Rajanish K. Kamat
Santosh A. Shinde
Vinod G. Shelake

Unleash the
System On Chip
using FPGAs

@ Springer

Unleash the System On Chip using
FPGAs and Handel C

Unleash the System
On Chip using FPGAs
and Handel C

Rajanish K. Kamat ¢ Santhosh A. Shinde e
Vinod G. Shelake

Authors

Department of Electronics
Shivaji University, Kolhapur
India

@ Springer

Authors

Dr. Rajanish K. Kamat Mr. Vinod G. Shelake
Department Electronics Department Electronics
Shivaji University Shivaji University
Kolhapur-416004 Kolhapur-416004

India India

E-mail: rkk_eln@unishivaji.ac.in

Mr. Santhosh A. Shinde
Department Electronics
Shivaji University
Kolhapur-416004

India

ISBN: 978-1-4020-9361-6 e-ISBN: 978-1-4020-9362-3

Library of Congress Control Number: 2008942203

© Springer Science+Business Media B.V. 2009

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose of
being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper

987654321

springer.com

Preface

With the rapid advances in technology, the conventional academic and research
departments of Electronics engineering, Electrical Engineering, Computer Science,
Instrumentation Engineering over the globe are forced to come together and update
their curriculum with few common interdisciplinary courses in order to come out
with the engineers and researchers with muli-dimensional capabilities. The grow-
ing perception of the ‘Hardware becoming Soft’ and ‘Software becoming Hard’
with the emergence of the FPGAs has made its impact on both the hardware and
software professionals to change their mindset of working in narrow domains. An
interdisciplinary field where ‘Hardware meets the Software’ for undertaking seem-
ingly unfeasible tasks is System on Chip (SoC) which has become the basic plat-
form of modern electronic appliances. If it wasn’t for SoCs, we wouldn’t be driving
our car with foresight of the traffic congestion before hand using GPS. Without the
omnipresence of the SoCs in our every walks of life, the society is wouldn’t have
evidenced the rich benefits of the convergence of the technologies such as audio,
video, mobile, IPTV just to name a few. The growing expectations of the consumers
have placed the field of SoC design at the heart of at variance trends. On one hand
there are challenges owing to design complexities with the emergence of the new
processors, RTOS, software protocol stacks, buses, while the brutal forces of deep
submicron effects such as crosstalk, electromigration, timing closures are challeng-
ing the design metrics. Moreover the time to market pressure, process roadmap
acceleration, mixed design flows have posed various challenges to the SoC designer
community. The present book ‘Unleash the System On Chip using FPGAs and
Handel C’, attempts to address few challenging issues of SoC design leveraging the
FPGA platform with ‘C’ based programming methodology.

Organization of the book

The book is divided into seven chapters. Chapter 1 introduces the concept of SoC.
It visualizes the unique place of the SoC in the microelectronics arena and covers
the market trends, challenges and opportunities for the budding professionals in this

vi Preface

field. Chapter 2 covers the essential details of the Handel C, which is extensively
used in the book for making software hard. The third chapter presents details of
sequential circuit design with appropriate case studies. The fourth chapter details
the combinational system designing from the SoC viewpoint on the Xilinx FPGA
platform. Chapter five throws light on placing the algorithms in the SoC paradigm
using Xilinx EDK platform with emphasis on ‘Hardware-Software Codesign’.
Chapter six is on the theme of rapid prototyping with unique design realizations
of fuzzy logic controller, Network on Chip and ciphers. Chapter seven extends the
same theme, however with a different approach of using soft processor cores.

The book is carved for all those who wish to be SoC designers with relatively less
steep learning curve. One of the striking features is one can possibly realize the designs
presented here with simple setup and free open source tools such as system C.

In these economically turbulent times, escalating efficiency and dropping risk while
continuing to innovate would be decisive for the SoC professionals and industries
to ride out the economic slowdown. We are sure that this book will definitely serve
as ‘Light House’ to guide the SoC designer community.

Interacting through blog and website

A blog is created by the authors exclusively to interact with the readers of this book.
The URL for the blog is: http://drkamat.wordpress.com/ . We are looking forward
towards your posts, comments and design queries on this blog. The readers may as
well see the updates and the upcoming SoC cores at the Author’s homepage at URL:
http://www.rkkamat.in

Foreword

System-on-chip technology (SoC) is a truly innovative and creative realm of VLSI
that brings multiple functions integrated on a single silicon chip. According to the
electronics.ca research network, the SoC Technology market is currently estimated
at nearly $14.4 billion. The prophecy is further growth, with an average annual
growth rate of 24.6%, reaching around $43.2 billion by 2009 i.e. by next year. The
market statistics mentioned above gives an insight as regards to this important and
ever growing segment of VLSI technology. The SoC with phenomenal growth rate
is experiencing many challenges from the designer point of view such as narrowing
development cycle without compromising the product functionality, performance,
reliability and quality. The computational complexity makes the SoCs to stand apart
in the crowd of the custom and semicustom systems and poses unique challenges to
the designers that can be described as “More than Moore” or “greater than equal to
Moore”. While the major players in this field like Infineon, Motorola, Intel, Wipro
are achieving an annual growth rate of more than 100%), still the industry is evidenc-
ing “More is Less” with ubiquitous penetration of SoCs in every walk of society.

How does the academic, research and industry keep up with the growing chal-
lenges of SoCs? Here is a book that rightly focuses on the issues pertaining to
digital SoCs. It is a sort of brainstorming at the top level and then percolating the
same at the individual modules with top-down approach. This is the challenge that
Dr. Kamat and his research team faced when they were exploring various aspects of
this field. Therefore, they have come out with a book that presents their hands-on
experiences with digital SoCs. The book in its unique fashion addresses the design
issues, technological challenges, and market legacies by presenting a distinctive
know-how based on FPGAs and C based methodology.

The approach presented in the book is multifaceted. It is solidly grounded on
a tripod approach comprising of Xilinx FPGAs, Handel C and soft IP cores. Dr.
Kamat weds the trio with practical case studies and came out with a good number
of building blocks to build successful design. It is vital to appreciate that the digital
semi-custom design is not a straightforward process, especially in the backdrop of
increasing software on the chip which is referred to as ‘Software Parkinson’. The
authors have successfully showcased the hardware software portioning and con-
veyed their notion to the readers.

vii

viii Foreword

Chapter 1 of the book presents various essential attributes of the SoCs. Exten-
sive survey is conducted by the authors to present the state of the art systems, the
design stats quo and various design and market challenges. Chapter 2 covers various
aspects related to the C based methodology. The screenshots presented here makes
the learning curve less steep for the novice designers. Chapter 3 and 4 presents vari-
ous implementations of the sequential and combinational logic designs respectively.
Chapter 5 gives an insight of customized arithmetic core designs. The striking
feature of this chapter is coverage of Xilinx EDK suite, the no-fee intellectual prop-
erty (IP) cores for designing embedded processing systems with Xilinx platform
FPGAs. Chapter 6 has addressed the fuzzy logic controller and Network on Chip
designs with which the authors have tried to inculcate intelligence on chip. This
is further extended in Chapter 7 with hardware-software codesign methodologies
using soft processor cores to realize the SoC design in narrowing time window.

Thus the authors have endeavored to present more than sufficient details to
encourage the potential readers to dig at depth when dealing with the design prin-
ciples that appears to be institutively obvious. Undoubtedly the design community
could use the book to discover the programming concepts that actually aids in real-
izing the SoCs. They can as well extend the design methodologies presented in this
book with the Open System C initiatives (OSCI) with the recent transaction-level
modeling standard, TLM-2.0 that enables model interoperability and reuse, pro-
viding an essential framework for architecture analysis, software development and
performance analysis, and hardware verification. Thus in lieu of the Handel C, the
designers can apply TLM-2.0 (which is freely downloadable) to show their SoCs
the light of the day.

To sum up I would like to quote that ““ The only constant in life is change” which
is experienced in its real sense in the field of SoCs through Moore’s law in Moore’s
own words, “Several times along the way, I thought we reached the end of the line,
things tapered off, and our creative engineers come up with ways around them.”
The designer community will definitely appreciate that the present book is a piece
of creative engineering.

I wish all the best to the potential readers to realize their SoCs with the know-how
presented in the book.
Yogindra S Abhyankar

Yogindra S. Abhyankar is a Group coordinator working with the
hardware technology development group, Center for Development
of Advanced Computing (C-DAC), Pune, India for more than 14
years. He has worked on various projects in high performance
computing (HPC) involving high speed inter-connects, system
architecture and VLSI design. His current field of research is in
the area of “Reconfigurable Computing”, one of the emerging
approaches for speeding-up HPC applications. He holds a MS degree from the
University of Wisconsin, USA.

Author’s Profile

Dr. Rajanish K. Kamat is working as a Reader in the Department
of Electronics, Shivaji University, Kolhapur, India. He enjoys
teaching to Masters in Electronics and Masters in Technology
classes. He is supervising number of research students working
towards their doctorate in the area of VLSI Design. The unique-
ness of his research work is its application orientation achieved
through the analytical marriage of interdisciplinary themes such
as neural network, Computational Techniques, Software etc. He has published his
research work widely in the areas of Sensor Systems, VLSI Design, Embedded Sys-
tems, Network Security and Visualization techniques. He is recipient of Research
Grants under the ‘Young Scientist Scheme’ from the Department of Science and
Technology of Government of India. He is referee of good number of reputed
research journals.

Mr. Santosh A. Shinde is working as a Research Fellow under
the University Grants Commission scheme at Department of
Electronics, Shivaji University, Kolhapur. He is also pursuing his
Doctorate in the research area of VLSI Design which is in the
final phase. His thesis topic is “Programmable ASIC Design for
Circumventing SPAM”. He also carries with him rich industrial
experience in various branches of VLSI Design and Embedded
Systems. He has published good number of research papers in referred International
Journal of repute.

Mr. Vinod G. Shelake is working as a Lecturer at Sanjivani
College, Panahala. He is also pursuing his Doctorate in the area of
VLSI Design. His thesis topic is “FPGA based Firewall Design”.

ix

Acknowledgements

Many people motivated us to make this book possible. At the outset authors would
like to acknowledge the grants received under DST-SERC Fast Track Project for
Young Scientist SR/FTP/ETA-14/2006 entitled “Development of FPGA based open
source soft IP cores for parameterized microcontroller design” to Dr. R.K. Kamat
under which a grand repository of free SoC cores on web is coming up. Interested
readers may keep a track on the web URL: http://www.rkkamat.in

Dr. Kamat owes great thanks to his teacher Dr. G.M. Naik for his inspiring sup-
port. Thanks are also due to Mr. Jivan Parab who will be coauthor in forthcoming
interesting books on VLSI design. Thanks also go to authorities of Shivaji Univer-
sity, Kolhapur for the support received towards the infrastructure. Special thanks to
Mr. Yogindra Abhyankar, CDAC Pune for reviewing the book and agreeing to give
the foreword.

Dr, Kamat would also like to thank his wife Rucha, parents, students, friends and
supporters for their support. Again special thanks to Adeet and Pari Shanbhag for
their enjoyable company that relieved the stress of SoC designing.

Finally, special thanks to Mr. Mark de Jongh, Senior Publishing Editor and Mrs.
Cindy Zitter from Springer for their outstanding support all the time. It is only
because of them we feel like contributing quality work to the designer community
through the reputed network of ‘Springer’.

- Dr. R.K. Kamat

- Mr. Santosh A. Shinde
- Mr. Vinod G Shelake

xi

Contents

1 Introductioncovuiiniiiiiieieiiiiineieneeeenensecenenenns 1
L1 Prologue 2
1.2 Exceptional Attributes of the SoC Technology................... 2
1.3 Classical Taxonomy: A Holistic Perspective Extended Towards

Integrated Circuits Classification 4
1.4 System-on-Chip (SoC) Term and Scope. 6
1.5 Constituents of SOC 8
1.5.1 Processor Cores for SoC.......... 8
1.52 OnChipMemoryinSoC 11
1.53 SoCBUSES. ..ottt 12
1.5.4 Timing References for SoC............ 13
1.5.5 Voltage Regulator and Power Management Circuits 14
1.566 OnChipADCS . ..ottt e 14
1.6 Sprawling Growth of SoC Market 14
1.7 Choosing the Platform, ASIC vs. FPGAs. 16
1.7.1 Full CustomDesign o, 16
1.7.2 Standard Cell Based Design 17
1.7.3 Design Based IP-Cores, Hard and Soft Macros 18
1.7.4 SoC Through SemiCustom ASICs 18
1.7.5 SoC Realization Through Structured ASIC 19
1.8 FPGA Based Programmable SoC............................. 20
1.9 Orientationof the Book 21
1.9.1 ApproachAdopted i 21
1.9.2 Motivation Behind the Approach 21
1.93 SetupUsed ...ttt e 23

2 Familiarizing with Handel C...............cocoiiiiiiiiiiiiae., 25
2.1 EDA Tools i.e. Computer Aids for VLSI Design 25
2.2 Background of Hardware Description Languages 26
2.3 Expressing Abstraction at Higher Levels 27
2.4 Where C Stands Amidst the Well Established HDLs? 28
2.5 IntroducingHandel C.......... 28
2.6 TopDownorBottomup?, 29

Xiii

Xiv Contents
2.7 Handel C: A Boon for Software Professionals 32
2.8 Handel Cvs.ANSIC i 33
2.9 HandelCDesignFlow 34
3 Sequential LogicDesigncoiiiiiiiiiiiiiireennncennnns 43
3.1 Design Philosophy of Sequential Logic 43
32 DFIp-Flop.o 44
33 Latch... ... 46
3.4 Realization of JK Flip-Flop 47
3.5 Cell of Hex Counter for Counter Applications. 49
3.6 Realization of Shift Registerfor SoC......................... 52
3.7 LFSR Core for Security Applicationsin SoC................... 53
3.8 Clock Scaling and Delay Generationin SoC 54
3.9 SoC Data Queuing Using FIFO 55
3.10 Implementation of Stack Though LIFO 56
3.11 Soft IP Core for Hamming Code 58
4 Combinational LogicDesign.........coviiiiiiiiiiiiinnnnennnns 61
4.1 Introduction............ ... 61
4.2 Design Metrics for the Combinational Logic Circuits:
SOC Perspectiveovov ittt e 61
43 Coreof 2to4Decoder’.t 62
4.4 ‘3 to 8 Decoder’ Using Hierarchical Approach. 64
4.5 Priority Encoder4to2 i 67
4.6 Soft IP Core of ‘7 to 3 Encoder’ Implementation. 68
4.7 TP Core of ‘Parity Generator’ for Communication Applications 70
4.8 TP Core for Parity Checker and Error Detection for Internet Protocol 71
4.9 BCD TO Seven Segment CONVEIter.o.vuvenenennnnenen.. 72
4.10 Core of Binary to Gray Converter and Applications. 75
4.11 Realization of IP Core of Gray to Binary Converter. 76
4.12 Designing Barrel Shifters 77
5 Arithmetic Core Design and Design Reuse of Soft IP Cores 81
5.1 Design Reuse Philosophy 81
5.2 Advantages of on Chip Arithmetic 83
5.3 Designing Half Adderin Handel C........................... 83
54 FullAdder........ ..o 84
5.5 RippleCarry Adder. i 85
5.6 Booth Algorithm and its Realizationon FPGA 87
5.7 BuildingALUinHandelC.......... 88
5.8 Xilinx EDK Interface with Cores DevelopedThrough Handel C. ... 91
5.8.1 DesignProblem......... 92

5.82 DesignFlow 92

Contents XV

6 Rapid Prototyping of the Soft IP Coreson FPGA 115
6.1 Prototyping Philosophy. i 115
6.2 Rapid Design of Fuzzy Controller Using Handel C.............. 116

6.2.1 Cramming Software Centric Fuzzy Logic on the SoC. 116
6.2.2 DesignProblem............ i .. 116
6.2.3 Fuzzification and Defuzzification. 117
6.2.4 Design Flow for Prototyping the Fuzzy Controller 119
6.2.5 Handel C Implementation. 120
6.2.6 Co Simulation with ModelSim..................... ... 122
6.2.7 SoC Prototyping and Final Device Specifications 123
6.3 Packet Processor Core for Inculcating Embedded Network
Security using Mixed Design Flow. 123
6.3.1 FromSoCtoNoC........... i, 123
6.3.2 A Novel Framework for Designing NoC 124
6.3.3 Developingthe FSM........ 125
6.3.4 Simulation and Mixed Mode Design Aspects. 125
6.3.5 Handel C Implementation. 125
6.4 A Linear Congruential Generator (LCG) SoC 132
6.4.1 Map Report Generated by Xilinx Webpack 134
6.5 Implementation of Reusable Soft IP Core of Blowfish Cipher 136
6.5.1 DesignProblem............ i .. 136
6.5.2 Implementationin Handel C.................... 136
6.5.3 Prototypingon Spartan 3FPGA 138
6.5.4 Design Summary.ouiuninit i 138

7 Soft Processor Core for Accelerated Embedded Design............. 141

7.1 Building SoC for Temperature Control Application Using Picoblaze 142
7.1.1 DesignProblem. 142
7.1.2 Essence of Prototyping, 142
7.1.3 Overview of Soft IP Processor Cores by Different Vendors. . 143
7.1.4 Design Methodology. 144
7.1.5 VHDL Program Listing. 145
7.1.6 Low Level Instruction to Enable the Application.......... 146
7.1.7 Final SoC Specifications., 150

7.2 Hardware Software Codesign of SoC with Built
in Position Algorithm i 153
7.2.1 Design Statementuiiiti i 153
7.2.2 BuildingPIDonChip............ 153
7.2.3 Picoblaze: A Soft IP Core from Xilinx.................. 154
7.2.4 Design Problem and Methodology 154
7.2.5 Final SoC Specifications., 155

ReferencCes. . o oottt iiiieeiieneeeeeoneeeeoeeeenneseanascanannns 163

List of Figures

1.1
1.2
1.3
1.4
1.5

2.1
2.2
23
24
2.5
2.6
2.7
2.8
29
2.10
3.1
3.2
33
34
35
3.6

4.1
4.2
5.1
52
53
54
55
5.6

Locating SoCinthe VLSIspree., ..
SOCHIENdS. . . oottt
SoC realization Strategiesvu it
Advantages of FPGA for SoC realization.
Handel C methodology used in the book justified
by using the Gajski’s Y-chart
Creation of the projectt
Creating and adding new Handel-C Source file to the project.........
Showing the project and source file displayed in the DK IDE.........
Developing handel C code in DK environment
Compiling and building your project,
Stimulating the debug process of the project
Results being displayed in the simulation window
Verification through the watch window
Selecting the prototyping platform by selecting the FPGA family.
Generating EDIF for mapping onto the FPGA.
DFEIP-fIop . oo
Waveforms of D Flip-flop. i
High level realization of the D Flip-Flop on Spartan Il FPGA
Top level and RTL realization of JK Flip-Flop on Spartan III FPGA. . ..
High level schematic of the Hex Counter.
Simulation window of the Waveform Analyzer of DK suite (The first
window shows the simulation in binary format while the second one
shows the same in stepped format).
Realization of BCD to seven segment converter on Spartan III FPGA . .
Binary to gary CONVEItero vvuu ettt
Functional block diagram of ALU
Selecting base system builder. oL
Building project from scratch/onoldmodule.
Selecting the Xilinx spartan 3E board
Selecting the soft IP processor
Selecting the UART with appropriate configuration

XVii

Xviii

5.7
5.8
59
5.10
5.11

5.12
5.13
5.14
5.15
5.16
5.17
5.18

5.19
5.20
5.21
5.22

5.23
5.24

5.25
5.26
5.27

5.28
5.29
5.30

5.31
5.32

5.33
5.34

5.35
5.36
5.37
5.38
5.39
5.40

List of Figures

Configuring the UART as standard Input/Output device
Test bench generation for the peripherals.........................
EDK showing the specifications of the system.
Starting platform studio
EDK showing the modules and their connections using the buses.

The designer can start importing the peripherals as well in this step. . . .
Showing creation and implementation of new peripherals.
Linking the peripheral to the project by specifying path
Specifying the Core Name and other information such as revision etc . .
Selecting the bus for connecting the peripheral to Micorblaze.
In this application w have selected FIFO for buffering the data.
FIFO size specified as 512 bytes + 512 bytes as read and write.
Generating XST and ISE for implementing peripherals using

XST flow. Template drivers are also selected here..................
With this step the blank coreis created.
The created peripheral is imported to the project..................
Specifying the project for linking the created peripheral core
Selecting the previously generated core with due attention

given to the revision information
Overwriting the core over the existing core
Selecting the source file. In this case we have selected the

EDIF generated by the Handel C adder core. Here the EDIF
automatically maps into the VHDL for the compatibility

with Microblaze
Specifying the path for saving the VHDL file
Selecting the .XST file of the core by adopting proper path.
Here the EDK shows successful creation of two VHDL files

the first one is in VHDL pertaining to core and the second

one is the user logic whichisalsoin VHDL.
Generating the EDIF of the Handel C Addercore
The EDK seeks path for the netlist of the ‘Adder Core’.............
EDK showing the successful generation of the ‘Adder Core’

with other information such as versionetc.......................
Adding ‘Adder Core’ to the main project of Microblaze.
Selecting the PLB bus interface for the ‘Adder Core’

to facilitate its communication with Microblaze
Deciding the Memory Map for the System.
Generating the bitstream of the total core

(Microblaze+UART+Adder)
Creating the software driver for the adder in ANSIC
Adding files to the Software part of the project
Generating the libraries for the project.
Marking to initialize BRAM for storing the software
Compilation of software and building the project
The SoC comprising of Hardware and Software is successfully built . .

List of Figures

6.1
6.2
6.3
6.4
6.5
6.6
6.7

6.8

6.9
6.10
6.11

7.1

7.2
7.3
7.4
7.5

Defining membership function for different seasons
Membership function of water temperature
Designflow.
RTL realizationottt
Timing verification using the ModelSim
FSM model of the packet processorcore
Simulation window of Packet Processor exhibiting

the Mixed Mode Flow with ANSIC............
Simulation report using ModelSim, the timeline (yellow) is the
reference to validate the timing at a particular instance
RTL view of the packet splitter using Xilinx Webpack
RTL realization of the LCG core on Xilinx spartan IIl FPGA
RTL realization of the Blowfish SoftIPcore.....................
Block diagram of the temperature control system application with
integration of Picoblaze il
PBlaze IDE interface. i
LUT based implementation of the temperature controller
Block Schematic of the system.
RTL hierarchical version of the implementation

List of Tables

1.1
1.2
1.3
1.4
2.1
2.2
3.1
4.1
5.1
6.1
6.2
7.1
7.2
7.3

Evolution of VLSI technology 3
Comparison of full custom, semicustom and SOCASIC 6
Latest SoC processors inmarket. L. 10
Comparison of Macrosoit i 19
C for VLSI Design Compilers Developedsofar 30
VHDL VsHandel C 33
Truth of JK Flip-flop.o 47
Truth of the 4-2 priority encoder, 67
Files created by the XPS as the SoCisbuilt. 93
Rule evaluation for the proposed controller. 117
Range of water temperature expressed in terms of Fuzzy variable 118
Xilinx mapping report file for design ‘temperature controller’ 155
Design summary reported by Xilinx Webpack. 156
Delay summary report.o vt e 157

XX1

List of Programs

3.1
3.2
33
34
35
3.6
3.7
3.8
39
3.10
4.1
4.2
4.3

4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
5.1
52
53
54
55
5.6
5.7
6.1
6.2
6.3

Handel Ccode for DFlip-flop 46
Handel C code for realizing Latch 47
Handel C code for JK Flip-flop 48
Realizing cell of Hex Counter using Handel C..................... 50
Realization of Universal Shift Register. 52
Handel Ccode for LESR. i 53
Handel C code for frequency scalar 54
Handel Ccode for FIFO i 55
Handel Ccode for LIFO. i 57
Handel C code for hamming codeIP 59
Handel C code for2to4 Decoder IP, 63
Handel C code for 3to 8 Decoder IP, 64
Handel C code for 3 to 8 Decoder IP in non-hierarchical manner using

SWItCh CONSLIUCEot 65
Handel C code for 4 to 2 priority encoder 67
Handel C code for 7 to 3 priority encoder 68
Handel C realization of 8 bit parity generator 70
Handel C realization IP parity Checker 72
Handel C realization BCD to seven segment converter 73
Handel C code for binary to gary converter 75
Handel C code for realization of IP core of gray to binary converter. ... 77
Handel C code for barrel shifter, 77
Handel C code for halfadder, 83
Handel C code for 8 bitfulladder, 84
Handel C code forripple carry adder 85
Handel C code for booth algorithm 87
Handel C code for 8bit ALU it 89
Handel Ccode foradder. i .. 112
Handel C core asablack box InNEDK, 112
Handel C code for fuzzy controller realization. 120
Handel C code for TCP/IP packet processor implementation 126
Handel C code for LCGcore ...ty 132

XXiii

XXiv

6.4
7.1
7.2
7.3
7.4

List of Programs

Handel C code for blow fish implementation. 137
VHDL code for temperature controller. 145
Assembly code for temperature controller 147
VHDL code for position algorithm. 157

Assembly code for position algorithm 160

Chapter 1
Introduction

The electronics industry is an amazingly fast changing and vigorous environment,
driven by everlasting demand for innovation and technological advancement. As
electronic manufacturers need to develop affluent features that will set apart new
products, devices attain progressively more functions and head towards the com-
plexity beating the Moor’s law. These have resulted in narrow market windows
and accelerate obsolescence cycles that naturally impose reduced development
times.

State of art electronic devices requires chips that dwell in a small footprint, less
hungry interms of power, and fast enough to deal with the sophisticated applica-
tions. Traditionally, semiconductor devices were developed with a notion of single,
dedicated function. A system used to be analytical marriage of the subsystems for
the intended application. However, the new era is all about the complete systems on
a single chip. The state of the art systems have multiple processors or similar com-
plex functional blocks interacting with each-other and with the real world as well to
satisfy the needs of the appliance. In recent times SoC has emerged as the promising
solution to all the above mentioned requirements. Owing to their applicability in the
sophisticated systems, the SoC’s are finding their place mainly in computers, com-
munication equipment, consumer electronic devices, and automotive applications.
The Soc Market is fuelled by their growing demand in new consumer applications,
which include mobile phones, and automotives. Yet another factor that has escalated
the SoC demand is the growing digital convergence and the technological progress
towards the heterogeneous systems being placed on-chip. However the end result
faced by the designer community is tremendous pressure with the shrinking time-
to-market window. The complexity and heterogeneity of today’s SOCs has forced
the designers to devote more time for the simulation, verification and prototyping
aspects.

Like all electronic systems, System-on-Chip (SoC) are subject to the contradic-
tory trade-offs such as increase in complexity Vs decrease in time and costs. In addi-
tion, specific SoC characteristics aggravate difficulties in their design with growing
multidisciplinary applications, closer hardware software codesign issues, demand
for small footprint, custom Vs semicustom platforms to name a few.

R.K. Kamat et al., Unleash the System on Chip using FPGAs and Handel C, 1
DOI 10.1007/978-1-4020-9362-3_1, © Springer Science+Business Media B.V. 2009

2 1 Introduction

Chapter 1 will be introducing the leverage on an extensive intellectual property
(IP) portfolio, systems knowledge and experience with technologies like ARM to
target specific vertical markets with System-on-Chip solutions that meet a superset
of application needs.

1.1 Prologue

System-on-Chip (SoC), the new brawny arm of the VLSI is today’s hot buzzword.
“VLSI” technology is being evolved since its inception in an exponential way and
more so with its convergence with other developing technologies such as telecom-
munication, consumer electronics, defense electronics to name a few. This simul-
taneous progress of the above mentioned technologies has thoroughly influenced
the VLSI paradigm. ‘Design Automation’ or ‘Computer Aided Design’ that was in
a very primitive stage in 70’s is well matured today with the incorporation of the
heuristics and intelligent algorithms typically running on a workstation to yield use-
ful revisions in the design inputted.

It is worthwhile to estimate the classification parameters so as to get a clear cut
idea of the design volume of today’s VLSI chips and to locate where the SoC fits
on the VLSI canvass.

In the literature the word ULSI i.e. Ultra Large Scale integration is also used
interchangeably with VLSI, however more precisely it refers to the number of com-
ponent count higher than 107. The technical fraternity is also divided over the issue
whether to take into the account the number of gates or transistors to demark the
scale of integration. It is therefore more appropriate to use number of components
as the basis as shown in Table 1.1. The SoC conception in the VLSI arena has
emerged out of the need of the state of the art products dedicated towards a single
functionality.

1.2 Exceptional Attributes of the SoC Technology

VLSI technology has evolved from first planar integrated circuit having two transis-
tors in 1961 to a Pentium 4 processor having 42 million transistors in 2001. This
exciting and knowledgeable sector of Electronics industry has evidenced a 53%
compound annual growth rate over 45 years. It is noticeable because no other tech-
nology has grown so fast so long. One of the factor that has fuelled this growth is the
benchmarking standards provided by the visionaries such as Gorden Moore. Start-
ing from the pure Electronics the VLSI has now penetrated in the lives of a com-
mon man; thanks to the growing interdisciplinary approach with the participation of
the Electrical, Electronics, Biological, Artificial Intelligence professionals coming
together to make the chips intelligent, fault tolerant and adaptive to the ambient
environment. The interdisciplinary developments mentioned above have fuelled the
development of the SoCs.

1.2 Exceptional Attributes of the SoC Technology

Table 1.1 Evolution of VLSI technology

Year

Technology

Maximum number of
components / chip

Design methodology

1959-1965

1965-1969

1969-1989

1989-till date

1990 onwards

1990—till date

1990 onwards

Small-scale integration
(SSI)

Medium-scale integration
(MSI)

Large-scale integration
(LSD)

Very large-scale integration
(VLSI)

Ultra large scale integration
ULSI

System-on-Chip

Wafer-scale integration

Three dimensional inte-
grated circuit

10?

10-10°

10°-10°

10°-107

Chips more than 1
million transistors

Million gates + cus-
tomized hardware
+ software

Multilayer active
electronic
components

Manual (translation
from electronics to
graphics)

Manual but transition
towards design
automation

Design abstrac-
tion and use of
languages such as
VERILOG and
VHDL started

Sophisticated
compute inten-
sive EDA tools
such as simulated
annealing, floor-
planning, critical
path analysis,
time skew, power
optimization

Entire silicon

wafer is used to
produce a single
‘super-chip’.

On-die signaling

using vertical
interconnects,
wafer-on-wafer,
wafer-on-die, die
—on-wafer

The main attributes of today’s SoC systems is their complexity, small foot-
print, spatial and temporal efficiency and ability to design with a small design
team empowered by the sophisticated computational tools known a EDA tools.
SoC design industry has shown the world few innovative things and set up cer-
tain innovations in the overall design methodology. “Design and Reuse” is one
such principle devised by which saves the efforts in reinventing the wheel and
empowers the designer with a rich and well tested library of the IP cores with
well defined I/0O interfaces. This principle was laid down way back in late 1970s
by Carver Mead and Lynn Conway whose textbook showed how to use library
elements with proven behavior and design rules to create “cookbook” designs.

4 1 Introduction

Integration of third party tools in the design flow is yet another innovation the
SoC industry has achieved by agreeing upon the standards and formats of the
output of each design step. This offers the freedom for the designer to make use
of the best tool to optimize the design. Mixed Design flow is now a common
practice in the SoC field.

Specialty of the SoC design paradigm is to do the same things in alternate number
of ways. A mere working design is not the final goal, but the same can be improved
by employing novel techniques. For instance the architecture of any design can be
written by employing the behavioral, data flow or structural architectures. Today
the SoC industry is trying to get the synergisms of the hardware and software pro-
fessionals by stressing upon the abstract design flow by offering the designers C,
C++ based environment that has been explored in-depth in the present book. This
not only makes the design teams participative but also helps in making the design
efficient as the well proven software algorithms can be utilized.

Design is easier in SoC than in other industries (as will be evidenced in the
present book) such as mechanical systems because, the information at the sys-
tem level is entirely logical and connective. This information is transformed and
augmented from stage to stage in the design process but its essential logical/con-
nective identity is preserved all the way to the masks. This is not possible in
mechanical systems, where the abstractions are not logical homologues (much
less homomorphs) of the embodiments and likely never will be. Instead, tremen-
dous conversion is needed, with enormous additional information required at each
stage [23].

An enormous variety of SoC products can be obtained with varying specifica-
tions, though the flow is common due to the different manners of specifying the
system.

1.3 Classical Taxonomy: A Holistic Perspective Extended
Towards Integrated Circuits Classification

Taxonomy is the practice and science of classification. When applied to the field of
Integrated Circuits one can get a complete picture of this rapidly evolved field in a
span of few minutes.

The most interesting categorization with respect to the theme of this book is
Application Specific ICs (known as ASICs) and general purpose ICs. The ASICs
generally referred to as Application Specific Products to incorporate the categories
like microcontrollers comprises of the following types of ICs:

e System-On-Chip (SoC)
e Semicustom ICs
e Full Custom ICs

Application-specific ICs (ASICs) have the benefit of cramming maximum
amount of circuitry for a particular function that leads to space efficiency with cost
effectiveness. The main attribute that differentiates the SoCs from others is a mixed

1.3 Classical Taxonomy 5

blend of many basic functional technologies such as CMOS, bipolar, non-volatile
memory, power DMOS, and Micro-Electro-Mechanical System (MEMS) to serve
the given application. The full custom IC design is being followed traditionally
since the pre-Design Automation era and is still continued with the back up of the
state of art Electronic Design Automation (EDA) tools. The main intention of the
customers behind choosing the Semicustom paradigm is as follows:

Design volume is small that poses difficulty in project finance.
Market lead time forcing the designers to test and validate on the fast prototyping
platforms

e Design security is to be maintained to protect the valuable IP

The implementation platforms for the semicustom ICs are the generic chips con-
sisting of reconfigurable arrays of logic. These days even it is a standard practice to
go for pre-designed primitives such as RISC processors on these generic chips so as
to get the advantage of the completely tested logic blocks around which the system
can be built. However, the semicustom approach has an implicit compromise for
the specifications as the implementation gets restricted to the predetermined logic
array (called as Look Up Tables) laid down by the manufacturers. In the following
point in depth account of the specifications called as VLSI design Metrics has been
taken.

However the latest trend in the market is System-on-a-Chip (SoC) ASIC designs
[22]. This field is highly driven by the EDA tools and with optimized combination
of high-speed performance, state-of-the-art packaging technology, and the integra-
tion of complex capabilities onto a single chip.

Silicon Manufacturing

Alternatives
| l |
Standard Components Application Specific ICs
Fixed Application ~ Semi Full Silicon
Application by Programming Custom Custom Compilation
0
Logic Hardware Software O
Families Programming Programming
(MASK)
TTL PLA Microprocessor
CMOS ROM EPROM,EEPROM
PLD

Fig. 1.1 Locating SoC in the VLSI spree

6 1 Introduction

Table 1.2 Comparison of full custom, semicustom and SoC ASIC

Soc ASIC

Designed with the aid of core
library, with major focus on
RTL design with hard-
ware—software codesign,
combination of various
technologies and packaging
schemes

Full custom Semicustom

Implementation centered
around individual transis-
tors and their interconnects

Implementation centered
around the predesigned
generic array chips such as
FPGA and CPLDs

Spatial and temporal effi-
ciency with the choice of
right technology and usage
of sophisticated EDA tools

Required 25-50 times more
area leading to spatial
inefficiency than other
categories

Core based pretested design
ensures early analysis of
performance with highest
level of space and time

for optimization

High Non Recurring Cost of

Engineering (NRE), costlier
for less volume production

Low NRE cost, however more

costly for large volume
production as large Si area
would be wasted for imple-
mentation of reconfigura-

efficiency

Cost saving varies widely,

depends on production vol-
ume and design complexity
but definitely less than the
semicustom

tion logic

Way back in the year 1997, the SIA/SRC 1997 Technology Roadmap for Silicon
indicated a technical capability to fabricate more than 1 B logic gates, or 64 Gbits
of memory per chip by the year 2010. Although most of these predications were
achieved much prior to the deadline, a notable prophecy though was not given due
importance was “small number of standard chip types”. With the growing applica-
tions of the FPGAs with their customization for variety of applications manufactur-
ers are forced to curtail the number of standard chips making whatever possible by
using the FPGAs. As compared to FPGA based semicustom ASICs, full custom
ASIC evidences a longer design cycle and costlier Engineering Change Order. How-
ever it has its own undisputed market share due to the attributes of faster perform-
ance and lower cost when mass produced. FPGA offers attractive design platform
for medium to high volume products. It is seen that many of the successfully tested
design in the FPGA environment ultimately gets migrated towards the full custom
platform due to power efficiency and minimal critical path.

1.4 System-on-Chip (SoC) Term and Scope

System-on-a-Chip (SoC) is today’s most promising revolution happening in the
design of integrated circuits due to the possible unprecedented levels of integra-
tion. Subsequently, new design methodologies and tools are in demand to address
the design complexity and other issues such as simulation, prototyping, verification
and test bench generation. The term SoC however is tenuous. Various shades of

1.4 System-on-Chip (SoC) Term and Scope 7

dimensions of the most evolving SoC are reflected by the definitions given by vari-
ous sources:

e The System-on-Chip, popularly referred to as SoC, is a chip that holds all of the
necessary hardware and electronic circuitry for a complete system. It includes on-
chip memory (RAM and ROM), the microprocessor, peripheral interfaces, I/O
logic control, data converters, and other components that comprise a complete
computer system.

e System-on-Chip technology is the ability to place multiple function “systems’ on
a single silicon chip, cutting development cycle while increasing product func-
tionality, performance and quality. Even if the semiconductor industry achieved
increasing levels of integration, the success of this double integration — processes
and functions — involves more capabilities than originally expected [1].

e System-on-a-Chip (SoC) technology is the packaging of all the necessary elec-
tronic circuits and parts for a “system” (such as a cell phone or digital camera) on
a single integrated circuit (IC), generally known as a microchip. For example, a
system-on-a-Chip for a sound-detecting device might include an audio receiver,
an analog-to-digital converter (ADC), a microprocessor, necessary memory, and
the input/output logic control for a user — all on a single microchip [2].

e The electronics for a complete, working product contained on a single chip.
While a microcontroller includes all the hardware components required to
process instructions, an SoC includes the computer and all required ancillary
electronics. For example, an SoC for a telecom application might contain a
microprocessor, digital signal processor (DSP), RAM and ROM. It might also
include a graphics processor. The more functions contained within the chip, the
more systems can be miniaturized for handheld use with an ancillary reduction
in power [3].

e A SoC perception from mixed signal point of views is “System-on-Chip refers to
specific conglomeration of chips to be soldered onto a single board. Such Printed
Circuit Boards combined on a single platform to work together in a synchronous
manner in order to do several processes simultaneously is called System-on-
Chip” [14].

Traditionally the System-on-Chip design has been defined as ICs with embedded
processors, memory, and other functions that make them much more complex than
their basic building-block semiconductor counterparts. However, these days the defi-
nition is progressing, to incorporate more application or customer specific products
than standard ICs because of the higher levels of integration of the latter as compared
to the former. The most appropriate perspective of the SoC looking at the various
trends of IP reuse, Hardware-Software codesign and application specific usage is

e A System-on-Chip is an IC designed by stitching together multiple stand-alone
VLSI designs (cores) to provide full functionality for an application. Accordingly
an SOC comprises of its own processor core (often referred to as an “embedded”
processor), and will further comprise one or more cores for performing a range
of functions often analogous to those of devices in larger-scale systems [16].

8 1 Introduction

The SoC growth is motivated with the following advantages [19]:

- Higher productivity levels

- Lower overall cost

- Lower overall power

- Smaller form factor

- Higher integration levels

- Rapid development of derivative designs

1.5 Constituents of SoC

The evolution of SoC technology with novel functionality is booming. Shrinking
process technologies and increasing design sizes have led to highly complex bil-
lion-transistor integrated circuits (ICs) [4, 5]. As a consequence, manufacturers are
integrating increasing numbers of components on a chip. A heterogeneous System-
on-a-Chip (SoC) might include one or more of the following components:

e General purpose processors cores, digital signal processor cores, or application

specific intellectual property (IP) cores

An analog front end

On-chip memory (including a selection of ROM, RAM, EEPROM and Flash)

I/O devices,

Timing references including oscillators and phase-locked loops.

Peripherals including counter-timers, real-time timers and power-on reset

generators.

e External interfaces including industry standards such as USB, FireWire, Ether-
net, USART, SPI.

e Analog interfaces including ADCs and DACs.

e Voltage regulators and power management circuits

e On chip communication protocols

1.5.1 Processor Cores for SoC

Processor core is the heart of the SoC and there exists various implementation strate-
gies such as Control processor with RISC or CISC philosophy, Application Specific
High-performance controller, Digital Signal Processor, Audio processor, Network
processor and finally the most popular Video processor.

The processor development for the SoC applications is revealing different
trends.

There is a great demand for the Customizable processors. These customizable
processors are likely to bridge the performance gap between hardwired logic and

1.5 Constituents of SoC 9

general-purpose processor. In the current SoC devices, the range of applications of
the CPU has been so expanded that the embedded CPU is required to determine the
optimum solution for each application. The requirements are getting complicated with
the advancements of functions every year [6]. It has been reported that the embedded
CPU in a SoC must feature a high processing and transfer capability for operations
such as video compression and expansion, by accurately estimating the overall sys-
tem bus structure and the frequency transfer band of each of its sections. For this pur-
pose, a technique is often used to build the CPU architecture and bus configuration
independently and distribute data processing that would impose a heavy load on a
single CPU to multiple processors, DSPs and exclusive hardware. As a result of such
a solution, the requirements for embedded CPUs are now focused on flexibility and
scalability in system construction as well as on processing performance [6]. Even
the giants in general purpose processor manufacturing such as Intel has marked its
entry into the market for System-on-Chip (SoC) integrated circuits. Known as Atom
processor, Intel’s low-power processor aims at portable applications, and all set to
penetrate mobile and communications markets. Intel is currently working on 15 SoC
projects, all tailored for new growth markets, according to Gadi Singer, general man-
ager of Intel’s SoC enabling group [7]. Another prevailing trend especially in case of
the large System-on-Chip (SoC) design today is to go for multi-processor cores in it.
Each of the embedded core will take care of different subsystems such as handling
communications, audio or video, alongside one or more host and application proces-
sors. However, their debugging is posing more challenges [8].

There are contradictory views regarding the processors for the SoC arena.
Designer have gone for the multiprocessor approach with the ASICs and customiz-
able hardware glue logic, to achieve the low power budgeting. However the above
mentioned approach suffers from the lack of interoperability and possibility of
redundant logic and lacks flexibility.

Researchers also realized that adding a processor with analog functionality helps
in reducing the costs, power consumption and gives higher efficiency in perform-
ance of the Mixed Signal SoC applications, however at the expense of higher gate
count and large memory size for the digital components in the system.

Configurable processor families gain new hardware options and software tool
enhancements to appeal to an even wider audience of SoC designers. For instance
Tensilica has upgraded its two Xtensa configurable processor families (the Xtensa
7 and Xtensa LX2) with new hardware options and software tool enhancements
that make it appeal to an even wider audience of SoC designers Highlights of these
capabilities include a new, smaller general purpose register file option, new integer
multiplier and divider execution unit options, two new Amba 3.0 bridge options, as
well as an easy-to-use new configuration tool that analyses source C/C++ code and
automatically suggests VLIW (very long instruction word) instruction extensions
that lead to 30-60% improvements in general purpose code performance. These
new capabilities provide designers with the most productive configurable processor
design environment, with automated features that ensure each processor design is
correct by construction.

10

Table 1.3 Latest SoC processors in market

1 Introduction

Sr. No.

Name of the SoC
processor/s or platforms

Manufacturer

Applications

10.

11.

12.

13.

Intel® EP80579 Integrated
Processor family

MPC8540
TMS320DM335

€300, €500, e600 and €700

AX110xx family

EyeQ2

Atlas processors

PVG350MDK

SMP8654 media processors

HiDTVTM Video Processor
Family

Tegra 600 and 650

LX-001 uP

PMC253

Intel

Emerson

Texas Instruments

Freescale
Semiconductors

ASIX

ST Microelectronics

Centrality
Communications

Provigent

Sigma Designs

Trident

Nvidia

Grid Connect

Kontron

Security, storage, commu-
nications, and industrial
robotics

Embedded computing

Digital Media System-on-
Chip (DMSoC)

Network acceleration,
RapidIO interconnect,
and Passive Optical
Networking

Small form factor, low-cost,
embedded and industrial
Ethernet applications

Computationally intensive
applications for real-time
visual recognition and
scene interpretation, and
has cabin-grade automo-
tive qualification for use
in intelligent vehicle
systems

Wireless and GPS-enabled
devices such as smart
phones, PDAs, and
automotive navigation/
telematics systems

Flexible development
platform for broadband
wireless transmission
systems

Advanced Communica-
tions’ IPv6 set top

boxes (STBs)

High-definition MPEG2
decoding, system
processing and video
processing features
to deliver exceptional
video fidelity and system
functionality

High-definition video
on handheld personal
computers

Embedded communica-
tion or co-processor
applications

32-bit Fieldbus controller
for PROFIBUS

1.5 Constituents of SoC

Table 1.3 (continued)

11

Sr. No. Name of the SoC Manufacturer Applications
processor/s or platforms
14. WinPath2 family of WiMAX WiMAX basestation (BTS)
processors applications
15. AC494 Voice over packet Audio Code Echo controller, Adaptive
family of SoC jitter buffer, caller ID
16. MB93461 Fujitsu Microelec- Video/audio data compres-
tronics Asia Pvt sion techniques in the
Ltd Digital A/V and Multi-
media arena
17. PC3xx family picoChip Baseband processors spe-
cifically targeted at the
fast-growing femtocell
market
18. Geode SC3200 National Set-top boxes and network
Semiconductor terminals
19. SAF3550 processor Philips Cost-effective automotive
HD Radio solution
20. CX9543X Conexant Fax, answering machine,

speakerphone, and
intercom

1.5.2 On Chip Memory in SoC

The main advantage of the on-chip memory is minimal latency. In contrast to main
memory, whose latency is hidden by caching, scratch pad memory, a type of on-chip
memory currently used in several SoCs, can always be accessed at low latency. In
contrast to caches this memory is not managed by the hardware, it is a part of the
physical address space. However the usage of the above mentioned on-chip memory
has to be managed by the operating system and applications [15]. Another major
reason for the growing trend of embedded nonvolatile memory is due to the power
saving achieved.

It has been reported [17] that the organization of on-chip memory in embedded
processors varies widely from one SoC to another, depending on the application and
market segment for which the SoC is deployed. Designer has wide choices ranging
from on-chip SRAM, flash, DRAM and even it is possible to judiciously combine
the onchip and cache memories to get the optimum performance.

In the recent SoCs, one-time programmable antifuse (OTP) memory macro is
becoming common due to the following [48]:

e Most of the SoCs do not require hundreds or thousands of rewrite cycles.
e The altering parameters such as Code storage, calibration tables, and setup
parameters can be changed using the memory management algorithms.

12 1 Introduction

e Antifuse OTP has small footprint and hence leads to minimal area-related cost of
the die.

e Due to one time programmability, the reliability is good.

e Due to small footprint and hence the lower value of capacitance gives the advan-
tage of reduces precharge and switching power consumption.

The current-generation low-power SDRAM (LPDDRI1), available since 2003,
still uses relatively high-voltage (1.8-V) I/Os and is limited to low speed (200 MHz)
[49]. However, they are soon hopefully going to be replaced by the Low-power
DDR2 (LPDDR?2), a next-generation low-power memory technology for mobile
and embedded designs that offers higher speed, lower- voltage operation, larger
capacities and lower pin count than the current generation — and lets nonvolatile
memory share the same bus as SDRAM as well.

1.5.3 SoC Buses

In System-on-a-Chip (SoC), the bus architecture plays a vital role to achieve the
shorter propagation delay. The conventional buses such as USB, FireWire, Ether-
net, USART, SPI are still being used, but suffers severely in the multiprocessor
environment owing to their global arbitration mechanism. This further leads to the
problems such as congestion, leading to lowered bandwidth and higher latencies not
acceptable in systems where deterministic timing is crucial [18].

The AMBA architecture from ARM has been widely adopted in the SoC
paradigm due to its various verification attributes such as hierarchy of physical
interconnect, unambiguous protocols and growing body of testbench and formal
verification infrastructure [20]. Another standard BUS architecture which is not
copyrighted is Wishbone. This public domain bus interconnect platform is known
for its flexibility for use with semiconductor IP cores. It also exhibits design reuse
by alleviating System-on-Chip integration problems by creating a common inter-
face between IP cores [21]. The above mentioned properties of Wishbone improves
the portability and reliability of the system, and results in faster time-to-market for
the end user.

Researchers have recently introduced a SoC design environment with FPGA
based emulation system with automated bus architecture generation. This frame
work uses AMBA monitor for debug ability, that samples all bus activities in pin
and cycle accurate way. The prototype system can run with clock speed which is
close to that of real system and thus assures exhaustive verification and design space
exploration. By using the automatic bus generation environment, bus architecture
can be generated from the bus specification in an easy and quick way with config-
urable bus components library. Using this, complicate SOC design processes from
the specification to the prototyping system can be done in very small amount of time
and effort [22].

1.5 Constituents of SoC

13

Integration of
memory
controllers and
video graphics on
chip (Intel)

Narrowing time to
market window
(maximal reuse of
IP cores and
software)

Higher Level of
abstraction (C
based design

flow)

A

Tight MCU-SoC Hardware
linkage and use of Software

ready made soft SOC Trends Codesign (mixed
processor cores mode tools)
superexponentiall P
y increasing Mixed signal ng;ﬂ:ﬁ.tgr:n
complexity (Analog + Digital Platform based (Combination of
on Chip) (Library design top down and

based approach) bottom up

Fig. 1.2 SoC trends

1.5.4 Timing References for SoC

As the modern SoCs migrates towards a much larger scale of integration, it usually
needs half a dozen or more clock signals, running at various frequencies. Today’s
overall timing design usually involves accurate generation, synchronization and dis-
tribution of multiple frequencies to drive the operation of different modules such as
the core processor, analog front end, i.e., audio codecs, as well as various periph-
erals. These numerous clocks running at much higher speeds make the noise and
interference a big concern for reliable system operation [51].

Timing within all digital and most mixed analog/digital systems comes down
to one device —the clock generator. But with mounting system complexity, a sin-
gle clock oscillator delivering just one digital signal is no longer adequate. These
days, systems may require a half-dozen or more clock signals, each at a different
frequency [45]. The modern SoCs with Megahertz clock, suffers from large jit-
ter due to variable transmission latency. Phase-locked loops (PLL) derive accurate
sample clocks by jitter filtering. The digital implementation of phase detector, loop
filter, and clock dividers is straightforward, whereas a digital substitute for analog
VCOs is a challenging problem [46]. Therefore the former is preferred in most of
the implementations.

More serious issues of concern in modern SoCs with multiple clock signals are
noise interference, the mutual interference among clocks and other signals. This
could be reduced through good layout and shielding. Different from these methods
that passively bypass EMI, changing the clock signal itself through spread-spectrum

14 1 Introduction

clocking (SSC) helps actively reduce the EMI generation and is much cheaper and
flexible with today’s IC capabilities [52].

1.5.5 Voltage Regulator and Power Management Circuits

As the SoCs are progressing towards the low power theme, the voltage regulator
and power management subsystem designs are becoming increasingly critical in the
applications such as mobile phones due to the GSM noise, occurring with the RF
transmitter switching and subsequent draining of high current from the regulator.
The remedies suggested are [5]:

e Careful analysis of the PSRR specification over the complete frequency range to
compute the sensitivity of the regulator to any possible noise source.

e Selection of a linear regulator with very low drop-out.

e Selecting the regulator to maintain regulation over the full range of the battery
voltage.

e Computing the metrics ‘effective dropout’ rather than the steady state dropout to
evaluate the residual noise at the linear regulator output.

1.5.6 On Chip ADCs

ADC:s have always played a key role in several application fields of the communica-
tions industry. In recent years, the importance of ADCs has been growing mainly
due to the developments of the UWB system and Software Defined Radios (SDRs).
Nevertheless, in the last 20 years the panorama has consistently changed. As a mat-
ter of fact, the requirements for resolution improvements has slowed down, while
the demand for higher sampling speeds keeps increasing. Finally, power reduction
has become the major challenge in ADCs design [53, 54]. Flash ADC architec-
ture is also known for its high speed operation and is a popular implementation in
few SoCs. Here an analog input voltage is simultaneously compared by 2™ voltage
comparators in an n-bit flash ADC. The comparators are, perhaps, the most critical
components in a flash ADC. The high-speed comparators are realized with differ-
ential amplifiers using bipolar transistors. The comparator realization in the CMOS
flash converters consists of auto-zeroed inverter with switched capacitor input.

1.6 Sprawling Growth of SoC Market

SoC is the segment of the semiconductor industry witnessing a very high growth
rate and is all set to dominate the market. The main factors fuelling this growth
are time-to-market pressures and the ever increasing competition to spur off the

1.6 Sprawling Growth of SoC Market 15

Moore’s law with the growing need to embedded more functions in silicon. Way
back in the year 2001, the market analysts predicted robust market growth for
SoCs [9], with a growth rate as high as an average of 31% a year. However, with
the market driven phenomena such as drastic reduction in the overall cycle time
of the system with demanding superior performance levels; products migrat-
ing to the deep sub-micron complexities, testability issues and time-to-market
pressures has resulted in the actual figures much higher than those predicted.
The growth rate of the SoC market has witnessed business exceeding 345 mil-
lion devices in 2003 and 1 billion units in 2004 [10]. United States represents
the world’s largest SoC market, worth an estimated US$10.4 billion in 2007,
as stated in a recent report published by Global Industry Analysts, Inc. Asia
(excluding Japan) and Europe are the second and third largest markets respec-
tively. The three regions collectively account for about 80% of the global Sys-
tem-on-a-Chip market [12].

A robust global market growth of SoC with the analysis is presented in a market
report ‘System-On-Chip — A Global Strategic Business Report’ by Global Industry
Analysts [11]. A excerpt of the report gives interesting statistics. United States repre-
sents the world’s largest SoC market, worth an estimated US$10.4 billion in 2007, as
stated in a recent report published by Global Industry Analysts, Inc. Asia (excluding
Japan) and Europe are the second and third largest markets respectively. The three
regions collectively account for about 80% of the global System-on-a-Chip market.
The global and regional markets are expected to grow at CAGRs ranging between
20% and 35% through 2010. Market for SoCs Based on Embedded IP is expected
to grow at a CAGR of 29% for the period 006-2010, while the Standard Cell based
SoCs market is projected to expand at 21%. On the end-use front, consumer elec-
tronic devices offer the highest growth opportunity with a CAGR of 31% between
2006 and 2010, followed by automotive applications at 30%. The main reason attrib-
uted for the growth is demand for high-speed and low power consuming chips which
has expected to increase the growth rate by more than 150% between the years 2006
and 2010.

According to new report, System-on-a-Chip: Technology, Markets, SOC compo-
nents are being propelled by the following three factors [13]:

e SOC average selling prices are higher than standalone chips, as is to be expected
due to integrated functionality.

e SOC unit sales are definitely cannibalizing the consumption volume of the
standalone micro-processor unit (MPU), application-specific integrated circuit
(ASIC), field programmable Gate Array (FPGA), and digital signal processor
(DSP). Therefore, there is the occurrence of SOC devices simultaneously pen-
etrating into the existing markets of most other standalone chips.

e The growth of SOC components has, in fact, led to the birth and popularity of
new end-use devices that were hitherto deemed impossible to make or to mar-
ket. Examples include ultra-small mobile gadgets of the future, ultra-wideband
Internet, and certain automobile gadgetry. In essence, SOC has introduced new
end-use markets.

16 1 Introduction

1.7 Choosing the Platform, ASIC vs. FPGAs

There is lot of discussion regarding the futuristic evolving platform for the SoC
implementation. On one hand although it is agreed that there is and will be always
performance gap between ASICs and FPGAs, but still many designers are going
for the FPGA based platform. if utmost performance is required. However, the role
of full custom design was seen to be diminishing, especially in large SoC systems.
The common thing between the ASIC and FPGA is their functionality fixed by
the designer and always dedicated for a particular application. Today, full custom
ASICs represent a small percentage of the ASIC market because gate arrays, struc-
tured ASICs and standard cells turn circuit designs into working chips much faster
and at much less cost. Such chips have greatly improved in speed over the years and
provide the necessary performance for many applications. The speed advantage of
a full custom ASIC is not as relevant as it was in the past. It is used primarily for
devices such as microprocessors that must run as fast as possible and will be pro-
duced in huge quantities [94].

In nutshell the SoC realization strategies seems to move in the following
directions

FPGA based
SemiCustom
ASICs
L Standard Cell
Full Custom Based Designs
Design

SoC
Manufacturing

Structurgd ASIC Design based on IP Cores,
Design hard and soft macros

Fig. 1.3 SoC realization strategies

1.7.1 Full Custom Design

Full custom design flow adopts a bottom-up approach in which the design com-
mences with the starts creation of library of cells at lower level of abstraction which
then combined to realize the intended system. Generally the primitive cells used

1.7 Choosing the Platform, ASIC vs. FPGAs 17

for the design have a structures layout interms of transistors along with the layout
at mask level supported by the functional model for simulation and floor planning
achieved by place and route algorithms. A full custom design empowers the designer
with overt control over the physical structure of the design. Here the designer has
to carefully work out the logical structure of the design and the rest of the task of
converting it into the physical design is undertaken automatically by the EDA tools.
Custom design gives much better circuits because it results in structured wiring
where key signals have much smaller wire loads [96].

The advantages of ‘Full Custom’ approach are as follows:

Smaller die and hence reduced footprint, and lower component cost.
Possibility of mixed design (analog and digital on the same chip).
Possibility of high degree of optimization in both the area and performance.
Integration of pre-designed and pre-verified blocks.

The areas in which an application can benefit from a full custom design are
uniqueness of function, performance and cost. The more unique and demanding
the application is, the greater the need for a full custom design. On the other hand,
almost any design can become less expensive to implement with a full custom
design if there is to be a large production volume [95].

The negative points of the full custom design are:

Time consuming and error prone

Higher Non Recurring Engineering (NRE) cost
Support of sophisticated EDA tools required
Necessitates Experienced Designer with good skills set.

However, the latest work [96], reveals that the full custom SoC can be greatly
improved without increasing design time by judiciously employing a number of
custom design techniques including floor planning, pre-routing critical signals, til-
ing data-paths, and generating crafted cells.

1.7.2 Standard Cell Based Design

A standard cell based design approach is gaining popularity amongst today’s dig-
ital SoC designs. A standard cell is generally a group of transistor along with their
interconnect structures, given in a defined layout. The individual cells are treated as
the primitives associated with the Boolean logic function or complicated sub sys-
tems such as adders, processors etc. These cells are further arranged as a library and
made available to the designer as pre-designed pre-verified primitives, which can
be readily included in the design as per the requirement. Design with the standard
cells makes it possible to globally apply advanced optimization algorithms, which
reduce the manual effort required and improve the quality of the synthesized logic

18 1 Introduction

during layout. The use of basic standard cell elements reduces complexity to the
extent that a complete chip design can be handled flat by layout and test genera-
tion tools, removing the need for artificial floor plan boundaries [97]. However, as
more analog functions are performed by digital circuits, the sophistication of the
standard-cell blocks becomes critical to SoC performance [98]. IC designers are
compelled to closely monitor the benchmarks of the cells from the compatibility
point of view and fitting them with the other blocks.

1.7.3 Design Based IP-Cores, Hard and Soft Macros

IP cores are nothing but the library of modules (blocks) that can be used in a design.
The IP cores can be designed in-house (as is done in this book) or licensed from
a vendor. They are the “Macro” structures with specific standard function that can
be flexibly being adapted and reused in SoC designs. Although the IPs are ready to
use design module their analytical marriage with the existing system poses several
issues. One of the important ones is ‘Floorplanning’. It plays an vital role in an over-
all physical design cycle and is instrumental factor for the quality of final layout such
as area and performance. The main factors considered in floorplanning are packag-
ing, aspect ratio, routability, timing, and compatibility with the pre-placed macros.
The routability and interconnect aspects are very crucial as the wire length has to
be estimated during the floorplan phase. There are several methods to estimate the
wire length, such as semi-perimeter method, complete graph, and minimum chain,
source to sink connection, steiner tree approximation and minimum spanning tree
[99]. The real design issue arises when there is requirement of multiple hard, soft
and firm cores in the same SoC. In such a circumstances, ‘Functional Partitioning’ is
used to eliminate routing problems when the SoC is laid out on silicon [100].

1.7.4 SoC Through SemiCustom ASICs

The terms “gate array” and “semi-custom” ASIC are interchangeably used by the
SoC community and stands for realizing the given design by extensive use of the
following platforms:

e Standard Cell Based Platform: Here the design realization is a mix of standard cell
libraries, mega-cells, full-custom blocks, system-level macros etc. Although, the
design approach is reasonable fast, and economical, it has spatial inefficiency.

e Gate Array Based Design: Here the realization is a mix of channeled (customiza-
tion of interconnect), channel less (customization of top mask layers) and struc-
tures gate arrays (customization of interconnects with well defined structured
blocks).

e Programmable SoC Platforms: In this approach, the implementation is based on
PLD (PAL, PLA, GAL), CPLDs, FPLDs and FPGAs. With the declining price of

1.7 Choosing the Platform, ASIC vs. FPGAs

Table 1.4 Comparison of Macros

19

Comparison feature

Hard macro

Soft macro

Firm macro

Format

Reconfigurability

Platform

Advantages

Disadvantages

Applications

Hardware IPs with
physical pathways

and wiring patterns,

mostly in GDSII
format

Not reconfigurable

Platform and manu-
facturing technol-
ogy dependent,
Modeled as a

library component.

Optimized blocks
interms of

power/area/timing.

Non editable IP
blocks

Full Custom ASIC

Synthesizable RTL,
VHDL, Verilog.

System C, Handel C

More flexible and
Reconfigurable

Platform impendent,
incorporable in
any manufacturing
technology, Synthe-
sizable with several
technologies

Editable hierarchical
blocks

Vulnerable to protec-
tion, very much
dependent on tech-
nology and tools,
Final specifications
depends on the tar-
get platform imple-
mentation, Timing
not guaranteed

preferred in SoC
implementations

Netlist (soft macro +
layout information
in script)

Flexible and portable

Platform dependent

Optimized for spatial
and power Speci-
fications, Flexible
and portable

Vulnerability same as
that of soft macros

A compromise
between soft and
hard macros, they
are preferred in SoC
implementations

the FPGAs from (1 million gates drop from $200+ to <$20) and their predictable
development time, accelerated prototyping, programming through simple PC
based setup has attracted the SoC community towards them. Since the present
book adopts the FPGA based SoC implementation, a detailed analysis regarding
the issues pertaining them have been discussed in depth in the following part of

the chapter.

1.7.5 SoC Realization Through Structured ASIC

Just for the sake of completeness the structured ASICs are discussed here. They
fall somewhere in between an FPGA and a Standard Cell-based ASIC and mainly
used to realize mid-volume level designs. Structured ASICs provide a quick-turn

20 1 Introduction

ASIC solution, with lower non-recurring engineering (NRE) cost, and equivalent
power and performance to that of an ASIC. They reportedly fill the gap between
the ‘Cell based Designs’ and ‘FPGA based Designs’. The products have a much
lower cost point and 5X or more density than FPGAs. They can also support lower
volumes than a cell-based or full-custom ASIC approach [101]. A Structured ASIC
comprises of pre-diffused blocks in standard cell and available metal programmable
blocks. Due to certain risks with the structures ASIC platform such as IP-related
risks, discontinuing the IP from the vendor, incompatibility of the IPs etc. there
was some slowdown in this sector. But they are now thriving due to their positive
reward side that offers a substantial portion of the capacity, performance and energy
efficiency of cell-based design, but with a lower NRE, a simplified design flow and
a faster turnaround time. Thus they now occupy an important space between the
simplest cell-based designs and the most powerful FPGA applications [102].

1.8 FPGA Based Programmable SoC

Since the present book emphasizes on the SoC design in the FPGA paradigm, the
issues pertaining to it are discussed here in depth.

The FPGA technology is matured and evolved over a period of time so much
that it is now preferred platform for the SoCs. With an array of computational ele-
ments and the routing wires among them, the capability of reconfiguration on the fly
through configuration bit programming has made the designers to use the platform
not only for the semi-custom implementation, but also for the full custom SoCs.

Rapid time to Accelerated
P Development Low NRE
market time

Design Reuse and
embedded built in

Easy fielc_:l_ Soft Processors
upgradeability
- FPGA for the SoC Rapid time to
Early Prototyping Implementation market
and Simulation
Reconfiguration
No Clock on the fly
bottleneck
A 4

Provision to Embed
Testing & Fault
Tolerance

Built in Soft
Processor and
frequently required
cores

Matured Tools
Support

Fig. 1.4 Advantages of FPGA for SoC realization

1.9 Orientation of the Book 21

Apart from the advantages of FPGA for realizing SoC summarized in Fig. 1.4,
parallelism can be achieved by intelligent design portioning. Moreover, the prime
advantage of designing a SoC to FPGAs for production is the short span from con-
cept to production. Since FPGAs act as their own prototypes, the time needed for
each verification iteration is minimized. FPGAs also allow the flexibility of specifi-
cation changes at anytime during the flow. Of course, serious specification changes
could still have a huge impact on schedule but changes can be implemented at any
time during the flow without the added cost of silicon re-spins [122].

The rambling growth of the SoC devices based on FPGA has lead to the emer-
gence of platform FPGAs which have rich collection of on chip resources such as
CPUs, SRAM, versatile general purpose 10 ports, high speed serial links, in addi-
tion to the field programmable logic cells. Collection of these functionalities that
may be implemented as hard or soft IP cores makes the platform FPGAs extremely
flexible reconfigurable SoC devices: they can be customized to a big variety of
complex applications by adequately configuring and programming a needed set of
available on-chip components. Several programmable logic manufacturers offer
platform FPGAs. Altera, Atmel, Xilinx and others propose devices that integrate
hardware cores of ARM, MIPS and PowerPC CPUs and/or allow for instantiation
of soft processor, DSP and microcontroller cores [123]. For the programs in this
book we have opted for devices from the Xilinx Spartan III, in most of the cases
and Virtex-II in some cases because their features and evolution path seemed most
adequate for our needs when technology choices had to be done.

1.9 Orientation of the Book

1.9.1 Approach Adopted

The comprehension of building System-on-Chip in this book is explored as a tripod
approach. To make the tripod of the SoC steady, we have resorted to three important
things viz. Handel C based programming methodology, Xilinx FPGAs for realiza-
tion and prototyping purpose and Soft IP Core of RISC Processor i.e. picoblaze for
developing the Embedded applications.

1.9.2 Motivation Behind the Approach

Designing the state of art complex SoCs using the traditional RTL methodology
poses several difficulties such as lengthy design and realization cycles because they
are at lower level of abstraction Electronic System Level (ESL) tools attempt to
address this design complexity problem. The motivation behind the extensive use of
the Handel C based design methodology is to give an equal opportunity to the soft-
ware dominated application sector interested to inculcate their intelligent algorithms

22 1 Introduction

on the SoC for whom the some C based design methodology would be more closer
to their skill set. Even for the system designers the Handel C based design method-
ology paves various benefits such as small code size, faster Modeling, Simulation
and Verification and exploring the design space effectively apart from the increas-
ing the reusability of the design. As evident from the system design case studies
in this book the C-based languages, coupled with block-based approaches are the
most efficient approaches (in all sense design efficiency, productivity improvement,
abstraction level etc.) and thus these ESL design approaches leads to transaction
level models (TLM). In consistent with the reported versions of many designers,
Handel-C, based on the ANSI C standard, is a mature, high level language that adds
a least of easy to understand hardware-oriented constructs for design implementa-
tion and even the concurrency is explicit using the statements such as par (parallel).
The important timing issues in SoCs can be handled by rules within the language
with the aid of simulation intensive environment using additional types and com-
munications statements such as channel.

The Handel C based design methodology effectively bridges the gap between
the behavioral and structural abstractions as shown by means of modified Gajski’s
Y-chart in Fig. 1.5.

The Handel C cores of the various modules developed in this book are further
converted into the EDIF format and then again converted to the bitstream using

Bridging the Gap
Between Behavioral
and Structural
Abstractions through
Handel C Structural Abstraction

Behavioral Abstraction

Processor, memory etc.
RTL

FSM, Sequential Programming Flip-flop,Registers, Adders

Boolean Equation, Differential Equation Primitives Multiplexers, Logic Gates

System Specifications Port Maps, Component Instantiation

MOS, Interconnect Layouts

Component based modular design

ASICs, Custom ICs ~

Foundry Specific layout -+

v

Physical at CMOS level

Fig. 1.5 Handel C methodology used in the book justified by using the Gajski’s Y-chart

1.9 Orientation of the Book 23

the Xilinx Webpack Version 9.2 for prototyping, realization and verification on the
Spartan III FPGA. Other third party tools such as Modelsim have been incorporated
in the design flow wherever the need arises.

The most striking know-how given in this book is the interfacing of the Han-
del C based IP with other soft IP cores using Xilinx EDK tool. This is well illus-
trated by using an example of ‘Adder’ interfaced to the Xilinx soft IP processor core
‘microblaze’. Looking at the importance of the Network-on-Chip (NoC) paradigm
in SoCs, few implementations pertaining to NoCs are presented in the book. The
book also demonstrates the accelerated design of few embedded applications using
the Xilinx soft processor core i.e. picoblaze.

1.9.3 Setup Used

FPGA Kkits are available as custom built or commercial and come in a wide price
spectrum from different vendors. The designers can test the Handel C cores devel-
oped in this book on any custom FPGA prototyping board having standard JTAG
connectivity from PC. There are again wide variety of choices for FPGA to PC
interfacing. On the PC side the kits can be connected using different options such
as RS232, Parallel Port, USB, PCI, Ethernet etc. On the kit side there is standard
JTAG interface and a parallel download cable. The board which the authors have
used is shown in the Fig. 1.6. However, in order to support the unified hardware and
software environment for the soft IP cores developed in Chapter 6, we have used the
Spartan 3E starter kit of Xilinx.

Fig. 1.6 Photograph of the setup used for realization of the SoC cores

Chapter 2
Familiarizing with Handel C

Established C-based design flows now provide a rapid, unproblematic design flow
from algorithms to FPGA implementation. With the apt coding styles, methodology
and design flow, SoC designers can get tangible results from their abstract code. The
motivations behind the usage of C based paradigm are ease in SOC design and test-
ing, possibility of working at varying levels of abstraction, effective hardware/soft-
ware codesign, focused simulation, effective debugging and quick verification. This
chapter introduces Handel C a powerful language superset of ANSI-C for designing
SoCs.

2.1 EDA Tools i.e. Computer Aids for VLSI Design

Chapter 1 covered the trends in the VLSI technology. It is revealed that with the
increasing market demand for ICs with more on-chip functionality at a lower cost
and within shortest possible development time span (shorter time to market), the
chip developers are forced towards the small feature sizes and this has resulted in
exponential increases in the transistor counts. VLSI industry has certain peculiar
characteristics, here the manufacturing technology is matured enough to support the
increasing transistor count per chip, while the design has seems to be fallen behind
resulting in ‘design productivity gap’. There are several issues associated with the
design productivity gap such as lack of trained HR, availability and usage of the
design tools and the right design approach. Since long time, the designers are taking
the help of computer based design environment with intelligent tools to accelerate
the design speed.

The pre-EDA era ended around 1970, with the design of the first of its kind place
and route tool. Prior to this the designer were using computers just for drafting
rather than design. In today’s industry with phenomenal growth rate and shrinking
time to market window the importance of the C, C++ based tools are becoming
vital requirements of the VLSI laboratories. C has a very long and rich history of
development and evolution. In 1970 Dennis Ritchie from Bell Laboratories created

R.K. Kamat et al., Unleash the System on Chip using FPGAs and Handel C, 25
DOI 10.1007/978-1-4020-9361-6_2, © Springer Science+Business Media B.V. 2009

26 2 Familiarizing with Handel C

history with development of ‘C’ language and using further to write an operating
system based on it.

The ‘C language has evidenced many evolutions in its lifecycle’. During the
1980s the use of the C language spread widely, and compilers became available
on nearly every machine architecture and operating system; in particular it became
popular as a programming tool for personal computers, both for manufacturers of
commercial software for these machines, and for end-users interested in program-
ming [24]. The ‘C’ language has grown in different directions with different objec-
tives in mind consistent with the industry requirements. The success of C has been
attributed to many factors such as simplicity, portability with small core, ability
of generating the space and time efficient codes etc. However, from the hardware
transparency point of view the most striking feature of the C which has helped in
extending towards the hardware synthesis or VLSI design is its ability to make the
programs abstract, facility to build libraries and use them in future programs which
supports the industry’s latest theme ‘Design and Reuse’. The main obstacles design-
ers encountered while extending the C to hardware synthesis is its inherent sequen-
tial nature as against the basic concurrency the basis of hardware.

2.2 Background of Hardware Description Languages

Around the same time, when Dennis Ritchie was engrossed with the development
of ‘C’ and writing OS based on it, a major philosophical theme emerged out is using
the computer itself as design aids for Electronics and orienting the software world
for design activity. In 1972 Ralph Preiss of IBM defined “design automation” as the
art of utilizing digital computers to help generate, check, and record the data and
the documents that constitute the design of a digital system. Although the notion of
the design automation seen from the above definition is more towards the digital
system, the concept of describing the circuit and visualizing its functioning before
building through simulation based on the underlying mathematical models gave rise
to the development of SPICE mainly devoted for the analog world.

The pioneering work in development of hardware description languages was
done at Carnegie Mellon University and University of Kaiserslautern, around 1977.
The first generation languages are ISP developed at Carnegie Mellon University,
and KARL developed at University of Kaiserslautern. The impact of software lan-
guages was so much that the developers of ISP couldn’t design it very different from
them as was seen from the interface used for describing relations between the inputs
and the outputs of the design. Naturally it was more for simulate than synthesis.
However, the developers of the KARL could orient it more towards VLSI design by
including features supporting floor-planning and structured hardware design. Soon
after the ABLED graphic VLSI design editor was launched which was centered on
the KARL.

Simultaneously parallel development were on towards the hardware end. MMI
introduced a breakthrough architecture of the Programmable Array Logic or PAL

2.3 Expressing Abstraction at Higher Levels 27

in 1978. With this the industry spun off the operation of development of HDLs for
the programmable sea of gates aiming to reconfigure them with the output of the
HDL. Motivated by the PLD architectures, Data-1/O introduced yet another HDL
with a trade name ABEL which eased the eventual translation of FSMs to config-
urable logic.

However, the second generation of commanding and intelligent HDL com-
menced with the development of Verilog, introduced by Gateway Design Automa-
tion in 1985. Regarded as the mother of the modern HDLs soon a series of versions
of Verilog along with others such as VHDL started occupying the market share as
well as revenue. The VHDL started its development with defense funds but became
the default standard of the VLSI chip developers in 90s.

The growth of the VLSI industry fuelled the development of both VHDL and
Verilog which have now acquired the dominant position in the electronics industry
surpassing the older ones. However, in these days of software dominance, the value
of any embedded design largely depends on the quality of the algorithm defining
the system functionality and on how fast that algorithm is executed. Typically these
algorithms are modeled and refined in C code rather than in VHDL. This is con-
venient for programming an SoC, but performance requirements will often call for
custom hardware to serve as a coprocessor. C-based design flows to programmable
logic overcome that issue [41].

2.3 Expressing Abstraction at Higher Levels

There is a constant quest amongst the designers to express the hardware at higher
level of abstraction. This notion is based on an alternative to writing HDL by mov-
ing to higher level by using the C language. By raising the level of abstraction,
algorithms can be implemented without the need for knowledge of the hardware
implementation. Celoxica’s DK design suite offers a full integrated design environ-
ment that enables the user to generate either EDIF netlists or synthesizable RTL to
be programmed onto an FPGA. An even higher level of abstraction can be obtained
by implementing algorithms in Matlab. Xilinx’s AccelDSP allows a design flow to
move from Matlab algorithm implementation all the way to down to RTL. The high
level of abstraction of Matlab allows for very quick implementations and verifica-
tion of algorithms [25].

Many high-end designs in the communications or video/image processing indus-
tries rely on extremely complex algorithms. The first step in a conventional design
flow involves modeling and proving the design functions at the algorithmic level
of abstraction, using tools such as MATLAB or plain C/C++ modeling. MATLAB
works well for validating and proving the initial algorithm, although many design
teams also develop C/C++ models to verify that the whole system meets functional
and performance specifications. For subsequent discussion, we’ll use the term
untimed algorithm to represent those algorithms written either in MATLAB or pure
ANSI C/C++ [26].

28 2 Familiarizing with Handel C

The constructs added to languages such as Handel-C (which is used in the present
book) provide the link to hardware. But the level of abstraction in the code is kept
very high to maintain the advantages that come from using C-based code. There are
several things that can be added to the design methodology to make it easier to gen-
erate hardware from C-based code without having to become a gate-level hardware
expert [41].

2.4 Where C Stands Amidst the Well Established HDLs?

Recently there are lots of attentions into the use of C programming language (or its
extensions) for describing hardware as well as software with an intention to support
hardware-software co-design processes with a single language. One of the hardest
things we all need to learn when starting out with HDL is that we’re not program-
ming — we’re building hardware and arrays of gates. Having done a *lot* of C and
applications programming before I started on VHDL and Verilog I can tell you it
took a while to shake off the programmer in me and become a hardware developer.
Applying general-purpose programming tactics to HDL too often makes too many
gates and highly inefficient chip and logic layouts.

Following features of the C based design paradigm makes them a popular choice
[41] amongst the VLSI designer community:

e Ease of simulation and testing.

e Effective description of mathematical descriptions of systems.

e Effective verification by using C-based code as the reference model at the start of
the design flow and then using this same model to check each subsequent refine-
ment as implementation is completed.

e Co-simulation and possibility to incorporate third party design tools in the design
flow. Facility to plug and play models from Matlab to C to RTL to even FPGA
hardware within the same simulation environment used to originally design the
system functionality.

e Accelerated design cycle to produce a working FPGA prototype of the system.

Although there is no doubt a push in the direction of higher level languages for
hardware design evident from the good number of version of C oriented towards
RTL output, none of them are established as perfect design platform and moreover
as sound industry standard. However, it goes without saying that the future will hold
even higher levels of abstraction [42].

2.5 Introducing Handel C

For applications wherein heavy programming is required such as network proto-
col analysis, the limitations of VHDL come in to the forefront. Languages such

2.6 Top Down or Bottom up? 29

as VHDL, ABEL etc. are meant only for hardware description, modeling and
simulation and they pose several limitations for programming intensive implemen-
tation of complex algorithms. There are set of tools which translate the description
from one domain to that of FPGA programmability, many time without compro-
mising the efficiency measured interms of consumption of hardware resources and
resulting final specifications such as critical path, timings etc.

The features of Handel C are as follows:

Innovative language for realizing algorithms in hardware.

Facilitates architectural design space exploration.

Powerful for hardware/software co-design.

Basic core of ISO/ANSI-C, with extensions required for hardware development
Inherently sequential but also supports parallel development using the constructs
such as ‘par’.

e Built in structures to realize flexible data widths, parallel processing and com-
munications between parallel elements.

Follows simple timing model.

Provision to specify the width of a data variable.

In the earlier version of the language there was no support for the pointers due to
their lack of hardware counterpart. But in the recent revision DK4, the support for
pointer has been included.

Amongst all these tools the most poplar are those converting ‘C’ into a ‘logic cir-
cuit’ or RTL. There are a number of C based languages presently popular in design
community viz. Cyber-Cviii, Esterel-Cix, Handel-C, SpecC, and SystemC.

2.6 Top Down or Bottom up?

The HDLs adopt the bottom-up design methodology, in which the individual design
blocks are designed and then combined at a later stage to complete the system. The
main pitfall of this approach is the late simulation and verification of the overall sys-
tem due to which the refinements and correction of errors becomes a costly affair.

As there is more thrust on the individual blocks rather than the overall architec-
ture, the hardware-software codesign issues mayn’t be dealt in satisfactory manner.
The time to market window widens due to serial execution of the expensive steps
and thus poses a tradeoff of cost Vs lead time.

The entire design thrust is on the explicit concurrency, which necessitates to pay
more cost in terms of design area and timing as well while describing the sequen-
tial paradigm. Many a times the novice faces the problems of meta-stability due
to inherent ‘infinite loops’ due to ‘switch on condition’ constructs. Moreover the
designers are more familiar with the sequential paradigm and encounter problems
in digesting the hard realities of the delta delays and Perry.

Moreover the focus on the ‘structural’ description in HDL’s makes the divide
between the hardware and software codesign more wider. In order to inculcate intel-

30

2 Familiarizing with Handel C

Table 2.1 C for VLSI Design Compilers Developed so far

Sr. No.

Compiler

Features

1.

10.

Cones

HardwareC*’

Transmogrifier
C39

SystemC

Impulse C

C2Verilog®

Mitrion C3*

Handel-C

SpecC*

Napa C*

Input interms of behavioral models written in C

Output interms of gate-level implementations

Output format interms of standard cells and programmable logic
arrays or programmable logic devices

Accelerated design cycle, efficient designs

Maps behavioral level specification of hardware to a register
transfer level description

Focus on concurrent processes, message passing, explicit instan-
tiation of procedures, and templates

A compiler for simple hardware description language.

It takes a program written in a restricted subset of the C program-
ming language, and produces a netlist for a sequential circuit that
implements the program.

Open-source extension of C++ for HW/SW modeling.

Intended for system level verification industry.

Uses C++ class libraries and simulation kernel for creating behav-
ioral and RTL designs.

Supports hierarchical decomposition of a system into modules.
Facilitates structural connectivity between modules using ports.

Specialized in modeling sequential operations

Compatible to System C and facilitates interprocess synchroniza-
tion and communication.

Each process treated interms of separate FSM.

Converts C algorithms into verilog

Improved logic synthesis results,

Greater control over the compilation process from C to HDL code
Good compatibility and interface with other system-level design
automation (SLDA), functional verification, and synthesis tools in
the design flow.

Uses concept of “Soft-core” processor

Works on abstraction layer between C code and FPGA

Makes use of mapping APIs

Produces output interms of VHDL IP core for the selected target
FPGA architectures

Known for cycle-accurate application development

Clock frequency is limited by the slowest operation

Compiler specialized in efficient analysis, optimization, of code
Provision to get the output interms of VHDL, Verilog, SystemC,
EDIF

Extension of ANSI-C.

Supports behavioral and structural hierarchical embedded sys-
tems designs

Focus on synthesis and verification

Heavily used for system-level design and architectural modeling.
Language/compiler intended for RISC or FPGA hybrid
processors

Uses datapath synthesis technique

Output interms of VHDL, structural VHDL and structural Verilog

2.6 Top Down or Bottom up? 31

Table 2.1 (continued)

Sr. No. Compiler Features

11. Catapult C* * Algorithmic synthesis tool for RTL generation

* Outputs RTL from pure C++ program input

¢ Output interms of RTL netlists in VHDL, Verilog, and SystemC
12. DIME-C* » FPGA prototyping tool

* Poor cycle accuracy

¢ Yields higher clock speed designs

» Compiler supports pipeline or parallel optimization

ligence on chip and make the hardware evolvable and fault tolerant, the designers
should focus more on the abstract level rather than the structural. ‘C’ based design
paradigm makes is in a better position to achieve this goal by ensuring the partici-
pation of the software professionals by offering them the bottom-up, abstract and
sequential environment in which they are working for quite some time.

The industry experts often analyzes the reasons behind productivity gap. The
main arsons are:

e The hardcore EEs relies more on the structural description and thus adopts the
bottom up approach with late results.

e Simulation occurs late in the design flow leading to more iterations to eliminate
the errors, re-spins and refining of the design.

e With the increasing complexity, in blistering space forcing the verification cycle
more stringent.

e The consumer products such as ‘set of top boxes’, ‘mobile phones’ are based
on mixed-signal chips with implementation of complex algorithms tracking
phenomenal permutations and combinations of the event that require designers
to examine their operation over few hundred to thousands of cycles to ensure
reliability.

In order to address the above challenges, there is a growing trend towards a top
down design methodology. The design methodology is based on definite architecture
of the chip as a block diagram followed by its simulation, synthesis, verification, opti-
mization, etc. The high level simulation entails the requirements for the individual
circuit blocks that guides the circuit design meeting the intended specifications. At last
the entire chip is laid out and verified against the original requirements.

System architects badly required in the shrinking time to market window:

The fundamental difference between the C based environment and the HDLs is
the basic design approach. The former adopts top-down, while the later relies on the
bottom up. Although the former is picking up albeit slowly he reason being scarce
design community with the requisite skill set which demands the ability to work as
system architects.

A system architect should be well versed with the different constructs and their
selective usage besides the art of modeling as the approach is more abstract in
nature.

32 2 Familiarizing with Handel C

2.7 Handel C: A Boon for Software Professionals

The Handel C was originally developed by Oxford Hardware Compilation Group.
The initial development was based on the language Occam with a focused goal of
increasing participation of software professionals in synthesis of hardware which
they haven’t yet explored. The latest version of the Handel C IDE is known as DK4
which is right now supported by Celoxica.

Although there are many C to hardware compilers already being used by VLSI
designers, Handel C deserves a special attention as it is one of the most matured C
based design platform with built in well thought out extensions for efficient C to
RTL conversion. Some of the most striking features of Handel C are [27-35].

One level of abstraction higher than an HDL.

Clear, familiar syntax with small and readable code.

Explicit parallelism using ‘par’ statement.

Simultaneous assignment that yields well-defined timing, fast external I/O and
simplified pipelines.

Compiler deals with the state machine generation automatically.

Easy simulation cycle.

Facilitates Channel communication.

Automated place and route, and bit stream creation for Xilinx and Altera tools.
Designed for compiling programs into hardware images of FPGAs or ASICs.
Small subset of C, extended with a few constructs for configuring the hardware
device and to support generation of efficient hardware.

Programs mapped into hardware at the netlist level or EDIF level.

Bit manipulation operators.

Possibility of parallel processing of single statements or whole modules.
Shorter simulation time as compared to other hardware simulators.
Synchronous programming language with fundamental notion of time.

Level of design abstraction is above RTL but below behavioral.

Each assignment infers a register and one clock cycle.

For designing functionality of similar complexity, the world of software design
is simpler than its hardware counterpart. The possibility of using software design
methodologies to create hardware solutions may seem almost theoretical, but there
are many real world examples that demonstrates that it resolves many issues inher-
ent to modern IC development. It shortens design time by a factor of 3—4 times, the
language and design systems are easily adopted and the small efficient code makes
radical system-level changes simple. Handel C is based on the main attribute of the
software design paradigm, to raise the level of abstraction so as to describe in the
briefest possible way the desired function rather than its underlying structural detail
overcomes many of the difficulties and inefficiencies in contemporary hardware
design [26].

Researchers have found many interesting features of Handel C in comparison
with the other languages such as AHDL [27]. Handel C code yields circuit size or

2.8 Handel C vs. ANSI C 33

Table 2.2 VHDL Vs Handel C

VHDL Handel C

Designed exclusively for hardware engineers ~ High-level programming language with
hardware output to ease the job of software

professionals
Aims to crate highly optimized sophisticate Aims at fast prototyping and algorithmic
hardware level optimization rather than sophisticated
hardware.

Expects the designer to be familiar with low Low level problems taken care by complier,
level hardware (structural) and a background designer works at higher abstraction level
of the gate-level effects of every single code
sequence and construct is required while
developing the code

Designer has to deal with gate-level problems Frees the designer from low level problems and
like fan-in and fan-out or choosing the appro- assists him at algorithmic level
priate type of gates or registers to be used

Designer feels jittery to try many implementa- Fast simulation, many alternate constructs
tion strategies. encourages designer to try several alternatives

the number of gates of the same order as that of its counterparts. Unfortunately in
case of some RISC architectures or FIFO kind of hardware, it can’t give as high
clock rate as that of the manually optimized AHDL or VHDL. Speed tweaking is
possible and a option regarding the same has been kept in Handel C. However it is
better to go for faster FPGA rather than trying for this option as it will defeat the
original purpose of Handel C i.e., accelerated design speed. Another feature from
the point of view of a novice C programmers is the readability and clarity of the
core code without much knowledge of the hardware. That means the C program-
mers can look at the code from the software perspectives and optimize the same
with his knowledge in the software domain rather than wasting valuable time in the
hardware details.

One problem the software professional might encounter due to the lack of their
hardware expertise is writing the I/O interfaces. The I/O interface is the actual piece
of the code written to define the pin assignment per logic block. However once the
I/0O interface is developed then it can be very well reused for number of routine
design cores unless a completely new design problem is encountered.

2.8 Handel C vs. ANSI C

The Handel C was developed to facilitate C to RTL conversion. It is worthwhile to
review the subtle difference between the above mentioned duos. The main additions
of Handel C to the ANSI C are as follows [42]:

[9%)
=

2 Familiarizing with Handel C

Parallelism

Timing

Interfaces

Clocks

RAM/ROM

Shared expression
Communications

Handel-C libraries

Floating Point component library
Bit manipulation

Macro functions for hardware block reuse

There is varying level of support for the various Handel C versions for the
following:

Recursion

Side effects

Standard libraries
Malloc()

Standard floating point
Pointers

It should be further noted that some of the above mentioned structures needs to
be rewritten to inculcate them in Handel C environment.

The Handel C supports multiple main void in the same workspace unlike the
only one in one program in ANSI C. Further the main functions may be hybrid in
nature having embedded sequential and/or parallel constructs. Bit manipulation is
rather efficient in Handel C as one can declare the integer with variable bits.

2.9 Handel C Design Flow

The IDE for Handel C Design is DK4 suite the licensed information of which may
be obtained from the Celoxica website http://www.celoxica.com. The summary of
the constructs, statements and other miscellaneous features has been explored in
depth in the Handel C reference manual available on line at various URLs. The DK
design suite is developed in a manner so as to increase the designer productivity by
a familiar IDE environment and the peculiar feature is its in built functions typical
of a software development environment.

The design flow is presented below:

The first and foremost step is refining the algorithm to be hardcoded from the
view point of its hardware realization. The conventional techniques such as FSM,
data path control architecture comes to the rescue of the designer to finalize and fine
tune the software version of the algorithm. The designer should further divide the
design problem and explore the benefits of the proposed implementation by judi-
cious placement of the modules in hardware and software. Unfortunately the soft-

2.9 Handel C Design Flow 35

PP s - %, O St - pricrity ameacer |

BYfe Edt vew Project Bukd Dok Mindow Hen =l=| x|
IWBE=1 T) wlne (§E [~ B SRR WOR-RIE NN
S hEARkAFEEE [vees R
ia = prostas for the priority B B Ryt pricraty Th T
] [3
™ x. wot clock = external *p?7*
void mainivoid)
unsigned 4 isput
unsigned 2 out. outl
inpat =0
it tiapue(y Pl Pt |]
it =y ey APEX L g Propect Hme
) Srtem Cp Avery Mmcury D =
i 48 ¢ [ey Ecaltus PO O
1 Com o Adena Srsien Ch0 4
out =2 Liwary <
3 K et Pred T gy (et |
else it in -
T e
LAY e &, o
¥ IS bera FLE 10KA Chgy Sl Sptan T o
1SE Bit 18 Che @ o 1 Dae
slss Che < -
i K Mbena APEI N T s Hlrm Spartan 3 Che
sut =0 Pt ey
:nwt = iupf tho S bibew Sptan JE Chg
i
« »
[T |
"~ [ke Ve [31 £ v 11 | _.J‘J

Fig. 2.1 Creation of the project

ware won’t help the designer to gain this insight. Then follows the transformation
and addition of the constructs for hardware to the C code for the functions to be syn-
thesized to FPGA. At this stage some modifications are required such as changing
the floating-point models to fixed-point. The parallel functions can be added at this
stage to inculcate concurrency and single clock cycle operations. Some back and
forth through these basic design steps will emerge the efficient and optimized hard-
ware-software codesign model of the design problem. The coding in Handel C then
can be commenced in the DK4 IDE as given below in the step by step manner:

Step 1: Creating New Project:

A new project pertaining to your design has to be created at the outset. The entire
development for this project is done in a workspace in which the source file and
header used resides. Creation of a project and the corresponding workspace is
shown in Fig. 2.1.

Step 2: Adding or Creating New File:

The source file which could be of text, ANSI C, ANSI C++, ANSI C/C++ header
file, Handel C, Handel C header file can be created from the scratch or added if it
exits. This is shown in the screenshot in Fig. 2.2. Figure 2.3 Shows the project and
source file displayed in the DK IDE.

36 2 Familiarizing with Handel C

"W acider - 0K Design Sutte - [ic]

B et vew Broject Bud Toos jorow e =l=] x|
T T AR - o — e e <R
R A d FEEFT (pees | R

E =l mmm

ansigned 1 EL

= e wnmigned 16 del
- & adder B

= U Estamal Dapancarcies EL-1

1]

del=0;
while (deli=10000}
{

delay:

del-del+1
)
]
Soacn Pl | Project | Wodapeos |
delen;
while (del! Teut e P Add o pramet:
48153 € Sourcn Fie e
i 88453 Cos Sorce Fla b
detnrn] IBANSIC /o oate Fie
sy el
) £
vald imit(w §
{ Location
(e e
unsigned § O =
®S00
R0
out+Ix38
enablei]
out-Dxdi
Tablef] ceod |
Gut-Dade
wnabled |
out=Dadi
mnabl

Fig. 2.2 Creating and adding new Handel-C Source file to the project

Step 3: Writing Handel-C Source Code:

The hardware finalized out of the hardware-software codesign process now can
be developed in Handel C code as shown in the Fig. 2.4. The software can go inde-
pendently in C or C++ for development in parallel.

Step 4: Building the Project:

The code developed has to parse through the build step to check the syntax and
refinements accordingly to correct the errors. This is shown in Figs. 2.5 and 2.6
respectively.

The hardware primitives utilized are shown in terms of the NAND gates in the
watch window. There is further scope for spatial improvements by refining the Han-
del C code and going back to the hardware-software codesign process.

Step 5: Debugging and Verification:

The effectiveness of Handel C in verification can be realized at this point of design
phase. It facilitates easy debussing and verification as shown in Fig. 2.7. The
designer can check different variables, clock cycles in the watch windows as shown
in Figs. 2.7 and 2.8.

2.9 Handel C Design Flow 37

Byte £ot vew Praect Bt Took findow o lg
0O =R wloe @l e Hhes 2 anpe|[apren
S0 AR TTEF |gees R

w7 S
B

" W o T |l o8

x|

O 0O O e e T
Ready in i Col i

1 start ol o) 2} Srthemnng the hard [T ——

Fig. 2.3 Showing the project and source file displayed in the DK IDE

Step 6: Generating the EDIF:

It involves two substeps viz. selecting the prototyping platform and mapping the
EDIF onto the given platform. The EDIF generated through the Handel C is com-
patible with almost all FPGAs manufactured by the major players in the market. At
this point of time, the designer should be well versed with the FPGA architecture
and the I/O pins to be used. The major task is writing the I/O interface for the chosen
FPGA. Then the EDIF can be created. Once the EDIF is generated, the designer has
top adopt to the third party tools of the respective company for synthesis, place and
route, post synthesis verification and floor plan generation.

By et yew Broect Bk oo fgrcow b
bsRe ¢
SEM EARA U FEEF

L]

e N c— o L N

Zinf

whi

B bt
wet clock =
vaid mainvoid)

unsigmed § A.B.wus.

unsigned ¥ sdditiom
unsigmed 1 carry
1e(1}

addities = |

sun + additisa7 0}

carey = addition(8]

}
¥

Addar

external “dusny®

olock externally given to FPGA

/main function

bt ingut

% bit addition to save carry bit

‘carry gemerated by additicn

o e 8 B bit nusbers

tien cutpat

“3th Bit save as carry

Jvanoeljasse]

*# alock externally given to FPGA

main tunction

sl it input

#/% bit addition to save carry bit

récarry gemevated by sddition

(0 ®B). <addivice of tve B Bit nusbers

B bit sddition output

#3th bit save as carry

Bukds the prject

Bt Al - {q|
Ogan
8 bit Adder
seart Db .
P — clock = external “duany”
Confamsbons... b main{void)
{
unsigued 8 &.B.wus,
unsigued § addition
unsigned 1 carry
while(1)
i
additicn = (0 # Al+
sun o additiea[7.0);
earsy * addition(8]
}
}
B e e [] L«| |
o
[T T, et f T f o P 1 e P 1

Fig. 2.5 Compiling and building your project

Byme Edt vew Project [pid Doch Mindow bieb

(LT T IR bl i Sy) NOCHIE R R
S0 [P | sewn bew @
Ogan
e 8 E———— 3
) :::nm Sa dcte Cipliuratn &3
-y oty F T
s .

unsigmed 1 carry carry geserated by sddit

addities = (0 # A+ (0 @ B)

sun + additioal7 0}

carry = addition[8]

[e v [3 2y v 14l | LrJ
A — Corfepamon adter -Detag—
= @ addmhos

@ Densi, O mirwcs

x|

e
) NAND pus st compilation + 425 4O FF, 0 mecry bis]
€@ 0 esm, 0 margs

T St f Db P P 1 P P 2]
next simtement [CEXT

Fig. 2.6 Stimulating the debug process of the project

¥ ke . O tesign Sutte [Step) - [adder]
Bye 0t yew pojct Detug Dooh dindow tew =] x|
[eRE-1" 1 w0 G| e (o A an08 | | pp e

B0 RERLZ Y BEEE wees [

— E|
m 1 dder

= %
= G sdder 6. set clock = external *dunsy”
%‘E""‘“ L vaid asin{void) »a
{
unsigned § A.B.sus bit
unmigned 9 sddition ¥ bat
unsigned 1 carry carr
ouhiter1)
= sddition = (0 @ A}e (0 # B}
sun + additionl? 0]
carry - additicald]

"~ B e veew [3 5y v . LlJ
i e —— e JEm

=00 {addar hco L... @
#* 1 main(). a -

TR A f i T

Fig. 2.7 Results being displayed in the simulation window

(Bie et yew proect Debug Toos ru-u- &_l-’J_zl

DSl ‘v be i =|[pweg J*anpo |Apen
CHEEE T
B bit hdder |
wet clock » external “dumap: <+ clock externally given to FPGA
void msin(void) srmain tunction
ussigned 0 & B sum % bat inpat
ussigned 9 sddition; ~+% bit addition to save cerry bit
unsigned 1 carry: sscarry genersted by sdditice
Ao
B
while(1)
sdditicon = (0 @ A} (0 # B}, -vaddinion of twa § bit usbess
=] sun = addities[7.0] # 8 bit addition output
carry * additica[8] #9th Bit save a3 carry

¥
]

)

0 (adder boo L. 3
1 main{). a... -

B gt ven okt Bt Toos lindow 1w =] x|
Dis@e hw e @@ e 00 s 24808 [ApEn
I '\!_ "Jr_.‘n:_};! 'I_'-'"I‘-T Bawe

l o 8 bit Adder j
wet clock + extermal “duany” olock externally given to FPGA
void main{woid) main function
{
unsigmed § A B sun # bit input
unsigeed ¥ additiom /% bit addition to save carry bit
e Seegrie [Dobin =] Dot Swten | Dptecsions O ke | 2]
while(l)
i :
o F
o
o
H

Fig. 2.9 Selecting the prototyping platform by selecting the FPGA family

([oo gon praect Dt ook gk s : i § =l =]
DaEe (e (s ([F@E [=J[ewiF 15 am
|s x|k hpmpE TET (Beww|@ |

L v -
:I‘—‘ FRTT—
%—lﬂ.
- = wat clock » extiermal “dennrs! < olock swtarnally gives 1o PPROA

weid mmin(void) main £

unmigmed 0 A B wus AU Bid Angut
unmiymet ¥ addition 9 Bit addition Lo seve carsy bit
unmigsed 1 carry carry gemsTated by sddition

with {data = {*BI°."p4%. TpE*."EFT.CRAT.TRIOC. ‘EIE* . BIH)
“pE3". P71}

sntmrisce bus_ini

interiace bus_tai

wmad 8 &) dnpii}
med 0 bl ANPR() with {date = {"PITC RINC, TRIIT TRI0'. pIIC. T

Antertece bus_out() ocutlisua] wirh {dats = {"pI0° "pIL" TPIZT "RIIT TR RIET TPIET.TEITTIH

data = (P33}

tace bus_sat() cutdicarry) =

sddition = (0 # &) (0@ E)

=un - additical? 01

carsy - sdditionl]
)

B[O o e (P R—

IR Gabes s comate: 430 (43 115, 0 ramery ba]]
-

Fig. 2.10 Generating EDIF for mapping onto the FPGA

Chapter 3
Sequential Logic Design

3.1 Design Philosophy of Sequential Logic

Sequential logic is a type of logic circuit whose output is characterized by not
only with the present input but also on the history of the input. The memory
aspect of the sequential circuits sometimes poses challenges for the designers.
Synchronous circuits are one of the major subclasses of the sequential domain
characterized by output transition only with reference to the clock. In general the
synchronous sequential circuit is found to be made up of Flip-flops and combi-
national gates.

However, from the VLSI or ASIC viewpoint the sequential logic circuits are to
be dealt carefully as they are the majority implementations in ASICs in different
forms such as registers, memory elements, counters, to name a few. The above
mentioned logic blocks have been combined in seemingly unlimited combina-
tions to pave interesting applications such as pseudo-random code generators,
digital filters, data paths and logic operations. In the present era of cramming
more and more functions on the silicon die, the designer needs to take a careful
account as regard to the malfunctioning of the sequential logic circuits in the
formation stage only.

One of the main reasons behind the malfunctioning of the sequential circuits
is designer ignorance towards the “timing windows” around the clock transition
owing to the setup and hold times of the circuits. The VLSI aspect regarding the
sequential circuits entails the inherent speed bottleneck due to limiting clock fre-
quency imposed by the setup, hold and propagation delay encountered at each indi-
vidual block.

A typical manual design flow for the sequential circuits mainly comprises of
the steps such as drawing the state diagram, transforming these diagrams into the
state tables also referred to as the excitation tables per output, deriving the K-map
for each output and finally coming out with the circuit diagram of the final version
of the circuit. However, this gets simplified with the high level design tools such as
Handel C exemplified in this chapter.

R.K. Kamat et al., Unleash the System on Chip using FPGAs and Handel C, 43
DOI 10.1007/978-1-4020-9362-3_3, © Springer Science+Business Media B.V. 2009

44 3 Sequential Logic Design

Let us start with designing simple logic blocks such as Flip-flops. The Flip-
flops have underwent many transitions since their inception in 1919 when the first
electronic Flip-flop was invented by William Eccles and F. W. Jordan. Although the
functioning interms of logic has remained the same form the beginning when they
were popularly referred to as the Eccles—Jordan trigger circuit, consisting of two
active elements (radio-tubes), there structural formation has been transformed to
suit the power, area and timing metrics of the VLSI industry.

3.2 D Flip-Flop

The D (stands for ‘DATA’) Flip-flop follows the input, and makes the transitions
closely matching to that of D input with a difference of setup, hold and propagation
delay times. The D Flip-flop emerged out from the basic requirement of elimination
of the race around condition, in the RS Flip-flop by providing only one input to a RS
latch. The other input of the RS Flip-flop is derived by inverting the signal to present
to the other terminal of the latch. The symbol of the D latch is shown in Fig. 3.1.

Fig. 3.1 D Flip-flop

out

CLK—>
out2

ol

The D FF’s are the vital building blocks of many useful applications. The increas-
ing applications of the D-Flip-flop are due to the basic fact that the output depends
on only one input as opposed in S-R Flip-flop which has indeterminate state when
both inputs are high and JKFF where two inputs decide the output. The meta stabil-
ity aspects makes the D-Flip-flop as a preferred application in which the designer
has to only worry about the loading effects due to rise time, fall time and propaga-
tion delay. Literature survey reiterates the same. A design of a D flip-flop hardened
to Single Event Upset (SEU) for space radiation environment has been reported by
Monnier, T et al. The design hardening technique is based on the use of two D-latch
hardened both to static and dynamic SEU by the concepts of high impedance state
and nMOS feedback [56]. A basic variation of the D-Flip-flop by modifying it into

3.2 D Flip-Flop 45

Fig. 3.2 Waveforms of D Flip-flop

a ‘Programmable differential D flip-flop’ can be used for many useful applications
such as temporary storage functions, automatic test equipment, for synchronization
of the data signals with timing signals to form a highly accurate timing generator as
shown by a patent application [57]. An architecture of asymmetrically faulty D flip/
flop under the power line noise, which is based on power flicking reset circuit has
been presented and the fail-safe watchdog timer has been reported by Shigeru et al.
[58] Even the D Flip-flop can be made to trigger at both the rising and the falling
edges of the reference input, thus allowing a lower frequency input to be used while
having the advantages of a higher frequency [59].
A program for realizing the D Flip-flop in Handel C is given below:

— G_Reset G_outZ out(0:0) ———

— 1 PIN_p4
—— PIN_p77

aclr start G_Reset G_outZ_out(0:0)

N —clk _I G_StartOut G_outZ_out
GND
salr PIN_p4
PIN_p77

|G_Reset
[PIN_p77
[PIN_p4

Fig. 3.3 High level realization of the D Flip-Flop on Spartan III FPGA

46 3 Sequential Logic Design

Program 3.1: Handel C code for D Flip-flop

sk sk sk ske st st sk sk sk st st sk sk sk sk sk sk sk sk sk stttk sk sk sk sk sk sk sk skoskoskoskeosiokokotokokostotoskoskoskoskokokokolololokokoiokokokokoskokosk
set clock = external “p77”;

void main ()

{

unsigned 1 D, out, out2;

interface bus_in(unsigned 1 d) inp() with {data = {“p4”}};
/Mnterface for D input which is given to pin “p4” of FPGA.
interface bus_out() outl(out) with {data = {“p5”}};
/Mnterface for data output Pin “P5” of FPGA.

while(1)

{

D=inp.d;

Delay;

par

{

out=D;

out2 =~ D;

}

}

}

sk sk sk ske sk sk sk st sk sk st st sk sk sk sk sk sk skeoske sk stttk sk sk sk sk sk sk skoskeoskoskoskoskokototokokokoskoskoskokokokokokolololokoiokoskokokoskoeskoek

3.3 Latch

The basic difference between the D Flip-Flop and latch is the input tracking mecha-
nism. The former tracks the input only in a synchronous manner while the latter
does the same in an asynchronous manner. In other words the flip-flop is a synchro-
nous version of the latch. By default the latches realized by Handel C are positive
latches i.e. they are transparent with the Clk = 1. Moreover, the latch is level sensi-
tive while a FF is edge sensitive. One more advantage of the Latch over Flip-Flop
is the ‘time borrowing’, however they are not preferred in the design owing to their
instability as contrasted to flip-flops changing their state only with the clock edges.
Handel C has a built in interface called as bus_latch_in that allows the input to be
latched on a condition.

3.4 Realization of JK Flip-Flop 47

Program 3.2: Handel C code for realizing Latch

sk ste st she st sfe sk st st she e sfe sk st st she st sfe sk st sfe sk st sfe sk st st sk e sfe sk st ste sk e sfe sk st st sk s sfe sk st ste sk e sfe skt steoskeoste sfeoskeoste stttk skeokokosk
set clock = external “p77”;

void main()

{

int 1 get;

int 8 value;

interface bus_latch_in(int 1) inputBus(get) with {data = {“P3”}};
interface bus_out() outl(D) with {data = {“p5”}};

{

get =0;

get = 1; // Latch the external value

value = inputBus.in; // Read the latched value

D=value; //output the value

}

While(1)

}

sk sk sk ske st st sk sk sk st st sk sk sk sk sk sk sk sk sk stttk sk sk sk sk sk sk skoskoskoskostokokotokokotokoskoskokoskokokokololololkokoiokokoskokskoekosk

3.4 Realization of JK Flip-Flop

The J-K flip-flop is the most resourceful amongst the basic flip-flops. With the
input- tracking character just as that of the clocked D flip-flop it differs interms of
the number of inputs, traditionally labeled as J and K. The basic functionality is as
shown in the truth table.

Table 3.1 Truth table of JK Flip-flop

J K Q Qbar

1 0 1 0

0 1 0 1

0 0 Previous State Previous State

1 1 Complement of Q Complement of Qbar

The origin of the name for the JK flip-flop is detailed by P. L. Lindley, a JPL
engineer, in a letter to EDN, an electronics design magazine. The letter is dated June
13, 1968, and was published in the August edition of the newsletter. In the letter, Mr.
Lindley explains that he heard the story of the JK flip-flop from Dr. Eldred Nelson,
who is responsible for coining the term while working at Hughes Aircraft [60]. With
the most predictable behavior under almost every circumstances, the JK flip-flop is
preferred for the application with mandatory two inputs. Moreover any flip-flop can

48 3 Sequential Logic Design

be easily constructed from the JK-Flip-flop by proper external wiring. The Handel
C program for synthesizing a JK flip-flop is given below:

Program 3.3: Handel C Code for JK Flip-Flop

sk ste st she st sfe sk st st she st sfe sk st st she st sfe sk st sfe sk e sfe sk st ste sk e sfe sk st ste sk e sfe sk st st sk e sfe sk st ste sk e sfe skt stesteoste sieskeoste stttk skeokokosk
set clock = external “p77”;

void main ()

{

unsigned 1 J,K,Q,Qbar;

interface bus_in(unsigned j) in1() with {data = {*“p4”}};
interface bus_in(unsigned k) in2() with {data = {“p5”}};
interface bus_out() out1(Q) with {data = {“p7”’}};
interface bus_out() out2(Qbar) with {data = {“p9”} };
while(1)

{

par

{

J=inlj;

K=in2.k;

}

{

if(J==1 && K==0)

{

Q=1

}

else if(J==0 && K==1)

{

Q=0;

}

else if (J==0 && K==0)

{

Q=Q;

}

if J==1 && K==1)

{

Q=~(Q);

}

Qbar=~(Q);

}

}

}

sk sk sk she st st sk sk sk st st sk sk sk sk sk sk sk sk sk stttk sk sk sk sk sk sk sk skoskoskoskostokokotokokotokoskoskoskoskokokokolololokokoiokokoskokoskokosk

3.5 Cell of Hex Counter for Counter Applications

49

—— G_Reset G_Qbar_out(0:0)
— PIN_p4
—— PIN_p5
—— PIN_p77 G_Q_out(0:0)
aclr start G_Reset G_Qbar_out(0:0)
- clk G_StartOut
GND
sclr PIN_p4
[PIN_ps PIN_p5
PIN_p77 G_Q_out(0:0) —{G_Q_out
|G,F1eset
[PIN_p77
[PIN_pa
FDC FDC >0 FDE
— OR2 3 o>
E on :
=9 ,—'
==
v
FDE FDSE
J I__|
E AND3B1 M @
FDE

@ AND2B2

|

- e

Fig. 3.4 Top level and RTL realization of JK Flip-Flop on Spartan III FPGA

3.5 Cell of Hex Counter for Counter Applications

Counter is a digital electronic device that measures the frequency of an input signal.
With little modification in the configuration, it can be used to perform some use-
ful measurements such as period of the input signal, ratio of the frequency of two
input signals, time interval between two events and totalizing a specific cluster of
events. Many useful application notes regarding the counters may be explored by
tracking the references. The know-how of modification in basic counter to work as
Normalizing Counter, Preset Counter and Prescaled Counter has also been covered
widely [61].

50 3 Sequential Logic Design

The VLSI viewpoint regarding the implementation of counters is slightly dif-
ferent. Emphasis is given on the replicable hardware, array type design and skew
less clock distribution so as to avoid the propagation of erroneous timings. The
problems such as meta-stability can be avoided by introducing the buffers in the
signal pathways.

(counter count from O to f hex)

Fig. 3.5 High level clk
schematic of the Hex
Counter
output 1
4 Bit Hex
Counter
output 4

il

As a sample representative of the counter family, realization of a ‘Hex Counter
is given in this section. The handel C program for the Hex Counter is as follows:

Program 3.4: Realizing cell of Hex Counter using Handel C
sheoste sk sfe sk sie sk st sk sfe sk sk skeoste sk sk sk skeoste sk stk sk skeoste sk stk sk skeoste sk stk sk skeoste skeosteoske sk skeoste skeosteoske siostoste stttk siostoteoskokok skokoko sk
set clock = external “P77”
with {extlib = “DKSync.dIl”,
extinst = “50”,
extfunc = “DKSyncGetSet”};
//External clock to FPGA.
void main(void) //main function
{
unsigned 4 digits;
interface bus_out() output(unsigned 4 out = digits)
with {extlib = “DKConnect.dll”, extinst = “count(4)”,
extfunc = “DKConnectGetSet” };
while(1) //Continues Loop which count from O to f

{
if (digits == 0b1111)

3.5 Cell of Hex Counter for Counter Applications 51

digits = 0b0000;
}

else

digits++;

sk sk sk sk sie st st st sk sk st ste sk sk sk sk sk sk sk sk sk stttk sk sk sk sk sk sk sk skoskoskoskoskokostotkokokokoskoskoskoskokoskokokokotololkokokokokokoskoekokoskokok

The simulation view in Wavweform Analyzer in hex format is as shown in figure.

_—.h-—mw“—m.——-— P
EET N TRy SN R SN N S SPR « S
T
I
I
|
[Trp——— - - - - - S - - — = —
I
I
|
L T £
I Led
mans

Simulation view in Wavweform Analyzer in stepped format

= L —r——r——y— o

SR LK) e A K- K K - WSRO ST Sl < M]

T
I
I
|
e] l F
F
I

Fig. 3.6 Simulation window of the Waveform Analyzer of DK suite (The first window shows
the simulation in binary format while the second one shows the same in stepped format)

52 3 Sequential Logic Design

3.6 Realization of Shift Register for SoC

Cascade chaining of the flip-flops generally driven by a common clock with a com-
mon preset and clear system leads to a useful data storage and circulation device
called as Shift Register. There exists variety of configurations of shift registers as
Serial In Serial Out, Serial In Parallel Out, Parallel in Serial Out. The first two types
also comes with destructive and non-destructive readouts.

The VLSI strategy for implementation of shift registers is slightly different than
that of the discrete electronics. The implementation has to take care of the hold
times of the individual flip-flops as the data drifts though them. The spatial inef-
ficiency of the flip-flop rules out their usage for the shift register implementation.
Literature survey reveals that the useful implementation is based on the dual port
SRAM, with movable read/write pointers to RAM rather than data [62]. The VLSI
implementation of the shift registers have largely been used for interesting appli-
cations such as tapped delay line, FIFO and LIFO queues in microprocessors and
microcontrollers. The dynamic shift registers a popular implementation in ‘Design
for Testability” adds more value to the implementation by converting the ATPG tests
into the multiple, hierarchical scan sequences reducing the test length. Literature
survey also reveals development of low power and high speed Bidirectional Shift
Register (BSR) architecture with potential applications in hard arithmetic opera-
tions, reconfigurable computing and cryptographic implementations [63].

Program 3.5: Realization of universal shift register
Sheoste sie sfeose sie skeoste sie sfeoske sie skeoste sie sfeoske sk skeoste sie sfeoske sie skeoste sk sk sk skeosie sk sl sk skeoste sk stk sie skt sk stk sk skt kst sioskoteokokok siokokok
/* program for Right Shift */
set clock = external “p77”;
void main(void)

{

unsigned 8§ s;

unsigned 4 k;
s=0b10000000;

while (1)

{

if (s==1)

{

for (k=0;k<=7;k++)

s=s<<1; //Left Shift

}

else (s==128)

{

for (k=0;k<=7;k++)

s = s>>1; //Right Shift

}

}

}

s she sk she sk sk sk st sie st sie ste sfe sfe sfe sfe sfe she she sk ske skt ke sie st sfe st sfe sfe sfe she she sk ske sk sk sk st sk sie sie ste sfe sfe s sfe sfe sk skoskoskotokokoioioioikoikokokosk

3.7 LFSR Core for Security Applications in SoC 53

3.7 LFSR Core for Security Applications in SoC

A Linear Feedback Shift Register (LFSR) is a sequential circuit with the combina-
tional feedback. There are two methods of implementation of LFSR viz. the Fibon-
acci implementation (consisting of a simple shift register with a binary-weighted
modulo-2 sum of the taps fed back to the input) and the Galois implementation
(consisting of a shift register, the contents of which are modified at every step by a
binary-weighted value of the output stage). The former is also known as simple shift
register generator (SSRG), while the latter is popular with other names such as a
multiple-return shift register generator (MRSRG) or modular shift register genera-
tor (MSRG).

Typical applications of the LFSR implementations are:

Pattern Generators

Counters

Cryptography

Built-in Self-Test (BIST)

Encryption

Bit Error Rate measurements

Compression

Wireless communication systems for employing spread spectrum
Checksums

Pseudo-Random Bit Sequences (PRBS)

The Handel C code for the LFSR developed in this application resorts to the
External LFSR methodology in which all XOR gates are fed sequentially into each
other and further end up at the significant bit of the LFSR. It can be easily modified
for the Internal LFSR methodology in which the XOR gates are brought inside i.e.
they feed into different registers within the LFSR, and thus are not sequential.

Program 3.6 Handel C code for LFSR
s she sk she sk sk sk st e sie sie st sfe sfe s sfe sfe she sk sk ske sk st sk sie st sfe st sfe sfe sfe she she sk sk sk sk sk st ke sie sie ste st sfe s sfe sfe sk sk skoskotolkokoioioioiokokokosk
set clock = external “p77”;

void main ()

{

unsigned 4 out;

unsigned 1 xor_result,inputl,input2;
while(1)

{

inputl=out[0];

input2=out[1];

xor_result= input1 input2;
out=out>>1;

out=xor_result@out[2:0];

}

}

s she sk she sk sk sk st sie st ste sfe sfe sfe s sfe sfe she sk sk ske sk st sk sie st sfe st sfe sfe sfe s she she sk sk sk sk st ke sie sie st sfe sfe s sfe sfe sk sk skoskeotokokoioiokoiokokokosk

54 3 Sequential Logic Design

3.8 Clock Scaling and Delay Generation in SoC

Typically, in frequency divider design, the trade offs are around the maximum oper-
ating frequency, power consumption, number of transistors needed and flexibility
[64]. PLL and dynamic D flip-flop are the most popular approaches for frequency
divider in VLSI arena. One of the possible implementations in Handel C is given
below:

Program 3.7: Handel C code for frequency scalar
sheoste sfe sfeoste sie skeoste sk sfeoske sie skeoste sie sfeoske sk skeosie st sfeoske sk skeoste sk sl sk skeosie sk sl sk skeoste sk stk sk skeoste sk stk sieoskoste stttk sioskoteokokok siokokok
set clock = external “dummy’;
void main ()

{

unsigned 1 CLKIN, CLKOUT;
unsigned 2 Count;

Count = 0;

CLKIN=1;

while(1)

{
for(Count=0;Count<=3;Count++)
{

CLKOUT =1;

if(Count==3)

break;

}
for(Count=0;Count<=3;Count++)
{

CLKOUT=0;

if(Count==3)

break;

}

}

}

s she sk she sk sk sk st sie st sie sfe sfe sfe sfe sfe sfe she sk sk ske sk st ke sie st sfe st sfe sfe sfe s she she sk sk sk skt sie st sie ste sfe sfe s sfe sfe sk sk skoskeotokokoioiokoieoikoekokosk

Build Report:

-------------------- Configuration: frequency divide — Debug--------------------
divide.hcc

0 errors, 0 warnings

new

NAND gates after compilation : 318 (15 FFs, 0 memory bits)
0 errors, 0 warnings

3.9 SoC Data Queuing Using FIFO 55

3.9 SoC Data Queuing Using FIFO

First In First Out is a general term used to indicate the way of organizing and manip-
ulation of data relative to time and prioritization. It implies ‘Queue Processing’
used in the state of art microprocessors, microcontrollers for serving the events in
a timely manner. There are lots of applications of the FIFO technique in buffering,
pipelining, scheduling, networking (in routers, switches) etc. Pioneering work on
the FIFO was done by Peter Alfke way back in 1969 at Fairchild Semiconductors.

The hardware realization of the FIFO logic comprises of set of read and write
pointers, storage and control logic. The popular method of achieving the storage is
by using the dual port SRAM, Flip-flops, latches etc. Literature survey reveals good
number of applications of the FIFO hardware. A design architecture for FIFO Con-
troller, as a module of JPEG2000 Encoder has been reported by Gamad et al. [65].
An implementation of the ‘Asynchronous FIFO Synchronizer’ for the VLSI Design
and Verification of the Imagine Processor has been reported by Khailany et al. [66]
With the growing application of FIFO, the designers are using the embedded RAM
In FPGAs for realization of FIFO and thus solving the problems of an asynchronous
boundary between clocks [67]. Even implementation of the DMA FIFO helps in
High-Speed Data Acquisition as seen in the application note of National Semicon-
ductors [68]. A design trend is to offer discrete FIFO devices, which cam be selec-
tively glued for the intended application. It is reported that some manufacturers hide
FIFOs within ASICs such as PC chip sets, PCI-to-PCI bridges, network controllers,
and many more. One can also integrate a FIFO into a custom ASIC or FPGA if the
logic gates are available. This approach is especially useful if the designer needs
only a small FIFO and have board-space constraints [69].

An implementation of FIFO in Handel C is given blow so that the designers can
wrap the same wherever required.

Program 3.8: Handel C code for FIFO
sk she sk she st st sk sk sk sfe s sk st ske sk sk sk sfe sk sk sk st sfe s sk st st sk ke sk steoste sk skeoste stk sk sfeoste stk sk st sk st steste stk sk stk skt skokoskoskokoskok
set clock = external “P77”;
//Function main
void main(void)
{
unsigned int 8 data;
static unsigned int 8 LIFO[10] = {23, 46, 69, 92,22,14,18,33,0,9};//for pop
operation
unsigned index;
unsigned 1 push,pop;
chanin input with {infile = “data.dat”}; // Input from file for push operation
pop=1;
push=0;
if (push==1&& pop==0)
{

3 Sequential Logic Design

index=0;

do

{

input ? data; //take input from data file

LIFO[index]= data; //store it on LIFO
index=index+1; //increment LIFO until 10 location

}

while(index <= 10);

}

else if (push==0&&pop==1)

{

index=0;

do

{

data = LIFO [index];
index++; //=index+1;

}

while(index >= 10);

}

}

sk sk sk ske st st stk sk st st sk sk sk sk sk sk sk sk sk sttt sk sk sk sk sk sk sk skoskoskoskostokokotokokostokoskoskoskoskokokokololololkokoiokokoskokoskokosk

Build Report:

———————————————————— Configuration: FIFO — Debug--------------------
fifo.hcc

0 errors, 0 warnings

FIFO

NAND gates after compilation : 1625 (106 FFs, 0 memory bits)
0 errors, 0 warnings

3.10 Implementation of Stack Though LIFO

Last In First Out, a popular implementations in the stack memory refers to the
organization of the data elements that can only be added or taken off from only one
end, generally in an bottom up manner. The ‘Depth First Search’ methodology of
the LIFO logic has lot of applications in implementation of stack in microproces-
sors and microcontrollers.

Following Handel C program realizes the LIFO.

3.10 Implementation of Stack Though LIFO 57

Program 3.9: Handel C code for LIFO
*hhkkkhhkhkhkhkkhkhkhkhkhkhhhkkhhkhhkhkkhhhhkhhhhkhhhhhkkhhhhkhhhhhkhhhhhhhhkhihhikhihiiik
/¥ LIFO (Last in First out); For PUSH operation do not initialize RAM.TAke
input from data. dat file. */

/* static ram unsigned int 8§ LIFO[10]; put this as it is For POP operation static
ram unsigned int 8 LIFO[10] = {23, 46, 69, 92,22,14,18,33,0,9}; put this is as
it is. */

set clock = external “P77”;

void main(void) // main Function

{

unsigned int § data;

static unsigned int 8 LIFO[10] = {23, 46, 69, 92,22,14,18,33,0,9}; //for pop
operation

unsigned index;

unsigned 1 push,pop;

chanin input with {infile = “data.dat”}; // Input from file for push operation
pop=1;

push=0;

if (push==1&& pop==0)

{

index=0;

do

{

input ? data; //take input from data file

LIFO[index]= data; //store it on LIFO

index=index+1; //increment LIFO until 10 location

}

while(index <= 10);

}

else if (push==0&&pop==1)

{

index=10;

do

{

data = LIFO [index];

index--; //=index-1;

}

while (index >= 0);

}

}

B L e S S S S R S o S S S S e e

58 3 Sequential Logic Design

Build Report:

———————————————————— Configuration: LIFO — Debug--------------------
lifo.hee

0 errors, 0 warnings

LIFO

NAND gates after compilation : 1629 (106 FFs, 0 memory bits)
0 errors, 0 warnings

3.11 Soft IP Core for Hamming Code

Hamming code is a linear error-correcting code (named after its inventor, Richard
Hamming) for detection and correction of errors in Digital Communication sys-
tems. The Hamming code generation algorithm developed in this application is
taken from the web URL: http://www.cs.cornell.edu/Courses/cs414/2007su/slides/
hamming.html. The individual steps are as follows:

1. Marking all the bit positions that are powers of two as parity bits.

2. Remaining all other bit positions are kept for the data to be encoded.

3. Each parity bit calculates the parity for some of the bits in the code word. The
position of the parity bit determines the sequence of bits that it alternately
checks and skips.

Position 1: check 1 bit, skip 1 bit, check 1 bit, skip 1 bit, etc.
(1,3,5,7,9,11,13,15,....)

Position 2: check 2 bits, skip 2 bits, check 2 bits, skip 2 bits, etc.
(2,3,6,7,10,11,14,15,....)

Position 4: check 4 bits, skip 4 bits, check 4 bits, skip 4 bits, etc. (4,5,6,7,12,13
,14,15,20,21,22,23,....) etc. Rest on the similar lines.

4. Setting a parity bit to 1 if the total number of ones in the positions it checks
is odd. Setting a parity bit to O if the total number of ones in the positions it
checks is even

The Handel C implementation of the above steps is given in the following
program.

3.11 Soft IP Core for Hamming Code 59

Program 3.10: Handel C code for hamming code IP
*hkhkkhkhkkhkhkkhkhkhhkhkhkhkhkhhhhkhkhkhhhhkhhhkhhhhkhhhhhkhhhhhhhhkhhhhhkhhhhhihhihkiikkh
set clock = external “p77”;

void main (void)

{

unsigned 5 checkl,outputl;

unsigned 8 check2,output2;

unsigned 9 check3,output3;

unsigned 10 check4,output4;

unsigned 11 output5;

unsigned 8 input;

unsigned 12 output,check;

unsigned 1 p1,p2,p4,p8;

{

input = 0b10011010;

checkl = 0 @input[3:0];

check2 = input[6:4] @ checkl;

check3 = 0@ check2;

check4 = input[7] @ check3;

check = 0 @ check4;

pl = check[11] * check[9] ” check[7] check[5] check[3] check[1];
p2 = check[10] * check[9] ” check[6] check[5] check[2] check[1];
p4 = check[8] ~ check[7] » check[6] check[5] check[0];
p8 = check[4] ” check[3] » check[2] check[1] check[0];
outputl = p8@ input[3:0];

output2 = input[6:4] @ outputl;

output3 = p4 @ output2;

output4 = input[7] @ output3;

output5 = p2@output4;

output = pl @output5;

}

}

B L S b b R e e S S S S S S R o S S S S e 2 e

Build Report:

Hamming_code.hcc

0 errors, 0 warnings

Hamming Code

NAND gates after compilation : 888 (130 FFs, 0 memory bits)
0 errors, 0 warnings

Chapter 4
Combinational Logic Design

4.1 Introduction

Combinational logic system is characterized by the basic property that the Out-
puts being the function only of the current combination of inputs. Thus it exhibits
memory less or stateless attributes as well as implies acyclic connection of the prim-
itives. Combinational circuits are known for the ease of debugging as the backtrac-
ing through them is uncomplicated owing to the unidirectional nature of the inputs.
They are also less prone to glitches, races, hazards and thus more reliable in pro-
ducing the desired output. Another popular term used for the combinational logic
circuits is ‘decision making circuits’ as they combine the logic functions together to
yield a decisive output. A thumb rule for identification of the combinational logic
circuit is no level-sensitive or edge-sensitive statement, as well as flip-flops, regis-
ters etc.

The VLSI viewpoint regarding the combinational logic circuits throws light on
some new techniques. Mapping of the combinational logic functions into the exist-
ing primitives of the FPGAs sometimes leads to the inefficiency in terms of the area,
delay and power.

4.2 Design Metrics for the Combinational Logic
Circuits: SoC Perspective

A general methodology for the FPGA based SoC, combinational logic circuits is
technology-specific multilevel logic synthesis, global logic structure synthesis fol-
lowed by local optimization and finally the technology mapping. The given logic
design is expressed in Boolean network form and then the same is subjected to the
global logic structure synthesis, and serves as an intermediate description between
input specification in HDL or PLA-like format and the final network in a specific
target technology [70]. EDA tools based on the ‘Multilevel Minimization Algo-
rithms’ exist for further reducing the cost of an initially synthesized Boolean net-

R.K. Kamat et al., Unleash the System on Chip using FPGAs and Handel C, 61
DOI 10.1007/978-1-4020-9361-6_4, © Springer Science+Business Media B.V. 2009

62 4 Combinational Logic Design

work. However, the designs generated by the above mentioned EDA tools after
initial synthesis by an algebraic approach are far inferior to manual designs in some
cases, owing to the limiting of local node constraints changes rather than global
level. More than the importance to the initial structural description of the Boolean
Expression, applying certain transformation at the logical level results in minimiza-
tion of the power consumption. Designers seems to prefer of NAND logic instead of
NOR to ensure good performance, whilst reducing power dissipation [71].

With ever shrinking geometries, growing density and increasing clock rate of
chips, delay testing is gaining more and more industry attention to maintain test
quality for speed-related failures in SoC combinational circuits. The purpose of
a delay test is to verify that the circuit operates correctly at a desired clock speed.
Although application of stuck-at fault tests can detect some delay defects, it is no
longer sufficient to test the circuit for the stuck-at faults alone. Therefore, delay test-
ing is becoming a necessity for today’s integrated circuits 0 [72]. SoC designers are
also more sensitive to the radiation-induced soft errors which getting worsened in
sequential as well as combinational designs on chip. Built-In Soft Error Resilience
(BISER) technique for correcting soft errors in latches, flip-flops and combinational
logic has now been devised. The BISER technique enables more than an order of
magnitude reduction in chip-level error soft rate with minimal area impact, 6-10%
chip-level power impact, and 1-5% performance impact (depending on whether
combinational logic error correction is implemented or not). In comparison, several
classical error-detection techniques introduce 40-100% power, performance and
area overheads, and require significant efforts for designing and validating corre-
sponding recovery mechanisms [73].

Finally a word about the hazards and glitches in the combinational logic net-
works. The basic difference between a glitch and hazard goes on following lines:
the former is the momentary change of signals at the outputs while the latter is due
to incorrect circuit operation many a times due to the different propagations delays
by different paths through which the signal is traversing. The strategy adopted for
avoiding both hazards and glitches is to ensure the stability of the signal by using
a clock, avoiding asynchronous inputs, and undertaking a thorough analysis of the
Boolean expression at the initial level only.

4.3 Core of ‘2 to 4 Decoder’

A decoder is a decoder is a multiple-input, multiple-output logic circuit that con-
verts coded inputs into coded outputs, where the input and output codes are dif-
ferent. It is a circuit that changes a code into a set of signals. Decoder has good
number of applications in code conversion, selective logic activation in devices such
as microprocessor buses, memories etc.

From the SoC viewpoint, the design care has to be taken to assign default value
for unasserted outputs so as to avoid the excess power consumption. In case of
CMOS custom ICs, the decoders can be implemented using the transmission gates

4.3 Core of ‘2 to 4 Decoder’ 63

and the same results in spatial efficiency. There is also a trend in building the large
decoders using the small primitive decoders and decoding with precoded bits.
A Handel C program for the realization of 2:4 decoder is given below:

Program 4.1: Handel C Code for 2 to 4 Decoder IP

sk st st she st sfe sk st st she e sfe sk st st she s sfe sk st sfe sk e sfe sk st st sk e sfe sk st ste sk e sfe sk st st sk e sfe sk st ste sk e sfe skt steoskeoste sieskeote stttk skeokokosk
set clock = external “p77”;

void main(void)

{

unsigned 1 G,outl,out2,out3,out4;

unsigned 2 Inl;

interface bus_in(unsigned 2 a) inp1() with {data = “p3”,“p4”’} };//input pin
interface bus_in(unsigned 1 b) inp2() with {data = {“p5”}};//input pin.
interface bus_out() out(outl) with {data = {“p7”} };//output pin
interface bus_out() outpl(out2) with {data = {“p9”} }; //output pin
interface bus_out() outp2(out3) with {data = {“p10”} };//output pin
interface bus_out() outp3(out4) with {data = {“p11”}}; //output pin.
while(1)

{

Inl=inpl.a;

G=inp2.b;

if(In1==0)

{

outl=G;

}

else if (Inl==1)

{

out2=G;

}

else if (In1==0)

{

out3 =G;

}

else

{

outd=G;

}

}

}

B L e b b e e S S R S S S R S S S S S e a2 e

Build Report:

Decoder.hcc

64

4.4

0 errors, 0 warnings
2 to 4 Decoder

4 Combinational Logic Design

NAND gates after compilation : 261 (15 FFs, 0 memory bits)

0 errors, 0 warnings

‘3 to 8 Decoder’ Using Hierarchical Approach

One of the important aspects of SoC design is hierarchy. The Hierarchical Design is
all about representing the circuit objects encapsulated in a cell definition. Instances
of these cells are then evoked in other cells and thus forms a complex system with

ease of designing. The main advantage of the above mentioned design methodol-

ogy is ease of debugging and reliable timing as the individual cells are pre-tested.

design blocks.

Program 4.2: Handel C Code for 3 to 8 Decoder IP

The following example illustrates design of the 3:8 decoder using two hierarchical

B s e S S S S R S o S o S S e 2 e

set clock = external “p77”;

macro proc Decoder(Inl);
macro proc Decoder1(Inl);
void main(void)

{

unsigned 3 Inl;

while(1)

{

if(In1<=3)
Decoder(Inl);
else
Decoder1(Inl);

}

}

macro proc Decoder(Inl)

{

unsigned 1 G,outl,out2,out3,out4;
G=0bl;

if(In1==0)

{

outl=G;

4.4 ‘3 to 8 Decoder’ Using Hierarchical Approach 65

}

else if (Inl==1)
{

out2=G;

}

else if (In1==2)
{

out3 =G;
}

else

{
outd=G;

}

}

macro proc Decoder1(Inl)
{

unsigned 1 G,out5,out6,out7,out8;
G=0bl;

if(In1==4)

{

out5=G;

}

else if (In1==5)

{

out6=G;

}

else if (In1==6)

{

out7 =G;
}

else

{
out8=G;

}
}

B s R b b R e e S S S S S S R S o o S S S S e 2 2

Program 4.3: Handel C Code for 3 to 8 Decoder IP in non-hierarchical manner
using Switch construct

*hkhkkhkhkkhkhkkhkhkhkhkhkhkhkhkhhkhhkhhhhkhkhkhhhhhhhkhhhhhkhhhhkhhhhhhhhhkhhhhhihhiiiikkh

set clock = external “p77”;

void main(void)

unsigned 1 G,out0,outl,out2,out3,out4,out5,out6,out7;

unsigned 3 Inl;

while(1)
{

switch (Inl)
{

case 0:

{
out0=G;
break;

}

case 1:

{

outl =G;
break;

}

case 2:

{

out2 =G;
break;

}

case 3:

{

out3 =G;
break;

}

case 4:

{

outd = G;
break;

}

case 5:

{

out5 =G;
break;

}

case 0:

{

outb = G;
break;

}

case 7 :

{

out7 =G;
break;

4 Combinational Logic Design

4.5 Priority Encoder 4 to 2 67

—— S ——

B s e b b R e e S S S S S S R S S e S S S e 2 e

4.5 Priority Encoder 4 to 2

An encoder in general is a device used to change a group of signals into a code.
Priority encoder is a combinational circuit connected by the logic function such that
y=2*inputs and x outputs, the output asserted by the priority of the y inputs. Gen-
erally, the most significant bit of the input has the highest priority while the least
significant bit has the lowest priority.

Many useful refinements of encoders have been worked out in the SoC devices.
Frias et al. have reported a VLSI priority encoder that uses a novel priority look
ahead scheme to reduce the delay for the worst case operation of the circuit, while
maintaining a very low transistor count. The encoder’s topmost input request has the
highest priority; this priority descends linearly. Two design approaches for the prior-
ity encoder are presented in their paper, one without a priority look ahead scheme
and one with a priority look ahead scheme. They have successfully shown that for
an N-bit encoder, the circuit with the priority look ahead scheme requires only
1.094 times the number of transistors of the circuit without the priority look ahead
scheme. Having a 32-bit encoder as an example, the circuit with the priority look
ahead scheme is 2.59 times faster than the circuit without the priority look ahead.
The worst case operation delay is 4.4 ns for this look ahead encoder, using a 1-um
scalable CMOS technology. The proposed look ahead scheme can be extended to
larger encoders [74].

The Handel C implementation of 4 to 2 priority encoder is given below:

Table 4.1 Truth table of the 4-2 priority encoder

Input Output
Input[3] Input[2] Input[1] Input[0] MSB LSB
1 X X X 1 1
0 1 X X 1 0
0 0 1 X 0 1
0 0 0 0 0 0

Program 4.4: Handel C Code for 4 to 2 Priority Encoder

B e b s e S S S S S S S S S S e e

set clock = external “p77”;
void main(void)

68

4 Combinational Logic Design

{

unsigned 4 input;
unsigned 2 out, outl;
input =0;

while(1)

{

if (input[3] ==1) // MSB having higher priority of four bit input.
{

out =3;

}

else if (input[2] ==1)
{

out =2;

}

else if(input[1] ==1)
{

out =1;

}

/' LSB bit of 4 bit is lowest priority.
else

{

out =0;

}

input = input +1;

}

}

B L s R S S S S o S S S S e 2 2

Build Report:

Encoder.hcc

0 errors, 0 warnings

Priority Encoder

NAND gates after compilation : 281 (15 FFs, 0 memory bits)
0 errors, 0 warnings

4.6 Soft IP Core of ‘7 to 3 Encoder’ Implementation

An implementation of 7 to 3 encoder is given below.

Program 4.5: Handel C Code for 7 to 3 Encoder

R L S S S S R o S 2 S S S e 2 e

set clock = external “p77”;
void main(void)

4.6 Soft IP Core of *7 to 3 Encoder’ Implementation 69

itatic unsigned 7 inp[1] = {0};
static unsigned 3 out[1] = {0};
if (inp[0]==0b00000001)
c{)ut[O] =0;

e}:lse if (inp[0] == 0b000010)
c{)ut[O] =1,

e}:lse if (inp[0] == 0b0000100)
c{)ut[O] =2;

e}:lse if (inp[0] == 0b0001000)
c{)ut[O] =3,

e}:lse if (inp[0] == 0b0010000)
c{)ut[O] =4,

e}:lse if (inp[0] == 0b0100000)
c{)ut[O] =5;

e}:lse if (inp[0] == 0b1000000)
{

out[0] = 6;
}

else

{

out[0] =7;

}
}

B S e R S S S S R S S S S S e 2 e

Build Report:

Encoder.hcc

0 errors, 0 warnings

7 to 3 Encoder

NAND gates after compilation : 632 (21 FFs, 0 memory bits)
0 errors, 0 warnings

70 4 Combinational Logic Design

4.7 IP Core of ‘Parity generator’ for Communication
Applications

A parity bit is generally a redundant binary digit added to the transmitted bit stream
for error detection. The error detection mechanism, is based on the checksum of the
number of transmitted bits.

There are two variants of parity bits: even parity bit and odd parity bit. ‘Even
Parity’ mechanism ensures checksum of a given set of bits is odd (making the total
number of ones, including the parity bit, even). Reverse is true for the odd parity,
wherein inclusion of 1 makes the checksum even in case the transmitted sequence
is corrupted by noise. A variant of the basic parity code, known as ‘Low-Density
Parity-Check Code (LDPC code) or Gallager code’ is popularly used in digital com-
munication for error detection as well as correction. The other well known applica-
tions of the parity codes are:

Q The SCSI and PCI buses for detection of transmission errors,

e Microprocessor instruction caches for early detection of corrupted data
Serial data transmission

Digital recording systems

Magnetic recording channels

Modem Links

A parity generator is a classic piece of block code generator circuit that derives the
check bits, based on the message bits itself. i.e. Given an n-1 bit data word, it gen-
erates an extra (parity) bit that is transmitted with the word based on the ‘even’ or
‘odd’ parity predecided mechanism. The Handel C implementation given below is
an 8 bit parity generator cell developed using the Ex-OR logic.

Program 4.6: Handel C realization of 8 bit parity generator

*khkkhkkhkhkhkkhkhkhkkhkhhkhkkhkhkhkhkkhkhkhkhkhihkhkhhhkhkkhhhkhkhihkhhhhhhhkhkhhihkhkihhhihhkiiiikk

/I Program for the Parity Generator.

set clock = external “p77”;

void main(void)

{

unsigned 8 input;

unsigned 1 outl;

/*interface bus_in(unsigned 8 inl) inp() with {data= {“p3”,’p4”,’pS”,"p7”,’p9”,
"pl07pl57pl67})

interface bus_out() out(outl)with {data = {“p17”}};

*/

while(1)

{

input = inp.inl;

for(input =0; input < 255; input++)

outl = (input[0] # input[1]) * (input[2] # input[3]) A (input[4] » input[5]) *
(input[6] ~ input[7]);

}

}

4.8 IP Core for Parity Checker and Error Detection for Internet Protocol 71

% *%* *%* *%* *%* *%* *%* *%* *%* *%*

Build Report:

parity.hcc

0 errors, 0 warnings

Parity Checker

NAND gates after compilation : 400 (16 FFs, 0 memory bits)
0 errors, 0 warnings

EDIF generating Report:
Configuration Parity Checker - EDIF

parity.hcc

0 errors, 0 warnings

Parity Checker

NAND gates after compilation : 400 (16 FFs, 0 memory bits)
NAND gates after optimisation : 385 (15 FFs, 0 memory bits)
NAND gates after expansion : 545 (29 FFs, 0 memory bits)
NAND gates after optimisation : 399 (28 FFs, 0 memory bits)
LUTs after mapping : 19 (28 FFs, 0 memory bits)

LUTs after post-optimisation : 20 (25 FFs, 0 memory bits)

0 errors, 0 warnings

4.8 IP Core for Parity Checker and Error Detection
for Internet Protocol

The job of ‘parity checker’ is exactly reverse as that of parity generator. At the
receiving end of the transmission, the parity checker makes use of the redundant
bits added by the parity generator to detect single-bit errors in the transmitted data
word. In order to accomplish this, it has to regenerate the parity bit in exactly the
same manner as the generator and after comparing the two parity bits, the disagree-
ment entails the error.

The application developed here is the parity checker for the ‘Internet Protocol’.
This is a 16 bit parity checker. The basis of the Handel C realization of the par-
ity checker is the mechanism followed in the Internet Protocol. The IP header of
the received packet is of 20 bytes size, which is stored in the memory. The byte
number 10 and 11 are the parity bits inserted by the parity generator. At the receiv-
ing node, these bytes are made zero and the checksum of the remaining header
is done. Any disagreement indicates the corruption of the packet in the course of
transmission and thus a command is sent for retransmission. Detailed program is
given below:

Program 4.7: Handel C realization IP parity Checker

AAAAAAAAAAAAAA A AR AAA AR A A AAAAAAAAAAAAAAAAAAAA AR A A A A A A A XA A AAhhkhd%

set clock = external “dummy”;

void main(void)

{

72 4 Combinational Logic Design

static unsigned 8packet_Header[20];

unsigned i;

unsigned 16 check;

unsigned 16 sum,checksum;

packet_Header[10]=0x00;// Parity Bits
packet_Header[11]=0x00; //Parity Bits

/ladd 16 bit header

for (i=0;i<19;i=1+4)

{

check =(packet_Header[i] @ packet_Header[i+1]) + (packet_Header[i+2] @
packet_Header[i+3]);

sum = sum +(0@check);

}

while (sum>>16)

sum = (sum & 0xFFFF)+(sum >> 16); // take only 16 bits
checksum = ~sum[15:0]; // complement the result

}

B s e b b R e e S S S S S R 2 o S S S S e e

4.9 BCD TO Seven Segment converter

BCD to Seven Segment Decoder converts a 4-bit binary-coded decimal value, that
is the numbers 0-9 coded as 0000-1001, into the code required to drive a seven-seg-
ment display. Though ‘power hungry’ the Seven Segment displays are still one of
the popular method adopted for display in PLCs, Microcontrollers and other allied
products.

BCD is also a very common and popular for displaying the numeric values in
electronic systems. It greatly simplifies the manipulation of numerical data for dis-
play by manipulating each digit as a separate single sub-circuit. Designers prefer
the BCD system owing to its ease of calculations rather than working with the com-
plicated pure binary system that resorts to conversion and reconversion. Yet another
advantage of the BCD system is the smaller code sizes, minimizing the memory and
other hardware requirements.

Handel C code developed in this section realizes the BCD to seven segment
converter that can be glued on any embedded product. The realization with the
Xilinx Spartan IIT family is shown in the figure. The program is developed for the
common anode seven segment displays, with the segment pattern as Dp G F E D
CBA.

GND

PN s

[PiNp7

PN ps

4.9 BCD TO Seven Segment converter 73
G_Reset G_sevenseg_0_out(0:0)
PIN_p4 G_sevenseg_1_out(0:0)
PIN_p5 G_sevenseg_2_out(0:0)
PIN_p7 G_sevenseg_3_out(0:0)
PIN_p9 G_sevenseg_4_out(0:0)
PIN_p77 G_sevenseg_5_out(0:0)
G_sevenseg_6_out(0:0)

aclr start _Reset G_sevenseg_0_out(0:0)

clk _Start out G_sevenseg_1_out(0:0)

sclr PIN p4 G_sevenseg_2_out(0:0)

p5 G_sevenseg_3_out(0:0)

PIN p7 G_sevenseg_1_out(0:0)

PIN _p9 G_sevenseg_5_out(0:0)

PIN_p77 G_sevenseg_6_out(0:0)

[G_Reset

[CPINp77

[Pz

Fig. 4.1 Realization of BCD to seven segment converter on Spartan III FPGA

Program 4.8: Handel C realization BCD to seven segment converter
*hkkkhkhkkhkkhkhkhkkhkhhkhkkhkhhkhkhhkhkhkhhhkhkhhhkhkhhhkhhhhkhkihhhhhkhkhhhhkhihhhihhkiiikikk

// Common Anode
Sequence for DigitisDpGFEDCBA

set clock = external “p77”;

void main(void)

{

unsigned 4 BCD;
unsigned 7 sevenseg;
interface bus_in(unsigned 4 bcd) inl() with {data = {“p4”,’p5”,’p7”,’p9"} };
//4 bit BCD input given to FPGA.

interface

bus_out()

outl(sevenseg) with {data

{Aﬂpl 6””’p17””’p1 8””’p2 1 ””’p2275’75p23””’p29” } } ;
/Iseven segment output from fpga.

while(1) // continues loop.

{

BCD=in1.bcd; //input BCD code

74

if(BCD==0)
ievenseg=0X40;
e}:lse if(BCD==1)
ievenseg=0X79;
e}:lse if(BCD==2)
{sevenseg=0x24;
e}:lse if(BCD==3)
ievensegzOXZ&O;
e}:lse if(BCD==4)
ievensegzOXl 9;
e}:lse if(BCD==5)
ievenseg:Oxl 2;
e}:lse if(BCD==06)
ievensegzOXO?ﬁ;
e}:lse if(BCD==7)
ievenseg=0X78;
e}:lse if(BCD==8)
ievensegzOXOO;
e}:lse if (BCD==9)
ievensegzOXl 8:
}

}

}

4 Combinational Logic Design

B L e S S S S R S o S S S S e e

Build Report:

BCD to seven seg.hcc

4.10 Core of Binary to Gray Converter and Applications 75

0 errors, 0 warnings

Seven_Seg

NAND gates after compilation : 1143 (31 FFs, 0 memory bits)
0 errors, 0 warnings

EDIF Generation report:

BCD to seven seg.hcc

0 errors, 0 warnings

Seven_Seg

NAND gates after compilation : 1143 (31 FFs, 0 memory bits)
NAND gates after optimisation : 1021 (31 FFs, 0 memory bits)
NAND gates after expansion : 943 (45 FFs, 0 memory bits)
NAND gates after optimisation : 354 (28 FFs, 0 memory bits)
LUTs after mapping : 67 (28 FFs, 0 memory bits)

LUTs after post-optimisation : 68 (26 FFs, 0 memory bits)

0 errors, 0 warnings

4.10 Core of Binary to Gray Converter and Applications

The foremost advantage of the Gray code (named after Frank Gray) over the straight
binary code sequence is that only one bit in the code group changes when going
from one number to the next one. Thus, the Gray code eliminates the possible error
or ambiguity during the transition from one number to the next. Gary codes are also
referred to as the reflected binary code, due to their inherent property of differing
in only one digit between two successive values. Though originally developed for
preventing spurious output from electromechanical switches, today, they are widely
used to for error correction in digital communications such as digital terrestrial tel-
evision, cable TV systems, modem pairs, transceivers etc.

Although algorithms such as ‘Shift and Add 3’ can be used for the Binary to
Gray conversion, we have resorted to the structural EX-OR method which is more
temporal efficient. In the algorithmic form it is expressed as:

e Copy the most significant bit.
e For each smaller possible i
e Gray[i] = Binary[i+1] ” Binary([i]

The Handel C implementation follows:

Program 4.9: Handel C code for binary to gary converter
AAAAAAAAAAAAAKAAAAAAA AR A A AAAAAA A A A A A A A AAAAAAA A A A A A A A A A A A AAAhhkhdk

set clock = external “p77”;
void main(void)

76 4 Combinational Logic Design

Fig. 4.2 Binary to gary Binary[0] Gray[0]
converter
Binary[1] Gray[1]
Gray[2]
Binary[2]
Binary[3] Gray(3]
{
unsigned 4 binary,gray;
unsigned 1 grayl,gray2,gray3,gray4;
while(1)
{

binary = 0b0011;

gray 1=binary[0] * binary[1];
gray2=binary[2] " binary[1];
gray3=binary[2] " binary[3];

gray4= binary[3];

gray = gray4@gray3 @gray2 @grayl;

4.11 Realization of IP core of gray to binary converter

The Handel C realization for the Gray to Binary conversion resorts to the basic
algorithm of keeping the Most Significant Bit (MSB) in the Gray code is the same
as the binary number and then adding the current Gray code while going from the
MSB to LSB (left to right), ignoring the carry. The algorithmic expression can be
expressed as:

e Copy the most significant bit.
e For each smaller possible i
e Binary[i] = Binary[i+1] * Gray[i]

4.12 Designing Barrel Shifters 77

The same is expressed in the EX-OR logic and written in the Handel C form as
shown below:

Program 4.10: Handel C code for realization of IP core of gray to binary
converter

*hkhkkhkhkkhkhkkhkhkhhkhkhkhkhkhkhhhkhkhkhhhhkhhhkhhhhkhhhhhhhhhhkhhhkhhhhhkhhhhhhhihiiikkh

set clock = external “p77”;

void main(void)

{

unsigned 4 binary,gray;

unsigned 1 binary1,binary2,binary3,binary0;

while(1)

{

binary3=gray[3];

binary2= gray[3]"gray[2];

binary l=binary2”gray[1];

binary(= binary1”gray[0];

binary=binary3 @binary2 @binary 1 @binaryO0;

}

}

B L S b R e e S S S S S S R S o S S S S e e

4.12 Designing Barrel Shifters

A barrel shifter is a digital circuit that can shift a data word by a specified number of
bits in one clock. cycle. It is an important implementation normally found in SoCs
as the basic ‘shift’ and ‘rotate’ operations enables to implement multiplication, divi-
sion, cyclic redundancy checks, cryptography algorithms, floating point arithmetic,
bit field extraction, Boolean true/false type structures etc. In most of the SoC imple-
mentations the barrel shifter is configured to perform these operations in a stateless,
combinatorial manner in a single cycle. It has the ability to rotate and extend signs
as well. It accepts 2n data bits and n control signals and produces n output bits.

Program 4.11: Handel C code for barrel shifter
*khkkkkhkhkhkkhkhkhkkhkhhkhkkhkhhkhkhhkhkhkhhhkhkhhhkhkhhhkhkhihkhhhhhkhhhkhhihkhihhhihhkiiiikk
set clock = external “p77”;

void main (void)

{

unsigned 4 input,output,rotate;

while(1)

{

78

par

{

4 Combinational Logic Design

switch(rotate) //get the data and according the data rotate input.

{

case 0:

{
output=input;
break;

}

case 1:

{

output=input[2] @input[1] @input[0] @input[3];
break;

}

case 2:

{

output=input[1] @input[0] @input[3] @input[2];
break;

}

case 3:

{

output=input[0] @input[3] @input[2] @input[1];
break;

}

case 4:

{

output=input[3] @input[2] @input[1] @input[0];
break;

}
default:

{
output=0b0000;
break;

—_—— e e

B R b b b R e e S S S S S S R S S S e e a2 e

Build Report:

Shifter.hcc

4.12 Designing Barrel Shifters

0 errors, 0 warnings

BarrelShift

NAND gates after compilation : 379 (21 FFs, 0 memory bits)
0 errors, 0 warnings

79

Chapter 5

Arithmetic Core Design and Design Reuse
of Soft IP Cores

5.1 Design Reuse Philosophy

As integrated circuit technologies fight to meet and overcome the Moore’s law,
the quest towards higher performance, greater densities, increasing system com-
plexity and on the top of all, shrinking market window necessities innovation in
design methodology. The literature survey reveals that the current, popular design
approach, which generally consists of top-down synthesis, software simulation and
limited design reuse, is not keeping pace with Moore’s Law, which is equivalent to a
59% growth rate. Design productivity has been increasing by roughly 25% per year.
This amounts to the growing gap between the designed and manufacturing [75].

On one hand the new EDA tools are trying hard to keep the pace with managing
the alarming complexity of the design process and on the other hand the emphasis is
given on the IP reuse. The formal definition of the ‘Design Reuse’ is as follows:

In information technology, design reuse is the inclusion of previously designed
components (blocks of logic or data) in software and hardware. The term is more
frequently used in hardware development. Design reuse makes it faster and cheaper
to design and build a new product, since the reused components will not only be
already designed but also tested for reliability. [76]

Design Reuse is a decade old which has emerged with the general usage of
embedded processors and standard interfaces mainly to facilitate the tight project
schedules and solve the design complexity. It has also helped in reducing the project
budget as the SoC industry is hit by the increasing cost of masks.

Some of the prevalent issues in the design reuse are:

Increasing cost of IP design for reuse due to time to market pressure.
Intellectual Property Rights of the IP Cores.

Compatibility of the IP cores with the existing design.

Lack of documentation regarding the IP.

Testing and Debugging Challenges as the Testbenches are generally not provided
with the IP.

e Optimization of the IP blocks for the intended design as it is being merged as a
third party design.

R.K. Kamat et al., Unleash the System on Chip using FPGAs and Handel C, 81
DOI 10.1007/978-1-4020-9361-6_5, © Springer Science+Business Media B.V. 2009

82 5 Arithmetic Core Design and Design Reuse

e Timing inefficiency / mismatch when migrating from one technology platform to
other.

The guidelines regarding the IP reuse in the SoC industry goes on the following
lines:

e Web based interface is being popularized for the IP distribution and reuse.

This requires creation of the web page for each design and collate the following
information

The RTL source, including the testbench.

Associated documentation

Supplementary design notes used during the IP core design.

Complete listing of the design files in languages like Handel C

Some healthy practices also exist in SoC industry that has fuelled the IP based
design reuse as seen from the web based IP repositories below:

Open Cores community and web portal have been founded by Damjan Lampret
in October 1999. During 8 years while Damjan Lampret has maintained the web
portal, OpenCores became extremely well known in the hi-tech industry. In 2006
over 5000 different companies have downloaded IP from OpenCores. On average
80,000 engineers and others have visited OpenCores web site each month and gen-
erated 7.5 million web hits and 2.8 million page views monthly. It is estimated that
more than a million engineers have downloaded IP from OpenCores in the first
eight years of OpenCores existence (URL: www.opencores.org).

Design and Reuse (D & R) founded by Gabriele Saucier and Philippe Coeur-
devey is a web portal for added-value information in the field of electronic virtual
component, i.e. IP and SoC. D & R became the worldwide leader as a web and a
B2B portal in the IP/SoC field. With its 150,000 page views per month, 15,000
daily updated IP/SOC products descriptions and the on going client/provider match-
ing activity, D & R web stays worldwide unique. 150 companies have signed up
a partnership agreement with D & R for providing their latest information to the
market through D & R channel and taking the best benefit from its lead service and
B2B matching opportunities. D & R has a mission to trigger the IP business (URL:
http://www.design-reuse.com/).

Although the reusability of the soft IP cores seems to very simple, it poses sev-
eral difficulties when it comes to fitting them along with the other modules on the
SoC. The first part of the chapter deals with embedding arithmetic cores in Han-
del C. Later in chapter there is exhaustive coverage of complete realization of the
SoC by putting together the soft IP arithmetic core developed in Handel C with the
Microblaze, the Soft IP processor core by Xilinx.

5.3 Designing Half Adder in Handel C 83

5.2 Advantages of on Chip Arithmetic

One of the major problems in executing the arithmetic intensive application on a
general purpose computing platform is their speed inefficiency. The interaction
between the algorithm and the underlying architecture doesn’t match each other
which lead to poor throughput. Some times the DSP algorithms have to run in a
batch processing mode for an extensive time to get a reasonable solution. There are
two possible solutions for bringing the speed efficiency of the arithmetic algorithms
the first one is to formulate the algorithm to match the hardware and the second is
matching hardware to algorithm. The former approach can be explored by exploit-
ing the equivalence between different operations and then run the modules in paral-
lel. This can be done by extensive analysis techniques such as signal flow or data
flow representation. The later approach involves customization of the reconfigura-
ble FPGA hardware to suit the algorithm itself.

This section illustrates the development of the soft arithmetic cores which
can be executed in an accelerated manner on the FPGA due to the hardware
customization.

5.3 Designing Half Adder in Handel C

A seemingly simple design of the half adder in Handel C is given here with a defi-
nite purpose. The Half adder has got many applications. Lutz et al. have reported
efficient methods to determine the four usual branch conditions for a sum or dif-
ference, before the result of the addition or subtraction is available. The methods
lead to the design of an early branch resolver which integrates well with a regular
adder/subtracter, adding only a small amount of circuitry and almost no delay. The
methods exploit the properties of half-adder form. Sums in half-adder form can
be computed very quickly (with the delay of a half adder), yet they have enough
structure so that many of the properties of the final sum can be easily detected. The
reduced latency for evaluating branch conditions means that an addition or subtrac-
tion and a dependent conditional instruction can execute in the same cycle, with a
consequent increase in instruction-level parallelism, and improved performance for
both single-issue and superscalar processor [124]. There are other reported applica-
tions of array of half adders for digital signal processing and multiplier less chips.

The Handel C program of single bit half adder is given below:

Program 5.1: Handel C code for half adder

s she she she sk sk sk st sie sk ste st sfe sfe sfe she sfe sfe sk sk ske sk st sk sie st sfe st sfe sfe sfe s she she sk sk sk sk st sk sie sie ste st sfe s sfe sfe sk sk sk skotokokoiokoioioikoekokosk

set clock = external “p77”;

void main ()

{

unsigned 1 Inputl,Input2,addition,carry;

interface bus_in(unsigned 1 a) inp1() with {data = {“p4”} };//input pin

84 5 Arithmetic Core Design and Design Reuse

interface bus_in(unsigned 1 b) inp2() with {data = {“p5”}};//input pin
interface bus_out() out(addition) with {data = {“p7”} };//output pin
interface bus_out() outpl(carry) with {data = {“p9”}}; //output pin
while(1)

{

Inputl=inpl.a;

Input2=inp2.b;

addition=Input1”Input2;

carry=Input1*Input2;

}

}

sk sk sk sk st st st sk sk st st sk sk sk sk sk sk sk sk sk stttk sk sk sk sk sk sk sk skoskoskoskostokototokoko stk skoskoskoskokokokolololokokoiokokoskokoskoekosk

Build Report:

halfadder.hcc

0 errors, 0 warnings

adder

NAND gates after compilation : 78 (11 FFs, 0 memory bits)
NAND gates after optimisation : 74 (11 FFs, 0 memory bits)
NAND gates after expansion : 74 (11 FFs, 0 memory bits)

0 errors, 0 warnings

5.4 Full Adder

Like half adder full adder too has been used in various SoC implementations. Burian
et al. have reported a new VLSI-suitable hardware implementation of the median
filter that uses full adders (FAs) as the basic building block. The proposed hardware
structures consist of several stages that exhibit regular and modular structure. It also
reduces the hardware requirements and has a faster processing speed, when com-
pared with some other existing hardware implementations [125]. Soudris et al. have
also reported systematic graph-based methodology for synthesizing VLSI RNS
architectures using full adders as the basic building block. The design methodology
derives array architectures starting from the algorithm level and ending up with the
bit-level design. Using as target architectural style the regular array processor, the
proposed procedure constructs the two-dimensional (2-D) dependence graph of the
bit-level algorithm, which is formally described by sets of uniform recurrent equa-
tions. The main characteristic of the proposed architectures is that they can oper-
ate at very high-throughput rates. The proposed architectures exhibit significantly
reduced complexity than ROM-based ones [126].

A Handel C implementation of an § bit full adder is given below:

Program 5.2: Handel C code for 8 bit full adder

sk sk sk she st sie st sk sk sk st st sk sk sk sk sk sk skoske sk stttk sk sk sk sk sk sk sk skoskoskoskostokokotokokotokoskoskoskoskokokokolokolokokoiokokoskokoskoekosk

set clock = external “dummy’; // clock declaration

5.5 Ripple Carry Adder 85

void main(void) //start of program
{

unsigned 8 A,B, /*8 bit input
unsigned 9 addition;
unsigned 1 carry;

while(1)

{

addition = (0 @ A)+ (0 @ B);
sum = addition[7:0];

carry = addition[8];

}

}

Build Report:

add.hcc

0 errors, 0 warnings

adder

NAND gates after compilation : 426 (40 FFs, 0 memory bits)

0 errors, 0 warnings
sk s ke sk s sk sk sk sk sk sk sk sk sk sk sk sk sfeoske sk kst sk sk skeoske sk sk sk sk sk skeoste sk sk stk skt sk sk sk stk sk skt sk skosk skskosk sk skok

5.5 Ripple Carry Adder

Ripple carry adder is a device for addition of two n-bit binary numbers, formed by
connecting n full adders in cascade, with the carry output of each full adder feed-
ing the carry input of the following full adder. The reason to choose for ripple carry
adders consists in their power efficiency [127] when compared to the other types of
adders. Making an n bit ripple carry adder from 1 bit adders yields a propagation
of the CARRY signal through the adder. Because the CARRY ripples through the
stages, the SUM of the last bit is performed only when the CARRY of the previ-
ous section has been evaluated. Rippling will give extra power overhead and speed
reduction but still, the RCA adders are the best in terms of power consumption
[128]. With the power optimization, the ripple carry adders are increasingly used in
applications involving the arithmetic circuit especially the DSP algorithms in SoC.

A Handel C program for the ripple carry adder is given below:

Program 5.3: Handel C code for ripple carry adder

sk sk sk she st sie st s sk sk st st sk sk sk sk sk sk skoske sk stttk sk sk sk sk sk sk sk skoskoskoskostoskokotokokotokoskoskoskoskokokokolokolokokoiokokoskokoskokosk

set clock = external “p77”;

#define addc(A, B,C) A+B+C

#define add(A, B) A+B

#define carry(A, B) A*B

void main ()

86

5 Arithmetic Core Design and Design Reuse

{

static unsigned 4 Inputl,Input2,addition;

interface bus_in(unsigned 4 a) inpl() with {data = {“p4”,’pS”,"p6”,’p7"}}://
input pin

interface bus_in(unsigned 4 b) inp2() with {data = {“p8”,’p9”,’p10”,"p117"}};//
input pin

interface bus_out() out(addition) with {data = {“p12”,’p13”,’p14”,°p15”}};//
output pin

unsigned 1 addi,ca,x,y,z,w;

unsigned 1 a,b,c;

macro expr add= a+b+c;

macro expr carry= a*b;

interface bus_out() outpl(ca) with {data = {*“p90”}}; //output pin
while(1)

{

Inputl=inpl.a;

Input2=inp2.b;

Inputl=14;

Input2=15;

a=Input1[0];

b=Input2[0];

x=add(a,b);

ca=carry(a,b);

addition=0@addi;

a=Inputl[1];

b=Input2[1];

y=addc(a,b,c);

ca=carry(a,b);

a=Inputl[2];

b=Input2[2];

z=addc(a,b,c);

ca=carry(a,b);

a=Inputl[3];

b=Input2[3];

w=addc(a,b,c);

c=carry(a,b);

addition=w @z @y @x;

}

}

sk sk sk ske st sie stk sk st st sk sk sk sk sk sk sk sk sk stttk sk sk sk sk sk stk skoskoskoskostokokotokokostokoskoskoskoskokokokolokolokokokokokoskokoskokosk

5.6 Booth Algorithm and its Realization on FPGA 87

5.6 Booth Algorithm and its Realization on FPGA

The salient features of the Booth algorithm is its encoding scheme to reduce number
of stages in multiplication. The algorithm performs two bits of multiplication at
once and requires only half the stages; each stage being slightly more complex than
simple multiplier. It is the standard technique used in chip design, and provides sig-
nificant improvements over the ‘long multiplication’ technique [128].

Handel C program for the Booth algorithm is given below:

Program 5.4: Handel C code for Booth algorithm

s she sk she sk sk sk st sie st ste sfe sfe sfe sfe sfe sfe she she sk ske skt ke sie st sfe st sfe sfe sfe she sfe sk ske sk sk sk st sk sie ste ste sfe sfe s sfe sfe sk skoskoskotokokoiokoioiokoekokoek

//Booth Algorithm for Multiplication of two number.

set clock = external “p77”;

void main (void)

{

unsigned 4 inl,in2;

unsigned 7 out,outf;

unsigned 4 outl;

unsigned 5 out2;

unsigned 6 out3;

unsigned 7 out4;

in1=0b0011;

in2=0b0010;

if (in2[0] ==0)

{

outl =0;

} else

{

outl=inl;

}

if(in2[1] == 0)

{

out2=0;

}

else

{

out2=inl1 @0;

if(in2[2]==0)

{

out3 =0;

}

else

out3=in1 @0;

}

if(in2[3]==0)

88 5 Arithmetic Core Design and Design Reuse

{

out4 = 0;

}

else

{

outd = inl1 @O;

}

out = (0 @ outl) + (0 @ out2) + (0@out3)+ out4;
outf=out;

}

sk sk sk ske st st sk sk sk st st sk sk sk sk sk sk sk sk sk stttk sk sk sk sk sk sk sk skoskoskoskostokokotokokostokoskoskoskoskokokokololololkokoiokokoskokoskokosk

Build Report:
———————————————————— Configuration: Booth Algorithm — Debug --------------------
Booth.hcc
0 errors, 0 warnings
Booth Algorithm
NAND gates after compilation : 982 (59 FFs, 0 memory bits)
0 errors, 0 warnings

5.7 Building ALU in Handel C

Input Pins
in1 (a) ——————— Arithmatic
And
iN 2 (D) m— Loe:i::flul)Jmt out
Sel0 Sel1

Fig. 5.1 Functional
block diagram of ALU function Selection Pins

5.7 Building ALU in Handel C 89

Sel0 Sell Function to be perform by
ALU

0 0 Addition (inl + in2)

0 1 Subtraction (inl —in2)

1 0 Multiplication (inl * in2)

1 1 Division (inl / in2)

Program 5.5: Handel C code for 8 bit ALU
set clock = external”’p77”;
unsigned 8 add(unsigned 8 a, unsigned 8 b); //function declaration
unsigned 8§ sub(unsigned 8 a, unsigned 8 b); //function declaration
unsigned 8 mul(unsigned 8 a, unsigned 8 b);
unsigned 8 div(unsigned 8 a, unsigned 8 b);
void main (void)
{
unsigned 8§ a,b,ad,mu,su,di,out;
unsigned 2 sel;
interface bus_in(unsigned 8 inl) inp1() with {data = {“p3”,p4”,”p5”,’p6”,’p7”,
P87, p9”,’p10”} };//input pin
interface bus_in(unsigned 8 in2) inp2() with {data = {“p117”,"p12”,"p13”,’p14”,
’pl5”.°pl6”,p1 77, ’p18”}}; //inputpin.
interface bus_in(unsigned 2 selectl) inp3() with {data = {*“p19”,’p20”} };//input
pin
interface bus_out() outl(out) with {data = {“p217,°p22”p23”, p24”) p25”,
’p26”.°p277,’p28”} }; /loutput pin
while(1)
{
a=inpl.inl;
b= inp2.in2;
sel=inp3.selectl;
di=div(a,b);
ad= add(a,b);
mu= mul(a,b);
su= sub(a,b);
if (sel==0)
{
out = ad;
}
else if (sel == 1)
{
out = su;
}
else if (sel ==2)
{

Lt}

5 Arithmetic Core Design and Design Reuse

out = mu;

}

else if (sel == 3)

{

out = di;

}

}

}

unsigned 8 add(unsigned 8 d,unsigned 8 e)
{

unsigned 9 temp;

unsigned 8§ c;

unsigned 1 carry ;

temp= (0@d)+(0@e);

c=temp[7:0];

carry=temp|8];

return(c);

}

unsigned 8 sub(unsigned 8 s,unsigned 8 p)
{

unsigned 8§ c;

c=S$-p;

return(c);

}

unsigned 8 mul(unsigned 8 t,unsigned 8 u)
{

unsigned 8§ c;

c=t*u;

return(c);

}

unsigned 8 div(unsigned 8 x,unsigned 8 y)
{

unsigned 8§ c;

c=xly;

return(c);

}

sk sk sk ske st st st sk sk st st sk sk sk sk sk sk skeoske sk stttk kot sk sk sk sk sk skoskoskoskoskokokotokokostokoskoskoskoskokokokolokolokokoiokokoskokoskoekosk

Build Report:

alu.hce

0 errors, 0 warnings

book

NAND gates after compilation : 6390 (188 FFs, 0 memory bits)
0 errors, 0 warnings

5.8 Xilinx EDK Interface with Cores Developed Through Handel C 91

5.8 Xilinx EDK Interface with Cores Developed
Through Handel C

Xilinx EDK (stands for Embedded Development Kit) is a design environment for
developing embedded systems using Xilinx FPGAs and it facilitates creation of
hardware architecture, compilation of software, integration of software into the
hardware by writing driver and finally verification of the RTL. XPS (Xilinx Plat-
form Studio) is the GUI that integrates all EDK processes.

The components of the EDK are as follows:

Processors (PowerPC, MicroBlaze)
Interconnect (PLB, OPB, FSL, etc.)
Memories (BRAM, DDR)

Peripherals (UART, Ethernet, Custom cores)

As one can see from the list of the components almost any SoC can be realized by
using the EDK environment. The missing components can be added through the
custom cores.

We are giving here a step by step discourse for building the configurable SoC
using the Xilinx EDK as there are lot of queries and apprehensions from the design
community and the flow is not yet clearly given in the literature. Through this book

. Xllir Platiorm Studss - pa project opaned

BT RaXGERBNEO0 BREE DA HL P-ANS WS WEBE L SO0V
MU_!-.I!M. ®

Fig. 5.2 Selecting base system builder

92 5 Arithmetic Core Design and Design Reuse

SHO mREOAEL EmANS HE ME BE LI SE00W

mbedded Divel
Platform Studio}

Plesas bege by smiectig orm of the Iobweg sptore
] i on e coete v desgn

o 5 weescn]
[] owm

%[Creazed peeres directary

Fig. 5.3 Building project from scratch / on old module

we are empowering the designers to build their SoC by making use of the EDK and
the readily available soft IP cores given here in the form of Handel C code.

5.8.1 Design Problem

In this design a soft IP core of 32 bit adder is developed on Spartan 3E FPGA
which is intended to be interfaced to the microblaze using PLB bus. A data stream
is passed to the adder soft IP core and the result is acquired by the microblaze over
the PLB. Further the result is displayed on PC hyperterminal using the UART inter-
faced to the microblaze.

The step by step implementation is as follows:

5.8.2 Design Flow

As shown in Fig. 5.1, as soon as the new project is opened, the designer has to select
the base system design which is shown in Fig. 5.2. The EDK then asks the use as

5.8 Xilinx EDK Interface with Cores Developed Through Handel C 93

. Xl Phatform Studs - e gir

CEOD BIE OAEL FeANS WE BE BE I SE00W
®

BEE REEen
Progect Infomnation Ams.

ot | s | o |

Soatan 3 HCISHE ARG dewcn The boar?
mzmmﬂmmom & push butorsa, B LEDs, VA pod. charcter
ﬂm P52 0, puth bt tary e S o 1o kel cormvrter, 5P dgtal
cometer, Y100 Ethasrt post. ZMB 5P fash, 15 ME of parsbel NOR fith and 64
nmwm tunan S EEET] @ uned a6 srmem vt

| Crested peeres direcrary

Fig. 5.4 Selecting the Xilinx spartan 3E board

Table 5.1 Files created by the XPS as the SoC is built

Name of the File Explanation

Base System Builder Selection of working base system

MHS Generation of Netlist from Hardware
Description

MSS Software converted into Libraries and drivers

Sim Gen Generation of Simulation Models

Xilinx Microprocessor Debugger Debugging information for the microprocessors

BitInit Generation of bitstream for configuring FPGA

regards to building the project from the scratch or on a previous project. In case the
designer wants o build the project on his/her old module then he/she can go for the.
BSB file.

As shown in Fig. 5.4, the designer then has to choose the Xilinx FPGA board.
The designer can very well go for FPGA boards other than Xilinx, with only addi-
tional burden to develop the pin configuration or UCF file for it.

The next step is selection of the available Soft IP processor core. The Spartan 3
FPGA supports only Microblaze by default. Power PC is available for Virtex FPGA.

E-Brizrz:Remow

%[Created poores direstery

] Enabie fiating pore unt [FPLY

B | T

Xarw Spatan-JE Starer Board Faremon D
Pt seectthe 10 dieces whoh you woukd Bos s st
10 dvicen
[RS2 DTE e
%[Cresced poores directery
Dot St
o=]

Fig. 5.6 Selecting the UART with appropriate configuration

%[Created poores direstory

HEY PeLRER ENPOE AR 0P AL AnANAL
®

Dats
‘toonaader or ACE fle 1 rinakae e memory.

%[Creaced poores direstery

Fig. 5.8 Test bench generation for the peripherals

comect, bt
Cxharue set.m 13t praices page 12 ek Comectins

Qmm—ijmm
On Chip Memary © 12

%[Crested poores airestery

Compler ptons.
W Seumen
3 lesden

&) Processer. sescbine
Expcutatie: CHarde_Com'adter' TanAon_Pephenl essoustin of

Wit e o B 3 o e
(T Canbiure devens and iraen (Softwars Pafom]
1) Dimelsn e s b P B il let 1

O Bt thatest applcation penessied by B50

@ (St e |

%[Sereratizg Block Diagram 1 Ci\Eandelf Core',
Geserated —— myusesm.vy
Block disgzam geneated.

o [J[o)

e
b

Fig. 5.10 Starting platform studio

CiEE mEDON

Bus Cornecten

Generaring Block Diagram 1 C1\Eandelf Core\adder\blidisgramisysces hrs=l...
Geserated -— ayatem.svy

Block disgas gens

Master, Slave

Target &intistor () Connected () Unconmected

Fig. 5.11 EDK showing the modules and their connections using the buses. The designer can
start importing the peripherals as well in this step

==, Milin Patform

@wiﬂu

i

Geserated -—
Block diagras o-

%[Semerarimg mel nuunn 1

Impart to XPS

%
ImplamantVerify :

e 200a
The
Eect
(5] Creses tomgiatns for a rew pespersl
) Irpot exeng pephesl
Fiss dscrion
Youwll
Do) Pesteert e body O e Eephens
eted L Uncannected

o =2 semn

L | |

Fig. 5.12 Showing creation and implementation of new peripherals

nbby i 1]

Fepastery o
st whare o w19 stors v el

NS00 A% 0P HL BeANS
=

MR EEBr-Ic-REOON
e - -
F L | Baindaces [ot | Raswases

Bua Cormacton. ¥ Ty

T E=——ray
B

e

i b

Y L

e 200

ormcts
o]
Fapisstory.]| Erema
@ Tomn 2P ot
Project (€ Handel_Conw'aer [a—

| Generacing Blosok Diagram 1
Generased ——- m g
Block diagram genezated.

Forphural wil be placad srder-
el Coms'adderpecres

puted O Uncesnected

Maree: ared Vermorn
e it e s i varnson of your paschansl

1000
100k

3
T

2008

Dwsgr By Shnce S A 00d Or R Kot

%[Gezeratizg Block Diagram 1
Gesezated —— system.svy
Block disgsan genssated.

Logeal bray rame: hande adkderv1,00.8

feted O Uncannected

Hoy ol
e 475 prect setrea.

[char][JiT ool]

Fig. 5.14 Specifying the Core Name and other information such as revision etc

| Bus baerocn
et toe s rtwelacn macpsted by yous paehens.

5 [Frocemer Local Bus PLE i)

O Foat Sevplex Lk F5U

ATTENTION

g e
rtecornedt and CPBPLE w3 & roeconnect) and e FSL rteface.

%[Gereraring Block Diagras 1

P

Blosk disgras genesated,

(™

[Evabla OFE st FLE w1 4 bus rtalnces

e (e] (o]

3
T

feted O Uncannected

| 1P3F (1P tertace] Services

Incicaty the FIF sarvicns meaumd by your perchersl

%[Sererarimg Bloeck Diagram 1
Geserated -— ayEtem.svy
Blosk diagras genecated.

et service wed conlepaston

ma
oot data g, mtpie memony. addwes mace scoee and et

[FLE tave riedace vl B be puded]

101 Sctmars seeet [T e—
= O wace
] et crmed

Wamer parece and corbgurston

rckadnd f master paroce wactad)

] Userioge master:

feted L Unconnected

Fig. 5.16 In this application w have selected FIFO for buffering the data

%[Gezeratizg Block Diagram 1
Geserated —— syatem.svy
Block disgean genesated.

Wl Proceser
Enscutabie '\ Harded: Al s g’ You wll

5 Headen] e

e
rtlace fles g the ivpes burctorlty o i ool

] Gonarme mub s _boge'tempie in Vesiog iataad of VHOL

=]
=B
poted () Unconnected
» Gezeratizg Block Diagras 1 -
Gezerated -— VY
Block diagsas ted,
[e]

Comanka Wedow
-

Fig. 5.18 Generating XST and ISE for implementing peripherals using XST flow. Template
drivers are also selected here

BB rx RsmoOw

e L)

Congratulations!

B Correcten F e

Frosh WE
Hurctonaity o your peephera n e s Uner_logec vrmpiate

| Cenazating Bleck Disgram i
Generated -—— system.svg
Block diagram generated.

Ve, i3
irindace fiet by uting this odl in the Imgon mode.
[Toank you for esing Coease and Impars. Feripheral Wigard! Flesse find your A

Faripharal Somary
nop nane + handele_sdder
vassizn : 1808
wpe 1 FEE w6 save
- : aluve avtachmans
. #
/
MOTE: A" cp wmrge ke waad
#mocnss regaraestn you pepharal
Gararsirg s for your perpheral Plasss wat
[R]

[t][fw][G

beted O Uncomnected

% [f aheuld peint eo &

) Creme tompiates for & rew pegharsl
() Irpot exeng pephesl

-
Create Templates %.

Few demcrpaon

ImplomantVerify :

Fig. 5.20 The created peripheral is imported to the project

+ Search path sk

Repasiory or Freject
Incicaty whars you wrt 33 e e raw Cespheral

% [L aheuld peine eo & direcrary

Proje: [CHanae Conadder

Fargharal wil be placed under
CHaneC_Corvladieocems

Mamory and Mamory Cortroler 5
" FQ oty
& Perphersl Cortrober
 Prooemer
¢ Ly o
= user oy [
IHACERLCACOER 100
) Tam 25 et
Brrwie

D el RBNE
Prpctfommon e
[[t 7500 |
Tl

HEBOR

far
b

direscory. Search path sk

Descscten Plwmn
WK EDH et - 0002 D
& Aoy

% [f aheuld peine eo a direcrary

Logeal by nama: handeio_sdder_v1_00_s

far
far

direscory. Search path sk

Fig. 5.22 Selecting the previously generated core with due attention given to the revision
information

Alin Plationn §

LT

Ciiida 3 handeic core desd

Be B3t pen et Fgmat Tk Tl frdov beo
DE@an g0RY I had a-rx-

-x

WEOEE@ DY o -0,

A - cu-psu[EEAmEE EEERO-SAT
FralSowrg e - Fow |8 & - D- 3-| @ @ .
EriFRacmBE AR R,

% [L should peint eo a Atz

Logeal vy name: handec_sdder_v1_00_s

fas
b

direscory. Search path sk

Souree File Trpes

Incicatn e tyoms of s tht maks 6 vz pershesl

(L aheuld peine ee & direcrary

& Uy ot Maecry

W Fa

: Procemor] HOX vource fhee v “vhdl v, v

= adn. "o “nge. "}

= UsER [Documentatan thes o, " doc. “be)
SRHAKDELC_ADDER 100a

s
b

direscory. Search path sk

Fig. 5.24 Selecting the source file. In this case we have selected the EDIF generated by the
Handel C adder core. Here the EDIF automatically maps into the VHDL for the compatibility
with Microblaze

FED neiREN ENBOE 5

far
b

P voman s sk ~Emoo
| Aephesorn [PCumg | ; — - ;
o | e | B = I
Dvacegton 7 Ve T Sea fey [
£ EDK el - 0093 7D !"N;Wm
Ll
5 B B ; . [3 “‘u‘“‘“";-
¥ Oosie. Reset and nemet «_ import Periphecal - HIL Source Files. [Q&-
. i HOL Seurce Fles Dypeons.
Communcaton Low Speedt o o
) DMA it Teser et how B tock b ncatn o O 14 ,.) u.hahm. s
» My Deumrts IS @)
el L ANERE o P Ry
> g’ L, OVD-N v £
85 Moy 3 Minkaer e HOLiargusge seedta epiement s perhes: S SANTOS 01}
.t Wrlomder | 5 e
@ Perphen Cortroler e .
: nm:—w] Use data i cobiscied A previon q Wy Ntk Pacen |
i Project Local poones —C \Hardel. [B T B =
T 140, i 53 Gt Dgram = ==
| ADER s Ry N Smm = _I
15 Use e HET prcgect e) uw,“’ qteeed
- an""""“‘
£ dooumant
D e
e
3 tralbockd >
£ sheuld peint £o oL ‘sl
[frowe
(o] whd, "ol "y
e | o)

direscory. Search path sk

 Procemer] Use s =
Uy
A | Brate
&
BHANDELC ADOER 100a o
{5 Ut e XS ooyt s)
[Handelt, e 1 00 Whata’ Farciekc ackdee ot ot |[B | &
i
1 sncald peinr o & o ‘s direscory. Search path sk
[|| brewse
© b, "abd, "

£
O | wameg | Ener |

Fig. 5.26 Selecting the. XST file of the core by adopting proper path

==, Malinu Patfonn

¥ Br:zz BEDnOw

& Memcry o J ralyze order hw muty HOL
W Fa L o
& Perphens Controber Languape Logical Library DL Source Fila Path Al -
5 r‘:"’ vl oo common 2 00 €400 13, T ' B ProcemmeriP L cone prec,_cammon v 00_n'heffwted wl
5 Propect Local poones - \HandeC. ohd proc_sommren, w2, 000 C080r 13, TUEDH b i ProcesscrtPL oo o cammon_v2_00_a'hefwhd
= UsSER vl e cemmen_x2 008 Cr 10 N EDRC o' e ProceascrP LY oot ' ree._tommr_vZ_00_s'hellwhd
R HARDELC_ADDER 100s v proc_soewmen w2 00 8 C i 10 N E DI o' e Procesier P LB oot ene_tommer_v2_00_s'helfwhd
e rivite_vd_(0 2 L= lo_vt 00, L
el riotts i 0 00 10, TR o G PrcemaortP Lt o vi_vd 08 s whef
e it vt 10,0 0. .
e e w2 008 [= T e
e e w2 008 CNhr\ 10 N EDIC o' e ProessoriP LI oones'dhe_v2_00_a'hlhwhel'ts_she_jog. o
" wa it v 008 € 10 TEDW b e PrscesmartPLE oores et _vd_00_a bl ol_ty” ¥
wd ettt 000 Aot 13 0
% L heuld point to a dizectaryf |wd 40010, 1S i PrensemacetPLb s eif_vd, 00 bt o fanre | |Piecrery. Seazen pazh
e Cra 10 w4 00 4
sl e, :_aider_v1_00_a b whd [res-T
=] * Ciandet G _sdes_v1_00_w T e
£ »
| B |

Comacka Widow

£
| 0wt | viamng | Er |

Fig. 5.27 Here the EDK shows successful creation of two VHDL files the first one is in VHDL
pertaining to core and the second one is the user logic which is also in VHDL

|[By e Bt vew Eoiect md fook secow b =l=| x|
¢ @l __ln-n-l.s =Jeow Jhanne [|==pe
Bwen Q)|

intarfsce port_in (unsigned 1 olk with {clockport=1}) clockport{)

unsigned 31 result.

interfece port_in (unsigned 32 semt_valus) Inport() with (busforsst="Bed:0s7}:

intertsce port_out() cutport{ussigned 12 returs_valus = result] with (bustormst="BK:03°}

set clocks internal clockport olk;
void maim{void)

qum EE Y

vhile(l)

i

AeInport sest_vslus.

result=hel?

3
- e (T o

LT aftes pact-apdmesation - 873 FFL O memony bie]
0 ooy,) sarengs.

Fodn P | P e,

Fig. 5.28 Generating the EDIF of the Handel C Adder core

- Brizxz:Rsnow

Hethist s
ety biack bon nethes svaccuted wth T pecchenl

% [L aheuld peint to a directery

Farmcere Fiae

~
| =) | R
&

directory, Search path Sf -

EBF Lz B800W

W E EDR et - C 00 30 1D
& Ansog

& Geraral Puscas 10
£ Commurscmon
- Marry e Marmcey Cortrolar
W FO
 Parghens Cortroter
 Procemeor
Ly

5 Propect Local poores — C.\HandelC
& USER

w[Lanculd peint o a dizectary |

BE CiREN EYBOR MR 0P AL P=ANa e
Prctifommoniea »

Frawa | dovtcators | PCming |

L

Duscrgtion P Varson F Tyes

Congratulations!

WS preject
ymiem st 4 you atariiat ofher pephernis

Thank yeu for wring Cresta and Impart Feripheral Wisard) Sleass find your A
LRparTed pavipheral unser ©
HARSeLE_Zore’adder’ pueres nandele_sbder_vi_00 s,

Bummary
ogieal Mbeasy
Vazsien s 100

Bus interfaceiss : SR

Tha fellswing sub-dizesteries will be sTested:

Tha following ESL ssarce filss will be copied inss the
Bandal:_ssder_vl_DO_s\BAlivedl dizectsoy:

[E] Stve povvusy paremed e

far
far

direscory. Search path sk

Fig. 5.30 EDK showing the successful generation of the ‘Adder Core’ with other information
such as version etc

) P et e sl e 2

Ll w]

‘ 21| srbee ety V| Bock g |
s [Z sheuls peint to a dizectary twe levels above poores MARNING:MDT - Search path C1)HanselC_Core\adser\ directly coscains drivers direstory. Search path st

Fig. 5.31 Adding ‘Adder Core’ to the main project of Microblaze

M@ EE - Br -z wE0OR

P L Bua riefaces
T FJ | Pota | Acmeses | 0¥ Famn
B8 |[Mee Bua Cormemon,
) Swa Prasessr St I
B B o
i Oodc. Reset and emgt a] L
& Communscation Hoh-Speed
4 Communcaton Low-Speed
i DMA s Teer L d
& b
W Gerwrsl Pugese 10 -
3 emmceisor Commucmmon
8 Vmory and Msmcey Cortoolar
W Fa
@ Perphens Cortrober
& Procemer
- ey
& Propect Local pooms - C \MandelC.
=
I HANDELCADOER 1008 bandekc_sdder JDEVELOPMENT Posese: Morofiane
< ¥
Lozt
Dittater O siave - Maste/lave | Torget <inistor O Comnected O Unconaected
L2 31| Syaem Ausomtiy View | Bock Dagam |
= N = Search path directly contains poores direscery. Search path sheuld peint Co & direstery twe levels abave poores.WAF

ecily COGTAARE pooTes directory. Seatch path should poist S0 & diTectory Sw0 levels above pocres.Assigned Driver hasdelc_adder 1.00.a for instasce hande
hasdelc_sdder O has been adsed o the predest

Fig. 5.32 Selecting the PLB bus interface for the ‘Adder Core’ to facilitate its communication
with Microblaze

UseR.
SRHANCELC ADOER 100a hancelc_sdder SR OEVELOPMENT Power Mcmflase

[Ctaster) Slave © Master/Slave | Target €intistor () Connected () Unconnected

< ¥

- Searen parh X directly conzains poores direstory. Seazch path sheuld Point To & GireStory Twe levels above peores.WAR
wcily GOETALTE poores directory. Search pash ahould POLSt §0 & GATECTOIY Swo levels above pocTes.Assigmed Driver hasdelc_adder 1.00.a £o7 instazce hande
husdelc_eddes 0 Nas bess adSed o the projest
Address Map for Processor micrcolaze O

10000000000-0X0000TEES) dlmb_cn
10060000000-0R0000TLEE) L1me ene
(OXI4000000-0XE400LLEE} REIIT_DCT mn_p:
(0324400000-0x2A40IFES) dabug_scdule w_;ua
(0884428000~ 0u8H412227) handele adder & = pln

Release 10.1 - Bicgen K.31 (nc)
.cwuen: S} 1993-200F Xalinx, Inc. ALl Tighta Teserved,

PHSPEC -= Overriding Xiline file
<Cr/¥Alimn/10,1/E08/ spartante/satas spartanie. acd> with local file
<e:/Xa11Ek/10, 1/ 138/ spartanie/ acal spartande, acd>

Leadizg device for applicazion R Device frcm file '3s500e.nph' in esvironment
or\XiLinat 10, N ISESCTAXALAnx\ 10, 1VEDK,
syazes.pet.

Tue Asg 19 23167328 2000

Ruznisg BRC.
oprimal frequescy synthesis performasce
oF the DOH ©
=leck_geserator_O/eleck generator 0/Using DCMD.DCMO_INST/DCH INST/Using Virce
®.0CH_THST, conrult She cevice T ctive Data Jhees.
DR devected O ezzazs and U warnizgs. Please see the previcusly displayed
individual eIGE OF WAINALG messages for moTe details.
Desat

Fig. 5.34 Generating the bitstream of the total core (Microblaze+UART+ Adder)

PER DeiBBN - ENEER: E-Br-zz Renow

ey SLIEITABRARAR

=4 T HANDELC ADOER sReset¥rirefIfo(maseasds):
28 MANDELC_ACER mResecieadFIFO(basesddr) s
an
B dara o write packer FIFQ
I forgh = A7 4 4= T5 des)0
3T 4 e (1 g€ 38) ¢ 42
a3 ®i1_prinef("Mroze: OuNOBx \m\r7, i}
34 MASDELE_ADDER_miriteTorITO(besesddrs,l, 111
4 Procemer. merbinie 0 35l 1
Exscutabie: CHande Con'asderTestAop_Perphealasscutsbie of 36
& Compler Opters 37 /7 pop data out from seed pachet TITO
W Soumes 3 forgie0sieTi
= Headen 35 Temp = HANDELC_ADCER mReadFromFIFQ{basesddr,l)r
40 x13_princt("Read: 0=M08x \e\r", te=pl:
2)

ad and write FITCs

Th ELF fie i satmmed 15 by Germratadt cutsice 175
Detimit ELF rame in aw prmvect rame 3 Jenecutable of

" Release 10,1 - Bitgen K.31 (az)

opisLohi 1), 000N LGy Tii. A RN iy EE

m.u.u Xilinx file
od> wich Sover-rere

£

e t\g._ s
Leadizg device for applicazion RE Device frem file '3s500e.5ph' i esvizonment
oriXilinat 1o, 1VISEFCT\XALina\ 10, 1TEDH,

Opened conatzaists file systes.pef.

Tue Asg 19 23107335 2008

Ruznisg BRC.
INTO:PhysDesigeiules;T72 ~ To schieve optimal frequescy synthesis performasce
with the CLEFX and CLEFXIS0 cutputs of the DM coep
=leck_gezerator_O/eleck generator 0/Uaing DCMD.DCHO_INST/DCH INST/Using Virce
ce Interective Dats Shee:
Lesse sew The previcusly aispleyed

Comaka Window
-

[s (500 [t ol [T

¥

Fle £d5 Vew Frowc: Madewr Schmwe Gevoe Confguaton Debug Seston Wrdow Heb

PP NeILENENBOR MR 0P HL P=ANS MO AR BF .tz RS00W

EZELAMDAOR

EANDELC ACOER mReserizitePIFO (baseasds):
ADDER_mAesecheadfIFO (basesddr) 1

e packer FIFQ

M1l _princf("Rreze: OubOEx \m\r", 1}y
MASDELC_ADDER_miriteTolIFO(banesddr,l, 111

trw suad packes FIF0
b

DELC_J mm nReadFrom¥ IFC (baseaddr, 1) 1
x13_prante("Read: 0aV0Sx \\e, tespli
)

#7 Rasaz the twsd and write FIFCs
:_ADCER_mReseciziteFIFC baseasdr]
HANDELE_ADCER_nResesResdlIT0 (baseaddr) &

Wil princf{*End of tescim\m\z®}i

/7 Bray in an infinize
while (1) (

loap

Release 10.1 - Bicgen K.31 (ng)

CopyTighs (e} 1993-200F Xilinx, Inc. All Tights Teserved,

PESPEC == on::uusa Xilinx file
1 od> with local file

w..
Leadizg device for application ME nnun frem Ill(335008 .5ph" 1 esvirenmant
or\Xilinat 10, N ISErCTAXLLenx\ 10, 1VECK,
Opened conatzaists file systes.pcf.

Tue Aug 19 23167335 2000

Ruznisg DRC.
INFC: PhyslesigrRales; 172 - To schieve optimal rnqn:sy synthesis performasce
wie CLEFKIS0 sutpues of che DOH
elock_gemeratar_0/eleck generator 0/Using DOMO. nma INST/DCH_INST/Using_Virte
®.D0_INST, consult she cevice Intezsctive Data Shees.
DAC derected O errozs and O warnisgs. Plesse see the previsusly displayed
individual eFICE OF WATNANg messages for more decails.
'

Fig. 5.36 Adding files to the Software part of the project

e

ana Hazat

xparameters.h®
fincluce "stdio.h®
Pinsluse *xusrelice.ns

NUiEEIZ "basesddr p = (Xuincdd *)XFAR_EANDELC ADUER_0_BASEACOR

ing main (veid) {
Nuinsdz
Huinedd sddseien:
21 Xuincd2 basesddr:

s #/ Check that the g
26 HASSERT MOWVOID (baseaddr p '= XNULL):
27 baseaddr = (Xuinsdd) baseaddr_ps

<

Sytom Fosrtly Vew | Bock Dugrom | [couvere | [@ astws® |

+1 = Bizgen K.31 (nE)
(=) 1995-2008 Xilinx, Imc. ALl Tighta Teserved,
PESPEC - e--nu_q Xilinx file
Limx/1 od> with local file

<er/Maliexn/10, .Jxrcf-p-mma’a:u spaztande

Leadizg device for applicacisn Rf Device frem tuo 335008 .5ph" i esviremmant
or\XiLinat 10, N ISESC T AXALenxa 10, 1VEDK,
Opened conatzaists file systes.pef.

Tue Aug 19 23107335 2008

Ruznisg BRC.

INTO:PhysDesigeiules;T72 - To schieve optimal frequescy synthesis performasce
with the CLEFK and CLRFXISO cutputs of the DOM cosp
=leck_gezerator_O/eleck generator 0/Using DCMD.DCHO_INST/DCH INST/Using Virce
®.0CH_THST, conpult She device Interactive Dats Shees.

DR devected O erzazs and O warnizgs. Please see the previcusly displayed

individual eFIGE OT WAINALG messages for moTe details.

| wwreg | Eer |

MEIREN ENBOR MR 0P HL P=ANe MR WE BEF:tz 800w
ZLADBNDR

ndel C Core As & Black Box In EDK
. 5 A and De.R. K. Mamat

B
Froject Namer-
Sane

Pinsluse *xusrelice.ns

NuiEEIZ "basesddr_p = (Xuincdd *)XFAR_HANDELC ADUER_0_BASEACUR:

F] matiaae_
Exncutatin C'HarcelC Cory'adder’ Tast Ao _Parphecs’ anecutable of

) Commpier Optiorns b irper s i
& Soume K
& Hesde Xuined eddinions

21 Xuint32 basesddr:

a2

23

2

38 /) Check tha axizta

26 MASSERT Mﬂlnlullm_} = XNULL) @
27 baseaddT = (Xuintd2] baseaddr_ps

<

Sy Sty Vi | Bock D | [Bomriene | [st |

Release 10.1 - Bicgen K.31 (nt)
CopyTighs (e} 1993-2008 Xilinx, Inc. Adl Tights Teserved,

PHSPEC -= Overriding Xiline file

<Cr/¥Alimn/10,1/EC8/ sparcante/satas spartanie. acd> with local file

Leadizg device for applicazion R Device frcm file '3s500e.nph' in esvironment
oriXilinatic. 1\ISEFCT\XALina\ 10, 1TEDH,
Opened comatzaists file systes.pef.

Tue Asg 19 23107328 2000

Ruznisg DRC.

£ che DO o
c1oc:_g-unmz_a.rcuan_uunmx ©/Taing_DCHD. ncna_w!nncu_m!nnnnu_\'uu
®.0CH_INST, conpult She device Interactive Dats Shee

Please see the previcusly displayed

individual EFICE OF WAFRANg messages for more details.
Desat

Fig. 5.38 Marking to initialize BRAM for storing the software

[icaps [[scu [insscaia [C I

sms! WHXREN INGOD HAR 0L P=ARA e
ZILAARNDE
. 1 -
2
3
L)
5
L]
T //Header Defima
L
dinclude "mandele ssder.h
10 dinclude "xparamecers.h®
i1 fincluce "stdic.h®
12 #imcluse “wuarelicve.h®
13
1%
1s
16 Xuiscd? *basesddr_p = (Xuincdd *)XPAR_EANDELC ADOER_U_BASEADDR:
11
18 inc main (void) {
i¥ Kuainsdd a7
20 Ruinedd sddseions
n Nuintd? baseaddry
a2
23
24
ELy xigta
26 msux muxmunnudg XNULL) ¢
27 baseaddr = (Xuintdl) baseaddr_pr -
< »
Sy Aoowrtly V| Bock Dugan | R} counters
" o -
Coafigering meke for targes include usingi
make -3 include “COMPILER=mb-goo® “ARCHIVER=mb-ar®
"COMFILER_FLAGS P el ~mepu=vl.10.4 -0F -"
"EXTHA_COMPILER FIA3Smeg®
Coafigering make for target libe uaing:
make -» llhl cmn.(l‘:-v—ns:' “ARCHIVER=mE—ar®™
SCOMPILER_FL3GS ~mxl sspare -scpuevl.it.e 03 -c®
-mn_:cmxm_ruas-.u-
tiks, e - ¢ _o\1am ds
Rusnisg exece_genar . Deivers asd Libzazies ...
LibGen Done.
Dezal
< . >
k) oues | wameg | Ene |
Rasdy [caps [fa 3oL [in55 ca2 [CFN

nww—mmmmwmmmmm

PR DeXOERN BN OR AN 0P He DA Ra N
EZEL ADBAON

EBrEtz BE0OW

’ -
Froject Mamai- Mandel C Core A2 a Black Bax In EOX

T Mame i- Shinde Santcos A and Do, K. Rasat

SeR May 2008

f/Hesder Defimazion

dincluge “xparameters.h®
fincluce "stdio.h®

1

2

3

L)

5

€

7

.

3 Minsluse "hamdele asder.ns
ie

it

12 #incluse *ruartlice.h®
i3

16 ¥uisntd? “basesddr_p = (Xuincd2 *)XPAR_EANDELC ADUER O BASEADTR:

18 inc main fveid) {
19 Nuinsdz 47

20 Xuinedd addiriens
21 Xuincd2 basesddr:

33 // Check that the periphes
26 HASSERT HOWVOID (baseaddr p
27 baseaddr = (Xuintdl) baseaddr_p

L3

| Sytom posmrtiy iew | Bock Duagrem | [covere | [@ asiws

-
make -3 libe “COMPILER=Rb-goa™ "ARGHIVER=mC-ar®
“CCMPILER _FL ~mepuey?.10.8 =03 -c*
“EXTRA_CCHFILER_FLAGS3=-g~

in € 34 _OALiB\ direerory
Rusnizg execs_genac . Drivers asd Liboaries ...
LibGes Tune.
Docal

¥

[icas [(5L [ins5cai2 [C D

Fig. 5.40 The SoC comprising of Hardware and Software is successfully built

112 5 Arithmetic Core Design and Design Reuse

Here we have chosen the Microblaze as we are using the ‘Xilinx Spartan 3E Starter
Kit’. MicroBlaze is a 32 bit soft processor core having RISC architecture. It has
2-64 KB instruction and data caches along with the Barrel Shifter, Hardware mul-
tiply and divide and OPB and LMB bus interfaces. The chase selection can be done
as per the need through EDK.

The selection of the processor and board follows by the selection of the peripher-
als. As shown in Fig. 5.6, the UART is selected. Its parameters are configured as
baud rate of 9600 BPS for facilitating communication with the PC hyperterminal.
As shown in Fig. 5.7, the UART is configured as standard input/output to acquire
the data from the Microblaze and pass it to the PC hyperterminal. Rest of the steps
and their discussion follows as the tile of the diagrams itself. The files generated
while realizing the SoC are as shown in Table 5.1. The realization is also a classic
example of hardware — software co-design in a SoC paradigm as the software driv-
ers are built in ANSI C.

Program 5.6: Handel C code for adder

sk sk sk sk st sie st sk sk st st sk st sk sk sk sk skeoske sk stttk kst sk sk sk skeoskoskoskoskoskoskokokotokokotokoskoskoskoskokokokolololokokoiokokoskokoskokosk
interface port_in (unsigned 1 clk with {clockport=1}) clockport();

unsigned 32 result;

interface port_in (unsigned 32 sent_value) Inport() with
{busformat="B<N:0>"“};

interface port_out() outport(unsigned 32 return_value = result) with
{busformat="B<N:0>"“};

set clock= internal clockport.clk;

void main(void)

{

unsigned 32 A;

while(1)

{

A=Inport.sent_value;

result=A+22;

}

}

sk sk sk ske st sie sk sk sk st st sk st sk sk sk sk skeoske sk stttk sk sk sk sk sk sk sk skoskoskoskoskokokotokokotokoskoskoskoskokokokolololokokoiokokoskokoskokosk

Program 5.7: Handel C core as a black box in EDK

sk sk sk ske st sie sk sk sk st st sk st sk sk sk sk skeoske sk sttt sk sk sk sk sk sk sk skoskoskoskostokokotokokostokoskoskoskoskokokokolololokokoiokokoskokoskoekosk
Project Name:- Handel C Core As a Black Box In EDK

Author NAme :- Shinde Santosh A and Dr.R.K.Kamat

Date:- 5th May 2008

//Header Definition

#include “handelc_adder.h”

#include “xparameters.h”

#include “stdio.h”

#include “xuartlite.h”

5.8 Xilinx EDK Interface with Cores Developed Through Handel C 113

Xuint32 *baseaddr_adder = (Xuint32 *)XPAR_HANDELC_ADDER_0_BASE-
ADDR;

int main (void) {

Xuint32 i;

Xuint32 addition;

Xuint32 baseaddr;

/I Check that the peripheral exists
XASSERT_NONVOID(baseaddr_adder != XNULL);
baseaddr = (Xuint32) baseaddr_adder;

while(1) //infinite Loop

{

//Reser FIFO
HANDELC_ADDER_mResetWriteFIFO(baseaddr);
HANDELC_ADDER_mResetReadFIFO(baseaddr);

/I PUSH data to write packet FIFO for Addition
for(i=1;i<=7;1++)

{

xil_printf(“‘Sent Value For Adder: 0x%08x \n”, 1);
HANDELC_ADDER_mWriteToFIFO(baseaddr, 1, 1);
}

/ POP Adder Result out from read packet FIFO
for(i=0;1<7; i++){

addition = HANDELC_ADDER_mReadFromFIFO(baseaddr,1);
xil_printf(“Result Of Addition: 0x%08x \n”, addition);
}

/l Reset FIFOs
HANDELC_ADDER_mResetWriteFIFO(baseaddr);
HANDELC_ADDER_mResetReadFIFO(baseaddr);

}

}

sk sk sk ske st st st sk sk sk st st sk st sk sk sk sk skeoske sk stttk sk sk sk sk sk sk sk skoskoskoskostokokotokokotokoskoskokoskokokokolololokokoiokokoskokoskoekosk

Chapter 6
Rapid Prototyping of the Soft IP Cores
on FPGA

6.1 Prototyping Philosophy

According to the SIA Technology Roadmap, by the end of this decade the semi-
conductor industry will manufacture chips with four billion transistors, thousands
of pins, and clock speeds of 10 GHz. In order to increase design productivity, a
new design flow has recently emerged, based on the reuse of portable IP cores.
An IP core is a block of logic or data that is used with a field programmable gate
array (FPGA) or an application specific integrated circuit (ASIC). The increasing
gap between design productivity and chip complexity, and emerging System-on-
Chip (SoC) have led to the wide utilization of reusable intellectual property (IP)
cores [79]. For an SoC chip, the validation of hardware, software, and firmware
on a common platform can be accomplished using FPGA-based prototypes. FPGA
prototypes make it possible for SoC designs to be delivered on time, on budget,
and on market target [77]. The reward of FPGA based prototyping is getting better
designs sooner, in which hardware and software components are integrated before
final silicon. Today, the electronic system design community is mainly concerned
with defining efficient System-on-Chip (SoC) design methodologies in order to
benefit from the high integration capabilities of current FPGA technologies on the
one hand, and manage the increasing algorithmic complexity of applications on the
other hand. Rapid prototyping is considered as a key to speed up the system design
[78]. The popularity of the FPGA based prototyping is evident from the survey
commissioned by Synplicity® Inc. in December 2004, wherein more than 20,000
developers around the world were questioned as to their hardware-assisted ASIC
verification strategy. The results showed that 1/3 of today’s ASIC designs are veri-
fied by means of an FPGA-based prototype [80]. Thus, it is becoming increasingly
necessary to create prototypes of ASIC designs that run ‘at speed’ in the context of
the system. The most cost effective technique emerged out to achieve this level of
performance is to create an FPGA-based prototype.

This chapter is dedicated to the theme of FPFA based rapid prototyping of soft
IP cores developed in Handel C. The core theme is supported by development of
three case studies.

R.K. Kamat et al., Unleash the System on Chip using FPGAs and Handel C, 115
DOI 10.1007/978-1-4020-9361-6_6, © Springer Science+Business Media B.V. 2009

116 6 Rapid Prototyping of the Soft IP Cores on FPGA

6.2 Rapid Design of Fuzzy Controller Using Handel C

This case study reports a novel design of fast fuzzy processor using Handel C. A
case study of the model of a fuzzy processor for optimizing the temperature of water
bath is developed and the system has been successfully validated on Xilinx Spartan
1T FPGA.

6.2.1 Cramming Software Centric Fuzzy Logic on the SoC

Fuzzy logic was first developed by Zadeh [81] in the mid-1960 for representing
uncertain and imprecise knowledge. The fuzzy logic techniques have been suc-
cessfully applied in a number of applications such as computer vision, decision
making, and system design including ANN training. However, the most extensive
applications are in the area of control systems where examples include controllers
for cement kilns, braking systems, elevators, washing machines, hot water heaters,
air conditioners, video cameras, rice cookers and photocopiers [82]. It is estimated
that the number of industrial and commercial applications will approximately dou-
ble every year. It is estimated that the demand for fuzzy hardware specifically fast
fuzzy processors will increase significantly and will be one of the most interesting
businesses in the near future [83]. The main performance bottleneck in realizing
the hardware for fuzzy processor is the inherent nature of the fuzzy programs vis-
a-vis their hardware paradigms available for realization such as VHDL. The former
is software centric with long chain of rule base while the later emphasizes on the
concurrency and parallelism. The fuzzy programs are more of IF-THEN-ELSE type
rule base which the software professionals find it difficult to obtain their hardware
counterpart. In this application, a novel framework for rapid development and syn-
thesis of fuzzy controller is presented. The methodology is based on Handel — C
[84] with the output EDIF tested on Xilinx Spartan III FPGA platform. Design
flow with mixed tool sets has been developed in order to overcome the inherent
limitations of the individual tools. The design problem taken up is development of
fuzzy controller for water bath temperature. Focus is on the realization of the fuzzy
rule base into hardwired logic by expressing the same in Handel —C paradigm and
finally transforming the same to a SoC paradigm.

6.2.2 Design Problem

The purpose of the developed fuzzy controller is controlling the temperature of the
water and vary it so as to enhance the comfort level of the person taking bath. For
instance, in a chilly winter, the water will be too cold; the hot water valve will be
opened more to add hot water. The rule base for the system is as follows:

6.2 Rapid Design of Fuzzy Controller Using Handel C 117

Table 6.1 Rule evaluation table for the proposed controller

IF THEN

Rule Season Logical Temperature Control valves for to adjust the
operator of water proportion of hot and cold water

1 A, AND B, C,

2 A AND B, C,

3 A, AND B, C,

4 A, AND B, C,

5 A, AND B, C,

6 A, AND B, C,

7 A, AND B, C,

8 A AND B C

"

4

Notations used in the table are as follows: Season: Winter = A , summer = A; Temperature of the
water: Cool = Bl, ‘Warm = Bz, Hot = B3, Very hot = B » Controlling Valves of hot and cold water:
Increase = C, Maintain = C,, Decrease = C,.

1. If season is winter and water is Cool then increase the proportion of hot water.

2. If season is winter and water is warm then increase the proportion of hot water.

3. If season is winter and water is Hot then maintain proportion of hot and cold
water.

4. If season is winter and water is Very Hot then Decrease proportion of hot
water.

5. If season is summer and water is Cool then Increase proportion of hot water.

6. If season is summer and water is Warm then maintain proportion of hot and cold
water.

7. If season is summer and water is Hot then decrease proportion of hot water.

8. If season is summer and water is Very Hot then decrease proportion of hot
water.

Season, Temperature of water and Control have been notified by the notations
A, B and C respectively in order to derive the rule evaluation table for the proposed
controller.

6.2.3 Fuzzification and Defuzzification

Trapezoidal membership functions are used for fuzzification and expressed in-terms
of two slopes and points as shown in Fig. 6.1. Y axis defines degree of the member-
ship (l) expressed in the value interval between 0 and 1. X axis defines the universe
of discourse and is divided into three segments 1, 2 and 3. The degree of the mem-
bership depends on the location of the input value of the season temperature. The
season is further defined by the values in the particular segment. For example, the
season winter is defined when the ambient temperature is less than the 20°C and
summer is defined above 25°C. Calculation of the degree of the membership values
in different segments is as follows. For segment 1 the slope is growing left to right

118 6 Rapid Prototyping of the Soft IP Cores on FPGA

Fig. 6.1 Defining Segment1 Point2 Point 3
membership function / / /
for different seasons Point1 |

FFH 1.0 Winter Summer

Slope 1 Segment 3
1

1
Segmetnt 2 Slope 2
1

00H 0.0

20° 23° 30° temp.
FFH

and here [is limited to maximum value 1. For the segment 2 the slope is downward
hence limited to minimum value 0. Refer equation ‘I’ for the formula of p pertain-
ing to segment 2.

u=1 - (input value - point 2) * slopel ------------- @D

For segment 3 the slope is upward form left to right and the p is limited to the
maximum value 1 as per the mathematical expression ‘II’

p= (input value — point 1) * slope2 ------------- In

The sample calculation of the membership function is worked out here as an exam-
ple. Assuming 8 bit resolution | = 1 equals to the FFH or 255 decimal. The slope
is calculated as

Slope 1 = 1/ (30-20) = FF H/ (FFH-A8 H) = 02 H - (1)

Similarly Slope 2 =02 H
If the season is winter and the temperature is 23°C i.e. (BE H), it lies in the segment
2 which corresponds to
pu= 1 — (input value - point 2) * slopel

Table 6.2 Range of water temperature expressed in terms of Fuzzy variable

Fuzzy variable Range (°C)
Cool 0-30
Warm 20-40

Hot 30-60

Very hot 45-100

6.2 Rapid Design of Fuzzy Controller Using Handel C 119

w A

FFH 1.0

Cold Warm Hot Very Hot

0.8

n
0.6

0.4

0.2

00H 0.0 > temp.

20° 30° 40° 60° 100°
00 H 27 H 3FH 52 H 92 H FFH

Fig. 6.2 Membership function of water temperature

ie.u=FFH- (BEH-A8H)*02H=D3 H -—---mrrmv (IIT)

Table 6.2 shows the range of the water temperature expressed in-terms of fuzzy
variable.
The membership function of temperature of water is shown in Fig. 6.2.

6.2.4 Design Flow for Prototyping the Fuzzy Controller

The design flow adopted is shown in Fig. 6.3.

Xilinx

EDIF Webpack SoC
Fuzzification,IF-THEN rule
Evaluation and Defuzzificiation
Implemented In Handel-C Manual
VHDL Optimization SoC
ModelSim Timing Verification

Fig. 6.3 Design flow

120 6 Rapid Prototyping of the Soft IP Cores on FPGA

6.2.5 Handel C Implementation

The rule base expressed in Handel —C is given below. Similar routines have been
developed for other seasons.
Program 6.1: Handel C code for fuzzy controller realization
s she sk she sk sk sk st sie sk ste sfe sfe sfe sfe sfe sfe she sk sk ske sk st ke sie st sfe st sfe sfe sfe she she sk ske sk sk sk st sk sie sie st sfe sfe s sfe sfe sk sk sk skotokokoiokoioiokokokosk
Fuzzy Controller Program
set clock = external “p77”;
void main (void)
{
unsigned 8 temp_season,flow_temp;
unsigned 2 volve;
interface bus_in(unsigned 8 in2) inpl()with {data = {“p15”, “pl16”, “pl17”,
“pl187,“p217,“p22”,“p23”,“p24”} };
interface bus_in(unsigned 8 inl) inp() with {data = {“p3”, “p4”,“p5”,
“p7”p9” pl0”pl1”,pl137})
interface bus_out() out(volve)with {data = {“p25”,p26”}};
while(1)
{
temp_season = inp.inl;
flow_temp = inp1.in2;
if(temp_season>=0x80)
{
/[season=summer
if (flow_temp<=0x1E && flow_temp>=00)
{
volve=0b10; //increase temp
}
else if (flow_temp<=0x28 && flow_temp>=0x15)
{

volve=0b11; //maintain temp

}
else if (flow_temp<=0x3C && flow_temp>=0x1E)
{

volve=0b01; //decrese temp

}

else

{

volve=0b01;

}

}

else

{

//season = winter

if (flow_temp<=0x1E && flow_temp>=00)
{

6.2 Rapid Design of Fuzzy Controller Using Handel C 121

volve=0b10;

}

else if (flow_temp<=0x28 & & flow_temp>=0x15)
{

volve=0b10;

}

else if (flow_temp<=0x3C & & flow_temp>=0x1E)
{

volve=0bl11;

}

else

{

volve=0b01;

}

}

}

}

Number of errors: 0

Number of warnings: 2

Logic Utilization:

Number of Slice Flip Flops: 26 out of 7,168 1%

Number of 4 input LUTs: 32 out of 7,168 1%

Logic Distribution:

Number of occupied Slices: 26 out of 3,584 1%

Number of Slices containing only related logic: 26 out of 26 100%
Number of Slices containing unrelated logic: 0 out of 26 0%

{G_Resat G_vobm_0_euti00) ——— {6 b

1 G_sanou
GhD

sclr r | Pity_pa
| Pin_pa

PiN_p&

1 PiN_pT
1 PIN_pS

| PiN_p10
| Pin_p11
1 PiN_p13
| PiN_p15
| Pin_pio
| PiN_p17

| PiN_p1a

1 PiN_p21
| Ping_pz2

| Pire_pz3

| PIN_p24

|
‘ | PIN_B7T G_voive_1_outi0:0) | I ETxET

Fig. 6.4 RTL realization

122 6 Rapid Prototyping of the Soft IP Cores on FPGA

Total Number of 4 input LUTs: 32 out of 7,168 1%
Number of bonded IOBs: 13 out of 141 9%

10B Flip Flops: 11

Number of GCLKSs: 1 out of 8 12%

sk sk sk ske st st sk sk sk st st sk sk sk sk sk sk sk sk sk stttk sk sk sk sk sk sk sk skoskoskoskostokokotokoko kot sk skoskoskokokokolokololkokokokokoskokoskokosk

6.2.6 Co Simulation with ModelSim

Co-simulation provides a framework for co-operation between two separate distinct
tools from independent vendors to pave the benefits of each of them in the SoC
design. Timing analysis for checking the realization of the constraints is decisive in
SoC and cosimulation addresses these woes. Moreover design platforms like Han-
del C, though improve design productivity, their analytical marriage with the well
proven and time tested design platforms like VHDL gives a chance of optimization
in a mixed design environment.

Fuzzy logic controller SoC designed by adopting the mixed design flow is as
shown in Fig. 6.3. The EDIF generated by the Handel C compiler is ported to the
Xilinx Web pack Version 9.2 for synthesizing the SoC on the Spartan III FPGA.
At the same time, the SoC is also been synthesized by converting the Handel C

Fit Bt Vew Add Fomzt Toos Widow

(1588 328 AL

4 Joazine ool et
? Mz hecg vve [) o
‘0

Mg beelg vave 1 oot
fhzfinal hee/pn p10
thzzinel heetpin pTt
Hzzfinal hecipn gt
[izzginal becdon p15
fhizzinal hecion 116
thazgingl hootpn p17
Thazzlingl hoc/pn pld
Iz oo 21

Thazzgine] ooy stk
Mezing_hecfg vehe 0
Tzl beefg valve 1
fhazzfinal bec/rstancel ik ged

Fig. 6.5 Timing verification using the ModelSim

6.3 TCP/ IP Packet Splitter Implementation Using Mixed Flow 123

code into VHDL and by adopting the manual optimization. The RTL view of the
realization is as shown in Fig. 6.3. The third and important phase is the cosimu-
lation by porting the VHDL code to the ModelSim environment that gives valu-
able timing verification. A screenshot of the cosimulation using the ModelSim is
shown in Fig. 6.6.

6.2.7 SoC Prototyping and Final Device Specifications

The system was successfully validated on Xilinx Spartan III FPGA. The novel frame-
work presented in this section facilitates the rapid conversion of the fuzzy logic
algorithms expressed in any ANSI-C like language directly in terms of hardware. As
the Handel-C supports a large set of ANSI-C constructs, easy porting between two
languages is possible. Moreover, the above approach facilitates easy debugging and
provides good scalability. The usage of the third party tool like Modelsim helps in
extensive testing in less time. Implementation on the FPGAs provides relatively quick
implementation from concept to physical realization as compared to the ASIC or cus-
tom IC implementations. Moreover, it reduces the initial cost, time delay and inherent
risk of a conventional masked gate array. Thus the presented approach provides a fast
route for hardware prototyping of the fuzzy logic algorithms and realizing them in
terms of semicustom ASICs with high efficiency with rapid development cycle.

6.3 Packet Processor Core for Inculcating Embedded Network
Security using Mixed Design Flow

This case study presents the design and development of the ‘Embedded Security
Core’ based on the TCP/IP packet processing. The design objective is to realize a
tailor made TCP/IP packet processor that can be integrated as and when required
to any internet enabled embedded device. A mixed design flow consisting of the
incorporation of tools from third party has been adopted for the simulation, testing,
debugging and generation of the RTL model. The reported ‘packet processor core’
has numerous potential applications in passive monitoring of the networking setup,
security appliances like firewalls, Network on Chip (NoC) devices, internet enabled
smart appliances etc. It can also be used as a distributed network security appliance
by enforcing it to key locations in the network infrastructure for instance, at the end
user PC, at remote switches, routers and even in the data center.

6.3.1 From SoC to NoC

There is a general agreement in the design community that the near future will be
dominated by the ubiquitous Internet enabled devices. Just one such prediction is

124 6 Rapid Prototyping of the Soft IP Cores on FPGA

that by 2010, 95% of Internet-connected devices will not be computers. So if they
are not computers, what will they be? Embedded Internet devices [129]. With the
growing consensus of Internet Enabled Smart Products, the concept of Network on
Chip (NoC) is rapidly penetrating in the SoC arena.

Network-on-a-chip (NoC) is an emerging approach to System-on-a-chip (SoC)
design. The obvious advantage of integrating the network functionality on the SoC
is accommodation of multiple asynchronous clocking and facilitating the on-chip
communication to achieve significant throughput improvements over conventional
bus systems. Moreover adoption of the NoC methodology on Silicon paves the ben-
efits such as increased parallelism due to simultaneous operation of the many links
through packet processing and scalability as the internet enabled embedded prod-
ucts can be updated and upgraded on the fly.

The NoC on silicon lays it foundation on the well established field of computer
networking, however with a difference. Due to the spatial and temporal constraints
in the Silicon arena, there is a trend of tailor made packet processing and integra-
tion of customized protocol stacks. The NoC achieved bearing the above mentioned
principle enables the well separation of the computational and network functional-
ity and thus achieves the improved performance.

Security is a major issue in today’s communication networks. The perform-
ance pressures on implementing effective network security monitoring are growing
fiercely due to rising traffic rates, the need to perform much more sophisticated
forms of analysis, the requirement for inline processing, and the collapse of
Moore’s law for sequential processing. Given these growing pressures, it is time
to fundamentally rethink the nature of using hardware to support network security
analysis [85]. Many researchers have adopted different strategies for implementing
the network security. The traditional approach for the network security is install-
ing the intrusion detection software (IDS) per host. However this leads to many
drawbacks. With the software IDS, it is not only harder to correlate network traffic
patterns that involve multiple computers but also poses a challenge in coping up
with the heterogeneous environment having mixed machine configurations and
operating systems. It is also not very difficult to disable the IDS by the attackers.
The literature survey reveals that, there is a growing upcoming trend to use Field
Programmable Gate Arrays (FPGA) based customized Network On Chip (NoC)
and Offload the software processing to hardware realizations. But it turns out to be
a costlier solution and therefore hardware-software based hybrid solutions for the
security scenario are widely discussed in literature [86, 130].

6.3.2 A Novel Frame work for Designing NoC

FPGAs have manifested their presence in the network on chip paradigm due to
their various attributes. The foremost reasons are their capability to suit the real
time constraints, increasing dynamism to address the pertient issues of latency and

6.3 TCP/ IP Packet Splitter Implementation Using Mixed Flow 125

throughput and faster design and prototyping cycle that facilitates robust design
from testability point of view. FPGA based NoCs have been reported widely in the
literature [88-91]. However, few researchers have rightly reported that there is no
‘one size fits all’ NoC architecture [92], as different silicon systems have very
different requirements from their NoCs viewpoint. This is especially true in an
FPGA based environment where the design metrics such as space, time are very
stringent [130]. In this application we are proposing a novel framework for design-
ing of the FPGA based NoC. A specific case study of the TCP/IP packet processor
for embedded security enforcement is taken up.

6.3.3 Developing the FSM

A finite state machine (FSM) is a behavioral model comprising of a finite number
of states, transitions between those states, and actions. It is an abstract model based
presentation of a machine with a primitive internal memory. The FSM model of
the packet processor core with details of the state and their transitions is shown in
Fig. 6.6.

6.3.4 Simulation and Mixed Mode Design Aspects

This case study exhibits integration of third party tool i.e. ANSI C with Handel C. A
separate ANSI C routine is incorporated in the main Handel C program for display-
ing the packet attributes, calculating the packet statistics for out of sequence packet
analysis and alerting the custom messages to the user as regards to the bad IP or
Denial of Access. The simulation window is shown in Fig. 6.7.

6.3.5 Handel C Implementation

Handel C based implementation for realizing NoCs gives various benefits. The
NoC can be expressed at very high level of abstraction leaving the worries of the
actual structural implementation. The built in Platform Abstraction layer (PAL)
with Handel C features readymade macros required for the design of the NoC.
The required headers such as Ethernet, console, RAM, display can be declared and
invoked as and when required in the main program. Thus the PAL based design with
predefined functionality to access peripherals via APIs offers fast prototyping and
narrow development cycle. The present case study of packet processor showcases
all the benefits of using the Handel C for realizing the NoC. Complete program list-
ing is given below:

126

Physical
Interface 1

Start Capturing
Packets

Inbound [\
Packet

Packet Store

Packet A\
Monitoring

6 Rapid Prototyping of the Soft IP Cores on FPGA

Monitoring
Machanism

Machanism

Separation of packet
Attributes

BADIP 15

Other Than [\
IPV4

»
>
Check For
IPv4

Incorrect
Ckecksum

If IP==
BADIP

Comparator to
compair BADIP I
Check For Port

BADIP [\

LIST
T

BADIPN5

Forwarding
—»{ Machanism

IF Port=: 1\
Block

Drop
Machanism

Alter through
Serial Port

Checksum
Calculation

»

Checksum

Other Than
TCP

Physical
Interface 2

orrect |\
Checksum

Check Application
Layer Protocol

r
Drop A
packet

To serial |\
Port

Show Detail
Packet

(

Attributes
and Alter
Using
Serial Port

Fig. 6.6

FSM model of the packet processor core

»
N / i
Output

A

packet

Program 6.2 Handel C code for TCP/IP packet processor implementation
sfe s sfese s sfe s sfe e s sfe s s sfe s sfe se s sfe s s sfesesfe s s sfe s sfe e s sfe s s sfe s sfese s sfe s s sfe s sfe s s sfe s e sfe s sfe sk e

#define PAL_TARGET_CLOCK_RATE PAL_PREFERRED_VIDEO_CLOCK_

RATE
#include “pal_master.hch”

#include “pal_console.hch”

/ k
* Forward declarations
*/

6.3 TCP/ IP Packet Splitter Implementation Using Mixed Flow 127

- I]

_l=| =

ble (ConsclePtr
Ethernet)

e v [37 B v L«] i s

_sin heh Ln 36) o
1: main(). sainbo hoo Ln 31 .
* 2

3 »
® 4 main(). mainhc bec In 3

* 127

Fig 6.7 Simulation window of Packet Processor exhibiting the Mixed Mode Flow with ANSI C

static macro expr ClockRate = PAL_ACTUAL_CLOCK_RATE;

macro proc ReadPacket (ConsolePtr, Ethernet);
void DisplayByte (PalConsole *ConsolePtr, unsigned 8 Byte);
macro proc DisplayMAC (ConsolePtr, MACAddress);

macro proc PacketAnalyzer(value);
macro proc PacketMonitor(Value);

extern “C”

{

void DisplayData(unsigned char *Buffer, unsigned char Size);

int printf(const char *format, ...);

}

chanout output with { outfile = “c:\\packet.dat” };

/ *k
* Main program

128 6 Rapid Prototyping of the Soft IP Cores on FPGA

*/

void main (void)

{
macro expr Ethernet = PalEthernetCT (0);
PalConsole *ConsolePtr;

/#define BUFFER_SIZE 1500
unsigned char BUFFER_SIZE;

unsigned Data[40].d ;

unsigned i;
/>l<
* Check we’ve got everything we need
*/
PalVersionRequire (1, 2);
PalVideoOutRequire (1);
PalEthernetRequire (1);

/>l<

* Run Console and Ethernet in parallel with other code
*/

par

{

PalConsoleRun (&ConsolePtr, PAL_CONSOLE_FONT_NORMAL,
PalVideoOutOptimalCT (ClockRate), ClockRate);

/*
* Run Ethernet controller with user-selected MAC
* address (currently: 11 22 33 33 ab cd)
*/
PalEthernetRun (Ethernet, 0x11223333abcd, ClockRate);

seq
{
/*
* Enable the Console and the Ethernet
*/
par
{
PalConsoleEnable (ConsolePtr);
PalEthernetEnable (Ethernet);

}

/*

6.4 A Linear Congruential Generator (LCG) SoC

}

* Run the PacketDisplay macro forever
*/
// while (1)
{
par
{
ReadPacket (ConsolePtr, Ethernet);
printf(“Getting data from external C routine...\n”);

}

}
}

129

[st s e steste st s sheste st s ke st st s ke sfe st sk sfeste sk sfeste sk st sfesteseste sfestesieosle seste skt steststostestetoslkolokotokoskolostokoslkoskolokokoskolor

PacketDisplay (ConsolePtr, Ethernet)

et st s s sheste st s she st st s st sfe st sk sfeste sk st stk sfe stk sfestesteste steste st stestesteskoslestesteoslkolototokoslkokostokoslkolokokokosolokokosgkok /

macro proc ReadPacket (ConsolePtr, Ethernet)

{

unsigned 1 Error;
unsigned 16 Type;
unsigned 48 Dst, Src;
unsigned 11 Total_Length, Counter;
unsigned 8 Data;
unsigned char BUFFER_SIZE;
unsigned 8 value[1500];

/*
* Strings to display on PAL Console
*/

unsigned 8 ASCII; /* variable to copy ASCII codes into for display */

/*

* Attempt to read ethernet packet

*/

par

{
PalEthernetReadBegin (Ethernet, &Dst, &Src,

&Type, &Total_Length, &Error);

Counter = 0;

}

130 6 Rapid Prototyping of the Soft IP Cores on FPGA

/>l<
* If read was successful
*/
if (Error == 0)
{
do
{

PalEthernetRead (Ethernet, &Data, &Error);
if (Counter[3:0] == 0x0)
{

PalConsolePutChar (ConsolePtr, ‘\t’);

}

else

{
delay;

}

PalConsolePutChar (ConsolePtr, © ©);
par

{

output ! Data;
BUFFER_SIZE=Total_Length[7:0];
value[Counter]=Data;

DisplayData(value, BUFFER_SIZE);

if (Counter[3:0] == 0xf)
{

PalConsolePutChar (ConsolePtr, ‘\n’);
}

else

{
delay;

}

Counter++;

}

}
while (Counter != Total_Length);

PalConsolePutChar (ConsolePtr, ‘\n’);

6.4 A Linear Congruential Generator (LCG) SoC 131

PacketAnalyzer(value);

PacketMonitor(value);
PalEthernetReadEnd (Ethernet, &Error);
1
else
{
delay;
1

}

[3 st st st s steste st ke ste st s ke sl st s ke sheste sk stestesieste e stesk s steste sttt ste stttk stolkosteskoskokoloskolokokosolokoskololokoskokok

macro proc PacketAnalyzer(value)

{

unsigned 8 type;

unsigned i;

static unsigned 8 badIP1[4]={172,16,0,1};
static unsigned 8 badIP2[4]={172,16,0,1};
static unsigned 8 badIP3[4]={172,16,0,2};
static unsigned 8 badIP4[4]={172,16,0,102};
static unsigned 8 badIP5[4]={172,16,0,3};

type=value[0];

if(type==0x45)

{

output!type;

printf(“packet is Ethernet base having version IPV4\n”);
/Ipacket is ethernet

}

else

{

output!type;

printf(“packet is not ethernet base\n”);

}

type=value[9];
if(type==0x6)

{

printf(“TCP Packet\n”);
}

else if(type==0x11)

{

132 6 Rapid Prototyping of the Soft IP Cores on FPGA

printf(“UDP packet\n”);

}

if(value[12]==badIP1[0] && value[l3]==badIP1[1] && value[l4]==badIP1[2]
&& value[15]==badIP1[3])

{

printf(“Bad Packet\n”);

}

else if(value[12]==badIP2[0] && value[13]==badIP2[1] && value[14]==badIP2[2]
&& value[15]==badIP2[3])

{

printf(“Bad Packet\n”);

}

}

macro proc PacketMonitor(value)
{
printf(“Packet Attributes is send through serial Port\n\n”);

}

sk sk sk sk sie st st st sk sk st ste sk sk sk sk sk sk sk sk sk stttk sk sk sk sk sk sk sk skoskoskoskoskokostotkokokotoskoskoskoskokoskokokokolololkokokokokoskokoskokokokok

6.4 A Linear Congruential Generator (LCG) SoC

A linear congruential generator (LCG) represent one of the oldest and best-known
pseudorandom number generator algorithms. The linear congruential generator
(LCG) was proposed by Lehmer in 1948 [93]. The main advantage of the LCG
method is speed efficiency owing to only a few operations per call. The Soft IP
core of the random number generator in Handel C and its realization on the Xilinx
Spartan III FPGA is given below:

Program 6.3: Handel C code for LCG core

sk sk sk ske st sie st sk sk sk st st sk sk sk sk sk sk skoske sk stttk sk sk sk sk sk sk sk skoskoskoskostoskokotokokotokoskoskoskoskokokokolololokokoiokokoskokoskokosk

unsigned 32 X

interface port_in (unsigned 1 clk with {clockport=1}) clockport();

interface port_in (unsigned 32 valuel) Inportl() with {busformat="B<N:0>"};

interface port_in (unsigned 32 value2) Inport2() with {busformat="B<N:0>"};

interface port_in (unsigned 32 value3) Inport3() with {busformat="B<N:0>"};

interface port_out() outport(unsigned 32 return_value = X) with

{busformat="B<N:0>"};

set clock= internal clockport.clk;

void main(void)

{

unsigned 32 A,C,M;

/I take the value from user

6.5 Implementation of Reusable Soft IP Core of Blowfish Cipher 133

A=Inportl.valuel;

C=Inport2.value2;

M=Inport3.value3;

while(1)

{

X=(A * X + C)% M; //generate random number.and return a value to user.
}

}

sk sk sk sk sie st st sk sk st st sk sk sk sk sk sk skeoske sk stttk sk sk sk sk sk sk sk skoskoskoskostokokotokokostokoskoskoskoskokokokololololkokoiokokoskokoskoekosk

Fle B4t Vem Ad Foma? Took Window

3

B8 RO
Foy r

INES] 0£RE| 4 ¢4 BIUmEBE B oo HES || N ik &

|0

R L LT

CEECEEEEEE R E R

LI

| 3145 ps o 4361 ps

Fig. 6.8 Simulation report using ModelSim, the timeline (yellow) is the reference to validate
the timing at a particular instance

134 6 Rapid Prototyping of the Soft IP Cores on FPGA

Fig. 6.9 RTL view of the packet splitter using Xilinx Webpack

6.4.1 Map Report Generated by Xilinx Webpack

Target Device: xc3s400

Target Package: pq208

Target Speed : -4

Mapper Version: spartan3 -- $Revision: 1.36 $
Mapped Date : Fri Aug 08 20:09:20 2008
Design Summary

Logic Utilization:

e Number of Slice Flip Flops : 51 out of 7,168 1%
e Number of 4 input LUTs : 3,054 out of 7,168
42%

Logic Distribution:

6.5 Implementation of Reusable Soft IP Core of Blowfish Cipher

Number of occupied Slices

43%

Number of Slices containing onlyrelated logic
100%

e Number of Slices containing unrelated logic

Fig. 6.10 RTL realization of the LCG core on Xilinx spartan III FPGA

Total Number of 4 input LUTs

42%

Number of bonded IOBs

10B Flip Flops

Number of MULT18x18s

Number of GCLKs

Total equivalent gate count for design
Additional JTAG gate count for IOBs

135
1,548 out of 3,584
1,548 out of 1,548

0 out of 1,548 0%
3,054 out of 7,168

130 out of 141 92%
96

3 out of 16 18%

1 out of 8 12%
40,832

6,240

136 6 Rapid Prototyping of the Soft IP Cores on FPGA

e Peak Memory Usage : 155 MB
e Total REAL time to MAP completion : 9s
e Total CPU time to MAP completion : Ts

6.5 Implementation of Reusable Soft IP Core
of Blowfish Cipher

Blowfish is one of the fastest algorithms adopted by the large number of cipher
suites and encryption products. Although used widely in desktop and laptop com-
puters as a software implementation, the algorithm remained unexplored in the
embedded system paradigm due to its large memory footprint. The present commu-
nication reports implementation of reusable Soft IP core of the ‘Blowfish Cipher’
especially designed from the viewpoint of memory and time constraints in the
embedded domain.

6.5.1 Design Problem

Blowfish is a symmetric block cipher that is being used as a drop-in replacement for
‘Data Encryption Standard’ (DES) [118] or ‘International Data Encryption Algo-
rithm’ (IDEA) [119]. It takes a variable-length key, from 32 to 448 bits, making it
ideal for both domestic and exportable use. The algorithm was designed by Bruce
Schneier in 1993, and immediately became famous owing to its fast execution speed,
in comparison with the contemporary encryption algorithms. The noteworthy fea-
tures of this algorithm includes its inclusion in public domain and thus ensures
unpatented and license-free usage. However, inspite of the number of implementa-
tions in software, the literature survey reveals very few efficient hardware imple-
mentations [120], of this algorithm. The present application reports implementation
of ‘Blowfish’ algorithm in Handel-C prototyped on the Xilinx Spartan x3s400
FPGA.

6.5.2 Implementation in Handel C

In this work, the ‘Blowfish’ cipher has been implemented in Handel-C, that uses
much of the syntax of conventional C with the addition of inherent parallelism. In
order to gain maximum benefit in performance from the target hardware the ‘par’
construct is used here. The ‘macro’ is built to get the advantage of ‘spatial effi-
ciency’. Complete listing of the program is as follows:

6.5 Implementation of Reusable Soft IP Core of Blowfish Cipher 137

Fig. 6.11 RTL realization of the Blowfish Soft IP core

Program 6.4: Handel C code for blow fish implementation

s she sk sfe st st sk sk she sfe sk sk sk sk sk sk sk sfeoske sk sk st st s sk st st sk st sk steoste sk st st stk sk ste st stk sk stk st steoste steoskeosteosteoskeoskokeoskeoskokoskokokoskok
[[¥#%%% Program Listing of Blowfish Cipher Implementation *###### k44499
unsigned 64 plaintext,Cipher_text,inbus;

unsigned 32 R_plaintext,L_plaintext,s_box,L_xor,R_xor;
unsigned 8 A1,A2,A3,A4;

unsigned i;

while(1)

{

plaintext=inl.inbus;

L_plaintext=plaintext[63:32];

R_plaintext=plaintext[31:0];

do

{

L_xor=L_plaintext"p_keyl[i];

Al=L_xor[31:24];

A2=L1_xor[23:16];

A3=L_xor[15:8];

A4=L_xor[7:0];

//sbox value calculaion

s_box= (sboxO[A1] + sbox1[A2]) * (sbox2[A3] + sbox3[A4]);
R_xor=s_box * R_plaintext;

138 6 Rapid Prototyping of the Soft IP Cores on FPGA

swap (L_xor, R_xor);
L_plaintext=L_xor;
R_plaintext=R_xor;

if(i==15)

{

break;

}

i++;

}

while(i<=15);
L_xor=L_plaintext"p_key[16];
R_xor=R_plaintext"p_key[17];
Cipher_text=L_xor@R_xor;

}

}

macro proc swap (L_xor, R_xor)
{

par

{

L_xor = R_xor;

R_xor =L_xor;

}

}

sk she sk ske st st skt sk sk st ste sk sk sk sk sk sk sk sk sk stk sk sk sk sk sk sk sk skoskoskoskostokokotokokototoskoskoskoskokokokololololkokoiokokoskokoskokosk

6.5.3 Prototyping on Spartan 3 FPGA

The program developed in Handel C is converted into the EDIF format for the syn-
thesizing the hardware on the Xilinx Spartan 3 x3s400 FPGA for the target Package
Pq208, having the target Speed -4. The synthesis view is shown in Fig. 6.1.

6.5.4 Design Summary

The design summary is as follows:
Design Summary for the Blowfish Implementation:
Logic Utilization:

Number of Slice Flip Flops : 154 out of 7,168 2%

Number of 4 input LUTs : 150 out of 7,168 2%
Logic Distribution:

Number of occupied Slices: 91 out of 3,584 2%

Number of Slices containing

6.5 Implementation of Reusable Soft IP Core of Blowfish Cipher

only related logic: 91 out of 91
Number of Slices containing

unrelated logic: 0 out of 91
Total Number of 4

input LUTs: 150 out of 7,168
Number of bonded

IOBs: 131 out of 141
10B Flip Flops: 128

Number of GCLKs: 1 out of 8

Total equivalent gate count for design: 3,159
Additional JTAG gate count for IOBs: 6,288

139

100%

0%

2%

92%

12%

The average connection delay for the implementation is 1.278 nS. The average
connection delay on the 10 worst nets is 3.941 nS which indicate the temporal

efficiency of the implementation.

sk sk sk ske st st sk sk sk st st sk sk sk sk sk sk sk sk sk stttk sk sk sk sk sk sk sk skoskoskoskostokokotokoko kot skoskoskoskokokokolololokokokokokoskokoskokosk

Chapter 7

Soft Processor Core for Accelerated
Embedded Design

The synergy of FPGA and soft processor cores has the budding potential to allow
the integration SoC into a single FPGA chip. Embedded engineers often fight with
the confront of improving performance. Discrete processors a.k.a. hard processors
pose the following most striking drawbacks when it comes to embedding them for
a particular application:

e Fixed selection of peripherals, most of them remain unutilized for the given
application.

e No possible customization in clock frequency, that drags the entire system slow
or too fast and ends in power inefficiency.

e Less life time of the processor family

e Incompatibility interms of package size when a particular processor is being
upgraded, posing difficulties in PCB designing.

e Speed and interface incompatibility when multiple heterogeneous processors are
required to work as coprocessors.

Programmable logic has reached such a state of advancement in terms of speed
and density that it became a truly attractive alternative to the above mentioned RISC
and CISC processors. It can form a ‘matrix’” within which processing, peripherals,
data path, and algorithms can be placed to create powerful, flexible, and upgrade-
able systems. It is now available in forms and sizes that range from the traditional
use as glue logic up to structured ASIC replacements and even further [103].

As a result of all the above mentioned advancements, ‘Soft Processor Cores’
have emerged as an ultimate remedy for addressing the pitfalls of hard RISC and
CISC processors. ‘A soft-core processor is a hardware description language (HDL)
model of a specific processor (CPU) that can be customized for a given application
and synthesized for an ASIC or FPGA target.” The main advantages of the soft proc-
essor cores are as follows:

Greater possibility of Design Reuse.

Cost Effectiveness.

Customization and Flexibility.

Scalability.

Possibility of Hardware-Software portioning at an early stage.

R.K. Kamat et al., Unleash the System on Chip using FPGAs and Handel C, 141
DOI 10.1007/978-1-4020-9362-3_7, © Springer Science+Business Media B.V. 2009

142 7 Soft Processor Core for Accelerated Embedded Design

Platform independence.

Greater invulnerability to obsolescence.
Design Modularization.

Advantage of the earlier design case studies.

7.1 Building SoC for Temperature Control Application
Using Picoblaze

7.1.1 Design Problem

The theme of the present case study is rapid prototyping of the microcontroller
based control systems by integration of the Soft IP core on FPGA. Soft IP core of
Xilinx Picoblaze has been used on Spartan IIl FPGA. A case study of single setpoint
temperature controller is taken up. Complete methodology and listing of the VHDL
and assembly language program are given in the paper so as to facilitate the valida-
tion the results. Usage of resources and redundant hardware presented in the design
summary guides the user to select an appropriate FPGA for the intended applica-
tion. The results serve as a guiding source for implementation of full custom ASIC
implementation with an added advantage of thorough testing in an accelerated time
to market design paradigm.

7.1.2 Essence of Prototyping

Microcontroller has become the soul of the state of art instrumentation systems
owing to the intelligence and flexibility achieved with its inclusion. Embedded
microcontroller modules offer many advantages over the standard PC such as low
cost, small size, low power consumption, direct access to hardware, and if available,
access to an efficient preemptive real-time multitasking kernel. However, typical
difficulties associated with an embedded solution include long development times,
limited memory resources, and restricted memory management capabilities [104].
In order to make the microcontroller with the intended instrumentation, there is a
growing trend of sporadically incorporation of system instrumentation features into
processor architectures [105]. However, the design theme of microcontroller based
mainly software centric implementations do not guarantee the improvement in per-
formance and power efficiency in all the circumstances due to the general purpose
architecture of the target microcontroller itself. The development of Field Program-
mable Gate Arrays has provided yet another opportunity to the instrumentation pro-
fessionals to fine tune the controller architecture as per the process requirements.
The FPGA based development platform enables the developer to test and add fea-
tures in parallel without the need for repeating the complete testing of the designed

7.1 Building SoC for Temperature Control Application Using Picoblaze 143

instrument in an iterative fashion [106]. Thus the FPGA based compilation of the
instrumentation and control application results in a highly optimized silicon imple-
mentation that provides true parallel processing with the performance and reliability
benefits of dedicated hardware circuitry.

The advantages of the FPGA based design paradigm can be further enhanced
combining with the soft processor cores developed by third party. These soft IP
cores not only allow the integration of system design into a single FPGA device but
also enables optimized division of the system functionality into hardware and soft-
ware. Thus the FPGA platforms with soft IP cores are emerging for process control
applications enabling the designer’s customization of the processor core in an rapid
system development schedules leading to less time to market. The present commu-
nication reports a case study of picoblaze based soft IP core integration on Xilinx
Spartan III FPGA for single setpoint temperature control application.

7.1.3 Overview of Soft IP Processor Cores by Different Vendors

It is worthwhile here to present a brief review of the soft IP cores available from
different vendors. Owing to the advantages of the soft IP processors cores towards
reconfigurability, customization and emulation, many manufacturers have devel-
oped these cores either for a specific FPGA family or as a third party solution.
Altera has developed ARM as a hard process core while NIOS and NIOS II as
soft IP cores [107]. Similarly ATMEL and Quick Logic [108] have come out with
AVR and MIPS as hard processor cores respectively. However, the most popular
amongst the design community is Xilinx’s PicoBlaze a fully embedded 8-bit RISC
microcontroller core. The main features of Pico Blaze are its compactness, and cost-
effectiveness (as it is provided as a free), and well documented VHDL source file
with royalty-free re-use within Xilinx FPGA’s. The VHDL listing of the PicoBlaze
frees it from obsolescence as the same can be updated as per the design requirement.
The PicoBlaze core can be embedded within the target FPGA, however with certain
restriction to the device family selection.

The PicoBlaze [109] design was originally named KCPSM which stands for
‘Constant(K) Coded Programmable State Machine’ (formerly ‘Ken Chapman’s
PSM’). Ken Chapman was the Xilinx systems designer who devised and imple-
mented the microcontroller. The KCPSM3 core is designed for Spartan 3 family,
whereas the KCPSM2 and KCPSM are meant for vertex 2 or vertex 2 pro Spartan 11
and Spartan 2(e) or vertex (E) respectively. In general the PicoBlaze soft processor
provides 49 different instructions, sixteen 8-bit registers, 256 directly addressable
ports, and a maskable interrupt. The program length is 256 instructions, and all
address values are specified as 8bits contained within the instruction coding. The
design is based on the RISC ‘Harvard architecture’ model with separate data and
instruction ports. Its basic functionality is easily extended by connecting additional
logic to the microcontroller’s input and output ports. PicoBlaze delivers 50 million
instructions per second (MIPS) much faster than commercially available microcon-

144 7 Soft Processor Core for Accelerated Embedded Design

troller devices, yet occupies a tiny footprint of just 35 Configurable Logic Blocks
(CLBs). This processor has an 8-bit bus, which means all registers and arithmetic
operations are only 8 bits. There are 16 general purpose registers to quickly access
data (i.e. SO to SF), and programs can be up to 256 assembly language instructions
long. The PicoBlaze has an internal memory for storing data (called the scratch-
pad) with 64 locations. This is to store data which isn’t used as frequently as other
data. Operations can only be performed on data in registers, but there are only 16
registers. However, data can be stored and retrieved from the scratchpad to the reg-
isters. There are two flags ZERO and Carry Flag. The ALU operation results affect
the ZERO and CARRY flags. The PicoBlaze module has 256 input ports and 256
output ports. An 8-bit address value provided on the PORT_ID bus together with
READ_STROBE or WRITE_STROBE signals indicates the accessed port. The port
address can be either supplied in the program as an absolute value, or specified indi-
rectly as the contents of any of the 16 registers.

7.1.4 Design Methodology

In this case study a temperature control application is developed by integration
of the soft IP core of Picoblaze on Spartan III FPGA. The block schematic of the
system is shown in Fig. 7.1. The ADC 0804 is interfaced in an handshake manner
with the Picoblaze. e Current temperature and the set point is displayed on an 16 x2
LCD in an alternate manner. ON-OFF strategy of control is implemented with the
assembly language instructions of the Picoblaze.

Temperature data
For readout
<> soitsatainput
WR i ——> LCD
< Picoblaze Displa:
ADC 0804 RD Core on play
< SPARTAN
R Il FPGA
INTR
Temperature
Sensor
LM35 \ 4
Relay

Fig. 7.1 Block diagram of the temperature control system application with integration of
Picoblaze

7.1 Building SoC for Temperature Control Application Using Picoblaze 145

7.1.4.1 Design Methodology

Design methodology followed for the implementation is given below in step by step
manner.

1.
2.

PicoBlaze core was downloaded from the Xilinx website after registration.
The KCPSM3 version of the Picoblaze was downloaded as the target FPGA is
SPARTAN III. The core comprises of VHDL files (named as KCPSM3), Pro-
gram ROM, and an Assembler(KCPSM3.exe) and manual.

The top level VHDL program for the temperature controller was developed in
VHDL. Behavioral model is developed the VHDL listing of which is given in
the following point of the paper.

Appropriate assembly language program was developed for single setpoint
temperature controller. The LCD display driver and the handshaking of ADC
are the main parts of the program.

The assembly language program was executed using KCPSM3.exe. The output
is in the form of ROM file which is nothing but the program developed for the
Picoblaze.

The KCPSM3 VHDL file, generated ROM file are added to the project environ-
ment in Xilinx webpack.

The resulting file is then simulated, synthesized and the bit and MCS files are
then dumped in the SPARTAN III FPGA board using JTAG port. This forms the
customized core of the Picoblaze for the temperature controller application.

7.1.5 VHDL Program Listing

Program 7.1: VHDL code for temperature controller

sheoste sk sheo sk sk skeoste sk sfe sk sk sk st sk sheoske sk skeoste st stk sk skeoste sk stk sk skeoste sk stk sk skeoste sk stk sk steoste skeosteoske siostoste stttk skoskoteoskotok skokokek

VHDL Listing of the Program

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL,;

entity temp_controller is

Port (ADC_in: in std_logic_vector(7 downto 0);
relay_d : inout std_logic_vector(7 downto 0);
lIed_d : inout std_logic_vector(7 downto 0);
LCD_CONTROL : out std_logic_vector(3 downto 0);
clk : in std_logic);

end temp_controller;

architecture Behavioral of temp_controller is

component KCPSM3

port (

address : out std_logic_vector(9 downto 0);

instruction : in std_logic_vector(17 downto 0);

146 7 Soft Processor Core for Accelerated Embedded Design

port_id: out std_logic_vector(7 downto 0);
write_strobe: out std_logic;

out_port: out std_logic_vector(7 downto 0);
read_strobe: out std_logic;

in_port: in std_logic_vector(7 downto 0);
interrupt : in std_logic;

interrupt_ack: out std_logic;

reset : in std_logic;

clk: in std_logic

);
end component;

component control

port (

address : in std_logic_vector(9 downto 0);
instruction : out std_logic_vector(17 downto 0);
clk: in std_logic

);
end component;

--Processor signals

signal add_bus: std_logic_vector(9 downto 0);
signal inst_bus: std_logic_vector(17 downto 0);
signal port_add: std_logic_vector(7 downto 0);
signal data_out: std_logic_vector(7 downto 0);
signal data_in: std_logic_vector(7 downto 0);
signal write : std_logic;

signal read : std_logic;

begin

processor: kcpsm3

port map(

address => add_bus,

instruction => inst_bus,

port_id=> port_add,

write_strobe=> write,

out_port=> data_out,

read_strobe=> read,

in_port=> data_in,

interrupt => ‘0’,

interrupt_ack=> open,

reset => ‘0’,

clk=> clk

);

program: control

port map(

address => add_bus,

instruction => inst_bus,

clk=> clk

7.1 Building SoC for Temperature Control Application Using Picoblaze 147

);

ADC_Register: process(write, data_in, port_add)
begin

if port_add= x"00” then

if read’event and read = ‘1’ then
data_in<=ADC_lin;

end if;

end if;

end process ADC_register;

LCD_Register: process(write, data_out, port_add)
begin

if port_add= x"04" then

if write’event and write = ‘1’ then

Icd_d <=data_out;

end if;

end if;

end process LCD_register;

lcdcontrol_Register: process(write, data_in, port_add)
begin

if port_add= x"01" then

if write’event and write = ‘1’ then
LCD_CONTROL<=data_out(3 downto 0);

end if;

end if;

end process lcdcontrol_register;

relay_Register: process(write, data_in, port_add)
begin

if port_add= x"08” then

if write’event and write = ‘1’ then
relay_d<=data_out;

end if;

end if;

end process relay_register;

end Behavioral;
sk s ke sk sk sk s skeoske sk sk sk skeoske sk sk sk sfeosk sk kst sk sk skeosk s sk sk sk sk skeoste sk sk sk sk sk sk sk stk stk skt sk skosk skskosk sk sk ok

7.1.6 Low Level Instruction to Enable the Application

Program 7.2: Assembly code for temperature controller

sfe st s sk sk sfe sfe sieske she sfe sfe st ke she sk sfe ste ke sk sk sk sie sk s sk sk sk siesteosk sk sk skeoteosk sk sk sttt sk sk skoiokoskoskokotolokoskokoiolokoskokoiokoksk
adc DSIN 00

Icdcontrol DSOUT 02

adccontrol ~ DSOUT 01

lcddata DSOUT 04

148 7 Soft Processor Core for Accelerated Embedded Design

relay DSOUT 08
back: in sO,adc
call display
call delay
jump back
display: load s1,$38
call command
load s1,$0e
call command
load s1,$01
call command
load s1,$80
call command
CALL CONVERT
call data_disp
convert:load s4,$00

load s5,$00
load s1,s0
load s5,s1
load s2,$CC

convertl: sub s1,s2
jump c, next
add s4,$01
jump convertl
CALL BCD_CONVERT
load s7,$00
load s2,s1
load s3,$0A
next:sub s1,s3
jump c, next
add s7,$01
CALL BCD_CONVERT
RET
BCD_CONVERT:
load sa,$00
load s8,s1
load s9,s8
load s6,s8
AGAINI: SUB s6,$64
load s0,s6
jump ¢,NEXT]1
add sa,$01
jump AGAINI
NEXT1:
load s6,S8

7.1 Building SoC for Temperature Control Application Using Picoblaze

AGAIN2:

NEXT2:

command:

DATA_DISP:

READY:

ADD s6,$64
load s5,s6

load 7,500
;CLR C

load S1,s5

SUB s1,50A
load s5,s1

jump ¢, NEXT2
add s7,$01
jump AGAIN2

;CLR C

load s1,s5
ADD s1,$0A
ADD s1,$30
RET

CALL READY
load S2,S1

load 3,500

load s4,$01

out s3,lcdcontrol
out s4,lcdcontrol
out s3,lcdcontrol
RET

CALL READY
load s2,s1

load s3,$04

out s3,lcdcontrol
load s4,$02

out s4,lcdcontrol
load s3,$01

out s3,lcdcontrol
load s3,00

out s3,lcdcontrol
RET

load s4,$00

load s5,$02

out s4,lcdcontrol
out s5,lcdcontrol
;SETB P1.7
:CLR P3.2
;SETB P3.1

149

150 7 Soft Processor Core for Accelerated Embedded Design

BACKI:
load s4,$00
load s5,$01
out s4,lcdcontrol
out s5,lcdcontrol
:CLR P3.0
;SETB P3.0
;JB P1.7,BACK1
RET
END

delay: load se,00
load sf,00
back3: add se,$01
jump c, exit
back?2: add sf,$01
jump nc, back2
jump back3

exit: ret
sk sk sk sk sk sk s skeoske sk ke sk skeoske sk sk sk skeoske sk kst sk sk skeoske s ke sk sk sk skeoske sk sk sk sk sk sk sk s stk sk skt sk skosk skoskosk sk skok

7.1.7 Final SoC Specifications

The customized version of the Picoblaze for temperature controller application was
successfully implemented on a Spartan III FPGA board. The same worked success-
fully under the umbrella of the assembly language program developed for this pur-
pose. Moreover the design cycle in the course of simulation, verification presents
valuable information given in the following paragraphs.

The design information as appeared in the Xilinx webpack is as follows:

Design Information

Command Line : C:/Xilinx/bin/nt/map.exe -intstyle ise -p xc3s400-pg208-4 -cm
area -pr b -k 4 -c 100 -tx off -0 temp_controller_map.ncd temp_controller.ngd
temp_controller.pcf

Target Device : x3s400

Target Package : pq208

Target Speed : -4

Mapper Version : spartan3 -- $Revision: 1.16 $

Mapped Date : Fri Oct 26 16:14:39 2007

7.1 Building SoC for Temperature Control Application Using Picoblaze 151

Design summary gives the entire technical specifications of the customized
Picoblaze implementation on the target Spartan III FPGA. The logical utilization is
wound 1% with details as follows:

Logic Utilization:

e Number of Slice Flip Flops: 70 out of 7,168 1%
e Number of 4 input LUTs: 112 out of 7,168 1%

The logic distribution gives an idea of the extent to which the FPGA resources have
been used.

Logic Distribution:

e Number of occupied Slices: 98 out of 3,584 i.e. 2%
e Number of Slices containing only related logic: 98 out of 98 i.e. 100%
e Number of Slices containing unrelated logic: 0 out of 98 i.e. 0%

The other finer details of the implementation are as follows:

e Total Number 4 input LUTs: 184 out of 7,168 2%
e Number used as logic: 112

o Number used as a route-thru: 4

e Number used for Dual Port RAMs 16

36 oz - yap o, WEXTL] e
Olzes 437 BB+ s34 2,501 e(lalalalalal=l
P
. AT
O cary _ sicconrel
[tratie lead 6,32 © 00000008 m
e 20 16,454 7543218
100 3,08]
L #100000000
O e load 27,300 TES4I210
akdata
Tover
l.j s SCLR € HME0000000

Tesa3318

ey
@WO0000000 m
7543210

Frogees ia Reant A
Frogues ia Started

Asresbler Fhase 1t beilding symbol sable

Assesbler Fase 11 ConNSTRCTIng Opodes

Ansesbler Paase 11 building sisulation cojeste

Frogram is Resec

Fig. 7.2 PBlaze IDE interface

152 7 Soft Processor Core for Accelerated Embedded Design

e (Two LUTs used per Dual Port RAM)

Number used for 32x1 RAMs: 52
e (Two LUTs used per 32x1 RAM)
Number of bonded IOBs: 29 out of 141 20%
e OB Flip Flops: 28
e Number of Block RAMs: 1 out of 16 6%
e Number of GCLKs: 1 outof 8 12%

The total equivalent gate count used for the temperature controller design is
75,029. The analysis gives valuable results which guides the user as regards to the
effective selection of the target FPGA. It also presents a true picture of the used
resources and redundant hardware which could have been avoided in the follow-
ing revision of the project to optimize the power and speed metrics of the system.
The RTL schematic shown in Figs. 7.2 and 7.3 are useful for the full custom ASIC
implementation for the dedicated temperature controller applications. Thus the Soft
IP core integrated with the FPGA offers a rapid prototyping environment to realize
the semicustom design and progress eventually towards the dedicated full custom
ASICs.

Fig. 7.3 LUT based implementation of the temperature controller

7.2 Hardware Software Codesign of SoC with Built in Position Algorithm 153

7.2 Hardware Software Codesign of SoC with Built in Position
Algorithm

7.2.1 Design Statement

The paper communicates implementation of position algorithm of PID control
using soft IP core on a FPGA platform. Xilinx picoblaze is used on Spartan III
FPGA to implement the position algorithm for a temperature controller. Behavioral
architecture of temperature controller is developed in VHDL with the control algo-
rithm mapped to the software portion by means of the assembly language instruc-
tions of the processor. Usage of resources and redundant hardware presented in
the design summary shows the superiority of the implementation as compared to
the traditional control algorithms implemented on general purpose microcontrol-
lers. The results serve as a guiding source for implementation of full custom ASIC
implementation with an added advantage of thorough testing in an accelerated time
to market design paradigm.

7.2.2 Building PID on Chip

Proportional-integral-derivative (PID) control is the most common and widely used
process control algorithm commonly used in industries. The popularity of PID con-
trollers is attributed to their effectiveness in a wide range of operating conditions,
their functional simplicity and ease with which engineers can implement them using
current computer technology [110]. Although many architectures exist for control
systems, the PID controller is mature and well-understood by practitioners. For
these reasons, it is often the first choice for new controller design [112]. With the
evolution in the computing platforms; earlier in the form of microprocessors, later
Programmable Logic Controllers and the latest towards the microcontrollers and
Programmable Logic Devices there have been continues revisions and variations in
the PID algorithm implementations. The implementations and review as regards to
these evolving PID implementations is covered widely in the literature [111, 112].
There are several forms of digital PID implementations viz. interacting, parallel and
gain independent. However, from the implementation in an microcontroller environ-
ment there are two widely used variations of PID algorithm namely displacement
and velocity. In case of displacement PID algorithm, the control output is calculated
in accordance with the displacement (position) of the process variable from the set-
point value (error term). In Here the control output is an absolute value. The velocity
algorithm which is also called as incremental algorithm yields an output changing
in each calculation period [113].

Literature survey regarding the digital PID implementations in a microcontroller
paradigm reveals that the mathematical foundation of the algorithm is put forth so as
to suit the instruction set of the state of the art microcontrollers. However, this leads

154 7 Soft Processor Core for Accelerated Embedded Design

to some bottlenecks in the performance as the target microcontroller architecture
is not in tune with the PID implementation. This in turn leads to a typical situation
of using only few resources of the microcontroller and thus affects the power and
speed bottlenecks. In this communication a FPGA based hardwired implementation
of PID algorithm is reported so as to customize the processor architecture as per the
requirements. The implementation is centered around ‘Picoblaze’ the soft IP core by
Xilinx Inc., which is integrated on Spartan III FPGA. A case study of temperature
controller is taken up with implementation of position algorithm for the temperature
control.

7.2.3 Picoblaze: A Soft IP Core from Xilinx

PicoBlaze is a 8-bit microcontroller developed and maintained by Xilinx and Ken
Chapman. The microcontroller is described in VHDL and is to be implemented on
Xilinx’s different FPGAs and CPLDs. It is free to use as long as it is implemented
in a FPGA or CPLD that comes from Xilinx [114]. An in-depth documentation of
PicoBlaze along with the application notes are available online [115]. This is sup-
plemented by online forum to help the users in case of any difficulty. A download-
able version of the PicoBlaze is available with all the related files including the
VHDL definition of the processor, an assembler and the files that go with it [115].
The present application is developed with the latest version of the PicoBlaze [116]
i.e. KCPSM3 owing to its features such as test and compare instructions, 64 byte
scratch pad memory that works like an internal RAM etc. The KCPSM3 version of
Picoblaze is implemented on Spartan III FPGA by Xilinx.

7.2.4 Design Problem and Methodology

7.2.4.1 Design Problem

The block schematic of the system is shown in Fig. 7.1. The ADC 0804 is inter-
faced in an handshake manner with the Picoblaze. Current temperature and the set
point is displayed on an 16 x2 LCD in an alternate manner. A displacement / posi-
tion type of PID algorithm is implemented by using the assemble language instruc-
tions of Picoblze. The processed digital output is applied through a DAC 0808 to a
opto-coupled driver module comprising of triac and zero crossing detector. Power
controlled output of the above mentioned module is applied to the heater unit for
corrective action. The algorithm and other implementation issues are discussed in
the following part of the paper.

7.2 Hardware Software Codesign of SoC with Built in Position Algorithm 155
7.2.4.2 Design Methodology

The position algorithm has been widely described in the literature, however the form
useful from Picoblaze instruction set point of view is chosen here [116]. Pseudo
code for the same is as follows:

Routine (Position Control);

Initialize values of Kp, Ti and Td;

Calculate Kd =Kp*Td/T;

Calculate Ki = Kp * T /Ti;

Initialize initial error to zero i.e. d = ei = 0;

Repeat
Read ADC Output (Ao);
Calculate error e = setpoint — Ao;
Calculate integral coefficientd = d + e;
Calculate outputy = Kp * e + Ki * d + Kd (e — ei);
Update error ei = ¢;
Output y to DAC,;

The top level, i.e. behavioral model was developed in VHDL. Assembly code
was developed separately using the picoblaze IDE. The same was executed using
KCPSM3.exe. The KCPSM3 VHDL file, generated ROM file are added to the
project environment of Xilinx webpack and dumped to Spartan III FPGA using
JTAG programmer. The system was tested and found to worked satisfactorily for
several trials.

7.2.5 Final SoC Specifications

7.2.5.1 Results and Conclusion

The RTL hierarchical version of the implementation is shown in Fig. 7.2. The Xil-
inx mapping report file is given below:

Table 7.1 Xilinx mapping report file for design ‘temperature controller’

Design Information

temp_controller.pcf

Target Device : x3s400

Target Package : pq208

Target Speed : -4

Mapper Version : spartan3 -- $Revision: 1.16 $

156 7 Soft Processor Core for Accelerated Embedded Design

Fig. 7.4 Block Sche-
matic of the system

IC sensor — ADC
LM35 0804

I

Picoblaze
) Xilinx
Heater Unit SPARTAN llI

|

Triac Module with DAC
Zero crossing <——— 0808

detector optocoupler

Table 7.2 Design summary reported by Xilinx Webpack

Logic Utilization:

Number of Slice Flip Flops: 70 out of 7,168 1%

Number of 4 input LUTs: 109 out of 7,168 1%
Logic Distribution:

Number of occupied Slices: 97 out of 3,584 2%

Number of Slices containing only related logic: 97 out of 97
100%

Number of Slices containing unrelated logic: 0 outof 97 0%

Technically useful portion of the design summary is reproduced below:

It is evident from the above table that the design can be accommodated only in
the 1% of the total FPGA resources. The number of occupied slices are 97 occupied
completely by the design. This shows that unlike the implementation on traditional
microcontrollers such as MCS-51 series or PIC, the implemented design has no
room for redundant logic.

7.2 Hardware Software Codesign of SoC with Built in Position Algorithm 157

Table 7.3 Delay summary report

The NUMBER OF SIGNALS NOT COMPLETELY ROUTED for this design is: 0
The AVERAGE CONNECTION DELAY for this design is: 1.084
The MAXIMUM PIN DELAY IS: 3.560
The AVERAGE CONNECTION DELAY on the 10 WORST NETS is: 2.935

The delay report indicates sound implementation of the temperature controller in
the SPARTAN III FPGA with soft core of the Picoblaze. The design offers a rapid
prototyping environment to realize the semicustom design and provides a full proof
means to evaluate would be implementation of dedicated full custom ASIC.

Fig. 7.5 RTL hierarchical version of the implementation

Program 7.3: VHDL code for position algorithm

sk sk sk sk st st sk stk sk st st sk sk sk sk sk sk skeoske sk stosteoskosiosk sk sk sk sk sk sk skoskoskoskoskokotoko kit skoskoskoskokokokolokolokokoiokokokokoskoekosk
-- Company: Shivaji University

-- Engineer: Shinde S.A and Dr.R.K.Kamat

-- Create Date: 22:45:04 05/30/2008

-- Design Name:

-- Module Name: Position Algorithm - Behavioral

-- Project Name: Picoblaze

-- Target Devices: Spartan 3E 500

158

-- Tool versions: Webpack 9.2i
-- Description:

-- Revision:

-- Revision 0.01 - File Created

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL,;
---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity PositionAlgorithm is
Port (ADC_in: in std_logic_vector(7 downto 0);
DAC_Out : inout std_logic_vector(7 downto 0);
clk : in std_logic);
end PositionAlgorithm;
architecture Behavioral of PositionAlgorithm is
component kepsm3
port (
address : out std_logic_vector(9 downto 0);
instruction : in std_logic_vector(17 downto 0);
port_id: out std_logic_vector(7 downto 0);
write_strobe: out std_logic;
out_port: out std_logic_vector(7 downto 0);
read_strobe: out std_logic;
in_port: in std_logic_vector(7 downto 0);
interrupt : in std_logic;
interrupt_ack: out std_logic;
reset : in std_logic;
clk: in std_logic
);
end component;
component control
port (
address : in std_logic_vector(9 downto 0);
instruction : out std_logic_vector(17 downto 0);
clk: in std_logic
);
end component;
--Processor signals
signal add_bus: std_logic_vector(9 downto 0);
signal inst_bus: std_logic_vector(17 downto 0);

7 Soft Processor Core for Accelerated Embedded Design

7.2 Hardware Software Codesign of SoC with Built in Position Algorithm 159

signal port_add: std_logic_vector(7 downto 0);
signal data_out: std_logic_vector(7 downto 0);
signal data_in: std_logic_vector(7 downto 0);
signal writel : std_logic;

signal read1 : std_logic;

begin

processor: kcpsm3

port map(

address => add_bus,

instruction => inst_bus,

port_id=> port_add,

write_strobe=> writel,

out_port=> data_out,

read_strobe=> readl,

in_port=> data_in,

interrupt => ‘0’,

interrupt_ack=> open,

reset => ‘0’

clk=> clk

);

program: control

port map(

address => add_bus,

instruction => inst_bus,

clk=> clk

);

ADC_Register: process(readl, data_in, port_add)
begin

if port_add= x"00” then

if read1’event and readl = ‘1’ then
data_in<=ADC_lin;

end if;

end if;

end process ADC_register;

DAC_Register: process(writel, data_in, port_add)
begin

if port_add= x"08” then

if write1’event and writel = ‘1’ then
DAC_Out<=data_out;

end if;

end if;

end process DAC_Register;

end Behavioral;
sk s ke sk s sk s skeoske sk sk sk skeoske sk sk sk sfeoske sk kst sk sk skeoske sk sk sk sk sk skeoske sk sk sk sk sk sk sk sk stk skt skt sk skosk skoskosk sk sk ok

160 7 Soft Processor Core for Accelerated Embedded Design

Program 7.4: Assembly code for position algorithm
sk sk sk she st sie st s sk sk st st sk st sk sk sk sk skeoske sk stttk sk sk sk sk sk skeoskoskoskoskoskostokokotokokotokoskoskoskoskokokokololololkokoiokokoskokoskokosk
adc DSIN 00
DAC DSOUT 08
Kp EQU sa
Ti EQU sb
Td EQU sc
T EQU 30
dividend equ s5
divisor equ s6
result equ s7
multiplier equ s8
multiplicant equ s9
temp equ s4
Kd equ s3
KI equ s2
ei equ sO
setpoint equ 45
eequ0
dequ0
value equ sd
valuel equ se
value2 equ sf
back: in sO,adc
call algorithm
call output
call delay
jump back
algorithm: LOADkp, 20
LOAD Ti, 25
LOAD Td, 28
;division of T and Ti
LOAD dividend, T

LOAD divisor,Ti

CALL div

LOAD multiplier,Kp
LOAD multiplicant,result
CALL multiplication
LOAD Kd,result
LOAD dividend, Ti
LOAD divisor,T
CALL div

LOAD multiplicant,result
LOAD multiplier,Kp

CALL multiplication

7.2 Hardware Software Codesign of SoC with Built in Position Algorithm 161

LOAD Ki,multiplier
LOAD ei,0
LOAD s0,adc
load s9,setpoint
SUB s9,s0; value of e
ADD ei,s9; value of d e+d
CALL output
output: LOAD multiplier,Kp
LOAD multiplicant,e
CALL multiplication
LOAD value,multiplier
LOAD multiplier,Ki
LOAD multiplicant,d
call multiplication
LOAD valuel,multiplier
LOAD sl,e
LOAD s2,ei
sub s1,s2
LOAD multiplier,Kd
LOAD multiplicant,s2
call multiplication
LOAD value2,multiplier
ADD value,valuel
ADD value2,value
OUT value2,DAC
load ei,s2
ret
delay: ret
div: SUB dividend, divisor; do subtraction
JUMP C, stop; jump when carry
add result, 1; otherwise, add 1 to result
JUMP div continue subtraction
stop: RET
multiplication: load temp, multiplier
sub multiplicant,1
jump Nz, mul
load result,multiplier
ret
mul: add multiplier,temp
load result,multiplier
sub multiplicant,1
jump NZ, mul

ret

References

Ealbad e

10.

11.

14.

15.

16.

17.

http://www.st.com/stonline/products/technologies/soc/soc.htm
http://whatis.techtarget.com/definition/0,,sid9_gci859459,00.html#
http://www.answers.com/topic/system-on-a-chip?cat=technology

A Survey of Three System-on-Chip Buses:, AMBA, CoreConnect and Wishbone, Milica
Miti¢ and Mile Stojcev, es.elfak.ni.ac.yu/Papers/ICEST%?20’06.pdf

L. Bennini, G. DeMicheli, Networks on Chips: A New SoC Paradigm, IEEE Computer, Vol.
35, No. 1, January 2002 pp. 70-78.

S. Yoshikazu, S. Hiroaki, M. Kouji, T. Satoshi, Present Status of the Embedded CPU in SoC
Design, NEC Technical Journal, Vol. 1, No. 5; pp. 38—41, 2006 www.nec.co.jp/techrep/en/
journal/g06/n05/t060510.pdf

Intel Starts Foray into SoC Market, Christoph Hammerschmidt, EE Times
Europe,(07/24/2008 4:11 AM EDT), http://www.eetimes.com/rss/showArticle.
jhtml1?articleID=209600265&cid=RSSfeed_eetimes_newsRSS

Multi-processor SoC design poses debug challenge, by N. Flaherty, Friday 12 January
2007 http://www.electronicsweekly.com/Articles/2007/01/12/40512/multi-processor-soc-
design-poses-debug-challenge.htm

Embedded Systems White Papers, System-on-Chip Designs: Strategy for Success http://
whitepapers.silicon.com/0,39024759,60022283p,00.htm
http://www.us.design-reuse.com/articles/2502/system-on-chip-market-to-hit-1-3-billion-
units-in-2004-says-new-report.html

System on Chip — A Global Strategic Business Report, Research Report # GIA-MCP1471,
Publication Date: May 2008 Global Industry Analysts, Number of Pages: 1198

SoC market to exceed $58bn by 2010, Global system-on-a-chip or SoC market likely to
increase by over 150pc between 2006 and 2010, http:/www.ciol.com/content/780798852.
aspx

Worldwide System-on-Chip (SoC) Market To Reach $43.2 Billion By 2009, By Electron-
ics.ca Research Network Published 01/17/2005 Semiconductors, http://www.electronics.
ca/presscenter/articles/48/1/Worldwide-System-on-Chip-SOC-Market-To-Reach-432-Bil-
lion-By-2009/Page1.html

Mixed Signal System-on-Chip Applications- Cause of Mutual Interest! Date Published: 22
Nov 2005 By C. Vasanthalakshmi, Research Trainee, http://www.frost.com/prod/servlet/
market-insight-top.pag?docid=53870501 Frost and Sullivan Report, 2005.

Support for On-Chip Memory in Fiasco, Daniel Molka, TU Dresden, Verteidigung der Beleg-
Arbeit, Retrieved from http://os.inf.tu-dresden.de/EZAG//abstracts/abstract_20070817.
xml

System—on-Chip (SoC), Saturday, 06 January 2007 http://www.electronics-manufacturers.
com/info/circuits-and-processors/system-on-chip-soc.html

SERC: 6th May 2008: Colloquium: “On-Chip Memory Architecture Exploration of Embed-
ded Systems” https://www.serc.iisc.ernet.in/broadcast_messages/msg12231.html

163

164

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.
28.
29.
30.
31.
32.
33.
34.

35.
36.

37.

38.

39.

40.

41.

42.

43.

References

System-on-Chip Bus, The next generation of System-on-Chip, Daniel Wiklund, Electronic
devices, Department of Physics and Measurement Technology, Linkoping University, SE-
581 83 Linkoping, Sweden

Lecture 2a, Overview of System-on-Chip Design, Res Saleh, University of British Colum-
bia, Dept. of ECE

SoC bus war fizzles, Ron Wilson, EEdesign.com, (07/01/2002 6:13 PM EDT), http://www.
eetimes.com/news/design/columns/design_future/showArticle.jhtml?articleID=17407890
FPGA Implementation of DLX Microprocessor With WISHBONE SoC Bus, By R. Sel-
vakumar Rajagopal, M, Mun’im Ahmad Zabidi, Universiti Teknologi Malaysia (UTM),
http://www.design-reuse.com/articles/18600/d1x-microprocessor-wishbone-bus.html

T.M. Reeves, T.K. Ravey, K. Timothy, Preface- System-on-a-Chip and Packaging, IBM
Journal of Research and Development, Vol. 46, No. 6, 2002

Physical Limits to Modularity, By Daniel E Whitney, Senior Lecturer MIT Engineering
Systems Division, 3/3/2004.

The Development of the C Language* Dennis M. Ritchie, Bell Labs/Lucent Technologies,
http://cm.bell-labs.com/cm/cs/who/dmr/chist.html

Investigation of Hardware JPEG Encoder Implementation and Verification Methodologies,
S. Gordoni, Department of Electrical and Computer Engineering, University of California
Santa Barbara

The four Rs of efficient system design By Juergen Jaeger and Shawn McCloud,
Courtesy of Embedded Systems Programming Mar 1 2005 (14:39 PM) URL:
http://www.us.design-reuse.com/showArticle.jhtml;jsessionid=NTXNPH3R3BVB4QSND
BCSKHOCJUMEKIJVN?articleID=60404381

Presentation by Jamie Lokier, Liverpool University, UK & CERN, Switzerland

The Network Interface Bottleneck, 10th IEEE Real Time Conference, Beaune ‘97, M.
Boosten, R.W. Dobinson, B. Martin, CERN & Stan Ackermans Institute, Eindhoven,
[RT97]

Hardware Compilation Group, Oxford University Computing Laboratory http://www.com-
lab.ox.ac.uk/oucl/hwcomp.html, [OUCL]

Embedded Solutions Ltd. — Commercial suppliers and support for Handel-C, http://www.
embeddedsol.com/, [ESL]

C level design http://www.cleveldesign.com/, [ALT]

Frontier Design AIRT http://www.frontierd.com/, Handel-C
http://www.embeddedsol.com/, NLC

Systolic Parallel C http://www-mp.informatik.unimannheim.de/groups/mass_par_1/
projects/spc.html

Transmogrifier C http://www.eecg.toronto.edu/EECG/RESEARCH/tmcc/tmcc/

Handel-C for Hardware Design the Value of Software Design and Debug Methods To
Designers Addressing Reconfigurable Logic August 2002White paper by Celoxica
Hardware C — A Language for Hardware Design, Descriptive Note: Technical Report, Stan-
ford University CA Computer Systems Lab, Ku, David C.; De Micheli, Giovanni, Aug
1988

High level languages- C-FPGA environment, http://asic-soc.blogspot.com/2007/11/
advanced-tools-in-reconfigurable.html

What is Transmogrifier C ? http://www.eecg.toronto.edu/RESEARCH/tmcc/tmec/

C Level Design Introduces C2Verilog Version 2.0 to Increase Productivity for
Electronic System Designers, Business Wire, Dec 15, 1998, http://findarticles.
com/p/articles/mi_mOEIN/is_1998_Dec_15/ai_53400612

C to FPGA: An Abstract Concept for Concrete Design Implementation, By Jeff Jussel,
Celoxica, http://www.rtcmagazine.com/home/article.php?id=100304

Spec-C, Handel-C, SystemC: A Comparative Study, By: Nikola Rank, 13 March 2006
www.web.cecs.pdx.edu/~mperkows/CAPSTONES/DSP1/ELG6163_Rank.ppt
System-on-chip design methodology in engineering education by William D. Mensch, Jr.1
and Dennis A. Silage?2 retrieved from www.temple.edu/scdc/icee2000.pdf

References 165

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Processor cores put more into SoC designs, retrieved from http://www.electronicstalk.com/
news/tey/tey174.html

Programmable Clock Generator Solves System-Timing Woes, Dave Bursky | ED
Online ID #1720 | December 23, 2002, http://electronicdesign.com/Articles/Index.
cfm?AD=1&ArticleID=1720

A SoC for Multimedia Network Devices, T. Boesch, E. Roth, M. Thalmann, N. Felber, W.
Fichtner, ftp:/ftp.tik.ee.ethz.ch/pub/people/spin/icce.pdf

SoC Design Environment with Automated BusArchitecture Generation for Rapid Prototyp-
ing with ISS, Sang-Heon Leel, Jae-Gon Leel, Ando Ki2, Chong-Min Kyungl, vs. www.
kaist.ac.kr/~kyung/html/Paper/International %20Conference/IC-(132).pdf

Antifuse Memory IP Fuels Low-Power Designs, Jim Lipman,(08/01/2008 6:00 PM EDT),
URL: http://www.eetimes.com/showArticle.jhtml?articleID=209900470

Lower voltage next goal for low-power DDR, Marc Greenberg,(06/09/2008 12:00 AM
EDT), URL: http://www.eetimes.com/showArticle.jhtml?articleID=208402252

Keeping the best audio quality in mobile phone by managing voltage drops created by 217
Hz transients, D & R Industry Articles, http://www.design-reuse.com/articles/18519/man-
aging-voltage-drops.html

Enhance circuit timing design with programmable clock generators (Part 1 of 2),
As clocks speed increase and the number of clocks increases, a programmable clock
generator may offer a better system and EMI design solution, By Lin Wu, Prod-
uct Marketing Manager, Texas Instruments, Planet Analog, (06/03/08, 05:36:04 PM
EDT) http://www.design-reuse.com/exit/?url=http%3 A %2F%2Fwww.embedded.
com%?2Fcolumns%2Ftechnicalinsights%2F208402074%3Fprintable%3Dtrue

Enhance circuit timing design with programmable clock generators (Part 2 of 2), As clocks
speed increase and the number of clocks increases, a programmable clock generator may
offer a better system and EMI design solution, By Lin Wu, Product Marketing Manager,
Texas Instruments, Planet Analog, (06/04/08, 12:00:00 PM EDT)

UWRB Time-interleaved ADC exploiting SAR, Silvia Dondi, Silis s.r.1., Marco Bigi, Andrea
Boni, Matteo Tonelli, Dipartimento di Ingegneria dell’ Informazione — University of Parma,
http://www.design-reuse.com/articles/17552/uwb-time-interleaved-adc-sar.html

B. Le, T. W. Rondeau, J. H. Reed, C. W. Bostian, “Analog-to-Digital Converters”, IEEE
Signal Processing Magazine, Nov. 2004

Future-Ready Ultrafast 8bit CMOS ADC, for System-on-Chip Applications, Jincheol Yool,
Daegyu Leel, Kyusun Choil, and Ali Tangel2, www.cse.psu.edu/~kyusun/res/wasic.pdf
T. Monnier, EM. Roche, G. Cathebras, Flip-flop hardening for space applications, Memory
Technology, Design and Testing,1998. Proceedings. International Workshop on Volume,
24-25 pp. 104-107, Aug 1998

US Patent 6501314 — Programmable differential D flip-flop, retrieved from http://www.
patentstorm.us/patents/6501314/description.html

I. Shigeru, S. Masaaki, N. Sen, K. Akio, A Realization of Asymmetrically Faulty D-flip/
flop Based on Power Flicking Reset and Its Application to Fail-safe systems, IEIC Techni-
cal Report, Institute of Electronics, Information and Communication Engineers, Vol. 101;
No.3(FTS2001 1 -13);pp. 49-55, 2001

Phase Frequency Detector with a Novel D Flip Flop, Kaben Research Inc, retrieved from
http://www.wipo.int/pctdb/en/wo.jsp?wo=2005096501

Flip-flop (electronics), http://en.wikipedia.org/wiki/Flip-flop_(electronics)

Fundamentals of the Electronic Counters, Application Note 200, Electronic Counter Series,
Agilent Technologies, Electronic Counter Measures, Authored by Lee Pucker, Spectrum
Signal processing

Introduction to CMOS VLSI Design, SRAM, Lecture Notes Retrieved from www.fp.cse.
wustl.edu/dzar/463/Lectures/lect13.ppt

A New Low Power and High Speed Bidirectional Shift Register Architecture, N. Skla-
vos, P. Kitsos, N. Zervas and O. Koufopavlou, Retrieved from www.patmos2001.eivd.
ch/program/Repro%5CArt_10_4.pdf

166

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.
71.

78.

79.
80.
81.
82.
83.

84.
85.

References

Frequency divider design strategies, By Louis Fan Fei, Broadband Technology, Retrieved
from www.rfdesign.com/mag/503rfdf1.pdf

Fifo Controller Design Technique in JPEG 2000 Encoder, R.S. Gamad, Hemant
Saxena, retrieved from www.hindawi.com/Recently AcceptedArticlePDF.
aspx?journal=MSE&number=694582

VLSI Design and Verification of the Imagine Processor, Brucek Khailany, William J. Dally,
Andrew Chang, Ujval J. Kapasi, Jinyung Namkoong, Brian Towles, Proceedings of the
2002 International Conference on Computer Design, Retrieved from www.cva.stanford.
edu/publications/2002/khailany_iccd2002_imagine_impl.pdf

Embedded RAM In FPGAs Enables FIFO Applications Creating A FIFO Memory
Solves The Problem Of An Asynchronous Boundary Between Clocks, ED Online ID
#7522, March 8,1999, Retrieved from http://electronicdesign.com/Articles/Index.
cfm?ArticleID=7522&pg=1

Using DMA FIFO to Develop High-Speed Data Acquistion Applications for
Reconfigurable I/O Devices, NI Application Note, Retrieved from http://zone.
ni.com/devzone/cda/tut/p/id/4534

FIFO memories supply the glue for high-speed systems, Markus Levy, EDN,march 1997
Retrieved from http://www.edn.com/archives/1997/031497/06DF_02.htm

P. Balasubramanian, K. Anantha, Power and Delay Optimized Graph Representation for
Combinational Logic Circuits, International Journal of Computer Science Vol. 2 Retrieved
from www.waset.org/ijecs/v1/v1-1-2.pdf

P. Balasubramanian, C. Hari Narayanan, K. Anantha, Low Power Design of Digital Com-
binatorial Circuits with Complementary CMOS Logic, International Journal of Electronics,
Circuits and Systems Vol. 1 No. 1

E. Bareisa, V. Jusas, K. Motiejiinas, R. Seinauskas, Delay Fault Models and Metrics, Infor-
mation Technology and Control, Vol. 34, No. 4, 2005, ISSN 1392 — 124X

Soft Error Resilient System Design through Error Correction, Subhasish Mitra, Ming
Zhang, Norbert Seifert, TM Mak, Kee Sup Kim, Retrieved from www.gigascale.org/
pubs/893/ifip06%5B 1%5D .final.v7.pdf

J.G. Delgado-Frias, J. Nyathi, A VLSI high-performance encoder with priority lookahead,
VLSI,1998. Proceedings of the 8th Great Lakes Symposium on VLSI design, Vol. 19-21,
pp. 59-64, Feb 1998

IP reuse simplifies SoC design, verification John Wilson, EE Times,(10/11/2004), http://
www.eetimes.com/news/latest/showArticle.jhtml?articleID=49900412

Design Reuse, http://whatis.techtarget.com/definition/0,sid9_gci759468,00.html

R. Mathur, Aptix Corporation, SoC Prototyping Requirements, FPGA and Structured ASIC
Journal, Retrieved from http://www.fpgajournal.com/articles/soc_aptix.htm

C- Based Rapid Prototyping for Digital Signal Processing, E. Casseau, B. Le gal, P.
Bomel, C. Jego, S.Huet, E. Martin, Retrieved from www.eurasip.org/Proceedings/Eusipco/
Eusipco2005/defevent/papers/cr1179.pdf

Teaching IP Core Development: An Example, Aleksandar Milenkovic, David Fatzer,
Retrieved from http://www.ece.uah.edu/~milenka

ASIC Prototyping Using Off-the-Shelf, FPGA Boards: How to Save Months of Verification
Time and Tens of Thousands of Dollars, Retrieved from www.synplicity.com/literature/
whitepapers/pdf/proto_wp06.pdf

L.A. Zadeh, Fuzzy Logic, IEEE Computer, pp. 83—-89, 1988

L.C. Jain and N.M. Martin, Fusion of Neural Networks, Fuzzy Sets, and Genetic Algo-
rithms: Industrial Applications, The CRC Press, 1999

A. Kandel, G. Langholz, Fuzzy Hardware: Architectures and Applications, Springer, 1998.
Handel C reference manual www.celoxica.com/techlib/files/CEL-W0410251JJ4-60.pdf

V. Paxson, K. Asanovic, S. Dharmapurikar, J. Lockwood, R. Pang, R. Sommer, N. Weaver:
Rethinking Hardware Support for Network Analysis and Intrusion Prevention, USENIX
First Workshop on Hot Topics in Security (HotSec), Vancouver, B.C., July 31, 2006

References 167

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

S. Sachidananda, S. Gopalan, S. Varadarajan, Hardware-Software Hybrid Packet Process-
ing for Intrusion Detection Systems, Vol. 3802/2005, Springer, 2005

D.V. Schuehler, J.W. Lockwood, TCP Splitter. A TCP/IP Flow Monitor in Reconfigurable
Hardware, IEEE Micro, Vol. 23, No. 1, pp. 54-59, Jan/Feb 2003

D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, G. De Micheli:
NoC Synthesis Flow for Customized Domain Specific Multiprocessor Systems-on-Chip,
2005

E. Bolotin, I. Cidon, R. Ginosar, A. Kolodny: QNoC: QoS Architecture and Design Process
for Networks on Chip, JSA, Feb 2004.

K. Goossens, J. Dielissen, A. Radulescu: A Ethereal Network on Chip: Concepts, Architec-
tures, and Implementations, IEEE Design and Test of Computers, Sep/Oct, 2005.

F. Moraes, N. Calazans, A. Mello, L. Modller, L. Ost, Hermes: an Infrastructure for Low
Area Overhead Packetswitching Networks on Chip, Integration, VLSI Journal, Oct. 2004.
R. Gindin, I. Cidon, I. Keidar, NoC-Based FPGA: Architecture and Routing, http://www.
ee.technion.ac.il/matrics/papers/NoC-Based%20FPGA .pdf Retrieved on March 1, 2008
D.H. Lehmer. Mathematical methods in large-scale computing units. In Proc. 2nd Sympos.
on Large-Scale Digital Calculating Machinery, Cambridge, MA, 1949, pp. 141-146, Cam-
bridge, MA, 1951. Harvard University Press.

Application-specific integrated circuit, http://www.answers.com/topic/asic

ALD Full Custom Design, Retrieved from http://www.aldinc.com/ald_fullcustom.htm
W.J. Dally, A. Chang, The Role of Custom Design in ASIC Chips, Retrieved from www.
cva.stanford.edu/publications/2000/dac00.pdf

B. Kick, U. Baur, J. Koehl, T. Ludwig, T. Pflueger, Standard-cell-based design methodology
for high-performance support chips, IBM Journal of Research and Development, Jul-Sep
1997

Under the Hood: Gauging standard-cell performance, by Michael Keller, Semiconduc-
tor Insights 08/27/2007, Retrieved from URL: http://www.eetimes.com/showArticle.
jhtml?articleID=201801414

N. Sherwani. Algorithms For VLSI Physical Design Automation. 3rd ed., Kluwer Academic
Publishers, pp. 222-223, 1999.

System-on-Chip Designs Strategy for Success, W HI T E P A P E R — June 2001 Udaya
Kamath Rajita Kaundin, Retrieved from www.wipro.com/pdf_files/Wipro_System_on_
Chip.pdf

Where Do Structured ASICs Fit?, Retrieved from http://www.soccentral.com/results.
asp?CatID=468

Assessing the structured-ASIC alternative, Ron Wilson, EE Times, 06/03/2004,
Retrieved from http://www.eetimes.com/industrychallenges/silicon/showArticle.
jhtml?article]D=21401237

Embedded FPGA soft core processor enables universal CompactPCI applications, Pat
Mead, Marketing Manager Altera Europe And Barbara Schmitz, Marketing Director MEN
Mikro Elektronik, Embedded System Engineering Magazine, Retrieved from http://www.
esemagazine.com/index.php?option=com_content&task=view&id=187&Itemid=2
Instrumentation control using the Rabbit 2000 embedded microcontroller, Authors:
Schofield, Ian S.; Naylor, David A., Advanced Software, Control, and Communication Sys-
tems for Astronomy. Edited by Lewis, Hilton; Raffi, Gianni. Proceedings of the SPIE, Vol.
5496, pp.dr 392-401 (2004)

FPGA based CPU instrumentation for hard real-time embedded system testing, Richard
Fryer, ACM SIGBED Review archive, Vol. 2, No. 2 (April 2005) table of contents, Special
issue: IEEE RTAS 2005 work-in-progress, pp. 39-42, 2005, ISSN:1551-3688

Exploring C for Microcontrollers: A Hands on Approach by J. S. Parab, V. G. Shelake, R.
K. Kamat and G.M. Naik Springer Netherlands, 2007

Altera tweaks soft-core processor, By Susan Rambo, Embedded.com, 02/25/03, http://
www.embedded.com/story/OEG20030225S0022 retrieved on October 20, 2007

168

108.

109.

110.

111.

112.

113.

114.

115.

116.
117.

118.

119.

120.

121.

122.

123.

124.

125.

References

QuickLogic QuickMIPS ESP Is Industry’s First — Combines a High-speed Processor With
Hardwired Functions and Field Programmability, Design and Reuse Newsletter, http://
www.us.design-reuse.com/news/news349.html retrieved on October 21, 2007

PicoBlaze User Resources Xilinx Inc. website http://www.xilinx.com/ipcenter/processor_
central/picoblaze/picoblaze_user_resources.htm retrieved on October 21, 2007
“Proportional-integral-derivative explained, Tuning PID controls”, Javier Gutirrez, National
Instruments, Industrial Control Design Line, CMP Media, http://www.industrialcontrold-
esignline.com/199000752; jsessionid=XZELCWV0OSLJ2QQSNDLQCKHOCJUNN2JVN?
printableArticle=true retrieved on October 20, 2007

“New techniques for PID controller design”, Moradi, M.H., Control Applications, 2003.
CCA 2003. Proceedings of 2003 IEEE Conference on Vol. 2, No. 23-25 June 2003pp:
903-908 vol.2

The unified gain tuning approach to the PID position control with minimal overshoot,
position stiffness, and robustness to load variance for linear machine drives in machine
tool environment Joohn-Sheok Kim Moon-Suk Choi Seokjoo Kan, Dept. of Electr. Eng.,
Inchon Univ., Applied Power Electronics Conference and Exposition, 2001. APEC 2001.
Sixteenth Annual IEEE, Publication Date: 2001, Vol. 1, On page(s): 635-641 Vol. 1, ISBN:
0-7803-6618-2

The PID Algorithm, STRAIGHT-LINE CONTROL CO., INC., http://members.aol.com/
pidcontrol/pid_algorithm.html

Xilinx Reference Design License http://www.xilinx.com/ipcenter/doc/referencedesignli-
cense.pdf

PicoBlaze Soft Processor homepage http://www.xilinx.com/ipcenter/processor_central/
picoblazer/index.htm

KCPSM3 Manual: www.xilinx.com/bvdocs/userguides/ug129.pdf

Lecture notes Digital Control Algorithms and Their Implementation by Peyman Gohari
http://users.encs.concordia.ca/~gohari/ELEC6061/Files/9.pdf

DATA ENCRYPTION STANDARD, U.S. DEPARTMENT OF COMMERCE/National
Institute of Standards and Technology, FEDERAL INFORMATION PROCESSING
STANDARDS PUBLICATION, FIPS PUB 46-3, 1999 October 25, Retrieved from http://
csre.nist.gov/publications/fips/fips46-3/fips46-3.pdf on July 1, 2008.

Garfinkel, Simson,(December 1, 1994). PGP: Pretty Good Privacy. O’Reilly Media,
pp-101-102. ISBN 978-1565920989.

Lin, M.C.-J. Youn-Long Lin, A VLSI implementation of the Blowfish encryption/decryp-
tion algorithm, Design Automation Conference,2000. Proceedings of the ASP-DAC 2000.
Asia and South Pacific

Cody, Brian; Madigan, Justin; MacDonald, Spencer; Hsu, Kenneth W, High speed SOC
design for blowfish cryptographic algorithm, Very Large Scale Integration, 2007. VLSI -
SoC 2007. IFIP International Conference, 2007

FPGA to ASIC Strategy for Communication SoC Designs, by Rick Mosher, AMI Semicon-
ductor, Retrieved from http://www.design-reuse.com/articles/4360/fpga-to-asic-strategy-
for-communication-soc-designs.html

FPGA-based System-on-Chip Designs for Real-Time Applications in Particle Physics,
Shebli Anvar, Olivier Gachelin, Pierre Kestener, Herve Le Provost, Irakli Mandjavidze,
Presented at the 14th IEEE Real Time Conference, Stockholm, Sweden, June 6-10, 2005,
Retrieved from www.irfu.cea.fr/Phocea/file.php?class=std&&file=Doc/Publications/
Archives/dapnia-05-105.pdf

The Half-Adder Form and Early Branch Condition Resolution, David R. Lutz and D. N.
Jayasimha, Proceedings of the 13th Symposium on Computer Arithmetic (ARITH ‘97)

B. Adrian, T. Jarmo, Vlsi-efficient implementation of full adder-based median filter,2004
IEEE International Symposium on Circuits and Systems: Proceedings, May 23-26, 2004,
Sheraton Vancouver Wall Centre Hotel, Vancouver, British Columbia, Canada

References 169

126.

127.

128.

129.
130.

D.J. Soudris, V. Paliouras, T. Stouraitis, C.E. Goutis, VLSI design methodology for RNS
full adder-based inner product architectures, IEEE transactions on circuits and systems. 2,
Analog and digital signal processing ISSN 10577130

Adders and computational power, Retrieved from http://www.edacafe.
com/books/phdThesis/Chapter-2.5.php

Booth Recoding, ASIC Design for Signal Processing, Retrieved from http://www.
geoftknagge.com/fyp/booth.shtml

IP & Ethernet Interfaces, Retrieved from http://www.beyondlogic.org/etherip/ip.htm

S. A. Shinde, V. G. Shelake, R. K. Kamat, FPGA based Packet Splitter Implementation
Using Mixed Design Flow, ELECTRONICS AND ELECTRICAL ENGINEERING, 2008.
No. 8(88)

Index

A

ABLED, 26
Adder, 83, 84, 85
Altera, 143

Alu, 88

Amb, 9
Arithmetic Core, 82
Arm, 2, 142

Asic, 4,5,6

Asix, 10

Atmel, 10

Audio Code, 11
Audio Processor, 8

B

Barrel Shifters, 77

BCD TO Seven Segment converter, 72
Binary to Gray Converter, 75
Bipolar, 5

Bit manipulation, 32, 34
Blowfish Cipher, 136
Boolean, 39, 44, 83

Booth algorithm, 87
bottom-up, 16, 29, 31

BPS, 112

BSR, 52

C

C2Verilog, 30

Catapult C, 31

Centrality Communications, 10
CISC, 8, 163

CMOS, 5, 14, 62

Co Simulation, 28, 122
Codesign, 153
Combinational Logic, 61
Computer Aided Design, 2
Cones, 30

Conexant, 11

Counter, 49

CPLD, 6, 18

CPU, 9

cyclic redundancy checks, 77

D

D Flip-Flop, 44

D latch, 44

Decoder, 62, 64
Defuzzification, 117
Design and Reuse, 3
Design Automation, 5, 26
Digital signal processor, 7, 8, 15
DIME-C, 31

DRAM, 11

DSP algorithms, 83, 85

E

EDA, 3,5, 25

EDIF, 27, 32, 37

EDK, 91

Embedded processor, 7, 11, 81
Emerson, 10

Encryption, 53, 136

Error Detection, 62, 70

ESL, 21

Ethernet, 23, 91, 125

F

FIFO, 52, 55

Flash, 8, 11, 14

Floating Point component library, 34
Floorplanning, 18

FPGA, 16, 17, 20

Freescale Semiconductors, 10
frequency scalar, 54

FSL, 91

FSM, 125

Fujitsu Microelectronics, 11

171

172 Index

full adder, 84 Matlab, 27, 50

Full Custom, 4, 6 memory, 136, 142

Fuzzification, 117 MEMS, 5

fuzzy controller, 116 MHS, 93

Fuzzy Logic, 116 Microblaze, 91

fuzzy rule, 116 Microprocessor, 7
MIPS, 21

G Mitrion C, 30

GAL, 18 Mixed Design flow, 123

General purpose processors, 8 ModelSim, 122

Glitche, 61, 62 Moore’s law, 15, 81, 124

graphics processor, 7 MPU, 15

Gray code, 75 MRSRG, 53

Gray to Binary Converter, 76 MSI, 3

Grid Connect, 10 MSS, 93

GUIL 91
N

H NAND, 36

Half Adder, 83 Napa C, 30

Hamming code, 58 National Semiconductor, 55

Handel C, 32, 33, 34 Netlist, 32, 93

HardwareC, 30 Network on Chip, 123

HyperTerminal, 92, 112 Network processor, 8
NoC, 123, 124

I NRE, 6, 20

1/0, 12, 27,32 Nvidia, 10

IDE, 32

Impulse C, 30 (0]

Intel, 9, 10 OPB, 91

Interfaces, 33, 34 OpenCores, 82

Internet Protocol, 71 OTP, 11

IP Cores, 8, 81, 115

1PV4, 131 P
PAL, 18, 26

J Parallel, Port 23

JKFF, 47 parallel processing, 29, 32

JTAG, 23, 145, 155 Parallelism, 21, 32
parity checker, 71

K Parity Generator, 70

KARL, 26 Pattern Generator, 53

KCPSM, 143 Pblaze, 151

KCPSM3, 143 PCI, 23, 55

Kontron, 11 PCI-to-PClI bridge, 55
Philips, 11

L Picoblaze, 21, 23, 142

LCG, 132 picoChip, 11

LFSR, 53 PID, 153

LIFO, 56 Platform Abstraction layer, 125

linear congruential generator, 132 PLB, 91

LSL 3 Position Algorithm, 153
power DMOS, 5

M PowerPC, 21, 91

Macro functions, 34 PRBS, 53

Map, 32, 37 Prescale, 49

Index

Priority Encoder, 67
Provigent, 11

Q

Queue Processing, 55

R

RCA, 85
Reconfigurable, 5, 21
Ripple carry adder, 85
RISC, 21,22, 112
RNS Architectures, 84
ROM, 143

RS232,23

RTL, 21, 27

S

SDRAM, 12
Semicustom, 16, 18
Sequential Logic, 43
Shared expression, 34
Shift Register, 52
Sigma Designs, 10
SoC, 11, 12, 14

SoC to NoC, 123

Soft IP Cores, 143
Soft IP processor, 143
Spartan, 144

Spartan 3E Starter Kit, 23, 112
SpecC, 30

SPIL, 8

SRAM, 11, 21, 52, 55
SSL, 3

SSRG, 53

ST Microelectronics, 10
Synthesis, 26, 31
SystemC, 30

T

TCP/ IP, 123
Temperature Control, 152
Texas Instruments, 10
TLM, 22

Top Down, 29
Transmogrifier, 30
Trident, 10

U

UART, 91, 112
ULSI, 2
USART, 8
USB, 12, 23

\4

Verilog, 27
VHDL, 27
VLSL 2,5

w

Wafer-scale integration, 3
Webpack, 23, 145
WIMAX, 11

Wishbone, 12

X
Xilinx Microprocessor Debugger, 93
Xilinx Platform Studio, 91

173

