extractor:
• W. S. Scott and J. K. Ousterhout, “Magic’s circuit extractor,” IEEE Design and

Test, 1986, pp. 24-34.

Design Rule Checker:
• G. S. Taylor and J. K. Ousterhout, “Magic’s incremental design-rule checker,”

Proc. 21st Design Automation Conference, 1984, pp. 160-165.

Placement:
• C. Sechen and A. L. Sangiovanni-Vincentelli, “TimberWolf3.2: A new standard

cell placement and global routing package,” Proc. 23rd Design Automation
Conference, 1986, pp. 142-146.

• M. A. Breuer, “A class of min-cut placement algorithms,” Proc. 14th Design
Automation Conference,” October 1977, pp. 284-290.

Routing:
• C. Y. Lee, “An algorithm for path connection and its application,” IRE Trans. on

Electronic Computers, vol. EC-10, 1961.

• K. Mikami and K. Tabuchi, “A computer program for optimal routing of printed
circuit connectors,” Proc. IFIPS, pp. 1475-1478, 1968.

http://www.sagantec.com
http://www.rubicad.com
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• D. W. Hightower, “A solution to the line routing problem on a continuous
plane,” Proc. 6th Design Automation Workshop, 1969, pp. 1-24.

• D. N. Deutsch, “A ‘dogleg’ channel router,” Proc. 13th Design Automation
Conference, 1976, pp. 425-433.

• D. Braun, J. L. Burns, F. Romeo, A. Sangiovanni-Vincentelli, and K. Mayaram,
“Techniques for multilayer channel routing,” IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol. 7, no. 6, June 1988, pp. 698-
712.

• R. L. Rivest and C. M. Fiduccia, “A greedy channel router,” Proc. 19th Design
Automation Conference, 1982, pp. 418-424.

• J. Cong, D. F. Wong, and C. L. Liu, “A new approach to three- or four-layer
channel routing,” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 7, no. 10, October 1988, pp. 1094-1104.

• J. Cong and C. L. Liu, “Over-the-cell channel routing,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, vol. 9, no. 4, April
1990.

Compaction:
• W. H. Wolf, R. G. Mathews, J. A. Newkirk, and R. W. Dutton, “Algorithms for

optimizing two-dimensional symbolic layout compaction,” IEEE Trans. on
Computer Aided Design, vol. CAD-7, no. 4, April 1988, pp. 451-466.

• W. Shiele, “Improved compaction with minimized wire length,” Proc. 20th

Design Automation Conference, 1984, pp. 166-172.

• S. Sastry and A. Parker, “The complexity of two-dimensional compaction of
VLSI layouts,” Proc. IEEE International Conf. on Circuits and Computers,
1982, pp. 402-406.

10.7 Problems

10.1 Use the basic left-edge channel routing algorithm to route the channel given in
Fig. 10.31.

2  1  2  1  5  3  6

5  3  6  4  0  2  4

Fig. 10.31  Channel routing problem for Problem 10.1.
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10.2 Repeat Problem 10.1 with the improved left-edge channel routing algorithm.
Improve the routing result by introducing dog-legs.

10.3 Route the switchbox given in Fig. 10.32.

5  6  2  7  5  4

0  3  2  8  8  2

3
6
1
5

4
7
1
2

Fig. 10.32  Switchbox routing problem for Problem 10.3.

10.4 Write a program to implement the constructive placement algorithm.

10.5 Write a program to implement the iterative improvement placement algorithm.

10.6 Write a program to implement the simulated annealing placement algorithm.

10.7 Consider a standard-cell library that has a standard height of 5 units. The
library provides an inverter (width: 2 units), a 2-input NAND gate (3 units), a
3-input NAND gate (4 units), a 2-input NOR gate (3 units), a 3-input NOR
gate (4 units), a 2-input XOR gate (5 units), and a 3-input XOR gate (6 units).
Use place-and-route technique to generate a layout diagram for a full adder
implemented with these standard-cells.



http://taylorandfrancis.com
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Chapter 11 Parallel Structures

Two brains are better than one …

Pipelining and parallel processing can be used to improve system throughputs,
often significantly. If an application either processes a large amount of data or
contains a large number of iterations (i.e., loops), it is a candidate for parallelism
exploration. In a parallel processing system, processing elements cooperate to
produce the desired result. This requires the creation of a parallel algorithm which, in
many cases, involves the parallelization of an existing sequential algorithm.

Parallel architectures and algorithms for general-purpose parallel processing
have been extensively studied for several decades. We are interested in the creation
and application of application specific parallel processing techniques enabled by the
low cost and high density of VLSI circuits.

General-purpose parallel processing is discussed in this chapter to provide the
necessary background for the VLSI parallel algorithm/architecture development to be
presented in Chapter 12. There is a main difference between general-purpose parallel
processing and special-purpose parallel architectures. With only a few exceptions,
general-purpose parallel architectures employ only a few relatively powerful
processing elements (PEs) while special-purpose parallel architectures have the
potential of using a large number of simple PEs. We use the term “PE” instead of
“processor” since the latter often implies a microprocessor. In the realm of VLSI, a
PE could be as simple as an integrated multiplier and accumulator.

11.1 Parallel Architectures

An informal definition for the term “parallel processing” is that multiple PEs are
utilized in a coordinated manner to support the solving of a problem. The complexity
of a PE in a parallel architecture can range from a standalone computer, as in the
case of distributed computing, to a much simpler functional unit such as adders and
multipliers, as in the case of an application specific parallel processing system.

Ideally, if a task takes n minutes to complete with a single PE, its completion
time should be reduced to 1 minute if n PEs are used. This idealistic target is often
non-reachable. The jeopardizing factors include the overhead involved in the control
and interaction of these PEs and data dependency. Not all operations in an algorithm
can be executed in parallel. A strictly sequential algorithm cannot be parallelized.

Consider an operation as simple as adding 10 pairs of numbers. This operation is
described in the following pseudo code.

for (i=1; i<=10; i++){
c[i]=a[i]+b[i];
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}

The above pseudo code describes a loop, in each iteration of which two numbers
(a[i] and b[i]) are added to produce a sum (c[i]). Since there is no dependency
between these iterations, the loop can be unrolled into ten independent operations:

c[1]=a[1]+b[1];
c[2]=a[2]+b[2];
…
c[10]=a[10]+b[10];

Assuming that all a[i]’s and b[i]’s are simultaneously available, these 10
operations can be performed in 10 individual PEs. The time to obtain all c[i]’s is then
reduced to that of a single addition plus the overhead. The benefit of parallel
processing is evident.

Consider that the problem is now modified into an accumulation of all ten sums,
as described in the following pseudo code:

c[0]=0;
for (i=1; i<=10; i++){

c[i]=c[i-1]+a[i]+b[i];
}

This operation shows a dependency between two iterations of the loop. If we
follow the pseudo code directly, the computation of c[i] needs c[i – 1] computed at
an earlier time. However, a little inspection should reveal that it is still possible to
explore parallelism in this case, although the application of parallel processing to this
operation is less straightforward. This example demonstrates an important fact. The
parallelism of a problem may be hidden by a sequential algorithm. It is important to
understand the nature of computations in the specific application domain.

Parallel processing, also called multi-processing in some context, should not be
confused with the term multi-tasking. A system with a single PE can be seemingly
working on multiple processes at the same time. This is done by an approach called
time-sharing, in which the PE works on the processes, one at a time, and switches
from one to another after a time slice has expired. Another related concept is multi-
threading. Each process in a multi-processing operation has its own memory space.
In contrast, the threads in a multi-threading operation share the same memory space.

The PEs in these general-purpose parallel architectures are often limited to a few
complete central processing units (CPUs). Traditionally general-purpose parallel
processing architectures are classified by whether or not the PEs are synchronized to
execute the same instruction concurrently and the number of data streams processed
by the PEs. Normally the PEs, regardless whether there are single or multiple
instruction streams, operate on different data.

A general-purpose computer has a single PE that operates on one datum stream
at a time. We refer to this architecture as an SISD (single instruction stream single
datum stream) architecture. This architecture is obviously not a parallel structure. We
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present this architecture here only for the purpose of reference. The speed-up of a
parallel architecture is often computed by comparing its performance to that of an
SISD architecture. Fig. 11.1 presents the architecture of an SISD computer. The
memory element stores instructions, operands, and results.

Processing
Element

Control
Element

Memory
Element

Fig. 11.1 Conceptual view of an SISD architecture.

Even a strictly sequential architecture can be improved by embedding a special
form of parallel processing called pipelining. For example, microprocessors can use
a pipeline to streamline the multiple phases of a CPU cycle (e.g., fetch instruction,
decode instruction, fetch operand, execution, store data, etc.) Pipelining borrows the
idea from an assembly line. The principle is to divide the task into a series of
sequential subtasks, each of which is executed in a hardware stage that operates
concurrently with other stages in the pipeline. Assuming a continuous stream of
tasks, a pipeline can improve the throughput of a system by overlapping the subtasks
of multiple tasks. Pipelining is an important technique in VLSI architecture and we
will discuss its details in this chapter.

According to the taxonomy that uses instruction and data streams to classify
parallel architectures, four architecture classes are possible. We have already
explained the SISD architecture. Two other practical parallel architectures are SIMD
(single instruction stream multiple datum stream) and MIMD (multiple instruction
stream multiple datum stream). A general diagram of a parallel architecture is shown
in Fig. 11.2. A number of PEs are interconnected through an interconnection network
for the purpose of communication. Typically a parallel architecture operates as a
back-end co-processor and its interface to the world is handled by a host processor.
In Fig. 11.2 the host processor is shown to communicate with the PEs through an
interconnection network.

PE PE PE

Interconnection
network

Host
processor

Fig. 11.2   Conceptual view of a parallel architecture.

Due to the complexity of an MIMD architecture, most general-purpose parallel
computers have adopted the SIMD architecture. Recently, expensive general-purpose



314 Parallel Structures

parallel computers have been largely replaced by an approach called distributed
computing, which uses a group of networked computers to form an MIMD
architecture. While it is theoretically possible to configure an MISD (multiple
instruction stream single datum stream) architecture, its usefulness is extremely
limited.

Many derivations from the parallel architecture shown in Fig. 11.2 are possible.
The architecture can be homogeneous or heterogeneous. A homogeneous architecture
contains identical PEs. A heterogeneous architecture employs PEs of different
capabilities. The interconnection network can be in the form of a time-shared
common bus, a switching network, or a shared memory. The control of the PEs can
be centralized or distributed.

General-purpose parallel architectures are especially efficient for vector and
matrix operations. They are also capable to be programmed to solve partial
differential equations, perform sorting, and do fast Fourier transform (FFT). The
performance of a parallel architecture is often measured by its speed-up which is
defined as:

Execution time on a sequential (SISD) architectureSpeed-up = 
Execution time on a parallel architecture

(11.1)

A parallel architecture with n identical PEs is at most n times faster than its
single PE sequential counterpart. Practically the speed-up is usually much less than
this. The performance of a parallel architecture is hampered by its operating
overhead and data dependency. The overhead of a parallel architecture involves the
control for inter-PE communication, data distribution, and result collection.

A rule of thumb can be used to judge whether it is worth the cost of using a
parallel architecture. Computer scientists have proposed that the speed-up of a
practical parallel architecture comprising n PEs should be at least log2(n).

11.2 Interconnection Networks

As shown in Fig. 11.2, one essential element is the interconnection network,
which connects the PEs together in a parallel architecture. Ideally, the PEs should
form a fully connected graph, in which each PE is connected to any other processor.
Fig. 11.3 shows two fully-connected parallel structures.

PEPE

PEPE

PE

PE

PE

PE

PE

PE

Fig. 11.3  Fully-connected parallel structures.



Parallel Structures 315

The fully-connected parallel structure allows any two PEs to communicate
directly; so it is the most powerful interconnection network. However, a fully-
connected interconnection network with n PEs requires n × (n – 1) links, which
apparently becomes expensive with a large n.

A fully-connected interconnection network can be implemented with a cross-bar
interconnection network. The structure of a 4-node cross-bar interconnection network
is shown in Fig. 11.4. The circles at the intersections between the vertical and
horizontal lines in the cross-bar switch are switches, which can be turned on to
connect these lines.

PE1
PE2
PE3
PE4

Cross-bar switch

Fig. 11.4  Cross-bar switch implementing a fully-connected interconnection network.

Interconnection networks for parallel architectures have been extensively
studied. There are two classes of interconnection networks, static and dynamic. A
static network provides fixed and unchangeable connections between PEs. In
contrast, dynamic interconnection networks are reconfigurable by setting a set of
switch elements. Several popular interconnection network topologies are presented
below.

Linear and Ring Interconnection Networks
Fig. 11.5 shows a linear interconnection network with n PEs, in which PEs are

organized in ascending order from PE0 to PEn–1. The connectivity of an
interconnection network can be described by a set of routing functions. The linear
interconnection network has the following routing function:

1

1

( ) 1,  for 0 to 2
( ) 1,  for 0 to 1

r i i i n
r i i i n

+

−

= + = −

= − = −
(11.2)

Routing function r+1(i) defines a forward communication from PEi to PEi+1,
which is undefined for PEn. Routing function r-1(i) defines a backward
communication from PEi to PEi-1, which is undefined for PE0. The benefit of this
topology is in its low hardware cost. However, communication may have to pass
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through a number of PEs in order to reach the destination. This topology often results
in long communication delays. The longest communication delay occurs between PE0
and PEn-1, which has to go through n–1 PEs.

PE0 PE1 PE2 PE3 PEn-1

Fig. 11.5  Linear interconnection network with n PEs.

A ring interconnection network can be formed by connecting the first PE (PE0)
and the last PE (PEn-1) in a linear interconnection network as shown in Fig. 11.6. The
ring structure removes the long communication delay between the first PE (PE0) and
the last PE (PEn-1). The ring interconnection network has the following routing
functions:

1

1

( ) ( 1) mod 
( ) ( 1) mod 

r i i n
r i i n

+

−

= +

= −
(11.3)

where the “mod” operator is defined as

 mod dd n d n
n

 = − ×   
(11.4)

PE0 PE1 PE2 PE3 PEn-1

Fig. 11.6  Ring interconnection network with n PEs.

Shuffle Exchange Interconnection Networks
A shuffle exchange interconnection network is used to connect n (n = 2k, k is an

integer) PEs together. Two routing functions are defined for a shuffle exchange
interconnection network: a shuffle function (rs) and an exchange function (re). The
shuffle routing function gets its name from the shuffling of a deck of cards. The card
deck is evenly divided into two halves. A new deck is then formed by interleaving
the cards from the two halves. The shuffle operations of 8 PEs are shown in Fig.
11.7. The shuffle routing function is expressed as
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2 for 0 1
2( )

2 1 for 
2
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r i

ni n i n

 ≤ ≤ −= 
 + − ≤ ≤


(11.5)

0
1
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3
4
5
6
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0
1
2
3
4
5
6
7

Source Destination

Fig. 11.7  Shuffle operations of 8 PEs.

As shown in Fig. 11.8, the exchange operations allow two neighbor PEs to
exchange information. The exchange routing function is expressed as

1,  0,2, 4,..., 2
( )

1,  1,3,5,..., 1e

i i n
r i

i i n
+ = −

=  − = −
(11.6)

0
1
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3
4
5
6
7

0
1
2
3
4
5
6
7

Source Destination

Fig. 11.8  Exchange operations.

If the PEs are labeled with binary numbers, the routing functions in (11.5) and
(11.6) can also be written as
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2 1 0 1

1 1 0

( ) ...
( ) ...

s n n

e n

r i a a a a
r i a a a

− −

−

=

=
(11.7)

where (i)10 = (an–1an–2…a1a0)2.
In (11.7), the shuffle routing function rs(i) performs a left rotation on the binary

label of PEi to produce its destination. The exchange routing function re(i)
complements the least significant bit a0 in the binary label of PEi to produce its
destination. Fig. 11.9 shows a shuffle-exchange interconnection network with 8 PEs.
Shuffle connections are represented by solid arrow lines and exchange connections
are shown by solid lines.

PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7

Fig. 11.9  Shuffle-exchange interconnection network with 8 PEs.

The shuffle-exchange interconnection network can be enhanced by changing the
shuffle connections (solid arrow lines in Fig. 11.9) into bidirectional links. This can
be done by defining unshuffle connections, which are created by reversing the
directions of the shuffle connections (i.e., rotating right the binary label of a PE). The
result of this enhancement is shown in Fig. 11.10.

 

PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7

Fig. 11.10  Shuffle-unshuffle-exchange interconnection network with 8 PEs.

A simple algorithm can be used to determine the communication path between
two PE’s in the interconnection networks of Fig. 11.9 and Fig. 11.10 (see Problems
11.9 and 11.10).

Mesh Interconnection Networks
In a two-dimensional mesh interconnection network, each PE is connected to its

north, south, east, and west neighbors. The connections between n PEs are done
according to the following routing functions:
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There are no general rules on how the boundary and corner PEs are connected.
The routing functions in (11.8) provide wrap-around connections for the boundary
and corner PEs. Fig. 11.11 shows a mesh interconnection network with 16 PEs.
Wrap-around connections are shown in this interconnection network to fully
implement the routing functions in (11.8). An inspection on the routing pattern shows
that the worst case inter-PE communication delay is (k–1) PEs.

PE0 PE1

PE4 PE5

PE2

PE6

PE3

PE7

PE8 PE9

PE12 PE13

PE10

PE14

PE11

PE15

Fig. 11.11  Mesh interconnection network with 16 PEs.

Hypercube Interconnection Networks
A hypercube interconnection network has n PEs, where n = 2q for some integer q

≥ 0. Each PE is connected to exactly q neighbors. Fig. 11.12 shows two hypercube
interconnection networks with 4 PEs and 8 PEs, respectively. Notice the PEs are
labeled with binary numbers (e.g., PE110 = PE6) to demonstrate the hypercube routing
functions:

1 0 1 0( ... ... ) ... ... , 0 ( 1)i q i q ir a a a a a a i q− −= ≤ ≤ − (11.9)

There are q routing functions in (11.9), which implies that a PE is linked to q
neighbors. Two PEs are connected in a hypercube interconnection network if their
binary labels differ by exactly one bit.
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PE00 PE01

PE10 PE11

PE100 PE101

PE101 PE111

PE000 PE001

PE010 PE011

Fig. 11.12  Hypercube interconnection networks.

A q-dimensional hypercube can be built by connecting corresponding PEs (i.e.,
PEs with identical labels) in two (q–1)-dimensional hypercubes. Fig. 11.13
demonstrates the forming of a 4-dimensional hypercube interconnection network by
connecting two 3-dimensional hypercubes. PE000 in the first 3-dimensional hypercube
is connected to PE000 of the second 3-dimensional hypercube, and so on.

Binary Tree Interconnection Networks
A binary tree interconnection network connects n = 2k–1 PEs by forming a

complete binary tree with k levels. In the binary tree, the levels are labeled from 0 to
k–1. There are 2i PEs in level i of the binary tree. Fig. 11.14 shows a binary tree
interconnection network for 15 PEs. Each PE at level i is connected to one PE at
level i–1 and two PEs at level i+1.

PE100 PE101

PE101 PE111

PE000 PE001

PE010 PE011

PE100 PE101

PE101 PE111

PE000 PE001

PE010 PE011

Fig. 11.13  Procedure of forming a 4-dimensional hypercube interconnection network
by connecting two 3-dimensional hypercubes (not all connections shown).
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PE1

PE3 PE4

PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14

PE5 PE6

PE2

PE0

Fig. 11.14  Binary tree interconnection network with 15 PEs.

The routing function of a binary tree interconnection network is left as an
exercise for the reader (see Problem 11.11).

Dynamic Interconnection Networks
Earlier in this chapter we introduced the implementation of a fully-connected

interconnection network with a cross-bar switch. A cross-bar switch is an example of
a dynamic interconnection network since the connectivity between PEs can be
changed dynamically. This is in contrast to the static interconnection networks we
described above, which provide fixed connections between PEs. Most dynamic
interconnection networks were originally proposed to connect between processors
and memories in a general-purpose parallel architecture. This need does not appear
frequently in special-purpose parallel structures, the subject of Chapter 12.

For the completeness of this introduction, we present the omega interconnection
network as an example of a dynamic interconnection network. Given n inputs, the
omega interconnection provides log2n stages of switch boxes. Each stage contains
n/2 switch boxes. Each switch box can be configured into one of the four states
illustrated in Fig. 11.15. In addition to providing one-to-one communications, the
omega network also supports broadcasting messages by setting certain switch boxes
to perform in the upper or lower broadcast mode.

Straight Exchange
Upper 
Broadcast

Lower
Broadcast

Fig. 11.15  Operating modes of switch boxes for the omega network.

Fig. 11.16 shows the omega interconnection network for 8 inputs (i.e., n = 8). A
perfect shuffle interconnection is used to connect two adjacent switch box stages.
Each switch box is controlled individually. Fig. 11.17 illustrates the connection
established between P0 and M5.
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P1

P0

P2

P3

P4

P5

P6

P7

M1

M0

M2

M3

M4

M5

M6

M7

Fig. 11.16  Omega interconnection network with 8 inputs.

11.3 Pipelining

Parallel processing in the form of replicating PEs cannot help a strictly
sequential application.  However, if the application has a continuous stream of data
sets to be processed, performance can still be gained by overlapping the processing
of these data sets. This concept has been generalized into an approach called
pipelining that explores temporal parallelism.

P1

P0

P2

P3

P4

P5

P6

P7

M1

M0

M2

M3

M4

M5

M6

M7

Fig. 11.17  Message routing in an omega interconnection network.

A pipeline architecture works in the same principle as an assembly line to
speed up a strictly sequential task. An assembly line arranges the products being
produced to pass consecutively through workstations consisting of workers and
equipment so that different parts can be added on until completed. In 1913, Ford
Motor Company introduced the concept of assembly line into car production and
the rate of car producing was increased 8 times.
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Fig. 11.18 shows a PE processing a continuous stream of tasks. For example, the
PE may evaluate a mathematical expression and the tasks represent different
argument sets to be used in the expression. This is analogous to the Henry Ford
assembly line that produced multiple identical cars.

PE123

Fig. 11.18  Continuous stream of tasks processed by a single PE.

Assume that the steps performed in one task are strictly sequential and thus
spatial parallelism among the steps is out of the question. Instead, we can explore
parallelism between tasks by replicating the PE. Fig. 11.19 shows that the PE in Fig.
11.18 has been replicated four times.

It is easy to conclude that n PEs will produce a speed-up of n. As we have
previously described, this represents a theoretical upper bound of the speed-up and
can only be achieved in an ideal case. A number of issues have to be considered in
the calculation of a more realistic speed-up. Recall that the tasks arrive in a sequence.
A multiplexing scheme is thus needed to direct an arriving task to the next available
PE. Similarly, the outputs of the PEs must be directed appropriately. Another factor
that may affect the effectiveness of this architecture is the arrival rate of the tasks.
The speed-up of n was calculated under the assumption that a task is always ready to
enter the system when a PE frees up.

PE37

PE48

PE15

PE26

Fig. 11.19  Exploring spatial parallelism between tasks by replicating PEs.

Pipelining provides a less expensive approach to the same problem, which
explores temporal parallelism within a PE. Assume that the function performed by
the PE has n steps. As shown in Fig. 11.20, the PE is partitioned into n processing
stages (S0 – Sn-1). Each stage corresponds to a computing step in the mathematical
expression. These processing stages perform their operations concurrently and
independently. In order to avoid the stages from interfering with each other, the
output of a stage is latched by a register, which serves as the input of the following
stage. Once its output is latched, the stage can then be released to work on the next
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task. This type of pipeline architecture that does not have feedback paths is called a
linear pipeline.

PE
123 S0 S1 Sn-1

Fig. 11.20  Linearly pipelined PE.

The performance of a pipeline architecture is measured by its throughput, which
is determined by its operating frequency. All registers installed between stages are
synchronized with the same clock signal. The cycle time of this clock determines the
maximum amount of time a stage is allowed to process a task. Ideally all stages
would have identical response times. The clock frequency can then be set
accordingly so that the registers can correctly capture the stage outputs. Only in ideal
cases can we divide the delay time of an operation evenly into stages. In practice the
slowest stage becomes the bottleneck of the pipeline since it determines the clock
frequency. The following expression is provided for the clock frequency f.

max

1

l

f
t t

=
+

(11.10)

where tmax is the longest stage delay time in the pipeline and tl is the delay time of the
register.

Example 11.1
A CPU cycle is typically made up of four phases, instruction fetching,

instruction decoding, operand fetching, and execution. Consider a CPU that has a
cycle time of 4T. Such a four-phase CPU is shown in Fig. 11.21.

Instruction
Decoding

Operand
Fetching Execution

Instruction
Fetching

Fig. 11.21  Four-phase CPU.

Assuming that each of the four phases can be individually implemented in a
stage with a delay of T, the CPU can be formed as a four-stage pipeline. Registers are
inserted between stages to capture intermediate results. We can analyze the operation
of such a CPU when it is used to carry out n instructions. This analysis is most
conveniently illustrated in the space-time diagrams shown in Fig. 11.22 and Fig.
11.23. Fig. 11.22 shows the space-time diagram for the non-pipelined CPU. Fig.
11.23 shows the space-time diagram for a pipelined CPU. In a space-time diagram,
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the vertical and horizontal axes represent the stages (space) and the time,
respectively. The location where an instruction is being processed at any time is
shown by the instruction number marking the intersection of a stage and a time unit.
The first instruction (1) enters the CPU at the instruction fetch stage, travels from
stage to stage, and finally exits the PE at the execution stage. The whole processing
time for the first task is 4T.

Instruction Fetching
Instruction Decoding
Operand Fetching
Execution

Stages

Time1T 2T 3T 4T
1

1
1

1

2
2

2
2

3
3

3

Instruction 1
completed

Instruction 2
completed

Fig. 11.22  Space-time diagram of non-pipelined CPU.

In Fig. 11.22, after the first instruction has left the CPU, the second instruction
enters the CPU. This continues until all instructions are completed. It thus takes 4nT
time to finish n instructions.

The same space-time diagram can be used to analyze the pipelined CPU. First
consider the processing of a single instruction. It takes 4T time to go through the
CPU, which is the same result as in the original non-pipelined CPU. In fact, the
above result has ignored the fact that the delays of the latches have to be added to the
overall time. Let us assume that the latch time is much smaller than the major delay
time so we can simplify our analysis.

When there is more than one instruction to be processed, the advantage of a
pipelined CPU becomes apparent. When the result of the instruction fetch stage has
been latched, the instruction stage is free and can be used to process the second
instruction. At this time, the first instruction is being processed by the instruction
decoding stage. We are thus overlapping the processing of instructions 1 and 2.
Similarly, when instruction 1 is being processed by the operand fetching stage,
instruction 2 has been advanced to the instruction decoding stage, and a new
instruction (3) is processed by the instruction fetching stage. This is shown in the
space-time diagram of Fig. 11.23.

The pipelined CPU did not change the fact that an instruction takes 4T to
complete. Indeed, the first instruction exits the pipelined CPU at the end of 4T. We
call the production time of the first instruction the filling up of the pipeline. On the
other hand, the second instruction takes only one additional T to emerge from stage
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4. In fact, every following instruction takes an additional T to complete. For the
processing of n instructions, the total completion time is then 4T + (n - 1)T.

Instruction Fetching
Instruction Decoding
Operand Fetching
Execution

Stages

Time1T 2T 3T 4T
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1
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Fig. 11.23  Space-time diagram of pipelined CPU.

In general, if a PE can be divided into k stages, each of which has a delay time of
T, the time required to complete n tasks can be expressed as kT + (n–1)T. The first
term kT is the time required to fill up the pipeline. After a pipeline is filled up, a new
result will be produced every clock cycle. Note that if n is much larger than k, the
above expression approaches nT. The speed-up of such an idealistic k-stage pipeline
PE is the theoretical upper bound of speed-up:

 for 
1

nk k n k
k n

≈
+ −

? (11.11)

The throughput of a pipeline PE is the number of tasks it can process in a unit
time. This is expressed as

Throughput = 
( 1)

n
k n T+ −

(11.12)

11.4 Pipeline Scheduling

A pipeline’s performance depends on the availability of data. The throughput of
a pipeline can only be maintained if we can keep its stages busy. If the data
availability does not keep up with the operating speed, the pipeline will have some
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idle time. One way to improve the hardware utilization rate of a pipeline is to reuse a
stage in the processing of a task. Consider the system in Fig. 11.24, in which stage S1
and S4 perform identical functions. This pipeline can be modified to use only a
single stage for both S1 and S4. As shown in Fig. 11.25, the output of stage S3 is fed
back to the input of stage S1 so that stage S1 can also cover the function originally
provided by stage S4. Note that this non-linear pipeline implementation requires the
use of appropriate multiplexing and demultiplexing to direct the flow of data stream
(see Problem 11.12).

S1 S2 S3 S4

Fig. 11.24  Four-stage pipeline.

S1 S2 S3

Fig. 11.25  Non-linear implementation of the pipeline in Fig. 11.24.

A non-linear pipeline with feedback paths has an inherent limitation since each
stage can only process one task at a time. If two or more tasks arrive at the same
stage at the same time, we have a “collision” between these two tasks. A non-linear
pipeline can thus be considered as a trade-off between hardware cost and
performance. We present below an approach that schedules the feeding of a non-
linear pipeline for an optimal throughput.

A reservation table that resembles a space-time diagram can be used to analyze a
non-linear pipeline for the purpose of scheduling. The reservation table of the non-
linear pipeline in Fig. 11.25 is shown in Fig. 11.26. In a reservation table, each row
represents a pipeline stage and each column represents a clock cycle. The total
number of columns in a reservation table is thus the number of clock cycles to
process a task. A mark (X) in the reservation table indicates that the stage is occupied
by the task at a specific clock cycle.

X
X

X

X

Fig. 11.26  Reservation table of the non-linear pipeline in Fig. 11.25.

Apparently, the reservation table of a linear pipeline would have one and only
one mark in each row. In a non-linear pipeline reservation table, a task can appear
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more than once in the same row. This implies that if the initialization of new tasks is
not planned carefully, more than one task may require the same stage at the same
time. This type of task congestion is called a collision. The objective of scheduling is
to determine the scheduling of jobs so that the pipeline is optimally utilized.

The latency of a pipeline is defined as the number of clock cycles between two
task initiations. For example, the latency in a linear pipeline is 1. A non-linear
pipeline normally cannot maintain unity latency. There may also be different
latencies between initiations. A collection of latencies is called a latency sequence. A
latency sequence that repeats itself is called a latency cycle. A latency that causes a
collision is called a forbidden latency. All forbidden latencies of a non-linear
pipeline can be easily obtained from its reservation table. For example, according to
the reservation table in Fig. 11.26, the forbidden latency is 3. This means that a new
task that is initiated three clock cycles after the last job causes a collision. In general,
the forbidden latencies of a reservation table equal to the column distances between
two marks in the same row.

A forbidden list can be used to describe all forbidden latencies in a reservation
table. This can be expressed by a list F = {l1, l2, …, lr} that contains the column
distances li between all possible pairs of marks on each row of the reservation table.
The forbidden list of the reservation table in Fig. 11.26 is F = {3}. A collision vector
is a binary vector C = cn…c2c1, in which ci = 1 if i ∈ F and ci = 0 otherwise, and n is
the longest forbidden latency. The reservation table in Fig. 11.26 has a collision
vector C = 100.

An n-bit shift register can be used to implement a collision free scheduling for a
non-linear pipeline. Initially the shift register is loaded with the collision vector of
the pipeline being considered. The shift register is shifted right one bit every clock
cycle of the pipeline. A ‘0’ is inserted to the most significant bit of the shift register
in each shifting. Every time a new task is initiated, the value stored in the shift
register is bitwisely OR’ed with the original collision vector. The result vector of this
operation, which describes the current state of the pipeline, is stored back into the
shift register. A collision free task initiation is allowed if and only if a ‘0’ is shifted
out of the register, which can be used as a control signal to initiate a new task.

This way of scheduling is called a greedy scheduling since a task is initiated as
soon as it is possible. This does not generally produce an optimal throughput. For a
better throughput, an analysis can be performed by creating a task-scheduling
diagram to explore all possible job scheduling of the pipeline being analyzed. This is
done by repeating the shift-register operations described above until no more new
vector can be generated. The task scheduling diagram for the reservation table in Fig.
11.26 is shown in Fig. 11.27. The “bubbles” in the diagram represent valid values
that the shift register may assume. The links connecting two bubbles are labeled with
allowable latencies. Notice that a latency of 4 or larger always cause the shift register
to resume the original collision vector.
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Fig. 11.27 Task scheduling diagram for the reservation table in Fig. 11.26.

Various latency cycles can be identified from a task scheduling diagram. In our
ongoing non-linear pipeline example, the following latency cycles can be identified:
(1, 1, 4), (1, 4), (2, 2, 4), (2, 2, 1, 4), (2, 4), and (4). An average latency of a latency
cycle can be used to determine a scheduling strategy. Since the throughput of a
pipeline is inversely proportional to its average latency, the maximum throughput is
achieved by choosing a latency cycle that has the minimum average latency. In our
example, the latency cycle of (1, 1, 4) is chosen for a minimum average latency of 2.

The scheduling principle that we described above can be generalized to schedule
multiple different tasks in a pipeline, each of which has its own reservation table.

11.5 Parallel Algorithms

We present a few examples in this section to demonstrate the utilization of
general-purpose parallel architectures. The first example is the multiplication of two
matrices, which is a popular application for parallel architectures. Matrix
multiplication is important since it is the basic function needed by many scientific
computations. Besides multiplication, other important matrix operations include
matrix inversion, L-U decomposition, etc. The second example is the sorting of a
series of numbers, which is another essential basic computational operation.

In order to appreciate the difference between developing an algorithm for a
sequential architecture and a parallel architecture, we begin by describing a
sequential algorithm to multiply two matrices.
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Matrix Multiplication
Assume the two matrices to be multiplied are
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We represent a general element in matrix [A] as aik in which i and k are the row
and column numbers, respectively. Similarly, bkj represents a general element in
matrix [B] where k and j are the row and column numbers, respectively. The task is
to perform the matrix multiplication [A] × [B] to produce a product matrix [C]n×n.
The matrix multiplication can be described with the familiar expression for
computing the elements cij of product matrix [C]:

1

,  (1 ,  )
n

ij ik kj
k

c a b i j n
=

= × ≤ ≤∑ (11.14)

The pseudo code of a sequential algorithm implementing the above expression
(11.14) is provided below:

for (i=1; i<=n; i++) {
for (j=1; j<=n; j++) {

c[i,j] = 0;
for (k=1; k<=n; k++){

c[i,j]=c[i,j]+a[i,k]*b[k,j];
}

}
}

Since there is a three-level nested loop in the algorithm, it has a computational
complexity of O(n3). This computational complexity implies that the core operation
in the algorithm, c(i,j)=c(i,j)+a(i,k)*b(k,j), has to be executed n3

times.
An absolute requirement for any parallel algorithm to perform well is that all

operands, in this example the matrix elements (aik and bkj), are available whenever
they are needed. This way the data availability will not be the cause of a bottleneck in
the computation. The development of a parallel algorithm involves a few issues that
do not appear in the sequential algorithm. One of the most significant differences is
that we have to decide how the computations and data are distributed to the PEs.
Since data movements between PEs are generally expensive, they should be
minimized by the initial distribution. We will, in Chapter 12, discuss how the
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analysis of data dependency can be used to determine the distribution of
computations and their data. Currently in this example we simply analyze algorithms
that have been developed for parallel architectures.

Two parallel algorithms are presented for this purpose. Note that there are n2

independent calculations (one for each element in the product matrix) in the matrix
multiplication; so potentially n2 PE can be used.

Algorithm 1
In the first algorithm n PEs (PE1 … PEn) are available. This algorithm first

stores the entire matrix [A] (a11, …, aij, …, ann) in each PE. The kth column of matrix
[B] (b1k, b2k, …, bnk) is stored in PEk, k = 1 to n. For a reason which will be clear in a
moment, the product matrix [C] will also have its kth column (c1k, c2k, …, cnk) stored
in PEk, k = 1 to n. This initial distribution of matrix elements is shown in Fig. 11.28.

a11, ..., aij, ..., ann
b11, b21, ..., bn1
c11, c21, ..., cn1

PE1

a 11 , ..., aij, ..., ann
b12, b22, ..., bn2
c12, c22, ..., cn2

PE2

a 11 , ..., aij, ..., ann
b1n, b2n, ..., bnn
c1n, c2n, ..., cnn

PEn

Fig. 11.28  Initial data distribution for matrix multiplication.

The computation then begins as described in the following pseudo code:

for (i=1; i<=n; i++){
concurrently for (k=1; k<=n; k++){

c[i,k]=0;
}
for (j=1; j<=n; j++){

concurrently for (k=1; k<=n; k++){
c[i,k]=c[i,k]+a[i,j]*b[j,k];

}
}

}

In the above pseudo code, the notation of “concurrently for (k=1; k<=n; k++)”
describes that all n iterations of the for-loop (1 ≤ k ≤ n) are carried out concurrently
in the n PEs of the system. After the initial distribution of the matrix elements, no
additional data transfer is needed during the computation. This algorithm contains a
two-level nested sequential loop and thus there are a total of n2 parallel
multiplication. The algorithm has a computational complexity of O(n2). This
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complexity does not take into account the initial data distribution and final data
collection. The cost of these communications depends on how the PEs are
interconnected and also on how they communicate with the host processor. Most
likely the parallel architecture serves as a backend processor for the host processor.
The host processor is responsible for receiving matrixes [A] and [B] from the user
and returning product matrix [C].

The investment of n PEs in this parallel architecture has brought the
computational complexity down from O(n3) of the sequential algorithm to O(n2).
Note that this is not automatically equivalent to a claim that states the parallel system
has a speed-up of n. The actual performance gain depends on the overhead of
controlling the system and the distribution of data.

Algorithm 2
The performance can be further enhanced if we allow n2 PEs to be used. In the

second algorithm these n2 PEs are interconnected into a hypercube network. We have
discussed the structure of a hypercube interconnection network. For the sake of
illustration, we assume that n = 4 and present the hypercube connection pattern of 16
PEs in Fig. 11.29. Binary numbers are used to label the PEs represented by circles.
Interconnections are represented by double-arrowed links to indicate they are
bidirectional communication paths.

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

Fig. 11.29  A hypercube interconnection of 16 PEs.

Again, a major part of the algorithm is dedicated to the data distribution. The
distribution of the matrix elements is summarized in Fig. 11.30.



Parallel Structures 333

Matrix Elements PE
Row 1 of [A]: a11, a12, a13, a14 0000
Row 2 of [A]: a21, a22, a23, a24 0101
Row 3 of [A]: a31, a32, a33, a34 1010
Row 4 of [A]: a41, a42, a43, a44 1111
Column 1 of [B]: b11, b21, b31, b41 0000
Column 2 of [B]: b12, b22, b32, b42 0100
Column 3 of [B]: b13, b23, b33, b43 1000
Column 4 of [B]: b14, b24, b34, b44 1100

Fig. 11.30 The distribution of matrix elements in a hypercube architecture.

After the initial data distribution, the rows of [A] are copied from their original
PE location to other PEs. Row 1 of [A] is copied from PE0000 to PE1000. This takes 4
steps since row 1 of [A] has four elements. Both PE0000 and PE1000 then copy row 1 of
[A] to PE0100 and PE1100, respectively. Concurrently with the distribution of row 1,
the other three rows of [A] are similarly distributed to four PEs each. The result of
these distributions is shown in Fig. 11.31. A similar data distribution is also
performed for the columns of [B]. The final distribution of [B] is shown in Fig.
11.32.

A1 A2

A3 A4

A1 A2

A3 A4

A1 A2

A3 A4

A1 A2

A3 A4

Fig. 11.31  The final distribution of the rows of [A]. A1, A2, A3, and A4 are the first,
second, third, and fourth rows of [A], respectively.



334 Parallel Structures

B1 B1

B1 B1

B2 B2

B2 B2

B3 B3

B3 B3

B4 B4

B4 B4

Fig. 11.32  The final distribution of the rows of [B]. B1, B2, B3, and B4 are the first,
second, third, and fourth columns of [B], respectively.

Now each PE possesses a row i from [A] and a column j from [B] so that the
corresponding element cij can be calculated. All PEs work in parallel so that the
complexity for the actual multiplication and addition is O(n). In addition, the initial
distribution of matrix elements has a complexity of O(n × log2n). The number of
steps needed to distribute a row or column is log2n since at each step the number of
PEs possessing a row or column doubles. Each row or column has n elements. This
algorithm has an interesting characteristic. The complexity of data distribution is
higher than that of the actual computation.

Sorting
Before the end of this chapter, we present a parallel algorithm that sorts n

numbers with n PEs connected in a linear array. The objective of this algorithm is to
sort a series of n numbers into an ascending order or a descending order. Sorting
algorithms implemented in a sequential architecture have complexity ranging from
O(nlog2n) to O(n2). This parallel algorithm has a complexity of O(n).

PE0 PE1 PEn-1

Fig. 11.33  A linear array of n PEs for the parallel sorting algorithm.

The array of n PEs set up for this algorithm is shown in Fig. 11.33. The PEs are
connected in a linear array so that each PE (except the PEs on both ends) is
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connected to two neighbor PEs. The sorting is performed as described in the pseudo
code below, assuming that n is an even number. In this algorithm, the n numbers to
be sorted are distributed initially into the n PEs, one number per PE. The number
currently held by PEj is represented by v[j].

for (i=1; i<n+1; i++){
if (i is odd){

concurrently for (j=0; j<n; j++){
if (j is even){

if v[j]>v[j+1]{
temp=v[j];
v[j]=v[j+1];
v[j+1]=temp;

}
}

}
else{

concurrently for (j=0; j<n-1; j++){
if (j is odd){

if v[j]>v[j+1]{
temp=v[j];
v[j]=v[j+1];
v[j+1]=temp;

}
}

}
}

}

Fig. 11.34 provides the snapshots of the array used to sort six numbers
distributed initially to the 6 PEs. Six steps are needed to sort them into ascending
order as shown in the last snapshot. Note that the longest path of moving a number in
a linear array is (n – 1) steps. This implies that no algorithm with a complexity lower
than O(n) can be found with this parallel architecture.
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Step 1: 8 2 9 7 6 3

Step 2: 2 8 7 9 3 6

Step 3: 2 7 8 3 9 6

Step 4: 2 7 3 8 6 9

Step 5: 2 3 7 6 8 9

Step 6: 2 3 6 7 8 9

Fig. 11.34  Snapshots of sorting 6 numbers into an ascending order in a linear array.

11.6 Summary

The high density and low cost of VLSI circuits allow innovative algorithms and
architectures to be used in problem solving. VLSI processors often explore the
parallelism in an application to gain significant speed-ups. Ideally a parallel
architecture with n PEs would compute n times faster. Practically this rarely happens
and a speed between log2(n) and n/ln(n) is acceptable.

A VLSI architecture designer has to decide the optimal number of PEs and their
interconnections. Inter-PE communication is expensive; so a careful analysis has to
be done. The data transfer between a host processor and the PEs also has to be well
thought of.

General purpose parallel processing existed before VLSI technology dominated
the computer industry. In this chapter we presented a few parallel approaches
originally developed for parallel computers. These examples provide our further
discussion with a reference point. These general purpose parallel computers, in
contrast to the VLSI architectures that we will discuss, typically have only a few
(e.g., < 10) of relatively powerful PEs (e.g., general central processing units). Our
objective is to develop application specific processors that have a larger number of
simpler PEs (e.g., at the level of multipliers, adders, etc.).
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11.7 To Probe Further

Parallel Processing:
• R. Miller and Q. F. Stout, Parallel Algorithms for Regular Architectures, The

MIT Press, 1996.

• G. S. Almasi and A. Gottlieb, Highly Parallel Computing, The
Benjamin/Cummings Publishing Company, 1994.

• M. J. Quinn, Parallel Computing Theory and Practice, McGraw-Hill, 1994.

• K. Hwang and F. A. Briggs, Computer Architectures and Parallel Processing,
McGraw-Hill, 1984.

Interconnection Networks:
• L. N. Bhuyan, Q. Yang, and D. P. Agrawal, “Performance of multiprocessor

interconnection networks,” IEEE Computer, February 1989, pp. 25-37.

11.8 Problems

11.1 Discuss whether or not it is a sound decision to build a parallel architecture to
perform the following operation:
S a b a b a n b n= × + × + + ×[ ] [ ] [ ] [ ] [ ] [ ]0 0 1 1 L , where a[0], a[1], …, a[n], b[0],
b[1], …, b[n] are a series of sequential measurements.

11.2 Repeat Problem 11.1 except that a[0], a[1], …, a[n], b[0], b[1], …, b[n] are
measurements concurrently made at different locations.

In Problems 11.3–11.7, assume that each addition takes 30 ns, each
multiplication takes 50 ns, and the transfer of each datum between two
connected PEs takes 10 ns. The times for all other operations (such as memory
access, instruction fetch, data fetch, etc.) can be ignored.

11.3 Determine the computational time required to perform the operation given in
Problem 11.1 in a system with a single PE. This PE can perform either
addition or multiplication but it can only do one operation at a time.
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11.4 Repeat Problem 11.3 but consider that the PE has two independent functional
units so that addition and multiplication can be carried out at the same time.

11.5 Repeat Problem 11.3 for a system that has n PEs which are connected into a
linear array. The interconnecting pattern of a linear array is shown below.

11.6 Repeat Problem 11.5 but consider that the PEs are connected into a ring array.

11.7 Repeat Problem 11.5 but consider that the PEs are fully connected. In other
words, each PE is directly connected with any other PE.

11.8 Discuss a few interesting applications for an MISD (multiple instruction
stream, single data stream) processor.

11.9 Develop an algorithm to determine the routing steps required to send a
message from PEi to PEj in the interconnection network shown in Fig. 11.9.

11.10 Repeat Problem 11.9 with the interconnection network shown in Fig. 11.10.

11.11 Develop the routing function(s) for an n level binary tree interconnection
network.

11.12 Design the multiplexing and demultiplexing structure to be used in a non-
linear pipeline such as the one shown in Fig. 11.25.

11.13 An array processor with 16 PEs interconnected into a mesh is shown in Fig.
11.35. Each PEi is initially distributed with a number vi. Develop a parallel
algorithm to obtain the result

vi
i=
∑

0

15

Use “concurrently for” to indicate parallel operations.
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PE0 PE1 PE2 PE3

PE4 PE5 PE6 PE7

PE8 PE9 PE10 PE11

PE12 PE13 PE14 PE15

Fig. 11.35  16 PEs connected in a mesh.
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Chapter 12 Array Processors

New frontier…
The development in VLSI technology has revolutionized the electronics

industry. This is evident in many wonderful devices such as palm-size computers and
cellular phones, of which VLSI is the enabling technology.

In order to fully explore the potential of VLSI technology, we are interested in
the design and application of massively-parallel, application-specific processors,
which are made possible only by the extremely high component density available on
a VLSI chip. These processors are built by interconnecting an array of processing
elements (PEs) so they are referred to as array processors. This chapter presents the
design methodology of high-performance, low-cost, special-purpose array
processors.

Comparing array processors to general-purpose parallel processors (e.g., the
ones described in Chapter 11) that are mostly based on the concept of datapath and
control architecture, array processors have the following properties:

• Simple and small PEs allow their designs to be optimized. A full-custom PE
design process is often justifiable.

• Only a few different types of PEs are required. This property reduces the
design cost.

• Simple and regular interconnections between PEs simplify the placement
and routing process. Array processors often have mostly nearest neighbor
interconnections.

• Extensive parallel processing and pipelining are employed to sustain a high
throughput.

• The data flow often follows a simple and regular pattern.
• Very few explicit global control signals are needed.
• The clock signal and power are distributed in a regular pattern. This

property allows the optimization of clock and power trees.
Systolic arrays and wavefront arrays will be discussed in this chapter. Systolic

arrays are synchronous and wavefront arrays are asynchronous. In a synchronous
systolic array, the operations of all PEs are synchronized using a common clock
signal. The distribution of a clock signal in a large array must be designed cautiously
to avoid clock skews.

In contrast, asynchronous wavefront arrays use local clocks. The coordination
between PEs is done by handshaking. The operation of a PE in an asynchronous
array is activated when all its inputs are available.

In systolic array processors, data must be fed into the system according to a
carefully planned schedule. Asynchronous wavefront array processors, on the other
hand, are self-timed so scheduling is relatively simple. In either case, data are
processed at some PEs before they are transferred to other PEs for further
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processing. In this manner, data are continuously pumped through an array processor
to generate a very high throughput rate.

Before we explain the design process of array processors, a few examples of
array processing will be discussed.

12.1 Array Processing Examples

Matrix-Vector Multiplication
Vector and matrix operations are the cornerstone building blocks of many digital

signal processing (DSP) algorithms. For example, digital filtering, which has many
applications in DSP, is based on inner product computation.

In this example we discuss array processing structures that compute the product
1 2 3 4[ , , , ]TY y y y y= of a matrix A = [aij]4×4 and a vector 1 2 3 4[ , , , ]TX x x x x= :

11 12 13 141 1

21 22 23 242 2

31 32 33 343 3

41 42 43 444 4

a a a ay x
a a a ay x
a a a ay x
a a a ay x

    
    
    = ×
    
    

        

(12.1)

The algorithm for computing a component 4

1i ik kk
y a x

=
= ∑ in Y is described in

the following pseudo code:

y[i] = 0;
for (k=1; k<n+1; k++){

y[i] = y[i] + a[i][k]*x[k];
}

The computation described in the above program can be implemented as a
pipeline operation, in which yi (y[i]) is initiated to be 0 and is streamlined through
a pipeline. In its journey yi collects all aikxk (a[i][k]*x[k]) terms and evolves
into the final result. This observation suggests the multiple pipeline structure shown
in Fig. 12.1.

Four pipelines, one for each yi, are provided to compute Y. The function of a
stage is also shown in Fig. 12.1. Each stage of a pipeline stores the appropriate aik
and xi initially distributed to it for the computation of yi' = yi + aikxk. If a stage
computes yi' in 1 clock cycle (clock not shown), the entire operation takes 4 clock
cycles to complete. The throughput of this multiple pipeline structure is 4 times over
that of a single processor. However, the hardware cost is 16 times over that of a
single processor.
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x1

0 0 0 0

a11

a12

a21

a22

a31

a32

a41

a42

a33

a34

a43

a44

a13

a14

a23

a24

x1 x1 x1

x2 x2 x2 x2

x3 x3 x3 x3

x4 x4 x4 x4

y1 y2 y3 y4 

a x

y

y'

y' = y + ax

Fig. 12.1  Multiple pipeline structure for matrix-vector multiplication.

A further consideration will reveal that the flows of xk’s and aik’s can also be
streamlined. We modify the pipeline architecture into the structure shown in Fig.
12.2.  We will discuss in detail how this structure is designed in a moment. At this
time our objective is to appreciate its operation.

The function of each PE is also shown in Fig. 12.2. As in a pipeline structure,
each interconnection between PEs is provided with a register which regulates the
flow of data. For the purpose of illustration, we show the connection between y’ and
y as a feedback. In practice, this feedback loop can be implemented as an internal
register of the PE and is updated at each clock cycle. The operations of this array
processor are demonstrated in Fig. 12.3 to Fig. 12.7.
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a11

a12 a21

a22 a31

a32 a41

a42a33

a34 a43

a44

a13

a23

a24

y1 y2 y3 y4 

a14

x1x2x3x4 PE PE PE PE

a

x PE x'

y y'
x' = x
y' = y + ax

0 0
0

0
0

0

Fig. 12.2  Array processor for matrix-vector multiplication.
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a23

a24

a14

x1
x2x3x4

0 0

0

0 0 0 0

t = 0

Fig. 12.3  Snapshot of the array processor at t = 0.
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a12 a21
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a32 a41

a42a33

a34 a43

a44

a13

a23

a24

a14

x1x2
x3x4

0

x1

t = 1

0 0 0

Fig. 12.4  Snapshot of the array processor at t = 1.

a11x1 +
a12x2

a22 a31

a32 a41

a42a33

a34 a43

a44

a13

a23

a24

a14

x3
x4 t = 2

0 0a21x1 

x1x2

Fig. 12.5  Snapshot of the array processor at t = 2.
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a11x1 +
a12x2 +
a13x3

a32 a41

a42a33

a34 a43

a44

a23

a24

a14
x3x4 t = 3

0

x1x2

a21x1 +
a22x2 

a31x1 +
a32x2 

Fig. 12.6  Snapshot of the array processor at t = 3.

a11x1 +
a12x2 +
a13x3 +
a14 x4

a42a33

a34 a43

a44

a24
x3x4 t = 4x2

a21x1 +
a22x2 +
a23x3 +

a31x1 +
a32x2 +

a41x1 

(e)

Fig. 12.7  Snapshot of the array processor at t = 4.

Fig. 12.3 to Fig. 12.7 shows the snapshots of the array processor in the first 4
clock cycles of its operation. Note that the intermediate results are stored in the
feedback loops (or internal registers). The first Y element yi is available after 4 clock
cycles. From this point on, it takes one additional cycle for the next element to be
produced. The entire result takes 7 clock cycles to complete.

The following example shows a variation of the above matrix-vector
multiplication. The new problem is to multiply a band matrix A = [aij] with a vector X
= [x1, x2, …]T. This problem also has many applications (e.g., finite impulse response
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filtering) in digital signal processing. The operation to be performed is
mathematically described in (12.2).

111 12 1

2 21 22 23 2

3 31 32 33 34 3

4 42 43 44 45 4

53

0

. .. .

. 0 .. .

y a a x
y a a a x
y a a a a x
y a a a a x

a

     
     
     
     

= ×     
     
     
     
          

(12.2)

The main difference between this computation and the previous one is that the
dimension of the matrix is not fixed. Vector X can be considered as a stream of input
data. Similarly, vector Y is a stream of outputs. Each row in the matrix A represents
the coefficients of a filtering operation. A few of the results are:

1 11 1 12 2

2 21 1 22 2 23 3

3 31 1 32 2 33 3 34 4

4 42 2 43 3 44 4 45 5

;
;

;
;

...

y a x a x
y a x a x a x
y a x a x a x a x
y a x a x a x a x

= +
= + +

= + + +

= + + +

a11 

x1 y1 y2

a12 a21 
a22 a31 

a23 a32 

a33 a42 

x2

x x'

a

yy'
x' = x

y' = y + ax

Fig. 12.8  Linear array processor for matrix-vector multiplication.

A linear array processor designed to carry out this operation is shown in Fig.
12.8. Note the directions of data movement in this array processor, in which xk moves
from left to right, yi moves from right to left, and aik’s move from top to bottom. The
scheduling of these data has been carefully planned so that right data will meet in the
right place at the right time. A sequence of snapshots of this array processor are
shown in Fig. 12.9.
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y1

y1

y1

x1

x1a11 y2

y2

x1a21y1

x2a12

Fig. 12.9  Snapshots of the array processor shown in Fig. 12.8.

The reader should follow the data flow of this array processor to develop a
mental picture of its operation. Several observations can be made to this array
processor. The number of PEs in the processor equals the bandwidth of the matrix
(i.e., n = 4 in this case). Similar to the operation of a pipeline, the first result will take
n cycles to appear at the left end of the array. The other results are produced at the
rate of 1 result every 2 clock cycles.

Since the array processor can only take 1 input data every 2 clock cycles, it has
to be operated at a clock frequency twice that of the input data rate. For example, if
the data rate is 100 million samples per second (MSPS), then the array processor
should be operated at 200 MHz.

12.2 Array Processor Design

A VLSI architecture can be developed by exploring the parallelism in a given
algorithm. Once the parallelism is detected, the algorithm can be converted into the
description of a physical PE array. The number of PEs in the array, the capability of
each PE, their interconnection pattern, and the data flow can be determined. A VLSI
chip is created to perform the computation.

Single Assignment Code
An algorithm is normally written as a sequence of steps. With the exception of a

few programming languages developed specifically for parallel processing, most
languages do not have the capability to express parallelism. The consequence of this
limitation is that unnecessary ordering of operations is imposed on the computation.
For example, consider the addition of two matrices
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11 12 1 11 12 1 11 12 1

21 22 2 21 22 2 21 22 2

1 2 1 2 1 2

n n n

n n n

n n nn n n nn n n nn

c c c a a a b b b
c c c a a a b b b

c c c a a a b b b

     
     
     = +
     
     
          

L L L
L L L

M O M M O M M O M
L L L

(12.3)

When coded in a sequential programming language, the operation in (12.3)
becomes

for (i=1, i≤n, i++){
    for (j=1, j≤n, j++){
        c[i][j]=a[i][j]+b[i][j];
    }
}

In the above pseudo code, the elements of matrices A and B are accessed in a
row major order. This decision is completely arbitrary. Indeed, there is no gain or
loss if we swap the two “for” statements so that the pseudo code reads

for (j=1, j≤n, j++){
    for (i=1, i≤n, i++){
        c[i][j]=a[i][j]+b[i][j];
    }
}

After the swapping, the elements of matrices A and B are now accessed in a
column major order. This type of implied ordering is unnecessarily presented in these
sequential codes. The first step in designing an array processor is to remove
unneeded ordering from a given algorithm.

Consider a generalized matrix-vector multiplication problem as described below:

1 11 12 1 1

2 21 22 2 2

1 2

m

m

n n n nm m

y a a a x
y a a a x

y a a a x

     
     
     = ×
     
     
          

L
L

M M O M M
L

(12.4)

The computation of the product vector Y can be expressed in the following
pseudo code:

for (i=1; i<=n; i++){
    y[i] = 0;
    for (j=1; j<=m; j++){
        y[i] = y[i]+a[i][j]*x[j];
    }
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}

According to the ordering implied in the above pseudo code, y[2] (i.e., y2) is
computed after y[1]. This ordering is absolutely unnecessary since there is no data
dependence between y[2] and y[1]. In other words, the computation of y[2]
does not depend on the result of computing y[1], and vice versa. Similarly, it is not
necessary to compute a[i][1] × b[1] before a[i][2] × b[2], and vice versa.
This kind of artificial dependence must be removed in the description of an algorithm
for VLSI implementation, in which parallel processing is to be emphasized.

We can remove the unnecessary dependence in the above pseudo code by
introducing a syntax that allows parallel operations to be explicitly specified. The
result is shown in the following pseudo code:

parallel for (i=1; i<=n; i++) and (j=1; j<=m; j++){
    temp[i][j] = a[i][j] * x[j];
}
parallel for (i=1; i<=n; i++){
    y[i]=0;
    for (j=1; j<=m; j++){
        y[i] = y[i] + temp[i][j];
    }
}

The first three lines in the pseudo code describe that all n × m multiplications
(a[i][j]*b[j]) can be carried out independently and thus should be computed in
parallel. Similarly, the formation of the components in the result vector c can also be
performed in parallel. This is specified in the rest of the pseudo code. Our conclusion
from this example is that unnecessary ordering of operations can be eliminated by
studying the data dependence of the operations.

Another inadequacy of a sequential programming language is that it uses the
assignment operator (=) to indicate ordering. For example, in the line y[i] =
y[i]+temp[i][j], the term y[i] on the left side (receiver side) of the equal
sign is not available until the operation on the right side (feeder side) of the equal
sign is complete. The same symbol (y[i]) is used to represent two different values.
In a sequential programming, this is not a problem as long as we observe the
convention of using the equal sign.

In a hardware implementation, using a symbol to represent different values
implies the use of a variable, possibly stored in a register. In order to clearly
distinguish these values in the exploration of parallelism, we can introduce a time
dimension into the description and make it recursive. For example, we can rewrite
the statement as

y[i][k+1] = y[i][k] + temp[i][j];

and use a loop involving index k to describe the operations.  The entire pseudo code
is now rewritten as:
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for (i=1; i<=n; i++){
    y[i][1] = 0;
    for (j=1; j<=m; j++){
        y[i][j+1] = y[i][j] + a[i][j] * x[j];
    }
}

Note that we have taken advantage of the fact that the newly introduced index k
always equal to j in the computation. This allows index j doubled as the “time” index.
The latest version of the matrix-vector multiplication pseudo code is an example of
single-assignment code. In single-assignment code, no variable is assigned with
values more than once. The creation of a single-assignment code for a given
computation is the first step of developing an array processor for it. Based on single
assignment code, the dependence between data is then explored for maximum
parallelism.

Dependence Graph
The generation of a dependence graph is the next step after the code describing

an algorithm is described as a single assignment code. Dependence graph is a tool for
exploring the parallelism in an algorithm. Operations of an algorithm that have no
dependence on each other can be executed concurrently in a parallel architecture.

A dependence graph is a graph that shows the dependence of computations
occurring in an algorithm. The dependence graph of a single assignment code does
not have loops or cycles.

The data dependence graph for the operation y[i][j+1] = y[i][j] +
a[i][j] * b[j] is shown in Fig. 12.10. The indices (i, j) are used to describe a
two-dimensional space so that each pair of i and j become the coordinates in this
space. We assume n = m = 4 in this example. The arrows in the dependence graph
are simply the dependence described in the single assignment statement. Notice the
similarity between Fig. 12.1 and Fig. 12.10. In fact, each circle in Fig. 12.10 is
equivalent to a stage in the multiple pipeline structure in Fig. 12.1. Now we see that
the multiple pipeline structure is a direct implementation of the dependence graph of
matrix-vector multiplication.
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Fig. 12.10  Dependence graph for matrix-vector multiplication.

The interconnections passing y’s are local nearest neighbor interconnections.
The x’s, on the other hand, are global interconnections, which may be costly to
implement in a VLSI architecture. We thus modify the dependence graph of Fig.
12.10 to convert the global interconnections into local ones. The result is shown in
Fig. 12.11.

The following pseudo code would have been the algorithm described by the
modified dependence graph in Fig. 12.11.

for (i=1; i<=4; i++){
y[i][1] = 0;
for (j=1; j<=4; j++){
 x[i+1][j] = x[i][j];

y[i][j+1] = y[i][j] + a[i][j] * x[i][j];
}

}

The statement x[i+1][j]=x[i][j] converts the global interconnections
into local ones by introducing index i to represent a time dimension.
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Fig. 12.11  Modified dependence graph with local interconnections.

Signal Flow Graph
While a dependence graph suggests a structure to implement an algorithm, the

PEs do not have a high utilization rate. We can improve the PE utilization rate by
projecting a data dependence graph into a signal flow graph, which is a more concise
representation of the algorithm to be implemented. The result signal flow graph
suggests the structure of an array processor. Typically, an n-dimensional dependence
graph is projected into a signal flow graph of (n–1) dimensions. An example of
projecting a 2-dimensional dependence graph into a 1-dimensional array is shown in
Fig. 12.12. Each node in the signal flow graph represents a PE of the array processor.
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Dependence graph Signal flow graph

Fig. 12.12  Projection of a dependence graph to a signal flow graph.

Once the structure of the signal flow graph and thus an array processor is
determined by the projection, the designer has to answer two questions:
• Which PE in the array processor should an operation (i.e., a node in a

dependence graph) be mapped to?
• What is the correct ordering of operations (i.e., the arcs in a dependence graph)

in the PEs of the array processor?
In a dependence graph, each node represents a specific operation step. Since we

typically have less nodes in the array processor than in the data dependence graph,
the operations in more than one node have to be mapped to the same PE. The
scheduling of these operations mapped to the same PE will have to be determined.

When there is more than one way of projecting a dependence graph into an array
processor, we can evaluate the quality of the projection by considering:
• the throughput, which is defined as the number of results produced per unit area;
• the PE utilization rate, which is defined as the throughput divided by the number

of PEs; and
• the complexity of PE interconnection.

Before we get in the details of projecting a data dependence graph into a signal
flow graph, we define a few vectors in the data dependence graph space to facilitate
the description of projection.

i

j

1 2
3
4

Fig. 12.13  Example vectors for direction representations.
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Four direction representing vectors (1–4) are shown in Fig. 12.13. Arrow 1
points in the j direction and is represented by the vector

0
1

i
j

   
=   

   

The other three directions (arrows 2, 3, and 4) are represented by

1
1

i
j

   
=   

   
, 

1
1

− 
 − 

, and 
1
0

 
 
 

 respectively. The use of these direction vectors will be demonstrated in a moment.
In the projection of a dependence graph into an array processor structure, a

projection vector P has to be determined. The second step is to select a permissible
schedule for the operations represented by the nodes of a data dependence graph.
This can be done by analyzing the dependence graph to identify a set of parallel and
equally spaced hyperplanes. The dependence graph nodes on the same hyperplane
identify operations that can be executed in parallel in the result array processor.
Different hyperplanes represent different clock cycles of operations.

In order for a schedule to be permissible, the relationship of data dependence
must not be violated. For example, if node m depends on node n, then node m cannot
be located on a hyperplane corresponding to a time step earlier than the hyperplane
of node n. Also, the hyperplanes must not be parallel with the projection vector P.
This avoids the mapping of concurrent operations to the same PE. Parallelism can
then be maximized.

As an example, a projection vector

0
1

P
 

=  
 

for the matrix-vector multiplication dependence graph (Fig. 12.10) is compatible
with the hyperplane set shown in Fig. 12.14. The hyperplanes are shown in dashed
lines. We refer to a hyperplane set by specifying a vector S that points in the
direction of time flow.
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1
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x1

x2

x3

x4

y1,1 y2,1 y3,1 y4,1

y1,5 y2,5 y3,5 y4,5

a1,1 a2,1 a3,1 a4,1

a1,2 a2,2 a3,2 a4,2

a1,3 a2,3 a3,3 a4,3

a1,4 a2,4 a3,4 a4,4

S

P

Fig. 12.14  Valid projection vector and hyperplane set.

In Fig. 12.14,

1
1

S
 

=  
 

which indicates that the flow of data is going from the lower left corner of the graph
toward the upper right corner. Note that this is not the only valid hyperplane set for
this data dependence graph. In a 2-dimensional data dependence graph, there are
eight possible vectors. In addition to S, another valid hyperplane set is

2

0
1

S
 

=  
 

Invalid hyperplanes are

3

1
0

S
 

=  
 

 (hyperplanes are in parallel with P),
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4

1
1

S
− 

=  − 
 (data dependence violated),

5

0
1

S
 

=  − 
 (data dependence violated),

6

1
0

S
− 

=  
 

 (data dependence violated),

7

1
1

S
− 

=  
 

 (data dependence violated),

8

1
1

S
 

=  − 
 (data dependence violated).

In summary, the selection of a projection vector and a set of hyperplanes must
satisfy the following conditions:
1. Data dependence must not be violated.
2. The projection vector and the hyperplanes must not be in parallel.

These two conditions can be expressed mathematically as follows. The first
condition can be described as

0TS e× ≥ (12.5)

in which TS  is the transpose of vector S , and e  is the direction of any dependence
arc in the dependence graph. Satisfying (12.5) implies that no dependence arcs are
going against the flowing direction of the hyperplanes.

For example, in the dependence graph of Fig. 12.14, there are two types of
dependence arcs:

1

1
0

e
 

=  
 

 and 2

0
1

e
 

=  
 

Checking the validity of S, we have
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[ ]1

1
1 1 1 0

0
TS e

 
× = × = ≥ 

 

[ ]2

0
1 1 1 0

1
TS e

 
× = × = ≥ 

 

This proves the hyperplanes represented by S satisfy (12.5). On the other hand,
checking the validity of

5

0
1

S
 

=  − 

we found that

[ ]5 1

1
0 1 0

0
TS e

 
× = − × = 

 

[ ]5 2

0
0 1 1

1
TS e

 
× = − × = − 

 

Hyperplane set S5 hence does not satisfy (12.5).
The second condition, which implies that the hyperplanes are not in parallel with

the projection direction, can be described as

0TS P× > (12.6)

Checking the relationship between S and P in Fig. 12.14, we found that

[ ] 0
1 1 2 0

1
TS P

 
× = × = > 

 

so (12.6) is satisfied. If we apply the test to

3

1
0

S
 

=  
 

which is in parallel to P, we have
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[ ]3

0
1 0 0

1
TS P

 
× = × = 

 

which violates the condition of (12.6).

Node Mapping
Given a projection vector P, it is a straightforward exercise to map the node

activities in a data dependence graph into an array processor. We continue to use the
matrix-vector multiplication example to illustrate this mapping.

j

i
1 2 3 4

1

2

3

4

x1

x2

x3

x4

y1,1 y2,1 y3,1 y4,1

y1,5 y2,5 y3,5 y4,5

a1,1 a2,1 a3,1 a4,1

a1,2 a2,2 a3,2 a4,2

a1,3 a2,3 a3,3 a4,3

a1,4 a2,4 a3,4 a4,4

P1

P2

P3

PE0

PE-1

PE-2

PE-3

PE1

PE2

PE3

PE1

PE2

PE3

PE4

PE1 PE2 PE3 PE4

Fig. 12.15  Three different projections of a dependence graph.

Fig. 12.15 shows the use of three different projection vectors (P1, P2, and P3) to
assign node activities into PEs. Each of these projections is valid. P1 projects the data
dependence graph into a linear array of 7 PEs. P2 and P3 project the data dependence
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into linear arrays of 4 PEs. The interconnections between the PEs in an array are to
be determined in a moment.

The mapping of node activities according to a selected projection vector P can
be determined by

' Tc H c= × (12.7)

where c is the location of a node in the data dependence graph, 'c  is the location of a
PE to which the node is to be mapped, HT is an n × (n–1) node mapping matrix (n is
the number of dimensions in the data dependence graph) that is orthogonal to
projection vector P (i.e., 0TH P× = ).

In Fig. 12.15,

1

1
1

P
 

=  
 

We select

1

1
1

H
 

=  − 

so that 1 1 0TH P× = . Each node in the data dependence graph can be identified as

i
j

 
 
 

The mapping of the nodes into the array processor created according to P1 is found to
be

[ ]' 1 1
i

c i j
j

 
= − × = − 

 
(12.8)

For example, all nodes with i = j (i.e., (1, 1), (2, 2), (3, 3), and (4, 4)) are
mapped into PE0. Node (2, 1) is mapped into PE1. Note that the PEs are identified by
their positional relationship to PE0.

If a different projection direction

2

1
0

P
 

=  
 
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is chosen, we select

2

0
1

H
 

=  
 

so that 2 2 0TH P× = . The mapping of the nodes into the array processor according to
this projection vector is found to be

[ ]' 0 1
i

c j
j

 
= × = 

 
(12.9)

which means that all activities in a row (i.e., identical j) are mapped to the same jth

PE in the array. The mapping carried out with P3 can be done similarly.

Arc Mapping
The arcs in a data dependence graph describe the dependencies between

operations. They are used to determine the interconnection pattern between the PEs
in an array processor. While the arc mapping can be carried out manually for a
simple data dependence graph, a systematic approach is desirable for more complex
operations to avoid the possibility of making errors. In addition to the
interconnections between PEs, this step also determines the delays (i.e., registers)
that must be provided on an interconnection. The need of delays on interconnections
is obvious if we consider the possibility of having a dependence between PEs that
operate in parallel. A pipeline structure is an example of such a situation.

In summary, we need to determine two things in this mapping step:
1. The interconnection e' in the array processor corresponding to a dependence

e.
2. The number of delays, D(e'), that is required in the interconnection e'.
Both of these can be found by the following simple matrix operation:

( ')
'

T

T

D e S
e

e H
  

= ×  
   

(12.10)

where S and H are the normal vector of the hyperplanes and the node mapping
matrix, respectively.

Continue with the matrix-vector multiplication example. We have selected a
projection vector of P1 = [1, 1]T. In the node mapping we have determined H to be [1
–1]T.  We have also chose a set of hyperplanes represented by S = [1 1]T. The
mapping of e1 = [1 0]T is found as
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1

1

( ') 1 1 1 1
' 1 1 0 1

D e
e

       
= × =       −      

(12.11)

This result shows that each e1 in the data dependence graph is mapped into an
interconnection (e1') between PEs that goes in the position direction (i.e., the
interconnection goes from PEn to PEn+1). A delay (D(e1')), which can be implemented
with a register, should be inserted into these interconnections.

On the other hand, the mapping of e2 = [0 1]T is found to be

2

2

( ') 1 1 0 1
' 1 1 1 1

D e
e

       
= × =       − −      

(12.12)

This result shows that each e2 in the data dependence graph is mapped into an
interconnection (e2') between PEs that goes in the negative direction (i.e., the
interconnection should goes from PEn to PEn-1). A delay (D(e2')) should be inserted
into these interconnections. The result of this mapping is shown in Fig. 12.16.

PE0

PE-1

PE-2

PE-3

PE1

PE2

PE3

e1'

e1'

e2'

e2'

Fig. 12.16  Mapping of interconnections.

As another example, if P2 is selected to project the node activities, we have H =
[0 1]T and S = [1 1]T. The mapping of e1 is found to be

1

1

( ') 1 1 1 1
' 0 1 0 0

D e
e

       
= × =       

      
(12.13)

The result of direction ‘0’ indicates that it is going to stay in the same PE to form
a feedback loop. One delay should be provided for this feedback loop. The mapping
of e2 is found to be
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2

2

( ') 1 1 1 1
' 1 1 0 1

D e
e

       
= × =       −      

(12.14)

which indicates an interconnection that goes in the positive direction with one delay.
The result is shown in Fig. 12.17.

PE1

PE2

PE3

PE4

e1

e2

Fig. 12.17  Another interconnection mapping.

I/O Mapping
The last step is to determine when and where to apply inputs and to collect

outputs. The PE position c' and the time t(c') to perform I/O operations can be
determined by

( ')
'

T

T

t c S
c

c H
  

= ×  
   

(12.15)

where c is the node location in the dependence graph, c' is the PE location, t(c') is the
time to apply or collect data, S is the normal vector of the hyperplanes, and H is the
node mapping matrix. Note that the t(c') is expressed in a relative time unit.

Continue with the matrix-vector multiplication example. If P1 is selected, we
have the following result. The value ai,j is applied at node c1 = [i, j]T, thus

1

1

( ') 1 1
' 1 1

t c i i j
c j i j

+       
= × =       − −      

(12.16)
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The value yi is applied at node c2 = [i, 1]T, thus

2

2

( ') 1 1 1
' 1 1 1 1

t c i i
c i

+       
= × =       − −      

(12.17)

The values xi are applied at node c3 = [1, j]T, thus

3

3

( ') 1 1 1 1
' 1 1 1

t c j
c j j

+       
= × =       − −      

(12.18)

The output y are collected at node c4 = [i, 5]T, thus

4

4

( ') 1 1 5
' 1 1 5 5

t c i i
c i

+       
= × =       − −      

(12.19)

Fig. 12.18 summarizes these mapping results. The inputs a1,1, x1, and y1,1 are
applied to PE0 at t = 2. The other inputs are shown in positions that indicate their
timing relationship with respect to each other. The outputs are collected at the upper
four PEs (PE-3 to PE0) with their available time indicated.
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Fig. 12.18  I/O of the array processor.
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The completion of the other possible projection directions is left as exercises
(see Problem 12.1).

12.3 Wavefront Array Processor

Synchronous array processors offer many benefits such as easy to analyze and at
least theoretically easy to control. However, one big drawback is the need of a global
clock that has to be distributed through the circuit. Clock-skews due to different
clock path lengths and loads have to be carefully avoided.

The use of registers for the purpose of synchronization may cause unnecessary
power dissipation. All PEs are switching states at more or less the same time since
they are triggered by the same clock signal. This causes large current surges to occur.
Sufficient bypass capacitors should be provided on chip to avoid hazards caused by
current surges.1

The wavefront array processor is a potential solution to the problems that come
along with synchronous array processors. Wavefront processor uses the concept of a
data-flow machine, which operates only after all operands have arrived. We say that
the PE is triggered by the arrivals of operands. The result of an operation, when
available, is forwarded to another PE to activate its operation. Global control and
synchronization are no longer needed.

Unlike a general purpose data-flow computer which needs a powerful control
mechanism to manage data and resources, VLSI array processors have inherent
modularity and local communication which allow them to be potential data-flow
architectures.

A wavefront array is also called a self-timed, data-driven system. Each PE has
I/O buffers and handshaking capability. The arrival of data from a neighbor PE is
interpreted as a signal to change state and to trigger new activities. Each PE may
contain its own clock. In fact, PEs can operate at different clock rates.

Fig. 12.19 shows the general structure of a PE used in a wavefront array. The PE
has two inputs (a and b) and two outputs (c and d). Each I/O is provided with a
queue which is indicated by the short cut-lines on the signal line. The size of the
queue is represented by the number of cut-lines. For example, input a has a single
buffer queue so it can hold at most one datum. The queue of input b has 2 buffers.
Similarly, outputs c and d have double-buffered and single-buffered queues,
respectively. The data stored in a queue are represented by the shaded circles, which
will be referred to as data tokens.

Fig. 12.19(a) shows inputs a and b, each of which has one token in its queue.
Output c has one token and one space. A PE is activated if the following two
conditions are met:
• Each input has at least one data token.
• Each output has at least one empty space.

                                                          
1 A rule of thumb for determining the bypass capacitance is that it should be about 10 times of the

total capacitance involved with the switching.
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It is easy to verify that the PE in Fig. 12.19(a) is in its activated state. The PE in
Fig. 12.19(b) is in a waiting state because its input a queue is empty and its output d
queue is full.

 

PE
a

b

c

d

(a)

PE
a

b

c

d

(b)

Fig. 12.19  PE used in a wavefront array: (a) a PE in activated state; and (b) a PE in
waiting state.

Fig. 12.20 shows the operation of a wavefront array PE with a propagation delay
of 4 (τ = 4). At t = 0, the PE is activated since the activation conditions have been
satisfied. It takes 4 time units for the PE to produce results. The state of the PE at t =
4 is also shown in Fig. 12.20, in which the tokens at its inputs (a, b) have been
consumed and removed from their queues. Results are inserted in the queues of
outputs c and d.

PE
a

b

c

d

a

b

c

d

t = 0
τ = 4

PE
τ = 4
t = 4

Fig. 12.20 Operations of a wavefront array PE.

Circuitry must be provided to detect the arrival and departure of data tokens.
The cost of a wavefront array is mainly in its large overhead. The following rule of
thumb can be used to guide the selection between a systolic array and a wavefront
array to implement an algorithm. A systolic array is preferred if global clock
distribution does not present a problem and the PEs are small, simple modules. A
wavefront array is more appropriate in a situation when the PEs are relatively
complicated (so that the overhead of handshaking can be ignored) and global
synchronization is a problem.

The wavefront implementation of an application can be created in essentially the
same way a systolic array is developed. In fact, a wavefront array can be derived
from a systolic array intuitively. Instead of using a global clock to synchronize all
PEs, the operation is controlled by the movements of data tokens. Note that the
scheduling step in a systolic array design is no longer needed. No exact timing
specification is needed. The data input to boundary nodes are used as initial data
tokens to start the array processor operation.
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Two issues have to be addressed in the design of a wavefront array processor.
The first is the possibility of a deadlock situation in which one or more PE is stuck in
a waiting state indefinitely. Fig. 12.21 shows a wavefront array processor that is in a
deadlock situation. PE1 cannot be activated since it is waiting for PE2 to pass in a
data token. PE2 is in a waiting state since there is no space available in its output to
PE3. PE3 is in turn waiting for a space to become available in its connection to PE1.

PE1 PE2 PE3
a z

Fig. 12.21  Deadlock wavefront array processor.

In many cases an array processor can be made deadlock free by modifying the
queue sizes. For example, Fig. 12.22 shows that the above deadlock situation is
eliminated by simply adding a buffer to the connection between PE2 and PE3. The
operation of the array processor is shown assuming each PE has a unity propagation
delay. It is shown that PE1 accepts an external input a and PE3 provides an external
output z. We assume that the input a queue is filled up as soon as it is vacant. Also,
the token placed in output z queue is removed immediately. This ensures that the
external I/O will not become a bottleneck of its operation. Note that when t = 3, the
array processor returns to its original state when t = 0. The array processor thus has a
cycle time of 3. We will discuss the concept of cycle time in more detail.

The above example brings up the second issue in the design of a wavefront array
processor, which is the determination of minimum queue sizes to support a desired
operation.

If we study the array processor Fig. 12.22 more carefully and recall that every
PE has a delay time of one, we see that the data token placed at input a is consumed
every 3 time units. In other words, the maximum input rate to the array processor is
one data token every 3 time units. On the other hand, consider the output z; it
produces a data token every 3 time units. The throughput of this array processor is
thus 1/3, i.e., one result every 3 time units. In Fig. 12.21, when the array processor is
in a deadlock situation, its cycle time is ∝ and its throughput is 0. The difference is
all in one additional space on one interconnection. It is evident the performance of an
array processor depends significantly on the queue sizes. We thus propose another
design issue:
• Given queues with infinite capacities, what is the best throughput achievable

with an array processor?
• Given a desired achievable throughput (e.g., the best throughput achievable with

infinite queues), what is the smallest queue capacity that can support it?
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PE1 PE2 PE3
a z

PE1 PE2 PE3
a z

PE1 PE2 PE3
a z

PE1 PE2 PE3
a z

t = 0

t = 1

t = 2

t = 3

Fig. 12.22  Deadlock free wavefront array processor.

The simple wavefront array structure shown in Fig. 12.23 is used to study these
issues. We assume that the array operation is not bounded by its I/O, which implies
that input a and output z are always ready. The analysis in Fig. 12.23 shows that this
array processor has a cycle time of 3 and a throughput rate (at z) of 1/3. We will
discuss a way to determine the best throughput of a design in a moment. Intuitively,
the maximum throughput rate achievable by the array processor is 1, which implies a
datum is consumed every clock cycle at a.

In Fig. 12.24, we have added one buffer to the array processor. An analysis of its
operation determines that it has a cycle time of 2 and thus a throughput rate of 1/2.
Fig. 12.25 shows another modification. After the initial latency, the array processor
has a cycle time of 1 and a throughput rate of 1.
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Fig. 12.23  Array processor with a throughput of 1/3.
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Fig. 12.24 Modified array processor with a  throughput of 1/2.
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Fig. 12.25  Array processor with a throughput of 1.

Consider a directed cycle (i.e., a cycle with arcs of consistent directions)
extracted from a wavefront array processor such as the example shown in Fig. 12.26.
Recall that each PE in a wavefront array, in each step, consumes exactly one data
token in every one of its inputs and generates one data token at every one of its
outputs. This is conceptually equivalent to moving one token from a PE’s input to its
output at each step. It is thus apparent that the number of tokens in a directed cycle of
a wavefront array remains a constant.

τ2 τ3τ1

to other PEs

from other PEs

Fig. 12.26  Directed cycle in a wavefront array processor.

Assume that a deadlock situation does not exist. If there is a single data token in
the cycle, it will move from the input of a PE to its output and continue to travel
along the cycle. A trip around the cycle will take at least c ii c

τ τ
∈

= ∑ time units. In

the example of Fig. 12.26, the lower bound of travel time around the cycle is τc = τ1

+ τ2 + τ3. The pipelining period T(c) of cycle c is thus τc in this case. The average
throughput of cycle c is 1/τc.
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If there are two data tokens in the directed cycle, the pipelining period is reduced
to τc/2 but this value cannot be smaller than the longest delay time of a PE.
Therefore, the upper bound of the pipelining period of a directed cycle T(c) is
τc/D(c), where D(c) is the number of tokens in the cycle.

For a given directed cycle, if we keep on adding tokens to it, its pipelining
period will be initially reduced as we described above. However, eventually the cycle
operation becomes space dominated. Consider a directed cycle with only one free
space and all other spaces are filled with tokens. An analysis of this cycle will show
that its pipelining period will once again be bounded by τc/S(c), where S(c) is the
number of spaces in the cycle.

Summarizing what we have observed so far we see that
• The number of tokens in any directed cycle D(c) is a constant.
• Similarly, the number of spaces in any directed cycle S(c) remains a constant.
• The pipelining period of any directed cycle T(c) ≥ τi, where τi is the propagation

delay of PEi in the cycle.
• The pipelining period of any directed cycle T(c) ≥ τ(c)/D(c).
• The pipelining period of any directed cycle T(c) ≥ τ(c)/S(c).

While the queue capacity of a wavefront array is set by the designer, the data
tokens are decided by the intended operations. The optimal achievable pipelining
period of a given wavefront array is thus determined by considering the data tokens:

Toptimal = ,
( )max ,
( )i c i
c

D c
τ

τ
 
 
 

(12.20)

where c is any elementary cycle in the array processor. The pipelining period of an
array processor can be only as short as its slowest cycle, so only elementary directed
cycles are considered in (12.20). This period can be achieved by providing all queues
with infinite capacities. This is of course not a practical solution. We are more
interested in finding a design with finite queue capacities to support a given
achievable pipelining period.

The optimal pipelining period achievable with a given wavefront array processor
can be determined by creating a structure with infinite capacity queues and has an
equivalent pipelining period as the original array processor. Both the data tokens and
spaces in the original array processor are represented by data tokens in its equivalent
structure. The equivalent structure is thus easier to analyze since its pipelining period
is determined only by its data tokens.

The equivalent structure of a given array processor can be generated easily as
follows. For each arc that goes from PEi to PEj, we replace the original arc with one
that has an infinite capacity queue and the same number of tokens. In addition, a new
arc with an infinite capacity queue that goes in the reverse direction from PEj to PEi
is added with the number of initial data tokens on it equal to the number of spaces in
the original arc. Every arc in the original structure is converted this way into two arcs
that form a directed cycle in the new structure.
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We now show that an equivalent structure created as described has the same
pipelining period as its original wavefront array. This is based on the observation that
the character of a wavefront array is determined by its distribution of tokens and
spaces. Consider an undirected cycle y of a wavefront array processor. We have the
following relationship that combines tokens and spaces into a single property:

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

t t
c cc c cc c
t t
cc c cc c cc

D y S y D y S y DS y

D y S y D y S y DS y

+ = + =

+ = + =
(12.21)

where ( )t
cD y is the number of tokens on clockwise arcs of y at any time t, ( )t

ccD y  is
the number of tokens on counter-clockwise arcs of y at any time t, ( )t

cS y is the
number of spaces on clockwise arcs of y at any time t, ( )t

ccS y is the number of spaces
on counter-clockwise arcs of y at any time t, and ( )cD y , ( )ccD y , ( )cS y , and

( )ccS y are initial values.
Fig. 12.27 shows an example undirected cycle, in which (12.21) is evaluated to

be DSc(y) = 3 + 1 = 4 and 1+ 2 = 3. After PE3 has been activated, the values become
DSc(y) = 2+2 = 4 and DScc(y) = 0+3 = 3.

PE1

PE2 PE3

PE1

PE2 PE3

Fig. 12.27  An example demonstrating the undirected cycle property.

Now consider the equivalent structure of a wavefront array. The spaces in an arc
(e.g., clockwise) of the original array processor are converted into the data tokens in
an arc of opposite direction (e.g., counter-clockwise). An undirected cycle y in the
original array processor, as defined in (12.21), is now represented as a directed cycle.
Since the number of tokens in a directed cycle is a constant, the relationship
described in (12.21) is maintained in the equivalent structure of the array processor.
The equivalent structure also maintains the property of the original array processor
that the number of tokens and spaces always add up to a constant on an arc. Based on
the relationship between the original and new structures, we conclude that the
pipelining period of the original structure can be determined by considering the data
tokens in the equivalent structure.

The advantage of the equivalent structure is now clear. Only data tokens have to
be considered in an analysis. Fig. 12.28 shows an example of converting a wavefront
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array into its equivalent structure. Note that in the equivalent structure, we do not
need to specify the spaces of a queue since there is always an infinite number of
spaces available.

 

PE1

PE2 PE3

PE1

PE2 PE3

Fig. 12.28  Converting an array processor for pipelining period analysis.

The pipelining period in an equivalent structure is not constrained by the number
of spaces available. We apply the relationship between PE delay time and pipelining
period to an equivalent structure. The pipelining period T of an equivalent structure
is

,max , c
i c i

c

T
D
τ

τ
 

=  
 

(12.22)

where c is an elementary directed cycle of the equivalent structure, τ(c) is the sum of
delay times in cycle c, and Dc is the number of tokens in the cycle c.

Applying (12.22) to the original DFG, we determine that the pipelining period is

, ,
( ) ( )max , , ,

( ) ( )
j k

i a y i
a c cc

y yT
Q DS y DS y

τ τ τ τ
τ

+ 
=  

 
(12.23)

where τi is the propagation delay of PEi, a is the arc connecting PEj and PEk, Qa is
the queue capacity (sum of token numbers and spaces) of arc a, and DSc(y) and
DScc(y) are as defined in (12.21).

The inclusion of the first term in (12.23) is trivial since the pipelining period
cannot be shorter than the delay of the slowest PE. The second term comes from the
fact that each arc a is converted into an elementary directed cycle in the equivalent
structure. The number of tokens in this directed cycle is equal to capacity Qa. The
last two terms in (12.23) can be derived by considering that each undirected cycle y
in the original structure is converted into two directed cycles c1 and c2 in its
equivalent structure. The following relations hold for this conversion:
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1

2

( ) ( )
( ) ( )

c

cc

D c DS y
D c DS y

=

=
(12.24)

An equivalent structure of a wavefront array also provides a means to detect the
possibility of having a deadlock in the array processor. Recall that a deadlock
situation occurs when two PEs are waiting for each other’s data. This will result in a
complete halt of the array processing. In other words, the pipelining period T = ∝. It
is not difficult to see from (12.23) that a finite T exists if and only if DSc(y) and
DScc(y) are non-zero values. This implies that the equivalent structure of a deadlock
free wavefront array must have no empty cycles.

For a given pipelining period T, the following guidelines developed from (12.23)
can be used to determine the queue capacity requirements:

( )( ) ( )

( )( ) ( )

max(1 ,0)

c cc
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i j
a a

a a

yS y D y
T

yS y D y
T

S D
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S D

τ
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τ τ

≥ −

≥ −

+
≥ −

≥ −

(12.25)

for any elementary undirected cycle c and any arc a in the wavefront array.
In order to design a wavefront array to support a desired pipelining period, we

can apply these guidelines to determine its queue capacities. However, in most cases
manual methods are only effective for small problems. For the design of complex
wavefront array processors, integer or linear programming can be applied to
minimize the total queue capacities while maintaining the desired pipelining period.

12.4 To Probe Further

Array Processors:
• S. Y. Kung, VLSI Array Processors, Prentice-Hall, 1988.

• C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley, 1980,
pp. 271-292.

Systolic Arrays:
• J. McCanny, J. McWhirter, and E. Swartzlander Jr., ed., Systolic Array

Processors, Prentice-Hall, 1989.
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Wavefront Arrays:
• S. Y. Kung, S. C. Lo, S. N. Jean, and J. N. Hwang, “Wavefront array processor–

concept to implementation,” IEEE Computer, July 1987, pp. 18-33.

Systolic Array Application:
• C. L. Wang, C. H. Wei, and S. H. Chen, “Efficient Bit-Level Systolic Array

Implementation of FIR and IIR Digital Filters,” IEEE Journal on Selected Areas
in Communications, Vol. 6, No. 3, April 1988.

Linear Programming:
• W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical

Recipes in C : The Art of Scientific Computing, 2nd Edition, Cambridge
University Press, 1993.

Problems

12.1 Explore the valid combinations of the hyperplane set and projection directions
in Fig. 12.14. Compare and determine the best array processing architecture
for the matrix-vector multiplication problem.

12.2 Design an array processor to multiply two 2 × 2 matrices and produce a 2 × 2
product matrix.
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Chapter 13 Fault Tolerant VLSI Architectures

Be Prepared  …
It is evident from our discussion in Chapter 12 that one of the intentions of

creating application specific VLSI architectures is to achieve high performance by
using efficiently as many PEs (processing elements) as possible. Ideally, we would
like to implement all PEs of a system on the same chip to minimize the
interconnection lengths.

The number of components that can be reliably fabricated on a chip is limited by
the fabrication process. Wafer scale integration (WSI) was proposed in the 1980’s
and received a lot of enthusiasm initially. WSI intends to create and connect all chips
in a system on the same wafer. Unfortunately, the yield of a fabrication process is
inversely proportional to the chip (wafer) area. It was soon clear that the low yield of
WSI limited its practical applications.

The WSI concept has been replaced by the multi-chip module (MCM)
technology. The MCM approach overcomes the packaging limits of printed circuit
boards (PCB) by eliminating chip packages. Instead, chips are mounted directly on a
silicon wafer with layers of metal interconnections. Chips are typically an order of
magnitude smaller than package areas. Without the packages, chips can be placed
closer on the silicon wafer for higher density and faster interconnections. The
elimination of packaging also significantly reduces the parasitic capacitance and
inductance which have been the major obstacles of high performance.

Regardless of the approach used to assemble a large number of PEs in a system,
reliability remains an important factor for its success. A normal system requires all
PEs to be functional.

Fig. 13.1 shows that the reliability of a system goes down exponentially with the
number of PEs. Assume each PE has a reliability of 0.999. The overall reliability of a
1000 processing element systolic array is merely 0.9991000 = 0.37.

Fault tolerance is a potential solution to a system with a large number of PEs.
Before we discuss the construction and operation of fault tolerant VLSI architectures,
an introduction is given to reliability and fault tolerance techniques. This
introduction is necessarily brief and simplified.

13.1 Reliability

In the following discussion, we will treat a PE as the smallest building block in a
VLSI system. Please note that the derivation of reliability applies equally to other
levels of building blocks (e.g., gates, macro-cells, etc.). A fault-tolerant VLSI system
is defined as one that can continue to provide its intended service even after certain
PEs have failed. We have discussed techniques to test VLSI circuits in Chapter 9. In
fabrication line testing, a fault tolerant system allows a faulty circuit to be repaired. A
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working system with on-line fault detection can use its fault tolerant capability to
provide adequate service in spite of the presence of a fault. Based on these
principles, there are two aspects of fault tolerance. Techniques have been developed
to tolerate failures in the field. Approaches have also been evolved to tolerate
manufacturing defects to achieve a better yield rate.
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Fig. 13.1 Reliability of a system with multiple PEs.

From the viewpoint of fault tolerance, PEs can be classified as good, bad, or
marginal. A marginal PE functions as intended most of the time, but not all of the
time. Only good PEs can be accepted as being reliable.

Reliability is defined as the probability that a device will operate adequately for
a given period in its intended application. Consider that n identical PEs are produced.
Let s(t) be the number of PEs that are still functioning. The number of failed PEs up
to time t is thus n – s(t). The probability of a PE being functional at time t is defined
as the reliability r(t), and

( )( ) s tr t
n

= (13.1)

Another useful parameter is the failure rate h(t) of a PE, which is defined as the
number of failures per unit time in the group of surviving PEs,

1 ( ( ))( )
( )

d n s th t
s t dt

−
= × (13.2)
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A typical failure rate h(t) curve is shown in Fig. 13.2, which is often referred to
as a bathtub curve for an obvious reason.
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Fig. 13.2  A typical failure rate curve.

Components that have passed the initial quality control test but do not function
as intended after being put in operation contribute to failures in the early life period.
A burn-in process, in which a system is operated at an elevated stress level (e.g.,
raised temperature, voltage, etc.), can be used to screen out early failures. In the
useful life period of a system, the failure rate h(t) can be approximated as a constant.
The reliability of a PE with a constant failure rate h(t) = η is derived as follows.

( ) ( )( ) 1 ,

( ) 1 ( ( ))

s t n s tr t
n n

dr t d n s t
dt n dt

−
= = −

−
= − ×

(13.3)

 1 ( ( )) ( ) 1 ( )
( ) ( ) ( )

d n s t n dr t dr t
s t dt s t dt r t dt

η
−

= × = − × = − × (13.4)

Solving (13.4), we have

( ) tr t e η−= (13.5)

We refer to (13.5) as the exponential failure law. The constant failure rate η is
usually expressed as the percentage of PEs failed in a period of time. If ηt is small,
we can simplify (13.5) into

( ) 1r t tη= − (13.6)
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For a system with k different types of PEs, each of which has a failure rate of ηi,
the overall system failure rate ηv is

1

k

v i i
i

nη η
=

= ∑ (13.7)

where ni is the number of PEs in each type.
Since the probability that a system will perform successfully depends upon the

conditions under which it operates, the reliability figure is not necessarily a practical
measure for system evaluation. A more useful parameter is the average time that a
system will operate before a failure stops it from delivering services. This parameter
is called the mean-time-before-failure (MTBF).1

0

MTBF ( )
t

r t dt
∞

=

= ∫ (13.8)

For the exponential failure law, substitute (13.5) into (13.8),
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If we use (13.6) in (13.8),

MTBF
1 ( )

t
r t

=
−

(13.10)

Another useful parameter in the study of fault tolerance is maintainability, which
is defined as the probability of detecting and locating a fault and repairing it in a
given time. A term similar to MTBF can be defined for the maintenance action,
which is the mean-time-to-repair (MTTR). If MTTR is reduced, maintainability is
increased. In order to design and manufacture a maintainable system, it is important
to predict the MTTR for various fault conditions that could occur in the system. The
expertise of designers and the circuit testability are invaluable for the improvement
of MTTR. The system repair time, which is mainly spent on the detection and
isolation of faults, can be improved significantly by a design-for-testability approach.

The availability of a system is defined as the probability that a system will be
functional:

                                                          
1 MTBF is also the acronym for mean-time-between-failures, which means roughly the same thing.
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System up-timeAvailability
System up-time + System down-time

MTBF
MTBF + MTTR

=

=
(13.11)

13.2  Fault Tolerant Design

The key of fault tolerant systems is redundancy. Redundancy means that two or
more identical copies of the same PEs are employed. We describe a number of
popular redundancy schemes in the following sections. These redundancy systems
were developed for general computing systems so they may not be directly applicable
to VLSI architectures. However, this brief introduction should provide the necessary
background for our further discussion of fault tolerant VLSI systems.

Redundancy is a way of masking errors; so it is also called masking redundancy.
This technique uses extra PEs in the system so that the effect of a faulty component is
masked instantaneously. Even though a duplicated system (duplex) theoretically
doubles the reliability of an original simplex system, its operation depends on the
availability of a method to detect the faulty PE. For example, assume PE1 in a duplex
system produces the output of 1 and PE2 in the same system produces the output of 0.
It cannot be determined which PE is right without applying further fault detection.

Providing a third redundant PE to a duplex system makes a triple modular
redundancy (TMR) system. A TMR system is the most popular hardware masking
technique. An illustration of a TMR system is shown in Fig. 13.3.

PE 1

PE 2

PE 3

Majority
Voter Circuit

Input Output

Fig. 13.3  A TMR system.

A TMR system can tolerate the failure of one PE. Assuming that only one fault
can occur at a time (i.e., single fault assumption), a TMR system has the advantage of
being able to perform immediate fault-masking actions. The majority voter will select
the output of the two fault-free PEs and send it to the system output. Both temporary
and permanent faults are covered by a TMR system. In addition to being quite
straightforward in its implementation, the TMR system does not require a fault
detection to be performed before masking.
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The following discussion assumes that the majority voter circuit is permanently
fault-free (i.e., perfect). This assumption is often justified by the fact that the majority
voter is substantially simpler than the PEs. The overall reliability of the TMR system
in Fig. 13.3 is

3 2 2 3( ) ( ) 3 ( )(1 ( )) 3 ( ) 2 ( )vr t r t r t r t r t r t= + − = − (13.12)

A little inspection of (13.12) should reveal that it is the standard probability
equation for having 2 or more PEs being functional in the system. This is a direct
result of the reliability definition.

If the majority voter has a less than one reliability, then the reliability of a TMR
system has to include its reliability rvoter(t), and

2 3( ) (3 ( ) 2 ( ))v voterr t r r t r t= − (13.13)

The above equation demonstrates the fact that the reliability of a system is
limited by the component with the lowest reliability. In other words, a system can
only be as reliable as its least reliable component.

The TMR concept can be expanded to an NMR (N-modular redundancy)
approach. In general, an NMR system can tolerate up to m module failures, and m =
(N-1)/2. In practice, N is usually an odd number for an obvious reason. If the voter is
perfectly reliable, then
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Other redundancy schemes have been developed such as dynamic redundancy
which uses the output of one module at a time and treats the other modules as spares.

13.3 Fault Tolerant VLSI Arrays

A single VLSI structure may contain hundreds or thousands of cells connected in
a more or less near-neighbor array structure. These cells could be memories, PEs, or
any other functional blocks. While such structures have many potentials, the failure
of a single cell in them disrupts their service.

Redundancy can be used to alleviate this problem. The design can be done in a
way to allow the bypassing of faulty cells within the array. The fault-free cells are
interconnected to achieve a functional array.

When spare cells are provided, a failed cell can be switched out and replaced by
a spare. This is called the reconfiguration of an array. A successful reconfiguration
will allow the array to operate even if a certain number of faults are present.
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An array may contain failed cells as soon as it comes off the production line. A
fabrication reconfiguration can be performed immediately after manufacturing to
improve the yield. Many applications (e.g., satellite operations) will require that the
array remain operational in spite of failed cells. In some cases, the array is allowed to
shut down to perform an off-line reconfiguration, while in other cases a real time
reconfiguration is performed as the array continues to operate.

Our discussion below is targeted toward array processors of the type discussed
in Chapter 12; however, the reconfiguration algorithms are readily adaptable to other
VLSI structures.

A reconfiguration scheme must specify how the spare PEs are incorporated with
the original array. In the event of a fault, the way that a functional array is formed by
replacing faulty PEs with spare PEs must also be described. VLSI arrays can be
designed in many ways to incorporate spare PEs. However, the most popular method
to provide redundancy is by means of spare rows or spare columns or both.
Therefore, we specify a fault tolerant processor array by its size as (m + r) × (n + c),
where m and n are the number of rows and columns required to perform the
functional operation, respectively, while r and c are the number of spare rows and
spare columns, respectively.

In a fault tolerant array structure, a fault-free PE is called an available PE. In
contrast, an unavailable PE is a faulty one or a fault-free one that has already been
used to replace another PE.

When a fault is detected, a reconfiguration algorithm specifies a way of mapping
a logical array of PEs (i.e., the array processor intended by its designer) into a
physical array of PEs. Given a PE in a logical array, the reconfiguration algorithm
determines which physical PE should be used to carry out its operations. This
mapping must be dynamically done according to the availability of spare PEs.

13.4 Set Replacement Algorithm

The set replacement algorithm treats each row of PEs as a set. An array that
implements the set replacement algorithm augments an n × m array with m spare
rows. The result is an (n+r) × m array. In the set replacement algorithm, a row that
contains one or more faulty PE is skipped. In other words, a single faulty PE will
cause an entire row of PEs to be replaced.

As an example of the set replacement algorithm, consider the array shown in Fig.
13.4. The original 4 × 4 array has been augmented with one spare row. Each PE is
labeled using the notation (i, j) to represent the PE in the ith row and the jth column.
Such an array can be scanned top down row by row to configure a logical array. If a
row contains a faulty PE, then the row is bypassed and replaced by the next row.
When row i is the faulty set, the PEs (i, 1), (i, 2), (i, 3), and (i, 4) are replaced by PEs
(i+1, 1), (i+1, 2), (i+1, 3), and (i+1, 4), respectively. Apparently, this array can
tolerate up to 4 faulty PEs, as long as they are all in the same row. Fig. 13.5
illustrates the result of applying the set replacement algorithm.
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(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3) (2,4)

(3,1) (3,2) (3,3) (3,4)

(4,1) (4,2) (4,3) (4,4)

(5,1) (5,2) (5,3) (5,4)

Original 4-by-4
array

Spare row

Fig. 13.4  5 × 4 fault tolerant array processor.

Fig. 13.6 shows the use of a multiplexer to skip PE (i, j). Note that this
reconfigurable routing structure assumes that the signal flows from the top to the
bottom. In the set replacement algorithm, all multiplexers in the same row are set by
the same control signal so that the entire row would be bypassed in the case of a
failed PE. Additional routing structures have to be provided for the first and last
columns to accommodate the routing of horizontal signals (see Problem 13.3).
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(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3) (2,4)

(3,1) (3,2) (3,3) (3,4)

(4,1) (4,2) (4,3) (4,4)

Original 4-by-4
array

Spare row

= Faulty PE

Fig. 13.5  Array reconfigured using the set replacement algorithm.

(i,j)

MUX

From (i-1, j)

To (i+1, j)

Fig. 13.6  Reconfigurable routing structure for set replacement algorithm.

A variation of the above algorithm provides both spare columns and rows within
the array. The array map in Fig. 13.7 shows a (6 + 2) × (6 + 2) fault tolerant array.
There are 6 fault PEs. The success of a reconfiguration depends on the order of
replacement. For example, suppose we use the spare rows to replace rows 1 and 3.
We will need three spare columns to complete the reconfiguration. The
reconfiguration thus fails since only two spare columns are provided. Alternatively, if
we use the spare rows to replace rows 3 and 5, then the spare columns can be used to
replace columns 2 and 4.
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Fig. 13.7  A (6 + 2) × (6 + 2) fault tolerant array.

A replacement algorithm has been developed to choose spare rows/columns with
the guidance of a bipartite graph. A graph contains a set of nodes and a set of edges.
Each edge connects two nodes. In a bipartite graph, the set of nodes is divided into
two subsets. Each edge has one node in one subset and another node in the other
subset.

The set replacement array reconfiguration problem can be represented
graphically with a bipartite graph. The corresponding graph for the array in Fig. 13.7
is shown in Fig. 13.8. The nodes on the left hand side of the graph represent the rows
that contain faulty PEs. The nodes on the right hand side of the graph represent the
columns that contain faulty PEs. For example, node R1 represents row 1 and node
C1 represents column 1. An edge is provided between a row and a column node if a
faulty PE is located in their intersection. In other words, if the PE at location (i, j) is
faulty, then nodes Ri and Cj are connected with an edge. For example, nodes R1 and
C2 are connected to indicate that there is a faulty PE in location (1, 2).

The replacement problem is to eliminate all connections between nodes in the
bipartite graph. For example, if we choose to replace row 3 with a spare row, the
faulty PEs (3, 1) and (3, 5) are replaced. Thus the connections between nodes R3 and
C1 and the connection between nodes R3 and C5 are eliminated.

The node that has the largest number of edges connected to other nodes is
identified and replaced. After a node is replaced, the node and its edges are removed
from the graph. This process is repeated until either the array is successfully
reconfigured or all the spares are used up. In our example, we replace row 3, row 5,
column 4, and column 6.
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Fig. 13.8  Bipartite graph for reconfiguring the array in Fig. 13.7.

Since the above algorithm pursues to use a set to replace a row or column with
the largest number of faulty PEs first, it is a greedy algorithm. As in the case of any
greedy algorithm, it may have to deal with the possibility of being trapped in a local
minimum.

The replacement of a set of PEs at a time simplifies the control structure, but it
does not allow an efficient use of the spare PEs. We discuss a structure that utilizes
the spare PEs more efficiently below.

13.5 Shifting Replacement Algorithm

The shifting replacement algorithm is a variation of the set replacement
algorithm. The routing structure for each PE is individually configured. Due to the
additional complexity for the routing structure, typically only a single row of spare
PEs is added to the original array. The algorithm to reconfigure the array is to shift
up the PEs below the one to be replaced. The functions of the faulty PE are
performed by its lower neighbor, of which the functions must be transferred to the
next neighbor PE. This process continues until the PE from the spare row is used.

Fig. 13.9 shows the result of performing the shifting replacement algorithm in
the array shown in Fig. 13.4. The shifting replacement algorithm can handle up to 4
faulty PEs in this array, as long as there is at most one faulty PE in each column. A
reconfigurable routing structure capable of supporting the shifting replacement
algorithm is shown in Fig. 13.10. This routing structure assumes that the signal in the
array flows vertically from top to bottom and horizontally from left to right.



388 Fault Tolerant VLSI Architectures

(1,1) (1,2)

(1,3)

(1,4)

(2,1)

(2,2) (2,3) (2,4)

(3,1) (3,2) (3,3) (3,4)

(4,1) (4,2) (4,3) (4,4)

Original 4-by-4
array

Spare row

= Faulty PE

Fig. 13.9  Shifting replacement algorithm.

MUX

(i, j)

From
(i-1, j)

From
(i-2, j)

To
(i+1, j)

To
(i+2, j)

MUX
From (i-1, j-1)
From (i, j-1)

From (i+1, j-1)

To (i-1, j+1)
To (i, j+1)

To (i+1, j+1)

Fig. 13.10  Routing structure for the shifting replacement algorithm.



Fault Tolerant VLSI Architectures 389

13.6 Fault Stealing Replacement Algorithm

Neither the set replacement algorithm nor the shifting replacement algorithm can
accommodate more than one faulty PE in any one column of an array. In theory,
multiple spare rows can be provided for this purpose. However, the complexity of the
routing structure will be increased significantly. The fault stealing replacement
algorithm provides coverage for multiple fault problems by using a spare column and
a spare row of PEs.

In the fault stealing approach, an (n+1) × (n+1) physical array is used to support
an n × n logical array. Fig. 13.11 shows a (4+1) × (4+1) array that supports the fault
stealing replacement algorithm.

(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3) (2,4)

(3,1) (3,2) (3,3) (3,4)

(4,1) (4,2) (4,3) (4,4)

(5,1) (5,2) (5,3) (5,4)

Original 4-by-4
array

Spare row

(1,5)

(2,5)

(3,5)

(4,5)

(5,5)

Spare column

Fig. 13.11  4 × 4 array augmented with one spare column and one spare row.

The basic fault stealing reconfiguration algorithm is called the direct
reconfiguration. The general idea of this algorithm is to scan each column of the
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array from bottom to top. If a faulty PE is found in a column, it is marked as a
vertical fault and the scanning for that column is terminated. After all columns have
been scanned, the remaining unmarked faulty PEs are marked as horizontal faults.

Once the faulty PEs are marked as horizontal and vertical faults, the array is
physically reconfigured. Horizontal faults are shifted right, and vertical faults are
shifted down. An example illustrating this direct reconfiguration is shown in Fig.
13.12. Horizontal faults are marked with “H” and vertical faults are marked with
“V”. The PEs in the result array are labeled with their locations in the logical array.

(1,1) (1,2) (1,3) (1,4)

(2,1)

(2,2) (2,3) (2,4)

(3,1) (3,2) (3,3)

(3,4)

(4,1) (4,2) (4,3)

(4,4)

Original 4-by-4
array

Spare row

Spare column

V

V V

H

Fig. 13.12  Direct reconfiguration.

The direct reconfiguration scheme will fail if there is more than one horizontal
fault in any row of the array. Many extensions have been proposed to change the
domain that a faulty PE can be shifted to by modifying the replacement rules.

One of these modified stealing algorithms is called the complex stealing
algorithm. Assume that there is one spare row and one spare column. Consider a row
that has a number of unavailable (i.e., faulty or stolen) PEs. For an unavailable PE (i,
j), the first consideration is to shift it down to (i+1, j) if the PE at that location is
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available. If it is not, then the stealing of the PE at location (i+1, j+1) is considered.
If this is still not possible, then the operations of the unavailable PE are shifted right
to location (i, j+1). In order to more efficiently utilize the spare PEs, the last
unavailable PE in a row is always shifted right to use the spare PE. An example of
applying the complex fault stealing scheme to reconfigure an array is shown in Fig.
13.13. Since there would have been two horizontal faults in the first row of the array,
the direct reconfiguration scheme cannot deal with this situation.

(1,1)

(1,2)

(1,3) (1,4)

(2,1) (2,2)

(2,3)

(2,4)

(3,1)

(3,2) (3,3)

(3,4)

(4,1) (4,2)

(4,3) (4,4)

Original 4-by-4
array

Spare row

Spare column

Fig. 13.13  Complex fault stealing algorithm.

While the complex fault stealing algorithm can achieve a high utilization rate of
spare PEs, its implementation requires a very complex routing structure, which is
evident from the density of routing channels in Fig. 13.13. In fact, the development
of a reconfiguration algorithm must balance its replacement flexibility and routing
complexity. A higher flexibility in a replacement scheme generally implies a more
complex routing structure. Next, we introduce a compensation path replacement
algorithm that requires a relatively simple routing structure.
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13.7 Compensation Path Replacement Algorithm

A fault tolerant array based on the compensation path replacement algorithm has
one spare row and one spare column. Fig. 13.14 shows a (4 + 1) × (4 + 1) array
structured for the compensation path replacement algorithm. The configurable
routing switches are indicated with circles in Fig. 13.14.

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5)

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5)

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5)

Fig. 13.14  Fault tolerant array for compensation path replacement algorithm.

Each configurable routing switch can be configured to operate in one of the four
states (A, B, C, D) shown in Fig. 13.15. In state A, the switch provides a vertical
connection. In state B, the switch provides a horizontal interconnection. States C and
D provide two different ways to change routing directions. These routing switches
are called single track switches since they provide only one communication path in
each direction of switching.
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A

D

B

C

Fig. 13.15  Four states of the routing switches used in Fig. 13.14.

Each PE is provided with both a vertical feedthrough channel and a horizontal
feedthrough channel. These feedthrough channels are assumed to be fault-free. They
allow a faulty PE to be converted into either a vertical or a horizontal interconnecting
element. Fig. 13.16 shows the use of these switches to perform a reconfiguration.

The replacement of faulty PEs in this array is performed in a way similar to the
shifting replacement strategy. The path of shifting the PEs is called a compensation
path. Any replacement is feasible with the routing structure as long as the
compensation paths are straight and compensation paths do not intersect.

Fig. 13.16 shows the result of a reconfiguration using compensation paths. A
logical 4 × 4 array is configured from a 5 × 5 physical array. The compensation paths
are illustrated by the bold face arrows.

13.8 Summary

After a brief introduction of reliability and conventional fault tolerant
techniques, we discussed the reconfiguration of VLSI array structures for the purpose
of fault tolerance. A set replacement algorithm is easy to implement and simple to
control, but it results in a low utilization rate of spare PEs. The development of a
reconfiguration strategy must balance between the efficiency of spare cell utilization
and the complexity of the reconfiguration structure. After discussing a number of
individual replacement algorithms, a reconfiguration structure based on
compensation paths was introduced.
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(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2)

(2, 3) (2, 4)

(3, 1) (3, 2)

(3, 3) (3, 4)

(4, 1) (4, 2)

(4, 3)

(4, 4)

Fig. 13.16  Reconfiguration using compensation paths.

13.9 To Probe Further

Fault Tolerant Systems:
• B. W. Johnson, Design and Analysis of Fault Tolerant Digital Systems,

Addison-Wesley, 1989.

• V. P. Nelson, “Fault-tolerant computing: fundamental concepts,” IEEE
Computer, July 1990, pp. 19-25.

Fault Tolerant VLSI Systems:
• B. W. Johnson, Design and Analysis of Fault Tolerant Digital Systems, Chapter

6, Addison-Wesley, 1989.

• I. Koren and A. D. Singh, “Fault tolerance in VLSI circuits,” IEEE Computer,
July 1990, pp. 73-83.
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• J. A. Abraham, P. Banerjee, C-Y. Chen, W. K. Fuchs, S-Y. Kuo, and A. L. N.
Reddy, “Fault tolerance techniques for systolic arrays,” IEEE Computer, July
1987, pp. 65-74.

13.10 Problems

13.1 Consider a redundant system formed of n identical modules. The reliability of
each model is R = e-at, where a is the constant failure rate. Calculate the
overall system reliability and MTBF for the following cases:
(a) The system can tolerate at most 1 faulty module.
(b) The system can tolerate at most (n – 1) fault modules.
(c) The system can tolerate at most (n – r) fault modules.

13.2 The MTBF for a PE with a failure rate of a is 1/a. Calculate the MTBF for a
TMR system that contains three PEs. Compare their MTBFs.

13.3 Design the configurable routing structure for the PEs in the first and fourth
columns of the set replacement fault tolerant array shown in Fig. 13.4.

13.4 A (5+1) × (5+1) fault tolerant  array with faulty PEs at locations (1, 2), (1,3),
(3, 5), (2, 4), (5, 1) is to be reconfigured into a 5 × 5 array. Show the
reconfiguration using the following algorithms:
(a) Set replacement.
(b) Shifting replacement.
(c) Direct fault stealing.
(d) Complex fault stealing.
(e) Compensation path.
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A
Active region, 77
Adder, 4, 6, 27, 66, 171

carry save, 219
carry select, 202, 219, 226
carry-lookahead, 8, 203
circulating, 210
conditional sum, 204, 226
ripple-carry, 8, 27, 200

Address register, 236
Address space, 230
Addressing mode, 241
ALU, 234
Aluminum, 71, 76
AND, 40, 58, 65, 66, 181, 212
And-plane, 182
Application-specific integrated

circuit. See ASIC
Arc mapping, 361
Architectural design, 7
Arithmetic logic unit. See ALU
Arsenic, 70
ASIC, 18, 24, 69
ATPG, 255
Automatic bonding equipment, 21
Automatic test pattern generation. See

ATPG
Availability, 380
Array processor, 374

asynchronous, 341
synchronous, 341

B
Back tracing, 292
Bardeen, John, 1
Bathtub curve, 379
Behavioral design, 6
Bell Laboratories, 1
BiCMOS, 5, 73, 193, 196, 197

Bipolar junction transistor. See BJT
BIST, 272, 278
Bistable, 154
Bit-slice, 238
BJT, 5, 73
Bonding pad, 18, 20
Boolean difference, 260, 277
Booth algorithm, 215
Boron, 70
Boundary scan, 23, 278
Branch, 298
Brattain, Walter H., 1
Breadth-first search, 292
Bubble, 34
Buffer, 41, 135, 144, 145
Built-in self-test. See BIST
Bypass capacitance, 140

C
CAD, 3, 11, 26, 69
Calma GDSII, 96
Caltech intermediate form. See CIF
Capacitance, 118, 119, 120, 121

area, 119
bottom, 120
fringe, 119
periphery, 120
wire, 122

Carry generation, 203
Carry propagation, 203
Channel, 15, 81

depth, 103
length modulation, 103
length, 5, 30, 103
resistance, 31, 104, 113, 115, 125,

145
width, 30, 103

Characteristic polynomial, 274
Charge sharing, 187
Chemical vapor deposition. See CVD
Chemical-mechanical polishing. See

CMP
Chip, 73
CIF, 96, 98
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Circuit extraction, 282
CLB, 20, 247
Clipping logic, 176
Clock, 147, 156, 238

distribution, 164, 170
frequency, 147
generator, 153
one phase, 159
skew, 161
two-phase non-overlapping, 160,

170, 171
CMOS, 38, 61, 142
CMP, 84
Collision vector, 328
Column, 302
Combinatorial optimization, 14
Compaction, 307, 308
Comparator, 66
Compensation path replacement

algorithm, 392
Complementary logic, 34, 38, 39, 42,

45, 46, 49, 51, 54, 62, 63, 64, 138,
175
guideline, 40

Complex stealing algorithm, 390
Complementary MOSFET. See

CMOS
Composite layout, 82
Computational complexity, 14, 331
Computational complexity, 331
Conditional branch, 235
Conditional carry, 204
Conditional cell, 208
Conditional operation, 240
Conditional sum, 204
Configurable interconnect, 20, 247
Configurable logic block. See CLB
Configurable programmable logic

device. See CPLD
Contact cut, 76, 82, 88
Control unit, 231
Controllability, 22, 24, 259, 271
Conway, L. A., 3, 78
Copper, 71
Correction term, 214, 216

Cost function, 288
CPLD, 246
Critical path, 238
Cross-talk, 164
Cube, 263
Cutline, 286
Cut-off state, 31, 102
CVD, 72, 76
Custom cell, 16
Contact

well/substrate, 86
CMOS, 5

n-well, 5
p-well, 5
twin-well, 5

D
D-flip-flop

dynamic, 192
D-latch

dynamic, 192
pseudo-static, 192

Dynamic logic, 38, 185, 186, 190
cascading, 188, 190, 196

Daisy chaining, 181
D-algorithm, 262, 277
Datapath, 229, 231
De Morgan’s theorem, 44, 184
Deadlock, 367
Deep sub-micron, 79, 122, 282
Delay-power product, 140
Dependence graph, 351
Depletion region, 121
Design error, 253
Design flow

bottom-up, 23, 229
top-down, 23, 229

Design house, 11
Design methodology, 3

hierarchical, 4
Design rule, 3, 78, 97

antenna, 84, 282
contact, 82
density, 84, 282
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diffusion, 80
metal-1, 82
metal-2, 82
n-well, 82
polysilicon, 80
scalable λ-based, 78
SCMOS, 79

select area, 82
transistor, 81

Design rule checker, 11
Design rule checking. See DRC
Design-for-testability. See DFT
DFT, 22, 271, 278
Dielectric constant, 119
Dielectric layer, 121
Dies, 18, 28, 73
Differential amplifier, 223
Digital signal processor, 25
Direct reconfiguration, 389
Divide-and-conquer, 4, 199
D-latch, 154
Dogleg, 299
Domino logic, 190, 196
Drain, 29
DRAM, 224, 225
DRC, 282, 307
Duality principle, 104
Duplex system, 381
Duty cycle, 148, 160, 162
Dopant

n-type, 70
p-type, 70

Doping, 70

E
ECL, 5, 193
Edge-triggered , 157

flip-flop, 149
EEPROM, 246
Electrical rule checking. See ERC
Emitter-coupled logic. See ECL
EPROM, 246
Equivalent inverter, 128
ERC, 282

Error propagation, 261
Evaluation, 186, 187
Expansion distance, 292
Extraction, 110

F
FA. See Full adder
Fabrication error, 253
Fabrication technology, 4, 18, 97
Failure rate, 379
Fall time, 113, 138, 148, 171
Falling edge, 155
Fault

activation, 261
coverage, 255, 268
detection, 253
equivalent, 257
injection, 268
location, 253
matrix, 268, 270
simulation, 255, 261, 268

Fault models, 255
bridging, 255, 256, 258
current-based, 255, 256
delay, 255
feedback bridging, 267
indistinguishable, 257
logic, 255
multiple fault, 261
path delay, 255, 256
stuck-at, 255
stuck-open, 256
transition delay, 256

Fault stealing approach, 389
Fault tolerant system, 381
Fault tolerant VLSI array, 382
Fault-masking, 381
Feature size, 2, 5, 30, 78, 79
Feedthrough, 15, 94
Field oxide, 75, 120
Field poly, 80
Field programmable gate-array. See

FPGA
Fighting, 181
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Finite state machine, 167, 231
Flag, 6, 235
Flip-flop

D-, 157
JK-, 171
master-slave, 157
negative-edge-triggered, 158
positive-edge-triggered, 158
toggle, 172

Floating, 35, 36, 40, 176, 185
Floorplanning, 14, 283
Forward trace, 265
4-2 compressor, 218
FPGA, 20, 24, 25, 28, 57, 182, 229,

245, 251
anti-fuse-programmed, 246
partially reconfigurable, 246
SRAM-based, 246

Frequency, 140
Full adder, 8, 9, 100, 200
Full adder tree, 210
Full-custom, 11, 12, 28, 79, 164, 199
Functional design, 6

G
GaAs, 4, 69
Gallium arsenic. See GaAs
Gate, 30
Gate-array, 18, 24, 28, 244

personalization, 19
Gate oxide, 30, 75, 103, 120
Gate poly, 80
GDSII, 96, 98
Ge, 4, 69
General expression

area, 201, 213, 226, 279
delay, 201, 213
power, 201
speed, 226, 279

Germanium. See Ge
Glitch, 140, 150
Greedy algorithm, 288

H
Hand-crafted layout, 23
Hardware description language. See

HDL
Hardwired control, 231
Hardwired logic, 181, 182
HDL, 6
Heat dissipation, 138
Heterogeneous architecture, 314
Heuristic algorithm, 283
Hierarchical design methodology, 56
High impedance, 40, 185, 236, 258
Hold time, 170
Homogeneous architecture, 314
Hooke’s law, 289
H-tree, 164, 165
Hyperplane, 355

I
I/O block, 20
I/O mapping, 363
IC, 1
IDDQ test, 278
Identical function, 58
IEEE standard 1149.1, 23, 272
IEEE standard test access port and

boundary-scan architecture, 272
Inductance, 140
Inductive kick, 141
Ingot, 70
Instruction cycle, 234
Instruction register, 236
Instruction set, 230
Instruction, 241
Integrated circuit. See IC
Integration

large scale. See LSI
medium scale. See MSI
small scale. See SSI
very large scale. See VLSI

Intel, 2
Intellectual property core. See IP core
Interactive design rule checker, 84
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Interconnection network, 313, 337
binary tree, 320
cross-bar, 315
dynamic, 315, 321
fully connected, 314
hypercube, 319, 332
linear, 315
mesh, 318
omega, 321
ring, 316
shuffle exchange, 316
static, 315

Intermediate state, 151
International technology roadmap for

semiconductors, 25
Intersection, 264
Inverter, 1, 34, 35, 50, 73, 86, 87, 88,

105, 111, 131, 133, 138
BiCMOS, 193
pseudo-nMOS, 179
minimum size, 133
n-well, 74
tri-state, 60

IP core, 17, 26, 199
firm, 17
hard, 17
soft, 17

K
Karnaugh map, 46, 49, 62

L
Latch-up, 30, 75, 80, 140
Latency, 328

forbidden, 328
minimum average, 329
sequence, 328

Layout, 73
compaction, 282
editor, 282, 307
examples, 84
extractor, 307
generation, 182, 200, 281

tools, 97
Layout versus schematic. See LVS
Leaf cell, 281
Lee algorithm, 292
Length to width ratio, 128
Level-controlled, 155
Level-triggered latch, 149
LFSR, 273, 275, 278
Linear feedback shift register. See

LFSR
Linear pipeline, 324
Linear programming, 374, 375
Linear region, 103
Load balancing, 164
Load capacitance, 115, 145
Local communication, 199
Local minimum, 288
Logic design, 9
Logic minimization, 62
Logic structure, 38
Logic swing, 5, 40, 41, 42, 51, 54
Logic threshold voltage, 108, 127,

144
logic-0, 31, 35
logic-1, 31, 35
Lookup table. See LUT
Low power design, 251
LSI, 1
Lump element, 124
LUT, 247
LVS, 282

M
Macro-cell, 16
Magic, 77, 98, 84, 282
Majority voter, 66, 381
Manhattan geometry, 282
Man-month, 11
Mask, 7, 11, 18, 70
Masking, 381
Mask-programmed gate-array. See

Gate-array
Matched, 109, 127, 133
Matrix multiplication, 329
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Matrix-vector multiplication, 342
Maximum clock frequency, 164
Mead, C. A., 3, 78
Mealy machine, 149, 167
Mean-time-before-failure. See MTBF
Mean-time-to-repair. See MTTR
Memory bus sequences, 236
Memory space, 230
Memory, 153
Metal, 73
Metallization, 76
Metal-oxide-semiconductor field-

effect transistor. See MOSFET
Micro-instruction, 243
Micrometer, 2
Micron, 2
Microprocessor, 25, 28, 229, 230
Microprogram counter, 243
Microprogramming, 232, 243
Million instructions per second. See

MIPS
MIMD, 313
Minimum frequency, 185
Minimum size transistor, 86, 98, 126
Minterms, 46
MIPS, 2, 230
MISD, 314
Mobility

electron, 103
hole, 104

Modularity, 199, 212
Module generator, 281
Moore machine, 149, 167
Moore, Gordon, 1
Moore’s law, 2, 25, 27
MOSFET, 1, 5, 61, 142

n-channel. See NMOS
p-channel. See PMOS

MOSIS, 79, 97, 98
MSI, 1
MTBF, 380
MTTR, 380
Multiple function minimization, 183
Multiple instruction stream multiple

datum. See MIMD

Multiple instruction stream single
datum. See MISD

Multiplexer. See MUX
Multiplication, 28
Multiplier, 66, 197, 226

add-and-shift, 211
Baugh-Wooley, 214, 226
Braun array, 211, 226
modified Booth, 215, 227
Wallace tree, 217, 227

Multi-processing, 312
Multi-tasking, 312
Multi-threading, 312
MUX, 27, 51, 52, 54, 56, 57, 58, 59,

60, 63, 64, 66, 100

N
NAND, 19, 27, 42, 43, 65, 89, 90,

121, 128, 179, 187,
BiCMOS, 194

Nanometer, 2
Nearest neighbor communication,

199, 212
Netlist, 14
NMOS, 29, 81, 102
NMOS technology, 179
Node mapping, 359
Noise margin, 5, 109, 114, 258
Non-clipping switch, 55, 176
Non-inverting logic, 191
Non-redundant circuit, 254
NOR, 27, 45, 65, 180, 197
NP-complete, 283
NP-hard, 283
N-wells, 75

O
Observability, 22, 24, 259, 271
Opcode, 241
Open-drain logic, 177
Optimal achievable pipelining period,

371
OR, 40, 65
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Or-plane, 183
Over-the-cell routing, 94
Oxygen, 73

P
Package, 20

ball grid array (BGA), 21
dual-in-line, 21
pin grid array (PGA), 21

Pad-frame, 20
Parallel processing, 311, 337
Parasitic bipolar transistors, 141
Parasitic capacitance, 120
Partial product, 212
Pass-transistor logic, 51, 63, 176
Path sensitization, 261
PE, 311
Pentium III, 2
Performance, 37
Permissible schedule, 355
Permittivity, 103
Phosphorous, 70, 75
Photolithographic processing, 18
Photoresist, 70

negative, 70
positive, 70

Physical design, 11
Physical failure, 253
Pin, 12
Pinch-off, 103
PIP, 247
Pipeline, 342

non-linear, 327
PLA, 182, 231

dynamic, 197
folding, 184, 196
minimization, 195

Place-and-route, 282
Placement, 14, 28, 283, 307

constructive, 285, 309
force-directed, 289
iterative improvement, 287, 309
min-cut, 286
simulated annealing, 309

PLD, 244
PMOS, 32, 81
Polysilicon, 71, 73
Positive logic signals, 35
Power consumption, 41, 171
Power density, 144
Power dissipation, 37, 138

dynamic, 138, 139
steady state, 138

Power rail, 15, 144
Precharging, 186
Prime implicants, 48
Primitive D-cube, 263, 279
Printed circuit board, 4, 11, 27
Probabilistic hill climbing, 288
Process

n-well, 73
p-well, 73

Processing element, 311
Program counter, 242
Programmable I/O blocks, 247
Programmable interconnect point,

247
Programmable logic array. See PLA
Programmable logic device. See PLD
Project, 229, 251
Projection, 355
Projection vector, 355
Propagation D-cube, 265, 279
Propagation delay, 114, 125

high to low, 114, 115
low to high, 114, 115

Pseudo-nMOS, 179, 182, 196
Pseudo-random pattern generator,

273, 277
Pull down, 36, 39, 40, 45, 50, 51, 91,

128
Pull up, 35, 39, 40, 42, 45, 51, 91,

128
Pull-up resistor, 177
Pull-up to pull-down ratio, 179, 184,

188
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Q
Queue, 365
Queue capacity, 374
Quine-McCluskey algorithm, 46, 62

R
Radiation, 141
RAM, 221

dynamic, 225
static, 221

Random access memory. See RAM
Ratioed logic, 182
Ratioless logic, 175
RC model, 115, 123, 126, 177
RC tree, 123, 124
Read only memory. See ROM
Read operation, 236
Read-only memory, 220
Reconfiguration, 383
Redundancy, 381
Refreshing, 185

frequency, 185
Register transfer level. See RTL
Register transfer operations, 232
Register, 20, 160, 232
Regularity, 184, 199, 212
Reliability, 377
Reservation table, 327
Reset, 168, 171
Resistance, 117, 118, 121

corner, 119
Resistive switches, 112
Resistivity, 117
Resistor, 144
Retiming, 164, 170
Ring oscillator, 152
RISC, 230
Rise time, 113, 138, 148, 171
Rising edge, 155
ROM, 27, 220, 226
Routing, 5, 11, 14, 307

channel, 15, 94, 298
detailed, 16, 290, 291
global, 16, 290, 304
greedy channel, 302
layers, 5
left-edge channel, 299, 308
length estimation, 285
line-probe, 293
maze, 292
rectilinear Steiner tree, 295
over-the-cell, 15
switchbox, 16, 94, 304, 309

RTL, 17, 232

S
Saturation region, 103
Scaling, 144
Scan register, 272
Scheduling, 328
Select mask, 77
Self-aligned, 75
Semiconductor materials, 4
Sense amplifier, 223
Sequential logic, 147, 170

asynchronous, 148, 150
clock, 156, 159, 163
synchronous, 148, 149

Set replacement algorithm, 383
Setup time, 170
Sheet resistance, 116, 117
Shifter, 234, 235

barrel, 240
Shifting replacement algorithm, 387
Shockley, William, 1
Short-circuit current, 138
Shortest path problem, 290
Si, 4, 69
Signal flow graph, 353
Signature analyzer, 275
Silane, 73
Silicon compilation, 8
Silicon dioxide. See SiO2
Silicon foundry, 3, 11, 25, 96
Silicon nitride, 75
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Silicon. See Si
SIMD, 313
Simplex system, 381
Simulated annealing, 288, 307
Simulation, 3, 17

circuit level, 109
gate level, 109
mixed level, 7
switch level, 17, 109, 123, 145
transistor level, 17

Single assignment code, 348
Single fault assumption, 255
Single instruction stream multiple

datum stream. See SIMD
Single instruction stream single datum

stream. See SISD
Singular cover, 263, 279
SiO2, 5, 30, 69, 98
SISD, 312
SM, 229, 230
SOC, 17, 26
Sorting, 335
Source, 29
Space-time diagram, 324
Spacing rule, 78
Speed-up, 314
SPICE, 29, 61, 109, 142, 145

deck, 110, 111
model, 111
MOSFET model, 109, 142

Spikes, 140
Square wave, 147
SRAM, 224
SSI, 1
Stable signal, 162
Standard-cell, 11, 12, 23, 64, 90, 91,

94, 95, 100, 199, 281, 309
standard height, 12

State assignment, 167
State diagram, 167
State table, 168
State transition, 147

hazard, 151, 156
State variable, 149, 150
Static logic, 38

Stick diagram, 86
Structural design, 7
Stuck-at fault, 255

stuck-at-0, 255
stuck-at-1, 255

Stuck-open fault, 255
Sub-micron, 79, 122
Substrate body, 29, 30, 32
Substrate contact, 75
Subtractor, 66
Switch model, 34, 101, 112

nMOS, 32
pMOS, 33

Switchbox, 16
Symbolic layout, 77, 81, 88
Synthesis, 8, 69
Systematic approach, 91
System-on-a-chip. See SOC
Systolic array, 341, 374
Switch network

parallel, 40, 42
serial, 39, 43

T
τ, , 78, 133, 144
τ-model, 131
Technology, 78
Technology migration, 282
Temporal parallelism, 322, 323
Tessellation, 199
Testability, 22, 24, 271
Test, 22

bridging fault, 266
current-based, 267
exhaustive, 23, 254
functional, 22
pass-or-fail, 253
sequential circuit, 23, 270
stuck-open, 266
wafer, 22

Test generation, 267
stuck-at fault, 258

Threshold voltage, 31, 33
Throughput, 230, 324, 354
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Tilers, 200
Tiling, 199
Time-sharing, 312
TMR, 381
Token, 365
Transconductance

nMOS, 103
pMOS, 104

Transistor
n-channel, 5
p-channel, 5
arrangement, 91
sizing, 126

Transistor-transistor logic. See TTL
Transition delay, 255
Transmission-gate logic, 176
Transmission-gate, 55, 60
Transparency, 156, 160
Trickle transistor, 55
Triple modular redundancy. See TMR
Tri-state, 236

inverter, 60
logic gate, 60

Trunk, 298
TTL, 5
Tungsten, 76, 82
Turn-around time, 20
Two’s complement, 66, 213, 214, 215

U
Unity incremental gain, 109
Utilization rate, 354

V
Verilog, 6, 25
Vertical constraint, 299
Very high speed integrated circuit

hardware description language. See
VHDL

VHDL, 6, 25, 27
Via, 5, 15, 83
VLSI, 1

Voltage transfer characteristic, 105,
127, 144

Voltage-divider, 177

W
Wafer, 18, 28, 69

foundries, 69
Wafer scale integration. See WSI
Wavefront array processor, 341, 365,

374
Wavefront expansion, 292
Weak-0, 41, 54, 176
Weak-1, 41, 54, 176
Well contact, 75
Width rules, 78
Word width, 230
Write operation, 236
WSI, 377

X
Xilinx, 20
XOR, 100

Y
Yield, 22, 28

Z
Zipper logic, 191
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