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Preface

With the rapid advances in technology, the conventional academic and research 
departments of Electronics engineering, Electrical Engineering, Computer Science, 
Instrumentation Engineering  over the globe are forced to come together and update 
their curriculum with few common interdisciplinary courses in order to come out 
with the  engineers and researchers with muli-dimensional capabilities. The grow-
ing perception of the ‘Hardware becoming Soft’ and ‘Software becoming Hard’ 
with the emergence of the FPGAs has made its impact on both the hardware and 
software professionals to change their mindset of working in narrow domains. An 
interdisciplinary field where ‘Hardware meets the Software’ for undertaking seem-
ingly unfeasible tasks is System on Chip (SoC) which has become the basic plat-
form of modern electronic appliances. If it wasn’t for SoCs, we wouldn’t be driving 
our car with foresight of the traffic congestion before hand using GPS. Without the 
omnipresence of the SoCs in our every walks of life, the society is wouldn’t have 
evidenced the rich benefits of the convergence of the technologies such as audio, 
video, mobile, IPTV just to name a few. The growing expectations of the consumers 
have placed the field of SoC design at the heart of at variance trends. On one hand 
there are challenges owing to design complexities with the emergence of the new 
processors, RTOS, software protocol stacks, buses, while the brutal forces of deep 
submicron effects such as crosstalk, electromigration, timing closures are challeng-
ing the design metrics. Moreover the time to market pressure, process roadmap 
acceleration, mixed design flows have posed various challenges to the SoC designer 
community.  The present book ‘Unleash the System On Chip using  FPGAs and 
Handel C’, attempts to address few challenging issues of SoC design leveraging the  
FPGA platform with ‘C’ based programming methodology. 

Organization of the book

The book is divided into seven chapters. Chapter 1 introduces the concept of SoC. 
It visualizes the unique place of the SoC in the microelectronics arena and covers 
the market trends, challenges and opportunities for the budding professionals in this 
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field. Chapter 2 covers the essential details of the Handel C, which is extensively 
used in the book for making software hard. The third chapter presents details of 
sequential circuit design with appropriate case studies. The fourth chapter details 
the combinational system designing from the SoC viewpoint on the Xilinx FPGA 
platform. Chapter five throws light on placing the algorithms in the SoC paradigm 
using Xilinx EDK platform with emphasis on ‘Hardware-Software Codesign’. 
Chapter six is on the theme of rapid prototyping with unique design realizations 
of fuzzy logic controller, Network on Chip and ciphers. Chapter seven  extends the 
same theme, however with a different approach of using soft processor cores. 

The book is carved for all those who wish to be SoC designers with relatively less 
steep learning curve. One of the striking features is one can possibly realize the designs 
presented here with simple setup and free open source tools  such as system C. 

In these economically turbulent times, escalating efficiency and dropping risk while 
continuing to innovate would be decisive for the SoC professionals and industries 
to  ride out the economic slowdown. We are sure that this book will definitely serve 
as ‘Light House’ to guide the SoC designer community.

Interacting through blog and website

A blog is created by the authors exclusively to interact with the readers of this book. 
The URL for the blog is: http://drkamat.wordpress.com/ . We are looking forward 
towards your posts, comments and design queries on this blog. The readers may as 
well see the updates and the upcoming SoC cores at the Author’s homepage at URL: 
http://www.rkkamat.in  
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Foreword

System-on-chip technology (SoC) is a truly innovative and creative realm of VLSI 
that brings multiple functions integrated on a single silicon chip.  According to the 
electronics.ca research network, the SoC Technology market is currently estimated 
at nearly $14.4 billion.  The prophecy is further growth, with an average annual 
growth rate of 24.6%, reaching around $43.2 billion by 2009 i.e. by next year.  The 
market statistics mentioned above gives an insight as regards to this important and 
ever growing segment of VLSI technology.  The SoC with phenomenal growth rate 
is experiencing many challenges from the designer point of view such as narrowing 
development cycle without compromising the product functionality, performance, 
reliability and quality.  The computational complexity makes the SoCs to stand apart 
in the crowd of the custom and semicustom systems and poses unique challenges to 
the designers that can be described as “More than Moore” or “greater than equal to 
Moore”.  While the major players in this field like Infineon, Motorola, Intel, Wipro 
are achieving an annual growth rate of more than 100%, still the industry is evidenc-
ing “More is Less” with ubiquitous penetration of SoCs in every walk of society. 

How does the academic, research and industry keep up with the growing chal-
lenges of SoCs?  Here is a book that rightly focuses on the issues pertaining to 
digital SoCs.  It is a sort of brainstorming at the top level and then percolating the 
same at the individual modules with top-down approach.  This is the challenge that 
Dr. Kamat and his research team faced when they were exploring various aspects of 
this field.  Therefore, they have come out with a book that presents their hands-on 
experiences with digital SoCs.  The book in its unique fashion addresses the design 
issues, technological challenges, and market legacies by presenting a distinctive 
know-how based on FPGAs and C based methodology. 

The approach presented in the book is multifaceted.  It is solidly grounded on 
a tripod approach comprising of Xilinx FPGAs, Handel C and soft IP cores.  Dr. 
Kamat weds the trio with practical case studies and came out with a good number 
of building blocks to build successful design.  It is vital to appreciate that the digital 
semi-custom design is not a straightforward process, especially in the backdrop of 
increasing software on the chip which is referred to as ‘Software Parkinson’.  The 
authors have successfully showcased the hardware software portioning and con-
veyed their notion to the readers. 
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Chapter 1 of the book presents various essential attributes of the SoCs.  Exten-
sive survey is conducted by the authors to present the state of the art systems, the 
design stats quo and various design and market challenges. Chapter 2 covers various 
aspects related to the C based methodology.  The screenshots presented here makes 
the learning curve less steep for the novice designers.  Chapter 3 and 4 presents vari-
ous implementations of the sequential and combinational logic designs respectively.  
Chapter 5 gives an insight of customized arithmetic core designs.  The striking 
feature of this chapter is coverage of Xilinx EDK suite, the no-fee intellectual prop-
erty (IP) cores for designing embedded processing systems with Xilinx platform 
FPGAs.  Chapter 6 has addressed the fuzzy logic controller and Network on Chip 
designs with which the authors have tried to inculcate intelligence on chip.  This 
is further extended in Chapter 7 with hardware-software codesign methodologies 
using soft processor cores to realize the SoC design in narrowing time window.

Thus the authors have endeavored to present more than sufficient details to 
encourage the potential readers to dig at depth when dealing with the design prin-
ciples that appears to be institutively obvious. Undoubtedly the design community 
could use the book to discover the programming concepts that actually aids in real-
izing the SoCs.  They can as well extend the design methodologies presented in this 
book with the Open System C initiatives (OSCI) with the recent transaction-level 
modeling standard, TLM-2.0 that enables model interoperability and reuse, pro-
viding an essential framework for architecture analysis, software development and 
performance analysis, and hardware verification.  Thus in lieu of the Handel C, the 
designers can apply TLM-2.0 (which is freely downloadable) to show their SoCs 
the light of the day. 

To sum up I would like to quote that “ The only constant in life is change” which 
is experienced in its real sense in the field of SoCs through Moore’s law in Moore’s 
own words, “Several times along the way, I thought we reached the end of the line, 
things tapered off, and our creative engineers come up with ways around them.”  
The designer community will definitely appreciate that the present book is a piece 
of creative engineering. 

I wish all the best to the potential readers to realize their SoCs with the know-how 
presented in the book.

 Yogindra S Abhyankar

Yogindra S. Abhyankar is a Group coordinator working with the 
hardware technology development group, Center for Development 
of Advanced Computing (C-DAC), Pune, India for more than 14 
years.  He has worked on various projects in high performance 
computing (HPC) involving high speed inter-connects, system 
architecture and VLSI design. His current field of research is in 
the area of “Reconfigurable Computing”, one of the emerging 

approaches for speeding-up HPC applications.  He holds a MS degree from the 
University of Wisconsin, USA. 
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      The electronics industry is an amazingly fast changing and vigorous environment, 
driven by everlasting demand for innovation and technological advancement. As 
electronic manufacturers need to develop affluent features that will set apart new 
products, devices attain progressively more functions and head towards the com-
plexity beating the Moor’s law. These have resulted in narrow market windows 
and accelerate obsolescence cycles that naturally impose reduced development 
times.  

  State of art electronic devices requires chips that dwell in a small footprint, less 
hungry interms of power, and fast enough to deal with the sophisticated applica-
tions. Traditionally, semiconductor devices were developed with a notion of single, 
dedicated function. A system used to be analytical marriage of the subsystems for 
the intended application. However, the new era is all about the complete systems on 
a single chip. The state of the art systems have multiple processors or similar com-
plex functional blocks interacting with each-other and with the real world as well to 
satisfy the needs of the appliance. In recent times SoC has emerged as the promising 
solution to all the above mentioned requirements. Owing to their applicability in the 
sophisticated systems, the SoC’s are finding their place mainly in computers, com-
munication equipment, consumer electronic devices, and automotive applications. 
The Soc Market is fuelled by their growing demand in new consumer applications, 
which include mobile phones, and automotives. Yet another factor that has escalated 
the SoC demand is the growing digital convergence and the technological progress 
towards the heterogeneous systems being placed on-chip. However the end result 
faced by the designer community is tremendous pressure with the shrinking time-
to-market window. The complexity and heterogeneity of today’s SOCs has forced 
the designers to devote more time for the simulation, verification and prototyping 
aspects.  

  Like all electronic systems, System-on-Chip (SoC) are subject to the contradic-
tory trade-offs such as increase in complexity Vs decrease in time and costs. In addi-
tion, specific SoC characteristics aggravate difficulties in their design with growing 
multidisciplinary applications, closer hardware software codesign issues, demand 
for small footprint, custom Vs semicustom platforms to name a few.  

Chapter 1
Introduction



2 1  Introduction

  Chapter 1 will be introducing the leverage on an extensive intellectual property 
(IP) portfolio, systems knowledge and experience with technologies like ARM to 
target specific vertical markets with System-on-Chip solutions that meet a superset 
of application needs.  

   1.1      Prologue  

  System-on-Chip (SoC), the new brawny arm of the VLSI is today’s hot buzzword. 
“VLSI” technology is being evolved since its inception in an exponential way and 
more so with its convergence with other developing technologies such as telecom-
munication, consumer electronics, defense electronics to name a few. This simul-
taneous progress of the above mentioned technologies has thoroughly influenced 
the VLSI paradigm. ‘Design Automation’ or ‘Computer Aided Design’ that was in 
a very primitive stage in 70’s is well matured today with the incorporation of the 
heuristics and intelligent algorithms typically running on a workstation to yield use-
ful revisions in the design inputted.  

  It is worthwhile to estimate the classification parameters so as to get a clear cut 
idea of the design volume of today’s VLSI chips and to locate where the SoC fits 
on the VLSI canvass.         

    In the literature the word ULSI i.e. Ultra Large Scale integration is also used 
interchangeably with VLSI, however more precisely it refers to the number of com-
ponent count higher than 10 7 . The technical fraternity is also divided over the issue 
whether to take into the account the number of gates or transistors to demark the 
scale of integration. It is therefore more appropriate to use number of components 
as the basis as shown in Table 1.1. The SoC conception in the VLSI arena has 
emerged out of the need of the state of the art products dedicated towards a single 
functionality.  

    1.2      Exceptional Attributes of the SoC Technology  

  VLSI technology has evolved from first planar integrated circuit having two transis-
tors in 1961 to a Pentium 4 processor having 42 million transistors in 2001. This 
exciting and knowledgeable sector of Electronics industry has evidenced a 53% 
compound annual growth rate over 45 years. It is noticeable because no other tech-
nology has grown so fast so long. One of the factor that has fuelled this growth is the 
benchmarking standards provided by the visionaries such as Gorden Moore. Start-
ing from the pure Electronics the VLSI has now penetrated in the lives of a com-
mon man; thanks to the growing interdisciplinary approach with the participation of 
the Electrical, Electronics, Biological, Artificial Intelligence professionals coming 
together to make the chips intelligent, fault tolerant and adaptive to the ambient 
environment. The interdisciplinary developments mentioned above have fuelled the 
development of the SoCs.  
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  The main attributes of today’s SoC systems is their complexity, small foot-
print, spatial and temporal efficiency and ability to design with a small design 
team empowered by the sophisticated computational tools known a EDA tools. 
SoC design industry has shown the world few innovative things and set up cer-
tain innovations in the overall design methodology. “Design and Reuse” is one 
such principle devised by which saves the efforts in reinventing the wheel and 
empowers the designer with a rich and well tested library of the IP cores with 
well defined I/O interfaces. This principle was laid down way back in late 1970s 
by Carver Mead and Lynn Conway whose textbook showed how to use library 
elements with proven behavior and design rules to create “cookbook” designs. 

Table 1.1 Evolution of VLSI technology

Year Technology Maximum number of 
components / chip

Design methodology

1959–1965 Small-scale integration 
(SSI)

102 Manual (translation 
from electronics to 
graphics)

1965–1969 Medium-scale integration 
(MSI)

102–103 Manual but transition 
towards design 
automation

1969–1989 Large-scale integration 
(LSI)

103–105 Design abstrac-
tion and use of 
languages such as 
VERILOG and 
VHDL started

1989–till date Very large-scale integration 
(VLSI)

105–107 Sophisticated 
compute inten-
sive EDA tools 
such as simulated 
annealing, floor-
planning, critical 
path analysis, 
time skew, power 
optimization

1990 onwards Ultra large scale integration 
ULSI

Chips more than 1 
million transistors

 

1990–till date System-on-Chip Million gates + cus-
tomized hardware 
+ software

 

1990 onwards Wafer-scale integration  Entire silicon 
wafer is used to 
produce a single 
‘super-chip’.

 Three dimensional inte-
grated circuit

Multilayer active 
electronic 
components

On-die signaling 
using vertical 
interconnects, 
wafer-on-wafer, 
wafer-on-die, die 
–on-wafer
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Integration of third party tools in the design flow is yet another innovation the 
SoC industry has achieved by agreeing upon the standards and formats of the 
output of each design step. This offers the freedom for the designer to make use 
of the best tool to optimize the design. Mixed Design flow is now a common 
practice in the SoC field.  

  Specialty of the SoC design paradigm is to do the same things in alternate number 
of ways. A mere working design is not the final goal, but the same can be improved 
by employing novel techniques. For instance the architecture of any design can be 
written by employing the behavioral, data flow or structural architectures. Today 
the SoC industry is trying to get the synergisms of the hardware and software pro-
fessionals by stressing upon the abstract design flow by offering the designers C, 
C++ based environment that has been explored in-depth in the present book. This 
not only makes the design teams participative but also helps in making the design 
efficient as the well proven software algorithms can be utilized.  

  Design is easier in SoC than in other industries (as will be evidenced in the 
present book) such as mechanical systems because, the information at the sys-
tem level is entirely logical and connective. This information is transformed and 
augmented from stage to stage in the design process but its essential logical/con-
nective identity is preserved all the way to the masks. This is not possible in 
mechanical systems, where the abstractions are not logical homologues (much 
less homomorphs) of the embodiments and likely never will be. Instead, tremen-
dous conversion is needed, with enormous additional information required at each 
stage [23].  

  An enormous variety of SoC products can be obtained with varying specifica-
tions, though the flow is common due to the different manners of specifying the 
system.  

    1.3      Classical Taxonomy: A Holistic Perspective Extended 
Towards Integrated Circuits Classification  

  Taxonomy is the practice and science of classification. When applied to the field of 
Integrated Circuits one can get a complete picture of this rapidly evolved field in a 
span of few minutes.  

  The most interesting categorization with respect to the theme of this book is 
Application Specific ICs (known as ASICs) and general purpose ICs. The ASICs 
generally referred to as Application Specific Products to incorporate the categories 
like microcontrollers comprises of the following types of ICs: 

    •     System-On-Chip (SoC)  
    •     Semicustom ICs  
    •     Full Custom ICs     

  Application-specific ICs (ASICs) have the benefit of cramming maximum 
amount of circuitry for a particular function that leads to space efficiency with cost 
effectiveness. The main attribute that differentiates the SoCs from others is a mixed 
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blend of many basic functional technologies such as CMOS, bipolar, non-volatile 
memory, power DMOS, and Micro-Electro-Mechanical System (MEMS) to serve 
the given application. The full custom IC design is being followed traditionally 
since the pre-Design Automation era and is still continued with the back up of the 
state of art Electronic Design Automation (EDA) tools. The main intention of the 
customers behind choosing the Semicustom paradigm is as follows: 

    •     Design volume is small that poses difficulty in project finance.  
    •     Market lead time forcing the designers to test and validate on the fast prototyping 

platforms  
    •     Design security is to be maintained to protect the valuable IP     

  The implementation platforms for the semicustom ICs are the generic chips con-
sisting of reconfigurable arrays of logic. These days even it is a standard practice to 
go for pre-designed primitives such as RISC processors on these generic chips so as 
to get the advantage of the completely tested logic blocks around which the system 
can be built. However, the semicustom approach has an implicit compromise for 
the specifications as the implementation gets restricted to the predetermined logic 
array (called as Look Up Tables) laid down by the manufacturers. In the following 
point in depth account of the specifications called as VLSI design Metrics has been 
taken.  

  However the latest trend in the market is System-on-a-Chip (SoC) ASIC designs 
[22]. This field is highly driven by the EDA tools and with optimized combination 
of high-speed performance, state-of-the-art packaging technology, and the integra-
tion of complex capabilities onto a single chip.              

Fig. 1.1 Locating SoC in the VLSI spree

Silicon Manufacturing
Alternatives

Standard Components Application Specific ICs

Fixed
Application

Application
by Programming

Semi
Custom

Silicon
Compilation

Full
Custom

Logic
Families

Hardware
Programming

(MASK)

Software
Programming

TTL
CMOS

PLA
ROM

Microprocessor
EPROM,EEPROM

PLD

System
On

Chip
SoC



6 1  Introduction

    Way back in the year 1997, the SIA/SRC 1997 Technology Roadmap for Silicon 
indicated a technical capability to fabricate more than 1 B logic gates, or 64 Gbits 
of memory per chip by the year 2010. Although most of these predications were 
achieved much prior to the deadline, a notable prophecy though was not given due 
importance was “small number of standard chip types”. With the growing applica-
tions of the FPGAs with their customization for variety of applications manufactur-
ers are forced to curtail the number of standard chips making whatever possible by 
using the FPGAs. As compared to FPGA based semicustom ASICs, full custom 
ASIC evidences a longer design cycle and costlier Engineering Change Order. How-
ever it has its own undisputed market share due to the attributes of faster perform-
ance and lower cost when mass produced. FPGA offers attractive design platform 
for medium to high volume products. It is seen that many of the successfully tested 
design in the FPGA environment ultimately gets migrated towards the full custom 
platform due to power efficiency and minimal critical path.  

    1.4      System-on-Chip (SoC) Term and Scope  

  System-on-a-Chip (SoC) is today’s most promising revolution happening in the 
design of integrated circuits due to the possible unprecedented levels of integra-
tion. Subsequently, new design methodologies and tools are in demand to address 
the design complexity and other issues such as simulation, prototyping, verification 
and test bench generation. The term SoC however is tenuous. Various shades of 

Table 1.2 Comparison of full custom, semicustom and SoC ASIC

Full custom Semicustom Soc ASIC

Implementation centered 
around individual transis-
tors and their interconnects

Implementation centered 
around the predesigned 
generic array chips such as 
FPGA and CPLDs

Designed with the aid of core 
library, with major focus on 
RTL design with hard-
ware–software codesign, 
combination of various 
technologies and packaging 
schemes

Spatial and temporal effi-
ciency with the choice of 
right technology and usage 
of sophisticated EDA tools 
for optimization

Required 25–50 times more 
area leading to spatial 
inefficiency than other 
categories

Core based pretested design 
ensures early analysis of 
performance with highest 
level of space and time 
efficiency

High Non Recurring Cost of 
Engineering (NRE), costlier 
for less volume production

Low NRE cost, however more 
costly for large volume 
production as large Si area 
would be wasted for imple-
mentation of reconfigura-
tion logic

Cost saving varies widely, 
depends on production vol-
ume and design complexity 
but definitely less than the 
semicustom
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dimensions of the most evolving SoC are reflected by the definitions given by vari-
ous sources: 

    •     The System-on-Chip, popularly referred to as SoC, is a chip that holds all of the 
necessary hardware and electronic circuitry for a complete system. It includes on-
chip memory (RAM and ROM), the microprocessor, peripheral interfaces, I/O
logic control, data converters, and other components that comprise a complete 
computer system.  

    •     System-on-Chip technology is the ability to place multiple function “systems” on 
a single silicon chip, cutting development cycle while increasing product func-
tionality, performance and quality. Even if the semiconductor industry achieved 
increasing levels of integration, the success of this double integration – processes 
and functions – involves more capabilities than originally expected [1].  

    •     System-on-a-Chip (SoC) technology is the packaging of all the necessary elec-
tronic circuits and parts for a “system” (such as a cell phone or digital camera) on 
a single integrated circuit (IC), generally known as a microchip. For example, a 
system-on-a-Chip for a sound-detecting device might include an audio receiver, 
an analog-to-digital converter (ADC), a microprocessor, necessary memory, and 
the input/output logic control for a user – all on a single microchip [2].  

    •     The electronics for a complete, working product contained on a single chip. 
While a microcontroller includes all the hardware components required to 
process instructions, an SoC includes the computer and all required ancillary 
electronics. For example, an SoC for a telecom application might contain a 
microprocessor, digital signal processor (DSP), RAM and ROM. It might also 
include a graphics processor. The more functions contained within the chip, the 
more systems can be miniaturized for handheld use with an ancillary reduction 
in power [3].  

    •     A SoC perception from mixed signal point of views is “System-on-Chip refers to 
specific conglomeration of chips to be soldered onto a single board. Such Printed 
Circuit Boards combined on a single platform to work together in a synchronous 
manner in order to do several processes simultaneously is called System-on-
Chip” [14].     

  Traditionally the System-on-Chip design has been defined as ICs with embedded 
processors, memory, and other functions that make them much more complex than 
their basic building-block semiconductor counterparts. However, these days the defi-
nition is progressing, to incorporate more application or customer specific products 
than standard ICs because of the higher levels of integration of the latter as compared 
to the former. The most appropriate perspective of the SoC looking at the various 
trends of IP reuse, Hardware-Software codesign and application specific usage is 

    •     A System-on-Chip is an IC designed by stitching together multiple stand-alone 
VLSI designs (cores) to provide full functionality for an application. Accordingly 
an SOC comprises of its own processor core (often referred to as an “embedded” 
processor), and will further comprise one or more cores for performing a range 
of functions often analogous to those of devices in larger-scale systems [16].     
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  The SoC growth is motivated with the following advantages [19]: 

    –      Higher productivity levels  
    –     Lower overall cost  
     –      Lower overall power  
     –      Smaller form factor  
     –      Higher integration levels  
     –      Rapid development of derivative designs      

    1.5      Constituents of SoC  

  The evolution of SoC technology with novel functionality is booming. Shrinking 
process technologies and increasing design sizes have led to highly complex bil-
lion-transistor integrated circuits (ICs) [4, 5]. As a consequence, manufacturers are 
integrating increasing numbers of components on a chip. A heterogeneous System-
on-a-Chip (SoC) might include one or more of the following components: 

    •     General purpose processors cores, digital signal processor cores, or application 
specific intellectual property (IP) cores  

    •     An analog front end  
    •     On-chip memory (including a selection of ROM, RAM, EEPROM and Flash)  
    •     I/O devices,  
    •     Timing references including oscillators and phase-locked loops.  
    •     Peripherals including counter-timers, real-time timers and power-on reset 

generators.  
    •     External interfaces including industry standards such as USB, FireWire, Ether-

net, USART, SPI.  
    •     Analog interfaces including ADCs and DACs.  
    •     Voltage regulators and power management circuits  
    •     On chip communication protocols     

   1.5.1      Processor Cores for SoC  

  Processor core is the heart of the SoC and there exists various implementation strate-
gies such as Control processor with RISC or CISC philosophy, Application Specific 
High-performance controller, Digital Signal Processor, Audio processor, Network 
processor and finally the most popular Video processor.  

  The processor development for the SoC applications is revealing different 
trends.  

  There is a great demand for the Customizable processors. These customizable 
processors are likely to bridge the performance gap between hardwired logic and 
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general-purpose processor. In the current SoC devices, the range of applications of 
the CPU has been so expanded that the embedded CPU is required to determine the 
optimum solution for each application. The requirements are getting complicated with 
the advancements of functions every year [6]. It has been reported that the embedded 
CPU in a SoC must feature a high processing and transfer capability for operations 
such as video compression and expansion, by accurately estimating the overall sys-
tem bus structure and the frequency transfer band of each of its sections. For this pur-
pose, a technique is often used to build the CPU architecture and bus configuration 
independently and distribute data processing that would impose a heavy load on a 
single CPU to multiple processors, DSPs and exclusive hardware. As a result of such 
a solution, the requirements for embedded CPUs are now focused on flexibility and 
scalability in system construction as well as on processing performance [6]. Even 
the giants in general purpose processor manufacturing such as Intel has marked its 
entry into the market for System-on-Chip (SoC) integrated circuits. Known as Atom 
processor, Intel’s low-power processor aims at portable applications, and all set to 
penetrate mobile and communications markets. Intel is currently working on 15 SoC 
projects, all tailored for new growth markets, according to Gadi Singer, general man-
ager of Intel’s SoC enabling group [7]. Another prevailing trend especially in case of 
the large System-on-Chip (SoC) design today is to go for multi-processor cores in it. 
Each of the embedded core will take care of different subsystems such as handling 
communications, audio or video, alongside one or more host and application proces-
sors. However, their debugging is posing more challenges [8].  

  There are contradictory views regarding the processors for the SoC arena. 
Designer have gone for the multiprocessor approach with the ASICs and customiz-
able hardware glue logic, to achieve the low power budgeting. However the above 
mentioned approach suffers from the lack of interoperability and possibility of 
redundant logic and lacks flexibility.  

  Researchers also realized that adding a processor with analog functionality helps 
in reducing the costs, power consumption and gives higher efficiency in perform-
ance of the Mixed Signal SoC applications, however at the expense of higher gate 
count and large memory size for the digital components in the system.  

  Configurable processor families gain new hardware options and software tool 
enhancements to appeal to an even wider audience of SoC designers. For instance 
Tensilica has upgraded its two Xtensa configurable processor families (the Xtensa 
7 and Xtensa LX2) with new hardware options and software tool enhancements 
that make it appeal to an even wider audience of SoC designers Highlights of these 
capabilities include a new, smaller general purpose register file option, new integer 
multiplier and divider execution unit options, two new Amba 3.0 bridge options, as 
well as an easy-to-use new configuration tool that analyses source C/C++ code and 
automatically suggests VLIW (very long instruction word) instruction extensions 
that lead to 30–60% improvements in general purpose code performance. These 
new capabilities provide designers with the most productive configurable processor 
design environment, with automated features that ensure each processor design is 
correct by construction.         
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Sr. No. Name of the SoC 
processor/s or platforms

Manufacturer Applications

1. Intel® EP80579 Integrated 
Processor family

Intel Security, storage, commu-
nications, and industrial 
robotics

2. MPC8540 Emerson Embedded computing

3. TMS320DM335 Texas Instruments Digital Media System-on-
Chip (DMSoC)

4. e300, e500, e600 and e700 Freescale 
Semiconductors

Network acceleration, 
RapidIO interconnect, 
and Passive Optical 
Networking

5. AX110xx family ASIX Small form factor, low-cost, 
embedded and industrial 
Ethernet applications

6. EyeQ2 ST Microelectronics Computationally intensive 
applications for real-time 
visual recognition and 
scene interpretation, and 
has cabin-grade automo-
tive qualification for use 
in intelligent vehicle 
systems

7. Atlas processors Centrality 
Communications

Wireless and GPS-enabled 
devices such as smart 
phones, PDAs, and 
automotive navigation/
telematics systems

8. PVG350MDK Provigent Flexible development 
platform for broadband 
wireless transmission 
systems

9. SMP8654 media processors Sigma Designs Advanced Communica-
tions’ IPv6 set top

boxes (STBs)

10. HiDTVTM Video Processor 
Family

Trident High-definition MPEG2 
decoding, system 
processing and video 
processing features 
to deliver exceptional 
video fidelity and system 
functionality

11. Tegra 600 and 650 Nvidia High-definition video 
on handheld personal 
computers

12. LX-001 uP Grid Connect Embedded communica-
tion or co-processor 
applications

13. PMC253 Kontron 32-bit Fieldbus controller 
for PROFIBUS

Table 1.3 Latest SoC processors in market
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      1.5.2      On Chip Memory in SoC  

  The main advantage of the on-chip memory is minimal latency. In contrast to main 
memory, whose latency is hidden by caching, scratch pad memory, a type of on-chip 
memory currently used in several SoCs, can always be accessed at low latency. In 
contrast to caches this memory is not managed by the hardware, it is a part of the 
physical address space. However the usage of the above mentioned on-chip memory 
has to be managed by the operating system and applications [15]. Another major 
reason for the growing trend of embedded nonvolatile memory is due to the power 
saving achieved.  

  It has been reported [17] that the organization of on-chip memory in embedded 
processors varies widely from one SoC to another, depending on the application and 
market segment for which the SoC is deployed. Designer has wide choices ranging 
from on-chip SRAM, flash, DRAM and even it is possible to judiciously combine 
the onchip and cache memories to get the optimum performance.  

  In the recent SoCs, one-time programmable antifuse (OTP) memory macro is 
becoming common due to the following [48]: 

    •     Most of the SoCs do not require hundreds or thousands of rewrite cycles.  
    •     The altering parameters such as Code storage, calibration tables, and setup 

parameters can be changed using the memory management algorithms.  

Sr. No. Name of the SoC 
processor/s or platforms

Manufacturer Applications

14. WinPath2 family of 
processors

WiMAX WiMAX basestation (BTS) 
applications

15. AC494 Voice over packet 
family of SoC

Audio Code Echo controller, Adaptive 
jitter buffer, caller ID

16. MB93461 Fujitsu Microelec-
tronics Asia Pvt 
Ltd

Video/audio data compres-
sion techniques in the 
Digital A/V and Multi-
media arena

17. PC3xx family picoChip Baseband processors spe-
cifically targeted at the 
fast-growing femtocell 
market

18. Geode SC3200 National 
Semiconductor

Set-top boxes and network 
terminals

19. SAF3550 processor Philips Cost-effective automotive 
HD Radio solution

20. CX9543X Conexant Fax, answering machine, 
speakerphone, and 
intercom

Table 1.3   (continued)
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    •     Antifuse OTP has small footprint and hence leads to minimal area-related cost of 
the die.  

    •     Due to one time programmability, the reliability is good.  
    •     Due to small footprint and hence the lower value of capacitance gives the advan-

tage of reduces precharge and switching power consumption.     

  The current-generation low-power SDRAM (LPDDR1), available since 2003, 
still uses relatively high-voltage (1.8-V) I/Os and is limited to low speed (200 MHz) 
[49]. However, they are soon hopefully going to be replaced by the Low-power 
DDR2 (LPDDR2), a next-generation low-power memory technology for mobile 
and embedded designs that offers higher speed, lower- voltage operation, larger 
capacities and lower pin count than the current generation – and lets nonvolatile 
memory share the same bus as SDRAM as well.  

    1.5.3      SoC Buses  

  In System-on-a-Chip (SoC), the bus architecture plays a vital role to achieve the 
shorter propagation delay. The conventional buses such as USB, FireWire, Ether-
net, USART, SPI are still being used, but suffers severely in the multiprocessor 
environment owing to their global arbitration mechanism. This further leads to the 
problems such as congestion, leading to lowered bandwidth and higher latencies not 
acceptable in systems where deterministic timing is crucial [18].  

  The AMBA architecture from ARM has been widely adopted in the SoC 
paradigm due to its various verification attributes such as hierarchy of physical 
interconnect, unambiguous protocols and growing body of testbench and formal 
verification infrastructure [20]. Another standard BUS architecture which is not 
copyrighted is Wishbone. This public domain bus interconnect platform is known 
for its flexibility for use with semiconductor IP cores. It also exhibits design reuse 
by alleviating System-on-Chip integration       problems by creating a common inter-
face between IP cores [21]. The above mentioned properties of Wishbone improves 
the portability and reliability of the system, and results in faster time-to-market for 
the end user.  

  Researchers have recently introduced a SoC design environment with FPGA 
based emulation system with automated bus architecture generation. This frame 
work uses AMBA monitor for debug ability, that samples all bus activities in pin 
and cycle accurate way. The prototype system can run with clock speed which is 
close to that of real system and thus assures exhaustive verification and design space 
exploration. By using the automatic bus generation environment, bus architecture 
can be generated from the bus specification in an easy and quick way with config-
urable bus components library. Using this, complicate SOC design processes from 
the specification to the prototyping system can be done in very small amount of time 
and effort [22].  



1.5  Constituents of SoC 13

    1.5.4      Timing References for SoC  

  As the modern SoCs migrates towards a much larger scale of integration, it usually 
needs half a dozen or more clock signals, running at various frequencies. Today’s 
overall timing design usually involves accurate generation, synchronization and dis-
tribution of multiple frequencies to drive the operation of different modules such as 
the core processor, analog front end, i.e., audio codecs, as well as various periph-
erals. These numerous clocks running at much higher speeds make the noise and 
interference a big concern for reliable system operation [51].  

  Timing within all digital and most mixed analog/digital systems comes down 
to one device –the clock generator. But with mounting system complexity, a sin-
gle clock oscillator delivering just one digital signal is no longer adequate. These 
days, systems may require a half-dozen or more clock signals, each at a different 
frequency [45]. The modern SoCs with Megahertz clock, suffers from large jit-
ter due to variable transmission latency. Phase-locked loops (PLL) derive accurate 
sample clocks by jitter filtering. The digital implementation of phase detector, loop 
filter, and clock dividers is straightforward, whereas a digital substitute for analog 
VCOs is a challenging problem [46]. Therefore the former is preferred in most of 
the implementations.  

  More serious issues of concern in modern SoCs with multiple clock signals are 
noise interference, the mutual interference among clocks and other signals. This 
could be reduced through good layout and shielding. Different from these methods 
that passively bypass EMI, changing the clock signal itself through spread-spectrum 

Fig. 1.2 SoC trends
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clocking (SSC) helps actively reduce the EMI generation and is much cheaper and 
flexible with today’s IC capabilities [52].  

    1.5.5      Voltage Regulator and Power Management Circuits  

  As the SoCs are progressing towards the low power theme, the voltage regulator 
and power management subsystem designs are becoming increasingly critical in the 
applications such as mobile phones due to the GSM noise, occurring with the RF 
transmitter switching and subsequent draining of high current from the regulator. 
The remedies suggested are [5]: 

    •     Careful analysis of the PSRR specification over the complete frequency range to 
compute the sensitivity of the regulator to any possible noise source.  

    •     Selection of a linear regulator with very low drop-out.  
    •     Selecting the regulator to maintain regulation over the full range of the battery 

voltage.  
    •     Computing the metrics ‘effective dropout’ rather than the steady state dropout to 

evaluate the residual noise at the linear regulator output.     

    1.5.6      On Chip ADCs  

  ADCs have always played a key role in several application fields of the communica-
tions industry. In recent years, the importance of ADCs has been growing mainly 
due to the developments of the UWB system and Software Defined Radios (SDRs). 
Nevertheless, in the last 20 years the panorama has consistently changed. As a mat-
ter of fact, the requirements for resolution improvements has slowed down, while 
the demand for higher sampling speeds keeps increasing. Finally, power reduction 
has become the major challenge in ADCs design [53, 54]. Flash ADC architec-
ture is also known for its high speed operation and is a popular implementation in 
few SoCs. Here an analog input voltage is simultaneously compared by 2 n–1  voltage 
comparators in an n-bit flash ADC. The comparators are, perhaps, the most critical 
components in a flash ADC. The high-speed comparators are realized with differ-
ential amplifiers using bipolar transistors. The comparator realization in the CMOS 
flash converters consists of auto-zeroed inverter with switched capacitor input.  

     1.6      Sprawling Growth of SoC Market  

  SoC is the segment of the semiconductor industry witnessing a very high growth 
rate and is all set to dominate the market. The main factors fuelling this growth 
are time-to-market pressures and the ever increasing competition to spur off the 
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Moore’s law with the growing need to embedded more functions in silicon. Way 
back in the year 2001, the market analysts predicted robust market growth for 
SoCs [9], with a growth rate as high as an average of 31% a year. However, with 
the market driven phenomena such as drastic reduction in the overall cycle time 
of the system with demanding superior performance levels; products migrat-
ing to the deep sub-micron complexities, testability issues and time-to-market 
pressures has resulted in the actual figures much higher than those predicted. 
The growth rate of the SoC market has witnessed business exceeding 345 mil-
lion devices in 2003 and 1 billion units in 2004 [10]. United States represents 
the world’s largest SoC market, worth an estimated US$10.4 billion in 2007, 
as stated in a recent report published by Global Industry Analysts, Inc. Asia 
(excluding Japan) and Europe are the second and third largest markets respec-
tively. The three regions collectively account for about 80% of the global Sys-
tem-on-a-Chip market [12].  

  A robust global market growth of SoC with the analysis is presented in a market 
report ‘System-On-Chip – A Global Strategic Business Report’ by Global Industry 
Analysts [11]. A excerpt of the report gives interesting statistics. United States repre-
sents the world’s largest SoC market, worth an estimated US$10.4 billion in 2007, as 
stated in a recent report published by Global Industry Analysts, Inc. Asia (excluding 
Japan) and Europe are the second and third largest markets respectively. The three 
regions collectively account for about 80% of the global System-on-a-Chip market. 
The global and regional markets are expected to grow at CAGRs ranging between 
20% and 35% through 2010. Market for SoCs Based on Embedded IP is expected 
to grow at a CAGR of 29% for the period 006–2010, while the Standard Cell based 
SoCs market is projected to expand at 21%. On the end-use front, consumer elec-
tronic devices offer the highest growth opportunity with a CAGR of 31% between 
2006 and 2010, followed by automotive applications at 30%. The main reason attrib-
uted for the growth is demand for high-speed and low power consuming chips which 
has expected to increase the growth rate by more than 150% between the years 2006 
and 2010.  

  According to new report, System-on-a-Chip: Technology, Markets, SOC compo-
nents are being propelled by the following three factors [13]: 

    •     SOC average selling prices are higher than standalone chips, as is to be expected 
due to integrated functionality.  

    •     SOC unit sales are definitely cannibalizing the consumption volume of the 
standalone micro-processor unit (MPU), application-specific integrated circuit 
(ASIC), field programmable Gate Array (FPGA), and digital signal processor 
(DSP). Therefore, there is the occurrence of SOC devices simultaneously pen-
etrating into the existing markets of most other standalone chips.  

    •     The growth of SOC components has, in fact, led to the birth and popularity of 
new end-use devices that were hitherto deemed impossible to make or to mar-
ket. Examples include ultra-small mobile gadgets of the future, ultra-wideband 
Internet, and certain automobile gadgetry. In essence, SOC has introduced new 
end-use markets.     
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    1.7      Choosing the Platform, ASIC vs. FPGAs  

  There is lot of discussion regarding the futuristic evolving platform for the SoC 
implementation. On one hand although it is agreed that there is and will be always 
performance gap between ASICs and FPGAs, but still many designers are going 
for the FPGA based platform. if utmost performance is required. However, the role 
of full custom design was seen to be diminishing, especially in large SoC systems. 
The common thing between the ASIC and FPGA is their functionality fixed by 
the designer and always dedicated for a particular application. Today, full custom 
ASICs represent a small percentage of the ASIC market because gate arrays, struc-
tured ASICs and standard cells turn circuit designs into working chips much faster 
and at much less cost. Such chips have greatly improved in speed over the years and 
provide the necessary performance for many applications. The speed advantage of 
a full custom ASIC is not as relevant as it was in the past. It is used primarily for 
devices such as microprocessors that must run as fast as possible and will be pro-
duced in huge quantities [94].  

      In nutshell the SoC realization strategies seems to move in the following 
directions  

   1.7.1      Full Custom Design  

  Full custom design flow adopts a bottom-up approach in which the design com-
mences with the starts creation of library of cells at lower level of abstraction which 
then combined to realize the intended system. Generally the primitive cells used 

Fig. 1.3 SoC realization strategies
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for the design have a structures layout interms of transistors along with the layout 
at mask level supported by the functional model for simulation and floor planning 
achieved by place and route algorithms. A full custom design empowers the designer 
with overt control over the physical structure of the design. Here the designer has 
to carefully work out the logical structure of the design and the rest of the task of 
converting it into the physical design is undertaken automatically by the EDA tools. 
Custom design gives much better circuits because it results in structured wiring 
where key signals     have much smaller wire loads [96].  

  The advantages of ‘Full Custom’ approach are as follows: 

    •     Smaller die and hence reduced footprint, and lower component cost.  
    •     Possibility of mixed design (analog and digital on the same chip).  
    •     Possibility of high degree of optimization in both the area and performance.  
    •     Integration of pre-designed and pre-verified blocks.     

  The areas in which an application can benefit from a full custom design are 
uniqueness of function, performance and cost. The more unique and demanding 
the application is, the greater the need for a full custom design. On the other hand, 
almost any design can become less expensive to implement with a full custom 
design if there is to be a large production volume [95].  

  The negative points of the full custom design are: 

    •     Time consuming and error prone  
    •     Higher Non Recurring Engineering (NRE) cost  
    •     Support of sophisticated EDA tools required  
    •     Necessitates Experienced Designer with good skills set.     

  However, the latest work [96], reveals that the full custom SoC can be greatly 
improved without increasing design time by judiciously employing a number of 
custom design techniques including floor planning, pre-routing critical signals, til-
ing data-paths, and generating crafted cells.  

    1.7.2      Standard Cell Based Design  

  A standard cell based design approach is gaining popularity amongst today’s dig-
ital SoC designs. A standard cell is generally a group of transistor along with their 
interconnect structures, given in a defined layout. The individual cells are treated as 
the primitives associated with the Boolean logic function or complicated sub sys-
tems such as adders, processors etc. These cells are further arranged as a library and 
made available to the designer as pre-designed pre-verified primitives, which can 
be readily included in the design as per the requirement. Design with the standard 
cells makes it possible to globally apply advanced optimization algorithms, which 
reduce the manual effort required and improve the quality of the synthesized logic 
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during layout. The use of basic standard cell elements reduces complexity to the 
extent that a complete chip design can be handled flat by layout and test genera-
tion tools, removing the need for artificial floor plan boundaries [97]. However, as 
more analog functions are performed by digital circuits, the sophistication of the 
standard-cell blocks becomes critical to SoC performance [98]. IC designers are 
compelled to closely monitor the benchmarks of the cells from the compatibility 
point of view and fitting them with the other blocks.  

    1.7.3      Design Based IP-Cores, Hard and Soft Macros  

  IP cores are nothing but the library of modules (blocks) that can be used in a design. 
The IP cores can be designed in-house (as is done in this book) or licensed from 
a vendor. They are the “Macro” structures with specific standard function that can 
be flexibly being adapted and reused in SoC designs. Although the IPs are ready to 
use design module their analytical marriage with the existing system poses several 
issues. One of the important ones is ‘Floorplanning’. It plays an vital role in an over-
all physical design cycle and is instrumental factor for the quality of final layout such 
as area and performance. The main factors considered in floorplanning are packag-
ing, aspect ratio, routability, timing, and compatibility with the pre-placed macros. 
The routability and interconnect aspects are very crucial as the wire length has to 
be estimated during the floorplan phase. There are several methods to estimate the 
wire length, such as semi-perimeter method, complete graph, and minimum chain, 
source to sink connection, steiner tree approximation and minimum spanning tree 
[99]. The real design issue arises when there is requirement of multiple hard, soft 
and firm cores in the same SoC. In such a circumstances, ‘Functional Partitioning’ is 
used to eliminate routing problems when the SoC is laid out on silicon [100].           

    1.7.4      SoC Through SemiCustom ASICs  

  The terms “gate array” and “semi-custom” ASIC are interchangeably used by the 
SoC community and stands for realizing the given design by extensive use of the 
following platforms: 

    •     Standard Cell Based Platform: Here the design realization is a mix of standard cell 
libraries, mega-cells, full-custom blocks, system-level macros etc. Although, the 
design approach is reasonable fast, and economical, it has spatial inefficiency.  

    •     Gate Array Based Design: Here the realization is a mix of channeled (customiza-
tion of interconnect), channel less (customization of top mask layers) and struc-
tures gate arrays (customization of interconnects with well defined structured 
blocks).  

    •     Programmable SoC Platforms: In this approach, the implementation is based on 
PLD (PAL, PLA, GAL), CPLDs, FPLDs and FPGAs. With the declining price of 



1.7  Choosing the Platform, ASIC vs. FPGAs 19

Tab4Tab4

the FPGAs from (1 million gates drop from $200+ to <$20) and their predictable 
development time, accelerated prototyping, programming through simple PC 
based setup has attracted the SoC community towards them. Since the present 
book adopts the FPGA based SoC implementation, a detailed analysis regarding 
the issues pertaining them have been discussed in depth in the following part of 
the chapter.     

    1.7.5      SoC Realization Through Structured ASIC  

  Just for the sake of completeness the structured ASICs are discussed here. They 
fall somewhere in between an FPGA and a Standard Cell-based ASIC and mainly 
used to realize mid-volume level designs. Structured ASICs provide a quick-turn 

Table 1.4 Comparison of Macros

Comparison feature Hard macro Soft macro Firm macro

Format Hardware IPs with 
physical pathways 
and wiring patterns, 
mostly in GDSII 
format

Synthesizable RTL, 
VHDL, Verilog. 
System C, Handel C

Netlist (soft macro + 
layout information 
in script)

Reconfigurability Not reconfigurable More flexible and 
Reconfigurable

Flexible and portable

Platform Platform and manu-
facturing technol-
ogy dependent, 
Modeled as a 
library component.

Platform impendent, 
incorporable in 
any manufacturing 
technology, Synthe-
sizable with several 
technologies

Platform dependent 

Advantages Optimized blocks 
interms of 
power/area/timing.

Editable hierarchical 
blocks

Optimized for spatial 
and power Speci-
fications, Flexible 
and portable

Disadvantages Non editable IP 
blocks

Vulnerable to protec-
tion, very much 
dependent on tech-
nology and tools, 
Final specifications 
depends on the tar-
get platform imple-
mentation, Timing 
not guaranteed

Vulnerability same as 
that of soft macros

Applications Full Custom ASIC preferred in SoC 
implementations

A compromise 
between soft and 
hard macros, they 
are preferred in SoC 
implementations
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ASIC solution, with lower non-recurring engineering (NRE) cost, and equivalent 
power and performance to that of an ASIC. They reportedly fill the gap between 
the ‘Cell based Designs’ and ‘FPGA based Designs’. The products have a much 
lower cost point and 5X or more density than FPGAs. They can also support lower 
volumes than a cell-based or full-custom ASIC approach [101]. A Structured ASIC 
comprises of pre-diffused blocks in standard cell and available metal programmable 
blocks. Due to certain risks with the structures ASIC platform such as IP-related 
risks, discontinuing the IP from the vendor, incompatibility of the IPs etc. there 
was some slowdown in this sector. But they are now thriving due to their positive 
reward side that offers a substantial portion of the capacity, performance and energy 
efficiency of cell-based design, but with a lower NRE, a simplified design flow and 
a faster turnaround time. Thus they now occupy an important space between the 
simplest cell-based designs and the most powerful FPGA applications [102].  

    1.8      FPGA Based Programmable SoC  

  Since the present book emphasizes on the SoC design in the FPGA paradigm, the 
issues pertaining to it are discussed here in depth.  

  The FPGA technology is matured and evolved over a period of time so much 
that it is now preferred platform for the SoCs. With an array of computational ele-
ments and the routing wires among them, the capability of reconfiguration on the fly 
through configuration bit programming has made the designers to use the platform 
not only for the semi-custom implementation, but also for the full custom SoCs.  

Fig. 1.4 Advantages of FPGA for SoC realization
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      Apart from the advantages of FPGA for realizing SoC summarized in Fig. 1.4, 
parallelism can be achieved by intelligent design portioning. Moreover, the prime 
advantage of designing a SoC to FPGAs for production is the short span from con-
cept to production. Since FPGAs act as their own prototypes, the time needed for 
each verification iteration is minimized. FPGAs also allow the flexibility of specifi-
cation changes at anytime during the flow. Of course, serious specification changes 
could still have a huge impact on schedule but changes can be implemented at any 
time during the flow without the added cost of silicon re-spins [122].  

  The rambling growth of the SoC devices based on FPGA has lead to the emer-
gence of platform FPGAs which have rich collection of on chip resources such as 
CPUs, SRAM, versatile general purpose IO ports, high speed serial links, in addi-
tion to the field programmable logic cells. Collection of these functionalities that 
may be implemented as hard or soft IP cores makes the platform FPGAs extremely 
flexible reconfigurable SoC devices: they can be customized to a big variety of 
complex applications by adequately configuring and programming a needed set of 
available on-chip components. Several programmable logic manufacturers offer 
platform     FPGAs. Altera, Atmel, Xilinx and others propose devices that integrate 
hardware cores of ARM, MIPS and PowerPC CPUs and/or allow for instantiation 
of soft processor, DSP and microcontroller cores [123]. For the programs in this 
book we have opted for devices from the Xilinx Spartan III, in most of the cases 
and Virtex-II in some cases because their features and evolution path seemed most 
adequate for our needs when technology choices had to be done.  

     1.9      Orientation of the Book  

   1.9.1      Approach Adopted  

  The comprehension of building System-on-Chip in this book is explored as a tripod 
approach. To make the tripod of the SoC steady, we have resorted to three important 
things viz. Handel C based programming methodology, Xilinx FPGAs for realiza-
tion and prototyping purpose and Soft IP Core of RISC Processor i.e. picoblaze for 
developing the Embedded applications.  

    1.9.2      Motivation Behind the Approach  

  Designing the state of art complex SoCs using the traditional RTL methodology 
poses several difficulties such as lengthy design and realization cycles because they 
are at lower level of abstraction Electronic System Level (ESL) tools attempt to 
address this design complexity problem. The motivation behind the extensive use of 
the Handel C based design methodology is to give an equal opportunity to the soft-
ware dominated application sector interested to inculcate their intelligent algorithms 
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on the SoC for whom the some C based design methodology would be more closer 
to their skill set. Even for the system designers the Handel C based design method-
ology paves various benefits such as small code size, faster Modeling, Simulation 
and Verification and exploring the design space effectively apart from the increas-
ing the reusability of the design. As evident from the system design case studies 
in this book the C-based languages, coupled with block-based approaches are the 
most efficient approaches (in all sense design efficiency, productivity improvement, 
abstraction level etc.) and thus these ESL design approaches leads to transaction 
level models (TLM). In consistent with the reported versions of many designers, 
Handel-C, based on the ANSI C standard, is a mature, high level language that adds 
a least of easy to understand hardware-oriented constructs for design implementa-
tion and even the concurrency is explicit using the statements such as par (parallel). 
The important timing issues in SoCs can be handled by rules within the language 
with the aid of simulation intensive environment using additional types and com-
munications statements such as channel.  

  The Handel C based design methodology effectively bridges the gap between 
the behavioral and structural abstractions as shown by means of modified Gajski’s 
Y-chart in Fig. 1.5.  

  The Handel C cores of the various modules developed in this book are further 
converted into the EDIF format and then again converted to the bitstream using 

Fig. 1.5 Handel C methodology used in the book justified by using the Gajski’s Y-chart
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the Xilinx Webpack Version 9.2 for prototyping, realization and verification on the 
Spartan III FPGA. Other third party tools such as Modelsim have been incorporated 
in the design flow wherever the need arises.  

  The most striking know-how given in this book is the interfacing of the Han-
del C based IP with other soft IP cores using Xilinx EDK tool. This is well illus-
trated by using an example of ‘Adder’ interfaced to the Xilinx soft IP processor core 
‘microblaze’. Looking at the importance of the Network-on-Chip (NoC) paradigm 
in SoCs, few implementations pertaining to NoCs are presented in the book. The 
book also demonstrates the accelerated design of few embedded applications using 
the Xilinx soft processor core i.e. picoblaze.          

   1.9.3      Setup Used  

  FPGA kits are available as custom built or commercial and come in a wide price 
spectrum from different vendors. The designers can test the Handel C cores devel-
oped in this book on any custom FPGA prototyping board having standard JTAG 
connectivity from PC. There are again wide variety of choices for FPGA to PC 
interfacing. On the PC side the kits can be connected using different options such 
as RS232, Parallel Port, USB, PCI, Ethernet etc. On the kit side there is standard 
JTAG interface and a parallel download cable. The board which the authors have 
used is shown in the Fig. 1.6. However, in order to support the unified hardware and 
software environment for the soft IP cores developed in Chapter 6, we have used the 
Spartan 3E starter kit of Xilinx.      

Fig. 1.6 Photograph of the setup used for realization of the SoC cores



25

      Established C-based design flows now provide a rapid, unproblematic design flow 
from algorithms to FPGA implementation. With the apt coding styles, methodology 
and design flow, SoC designers can get tangible results from their abstract code. The 
motivations behind the usage of C based paradigm are ease in SOC design and test-
ing, possibility of working at varying levels of abstraction, effective hardware/soft-
ware codesign, focused simulation, effective debugging and quick verification. This 
chapter introduces Handel C a powerful language superset of ANSI-C for designing 
SoCs.  

   2.1      EDA Tools i.e. Computer Aids for VLSI Design  

  Chapter 1 covered the trends in the VLSI technology. It is revealed that with the 
increasing market demand for ICs with more on-chip functionality at a lower cost 
and within shortest possible development time span (shorter time to market), the 
chip developers are forced towards the small feature sizes and this has resulted in 
exponential increases in the transistor counts. VLSI industry has certain peculiar 
characteristics, here the manufacturing technology is matured enough to support the 
increasing transistor count per chip, while the design has seems to be fallen behind 
resulting in ‘design productivity gap’. There are several issues associated with the 
design productivity gap such as lack of trained HR, availability and usage of the 
design tools and the right design approach. Since long time, the designers are taking 
the help of computer based design environment with intelligent tools to accelerate 
the design speed.  

  The pre-EDA era ended around 1970, with the design of the first of its kind place 
and route tool. Prior to this the designer were using computers just for drafting 
rather than design. In today’s industry with phenomenal growth rate and shrinking 
time to market window the importance of the C, C++ based tools are becoming 
vital requirements of the VLSI laboratories. C has a very long and rich history of 
development and evolution. In 1970 Dennis Ritchie from Bell Laboratories created 

Chapter 2
Familiarizing with Handel C

R.K. Kamat et al., Unleash the System on Chip using FPGAs and Handel C,
DOI 10.1007/978-1-4020-9361-6_2, © Springer Science+Business Media B.V. 2009



26 2 Familiarizing with Handel C

history with development of ‘C’ language and using further to write an operating 
system based on it.  

  The ‘C language has evidenced many evolutions in its lifecycle’. During the 
1980s the use of the C language spread widely, and compilers became available 
on nearly every machine architecture and operating system; in particular it became 
popular as a programming tool for personal computers, both for manufacturers of 
commercial software for these machines, and for end-users interested in program-
ming [24]. The ‘C’ language has grown in different directions with different objec-
tives in mind consistent with the industry requirements. The success of C has been 
attributed to many factors such as simplicity, portability with small core, ability 
of generating the space and time efficient codes etc. However, from the hardware 
transparency point of view the most striking feature of the C which has helped in 
extending towards the hardware synthesis or VLSI design is its ability to make the 
programs abstract, facility to build libraries and use them in future programs which 
supports the industry’s latest theme ‘Design and Reuse’. The main obstacles design-
ers encountered while extending the C to hardware synthesis is its inherent sequen-
tial nature as against the basic concurrency the basis of hardware.  

    2.2      Background of Hardware Description Languages  

  Around the same time, when Dennis Ritchie was engrossed with the development 
of ‘C’ and writing OS based on it, a major philosophical theme emerged out is using 
the computer itself as design aids for Electronics and orienting the software world 
for design activity. In 1972 Ralph Preiss of IBM defined “design automation” as the 
art of utilizing digital computers to help generate, check, and record the data and 
the documents that constitute the design of a digital system. Although the notion of 
the design automation seen from the above definition is more towards the digital 
system, the concept of describing the circuit and visualizing its functioning before 
building through simulation based on the underlying mathematical models gave rise 
to the development of SPICE mainly devoted for the analog world.  

  The pioneering work in development of hardware description languages was 
done at Carnegie Mellon University and University of Kaiserslautern, around 1977. 
The first generation languages are ISP developed at Carnegie Mellon University, 
and KARL developed at University of Kaiserslautern. The impact of software lan-
guages was so much that the developers of ISP couldn’t design it very different from 
them as was seen from the interface used for describing relations between the inputs 
and the outputs of the design. Naturally it was more for simulate than synthesis. 
However, the developers of the KARL could orient it more towards VLSI design by 
including features supporting floor-planning and structured hardware design. Soon 
after the ABLED graphic VLSI design editor was launched which was centered on 
the KARL.  

  Simultaneously parallel development were on towards the hardware end. MMI 
introduced a breakthrough architecture of the Programmable Array Logic or PAL 
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in 1978. With this the industry spun off the operation of development of HDLs for 
the programmable sea of gates aiming to reconfigure them with the output of the 
HDL. Motivated by the PLD architectures, Data-I/O introduced yet another HDL 
with a trade name ABEL which eased the eventual translation of FSMs to config-
urable logic.  

  However, the second generation of commanding and intelligent HDL com-
menced with the development of Verilog, introduced by Gateway Design Automa-
tion in 1985. Regarded as the mother of the modern HDLs soon a series of versions 
of Verilog along with others such as VHDL started occupying the market share as 
well as revenue. The VHDL started its development with defense funds but became 
the default standard of the VLSI chip developers in 90s.  

  The growth of the VLSI industry fuelled the development of both VHDL and 
Verilog which have now acquired the dominant position in the electronics industry 
surpassing the older ones. However, in these days of software dominance, the value 
of any embedded design largely depends on the quality of the algorithm defining 
the system functionality and on how fast that algorithm is executed. Typically these 
algorithms are modeled and refined in C code rather than in VHDL. This is con-
venient for programming an SoC, but performance requirements will often call for 
custom hardware to serve as a coprocessor. C-based design flows to programmable 
logic overcome that issue [41].  

    2.3      Expressing Abstraction at Higher Levels  

  There is a constant quest amongst the designers to express the hardware at higher 
level of abstraction. This notion is based on an alternative to writing HDL by mov-
ing to higher level by using the C language. By raising the level of abstraction, 
algorithms can be implemented without the need for knowledge of the hardware 
implementation. Celoxica’s DK design suite offers a full integrated design environ-
ment that enables the user to generate either EDIF netlists or synthesizable RTL to 
be programmed onto an FPGA. An even higher level of abstraction can be obtained 
by implementing algorithms in Matlab. Xilinx’s AccelDSP allows a design flow to 
move from Matlab algorithm implementation all the way to down to RTL. The high 
level of abstraction of Matlab allows for very quick implementations and verifica-
tion of algorithms [25].  

  Many high-end designs in the communications or video/image processing indus-
tries rely on extremely complex algorithms. The first step in a conventional design 
flow involves modeling and proving the design functions at the algorithmic level 
of abstraction, using tools such as MATLAB or plain C/C++ modeling. MATLAB 
works well for validating and proving the initial algorithm, although many design 
teams also develop C/C++ models to verify that the whole system meets functional 
and performance specifications. For subsequent discussion, we’ll use the term 
untimed algorithm to represent those algorithms written either in MATLAB or pure 
ANSI C/C++ [26].  
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  The constructs added to languages such as Handel-C (which is used in the present 
book) provide the link to hardware. But the level of abstraction in the code is kept 
very high to maintain the advantages that come from using C-based code. There are 
several things that can be added to the design methodology to make it easier to gen-
erate hardware from C-based code without having to become a gate-level hardware 
expert [41].  

    2.4      Where C Stands Amidst the Well Established HDLs?  

  Recently there are lots of attentions into the use of C programming language (or its 
extensions) for describing hardware as well as software with an intention to support 
hardware-software co-design processes with a single language. One of the hardest 
things we all need to learn when starting out with HDL is that we’re not program-
ming – we’re building hardware and arrays of gates. Having done a *lot* of C and 
applications programming before I started on VHDL and Verilog I can tell you it 
took a while to shake off the programmer in me and become a hardware developer. 
Applying general-purpose programming tactics to HDL too often makes too many 
gates and highly inefficient chip and logic layouts.  

  Following features of the C based design paradigm makes them a popular choice 
[41] amongst the VLSI designer community: 

    •     Ease of simulation and testing.  
    •     Effective description of mathematical descriptions of systems.  
    •     Effective verification by using C-based code as the reference model at the start of 

the design flow and then using this same model to check each subsequent refine-
ment as implementation is completed.  

    •     Co-simulation and possibility to incorporate third party design tools in the design 
flow. Facility to plug and play models from Matlab to C to RTL to even FPGA 
hardware within the same simulation environment used to originally design the 
system functionality.  

    •     Accelerated design cycle to produce a working FPGA prototype of the system.     

  Although there is no doubt a push in the direction of higher level languages for 
hardware design evident from the good number of version of C oriented towards 
RTL output, none of them are established as perfect design platform and moreover 
as sound industry standard. However, it goes without saying that the future will hold 
even higher levels of abstraction [42].  

    2.5      Introducing Handel C  

  For applications wherein heavy programming is required such as network proto-
col analysis, the limitations of VHDL come in to the forefront. Languages such 
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as VHDL, ABEL etc. are meant only for hardware description, modeling and 
simulation and they pose several limitations for programming intensive implemen-
tation of complex algorithms. There are set of tools which translate the description 
from one domain to that of FPGA programmability, many time without compro-
mising the efficiency measured interms of consumption of hardware resources and 
resulting final specifications such as critical path, timings etc.  

  The features of Handel C are as follows: 

    •     Innovative language for realizing algorithms in hardware.  
    •     Facilitates architectural design space exploration.  
    •     Powerful for hardware/software co-design.  
    •     Basic core of ISO/ANSI-C, with extensions required for hardware development 

Inherently sequential but also supports parallel development using the constructs 
such as ‘par’.  

    •     Built in structures to realize flexible data widths, parallel processing and com-
munications between parallel elements.  

    •     Follows simple timing model.  
    •     Provision to specify the width of a data variable.     

  In the earlier version of the language there was no support for the pointers due to 
their lack of hardware counterpart. But in the recent revision DK4, the support for 
pointer has been included.  

  Amongst all these tools the most poplar are those converting ‘C’ into a ‘logic cir-
cuit’ or RTL. There are a number of C based languages presently popular in design 
community viz. Cyber-Cviii, Esterel-Cix, Handel-C, SpecC, and SystemC.  

             2.6      Top Down or Bottom up?  

  The HDLs adopt the bottom-up design methodology, in which the individual design 
blocks are designed and then combined at a later stage to complete the system. The 
main pitfall of this approach is the late simulation and verification of the overall sys-
tem due to which the refinements and correction of errors becomes a costly affair.  

  As there is more thrust on the individual blocks rather than the overall architec-
ture, the hardware-software codesign issues mayn’t be dealt in satisfactory manner. 
The time to market window widens due to serial execution of the expensive steps 
and thus poses a tradeoff of cost Vs lead time.  

  The entire design thrust is on the explicit concurrency, which necessitates to pay 
more cost in terms of design area and timing as well while describing the sequen-
tial paradigm. Many a times the novice faces the problems of meta-stability due 
to inherent ‘infinite loops’ due to ‘switch on condition’ constructs. Moreover the 
designers are more familiar with the sequential paradigm and encounter problems 
in digesting the hard realities of the delta delays and Perry.  

  Moreover the focus on the ‘structural’ description in HDL’s makes the divide 
between the hardware and software codesign more wider. In order to inculcate intel-
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  Sr. No.    Compiler    Features  

  1.    Cones    • Input interms of behavioral models written in C  
  • Output interms of gate-level implementations  
  •   Output format interms of standard cells and programmable logic 

arrays or programmable logic devices  
  •  Accelerated design cycle, efficient designs  

  2.    HardwareC 37     •  Maps behavioral level specification of hardware to a register 
transfer level description  

  •  Focus on concurrent processes, message passing, explicit instan-
tiation of procedures, and templates  

  3.    Transmogrifier 
C 39   

  • A compiler for simple hardware description language.  
  •  It takes a program written in a restricted subset of the C program-

ming language, and produces a netlist for a sequential circuit that 
implements the program.  

  4.    SystemC    • Open-source extension of C++ for HW/SW modeling.  
  • Intended for system level verification industry.  
  •  Uses C++ class libraries and simulation kernel for creating behav-

ioral and RTL designs.  
  • Supports hierarchical decomposition of a system into modules.  
  • Facilitates structural connectivity between modules using ports.   

  5.    Impulse C    • Specialized in modeling sequential operations  
  •  Compatible to System C and facilitates interprocess synchroniza-

tion and communication.  
  • Each process treated interms of separate FSM.  

  6.    C2Verilog 40     • Converts C algorithms into verilog  
  • Improved logic synthesis results,  
  • Greater control over the compilation process from C to HDL code  
  •  Good compatibility and interface with other system-level design 

automation (SLDA), functional verification, and synthesis tools in 
the design flow.  

  7.    Mitrion C 38     • Uses concept of “Soft-core” processor  
  • Works on abstraction layer between C code and FPGA  
  • Makes use of mapping APIs  
  •  Produces output interms of VHDL IP core for the selected target 

FPGA architectures  

  8.    Handel-C    • Known for cycle-accurate application development  
  • Clock frequency is limited by the slowest operation  
  • Compiler specialized in efficient analysis, optimization, of code  
  •  Provision to get the output interms of VHDL, Verilog, SystemC, 

EDIF  

  9.    SpecC 38     • Extension of ANSI-C.  
  •  Supports behavioral and structural hierarchical embedded sys-

tems designs  
  • Focus on synthesis and verification  
  • Heavily used for system-level design and architectural modeling.  

  10.    Napa C 38     • Language/compiler intended for RISC or FPGA hybrid 
processors  

  • Uses datapath synthesis technique  
  • Output interms of VHDL, structural VHDL and structural Verilog  

   Table 2.1    C for VLSI Design Compilers Developed so far    
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ligence on chip and make the hardware evolvable and fault tolerant, the designers 
should focus more on the abstract level rather than the structural. ‘C’ based design 
paradigm makes is in a better position to achieve this goal by ensuring the partici-
pation of the software professionals by offering them the bottom-up, abstract and 
sequential environment in which they are working for quite some time.  

  The industry experts often analyzes the reasons behind productivity gap. The 
main arsons are: 

    •     The hardcore EEs relies more on the structural description and thus adopts the 
bottom up approach with late results.  

    •     Simulation occurs late in the design flow leading to more iterations to eliminate 
the errors, re-spins and refining of the design.  

    •     With the increasing complexity, in blistering space forcing the verification cycle 
more stringent.  

    •     The consumer products such as ‘set of top boxes’, ‘mobile phones’ are based 
on mixed-signal chips with implementation of complex algorithms tracking 
phenomenal permutations and combinations of the event that require designers 
to examine their operation over few hundred to thousands of cycles to ensure 
reliability.     

  In order to address the above challenges, there is a growing trend towards a top 
down design methodology. The design methodology is based on definite architecture 
of the chip as a block diagram followed by its simulation, synthesis, verification, opti-
mization, etc. The high level simulation entails the requirements for the individual 
circuit blocks that guides the circuit design meeting the intended specifications. At last 
the entire chip is laid out and verified against the original requirements.  

  System architects badly required in the shrinking time to market window:  
  The fundamental difference between the C based environment and the HDLs is 

the basic design approach. The former adopts top-down, while the later relies on the 
bottom up. Although the former is picking up albeit slowly he reason being scarce 
design community with the requisite skill set which demands the ability to work as 
system architects.  

  A system architect should be well versed with the different constructs and their 
selective usage besides the art of modeling as the approach is more abstract in 
nature.  

  Sr. No.    Compiler    Features  

  11.    Catapult C 38     • Algorithmic synthesis tool for RTL generation  
  • Outputs RTL from pure C++ program input  
  • Output interms of RTL netlists in VHDL, Verilog, and SystemC  

  12.    DIME-C 38     • FPGA prototyping tool  
  • Poor cycle accuracy  
  • Yields higher clock speed designs  
  • Compiler supports pipeline or parallel optimization  

Table 2.1   (continued)
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    2.7      Handel C: A Boon for Software Professionals  

  The Handel C was originally developed by Oxford Hardware Compilation Group. 
The initial development was based on the language Occam with a focused goal of 
increasing participation of software professionals in synthesis of hardware which 
they haven’t yet explored. The latest version of the Handel C IDE is known as DK4 
which is right now supported by Celoxica.  

  Although there are many C to hardware compilers already being used by VLSI 
designers, Handel C deserves a special attention as it is one of the most matured C 
based design platform with built in well thought out extensions for efficient C to 
RTL conversion. Some of the most striking features of Handel C are [27–35]. 

    •     One level of abstraction higher than an HDL.  
    •     Clear, familiar syntax with small and readable code.  
    •     Explicit parallelism using ‘par’ statement.  
    •     Simultaneous assignment that yields well-defined timing, fast external I/O and 

simplified pipelines.  
    •     Compiler deals with the state machine generation automatically.  
    •     Easy simulation cycle.  
    •     Facilitates Channel communication.  
    •     Automated place and route, and bit stream creation for Xilinx and Altera tools.  
    •     Designed for compiling programs into hardware images of FPGAs or ASICs.  
    •     Small subset of C, extended with a few constructs for configuring the hardware 

device and to support generation of efficient hardware.  
    •     Programs mapped into hardware at the netlist level or EDIF level.  
    •     Bit manipulation operators.  
    •     Possibility of parallel processing of single statements or whole modules.  
    •     Shorter simulation time as compared to other hardware simulators.  
    •     Synchronous programming language with fundamental notion of time.  
    •     Level of design abstraction is above RTL but below behavioral.  
    •     Each assignment infers a register and one clock cycle.     

  For designing functionality of similar complexity, the world of software design 
is simpler than its hardware counterpart. The possibility of using software design 
methodologies to create hardware solutions may seem almost theoretical, but there 
are many real world examples that demonstrates that it resolves many issues inher-
ent to modern IC development. It shortens design time by a factor of 3–4 times, the 
language and design systems are easily adopted and the small efficient code makes 
radical system-level changes simple. Handel C is based on the main attribute of the 
software design paradigm, to raise the level of abstraction so as to describe in the 
briefest possible way the desired function rather than its underlying structural detail 
overcomes many of the difficulties and inefficiencies in contemporary hardware 
design [26].  

  Researchers have found many interesting features of Handel C in comparison 
with the other languages such as AHDL [27]. Handel C code yields circuit size or 
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the number of gates of the same order as that of its counterparts. Unfortunately in 
case of some RISC architectures or FIFO kind of hardware, it can’t give as high 
clock rate as that of the manually optimized AHDL or VHDL. Speed tweaking is 
possible and a option regarding the same has been kept in Handel C. However it is 
better to go for faster FPGA rather than trying for this option as it will defeat the 
original purpose of Handel C i.e., accelerated design speed. Another feature from 
the point of view of a novice C programmers is the readability and clarity of the 
core code without much knowledge of the hardware. That means the C program-
mers can look at the code from the software perspectives and optimize the same 
with his knowledge in the software domain rather than wasting valuable time in the 
hardware details.  

  One problem the software professional might encounter due to the lack of their 
hardware expertise is writing the I/O interfaces. The I/O interface is the actual piece 
of the code written to define the pin assignment per logic block. However once the 
I/O interface is developed then it can be very well reused for number of routine 
design cores unless a completely new design problem is encountered.  

    2.8      Handel C vs. ANSI C  

  The Handel C was developed to facilitate C to RTL conversion. It is worthwhile to 
review the subtle difference between the above mentioned duos. The main additions 
of Handel C to the ANSI C are as follows [42]: 

   Table 2.2    VHDL Vs Handel C    

  VHDL    Handel C  

  Designed exclusively for hardware engineers    High-level programming language with 
hardware output to ease the job of software 
professionals  

  Aims to crate highly optimized sophisticate 
hardware  

  Aims at fast prototyping and algorithmic 
level optimization rather than sophisticated 
hardware.  

  Expects the designer to be familiar with low 
level hardware (structural) and a background 
of the gate-level effects of every single code 
sequence and construct is required while 
developing the code   

  Low level problems taken care by complier, 
designer works at higher abstraction level  

  Designer has to deal with gate-level problems 
like fan-in and fan-out or choosing the appro-
priate type of gates or registers to be used  

  Frees the designer from low level problems and 
assists him at algorithmic level  

  Designer feels jittery to try many implementa-
tion strategies.  

  Fast simulation, many alternate constructs 
encourages designer to try several alternatives  
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    •     Parallelism  
    •     Timing  
    •     Interfaces  
    •     Clocks  
    •     RAM/ROM  
    •     Shared expression  
    •     Communications  
    •     Handel-C libraries  
    •     Floating Point component library  
    •     Bit manipulation  
    •     Macro functions for hardware block reuse     

  There is varying level of support for the various Handel C versions for the 
following: 

    •     Recursion  
    •     Side effects  
    •     Standard libraries  
    •     Malloc()  
    •     Standard floating point  
    •     Pointers     

  It should be further noted that some of the above mentioned structures needs to 
be rewritten to inculcate them in Handel C environment.  

  The Handel C supports multiple main void in the same workspace unlike the 
only one in one program in ANSI C. Further the main functions may be hybrid in 
nature having embedded sequential and/or parallel constructs. Bit manipulation is 
rather efficient in Handel C as one can declare the integer with variable bits.  

    2.9      Handel C Design Flow  

  The IDE for Handel C Design is DK4 suite the licensed information of which may 
be obtained from the Celoxica website http://www.celoxica.com. The summary of 
the constructs, statements and other miscellaneous features has been explored in 
depth in the Handel C reference manual available on line at various URLs. The DK 
design suite is developed in a manner so as to increase the designer productivity by 
a familiar IDE environment and the peculiar feature is its in built functions typical 
of a software development environment.  

  The design flow is presented below:  
  The first and foremost step is refining the algorithm to be hardcoded from the 

view point of its hardware realization. The conventional techniques such as FSM, 
data path control architecture comes to the rescue of the designer to finalize and fine 
tune the software version of the algorithm. The designer should further divide the 
design problem and explore the benefits of the proposed implementation by judi-
cious placement of the modules in hardware and software. Unfortunately the soft-
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ware won’t help the designer to gain this insight. Then follows the transformation 
and addition of the constructs for hardware to the C code for the functions to be syn-
thesized to FPGA. At this stage some modifications are required such as changing 
the floating-point models to fixed-point. The parallel functions can be added at this 
stage to inculcate concurrency and single clock cycle operations. Some back and 
forth through these basic design steps will emerge the efficient and optimized hard-
ware-software codesign model of the design problem. The coding in Handel C then 
can be commenced in the DK4 IDE as given below in the step by step manner:  

   Step 1: Creating New Project:   

  A new project pertaining to your design has to be created at the outset. The entire 
development for this project is done in a workspace in which the source file and 
header used resides. Creation of a project and the corresponding workspace is 
shown in Fig. 2.1.      

     Step 2: Adding or Creating New File:   

  The source file which could be of text, ANSI C, ANSI C++, ANSI C/C++ header 
file, Handel C, Handel C header file can be created from the scratch or added if it 
exits. This is shown in the screenshot in Fig. 2.2. Figure 2.3 Shows the project and 
source file displayed in the DK IDE.           

  Fig. 2.1    Creation of the project   
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     Step 3: Writing Handel-C Source Code:   

  The hardware finalized out of the hardware-software codesign process now can 
be developed in Handel C code as shown in the Fig. 2.4. The software can go inde-
pendently in C or C++ for development in parallel.      

     Step 4: Building the Project:   

  The code developed has to parse through the build step to check the syntax and 
refinements accordingly to correct the errors. This is shown in Figs. 2.5 and 2.6 
respectively.  
  The hardware primitives utilized are shown in terms of the NAND gates in the 
watch window. There is further scope for spatial improvements by refining the Han-
del C code and going back to the hardware-software codesign process.           

     Step 5: Debugging and Verification:   

  The effectiveness of Handel C in verification can be realized at this point of design 
phase. It facilitates easy debussing and verification as shown in Fig. 2.7. The 
designer can check different variables, clock cycles in the watch windows as shown 
in Figs. 2.7 and 2.8.           

  Fig. 2.2     Creating and adding new Handel-C Source file to the project   
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     Step 6: Generating the EDIF:   
  It involves two substeps viz. selecting the prototyping platform and mapping the 
EDIF onto the given platform. The EDIF generated through the Handel C is com-
patible with almost all FPGAs manufactured by the major players in the market. At 
this point of time, the designer should be well versed with the FPGA architecture 
and the I/O pins to be used. The major task is writing the I/O interface for the chosen 
FPGA. Then the EDIF can be created. Once the EDIF is generated, the designer has 
top adopt to the third party tools of the respective company for synthesis, place and 
route, post synthesis verification and floor plan generation.                                                                                                                   

  Fig. 2.3     Showing the project and source file displayed in the DK IDE   



  Fig. 2.4     Developing handel C code in DK environment   

  Fig. 2.5     Compiling and building your project   
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  Fig. 2.6    Stimulating the debug process of the project   

  Fig. 2.7     Results being displayed in the simulation window   



  Fig. 2.8     Verification through the watch window   

  Fig. 2.9     Selecting the prototyping platform by selecting the FPGA family   



  Fig. 2.10     Generating EDIF for mapping onto the FPGA   
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                3.1      Design Philosophy of Sequential Logic  

  Sequential logic is a type of logic circuit whose output is characterized by not 
only with the present input but also on the history of the input. The memory 
aspect of the sequential circuits sometimes poses challenges for the designers. 
Synchronous circuits are one of the major subclasses of the sequential domain 
characterized by output transition only with reference to the clock. In general the 
synchronous sequential circuit is found to be made up of Flip-flops and combi-
national gates.  

  However, from the VLSI or ASIC viewpoint the sequential logic circuits are to 
be dealt carefully as they are the majority implementations in ASICs in different 
forms such as registers, memory elements, counters, to name a few. The above 
mentioned logic blocks have been combined in seemingly unlimited combina-
tions to pave interesting applications such as pseudo-random code generators, 
digital filters, data paths and logic operations. In the present era of cramming 
more and more functions on the silicon die, the designer needs to take a careful 
account as regard to the malfunctioning of the sequential logic circuits in the 
formation stage only.  

  One of the main reasons behind the malfunctioning of the sequential circuits 
is designer ignorance towards the “timing windows” around the clock transition 
owing to the setup and hold times of the circuits. The VLSI aspect regarding the 
sequential circuits entails the inherent speed bottleneck due to limiting clock fre-
quency imposed by the setup, hold and propagation delay encountered at each indi-
vidual block.  

  A typical manual design flow for the sequential circuits mainly comprises of 
the steps such as drawing the state diagram, transforming these diagrams into the 
state tables also referred to as the excitation tables per output, deriving the K-map 
for each output and finally coming out with the circuit diagram of the final version 
of the circuit. However, this gets simplified with the high level design tools such as 
Handel C exemplified in this chapter.  

Chapter 3
Sequential Logic Design
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  Let us start with designing simple logic blocks such as Flip-flops. The Flip-
flops have underwent many transitions since their inception in 1919 when the first 
electronic Flip-flop was invented by William Eccles and F. W. Jordan. Although the 
functioning interms of logic has remained the same form the beginning when they 
were popularly referred to as the Eccles–Jordan trigger circuit, consisting of two 
active elements (radio-tubes), there structural formation has been transformed to 
suit the power, area and timing metrics of the VLSI industry.  

    3.2      D Flip-Flop  

  The D (stands for ‘DATA’) Flip-flop follows the input, and makes the transitions 
closely matching to that of D input with a difference of setup, hold and propagation 
delay times. The D Flip-flop emerged out from the basic requirement of elimination 
of the race around condition, in the RS Flip-flop by providing only one input to a RS 
latch. The other input of the RS Flip-flop is derived by inverting the signal to present 
to the other terminal of the latch. The symbol of the D latch is shown in Fig. 3.1.  

        The D FF’s are the vital building blocks of many useful applications. The increas-
ing applications of the D-Flip-flop are due to the basic fact that the output depends 
on only one input as opposed in S-R Flip-flop which has indeterminate state when 
both inputs are high and JKFF where two inputs decide the output. The meta stabil-
ity aspects makes the D-Flip-flop as a preferred application in which the designer 
has to only worry about the loading effects due to rise time, fall time and propaga-
tion delay. Literature survey reiterates the same. A design of a D flip-flop hardened 
to Single Event Upset (SEU) for space radiation environment has been reported by 
Monnier, T et al. The design hardening technique is based on the use of two D-latch 
hardened both to static and dynamic SEU by the concepts of high impedance state 
and nMOS feedback [56]. A basic variation of the D-Flip-flop by modifying it into 

  Fig. 3.1    D Flip-flop   
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a ‘Programmable differential D flip-flop’ can be used for many useful applications 
such as temporary storage functions, automatic test equipment, for synchronization 
of the data signals with timing signals to form a highly accurate timing generator as 
shown by a patent application [57]. An architecture of asymmetrically faulty D flip/
flop under the power line noise, which is based on power flicking reset circuit has 
been presented and the fail-safe watchdog timer has been reported by Shigeru et al. 
[58] Even the D Flip-flop can be made to trigger at both the rising and the falling 
edges of the reference input, thus allowing a lower frequency input to be used while 
having the advantages of a higher frequency [59].  

  A program for realizing the D Flip-flop in Handel C is given below:  

Fig. 3.3  High level realization of the D Flip-Flop on Spartan III FPGA
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  Fig. 3.2     Waveforms of D Flip-flop   
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       Program 3.1:  Handel C code for D Flip-flop  
***************************************************************
  set clock = external “p77”;  
  void main ()  
  {  
  unsigned 1 D, out, out2;  
  interface bus_in(unsigned 1 d) inp() with {data = {“p4”}};  
  //Interface for D input which is given to pin “p4” of FPGA.  
  interface bus_out() out1(out) with {data = {“p5”}};  
  //Interface for data output Pin “P5” of FPGA.  
  while(1)  
  {  
  D= inp.d;  
  Delay;  
  par  
  {  
  out=D;  
  out2 = ~ D;  
  }  
  }  
  }  

***************************************************************

    3.3      Latch  

  The basic difference between the D Flip-Flop and latch is the input tracking mecha-
nism. The former tracks the input only in a synchronous manner while the latter 
does the same in an asynchronous manner. In other words the flip-flop is a synchro-
nous version of the latch. By default the latches realized by Handel C are positive 
latches i.e. they are transparent with the Clk = 1. Moreover, the latch is level sensi-
tive while a FF is edge sensitive. One more advantage of the Latch over Flip-Flop 
is the ‘time borrowing’, however they are not preferred in the design owing to their 
instability as contrasted to flip-flops changing their state only with the clock edges. 
Handel C has a built in interface called as  bus_latch_in  that allows the input to be 
latched on a condition.  
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   Program 3.2 : Handel C code for realizing Latch  
  ***************************************************************
set clock = external “p77”;  
  void main()  
  {  
  int 1 get;  
  int 8 value;  
  interface bus_latch_in(int 1) inputBus(get) with {data = {“P3”}};  
  interface bus_out() out1(D) with {data = {“p5”}};  
  {  
  get = 0;  
  get = 1; // Latch the external value  
  value = inputBus.in; // Read the latched value  
  D=value; //output the value  
  }  
  While(1)  
  }  

***************************************************************

    3.4      Realization of JK Flip-Flop  

  The J-K flip-flop is the most resourceful amongst the basic flip-flops. With the 
input- tracking character just as that of the clocked D flip-flop it differs interms of 
the number of inputs, traditionally labeled as J and K. The basic functionality is as 
shown in the truth table.           

      The origin of the name for the JK flip-flop is detailed by P. L. Lindley, a JPL 
engineer, in a letter to EDN, an electronics design magazine. The letter is dated June 
13, 1968, and was published in the August edition of the newsletter. In the letter, Mr. 
Lindley explains that he heard the story of the JK flip-flop from Dr. Eldred Nelson, 
who is responsible for coining the term while working at Hughes Aircraft [60]. With 
the most predictable behavior under almost every circumstances, the JK flip-flop is 
preferred for the application with mandatory two inputs. Moreover any flip-flop can 

   Table 3.1    Truth table of JK Flip-flop    

  J    K    Q    Qbar  

  1    0    1    0  

  0    1    0    1  

  0    0    Previous State    Previous State  

  1    1    Complement of Q    Complement of Qbar  
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be easily constructed from the JK-Flip-flop by proper external wiring. The Handel 
C program for synthesizing a JK flip-flop is given below:  

   Program 3.3:  Handel C Code for JK Flip-Flop  
  ***************************************************************
set clock = external “p77”;  
  void main ()  
  {  
  unsigned 1 J,K,Q,Qbar;  
  interface bus_in(unsigned j) in1() with {data = {“p4”}};  
  interface bus_in(unsigned k) in2() with {data = {“p5”}};  
  interface bus_out() out1(Q) with {data = {“p7”}};  
  interface bus_out() out2(Qbar) with {data = {“p9”}};  
  while(1)  
  {  
  par  
  {  
  J=in1.j;  
  K=in2.k;  
  }  
  {  
  if(J==1 && K==0)  
  {  
  Q=1;  
  }  
  else if(J==0 && K==1)  
  {  
  Q=0;  
  }  
  else if (J==0 && K==0)  
  {  
  Q=Q;  
  }  
  if (J==1 && K==1)  
  {  
  Q=~(Q);  
  }  
  Qbar=~(Q);  
  }  
  }  
  }  

***************************************************************
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    3.5      Cell of Hex Counter for Counter Applications  

  Counter is a digital electronic device that measures the frequency of an input signal. 
With little modification in the configuration, it can be used to perform some use-
ful measurements such as period of the input signal, ratio of the frequency of two 
input signals, time interval between two events and totalizing a specific cluster of 
events. Many useful application notes regarding the counters may be explored by 
tracking the references. The know-how of modification in basic counter to work as 
Normalizing Counter, Preset Counter and Prescaled Counter has also been covered 
widely [61].  

Fig. 3.4  Top level and RTL realization of JK Flip-Flop on Spartan III FPGA
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  The VLSI viewpoint regarding the implementation of counters is slightly dif-
ferent. Emphasis is given on the replicable hardware, array type design and skew 
less clock distribution so as to avoid the propagation of erroneous timings. The 
problems such as meta-stability can be avoided by introducing the buffers in the 
signal pathways.  

  (counter count from 0 to f hex)  

       As a sample representative of the counter family, realization of a ‘Hex Counter’ 
is given in this section. The handel C program for the Hex Counter is as follows:  

   Program 3.4:  Realizing cell of Hex Counter using Handel C  
***************************************************************
  set clock = external “P77”  
   with {extlib = “DKSync.dll”,  
   extinst = “50”,  
   extfunc = “DKSyncGetSet”};  
    //External clock to FPGA.  
  void main(void) //main function  
  {  
   unsigned 4 digits;  
  interface bus_out() output(unsigned 4 out = digits)  
   with {extlib = “DKConnect.dll”, extinst = “count(4)”,  
   extfunc = “DKConnectGetSet”};  
  while(1) //Continues Loop which count from 0 to f  
   {  
    if (digits == 0b1111)  

Fig. 3.5 High level 
schematic of the Hex 
Counter

clk

output 1

4 Bit Hex
Counter

output 4
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    {  
     digits = 0b0000;  
     }  
  else  
    {  
     digits++;  
    }  
   }  
  }  

******************************************************************

Fig. 3.6 Simulation window of the Waveform Analyzer of DK suite (The first window shows 
the simulation in binary format while the second one shows the same in stepped format)

The simulation view in Wavweform Analyzer in hex format is as shown in figure. 

Simulation view in Wavweform Analyzer in stepped format 
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        3.6      Realization of Shift Register for SoC  

  Cascade chaining of the flip-flops generally driven by a common clock with a com-
mon preset and clear system leads to a useful data storage and circulation device 
called as Shift Register. There exists variety of configurations of shift registers as 
Serial In Serial Out, Serial In Parallel Out, Parallel in Serial Out. The first two types 
also comes with destructive and non-destructive readouts.  

  The VLSI strategy for implementation of shift registers is slightly different than 
that of the discrete electronics. The implementation has to take care of the hold 
times of the individual flip-flops as the data drifts though them. The spatial inef-
ficiency of the flip-flop rules out their usage for the shift register implementation. 
Literature survey reveals that the useful implementation is based on the dual port 
SRAM, with movable read/write pointers to RAM rather than data [62]. The VLSI 
implementation of the shift registers have largely been used for interesting appli-
cations such as tapped delay line, FIFO and LIFO queues in microprocessors and 
microcontrollers. The dynamic shift registers a popular implementation in ‘Design 
for Testability’ adds more value to the implementation by converting the ATPG tests 
into the multiple, hierarchical scan sequences reducing the test length. Literature 
survey also reveals development of low power and high speed Bidirectional Shift 
Register (BSR) architecture with potential applications in hard arithmetic opera-
tions, reconfigurable computing and cryptographic implementations [63].  

   Program 3.5:  Realization of universal shift register  
  ***************************************************************
/* program for Right Shift */  
  set clock = external “p77”;  
  void main(void)  
  {  
  unsigned 8 s;  
  unsigned 4 k;  
  s=0b10000000;  
  while (1)  
  {  
  if (s==1)  
  {  
  for (k=0;k<=7;k++)  
  s=s<<1; //Left Shift  
  }  
  else (s==128)  
  {  
  for (k=0;k<=7;k++)  
  s = s>>1; //Right Shift  
  }  
  }  
  }  

***************************************************************
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    3.7      LFSR Core for Security Applications in SoC  

  A Linear Feedback Shift Register (LFSR) is a sequential circuit with the combina-
tional feedback. There are two methods of implementation of LFSR viz. the Fibon-
acci implementation (consisting of a simple shift register with a binary-weighted 
modulo-2 sum of the taps fed back to the input) and the Galois implementation 
(consisting of a shift register, the contents of which are modified at every step by a 
binary-weighted value of the output stage). The former is also known as simple shift 
register generator (SSRG), while the latter is popular with other names such as a 
multiple-return shift register generator (MRSRG) or modular shift register genera-
tor (MSRG).  
  Typical applications of the LFSR implementations are: 

    •     Pattern Generators  
    •     Counters  
    •     Cryptography  
    •     Built-in Self-Test (BIST)  
    •     Encryption  
    •     Bit Error Rate measurements  
    •     Compression  
    •     Wireless communication systems for employing spread spectrum  
    •     Checksums  
    •     Pseudo-Random Bit Sequences (PRBS)     

  The Handel C code for the LFSR developed in this application resorts to the 
External LFSR methodology in which all XOR gates are fed sequentially into each 
other and further end up at the significant bit of the LFSR. It can be easily modified 
for the Internal LFSR methodology in which the XOR gates are brought inside i.e. 
they feed into different registers within the LFSR, and thus are not sequential.  

   Program 3.6  Handel C code for LFSR  
***************************************************************
  set clock = external “p77”;  
  void main ()  
  {  
  unsigned 4 out;  
  unsigned 1 xor_result,input1,input2;  
  while(1)  
  {  
  input1=out[0];  
  input2=out[1];  
  xor_result= input1^input2;  
  out=out>>1;  
  out=xor_result@out[2:0];  
  }  
  }  

***************************************************************
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    3.8      Clock Scaling and Delay Generation in SoC  

  Typically, in frequency divider design, the trade offs are around the maximum oper-
ating frequency, power consumption, number of transistors needed and flexibility 
[64]. PLL and dynamic D flip-flop are the most popular approaches for frequency 
divider in VLSI arena. One of the possible implementations in Handel C is given 
below:  

   Program 3.7:  Handel C code for frequency scalar  
***************************************************************
  set clock = external “dummy”;  
  void main ()  
  {  
  unsigned 1 CLKIN, CLKOUT;  
  unsigned 2 Count;  
  Count = 0;  
  CLKIN=1;  
  while(1)  
  {  
  for(Count=0;Count<=3;Count++)  
  {  
  CLKOUT =1;  
  if(Count==3)  
  break;  
  }  
  for(Count=0;Count<=3;Count++)  
  {  
  CLKOUT=0;  
  if(Count==3)  
  break;  
  }  
  }  
  }  

***************************************************************
  ----------------------------------------------------------------------------------------------- 
 Build Report:  
  --------------------Configuration: frequency divide – Debug--------------------  
  divide.hcc  
  0 errors, 0 warnings  
  new  
  NAND gates after compilation : 318 (15 FFs, 0 memory bits)  
  0 errors, 0 warnings  
----------------------------------------------------------------------------------------------- 
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     3.9      SoC Data Queuing Using FIFO  

  First In First Out is a general term used to indicate the way of organizing and manip-
ulation of data relative to time and prioritization. It implies ‘Queue Processing’ 
used in the state of art microprocessors, microcontrollers for serving the events in 
a timely manner. There are lots of applications of the FIFO technique in buffering, 
pipelining, scheduling, networking (in routers, switches) etc. Pioneering work on 
the FIFO was done by Peter Alfke way back in 1969 at Fairchild Semiconductors.  

  The hardware realization of the FIFO logic comprises of set of read and write 
pointers, storage and control logic. The popular method of achieving the storage is 
by using the dual port SRAM, Flip-flops, latches etc. Literature survey reveals good 
number of applications of the FIFO hardware. A design architecture for FIFO Con-
troller, as a module of JPEG2000 Encoder has been reported by Gamad et al. [65]. 
An implementation of the ‘Asynchronous FIFO Synchronizer’ for the VLSI Design 
and Verification of the Imagine Processor has been reported by Khailany et al. [66] 
With the growing application of FIFO, the designers are using the embedded RAM 
In FPGAs for realization of FIFO and thus solving the problems of an asynchronous 
boundary between clocks [67]. Even implementation of the DMA FIFO helps in 
High-Speed Data Acquisition as seen in the application note of National Semicon-
ductors [68]. A design trend is to offer discrete FIFO devices, which cam be selec-
tively glued for the intended application. It is reported that some manufacturers hide 
FIFOs within ASICs such as PC chip sets, PCI-to-PCI bridges, network controllers, 
and many more. One can also integrate a FIFO into a custom ASIC or FPGA if the 
logic gates are available. This approach is especially useful if the designer needs 
only a small FIFO and have board-space constraints [69].  

  An implementation of FIFO in Handel C is given blow so that the designers can 
wrap the same wherever required.  

   Program 3.8:  Handel C code for FIFO  
***************************************************************
  set clock = external “P77”;  
   //Function main  
  void main(void)  
  {  
   unsigned int 8 data;  
  static unsigned int 8 LIFO[10] = {23, 46, 69, 92,22,14,18,33,0,9};//for pop 
operation  
   unsigned index;  
  unsigned 1 push,pop;  
  chanin input with {infile = “data.dat”}; // Input from file for push operation  
  pop=1;  
  push=0;  
   if (push==1&& pop==0)  
  {  
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  index=0;  
  do  
  {  
  input ? data; //take input from data file  
  LIFO[index]= data; //store it on LIFO  
   index=index+1; //increment LIFO until 10 location  
  }  
  while(index <= 10);  
  }  
  else if (push==0&&pop==1)  
  {  
  index=0;  
  do  
  {  
  data = LIFO [index];  
   index++; //=index+1;  
  }  
  while(index >= 10);  
  }  
  }  

***************************************************************
-----------------------------------------------------------------------------------------------
  Build Report:  
  --------------------Configuration: FIFO – Debug--------------------  
  fifo.hcc  
  0 errors, 0 warnings  
  FIFO  
  NAND gates after compilation : 1625 (106 FFs, 0 memory bits)  
  0 errors, 0 warnings  
-----------------------------------------------------------------------------------------------  

    3.10      Implementation of Stack Though LIFO  

  Last In First Out, a popular implementations in the stack memory refers to the 
organization of the data elements that can only be added or taken off from only one 
end, generally in an bottom up manner. The ‘Depth First Search’ methodology of 
the LIFO logic has lot of applications in implementation of stack in microproces-
sors and microcontrollers.  

  Following Handel C program realizes the LIFO.  
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   Program 3.9:  Handel C code for LIFO  
  ***************************************************************
/* LIFO (Last in First out); For PUSH operation do not initialize RAM.TAke 
input from data. dat file. */  
  /* static ram unsigned int 8 LIFO[10]; put this as it is For POP operation static  
  ram unsigned int 8 LIFO[10] = {23, 46, 69, 92,22,14,18,33,0,9}; put this is as 
it is. */  
  set clock = external “P77”;  
  void main(void) // main Function  
  {  
  unsigned int 8 data;  
  static unsigned int 8 LIFO[10] = {23, 46, 69, 92,22,14,18,33,0,9}; //for pop 
operation  
  unsigned index;  
  unsigned 1 push,pop;  
  chanin input with {infile = “data.dat”}; // Input from file for push operation  
  pop=1;  
  push=0;  
  if (push==1&& pop==0)  
  {  
  index=0;  
  do  
  {  
  input ? data; //take input from data file  
  LIFO[index]= data; //store it on LIFO  
  index=index+1; //increment LIFO until 10 location  
  }  
  while(index <= 10);  
  }  
  else if (push==0&&pop==1)  
  {  
  index=10;  
  do  
  {  
  data = LIFO [index];  
  index--; //=index-1;  
  }  
  while (index >= 0);  
  }  
  }  

***************************************************************
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-----------------------------------------------------------------------------------------------
  Build Report:  
  --------------------Configuration: LIFO – Debug--------------------  
  lifo.hcc  
  0 errors, 0 warnings  
  LIFO  
  NAND gates after compilation : 1629 (106 FFs, 0 memory bits)  
  0 errors, 0 warnings  

----------------------------------------------------------------------------------------------- 

     3.11      Soft IP Core for Hamming Code  

  Hamming code is a linear error-correcting code (named after its inventor, Richard 
Hamming) for detection and correction of errors in Digital Communication sys-
tems. The Hamming code generation algorithm developed in this application is 
taken from the web URL: http://www.cs.cornell.edu/Courses/cs414/2007su/slides/
hamming.html. The individual steps are as follows:  

      The Handel C implementation of the above steps is given in the following 
program.  

  1.    Marking all the bit positions that are powers of two as parity bits.  
  2.    Remaining all other bit positions are kept for the data to be encoded.  
  3.    Each parity bit calculates the parity for some of the bits in the code word. The 

position of the parity bit determines the sequence of bits that it alternately 
checks and skips.  

       Position 1: check 1 bit, skip 1 bit, check 1 bit, skip 1 bit, etc. 
(1,3,5,7,9,11,13,15, .... )  

       Position 2: check 2 bits, skip 2 bits, check 2 bits, skip 2 bits, etc. 
(2,3,6,7,10,11,14,15, .... )  

       Position 4: check 4 bits, skip 4 bits, check 4 bits, skip 4 bits, etc. (4,5,6,7,12,13
,14,15,20,21,22,23,....  ) etc. Rest on the similar lines.  

  4.    Setting a parity bit to 1 if the total number of ones in the positions it checks 
is odd. Setting a parity bit to 0 if the total number of ones in the positions it 
checks is even  
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   Program 3.10 : Handel C code for hamming code IP  
  ***************************************************************
set clock = external “p77”;  
  void main (void)  
  {  
  unsigned 5 check1,output1;  
  unsigned 8 check2,output2;  
  unsigned 9 check3,output3;  
  unsigned 10 check4,output4;  
  unsigned 11 output5;  
  unsigned 8 input;  
  unsigned 12 output,check;  
  unsigned 1 p1,p2,p4,p8;  
  {  
  input = 0b10011010;  
  check1 = 0 @input[3:0];  
  check2 = input[6:4] @ check1;  
  check3 = 0@ check2;  
  check4 = input[7] @ check3;  
  check = 0 @ check4;  
  p1 = check[11] ^ check[9] ^ check[7]^check[5]^check[3]^check[1];  
  p2 = check[10] ^ check[9] ^ check[6]^check[5]^check[2]^check[1];  
  p4 = check[8] ^ check[7] ^ check[6]^check[5]^check[0];  
  p8 = check[4] ^ check[3] ^ check[2]^check[1]^check[0];  
  output1 = p8@ input[3:0];  
  output2 = input[6:4] @ output1;  
  output3 = p4 @ output2;  
  output4 = input[7] @ output3;  
  output5 = p2@output4;  
  output = p1@output5;  
  }  
  }  

***************************************************************
  Build Report:  
  --------------------Configuration: Hamming Code – Debug--------------------  
  Hamming_code.hcc  
  0 errors, 0 warnings  
  Hamming Code  
  NAND gates after compilation : 888 (130 FFs, 0 memory bits)  
  0 errors, 0 warnings  
________________________________________________________________                           
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           4.1      Introduction  

   Combinational logic system is characterized by the basic property that the Out-
puts being the function only of the current combination of inputs. Thus it exhibits 
memory less or stateless attributes as well as implies acyclic connection of the prim-
itives. Combinational circuits are known for the ease of debugging as the backtrac-
ing through them is uncomplicated owing to the unidirectional nature of the inputs. 
They are also less prone to glitches, races, hazards and thus more reliable in pro-
ducing the desired output. Another popular term used for the combinational logic 
circuits is ‘decision making circuits’ as they combine the logic functions together to 
yield a decisive output. A thumb rule for identification of the combinational logic 
circuit is no level-sensitive or edge-sensitive statement, as well as flip-flops, regis-
ters etc.  

   The VLSI viewpoint regarding the combinational logic circuits throws light on 
some new techniques. Mapping of the combinational logic functions into the exist-
ing primitives of the FPGAs sometimes leads to the inefficiency in terms of the area, 
delay and power.  

       4.2      Design Metrics for the Combinational Logic 
Circuits: SoC Perspective  

   A general methodology for the FPGA based SoC, combinational logic circuits is 
technology-specific multilevel logic synthesis, global logic structure synthesis fol-
lowed by local optimization and finally the technology mapping. The given logic 
design is expressed in Boolean network form and then the same is subjected to the 
global logic structure synthesis, and serves as an intermediate description between 
input specification in HDL or PLA-like format and the final network in a specific 
target technology [70]. EDA tools based on the ‘Multilevel Minimization Algo-
rithms’ exist for further reducing the cost of an initially synthesized Boolean net-
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work. However, the designs generated by the above mentioned EDA tools after 
initial synthesis by an algebraic approach are far inferior to manual designs in some 
cases, owing to the limiting of local node constraints changes rather than global 
level. More than the importance to the initial structural description of the Boolean 
Expression, applying certain transformation at the logical level results in minimiza-
tion of the power consumption. Designers seems to prefer of NAND logic instead of 
NOR to ensure good performance, whilst reducing power dissipation [71].  

   With ever shrinking geometries, growing density and increasing clock rate of 
chips, delay testing is gaining more and more industry attention to maintain test 
quality for speed-related failures in SoC combinational circuits. The purpose of 
a delay test is to verify that the circuit operates correctly at a desired clock speed. 
Although application of stuck-at fault tests can detect some delay defects, it is no 
longer sufficient to test the circuit for the stuck-at faults alone. Therefore, delay test-
ing is becoming a necessity for today’s integrated circuits 0 [72]. SoC designers are 
also more sensitive to the radiation-induced soft errors which getting worsened in 
sequential as well as combinational designs on chip. Built-In Soft Error Resilience 
(BISER) technique for correcting soft errors in latches, flip-flops and combinational 
logic has now been devised. The BISER technique enables more than an order of 
magnitude reduction in chip-level error soft rate with minimal area impact, 6–10% 
chip-level power impact, and 1–5% performance impact (depending on whether 
combinational logic error correction is implemented or not). In comparison, several 
classical error-detection techniques introduce 40–100% power, performance and 
area overheads, and require significant efforts for designing and validating corre-
sponding recovery mechanisms [73].  

   Finally a word about the hazards and glitches in the combinational logic net-
works. The basic difference between a glitch and hazard goes on following lines: 
the former is the momentary change of signals at the outputs while the latter is due 
to incorrect circuit operation many a times due to the different propagations delays 
by different paths through which the signal is traversing. The strategy adopted for 
avoiding both hazards and glitches is to ensure the stability of the signal by using 
a clock, avoiding asynchronous inputs, and undertaking a thorough analysis of the 
Boolean expression at the initial level only.  

       4.3      Core of ‘2 to 4 Decoder’  

   A decoder is a decoder is a multiple-input, multiple-output logic circuit that con-
verts coded inputs into coded outputs, where the input and output codes are dif-
ferent. It is a circuit that changes a code into a set of signals. Decoder has good 
number of applications in code conversion, selective logic activation in devices such 
as microprocessor buses, memories etc.  

   From the SoC viewpoint, the design care has to be taken to assign default value 
for unasserted outputs so as to avoid the excess power consumption. In case of 
CMOS custom ICs, the decoders can be implemented using the transmission gates 
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and the same results in spatial efficiency. There is also a trend in building the large 
decoders using the small primitive decoders and decoding with precoded bits.  

   A Handel C program for the realization of 2:4 decoder is given below:  

    Program 4.1:  Handel C Code for 2 to 4 Decoder IP  
   ***************************************************************
set clock = external “p77”;  
   void main(void)  
   {  
   unsigned 1 G,out1,out2,out3,out4;  
   unsigned 2 In1;  
   interface bus_in(unsigned 2 a) inp1() with {data = “p3”,“p4”}};//input pin  
   interface bus_in(unsigned 1 b) inp2() with {data = {“p5”}};//input pin.  
   interface bus_out() out(out1) with {data = {“p7”}};//output pin  
   interface bus_out() outp1(out2) with {data = {“p9”}}; //output pin  
   interface bus_out() outp2(out3) with {data = {“p10”}};//output pin  
   interface bus_out() outp3(out4) with {data = {“p11”}}; //output pin.  
   while(1)  
   {  
   In1=inp1.a;  
   G=inp2.b;  
   if(In1==0)  
   {  
   out1=G;  
   }  
   else if (In1==1)  
   {  
   out2=G;  
   }  
   else if (In1==0)  
   {  
   out3 = G;  
   }  
   else  
   {  
   out4=G;  
   }  
   }  
   }  

 ***************************************************************
------------------------------------------------------------------------------------------------
     Build Report:    
   -----------------Configuration: 2 to 4 Decoder – Debug-----------------  
   Decoder.hcc  
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   0 errors, 0 warnings  
   2 to 4 Decoder  
   NAND gates after compilation : 261 (15 FFs, 0 memory bits)  
   0 errors, 0 warnings  
------------------------------------------------------------------------------------------------

       4.4      ‘3 to 8 Decoder’ Using Hierarchical Approach  

   One of the important aspects of SoC design is hierarchy. The Hierarchical Design is 
all about representing the circuit objects encapsulated in a cell definition. Instances 
of these cells are then evoked in other cells and thus forms a complex system with 
ease of designing. The main advantage of the above mentioned design methodol-
ogy is ease of debugging and reliable timing as the individual cells are pre-tested. 
The following example illustrates design of the 3:8 decoder using two hierarchical 
design blocks.  

    Program 4.2 : Handel C Code for 3 to 8 Decoder IP  
    ***************************************************************
set clock = external “p77”;  
      
   macro proc Decoder(In1);  
   macro proc Decoder1(In1);  
   void main(void)  
      {  
      
   unsigned 3 In1;  
      
   while(1)  
   {  
   if(In1<=3)  
   Decoder(In1);  
   else  
   Decoder1(In1);  
      
   }  
   }  
   macro proc Decoder(In1)  
   {  
   unsigned 1 G,out1,out2,out3,out4;  
   G=0b1;  
   if(In1==0)  
   {  
   out1=G;  
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   }  
   else if (In1==1)  
   {  
   out2=G;  
   }  
   else if (In1==2)  
   {  
   out3 = G;  
   }  
   else  
   {  
   out4=G;  
   }  
   }  
   macro proc Decoder1(In1)  
   {  
   unsigned 1 G,out5,out6,out7,out8;  
   G=0b1;  
   if(In1==4)  
   {  
   out5=G;  
   }  
   else if (In1==5)  
   {  
   out6=G;  
   }  
   else if (In1==6)  
   {  
   out7 = G;  
   }  
   else  
   {  
   out8=G;  
   }  
   }  

 ***************************************************************

    Program 4.3:   Handel C Code for 3 to 8 Decoder IP in non-hierarchical manner 
using Switch construct  

 ***************************************************************
   set clock = external “p77”;  
   void main(void)  
   {  
   unsigned 1 G,out0,out1,out2,out3,out4,out5,out6,out7;  
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   unsigned 3 In1;  
      
   while(1)  
   {  
   switch (In1)  
   {  
   case 0:  
   {  
   out0=G;  
   break;  
   }  
   case 1:  
   {   
   out1 = G;  
   break;  
   }  
   case 2:  
   {  
   out2 = G;  
   break;  
   }  
   case 3:  
   {  
   out3 = G;  
   break;  
   }  
   case 4:  
   {  
   out4 = G;  
   break;  
   }  
   case 5:  
   {  
   out5 = G;  
   break;  
   }  
   case 6:  
   {  
   out6 = G;  
   break;  
   }  
   case 7 :  
   {  
   out7 = G;  
   break;  
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   }  
   }  
   }  
   }  

 ***************************************************************

       4.5      Priority Encoder 4 to 2  

   An encoder in general is a device used to change a group of signals into a code. 
Priority encoder is a combinational circuit connected by the logic function such that 
 y =2 x  inputs and x outputs, the output asserted by the priority of the  y  inputs. Gen-
erally, the most significant bit of the input has the highest priority while the least 
significant bit has the lowest priority.  

   Many useful refinements of encoders have been worked out in the SoC devices. 
Frias et al. have reported a VLSI priority encoder that uses a novel priority look 
ahead scheme to reduce the delay for the worst case operation of the circuit, while 
maintaining a very low transistor count. The encoder’s topmost input request has the 
highest priority; this priority descends linearly. Two design approaches for the prior-
ity encoder are presented in their paper, one without a priority look ahead scheme 
and one with a priority look ahead scheme. They have successfully shown that for 
an N-bit encoder, the circuit with the priority look ahead scheme requires only 
1.094 times the number of transistors of the circuit without the priority look ahead 
scheme. Having a 32-bit encoder as an example, the circuit with the priority look 
ahead scheme is 2.59 times faster than the circuit without the priority look ahead. 
The worst case operation delay is 4.4 ns for this look ahead encoder, using a 1- μ m 
scalable CMOS technology. The proposed look ahead scheme can be extended to 
larger encoders [74].  

   The Handel C implementation of 4 to 2 priority encoder is given below:             

     Program 4.4:  Handel C Code for 4 to 2 Priority Encoder  
    ***************************************************************
set clock = external “p77”;  
   void main(void)  

Table 4.1 Truth table of the 4–2 priority encoder

Input Output

Input[3] Input[2] Input[1] Input[0] MSB LSB

1 X X X 1 1

0 1 X X 1 0

0 0 1 X 0 1

0 0 0 0 0 0
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   {  
   unsigned 4 input;  
   unsigned 2 out, out1;  
   input =0;  
   while(1)  
   {  
   if (input[3] ==1)    //   MSB having higher priority of four bit input.  
   {  
   out =3;  
   }  
   else if (input[2] ==1)  
   {  
   out =2;  
   }  
   else if(input[1] ==1)  
   {  
   out =1;  
   }  
   // LSB bit of 4 bit is lowest priority.  
   else  
   {  
   out =0;  
   }  
   input = input +1;  
   }  
   }  

 ***************************************************************
     Build Report:    
   --------------------Configuration: Priority Encoder – Debug--------------------  
   Encoder.hcc  
   0 errors, 0 warnings  
   Priority Encoder  
   NAND gates after compilation : 281 (15 FFs, 0 memory bits)  
   0 errors, 0 warnings  
________________________________________________________________

       4.6      Soft IP Core of ‘7 to 3 Encoder’ Implementation  

   An implementation of 7 to 3 encoder is given below.  

     Program 4.5:  Handel C Code for 7 to 3 Encoder  
 ***************************************************************
   set clock = external “p77”;  
   void main(void)  
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   {  
   static unsigned 7 inp[1] = {0};  
   static unsigned 3 out[1] = {0};  
   if (inp[0]==0b00000001)  
   {  
   out[0] = 0;  
   }  
   else if (inp[0] == 0b000010)  
   {  
   out[0] = 1;  
   }  
   else if (inp[0] == 0b0000100)  
   {  
   out[0] = 2;  
   }  
   else if (inp[0] == 0b0001000)  
   {  
   out[0] = 3;  
   }  
   else if (inp[0] == 0b0010000)  
   {  
   out[0] = 4;  
   }  
   else if (inp[0] == 0b0100000)  
   {  
   out[0] = 5;  
   }  
   else if (inp[0] == 0b1000000)  
   {  
   out[0] = 6;  
   }  
   else  
   {  
   out[0] = 7;  
   }  
   }  

 ***************************************************************
     Build Report:    
   ----------------Configuration: 7 to 3 Encoder – Debug------------------  
   Encoder.hcc  
   0 errors, 0 warnings  
   7 to 3 Encoder  
   NAND gates after compilation : 632 (21 FFs, 0 memory bits)  
   0 errors, 0 warnings  
________________________________________________________________
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       4.7      IP Core of ‘Parity generator’ for Communication 
Applications  

   A parity bit is generally a redundant binary digit added to the transmitted bit stream 
for error detection. The error detection mechanism, is based on the checksum of the 
number of transmitted bits.  

   There are two variants of parity bits: even parity bit and odd parity bit. ‘Even 
Parity’ mechanism ensures checksum of a given set of bits is odd (making the total 
number of ones, including the parity bit, even). Reverse is true for the odd parity, 
wherein inclusion of 1 makes the checksum even in case the transmitted sequence 
is corrupted by noise. A variant of the basic parity code, known as ‘Low-Density 
Parity-Check Code (LDPC code) or Gallager code’ is popularly used in digital com-
munication for error detection as well as correction. The other well known applica-
tions of the parity codes are: 

     Ω      The SCSI and PCI buses for detection of transmission errors,  
      •      Microprocessor instruction caches for early detection of corrupted data  
      •      Serial data transmission  
      •      Digital recording systems  
      •      Magnetic recording channels  
      •      Modem Links        

   A parity generator is a classic piece of block code generator circuit that derives the 
check bits, based on the message bits itself. i.e. Given an n-1 bit data word, it gen-
erates an extra (parity) bit that is transmitted with the word based on the ‘even’ or 
‘odd’ parity predecided mechanism. The Handel C implementation given below is 
an 8 bit parity generator cell developed using the Ex-OR logic.  

     Program 4.6:  Handel C realization of 8 bit parity generator  
 ***************************************************************
  // Program for the Parity Generator.  
   set clock = external “p77”;  
   void main(void)  
   {  
   unsigned 8 input;  
   unsigned 1 out1;  
   /*interface bus_in(unsigned 8 in1) inp() with {data= {“p3”,”p4”,”p5”,”p7”,”p9”, 

”p10”,”p15”,”p16”}};  
   interface bus_out() out(out1)with {data = {“p17”}};  
   */  
   while(1)  
   {  
   input = inp.in1;  
   for(input =0; input < 255; input++)  
   out1 = (input[0] ^ input[1]) ^ (input[2] ^ input[3]) ^ (input[4] ^ input[5]) ^ 

(input[6] ^ input[7]);  
   }  
   }  
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 ***************************************************************
     Build Report:    
   --------------------Configuration: Parity Checker – Debug--------------------  
   parity.hcc  
   0 errors, 0 warnings  
   Parity Checker  
   NAND gates after compilation : 400 (16 FFs, 0 memory bits)  
   0 errors, 0 warnings  
------------------------------------------------------------------------------------------------
     EDIF generating Report:    
   ------------------------Configuration Parity Checker - EDIF---------------------------  
   parity.hcc  
   0 errors, 0 warnings  
   Parity Checker  
   NAND gates after compilation : 400 (16 FFs, 0 memory bits)  
   NAND gates after optimisation : 385 (15 FFs, 0 memory bits)  
   NAND gates after expansion : 545 (29 FFs, 0 memory bits)  
   NAND gates after optimisation : 399 (28 FFs, 0 memory bits)  
   LUTs after mapping : 19 (28 FFs, 0 memory bits)  
   LUTs after post-optimisation : 20 (25 FFs, 0 memory bits)  
   0 errors, 0 warnings  
________________________________________________________________

       4.8      IP Core for Parity Checker and Error Detection 
for Internet Protocol  

   The job of ‘parity checker’ is exactly reverse as that of parity generator. At the 
receiving end of the transmission, the parity checker makes use of the redundant 
bits added by the parity generator to detect single-bit errors in the transmitted data 
word. In order to accomplish this, it has to regenerate the parity bit in exactly the 
same manner as the generator and after comparing the two parity bits, the disagree-
ment entails the error.  

   The application developed here is the parity checker for the ‘Internet Protocol’. 
This is a 16 bit parity checker. The basis of the Handel C realization of the par-
ity checker is the mechanism followed in the Internet Protocol. The IP header of 
the received packet is of 20 bytes size, which is stored in the memory. The byte 
number 10 and 11 are the parity bits inserted by the parity generator. At the receiv-
ing node, these bytes are made zero and the checksum of the remaining header 
is done. Any disagreement indicates the corruption of the packet in the course of 
transmission and thus a command is sent for retransmission. Detailed program is 
given below:  

     Program 4.7:  Handel C realization IP parity Checker  
    ***************************************************************
set clock = external “dummy”;  
   void main(void)  
   {  
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   static unsigned 8packet_Header[20];  
   unsigned i;  
   unsigned 16 check;  
   unsigned 16 sum,checksum;  
   packet_Header[10]=0 x 00;// Parity Bits  
   packet_Header[11]=0 x 00; //Parity Bits  
   //add 16 bit header  
   for (i=0;i<19;i=i+4)  
   {  
   check =(packet_Header[i] @ packet_Header[i+1]) + (packet_Header[i+2] @ 
packet_Header[i+3]);  
   sum = sum +(0@check);  
   }  
   while (sum>>16)  
   sum = (sum & 0xFFFF)+(sum >> 16); // take only 16 bits  
   checksum = ~sum[15:0]; // complement the result  
   }  
 ***************************************************************

       4.9      BCD TO Seven Segment converter  

   BCD to Seven Segment Decoder converts a 4-bit binary-coded decimal value, that 
is the numbers 0–9 coded as 0000–1001, into the code required to drive a seven-seg-
ment display. Though ‘power hungry’ the Seven Segment displays are still one of 
the popular method adopted for display in PLCs, Microcontrollers and other allied 
products.  

   BCD is also a very common and popular for displaying the numeric values in 
electronic systems. It greatly simplifies the manipulation of numerical data for dis-
play by manipulating each digit as a separate single sub-circuit. Designers prefer 
the BCD system owing to its ease of calculations rather than working with the com-
plicated pure binary system that resorts to conversion and reconversion. Yet another 
advantage of the BCD system is the smaller code sizes, minimizing the memory and 
other hardware requirements.  

   Handel C code developed in this section realizes the BCD to seven segment 
converter that can be glued on any embedded product. The realization with the 
Xilinx Spartan III family is shown in the figure. The program is developed for the 
common anode seven segment displays, with the segment pattern as Dp G F E D 
C B A.  
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           Program 4.8:  Handel C realization BCD to seven segment converter  
    ***************************************************************
// Common Anode  
   Sequence for Digit is Dp G F E D C B A  
   set clock = external “p77”;  
   void main(void)  
   {  
   unsigned 4 BCD;  
   unsigned 7 sevenseg;  
   interface bus_in(unsigned 4 bcd) in1() with {data = {“p4”,”p5”,”p7”,”p9”}};  
   //4 bit BCD input given to FPGA.  
   interface bus_out() out1(sevenseg) with {data = 

{“p16”,”p17”,”p18”,”p21”,”p22”,”p23”,”p29”}};  
   //seven segment output from fpga.  
   while(1) // continues loop.  
   {  
   BCD=in1.bcd; //input BCD code  

Fig. 4.1 Realization of BCD to seven segment converter on Spartan III FPGA
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   if(BCD==0)  
   {  
   sevenseg=0 x 40;  
   }  
   else if(BCD==1)  
   {  
   sevenseg=0 x 79;  
   }  
   else if(BCD==2)  
   {sevenseg=0 x 24;  
   }  
   else if(BCD==3)  
   {  
   sevenseg=0 x 30;  
   }  
   else if(BCD==4)  
   {  
   sevenseg=0 x 19;  
   }  
   else if(BCD==5)  
   {  
   sevenseg=0 x 12;  
   }  
   else if(BCD==6)  
   {  
   sevenseg=0 x 03;  
   }  
   else if(BCD==7)  
   {  
   sevenseg=0 x 78;  
   }  
   else if(BCD==8)  
   {  
   sevenseg=0 x 00;  
   }  
   else if (BCD==9)  
   {  
   sevenseg=0 x 18;  
   }  
   }  
   }  
 ***************************************************************
     Build Report:    
     -------------------- Configuration: Seven_Seg – Debug -------------------    
   BCD to seven seg.hcc  

Fig2Fig2
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   0 errors, 0 warnings  
   Seven_Seg  
   NAND gates after compilation : 1143 (31 FFs, 0 memory bits)  
   0 errors, 0 warnings  
-----------------------------------------------------------------------------------------------
     EDIF Generation report:    
   --------------------Configuration: Seven_Seg - EDIF--------------------  
   BCD to seven seg.hcc  
   0 errors, 0 warnings  
   Seven_Seg  
   NAND gates after compilation : 1143 (31 FFs, 0 memory bits)  
   NAND gates after optimisation : 1021 (31 FFs, 0 memory bits)  
   NAND gates after expansion : 943 (45 FFs, 0 memory bits)  
   NAND gates after optimisation : 354 (28 FFs, 0 memory bits)  
   LUTs after mapping : 67 (28 FFs, 0 memory bits)  
   LUTs after post-optimisation : 68 (26 FFs, 0 memory bits)  
   0 errors, 0 warnings  
------------------------------------------------------------------------------------------------

       4.10      Core of Binary to Gray Converter and Applications  

   The foremost advantage of the Gray code (named after Frank Gray) over the straight 
binary code sequence is that only one bit in the code group changes when going 
from one number to the next one. Thus, the Gray code eliminates the possible error 
or ambiguity during the transition from one number to the next. Gary codes are also 
referred to as the reflected binary code, due to their inherent property of differing 
in only one digit between two successive values. Though originally developed for 
preventing spurious output from electromechanical switches, today, they are widely 
used to for error correction in digital communications such as digital terrestrial tel-
evision, cable TV systems, modem pairs, transceivers etc.  

   Although algorithms such as ‘Shift and Add 3’ can be used for the Binary to 
Gray conversion, we have resorted to the structural EX-OR method which is more 
temporal efficient. In the algorithmic form it is expressed as: 

     •      Copy the most significant bit.  
      •      For each smaller possible i  
      •      Gray[i] = Binary[i+1] ^ Binary[i]        

   The Handel C implementation follows:  

     Program 4.9:  Handel C code for binary to gary converter  
   ***************************************************************
     set clock = external “p77”;  
   void main(void)  
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   {  
   unsigned 4 binary,gray;  
   unsigned 1 gray1,gray2,gray3,gray4;  
   while(1)  
   {  
   binary = 0b0011;  
   gray1=binary[0] ^ binary[1];  
   gray2=binary[2] ^ binary[1];  
   gray3=binary[2] ^ binary[3];  
   gray4= binary[3];  
   gray = gray4@gray3@gray2@gray1;  
   }  
   }  

***************************************************************

       4.11      Realization of IP core of gray to binary converter  

   The Handel C realization for the Gray to Binary conversion resorts to the basic 
algorithm of keeping the Most Significant Bit (MSB) in the Gray code is the same 
as the binary number and then adding the current Gray code while going from the 
MSB to LSB (left to right), ignoring the carry. The algorithmic expression can be 
expressed as:  

     •      Copy the most significant bit.  
      •      For each smaller possible i  
      •      Binary[i] = Binary[i+1] ^ Gray[i]        

Fig. 4.2 Binary to gary 
converter
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   The same is expressed in the EX-OR logic and written in the Handel C form as 
shown below:  

     Program 4.10:   Handel C code for realization of IP core of gray to binary 
converter  

***************************************************************
   set clock = external “p77”;  
   void main(void)  
   {  
   unsigned 4 binary,gray;  
   unsigned 1 binary1,binary2,binary3,binary0;  
   while(1)  
   {  
   binary3=gray[3];  
   binary2= gray[3]^gray[2];  
   binary1=binary2^gray[1];  
   binary0 = binary1^gray[0];  
   binary=binary3@binary2@binary1@binary0;  
   }  
   }  

***************************************************************

       4.12      Designing Barrel Shifters  

   A barrel shifter is a digital circuit that can shift a data word by a specified number of 
bits in one clock. cycle. It is an important implementation normally found in SoCs 
as the basic ‘shift’ and ‘rotate’ operations enables to implement multiplication, divi-
sion, cyclic redundancy checks, cryptography algorithms, floating point arithmetic, 
bit field extraction, Boolean true/false type structures etc. In most of the SoC imple-
mentations the barrel shifter is configured to perform these operations in a stateless, 
combinatorial manner in a single cycle. It has the ability to rotate and extend signs 
as well. It accepts 2n data bits and n control signals and produces n output bits.  

     Program 4.11:  Handel C code for barrel shifter  
***************************************************************
   set clock = external “p77”;  
   void main (void)  
   {  
   unsigned 4 input,output,rotate;  
   while(1)  
   {  
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   par  
   {  
   switch(rotate) //get the data and according the data rotate input.  
   {  
   case 0:  
   {  
   output=input;  
   break;  
   }  
   case 1:  
   {  
   output=input[2]@input[1]@input[0]@input[3];  
   break;  
   }  
   case 2:  
   {  
   output=input[1]@input[0]@input[3]@input[2];  
   break;  
   }  
   case 3:  
   {  
   output=input[0]@input[3]@input[2]@input[1];  
   break;  
   }  
   case 4:  
   {  
   output=input[3]@input[2]@input[1]@input[0];  
   break;  
   }  
   default:  
   {  
   output=0b0000;  
   break;  
   }  
   }  
   }  
   }  
   }  

***************************************************************
     Build Report:    
   --------------------Configuration: BarrelShift – Debug--------------------  
   Shifter.hcc  



4.12  Designing Barrel Shifters 79

   0 errors, 0 warnings  
   BarrelShift  
   NAND gates after compilation : 379 (21 FFs, 0 memory bits)  
   0 errors, 0 warnings  
________________________________________________________________   
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           5.1 Design Reuse Philosophy  

   As integrated circuit technologies fight to meet and overcome the Moore’s law, 
the quest towards higher performance, greater densities, increasing system com-
plexity and on the top of all, shrinking market window necessities innovation in 
design methodology. The literature survey reveals that the current, popular design 
approach, which generally consists of top-down synthesis, software simulation and 
limited design reuse, is not keeping pace with Moore’s Law, which is equivalent to a 
59% growth rate. Design productivity has been increasing by roughly 25% per year. 
This amounts to the growing gap between the designed and manufacturing [75].  

   On one hand the new EDA tools are trying hard to keep the pace with managing 
the alarming complexity of the design process and on the other hand the emphasis is 
given on the IP reuse. The formal definition of the ‘Design Reuse’ is as follows:  

   In information technology, design reuse is the inclusion of previously designed 
components (blocks of logic or data) in software and hardware. The term is more 
frequently used in hardware development. Design reuse makes it faster and cheaper 
to design and build a new product, since the reused components will not only be 
already designed but also tested for reliability. [76]  

   Design Reuse is a decade old which has emerged with the general usage of 
embedded processors and standard interfaces mainly to facilitate the tight project 
schedules and solve the design complexity. It has also helped in reducing the project 
budget as the SoC industry is hit by the increasing cost of masks.  

   Some of the prevalent issues in the design reuse are: 

     •      Increasing cost of IP design for reuse due to time to market pressure.  
      •      Intellectual Property Rights of the IP Cores.  
      •      Compatibility of the IP cores with the existing design.  
      •      Lack of documentation regarding the IP.  
      •      Testing and Debugging Challenges as the Testbenches are generally not provided 

with the IP.  
      •      Optimization of the IP blocks for the intended design as it is being merged as a 

third party design.  

Chapter 5
Arithmetic Core Design and Design Reuse
of Soft IP Cores
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      •      Timing inefficiency / mismatch when migrating from one technology platform to 
other.        

   The guidelines regarding the IP reuse in the SoC industry goes on the following 
lines: 

     •      Web based interface is being popularized for the IP distribution and reuse.  
      •      This requires creation of the web page for each design and collate the following 

information  
      •      The RTL source, including the testbench.  
      •      Associated documentation  
      •      Supplementary design notes used during the IP core design.  
      •      Complete listing of the design files in languages like Handel C        

   Some healthy practices also exist in SoC industry that has fuelled the IP based 
design reuse as seen from the web based IP repositories below:  

   Open Cores community and web portal have been founded by Damjan Lampret 
in October 1999. During 8 years while Damjan Lampret has maintained the web 
portal, OpenCores became extremely well known in the hi-tech industry. In 2006 
over 5000 different companies have downloaded IP from OpenCores. On average 
80,000 engineers and others have visited OpenCores web site each month and gen-
erated 7.5 million web hits and 2.8 million page views monthly. It is estimated that 
more than a million engineers have downloaded IP from OpenCores in the first 
eight years of OpenCores existence (URL: www.opencores.org).  

   Design and Reuse (D & R) founded by Gabriele Saucier and Philippe Coeur-
devey is a web portal for added-value information in the field of electronic virtual 
component, i.e. IP and SoC. D & R became the worldwide leader as a web and a 
B2B portal in the IP/SoC field. With its 150,000 page views per month, 15,000 
daily updated IP/SOC products descriptions and the on going client/provider match-
ing activity, D & R web stays worldwide unique. 150 companies have signed up 
a partnership agreement with D & R for providing their latest information to the 
market through D & R channel and taking the best benefit from its lead service and 
B2B matching opportunities. D & R has a mission to trigger the IP business (URL: 
http://www.design-reuse.com/).  

   Although the reusability of the soft IP cores seems to very simple, it poses sev-
eral difficulties when it comes to fitting them along with the other modules on the 
SoC. The first part of the chapter deals with embedding arithmetic cores in Han-
del C. Later in chapter there is exhaustive coverage of complete realization of the 
SoC by putting together the soft IP arithmetic core developed in Handel C with the 
Microblaze, the Soft IP processor core by Xilinx.  
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       5.2      Advantages of on Chip Arithmetic  

   One of the major problems in executing the arithmetic intensive application on a 
general purpose computing platform is their speed inefficiency. The interaction 
between the algorithm and the underlying architecture doesn’t match each other 
which lead to poor throughput. Some times the DSP algorithms have to run in a 
batch processing mode for an extensive time to get a reasonable solution. There are 
two possible solutions for bringing the speed efficiency of the arithmetic algorithms 
the first one is to formulate the algorithm to match the hardware and the second is 
matching hardware to algorithm. The former approach can be explored by exploit-
ing the equivalence between different operations and then run the modules in paral-
lel. This can be done by extensive analysis techniques such as signal flow or data 
flow representation. The later approach involves customization of the reconfigura-
ble FPGA hardware to suit the algorithm itself.  

   This section illustrates the development of the soft arithmetic cores which 
can be executed in an accelerated manner on the FPGA due to the hardware 
customization.  

       5.3   Designing Half Adder in Handel C  

   A seemingly simple design of the half adder in Handel C is given here with a defi-
nite purpose. The Half adder has got many applications. Lutz et al. have reported 
efficient methods to determine the four usual branch conditions for a sum or dif-
ference, before the result of the addition or subtraction is available. The methods 
lead to the design of an early branch resolver which integrates well with a regular 
adder/subtracter, adding only a small amount of circuitry and almost no delay. The 
methods exploit the properties of half-adder form. Sums in half-adder form can 
be computed very quickly (with the delay of a half adder), yet they have enough 
structure so that many of the properties of the final sum can be easily detected. The 
reduced latency for evaluating branch conditions means that an addition or subtrac-
tion and a dependent conditional instruction can execute in the same cycle, with a 
consequent increase in instruction-level parallelism, and improved performance for 
both single-issue and superscalar processor [124]. There are other reported applica-
tions of array of half adders for digital signal processing and multiplier less chips.  

   The Handel C program of single bit half adder is given below:  
     Program 5.1:  Handel C code for half adder  
***************************************************************
   set clock = external “p77”;  
   void main ()  
   {  
   unsigned 1 Input1,Input2,addition,carry;  
   interface bus_in(unsigned 1 a) inp1() with {data = {“p4”}};//input pin  
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   interface bus_in(unsigned 1 b) inp2() with {data = {“p5”}};//input pin  
   interface bus_out() out(addition) with {data = {“p7”}};//output pin  
   interface bus_out() outp1(carry) with {data = {“p9”}}; //output pin  
   while(1)  
   {  
   Input1=inp1.a;  
   Input2=inp2.b;  
   addition=Input1^Input2;  
   carry=Input1*Input2;  
   }  
   }  
***************************************************************

   Build Report:  
   halfadder.hcc  
   0 errors, 0 warnings  
   adder  
   NAND gates after compilation : 78 (11 FFs, 0 memory bits)  
   NAND gates after optimisation : 74 (11 FFs, 0 memory bits)  
   NAND gates after expansion : 74 (11 FFs, 0 memory bits)  
   0 errors, 0 warnings  

       5.4      Full Adder  

   Like half adder full adder too has been used in various SoC implementations. Burian 
et al. have reported a new VLSI-suitable hardware implementation of the median 
filter that uses full adders (FAs) as the basic building block. The proposed hardware 
structures consist of several stages that exhibit regular and modular structure. It also 
reduces the hardware requirements and has a faster processing speed, when com-
pared with some other existing hardware implementations [125]. Soudris et al. have 
also reported systematic graph-based methodology for synthesizing VLSI RNS 
architectures using full adders as the basic building block. The design methodology 
derives array architectures starting from the algorithm level and ending up with the 
bit-level design. Using as target architectural style the regular array processor, the 
proposed procedure constructs the two-dimensional (2-D) dependence graph of the 
bit-level algorithm, which is formally described by sets of uniform recurrent equa-
tions. The main characteristic of the proposed architectures is that they can oper-
ate at very high-throughput rates. The proposed architectures exhibit significantly 
reduced complexity than ROM-based ones [126].  

   A Handel C implementation of an 8 bit full adder is given below:  
     Program 5.2:  Handel C code for 8 bit full adder
***************************************************************  
   set clock = external “dummy”; // clock declaration  
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   void main(void) //start of program  
   {  
   unsigned 8 A,B, /*8 bit input  
   unsigned 9 addition;  
   unsigned 1 carry;  
   while(1)  
   {  
   addition = (0 @ A)+ (0 @ B);  
   sum = addition[7:0];  
   carry = addition[8];  
   }  
   }  

   Build Report:  
   --------------------Configuration: adder – Debug--------------------  
   add.hcc  
   0 errors, 0 warnings  
   adder  
   NAND gates after compilation : 426 (40 FFs, 0 memory bits)  
   0 errors, 0 warnings
***************************************************************  

       5.5      Ripple Carry Adder  

   Ripple carry adder is a device for addition of two n-bit binary numbers, formed by 
connecting n full adders in cascade, with the carry output of each full adder feed-
ing the carry input of the following full adder. The reason to choose for ripple carry 
adders consists in their power efficiency [127] when compared to the other types of 
adders. Making an n bit ripple carry adder from 1 bit adders yields a propagation 
of the CARRY signal through the adder. Because the CARRY ripples through the 
stages, the SUM of the last bit is performed only when the CARRY of the previ-
ous section has been evaluated. Rippling will give extra power overhead and speed 
reduction but still, the RCA adders are the best in terms of power consumption 
[128]. With the power optimization, the ripple carry adders are increasingly used in 
applications involving the arithmetic circuit especially the DSP algorithms in SoC.  

   A Handel C program for the ripple carry adder is given below:  
     Program 5.3:  Handel C code for ripple carry adder  
***************************************************************
   set clock = external “p77”;  
   #define addc(A, B,C) A+B+C  
   #define add(A, B) A+B  
   #define carry(A, B) A*B  
   void main ()  
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   {  
   static unsigned 4 Input1,Input2,addition;  
   interface bus_in(unsigned 4 a) inp1() with {data = {“p4”,”p5”,”p6”,”p7”}};//
input pin  
   interface bus_in(unsigned 4 b) inp2() with {data = {“p8”,”p9”,”p10”,”p11”}};//
input pin  
   interface bus_out() out(addition) with {data = {“p12”,”p13”,”p14”,”p15”}};//
output pin  
   unsigned 1 addi,ca,x,y,z,w;  
   unsigned 1 a,b,c;  
   macro expr add= a+b+c;  
   macro expr carry= a*b;  
   interface bus_out() outp1(ca) with {data = {“p90”}}; //output pin  
   while(1)  
   {  
   Input1=inp1.a;  
   Input2=inp2.b;  
   Input1=14;  
   Input2=15;  
   a=Input1[0];  
   b=Input2[0];  
   x=add(a,b);  
   ca=carry(a,b);  
   addition=0@addi;  
   a=Input1[1];  
   b=Input2[1];  
   y=addc(a,b,c);  
   ca=carry(a,b);  
   a=Input1[2];  
   b=Input2[2];  
   z=addc(a,b,c);  
   ca=carry(a,b);  
   a=Input1[3];  
   b=Input2[3];  
   w=addc(a,b,c);  
   c=carry(a,b);  
   addition=w@z@y@x;  
   }  
   }
***************************************************************  
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       5.6      Booth Algorithm and its Realization on FPGA  

   The salient features of the Booth algorithm is its encoding scheme to reduce number 
of stages in multiplication. The algorithm performs two bits of multiplication at 
once and requires only half the stages; each stage being slightly more complex than 
simple multiplier. It is the standard technique used in chip design, and provides sig-
nificant improvements over the ‘long multiplication’ technique [128].  

   Handel C program for the Booth algorithm is given below:  
     Program 5.4:  Handel C code for Booth algorithm  
***************************************************************
   //Booth Algorithm for Multiplication of two number.  
   set clock = external “p77”;  
   void main (void)  
   {  
   unsigned 4 in1,in2;  
   unsigned 7 out,outf;  
   unsigned 4 out1;  
   unsigned 5 out2;  
   unsigned 6 out3;  
   unsigned 7 out4;  
   in1=0b0011;  
   in2=0b0010;  
   if (in2[0] ==0)  
   {  
   out1 = 0;  
   } else  
   {  
   out1=in1;  
   }  
   if(in2[1] == 0)  
   {  
   out2=0;  
   }  
   else  
   {  
   out2=in1@0;  
   if(in2[2]==0)  
   {  
   out3 =0;  
   }  
   else  
   out3=in1@0;  
   }  
   if(in2[3]==0)  
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   {  
   out4 = 0;  
   }  
   else  
   {  
   out4 = in1@0;  
   }  
   out = (0 @ out1) + (0 @ out2) + (0@out3)+ out4;  
   outf=out;  
   }  
***************************************************************

       Build Report:  
   -------------------- Configuration: Booth Algorithm – Debug --------------------  

   Booth.hcc  
   0 errors, 0 warnings  
   Booth Algorithm  
   NAND gates after compilation : 982 (59 FFs, 0 memory bits)  
   0 errors, 0 warnings

---------------------------------------------------------------------------------

         5.7      Building ALU in Handel C  

Fig. 5.1 Functional 
block diagram of ALU
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         Program 5.5:  Handel C code for 8 bit ALU
******************************************************************  

set clock = external”p77”;
unsigned 8 add(unsigned 8 a, unsigned 8 b); //function declaration
unsigned 8 sub(unsigned 8 a, unsigned 8 b); //function declaration
unsigned 8 mul(unsigned 8 a, unsigned 8 b);
unsigned 8 div(unsigned 8 a, unsigned 8 b);
void main (void)
{
unsigned 8 a,b,ad,mu,su,di,out;
unsigned 2 sel;
interface bus_in(unsigned 8 in1) inp1() with {data = {“p3”,”p4”,”p5”,”p6”,”p7”,

”p8”,”p9”,”p10”}};//input pin
interface bus_in(unsigned 8 in2) inp2() with {data = {“p11”,”p12”,”p13”,”p14”,

”p15”,”p16”,”p17”,”p18”}}; //inputpin.
interface bus_in(unsigned 2 select1) inp3() with {data = {“p19”,”p20”}};//input 

pin
interface bus_out() out1(out) with {data = {“p21”,”p22”,”p23”,”p24”,”p25”,

”p26”,”p27”,”p28”}}; //output pin
while(1)
{
a = inp1.in1;
b= inp2.in2;
sel=inp3.select1;
di=div(a,b);
ad= add(a,b);
mu= mul(a,b);
su= sub(a,b);
if (sel==0)
{
out = ad;
}
else if (sel == 1)
{
out = su;
}
else if (sel ==2)
{

Sel0 Sel1 Function to be perform by 
ALU

0 0 Addition (in1 + in2)

0 1 Subtraction (in1 – in2)

1 0 Multiplication (in1 * in2)

1 1 Division (in1 / in2)
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out = mu;
}
else if (sel == 3)
{
out = di;
}
}
}
unsigned 8 add(unsigned 8 d,unsigned 8 e)
{
unsigned 9 temp;
unsigned 8 c;
unsigned 1 carry ;
temp= (0@d)+(0@e);
c=temp[7:0];
carry=temp[8];
return(c);
}
unsigned 8 sub(unsigned 8 s,unsigned 8 p)
{
unsigned 8 c;
c= s-p;
return(c);
}
unsigned 8 mul(unsigned 8 t,unsigned 8 u)
{
unsigned 8 c;
c= t*u;
return(c);
}
unsigned 8 div(unsigned 8 x,unsigned 8 y)
{
unsigned 8 c;
c= x/y;
return(c);
}
***************************************************************

Build Report:
--------------------Configuration: ALU- Debug--------------------
alu.hcc
0 errors, 0 warnings
book
NAND gates after compilation  : 6390 (188 FFs, 0 memory bits)
0 errors, 0 warnings    
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       5.8      Xilinx EDK Interface with Cores Developed
Through Handel C  

   Xilinx EDK (stands for Embedded Development Kit) is a design environment for 
developing embedded systems using Xilinx FPGAs and it facilitates creation of 
hardware architecture, compilation of software, integration of software into the 
hardware by writing driver and finally verification of the RTL. XPS (Xilinx Plat-
form Studio) is the GUI that integrates all EDK processes.  

   The components of the EDK are as follows: 

     •      Processors (PowerPC, MicroBlaze)  
      •      Interconnect (PLB, OPB, FSL, etc.)  
      •      Memories (BRAM, DDR)  
      •      Peripherals (UART, Ethernet, Custom cores)        

   As one can see from the list of the components almost any SoC can be realized by 
using the EDK environment. The missing components can be added through the 
custom cores.  

   We are giving here a step by step discourse for building the configurable SoC 
using the Xilinx EDK as there are lot of queries and apprehensions from the design 
community and the flow is not yet clearly given in the literature. Through this book 

Fig. 5.2  Selecting base system builder
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we are empowering the designers to build their SoC by making use of the EDK and 
the readily available soft IP cores given here in the form of Handel C code.  

     5.8.1      Design Problem  

   In this design a soft IP core of 32 bit adder is developed on Spartan 3E FPGA 
which is intended to be interfaced to the microblaze using PLB bus. A data stream 
is passed to the adder soft IP core and the result is acquired by the microblaze over 
the PLB. Further the result is displayed on PC hyperterminal using the UART inter-
faced to the microblaze.  

   The step by step implementation is as follows:  

       5.8.2      Design Flow  

   As shown in Fig. 5.1, as soon as the new project is opened, the designer has to select 
the base system design which is shown in Fig. 5.2. The EDK then asks the use as 

Fig. 5.3 Building project from scratch / on old module
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regards to building the project from the scratch or on a previous project. In case the 
designer wants o build the project on his/her old module then he/she can go for the.
BSB file.  

   As shown in Fig. 5.4, the designer then has to choose the Xilinx FPGA board. 
The designer can very well go for FPGA boards other than Xilinx, with only addi-
tional burden to develop the pin configuration or UCF file for it.  

   The next step is selection of the available Soft IP processor core. The Spartan 3 
FPGA supports only Microblaze by default. Power PC is available for Virtex FPGA. 

Fig. 5.4 Selecting the Xilinx spartan 3E board

Table 5.1 Files created by the XPS as the SoC is built

Name of the File Explanation

Base System Builder Selection of working base system

MHS Generation of Netlist from Hardware 
Description

MSS Software converted into Libraries and drivers

Sim Gen Generation of Simulation Models

Xilinx Microprocessor Debugger Debugging information for the microprocessors

BitInit Generation of bitstream for configuring FPGA



Fig. 5.5 Selecting the soft IP processor

Fig. 5.6 Selecting the UART with appropriate configuration



Fig. 5.7 Configuring the UART as standard Input/Output device

Fig. 5.8 Test bench generation for the peripherals



Fig. 5.9 EDK showing the specifications of the system

Fig. 5.10 Starting platform studio



Fig. 5.11 EDK showing the modules and their connections using the buses. The designer can 
start importing the peripherals as well in this step

Fig. 5.12 Showing creation and implementation of new peripherals



Fig. 5.13 Linking the peripheral to the project by specifying path

Fig. 5.14 Specifying the Core Name and other information such as revision etc



Fig. 5.15 Selecting the bus for connecting the peripheral to Micorblaze

Fig. 5.16 In this application w have selected FIFO for buffering the data



Fig. 5.17 FIFO size specified as 512 bytes + 512 bytes as read and write

Fig. 5.18  Generating XST and ISE for implementing peripherals using XST flow. Template 
drivers are also selected here



Fig. 5.19 With this step the blank core is created

Fig. 5.20 The created peripheral is imported to the project



Fig. 5.21 Specifying the project for linking the created peripheral core

Fig. 5.22 Selecting the previously generated core with due attention given to the revision 
information



Fig. 5.24 Selecting the source file. In this case we have selected the EDIF generated by the 
Handel C adder core. Here the EDIF automatically maps into the VHDL for the compatibility 
with Microblaze

Fig. 5.23 Overwriting the core over the existing core



Fig. 5.25 Specifying the path for saving the VHDL file

Fig. 5.26 Selecting the.XST file of the core by adopting proper path



Fig. 5.27 Here the EDK shows successful creation of two VHDL files the first one is in VHDL 
pertaining to core and the second one is the user logic which is also in VHDL

Fig. 5.28 Generating the EDIF of the Handel C Adder core



Fig. 5.29 The EDK seeks path for the netlist of the ‘Adder Core’

Fig. 5.30 EDK showing the successful generation of the ‘Adder Core’ with other information 
such as version etc



Fig. 5.31 Adding ‘Adder Core’ to the main project of Microblaze

Fig. 5.32 Selecting the PLB bus interface for the ‘Adder Core’ to facilitate its communication 
with Microblaze



Fig. 5.33 Deciding the Memory Map for the System

Fig. 5.34 Generating the bitstream of the total core (Microblaze+UART+ Adder)



Fig. 5.35 Creating the software driver for the adder in ANSI C

Fig. 5.36 Adding files to the Software part of the project



Fig. 5.37 Generating the libraries for the project

Fig. 5.38 Marking to initialize BRAM for storing the software



Fig. 5.39 Compilation of software and building the project

Fig. 5.40 The SoC comprising of Hardware and Software is successfully built
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Here we have chosen the Microblaze as we are using the ‘Xilinx Spartan 3E Starter 
Kit’. MicroBlaze is a 32 bit soft processor core having RISC architecture. It has 
2–64 KB instruction and data caches along with the Barrel Shifter, Hardware mul-
tiply and divide and OPB and LMB bus interfaces. The chase selection can be done 
as per the need through EDK.  

           The selection of the processor and board follows by the selection of the peripher-
als. As shown in Fig. 5.6, the UART is selected. Its parameters are configured as 
baud rate of 9600 BPS for facilitating communication with the PC hyperterminal. 
As shown in Fig. 5.7, the UART is configured as standard input/output to acquire 
the data from the Microblaze and pass it to the PC hyperterminal. Rest of the steps 
and their discussion follows as the tile of the diagrams itself. The files generated 
while realizing the SoC are as shown in Table 5.1. The realization is also a classic 
example of hardware – software co-design in a SoC paradigm as the software driv-
ers are built in ANSI C.  

            
  Program 5.6:  Handel C code for adder
***************************************************************  
   interface port_in (unsigned 1 clk with {clockport=1}) clockport();  
   unsigned 32 result;  
   interface port_in (unsigned 32 sent_value) Inport() with 
{busformat=“B<N:0>“};  
   interface port_out() outport(unsigned 32 return_value = result) with 
{busformat=“B<N:0>“};  
   set clock= internal clockport.clk;  
   void main(void)  
   {  
   unsigned 32 A;  
   while(1)  
   {  
   A=Inport.sent_value;  
   result=A+22;  
   }  
   }  
***************************************************************
     Program 5.7:  Handel C core as a black box in EDK  
***************************************************************
   Project Name:- Handel C Core As a Black Box In EDK  
   Author NAme :- Shinde Santosh A and Dr.R.K.Kamat  
   Date:- 5th May 2008  
   //Header Definition  
   #include “handelc_adder.h”  
   #include “xparameters.h”  
   #include “stdio.h”  
   #include “xuartlite.h”  
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    Xuint32 *baseaddr_adder = (Xuint32 *)XPAR_HANDELC_ADDER_0_BASE-
ADDR;  
   int main (void) {  
   Xuint32 i;  
   Xuint32 addition;  
   Xuint32 baseaddr;  
   // Check that the peripheral exists  
   XASSERT_NONVOID(baseaddr_adder != XNULL);  
   baseaddr = (Xuint32) baseaddr_adder;  
   while(1)  //infinite Loop  
   {  
   //Reser FIFO  
   HANDELC_ADDER_mResetWriteFIFO(baseaddr);  
   HANDELC_ADDER_mResetReadFIFO(baseaddr);  
   // PUSH data to write packet FIFO for Addition  
   for(i = 1; i <= 7; i++)  
   {  
   xil_printf(“Sent Value For Adder: 0x%08x \n”, i);  
   HANDELC_ADDER_mWriteToFIFO(baseaddr,1, i);  
   }  
   // POP Adder Result out from read packet FIFO  
   for(i = 0; i < 7; i++){  
   addition = HANDELC_ADDER_mReadFromFIFO(baseaddr,1);  
   xil_printf(“Result Of Addition: 0x%08x \n”, addition);  
   }  
   // Reset FIFOs  
   HANDELC_ADDER_mResetWriteFIFO(baseaddr);  
   HANDELC_ADDER_mResetReadFIFO(baseaddr);  
   }  
   }      
***************************************************************
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       6.1      Prototyping Philosophy  

  According to the SIA Technology Roadmap, by the end of this decade the semi-
conductor industry will manufacture chips with four billion transistors, thousands 
of pins, and clock speeds of 10 GHz. In order to increase design productivity, a 
new design flow has recently emerged, based on the reuse of portable IP cores. 
An IP core is a block of logic or data that is used with a field programmable gate 
array (FPGA) or an application specific integrated circuit (ASIC). The increasing 
gap between design productivity and chip complexity, and emerging System-on-
Chip (SoC) have led to the wide utilization of reusable intellectual property (IP) 
cores [79]. For an SoC chip, the validation of hardware, software, and firmware 
on a common platform can be accomplished using FPGA-based prototypes. FPGA 
prototypes make it possible for SoC designs to be delivered on time, on budget, 
and on market target [77]. The reward of FPGA based prototyping is getting better 
designs sooner, in which hardware and software components are integrated before 
final silicon. Today, the electronic system design community is mainly concerned 
with defining efficient System-on-Chip (SoC) design methodologies in order to 
benefit from the high integration capabilities of current FPGA technologies on the 
one hand, and manage the increasing algorithmic complexity of applications on the 
other hand. Rapid prototyping is considered as a key to speed up the system design 
[78]. The popularity of the FPGA based prototyping is evident from the survey 
commissioned by Synplicity ®  Inc. in December 2004, wherein more than 20,000 
developers around the world were questioned as to their hardware-assisted ASIC 
verification strategy. The results showed that 1/3 of today’s ASIC designs are veri-
fied by means of an FPGA-based prototype [80]. Thus, it is becoming increasingly 
necessary to create prototypes of ASIC designs that run ‘at speed’ in the context of 
the system. The most cost effective technique emerged out to achieve this level of 
performance is to create an FPGA-based prototype.  

  This chapter is dedicated to the theme of FPFA based rapid prototyping of soft 
IP cores developed in Handel C. The core theme is supported by development of 
three case studies.  

Chapter 6
Rapid Prototyping of the Soft IP Cores
on FPGA
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    6.2      Rapid Design of Fuzzy Controller Using Handel C  

  This case study reports a novel design of fast fuzzy processor using Handel C. A 
case study of the model of a fuzzy processor for optimizing the temperature of water 
bath is developed and the system has been successfully validated on Xilinx Spartan 
III FPGA.  

   6.2.1      Cramming Software Centric Fuzzy Logic on the SoC  

  Fuzzy logic was first developed by Zadeh [81] in the mid-1960 for representing 
uncertain and imprecise knowledge. The fuzzy logic techniques have been suc-
cessfully applied in a number of applications such as computer vision, decision 
making, and system design including ANN training. However, the most extensive 
applications are in the area of control systems where examples include controllers 
for cement kilns, braking systems, elevators, washing machines, hot water heaters, 
air conditioners, video cameras, rice cookers and photocopiers [82]. It is estimated 
that the number of industrial and commercial applications will approximately dou-
ble every year. It is estimated that the demand for fuzzy hardware specifically fast 
fuzzy processors will increase significantly and will be one of the most interesting 
businesses in the near future [83]. The main performance bottleneck in realizing 
the hardware for fuzzy processor is the inherent nature of the fuzzy programs vis-
à-vis their hardware paradigms available for realization such as VHDL. The former 
is software centric with long chain of rule base while the later emphasizes on the 
concurrency and parallelism. The fuzzy programs are more of IF-THEN-ELSE type 
rule base which the software professionals find it difficult to obtain their hardware 
counterpart. In this application, a novel framework for rapid development and syn-
thesis of fuzzy controller is presented. The methodology is based on Handel – C 
[84] with the output EDIF tested on Xilinx Spartan III FPGA platform. Design 
flow with mixed tool sets has been developed in order to overcome the inherent 
limitations of the individual tools. The design problem taken up is development of 
fuzzy controller for water bath temperature. Focus is on the realization of the fuzzy 
rule base into hardwired logic by expressing the same in Handel –C paradigm and 
finally transforming the same to a SoC paradigm.  

    6.2.2      Design Problem  

  The purpose of the developed fuzzy controller is controlling the temperature of the 
water and vary it so as to enhance the comfort level of the person taking bath. For 
instance, in a chilly winter, the water will be too cold; the hot water valve will be 
opened more to add hot water. The rule base for the system is as follows: 
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    1.       If  season is winter  and  water is Cool  then  increase the proportion of hot water.  
     2.       If  season is winter  and  water is warm  then  increase the proportion of hot water.  
     3.       If  season is winter  and  water is Hot  then  maintain proportion of hot and cold 

water.  
     4.       If  season is winter  and  water is Very Hot  then  Decrease proportion of hot 

water.  
     5.       If  season is summer  and  water is Cool  then  Increase proportion of hot water.  
     6.       If  season is summer  and  water is Warm  then  maintain proportion of hot and cold 

water.  
     7.       If  season is summer  and  water is Hot  then  decrease proportion of hot water.  
     8.       If  season is summer  and  water is Very Hot  then  decrease proportion of hot 

water.      

  Season, Temperature of water and Control have been notified by the notations 
A, B and C respectively in order to derive the rule evaluation table for the proposed 
controller.           

    6.2.3      Fuzzification and Defuzzification  

  Trapezoidal membership functions are used for fuzzification and expressed in-terms 
of two slopes and points as shown in Fig. 6.1. Y axis defines degree of the member-
ship ( μ ) expressed in the value interval between 0 and 1. X axis defines the universe 
of discourse and is divided into three segments 1, 2 and 3. The degree of the mem-
bership depends on the location of the input value of the season temperature. The 
season is further defined by the values in the particular segment. For example, the 
season winter is defined when the ambient temperature is less than the 20 ° C and 
summer is defined above 25 ° C. Calculation of the degree of the membership values 
in different segments is as follows. For segment 1 the slope is growing left to right 

Table 6.1  Rule evaluation table for the proposed controller

IF THEN

Rule Season Logical
operator

Temperature 
of water

Control valves for to adjust the 
proportion of hot and cold water

1 A
1

AND B
1

C
1

2 A
1

AND B
2

C
1

3 A
1

AND B
3

C
2

4 A
1

AND B
4

C
3

5 A
2

AND B
1

C
1

6 A
2

AND B
2

C
2

7 A
2

AND B
3

C
3

8 A
2

AND B
4

C
3

Notations used in the table are as follows: Season: Winter = A
1
, summer = A

2
; Temperature of the 

water: Cool = B
1
, Warm = B

2
, Hot = B

3
, Very hot = B

4
; Controlling Valves of hot and cold water: 

Increase = C
1
, Maintain = C

2
, Decrease = C

3
.
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and here  μ  is limited to maximum value 1. For the segment 2 the slope is downward 
hence limited to minimum value 0. Refer equation ‘I’ for the formula of  μ  pertain-
ing to segment 2.  

   μ = 1 - (input value - point 2) * slope1 -------------(I)  

        For segment 3 the slope is upward form left to right and the  μ  is limited to the 
maximum value 1 as per the mathematical expression ‘II’  

   μ = (input value – point 1) * slope2 -------------(II)  

  The sample calculation of the membership function is worked out here as an exam-
ple. Assuming 8 bit resolution  μ  = 1 equals to the FFH or 255 decimal. The slope 
is calculated as  

  Slope 1 = 1/ (30-20) = FF H/ (FFH-A8 H) = 02 H -------------(III)  

  Similarly Slope 2 = 02 H  
  If the season is winter and the temperature is 23 ° C i.e. (BE H), it lies in the segment 
2 which corresponds to  

   μ = 1 – (input value - point 2) * slope1  

Fig. 6.1  Defining 
membership function 
for different seasons

FF H

00 H 0.0

Winter
Point1

1.0

Segment1 Point2 Point 3

Summer

Segment 3

Slope 2

20° 23° 30° temp.

FFH

Slope 1

Segmetnt 2

Table 6.2 Range of water temperature expressed in terms of Fuzzy variable

Fuzzy variable Range (°C)

Cool 0–30

Warm 20–40

Hot 30–60
Very hot 45–100
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  i.e.  μ = FF H – (BE H – A8 H) * 02 H = D3 H -------------(III)  

  Table 6.2 shows the range of the water temperature expressed in-terms of fuzzy 
variable.           

  The membership function of temperature of water is shown in Fig. 6.2.          

   6.2.4      Design Flow for Prototyping the Fuzzy Controller  

  The design flow adopted is shown in Fig. 6.3.          

Fig. 6.2  Membership function of water temperature
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Fig. 6.3  Design flow
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   6.2.5      Handel C Implementation  

  The rule base expressed in Handel –C is given below. Similar routines have been 
developed for other seasons.  

  Program 6.1: Handel C code for fuzzy controller realization  
  ***************************************************************  
  Fuzzy Controller Program  
  set clock = external “p77”;  
  void main (void)  
  {  
  unsigned 8 temp_season,flow_temp;  
  unsigned 2 volve;  
  interface bus_in(unsigned 8 in2) inp1()with {data = {“p15”, “p16”, “p17”, 
“p18”,“p21”,“p22”,“p23”,“p24”}};  
  interface bus_in(unsigned 8 in1) inp() with {data = {“p3”, “p4”,“p5”, 
“p7”,“p9”,“p10”,“p11”,“p13”}};  
  interface bus_out() out(volve)with {data = {“p25”,“p26”}};  
  while(1)  
  {  
  temp_season = inp.in1;  
  flow_temp = inp1.in2;  
  if(temp_season>=0x80)  
  {  
  //season=summer  
  if (flow_temp<=0x1E && flow_temp>=00)  
  {  
  volve=0b10; //increase temp  
  }  
  else if (flow_temp<=0x28 && flow_temp>=0x15)  
  {  
  volve=0b11; //maintain temp  
  }  
  else if (flow_temp<=0x3C && flow_temp>=0x1E)  
  {  
  volve=0b01; //decrese temp  
  }  
  else  
  {  
  volve=0b01;  
  }  
  }  
  else  
  {  
  //season = winter  
  if (flow_temp<=0x1E && flow_temp>=00)  
  {  
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  volve=0b10;  
  }  
  else if (flow_temp<=0x28 && flow_temp>=0x15)  
  {  
  volve=0b10;  
  }  
  else if (flow_temp<=0x3C && flow_temp>=0x1E)  
  {  
  volve=0b11;  
  }  
  else  
  {  
  volve=0b01;  
  }  
  }  
  }  
  }  
       Number of errors: 0  
  Number of warnings: 2  
  Logic Utilization:  
  Number of Slice Flip Flops: 26 out of 7,168 1%  
  Number of 4 input LUTs: 32 out of 7,168 1%  
  Logic Distribution:  
  Number of occupied Slices: 26 out of 3,584 1%  
  Number of Slices containing only related logic: 26 out of 26 100%  
  Number of Slices containing unrelated logic: 0 out of 26 0%  

Fig. 6.4  RTL realization
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  Total Number of 4 input LUTs: 32 out of 7,168 1%  
  Number of bonded IOBs: 13 out of 141 9%  
  IOB Flip Flops: 11  
  Number of GCLKs: 1 out of 8 12%  
  ***************************************************************  

    6.2.6      Co Simulation with ModelSim  

  Co-simulation provides a framework for co-operation between two separate distinct 
tools from independent vendors to pave the benefits of each of them in the SoC 
design. Timing analysis for checking the realization of the constraints is decisive in 
SoC and cosimulation addresses these woes. Moreover design platforms like Han-
del C, though improve design productivity, their analytical marriage with the well 
proven and time tested design platforms like VHDL gives a chance of optimization 
in a mixed design environment.  

  Fuzzy logic controller SoC designed by adopting the mixed design flow is as 
shown in Fig. 6.3. The EDIF generated by the Handel C compiler is ported to the 
Xilinx Web pack Version 9.2 for synthesizing the SoC on the Spartan III FPGA. 
At the same time, the SoC is also been synthesized by converting the Handel C 

Fig. 6.5  Timing verification using the ModelSim
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code into VHDL and by adopting the manual optimization. The RTL view of the 
realization is as shown in Fig. 6.3. The third and important phase is the cosimu-
lation by porting the VHDL code to the ModelSim environment that gives valu-
able timing verification. A screenshot of the cosimulation using the ModelSim is 
shown in Fig. 6.6.          

   6.2.7      SoC Prototyping and Final Device Specifications  

  The system was successfully validated on Xilinx Spartan III FPGA. The novel frame-
work presented in this section facilitates the rapid conversion of the fuzzy logic 
algorithms expressed in any ANSI-C like language directly in terms of hardware. As 
the Handel-C supports a large set of ANSI-C constructs, easy porting between two 
languages is possible. Moreover, the above approach facilitates easy debugging and 
provides good scalability. The usage of the third party tool like Modelsim helps in 
extensive testing in less time. Implementation on the FPGAs provides relatively quick 
implementation from concept to physical realization as compared to the ASIC or cus-
tom IC implementations. Moreover, it reduces the initial cost, time delay and inherent 
risk of a conventional masked gate array. Thus the presented approach provides a fast 
route for hardware prototyping of the fuzzy logic algorithms and realizing them in 
terms of semicustom ASICs with high efficiency with rapid development cycle.  

6.3  Packet Processor Core for Inculcating Embedded Network 
Security using Mixed Design Flow

This case study presents the design and development of the ‘Embedded Security 
Core’ based on the TCP/IP packet processing. The design objective is to realize a 
tailor made TCP/IP packet processor that can be integrated as and when required 
to any internet enabled embedded device. A mixed design flow consisting of the 
incorporation of tools from third party has been adopted for the simulation, testing, 
debugging and generation of the RTL model. The reported ‘packet processor core’ 
has numerous potential applications in passive monitoring of the networking setup, 
security appliances like firewalls, Network on Chip (NoC) devices, internet enabled 
smart appliances etc. It can also be used as a distributed network security appliance 
by enforcing it to key locations in the network infrastructure for instance, at the end 
user PC, at remote switches, routers and even in the data center. 

6.3.1 From SoC to NoC

There is a general agreement in the design community that the near future will be 
dominated by the ubiquitous Internet enabled devices. Just one such prediction is 
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that by 2010, 95% of Internet-connected devices will not be computers. So if they 
are not computers, what will they be? Embedded Internet devices [129]. With the 
growing consensus of Internet Enabled Smart Products, the concept of Network on 
Chip (NoC) is rapidly penetrating in the SoC arena.

Network-on-a-chip (NoC) is an emerging approach to System-on-a-chip (SoC) 
design. The obvious advantage of integrating the network functionality on the SoC 
is accommodation of  multiple asynchronous clocking and facilitating the on-chip 
communication to achieve significant throughput improvements over conventional 
bus systems. Moreover adoption of the NoC methodology on Silicon paves the ben-
efits such as increased parallelism due to simultaneous operation of the many links 
through packet processing and scalability as the internet enabled embedded prod-
ucts can be updated and upgraded on the fly. 

The NoC on silicon lays it foundation on the well established field of computer 
networking, however with a difference. Due to the spatial and temporal constraints 
in the Silicon arena, there is a trend of tailor made packet processing and integra-
tion of customized protocol stacks. The NoC achieved bearing the above mentioned 
principle enables the well separation of the computational and network functional-
ity and thus achieves the improved performance. 

Security is a major issue in today’s communication networks. The perform-
ance pressures on implementing effective network security monitoring are growing 
fiercely due  to  rising  traffic  rates,  the need  to perform much more sophisticated  
forms of analysis,  the  requirement  for  inline  processing,  and  the  collapse  of 
Moore’s  law for sequential processing. Given  these growing pressures,  it  is  time  
to fundamentally rethink the nature of using hardware to support network security 
analysis [85]. Many researchers have adopted different strategies for  implementing  
the network security. The traditional approach for the network security is install-
ing the intrusion detection software (IDS) per host. However this leads to many 
drawbacks. With the software IDS, it is not only harder to correlate network traffic 
patterns that involve multiple computers but also poses a challenge  in coping up 
with  the heterogeneous environment having mixed machine configurations and 
operating  systems.  It is also not very difficult to disable the IDS by the attackers. 
The literature survey reveals  that,  there  is a growing upcoming  trend  to use Field 
Programmable Gate Arrays (FPGA) based customized Network On Chip (NoC) 
and Offload  the software processing to hardware realizations. But it turns out to be 
a costlier solution and therefore hardware-software based hybrid solutions for the 
security scenario are widely discussed in literature [86, 130].

6.3.2 A Novel Frame work for Designing NoC

FPGAs have manifested their presence in the network on chip paradigm due to 
their various attributes. The foremost reasons are their capability to suit the real 
time constraints, increasing dynamism  to address the pertient issues of  latency and  
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throughput and  faster design and prototyping cycle that facilitates robust design 
from testability point of view. FPGA based NoCs have been reported widely in the 
literature [88–91]. However,  few researchers have rightly reported that there  is  no  
‘one  size  fits  all’ NoC  architecture  [92],  as  different  silicon  systems  have  very  
different  requirements  from  their NoCs viewpoint. This  is  especially true in an 
FPGA based environment where the design metrics such as space, time are very 
stringent [130]. In this application we are proposing a novel framework for design-
ing of  the FPGA based NoC. A specific case study of  the TCP/IP   packet processor 
for embedded security enforcement is taken up. 

6.3.3 Developing the FSM

A finite state machine (FSM) is a behavioral model comprising of a finite number 
of states, transitions between those states, and actions. It is an abstract model based 
presentation of a machine with a primitive internal memory. The FSM model of 
the packet processor core with details of the state and their transitions is shown in 
Fig. 6.6.

6.3.4 Simulation and Mixed Mode Design Aspects

This case study exhibits integration of third party tool i.e. ANSI C with Handel C. A 
separate ANSI C routine is incorporated in the main Handel C program for display-
ing the packet attributes, calculating the packet statistics for out of sequence packet 
analysis and alerting the custom messages to the user as regards to the bad IP or 
Denial of Access. The simulation window is shown in Fig. 6.7. 

6.3.5 Handel C Implementation

Handel C based implementation for realizing NoCs gives various benefits. The 
NoC can be expressed at very high level of abstraction leaving the worries of the 
actual structural implementation. The built  in Platform Abstraction  layer  (PAL)  
with Handel C  features  readymade macros required for the design of the NoC. 
The required headers such as Ethernet, console, RAM, display can be declared and 
invoked as and when required in the main program. Thus the PAL based design with 
predefined functionality to access peripherals via APIs offers fast prototyping and 
narrow development cycle. The present case study of packet processor showcases 
all the benefits of using the Handel C for realizing the NoC. Complete program list-
ing is given below:
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Program  6.2 Handel C code for TCP/IP packet processor implementation
*******************************************************

#define PAL_TARGET_CLOCK_RATE PAL_PREFERRED_VIDEO_CLOCK_
RATE
#include “pal_master.hch”
#include “pal_console.hch”
/*
 * Forward declarations
 */

Fig. 6.6 FSM model of the packet processor core
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static macro expr ClockRate = PAL_ACTUAL_CLOCK_RATE;

macro proc ReadPacket (ConsolePtr, Ethernet);
void DisplayByte (PalConsole *ConsolePtr, unsigned 8 Byte);
macro proc DisplayMAC (ConsolePtr, MACAddress);

macro proc PacketAnalyzer(value);
macro proc PacketMonitor(Value);

extern “C”
{
    void  DisplayData(unsigned char *Buffer, unsigned char Size);
     
   int printf(const char *format, ...);
}

chanout output with { outfile = “c:\\packet.dat” }; 

/*
 * Main program

Fig 6.7 Simulation window of Packet Processor exhibiting the Mixed Mode Flow with ANSI C
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 */
void main (void)
{
    macro expr Ethernet = PalEthernetCT (0);
    PalConsole *ConsolePtr;

//#define BUFFER_SIZE 1500
unsigned char BUFFER_SIZE;

 unsigned   Data[40],d ;
 unsigned i;
    /*
     * Check we’ve got everything we need
     */
    PalVersionRequire  (1, 2);
    PalVideoOutRequire (1);
    PalEthernetRequire (1);
    
    /*
     * Run Console and Ethernet in parallel with other code
     */
    par
    {

        PalConsoleRun (&ConsolePtr, PAL_CONSOLE_FONT_NORMAL, 
                       PalVideoOutOptimalCT (ClockRate), ClockRate);
        
        /*
         * Run Ethernet controller with user-selected MAC
         * address (currently: 11 22 33 33 ab cd)
         */
        PalEthernetRun (Ethernet, 0x11223333abcd, ClockRate);

        seq
        {
            /*
             * Enable the Console and the Ethernet
             */
            par
            {
                PalConsoleEnable (ConsolePtr);
                PalEthernetEnable (Ethernet);
            }

            /*
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             * Run the PacketDisplay macro forever
             */
           // while (1)
            {
             par
    {
     ReadPacket (ConsolePtr, Ethernet);
             printf(“Getting data from external C routine...\n”);
            
   }
            }
        }
    }
}

/*****************************************************************
PacketDisplay (ConsolePtr, Ethernet)

*****************************************************************/
macro proc ReadPacket (ConsolePtr, Ethernet)
{
    unsigned 1 Error;
    unsigned 16 Type;
    unsigned 48 Dst, Src;
    unsigned 11 Total_Length, Counter;
    unsigned 8 Data;
 unsigned char BUFFER_SIZE;
 unsigned  8 value[1500];

    /*
     * Strings to display on PAL Console
     */
    
    unsigned 8 ASCII;   /* variable to copy ASCII codes into for display */

    /*
     * Attempt to read ethernet packet
     */
    par
    {
        PalEthernetReadBegin (Ethernet, &Dst, &Src, 
                              &Type, &Total_Length, &Error);
        Counter = 0;
    }
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    /*
     * If read was successful
     */
    if (Error == 0)
    {
       
        do
        {
            PalEthernetRead (Ethernet, &Data, &Error);
            if (Counter[3:0] == 0x0)
            {
                PalConsolePutChar (ConsolePtr, ‘\t’);

            }
            else
            {
                delay;
            }
           
            PalConsolePutChar (ConsolePtr, ‘ ‘);
            par
            {
      output ! Data;

      BUFFER_SIZE=Total_Length[7:0];

      value[Counter]=Data;
      
    DisplayData(value, BUFFER_SIZE);

                if (Counter[3:0] == 0xf)
                {
                    PalConsolePutChar (ConsolePtr, ‘\n’);
                }
                else
                {
                    delay;
                }
                Counter++;
            }
        }
        while (Counter != Total_Length);
       
     PalConsolePutChar (ConsolePtr, ‘\n’);
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  PacketAnalyzer(value);

  PacketMonitor(value);
        PalEthernetReadEnd (Ethernet, &Error);
    }
    else
    {
        delay;
    }
}

//***************************************************************
macro proc PacketAnalyzer(value)

{
unsigned 8 type;
unsigned i;
static unsigned 8 badIP1[4]={172,16,0,1};
 static unsigned 8 badIP2[4]={172,16,0,1};
 static unsigned 8 badIP3[4]={172,16,0,2};
 static unsigned 8 badIP4[4]={172,16,0,102};
 static unsigned 8 badIP5[4]={172,16,0,3};

type=value[0];
if(type==0x45)
{
output!type;
printf(“packet is Ethernet base having version IPV4\n”);
//packet is ethernet 
}
else
{
output!type;
printf(“packet is not ethernet base\n”);
}

type=value[9];
if(type==0x6)
{
printf(“TCP Packet\n”);
}
else if(type==0x11)
{
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printf(“UDP packet\n”);
}
if(value[12]==badIP1[0] && value[13]==badIP1[1] && value[14]==badIP1[2] 
&& value[15]==badIP1[3])
{
printf(“Bad Packet\n”);
}

else if(value[12]==badIP2[0] && value[13]==badIP2[1] && value[14]==badIP2[2] 
&& value[15]==badIP2[3])
{
printf(“Bad Packet\n”);
}
}

macro proc PacketMonitor(value)
{
printf(“Packet Attributes is send through serial Port\n\n”);
}
******************************************************************

                6.4       A Linear Congruential Generator (LCG) SoC  

  A linear congruential generator (LCG) represent one of the oldest and best-known 
pseudorandom number generator algorithms. The linear congruential generator 
(LCG) was proposed by Lehmer in 1948 [93]. The main advantage of the LCG 
method is speed efficiency owing to only a few operations per call. The Soft IP 
core of the random number generator in Handel C and its realization on the Xilinx 
Spartan III FPGA is given below:  

  Program 6.3: Handel C code for LCG core  
  ***************************************************************  
  unsigned 32 X;  
  interface port_in (unsigned 1 clk with {clockport=1}) clockport();  
  interface port_in (unsigned 32 value1) Inport1() with {busformat=“B<N:0>”};  
  interface port_in (unsigned 32 value2) Inport2() with {busformat=“B<N:0>”};  
  interface port_in (unsigned 32 value3) Inport3() with {busformat=“B<N:0>”};  
  interface port_out() outport(unsigned 32 return_value = X) with 
{busformat=“B<N:0>”};  
  set clock= internal clockport.clk;  
  void main(void)  
  {  
  unsigned 32 A,C,M;  
  // take the value from user  



6.5  Implementation of Reusable Soft IP Core of Blowfish Cipher 133

  A=Inport1.value1;  
  C=Inport2.value2;  
  M=Inport3.value3;  
  while(1)  
  {  
  X=(A * X + C)% M; //generate random number.and return a value to user.  
  }  
  }  
  ***************************************************************  

Fig. 6.8  Simulation report using ModelSim, the timeline (yellow) is the reference to validate 
the timing at a particular instance
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       6.4.1      Map Report Generated by Xilinx Webpack  

  Target Device: xc3s400  
  Target Package: pq208  
  Target Speed : -4  
  Mapper Version: spartan3 -- $Revision: 1.36 $  
  Mapped Date : Fri Aug 08 20:09:20 2008  
   Design Summary   
   Logic Utilization:  

    •     Number of Slice Flip Flops   : 51 out of 7,168 1%  
    •     Number of 4 input LUTs   : 3,054 out of 7,168 

42%     
   Logic Distribution:  

Fig. 6.9  RTL view of the packet splitter using Xilinx Webpack
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    •     Number of occupied Slices   : 1,548 out of 3,584 
43%  

    •     Number of Slices containing onlyrelated logic : 1,548 out of 1,548 
100%  

    •     Number of Slices containing unrelated logic : 0 out of 1,548 0%  
    •     Total Number of 4 input LUTs   : 3,054 out of 7,168 

42%  
    •     Number of bonded IOBs   : 130 out of 141 92%  
    •     IOB Flip Flops    : 96  
    •     Number of MULT18x18s   : 3 out of 16 18%  
    •     Number of GCLKs    : 1 out of 8 12%  
    •     Total equivalent gate count for design  : 40,832  
    •     Additional JTAG gate count for IOBs  : 6,240  

Fig. 6.10  RTL realization of the LCG core on Xilinx spartan III FPGA
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    •     Peak Memory Usage    : 155 MB  
    •     Total REAL time to MAP completion  : 9 s  
    •     Total CPU time to MAP completion  : 7 s     

     6.5      Implementation of Reusable Soft IP Core
of Blowfish Cipher  

  Blowfish is one of the fastest algorithms adopted by the large number of cipher 
suites and encryption products. Although used widely in desktop and laptop com-
puters as a software implementation, the algorithm remained unexplored in the 
embedded system paradigm due to its large memory footprint. The present commu-
nication reports implementation of reusable Soft IP core of the ‘Blowfish Cipher’ 
especially designed from the viewpoint of memory and time constraints in the 
embedded domain.  

   6.5.1      Design Problem  

  Blowfish is a symmetric block cipher that is being used as a drop-in replacement for 
‘Data Encryption Standard’ (DES) [118] or ‘International Data Encryption Algo-
rithm’ (IDEA) [119]. It takes a variable-length key, from 32 to 448 bits, making it 
ideal for both domestic and exportable use. The algorithm was designed by Bruce 
Schneier in 1993, and immediately became famous owing to its fast execution speed, 
in comparison with the contemporary encryption algorithms. The noteworthy fea-
tures of this algorithm includes its inclusion in public domain and thus ensures 
unpatented and license-free usage. However, inspite of the number of implementa-
tions in software, the literature survey reveals very few efficient hardware imple-
mentations [120], of this algorithm. The present application reports implementation 
of ‘Blowfish’ algorithm in Handel-C prototyped on the Xilinx Spartan x3s400 
FPGA.  

    6.5.2      Implementation in Handel C  

  In this work, the ‘Blowfish’ cipher has been implemented in Handel-C, that uses 
much of the syntax of conventional C with the addition of inherent parallelism. In 
order to gain maximum benefit in performance from the target hardware the ‘par’ 
construct is used here. The ‘macro’ is built to get the advantage of ‘spatial effi-
ciency’. Complete listing of the program is as follows:  
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  Program 6.4: Handel C code for blow fish implementation  
  ***************************************************************  
  //***** Program Listing of Blowfish Cipher Implementation *************??  
  unsigned 64 plaintext,Cipher_text,inbus;  
  unsigned 32 R_plaintext,L_plaintext,s_box,L_xor,R_xor;  
  unsigned 8 A1,A2,A3,A4;  
  unsigned i;  
  while(1)  
  {  
  plaintext=in1.inbus;  
  L_plaintext=plaintext[63:32];  
  R_plaintext=plaintext[31:0];  
  do  
  {  
  L_xor=L_plaintext^p_key[i];  
  A1=L_xor[31:24];  
  A2= L_xor[23:16];  
  A3=L_xor[15:8];  
  A4=L_xor[7:0];  
  //sbox value calculaion  
  s_box= (sbox0[A1] + sbox1[A2]) ^ (sbox2[A3] + sbox3[A4]);  
  R_xor=s_box ^ R_plaintext;  

Fig. 6.11  RTL realization of the Blowfish Soft IP core
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  swap (L_xor, R_xor);  
  L_plaintext=L_xor;  
  R_plaintext=R_xor;  
  if(i==15)  
  {  
  break;  
  }  
  i++;  
  }  
  while(i<=15);  
  L_xor=L_plaintext^p_key[16];  
  R_xor=R_plaintext^p_key[17];  
  Cipher_text=L_xor@R_xor;  
  }  
  }  
  macro proc swap (L_xor, R_xor)  
  {  
  par  
  {  
  L_xor = R_xor;  
  R_xor = L_xor;  
  }  
  }  
***************************************************************

    6.5.3      Prototyping on Spartan 3 FPGA  

  The program developed in Handel C is converted into the EDIF format for the syn-
thesizing the hardware on the Xilinx Spartan 3 x3s400 FPGA for the target Package 
pq208, having the target Speed -4. The synthesis view is shown in Fig. 6.1.          

   6.5.4      Design Summary  

  The design summary is as follows:  
   Design Summary for the Blowfish Implementation:   
   Logic Utilization:   

  Number of Slice Flip Flops  : 154 out of 7,168 2%  
  Number of 4 input LUTs  : 150 out of 7,168 2%  

  Logic Distribution:  
  Number of occupied Slices: 91 out of 3,584  2%  
  Number of Slices containing 
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only related logic: 91 out of 91  100%  
  Number of Slices containing 
unrelated logic: 0 out of  91  0%  
  Total Number of 4 
input LUTs:  150 out of 7,168  2%  
  Number of bonded 
IOBs:   131 out of 141  92%  
  IOB Flip Flops: 128  
  Number of GCLKs: 1 out of  8  12%  
  Total equivalent gate count for design: 3,159  
  Additional JTAG gate count for IOBs: 6,288  
   The average connection delay for the implementation is 1.278 nS. The average 
connection delay on the 10 worst nets is 3.941 nS which indicate the temporal 
efficiency of the implementation.  
  ***************************************************************  
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      The synergy of FPGA and soft processor cores has the budding potential to allow 
the integration SoC into a single FPGA chip. Embedded engineers often fight with 
the confront of improving performance. Discrete processors a.k.a. hard processors 
pose the following most striking drawbacks when it comes to embedding them for 
a particular application: 

    •     Fixed selection of peripherals, most of them remain unutilized for the given 
application.  

    •     No possible customization in clock frequency, that drags the entire system slow 
or too fast and ends in power inefficiency.  

    •     Less life time of the processor family  
    •     Incompatibility interms of package size when a particular processor is being 

upgraded, posing difficulties in PCB designing.  
    •     Speed and interface incompatibility when multiple heterogeneous processors are 

required to work as coprocessors.     

  Programmable logic has reached such a state of advancement in terms of speed 
and density that it became a truly attractive alternative to the above mentioned RISC 
and CISC processors. It can form a ‘matrix’ within which processing, peripherals, 
data path, and algorithms can be placed to create powerful, flexible, and upgrade-
able systems. It is now available in forms and sizes that range from the traditional 
use as glue logic up to structured ASIC replacements and even further [103].  

  As a result of all the above mentioned advancements, ‘Soft Processor Cores’ 
have emerged as an ultimate remedy for addressing the pitfalls of hard RISC and 
CISC processors. ‘A soft-core processor is a hardware description language (HDL) 
model of a specific processor (CPU) that can be customized for a given application 
and synthesized for an ASIC or FPGA target.’ The main advantages of the soft proc-
essor cores are as follows: 

    •     Greater possibility of Design Reuse.  
    •     Cost Effectiveness.  
    •     Customization and Flexibility.  
    •     Scalability.  
    •     Possibility of Hardware-Software portioning at an early stage.  

Chapter 7
Soft Processor Core for Accelerated 
Embedded Design
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    •     Platform independence.  
    •     Greater invulnerability to obsolescence.  
    •     Design Modularization.  
    •     Advantage of the earlier design case studies.     

   7.1      Building SoC for Temperature Control Application 
Using Picoblaze  

   7.1.1      Design Problem  

  The theme of the present case study is rapid prototyping of the microcontroller 
based control systems by integration of the Soft IP core on FPGA. Soft IP core of 
Xilinx Picoblaze has been used on Spartan III FPGA. A case study of single setpoint 
temperature controller is taken up. Complete methodology and listing of the VHDL 
and assembly language program are given in the paper so as to facilitate the valida-
tion the results. Usage of resources and redundant hardware presented in the design 
summary guides the user to select an appropriate FPGA for the intended applica-
tion. The results serve as a guiding source for implementation of full custom ASIC 
implementation with an added advantage of thorough testing in an accelerated time 
to market design paradigm.  

    7.1.2      Essence of Prototyping  

  Microcontroller has become the soul of the state of art instrumentation systems 
owing to the intelligence and flexibility achieved with its inclusion. Embedded 
microcontroller modules offer many advantages over the standard PC such as low 
cost, small size, low power consumption, direct access to hardware, and if available, 
access to an efficient preemptive real-time multitasking kernel. However, typical 
difficulties associated with an embedded solution include long development times, 
limited memory resources, and restricted memory management capabilities [104]. 
In order to make the microcontroller with the intended instrumentation, there is a 
growing trend of sporadically incorporation of system instrumentation features into 
processor architectures [105]. However, the design theme of microcontroller based 
mainly software centric implementations do not guarantee the improvement in per-
formance and power efficiency in all the circumstances due to the general purpose 
architecture of the target microcontroller itself. The development of Field Program-
mable Gate Arrays has provided yet another opportunity to the instrumentation pro-
fessionals to fine tune the controller architecture as per the process requirements. 
The FPGA based development platform enables the developer to test and add fea-
tures in parallel without the need for repeating the complete testing of the designed 
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instrument in an iterative fashion [106]. Thus the FPGA based compilation of the 
instrumentation and control application results in a highly optimized silicon imple-
mentation that provides true parallel processing with the performance and reliability 
benefits of dedicated hardware circuitry.  

  The advantages of the FPGA based design paradigm can be further enhanced 
combining with the soft processor cores developed by third party. These soft IP 
cores not only allow the integration of system design into a single FPGA device but 
also enables optimized division of the system functionality into hardware and soft-
ware. Thus the FPGA platforms with soft IP cores are emerging for process control 
applications enabling the designer’s customization of the processor core in an rapid 
system development schedules leading to less time to market. The present commu-
nication reports a case study of picoblaze based soft IP core integration on Xilinx 
Spartan III FPGA for single setpoint temperature control application.  

    7.1.3      Overview of Soft IP Processor Cores by Different Vendors  

  It is worthwhile here to present a brief review of the soft IP cores available from 
different vendors. Owing to the advantages of the soft IP processors cores towards 
reconfigurability, customization and emulation, many manufacturers have devel-
oped these cores either for a specific FPGA family or as a third party solution. 
Altera has developed ARM as a hard process core while NIOS and NIOS II as 
soft IP cores [107]. Similarly ATMEL and Quick Logic [108] have come out with 
AVR and MIPS as hard processor cores respectively. However, the most popular 
amongst the design community is Xilinx’s PicoBlaze a fully embedded 8-bit RISC 
microcontroller core. The main features of Pico Blaze are its compactness, and cost-
effectiveness (as it is provided as a free), and well documented VHDL source file 
with royalty-free re-use within Xilinx FPGA’s. The VHDL listing of the PicoBlaze 
frees it from obsolescence as the same can be updated as per the design requirement. 
The PicoBlaze core can be embedded within the target FPGA, however with certain 
restriction to the device family selection.  

  The PicoBlaze [109] design was originally named KCPSM which stands for 
‘Constant(K) Coded Programmable State Machine’ (formerly ‘Ken Chapman’s 
PSM’). Ken Chapman was the Xilinx systems designer who devised and imple-
mented the microcontroller. The KCPSM3 core is designed for Spartan 3 family, 
whereas the KCPSM2 and KCPSM are meant for vertex 2 or vertex 2 pro Spartan II 
and Spartan 2(e) or vertex (E) respectively. In general the PicoBlaze soft processor 
provides 49 different instructions, sixteen 8-bit registers, 256 directly addressable 
ports, and a maskable interrupt. The program length is 256 instructions, and all 
address values are specified as 8bits contained within the instruction coding. The 
design is based on the RISC ‘Harvard architecture’ model with separate data and 
instruction ports. Its basic functionality is easily extended by connecting additional 
logic to the microcontroller’s input and output ports. PicoBlaze delivers 50 million 
instructions per second (MIPS) much faster than commercially available microcon-
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troller devices, yet occupies a tiny footprint of just 35 Configurable Logic Blocks 
(CLBs). This processor has an 8-bit bus, which means all registers and arithmetic 
operations are only 8 bits. There are 16 general purpose registers to quickly access 
data (i.e. S0 to SF), and programs can be up to 256 assembly language instructions 
long. The PicoBlaze has an internal memory for storing data (called the scratch-
pad) with 64 locations. This is to store data which isn’t used as frequently as other 
data. Operations can only be performed on data in registers, but there are only 16 
registers. However, data can be stored and retrieved from the scratchpad to the reg-
isters. There are two flags ZERO and Carry Flag. The ALU operation results affect 
the ZERO and CARRY flags. The PicoBlaze module has 256 input ports and 256 
output ports. An 8-bit address value provided on the PORT_ID bus together with 
READ_STROBE or WRITE_STROBE signals indicates the accessed port. The port 
address can be either supplied in the program as an absolute value, or specified indi-
rectly as the contents of any of the 16 registers.  

    7.1.4      Design Methodology  

       In this case study a temperature control application is developed by integration 
of the soft IP core of Picoblaze on Spartan III FPGA. The block schematic of the 
system is shown in Fig. 7.1. The ADC 0804 is interfaced in an handshake manner 
with the Picoblaze. e Current temperature and the set point is displayed on an 16 x2 
LCD in an alternate manner. ON-OFF strategy of control is implemented with the 
assembly language instructions of the Picoblaze.  

Fig. 7.1 Block diagram of the temperature control system application with integration of 
Picoblaze
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   7.1.4.1      Design Methodology  

  Design methodology followed for the implementation is given below in step by step 
manner.  

  1.  PicoBlaze core was downloaded from the Xilinx website after registration.  
  2.  The KCPSM3 version of the Picoblaze was downloaded as the target FPGA is 

SPARTAN III. The core comprises of VHDL files (named as KCPSM3), Pro-
gram ROM, and an Assembler(KCPSM3.exe) and manual.  

  3.  The top level VHDL program for the temperature controller was developed in 
VHDL. Behavioral model is developed the VHDL listing of which is given in 
the following point of the paper.  

  4.  Appropriate assembly language program was developed for single setpoint 
temperature controller. The LCD display driver and the handshaking of ADC 
are the main parts of the program.  

  5.  The assembly language program was executed using KCPSM3.exe. The output 
is in the form of ROM file which is nothing but the program developed for the 
Picoblaze.  

  7.  The KCPSM3 VHDL file, generated ROM file are added to the project environ-
ment in Xilinx webpack.  

  8.  The resulting file is then simulated, synthesized and the bit and MCS files are 
then dumped in the SPARTAN III FPGA board using JTAG port. This forms the 
customized core of the Picoblaze for the temperature controller application.  

     7.1.5      VHDL Program Listing  

   Program 7.1:  VHDL code for temperature controller  
  ***************************************************************  
  VHDL Listing of the Program  
  library IEEE;  
  use IEEE.STD_LOGIC_1164.ALL;  
  use IEEE.STD_LOGIC_ARITH.ALL;  
  use IEEE.STD_LOGIC_UNSIGNED.ALL;  
  entity temp_controller is  
  Port (ADC_in: in std_logic_vector(7 downto 0);  

  relay_d : inout std_logic_vector(7 downto 0);  
  lcd_d : inout std_logic_vector(7 downto 0);  
  LCD_CONTROL : out std_logic_vector(3 downto 0);  
  clk : in std_logic);  

  end temp_controller;  
  architecture Behavioral of temp_controller is  
  component KCPSM3  
  port (  
  address : out std_logic_vector(9 downto 0);  
  instruction : in std_logic_vector(17 downto 0);  
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  port_id: out std_logic_vector(7 downto 0);  
  write_strobe: out std_logic;  
  out_port: out std_logic_vector(7 downto 0);  
  read_strobe: out std_logic;  
  in_port: in std_logic_vector(7 downto 0);  
  interrupt : in std_logic;  
  interrupt_ack: out std_logic;  
  reset : in std_logic;  
  clk: in std_logic  
  );  
  end component;  
  component control  
  port (  
  address : in std_logic_vector(9 downto 0);  
  instruction : out std_logic_vector(17 downto 0);  
  clk: in std_logic  
  );  
  end component;  
  --Processor signals  
  signal add_bus: std_logic_vector(9 downto 0);  
  signal inst_bus: std_logic_vector(17 downto 0);  
  signal port_add: std_logic_vector(7 downto 0);  
  signal data_out: std_logic_vector(7 downto 0);  
  signal data_in: std_logic_vector(7 downto 0);  
  signal write : std_logic;  
  signal read : std_logic;  
  begin  
  processor: kcpsm3  
  port map(  
  address => add_bus,  
  instruction => inst_bus,  
  port_id=> port_add,  
  write_strobe=> write,  
  out_port=> data_out,  
  read_strobe=> read,  
  in_port=> data_in,  
  interrupt => ‘0’,  
  interrupt_ack=> open,  
  reset => ‘0’,  
  clk=> clk  
  );  
  program: control  
  port map(  
  address => add_bus,  
  instruction => inst_bus,  
  clk=> clk  
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  );  
  ADC_Register: process(write, data_in, port_add)  
  begin  
  if port_add= x”00” then  
  if read’event and read = ‘1’ then  
  data_in<=ADC_in;  
  end if;  
  end if;  
  end process ADC_register;  
  LCD_Register: process(write, data_out, port_add)  
  begin  
  if port_add= x”04” then  
  if write’event and write = ‘1’ then  
  lcd_d <=data_out;  
  end if;  
  end if;  
  end process LCD_register;  
  lcdcontrol_Register: process(write, data_in, port_add)  
  begin  
  if port_add= x”01” then  
  if write’event and write = ‘1’ then  
  LCD_CONTROL<=data_out(3 downto 0);  
  end if;  
  end if;  
  end process lcdcontrol_register;  
  relay_Register: process(write, data_in, port_add)  
  begin  
  if port_add= x”08” then  
  if write’event and write = ‘1’ then  
  relay_d<=data_out;  
  end if;  
  end if;  
  end process relay_register;  
  end Behavioral;  
  ***************************************************************  

    7.1.6      Low Level Instruction to Enable the Application  

   Program 7.2:  Assembly code for temperature controller  
  ***************************************************************  
  adc  DSIN 00  
  lcdcontrol DSOUT 02  
  adccontrol DSOUT 01  
  lcddata DSOUT 04  
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  relay  DSOUT 08  
  back: in s0,adc  
   call display  
   call delay  
   jump back  
  display: load s1,$38  
    call command  
    load s1,$0e  
    call command  
    load s1,$01  
    call command  
    load s1,$80  
    call command  
    CALL CONVERT  
    call data_disp  
  convert:load s4,$00  
   load s5,$00  
    load s1,s0  
     load s5,s1  
     load s2,$CC  
  convert1: sub s1,s2  
    jump c, next  
    add s4,$01  
    jump convert1  
    CALL BCD_CONVERT  
    load s7,$00  
    load s2,s1  
    load s3,$0A  
   next:sub s1,s3  
    jump c, next  
    add s7,$01  
    CALL BCD_CONVERT  
    RET  
  BCD_CONVERT:  
    load sa,$00  
    load s8,s1  
    load s9,s8  
    load s6,s8  
  AGAIN1: SUB s6,$64  
    load s0,s6  
    jump c,NEXT1  
    add sa,$01  
    jump AGAIN1  
  NEXT1:  
    load s6,S8  
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    ADD s6,$64  
    load s5,s6  
    load s7,$00  
    ;CLR C  
    load S1,s5  
  AGAIN2: SUB s1,$0A  
    load s5,s1  
    jump c, NEXT2  
    add s7,$01  
    jump AGAIN2  
  NEXT2:  
    ;CLR C  
    load s1,s5  
    ADD s1,$0A  
    ADD s1,$30  
    RET  
  command:  
    CALL READY  
    load S2,S1  
    load s3,$00  
    load s4,$01  
    out s3,lcdcontrol  
    out s4,lcdcontrol  
    out s3,lcdcontrol  
    RET  
  DATA_DISP:  
    CALL READY  
    load s2,s1  
    load s3,$04  
    out s3,lcdcontrol  
    load s4,$02  
    out s4,lcdcontrol  
    load s3,$01  
    out s3,lcdcontrol  
    load s3,00  
    out s3,lcdcontrol  
    RET  
  READY:  
    load s4,$00  
    load s5,$02  
    out s4,lcdcontrol  
    out s5,lcdcontrol  
    ;SETB P1.7  
    ;CLR P3.2  
    ;SETB P3.1  
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  BACK1:  
    load s4,$00  
    load s5,$01  
    out s4,lcdcontrol  
    out s5,lcdcontrol  
    ;CLR P3.0  
    ;SETB P3.0  
    ;JB P1.7,BACK1  
    RET  
    END  

  delay: load se,00  
    load sf,00  
  back3: add se,$01  
    jump c, exit  
  back2: add sf,$01  
    jump nc, back2  
    jump back3  
  exit:   ret  
  ***************************************************************          

   7.1.7      Final SoC Specifications  

  The customized version of the Picoblaze for temperature controller application was 
successfully implemented on a Spartan III FPGA board. The same worked success-
fully under the umbrella of the assembly language program developed for this pur-
pose. Moreover the design cycle in the course of simulation, verification presents 
valuable information given in the following paragraphs.  

  The design information as appeared in the Xilinx webpack is as follows:  

Design Information
------------------
Command Line : C:/Xilinx/bin/nt/map.exe -intstyle ise -p xc3s400-pq208-4 -cm
area -pr b -k 4 -c 100 -tx off -o temp_controller_map.ncd temp_controller.ngd
temp_controller.pcf
Target Device  : x3s400
Target Package : pq208
Target Speed   : -4
Mapper Version : spartan3 -- $Revision: 1.16 $
Mapped Date    : Fri Oct 26 16:14:39 2007
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  Design summary gives the entire technical specifications of the customized 
Picoblaze implementation on the target Spartan III FPGA. The logical utilization is 
wound 1% with details as follows:  
  Logic Utilization: 

    •     Number of Slice Flip Flops:   70 out of 7,168 1%  
    •     Number of 4 input LUTs:   112 out of 7,168 1%     

  The logic distribution gives an idea of the extent to which the FPGA resources have 
been used.  

  Logic Distribution: 

    •     Number of occupied Slices:   98 out of 3,584 i.e. 2%  
    •     Number of Slices containing only related logic: 98 out of 98 i.e. 100%  
    •     Number of Slices containing unrelated logic: 0 out of 98 i.e. 0%     

  The other finer details of the implementation are as follows: 

    •     Total Number 4 input LUTs:   184 out of 7,168 2%  
    •     Number used as logic:    112  
    •     Number used as a route-thru:   4  
    •     Number used for Dual Port RAMs  16  

Fig. 7.2 PBlaze IDE interface
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    •     (Two LUTs used per Dual Port RAM)     
  Number used for 32 x 1 RAMs:   52 

    •     (Two LUTs used per 32  x1 RAM)     
  Number of bonded IOBs:   29 out of 141 20% 

    •     IOB Flip Flops:    28  
    •     Number of Block RAMs:   1 out of 16 6%  
    •     Number of GCLKs:    1 out of 8 12%     

  The total equivalent gate count used for the temperature controller design is 
75,029. The analysis gives valuable results which guides the user as regards to the 
effective selection of the target FPGA. It also presents a true picture of the used 
resources and redundant hardware which could have been avoided in the follow-
ing revision of the project to optimize the power and speed metrics of the system. 
The RTL schematic shown in Figs. 7.2 and 7.3 are useful for the full custom ASIC 
implementation for the dedicated temperature controller applications. Thus the Soft 
IP core integrated with the FPGA offers a rapid prototyping environment to realize 
the semicustom design and progress eventually towards the dedicated full custom 
ASICs.          

Fig. 7.3 LUT based implementation of the temperature controller
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    7.2      Hardware Software Codesign of SoC with Built in Position 
Algorithm  

   7.2.1      Design Statement  

  The paper communicates implementation of position algorithm of PID control 
using soft IP core on a FPGA platform. Xilinx picoblaze is used on Spartan III 
FPGA to implement the position algorithm for a temperature controller. Behavioral 
architecture of temperature controller is developed in VHDL with the control algo-
rithm mapped to the software portion by means of the assembly language instruc-
tions of the processor. Usage of resources and redundant hardware presented in 
the design summary shows the superiority of the implementation as compared to 
the traditional control algorithms implemented on general purpose microcontrol-
lers. The results serve as a guiding source for implementation of full custom ASIC 
implementation with an added advantage of thorough testing in an accelerated time 
to market design paradigm.  

    7.2.2      Building PID on Chip  

  Proportional-integral-derivative (PID) control is the most common and widely used 
process control algorithm commonly used in industries. The popularity of PID con-
trollers is attributed to their effectiveness in a wide range of operating conditions, 
their functional simplicity and ease with which engineers can implement them using 
current computer technology [110]. Although many architectures exist for control 
systems, the PID controller is mature and well-understood by practitioners. For 
these reasons, it is often the first choice for new controller design [112]. With the 
evolution in the computing platforms; earlier in the form of microprocessors, later 
Programmable Logic Controllers and the latest towards the microcontrollers and 
Programmable Logic Devices there have been continues revisions and variations in 
the PID algorithm implementations. The implementations and review as regards to 
these evolving PID implementations is covered widely in the literature [111, 112]. 
There are several forms of digital PID implementations viz. interacting, parallel and 
gain independent. However, from the implementation in an microcontroller environ-
ment there are two widely used variations of PID algorithm namely displacement 
and velocity. In case of displacement PID algorithm, the control output is calculated 
in accordance with the displacement (position) of the process variable from the set-
point value (error term). In Here the control output is an absolute value. The velocity 
algorithm which is also called as incremental algorithm yields an output changing 
in each calculation period [113].  

  Literature survey regarding the digital PID implementations in a microcontroller 
paradigm reveals that the mathematical foundation of the algorithm is put forth so as 
to suit the instruction set of the state of the art microcontrollers. However, this leads 
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to some bottlenecks in the performance as the target microcontroller architecture 
is not in tune with the PID implementation. This in turn leads to a typical situation 
of using only few resources of the microcontroller and thus affects the power and 
speed bottlenecks. In this communication a FPGA based hardwired implementation 
of PID algorithm is reported so as to customize the processor architecture as per the 
requirements. The implementation is centered around ‘Picoblaze’ the soft IP core by 
Xilinx Inc., which is integrated on Spartan III FPGA. A case study of temperature 
controller is taken up with implementation of position algorithm for the temperature 
control.  

    7.2.3      Picoblaze: A Soft IP Core from Xilinx  

  PicoBlaze is a 8-bit microcontroller developed and maintained by Xilinx and Ken 
Chapman. The microcontroller is described in VHDL and is to be implemented on 
Xilinx’s different FPGAs and CPLDs. It is free to use as long as it is implemented 
in a FPGA or CPLD that comes from Xilinx [114]. An in-depth documentation of 
PicoBlaze along with the application notes are available online [115]. This is sup-
plemented by online forum to help the users in case of any difficulty. A download-
able version of the PicoBlaze is available with all the related files including the 
VHDL definition of the processor, an assembler and the files that go with it [115]. 
The present application is developed with the latest version of the PicoBlaze [116] 
i.e. KCPSM3 owing to its features such as test and compare instructions, 64 byte 
scratch pad memory that works like an internal RAM etc. The KCPSM3 version of 
Picoblaze is implemented on Spartan III FPGA by Xilinx.  

    7.2.4      Design Problem and Methodology  

   7.2.4.1      Design Problem  

  The block schematic of the system is shown in Fig. 7.1. The ADC 0804 is inter-
faced in an handshake manner with the Picoblaze. Current temperature and the set 
point is displayed on an 16 x2 LCD in an alternate manner. A displacement / posi-
tion type of PID algorithm is implemented by using the assemble language instruc-
tions of Picoblze. The processed digital output is applied through a DAC 0808 to a 
opto-coupled driver module comprising of triac and zero crossing detector. Power 
controlled output of the above mentioned module is applied to the heater unit for 
corrective action. The algorithm and other implementation issues are discussed in 
the following part of the paper.  
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    7.2.4.2      Design Methodology  

  The position algorithm has been widely described in the literature, however the form 
useful from Picoblaze instruction set point of view is chosen here [116]. Pseudo 
code for the same is as follows:  

Routine (Position Control);
Initialize values of Kp, Ti and Td;
Calculate Kd = Kp * Td / T;
Calculate Ki = Kp * T /Ti;
Initialize initial error to zero i.e. d = ei = 0;
Repeat
 Read ADC Output (Ao);
 Calculate error e = setpoint – Ao;
 Calculate integral coefficient d = d + e;
 Calculate output y = Kp * e + Ki * d + Kd (e – ei);
 Update error ei = e;
 Output y to DAC;

  The top level, i.e. behavioral model was developed in VHDL. Assembly code 
was developed separately using the picoblaze IDE. The same was executed using 
KCPSM3.exe. The KCPSM3 VHDL file, generated ROM file are added to the 
project environment of Xilinx webpack and dumped to Spartan III FPGA using 
JTAG programmer. The system was tested and found to worked satisfactorily for 
several trials.  

     7.2.5      Final SoC Specifications  

   7.2.5.1      Results and Conclusion  

  The RTL hierarchical version of the implementation is shown in Fig. 7.2. The Xil-
inx mapping report file is given below:      

Design Information
------------------
temp_controller.pcf
Target Device  : x3s400
Target Package : pq208
Target Speed   : -4
Mapper Version : spartan3 -- $Revision: 1.16 $

Table 7.1 Xilinx mapping report file for design ‘temperature controller’
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  Technically useful portion of the design summary is reproduced below:           
  It is evident from the above table that the design can be accommodated only in 

the 1% of the total FPGA resources. The number of occupied slices are 97 occupied 
completely by the design. This shows that unlike the implementation on traditional 
microcontrollers such as MCS-51 series or PIC, the implemented design has no 
room for redundant logic.           

Fig. 7.4 Block Sche-
matic of the system

IC sensor
 LM35

Heater Unit

Triac Module with
Zero crossing
detector optocoupler

ADC
0804

Picoblaze
Xilinx
SPARTAN III

DAC
0808

Logic Utilization:
   Number of Slice Flip Flops: 70 out of   7,168    1%
   Number of 4 input LUTs: 109 out of   7,168    1%
Logic Distribution:
   Number of occupied Slices: 97 out of   3,584    2%
     Number of Slices containing only related logic: 97 out of      97  
100%
     Number of Slices containing unrelated logic: 0 out of      97    0%

Table 7.2 Design summary reported by Xilinx Webpack



7.2  Hardware Software Codesign of SoC with Built in Position Algorithm 157

  The delay report indicates sound implementation of the temperature controller in 
the SPARTAN III FPGA with soft core of the Picoblaze. The design offers a rapid 
prototyping environment to realize the semicustom design and provides a full proof 
means to evaluate would be implementation of dedicated full custom ASIC.

     Program 7.3:  VHDL code for position algorithm  
  ***************************************************************  
      -- Company: Shivaji University  
  -- Engineer: Shinde S.A and Dr.R.K.Kamat  
  -- Create Date: 22:45:04 05/30/2008  
  -- Design Name:  
  -- Module Name: Position Algorithm - Behavioral  
  -- Project Name: Picoblaze  
  -- Target Devices: Spartan 3E 500  

Fig. 7.5 RTL hierarchical version of the implementation

The NUMBER OF SIGNALS NOT COMPLETELY ROUTED for this design is: 0
   The AVERAGE CONNECTION DELAY for this design is:        1.084
   The MAXIMUM PIN DELAY IS:                               3.560
   The AVERAGE CONNECTION DELAY on the 10 WORST NETS is:   2.935

Table 7.3 Delay summary report
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  -- Tool versions: Webpack 9.2i  
  -- Description:  
  -- Revision:  
  -- Revision 0.01 - File Created  
    
  library IEEE;  
  use IEEE.STD_LOGIC_1164.ALL;  
  use IEEE.STD_LOGIC_ARITH.ALL;  
  use IEEE.STD_LOGIC_UNSIGNED.ALL;  
  ---- Uncomment the following library declaration if instantiating  
  ---- any Xilinx primitives in this code.  
  --library UNISIM;  
  --use UNISIM.VComponents.all;  
  entity PositionAlgorithm is  
  Port (ADC_in: in std_logic_vector(7 downto 0);  
    DAC_Out : inout std_logic_vector(7 downto 0);  
   clk : in std_logic);  
  end PositionAlgorithm;  
  architecture Behavioral of PositionAlgorithm is  
  component kcpsm3  
  port (  
  address : out std_logic_vector(9 downto 0);  
  instruction : in std_logic_vector(17 downto 0);  
  port_id: out std_logic_vector(7 downto 0);  
  write_strobe: out std_logic;  
  out_port: out std_logic_vector(7 downto 0);  
  read_strobe: out std_logic;  
  in_port: in std_logic_vector(7 downto 0);  
  interrupt : in std_logic;  
  interrupt_ack: out std_logic;  
  reset : in std_logic;  
  clk: in std_logic  
  );  
  end component;  
  component control  
  port (  
  address : in std_logic_vector(9 downto 0);  
  instruction : out std_logic_vector(17 downto 0);  
  clk: in std_logic  
  );  
  end component;  
  --Processor signals  
  signal add_bus: std_logic_vector(9 downto 0);  
  signal inst_bus: std_logic_vector(17 downto 0);  
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  signal port_add: std_logic_vector(7 downto 0);  
  signal data_out: std_logic_vector(7 downto 0);  
  signal data_in: std_logic_vector(7 downto 0);  
  signal write1 : std_logic;  
  signal read1 : std_logic;  
  begin  
  processor: kcpsm3  
  port map(  
  address => add_bus,  
  instruction => inst_bus,  
  port_id=> port_add,  
  write_strobe=> write1,  
  out_port=> data_out,  
  read_strobe=> read1,  
  in_port=> data_in,  
  interrupt => ‘0’,  
  interrupt_ack=> open,  
  reset => ‘0’,  
  clk=> clk  
  );  
  program: control  
  port map(  
  address => add_bus,  
  instruction => inst_bus,  
  clk=> clk  
  );  
  ADC_Register: process(read1, data_in, port_add)  
  begin  
  if port_add= x”00” then  
  if read1’event and read1 = ‘1’ then  
  data_in<=ADC_in;  
  end if;  
  end if;  
  end process ADC_register;  
  DAC_Register: process(write1, data_in, port_add)  
  begin  
  if port_add= x”08” then  
  if write1’event and write1 = ‘1’ then  
  DAC_Out<=data_out;  
  end if;  
  end if;  
  end process DAC_Register;  
  end Behavioral;  
  ***************************************************************
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     Program 7.4:  Assembly code for position algorithm  
  ***************************************************************  

  adc DSIN 00  
  DAC DSOUT 08  
  Kp EQU sa  
  Ti EQU sb  
  Td EQU sc  
  T EQU 30  
  dividend equ s5  
  divisor equ s6  
  result equ s7  
  multiplier equ s8  
  multiplicant equ s9  
  temp equ s4  
  Kd equ s3  
  KI equ s2  
  ei equ s0  
  setpoint equ 45  
  e equ 0  
  d equ 0  
  value equ sd  
  value1 equ se  
  value2 equ sf  

  back: in s0,adc  
  call algorithm  
  call output  
   call delay  
   jump back  

  algorithm: LOAD kp, 20  
  LOAD Ti, 25  
  LOAD Td, 28  
  ;division of T and Ti  
  LOAD dividend, T  
  LOAD divisor,Ti  
  CALL div  
  LOAD multiplier,Kp  
  LOAD multiplicant,result  
  CALL multiplication  
  LOAD Kd,result  
  LOAD dividend,Ti  
  LOAD divisor,T  
  CALL div  
  LOAD multiplicant,result  
  LOAD multiplier,Kp  
  CALL multiplication  
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  LOAD Ki,multiplier  
  LOAD ei,0  
  LOAD s0,adc  
  load s9,setpoint  
  SUB s9,s0; value of e  
  ADD ei,s9; value of d e+d  
  CALL output  
  output: LOAD multiplier,Kp  

  LOAD multiplicant,e  
  CALL multiplication  
  LOAD value,multiplier  
  LOAD multiplier,Ki  
  LOAD multiplicant,d  
  call multiplication  
  LOAD value1,multiplier  
  LOAD s1,e  
  LOAD s2,ei  
  sub s1,s2  
  LOAD multiplier,Kd  
  LOAD multiplicant,s2  
  call multiplication  
  LOAD value2,multiplier  
  ADD value,value1  
  ADD value2,value  
  OUT value2,DAC  
  load ei,s2  
  ret  

  delay: ret  
  div: SUB dividend, divisor;  do subtraction  

   JUMP C, stop;  jump when carry  
   add  result, 1;  otherwise, add 1 to result  
   JUMP div  continue subtraction  

  stop: RET  
  multiplication: load temp, multiplier  

  sub multiplicant,1  
  jump Nz, mul  
  load result,multiplier  
  ret  

  mul: add multiplier,temp  
  load result,multiplier  
  sub multiplicant,1  
  jump NZ, mul  
  ret  

***************************************************************
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