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Preface

There are many ‘‘Electric Circuits’’ books on the market, but this unique ‘‘Under-
standable Electric Circuits’’ provides understandable and effective introduction to
the fundamentals of DC/AC circuits.

The English version of this book continues in the spirit of its successful Chi-
nese version, which was published by Higher Education Press (one of the largest
and most prominent publishers of educational books in China) in 2005, and rep-
rinted in 2009. The second edition provides an extensive revision of the chapters in
the first edition and an enlargement through the addition of three new chapters.

The new edition of the book provides updated insights on circuit analysis theory in
a manner that will be more engaging to readers. It contains a design and page layout
that will enhance visual interest and is a clear source of information on a complex topic.

Although the core material has not changed much, it has been extensively
revised and expanded for this new edition to provide a clear source of information
on this complex topic and a more concise study guide than the original edition.
Each topic, key term, concept, law, etc. has a clear definition followed by examples
in each section, making studying and reviewing more effective. Materials are pre-
sented visually with less text and more outlines so that the readers can quickly get
to the heart of each topic.

This unique and well-structured book provides understandable and effective
introduction to the fundamentals of DC/AC circuits, including current, voltage,
power, resistor, capacitor, inductor, impedance, admittance, dependent/independent
sources, basic circuit laws/rules (Ohm’s Law, KVL/KCL, voltage/current divider
rules), series/parallel and wye/delta circuits, methods of DC/AC analysis (branch
current and mesh/node analysis), the network theorems (superposition, Thevenin’s/
Norton’s theorems, maximum power transfer, Millman’s and substitution theorems),
transient analysis, RLC circuits and resonance, mutual inductance/transformers, etc.

The new edition includes challenging practice problems at the end of each
chapter, and three new chapters on quantities and units, magnetism and electro-
magnetism, and three-phase systems.

Key features

As an aid to readers, the book provides some noteworthy features:

● A concise study guide, quickly getting to the heart of each topic, helping
readers with a quick review.

● Each topic, concept, term, and phrase has a clear definition followed by
examples in each section.



● Clear and easy-to-understand written format and style. Materials are presented
in visual and grayscale format with less text and more outlines, boxes, etc.;
clearly presenting information and making studying/reviewing more effective.

● Key terms, properties, phrases, concepts, formulas, etc. are easily located.
Clear step-by-step procedures for applying theorems.

● Summary at the end of each chapter to emphasize the key points and formulas
in the chapter.

Experiments after each chapter in the original edition have been replaced with
practice problems, which will help students focus on the key principles, complete
the connection between theory and practice, and assist readers in the learning
process.

Key concepts have been explained clearly by detailed, worked examples in
chapters and readers will be consistently made to apply and practice these theories
in practice problems throughout the book. Practice problems allow readers to work
similar problems and check their results against the odd-numbered answers pro-
vided at the end of book, and thus, provide support for readers to complete the
connection between theory and practice.

Therefore, although the essential contents presented in the second edition of
the book are the same as that in the first edition, the second edition contains some
additions and enhancements that will ensure its applicability to readers today and
for many years to come.

Suitable readers

This book is intended for college/university students, technicians, technologists,
engineers, or any other professionals who require a solid foundation in the basics of
electric circuits.

It targets an audience of all sectors in the fields of electrical, electronic, and
computer engineering such as electrical, electronics, computer, communications,
control and automation, embedded systems, signal processing, power electronics,
industrial instrumentation, power systems (including renewable energy), electrical
apparatus and machines, nanotechnology, biomedical imaging, information tech-
nology, artificial intelligence, and so on. It is also suitable to nonelectrical or
electronics students. It provides readers with the necessary foundation for DC/AC
circuits in related fields.

To make this book more reader-friendly, the concepts, new terms, laws/rules
and theorems are explained in an easy-to-understand style. Clear step-by-step
procedures for applying methods of DC/AC analysis and network theorems make
this book easy for readers to learn electric circuits themselves.
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Chapter R

Quantities and units

Chapter outline

R.1 International system of units (SI) ............................................................... 1
R.1.1 SI units and circuit quantities......................................................... 1
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Self-test ................................................................................................................ 12

Chapter R is a review of basic math fundamentals. There is a self-test at the end
of the chapter that can test readers’ understanding of the material. Students can
take the self-test before beginning the chapter to determine how much they
know about the topic. Those who do well may decide to move on to the next
chapter without reading the lesson.

R.1 International system of units (SI)

R.1.1 SI units and circuit quantities
Metric system (SI – International System of Units): SI system is the world’s
most widely used system of measurement. It is based on the basic units of meter,
kilogram, second, etc.

● SI originates from the French ‘Le Système International d’Unités’, which
means the International System of Units or the metric system to most people.

● Each physical quantity has an SI unit. There are seven basic units of the SI
system and they are listed in Table R.1.



SI Units
– International System of Units (SI) is the world’s most widely used system

of measurement.
– There are seven base units of the SI system: m, kg, s, A, K, mol, and cd.

Derived quantities: All other metric units can be derived from the seven SI basic
units that are called ‘‘derived quantities.’’ Some derived SI Units for circuit quan-
tities are given in Table R.2.

R.1.2 Metric prefixes (SI prefixes)
Metric prefixes (SI prefixes)
● Sometimes, we come across very large or small numbers when doing circuit

analysis and calculation. A metric prefix (or SI prefix) is often used in the
circuit calculation to reduce the number of zeroes.

● Large and small numbers are made by adding SI prefixes. A metric prefix is a
modifier on the root unit that is in multiples of 10.

● In general science, the most common metric prefixes such as milli, centi, and
kilo are used. In circuit analysis, more metric prefixes such as nano and pico
are used. Table R.3 contains a complete list of metric prefixes.

Table R.1 SI base units

Quantity Quantity symbol Unit Unit symbol

Length l Meter m
Mass M Kilogram kg
Time t Second s
Electric current I Ampere A
Temperature T Kelvin K
Amount of substance m Mole mol
Intensity of light I Candela cd

Table R.2 Some circuit quantities and their SI units

Quantity Quantity symbol Unit Unit symbol

Voltage V Volt V
Resistance R Ohm W
Charge Q Coulomb C
Power P Watt W
Energy W Joule J
Electromotive force E or VS Volt V
Conductance G Siemens S
Resistivity r Ohm � meter W � m
. . . . . .
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R.1.3 Metric conversion

Metric conversion table

Power of 10 103 102 101 1 � 10�1 10�2 10�3

Prefix kilo hecto deka Example:
meter, ampere, volt, etc.

� deci centi milli

Symbol k h da � d c m

Larger_____________________________________________________ Smaller

Steps for metric conversion through decimal movement
● Identify the number of places to move on the metric conversion table.
● Move the decimal point.

– Convert a smaller unit to a larger unit: move the decimal point to the left.
– Convert a larger unit to a smaller unit: move the decimal point to the

right.

Table R.3 Metric prefix table (the most commonly used prefixes are
shown in bold.)

Prefix Symbol
(abbreviation)

Exponential
(power of 10)

Multiple value
(in full)

yotta Y 1024 1,000,000,000,000,000,000,000,000
zetta Z 1021 1,000,000,000,000,000,000,000
exa E 1018 1,000,000,000,000,000,000
peta P 1015 1,000,000,000,000,000
tera T 1012 1,000,000,000,000
giga G 109 1,000,000,000
mega M 106 1,000,000
myria my 104 10,000
kilo k 103 1,000
hecto h 102 100
deka da 10 10
deci d 10�1 0.1
centi c 10�2 0.01
milli m 10�3 0.001
micro m 10�6 0.000 001
nano n 10�9 0.000 000 001
pico p 10�12 0.000 000 000 001
femto f 10�15 0.000 000 000 000 001
atto a 10�18 0.000 000 000 000 000 001
zepto z 10�21 0.000 000 000 000 000 000 001
yocto y 10�24 0.000 000 000 000 000 000 000 001

Note: m is a Greek letter called ‘‘mu’’ (see ‘‘Appendix A’’ for a list of Greek letters).
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Example R.1: 326 mm ¼ (?) m

● Identify mm (millimeters) and m (meters) on the conversion table.

Count places from mm to m: 3 places dmeter . c m

3 2 1
● Move three decimal places. (1 m ¼ 1,000 mm)

Convert a smaller unit (mm) to a larger (m) unit: move the decimal point to the left.

326.mm = 0.326 m Move the decimal point three places to the left (326¼ 326.).

Example R.2: 4.675 kA ¼ (?) A

● Identify kA (kilo amperes) and A (amperes) on the conversion table.

Count places from kA to A: three places k h da ampere

● Move three decimal places. (1 kA ¼ 1,000 A) 1 2 3

Convert a larger unit (kA) to a smaller (A) unit: move the decimal point to the right.

4.765 kA = 4,765 A Move the decimal point three places to the right.

Example R.3: 30.5 mV ¼ (?) kV

● Identify mV (millivolts) and km (kilometers) on the conversion table.

Count places from mV to kV: six places k   h da volt. d c m

● Move six decimal places. (1 kV ¼ 1,000,000 mV) 6 5 4 3 2 1

Convert a smaller unit (mV) to a larger (kV) unit: move the decimal point to the left.

30.5 mV = 0.0000305 kV Move the decimal point six places to the left (add 0s).

R.1.4 The unit factor method
Convert units using the unit factor method (or the factor-label method)
● Write the original term as a fraction (over 1). Example: 10 g can be written as

10 g
1

● Write the conversion formula as a fraction
1

ð Þ or
ð Þ

1
:
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Example: 1 m ¼ 100 cm can be written as
1 m

ð100 cmÞ or
ð100 cmÞ

1 m
(Put the desired or unknown unit on the top.)

● Multiply the original term by
1

ð Þ or
ð Þ

1
: (Cancel out the same units.)

Metric conversion using the unit factor method:

Example R.4: 1,200 V ¼ (?) kV

● Write the original term (the left side) as a fraction: 1;200 V ¼ 1;200 V
1

● Write the conversion formula as a fraction. 1 kV ¼ 1;000 V:
1 kV

ð1;000 VÞ
‘‘kV’’ is the desired unit.

● Multiply: 1;200 V ¼ 1;200 V
1

� 1 kV

ð1;000 VÞ

¼ 1;200 kV
1;000

¼ 1:2 kV

The units ‘‘V’’ cancel out.

Example R.5: 30 cm ¼ (?) mm

● Write the original term (the left side) as a fraction: 30 cm ¼ 30 cm
1

● Write the conversion formula as a fraction. 1 cm ¼ 10 mm :
ð10 mmÞ

1 cm
‘‘mm’’ is the desired unit.

● Multiply: 30 cm ¼ 30 cm
1

� 10 mm
ð1 cmÞ

¼ ð30Þð10Þ mm
1

¼ 300 mm

The units ‘‘cm’’ cancel out.
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Adding and subtracting SI measurements:

Example R.6: 3 A 3,000 mA 1 A ¼ 1,000 mA

� 2;000 mA �2;000 mA

1;000 mA

Combine after converting to the same unit.

Example R.7: 25 kW 25,000 W 1 kW ¼ 1,000 W

þ4 W þ 4 W
25;004 W

R.2 Scientific notation

R.2.1 Write in scientific notation
Scientific notation is a special way of concisely expressing very large and small
numbers.

Example R.8: 300,000,000 ¼ 3 � 108 m/s The speed of light.

0.00000000000000000016 ¼ 1.6 � 10�19 C An electron.

Scientific notation

It is a product of a number
between 1 and 10 and power of 10. 

N × 10±n

Scientific notation Example

N � 10�n 1 � N < 10
n-integer

67504.3 = 6.75043 × 104

Standard form Scientific notation
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Scientific vs. non-scientific notation

Scientific notation Not scientific notation

7.6 � 103 76 � 102 76 > 10 76 is not between 1 and 10.

8.2 � 1013 0.82 � 1014 0.82 < 1 0.82 is not between 1 and 10.

5.37 � 107 53.7 � 106 53.7 >10 53.7 is not between 1 and 10.

Writing a number in scientific notation

Example R.9: Step

● Move the decimal point after the first nonzero digit. 0.0079 37213000.

n ¼ 3 n ¼ 7

● Determine n (the power of 10) by counting the number of places you moved
the decimal.

● If the decimal point is moved to the right: � 10�n 0.0079 = 7.9 × 10-3 

3 places to the right

● If the decimal point is moved to the left: � 10n 37213000. = 3.7213×107

7 places to the left

Example R.10: Write in scientific notation.

1. 2340000 ¼ 2340000: ¼ 2:34 � 106 6 places to the left;�10n

2. 0:000000439 ¼ 4:39 � 10�7 7 places to the right;�10�n

Example R.11: Write in standard (or ordinary) form.

1. 6:4275 � 104 ¼ 64;275 2. 2:9 � 10�3 ¼ 0:0029
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Example R.12: Simplify and write in scientific notation.

1. ð4:9� 10�3Þð3:82� 108Þ ¼ ð4:9� 3:82Þð10�3þ8Þ Multiply coefficients of 10�n;

aman ¼ amþn

¼ ð18:718� 105Þ 18:718 > 10; this is not in

scientific notation:

¼ ð1:8718� 106Þ 1:8718 < 10; this is

in scientific notation:

2. ð5�105Þð2:3�10�2Þ
4:5�107 ¼ 5�2:3

4:5
�ð105 �10�2Þ

107 Regroup coefficients of 10�n

� 2:556�10�4 aman ¼ amþn;
am

an
¼ am�n

R.3 Engineering notation

R.3.1 Write in engineering notation
Engineering notation is a version of scientific notation that the power of ten is
always a multiple of 3.

Engineering notation
It is a product of a number and power of 10 that are multiples of 3.

(10 to the �3, �6, �9, etc.).

Engineering notation Example

N � 10�3, N � 10�6, N � 10�9 . . .
6750.43 = 6.75043 × 103

Standard form Engineering notation

Engineering vs. non-engineering notation

Engineering notation Not Engineering notation

7.6 � 103 76 � 102

8.2 � 106 0.82 � 105

5.37 � 10�9 53.7 � 10�8
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Writing a number in engineering notation

Example R.13: Step

● If the decimal point is moved to the right: � 10�n 00079 = 7.9 × 10-3 

3 places to the right

● If the decimal point is moved to the left: � 10n 37213000. = 37.213×106 

6 places to the left

Example R.14: Write in engineering notation.

1. 3450000 ¼ 3450000: ¼ 3:45 � 106 6 places to the left;�10n

2. 0:0000000324 ¼ 32:4 � 10�9 9 places to the right;�10�n

Example R.15: Write in standard (or ordinary) form.

1. 5:1437 � 106 ¼ 5143700

2. 3:4 � 10�3 ¼ 0:0034

Example R.16: Simplify and write in engineering notation.

1. 2:4�10�3
� �

7:53�108
� � ¼ ð2:4 � 7:53Þð10�3þ8Þ Multiply coefficients of 10�n;

aman ¼ amþn

¼ 18:072 � 105
� �

105; this is not in

engineering notation:

¼ ð1:8072 � 106Þ This is in engineering

notation:

2. ð5�105Þð2:3�10�2Þ
4:5�107 ¼ 5� 2:3

4:5
� ð105 � 10�2Þ

107 Regroup coefficients of 10�n

� 2:556� 10�4 aman ¼ amþn;
am

an
¼ am�n

� 25:56� 10�3
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Summary

Metric system (SI – International System of Units): the most widely used system
of measurement in the world. It is based on the basic units of meter, kilogram,
second, etc.

Imperial system of units: a system of measurement units originally defined in
England, including the foot, pound, quart, ounce, gallon, mile, yard . . .

Metric prefixes (SI prefixes): large and small numbers are made by adding SI
prefixes, which is based on multiples of 10.

Steps for metric conversion through decimal movement:

● Identify the number of places to move on the metric conversion table.
● Move the decimal point.

– Convert a smaller unit to a larger unit: move the decimal point to the left.
– Convert a larger unit to a smaller unit: move the decimal point to the right.

Metric conversion table

Value 1,000 100 10 1 . 0.1 0 .01 0.001

Prefix kilo hecto deka meter (m)
gram (g)
liter (L)

. deci centi milli

Symbol k h da . d c m

Larger ___________________________________________________ Smaller

Convert units using the unit factor method (or the factor-label method):

● Write the original term as a fraction (over 1). Example: 10 g can be written as
10 g

1

● Write the conversion formula as a fraction
1

ð Þ or
ð Þ

1
:

Example: 1 m ¼ 100 cm can be written as
1 m

ð100 cmÞ or
ð100 cmÞ

1 m
(Put the desired or unknown unit on the top.)

● Multiply the original term by
1

ð Þ or
ð Þ

1
: (Cancel out the same units.)

Scientific notation: a product of a number
between 1 and 10 and power of 10. 

N × 10±n

Scientific notation Example

N � 10�n 1 � N < 10
n-integer

6750.43 = 6.75043 × 103

Standard form Scientific notation
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Writing a number in scientific notation:

● Move the decimal point after the first nonzero digit.
● Determine n (the power of 10) by counting the number of places you moved

the decimal.
● If the decimal point is moved to the right: � 10�n

● If the decimal point is moved to the left: � 10n

Engineering notation is a version of scientific notation that the power of ten is
always a multiple of 3.

Engineering notation: a product of a number and power of 10 that are multiples
of 3.

(10 to the �3, �6, �9, etc.).

Engineering notation Example

N � 10�3, N � 10�6, N � 10�9 . . .
6750.43 = 6.75043 × 103

Standard form Engineering notation

Key metric prefix

Prefix Symbol
(abbreviation)

Power
of 10

Multiple value Example

tera T 1012 1,000,000,000,000 1 Tm ¼ 1,000,000,000,000 m

giga G 109 1,000,000,000 1 Gm ¼ 1,000,000,000 m

mega M 106 1,000,000 1 Mm ¼ 1,000,000 m

kilo k 103 1,000 1 km ¼ 1,000 m

hecto h 102 100 1 hm ¼ 100 m

deka da 101 10 1 dam ¼ 10 m

1 100 Example: meter, ampere, volt, etc.

deci d 10�1 0.1 1 m ¼ 10 dm

centi c 10�2 0.01 1 m ¼ 100 cm

milli m 10�3 0.001 1 m ¼ 1,000 mm

micro m 10�6 0.000001 1 m ¼ 1,000,000 mm

nano n 10�9 0.000000001 1 m ¼ 1,000,000,000 nm

pico p 10�12 0.000000000001 1 m ¼ 1,000,000,000,000 pm
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Self-test

R.1
1. Complete the following unit conversion:

(a) 439 mm ¼ ( ? ) m
(b) 2.236 hA ¼ ( ? ) A
(c) 48.3 mV ¼ ( ? ) kV
(d) 2.5 kW ¼ ( ? ) hW
(e) 0.89 mV ¼ ( ? ) mV
(f) 167 W ¼ ( ? ) kW
(g) 0.00003 A ¼ 30 ( ? ) A

2. Complete the following unit conversion:
(a) 7,230 V ¼ ( ? ) kV
(b) 52 cm ¼ ( ? ) mm
(c) 3.4 dA¼ ( ? ) A
(d) 52 dam ¼ ( ? ) cm
(e) 1,500 kW¼ ( ? ) MW
(f) 0.025 A ¼ ( ? ) mA

3. Combine.
(a) 7 A – 3,000 mA ¼ ( ? ) mA
(b) 63 kV þ 6 V ¼ ( ? ) V
(c) 0.72 A þ 4.58 A – 10 mA ¼ ( ? ) mA
(d) 25.3 kWþ 357 daW¼ ( ? ) kW

R.2
4. Express the following numbers in scientific notation:

(a) 45,600,000
(b) 0.00000523
(c) 0.0006
(d) 932,000
(e) 23,000
(f) 0.012

5. Write in standard (or ordinary) form.
(a) 3.578 � 103

(b) 4.3 � 10�5

6. Simplify and write in scientific notation.
(a) ð5:42 � 10�2Þð4:38�107Þ
(b)

ð5 � 105Þð2:4 � 10�3Þ
3:2 � 108

R.3
7. Express the following numbers in engineering notation:

(a) 36,700,000
(b) 0.00000456
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8. Write in standard (or ordinary) form.
(a) 7.456 � 103

(b) 4.3 � 10�3

9. Simplify and write in engineering notation.
(a) ð3:65 � 10�2Þð4:78� 1011Þ
(b)

ð4 � 105Þð3:2 � 10�3Þ
5:6 � 108

10. Express the following numbers in engineering notation:
(a) 6,900 W (? kW)
(b) 0.00004 A (? mA)
(c) 63,200 V (? kV)
(d) 0.02 A (? mA)
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1.1 Introduction to electric circuits

1.1.1 Why study electric circuits?
● Electrical energy is the great driving force and the supporting pillar for modern

industry and civilization.
● Our everyday life would be unthinkable without electricity or the use of

electronic products.



● Any complex electrical and electronic device or control system is founded
from the basic theory of electric circuits.

● Only when you have grasped and understood the basic concepts and principles
of electric circuits can you further study electrical, electronic, and computer
engineering and other related areas.

● When you start reading this book, perhaps you have already chosen the elec-
trical or the electronic fields as your professional goal—a wise choice!

● Electrical, electronic, and computer engineering has made and continues to
make incredible contributions to most aspects of human society—a truth that
cannot be neglected. Moreover, it may have a bigger impact on human civili-
zation in the future.

● Since increase in interest and the rise of computer technology, artificial intelligence,
etc., electric circuits are playing an important fundamental role in the digital age.

● Experts forecast that demand for professionals in this field will grow con-
tinuously. This is good news for people who have chosen these areas of study.

● Reading this book or other electric circuit book is a first step into the electrical,
electronic, and computer world that will introduce you to the foundation of the
professions in these areas.

1.1.2 Careers in electrical, electronic, and computer engineering

● Nowadays, electrical, electronic, and computer technology is developing so
rapidly that many career options exist for those who have chosen this field.

● As long as you have gained a solid foundation in electric circuits and electronics,
the training that most employers provide in their branches will lead you into a
brand new professional career very quickly.

● There are many types of jobs for electrical and electronic engineering technology.
Only a partial list is as follows:
– Electrical engineer
– Electronics engineer
– Electrical design engineer
– Control and automation engineer
– Process and system engineer
– Instrument engineer
– Robotics engineer
– Product engineer
– Field engineer
– Reliability engineer
– Integrated circuits (IC) design engineer
– Computer engineer
– Power electronics engineer
– Electrical and electronics engineering professor/lecturer
– Designer and technologist
– Electrical and electronics technician
– Hydro technician
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– Electrician
– Equipment maintenance technician
– Electronic test technician
– Calibration/lab technician
– Technical writer for electronic products
– Electronic repair
– . . . . . .

● Electrical and electronic technicians, technologists, engineers, and experts will
be in demand in the future, so you definitely do not want to miss this golden
opportunity.

1.1.3 Milestones of electric circuit theory
Many early scientists have made great contributions in developing the theorems of
electrical circuits. The laws and physical quantities that they discovered are named
after them, and all are important milestones in the field of electric engineering. We
list here only the ones that are described in this book.

Milestones of electric circuit theory
● Coulomb is the unit of electric charge; it was named in honor of Charles

Augustin de Coulomb (1736–1806), a French physicist. Coulomb developed
Coulomb’s law, which is the definition of the electrostatic force of attraction
and repulsion, and the principle of charge interactions (attraction or repulsion
of positive and negative electric charges).

● Faraday is the unit of capacitance; it was named in honor of Michael Faraday
(1791–1867), an English physicist and chemist. He discovered that relative
motion of the magnetic field and conductor can produce electric current, which
we know today as the Faraday’s law of electromagnetic induction. Faraday
also discovered that the electric current originates from the chemical reaction
that occurs between two metallic conductors.

● Ampere is the unit of electric current; it was named in honor of André-Marie
Ampère (1775–1836), a French physicist. He was one of the main discoverers
of electromagnetism and is best known for defining a method to measure the
flow of current.

● Ohm is the unit of resistance; it was named in honor of Georg Simon Ohm
(1789–1854), a German physicist. He established the relationship between
voltage, current, and resistance, and formulated the most famous electric cir-
cuit law—Ohm’s law.

● Volt is the unit of voltage; it was named in honor of Alessandro Volta (1745–
1827), an Italian physicist. He constructed the first electric battery that could
produce a reliable, steady current.

● Watt is the unit of power; it was named in honor of James Watt (1736–1819), a
Scottish engineer and an inventor. He made great improvements in the steam
engine and made important contributions in the area of magnetic fields.

● Lenz’s law was named in honor of Heinrich Friedrich Emil Lenz (1804–1865),
a Baltic German physicist. He discovered that the polarity of the induced
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current that is produced in the conductor of the magnetic field always resists
the change of its induced voltage; this is known as Lenz’s law.

● Maxwell is the unit of magnetic flux; it was named in honor of James Clerk
Maxwell (1831–1879), a Scottish physicist and mathematician. The German
physicist Wilhelm Eduard Weber (1804–1891) shares the honor with Maxwell
(1 Wb ¼ 108 Mx). Maxwell had established the Maxwell’s equations that
represent perfect ways to state the fundamentals of electricity and magnetism.

● Hertz is the unit of frequency; it was named in honor of Heinrich Rudolf Hertz
(1857–1894), a German physicist and mathematician. He was the first person
to broadcast and receive radio waves. Through the low-frequency microwave
experiment, Hertz confirmed Maxwell’s electromagnetic theory.

● Henry is the unit of inductance; it was named in honor of Joseph Henry (1797–
1878), a Scottish-American scientist. He discovered self-induction and mutual
inductance.

● Joule is the unit of energy; it was named in honor of James Prescott Joule
(1818–1889), an English physicist. He made great contributions in discovering
the law of the conservation of energy. This law states that energy may trans-
form from one form into another, but is never lost. Joule’s law was named after
him and states that heat will be produced in an electrical conductor.

The majority of the laws and units of measurement stated above will be used in the later chapters
of this book. Being familiar with them will be beneficial for further study of electric circuits.

1.2 Electric circuits and schematic diagrams

1.2.1 Basic electric circuits
Electric circuit: It is a closed loop of pathway with electric charges flowing
through it.

● It is the sum of all electric components in the closed loop of pathway with
flowing electric charges.

● An example of an electric circuit includes resistors, capacitors, inductors, power
sources, wires, switches, etc. (These electric components will be explained later.)

A basic electric circuit contains three components: the power supply, the elec-
trical load, and the wires (conductors) (Figure 1.1).

Power
supply Load

Wire

Wire

Figure 1.1 Requirements of a basic circuit
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Electric
circuit

A closed loop of pathway with electric charges or current flowing
through it.

Wires connect the power supply and the load, and carry electric charges through
the circuit.

A power supply (power source) is a device that supplies electrical energy to the
load of the circuit; it can convert other forms of energy to electrical energy. The
electric battery and generator are examples of power supply.

● The battery converts chemical energy into electrical energy.
● The hydroelectric generator converts hydro energy (the energy of moving

water) into electrical energy.
● The thermo power generator converts heat energy into electrical energy.
● The nuclear power generator converts nuclear energy into electrical energy.
● The wind generator converts wind energy into electrical energy.
● The solar generator converts solar energy into electrical energy.

An electrical load is a device that is usually connected to the output terminal of an
electric circuit.

● The load consumes or absorbs electrical energy from the source.
● The load may be any device that can receive electrical energy and convert it

into other forms of energy.

Examples of electric loads:

● Electric lamp converts electrical energy into light energy.
● Electric stove converts electrical energy into heat energy.
● Electric motor converts electrical energy into mechanical energy.
● Electric fan converts electrical energy into wind energy.
● Speaker converts electrical energy into sound energy.
● Solar cell converts sunlight into electrical energy.
● Microphone converts sound energy into electrical energy.
● . . .

Requirements of a
basic circuit

– Power supply (power source) is a device that supplies elec-
trical energy to a load; it can convert other energy forms into
electrical energy.

– Load is a device that is connected to the output terminal of
an electric circuit, and consumes electrical energy.

– Wires connect the components in a circuit together, and
carry electric charges through the circuit.

Figure 1.2 is an example of a simple electric circuit—a flashlight (or electric
torch) circuit. In this circuit, the battery is the power supply unit and the small light
bulb is the load, and they are connected together by wires. Figure 1.3 is the sche-
matic of the flashlight.
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1.2.2 Circuit schematics (diagrams) and symbols
Circuit diagrams
● Studying electric circuits usually requires drawing or recognizing circuit

diagrams. Circuit diagrams can make electric circuits easier to understand,
analyze, and calculate.

● When studying more theories of electric circuits, circuits can be more and
more complex and drawing the pictorial representation of the circuits will not
be very realistic.

● The more common electric circuits are usually represented by schematics.

Schematics
● A schematic is a simplified circuit diagram that shows the interconnection of

circuit components.
● It uses standard graphic circuit symbols according to the layout of the actual

circuit connection.
● This is a way to draw circuit diagrams far more quickly and easily.

Circuit symbols
● The circuit symbols are the idealization and approximation of the actual circuit

components (Table 1.1).

Figure 1.2 The flashlight circuit

+

–

Figure 1.3 Schematic of the flashlight circuit
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● For example, both the battery and the direct current (DC) generator can convert
other energy forms into electrical energy and produce DC voltage. Therefore,
they are represented by the same circuit symbol—the DC power supply E.

1.3 Electric current

1.3.1 Current
Water current analogy electric current
● There are several key circuit quantities in electric circuit theory: electric cur-

rent, voltage, power, etc. These circuit quantities are very important to study in
electric circuits.

Table 1.1 The commonly used circuit schematic symbols

Component Circuit symbol

DC power supply

AC power supply

Current source

Lamp

Connected wires

Unconnected wires

Fixed resistor

Variable resistor or ↓
Capacitor

Inductor

Switch

Speaker

Ground

Fuse  
Ohm meter Ω

Ammeter A

Voltmeter V

Transformer

E E

Basic concepts of electric circuits 21



● Electric charges and electric current are analogous to the flow of water in a
water hose or pipe.

● Water current is a flow of water through a water circuit (faucet, pipe or
hose, etc.).

● Electric current is a flow of electric charges through an electric circuit (wires,
power supply, load, etc.).

● Water is measured in liters or gallons, so you can measure the amount of water
that flows out of the tap at certain time intervals, i.e., liters or gallons per
minute or hour.

● Electric current is measured by the amount of electric charges that flows past a
given point at a certain time interval in an electric circuit.

Calculating electric current
● If Q represents the amount of charges that is moving past a point at time t,

then the current I is:

I ¼ Q

t

If you have learned calculus, current also can be expressed by the derivative: i ¼ dq

dt

● Current ¼ Charge
Time

or I ¼ Q

t

● Units:

Ampere (A)

Q
t

Second (s)

I =

Coulomb (C)

Note: – Italic letters represent the quantity symbols.

– Non-italic letters represent unit symbols.

Electric
current (I)

– Current is a flow of electric charges through an electric circuit.
– Current I is measured by the amount of charge Q that flows past a

given point at a certain time t: I ¼ Q
t

1.3.2 1-ampere current
What is a 1-ampere current?
A current of 1 A (ampere) means that there is 1 C (coulomb) of electric charge
passing through a given cross-sectional area of wire in 1 s (second).

1 A ¼ 1 C
1 s
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1 A of current actually means there are about 6.25 � 1018 charges passing
through a given cross-sectional area of wire in 1 s (Figure 1.4).

Since 1 C is approximately equal to 6.25 � 1018 charges (1C � 6.25 � 1018

charges).

Example 1.1: If a charge of 100 C passes through a given cross-sectional area of
wire in 50 s, what is the current?

Solution: Since Q ¼ 100 C and t ¼ 50 s

I ¼ Q

t
¼ 100 C

50 s
¼ 2 A

An ammeter is an instrument that can be used to measure current, and its symbol
is A . It must be connected in series with the circuit to measure current, as shown in
Figure 1.5.

1.3.3 The direction of electric current
Which way does electric charge really flow?
● When early scientists started to work with electricity, the structure of atoms

was not very clear, and they assumed at that time the current was a flow of
positive charges (protons) from the positive terminal of a power supply (such
as a battery) to its negative terminal.

● Later on, scientists discovered that electric current is in fact a flow of negative
charges (electrons) from the negative terminal of a power supply to its positive
terminal.

6.25 × 1018

There are 6.25 × 1018 charges passing through this given cross-sectional area in 1 s

Figure 1.4 1 A of current

A

+

–

Figure 1.5 Measuring current with an ammeter
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● But by the time the real direction of current flow was discovered, a flow of
positive charges (protons) from the positive terminal of a power supply to its
negative terminal had already been well established and used commonly in
electrical circuitry.

Two methods to express the direction of electric current
● Conventional current flow version: The current is defined as a flow of positive

charges (protons) from the positive terminal of a power supply to its negative
terminal (Figure 1.6(a)).

● Electrons flow version: The current is defined as a flow of negative charges
(electrons) from the negative terminal of a power supply to its positive terminal
(Figure 1.6(b)).

It will make no difference as to which method is used
● It will not affect the analysis, design, calculation, measurement, and applica-

tions of the electric circuits as long as one method is used consistently.
● In this book, the conventional current flow version is used.

Conventional current flow
vs. electron flow

– A flow of positive charges (protons) from the positive
terminal of a power supply to its negative terminal.

– A flow of negative charges (electrons) from the
negative terminal of a power supply to its positive
terminal.

1.4 Electric voltage

1.4.1 Voltage/electromotive force
Water gun and voltage: The concept of another important circuit quantity—
voltage works on the principle of a water gun.

The trigger of a water gun is attached to a pump that squirts water out of a tiny hole at the
muzzle.

● If there is no pressure from the gun (the trigger is not pressed), there will be no
water out of the muzzle.

● Low-pressure squirting produces thin streams of water over a short distance.
● High pressure produces a very powerful stream over a longer distance.

(a)  Conventional current flow (b)  Electron flow  

I
+

–

I
+

–

Figure 1.6 The direction of electric current
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Water pressure vs. voltage: Just as water pressure is required for a water gun or
water circuit, electric pressure or voltage is required for an electric circuit.

● Voltage is responsible for the pushing and pulling of electrons or current
through an electric circuit.

● The higher the voltage, the greater the current will be.

Flashlight or torch circuit and voltage (Figure 1.2):

● If only a small lamp is connected with wires without a battery, the flashlight
will not work. Since electric charges in the wire (conductor) randomly drift in
different directions, a current cannot form in a specific direction.

● Once the battery (voltage source) is connected to the load (lamp) by wires, it
will produce electric current in the circuit. The positive electrode of the battery
attracts the negative charges (electrons), and the negative electrode of the
battery repels the electrons. This causes the electrons to flow in one direction
and produce electric current.

Electromotive force (EMF): the battery is one example of a voltage source that
produces electromotive force (EMF) between its two terminals.

● EMF moves electrons around the circuit or causes current to flow through the
circuit since EMF is actually ‘‘the electron-moving force.’’

● EMF is the electric pressure or force that is supplied by a voltage source, which
causes current to flow in a circuit.

EMF produced by a voltage source is analogous to water pressure produced by a pump in a
water circuit.

Units of voltage and EMF: voltage is symbolized by V (italic letter), and its unit is
volts (non-italic letter V). EMF is symbolized by E, and its unit is also volts (V).

1.4.2 Potential difference/voltage
Water-level difference
Assuming there are two water tanks A and B, water will flow from tank A to B only
when tank A has a higher water level than tank B, as shown in Figure 1.7.

Water-level difference vs. electrical potential difference
● Common sense tells us that ‘‘water flows to the lower end,’’ so water will only

flow when there is a water-level difference. It is the water-level difference that

A B

Figure 1.7 Water-level difference
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produces the potential energy for tank A, and work is done when water flows
from tank A to B.

● Water will flow between two places in a water circuit only when there is a
water-level difference. This concept can also be used in the electric circuit.

● Current will flow between two points in an electric circuit only when there is
an electrical potential difference.

Potential difference or voltage

● If a light bulb is continuously kept on, i.e., to maintain continuous movement
of electrons in the circuit, the two terminals of the lamp need to have an
electrical potential difference.

● The potential difference or voltage is produced by the EMF of the voltage
source.

● Potential difference or voltage is the amount of energy or work that would be
required to move electrons between two points.

● Current will flow between two points in a circuit only when there is a potential
difference. The voltage or the potential difference always exists between two
points.

Calculating voltage

● Voltage ¼ Work
Charge

or V ¼ w

Q

● Units: Volt (V)

Joule (J)
V = W

Q
Charge (C)

If you have learned calculus, voltage can also be expressed by the derivative v¼ dw

dq
.

Example 1.2: If 1 J of energy is used to move a 1 C charge from point a to b, it will
have a 1 V potential difference or voltage across two points, as shown in Figure 1.8:

W = 1 J
Q = 1 C

V = 1 V

a b

Figure 1.8 Potential difference or voltage
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Voltage V (or potential
difference)

V is the amount of energy or work required to move electrons

between two points: V ¼ w

Q

Although voltage and potential difference are not exactly the same, the two are used
interchangeably.

Electromotive Force
(EMF)

EMF is an electric pressure or force that is supplied by a voltage
source, which causes electric current to flow in a circuit.

There are different names representing voltage or potential difference in
electric circuits, such as the source voltage, applied voltage, load voltage, voltage
drop, and voltage rise. What are the differences between them?

● EMF can be called source voltage or applied voltage (E or VS) since it is
supplied by a voltage source and applied to the load in a circuit.

● Load voltage: voltage across the two terminals of the load.
● Voltage drop: voltage across a component when current flows from a higher

potential point to a lower potential point in the circuit.
● Voltage rise: voltage across a component when current flows from a lower

potential point to a higher potential point in the circuit.

Voltmeter is an instrument that can be used to measure voltage. Its symbol is V .
The voltmeter should be connected in parallel with the circuit component to mea-
sure voltage, as shown in Figure 1.9.

1.5 Resistance and Ohm’s law

1.5.1 Resistance/resistor
Resistance
● Water resistance: what will happen when we throw some rocks into a small

creek? The speed of the water current will slow down in the creek. This is
because the rocks (water resistance) ‘‘resist’’ the flow of water.

A similar concept may also be used in an electric circuit.

V+

–
Figure 1.9 Measuring voltage with a voltmeter
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● Current resistance (R): the resistor (current resistance) ‘‘resists’’ the flow of
electrical current.
– The higher the value of resistance, the smaller the current will be.
– The resistance of a conductor is a measure of how difficult it is to resist the

current flow.

Resistor
● The lamp, electric stove, motor, and other such loads may be represented by

the resistor R because once this kind of load is connected to an electric circuit,
it will consume electrical energy, cause resistance, and reduce current in the
circuit.

● Sometimes resistor R will need to be adjusted to a different level for different
applications. For example,
– The intensity of light of an adjustable lamp can be adjusted by using

resistors.
– A resistor can also be used to maintain a safe current level in a circuit.

● A resistor is a two-terminal component of a circuit that is designed to resist or
limit the flow of current. There are a variety of resistors with different resistance values
for different applications.

The resistor and resistance of a circuit have different meanings

Resistor (R) A two-terminal component of a circuit that limits the flow of current.

Resistance (R) The measure of a material’s opposition to the flow of current, and its unit
is ohms (W).

Fixed or variable resistors

● A fixed resistor has a ‘‘fixed’’ resistance value and cannot be changed.
● A variable resistor has a resistance value that can be easily changed or adjusted

manually or automatically.

Symbols of the resistor

Fixed resistor:

Variable resistor: or ↓

1.5.2 Factors affecting resistance
There is no ‘‘perfect’’ electrical conductor; every conductor that makes up the
wires has some level of resistance regardless of the material it is made from.

There are four main factors affecting the resistance in a conductor: the cross-
sectional area of the wire (A), length of the conductor (l), temperature (T), and
resistivity of the material (r) (Figure 1.10).

● Cross-sectional area of the wire A: More water will flow through a wider pipe
than that through a narrow pipe. Similarly, the larger the diameter of the wire,
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the greater the cross-sectional area, the less the resistance in the wire and the
more the flow of current.

● Length l: The longer the wire, the more the resistance and the more the time
taken for the current to flow.

● Resistivity r: It is a measure of the opposition to flowing current through a
material of wire, or how difficult it is for current to flow through a material.
The different materials have different resistivity, i.e., more or less resistance in
the materials.

● Temperature T: Resistivity of a material is dependent upon the temperature
surrounding the material. Resistivity increases with an increase in temperature
for most materials. Table 1.2 lists resistivity of some materials at 20�C.

Factors affecting
resistance

R ¼ r
l

A
, where A is the cross-sectional area l the length T the

temperature, and r the resistivity (conducting ability of a
material for a wire).

Note: r is a Greek letter pronounced ‘‘rho’’ (see ‘‘Appendix A’’ for a list of Greek letters).

Calculating resistance

● Resistance ¼ resistivity
length
area

or R ¼ r
‘

A

ρ
A

Figure 1.10 Factors affecting the resistance

Table 1.2 Table of resistivity (r)

Material Resistivity r (W � m)

Copper 1.68 � 10�8

Gold 2.44 � 10�8

Aluminum 2.82 � 10�8

Silver 1.59 � 10�8

Iron 1.0 � 10�7

Brass 0.8 � 10�7

Nichrome 1.1 � 10�6

Tin 1.09 � 10�7

Lead 2.2 � 10�7
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● Units: Ohm ∙ meter (Ω ∙ m)

Meter (m)

Meter squared (m2)
R = ρ A

ℓ

Ohm (Ω)

Example 1.3: There is a copper wire 50 m in length with a cross-sectional area of
0.13 cm2. What is the resistance of the wire?

Solution: ‘ ¼ 50 m ¼ 5;000 cm

A ¼ 0:13 cm2

r ¼ 1:68 � 10�8 W � m ¼ 1:68 � 10�6 W � cm copperð Þ

R ¼ r
‘

A
¼ ð1:68 � 10�6 W � cmÞð5;000 cmÞ

0:13 cm2
� 0:0646 W

– The resistance of this copper wire is 0.0646 W. Although there is resistance in the copper
wire, it is very small. A 50-m-long wire only has 0.0646 W resistance; thus, we can say that
copper is a good conducting material.

– Copper and aluminum are commonly used conducting materials with reasonable price and
better conductivity.

Ohmmeter is an instrument that can be used to measure the resistance. Its symbol
is Ω . The resistor must be removed from the circuit to measure resistance as
shown in Figure 1.11.

Ammeter A – A is an instrument that is used to measure current; it should be
connected in series in the circuit.

Voltmeter V – V is an instrument that is used to measure voltage; it should be
connected in parallel with the component.

Ohmmeter Ω – Ω is an instrument that is used to measure resistance, and the resistor
must be removed from the circuit to measure the resistance.

Ω+

–E R

Figure 1.11 Measuring resistance with an ohmmeter
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1.5.3 Conductance
Conductance G is the conductivity of the material.

● It is the ability of a material to pass current rather than resist it.
● It is how easy rather than how difficult it is for current to flow through a

circuit.
● It is a term that is opposite to the term ‘‘resistance.’’ The less the resistance R

of the material, the greater the conductance G, the better the conductivity of the
material, and vice versa.

Factors affecting conductance
● The factors that affect resistance are the same for conductance, but in the

opposite way. Mathematically, conductance is the reciprocal of resistance, i.e.,

G ¼ 1
R

or G ¼ A

r‘
, R ¼ r

‘

A

� �

● Increasing the cross-sectional area (A) of the wire or reducing the wire length
(l) can get better conductivity. (This can be seen from the equation of
conductance.)

Unit of conductance
● The SI unit of conductance is the siemens (S).
● Some books use a unit mho (℧) for conductance, which was derived from the

spelling ohm backward and with an upside-down Greek letter omega.
Mho actually is the reciprocal of ohm, just as conductance G is the reciprocal of resistance R.

Conductance G
G is the conductivity of the material, and it is the reciprocal of

resistance: G ¼ 1
R

Calculating conductance

● Conductance ¼ 1
Resistance

or G ¼ 1
R

● Units: Siemens (S)
Or Mho (   ) Ohm (Ω)

G = 1
RΩ
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Example 1.4: What is the conductance if the resistance R is 22 W?

Solution: G ¼ 1
R
¼ 1

22 W
� 0:0455 S or 0:0455 ℧

It is often preferable and more convenient to use conductance in parallel circuits. This will be
discussed in the later chapters.

1.5.4 Ohm’s law
Ohm’s law is a very important and useful equation in electric circuit theory. It
precisely expresses the relationship between current, voltage, and resistance with a
simple mathematical equation.

Ohm’s law states that current through a conductor in a circuit is directly proportional
to the voltage across it and inversely proportional to the resistance in it, i.e.,

I ¼ V

R
or I ¼ E

R

Any form of energy conversion from one type to another can be expressed as
the following equation:

Effect ¼ Cause
Opposition

In an electric circuit, it is the voltage that causes current to flow, so current flow is
the result or effect of voltage, and resistance is the opposition to the current flow.

Replacing voltage, current, and resistance into the above expression will obtain
Ohm’s law:

Current ¼ Voltage
Resistance

or I ¼ V

R

Conductance form of Ohm’s law
Ohm’s law can be written in terms of conductance as follows:

I ¼ GV since G ¼ 1
R

and I ¼ V

R

� �

Ohm’s law

– Ohm’s law expresses the relationship between I, V, and R.
– I through a conductor is directly proportional to V, and inversely

proportional to R:

I ¼ V

R
or I ¼ E

R
or I ¼ GV
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Units:

Ampere (A)

Ampere (A)

Ampere (A)

Volt (V)

Ohm (Ω)

Ohm (Ω)

Volt (V)

Volt (V)

Siemens (S)
or Mho (   )Ω

I = V
R

I = GV

I = E
R

Memory aid for Ohm’s law: Using mathematics to manipulate Ohm’s law, and
solving for V and R, respectively, we can write Ohm’s law in several different forms:

V ¼ IR I ¼ V

R
R ¼ V

I

● These three equations can be illustrated in Figure 1.12 as a memory aid for
Ohm’s law.

● By covering one of the three variables from Ohm’s law in the diagram, we can
get the right form of Ohm’s law to calculate the unknown.

The experimental circuit of Ohm’s law
● The experimental circuit with a resistor of 125 W in Figure 1.13 may prove

Ohm’s law.
● If a voltmeter is connected in the circuit and the source voltage is measured

E ¼ 2.5 V. Also, connecting an ammeter and measuring the current in the
circuit will result in I ¼ 0.02 A.

● With Ohm’s law we can confirm that current in the circuit is indeed 0.02 A:

I ¼ E

R
¼ 2:5 V

125 W
¼ 0:02 A

V = I R I = V 
R

V R = 1

V V V
I I IR R R

Figure 1.12 Memory aid for Ohm’s law

R = 125 Ω2.5 V

0.02 A

V

A

+

– E

Figure 1.13 The experimental circuit of Ohm’s law
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Example 1.5: A source of 12 V is connected to a resistive lamp and a current of
3 A flows. What is the resistance of the circuit?

Solution: R ¼ E

I
¼ 12 V

3 A
¼ 4 W

1.5.5 I–V characteristics of Ohm’s law
I–V characteristics of Ohm’s law: Using a Cartesian coordinate system, voltage V
(x-axis) is plotted against current I (y-axis); this graph of current versus voltage will
be a straight line, as shown in Figure 1.14.

● The straight line in Figure 1.14 describes the current–voltage relationship of a
10-W resistor.

– When voltage V is 10 V and current is 1 A, R ¼ V

I
¼ 10 V

1 A
¼ 10 W.

– When voltage V is 5 V and current is 0.5 A, R ¼ V

I
¼ 5 V

0:5 A
¼ 10 W.

● The different lines with different slopes on the I–V characteristic represent the
different values of resistors. For example, a 20-W resistor can be illustrated as
in Figure 1.15.

● Since I–V characteristic shows the relationship between current I and voltage V
for a resistor, it is called the I–V characteristic of Ohm’s law.

The I–V characteristic of the straight line illustrates the behavior of a linear
resistor, i.e., the resistance does not change with the voltage or current. If the

0
5 V

0.1 A

10 V

1 A

V

I R

Figure 1.14 I–V characteristics (R ¼ 10 W)

0
5 V

0.25 A

10 V

0.5 A

V

RI

Figure 1.15 I–V characteristics (R ¼ 20 W)
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voltage decreases from 10 to 5 V, the resistance still equals 20 W as shown
in Figure 1.15.

When the relationship of voltage and current is not a straight line, the resultant resistor will
be a non linear resistor.

1.6 Reference direction of voltage and current

1.6.1 Reference direction of current
Direction of current

● The actual current direction: When performing circuit analysis and calcula-
tions in many situations, the actual current direction through a specific com-
ponent or branch may change sometimes, and it may be difficult to determine
the actual current direction for a component or branch.

● Reference direction of current: It is convenient to assume an arbitrarily chosen
current direction (with an arrow), which is the concept of reference direction of
current.
– If I > 0: If the resultant mathematical calculation for current through that

component or branch is positive (I > 0), the actual current direction is
consistent with the assumed or reference direction.

– If I < 0: If the resultant mathematical calculation for the current of that
component is negative (I < 0), the actual current direction is opposite to
the assumed or reference direction.

● The solid line arrows indicate the reference current directions and the dashed
line arrows indicate the actual current directions (as shown in Figure 1.16).

Two methods to represent the reference direction of current
(Figure 1.17)

● Expressed with an arrow, the direction of the arrow indicates the reference
direction of current.

● Expressed with a double subscription, for instance, Iab indicates the reference
direction of current is from point a to b.

+

– +

–

5 Ω10 V 5 Ω10 V

I  = 2  A I = –2  A

 I  >  0  I  <  0

→ →

Figure 1.16 Reference direction of current
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1.6.2 Reference polarity of voltage
Reference polarity of voltage
Similar to the current reference direction, the voltage reference polarity is also an
assumption of arbitrarily chosen polarity.

● If V > 0: If the resultant calculation for voltage across a component is positive
(V > 0), the actual voltage polarity is consistent with the assumed reference
polarity.

● If V < 0: If the resultant calculation is negative (V < 0), the actual voltage
polarity is opposite to the assumed reference polarity.

As shown in Figure 1.18, the positive (þ) and negative (�) polarities represent
the reference voltage polarities, and arrows represent the actual voltage polarities.

Three methods to indicate the reference polarity of voltage
(Figure 1.19)
● Expressed with an arrow, the direction of the arrow points from positive to

negative.
● Expressed with polarities, positive sign (þ) indicates a higher potential posi-

tion, and negative sign (�) indicates a lower potential position.
● Expressed with a double subscription, for instance, Vab indicates that the

potential position a is higher than the potential position b.

R

b

a

Iab

I

R

(a)  Arrow indicates the ref. I direction (b)  Double-subscription indicates the ref. I direction  

Figure 1.17 Reference direction of current I

++

–

– V+ V

–

 V  <  0 V  >  0

Figure 1.18 Reference polarity of voltage
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1.6.3 Mutually related reference polarity of current/voltage
Mutually related reference direction or polarity of current/voltage

● If the reference direction of current is assigned by the flow from the positive
side to the negative side of voltage across a component, then the reference
current direction and reference voltage polarity is consistent.

● In other words, along with the current reference direction (the reference arrow
pointing from þ to �) is the voltage from positive to negative polarity. This is
called the mutually related reference direction or polarity of current/voltage.

If we only know one reference direction or polarity, it is possible to determine
the other, and this is shown in Figure 1.20.

Reference direction
of current

Assuming an arbitrarily chosen direction as the reference
direction of current I:

– If I > 0: the actual current direction is consistent with the
reference current direction.

– If I < 0: the actual current direction is opposite to the refer-
ence current direction.

Reference polarity
of voltage

Assuming an arbitrarily chosen voltage polarity as the reference
polarity of voltage:

– If V > 0: the actual voltage polarity is consistent with the
reference voltage polarity.

– If V < 0: the actual voltage polarity is opposite to the refer-
ence voltage polarity.

Vab

–

+

b

a

VR VR R

Figure 1.19 Methods indicating the reference polarity of voltage

VV

–

+

–

I

R

I

R

+

(a) (b)

Figure 1.20 (a) Mutually related reference polarity of I and V (b) non-mutually
related reference polarity of I and V
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Mutually related ref.
polarity of V and I

If the reference I direction is assigned by an arrow pointing
from þ to – of V across a component, then the reference I
direction and reference V polarity is consistent.

Summary

Milestones of the electric circuits

Name of the
scientist

Nationality Name of the
unit/law

Named for

Charles Augustin de
Coulomb

French Coulomb Unit of charge (C)

Alessandro Volta Italy Volt Unit of voltage (V)

André-Marie
Ampère

French Ampere Unit of current (A)

Georg Simon Ohm German Ohm Unit of resistance (W)

James Watt Scotland Watt Unit of power (W)

Friedrich Emil Lenz German Lenz Lenz’s law

James Clerk
Maxwell

Scotland Maxwell Unit of flux (maxwell), Maxwell
magnetic field equation

Wilhelm Eduard
Weber

German Webber Unit of flux (web) 1 Wb ¼ 108 Mx

Heinrich Rudolf
Hertz

German Hertz Unit of frequency (Hz)

Kirchhoff German Kirchhoff Kirchhoff current and voltage laws

Joseph Henry Scottish-
American

Henry Unit of inductance (H)

James Prescott Joule British Joule Unit of energy (J)

Michael Faraday British Faraday Unit of capacitance (F)

Electric circuit: A closed loop of pathway with electric current flowing through it.

Requirements of a basic circuit

● Power supply (power source): A device that supplies electrical energy to a
load.

● Load: A device that is connected to the output terminal of a circuit, and con-
sumes electrical energy.

● Wires: Wires connect the power supply unit and load together, and carry cur-
rent flowing through the circuit.
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Schematic: A simplified circuit diagram that shows the interconnection of circuit
components, and is represented by circuit symbols.

Circuit symbols: The idealization and approximation of the actual circuit
components.

Electric current (I): A flow of electric charges through an electric circuit:

I ¼ Q

t
or I ¼ dq

dt

� �

Current direction

● Conventional current flow version: A flow of positive charge (proton) from the
positive terminal of a power supply to its negative terminal.

● Electron flow version: A flow of negative charge (electron) from the negative
terminal of a power supply to its positive terminal.

Ammeter: An instrument used for measuring current, represented by the symbol A .
It should be connected in series in the circuit.

Electromotive force (EMF): An electric pressure or force supplied by a voltage
source causing current to flow in a circuit.

Voltage (V) or potential difference: The amount of energy or work that would be
required to move electrons between two points.

V ¼ W

Q
or v ¼ dw

dt

� �

Source voltage or applied voltage (E or Vs): EMF can be called source voltage or
applied voltage. The EMF is supplied by a voltage source and applied to the load in
a circuit.

Load voltage (V): Voltage across two terminals of the load.

● Voltage drop: Voltage across a component when current flows from a higher
potential point to a lower potential point in a circuit.

● Voltage rise: Voltage across a component when current flows from a lower
point to a higher point in a circuit.

Voltmeter: An instrument used for measuring voltage. Its symbol is V and it
should be connected in parallel with the component.

Resistor (R): A two-terminal component of a circuit that limits the flow of current.

Resistance (R): Measure of a material’s opposition to the flow of current.

Factors affecting the resistance: R ¼ r
l

A
, where cross-sectional area is (A), length

is (l), temperature is (T), and resistivity is (r ).

Ohmmeter: An instrument used for measuring resistance. Its symbol is Ω and the
resistor must be removed from the circuit to measure the resistance.

Conductance (G): It is the reciprocal of resistance: G ¼ 1
R
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Ohm’s law: It expresses the relationship between current I, voltage V, and resis-
tance R.

I ¼ V

R
or I ¼ E

R

Conductance form of Ohm’s law: I ¼ GV.

Reference direction of current: Assuming an arbitrarily chosen current direction
as the reference direction of current:

● If I > 0, actual current direction is consistent with the reference current
direction.

● If I < 0, actual current direction is opposite to the reference current direction.

Reference polarity of voltage: Assuming an arbitrarily chosen voltage polarity as
the reference polarity of voltage:

● If V > 0: actual voltage polarity is consistent with the reference voltage
polarity.

● If V < 0: actual voltage polarity is opposite to the reference voltage polarity.

Mutually related polarity of voltage and current: If the reference current
direction is assigned by an arrow pointing from þ to � voltage of the component,
then the reference current direction and reference voltage polarity is consistent.

Symbols and units of electrical quantities

Quantity Quantity symbol Unit Unit symbol

Charge Q Coulombs C

EMF E Volt V

Work (energy) W Joule J

Resistance R Ohm W

Resistivity r Ohm � meters W � m

Conductance G Siemens or Mho S or ℧

Current I Ampere A

Voltage V or E Volt V

Practice problems

1.1
1. Write a short essay titled ‘‘I am looking forward to my electrical/

electronics career.’’
2. List the electric and electronic products that you know.
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3. Classroom discussion: The electrical history that I know.
4. Listed the physicists who were named for the following units of

electricity:
(a) Resistance
(b) Current
(c) Voltage
(d) Power

5. ( ) was named for the unit of charge.
6. ( ) was named for the unit of frequency.
7. What is the unit of energy?
8. ( ) was named for the unit of inductance.
9. Maxwell is the unit of ( ), 1 Web ¼ 10 ( ) Maxwell.

10. What is the unit of capacitance?
1.2

11. What are three basic requirements for a circuit?
12. A simplified circuit diagram that shows the interconnection of circuit

components, and is represented by the (ideal) circuit symbols is ( ).
13. Draw the following circuit components using circuit symbols: fixed

resistor, variable resistor, capacitor, inductor, fuse, wire connection,
and grounding.

1.3
14. ( ) is measured by the amount of charge (Q) that flows past a

given point at a certain time.
15. ( ) is an instrument used for measuring current; its symbol

is ( ).
16. The instrument used for measuring current should be connected

to ( ) in the circuit.
17. If 14 C charge through a specific point in seven seconds, the current

equals to ( ).
18. How long can a 5 A current make 10 C charge through a particular

point?
19. The conventional direction of current is a flow of positive charge

from the ( ) terminal of a power supply to its ( )
terminal.

1.4
20. Electromotive force (EMF) is also called ( ); its symbol

is ( ).
21. Voltage also called ( ); its symbol is ( ).
22. An instrument used for measuring voltage is called ( ), and it

should be connected in ( ) with the component.
23. The voltage that across two terminals of a lamp is called the

( ) voltage.
24. ( ) is an electric pressure or force that is supplied by a voltage

source, which causes electric current to flow in a circuit.
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1.5
25. An instrument used for measuring resistance is called ( ); its

symbol is ( ).
26. The instrument used for measuring resistance should be connected in

( ) with the resistor.
27. Factors affecting resistance are A, r, ‘, and ( ).
28. The cross-section of a 100 m copper wire is 0.13 cm2. Determine the

resistance of this copper wire.
29. If V ¼ 20 V and R ¼ 100 W, calculate the current.
30. If E ¼ 12 V and I ¼ 0.1 A calculate the resistance and conductance.
31. Plot the I–V characteristics of problem 30.

1.6
32. If I < 0, the actual current direction is ( ) with the reference

current direction.
33. If V > 0, the actual voltage polarity is ( ) with the reference

voltage polarity.
34. If the reference current direction is assigned by an arrow pointing

from ( ) to ( ) of the voltage of the component, it is
called ( ) polarity of the voltage and current.
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2.1 Power and energy

2.1.1 Work
Work (W )
● Work is the result when a force acts on an object and causes it to move a

certain distance. It is the product of the force (F ) and the displacement (S ) in
the direction of the motion (Figure 2.1).



● Work depends on:
– The amount of force (F ) applied to an object.
– The distance or displacement (S ) that the object moves.

● Work (W ): Work is done when a force is applied to an object over a distance
(or displacement).

Example: – To push a door open does some work.
– To push on the wall does not (the distance ¼ 0).

The meaning of the word ‘‘work’’ in everyday life is not the same as in physics.

Example: Getting a good mark in physics takes a lot of hard work.

Calculating work

● Work ¼ Force � Displacement W ¼ FS

● Units:
Joule (J)

Newton (N)

Meter (m)
W = FS

● If using a force of 1 N to lift of an object to 1 m, 1 J of work is done in
overcoming the downward force of gravity as shown in Figure 2.2.

● When the force (F ) and displacement (S ) do not point in the same direction,

the formula to calculate work will be: W ¼ ðF cosqÞS
– where the angle q is the angle between force (F ) and displacement (S ),
– when q is 0 degree, cos0� ¼ 1, W ¼ ðF cosqÞS ¼ FS.

● It is the same in an electric circuit: Work is done after the electrons or charges
are moved to a certain distance in a circuit as a result of applying an electric
field force from the power supply.

2.1.2 Energy
Energy and work
● Energy: The capacity to do work (the physical or mental strength that allows

one to do work) is called energy. It is not work itself, but a transfer of energy.

SF

Figure 2.1 Force and displacement

1 N

1 m
F

1 N

Figure 2.2 Work
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● Work is a transfer of energy; when an object does work on another object,
some of its energy is transferred to that object.

Even though you cannot ever really see it, you use energy to do work every day. For
example, after you eat and sleep, your body converts the stored energy to keep you doing
daily work, such as walking, running, reading, and writing.

● An object has the capacity to do work producing energy. Such energy
means that
– light bulbs can glow
– wind can blow
– machines can work
– airplanes can fly
– . . . . . .

The main types of energy

Energy Definition Example

Light energy The energy that comes from light. It is the
radiant energy which can be seen by the
human eye

Light bulb

Heat or thermal
energy

The energy (heat) generated by the move-
ment of particles within an object

Stove

Sound energy The energy generated by vibrating sound
waves (move back and forth quickly)

Music

Chemical energy The energy stored in the internal structure
of an atom or molecule (particle)

Gasoline

Electrical energy Energy generated by the flow of electric
charge (charged particles) through a
conductor (wire)

Toaster

Nuclear energy Energy stored in the nucleus (core) of an
atom

Nuclear power plant

Gravitational
potential energy

Energy stored in an object’s height A book on a table

Kinetic energy Energy in motion A moving car

Mechanical energy Potential energy þ kinetic energy Windmill

The law of conservation of energy
● The law of conservation of energy is one of most important rules in natural

science.
● The law of conservation of energy states that energy cannot be created or

destroyed, but it can be changed (transferred) from one form to another (the
total energy remains constant).

Examples: A moving car hits a parked car: Energy is transferred from the moving car to
the parked car and causes the parked car to move.
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‘‘Converted’’ means ‘‘never disappeared’’ in physics terms. For example:

● Electrical generator: mechanical energy ? electrical energy
● Lamp: electrical energy ? light energy
● Battery: chemical energy ? electrical energy
● Solar panel: light energy ? electrical energy

2.1.3 Power
Power refers to the speed of energy conversion or consumption; it is a measure of
how fast energy is transforming or being used.

1 N object lifted to 1 m may have different time rates depending on the amount
of power applied (refer to the example in Figure 2.2).

● If a higher power is applied to the object (an adult is lifting it), it will take a
shorter period of time to lift it.

● If a lower power is applied to the object (a kid is lifting it), it will take a longer
period of time to lift it.

● Power is defined as the rate of doing work, or the amount of work done per unit
of time.
Note:
– Our daily consumption of electricity is electrical energy, and not electrical

power.
– The hydro bill that you receive is for electrical power—the amount of

electrical energy consumed in 1 or 2 months.

Energy, work, and power

Energy – Energy is the capacity to do work.

Work – Work is a transfer of energy.

Power
– Power is the speed of energy conversion, or work done per

unit of time: P ¼ W

t

Calculating power

● Power ¼ Work
Time

or P ¼ W

t

● Units: Watt (W) Second (s)
Joule (J)

P = W
t

or Watt (W) Hour (h)

Kilowatt-hour (kWh)
P = W

t

2.1.4 Electric power
Electric power is the speed of electrical energy conversion or consumption in an
electric circuit, and it is a measure of how fast electrons or charges are moving in a
circuit.
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Calculating electric power

● Power ¼ Current � Voltage ¼ Current2 � Resistance ¼ Voltage2

Resistance

P ¼ IV ¼ I2R ¼ V 2

R

● or Power ¼ Current � Source voltage ¼ ðSource voltageÞ2

Resistance
P ¼ IE ¼ E2

R

Electric power (P) P ¼ IV ¼ I2R ¼ V 2

R
or P ¼ IE ¼ E2

R

� �

● Units:

Ohm (Ω)Watt (W) P = IV =  I 2 R = V2

R

Volt (V)

Ampere (A)

or
Ohm (Ω)Watt (W)

Ampere (A) Volt (V)

P = IE = E2

R

Memory aid: The above power equations can be illustrated in Figure 2.3 as the
memory aid for power equations. By covering power in any diagram, the correct
equation is obtained to calculate the unknown power.

Example 2.1: In a circuit, voltage V ¼ 10 V, current I ¼ 1 A, and resistance
R ¼ 10 W, calculate the power in this circuit by using three power equations,
respectively.

Solution: P ¼ IV ¼ 1 Að Þ 10 Vð Þ ¼ 10 W

P ¼ I2R ¼ 1 Að Þ2ð10 WÞ ¼ 10 W

P ¼ V 2

R
¼ ð10 VÞ2

10 W
¼ 10 W

This example proved that the three power equations are equivalent since each equation leads
to the same value of power at 10 W.

  V I I2

V2

R R
P P

P

Figure 2.3 Memory aid for power equations
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2.1.5 The reference direction of power
The concept of the reference direction of power
● When a component in a circuit has mutually related reference polarity of

current and voltage (refer to Chapters 1–6), power is positive, i.e., P > 0,
meaning the component absorption (or consumption) of energy.

● When a component in a circuit has non-mutually related reference polarity of
current and voltage, power is negative, i.e., P < 0, meaning the component
releasing (or providing) of energy.

The concept of the reference direction of power can be illustrated in
Figure 2.4.

The reference
direction of
power

– If a circuit has mutually related reference polarity of current and
voltage: P > 0 (absorption energy).

– If a circuit has non-mutually related reference polarity of current
and voltage: P < 0 (releasing energy).

Example 2.2: Determine the reference direction of power in Figure 2.5(a) and (b).

Solution: (a) P ¼ IV ¼ 2 Að Þ 3 Vð Þ ¼ 6 W
P > 0 , the resistor absorbs energy.

(a) P > 0 (b) P < 0

I I

VV

–

+

+

–

Figure 2.4 The reference direction of power

+ –
(a)

+–
(b)

V = 3 V

V = 3 V

I = 2 A

I = 2 A 

Figure 2.5 Figure for Example 2.2
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(b) P ¼ Ið�V Þ ¼ ð2 AÞð�3 VÞ ¼ �6 W

P < 0 , the resistor releases energy.

Example 2.3: I ¼ 2 A, V1 ¼ 6 V, V2 ¼ 14 V, and E ¼ 20 V in a circuit as shown in
Figure 2.6. Determine the powers dissipated on the resistors R1, R2, and R1 and R2

in series (a to c): in this figure.

Solution:

● Power for R1:
P1 ¼ V1I ¼ 6 Vð Þ 2 Að Þ ¼ 12 W P > 0, the resistor absorbs

energy.
● Power for R2:

P2 ¼ V2I ¼ 14 Vð Þ 2 Að Þ ¼ 28 W P > 0, the resistor absorbs

energy.
● Power for R1 and R2 (a to c):

P3 ¼ �Eð ÞI ¼ �20 Vð Þ 2 Að Þ ¼ �40 W P < 0, the resistor releases

energy.
● P1 þ P2 þ P3 ¼ 12 W þ 28 W þ ð�40WÞ ¼ 0 W Energy conservation.

Formula for current: If power is given in a circuit, using mathematical formula-
tion to manipulate the power equation and solving for current I, we can express
current I as follows:

Since P ¼ I2R or I2 ¼ P

R
; so I ¼

ffiffiffi
P

R

r

Formula for voltage: If power is given in a circuit, using mathematical formula-
tion to manipulate the power equation and solving for voltage V, we can express
voltage V as follows:

Since P ¼ V 2

R
or V 2 ¼ PR; so V ¼ ffiffiffiffiffiffi

PR
p

a a
+

–
+

–

I = 2 A 

V2

V1

E

R2

R1

d

b

c

Figure 2.6 Figure for Example 2.3
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Example 2.4: If power consumed on a 2.5 W resistor is 10 W in a circuit, calculate
the current flowing through and voltage across this resistor.

Solution:

● I ¼
ffiffiffi
P

R

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
10 W
2:5 W

r
¼ 2 A

● V ¼ ffiffiffiffiffiffi
PR

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið10 WÞð2:5 WÞp ¼ 5 V

2.2 Kirchhoff’s voltage law

2.2.1 Closed-loop circuit
Kirchhoff’s laws
● Kirchhoff’s laws are the most important fundamental circuit laws for analyzing

and calculating electric circuits after Ohm’s law.
● Physics Professor Kirchhoff: In 1847, a German physicist, physics professor

Kirchhoff (Gustav Kirchhoff, 1824–1887) at the Berlin University developed
the two laws that established the relationship between voltage and current in an
electric circuit.

Closed-loop circuit
● A closed-loop circuit is a conducting path in a circuit that has the same starting

and ending points.
● If the current flowing through a circuit from any point returns current to the

same starting point, it would be a closed-loop circuit.
● As current flows through a closed-loop circuit, it is the same as having a round

trip, so the starting and ending points are the same, and they have the same
potential positions.

For example, Figure 2.7 is a closed-loop circuit, since current I starts at point a,
passes through points b, c, d, and returns to the starting point a.

a b

E1 = 10 V

E2 = 10 V

R3

R1

V1 = 10 V

V3 = 10 V

R2 V2 = 10 V

d c

I

Figure 2.7 A closed-loop circuit
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2.2.2 Kirchhoff’s voltage law (KVL) #1
KVL #1
● Kirchhoff’s voltage law (KVL) #1: The algebraic sum of the voltage or

potential difference along a closed-loop circuit is always equal to zero at any
moment, or the sum of voltages in a closed loop is always equal to zero.

i.e., SV ¼ 0 S is the Greek letter Sigma, meaning sum.

● The voltage in KVL includes voltage rising from the voltage sources (E) and
voltage dropping on circuit elements or loads.

Signs of the voltage in the SV ¼ 0:
The algebraic sum used in KVL #1 means that there are voltage polarities existing
in a closed-loop circuit. It requires assigning a loop direction and it could be in
either clockwise or counter-clockwise directions (usually choose clockwise).

● Assign a positive sign (þ) for voltage (V or E ) in the equation SV ¼ 0 if the
voltage reference polarity and the loop direction are the same, i.e., if the vol-
tage reference polarity is from positive (þ) to negative (–) and the loop
direction is clockwise.

● Assign a negative sign (–) for voltage (V or E ) in the equation SV ¼ 0 if the
voltage reference polarity and the loop direction are opposite, i.e., if the vol-
tage reference polarity is from negative (–) to positive (þ), and the loop
direction is clockwise.

Example 2.5: Verify KVL #1 for the circuit of Figure 2.8.

Solution: Applying SV ¼ 0 in Figure 2.8: V1 þ V2 þ V3 � E2 � E1 ¼ 0
2:5 þ 2:5 þ 2:5 � 5 � 2:5ð Þ V ¼ 0

+ –

+

+

–

–
V3 = 2.5 V

E2 = 5 V

E1 = 2.5 V

V1 = 2.5 V

V2 = 2.5 V

R1

R3

I

R2

Figure 2.8 Figure for Example 2.5

Basic laws of electric circuits 51



KVL #1 – Assign a (þ) sign for V or E if its reference polarity (þ to –) and loop
direction (clockwise) are the same;

SV = 0 – Assign a (–) for V or E if its reference polarity (– to þ) and loop direction
(clockwise) are opposite.

2.2.3 Kirchhoff’s voltage law (KVL) #2
KVL #2
Kirchhoff’s voltage law (KVL) #2: Kirchhoff’s voltage law (KVL) can also be
expressed in another way: the sum of the voltage drops (V ) around a closed-loop
must be equal to the sum of the voltage rises or voltage sources in a closed-loop
circuit, i.e., SV ¼ SE

Signs of the V in the SV ¼ SE

● Assign a positive sign (þ) for V if its reference polarity and loop directions are
the same.
(i.e., if the voltage reference polarity is from positive (þ) to negative (–) and the loop
direction is clockwise.)

● Assign a negative sign (–) for V if its reference polarity and the loop directions are
opposite.
(i.e., if the voltage reference polarity is from negative (–) to positive (þ), and the loop
direction is clockwise.)

Signs of the E in the SV ¼ SE

● Assign a negative sign (–) for the voltage source E in the equation if its
reference polarity and the loop direction are the same.
(i.e., if its polarity is from positive (þ) to negative (–) and the loop direction is clockwise.)

● Assign a positive sign (þ) for the voltage source E in the equation, if its
reference polarity and loop direction are opposite.
(i.e., if its polarity is from negative (–) to positive (þ) and the loop direction is clockwise.)

Example 2.6: Verify KVL #2 for the circuit of Figure 2.8.

Solution: Applying SV ¼ SE in Figure 2.8: V1 þ V2 þ V3 ¼ E1 þ E2

2:5 þ 2:5 þ 2:5ð Þ V ¼ 2:5 þ 5ð Þ V

7:5 V ¼ 7:5 V

KVL #2
– Assign a (þ) sign for V if its reference polarity and loop direction are the

same; assign a (–) for V if its reference direction and loop direction are
opposite.

SV =SE – Assign a (–) for E if its reference polarity and loop direction are the
same; assign a (þ) for E if its polarity and loop direction are opposite.
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2.2.4 Experimental circuit of KVL
Kirchhoff’s voltage law can be approved by an experimental circuit in
Figure 2.9. If using a multimeter (voltmeter function) to measure voltages on all
resistors and power supply in the circuit of Figure 2.9, the total voltage drops on
all the resistors should be equal to voltage for the DC power supply.

Experimental circuit of KVL
● KVL #1, SV ¼ 0: (3 þ 3 þ 3 – 9) V ¼ 0
● KVL #2, SV ¼ SE: (3 þ 3 þ 3) V ¼ 9 V

Example 2.7: Determine resistance R3 in the circuit of Figure 2.10.

Solution: R3 ¼ V3

I
? V3 ¼ ?

Applying KVL #1, SV ¼ 0 : V1 þ V2 þ V3 þ V4 � E ¼ 0

V

–+

– +

+

–

3 Ω

3 Ω

3 Ω

3 V

9 V

3 V

3 V

V

Figure 2.9 Experimental circuit of KVL

 
+

–

+

–

+

+

–
–

R1 = 2.5 ΩI = 0.25 A

R2 = 5 Ω

R3 = ?

R4 = 4 Ω

E = 5 V 

Figure 2.10 Circuit for Example 2.7
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There V1 ¼ IR1 ¼ 0:25 Að Þð2:5 WÞ ¼ 0:625 V

V2 ¼ IR2 ¼ 0:25 Að Þð5 WÞ ¼ 1:25 V

V4 ¼ IR4 ¼ 0:25 Að Þð4 WÞ ¼ 1 V

Solve for V3 from V1 þ V2 þ V3 þ V4 � E ¼ 0:

V3 ¼ E � V1 � V2 � V4 ¼ 5 � 0:625 � 1:25 � 1ð Þ V ¼ 2:125 V

Therefore R3 ¼ V3

I
¼ 2:125 V

0:25 A
¼ 8:5 W

2.2.5 KVL extension
Kirchhoff’s voltage law (KVL) can be expended from a closed-loop circuit to
any scenario loop in a circuit, because voltage or potential difference in the circuit
can exist between any two points in a circuit.

Vab in the circuit of Figure 2.11 can be calculated using KVL #2 as follows:

SV ¼ SE : V þ Vab ¼ E2

Vab ¼ E2 � V
¼ ð10 � 1Þ V ¼ 9 V

Example 2.8: Determine the voltage across points a to b (Vab) in the circuit of
Figure 2.12.

Solution: Vab can be solved in two methods as follows:

– Method 1: SV ¼ 0 : V1 þ Vab þ V4 � E ¼ 0

where Vab ¼ E � V1 � V4 ¼ 5 � 1:5 V � 1ð Þ V ¼ 2:5 V

– Method 2: SV ¼ 0 : V2 þ V3 � Vab ¼ 0

where Vab ¼ V2 þ V3 ¼ 2 þ 0:5ð Þ V ¼ 2:5 V

+

+

E2 = 10 V

V = 1 V

Vab

–

–

R

b

a

Figure 2.11 KVL extension
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The physical property of KVL: The results from Example 2.8 show that voltage
across two points a and b is the same, and it does not matter which path or branch
is used to solve for voltage between these two points, the result should be the
same. Therefore, the physical property of KVL is that voltage does not depend on
the path.

2.3 Kirchhoff’s current law

2.3.1 Kirchhoff’s current law (KCL) #1
Node and branch
● A node (or junction) is the intersectional point of two or more current paths

where current has several possible paths to flow.
● A branch is a current path between two nodes with one or more circuit com-

ponents in series. For instance, point A is a node in Figure 2.13, and it has six
branches. I1, I2, and I3 are the currents flowing into the node A; I4, I5, and I6 are
the currents exiting the node A.

Kirchhoff’s current law (KCL) #1: The algebraic sum of the total currents at
entering and exiting a node (or junction) of the circuit is equal to zero, i.e., SI ¼ 0 .

–

+

–

+

+

–

–

+ b

a

V1 = 1.5 V

E = 5 V 

V4 = 1 V

V2 = 2 V

V3 = 0.5 V

Figure 2.12 Circuit for Example 2.8

I3 I4

I2

I1
A

I6

I5

Figure 2.13 Nodes and branches
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Signs of the I in the SI ¼ 0

● Assign a positive sign (þ) to the current in the equation (KCL #1) if current is
entering the node.

● Assign a negative sign (�) to the current in the equation if current is exiting the
node.

Example 2.9: Applying KCL #1 in Figure 2.13.

Solution: I1 þ I2 þ I3 � I4 � I5 � I6 ¼ 0

KCL #1 – Assign a (þ) sign for current in KCL if I is entering the node.

SI = 0 – Assign a (�) for current in KCL if I is exiting the node.

Example 2.10: Determine current I4 using KCL #1 of Figure 2.14.

Solution:SI ¼ 0 : I1 � I2 þ I3 þ I4 ¼ 0
I4 ¼ I2 � I1 � I3 ¼ 20 A � 10 A � 5 A ¼ 5 A

2.3.2 Kirchhoff’s current law (KCL) #2
Kirchhoff’s current law (KCL) #2
Kirchhoff’s current law can also be expressed in another way: The total current
flowing into a node is equal to the total current flowing out of the node, i.e.,

SIin ¼ SIout

Signs of the Iin in the SIin ¼ SIout

● Assign a positive sign (þ) to current Iin in the equation (KCL #2) if current is
entering the node.

● Assign a negative sign (�) to Iin if current is exiting the node.

10 A

20 A

5 A

I1

I4 = ?

I3I2

Figure 2.14 Figure for Example 2.10
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Signs of the Iout in the SIin ¼ SIout

● Assign a positive sign (þ) to current Iout in the equation (KCL #2) if current is
exiting the node.

● Assign a negative sign (�) to Iout if current is entering the node.

Example 2.11: Verify KCL #2 and KCL #1 for the circuit of Figure 2.15.

Solution:

● KCL #2: SIin ¼ SIout: I1 þ I2 ¼ I3 þ I4 þ I5

Substituting I with its respective values: 15 þ 10ð Þ A ¼ 7 þ 8 þ 10ð Þ A

25 A ¼ 25 A hence provedð Þ
● KCL #1: SI ¼ 0: I1 þ I2 – I3 � I4 – I5 ¼ 0

Substituting I with its respective values: 10 þ 15 � 7 � 8 � 10ð Þ A ¼ 0

0 A ¼ 0 hence provedð Þ

KCL #2 – Assign a (þ) sign for Iin if current is entering the node; assign a (–) sign
for Iin if current is exiting the node.

SI in =SIout – Assign a (þ) for Iout if current is exiting the node; assign a (–) sign for
Iout if current is entering the node.

Example 2.12: Determine the current I1 at node A and B in Figure 2.16.

Solution:

● Node A: SI ¼ 0 : I1 � I2 � I3 � I4 ¼ 0

SIin ¼ SIout : I1 ¼ I2 þ I3 þ I4

a
I5 = 10 A

I4 = 8 A

I3 = 7 A
I2 = 10 A

I1 = 15 A

Figure 2.15 Figure for Example 2.11
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● Node B: SI ¼ 0 : I2 þ I3 þ I4 � I1 ¼ 0

SIin ¼ SIout: I2 þ I3 þ I4 ¼ I1

or I1 ¼ I2 þ I3 þ I4

Experimental circuit of KCL
KCL can be proved by an experimental circuit in Figure 2.17:

● Measure branch currents I1 and I2 (entering) using two multimeters (ammeter
function).

● I1 and I2 are equal to the source branch current I3 (exiting). I3 ¼ I1 þ I2 ¼ 0.25 A

2.3.3 Physical property of KCL
Water flow analogy to electric current
● Water flowing in a pipe can be analogized as current flowing in a conducting

wire with KCL.
● Water flowing into a pipe should be equal to the water flowing out of the pipe.
● In Figure 2.18, water flows in the three upstream creeks A, B, and C merging

together to a converging point and forms the main water flow out of the con-
verging point to the downstream creek.

I1 A

I2
I3

I4

B

Figure 2.16 Circuit for Example 2.12

A A

A

E = 10 V I2 = 0.15 A

I3 = 0.25 A

I1 = 0.1 A

Figure 2.17 Experimental circuit for KCL
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Example 2.13: Determine current I4 using KCL #2 of Figure 2.19.

Solution:

SIin ¼SIout: I1þI3þI4¼ I2

I4¼ I2�I3�I1 Solve for I4:

I4¼20A�10A�5A¼ 5A Substituting I with its respective values:

10 A þ 5 A þ 5 A ¼ 20 A, (SIin ¼ SIout) 20 A ¼ 20 A (Proved)

Physical property of KCL: The physical property of KVL is that charges cannot
accumulate in a node; what arrives at a node is what leaves that node.

● This results from the conservation of charges, i.e., charges can neither be
created nor be destroyed or the amount of charges that enter the node equals
the amount of charges that exit the node.

● Another property of KCL is the continuity of current (or charges), which is
similar to the continuity of flowing water, i.e., the water or current will never
discontinue at any moment in a pipe or conductor.

2.3.4 Procedure to solve a complicated problem
Steps to solve a complicated problem
1. Start from the unknown value in the problem and find the right equation that

can solve this unknown.
2. Determine the new unknown of the equation in step 1 and find the equation to

solve this unknown.

A

B

C

Figure 2.18 Creeks

10 A

20 A

5 A

I4 = ?
I1

I2
I3

Figure 2.19 Circuit for Example 2.13
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3. Repeat steps 1 and 2 until there are no more unknowns in the equation.
4. Substitute the solution from the last step into the previous equation, and solve

the unknown. Repeat until the unknown in the original problem is solved.
It does not matter which field of natural science the problems are belonging to or how com-

plicated they are, the procedure for analyzing and solving them are all similar.

Example 2.14: Determine the current I1 of Figure 2.20.

Solution:

The unknown in this problem is I1. Find the right equation to solve I1.

● At node C: I1 þ 4 A ¼ I2 þ 3 A ð2:1Þ I2 ¼ ? SIin ¼SIout

(Besides I1, the unknown in this equation is I2.)

● Find the right equation to solve I2.

At node B: I2 þ 3 A ¼ 4 A þ I3 þ 2 A ð2:2Þ I3 ¼ ? SIin ¼SIout

(Besides I2, the unknown in this equation is I3.)

● Find the right equation to solve I3.

At node A: I3 þ 4 A ¼ ð5 þ 1Þ A; solve for I3 : I3 ¼ 2 A SIin ¼ SIout

(There are no more unknown elements in this equation except for I3.)

● Substitute I3 ¼ 2A into Equation (2.2) and solve for I2:

I2 þ 3 A ¼ 4 þ 2 þ 2ð Þ A; so I2 ¼ 5 A

● Substitute I2 ¼ 5A into (2.1) and solve for I1:

I1 þ 4 A ¼ ð5 þ 3Þ A; therefore; I1 ¼ 4 A

2.3.5 Supernode
Supernode: The concept of the node can be extended to a circuit that contains
several nodes and branches, and this circuit can be treated as a supernode.

I1

4 A
I3

I2

A
BC

3 A

1 A

5 A

4 A

2 A

Figure 2.20 Circuit for Example 2.14
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● The circuit between nodes a and b in Figure 2.21 within the dashed circle can
be treated as an extended node or supernode A.

● KCL can be applied to it: SIin ¼ SIout or I1 ¼ I2.

Example 2.15: Determine the magnitudes and directions of I3, I4, and I7 of
Figure 2.22.

Solution:

● Treat the circuit between the nodes A and D (inside of the circle) as a super-
node, and current entering the node A should be equal to current exiting the
node D, therefore,

I7 ¼ I1 ¼ 5A

● At node A: Since current entering node A is I1 ¼ 5 A,
current leaving node A is I2 ¼ 6 A, so I2 > I1

I3 must be current entering node A to satisfy SIin ¼ SIout

i.e., I1 þ I3 ¼ I2 or 5Aþ I3 ¼ 6A, therefore, I3 ¼ 1 A

I1 I2

A

a b

Figure 2.21 Supernode

 

BC

I7 = ?

I5 = 4 A

I2 = 6 A

I1 = 5 A

I3

I6 = 1 A

A

I4

D

Figure 2.22 Circuit for Example 2.15
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● At node B: Since current entering node B is I2 ¼ 6 A
currents exiting node B is I5 ¼ 4 A, so I2 > I5

I4 must be current exiting node B to satisfy SIin ¼ SIout

i.e., I2 ¼ I4 þ I5 or 6A¼ I4 þ 4A, therefore, I4 ¼ 2 A

● Prove it at node C: I4 ¼ I3 þ I6, 2 A¼ 1 A þ 1 A, 2 A¼ 2 A (proved) SIin ¼ SIout

(I3 is the current entering node A; I4 is the current exiting node B.)

2.3.6 Some important circuit terminologies
Several important circuit terminologies
● Node: The intersectional point of two or more current paths where current has

several possible paths to flow.
● Branch: A current path between two nodes where one or more circuit com-

ponents is in series.
● Loop: A complete current path where current flows back to the start.
● Mesh: A loop in the circuit that does not contain any other loops (non-redun-

dant loop).
Note
● A mesh is always a loop, but a loop is not necessarily a mesh.
● A mesh can be analogized as a windowpane, and a loop may include several

such windowpanes.

Example 2.16: List the nodes, branches, meshes, and loops in Figure 2.23.

Solution:

● Node: four nodes—A, B, C, and D
● Branch: six branches—AB, BD, AC, BC, CD, and AD
● Mesh: 1, 2, and 3
● Loop: 1, 2, 3, A-B-D-C-A, A-B-D-A, etc.

A

B

C
D

1 2

3

Figure 2.23 Illustration for Example 2.16

62 Understandable electric circuits: key concepts, 2nd edition



2.4 Voltage source and current source

2.4.1 Ideal voltage source
Power supply
It is a circuit device that provides electrical energy to drive the system.

● A power supply is a source that can provide EMF (electromotive force) and
current to operate the circuit.

● The power supply can be classified into two categories: voltage source and
current source.

Ideal voltage source
It is a two-terminal circuit device that can provide a constant output voltage Vab,
across its terminals, and is shown in Figure 2.24(a).

● Voltage of the ideal voltage source, VS, will not change even if an external
circuit such as a load RL, is connected to it as shown in Figure 2.24(b), so it is
an independent voltage source.

● The voltage of the ideal voltage source is independent of variations in its
external circuit or load.

● The ideal voltage source has a zero internal resistance (RS ¼ 0), and it can
provide maximum current to the load.

The characteristic curve of an ideal voltage source
● Current in the ideal voltage source is dependent on the variations in its external

circuit.
● When the load resistance RL changes, the current in the ideal voltage source

also changes since I ¼ V/RL.
● The characteristic curve of an ideal voltage source is shown in Figure 2.24(c).

The terminal voltage Vab for an ideal voltage source is a constant, and same as
the source voltage (Vab ¼ VS), regardless of its load resistance RL.

Ideal voltage source

– It can provide a constant terminal voltage that is independent
of the variations in its external circuit, Vab ¼ VS.

– Its internal resistance, RS ¼ 0.
– Its current depends on the variations in its external circuit.

a

b

Ideal voltage
source

Ideal voltage source
with a load

Characteristic curve

I

RL V

+
+
–

+
–

–

VS

V

0

(c)(b) (a)

VS VS

I or t

Figure 2.24 Ideal voltage source
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2.4.2 Real voltage source
Real voltage source (or voltage source)
● Usually a real-life application of a voltage source such as a battery, DC gen-

erator, or DC power supply will not reach a perfect constant output voltage
after it is connected to an external circuit or load, since nothing is perfect.

● The real voltage sources all have a nonzero internal resistance RS. Vab ¼ VS � IRS

● The real voltage source (or voltage source) can be represented as an ideal vol-
tage source VS in series with an internal resistor RS as shown in Figure 2.25(a).

● Once a load resistor RL is connected to the voltage source (Figure 2.25(b)), the
terminal voltage of the source Vab will change if the load resistance RL changes.

Small internal resistance RS

● Since the internal resistance RS is usually very small, Vab will be a little bit

lower than the source voltage VS (Vab ¼ VS – IRS ). I ¼ V S
RS þ RL

● A smaller internal resistance can also provide a higher current through the
external circuit of the real voltage source because I "¼ VS

RS#þRL
(apply Ohm’s

law in Figure 2.25(b)).
● Once the load resistance RL changes, current I in this circuit will change, and the

terminal voltage Vab also changes. This is why the terminal voltage of the real
voltage source is not possible to keep at an ideal constant level (Vab 6¼ VS).

● The internal resistance of a real voltage source usually is much smaller than the
load resistance, i.e., RS � RL, so the voltage drop on the internal resistance
(IRS) is also very small, and therefore, the terminal voltage of the real voltage
source (Vab) is approximately stable:

Vab ¼ VS � IRS � VS

When a battery is used as a real voltage source, the older battery will have a higher internal
resistance RS and a lower terminal voltage Vab.

Real voltage source
(Voltage source)

– It has a series internal resistance RS, and RS � RL

– The terminal voltage of the real voltage source is Vab ¼ VS – IRS

a

b

a

b

↓

↑

Real voltage
source  

Real voltage source
with a load

(c) Characteristic curve(a) (b)

RS RS
RL

VS VS

VS

I

Vab

+

+
–

+
–

–

V

VRS
 = IRS

I or t0

Figure 2.25 Real voltage source
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Example 2.17: Determine the terminal voltages of the circuit in Figure 2.26(a) and (b).

● When RS ¼ 0.005 W, I ¼ VS

RS þ RL
¼ 3 V

0:005 þ 5ð Þ W
� 0:5994 A

Vab ¼ IRL ¼ 0:5994 Að Þð5 WÞ ¼ 2:997 V

● When RS ¼ 50 W, I ¼ VS

RS þ RL
¼ 3 V

50 þ 5ð Þ W � 0:055 A

Vab ¼ IRL ¼ 0:055 Að Þð5 WÞ ¼ 0:275 V

The internal resistance has a great impact on the terminal voltage and
current
● Example 2.17 indicates that the internal resistance has a great impact on the

terminal voltage and current of the voltage source.
● Only when the internal resistance is very small, can the terminal voltage of the

source be kept approximately stable, such as in Example 2.17, when

RS ¼ 0:005 W; Vab ¼ 2:997 V; VS ¼ 3 V

In this case, the terminal voltage Vab is very close to the source voltage VS.
● But when RS ¼ 50 W, Vab ¼ 0.275 V � VS ¼ 3 V

i.e., the terminal voltage Vab is much less than the source voltage VS.

A real voltage source has three possible working conditions
● When an external load RL is connected to a voltage source (Figure 2.27(a)):

Vab ¼ VS � IRS; I ¼ VS

RS þ RL

I

3 V
+
–

+
–

0.005 Ω
5 Ω 5 Ω

3 V 

50 Ω

RS = 0.005 Ω (b) RS = 50 Ω(a)

VS

RS

VS

RS

RL RL

a a

b
b

Figure 2.26 Circuit for Example 2.17
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● Open circuit: When there is no external load RL connected to a voltage source
(Figure 2.27(b)):

Vab ¼ VS; I ¼ 0

● Short circuit: When a jump wire is connected to the two terminals of a voltage
source (Figure 2.27(c)):

Vab ¼ 0; I ¼ VS=RS

2.4.3 Ideal current source
The current source is a circuit device that can provide a stable current to the
external circuit. A transistor, an electronic element you may have heard, can be
approximated as an example of a current source.

Ideal current source
● An ideal current source is a two-terminal circuit device that can provide a

constant output current IS through its external circuit.
● Current of the ideal current source will not change even an external circuit

(load RL) is connected to it, so it is an independent current source.
● The current of the ideal current source is independent of variations in its

external circuit or load.
● Two-terminal voltage of the ideal current source is determined by the external

circuit or load.
● The symbol of an ideal current source is shown in Figure 2.28(a), and its

characteristic curve is shown in Figure 2.28(b).

The ideal current source has an infinite internal resistance (RS ¼?), it can
provide a maximum current to the load.

IS represents the current for current source, and the direction of the arrow is the
current direction of the source.

With a load (b) Open circuit (c) Short circuit(a)

Vab = 0

b

a

RS

VSVS

RS

I = 0 

a

b
–

+

Vab

–

+

+
–

+
–

+
–

VabRL

I

a

b

VS

RS

Figure 2.27 Three states of a voltage source
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Ideal current
source

– It can provide a constant output current IS that does not depend on the
variations in its external circuit.

– Its internal resistance RS ¼?.
– Its voltage depends on variations in its external circuit. Vab ¼ ISRL

Example 2.18: The load resistances of RL are 1,000 W and 50 W, respectively, in
Figure 2.29. Determine the terminal voltage Vab for the ideal current source in the
circuit.

Solution:

● When RL ¼ 1,000 W, Vab ¼ ISRL

¼ 0:02 Að Þð1; 000 WÞ
¼ 20 V

● When RL ¼ 50 W, Vab ¼ ISRL

¼ 0:02 Að Þð50 WÞ
¼ 1 V

Symbol of an ideal
current source     

(a) (b) Characteristic curve

I

IS
IS

V or t

Figure 2.28 Ideal current source

a

b

+

–

VabRL0.02 AIS

Figure 2.29 Circuit for Example 2.18
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The conditions of open circuit and short circuit of an ideal current source are
as follows:

● Open circuit: Vab ¼?, I ¼ 0, as shown in Figure 2.30(a).
● Short circuit: Vab ¼ 0, I ¼ IS, as shown in Figure 2.30(b).

2.4.4 Real current source
Usually a real-life application of the current source will not reach a perfect constant
output current after it is connected to an external circuit or load, as the real current
sources all have a non-infinite internal resistance RS.

Real current source (or current source)
● The real current source can be represented as an ideal current source IS in

parallel with an internal resistor RS.
● Once a load resistor RL is connected to the current source as shown in Fig-

ure 2.31, the current of the source will change if the load resistance RL changes.
● Since the internal resistance RS of the current source usually is very large, the

load current I will be a little bit lower than the source current IS.
● Once the load resistance RL changes, the current in the load will also change.

This is why the current of the real current source is not possible to keep at an
ideal constant level.

(a) Open circuit (b) Short circuit

b

a

I = 0

Vab = ∞

I

a

b

Vab = 0

–
–

+

ISIS

+

Figure 2.30 Open circuit and short circuit of an ideal current source

 

I

RLRS

a

b

IS

Figure 2.31 A real current source
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Internal resistance
● A higher internal resistance RS can provide a higher current through the

external circuit of the real current source.
● The internal resistance of a real current source usually is much greater than the

load resistance (RS � RL) and, therefore, the output current of the real current
source is approximately stable.

Real current source
(Current source)

– It has an internal resistance RS (RS � RL).
– RS is in parallel with the current source.

Summary

Basic concepts
● Energy: the capacity to do work.
● Work: a transfer of energy.
● Power: the speed of energy conversion, or work done per unit of time.
● Electric power: the speed of electrical energy conversion or consumption in an

electric circuit, and it is a measure of how fast electrons or charges are moving
in a circuit.

● The reference direction of power:
– If a circuit has mutually related reference polarity of current and voltage:

P > 0 (absorption energy).
– If a circuit has non-mutually related reference polarity of current and

voltage: P < 0 (releasing energy).
● Branch: a current path between two nodes where one or more circuit compo-

nents in series.
● Node: the intersectional point of two or more current paths where current has

several possible paths to flow.
● Supernode: a part of the circuit that contains several nodes and branches.
● Loop: a complete current path where current flows back to the start.
● Mesh: a loop in the circuit that does not contain any other loops.
● Ideal voltage source: can provide a constant terminal voltage that does not

depend on the variables in its external circuit. Its current depends on variables
in its external circuit Vab ¼ VS, RS ¼ 0.

● Real voltage source: with a series internal resistance RS (RS � RL), the terminal
voltage of the real voltage source is: Vab ¼ VS � IRS

● Ideal current source: can provide a constant output current IS that does not
depend on the variations in its external circuit, RS ¼?. Its voltage depends on
variations in its external circuit.

● Real current source: with an internal resistance RS in parallel with the ideal
current source, RS � RL.
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Formulas

● Work: W ¼ FS

● Power: P ¼ W
t

● Electric power: P ¼ IV ¼ I2R ¼ V 2

R

● KVL #1: SV ¼ 0
– Assign a (þ) sign for V or E if its reference polarity and loop direction are

the same.
– Assign a (�) sign for V or E if its reference polarity and loop direction are

opposite.

● KVL #2: SV ¼ SE
– Assign a (þ) sign for V if its reference polarity and loop direction are the

same; assign a (�) sign for V if its reference direction and loop direction
are opposite.

– Assign a (�) sign for E if its reference polarity and loop direction are the
same; assign a (þ) for E if its polarity and loop direction are opposite.

● KCL #1: SIin ¼ 0
– Assign a (þ) sign for I if current is entering the node.
– Assign a (�) sign for I if current is exiting the node.

● KCL #2: SIin ¼ SIout

– Assign a (þ) sign for Iin if current is entering the node; assign a (�) sign
for Iin if current is exiting the node.

– Assign a (þ) sign for Iout if current is exiting the node; assign a (�) sign
for Iout if current is entering the node.

Practice problems

2.1
1. ( ) is the result when a force acts on an object and causes it to

move a certain distance.
2. ( ) is the capacity to do ( ).
3. ( ) is a measure of how fast energy is transforming.
4. A device consumes 100 J energy in 5 s. Calculate its power.
5. The current flowing through a resistor is 1.5 A, and the power supply

in this circuit is 6 V. Determine the power transferred from the source
to the resistor.

6. The current flowing through a 220 W resistor is 0.01 A. Determine
the power consumed by this resistor.

7. The power dissipated on a 100 W resistor is 0.1 W. Determine the
current flowing through this resistor.
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8. The power consumed by a 100 W resistor is 1 W. Determine the
voltage of this resistor.

9. Calculate the power on the element according to the reference
direction and the element values in the circuit of Figure 2.32.
Determine if the resistor is absorbing or generating power.

2.2
10. Four resistors are in series and connected to a 10 V voltage source. If

the voltages across three resistors are V1 ¼ 2.5 V, V2 ¼ 1.5 V, and
V4 ¼ 3 V, determine V3.

11. Determine the unknown voltage Vab in the circuit of Figure 2.33.

12. Determine the resistance R2 and voltage across R2 in the circuit of
Figure 2.34.

+ + –
(a) (b)

–

I = 0.2 A

V = 12 V

I = 0.1 A

V = 5 V

Figure 2.32

a

b

3 V

2 V

–

–

+

+ +

–

3 V

Vab

Figure 2.33

R1 =  4.7 Ω

E = 20 V

R2

+ –

 5 V

0.47 V

–

+

9.06 V+ –

Figure 2.34
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13. Calculate the power consumed by R2 in the circuit of Figure 2.35.

2.3
14. Four resistors are in parallel. The current in the branch of the current

source is 3 A, and other branch currents are I1 ¼ 0.5 A, I2 ¼ 0.8 A,
and I4 ¼ 0.05 A, respectively, determine the branch current I3.

15. Determine the unknown currents in the circuit of Figure 2.36.

16. Determine the unknown currents in the circuit of Figure 2.37.

2 V

3 V

VS = 9 V R2 = 100 Ω

Figure 2.35

4 A
1 A

I1

1 A

I3

2 A

1 A I2

Figure 2.36

6 A 1 A

I1

2 A

I2

2 A     I3

Figure 2.37
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17. Determine the unknown currents in the circuit of Figure 2.38.

18. Determine the nodes, branches, meshes, and at least three loops in the
circuit of Figure 2.39.

19. What is the relationship between voltage VAB and current I in the
circuit of Figure 2.40?

3 A

I4

7 A

I1

I2

I3 1 A

Figure 2.38

a

b c

d

Figure 2.39

A B A B

+ – + –(a) (b)

R EI

VABVAB

IR E

Figure 2.40
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2.4
20. The difference between the ideal voltage source and the real voltage

source is that the real voltage source has ( ), and its
terminal voltage is ( ); the terminal voltage of an ideal voltage
source is ( ).

21. The open-circuit voltage measured at the two terminals of two bat-
teries in series is 14.2 V.
(a) After the batteries are connected to a 100 W resistor, their

terminal voltage decreased to 6.8 V; determine the internal
resistance of the batteries.

(b) Determine the terminal voltage of the batteries after the 100 W
resistor is replaced by a 200 W resistor.

22. Determine voltage Vab in the circuit of Figure 2.41.

2 Ω

6 V
IS

1 A

a

b

Figure 2.41
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3.1 Series resistive circuits and voltage divider rule

3.1.1 Series resistive circuits
Series circuit
There is only one path for current to flow.

● The components are connected one after the other.
● The current flow through each component is always the same.
● There is only one current path in a series circuit.

A series circuit has all its elements connected in one loop of wire (a closed circuit).

Example 3.1: An electrical circuit with three light bulbs (resistors) connected in
series (Figure 3.1).

A series circuit can be analogized by water flowing in a series of tanks connected
by a pipe.

● The water flows through the pipe from tank to tank. The same amount of water
will flow in each tank.

● The same is true of an electrical circuit. There is only one pathway by which
charges can travel in a series circuit. The same amount of charges will flow in
each component of the circuit.

Schematic diagrams of series resistive circuits
● Figure 3.2(b) and (c) are also series circuits but drawn in different ways.
● If the circuit elements are connected one after the other, and there is only one

current path for the circuit, it is said that they are connected in series.

E

Figure 3.1 Series circuit

.

.

.

(a) (b) (c)

Figure 3.2 Series resistive circuits
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3.1.2 Series voltage and resistance
Total series voltage (VT or E)
● The voltage across the source or power supply (total voltage) is equal to the sum

of the voltage that drops across each resistor in a series circuit (Figure 3.3).
● The terminal of the resistor connecting to the positive side (þ) of the voltage

source is positive.
● The terminal of the resistor connecting to the negative side (�) of the voltage

source is negative.

Calculating the total voltage
● The total voltage of a series resistive circuit (n resistors):

VT ¼ E ¼ V1 þ V2 þ � � � þ Vn

● The total voltage VT of a series resistive circuit can be determined by
Kirchhoff’s voltage law (KVL) and Ohm’s law.

VT ¼ IR1 þ IR2 þ � � � þ IRn ¼ IRT

Total series resistance (RT) or equivalent resistance (Req)
● The total resistance (RT) of a series resistive circuit is the sum of all resistances

in the circuit.
● Calculating total or equivalent resistance of a series resistive circuit:

RT ¼ Req ¼ R1 þ R2 þ � � � þ Rn

● The total resistance (RT) is also called the equivalent resistance (Req) because
this resistance is equivalent to the sum of all resistances when you look through
the two terminals of the series resistive circuit.

● The total resistance of the series resistive circuit is always greater than the
individual resistance in that circuit.

3.1.3 Series current and power
Series current (I)
● The current flowing through each element in a series circuit is always the same

(there is only one current path in a series circuit).
● The current is always the same at any point in a series circuit.

. . .
R1

– – –+ +V1 V2 V3 –+ Vn

R2 R3

E

Rn

+

Figure 3.3 Series circuit
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● Calculating the current of a series resistive circuit.

I ¼ VT

RT
¼ E

RT
¼ V1

R1
¼ V2

R2
¼ ::: ¼ Vn

Rn

Total series power (PT)
● Each of the resistors in a series circuit consumes power, which is dissipated in

the form of heat.
● The total power (PT) consumed by a series resistive circuit is the sum of power

dissipated by the individual resistor.
● Since the total power must come from the source, it is actually the power

supplied by the source.

Calculating the total power

● Total power: PT ¼ IE ¼ IV1 þ IV2 þ � � � þ IVn

PT ¼ P1 þ P2 þ � � � þ Pn

or PT ¼ IE ¼ I2RT ¼ E2

RT

● The power dissipated by the individual resistor in a series resistive circuit:

P1 ¼ I2R1 ¼ IV1 ¼ V 2
1

R1

P2 ¼ I2R2 ¼ IV2 ¼ V 2
2

R2

� � � � � �

Pn ¼ I2Rn ¼ IVn ¼ V 2
n

Rn

3.1.4 An example of a series circuit

Example 3.2: A series resistive circuit is shown in Figure 3.4. Determine the
following:

1. Total resistance RT

2. Current I in the circuit
3. Voltage across the resistor R1

4. Total voltage VT

5. Total power PT
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Solution:

1. RT ¼ R1 þ R2 þ R3 ¼ 10 þ 20 þ 30ð Þ kW ¼ 60 kW

2. I ¼ E

RT
¼ 60 V

60 kW
¼ 1 mA

3. V1 ¼ IR1 ¼ 1 mAð Þð10 kWÞ ¼ 10 V

4. VT ¼ IRT ¼ 1 mAð Þð60 kWÞ ¼ 60 V ; VT ¼ E ¼ 60 V Checkedð Þ
5. PT ¼ IE ¼ 1 mAð Þ 60 Vð Þ ¼ 60 mW

or PT ¼ I2RT ¼ 1 mAð Þ2ð60 kWÞ ¼ 60 mW Checkedð Þ

3.1.5 Voltage divider rule (VDR)
The VDR can be exhibited by using a potentiometer (or pot).

Pot: a variable resistor whose resistance across its terminals can be varied by turning a knob.

● A pot is connected to a voltage source, as shown in Figure 3.5(a).
● Using a voltmeter to measure the voltage across the pot, the voltage relative to

the negative side of the 100 V voltage source is 1/2 E ¼ 50 V when the arrow
(knob) is at the middle of the pot.

The circuit in Figure 3.5(a) is equivalent to Figure 3.5(b) since R ¼ R1 þ R2 ¼ 100 kW.

● The voltage will increase when the arrow moves up, and the voltage will decrease
when the arrow moves down. This is the principle of the voltage divider.

R1 = 10 kΩ

R3 = 30 kΩ

R2 = 20 kΩE 60 V

Figure 3.4 Circuit for Example 3.2

100 V 100 V

R1 = 50  kΩ 

R2 = 50  kΩ R = 100 kΩ 

I

(a) (b)

E E

Figure 3.5 Voltage divider
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● The voltage divider is a design technique used to create different output vol-
tages that is proportional to the input voltage.

● The voltage divider means that the source voltage E or total voltage VT is
divided according to the value of the resistors in the series circuit.

Voltage divider rule
● General form (when there are n resistors in series):

VX ¼ VT
RX

RT
or VX ¼ E

RX

RT
ðX ¼ 1; 2; :::; nÞ

– RX and VX are the unknown resistance and voltage, respectively.
– RT and VT are the total resistance and voltage in the series circuit,

respectively.

● When there are only two resistors in series:

V1 ¼ VT
R1

R1 þ R2
; V2 ¼ VT

R2

R1 þ R2

Memory aid: The numerator of the VDR is always the unknown resistance.

Example 3.3: Use the VDR to determine the voltage drops across resistors R2 and
R3 in the circuit of Figure 3.6.

Solution: Use the general form of the VDR VX ¼ E
RX

RT

V2 ¼ E
R2

RT
¼ E

R2

R1 þ R2 þ R3
¼ 60 V

20 kW
10 þ 20 þ 10ð Þ kW

¼ 30 V

V3 ¼ E
R3

RT
¼ E

R3

R1 þ R2 þ R3
¼ 60 V

10 kW
10 þ 20 þ 10ð Þ kW

¼ 15 V

The practical application of the voltage divider can be the volume control of an audio
equipment. The knob of the pot in the circuit will eventually let you adjust the volume of the
audio equipment.

60 VE

R1 = 10 kΩ 

R2 = 20 kΩ 

R3 = 10 kΩ 

Figure 3.6 Circuit for Example 3.3
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3.1.6 Circuit ground
Electric circuit ground
● There is a ground for each electric circuit.
● A circuit ground is always at zero potential (0 V).
● A circuit ground provides a reference voltage level in which all other voltages

in a circuit are measured.

There are two types of circuit grounds: one is the earth ground, and another is the
common ground (or chassis ground).

The earth ground: connects to the earth (V ¼ 0).

● The earth is always at zero potential (0 V) and measurements can be made by
using earth as a reference.

● An equal number of negative and positive charges are distributed throughout
the earth at any given time, the earth is an electrically neutral body.

An earth ground usually consists of a ground rod or a conductive pipe driven into the
soil.

Common ground (or chassis ground): the common point for all elements in the
circuit (V ¼ 0).

● It is a connection to the main chassis of a piece of electronic or electrical
equipment, such as a metal plate.

● All chassis grounds should lead to earth ground, so that it also provides a point
that has zero voltage.

The neutral point in the alternating circuit (AC) is an example of the common ground.

The difference between the earth and chassis grounds
● Earth ground: connecting one terminal of the voltage source to the earth. The

symbol for it is:

● Chassis ground or common ground: the common point for all elements in the
circuit. All the common points are electrically connected together through
metal plates or wires. The symbol for the common point is:

3.1.7 Voltage subscript notation
Subscript notation
● Single-subscript notation: the voltage from the subscript with respect to ground.

In a circuit, the voltage with the single-subscript notation (such as Vb) is the
voltage drop from the point b with respect to ground.

● Double-subscript notation: the voltage across the two subscripts.
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The voltage with the double-subscripts notation (such as Vbc) is the voltage
drop across the two points b and c (each point is represented by a subscript).

Example 3.4: Determine Vbc, Vbe, and Vb in the circuit of Figure 3.7.

Solution:

Vbc ¼ VR2 ¼ E
R2

RT
¼ E

R2

R1 þ R2 þ R3 þ R4

¼ 120 V
20 kW

ð10 þ 20 þ 20 þ 10ÞkW ¼ 120 V
20 kW
60 kW

¼ 40 V

Vbe ¼ E
R2 þ R3 þ R4

RT
¼ 120 V

20 kWþ 20 kWþ 10 kW
60 kW

¼ 100 V

Use the general form of the VDR VX ¼ E
RX

RT
.

There the unknown voltage Vx ¼ Vbe, and the unknown resistance RX ¼ R2 þ R3 þ R4.

Vb ¼ Vbe ¼ 100 V

3.2 Parallel resistive circuits and current divider rule

3.2.1 Parallel resistive circuits
Parallel circuit: The components are connected end to end.

● There are at least two current paths in the circuit.
● The voltage across each component is the same.

R1 = 10 kΩ

R2 = 20 kΩ

R3 = 20 kΩ
R4 = 10 kΩ

E 120 V

a b

e d

c

Figure 3.7 Circuit for Example 3.4

82 Understandable electric circuits: key concepts, 2nd edition



Parallel circuits can be analogized by flowing water
● When water flowing in a river across small islands, the one water path will be

divided by the islands and split into many more water paths (Figure 3.8(a)).
● When the water has passed the islands, it will become a single water path again.

Schematic diagrams of parallel resistive circuits
● Figures 3.9(a)–(c) are all parallel circuits but drawn in different ways.
● If the circuit elements are connected end to end and there are at least two

current paths in the circuit, it is said that they are connected in parallel.

3.2.2 Parallel voltage and current
Parallel voltage
● All resistors in a parallel resistive circuit are connected between the two nodes,

the voltage between these two nodes must be the same.
● The voltage drop across each resistor must be the same.
● The voltage drop across each resistor must equal the voltage of the source E in

a parallel resistive circuit.
● Parallel voltage: V ¼ E ¼ V1 ¼ V2 ¼ . . . ¼ Vn

If all the resistors are light bulbs and have the same resistances as in Figure 3.10, they will
glow at the same brightness as they each receive the same voltage.

b
(a) (b)

aI

E
R1 R2 R3

I1 I2
I3

· a

· b

Figure 3.8 Parallel circuit

R2

R1

R1
R4

R2
R3 R2

R3
R1

(a) (b) (c)

Figure 3.9 Parallel resistive circuits
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Parallel current
● If the parallel circuit was a river, the total volume of water in the river would

be the sum of water in each branch (Figure 3.8(a)).
● This is the same with the current in the parallel resistive circuit. The total

current is equal to the sum of currents in each resistive branch, and the total
current entering and exiting parallel resistive circuit is the same.

Calculating parallel current
● Calculating the total parallel current:

IT ¼ V

Req
¼ I1 þ I2 þ . . . In

● If resistances are different in each branch of a parallel circuit, the branch
currents will be different.

● Calculating the branch currents:

I1 ¼ V

R1
; I2 ¼ V

R2
; . . . In ¼ V

Rn

3.2.3 Parallel resistance and power
Equivalent parallel resistance
● The amount of current flowing through each branch in the parallel resistive

circuit depends on the amount of resistance in each branch.
● The total resistance of a set of resistors in a parallel resistive circuit is found by

adding up the reciprocals of the resistance values and then taking the reciprocal
of the total.

Calculating parallel resistance
● The equivalent parallel resistance for the parallel circuit:

Req ¼ 1
1

R1
þ 1

R2
þ :::þ 1

Rn

● Usually parallel can be expressed by a symbol of ‘‘// ’’ such as: R1 // R2 // . . . // Rn

Req ¼ R1==R2==. . .==Rn

......E

IT

I1 I2 In

R1 R2, RnV1 V2 Vn

V

Figure 3.10 V and I in a parallel circuit
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● It will be more convenient to use the conductance (G) than the resistance in the

parallel circuits. Since the conductance G ¼ 1
R

, therefore,

Geq ¼ 1
Req

¼ G1 þ G2 þ . . .þ Gn

● When there are only two resistors in parallel:

Req ¼ R1R2

R1 þ R2
¼ R1==R2 when n ¼ 2

Note: The total resistance of the parallel resistive circuit is always less than the individual
resistance.

So, usually for parallel circuits, the equivalent resistance is used instead of the total
resistance.

Total parallel power
● The total power is the sum of the power dissipated by the individual resistors in

a parallel resistive circuit.
● Calculating the total power in a parallel resistive circuit:

PT ¼ P1 þ P2 þ . . .þ Pn

or PT ¼ ITV ¼ IT
2Req ¼ V 2

Req

● The power consumed by each resistor in a parallel circuit:

P1 ¼ I1V ¼ I1
2R1 ¼ V 2

R1
; P2 ¼ I2V ¼ I2

2R2 ¼ V 2

R2
; . . .; Pn ¼ InV ¼ In

2Rn ¼ V 2

Rn

3.2.4 An example of a parallel circuit

Example 3.5: A parallel circuit is shown in Figure 3.11. Determine (a) R2, (b) IT,
and (c) P3, given Req ¼ 1.25 kW, R1 ¼ 20 kW, R3 ¼ 2 kW, and I3 ¼ 18 mA.

IT

R1

I1

I2

I3R2

R3

E

Figure 3.11 Circuit for Example 3.5
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Solution:

(a) Since R2 ¼ 1
G2

, determine G2 first.

Geq ¼ G1 þ G2 þ G3

G2 ¼ Geq � G1 � G3

¼ 1
Req

� 1
R1

� 1
R3

¼ 1
1:25 kW

� 1
20 kW

� 1
2 kW

¼ 0:25 mS

; R2 ¼ 1
G2

¼ 1
0:25 mS

¼ 4 kW

Req ¼ 1
1

R1
þ 1

R2
þ 1

R3

¼ 1
1

20 kW
þ 1

4 kW
þ 1

2 kW

¼ 1:25 kW Provedð Þ

(b) IT ¼ E

Req
¼ V3

Req
¼ I3R3

Req
¼ ð18 mAÞð2 kWÞ

1:25 kW
¼ 28:8 mA

(c) P3 ¼ I2
3 R3 ¼ 18 mAð Þ2 2 kWð Þ ¼ 648 mW

3.2.5 Current divider rule (CDR)
Current divider rule (CDR)

● General form: Ix ¼ IT
Req

Rx
or Ix ¼ IT

Gx

Geq

– Ix and Rx are the unknown current and resistance, respectively.

– IT is the total current in the parallel resistive circuit.

● When there are two resistors in parallel:

I1 ¼ IT
R2

R1 þ R2

I2 ¼ IT
R1

R1 þ R2

● The VDR can be used for series circuits, and the CDR can be used for parallel
circuits.

Memory aid
● The CDR is similar in form to the VDR. The difference is that the denominator

(bottom) of the general form current divider is the unknown resistance.
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● When there are two resistors in parallel, the numerator is the other resistance
(other than the unknown resistance).

Recall the VDR : Vx ¼ VT
Rx

RT
; V1 ¼ VT

R1

Rz þ R2
; V2 ¼ VT

R2

R1 þ R2

Example 3.6: Determine the currents I1, I2, and I3 in the circuit of Figure 3.12.

Solution: Req ¼ R1==R2==R3 ¼ 1
1

R1
þ 1

R2
þ 1

R3

¼ 1
1

10 W
þ 1

20 W
þ 1

30 W

� 5:455 W

I1 ¼ IT
Req

R1
¼ 60 mA

5:455 W
10 W

¼ 32:73 mA

I2 ¼ IT
Req

R2
¼ 60 mA

5:455 W
20 W

¼ 16:37 mA

I3 ¼ IT
Req

R3
¼ 60 mA

5:455 W
30 W

¼ 10:91 mA

The conclusion that can be drawn from the above example is that the greater the branch
resistance, the less the current flows through that branch, or the less the share of the total
current.

Example 3.7: Determine the resistance R2 for the circuit in Figure 3.13.

R2 = 20 ΩR1 = 10 Ω R3 = 30 ΩE

I1 I2 I3
IT = 60 mA

Figure 3.12 Circuit for Example 3.6

R1 = 10 Ω

R2E

IT = 30 mA

I1

I2 = 10 mA

Figure 3.13 Circuit for Example 3.7
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Solution: Solve R2 from the current divider formula I2 ¼ IT
R1

R1 þ R2

I2 R1 þ R2ð Þ ¼ ITR1 I2R2 ¼ ITR1 � I2R1

R2 ¼ R1ðIT � I2Þ
I2

¼ 10 Wð30 mA � 10 mAÞ
10 mA

¼ 20 W

3.3 Series–parallel resistive circuits

3.3.1 Equivalent resistance of a series–parallel circuit
Series–parallel circuits
● The most practical electric circuits are not simple series or parallel config-

urations, but combinations of series and parallel circuits, or the series–parallel
configurations.

● Many circuits have various combinations of series and parallel components,
i.e., circuit elements are series-connected in some parts and parallel in others.

● Series–parallel circuit: the series–parallel circuit is a combination of series and
parallel circuits.

The series–parallel configurations have a variety of circuit forms, and some of them may
be very complex. However, the same principles and rules or laws that have been introduced
in the previous chapters are applied.

Equivalent resistance
● The key to solving series–parallel circuits is to identify which parts of the

circuit are series and which parts are parallel and then simplify them to an
equivalent circuit and find an equivalent resistance.

● Method for determining the equivalent resistance of series–parallel circuits:
– Determine the equivalent resistance of the parallel part of the series–

parallel circuits.
– Determine the equivalent resistance of the series part of the series–parallel

circuits.
– Plot the equivalent circuit if necessary.
– Repeat the above steps until the resistances in the circuit can be simplified

to a single equivalent resistance Req.

Note: Determine Req step by step from the far end of the circuit to the terminals of
the Req.

3.3.2 Analysis of the series–parallel circuits

Example 3.8: Analysis of the series–parallel circuit in Figure 3.14.

● In Figure 3.14(a), the resistor R5 is in series with R6 and in parallel with R4

and R3. This can be expressed by the equivalent circuit in Figure 3.14(b).
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● R2 is in series with (R5 þ R6)//R4 //R3 and in parallel with R1. That is the
equivalent resistance Req for the series–parallel circuit,

i:e:; Req ¼ R5 þ R6ð Þ==R4==R3½ � þ R2f g==R1

Example 3.9: Determine the equivalent resistance Req (formula) for the circuit
shown in Figure 3.15(a).

Solution: Req ¼ R5 ==R6 þ R4ð Þ== R7 þ R8ð Þ þ R3½ �==R2 þ R1

Example 3.10: Determine the Req for the circuit shown in Figure 3.16(a).

Solution: Req ¼ R3==R4==R5ð Þ þ R2½ �== R6 þ R7ð Þ þ R1

(a)

E E

R1

R2

R3

R4

R6

R7

R8 R1

R2

R3

(R5 // R6+R4) // (R7+R8)
R5

(b)

Figure 3.15 Circuit for Example 3.9

Req R1

R2

R3
R4

R5

R6 R1

R2

(R5+R6) // R4 // R3

(a) (b) 

Figure 3.14 Circuit for Example 3.8

(a) (b)

E E

R1
R3

R4

R5

R2

R6

R7

R1

R2

R3 R5 R2

R6 + R7

Figure 3.16 Circuits for Example 3.10
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3.3.3 Currents and voltages of a series–parallel circuit
Determine currents and voltages
After determining the equivalent resistance of the series–parallel circuit, the total
current as well as currents and voltages for each resistor can be determined by using
the following steps:

● Total current: apply Ohm’s law with the equivalent resistance solved from the
previous section to determine the total current in the series–parallel circuit.

IT ¼ E

Req

● Unknown currents and voltages: apply the VDR, CDR, Ohm’s law, KCL, and
KVL to determine the unknown currents and voltages in the series–parallel
circuit.

Example 3.11: Determine the currents and voltages for each resistor in the circuit
of Figure 3.17.

Solution:

● Req ¼ R1==R2ð Þ þ R4 þ R5ð Þ==R3½ �
IT ¼ E

Req

● V R1 ¼ V R2 ¼ V AB ¼ IT R1==R2ð Þ, I1 ¼ VAB

R1
, I2 ¼ VAB

R2

or I1 ¼ IT
R2

R1 þ R2
, I2 ¼ IT

R1

R1 þ R2
The current divider rule.

● V R3 ¼ V R4 þ V R5 ¼ V BC ¼ IT R4 þ R5ð Þ==R3½ �
I3 ¼ VBC

R3
; I4;5 ¼ VBC

R4 þ R5

Check: IT ¼ I1 þ I2 or IT ¼ I3 þ I4,5 KCL

VAB þ VBC ¼ E KVL

A

C

B
E

IT

I1

R1

I2

I4
R4

R5

I3

R3

R2

Figure 3.17 Circuit for Example 3.11
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Example 3.12: Determine the current IT (formula) in the circuit of Figure 3.18.

Solution: IT ¼ I5(?) þ I6(?)

The method of analysis: IT ¼? IT ¼ I5 þ I6, I5 ¼? I6 ¼?

I5 ¼ VAB

RABð?Þ
I5 ¼ VAB

RAB
; VAB ¼ E; RAB ¼ ?

RAB ¼ ðR1==R2 þ R3Þ==R4½ � þ R5

I6 ¼ VCD

RCDð?Þ
I6 ¼ VCD

RCD
; VCD ¼ E; RCD ¼ ?

RCD ¼ ðR8 þ R9Þ==R7½ � þ R6

3.4 Wye (Y) and delta (D) configurations and their
equivalent conversions

3.4.1 Wye and delta configurations
Introduction to wye and delta configurations
● Sometimes, the circuit configurations will be neither in series nor in parallel,

and the analysis method for series–parallel circuits described in previous
chapters may not apply.

● For example, the configuration of three resistors Ra, Rb, and Rc in the circuit of
Figure 3.19(a) are neither in series nor in parallel. So how do we determine the
equivalent resistance Req for this circuit?

● If we convert this to the configuration of resistors R1, R2, and R3 in the circuit
of Figure 3.19(b), the problem can be easily solved,

i:e:; Req ¼ R1 þ Rdð Þ== R2 þ Reð Þ½ � þ R3

Y and D configurations
● The resistors of Ra, Rb, and Rc in the circuit of Figure 3.19(a) are said to be in

the delta (D) configuration.

R1

R2
R4

R5

E

IT

R6

R7
R8

R9

I5 I6

R3

A

B

C

D

Figure 3.18 Circuit for Example 3.12

Series–parallel resistive circuits 91



● R1, R2, and R3 in the circuit of Figure 3.19(b) is called the wye (Y) configuration.

The delta and wye designations are from the fact that they look like a triangle D and the letter
Y, respectively, in electrical drawings.

3.4.2 Tee (T) and pi (p) configurations
● The delta and wye designations are also referred to as tee (T) and pi (p) circuits

as shown in Figure 3.20.

Req = ? Req = ?
Rb Rc

Rd

Ra

R1

R2

Re

RdRe

R 3

(a) (b)

Figure 3.19 Delta (D) and wye (Y) configurations

Ra

Rc

Rb

R1

R2

R3

Rc
R1 R2

Rb Ra R3

π (Pi) T (Tee)

Y (Wye)∆ (Delta)

Figure 3.20 p and T configurations
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● Wye (Y) or tee (T) and delta (D) or pi (p) configurations:

Y or T configuration:

R1

R2

R3

D or p configuration:
Ra

Rc

Rb

● Wye (Y) and delta (D) configurations are often used in three-phase AC circuits.
They can also be used in the bridge circuit that will be discussed later.

● It is very important to know the conversion method of the two circuits
and be able to convert back and forth between the wye (Y) and delta (D)
configurations.

3.4.3 Delta to wye conversion (D?Y)
● There are three terminals in the delta (D) or wye (Y) configurations that can be

connected to other circuits (a, b, and c as shown in Figure 3.21).
● The delta or wye conversion is used to establish equivalence for the circuits

with three terminals, meaning that the resistors of the circuits between any two
terminals must have the same values for both circuits as shown in Figure 3.21.

i:e:; RacðYÞ ¼ Rac Dð Þ Rab Yð Þ ¼ Rab Dð Þ RbcðYÞ ¼ RbcðDÞ

a
Rc

R1 R2

Ra

R3

Rb

b

c

Figure 3.21 Delta and wye configurations
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● Delta to wye conversion: the circuit in delta configuration is converted to wye
configuration as shown in Figure 3.22.

● Equations for delta to wye (D ?Y):

R1 ¼ RbRc

Ra þ Rb þ Rc
; R2 ¼ RaRc

Ra þ Rb þ Rc
; R3 ¼ RaRb

Ra þ Rb þ Rc

3.4.4 Wye to delta conversion (Y?D), RY, and RD

Equations for wye to delta (Y?D)
● The circuit in wye configuration is converted to delta as shown in Figure 3.23:
● Equations for Ra, Rb, and Rc (Y?D):

Ra ¼R1R2 þR2R3 þR3R1

R1
; Rb ¼R1R2 þR2R3 þR3R1

R2
; Rc ¼R1R2 þR2R3 þR3R1

R3

RY and RD
● If all resistors in the wye (Y) configuration have the same values,

i:e:; R1 ¼ R2 ¼ R3 ¼ RY

then all the resistances in the delta (D) configuration will also be the same,

i:e:; Ra ¼ Rb ¼ Rc ¼ RD

● If Ra ¼ Rb ¼ Rc ¼ RD; R1 ¼ R2 ¼ R3 ¼ RY

the delta resistance RD and wye resistance RY has the following relationship:

RY ¼ 1
3

RD or RD ¼ 3RY

Rc
R1

R2

R3

R1

R2

R3

Rb

Rc

Rb Ra

Ra

a

b

c

a
b

c

a b

c

a b

c

Figure 3.22 Delta converted to wye configuration
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3.4.5 An example of wye and delta conversion

Example 3.13: Convert D to Y in the circuit of Figure 3.24, then Y to D to prove
the accuracy of the equations. There the delta resistances Ra ¼ 30 W, Rb ¼ 20 W,
and Rc ¼ 10 W.

Solution: D ?Y:

R3 ¼ RaRb

Ra þ Rb þ Rc
¼ ð30 WÞð20 WÞ

30 Wþ 20 Wþ 10 W
¼ 10 W

R2 ¼ RaRc

Ra þ Rb þ Rc
¼ ð30 WÞð10 WÞ

30 Wþ 20 Wþ 10 W
¼ 5 W

R1 ¼ RbRc

Ra þ Rb þ Rc
¼ ð20 WÞð10 WÞ

30 Wþ 20 Wþ 10 W
� 3:33 W

R1

R2

Rc

Rb Ra

R3

c

a b
a b

c

Figure 3.23 Wye converted to delta configuration

Rc
R1

R2

R3

R1

R2

R3

Rb
Ra

Rc

Rb Ra

a

b

c

a
b

c

a b

c

a b

c

Figure 3.24 Circuit for Example 3.13
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Y? D:

Ra ¼ R1R2 þ R2R3 þ R3R1

R1
¼ ð3:33Þð5Þ þ ð5Þð10Þ þ ð10Þð3:33Þ½ � W2

3:33 W

¼ 99:95 W2

3:33 W
� 30 W

Rb ¼ R1R2 þ R2R3 þ R3R1

R2
¼ 99:95 W2

5 W
� 20 W

Rc ¼ R1R2 þ R2R3 þ R3R1

R3
¼ 99:95 W2

10 W
� 10 W

The calculated delta resistances Ra ¼ 30 W, Rb ¼ 20 W, and Rc ¼ 10 W are the same with the
resistances that were given (proved).

3.4.6 Using D ? Y conversion to simplify bridge circuits
Wheatstone bridge
● The Wheatstone bridge circuit can be used to measure the unknown resistors.
● A basic Wheatstone bridge circuit is illustrated in Figure 3.25(a).

– Sir Charles Wheatstone (1802–1875), a British physicist and an inventor,
is most famous for the Wheatstone bridge circuit. He was the first person
who implemented the bridge circuit when he ‘‘found’’ the description of
the device.

– The bridge was invented by Samuel Hunter Christie (1784–1865), a
British scientist.

BA

(a) (b)

C

E E

IT

Rb Rc

R4

I4

R5

Ra

R3

R1
R2

R4 R5

I4

IT“∆”

BA

“Y”

C

Figure 3.25 Wheatstone bridge circuit
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Example 3.14: Determine the equations to calculate the total current IT and branch
current I4 for the bridge circuit in Figure 3.25(a).

– Figure 3.25(a) can be converted to Figure 3.25(b) using the D ?Y equivalent
conversion.

– R1, R2, and R3 in Figure 3.25(b) can be determined by the equations of D ?Y
conversion:

R1 ¼ RbRc

Ra þ Rb þ Rc
; R2 ¼ RaRc

Ra þ Rb þ Rc
; R3 ¼ RaRb

Ra þ Rb þ Rc

– The equivalent resistance Req of the bridge:

Req ¼ R3 þ ðR1 þ R4Þ==ðR2 þ R5Þ½ � R2==R2 ¼ R1R2

R1 þ R2

– The total current IT: IT ¼ E

Req
I ¼ E

R

– The branch current: I4 ¼ IT
R2 þ R5

ðR1 þ R4Þ þ ðR2 þ R5Þ I2 ¼ IT
R1

R1 þ R2

If the wire between A and B in the circuit of Figure 3.25(a) is open, the Req will be

Req ¼ Rb þ R4ð Þ== Ra þ R5ð Þ

3.4.7 Balanced bridge
Balanced bridge
● When the voltage across points A and B terminals in a bridge circuit shown in

Figure 3.26 is zero, i.e., VAB ¼ 0, the Wheatstone bridge is said to be balanced.
● A balanced Wheatstone bridge circuit can accurately measure an unknown resistor.

R2

BA

R1

R3

R4

E

IT

Figure 3.26 A balanced bridge
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Determine the voltage VAB in the points A and B
The voltage VAB is the voltage from point A to ground (VA) and then from ground to

point B, i.e.,

VAB ¼ VA þ ð�VBÞ

VAB ¼ E
R2

R1 þ R2
� E

R4

R3 þ R4
V2 ¼ VT

R2

R1 þ R2

VAB ¼ E
R2ðR3 þ R4Þ � R4ðR1 þ R2Þ

ðR1 þ R2ÞðR3 þ R4Þ ¼ E
R2R3 � R4R1

ðR1 þ R2ÞðR3 þ R4Þ
The balanced condition
● When VAB ¼ 0, or when the bridge is balanced, the numerator of the above

equation will be zero. i.e.,

R2R3 � R4R1 ¼ 0 this gives : R2R3 ¼ R4R1

● Balanced bridge:

When VAB ¼ 0; R2R3 ¼ R4R1

3.4.8 Measure unknown resistors using the balanced bridge
The method of using the balanced bridge to measure an
unknown resistor
● If the unknown resistor is in the position of R4 in the circuit of Figure 3.26,

using a variable (adjustable) resistor to replace R2.
● Connecting a galvanometer in between terminals A and B can measure the

small current IG in terminals A and B as shown in Figure 3.27.
Galvanometer is a type of ammeter that can measure small current accurately.

R2

BA

R1

IG

R3

R4

E

IT

Figure 3.27 Measure an unknown R using a balanced bridge
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● Adjust R2 until the current IG measured by the galvanometer or current in the A
and B branch is zero (IG ¼ 0). This means VAB ¼ 0, or the bridge is balanced.

● Unknown resistor Rx ¼ R4 at this time can be determined by the equation of the
balanced bridge as follows:

From: R2 R3 ¼ R4 R1

Solving for unknown resistor Rx: Rx ¼ R4 ¼ R2R3

R1

Example 3.15: R1 ¼ 100 W, R2 ¼ 330 W, and R3 ¼ 470 W in a balanced bridge
circuit as shown in Figure 3.27. Determine the unknown resistance Rx.

Solution: From: R2 R3 ¼ R4 R1

Solving for R4: Rx ¼ R4 ¼ R2R3

R1
¼ 330 Wð Þð470 WÞ

100 W
¼ 1:551 kW

Summary

Series circuits
● Series circuit: All components are connected one after the other, there is only one

circuit path, and the current flow through each component is always the same.
● Total series voltage:

VT ¼ E ¼ V1 þ V2 þ � � � þ Vn ¼ IRT

VT ¼ IR1 þ IR2 þ � � � þ IRn ¼ IRT

● Total series resistance (equivalent resistance Req): RT ¼ R1 þ R2 þ � � � þ Rn

● Series current: I ¼ VT

RT
¼ E

RT
¼ V1

R1
¼ V2

R2
¼ . . . ¼ Vn

Rn

● Total series power: PT ¼ P1 þ P2 þ � � � þ Pn ¼ IE ¼ I2RT ¼ E2

RT

● The voltage divider rule (VDR):

– General form: Vx ¼ VT
Rx

RT
or Vx ¼ E

Rx

RT
x ¼ 1; 2; . . .; n

– When there are only two resistors in series: V1 ¼VT
R1

R1 þR2
; V2 ¼VT

R2

R1 þR2

● The earth ground: connects to the earth (V ¼ 0).
● Common ground or chassis ground: the common point for all components in

the circuit (V ¼ 0).
● Single-subscript notation: the voltage from the subscript with respect to ground.
● Double-subscript notation: the voltage across the two subscripts.
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Parallel circuits

● Parallel circuit: The components are connected end to end, there are at least
two current paths in the circuit, and the voltage across each component is
the same.

● Parallel voltage: V ¼ E ¼ V1 ¼ V2 ¼ � � � ¼ Vn

● Parallel currents: I1 ¼ V

R1
; I2 ¼ V

R2
; � � � ; In ¼ V

Rn
; IT ¼ V

Req
¼ I1 þ I2 þ � � � þ In

● Equivalent parallel resistance: Req ¼ 1
1

R1
þ 1

R2
þ . . .þ 1

Rn

¼ R1 ==R2 == � � � ==Rn

When n ¼ 2: Req ¼ R1R2

R1þR2
¼ R1==R2

● Equivalent parallel conductance: Geq ¼ G1 þ G2 þ � � � þ Gn

● Total parallel power: PT ¼ P1 þ P2 þ � � � þ Pn ¼ IT
2Req ¼ V 2

Req
¼ ITV

● The current divider rule (CDR):

– General form: Ix ¼ IT
Req

Rx
or Ix ¼ IT

Gx

Geq

Ix and Rx are unknown current and resistance, respectively.

– When there are two resistors in parallel: I1 ¼ IT
R2

R1þR2
; I2 ¼ IT

R1

R1þR2

Series–parallel circuits

● Series–parallel circuits are a combination of series and parallel circuits.
● Method of determining the equivalent resistance of series–parallel circuits:

– Determine the equivalent resistance of the parallel part of the series–
parallel circuits.

– Determine the equivalent resistance of the series part of the series–parallel
circuits.

– Plot the equivalent circuit if necessary.
– Repeat the above steps until the resistance in the circuit can be simplified

to a single equivalent resistance Req.

● Method for analyzing series–parallel circuits:

– Apply Ohm’s law to determine the total current: IT ¼ E

Req

– Apply VDR, CDR, Ohm’s law, KCL, and KVL to determine the unknown
currents and voltages.
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Wye and delta configurations and their conversions

● Y or T circuit:

R1

R2

R3

● D or p circuit:
Ra

Rc
Rb

● D ?Y:

R1 ¼ RbRc

Ra þ Rb þ Rc
; R2 ¼ RaRc

Ra þ Rb þ Rc
; R3 ¼ RaRb

Ra þ Rb þ Rc

● Y? D:

Ra ¼ R1R2 þR2R3 þR3R1

R1
; Rb ¼ R1R2 þR2R3 þR3R1

R2
; Rc ¼ R1R2 þR2R3 þR3R1

R3

● If Ra ¼ Rb ¼ Rc ¼ RD and R1 ¼ R2 ¼ R3 ¼ RY: RY ¼ 1
3 RD or RD¼ 3RY

● The balanced bridge: When VAB ¼ 0, R2 R3 ¼ R4 R1

Practice problems

3.1
1. Connect each set of resistors in Figure 3.28(a)–(c) in series between

terminals A and B (without changing the position of the resistors).

R1

(a) (b) (c)

R2 R3

R3

R2 R2

R3

R4

R1 R1

A

B

A A

B B

Figure 3.28
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2. Determine the total (equivalent) resistance for each circuit in Figure 3.29.

3. Determine the following values in the circuit of Figure 3.30.
(a) The current I;
(b) The voltage VR2

across the resistor R2;
(c) The total power PT.

4. Determine the source voltage E in the circuit of Figure 3.31.

5. Determine the voltage across each resistor in the circuit of Figure 3.32
and check the results by using KCL.

R1 = 2.2 kΩ R1 = 4.7 kΩ R1 = 10 kΩ

R2 = 12 kΩ

R4 = 82 kΩ

R3 = 1 kΩ
R5 = 1 kΩ

R6 = 10 kΩ

R2 = 1.2 kΩ

R3 = 2 kΩ

R2 = 1 kΩ

R3 = 5.6 kΩ

R4 = 2.2 kΩ

Figure 3.29

R1 = 5Ω

R3 = 2Ω

R2 = 10ΩE = 10 V

Figure 3.30

R1 = 25 Ω R2 = 0.5 kΩ

R3 = 1.34 kΩE

I = 2 mA

+

–

Figure 3.31

R1 = 4 Ω

+

–

R5 = 7 Ω R4 = 5 Ω

R3 = 3 Ω

R2 = 2 Ω

E = 20 V

Figure 3.32

102 Understandable electric circuits: key concepts, 2nd edition



6. Determine the unknown resistance in Figure 3.33 by using the VDR.�
Hint: solve for R3 from V3 ¼ E

R3

ðR1 þ R2Þ þ R3

�

7. If the current I ¼ 1 mA, the source voltage E ¼ 12 V, design a
two-resistor voltage divider circuit with V R1 ¼ 1

3 V R2ðdetermine
R1 and R2Þ.

(Hint: V R1 ¼ 1
3 V R2 , V R2 ¼ 3V R1 )

8. Determine the voltages VA and VB in Figure 3.34.

3.2
9. Connect each set of resistors in Figure 3.35(a) and (b) in parallel

between terminals A and B (without changing the position of the
resistors).

10. Determine the total (equivalent) resistance Req, and conductance Geq

in the circuit of Figure 3.36.
11. Determine the total current IT, the branch current I1 and I3, and the

total circuit power PT in Figure 3.36(a), if the source voltage is 10 V.

R1 = 4 kΩ

+

– R3

R2 = 1 kΩ

E = 12 V 2 V
+

–

Figure 3.33

4 Ω

E = 5 V

5 ΩA B

3 V
+

+ –

–

Figure 3.34

A

B
(a) (b)

A

B

Figure 3.35

Series–parallel resistive circuits 103



12. Determine the branch current I1 and I2 in the circuit of Figure 3.37.

13. Determine the unknown resistances in the circuit of Figure 3.38.

3.3
14. Plot the series–parallel circuits described as follows:

(a) The parallel combination of R1 and R2 is in series with the series
combination of R3 and R4.

(b) The series combination of R1 and R2 is in parallel with the series
combination of R3 and R4.

15. Plot a series–parallel circuit described as follows: a series combi-
nation of two parallel circuits with each parallel circuit having three
resistors.

16. Write the expression of the equivalent resistance for the circuit in
Figure 3.39.

R1 R2 R3Req
5 kΩ

(a) (b)

1 kΩ 2 kΩ

R1 R2

6.8 kΩ 2.2 kΩ
Req

Figure 3.36

20 mA

(a) (b)

20 mA

I1 I2

R1 = 2 kΩ
R1 R2

R3R2 = 4 kΩ
R4 = 5 kΩ2 kΩ 1 kΩ 3 kΩ

Figure 3.37

R1 = 10 Ω

R2

30 mA 

20 mA

R1 = 100 kΩ R212 mA

20 mA

(a) (b)

Figure 3.38
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17. Write the expression of the equivalent resistance for the circuit in
Figure 3.40.

18. Calculate the branch currents IR2 and IR3 for the circuit in Figure 3.41
(Hint: use the CDR).

R3

R4
R5

R6

Req
Req

R4
R2

R3

R1
R5 R6

R7

R1

R2

(a) (b)

Figure 3.40

R1

R2

R3 R4 R5

R1

R2

R3 R4

R6

R5

E E

(a) (b)

Figure 3.39

E 12 V

R2 = 4 kΩ

R1 = 30 kΩ

R4 = 12 kΩ

R7 = 10 kΩ

R3

R6

R5

22 kΩ

47 kΩ

15 kΩ

Figure 3.41
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19. Calculate the voltage across the resistors R4 and R5 for the circuit in
Figure 3.41.

3.4
20. Convert the delta circuits in Figure 3.42 to wye circuits.

21. Convert the wye circuits in Figure 3.43 to delta circuits.

22. Calculate Ib and Ie in the circuit of Figure 3.44 by using the method of
delta–wye conversion.

6 kΩ

3 kΩ 9 kΩ

a b

c

c

a b

c

1 kΩ 3 kΩ

2 kΩ
(a) (b)

Figure 3.42

R1 = 6 Ω

R3 = 9 Ω

R1 = 3 kΩ R2 = 1 kΩ

R3 = 4 kΩ

R2 = 10 Ω

(a) (b)

Figure 3.43

10 V

Rb = 10 Ω Ib

Rf = 5 Ω
Rd = 20 Ω

Rc = 20 Ω

Ra = 30 Ω

Re = 40 Ω

IT

Ie

Figure 3.44
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23. Determine the unknown resistance RX of the balanced bridge circuit
in Figure 3.45.

R1 = 3 kΩ

R2 = 10 kΩ

R3 = 8 kΩ

R5

RX

E

Figure 3.45
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4.1 Voltage source, current source, and their
equivalent conversions

4.1.1 Source equivalent conversion
It is sometimes easier to convert a current source to an equivalent voltage source or
vice versa to analyze and calculate the circuits.



Source equivalent conversion
● The source equivalent conversion means that if loads are connected to both the

terminals of the two sources after conversion, the load voltage VL and current
IL of the two sources should be the same (Figure 4.1).

● So, the source equivalent conversion actually means that the source terminals
are equivalent, though the internal characteristics of each source circuit are not
equivalent.

Conversion conditions

● If the internal resistance RS in Figure 4.1(a) and (b) is equal, and the source

voltage is E ¼ ISRS in Figure 4.1(a), and the source current is IS ¼ E
Rs

in

Figure 4.1(b), then the current source and voltage source can be equivalently
converted, i.e.,

E ¼ ISRS ; RS ¼ RS ; IS ¼ E

RS

● When performing the source equivalent conversion, the reference polarities of
voltage and current of the sources should be the same before and after the
conversion as shown in Figures 4.1 and 4.2 (notice the polarities of sources E
and IS in the two figures).

(a) (b)

+

+

E

RS
IS RS RL VL

IL

RL VL

IL

a a

bb

–

–

+

–

Figure 4.1 Sources equivalent conversion

RS

a

b

RS

a

b

IS

ES

(a)

–
+

(b)

Figure 4.2 Polarity of conversion
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4.1.2 Verification of source conversion
Verification of the source equivalent conversion in Figure 4.1
The following procedure can verify that the load voltage VL and load current IL in
two circuits of Figure 4.1(a) and (b) are equal after connecting a load resistor RL to
the two terminals of these circuits.

● The voltage source in Figure 4.1(a):

IL ¼ E

RS þ RL
Apply Ohm’s law: I ¼ E

R

VL ¼ E
RL

RS þ RL
Apply the voltage divider rule: V2 ¼ VT

R2

R1 þ R2

VL ¼ ISRS
RL

RS þ RL
E ¼ ISRS

● The current source in Figure 4.1(b):

IL ¼ IS
RS

RS þ RL
Apply the current divider rule: I2 ¼ IT

R1

R1 þ R2

IL ¼ E

RS þ RL
E ¼ ISRS

VL ¼ ILRL Apply Ohm’s law: V ¼ IR

¼ IS
RS

RS þ RL

� �
RL IL ¼ IS

RS

RS þ RL

VL ¼ ISRS
RL

RS þ RL

So, the load voltages VL and currents IL in two circuits of Figure 4.1(a) and (b) are
the same, and the source conversion equations have been proved.

Source conversion summary

Source equivalent
conversion

– Voltage source ? Current source:

RS ¼ RS; IS ¼ E

RS

– Current source ? Voltage source:
RS ¼ RS; E ¼ ISRS

4.1.3 Source conversion examples

Example 4.1: Convert the voltage source in Figure 4.3(a) to an equivalent current
source and calculate the load current IL for the circuit in Figure 4.3(a) and (b).
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Solution: The equivalent current source after the source conversion is shown in
Figure 4.3(b); RS is still 2 W in Figure 4.3(b).

● For Figure 4.3(b):

IS ¼ E

RS
¼ 6 V

2 W
¼ 3 A I ¼ E

R

IL ¼ IS
RS

RS þ RL
¼ 3 A

2 W
ð2 þ 10ÞW ¼ 0:5 A I2 ¼ IT

R1

R1 þ R2

● For Figure 4.3(a): IL ¼ E

RS þ RL
¼ 6 V

2 þ 10ð ÞW ¼ 0:5 A I ¼ E

R

Example 4.2: Convert the current source in Figure 4.4(a) to an equivalent voltage
source, and determine the voltage source Es and internal resistance RS in Figure 4.4(b).

Solution: RS ¼ 10 W

ES ¼ ISRS ¼ 5 Að Þ 10 Wð Þ ¼ 50 V

E = 6 V

RS = 2 Ω
RL = 10 Ω

a

b

a

b
(a) (b)

IL IL

IS RS RL =10 Ω

–
+

Figure 4.3 Figure for Example 4.1

(a) (b)

R1 = 5 Ω
R1 = 5 Ω

RS = 10 Ω

RS = 10 Ω

R2 = 10 Ω R2 = 10 ΩE1 = 20 V E1 = 20 V

ES = 50 V

IS = 5 A

+
–

+
–

+ –

Figure 4.4 Figure for Example 4.2
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4.1.4 Voltage sources in series
Voltage sources in series
● A circuit of voltage sources in series and its equivalent circuit are shown in

Figure 4.5.
● Voltage sources connected in series are similar with the resistors connected in

series.
● The equivalent internal resistance RS for series voltage sources is the sum of

the individual internal resistances:

RS ¼ RS1 þ RS2 þ � � � þ RSn

● The equivalent voltage E or VS for series voltage sources is the algebraic sum
of the individual voltage sources.

E ¼ E1 þ E2 þ � � � þ En

or

VS ¼ V1 þ V2 þ � � � þ Vn

Signs of voltage sources in series
● Assign a positive sign (þ) if the individual voltage has the same polarity as the

equivalent voltage E (or VS) as shown in Figure 4.5.
● Assign a negative sign (�) if the individual voltage has a different polarity

from the equivalent voltage E (or VS) as shown in Figure 4.5.

A flashlight is an example of voltage sources in series, where batteries are connected in series to
increase the total equivalent voltage.

Voltage sources
in series

– RS ¼ RS1 þ RS2 þ � � � þ RSn

E ¼ E1 þ E2 þ � � � þ En or VS ¼ V1 þ V2 þ � � � þ Vn

– Assign a (þ) if En has the same polarity as E (or VS).
– Assign a (�) if En has a different polarity from E (or VS).

(a)

...

(b)

RS1
+–

+–

+–

+–

RS = RS1 + RS2 + ... +  RSn

E = E1 – E2 + ... + En

RSn

RS2

E1

E2

En

Figure 4.5 Voltage sources in series
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4.1.5 Voltage sources in parallel
Voltage sources in parallel
● A circuit of voltage sources in parallel and its equivalent circuit are shown in

Figure 4.6.
● The equivalent voltage E or VS for the parallel voltage sources is the same as

the voltage for each individual voltage source, i.e.,

E ¼ E1 ¼ E2 ¼ � � � ¼ En or VS ¼ VS1 ¼ VS2 ¼ � � � ¼ VSn

● The equivalent internal resistance RS is the individual internal resistances in
parallel:

RS ¼ RS1==RS2== � � � ==RSn

Note:

● Only voltage sources that have the same values and polarities can be connected
in parallel by using the method mentioned above.

● If the voltage sources having different values and polarities are connected in
parallel, it can be solved by using Millman’s theory that will be discussed in
Chapter 5 (Section 5.4).

An application for voltage sources in parallel
● An example of application for voltage sources connected in parallel is for

boosting (or jump starting) a ‘‘dead’’ vehicle.
● You may have experience using jumper cables by connecting the dead battery

in parallel with a good car battery or with a booster (battery charger) to
recharge that battery.

● It is the process of using the power from a charged battery to supplement the
power of a discharged battery.

● It can provide twice the amount of current to the battery of the ‘‘dead’’ vehicle
and successfully start the engine.

Voltage sources
in parallel

– RS ¼ RS1==RS2== � � � ==RSn

– E ¼ E1 ¼ E2 ¼ � � � ¼ En or VS ¼ VS1 ¼ VS2 ¼ � � � ¼ VSn

Only voltage sources that have the same values and polarities can be in parallel.

RS1

E2 EnE1

RSn
RS2  RS = RS1

 // RS2 // ... // RSn
  

E  = E1 = E2 = ... = En

...
+– +– +–

+–
Figure 4.6 Voltage sources in parallel
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4.1.6 Current sources in parallel
Current sources in parallel
● A circuit of current sources in parallel and its equivalent circuit are shown in

Figure 4.7.
● Current sources connected in parallel can be replaced by a single equivalent

resistance RS in parallel with a single equivalent current IS.
● The equivalent resistance RS is the individual internal resistances in parallel:

RS ¼ RS1==RS2== � � � ==RSn

● The equivalent current IS is the algebraic sum of the individual current sources:

IS ¼ IS1 þ IS2 þ � � � þ ISn

Signs of current sources in parallel
● Assign a positive sign (þ) if the individual current is in the same direction as

the equivalent current IS.
● Assign a negative sign (�) if the individual current is in a different direction

from the equivalent current IS.

Current sources
in parallel

– RS ¼ RS1==RS2== � � � ==RSn

IS ¼ IS1 þ IS2 þ � � � þ ISn

– Assign a (þ) sign for ISN
if it has the same polarity as IS.

– Assign a (�) sign for ISN
if it has different polarity from IS.

4.1.7 Current sources in series
Current sources in series
● Only current sources that have the same polarities and same values can be

connected in series.
● There is only one current path in a series circuit, so there must be only one

current flowing through it.
● This is the same concept as Kirchhoff’s current law (KCL), otherwise if the

current entering point A did not equal the current exiting point A in Figure 4.8,
KCL would be violated at point A.

(a) (b)

...
IS1 IS2

ISn

RSn
RS1 RS2

IS  = IS1 – IS2 + ... + ISn

RS = RS1
 // RS2 // ... // RSn

  

Figure 4.7 Current sources in parallel
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Current sources
in series

Only current sources that have same polarities and values can be
connected in series.

Example 4.3: Determine the load voltage VL in Figure 4.9.

Solution: The process of source equivalent conversion is shown in the circuit of
Figure 4.9. Determine VL by using the voltage divider rule as follows:

VL ¼ Vab ¼ IRL ¼ E

RT
RL I ¼ E

RT

¼ �4 � 2 þ 12ð Þ V
2 þ 2 þ 4 þ 2ð ÞW 2 Wð Þ ¼ 1:2 V

E ¼ ð�4 � 2 þ 12Þ V

RT ¼ ð2 þ 2 þ 4 þ 2Þ W

4.2 Branch current analysis

4.2.1 Branch current analysis
Circuit analysis techniques
● The methods of analysis stated in Chapter 3 are limited to an electric circuit

that has a single power source.
● If an electric circuit or network has more than one source, it can be solved by

the circuit analysis techniques that are discussed in Chapters 4 and 5.
● The branch current analysis is one of several basic methods for analyzing

electric circuits.

3 A 7 A?

A

Figure 4.8 KCL is violated at point A

4 Ω

2 Ω
2 Ω

8 Ω

8 Ω

2 A 4 A

4 V

4 Ω

a

   b

+

+

+

+

+
+ –

+–

–

–

+–

+–

2 V

2 V

2 + 4 = 6 A

4 V

8//8 = 2 Ω

2 V

 4//4 = 2 Ω

+

–

–

–

–

2 Ω

4 V +

–

2 Ω

(2 Ω)(6 A) = 12 V

4 Ω 2 V

a a

b b

RL = 2 Ω RL = 2 Ω RL = 2 ΩVL = ? VL VL

Figure 4.9 Figure for Example 4.3
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Branch current analysis
● The branch current analysis is a circuit analysis method that writes and solves a

system of equations in which the unknowns are the branch currents.
● This method applies Kirchhoff’s laws and Ohm’s law to the circuit and solves

the branch currents from simultaneous equations.
● Once the branch currents have been solved, other circuit quantities such as

voltages and powers can also be determined.
● The branch current analysis technique will use the terms node, branch, and

independent loop (or mesh).

Review of some circuit terminologies
● Node: the intersectional point of two or more current paths where current has

several possible paths to flow.
● Branch: a current path between two nodes where one or more circuit compo-

nents is in series.
● Loop: a complete current path that current to flow back to the start.
● Mesh: a loop in the circuit that does not contain any other loops (it can be

analyzed as a windowpane).

The circuits in Figure 4.10 have three meshes (or independent loops) and different
number of nodes (the dark dots).

4.2.2 Procedure for applying the branch current analysis

Branch current
analysis

– A circuit analysis method that writes and solves a system of KCL
and KVL equations in which the unknowns are the branch
currents.

– It can be used for a circuit that has more than one source.

The steps of branch circuit analysis

1. Label the circuit:
– Label all the nodes.
– Assign an arbitrary reference direction for each branch current.
– Assign loop direction for each mesh (choose clockwise direction).

2. Apply KCL to numbers of independent nodes (n � 1), where n is the number of
nodes.

1 2

3

1 2 3 1 2

3

Figure 4.10 Nodes and meshes
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3. Apply KVL to each mesh (or windowpane), and the number of
KVL equations should be equal to the number of meshes, or
Equation # ¼ branch # � ðnodes # � 1Þ

Note: If the circuit with a current source, source current will be the same with the mesh
current, so the number of KVL equations can be reduced.

4. Solve the simultaneous equations resulting from steps 2 and 3, using the
determinant or substitution methods to determine each branch current.

5. Calculate the other circuit unknowns from the branch currents in the problem
if necessary.

The procedure of applying the branch current analysis method is demonstrated in the following
example.

4.2.3 Branch current analysis examples

Example 4.4: Use the branch current analysis method to determine each branch
current, power on resistor R2, and also the voltage across the resistor R1 in the
circuit of Figure 4.11.

Solution: This circuit contains two voltage sources, and cannot be solved by using
the methods we have learned in Chapter 3; let us try to use the branch current
analysis method.

1. Label the circuit as shown in Figure 4.11:
– Label the nodes a and b.
– Assign an arbitrary reference direction for each branch current as shown in

Figure 4.11.
– Assign clockwise loop direction for each mesh as shown in Figure 4.11.

2. Apply KCL to (n � 1) ¼ (2 � 1) ¼ 1 number of independent nodes:
There are two nodes a and b, ; n ¼ 2

I1 þ I2 ¼ I3
P

I ¼ 0

3. Apply KVL to each mesh. The number of KVL equations should be equal to the
number of meshes.
As there are two meshes in Figure 4.11, we should write
two KVL equations.

b

1 2

a

E1 = 10 V E2 = 5 V+
–

+
–

I1 I3
I2

R1 = 2 Ω R2 = 2 Ω

R3 = 3 Ω

Figure 4.11 Circuit for Example 4.4
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or Equation # ¼ branch # – (nodes # �1) ¼ 3 � (2 � 1) ¼ 2
– Mesh 1: I1R1 þ I3R3 � E1 ¼ 0

P
V ¼ 0

– Mesh 2: � I2R2 � I3R3 þ E2 ¼ 0
P

V ¼ 0

Recall SV ¼ 0: Assign a positive sign (þ) for E or V ¼ IR if its reference polarity and
loop direction are the same; otherwise assign a negative sign (�).

4. Solve the simultaneous equations resulting from steps 2 and 3, and determine
the branch currents I1, I2, and I3. Three equations can solve three unknowns.

– Rewrite the above three equations in the standard form:

I1 þ I2 � I3 ¼ 0
P

I ¼ 0

I1R1 þ 0 þ I3R3 ¼ E1
P

V ¼P
E; R2 ¼ 0 R2 is not in mesh 1ð Þ:

0 � I2R2 � I3R3 ¼ �E2
P

V ¼P
E; R1 ¼ 0 R1 is not in mesh 2ð Þ:

– Substitute the values into equations:

I1 þ I2 � I3 ¼ 0

2I1 þ 0 þ 3I3 ¼ 10 V R1 ¼ 2 W; E1 ¼ 10 V; R2 ¼ 2 W

0 � 2I2 � 3I3 ¼ �5 V R2 ¼ 2 W; E2 ¼ 5 V; R3 ¼ 3 W

– Solve simultaneous equations using the determinant method:

D¼
1 1 �1

2 0 3

0 �2 �3

������
������

¼ ð1Þð0Þð�3Þþ ð2Þð�2Þð�1Þþ ð0Þð1Þð3Þ� ð�1Þð0Þð0Þ
�ð3Þð�2Þð1Þ� ð�3Þð2Þð1Þ

¼ 4�ð�6Þ� ð�6Þ ¼ 16

I1 ¼

0 1 �1

10 0 3

�5 �2 �3

������
������

D
¼ ð10Þð�2Þð�1Þþ ð�5Þð3Þð1Þ� ð�3Þð10Þð1Þ

16
� 2:19 A

I2 ¼

1 0 �1

2 10 3

0 �5 �3

������
������

D
¼ 1ð Þ 10ð Þ �3ð Þ þ 2ð Þ �5ð Þ �1ð Þ� ð3Þð�5Þð1Þ

16
��0:31 A

I3 ¼

1 1 0

2 0 10

0 �2 �5

������
������

D
¼�ð10Þð�2Þð1Þ� ð�5Þð2Þð1Þ

16
� 1:88 A

I1 � 2:19 A ; I2 � �0:31 A ; I3 � 1:88 A

Negative sign for I2 indicates that the actual direction of I2 is opposite with its assigned
reference direction.
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5. Calculate the other circuit unknowns from the branch currents:

P2 ¼ I2
2 R2 ¼ ð�0:31 AÞ2ð2 WÞ � 0:19 W

V1 ¼ I1R1 ¼ 2:19 Að Þð2 WÞ ¼ 4:38 V

Example 4.5: Determine current I2 in Figure 4.12 using the branch current analysis.

Solution:

1. Label the nodes, reference direction for branch currents and loop directions in
the circuit as shown in Figure 4.12.

2. Apply KCL to (n � 1) ¼ (2 � 1) ¼ 1 number of independent nodes.
There are two nodes or supernodes a and b, so n ¼ 2.

� I1 þ I2 þ I3 þ I4 ¼ 0
P

I ¼ 0 node að Þ; I4 ¼ 6 A

3. Apply KVL to each mesh. There are three meshes in Figure 4.12, so we
should write 3 KVL equations.

– Mesh 1: � I1R1 � I2R2 ¼ �E1 � E2
P

V ¼P
E

– Mesh 2: I2R2 � I3R3 ¼ E2
P

V ¼P
E

– Mesh 3: There is no need to write KVL for mesh 3 since mesh 3 current is already
known to be equal to the source current I4 (I4 ¼ 6 A). Therefore, the numbers of loop
equations can be reduced from 3 to 2.

4. Solve the simultaneous equations resulting from steps 2 and 3, and determine
the branch current I2.

�I1 � 1:5 I2 ¼ �2:5 � 4 � I1 � 1:5 I2þ 0 I3 ¼ �6:5

0 I1 þ 1:5 I2 � 0:5 I3 ¼ 4 0 I1 þ 1:5 I2 �0:5 I3 ¼ 4

�I1 þ I2 þ I3 ¼ �6 � I1 þ I2 þ I3 ¼ �6

    

      

2 3

 

1

a

b

E1 = 2.5 V
E2 = 4 V

I1 I2 I3

I4  = 6 A+
+– –

R1 = 1 Ω
R3 = 0.5 Ω

R2 = 1.5 Ω

Figure 4.12 Circuit for Example 4.5
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Solve the above simultaneous equations using the determinant method:

D ¼
�1 �1:5 0

0 1:5 �0:5

�1 1 1

�������

�������
¼ ð�1Þð1:5Þð1Þ þ ð�1Þð�0:5Þð�1:5Þ � ð�0:5Þð1Þð�1Þ ¼ �2:75

I2 ¼

�1 �6:5 0

0 4 �0:5

�1 �6 1

�������

�������
D

¼ ð�1Þð4Þð1Þ þ ð�1Þð�0:5Þð�6:5Þ � ð�0:5Þð�6Þð�1Þ
�2:75

� 1:55 A

So I2 � 1:55 A

4.3 Mesh analysis

4.3.1 Mesh current analysis
Branch current analysis vs. mesh current analysis
● The branch current analysis in Section 4.2 is a circuit analysis method that

writes and solves a system of KCL and KVL equations in which the unknowns
are the branch currents.

● Mesh current analysis is a circuit analysis method that writes and solves a system
of KVL equations in which the unknowns are the mesh currents (a current that
circulates in the mesh). It can be used for a circuit that has more than one source.

● The branch current analysis usually is a fundamental method for understanding
mesh current analysis; mesh analysis is more practical and easier to use.

Mesh current analysis
● Mesh current analysis uses KVL and does not need to use KCL.
● Applying KVL to get the mesh equations and solve unknowns implies that will

have less unknown variables, less simultaneous equations, and therefore less
calculation than branch current analysis.

● After solving mesh currents, the branch currents of the circuit will be easily
determined.

Mesh current
analysis

– A circuit analysis method that writes and solves a system of KVL
equations in which the unknowns are the mesh currents.

– It can be used for a circuit that has more than one source.
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4.3.2 Procedure for applying the mesh current analysis
The steps of mesh current analysis
1. Identify each mesh, and label all the nodes and reference directions for each

mesh current (a current that circulates in the mesh) clockwise.
2. Apply KVL to each mesh of the circuit, and the number of KVL equations

should be equal to the number of meshes (windowpanes).
Or Equation #¼ branch #� (nodes # �1)

Assign a positive sign (þ) for each self-resistor voltage, and a negative sign (�)
for each mutual-resistor voltage in KVL equations.
● Self-resistor: a resistor that is located in a mesh where only one mesh

current flows through it.
● Mutual resistor: a resistor that is located in a boundary of two meshes and

has two mesh currents flowing through it.
3. Solve the simultaneous equations resulting from step 2 using the determinant

or substitution methods, and determine each mesh current.
4. Calculate the other circuit unknowns such as branch currents from the mesh

currents in problem if necessary (choose the reference direction of branch
currents first).

Note:

● Convert the current source to the voltage source first in the circuit, if there is any.
● If the circuit has a current source, the source current will be the same as the

mesh current, so the number of KVL equations can be reduced.

The procedure for applying mesh current analysis method is demonstrated in the following
examples.

4.3.3 Mesh current analysis examples

Example 4.6: Use the mesh current analysis method to determine each mesh
current and branch currents IR1 , IR2 , and IR3 in Figure 4.13.

a

b

E1 = 30 V E2 = 20 V E3 = 10 V

IR1 IR2
IR3

I1 I2

R1 = 10 Ω R2 = 10 Ω R3 = 20 Ω

+
–

+
– +

–

Figure 4.13 Circuit for Example 4.6
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Solution:

1. Label all the reference directions for each mesh current I1 and I2 (clockwise) as
shown in Figure 4.13.

2. Apply KVL around each mesh, and the number of KVL equations is equal to
the number of meshes (there are two meshes in Figure 4.13).

or Equation # ¼ branch # � (nodes # � 1) ¼ 3 � (2 � 1) ¼ 2

– Mesh 1: R1 þ R2ð ÞI1 � R2I2 ¼ �E1 þ E2
P

V ¼P
E

– Mesh 2: �R2I1 þ ðR2 þ R3ÞI2 ¼ �E2 � E3
P

V ¼P
E

Sign a (þ) for each self-resistor voltage, and a (�) for each mutual-resistor voltage
in KVL.

Note: The above equations were written by inspection of the circuit
(inspection method):

First column I1 Second column I2 Source E

– Mesh 1: Self -resistorð Þ I1 � Mutual-resistorð Þ I2 ¼ �E1 þ E2

– Mesh 2: � Mutual-resistorð Þ I1 þ Self -resistorð Þ I2 ¼ �E2 � E3

3. Solve the simultaneous equations resulting from step 2, and determine the
mesh current I1 and I2:

– Mesh 1: ð10 þ 10ÞI1 � 10 I2 ¼ �30 þ 20 i:e:; 20 I1 � 10 I2 ¼ �10

(4.1)

– Mesh 2: �10 I1 þ ð10 þ 20ÞI2 ¼ �20 � 10 � 10 I1 þ 30 I2 ¼ �30

(4.2)

Solve for I1 and I2 using the substitution method as follows:
– Solve for I1 from (4.1):

20 I1 ¼ �10 þ 10 I2; I1 ¼ �1
2
þ 1

2
I2 (4.3)

Divide by 20 on both sides.

– Substitute I1 into (4.2) and solve for I2:

�10ð� 1
2
þ 1

2
I2Þ þ 30 I2 ¼ �30; I2 ¼ �1:4 A

– Substitute I2 into (4.3) and solve for I1:

I1 ¼ 1
2
þ 1

2
ð�1:4Þ; I1 ¼ �0:2 A
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4. Assuming the reference direction of unknown branch current IR2 as shown in
Figure 4.13, calculate IR2 from the mesh currents by applying KCL at node a:

P
I ¼ 0 : �IR1 � IR2 þ IR3 ¼ 0 or I1 � IR2 � I2 ¼ 0

ðSince I1 ¼ �IR1 and I2 ¼ �IR3Þ
IR2 ¼ I1 � I2 ¼ �0:2 � ð�1:4Þ ¼ 1:2 A

IR1 ¼ �I1 ¼ 0:2 A

IR3 ¼ I2 ¼ 1:4A

Example 4.7: Write the mesh equations using the mesh current analysis method for
the circuit in Figure 4.14.

Solution: Convert the current source to a voltage source as shown in
Figure 4.14.

1. Label all the nodes and the reference directions for each mesh current (clock-
wise), as shown in Figure 4.14(b).

2. Apply KVL for each mesh, and the number of KVL equations is equal to the
number of meshes (there are three meshes in Figure 4.14(b)).

Or Equation # ¼ branch # – (nodes # � 1) ¼ 6 � (4 � 1) ¼ 3

– Mesh 1: R1 þ R2 þ R3ð ÞI1 � R3I2 � R2I3 ¼ ES � E
P

V ¼P
E

– Mesh 2: �R3I1 þ R3 þ R4 þ R5ð ÞI2 � R4I3 ¼ E
P

V ¼P
E

– Mesh 3: �R2I1 � R4I2 þ R2 þ R4 þ R6ð ÞI3 ¼ 0
P

V ¼P
E

(a) (b)

R3
R3

IS
R5 R5

R4 R4

R6 R6

Es

(ES = ISR1) 

E

R2 R2

R1

R1

E

I3

I2
I1+

–
+
–+

–

Figure 4.14 Circuit for Example 4.7
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4.4 Nodal voltage analysis

4.4.1 Procedure for applying the node voltage analysis
Node voltage analysis
● The node voltage analysis is another method for analysis of an electric circuit

with two or more sources.
● The node voltage analysis is a circuit analysis method that writes and solves a

set of simultaneous KCL equations in which the unknowns are the node
voltages.
– Recall that node is the intersectional point of two or more current paths.
– Node voltage is voltage between a node and the reference node.

Node voltage
analysis

– A circuit analysis method that writes and solves a set of simulta-
neous KCL equations in which the unknowns are the node
voltages.

– It can be used for a circuit that has more than one source.

The steps of node voltage analysis
1. Label the circuit:

● Label all the nodes and choose one of them to be the reference node.
Usually ground or the node with the most branch connections should be chosen as the
reference node (at which voltage is defined as zero).

● Assign an arbitrary reference direction for each branch current (this step
can be skipped if using the inspection method).

2. Apply KCL to all n � 1 nodes except for the reference node (n is the number of
nodes).
● Method 1: Write KCL equations and apply Ohm’s law to the equations;

either resistance or conductance can be used.
– Assign a positive sign (þ) for the self-resistor or self-conductor

voltage.
– Assign a negative sign (�) for the mutual-resistor or mutual-

conductor voltage.
● Method 2: Convert voltage sources to current sources and write KCL

equations using the inspection method.
3. Solve the simultaneous equations and determine each nodal voltage.
4. Calculate the other circuit unknowns such as branch currents from the nodal

voltages in the problem, if necessary.

The procedure to apply node voltage analysis method is demonstrated in the following
examples.
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4.4.2 Node voltage analysis examples

Example 4.8: Write the node voltage equations for the circuit shown in Figure 4.15(a)
using the node voltage analysis method.

Solution:

1. Label nodes a, b, and c, and choose ground c to be the reference node; assign
the reference current directions for each branch as shown in Figure 4.15(a).

2. Apply KCL to n � 1 ¼ 3 � 1 ¼ 2 nodes (nodes a and b).
● Method 1: Write KCL equations and apply Ohm’s law to the equations.

– Use resistance:

Node a: I1 � I2 � I3 ¼ 0;
E1 � Va

R1
� Va

R2
� Va � Vb

R3
¼ 0

P
I ¼ 0; I ¼ V

R

Node b: I3 � I4 � I5 ¼ 0;
Va � Vb

R3
� Vb

R4
� Vb þ E2

R5
¼ 0

P
I ¼ 0; I ¼ V

R

– Use conductance:

Node a: I1 � I2 � I3 ¼ 0; ðE1 � VaÞG1 � VaG2 � ðVa � VbÞG3 ¼ 0 G ¼ 1
R

Node b: I3 � I4 � I5 ¼ 0; ðVa � VbÞG3 � VbG4 � ðVb þ E2ÞG5 ¼ 0

● Method 2: Convert two voltage sources to current sources from Figure 4.15(a)
to Figure 4.15(b), and write KCL equations by inspection.

a b

c

R3

R4R2

R1 R5

E1 E2

I1 I2

I3

I4 I5

+
–

+
–

Figure 4.15(a) Circuit for Example 4.8

a b

c

I1 R1 R2 R4 R5 I5

R3

Figure 4.15(b) Circuit for method 2
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– Use conductance:
First Column (Va), second column (Vb), source IS

Node a: G1 þ G2 þ G3ð ÞVa � G3Vb ¼ I1 G ¼ 1
R
; I ¼ GV ;

P
Iin ¼

P
Iout

Node b: �G3Va þ G3 þ G4 þ G5ð ÞVb ¼ �I5

– Use resistance:

1
R1

þ 1
R2

þ 1
R3

� �
Va � 1

R3
Vb ¼ I1 I ¼ V

R
;
P

I in ¼
P

Iout

� 1
R3

Va þ 1
R3

þ 1
R4

þ 1
R5

� �
Vb ¼ �I5

3. Two equations can solve two unknowns that are the node voltages Va and Vb.

Note:

● The inspection method is similar with the one in mesh current analysis. The
difference is that mesh current analysis uses mesh currents in each column, and
node voltage analysis uses node voltage in each column.

● Assign a positive sign (þ) for the self-resistor/conductor voltage and entering
node current, and a negative sign (�) for the mutual-resistor/conductor voltage
and exiting node current.

Example 4.9: Use the node voltage analysis to calculate currents I1 and I2 for the
circuit shown in Figure 4.16(a) and (b).

Solution:

1. Label nodes a and b, and choose b to be the reference node, and assign the
reference current direction for each branch as shown in Figure 4.16(b).

c a

b

c

d

d

(a) (b)

I1

I1
IS

I2

R2

R1

E

I1'

IS = 2 A

I1 = 60/12=5 A

I2

E = 60 V

R1 = 12 Ω

R1 = 12 Ω

R2 = 24 Ω

+
–

+
–

Figure 4.16 Circuit for Example 4.9
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2. Apply KCL to n � 1 ¼ 2 � 1 ¼ 1 node (node a):
Use method 1: Write KCL equations and apply Ohm’s law to the equations:

● Use resistance:

I1 � I2 þ IS ¼ 0;
E � Va

R1
� Va

R2
þ IS ¼ 0

P
I ¼ 0 ; I ¼ V

R

● Use conductance:

ðE � VaÞG1 � VaG2 þ IS ¼ 0
P

I ¼ 0; G ¼ 1
R

3. Solve the above equation and determine the node voltage Va:

E

R1
� Va

R1
� Va

R2
þ IS ¼ 0

E

R1
þ IS ¼ Va

1
R1

þ 1
R2

� �
Divide both sides by

1
R1

þ 1
R2

� �

Va ¼
E

R1
þ IS

1
R1

þ 1
R2

¼
60
12

þ 2

� �
A

1
12

þ 1
24

� �
S

¼ 7 A
0:125 S

¼ 56 V

4. Calculate the branch currents from the nodal voltages:

I1 ¼ E � Va

R1
¼ 60 � 56ð ÞV

12 W
� 0:33 A

I2 ¼ �Va

R2
¼ �56 V

24 W
� �2:33 A

Use method 2:

● Convert voltage source to current source from the circuit of Figure 4.16(a) to
the circuit of figure 4.16(c):

I1 ¼ E

R1
¼ 60

12
¼ 5 A; R1==R2 ¼ 12==24 ¼ 8 W

a

bb

a

R1 = 12 Ω R1 // R2  R2 = 24 Ω Is = 2 A Is = 2 A

I2
I2

I1 = 5 A I1 = 5 A

Figure 4.16(c) Circuit for Example 4.9 (cont.)
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● Write KCL equation to node a using the inspection method:

Va

R1==R2
¼ I1 þ IS I ¼ V

R
;
P

I in ¼
P

Iout

Va ¼ I1 þ ISð Þ R1==R2ð Þ ¼ 5 Aþ 2 Að Þð8WÞ ¼ 56 V : Multiply both sides by R1==R2:

Va is the same as that of method 1:ð Þ

Example 4.10: Write node voltage equations with resistances and conductances in
the circuit of Figure 4.17 using the inspection method.

Solution:

1. Label all nodes a, b, c, and d (n ¼ 4) in the circuit as shown in Figure 4.17, and
choose d to be the reference node.

(The step to assign each branch current with reference direction is skipped since this
example is using the inspection method.)

2. Write KCL equations to n � 1 ¼ 4 � 1 ¼ 3 nodes using the inspection method.
● Use resistance:

First column (Va), second column (Vb), third Column (Vc), source IS

Node a:
1

R1
þ 1

R5

� �
Va � 1

R1
Vb � 1

R5
Vc ¼ IS I ¼ V

R

Node b: � 1
R1

Va þ 1
R1

þ 1
R2

þ 1
R3

� �
Vb � 1

R3
VC ¼ 0

Node c: � 1
R5

Va � 1
R3

Vb þ 1
R3

þ 1
R4

þ 1
R5

� �
VC ¼ 0

R1 R3

R2

R5

R4

b c

Is

a

d

Figure 4.17 Circuit for Example 4.10
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● Use conductance:

Node a: ðG1 þ G5ÞVa � G1Vb � G5Vc ¼ IS

Node b: � G1Va þ ðG1 þ G2 þ G3ÞVb � G3Vc ¼ 0

Node c: � G5Va � G3Vb þ ðG3 þ G4 þ G5ÞVc ¼ 0

3. Three equations can solve three unknowns (node voltages Va, Vb, and Vc).

4.4.3 Node voltage analysis vs. mesh current analysis
When to use the node voltage analysis or mesh current analysis?
The choice between the mesh current analysis and the node voltage analysis is often
made on the basis of the circuit structure.

● The node voltage analysis is preferable for solving a circuit that is a parallel
circuit, with current source(s), less nodes and more branches, and thus it is
more convenient to solve circuit unknowns.

● The mesh current analysis is preferable for solving a circuit that has fewer
meshes, more nodes, with voltage sources and requires solving circuit branch
currents.

Summary

Source equivalent conversions and sources in series and parallel

● Voltage source ! Current source : RS ¼ RS; IS ¼ E

RS

● Current source ! Voltage source : RS ¼ RS; E ¼ ISRS

● Voltage sources in series:

RS ¼ RS1 þ RS2 þ � � � þ RSn

E ¼ E1 þ E2 þ � � � þ En or VS ¼ VS1 þ VS2 þ � � � þ VSn

Assign a positive sign (þ) if En has the same polarity as E (or VS), otherwise assign a
negative sign (�).

● Voltage sources in parallel:

RS ¼ RS1 //RS2 // � � � //RSn

E ¼ E1 ¼ E2 ¼ � � � ¼ En or VS ¼ VS1 ¼ VS2 ¼ � � � ¼ VSn

Only voltage sources that have the same values and polarities can be in
parallel.

● Current sources in series: Only current sources that have the same polarities
and values can be connected in series.
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Branch current analysis

● Branch current analysis: A circuit analysis method that writes and solves a
system of KCL and KVL equations in which the unknowns are the branch
currents.

● Procedure for applying branch current analysis:
1. Label the circuit:

– Label all the nodes.
– Assign an arbitrary reference direction for each branch current.
– Assign loop direction for each mesh (choose clockwise direction).

2. Apply KCL to numbers of independent nodes (n �1), where n is the
number of nodes.

3. Apply KVL to each mesh, and the number of KVL equations should be
equal to the number of meshes, or Equation # ¼ branch # � (nodes # �1).

4. Solve the simultaneous equations resulting from steps 2 and 3, and
determine each branch current.

5. Calculate the other circuit unknowns from the branch currents in the
problem if necessary.

Mesh current analysis

● Mesh current analysis: A circuit analysis method that writes and solves a
system of KVL equations in which the unknowns are the mesh currents.

● Procedure for applying mesh current analysis:
1. Identify each mesh, and label all the reference directions for each mesh

current (a current that circulates in the mesh) clockwise.
2. Apply KVL to each mesh of the circuit, and the number of KVL equations

should be equal to the number of meshes, or Equation # ¼ branch # �
(nodes # �1).

Assign each self-resistor voltage as positive, and mutual-resistor voltage
as negative in KVL equations.
– Self-resistor/conductor: a resistor/conductor that only has one mesh

current flowing through it.
– Mutual-resistor/conductor: a resistor/conductor that has two mesh

currents flowing through it.
3. Solve the simultaneous equations resulting from step 2 and determine each

mesh current.
4. Calculate the other circuit unknowns such as branch currents from the

mesh currents in the problem if necessary (choose the reference direction
of branch currents first).

Nodal voltage analysis

● Nodal voltage analysis: A circuit analysis method that writes and solves a set
of simultaneous of KCL equations in which the unknowns are the node
voltages.
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● Procedure for applying nodal voltage analysis
1. Label the circuit:

– Label all the nodes and choose one of them to be the reference node.
– Assign an arbitrary reference direction for each branch current (this

step can be skipped if using the inspection method).
2. Apply KCL to all n � 1 nodes except for reference node (n is the number

of nodes).
– Method 1: Write KCL equations and apply Ohm’s law to the equa-

tions; either resistance or conductance can be used. Assign a positive
sign (þ) for the self-resistor or self-conductor voltage and a negative
sign (–) for the mutual-resistor or mutual-conductor voltage.

– Method 2: Convert voltage sources to current sources and write KCL
equations using the inspection method.

3. Solve the simultaneous equations and determine each nodal voltage.
4. Calculate the other circuit unknowns such as branch currents from the

nodal voltages in problem if necessary.

Note: Branch current analysis, mesh current analysis, and node voltage analysis
can be used for a circuit that has more than one source.

Practice problems

4.1
1. Convert a voltage source with E ¼ 18 V and RS ¼ 6 W to an equiva-

lent current source.
2. Convert a current source with IS ¼ 1:5 A and RS ¼ 3 W to an

equivalent voltage source.
3. Calculate the load current IL in the current source circuit of

Figure 4.18. Then calculate the load current IL again after converting
the current source to an equivalent voltage source. Compare it with
the IL determined from the current source circuit.

4. Determine the current IL in the circuit of Figure 4.19.

100 ΩIS = 5 mA RS RL = 1 kΩ

Figure 4.18
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4.2
5. List the number of nodes n, the number of branches, and the number

of independent loops (meshes) for the circuit in Figure 4.20.

6. Determine the current in each branch of the circuit in Figure 4.21
using the branch current analysis method.

7. Solve for branch current I in Figure 4.22 using the branch current
analysis method.

4 kΩRS
IS3 A   4 kΩ 2 A 1 A 2 kΩ

RL = 1 kΩ

IL

RL = 1 kΩ 

IL 

RS

Figure 4.19

R3

R5

R9

R6

R10

R7

R4

E1

E3

E2

R2R1

R8

+

–

+
–

+–

Figure 4.20

1.2 kΩ

 8.2 kΩ

1.1 kΩ
9.1 kΩ

E1 = 9V E2 = 6V

R2

R1

R3

R4

+
+

–

–

Figure 4.21

I = 12 A 
E 16 V

I

R2 = 6 Ω

R1 R3

R4

2 Ω

4 Ω

10 Ω
+
–

Figure 4.22
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4.3.
8. Write mesh equations for the circuit in Figure 4.23.

9. Determine the mesh current I1, I2, and voltage VR2 in the circuit of
Figure 4.24 using the mesh current analysis method. (Hint: Convert
the current source to the equivalent voltage source first.)

10. Determine the mesh currents and voltage VAB in the circuit of
Figure 4.25 using the mesh current analysis method. (Hint: Convert
the current source to the equivalent voltage source first.)

12 V 18 V

R1

R4

E4 =10 V

6 KΩ
2 KΩ

2 KΩ

5 KΩ

3 KΩ

10 V
+–

R3

R5

E1 E3E2

R2

+

+

–

–

+

–

Figure 4.23

R1 = 1 kΩ

E2 = 4 V
E3 = 6 V

R2 = 0.56 kΩ
R3 = 0.82 Ω

I = 2 mA
I 1 I 2

+
–

+
–

Figure 4.24

E1 = 9 V
E3 = 4 V

R2 = 4 Ω
R4 = 6 Ω

R3 = 8 Ω
R2 = 3 Ω

I = 1.5 AA B

+
– +

–

Figure 4.25
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4.4
11. Determine the branch currents Ia and Ib in the circuit of Figure 4.26

using the nodal voltage analysis method.

12. Determine the nodal voltage Va in the circuit of Figure 4.27 using the
nodal voltage analysis method.

13. Determine the nodal voltage Va in the circuit of Figure 4.28 using the
nodal voltage analysis method.

R1 = 82 Ω

R3 = 34 Ω
R6 = 47 Ω

R5 = 40 Ω

R4 = 60 Ω
R2 = 34 Ω

I1 = 0.37 Α

Ia

Ib

E2 = 40 V+–

Figure 4.26

a

R1 = 2 ΩI1 = 3 A

I2 = 2 A
R2 = 5 Ω

R3 = 4 Ω

Figure 4.27

a

R1

R2

R4

E1 = 15 V E3 = 32 V

E2 = 12 V R3 = 4 Ω

3 Ω 8 Ω
6 Ω

+
–

+
–

+–

Figure 4.28
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Introduction to the network theorems

Limitations of DC circuit analysis methods
● The main methods for analyzing series and parallel circuits in Chapter 3 are

Kirchhoff’s laws.
● The branch current method, mesh, or loop analysis method and node voltage

analysis method also use KCL and KVL as the main backbone.



● When the practical circuits are more and more complex, the applications of the
above methods solving for currents and voltages can be quite complicated.
This is because you need to solve the higher-order mathematic equations when
using these methods.

Network theorems

● The scientists working in the field of the electrical engineering have developed
more simplified theorems to analyze these kinds of complex circuits. (The
complicated circuit is also called the network.)

● This chapter presents several theorems useful for analyzing such complex cir-
cuits or networks. These theorems include the superposition theorem, Thevenin’s
theorem, Norton’s theorem, Millman’s theorem, and the substitution theorem.

● In electric network analysis, the fundamental rules are still Ohm’s law and
Kirchhoff’s laws.

Network A network is a complicated circuit.

Linearity property

● The linearity property of a component describes a linear relationship between
cause and effect.

● The pre-requirement of applying some of the above network theorems is that
the analyzed network must be a linear circuit.

● A linear circuit has an output that is directly proportional to its input. The
components of a linear circuit are the linear components.

● An example of linear component is a linear resistor. The voltage and current
(input/output) of this linear resistor have a directly proportional (a straight line)
relationship.

5.1 Superposition theorem

5.1.1 Steps to apply the superposition theorem
Superposition theorem
● When several power sources are applied to a single circuit or network at the

same time, the superposition theorem can be used to separate the original net-
work into several individual circuits for each power source working separately.

● Then, use series/parallel analysis to determine voltages and currents in the
modified circuits.

● The actual unknown currents and voltages with all power sources can be
determined by their algebraic sum; this is the meaning of the theorem’s
name—‘‘superimposed.’’

Superposition
theorem

The unknown voltages or currents in a network are the sum of the
voltages or currents of the individual contributions from each single
power supply, by setting the other inactive sources to zero.
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Steps to apply the superposition theorem

1. Turn off all power sources except one.
– Replace the voltage source with the short circuit (placing a jump wire).
– Replace the current source with an open circuit.
– Redraw the original circuit with a single source.

2. Analyze and calculate this circuit by using the single source series-parallel
analysis method.

3. Repeat steps 1 and 2 for the other power sources in the circuit.
4. Determine the total contribution by calculating the algebraic sum of all con-

tributions due to single sources.

Note:

● The result should be positive when the reference polarity of the unknown in the
single source circuit is the same as the reference polarity of the unknown in the
original circuit; otherwise, it should be negative.

● The superposition theorem can be applied to the linear network to determine
only the unknown currents and voltages. It cannot calculate power, since
power is a nonlinear variable. (Power can be calculated by the voltages and currents
that have been determined by the superposition theorem.)

5.1.2 Superposition examples

Example 5.1: Determine the branch current Ic in the circuit of Figure 5.1(a) by
using the superposition theorem.

Solution:

1. Choose E1 to apply to the circuit first and use a jump wire (short circuit) to
replace E2 as shown in Figure 5.1(b).

2. Calculate Ic
0 in the circuit of Figure 5.1(b):

Req
0 ¼ R5 //ðR3 þ R4Þ þ ðR1 þ R2Þ ¼ 16 � ð8 þ 8Þ

16 þ ð8 þ 8Þ þ ð8 þ 8Þ
� �

W

¼ 24 W Req¼
R1R1

R1þR2

=
Ia

Ib
Ia' Ib' Ic'

Ia'' Ib'' Ic''Ic

E1 = 48 V

R2 = 8 Ω

R1 = 8 Ω R3 = 8 Ω

R4 = 8 Ω

R5 = 16 Ω

(a) (b) (c)

R1 = 8 Ω

R2 = 8 Ω

R3 = 8 Ω

R4 = 8 Ω

R5 = 16 Ω
R1 = 8 Ω R3 = 8 Ω

E2 = 24 V

R2 = 8 Ω R4 = 8 Ω

R5 = 16 Ω
E1 = 48 VE2 = 24 V

+

Figure 5.1 Circuit for Example 5.1
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(view from the E1 branch in the circuit of Figure 5.1(b) to determine Req
0)

Ia
0 ¼ E1

Req
0 ¼

48V
24 W

¼ 2 A I ¼ E

R

Ic
0 ¼ Ia

0 R3 þ R4

ðR3 þ R4Þ þ R5
¼ 2 A

ð8 þ 8Þ W
ð8 þ 8 þ 16Þ W ¼ 1A I2 ¼ IT

R1

R1 þ R2

3. When E2 is applied to the circuit, replace E1 with a short circuit as shown in
Figure 5.1(c), and calculate Ic

00:

Req
00 ¼ R5 //ðR1 þ R2Þ þ ðR3 þ R4Þ ¼ 16 � ð8 þ 8Þ

16 þ ð8 þ 8Þ þ ð8 þ 8Þ
� �

W

¼ 24 W Req ¼
R1R2

R1 þ R2

(view from the E2 branch in the circuit of Figure 5.1(c) to determine Req
00)

Ib
00 ¼ E2

Req
00 ¼

24 V
24 W

¼ 1 A I ¼ E

R

Ic
00 ¼ Ib

00 R1 þ R2

ðR1 þ R2Þ þ R5
¼ ð1 AÞ ð8 þ 8ÞW

ð8 þ 8 þ 16ÞW ¼ 0:5 A I2 ¼ IT
R1

R1 þ R2

4. Calculate the sum of currents Ic
0 and Ic

00:

Ic ¼ Ic
0 þ Ic

00 ¼ ð1 þ 0:5Þ A ¼ 1:5 A

Example 5.2: Determine the branch current I2 and power P2 of the circuit in
Figure 5.2(a) by using the superposition theorem.

Solution:

1. When E is applied only to the circuit (using an open circuit to replace the
current source I1), calculate I2

0 by assuming the reference direction of I2
0 as

shown in Figure 5.2(b):

= +
I1 = 50 mA

I2 I2' I2''

R2 R2

R1 = 50 Ω

R3 = 100 Ω R3 = 100 Ω R3 = 100 Ω100 Ω
R2

R1 = 50 Ω
I1 = 50 mA

R1 = 50
100 Ω

(a) (b) (c)

100 Ω

E = 25 V E = 25 V

Figure 5.2 Circuit for Example 5.2
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2. Calculate I2
0 in the circuit of Figure 5.2(b):

I2
0 ¼ E

ðR2 //R3Þ þ R1
¼ 25 V

100 � 100
100 þ 100

þ 50

� �
W

¼ 0:25 A ¼ 250 mA I ¼ E

R

3. When the current source I1 is applied only to the circuit only (the voltage
source E is replaced by a jump wire), the circuit is as shown in Figure 5.2(c).
Calculate I2

00 by assuming the reference direction of I2
00 as shown in the circuit

of Figure 5.2(c):

I2
00 ¼ I1

R1

R1 þR2 //R3
¼ 50 mA

50W

50þ100�100
100þ100

� �
W
¼ 25 mA I2 ¼ IT

R1

R1 þR2

(Apply the current divider rule to the branches R1 and R2 // R3.)

4. Calculate the sum of currents I2
0 and I2

00:

I2 ¼ �I2
0 þ I2

00 ¼ �250 mA þ 25 mA ¼ �225 mA ¼ � 0:225 A

● I2
0 is negative as its reference direction in Figure 5.2(b) is opposite to that

of I2 in the original circuit of Figure 5.2(a).
● The negative I2 implies that the actual direction of I2 in Figure 5.2(a) is

opposite to its reference direction.
5. Determine the power P2:

P2 ¼ I2
2R2 ¼ ð�0:225 AÞ2ð100 WÞ � 5:06 W P¼I2R

Example 5.3: Determine the branch current I3 in the circuit of Figure 5.3(a) using
the superposition theorem.

Solution:

1. Choose E1 to apply to the circuit first and use a jump wire to replace E2 and an
open circuit to replace the current source I as shown in Figure 5.3(b).

+ +

I3

R1 R1 R1 R3

R2
R4

IE1

I1'

I3' I3''

I3'''

I2''

R3 R3

R2

R4
E2

R2

R4

R3 = 0.375 kΩ

R1 = 0.3 kΩ R2 = 0.55 kΩ

R4 = 0.45 kΩ I = 5 mA =E1 = 12.5 V E2 = 5 V

(a)

(b) (c) (d)

Figure 5.3 Circuit for Example 5.3
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2. Use the circuit in Figure 5.3(b) to determine I3
0

I1
0 ¼ E1

Req
0 ¼

E1

ðR3 þ R4Þ //R2 þ R1

¼ 12:5V
ð0:375 þ 0:45Þ � 0:55
ð0:375 þ 0:45Þ þ 0:55

þ 0:3

� �
kW

� 19:84 mA Req ¼
R1R2

R1 þ R2

I3
0 ¼ I1

0 R2

R2 þðR3 þR4Þ ¼ ð19:84 mAÞ 0:55 kW
0:55 kWþð0:375þ 0:45Þ kW

� 7:94 mA

(Apply the current divider rule to the branches R2 and (R3 þ R4).)

I1 ¼ IT
R2

R1 þ R2

3.
● Use the circuit in Figure 5.3(c) to determine I3

00:

I2
00 ¼ E2

Req
00 ¼

E2

ðR3 þ R4Þ //R1 þ R2

¼ 5V
ð0:375 þ 0:45Þ � ð0:3Þ
ð0:375 þ 0:45Þ þ 0:3

þ 0:55

� �
kW

� 6:49 mA Req ¼
R1R2

R1 þ R2

I3
00 ¼ I2

00 R1

R1 þ ðR3 þ R4Þ ¼ ð6:49 mAÞ 0:3 kW
½0:3 þ ð0:375 þ 0:45Þ� kW

� 1:73 mA

(Apply the current divider rule to the branches R1 and (R3 þ R4).)

I1 ¼ IT
R2

R1 þ R2

● Use the circuit in Figure 5.3(d) to determine I3
000:

I3
000 ¼ I

R4

ðR1 //R2 þ R3Þ þ R4
¼ ð5 mAÞ 0:45 kW

0:3 � 0:55
0:3 þ 0:55

þ 0:375

� �
þ 0:45

� �
kW

� 2:21 mA

(Apply the current divider rule to the branches R4 and (R1//R2 þ R3).)

I2 ¼ IT
R1

R1 þ R2

4. Calculate the sum of currents I3
0, I3

00, and I3
000:

I3 ¼ I3
0 þ I3

00 � I3
000 ¼ 7:94 mA þ 1:73 mA � 2:21 mA ¼ 7:46 mA

I3
000 is negative since its reference direction is opposite to that of I3 in the original circuit of

Figure 5.3(a).
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5.2 Thevenin’s and Norton’s theorems

5.2.1 Introduction to Thevenin’s and Norton’s theorems
Background
● Thevenin’s and Norton’s theorems are two of the most widely used theorems

to simplify the linear circuit for the ease of network analysis.
● In 1883, the French telegraph engineer M. L. Thevenin published his theorem

of the network analysis method.
● Forty-three years later, an American engineer E. L. Norton in Bell Telephone

laboratory published a similar theorem, but he used the current source to
replace the voltage source in the equivalent circuit.

Introduction to Thevenin’s and Norton’s theorems
● These two theorems state that any complicated linear two-terminal network

with power supplies can be simplified to an equivalent circuit that includes
– an actual voltage source (Thevenin’s theorem),
– or an actual current source (Norton’s theorem).

● The ‘‘linear two-terminal network with power supplies’’ means:
– Network: the relatively complicated circuit.
– Linear network: the circuits in the network are the linear circuits.
– Two-terminal network: the network with two terminals that can be con-

nected to the external circuits.
– Network with the power supplies: network includes the power supplies.

● Any combination of power supplies and resistors with two terminals can be
replaced by
– a single voltage source and a single series resistor for Thevenin’s

theorem.
– a single current source and a single parallel resistor for Norton’s

theorem.

5.2.2 Thevenin and Norton equivalent circuits
Thevenin and Norton equivalent circuits

● No matter how complex the inside construction of any two-terminal network
with power supplies is, they can all be illustrated in Figure 5.4(a).

● According to Thevenin’s and Norton’s theorems, we can draw the following
conclusion:
– Any linear two-terminal network with power supplies can be replaced by

an equivalent circuit as shown in Figure 5.4(b) or (c).
– The equivalent means that any load resistor branch (or unknown current

or voltage branch) connected between the terminals of Thevenin’s or
Norton’s equivalent circuit will have the same current and voltage as if it
was connected to the terminals of the original circuit.

– Thevenin’s and Norton’s theorems allow for the analysis of the perfor-
mance of a circuit from its terminal properties only.
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Thevenin’s and Norton’s theorems

Any linear two-terminal network with power supplies can be replaced by a simple
equivalent circuit, which has a single power source and a single resistor.

Thevenin’s
theorem

Thevenin’s equivalent circuit is a voltage source—with an equivalent
resistance RTH in series with an equivalent voltage source VTH.

Norton’s
theorem

Norton’s equivalent circuit is a current source—with an equivalent
resistance RN in parallel with an equivalent current source IN.

5.2.3 Equivalent resistance and voltage/current
RTH, VTH, RN, and IN

● Any combination of power supplies and resistors with two terminals can be
replaced by a single voltage source and a single series resistor for Thevenin’s
theorem, and replaced by a single current source and a single parallel resistor
for Norton’s theorem.

● The key to applying Thevenin’s and Norton’s theorems is to determine the
equivalent resistance RTH and the equivalent voltage VTH for Thevenin’s
equivalent circuit, and the equivalent resistance RN and the equivalent current
IN for Norton’s equivalent circuit.

● The value of RN in Norton’s equivalent circuit is the same as RTH of Theve-
nin’s equivalent circuit.

RN ¼ RTH

– The ‘‘TH’’ in VTH and RTH means Thevenin.
– The ‘‘N’’ in IN and RN means Norton.

a

b

RL

IN
RN

RL

RL

RTH

VTH

a

b

a

b
(a) Linear two-terminal network
     with the power supplies

(b) Thevenin’s theorem

(c) Norton’s theorem

Figure 5.4 Thevenin’s and Norton’s Theorems
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Note:

● Thevenin’s and Norton’s theorems are used very often, as it is often neces-
sary to calculate the load (or a branch) current or voltage in practical
applications.

● The load resistor can be varied sometimes (for instance, the wall-plug can
connect to 60 W or 100 W lamps). Once the load is changed, the whole circuit
has to be reanalyzed or recalculated.

● If Thevenin’s and Norton’s theorems are used, Thevenin’s and Norton’s
equivalent circuits will not be changed except for their external load branches.
The variation of the load can be more conveniently to determine by using
Thevenin’s or Norton’s equivalent circuits.

5.2.4 Procedure for applying the Thevenin’s and
Norton’s theorems

Steps to apply Thevenin’s and Norton’s theorems

1. Open and remove the load branch (or any unknown current or voltage branch)
in the network, and mark the letters a and b on the two terminals.

2. Determine the equivalent resistance RTH or RN. It equals the equivalent resis-
tance, looking at it from the a and b terminals when all sources are turned off or
equal to zero in the network. That is, RTH ¼ RN ¼ Rab

● A voltage source should be replaced by a short circuit.
● A current source should be replaced by an open circuit.

3.
● Determine Thevenin’s equivalent voltage VTH. It equals the open-circuit

voltage from the original linear two-terminal network of a and b, i.e.,
VTH ¼ Vab

● Determine Norton’s equivalent current IN. It equals the short-circuit cur-
rent from the original linear two-terminal network of a and b,

i:e:; IN ¼ Isc where ‘‘sc’’ means the short circuit:

4. Plot Thevenin’s or Norton’s equivalent circuit, and connect the load branch (or
unknown current or voltage branch) to a and b terminals of the equivalent
circuit. Then the load (or unknown) voltage or current can be determined.

The above procedure for analyzing circuits by using Thevenin’s and Norton’s theorems is illu-
strated in the circuits of Figure 5.5.
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Thevenin and Norton equivalent circuits

5.2.5 Thevenin/Norton equivalent example

Example 5.4: Determine the load current IL in the circuit of Figure 5.6(a) by using
Thevenin’s and Norton’s theorems.

Solution:

1. Open and remove the load branch RL, and mark a and b on the terminals of the
load branch as shown in the circuit of Figure 5.6(b).

a

b

RL
E = 0
Is = 0

RTH = RN = Rab

IN = Isc IN
RN RL

VTH = Vab

RTH
RLVTH

a

a

b

b

a

b

a

b

a

b

Figure 5.5 The procedure for applying Thevenin’s and Norton’s theorems

E = 48 V

(a)

R1 = 12 Ω

R2 = 12 Ω R3 = 12 Ω
RL = 8 Ω

IL

Figure 5.6(a) Circuit for Example 5.4

(b)

E = 48 V

R1 = 12 Ω

R2 = 12 Ω R3 = 12 Ω

a

b

Figure 5.6(b)
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2. Determine Thevenin’s and Norton’s equivalent resistance RTH and RN (the
voltage source is replaced by a short circuit) in the circuit of Figure 5.6(c).

RTH ¼ RN ¼ Rab ¼ R1 //R2 //R3 ¼ ð12 //12 //12Þ W ¼ 4W Req ¼
R1R2

R1þR2

3.
● Determine Thevenin’s equivalent voltage VTH: Use the circuit in Fig-

ure 5.6(d) to calculate the open-circuit voltage across the terminals a and b.

VTH ¼Vab ¼E
R2 //R3

R1 þR2 //R3
¼ ð48 VÞ ð12//12ÞW

ð12þ12//12ÞW¼ 16 V Req ¼
R1R2

R1 þR2

Apply the voltage divider rule to the resistors R2//R3 and R1

V2 ¼ VT
R2

R1 þ R2

● Determine Norton’s equivalent current IN: Use the circuit in Figure 5.6(e)
to calculate the short-circuit current in the terminals a and b.

IN ¼ ISC ¼ E

R1
¼ 48V

12W
¼ 4A I ¼ E

R

Since the current in the branch E and R1 will go through a short circuit without
resistance—through the branch a and b—and will not go through the branches R2 and
R3 that have resistances, in this case IN¼ E

R1
.

(c)

R1 = 12 Ω

R2 = 12 Ω R3 = 12 Ω

a

b

Figure 5.6(c)

(d)

E = 48 V

R1 = 12 Ω

R2 = 12 Ω R3 = 12 Ω

a

b

Figure 5.6(d)

(e)

E = 48 V

R1 = 12 Ω

R2 = 12 Ω R3 = 12 Ω
IN = ISC

a

b

Figure 5.6(e)
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4. Plot Thevenin’s and Norton’s equivalent circuits as shown in Figure 5.6(f) and
(g). Connect the load RL to a and b terminals of the equivalent circuits and
determine the load current IL.
● Use Thevenin’s equivalent circuit in Figure 5.6(f) to determine IL.

IL ¼ VTH

RTH þ RL
¼ 16 V

ð4 þ 8Þ W � 1:33 A I ¼ V

R

● Use Norton’s equivalent circuit in Figure 5.6(g) to calculate IL.

IL ¼ IN
RN

RN þ RL
¼ 4A

4 W
ð4 þ 8Þ W � 1:33 A

(Apply the current divider rule to the resistors RN and RL.)

I2 ¼ IT
R1

R1 þ R2

5.2.6 Viewpoints of Thevenin’s and Norton’s equivalent circuits
Viewpoints

● One important way to apply Thevenin’s and Norton’s theorems for analyzing
any network is to determine the viewpoints of Thevenin’s and Norton’s
equivalent circuits.

(f)

RTH = 4 Ω
RL = 8 Ω

VTH = 16 V

IL 

b

a

Figure 5.6(f)

(g)

RN = 4 Ω
IN = 4 A RL = 8 Ω

IL 

a

b

Figure 5.6(g)
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● The load branch (or any unknown current or voltage branch) belongs to the
external circuit of the linear two-terminal network with power sources. The
opening two terminals of the branch are the viewpoints for Thevenin’s and
Norton’s equivalent circuits.

● There could be different viewpoints for the bridge circuit as shown in
Figure 5.7(a).
– If we want to determine the branch current I3, we use A–B as viewpoints.
– If we want to determine the branch current I2, we use D–C as viewpoints,

etc.
● Different equivalent circuits and results will be obtained from using different

viewpoints.

Example 5.5: For the circuit in Figure 5.7(a):

(a) Plot Thevenin’s equivalent circuit for calculating the current I3.
(b) Determine Norton’s equivalent circuit for the viewpoints B–C.
(c) Determine Thevenin’s equivalent circuit for the viewpoints D–B.

Solution:

(a) The viewpoints for calculating I3 should be A–B (Figure 5.7(a)).
1. Open and remove R3 in the branch A–B of Figure 5.7(a) and mark the

letters a and b, as shown in the circuit of Figure 5.7(b).

A

E E

R1

R2
R4

R3

B

C

(a)

D

A

B

C

D

R1

I2 I4

R4R2

R3

I3

Figure 5.7(a) Viewpoints for the theorem

(b)

b

R4

R1

E

R2

a
A

B

Figure 5.7 (b) Figure (b) for Example 5.5
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2. Determine RTH and Rab. Replace the voltage source E with a short circuit,
as shown in the circuit of Figure 5.7(c).

RTH ¼ Rab ¼ ðR2 //R4Þ //R1 Req ¼
R1R2

R1 þ R2

3. Determine VTH using the circuit in Figure 5.7(d).

VTH ¼ Vab ¼ E
R1

R1 þ R2 //R4
V1 ¼ VT

R1

R1 þ R2

4. Plot Thevenin’s equivalent circuit as shown in the circuit of Figure 5.7(e).
Connect R3 to the a and b terminals of the equivalent circuit and deter-
mine the current I3:

I3 ¼ VTH

RTH þ R3

(c)

R4

R4 R2 R1

R2

R1 b

a
A

B

RTH = Rab

RTH = Rab

a

b

Figure 5.7(c)

(d)
R4

E

R1

R2

VTH = Vab

a

b

Figure 5.7(d)

(e)

VTH

I3

R3

RTH

a

b

A

B

Figure 5.7(e)
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(b) Norton’s equivalent circuit for the viewpoints B–C.
1. Open and remove R4 in the branch B–C of Figure 5.7(a), and mark

the letters a and b on the two terminals as shown in the circuit of
Figure 5.7(f).

2. Determine RN. Replace the voltage source with a short circuit as
shown in the circuit of Figure 5.7(g).

3. Determine IN using the circuit in Figure 5.7(h):

IN ¼ IT ¼ E

R1 //R3
I ¼ E

R
; Req ¼

R1R2

R1 þ R2

(Since the current will go through the short circuit without resistance—the
branch a and b—and will not go through the branch with resistance R2, in this
case IN ¼ IT.)

(f)

R1

R2

R3

E
a

C

B

b

Figure 5.7(f)

R1

R2

R3

RTH = Rab

a

C

B

b
(g)

Figure 5.7(g)

R3

R2

R1

a
E

b
(h)

IT

IN = Isc

Figure 5.7(h)
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4. Plot Norton’s equivalent circuit as shown in the circuit of Figure 5.7(i).

(c) Thevenin’s equivalent circuit for the viewpoints D–B:
1. Open branch D–B (Figure 5.7(a)) and mark the letters a and b on the

two terminals as shown in the circuit of Figure 5.7(j).

2. Determine RTH. Replace the voltage source with a short circuit as
shown in the circuit of Figure 5.7(k).

RTH ¼ Rab ¼ ðR1 //R2Þ þ ðR3 //R4Þ Req ¼
R1R2

R1 þ R2

3. Determine VTH using the circuit in Figure 5.7(j):

VTH ¼ Vab ¼ Va þð�VbÞ ¼ E
R2

R1 þR2
�E

R4

R3 þR4
V2 ¼VT

R2

R1 þR2

R4RN

a

b(i) C

B

Is

Figure 5.7(i)

R4
baD

(j)

B

R3R1

R2

E

Figure 5.7(j)

R4
ba

D

(k)

B

R3R1

R2

R2R1 R3 R4

a b

Figure 5.7(k)
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4. Plot Thevenin’s equivalent circuit as shown in the circuit of
Figure 5.7(l).

5.2.7 Norton’s theorem examples

Example 5.6: Determine current IL in the circuit of Figure 5.8(a) by using Norton’s
theorem.

Solution:

1. Open and remove RL in the load branch (Figure 5.8(b)) and mark the letters a
and b on its two terminals, as shown in the circuit of Figure 5.8(b).

a

b

D

RTH

VTH

B
(i)

Figure 5.7(l)

R1 = 200 Ω R2 = 200 Ω

R3 = 400 Ω

R4 = 500 Ω
RL = 100 Ω

ILI = 1 mA

(a)

Figure 5.8(a) Circuit for Example 5.6

R1 = 200 Ω

R3 = 400 Ω

R4 = 500 ΩR2 = 200 Ω I = 1 mA

a

(b)
b

Figure 5.8(b)
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2. Determine RN. Replace the current source with an open circuit as shown in the
circuit of Figure 5.8(c).

RN ¼Rab ¼ ðR1 //R2 þR3Þ //R4 ¼ ½ð200//200þ400Þ //500�W¼ 250W Req¼
R1R2

R1þR2

3. Calculate IN using the circuit of Figure 5.8(d).

IN ¼ I ¼ 1mA
Since the current I will flow through the short cut without resistance—the branch a and b—
and will not go through the branch with resistance, IN ¼ I.

4. Plot Norton’s equivalent circuit as shown in the circuit of Figure 5.8(e). Con-
nect RL to the a and b terminals of the equivalent circuit, and calculate the
current IL.

IL ¼ IN
RN

RL þ RN
¼ ð1 mAÞ 250 W

ð250 þ 100Þ W � 0:71 mA I1 ¼ IT
R2

R1 þ R2

(c)

R1 = 200 Ω R2 = 200 Ω

R3 = 400 Ω

R4 = 500 Ω RN = Rab

a

b

Figure 5.8(c)

(d)

R1 = 200 Ω R2 = 200 Ω

R3 = 400 Ω

R4 = 500 Ω IN = ISC
I = 1 mA

a

b

Figure 5.8(d)

a

IN = 1 mA RN = 250 Ω RL = 100 Ω

IL 

(e)

Figure 5.8(e)
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When applying Thevenin’s and Norton’s theorems to analyze networks, it is often
necessary to combine theorems that we have learned in the previous chapters. This
is explained in the following example.

Example 5.7: Determine Norton’s equivalent circuit for the left part of the term-
inals a and b in the circuit of Figure 5.9(a) and determine the current IL.

Solution:

1. Open and remove the current source part on the right side of the circuit from
the terminals a and b (Figure 5.9(a)), as shown in the circuit of Figure 5.9(b).

2. Determine RN. Replace the voltage source with a short circuit, and the current
source with an open circuit, as shown in the circuit of Figure 5.9(c).

RN ¼ Rab ¼ R1 //R2 ¼ ð30 WÞð70 WÞ
30 Wþ 70 W

¼ 21 W Req ¼
R1R2

R1 þ R2

R1 = 30 Ω

R2 = 70 Ω RL = 42 ΩI1 = 45 mA I2 = 140 mA

IL

E = 6 V

a

(a)

b

Figure 5.9(a) Circuit for Example 5.7

(b)

R1 = 30 Ω

R2 = 70 ΩI1 = 45 mAE = 6 V

a

b

Figure 5.9(b)

(c)

R1 = 30 Ω

R2 = 70 Ω RN = Rab

a

b

Figure 5.9(c)
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3. Determine IN using the circuit in Figure 5.9(d). Since there are two power
supplies in this circuit, it is necessary to apply the network analyzing method
for this complex circuit. Let us try to use the superposition theorem to deter-
mine IN.

● When the single voltage source E is applied to the circuit, the circuit is
shown in Figure 5.9(e).

Since R2 is short-circuited by IN
0 (recall that current always goes through the short

circuit without resistance):

; IN
0 ¼ E

R1
¼ 6V

30W
¼ 0:2 A ¼ 200 mA I ¼ E

R

● When the single current source I1 is applied to the circuit, the circuit is
shown in Figure 5.9(f).

Since R1 and R2 are short-circuited by the IN
00: IN

00 ¼ I1 ¼ 45 mA

(d)

E = 6 V

R1 = 30 Ω

R2 = 70 ΩI1 = 45 mA IN

a

b

Figure 5.9(d)

(e)

E = 6 V

R1 = 30 Ω

R2 = 70 Ω IN'

a

b

Figure 5.9(e)

(f)

R1 = 30 Ω

R2 = 70 ΩI1 = 45 mA
IN"

a

b

Figure 5.9(f)
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● Determine IN:

IN ¼ IN
0 � IN

00 ¼ 200 mA � 45 mA ¼ 155 mA

4. Plot Norton’s equivalent circuit. Connect the right side of the a and b terminals
of the current source (Figure 5.9(a)) to the a and b terminals of Norton’s
equivalent circuit, as shown in the circuits of Figure 5.9(g). Determine the
current IL.

IL ¼ ðIN þ I2Þ RN

RL þ RN
I1 ¼ IT

R2

R1 þ R2

¼ ð155 þ 140Þ mA
21 W

ð42 þ 21Þ W � 98:33 mA

5.3 Maximum power transfer

5.3.1 Maximum power transfer theorem
Transfer the maximum power from a source to a load

● Practical circuits are usually designed to provide power to the load.
● When working in electrical or electronic engineering fields, you are sometimes

asked to design a circuit that will transfer the maximum power from a given
source to a load.

● The maximum power transfer theorem can be used to solve this kind of
problem.

Maximum power transfer theorem

● The maximum power transfer theorem states that when the load resistance is
equal to the source’s internal resistance, the maximum power will be trans-
ferred to the load.

● From the last section, we have learned that any linear two-terminal network
with power supplies can be equally substituted by Thevenin’s or Norton’s
equivalent circuits.

(g)

   IN  = 155 mA I2 = 140 mARN = 21 Ω
RL = 42 Ω RL = 42 Ω

IL

RN = 21 ΩIN + I2

IL

a

b

  
  

a

b
   

Figure 5.9(g)
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● The maximum power transfer theorem implies that when the load resistance
(RL) of a circuit is equal to the internal resistance (RS) of the source or the
equivalent resistance of Thevenin’s or Norton’s equivalent circuits (RTH or
RN), maximum power will be dissipated in the load.

● The maximum power transfer theorem is illustrated in the circuits of
Figure 5.10.

5.3.2 Applications of maximum power transfer
Applications of the maximum power transfer theorem

● The maximum power transfer theorem is used very often in radios, stereos,
TV, etc.

● If the load component is a speaker and the circuit that drives the speaker is a
power amplifier, when the resistance of the speaker RL is equal to the internal
resistance RS of the amplifier, the amplifier can transfer the maximum power
to the speaker, i.e., the maximum volume can be delivered by the speaker.

● When the resistance of a TV receiver is equal to the internal resistance RS of
the antenna, the maximum signal from the antenna can be received.

Calculate the maximum load power

● Using the equivalent circuit in Figure 5.10(d) to calculate the power consumed
by the load resistor RL gives

PL ¼ IL
2RL ¼ VS

RS þ RL

� �2

RL P ¼ I2R; I ¼ V

R
(5.1)

a

b
a

b

a

b

RL

IN
RN

RTH

RL = RN

RL = RTH

RL = RS

IL

RL

Rs

VS

RL

RL

VTH
a

b

(a)

(b)

(c)

(d)

Figure 5.10 The maximum power transfer
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● When RL ¼ RS, the maximum power that can be transferred to the load is

PL ¼ VS
2

ð2RSÞ2 RS ¼ VS
2

4RS

The maximum load power PL ¼ VS
2

4RS

If VS ¼ 10 V, RS ¼ 30 W, and RL ¼ 30 W

Then PL ¼ VS
2

4RS
¼ ð10 VÞ2

4ð30 WÞ � 0:833 W ¼ 833 mW

Summary of the theorem

The maximum power
transfer theorem

When the load resistance is equal to the internal resistance of
the source (RL ¼ RS); or when the load resistance is equal
to the Thevenin’s/Norton’s equivalent resistance of the
network (RL ¼ RTH ¼ RN), the maximum power can be
transferred to the load.

5.3.3 Proof of maximum power transfer theorem
An experiment circuit

● The maximum power transfer theorem can be proved by using an experiment
circuit as shown in Figure 5.11.

● When the variable resistor RL is adjusted, it will change the value of the load
resistor. Replacing the load resistance RL with different values in (5.1) gives
different load power PL, as shown in Table 5.1.

● When RL ¼ 10 W:

PL ¼ I2RL ¼ VS

RS þ RL

� �2

RL ¼ 10 V
30 Wþ 10 W

� �2

ð10 WÞ � 0:625 W

RS = 30 Ω

RLVS = 10 V

a

b

Figure 5.11 The experiment circuit
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● When RL ¼ 20 W:

PL ¼ I2RL ¼ VS

RS þ RL

� �2

RL ¼ 10 V
30 Wþ 20 W

� �2

ð20 WÞ � 0:8W

● The RL and PL curves can be plotted from Table 5.1 as shown in Figure 5.12.

Table 5.1 and Figure 5.12 show that only when RL ¼ RS (30 W), the power for the resistor RL

reaches the maximum point A (0.833 W).

5.4 Millman’s and substitution theorems

5.4.1 Millman’s theorem
Introduction to Millman’s theorem

● Millman’s theorem is named after the Russian Electrical engineering professor
Jacob Millman (1911–1991) who proved this theorem. A similar method,
known as Tank’s method, had already been used before Millman’s proof.

Table 5.1 The load power

RL (W) PL (W)

10 0.625
20 0.800
30 0.833
40 0.816
50 0.781

PL (W)

10 20 30 40 50
RL (Ω)

0.2

0.4

0.6

0.8

1

0

A
RL = RS

Figure 5.12 RL–PL curve
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● The method using series—parallel power sources was stated in Chapter 4.
However, the series—parallel method can only be used in power sources that
have the same polarities and values.

● Millman’s theorem in this chapter can be used to analyze circuits of parallel
voltage sources that have different polarities and values. This can be shown in
the circuit of Figure 5.13.

Millman’s theorem

● Millman’s theorem states that for a circuit of parallel branches, with each
branch consisting of a resistor or a voltage source/current source, this circuit
can be replaced by a single voltage source with voltage Vm in series with a
resistor Rm as shown in Figure 5.13.

● Millman’s Theorem, therefore, can determine the voltage across the parallel
branches of a circuit.

● Calculating Vm and Rm:

Rm ¼ R1 //R2 // . . . //Rn

Vm ¼ RmIm ¼ Rm
E1

R1
þ E2

R2
þ . . .þ En

Rn

� �
V ¼ IR; I ¼ V

R

Note:

– Vm is the algebraic sum for all the individual terms in the equation. It will be positive if En

and Vm have the same polarities, otherwise it will be negative.
– The letter m in Vm and Rm means Millman.

R1 R2 Rn Rm

VmEn
E1 E2

a

b

...

a

b

Figure 5.13 Millman’s theorem
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5.4.2 Millman’s theorem example

Example 5.8: Determine the load voltage VL in the circuit of Figure 5.14 using
Millman’s theorem.

Solution:

●
Rm ¼ R1 //R2 //R3 //R4

¼ ð100 //100 //100 //100Þ W
¼ 25 W

● Vm ¼ RmIm ¼ Rm
E1

R1
þ E2

R2
� E3

R3
� E4

R4

� �

E3 and V4 have different polarities with Vm:

¼ ð25 WÞ 40 V
100 W

þ 30 V
100 W

� 20 V
100 W

� 10 V
100 W

� �

¼ 10 V

● VL ¼ Vm
RL

RL þ Rm
V2 ¼ VT

R2

R1 þ R2

¼ ð10 VÞ 30 W
ð30 þ 25Þ W

� 5:455 V

Millman’s
theorem

When several voltage sources or branches consisting of a resistor are in
parallel, they can be replaced by a single voltage source.

Vm ¼ RmIm ¼ Rm
E1

R1
þ E2

R2
þ . . .þ En

Rn

� �
; Rm ¼ R1 //R2 // . . . //Rn

Vm will be positive if En and Vm have the same polarities, otherwise it will be
negative.

E1 = 40 V E2 = 30 V E3 = 20 V E4 = 10 V

R1 = 100 Ω R2 = 100 Ω R3 = 100 Ω R4 = 100 Ω
RL = 30 Ω

Rm = 25 Ω

RL = 30 Ω VL
Vm = 10 V

a

b

a

b

Figure 5.14 Circuit for Example 5.8
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5.4.3 Substitution theorem
Substitution theorem:

Substitution
theorem

A branch in a network that consists of any component can be replaced
by an equivalent branch that consists of any combination of
components, as long as the currents and voltages on that branch do
not change after the substitution.

Illustration of the substitution theorem

● The substitution theorem can be illustrated in the circuits of Figures 5.15
and 5.16.

● The current and voltage of branch a–b in the circuit of Figure 5.15 can be
determined as follows:
– The voltage across branch a–b:

V2 ¼ E
R2

R1 þ R2
¼ 20 V

6 kW
ð2 þ 6Þ kW

¼ 15 V V2 ¼ VT
R2

R1 þ R2

– The current in the branch a–b: I ¼ E

R1 þ R2
¼ 20 V

ð2 þ 6Þ kW
¼ 2:5 mA

I¼ E

R
● According to the definition of the substitution theorem, any branch in the cir-

cuit of Figure 5.16 can replace the a–b branch in the circuit of Figure 5.15,
since their voltages and currents are the same as the voltages and currents in
the branch a–b in the circuit of Figure 5.15.

a

b

E = 20 V

R1 = 2 kΩ

R2 = 6 kΩ V2 = 15 V

I = 2.5 mA

Figure 5.15 Circuit 1 of the substitution theorem

a

R = 6 kΩ

R = 2 kΩ
I = 2.5 mA

15 V

+

–

I = 2.5 mA

I = 2.5 mA

I = 2.5 mA

E = 15 V

a a

+

–

15 V
5 V

a

E = 10V

+

–

Figure 5.16 Circuit 2 of the substitution theorem
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5.4.4 Substitution theorem example

Example 5.9: Use a current source with a 30 W internal resistor to replace the a–b
branch in the circuit of Figure 5.17(a).

Solution:

● Figure 5.17(b) shows the resultant circuit after the current source with a 30 W
internal resistor replaced the a–b branch in the circuit of Figure 5.17(a).

● Determine the voltage and current in the a–b branch of the circuit in
Figure 5.17(a).

Vab ¼ E
R2 //R3

R1 þ R2 //R3
¼ 2:5 V

5 � 7:5
5 þ 7:5

W

2 þ 5 � 7:5
5 þ 7:5

� �
W

¼ 1:5 V V2 ¼ VT
R2

R1 þ R2

I ¼ Vab

R3
¼ 1:5 V

7:5 W
¼ 0:2 A ¼ 200 mA I ¼ V

R

R1 = 2 Ω
R2 = 5 Ω

R3 = 7.5 Ω
E = 2.5 V

a

I

b
(a)

Figure 5.17(a) Circuit for Example 5.9

(b)

R1 = 2 Ω
R2 = 5 Ω R3' = 30 Ω

E = 2.5 V

I'

a

b

Figure 5.17(b)
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● Determine the currents in the substituted branch and the current source branch
using the circuit in Figure 5.17(c).

I3
0 ¼ Vab

R3
0 ¼

1:5 V
30 W

¼ 0:05 A ¼ 50 mA I ¼ V

R

● To maintain the terminal voltage Vab ¼ 1.5V in the original branch, the current
I3

0 in the R3
0 branch should be 50 mA. Using KCL, we can get the current I 0 in

the current source branch:

I 0 ¼ I � I3
0 ¼ 200 mA � 50 mA ¼ 150 mA SI ¼ 0

Summary

Basic concepts

● Network: a complicated circuit.
● Linear circuit: a circuit that includes the linear components (such as resistors).
● The linear two-terminal network with the sources: It is a linear complex circuit

that has power sources and two terminals.
● The pre-requirement of applying some of the network theorems is that the

analyzed network must be a linear circuit.

Superposition theorem

● Theorem: The unknown voltages or currents in any linear network are the sum
of the voltages or currents of the individual contributions from each single
power supply, by setting the other inactive sources to zero.

● Steps to apply the superposition theorem
1. Turn off all power sources except one, i.e., replace the voltage source with

the short circuit, and replace the current source with an open circuit.
Redraw the original circuit with a single source.

(c)

a

b

I = 200 mA

Vab = 1.5 V
 I' = 50 mA

I3' = 50 mA

R3' = 30 Ω

+

–

Figure 5.17(c)
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2. Analyze and calculate this circuit by using the single source series—
parallel analysis method, and repeat steps 1 and 2 for the other power
sources in the circuit.

3. Determine the total contribution by calculating the algebraic sum of all
contributions due to single sources.

The result should be positive when the reference polarity of the unknown in the
single-source circuit is the same as the reference polarity of the unknown in the original
circuit; otherwise it should be negative.

Thevenin’s and Norton’s theorems

● Theorems: Any linear two-terminal network with power supplies can be
replaced by a simple equivalent circuit that has a single power source and a
single resistor.
– Thevenin’s theorem: The equivalent circuit is a voltage source (with an

equivalent resistance RTH in series with an equivalent voltage source VTH).
– Norton’s theorem: The equivalent circuit is a current source (with

an equivalent resistance RN in parallel with an equivalent current
source IN).

● Steps to apply Thevenin’s and Norton’s theorems

1. Open and remove the load branch (or any unknown current or voltage branch)
in the network, and mark the letters a and b on the two terminals.

2. Determine the equivalent resistance RTH or RN: It equals the equivalent resis-
tance, looking at it from the a and b terminals when all sources are turned off
or equal to zero in the network. That is RTH ¼ RN ¼ Rab

– A voltage source should be replaced by a short circuit.
– A current source should be replaced by an open circuit.

3.
– Determine Thevenin’s equivalent voltage VTH. It equals the open-circuit

voltage from the original linear two-terminal network of a and b, that is,
VTH ¼ Vab

– Determine Norton’s equivalent current IN. It equals the short-circuit cur-
rent from the original linear two-terminal network of a and b, that is,
IN ¼ Isc

4. Plot Thevenin’s or Norton’s equivalent circuit, and connect the load branch (or
unknown current or voltage branch) to a and b terminals of the equivalent
circuit. Then the load (or unknown) voltage or current can be determined.

Maximum power transfer theorem
When the load resistance is equal to the internal resistance of the source (RL ¼ RS);
or when the load resistance is equal to the Thevenin’s/Norton’s equivalent resis-
tance of the network (RL ¼ RTH ¼ RN), maximum power will be transferred to the
load.
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Millman’s theorem
When several voltage sources or branches consisting of a resistor are in parallel,
they can be replaced by a branch with a voltage source.

Vm ¼ RmIm ¼ Rm
E1

R1
þ E2

R2
þ . . .þ En

Rn

� �

Rm ¼ R1 //R2 // . . . //Rn

Substitution theorem
A branch in a network that consists of any component can be replaced by an
equivalent branch that consists of any combination of components, as long as the
currents and voltages on that branch do not change after the substitution.

Practice problems

5.1
1. Calculate the branch currents IR1

and IR3
in the circuit of Figure 5.18

using the superposition theorem.

2. Calculate the branch currents IR2
in the circuit of Figure 5.19 using

the superposition theorem.

R1

E1 = 20 V E2 = 8 V 

R2

R310 kΩ
8 kΩ

8 kΩ

Figure 5.18

IS = 91 mA
+

–

R1
R2

R3

E 68 V

0.68 kΩ
0.8 kΩ 0.22 kΩ

Figure 5.19
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3. Calculate the branch current I flowing though the 6 W resistor in the
circuit of Figure 5.20 using the superposition theorem.

5.2
4. Determine Thevenin’s and Norton’s equivalent circuits for the

terminals a and b of the circuit in Figure 5.21 (the viewpoints a-b
from the terminals of the load RL).

5. Calculate the current flowing through the 1 kW resistor in the circuit
of Figure 5.22 using Thevenin’s and Norton’s theorems, respectively.

2 A
6 Ω

4 Ω

4 Ω 12 Ω30 Ω

24 V

2 A

I

Figure 5.20

a

RL

R3 = 5 Ω

E2 = 20 V
R2

R1

20 Ω 5 Ω
15 Ω

+

–

b

Figure 5.21

5.6 kΩ R = 1 kΩ 7.27 mA 2.2 kΩ 8 mA

Figure 5.22
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6. Calculate the current flowing through the 5 kW resistor in the circuit
of Figure 5.23.

5.3
7. Determine the load resistance RL in the circuit of Figure 5.24(a) and

(b) when the power dissipation on RL is maximum.

8. Determine the load resistance RL in the circuit of Figure 5.25 when
the power dissipation on RL is at maximum. Then calculate the
maximum power dissipated on RL. (Hint: Determine Thevenin’s
equivalent circuit first; when RL ¼ RTH, maximum power will be
dissipated on RL.)

2 kΩ

2 kΩ

3 kΩ

4 kΩ

5 kΩ
10 V

Figure 5.23

Rs = 47 Ω

RL Rs
RL

Vs = 12 V
8.2 ΩIs = 5 mA

a

b

a

b

(a) (b)

Figure 5.24

R1 = 4 Ω

R3 = 3 Ω

R2 = 4 Ω RL

VS = 10 V

a

b

Figure 5.25
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5.4
9. Calculate the current flowing through the resistor RL in the circuit of

Figure 5.26 using Millman’s theorem.

10. Calculate the current flowing through resistor RL in the circuit of
Figure 5.27 using Millman’s theorem.

11. Plot three different equivalent circuits to replace the a–b branch of
the circuit in Figure 5.28 using the substitution theorem.

a

b
10 V

RL = 100 Ω
30 Ω 10 Ω

50 Ω

20 Ω
3 V

5 V

Figure 5.27

2 kΩ

12 V

a

b

Figure 5.28

R1 = 10 kΩ R2 = 5 kΩ
RL = 5 kΩ

V1 = 12 V V2 = 15 V

a

b

Figure 5.26
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6.1 Capacitors

6.1.1 Three basic circuit components
Three basic circuit components
● There are three important fundamental circuit elements: the resistor, capacitor,

and inductor.
● The resistor (R) has been discussed in circuit analysis in the previous chapters.

The other two elements—the capacitor (C) and inductor (L) will be introduced
in this chapter.

● The capacitor and inductor can store energy that has been absorbed from the
power supply, and release it to the circuit.
– A capacitor can store energy in the electric field.
– An inductor can store energy in the magnetic field.
– A resistor consumes or dissipates electric energy.

● A circuit containing only resistors has limited applications. Practical electric
circuits usually combine the above three basic elements and possibility along
with other devices.

Three basic
circuit components

– Resistor (R)
– Capacitor (C)
– Inductor (L)

Introduction to capacitors
● A capacitor has applications in many areas of electrical and electronic circuits,

and it extends from households to industry and the business world.
● For instance, it is used in flash lamps (for flash camera), power systems (power

supply smoothing, surge protections), electronic engineering, communications,
computers, etc.

● There are many different types of capacitors, but no matter how differently
their shapes and sizes, they all have the same basic construction.

Capacitor (C)
An energy storage element that has two parallel conductive metal plates

separated by an isolating material (the dielectric).

6.1.2 Capacitors
The construction of a capacitor
● A capacitor has two parallel conductive metal plates separated by an isolating

material (the dielectric).
● The dielectric can be of insulating material such as paper, vacuum, air, glass,

plastic film, oil, mica, and ceramics. The basic construction of a capacitor is
shown in Figure 6.1.
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Capacitor schematic symbols
● A capacitor can be represented by a capacitor schematic symbol as its circuit

model.
● Similar to resistors, there are two basic types of capacitors, variable and fixed,

and their schematic symbols are shown in Figure 6.2.

Fixed and variable capacitors

● A variable capacitor is a capacitor that possesses a value that may be changed
manually or automatically.

● A fixed capacitor is a capacitor that possesses a fixed value and cannot be adjusted.
– For a fixed polarized capacitor, connect its positive lead (+) to the higher

voltage point in the circuit, and negative lead (–) to the lower voltage point.
– For a non-polarized capacitor, it does not matter which lead connects

to where.

Electrolytic capacitors are usually polarized, and non-electrolytic capacitors are non-polarized.
Electrolytic capacitors can have higher working voltages and store more charges than non-electrolytic
capacitors.

6.1.3 Charging a capacitor
Initial condition (VC ¼ 0)
● A purely capacitive circuit with an uncharged capacitor (VC ¼ 0), a three-

position switch, and a DC (direct current) voltage source (E) is shown in
Figure 6.3(a).

Dielectric

Plate
Plate

Figure 6.1 The basic construction of a capacitor

+

–

+

–

Fixed: non-polarized Fixed: polarized Variable

Figure 6.2 Symbols of capacitor
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● With the switch at position 0, the circuit is open, and the potential difference
between the two metal plates of the capacitor is zero (VC ¼ 0).

Two plates of the capacitor have the same size and are made by the same conducting material, so
they should have the same number of charges at the initial condition.

Charging a capacitor
● Once the three-position switch is turned on to position 1 as shown in Figure 6.3(b),

the DC voltage source is connected to the capacitor, current I will flow in the
circuit.

From the rule ‘‘opposites attract and likes repel,’’ we know that the positive pole of the
voltage source will attract electrons from the positive plate of the capacitor, and the negative
pole of the voltage source will attract positive charges from the negative plate of the capa-
citor; this causes current I to flow in the circuit.

● Plate A loses electrons and shows positive; plate B loses positive charges and
thus shows negative. Thus, the electric field is built up between the two metal
plates of the capacitor, and the potential difference (VC) appears on the capa-
citor with positive (+) on plate A and negative (–) on plate B, as shown in
Figure 6.3(b).

● Once voltage across the capacitor VC has reached the source voltage E, i.e.,
VC ¼ E, there is no more potential difference between the source and capacitor,
the charging current ceases to flow (I ¼ 0), and the process of charging the
capacitor is completed. This is the process of charging a capacitor.

Charging a
capacitor

– Once the three-position switch is turned on to position 1, current I
will flow in the circuit.

– Plate A loses electrons and shows positive; plate B loses positive
charges and thus shows negative. VC appears on the capacitor.

– When VC ¼ E, I ¼ 0, the process of charging the capacitor is
completed.

1

2

1

+ + + + +

– – – – – –
2

A

B

0
E C E IVC = 0 VC

(a) (b) 

Figure 6.3 Charging a capacitor
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6.1.4 How does a capacitor store energy?
Energy storage element
● When the switch is turned off to position 0 in the circuit shown in Figure 6.3(a),

the capacitor and power supply will be disconnected.
● If the voltage across the capacitor VC is measured at this time using a multi-

meter (voltmeter function), VC should still be the same with the source voltage
(VC ¼ E) even without a power supply connected to it.

● This is why a capacitor is called an energy storage element, as it can store
charges absorbed from the power supply and store electric energy obtained
from charging.

● Once a capacitor has transferred some charges through charging, an electric
field is built up between the two plates of the capacitor, and it can maintain the
potential difference across it.

Capacitor will keep its charged voltage for a long time
● The isolating material (dielectric) between the two metal plates isolates the

charges between the two plates. Charges will not be able to cross the insulating
material from one plate to another.

● So, the energy storage element capacitor will keep its charged voltage VC for a
long time (duration will depend on the quality and type of the capacitor).

● Since the insulating material will not be perfect and a small leakage current
may flow through the dielectric, this may eventually slowly dissipate the
charges.

Capacitor stores
energy

– When the switch is turned off, VC ¼ E (after charging) even
without a power supply connected to it.

– Charges will not be able to cross the insulating material from
one plate to another.

– Capacitor will keep its charged voltage for a long time.
Insulating material will not be perfect and a small leakage
current may flow through the dielectric.

6.1.5 Discharging a capacitor
Discharging a capacitor
● When the switch is closed to position 2 as shown in the circuit of Figure 6.4,

the capacitor and wires in the circuit form a closed path.
● At this time, the capacitor is equivalent to a voltage source, as voltage across

the capacitor VC will cause the current to flow in the circuit.
● Since there is no resistor in this circuit, it is a short circuit, and a high current

causes the capacitor to release its charges or stored energy in a short time. This
is known as discharging a capacitor.
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● After the capacitor has released all its stored energy, the voltage across the
capacitor will be zero (VC ¼ 0), the current in the circuit ceases to flow (I ¼ 0)
and the discharge process is completed.

Release energy
● The capacitor cannot release energy that is more than it has absorbed and

stored, therefore it is a passive component. A passive component is a compo-
nent that absorbs (but does not produce) energy.

● The concept of a capacitor may be analogous to a small reservoir. It acts as a
reservoir that stores and releases water. The process of charging a capacitor
from the power supply is similar to a reservoir storing water. The process of
discharging a capacitor is similar to a reservoir releasing water.

● There is an important characteristic that implies in the charge and discharge of
a capacitor. That is, the voltage on the capacitor cannot change instantly; it will
always take time, i.e., gradually increase (charging) or decrease (discharge).

Charging / discharging
a capacitor

A capacitor is an electric element that can store and release
charges that it absorbed from the power supply.

– Charging: the process of storing energy.
– Discharging: the process of releasing energy.

6.1.6 Capacitance
The relationship between Q and V
● Once the source voltage is applied to two leads of a capacitor, the capacitor starts

to store energy or charges. The charges (Q) that are stored are proportional to the
voltage (V) across it. This can be expressed by the following formula:

Q ¼ CV or C ¼ Q

V

● The higher the voltage, the more charges a capacitor can store.

This is analogous to a pump pumping water to a reservoir. The higher the pressure, the more water
will be pumped into the reservoir.

1

2

E E I VCC

1

+ + +

– – –

2
A

B

Figure 6.4 Discharging a capacitor
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Q–V characteristic of a capacitor
● The voltage and charge (V–Q) characteristic of a capacitor is shown in Figure 6.5,

demonstrating that the capacitor voltage is proportional to the amount of charges
a capacitor can store.

Capacitance
● C is the capacitance, which is the value of the capacitor and describes the

amount of charges stored in the capacitor.
● Capacitor is a component and capacitance is the value of a capacitor.

Just as a resistor is a component and resistance is the value of a resistor,

● Capacitor is symbolized by C while capacitance is C.
Resistor is symbolized by R while resistance is R.

Capacitance (C)

C, the value of the capacitor, is directly proportional to its stored
charges, and inversely proportional to the voltage (V ) across it.

Capacitance ¼ Charge
Voltage

C ¼ Q

V

6.1.7 Calculating capacitance
Calculating capacitance

● Capacitance ¼ Charge
Voltage

or C ¼ Q

V

● Units: C = 
Q 

VFarad (F) Volt (V) 

Coulomb (C)  

● A capacitor can store 1 C charge when 1 V of voltage is applied to it.

That is, 1 F ¼ 1 C
1 V

Q

V

Figure 6.5 Q–V characteristic of a capacitor
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Units of capacitance
● Microfarad (mF) or picofarad (pF) is a more commonly used unit for capacitors.

Farad is a very large unit of measurement for most practical capacitors.

● Recall: 1 mF ¼ 10�6 F and
1 pF ¼ 10�12 F

Note: m is a Greek letter called ‘‘mu’’ (see ‘‘Appendix A’’ for a list of Greek letters).

Example 6.1: If a 50 mC charge is stored on the plates of a capacitor, determine the
voltage across the capacitor if the capacitance of the capacitor is 1,000 pF.

Solution:

Q ¼ 50 mC; C ¼ 1;000 pF; V ¼ ?

V ¼ Q

C
¼ 50 mC

1;000 pF
¼ 50 � 10�6 C

1;000 � 10�12 F
¼ 0:05 � 106 V

¼ 50 � 103 V ¼ 50 kV

6.1.8 Factors affecting capacitance
Three factors affecting capacitance
There are three basic factors affecting the capacitance of a capacitor, and they are
determined by the construction of a capacitor as shown below:

● The area of plates (A): A is directly proportional to the charge Q; the larger the
plate area, the more electric charges that can be stored.

● The distance between the two plates (d ): The shorter the distance between two
plates, the stronger the produced electric field that will increase the ability to
store charges. Therefore, the distance (d ) between the two plates is inversely
proportional to the capacitance (C).

● The dielectric constant (k): Different insulating materials (dielectrics) will
have a different impact on the capacitance. The dielectric constant (k) is
directly proportional to the capacitance (C).

The factors affecting the capacitance of a capacitor are illustrated in Figure 6.6.
Dielectric constants for some commonly used capacitor materials are listed in
Table 6.1.

A

d k

Figure 6.6 Factors affecting capacitance

178 Understandable electric circuits: key concepts, 2nd edition



Factors affecting capacitance

– The area of plates (A)
– The distance between the two plates (d )
– The dielectric constant (k)

C ¼ 8:85 � 10�12 kA

d

Calculating capacitance

● Capacitance ¼ 8:85 � 10�12ðDielectric constantÞ � ðPlate areaÞ
Distance between the plates

or C ¼ 8:85 � 10�12 kA

d

● Units:
C = 8.85 ×10–12 

Farad (F) 
Meter (m) 

Square meter (m2)

No unit  

kA
d

Example 6.2: Determine the capacitance if the area of plates for a capacitor is
0.004 m2, the distance between the plates is 0.006 m, and the dielectric for this
capacitor is mica.

Solution:

A ¼ 0:004 m2; d ¼ 0:006 m; and k ¼ 5 ðTable 6:1Þ

C ¼ 8:85 � 10�12 kA

d

¼ 8:85 � 10�12 5 � 0:004 m2

0:006 m

¼ 29:5 pF

Table 6.1 Dielectric constants of some insulating
materials

Material Dielectric constant

Vacuum 1
Air 1.0006
Paper (dry) 2.5
Glass (photographic) 7.5
Mica 5
Oil 4
Polystyrene 2.6
Teflon 2.1
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6.1.9 Leakage current and breakdown voltage
Leakage current
● The dielectric between two plates of the capacitor is insulating material, and

practically no insulating material is perfect (i.e., 100% of the insulation).
● Once voltage is applied across the capacitor, there may be a very small current

through the dielectric, and this is called the leakage current in the capacitor.
● Although the leakage current is very small, it is always there. That is why the

charges or the energy stored on the capacitor plates will eventually leak off.
● The leakage current is so small that it can be ignored for the application.

(Electrolytic capacitors have higher leakage current).

Leakage current A very small current through the dielectric of a capacitor.

Breakdown voltage
● A capacitor charging acts as a pump pumping water into a reservoir, or a water tank.

– The higher the pressure, the more water will be pumped into the tank.
– If the tank is full and still continues to increase the pressure, the tank may

break down or become damaged by such high pressure.
● This is similar to a capacitor. If the voltage across a capacitor is too high and

exceeds the capacitor’s working or breakdown voltage, the capacitor’s
dielectric will break down, causing current to flow through it.

● As a result, this may explode or permanently damage the capacitor.
● When using a capacitor, pay attention to the maximum working voltage, which

is the maximum voltage a capacitor can have. The applied voltage of the
capacitor can never exceed the capacitor’s breakdown voltage.

Breakdown
voltage

The voltage that causes a capacitor’s dielectric to become electrically
conductive. It may explode or permanently damage the capacitor.

6.1.10 Relationship between the v and i of a capacitor
Instantaneous quantity
● A quantity that varies with time is called instantaneous quantity (such as a capa-

citor that takes time to charge/discharge), which is the quantity at a specific time.
● Usually the lowercase letters symbolize instantaneous quantities, and the

uppercase letters symbolize the constants or average quantities.
● The equation Q ¼ CV in terms of instantaneous quantity is q ¼ Cv.

Note: if you have not learned calculus, just keep in mind that i ¼ C
Dv

Dt
or ic ¼ C

dvc

dt
is Ohm’s law

for a capacitor, and skip the following mathematic derivation process, where Dv and Dt or dv and
dt are very small changes in voltage and time.
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– Differentiating the equation q ¼ Cv yields:
dq

dt
¼ C

dv

dt

– Recall that current is the rate of movement of charges, and has the i ¼ dq

dt
notation in

calculus.

– Substitute i ¼ dq

dt
into the equation of

dq

dt
¼ C

dv

dt
yields:

i ¼ C
dv

dt
or i ¼ C

Dv

Dt

Relationship between the current and voltage
● The relationship of voltage and current for a capacitor shows that when the

applied voltage at two leads of the capacitor changes, the charges (q) stored on
the plates of the capacitor will also change. This will cause current to flow in
the capacitor circuit.

● Current and the rate of change of voltage are directly proportional to each
other.

● The reference polarities of capacitor voltage and current should be mutually
related. That is, the reference polarities of voltage and current of a capacitor
should be consistent, as shown in Figure 6.7(a).

● The relationship between voltage and current of a capacitor can be expressed
by Figure 6.7(b).

6.1.11 Ohm’s law for a capacitor
Ohm’s law for a capacitor
● The relationship between the current and voltage for a resistor is Ohm’s law for

a resistor.
● The relationship between the current and voltage for a capacitor is Ohm’s law

for a capacitor.

● i ¼ C
dv

dt
or i ¼ C

Dv

Dt
is Ohm’s law for a capacitor.

+
C V

Ci i

–

dt
dv0

(a) (b)

Figure 6.7 Relationship between v and i of a capacitor
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Ohm’s law for a
capacitor

The current of a capacitor ic is directly proportional to the ratio of

capacitor voltage
dvc

dt
or

Dvc

Dt

� �
and capacitance C.

ic ¼ C
dvC

dt
or i ¼ C

DvC

Dt

where dvc and dt or Dvc, and Dt are very small changes in voltage and time.

DC blocking
● The relationship of voltage and current in a capacitive circuit shows that:

– The faster the voltage changes with time, the greater the amount of
capacitive current flows through the circuit.

– The slower the voltage changes with time, the smaller the amount of
current.

– If voltage does not change with time, the current will be zero. Zero
current means that the capacitor acts like an open circuit for DC voltage
at this time.

● Voltage that does not change with time is DC (direct current) voltage, meaning
that current is zero when DC voltage is applied to a capacitor. Therefore, the
capacitor may play an important role for blocking the DC current. (This is a very
important characteristic of a capacitor.)

DC blocking
Current through a capacitor is zero when DC voltage applied to it

(open-circuit equivalent). A capacitor can block DC current.

Note:

– Although there is a DC voltage source applied to the capacitive circuit in Figures 6.3 and 6.4,
the capacitor charging/discharging happened at the moment when the switch turned to dif-
ferent locations, i.e., when the voltage across the capacitor changes within a moment.

– When the capacitor charging/discharging has finished, the capacitor is equivalent to an open
circuit for that circuit.

6.1.12 Energy stored by a capacitor
Energy stored by a capacitor
● A capacitor is an energy storage element. It can store energy that it absorbed

from charging and maintain voltage across it.
● Energy stored by a capacitor in the electric field can be derived as follows.

– The instantaneous electric power of a capacitor is given by p ¼ vi. Substituting this

into the capacitor’s current i ¼ C
dv

dt
yields p ¼ Cv

dv

dt
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– Since the relationship between power and work is p ¼ w

t
(energy is the capacity to do

work), and, instantaneous power for this expression is p ¼ dw

dt
, substituting it into

p ¼ Cv
dv

dt
yields

dw

dt
¼ Cv

dv

dt

– Integrating the above expression:
ðt

0

dw

dt
dt ¼ C

ðv

0
v
dv

dt
dt gives

W ¼ 1
2
Cv2

Note: If you have not learned calculus, just keep in mind that W ¼ 1
2

Cv2, and skip the
above mathematic derivation process.

Energy stored by a capacitor
Capacitor energy ¼ ½ðCapacitanceÞðVoltageÞ2

W ¼ 1
2
Cv2

● The expression for energy stored by a capacitor shows that the capacitor’s energy
depends on the values of the capacitor (C) and voltage across the capacitor (v).

Calculating capacitor energy

● Capacitor energy ¼ 1
2
ðCapacitanceÞðVoltageÞ2 or W ¼ 1

2
Cv2

● Units: Joule (J) 

1
2W = Cv2

Farad (F) 

Volt (V)  

Example 6.3: A 15 V voltage is applied to a 2.2 mF capacitor. Determine the
energy this capacitor has stored.

Solution: W ¼ 1
2 Cv2 ¼ 1

2ð2:2 mFÞð15 VÞ2 ¼ 247:5 mJ

6.2 Capacitors in series and parallel

6.2.1 Total or equivalent capacitance
Total or equivalent capacitance Ceq

● Same as resistors, capacitors may also be connected in series or parallel to
obtain a suitable resultant value that may be either higher or lower than a single
capacitor value.

● The total or equivalent capacitance Ceq will decrease for a series capacitive
circuit and it will increase for a parallel capacitive circuit.

● The total or equivalent capacitance has the opposite form with the total or
equivalent resistance Req.
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Derive the series equivalent (total) capacitance Ceq

● A circuit of n capacitors is connected in series as shown in Figure 6.8:

● Applying KVL to the above circuit gives E ¼ V1 þ V2 þ � � � þ Vn
P

E ¼ P
V

● Since V ¼ Q

C
, substituting it into the above equation yields:

Qeq

Ceq
¼ Q1

C1
þ Q2

C2
þ � � � þ Qn

Cn

● Where E ¼ Qeq

Ceq
, Qeq is the equivalent (or total) charges and Ceq is the equivalent (or total)

capacitance for a series capacitive circuit, respectively.

● Since only one current flows in a series circuit, each capacitor will store the same amount of
charges, i.e., Qeq ¼ Q1 ¼ Q2 ¼ � � � ¼ Qn ¼ Q

● Therefore
Q

Ceq
¼ Q

C1
þ Q

C2
þ � � � þ Q

Cn

● Dividing by Q on both sides of the above equation gives

1
Ceq

¼ 1
C1

þ 1
C2

þ � � � þ 1
Cn

or
Cn ¼ 1

1

C1
þ 1

C1
þ � � � 1

Cn

● This is the equation for calculating the series equivalent (total) capacitance. This formula has
the same form with the formula for calculating equivalent parallel resistance

1
Req

¼ 1
R1

þ 1
R2

þ � � � þ 1
Rn

� �
.

● When there are two capacitors in series, it also has the same form with the formula for

calculating two resistors in parallel, i.e., Ceq ¼ C1C2

C1 þ C2
Req ¼ R1R2

R1 þ R2

� �
.

E

Q1 C1 V1

V2

Vn

C2

Cn

Q2

Qn

M

Figure 6.8 n capacitors in series
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6.2.2 Capacitors in series
Equivalent (total) series capacitance

Equivalent (total) series
capacitance Ceq

– n capacitors in series: Ceq ¼ 1
1

C1
þ 1

C1
þ � � � 1

Cn

– Two capacitors in series: Ceq ¼ C1C2

C1 þ C2

Example 6.4: Determine the charges Q stored by each capacitor in the circuit of
Figure 6.9.

Solution: Since Q ¼ CV ; or Q ¼ Ceq E

– Solve for Ceq first,

Ceq ¼ 1
1

C1
þ 1

C2
þ 1

C3
þ 1

C4

¼ 1
1

100 mF
þ 1

100 mF
þ 1

100 mF
þ 1

100 mF

¼ 25 mF

– Therefore Q ¼ CeqE ¼ ð25 mFÞð25 VÞ ¼ 625 mC

Characteristics of the series equivalent capacitance
● Example 6.4 shows that when capacitors are connected in series, the total or

equivalent capacitance Ceq (25 mF) is less than any one of the individual
capacitances (100 mF).

● The physical characteristic of the series equivalent capacitance is that the
single series equivalent capacitance Ceq has the total dielectric (or total dis-
tance between the plates) of all the individual capacitors.

E = 25 V

C1

C2

C3

C4

100 μF

100 μF

100 μF

100 μF

Figure 6.9 Figure for Example 6.4
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● The formula for factors affecting the capacitance C ¼ 8:85 � 10�12 kA

d

� �

shows that if the distance between the plates of a capacitor (d ) increases, the
capacitance (C) will decrease. This is shown in Figure 6.10.

6.2.3 Capacitors in parallel
Capacitors in parallel
● A circuit of n capacitors connected in parallel is shown in Figure 6.11.
● Equivalent (total) parallel capacitance Ceq

Equivalent (total) parallel
capacitance Ceq

Ceq ¼ C1 þ C2 þ � � � þ Cn

Derive the equivalent (total) parallel capacitance Ceq

● The charge stored on the individual capacitor in this circuit is

Q1 ¼ C1V ; Q2 ¼ C2V ; . . . ; Qn ¼ CnV ðwhere V ¼ EÞ
● The total charge Qeq in this circuit should be the sum of all stored charges on

the individual capacitor, i.e.,

Qeq ¼ Q1 þ Q2 þ � � � þ Qn

therefore, CeqV ¼ C1V þ C2V þ � � � þ CnV

● Dividing both sides by V on the above equation yields the equation for cal-
culating the parallel equivalent (total) capacitance:

Ceq ¼ C1 þ C2 þ � � � þ Cn

As you may have noticed, this equation has the same form with the equation for calculating series
resistances ðReq ¼ R1 þ R2 þ � � � þ RnÞ.

Ceq

Figure 6.10 The physical characteristic of series Ceq

E C1 C2 CnL
Q1 Q2 Qn

Figure 6.11 n capacitors in parallel
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Note: Equations for calculating capacitance are exactly opposite to the equations
for calculating resistance.

● Capacitors in series result in parallel form as resistances. Req ¼ R1R2

R1 þ R2

● Capacitors in parallel result in series form as resistances.
Req ¼ R1 þ R2 þ � � � þ Rn

Example 6.5: Determine the total charge in all the capacitors in the circuit of
Figure 6.12.

Solution:

Since Q ¼ CV ; i:e:; Qeq ¼ Ceq E

and Ceq ¼ C1 þ C2 þ � � � þ Cn

¼ 100 mF þ 10 mF þ 20 mF þ 320 mF ¼ 450 mF

Therefore; Qeq ¼ CeqE ¼ ð450 mFÞð60 VÞ ¼ 27;000 mC

From Example 6.5, we can see that when capacitors are connected in parallel, the total or
equivalent capacitance Ceq (450 mF) is greater than any one of the individual capacitances
(C1 ¼ 100 mF, C2 ¼ 10 mF, C3 ¼ 20 mF, and C4 ¼ 320 mF).

6.2.4 Physical properties of parallel Ceq

The physical characteristic of parallel Ceq

● The physical characteristic of the equation for calculating the parallel
equivalent capacitance is that a single parallel equivalent capacitor Ceq has the
total area of plates of the individual capacitors.

● If the area of plates (A) of a capacitor increases, the capacitance will increase

C ¼ 8:85 � 10�12 kA

d

� �
. This is shown in Figure 6.13.

E = 60 V C1 = 100 μF C2 = 10 μF C3 = 20 μF C4 = 320 μF

Figure 6.12 Figure for Example 6.5

Ceq

Figure 6.13 The physical characteristic of parallel Ceq
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6.2.5 Capacitors in series–parallel
Series–parallel capacitor circuits
● Similar to resistors, capacitors may also be connected in various combinations.
● When serial and parallel capacitors are combined together, series—parallel

capacitor circuits result and an example is shown in the following.

Example 6.6: Determine the equivalent capacitance through two terminals a and b
in the circuit of Figure 6.14.

Solution:

C4;5 ¼ C4C5

C4 þ C5
Ceq ¼ C1C2

C1 þ C2

¼ ð0:5 mFÞð2 mFÞ
0:5 mF þ 2 mF

¼ 0:4 mF

C2;3;4;5 ¼ C2 þ C3 þ C4;5 Ceq ¼ C1 þ C2 þ � � � þ Cn

¼ 2 mF þ 0:6 mF þ 0:4 mF

¼ 3 mF

Ceq ¼ C1C2;3;4;5

C1 þ C2;3;4;5
Ceq ¼ C1C2

C1 þ C2

¼ ð6 mFÞð3 mFÞ
6 mF þ 3 mF

¼ 2 mF

C1 = 6 μF

C2 = 2 μF C3 = 0.6 μF

C4 = 0.5 μF

C5 = 2 μF

b

a

Figure 6.14 Figure for Example 6.6
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6.3 Inductors

6.3.1 Electromagnetic induction
Electromagnetic field
● All stationary electrical charges are surrounded by electric fields, and the

movement of a charge will produce a magnetic field.
● When the charge changes its velocity of motion, an electromagnetic field is

generated.
● Whenever a changing current flows through a conductor, the area surrounding

the conductor will produce an electromagnetic field.
● The electromagnetic field can be visualized by inserting a current-carrying

conductor (wire) through a hole in a cardboard and sprinkling some iron filings
on it.

● As changing current flows through the conductor, the iron filings will align
themselves with the circles surrounding the conductor; these are magnetic lines
of force.

● The direction of these lines of force can be determined by the right-hand spiral
rule, as shown in Figure 6.15.

● The area shows that the magnetic characteristics are called the magnetic field,
as it is produced by the changing current-carrying conductor, and therefore, it
is also called the electromagnetic field. This is the principle of electricity
producing magnetism.

Right-hand spiral rule
● Thumb: the direction of current.
● Four fingers: The direction of magnetic lines of force or direction of the flux

(the total magnetic lines of force).

Electromagnetic
field

The surrounding area of a conductor with a changing current can
generate an electromagnetic field.

e

I

→
→

Figure 6.15 Electricity produces magnetism
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6.3.2 Faraday’s law
Magnet produces electricity
● In 1831, the British physicist and chemist Michael Faraday discovered how an

electromagnetic field can be induced by a changing magnetic flux.
● When there is a relative movement between a conductor and a magnetic field

(or a changing current through the conductor), it will induce a changing
magnetic flux F (the total number of magnetic lines of force) surrounding the
conductor, hence an electromagnetic field is generated.

Induced voltage and current
● Electromagnetic field will produce an induced voltage (vL) or electromotive

force emf (eL), and induced current (iL).
● For example, in Figure 6.16, if a magnet bar is moved back and forth in a coil

of wire (conductor), or if the coil is moved back and forth close to the magnet
and through the magnetic field, the magnetic lines of flux will be cut and
– a voltage vL across the coil will be induced (vL can be measured by using a

voltmeter).
– or, an electromotive force (eL) that has an opposite polarity with vL will be

induced.
● This will result in an induced current in the coil. This is the principle of a

magnet producing electricity.

● Faraday observed that the induced voltage (vL) is directly proportional to the

rate of change of flux
df
dt

� �
and also the number of turns (N in the coil, and is

expressed mathematically as vL ¼ N
df
dt

.

● In other words, the faster the relative movement between the conductor and
magnetic fields, or the more the turns the coil has, the higher the voltage will
be produced.

Faraday’s
law

– When there is a relative movement between a conductor and magnetic
field, the changing magnetic flux will induce an electromagnetic field
and produce an induced voltage (vL).

– vL is directly proportional to the rate of change of flux
df
dt

� �
and the

number of turns (N) in the coil, vL ¼ N
df
dt

V

Figure 6.16 Magnet produces electricity
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6.3.3 Lenz’s law
The polarity of induced effect
● In 1834, the Russian physicist Heinrich Lenz developed a companion result

with the Faraday’s law. Lenz defined the polarity of induced effect and stated
that an induced effect is always opposed to the cause producing it.

● When there is a relative movement between a conductor and a magnetic field
(or a changing current through the conductor), an induced voltage (vL) or
induced electromotive force emf (eL) and also an induced current (i) will be
produced.

● The polarity of the induced emf is always opposite to the change of the original
current.

Lenz’s law
● When the switch is turned on in the circuit of Figure 6.17, the current (cause) in

the circuit will increase, but the induced emf (effect) will try to stop it from
increasing.

● When the switch is turned off, the current i will decrease, but the polarity of
induced emf (eL) changes and will try to stop it from decreasing.

● An induced current in the circuit flows in a direction that can create a magnetic
field that will counteract the change in the original magnetic flux.

● Mathematically, Lenz’s law can be expressed as follows:

If i > 0;
di

dt
> 0; then eL ¼ �L

di

dt
or vL ¼ L

di

dt

� �

–
di

dt
is the rate of change of current.

– The minus sign for eL is to remind us that the induced emf always acts to
oppose the change in magnetic flux that generates the emf and current.

● The induced voltage (vL) and induced emf (eL) have opposite polarities (E ¼�V);
this emf is also called the counter emf.

However, the induced voltage (vL) has the same polarity with the direction of induced
current (i). This is similar to the concept of the mutually related reference polarity of voltage
and current.

E RL uLeL

+

–

–

+

i

E eL

+

uL

+

–

–

Figure 6.17 Lenz’s Law
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6.3.4 Inductors
Inductor (L)
● The resistor and the capacitor are two of the three important fundamental

passive circuit elements (components that absorb but do not produce energy).
The third element is the inductor (or coil).

● Inductors have many applications in electrical and electronic devices, includ-
ing electrical generators, transformers, radios, TVs, radars, motors, etc.

● Both capacitors and inductors are energy storage elements.
● The difference between the two is that a capacitor stores transferred energy in

the electric field, and an inductor stores transferred energy in the magnetic field.
● A basic inductor (L) is made by winding a given length of wire into a loop or

coil around a core (center of the coil).

Air-core and iron-core inductors
● Inductors may be classified as air-core inductors or iron-core inductors.

– An air-core inductor is simply a coil of wire. But this coil turns out to be a very
important electric/electronic element because of its magnetic properties.

– Iron-core provides a better path for the magnetic lines of force and a stronger
magnetic field for the iron-core inductor as compared to the air-core inductor.

● The schematic symbol for an air-core inductor looks like a coil of wire as
shown in Figure 6.18(a).

● The schematic symbol for an iron-core inductor is shown in Figure 6.18(b).
Similar to resistors and capacitors, the inductor can also be classified as fixed
and variable.

Inductor
(L)

An inductor is an energy storage element that is made by winding a given
length of wire into a loop or coil around a core.

6.3.5 Self-inductance

Lenz’s
law

– When there is a changing current through the conductor, an induced voltage
(vL) or induced emf (eL) and also an induced current (i) will be produced.

– The polarity of the induced emf (eL) is always opposite to the change of the

original current, eL ¼ �L
di

dt
or vL ¼ L

di

dt

Air-core

(a) (b)

L L L L

Variable
air-core

Iron-core Variable
iron-core

Figure 6.18 Schematic symbols for inductors
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The letter L in the equation vL ¼ L
di

dt
or eL ¼ �L

di

dt
is called inductance (or

self-inductance).

Inductance (L)
● When current flows through an inductor (coil) that is the same as a current-

carrying conductor, a magnetic field will be induced around the inductor.
● According to the principle of electromagnetic induction, Faraday’s law and

Lenz’s law, when there is a relative movement between an inductor and
magnetic field or when current changes in the inductor, the changing magnetic
flux will induce an electromagnetic field resulting in an induced voltage (vL),
or induced emf (eL), and also an induced current (i).

● The measurement of the changing current in an inductor that is able to generate
induced voltage is called inductance (or self-inductance).

Inductance vs. inductor
● The resistor, capacitor, and inductor are circuit components.
● The resistance, capacitance, and inductance are the values or capacities of

these components.
● Inductance is the capacity to store energy in the magnetic field of an inductor.
● The inductor is symbolized by L while inductance is symbolized by L, and the

unit of inductance is henry (H).

Inductance L (or self-
inductance)

– The measurement of the changing current in an inductor
that can generate induced voltage is called inductance.

– The unit of inductance is henry (H).

6.3.6 Ohm’s law for an inductor
Ohm’s law for an inductor (L)

● The equation vL ¼ L
di

dt
shows the relationship between current and voltage for

an inductor, and it is Ohm’s law for an inductor.

● The inductance (L) and the current rate of change
di

dt

� �
determine the induced

voltage (vL).

● The induced voltage vL is directly proportional to the inductance L and the

current rate of change
di

dt
. This relationship can be illustrated as in Figure 6.19.

Ohm’s law for an
inductor

An inductor’s voltage vL is directly proportional to the inductance

L and the rate of change of current
di

dt
: vL ¼ L

di

dt
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● Ohm’s law for an inductor vL ¼ L
di

dt
has a similar form as Ohm’s law for a

capacitor ic ¼ C
dvc

dt
. (These two are very important formulas that will be used in future

circuits.)

Relationship between inductor voltage and current
● The larger the inductance (L), or the greater the change of current, the higher

the induced voltage (vL) in the coil.
● When the current does not change with time (DC current), i.e.

di

dt
¼ 0, the

inductor voltage (vL) is also zero.
● Zero voltage means that an inductor acts like a short circuit for DC current.

Therefore, the inductor may play an important role for passing the DC current.
This is a very important characteristic of an inductor and it is opposite to that
of a capacitor.

Recall that a capacitor can block DC and acts like an open circuit for DC.

Passing
DC

– Voltage across an inductor is zero when a DC current flows through
it (short-circuit equivalent).

– An inductor can pass DC.

6.3.7 Factors affecting inductance
Factors affecting inductance
● There are some basic factors affecting the inductance of an inductor (iron-

core). These parameters are determined by the construction of an inductor as
shown in the following (if all other factors are equal):
– The number of turns (N ) for the coil: More turns for a coil will produce a

stronger magnetic field resulting in a higher induced voltage and
inductance.

– The length of the core (l ): A longer core will make a loosely spaced coil
and a longer distance between each turn, and therefore producing a weaker
magnetic field, resulting in a smaller inductance.

– The cross-sectional area of the core (A): A larger core area requires more
wire to construct a coil, and therefore it can produce a stronger magnetic
field resulting in a higher inductance.

+

–

i

L vL = L
VL

L

dt
di

dt
di

Figure 6.19 Characteristics of an inductor’s voltage and current
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– The permeability of the material of the core (m): A core material with
higher permeability will produce a stronger magnetic field resulting in a
higher inductance.
Permeability of the material of the core determines the ability of material to produce a
magnetic field. Different materials have different degrees of permeability.

● Factors affecting the inductance of an inductor are illustrated in Figure 6.20.

Factors effecting inductance L ¼ N2Am
l

● From the expression of the factor effecting inductance, we can see that when
the number of turns of a coil (N ) increases, or when the cross-sectional area of
the core (A) increases, or when core material with higher permeability (m) is
chosen, or when the length of core (l ) is reduced, the inductance of an inductor
(L) will increase.

Calculating inductance

● Inductance ¼ Number of turnsð Þ2 Area of the coreð Þ Permeabilityð Þ
Length of the core

or L ¼ N2Amð Þ
l

● Units: Henry (H) 

Meter (m) 

Square meter (m2)

No unit 

Turns (T) 

L = N2 Aμ
l

6.3.8 Energy stored in an inductor
Inductor—an energy storage element
● Similar to a capacitor, an inductor is also an energy storage element.
● When voltage is applied to two leads of an inductor, the current flows through

the inductor and will generate energy and this energy is then absorbed by the
inductor and stored in the magnetic field as electromagnetic field builds up.

A

l

μ

N

Figure 6.20 Factors affecting inductance
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Derive the energy stored in an inductor
The energy stored by an inductor can be derived as follows:

● The instantaneous electric power of an inductor is given by: p ¼ ivL

● Since the relationship between power and work is P ¼ W

t
(energy is the capacity to do work),

and the instantaneous power for this expression is ¼ dW

dt
.

● Substituting P ¼ dW

dt
and vL ¼ L

di

dt
into the instantaneous power expression p ¼ ivL gives

dW

dt
¼ Li

di

dt

● Integrating both sides:
ðt

0

dw

dt
dt ¼

ðt

0
Li

di

dt
dt

● Therefore, we have w ¼ L

ðt

0
idi

i:e:; w ¼ 1
2

Li2

Note: If you have not learned calculus, just remember that wL ¼ 1
2Li2, and skip the above

mathematic derivation process.

The energy stored in an inductor

● The equation w ¼ 1
2Li2 has a similar form with the energy equation of a

capacitor ðwc ¼ 1
2Cv2Þ.

● The equation for energy stored by an inductor shows that the inductor’s energy
depends on the inductance and the inductor’s current.
– When current increases, an inductor absorbs energy and stores it in the

magnetic field of the inductor.
– When current decreases, an inductor releases the stored energy to the

circuit.
● Same as a capacitor, an inductor cannot release more energy than it has stored,

so it is also called a passive element.

6.3.9 Calculating the energy stored in an inductor

Energy stored in an inductor
Energy ¼ ½ðInductanceÞðCurrentÞ2

wL ¼ 1
2
Li2
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Calculating the energy stored in an inductor

● Energy ¼ 1
2

Inductanceð Þ Currentð Þ2 or wL ¼ 1
2
Li2

● Units:
Joule (J) 

1
2wL = Li2

Ampere (A) 

Henry (H)

Example 6.7: Current in a 0.01 H inductor is iðtÞ ¼ 5e�2t A, determine the energy
stored by the inductor and induced voltage vL.

Solution:

– wL ¼ 1
2
Li2

¼ 1
2
ð0:01 HÞð5e�2t AÞ2

¼ 1
2
ð0:01 HÞð25e�4t AÞ

¼ 0:125 e�4t J

– vL ¼ L
di

dt

¼ ð0:01HÞ d
dt
ð5e�2tÞA

¼ ð0:01 HÞð�2Þð5Þe�2t A

¼ �0:1 e�2t V

Note: If you have not learned calculus, skip the vL part.

6.3.10 Winding resistor of an inductor
Winding resistance of a coil (Rw)
● When winding a given length of wire into a loop or coil around a core, an

inductor is formed. A coil or inductor always has resistance.
● There is always a certain internal resistance distributed in the wire, and the

longer the wire, the more turns of coils there are, and thus the wire will have a
significantly higher internal resistance.

● The internal resistance in the wire of an inductor is called the wounding
resistance of a coil (Rw). An inductor circuit with winding resistance is shown
in Figure 6.21.
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Winding resistance (Rw) The internal resistance in the wire of an inductor.

Example 6.8: The winding resistance for an inductor in the circuit of Figure 6.22 is
5 W. When the current approaches steady state (does not change any more), the
energy stored by the inductor is 4 J. What is the inductance of the inductor?

Solution: E ¼ 20 V; R ¼ 45 W; Rw ¼ 5 W; and WL ¼ 4 J: L ¼ ?

I ¼ E

R þ Rw
¼ 20 V

ð45 þ 5ÞW ¼ 0:4 A

From wL ¼ 1
2

Li2

Solving for L: L ¼ 2WL

I2
¼ 2ð4 JÞ

ð0:4 AÞ2 ¼ 50 H

i ¼ I, since the current approaches steady state.

6.4 Inductors in series and parallel

6.4.1 Series and parallel inductors
The equivalent inductance
● Similar to resistors and capacitors, inductors may also be connected in series or

in parallel to obtain a suitable resultant value that may be either higher or lower
than a single inductor value.

E = 20 V

R = 45 Ω

Rw = 5 Ω

I

L

Figure 6.22 Circuit for Example 6.8

Rw
L

Figure 6.21 Winding resistance
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● The equivalent (total) series or parallel inductance has the same form as the
equivalent (total) series or parallel resistance.

● The equivalent inductance (Leq) will increase if inductors are in series, and the
equivalent (total) inductance (Leq) will decrease if inductors are in parallel.

Inductors in series
● A circuit of n inductors connected in series is shown in Figure 6.23.

Equivalent series
inductance Leq ¼ L1 þ L2 þ � � � þ Ln

As you may have noticed, this formula has the same form as the formula for calculating series
resistances ðReq ¼ R1 þ R2 þ � � � þ RnÞ:

Inductors in parallel
● A circuit of n inductors connected in parallel is shown in Figure 6.24.

Equivalent parallel
inductance

– n inductors in parallel: Leq ¼ 1
1
L1

þ 1
L1

þ � � � þ 1
Ln

– Two inductors in parallel: Leq ¼ L1L2

L1 þ L2

As you may have noticed, these equations have the same forms as the equations for calculating

parallel resistance Req ¼ 1
1

R1
þ 1

R2
þ � � � þ 1

Rn

; Req ¼ R1R2

R1 þ R2

0
BB@

1
CCA.

L1

L
L2 Ln

Leq

Figure 6.23 Inductors in series

LL1 L2 LnLeq

Figure 6.24 Inductors in parallel
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6.4.2 Inductors in series–parallel
Series–parallel inductive circuit
● Similar to resistors and capacitors, inductors may also be connected in various

combinations of series and parallel.
● An example of a series–parallel inductive circuit is shown in the following.

Example 6.9: Determine the equivalent inductance for the series—parallel
inductive circuit shown in Figure 6.25.

Solution: Leq ¼ ðL4 þ L5Þ==L3 þ ðL2 þ L6Þ½ �==L1

Recall : parallel can be expressed by a symbol of ‘‘==’’:

Leq ¼
2 1 þ 1ð Þ

2 þ 1 þ 1ð Þ þ 1 þ 1

� �
� 3

2 1 þ 1ð Þ
2 þ 1 þ 1ð Þ þ 1 þ 1

� �
þ 3

H Leq ¼ L1L2

L1 þ L2

¼ 1:5 H

Example 6.10: There are three inductors in a series—parallel inductive circuit:
40 H, 40 H, and 50 H. If Leq ¼ 70 H, how are these inductors connected?

Solution: Leq ¼ 50 H þ 40 H==40 H ¼ 70 H

Or Leq ¼ 50 H þ 40 � 40
40 þ 40

H ¼ 70 H Leq ¼ L1L2

L1 þ L2

So, two 40 H inductors are in parallel; and then in series with a 50 H inductor:

Leq

L2 = 1 H

L1 = 3 H

L6 = 1 H L5 = 1 H

L3 = 2 H
L4 = 1 H

Figure 6.25 Circuit for Example 6.9
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Summary

Capacitor
● Capacitor (C): An energy storage element that has two conductive plates

separated by an isolating material (the dielectric).
● Capacitor charging: Capacitor stores absorbed energy.
● Capacitor discharging: Capacitor releases energy to the circuit.

● Capacitance (C): the value of the capacitor, C ¼ Q

V
.

● Factors affecting capacitance: C ¼ 8:85 � 10�12 kA

d
● Leakage current: A very small current through the dielectric.

● Breakdown voltage: The voltage that causes a capacitor’s dielectric to become
electrically conductive; it can explode or permanently damage the capacitor.

● Ohm’s law for a capacitor: ic ¼ dvc

dt
or ic ¼ Dvc

Dt

● Blocking DC: a capacitor can block DC current (open-circuit equivalent).

● Energy stored by a capacitor: Wc ¼ 1
2

Cv2

Electromagnetic induction

● Electromagnetic field: The surrounding area of a conductor with a changing
current can generate an electromagnetic field.

● Faraday’s law:
– When there is a relative movement between a conductor and magnetic

field, the changing magnetic flux will induce an electromagnetic field and
produce an induced voltage (vL).

– vL is directly proportional to the rate of change of flux
df
dt

� �
and the

number of turns (N) in the coil, vL ¼ N
df
dt

● Lenz’s law:
– When there is a changing current through the conductor, an induced

voltage (vL) or induced emf (eL) and also an induced current (i) will be
produced.

– The polarity of the induced emf (eL) is always opposite to the change of

the original current eL ¼ �L
di

dt
or vL ¼ L

di

dt

� �
:

Inductor

● Inductor (L): An energy storage element that is made by winding a given
length of wire into a loop or coil around a core.
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● Inductance (L): The measurement of the changing current in an inductor that
produces the ability to generate induced voltage.

● Ohm’s law for an inductor: vL ¼ L
di

dt

● Passing DC: Voltage across an inductor is zero when a DC current flows
through it (short-circuit equivalent). An inductor can pass DC.

● Factors affecting inductance: L ¼ N2Am
l

● Energy stored in an inductor: wL ¼ 1
2

Li2

● Winding resistance (Rw): The internal resistance in the wire of an inductor.

The characteristics of the resistor, capacitor, and inductor:

Characteristic Resistor Capacitor Inductor

Ohm’s law V ¼ IR
ic ¼ dvc

dt
vL ¼ L

di

dt

Energy W ¼ pt
or dw ¼ pdt

WC ¼ 1

2
Cv2 WL ¼ 1

2
Li2

Series Req ¼ R1 þ R2 þ � � � þ Rn

Ceq ¼ 1
1

C1
þ 1

C2
þ � � � þ 1

Cn

Two capacitors:

Ceq ¼ C1C2

C1 þ C2

Leq ¼ L1 þ L2 þ � � � þ Ln

Parallel

Req ¼ 1
1

R1
þ 1

R2
þ � � � þ 1

Rn

Two resistors:

Req ¼ R1R2

R1 þ R2

Ceq ¼ C1 þ C2 þ � � � þ Cn

Leq ¼ 1
1

L1
þ 1

L2
þ � � � þ 1

Ln

Two inductors:

Leq ¼ L1L2

L1 þ L2

Elements in
DC

Open-circuit equivalent
(blocking DC)

Short-circuit equivalent
(passing DC)

Practice problems

6.1
1. Which of the following statements is right, (a) or (b)?

(a) There is current flowing through the dielectric of a capacitor
when it is charging.

(b) When a DC voltage source is connected to a capacitor, this
capacitor will charge to the same value as the voltage source.
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2. Which of the following statements is right, (a) or (b)?
(a) The plates of the capacitor are made from insulating material.
(b) The plates of the capacitor are made from conducting material.

3. The capacitance of a capacitor is 0.05 mF. Determine the capacitance
when a 3 kV source voltage is applied to this capacitor.

4. The plate area of a capacitor is 0.008 m2, the distance between two
plates is 0.00095 m, and the dielectric material is paper. Determine
the capacitance of this capacitor.

5. Four capacitors (100 mF, 50 mF, 25 mF, and 10 mF) are connected in
series, and a 25 V voltage source is applied to them. Determine the
total (or equivalent) capacitance and the amount of charge that is
stored.

6. Derive the formula to calculate the energy stored by a capacitor.
6.2

7. A 3 mF capacitor and an unknown capacitor are connected in series.
A 10 V voltage source is applied to them and the voltage across the
3 mF capacitor is 3 V. Determine the unknown capacitance.

Hint: Ceq ¼ C1C2

C1 þ C2
; C2 ¼ ?CeqC1

C1 � Ceq
; Ceq ¼ Q?

E
; Q ¼ Q1 ¼ C1V1

� �

8. Three capacitors are connected in parallel. Their capacitances are
50 pF, 0.005 mF and 20 pF, respectively. Determine the parallel
equivalent capacitance.

9. Determine the equivalent capacitance in the circuit of Figure 6.26.

10. Determine the equivalent capacitance in the circuit of Figure 6.27.

C1 = 6 μF C2 = 2 μF

C3 = 2 μF
C4 = 5 μF

b

a

Figure 6.26

C1 = 30 μF
V4 = 5 V

Q4 = 20 μC
C2 = 30 μF

b

a

Figure 6.27
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6.3
11. Whenever a changing current flows through a ( ), the area

surrounding the conductor will produce an ( ).
12. The ( ) of a coil is proportional to the rate of the change of

the magnetic flux and ( ).
13. The inductance of a coil is proportional to ( , , and ), and

inversely proportional to ( ).
14. The magnetic flux of a 150-turn coil increased from 0 to 0.18 Wb in

0.5 s. Determine its induced voltage.
15. The current flowing through a 0.5 H inductor is 2A. Determine the

energy stored in this inductor.
16. A 10 V voltage source is connected to the two terminals of an

inductor with a 10 W internal resistor. Determine the current flowing
through this inductor.

6.4
17. Calculate the series equivalent inductance for a series circuit that has

three inductors 35 mH, 40 mH, and 30 mH, respectively.
18. Four inductors are connected in parallel. Their values are 200 mH,

15 mH, 230 mH and 3H, respectively. Calculate the parallel equiva-
lent inductance in this circuit.

19. Calculate the parallel equivalent inductance in the circuit of
Figure 6.28.

20. The equivalent inductance is 8 H in a circuit, and the values of three
inductors in this circuit are 6 H, 6 H, and 5 H, respectively. How are
these inductors connected?

L1 = 6 HLeq L2 = 8 H

L4 = 5.7 H

L3 = 8 H

Figure 6.28
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Transient analysis of circuits
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7.1 The first-order circuit and its transient response

7.1.1 First-order circuit
RL or RC circuits
● There are three basic elements in an electric circuit, the resistor R, capacitor C,

and inductor L.
● The circuits in this chapter will combine the resistor(s) R with an energy

storage element capacitor C or an inductor L to form an RL (resistor–inductor)
or RC (resistor–capacitor) circuit.

● These circuits exhibit the important behaviors that are fundamental to much of
analogue electronics, and they are used very often in electric and electronic
circuits.

● Analysis RL or RC circuits still use KCL and KVL.

First-order circuit
● The main difference between RL or RC circuits and pure resistor circuits is

that the pure resistor circuits can be analyzed by algebraic methods.
● The relationship of voltages and currents in the capacitor and inductor circuits

is expressed by the derivative and differential equations (the equations with
the derivative).

● RL or RC circuits that are described by the first-order differential equations, or
the circuits that include resistor(s), and only one single energy storage element
(inductor or capacitor), are called the first-order circuits.

First-order
circuit

– The circuit that contains resistor(s), and a single energy storage
element (L or C).

– RL or RC circuits that are described by the first-order differential
equations.

7.1.2 Transient and steady state
Charging/discharging and energy storing/releasing
● We have discussed the concept of charging/discharging behavior of the energy

storage element capacitor C. Another energy storage element inductor L also
has the similarly energy-storing/releasing behavior.

● The difference is that charging/discharging of a capacitor is in the electric
field, and the energy-storing/releasing of an inductor is in the magnetic
field.

Transient state and steady state
● There are two types of circuit states in RL or RC circuit: the transient state and

steady state.
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● The transient state is the dynamic state that occurs by a sudden change of
voltage, current, etc. in a circuit. That means the dynamic state of the circuit
has been changed, such as
– the process of charging/discharging a capacitor or
– energy-storing/releasing for an inductor. (As the result of the operation of a

switch).
● The steady state is an equilibrium condition that occurs in a circuit when all

transients have finished.
– It is the stable circuit state when all the physical quantities in the circuit

have stopped changing.
– For the process of charging/discharging a capacitor or energy storing/

releasing for an inductor, it is the result of the operation of a switch in the
circuit after a certain time interval.

Transient state The dynamic state that occurs when the physical quantities have
been changed suddenly.

Steady state An equilibrium condition that occurs when all physical quantities
have stopped changing and all transients have finished.

7.1.3 Step response
Circuit responses
● A response is the effect of an output resulting from an input.
● The first-order RL or RC circuit has two responses, one is called the step

response, and the other is the source-free response.

Step response
● The step response for a general system states that the time behavior of

the outputs when its inputs change from 0 to unity value (1) in a very short
time.

● The step response for an RC or RL circuit is the circuit responses (outputs)
when
– the initial state of the energy store elements L or C is zero,
– the input (DC power source) is not zero in a very short time.

● The step response is
– when a DC source voltage is instantly applied to the circuit, the energy

storage element L or C has not stored energy yet and the output current or
voltage generated in this first-order circuit.

– Or the charging process of the energy-storing process of the capacitor or
inductor.

● The step response can be analogized as a process to fill up water in a reservoir
or a water bottle.
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Basic terms for a step response
● The initial state: the state when an energy storage element has not stored

energy yet.
● Input (excitation): the power supply.
● Output (response): the resultant current and voltage.

Step response

The circuit response when the initial condition of the energy store
elements (L or C) is zero, and the input (DC power source) is not
zero in a very short time, i.e., the charging/storing process of the
C or L.

7.1.4 Source-free and unit-step response
Source-free response
● The source-free response or natural response is opposite to the step response.

– It is the circuit response when the input is zero, and the initial condition of
the capacitor or inductor is not zero (the energy has been stored to the
capacitor or inductor).

– It is the discharging or energy-releasing process of the capacitor or
inductor in an RC or RL circuit.

● The source-free response can also be analogized as the process to release water
in a reservoir or a water bottle.

Source-free
(or natural) response

The circuit response when the input (DC power source) is
zero, and the initial condition of the energy storage
elements (L or C) is not zero, i.e., the discharging/
releasing process of the C or L.

Unit-step response
● When an RC or RL circuit that is initially at ‘‘rest’’ with zero initial condition

and a DC voltage source is switched on to this circuit instantly, this DC voltage
source can be analogized as an unit step function, since it ‘‘steps’’ from 0 to a
unit constant value (1).

● The step response can be also called the unit-step response.
● The unit-step response is defined as follows:

– All initial conditions of the circuit are zero at times less than zero (t < 0),
i.e., at the moment of time before the power turns on.

– The response v(t) or output voltage for this condition is obviously also
zero.

– After the power turns on (t > 0), the response v(t) will be a constant unit
value 1, as shown in the following mathematic expression and also can be
illustrated in Figure 7.1(b).

vðtÞ ¼ 0; t < 0
1; t > 0

�
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● The unit-step function can be expressed as the switch in the circuit of
Figure 7.1(a), when t ¼ 0, the switch turns to position 1, a DC power source
is connected to the RC circuit, and produces an unit-step response to the
circuit.

7.1.5 The initial condition of the dynamic circuit
Switching circuit
● The process of charging and discharging of a capacitor needs a switch to

connect or disconnect to the DC source in the RC circuit, as shown in the
circuit of Figure 7.1(a).

● The instantly turned on or turned off the switch, or the source input that is
switched ‘‘on’’ or ‘‘off’’ in an RC or RL circuit is called the switching circuit.

t ¼ 0� and t ¼ 0þ

● At the moment when the circuit is suddenly switched, the capacitor voltage and
inductor current will not change instantly, this concept can be described as t ¼ 0�

and t ¼ 0þ.
– t ¼ 0� is the instant time interval before switching the circuit (turn off the

switch).
– t ¼ 0þ is the instant time interval after switching the circuit (turn on the

switch).

Non-zero initial capacitor voltage and inductor current
● At this switching moment, the non-zero initial capacitor voltage and inductor

current can be expressed as follows:

vcð0þÞ ¼ vcð0�Þ iLð0þÞ ¼ iLð0�Þ

● vc (0�) is the capacitor voltage at the instant time before the switch is closed.
● vc (0þ) is the capacitor voltage at the instant time after the switch is closed.
● iL (0�) is the inductor current at the instant time before the switch is closed.
● iL (0þ) is the inductor current at the instant time after the switch is closed.

E = 1 V

1

2 3

0

1

(a) (b)

R

C

t

Figure 7.1 Step function
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Initial
conditions

– Switching circuit: the instantly turned on or turned off switch in the
circuit.

– t ¼ 0�: the instant time interval before the switch is closed.
– t ¼ 0þ: the instant time interval after the switch is closed.
– At the instant time before/after the switch is closed, vc and iL do not

change instantly:

vcð0þÞ ¼ vcð0�Þ and iLð0þÞ ¼ iLð0�Þ

7.2 The step response of an RC circuit

7.2.1 The charging process of an RC circuit
An RC circuit
● In Chapter 6, we have discussed the charging and discharging process of a

capacitor. When there are no resistors in the circuit, a pure capacitive circuit
will fill with electric charges instantly, or release the stored electric charges
instantly.

● But there is always some small amount of resistance in the practical capacitive
circuits.

● Sometimes a resistor will be connected to a capacitive circuit that is used very
often in the different applications of the electronic circuits.

● Figure 7.2 is a resistor—capacitor series circuit that has a switch connecting to
the DC power supply. Such a circuit is generally referred to as an RC circuit.

● The most important concepts of step response (charging) or source-free
response (discharging) and transient and steady state of an RC circuit can be
analyzed by this simple circuit.

The charging process of an RC circuit
● Assuming the capacitor has not been charged yet in the circuit of Figure 7.2,

the switch is in position 2 (middle).
● What will happen when the switch is turned to position 1, and the DC power

source (E ) is connected to the RC series circuit as shown in the circuit of
Figure 7.3?

E C

1

2 3

R

Figure 7.2 An RC circuit
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● The energy-storing element capacitor C will start charging. Since there is a
resistor in this circuit, the process of the capacitor’s charging will not finish
instantly, the capacitor will gradually store the electric charges.

● The RC circuit is similar to a reservoir (or a water bottle) filling with water to
capacity. If the door of the reservoir only opened to a certain width, the
reservoir will need more time to fill up with the water (or the water bottle will
need more time to fill up the water if the tab did not fully open).

Capacitor voltage vc increases exponentially
● The voltage across the capacitor vc is not instantaneously equal to the source

voltage E when the switch is closed to 1.
● The capacitor voltage is zero at the beginning. It needs time to overcome the

resistance R of the circuit to gradually charge to the source voltage E.
● After this charging time interval or the transient state of the RC circuit, the

capacitor can be fully charged; this is shown in Figure 7.4.
● Figure 7.4(b) indicates that capacitor voltage vc increases exponentially from

zero to its final value (E).
● The voltage across the capacitor will be increased until it reaches the source

voltage (E ), at that time no more charges will flow onto the plates of the
capacitor, i.e., the circuit current stops flowing. And the capacitor will reach a
state of dynamic equilibrium (steady state).

E

1

3 +

–

+ –

R

Ci vc

vR

Figure 7.3 RC charging circuit

1

3

0
(a) (b)

vc = E

R

E

vc
E

t

Figure 7.4 The charging process of an RC circuit
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Steady state
● The state of the circuit voltage or current after charging is called the steady

state.
– Once they reach the steady state, the current and voltage in the circuit will

not change any more, and at this time, the capacitor voltage is equal to the
source voltage, i.e.,

vc ¼ E

– The circuit current is zero, and the capacitor is equivalent to an open
circuit as shown in the circuit of Figure 7.4(a). For this open circuit, the
current stops to flow. Therefore, there is no voltage drop across the
resistor.

● The phenomenon of the capacitor voltage vc increases exponentially from zero
to its final value E (or a charging process) in a RC circuit can be also analyzed
by the quantity analysis method as follows.

7.2.2 Quantity analysis of the RC charging process
Applying KVL to Figure 7.3
● The polarities of the capacitor and resistor voltages of the RC circuit are shown

in Figure 7.3. Applying KVL to this circuit will result in

vR þ vc ¼ E (7.1)

● The voltage drop across the resistor is Ri (Ohm’s law) while the current
through this circuit is i ¼ C dvc

dt (from Chapter 6),

i.e., vR ¼ Ri i ¼ C
dvc

dt

Therefore, vR ¼ RC
dvc

dt
(7.2)

● Substituting (7.2) into (7.1) yields

RC
dvc

dt
þ vc ¼ E (7.3)

Determine the capacitor voltage vc

Note: If you have not learned calculus, then just remember that (7.4) is the equation for the
capacitor voltage vc during the charging process in an RC circuit, and skip the following mathe-
matic derivation process.

● The first-order differential equation (7.3) can be rearranged as

vc � E ¼ �RC
dvc

dt
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● Divide both sides by �RC � 1
RC

ðvc � EÞ ¼ dvc

dt

● Rearrange � dt

RC
¼ dvc

vc � E

● Integrating the above equation on both sides yields

� 1
RC

ðt

0
dt ¼

ðvc

0

dvc

vc � E

� t

RC

����
t

0

¼ lnjvc � Ejvc
0

● Rearrange � t

RC
¼ lnjvc � Ej � lnj � Ej

ln
vc � E

�E

����
���� ¼ � t

RC

● Taking the natural exponent (e) on both sides results in

eln vc�E
�Ej j ¼ e

�t
RC

vc � E

�E
¼ e

�t
RC

● Solve for vc vc ¼ E 1 � e
�t
RC

� �
(7.4)

● The above equation is the capacitor voltage during the charging process in an RC circuit.

7.2.3 Charging equations for an RC circuit
Determine the resistor voltage vR

● Applying KVL in the circuit of Figure 7.3,

vR þ vc ¼ E

● Rearrange vR ¼ E � vc (7.5)

● Substitute the capacitor voltage vc ¼ Eð1 � e
�t
RCÞ into (7.5) yields

vR ¼ E � Eð1 � e
�t
RCÞ

● Therefore, the resistor voltage is vR ¼ E e
�t
RC:
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Determine the charging current i
● Dividing both sides of the equation vR ¼ E e

�t
RC by R yields

vR

R
¼ E

R
e

�t
RC

● Applying Ohm’s law to the left side of the above equation will result in the
charging current i

i ¼ E

R
e

�t
RC I ¼ V

R

Charging equations

Charging equations
for an RC circuit

– Capacitor voltage: vc ¼ Eð1 � e
�t
RCÞ

– Resistor voltage: vR ¼ E e
�t
RC

– Charging current: i ¼ E

R
e

�t
RC

Mathematically, these three equations indicate that:

● Capacitor voltage increases exponentially from initial value zero to the final
value E.

● The resistor voltage and the charging current decay exponentially from initial
value E and E/R (or Imax) to zero, respectively.

● And t is the charging time in the equations.

7.2.4 Example with RC circuit
According to the above mathematic equations, the curves of vc, vR, and i versus
time can be plotted as in Figure 7.5.

0

R
E

00

vc = E ( 1 – e RC  )
−t

RC
−t

vR = E e RC
R
Ei =

−t

e

i

t

vR

E

tt

E

vc

Figure 7.5 vc , vR, and i versus t
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Example 7.1: For the circuit shown in Figure 7.3, if E ¼ 25 V, R ¼ 2.5 kW, and
C ¼ 2.5 mF, the charging time t ¼ 37.5 ms. Determine the resistor voltage vR and
capacitor voltage vc.

Solution: RC ¼ (2.5 kW) (2.5 mF) ¼ 6.25 ms

● vR ¼ E e
�t
RC

¼ ð25 VÞðe�37:5 ms
6:25 ms Þ

¼ ð25 VÞðe�6Þ
� 0:062 V

● vc ¼ Eð1 � e
�t
RCÞ

¼ ð25 VÞð1 � e
�37:5 ms
6:25 ms Þ

¼ ð25 VÞð1 � e�6Þ
� 24:938 V

● These results can be checked up by using KVL: vR þ vc ¼ E
Substituting the values into KVL yields

0.062 V þ 24.938 V ¼ 25 V, vR þ vc ¼ E (checked)

Thus. the sum of the capacitor voltage and resistor voltage must be equal to the source
voltage in the RC circuit.

7.3 The source-free response of the RC circuit

7.3.1 The discharging process of the RC circuit
Initial condition: vc ¼ E
● Consider a capacitor C that has initially charged to a certain voltage value V0

(such as the DC source voltage E ) through the charging process of the last
section in the circuit of Figure 7.4(a).

● The voltage across the capacitor is vc ¼ E, whose function will be the same as a
voltage source in the right loop of the RC circuit in Figure 7.6.

1

2 3 3

1

+

–

+–

(a) (b)

vc = EC

R

E E i vc = E

vR

Figure 7.6 Discharging process of the RC circuit
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Discharging process
● Once the switch turns to position 3 as shown in the circuit of Figure 7.6(b), the

capacitor will start discharging, but now it will be different than a pure capa-
citive circuit that can discharge instantly.

● The discharging time will increase since there is a resistor in the circuit. It
needs some time to overcome the resistance and eventually release all the
charges from the capacitor.

● Once the capacitor has finished the discharge, the capacitor voltage vc will be
0, the discharging curve is shown in Figure 7.7.

● This is similar to a reservoir that has an open door to release the water (or the water
bottle has opened the lid to pour water). But the releasing door of a reservoir is not
open wide enough, so it will need some time to release all the water.

7.3.2 Quantity analysis of the RC discharging process
Quantity analysis
● The equations used to calculate the capacitor voltage vc, resistor voltage vR,

and discharging current i of the capacitor discharging circuit can be determined
by the following mathematic analysis method.

● Applying KVL to the circuit in Figure 7.6(b) will result in

vR � vc ¼ 0; or vR ¼ vc (7.6)

● Since vR ¼ iR and i ¼ �C
dvC

dt

● Substitute i into the equation of vR vR ¼ �RC
dvc

dt
(7.7)

● The negative sign in the above equation is because the current i and voltage vc

in the circuit of Figure 7.6(b) have opposite polarities.
● Substitute (7.7) into the left-hand side of (7.6):

�RC
dvc

dt
¼ vc

● Divide both sides of the above equation by �RC

dvc

dt
¼ � 1

RC
vc (7.8)

t

E

0

vc

Figure 7.7 Discharge curve of the RC circuit
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Determine the capacitor voltage vc

Note: If you have not learned calculus, then just remember that (7.10) is the equation for the
capacitor voltage vc during the discharging process in an RC circuit, and skip the following
mathematic derivation process.

● Integrating (7.8) on both sides yields
ð

dvc

uc
¼ � 1

RC

ð
dt

lnjvcj ¼ � 1
RC

t þ ln A ln A � the constant of the integration

or lnjvcj � ln A ¼ � 1
RC

t

● Rearrange ln
vc

A

��� ��� ¼ � t

RC

● Taking the natural exponent (e) on both sides of the above equation: elnjvc
A j ¼ e�

t
RC

● Therefore,
vc

A
¼ e

�t
RC or vc ¼ Ae

�t
RC (7.9)

● As the capacitor has been charged to an initial voltage value V0 before being
connected to the circuit in Figure 7.6(b), therefore the initial condition (initial
value) of the capacitor voltage should be vc (0�) ¼ V0

● V0 can be any initial voltage value for the capacitor such as the source voltage E.
● Immediately before/after the switch is closed to the position 3 in the circuit of

Figure 7.6(b), vc does not change instantly (from Section 7.1), therefore,

vcð0þÞ ¼ vcð0�Þ or vc ¼ V0

● When t ¼ 0, substituting vc ¼ V0 into (7.9) yields V0 ¼ Ae
�0
RC

That is V0 ¼ A

● Substitute V0 ¼ A into (7.9) vc ¼ V0 e
�t
RC (7.10)

This is the equation of the capacitor voltage for the RC discharging circuit.

Determine the resistor voltage vR

● According to (7.6), vR ¼ vc

● Substitute (7.10) into it yields: vR ¼ V0 e
�t
RC (7.11)

Determine the discharge current i

● Since i ¼ vR

R
Ohm’s law

● Substitute (7.11) into the above Ohm’s law will result in

i ¼ V0

R
e

�t
RC
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Discharging equations and curves

Discharging equations
for an RC circuit

– Capacitor voltage: vc ¼ V0 e
�t
RC

– Resistor voltage: vR ¼ V0 e
�t
RC

– Discharging current: i ¼ V0

R
e

�t
RC

● In the above equations, t is the discharging time. V0 is the initial capacitor voltage.
● The three equations mathematically indicate that:

– The capacitor voltage vc and the resistor voltage vR decay exponentially
from the initial value V0 to the final value zero.

– The discharging current i decays exponentially from the initial value V0/R
(or Imax) to the final value zero.

● The curves of vc, vR, and i versus time t can be illustrated as shown in
Figure 7.8.

● The capacitor gradually releases the stored energy, and eventually the energy
stored in the capacitor will be released to the circuit completely, and it will be
received by the resistor and convert to heat energy.

7.3.3 RC time constant
RC time constant t
● In an RC circuit, the charging and discharging is a gradual process that needs

some time.
● The time rate of this process depends on the values of circuit capacitance C and

resistance R. The variation of the R and C will affect the rate of charging and
discharging.

● The product of the R and C is called the RC time constant and it can be
expressed as a Greek letter t (tau), i.e., t¼ RC.

● In general, the time constant is the time interval required for a system or circuit
to change from one state to another, i.e., the time required from the transient to
the steady state or to charge or discharge in an RC circuit.

RC time constant t
RC time constant ¼ (Resistance) (Capacitance)

t¼ RC

0 0

V0

R

t

vc, vR

V0

i

t

Figure 7.8 The curves of vc , vR, and i versus t

218 Understandable electric circuits: key concepts, 2nd edition



Calculating RC time constant

● RC time constant ¼ ðResistanceÞ ðCapacitanceÞ or t ¼ RC

● Units:
τ = RCSecond (s) Farad (F) 

Ohm (Ω) 
● The time constant t represents

– the time the capacitor voltage reaches (increases) to 63.2% of its final
value (steady state),

– or the time the capacitor voltage decays (decreases) below to 36.8% of its
initial value.

The effect of the t on vc

The higher the R and C values (or when the time constant t increases), the longer
the charging or discharging time; lesser the vc variation, longer the time to reach the
final or initial values. This can be shown in Figure 7.9.

7.3.4 The RC time constant and charging/discharging
Capacitor charging/discharging voltages and t
● The capacitor charging/discharging voltages vc when the time is 1 t and 2 t can

be determined from the equations of the capacitor voltage in the RC charging/
discharging circuit.

i.e., vc ¼ Eð1 � e
�t
t Þ and vc ¼ V0e

�t
t

● For example, when V0 ¼ E ¼ 100 V,
– At t ¼ 1 t:

Capacitor charging voltage: vc ¼ Eð1 � e�
t
tÞ

¼ 100 Vð1 � e�
1t
t Þ � 63:2 V

Capacitor discharging voltage: vc ¼ Vo e�
t
t ¼ 100 Ve�

1t
t � 36:8 V

0

(a) Charging (b) Discharging

τ Increases

τ Increases

vc

E

0

vc

E

t t

Figure 7.9 The effect of the time constant t on vc
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– At t ¼ 2 t:

Capacitor charging voltage: vc ¼ Eð1 � e�
t
tÞ

¼ 100 Vð1 � e�
2t
t Þ � 86:5 V

Capacitor discharging voltage: vc ¼ Voe�
t
t ¼ 100 Ve�

2t
t � 13:5 V

● Using the same method as above, the capacitor charging/discharging voltages
vc can be determined when the time is 3t, 4t, and 5t. These results are sum-
marized in Table 7.1 and Figure 7.10.

7.3.5 Different time constants for charging/discharging
When the time constant is 1t and 2t
● When the time constant is 1t (the data in Table 7.1 and graphs in Figure 7.10),

– the capacitor will charge to 63.2% of the final value (source voltage),
– and discharge to 36.8% of the initial value (the initial capacitor voltage).

If the final and initial values are 100 V, it will charge to 63.2 V and discharge to
36.8 V.

● When the time constant is 2t,
– the capacitor will charge to 86.5% of the final value,
– and discharge to 13.5% of the initial value.

Table 7.1 The capacitor charging/discharging voltages

Charging/discharging
time

Capacitor charging voltage
vc ¼ Eð1 � e

�t
t Þ

Capacitor discharging voltage
vc ¼ V0e

�t
t

1t 63.2% of E 36.8% of E
2t 86.5% of E 13.5% of E
3t 95.0% of E 5% of E
4t 98.2% of E 1.8% of E
5t 99.3% of E 0.67% of E

0 01τ 2τ 3τ 4τ 5τ

63.2%

86.5% 95% 98.2% 99.3%

1τ 2τ 3τ 4τ 5τ

36.8%

13.5%
5% 1.8% 0.67%

Vc Vc

EE

tt

Figure 7.10 The charging/discharging curves of the capacitor voltage
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When the time constant is 5t
● When the time constant is 5t,

– the capacitor will charge to 99.3% of the final value,
– and discharge to 0.67% of the initial value.

● When the time is 5t, the circuit will reach the steady state, which means that
– the capacitor will charge approaching to the source voltage E,
– or discharge approaching to zero.

● When time has passed 4t to 5t, charging/discharging of the capacitor will be
almost finished.

● After 5t, the transient state of RC circuit will be finished and enter the steady
state of the circuit.

Time constant t and
charging/discharging

– When t ¼ 1t: the capacitor charges to 63.2% of the final
value and discharges to 36.8% of the initial value.

– When t ¼ 5t: the capacitor charges to 99.3% of the final
value and discharges to 0.67% of the initial value.

7.3.6 Discharging process examples

Example 7.2: In the circuit of Figure 7.6(a), the source voltage is 100 V, the
resistance is 10 kW, and the capacitance is 0.005 mF. How long can the capacitor
voltage be discharged to 5 V after the switch is turned to position 3?

Solution: E ¼ 100 V, R ¼ 10 kW, C ¼ 0.005 mF, t ¼ ?

● The time constant t for discharging is:

t ¼ RC ¼ ð10 kWÞð0:005 mFÞ
¼ ð10,000 WÞð0:005 mFÞ
¼ 50 ms

● The capacitor voltage discharging to 5 V is 5% of the initial value E (100 V).
Table 7.1 and Figure 7.10 indicate that the time capacitor discharges to 5% of
the initial value is 3t.

● Therefore, the capacitor discharging time is

t ¼ 3t

¼ 3ð50 msÞ
¼ 150 ms
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Example 7.3: In an RC circuit, R ¼ 5 kW, the transient state has last 1 s in this
circuit. Determine the capacitance C.

Solution: The transient state in the RC circuit will last 5t, therefore,

5t ¼ 1 s; or t ¼ 1
5
¼ 0:2 s

, t ¼ RC

Therefore, C ¼ t
R
¼ 0:2 s

5 kW
¼ 0:2 s

5,000 W

¼ 0:00004 F ¼ 40 mF

7.4 The step response of an RL circuit

7.4.1 RL circuit
An RL circuit
● Figure 7.11(a) is a resistor and inductor series circuit, it runs through a switch

connecting to the DC power supply. Such a circuit is generally referred to as an
RL circuit.

● An RC circuit stores the charges in the electric field, and an RL circuit stores
the energy in the magnetic field.

● We will use the term ‘‘charging/discharging’’ in an RC circuit, and the term
‘‘energy-storing/releasing’’ in an RL circuit.

A circuit can be used to analyze RL transient and steady state

● The most important concepts of the magnetic storing/releasing or transient and
steady state of RL circuit can be analyzed by a simple circuit as shown in
Figure 7.11.

● The step response (storing) and source-free response (releasing) of an RL
circuit is similar to the step response and source-free response of an RC circuit.

1

2 3

1

+

–

+ –

3

(a) (b)

vLL
EE

R

iL

vR

Figure 7.11 RL circuit
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● After understanding the RC circuit, its method of analysis can be used to
analyze the RL circuit in a similar fashion.

● Figure 7.11(a) is a circuit that can be used to analyze RL step response and
source-free response.

7.4.2 Energy-storing process of the RL circuit
The energy-storing process of an RL circuit
● In the circuit of Figure 7.11(a), assuming the energy has not been stored in the

inductor yet, the switch is in position 2.
● What will happen when the switch is turned to position 1, and the DC power

source is connected to the RL series circuit as shown in the circuit of
Figure 7.11(b)?

● As it has been mentioned in Chapter 6, when the switch in Figure 7.11(a)
turns to position 1, the current will flow through this RL circuit, the electro-
magnetic field will be built up in the inductor L, and will produce the induced
voltage vL.

● The inductor L absorbs the electric energy from the DC source and converts
it to magnetic energy. This energy-storing process of the inductor in an
RL circuit is similar to the electron charging process of the capacitor in an
RC circuit.

Inductor current iL increases exponentially
● Since there is a resistor R in the circuit of Figure 7.11(b), it will be different as

a pure inductor circuit that can store energy instantly.
● After the switch is turned to position 1, the current needs time to overcome the

resistance in this RL circuit. Therefore, the process of the inductor’s energy-
storing will not finish instantly.

● The current iL in the RL circuit will reach the final value (maximum value)
after a time interval, as shown in Figure 7.12.

● The phenomenon of the inductor current iL in an RL circuit increases expo-
nentially from zero to its final value (Imax) or from the transient to the steady
state can also be analyzed by the quantitative analysis method below.

0
5τ

Imax

iL

t

Figure 7.12 Current versus time curve in the RL Circuit
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7.4.3 Quantity analysis of the RL energy-storing process
Quantitative analysis of the energy-storing process in an RL circuit
● The polarities of the inductor and resistor voltages of an RL circuit are shown

in the circuit of Figure 7.11(b).
● Applying KVL to this circuit will result in

vL þ vR ¼ E (7.12)

● Substituting vL ¼ L
diL

dt
Ohm’s law for an inductor

and vR ¼ Ri ði ¼ iLÞ

into (7.12) yields L
diL

dt
þ RiL ¼ E

● Applying a similar analysis method for the RC charging circuit in Section 7.2
will yield the equation of the current in RL circuit during the process of energy
storing as given in the following sections.

Determine the current iL

iL ¼ E

R
1 � e

�t
L
R

� �
¼ E

R
1 � e

�t
t

� 	

iL ¼ E

R
1 � e

�t
t

� 	 (7.13)

● The time constant of RL circuit is t ¼ L

R

● The final value for the current is Imax ¼ E

R

Determine the resistor voltage vR

● Applying Ohm’s law vR ¼ Ri (7.14)

● Keep in mind that i ¼ iL and substituting i by the current iL in (7.14) yields

vR ¼ R � E

R
1 � e

�t
t

� 	

vR ¼ E
�

1 � e
�t
t

	

● The final value for the resistor voltage is E ¼ ImaxR

Determine the inductor voltage vL

● According to (7.12), vL þ vR ¼ E

● Substitute vR and solving for vL vL ¼ E � vR ¼ E � E 1 � e
�t
t

� �
vL ¼ E e

�t
t
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Energy-storing equations

Energy-storing equations
for an RL circuit

– Circuit current: iL ¼ E

R
ð1 � e

�t
t Þ

– Resistor voltage: vR ¼ Eð1 � e
�t
t Þ

– Inductor voltage: vL ¼ Ee
�t
t

● In the above equations,
– t is the energy-storing time.

– t ¼ L

R
is the time constant of the RL circuit.

● These three equations mathematically indicate that
– circuit current iL and resistor voltage vR increase exponentially from initial

value zero to the final values E/R and E, respectively;
– the inductor voltage vc decays exponentially from the initial value E to

zero.
● According to the above mathematical equations, the curves of iL, vR, and vL

versus time can be illustrated in Figure 7.13.

Example 7.4: The resistor voltage vR ¼ 10(1 � e�2t ) V and circuit current iL ¼ 2
(1 � e�2t ) A in an RL circuit is shown in the circuit of Figure 7.11(b). Determine
the time constant t and inductance L in this circuit.

Solution:

● The given resistor voltage vR ¼ Eð1 � e
�t
t Þ ¼ 10ð1 � e�2tÞV

with E ¼ 10 V and � t

t
¼ �2t

or t ¼ 1
2

s ¼ 0:5 s

0 00

R

iL

t

E
vR

E

t

E

vL

t

Figure 7.13 Curves of iL , vR, and vL versus time
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● The given current iL ¼ E

R
ð1 � e

�t
t Þ ¼ 2ð1 � e�2tÞ A

with
E

R
¼ 2 A

E ¼ 10 V; R ¼ E

I
¼ 10 V

2 A
¼ 5 W

● The time constant t ¼ L

R

● Solve for L L ¼ Rt ¼ ð5 WÞð0:5 sÞ ¼ 2:5 H

7.5 Source-free response of an RL circuit

7.5.1 Energy-releasing process of an RL circuit
Initial condition: vL ¼ E
● Consider an inductor L that has initially stored energy and has the induced

voltage vL through the energy-storing process of the last section.
● If the switch turns to position 3 at this moment (Figure 7.14(b)), the inductor

voltage vL has a function just like a voltage source in the right loop of this RL
circuit.

Energy-releasing process
● Without connecting the resistor R in this circuit, at the instant when the switch

turns to position 3, the inductor will release the stored energy immediately.
(This might produce a spark on the switch and damage the circuit components.)

● If there is a resistor R in the circuit, the resistance in the circuit will increase
the time required for releasing energy, the current in the circuit will take time
to decay from the stored initial value to zero.

● This means the inductor L releases the energy gradually, and the resistor
absorbs the energy and converts it to heat energy.

● The current iL curve of the energy release process in the RL circuit is illu-
strated in Figure 7.15.

L

1

2 3 3

1

+

–

+ -

+

(a) (b)

vL = E

vR vR

vL
iL

R

–

E

R

E

Figure 7.14 RL circuit
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7.5.2 Quantity analysis of the RL energy-releasing process
Quantitative analysis of the energy-releasing process in an RL circuit
● The equations to calculate the inductor voltage vL, resistor voltage vR, and

circuit current iL of the RL energy-releasing circuit can be determined by the
following mathematical analysis method.

● Applying KVL to the circuit in Figure 7.14(b) will result in

vL þ vR ¼ 0 or vL ¼ �vR (7.15)

● Substituting vL ¼ L
diL
dt

and vR ¼ RiL into (7.15)

yields L
diL

dt
¼ �RiL (7.16)

Determine the circuit current iL
Note: If you have not learned calculus, then just remember that (7.18) is the equation for the
current in the RL circuit during the energy releasing, and skip the following mathematic derivation
process.

● Dividing both sides of (7.16) by L
diL
dt

¼ �R

L
iL

● Integrating the above equation on both sides yields

ð
diL

iL
¼ �

ð
R

L
dt; lnjiLj ¼ �R

L
t þ lnA

● Rearrange: lnjiLj � lnA ¼ �R

L
t

● Taking the natural exponent (e) on both sides results in

eln
iL
Aj j ¼ e

�R
L t or

iL
A
¼ e

�R
L t

● Solve for iL iL ¼ Ae
�R
L t (7.17)

t0

iL

E
R

Figure 7.15 Energy release curve of the RL circuit
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● Since energy has been stored in the inductor before it is been connected to the circuit in
Figure 7.14(b), its initial condition or value should be iL(0�) ¼ I0

(I0 can be any initial current, such as I0 ¼ E
R )

● Since immediately before/after the switch is closed to position 3, iL does not change,
therefore:

iLð0þÞ ¼ iLð0�Þ or iL ¼ I0

● When t ¼ 0, substitute iL ¼ I0 into (7.17) yields

I0 ¼ Ae
�R
L �0; i:e:; I0 ¼ A

● Therefore, inductor current iL ¼ I0e
�t
t (7.18)

● In the above equation, t ¼ L

R
is the time constant for the RL circuit.

Determine the resistor voltage vR

● Keep in mind that i ¼ iL
● Apply Ohm’s law to (7.18)

vR ¼ R i
_ ¼ RðI0e

�t
t Þ

● Resistor voltage

vR ¼ I0Re
�t
t

Determine the inductor voltage vL

● Substituting (7.18) into vL þ vR ¼ 0 Equation (7.15)

● Results in vL ¼ �vR ¼ �RI0e
�t
t

● Inductor voltage vL ¼ �I0Re
�t
t

Energy-releasing equations and curves

Energy-releasing equations
for an RL circuit

– Circuit current: iL ¼ I0e
�t
t

– Resistor voltage: vR ¼ I0Re
�t
t

– Inductor voltage: vL ¼ �I0Re
�t
t

● In the above equations,
– t is the energy-releasing time.

– I0 ¼ E

R
is the initial current for the inductor.

– t ¼ L

R
is the time constant for the RL circuit.
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● These three equations mathematically indicate that inductor current iL, resistor
voltage vR, and inductor voltage vc decay exponentially from the initial values
I0, I0 R, and �I0 R, respectively, to the final value zero.

● The curves of iL, vR, and vL versus time can be illustrated in Figure 7.16.

7.5.3 RL time constant
RL time constant t
● In an RL circuit, the storing and releasing of energy is a gradual process that

needs time. The time rate of this process depends on the values of the circuit
inductance L and resistance R.

● The variation of R and L will affect the rate of the energy storing and releasing.
The quotient of L and R is called the RL time constant ðt ¼ L

RÞ.
● The RL time constant t is the time interval required from the transient to the

steady-state or the energy-storing/releasing time in an RL circuit.

RL time constant

RL time constant ¼ Inductance=Resistance

t ¼ L

R

Calculating RL time constant

● RL time constant ¼ ðInductanceÞ=ðResistanceÞ or t ¼ L

R

● Units: Second (s) 

Henry (H) 
τ = L

R

Ohm (Ω) 

The effect of the t on iL
● The time constant t represents

– the time the inductor current iL reaches (increases) to 63.2% of its final
value (steady state);

– the time of the inductor current iL decays (decreases) below to 36.8% of
the its initial value.

00

0
I0

iL

t

I0R

vR

t
– I0R

vL

t

Figure 7.16 Curves of iL , vR, and vL versus time
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● The higher the value of L, the lower the R (or when the time constant t increases),
the longer the storing or releasing time, the lesser the iL variation and the longer
the time to reach the final or initial values. This can be shown in Figure 7.17.

7.5.4 RL time constant and energy storing/releasing
Inductor storing/releasing current and t
● Similar to an RC circuit, the circuit current for an RL circuit can be determined

when the time constant is 1t, 2t, . . . 5t, according to the equations of
iL ¼ E

R ð1 � e
�t
t Þ and iL ¼ I0e

�t
t , respectively.

● These results are summarized in Table 7.2 and Figure 7.18.

t00

L↑ or R↓

L↑ or R↓

(τ↑) (τ↑)

iL iL
E
R

I0

t

Figure 7.17 Effect of the time constant t on iL (L" or R#)

Table 7.2 Relationship between the time constant and inductor current

Storing/releasing time Increasing inductor current

(storing) iL ¼ E

R
ð1 � e

�t
t Þ

Decreasing inductor current
(releasing) iL ¼ I0e

�t
t

1t 63.2% of E/R 36.8% of I0

2t 86.5% of E/R 13.5% of I0

3t 95.0% of E/R 5% of I0

4t 98.2% of E/R 1.8% of I0

5t 99.3% of E/R 0.67% of I0

0 t
01τ 2τ 3τ 4τ 5τ 1τ 2τ 3τ 4τ 5τ

63.2%

86.5% 95% 98.2% 99.3%

36.8%

13.5%
5% 1.8% 0.67%

R
E

t

iL iL

I0

Figure 7.18 Relationship of inductor current and time constant
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Example 7.5: In the RL circuit of Figure 7.14, the resistance R is 100 W and the
transient state has lasted 25 ms. Determine the inductance L.

Solution:

● The time of transient state usually lasts 5t, and this transient state is

5t ¼ 25 ms; ; t ¼ 25 ms
5

¼ 5 ms

● The time constant t ¼ L

R
; ;L ¼ Rt ¼ ð100 WÞð5 msÞ ¼ 500 mH

Example 7.6: In the circuit of Figure 7.14(b), R ¼ 2 kW, L ¼ 40 H, E ¼ 1 V, and
t ¼ 0.2 ms. Determine the circuit current iL in this energy-releasing circuit.

Solution: t ¼ L

R
¼ 40 H

2 kW
¼ 20 ms

iL ¼ I0e
�t
t ¼ E

R
e
�t
t ¼ 1 V

2 kW
e
�0:2 ms

20 ms � 0:5 mA

Summary

First-order circuit and types of responses
● First-order circuit:

– It is the circuit that contains resistor(s), and a single energy storage
element (L or C).

– RL or RC circuits that are described by the first-order differential
equations.

● Transient state: The dynamic state that occurs when the physical quantities
have been changed suddenly.

● Steady state: An equilibrium condition that occurs when all physical quantities
have stopped changing and all transients have finished.

● Step response: The circuit response when the initial condition of the L or C is
zero, and the input (DC power source) is not zero in a very short time, i.e., the
charging/storing process of the C or L.

● Source-free response: The circuit response when the input is zero, and the
initial condition of L or C is not zero, i.e., the discharging/releasing process of
the C or L.

● The initial condition:
– Switching circuit: the instantly turned on or turned off switch in the

circuit.
– t ¼ 0�: the instant time interval before the switch is closed.
– t ¼ 0þ: the instant time interval after the switch is closed.
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– At the instant time before/after the switch is closed, vc and iL do not
change instantly:

vcð0þÞ ¼ vcð0�Þ; iLð0þÞ ¼ iLð0�Þ

The relationship between the time constants of RC/RL circuits

Time vc and iL increasing (charging/

storing): vc ¼ Eð1 � e
�t
t Þ; iL ¼ E

R
ð1 � e

�t
t Þ

vc and iL decaying (discharging/
releasing): vc ¼ V0e

�t
RC ; iL ¼ I0e

�t
t

1t 63.2% 36.8%

2t 86.5% 13.5%

3t 95.0% 5%

4t 98.2% 1.8%

5t 99.3% 0.67%

Summary of the first-order circuits

Circuit Equations Waveforms Time
constant

RC
charging
(step
response)

vc ¼ Eð1 � e
�t
t Þ

vR ¼ E e
�t
t

i ¼ E

R
e

�t
t

0 00

vC
vR

E
E

t t

R
E

t

i
t¼ RC

RC dis-
charging
(source-
free
response)

vc ¼ V0 e
�t
t

vR ¼ V0 e
�t
t

i ¼ V0

R
e
�t
t

0 0

vc, vR

V0
V0

R

i

t t

t¼ RC

RL storing
(step
response)

iL ¼ E

R
ð1 � e

�t
t Þ

vR ¼ Eð1 � e
�t
t Þ

vL ¼ E e
�t
t 0 00

EER

iL
E

vR
vL

t tt

t ¼ L

R

RL-
releasing
(source-
free
response)

iL ¼ I0 e
�t
t

vR ¼ I0 R e
�t
t

vL ¼ �I0 R e
�t
t

00

iL vR
vL

I0

t

I0 R

–I0 R

0

t

t ¼ L

R
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Practice problems

7.1
1. ( ) or ( ) circuits can be described by the first-order ( )

equations.
2. ( ) occurs when all physical quantities have stopped changing

and all transients have finished.
3. (a) t ¼ 0þ is the instant time ( ) switching.

(b) t ¼ 0� is the instant time ( ) switching.

4. (a) vc ( ) is the ( ) voltage at the instant time before the switch
is closed.

(b) vR ( ) is the ( ) voltage at the instant time after the switch
is closed.

5. (a) iL ( ) is the ( ) current at the instant time before the switch
is closed.

(b) ic ( ) is the ( ) current at the instant time after the switch is
closed.

7.2
6. Determine the expression of the capacitor charging voltage vc and

current ic in the circuit of Figure 7.19, and plot the waveform of vc.

7 Determine the capacitor charging voltage vc and circuit current ic
expressions in the circuit of Figure 7.20.

12 V

1

3
ic

20 Ω

8 μF

Figure 7.19

50 V

1

3
3 μF 

1.5 kΩ

2 kΩ

ic

Figure 7.20
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8. In an RC series circuit, the capacitance is 0.1 mF and the source
voltage is 30 V. After charging for 65 ms, the voltage across the
capacitor is 22 V. Determine the resistance of this circuit.

7.3
9. The resistance is 5 kW and the capacitance is 3 mF in an RC charging

circuit. Determine the time required for the capacitor voltage to reach
63.2% of the steady-state voltage.

10. The resistance R is 8 kW and the capacitance C is 0.003 mF in an RC
circuit. If the voltage across the terminals of this RC circuit is 100 V,
calculate the capacitor voltage after a time period of 1 t, and the time
required for the capacitor to charge to the value of the source voltage.

11. Determine the values or expressions in the statements of (a), (b), and (c)
for the circuit of Figure 7.21:

(a) The time constant of the circuit.
(b) The capacitor voltage and current expressions when the switch

is turned to position 3 (assume the capacitor voltage is 10 V
before the switch is turned to position 3).

(c) Calculate the capacitor voltages when the time is 1t, 2t, 3t, 4t,
and 5t.

7.4
12. The resistance is 4.7 kW, and the inductance is 10 mH in an RL

circuit. Determine the time constant for this circuit.
13. Determine the time constant of the circuit in Figure 7.22. Also write

the expressions for the inductor voltage, resistor voltage, and circuit
current in this circuit.

5 kΩ 

3

1

10 V 10 μFic

Figure 7.21

4.5 kΩ 1

6 mH
3

20 V iL

Figure 7.22
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7.5
14. Determine the time constant of the circuit in Figure 7.23 when the

inductor is releasing energy (determine the equivalent resistance
first).

15. Determine the expressions of the inductor voltage and inductor
current in the circuit of Figure 7.23.

10 V

3 kΩ

0.8 H

2 kΩ 

5 kΩ

Figure 7.23
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8.1 The magnetism field

8.1.1 Magnetism
Magnet
It is a piece of iron (or steel, alloy . . . ) that has the ability to attract another metal
object.

Permanent magnet
It is a magnet that retains its magnetism over a long period of time after it is
removed from a magnetic field.

Magnetism
It is the attraction or repulsion properties of a magnet.



Magnetic poles
A magnet has two areas of strongest force, called poles.

● Every magnet has a North and South Pole (N and S).
● The basic law of magnet: Like poles repel, unlike poles attract (Figure 8.1).

Magnetic field
It is a place near a magnet or a moving electric charge where magnetic properties are
produced (an invisible area of magnetism produced by moving the electric charge).

Electromagnetic force
It is a force between charged objects around their electric and magnetic fields.

Magnetic field lines (the lines of force)
The imaginary lines around a magnet that describe the directions of the magnetic
field (they can be plotted with iron filings and paper) (Figure 8.2).

● Outside: the magnetic field lines travel from the North Pole (N) to the South
Pole (S).

● Inside: from the South Pole to the North Pole.

Repel Attract

N S S N N S N S

Figure 8.1 The basic law of magnet

Figure 8.2 Magnetic field lines
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8.1.2 Magnetic flux and magnetic flux density
Magnetic flux (f)
It is a measure of the amount of magnetic field lines passing through a surface area
in a magnetic field.

Magnetic flux density (B)
It is a measure of the amount of magnetic flux in an area.

● It is the measure of the amount of flux per unit area taken perpendicular to the
flux’s direction.

● It is the strength of a magnetic field at a given point.

Calculating magnetic flux density

● Magnetic flux density ¼ Magnetic flux
Area

B ¼ f
A

● Units: Tesla (T)  
B =

ϕ
A

or Gauss (G) 

Weber (Wb)  

Meter2 (m2)

● 1 Wb ¼ 108 lines (magnetic field lines)
● 1 Tesla ¼ 104 gauss

– Tesla—in SI unit
– Gauss—in CGS system (centimeter-gram-second system of units)

Example 8.1: The amount of flux present in a round magnetic bar was measured at
0.018 Wb. If the material has a diameter of 16 cm, what is the flux density?

Solution: Diameter : d ¼ 16 cm ¼ 0.16 m

Radius : r ¼ d

2
¼ 0:16 m

2
¼ 0:08 m

Area : A ¼ pr2 ¼ p ð0:08 mÞ2 � 0:02 m2

Magnetic flux : f ¼ 0:018 Wb

Magnetic flux density : B ¼ f
A
¼ 0:018 Wb

0:02 m2
¼ 0:9 T

8.1.3 Domain theory of magnetism
Magnetized material
Any material when placed in a magnetic field can be magnetized itself (can attract
or repel metals).
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Ferromagnetism
The physical phenomenon in which certain materials (like iron) can become
permanent magnets when subjected to a magnetic field. (The ability of materials to
be attracted to a magnet is called ferromagnetism.)

Ferromagnetic materials
These refer to materials that can maintain their magnetic properties when the
magnetic field is removed.

● They are materials that can be magnetized.
● Examples of ferromagnetic materials: iron, cobalt, nickel, etc.

Domain theory of magnetism
It states that inside a magnet all the atoms are aligned in the same directions.

● The domain theory can explain why ferromagnetic materials get magnetized.
● The atoms of ferromagnetic materials may be thought of as little atomic

magnets (with its own North and South Pole).
● These groups of atomic magnets join together so that their magnetic fields are

all pointing in the same direction to form a magnetic domain.

Magnetic domain
It is a small region in which the magnetic fields of atoms are grouped together and
aligned (Figure 8.3).

● The magnetic domains are indicated by the arrows in the metal material.
● Each magnetic domain acts as a miniature magnet within a material.
● In ferromagnetic materials the domains align themselves in the same direction.

8.2 Electromagnetism

8.2.1 Charging and electric field
Electric charge (or charge)
Electric charges are the basic properties of particles (electrons, protons, etc.) in matter.

● Protons are positively (þ) charged.
● Electrons are negatively (�) charged.

Like charges repel and unlike charges attract (Figure 8.4).

Unmagnetized Strong magnet 

→ → → →
→ → →

→ → →

→
→ → → →
→

Figure 8.3 Magnetic domain
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Charging
Charging is transfer of electrons between the two objects.

– The object that loses electrons has an excess (extra) of positive charge.
– The object that gains electrons has an excess of negative charge.

–

The total charge of an object ¼ 0 : the number of electrons
¼ the number of protons

The total charge of an object ¼ þ : the object loses electrons
The total charge of an object ¼ � : the object gains electrons

8>><
>>:

Charging by conduction and induction
– Conduction: transfer of charge from one object to another by direct

contact.
– Induction: transfer of charge from one object to another without direct contact.

Changing/discharging caused by conduction or induction.

Static electricity
It is an accumulation (build up) of an electric charge on the surface of an object
(electric charge at rest rather than moving).

Static discharge
It is the release of static electric charge.

Law of conservation of electric charge
It states that the electric charge cannot be created or destroyed, but it can be
transferred from one form to another (the total electric charge remains
constant).

Electric field
It is the area near a charged object experiences electric forces that fill the area.

Electric field lines
These are the imaginary lines around a charged object that describe the electric
field in an area. They begin as positive charges and end as negative charges
(þ? �).

 + 

+ +

Figure 8.4 Electric charge

Magnetism and electromagnetism 241



8.2.2 Electromagnetism
Electric current (or a moving electric charge) can produce a
magnetic field
● Each electric charge has its own electric field, a moving charge creates a

magnetic field.
● When an electric current passes through a wire (conductor), a magnetic field is

formed around the wire.

Electromagnetism
It is the interaction of electric and magnetic fields.

● Moving charges (or current) produce a magnetic field.
● Spinning magnets cause an electric current to flow.

An electromagnetism is a relationship between electricity and magnetism.

Electromagnetic induction
Moving a loop of wire through a magnetic field, or moving a magnetic field relative
to a coil will produce an electric current.

Right-hand rule
It is a memory aid used to remember the directions of current and the magnetic
field around a wire (Figure 8.5).

● The thumb: the direction of the positive current.
● The fingers: the direction of the magnetic field. (The fingers of your hand

circle the wire.)

Electric motor
It is a device that converts electrical energy into mechanical energy.

A motor uses a magnet to act a force on a wire coil, this force makes the motor rotate (turn).

Figure 8.5 Right-hand rule

Electrical energy Mechanical energy 
Motor 
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Electric generator
It is a device that converts mechanical energy into electrical energy.

8.3 Electromagnetic characteristics of materials

8.3.1 Permeability and reluctance
Permeability (m)
It is the measure of the ability of a magnetic material to respond magnetic field
development.

● It is the ability of a magnetic material to respond to how much magnetic flux it
can support to pass through the material.

● It is the degree of magnetization capability.
● Higher permeability means the more easily a magnetic field can be established

and the more easily a material can be magnetized (the domains aligned).

Calculating relative permeability

● Relative permeability ¼ Absolute permeability
Permeability of free space

mr ¼
m
m0

● Permeability of free space μ0: 0 μ = 4 � × 10–7 Weber/Ampere ∙ meter
(Wb/A ∙ m) 
or  Henry/Meter (H/m) (permeability of a vacuum)

● Units:
No unit 

μr =
μ
μ0

Weber/Ampere ∙ meter (Wb/A ∙ m) 

Weber/Ampere ∙ meter (Wb/A ∙ m) 

Example 8.2: The absolute permeability of a piece of steel is 2. 8� 10�9 Wb/A � m.
Calculate the relative permeability of this steel material.

Solution: The absolute permeability : m ¼ 2:8 � 10�9 Wb=A � m

The permeability of free space m0: m0 ¼ 4 p� 10�7 Wb=A � m

The relative permeability mr: mr ¼
m
m0

¼ 2:8 � 10�9 Wb=A�m
4p� 10�7 Wb=A � m

� 0:223 � 10�2

Mechanical energy Electrical energy Generator 
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Reluctance (<)
Reluctance (<) is the opposition offered by a magnetic circuit to the magnetic flux.

● <—a curly capital R.
● Reluctance is analogous to the resistance in an electrical circuit. It is the

magnetic resistance in a magnetic circuit.
● Reluctance is a measure of the ability of a material to pass magnetic flux.

Calculating reluctance

● Reluctance ¼ Length of the coil
Permeabilityð Þ The cross-sectional area of the materialð Þ

< ¼ ‘

mA

● Units:

Meter (m)
l

μA

Meter2 (m2)
Ampere ∙ turn/Weber  (A ∙ t/Wb)

ℜ =

Weber/Ampere ∙ meter (Wb/A ∙ m) 

Example 8.3: Determine the reluctance of a material with a length of 0.34 m and a
cross-sectional area of 0.06 m2, if the absolute permeability is 130� 10�6 Wb/A � m.

Solution: The absolute permeability: m ¼ 130 � 10�6 Wb=A �m

The cross-sectional area: A ¼ 0:06 m2

The length of the coil: ‘ ¼ 0:34 m

The reluctance: < ¼ ‘

m A
¼ 0:34 m

130 �10�6 Wb=A �m
� �ð0:06 m2Þ

� 0:044 �106 A � t=Wb

Magnetomotive force (Fm)
It is a force that is the cause of a magnetic flux in a magnetic circuit.

● The magnetomotive force is the force produced by current through a coil of
wire.

● The magnetomotive force is analogous to the electromotive force in an electric
circuit.

Calculating magnetomotive force

● Magnetomotive force ¼ Number of turns of wireð Þ Currentð Þ Fm ¼ NI

● Units:

Ampere-turn (A . t)
Fm = NI

Turn (t)  

Ampere (A) 

244 Understandable electric circuits: key concepts, 2nd edition



Example 8.4: The magnetomotive force for a one-turn coil carrying a current of
1 A is:

Fm ¼ N I ¼ ð1 turnÞð1 AÞ ¼ 1 A � t

Example 8.5: What is the magnetomotive force in an 80 turns coil of wire when
there is 4.4 A of current through it?

Fm ¼ N I ¼ ð80 turnsÞð4:4 AÞ ¼ 352 A � t

Factors affecting the flux density produced by a coil
● The permeability of the core
● Magnetomotive force
● The length of the coil.

Calculating flux density

● Flux density ¼ Absolute permeabilityð Þ Magnetomotive forceð Þ
Length of the coil

B ¼ m Fm

‘

● Units:

Tesla (T)

Ampere-turn (A ∙ t)

Weber/Ampere ∙ meter (Wb/A ∙ m)

B = μ Fm
l

Meter (m)

Example 8.6: There is 0.3 A of current through an air-core coil of wire with 150
turns and a length of 250 cm. Determine the flux density for the coil.

Solution: The number of turns of wire: N ¼ 150 t

The current: I ¼ 0:3 A

The magnetomotive force: Fm ¼ N I ¼ ð150 tÞð0:3 AÞ
¼ 45 A � t

The permeability of free
space m0:

m0 ¼ 4 p� 10�7 Wb=A � m
ðAir core coilÞ

The length of the coil: ‘ ¼ 250 cm ¼ 2:5 m

The flux density: B ¼ m Fm

‘

¼ ð4 p� 10�7 Wb=A � mÞð45A � tÞ
ð2:5 mÞ

� 226:2 � 10�7 T
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8.3.2 Ohm’s law for magnetic circuits
Ohm’s law for magnetic circuits

● Ohm’s law: Flux density ¼ Magnetomotive force
Reluctance

f ¼ Fm

<

● Units:

Weber (Wb)

Ampere-turn (A . t)

Ampere ∙ turn/Weber (A ∙ t/Wb)
ϕ = Fm

ℜ

Example 8.7: There is 0.22 A of current through a coil of wire with 380 turns.
Determine the reluctance of the circuit if the magnetic flux is 0.25 mWb.

Solution: The number of turns of wire: N ¼ 380 t

The current: I ¼ 0:22 A

The flux: f ¼ 0:25 mWb mWb ¼ microweber

The magnetomotive force: Fm ¼ N I ¼ ð380 tÞð0:22 AÞ
¼ 83:6 A � t

The reluctance: < ¼ Fm

f
f ¼ Fm

<

¼ 83:6 A � t
0:25 mWb

¼ 334:4 A � t=mWb m� 10�6

¼ 334:4 � 106 A � t=Wb

Basic electric and magnetic quantities and Ohm’s law

Electric circuit Magnetic circuit

Electromotive force (emf) Magnetomotive force (Fm)

Current (I) Flux fð Þ
Resistance (R) Reluctance (<)

Ohm’s law: I ¼ E

R
Ohm’s law: f ¼ Fm

<

8.4 Magnetic hysteresis

8.4.1 Magnetic field intensity
Magnetic field intensity or magnetizing force (H)
It is a measure of the actual magnetic field within a material.
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● It is the strength of an magnetic field at any point.
● It is the amount of magnetomotive force (Fm) available per unit length (l).

Calculating magnetic field intensity

● Magnetic field intensityðHÞ ¼ Magnetomotive force ðFmÞ
Length of the coilð‘Þ H ¼ Fm

‘

● Units:

Meter (m) 

H =
Fm

lAmpere-turn (A . t)/Meter (m) 

Ampere-turn (A . t)

Example 8.8: There is 0.4 A of current through a coil of wire with 150 turns. If the
length of the magnetic circuit is 15 cm, determine the magnetic field intensity.

Solution: The number of turns of wire: N ¼ 150 t

The current: I ¼ 0:4 A

The magnetomotive force: Fm ¼ N I ¼ ð150 tÞð0:4 AÞ ¼ 60 A � t

The length of the coil: ‘ ¼ 15 cm ¼ 0:15 m

The magnetic field intensity: H ¼ Fm

‘
f ¼ Fm

<

¼ 60 A � t
0:15 m

¼ 400 A � t=m

Factors affecting the magnetic field intensity (H) produced by a coil

● The number of turns of wire (N). N : ? Fm : ? H : Fm ¼ NI ; H ¼ Fm

‘

● The current (I) through the coil. I : ? Fm : ? H : Fm ¼ NI ; H ¼ Fm

‘

● The magnetic flux (f). f : ? Fm : ? H : f ¼ Fm

< ; H ¼ Fm

‘

● The length of the coil (‘). ‘ : ? H # H ¼ Fm

‘

8.4.2 Magnetic hysteresis
Hysteresis
It is a lag between cause and effect (or a lag between an input and an output).

‘‘Hysteresis’’ originates from the Greek word ‘‘hysterein’’ meaning ‘‘to lag behind.’’
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Magnetic hysteresis
It is the phenomenon of changes of flux density B lagging behind the magnetizing
force H in a ferromagnetic material, such as iron.

● It is the lagging of the magnetization of a ferromagnetic substance when the
magnetizing force acting on it is changed.

● It is the lag in the response of magnetic induction to change of magnetic
intensity.

Hysteresis curve (or hysteresis loop)
● A hysteresis curve (B–H curve) shows the relationship between the induced

magnetic flux density (B) and the magnetizing force (H).
● When a ferromagnetic material is magnetized in one direction, it will not

return back to zero magnetization when the applied magnetizing field is
removed.

● If an alternating magnetic field is applied to the material, its magnetization will
trace out a loop called a hysteresis curve (or loop).

Hysteresis loop and retentivity
● Positive cycle

– H ¼ 0, B ¼ 0 (A magnetic core is unmagnetized.)

– H : ? B : (The current I through the coil : ? H : ? B :)
– H : ? Hmax, B : ? Bmax

* B reaches its maximum value (Bmax) when H reaches its maximum value (Hmax)
(Figure 8.6).

* Saturation: when the magnetic domains are all fully aligned, H : ? B does not
change ? saturation

– H # ? B # ? Bres ? Hc Bres – residual value, Hc – coercive value
* Retentivity: the ability of a material to maintain a certain amount of magnetism

after the magnetic field is removed (Figure 8.7).
* Coercive force HC: the magnetomotive force (H) required to return the value of

the flux density (B) to zero.

B
Bmax

Hmax
H

Figure 8.6 Development of a hysteresis loop
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● Negative cycle: When the current through the coil is in the reverse direction,
the negative cycle repeats (Figure 8.7).
– �H : ? �Hmax

– �B : ? �Bmax

– �H # ? �B # ? �Bres ? �Hc

Summary

Magnetism

● Magnet: a piece of iron (or steel, alloy . . . ) that has the ability to attract
another metal object.

● Permanent magnet: a magnet that retains its magnetism over a long period time
after it is removed from a magnetic field.

● Magnetism: the attraction or repulsion properties of a magnet.
● Magnetic poles: a magnet has two areas of strongest force, called poles.

– Every magnet has a North and South Pole (N and S).
– The basic law of magnet: like poles repel, unlike poles attract.

● Magnetic field: a place near a magnet or a moving electric charge where
magnetic properties are produced.

● Electromagnetic force: a force between charged objects around their electric
and magnetic fields.

● Magnetic field lines (the lines of force): the imaginary lines around a magnet
that describe the directions of the magnetic field.
– Outside: the magnetic field lines travel from the North Pole (N) to the

South Pole (S).
– Inside: the magnetic field lines travel from the South Pole to the North

Pole.

B

Saturation 

H
Hc-Hc

Saturation
-Bres

Bres

Figure 8.7 Hysteresis loop
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Magnetic flux and magnetic flux density

● Magnetic flux (f): a measure of the amount of magnetic field lines passing
through a surface area in a magnetic field.

● Magnetic flux density (B): a measure of the amount of magnetic flux in an
area.

● Calculating magnetic flux density:

– Magnetic flux density ¼ Magnetic flux
Area

B ¼ f
A

– Units:
Tesla (T)  

B =
ϕ
A

or Gauss (G) 

Weber (Wb)  

Meter2 (m2)

Domain theory of magnetism

● Magnetized material: any material when placed in a magnetic field can get
magnetized itself.

● Ferromagnetism: the physical phenomenon in which certain materials (like
iron) can become permanent magnets when subjected to a magnetic field.

● Ferromagnetic materials: materials that can maintain their magnetic properties
when the magnetic field is removed.

● Domain theory of magnetism: it states that inside a magnet all the atoms are
aligned in the same directions.

● Magnetic domain: a small region in which the magnetic fields of atoms are
grouped together and aligned.

Charging and electric field

● Electric charge (or charge): the basic properties of particles (electrons, protons,
etc.) in matter.
– Protons are positively (þ) charged.
– Electrons are negatively (�) charged.

● Like charges repel and unlike charges attract.
● Charging: a transfer of electrons between the two objects.

– The object that loses electrons has an excess (extra) of positive charge.
– The object that gains electrons has an excess of negative charge.

–

The total charge of an object ¼ 0 : the number of electrons
¼ the number of protons

The total charge of an object ¼ þ : the object loses electrons
The total charge of an object ¼ � : the object gains electrons

8>><
>>:

● Charging by conduction and induction:
– Conduction: transfer of charge from one object to another by direct

contact.
– Induction: transfer of charge from one object to another without direct

contact.
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Electromagnetism

● Static electricity: an accumulation of an electric charge on the surface of an object.
● Static discharge: the release of static electric charge.
● Law of conservation of electric charge: the electric charge cannot be created or

destroyed, but it can be transferred from one form to another.
● Electric field: the area near a charged object experiences electric forces that fill

the area.
● Electric field lines: the imaginary lines around a charged object that describe

the electric field in an area. They begin as positive charges and end as negative
charges.

● Electric current (or a moving electric charge) can produce a magnetic field.
● Electromagnetism: a magnetic field that is created by an electric current.
● Electromagnetic induction: moving a loop of wire through a magnetic field, or

moving a magnetic field relative to a coil will produce an electric current.
● Right-hand rule: a memory aid used to remember the directions of current and

the magnetic field around a wire.
– The thumb: the direction of the positive current.
– The fingers: the direction of the magnetic field. (The fingers of your hand

circle the wire.)

Permeability

● Permeability (m): the measure of the ability of a magnetic material to respond
magnetic field development.

● Calculating relative permeability:

– Relative permeability ¼ Absolute permeability
Permeability of free space

mr ¼
m
m0

– Permeability of free space μ0: 0 μ = 4 � × 10–7 Weber/Area ∙ meter
(Wb/A ∙ m) 
or  Henry/Meter (H/m) (permeability of a vacuum)

– Units:

No unit
μr =

μ
μ0

Weber/Ampere ∙ meter (Wb/A ∙ m)

Weber/Ampere ∙ meter (Wb/A ∙ m)

● Reluctance (<): the opposition offered by a magnetic circuit to the magnetic
flux.

Ohm’s law for magnetic circuits

● Magnetomotive force (Fm): a force that is the cause of a magnetic flux in a
magnetic circuit.

● Calculating magnetomotive force:

– Magnetomotive force ¼ ðNumber of turns of wireÞðCurrentÞ
Fm ¼ N I
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– Units:
Ampere-turn (A . t)

Fm = N I
Turn (t)  

Ampere (A)

● Factors affecting the flux density produced by a coil:
– The permeability of the core
– Magnetomotive force
– The length of the coil.

● Calculating flux density:

– Flux density ¼ Absolute permeabilityð Þ Magnetomotive forceð Þ
Length of the coil

B ¼ m Fm

‘

– Units:

Tesla (T)

Ampere-turn (A ∙ t)

Weber/Ampere ∙ meter (Wb/A ∙ m)

B = μ Fm

l

Meter (m)

● Ohm’s law for magnetic circuits:

– Ohm’s law: Flux ¼ Magnetomotive force
Reluctance

f ¼ Fm

<

– Units:
Weber (Wb)

ϕ =
Fm

ℜ

Ampere-turn (A . t)

Ampere ∙ turn/Weber (A ∙ t/Wb) 

● Basic electric and magnetic quantities and Ohm’s law:

Electric circuit Magnetic circuit

Electromotive force (emf) Magnetomotive force (Fm)

Current (I) Flux (f)

Resistance (R) Reluctance (<)

Ohm’s law: I ¼ E

R
Ohm’s law: f ¼ Fm

<

Magnetic hysteresis

● Magnetic field intensity or magnetizing force (H): a measure of the actual
magnetic field within a material.

252 Understandable electric circuits: key concepts, 2nd edition



● Calculating magnetic field intensity:

– Magnetic field intensity ðHÞ ¼ Magnetomotive force ðFmÞ
length of the coil ð‘Þ H ¼ Fm

‘

– Units:

Meter (m) 

Ampere-turn (A . t)

Ampere-turn (A . t)/Meter (m) 
H =

Fm

l

● Hysteresis: a lag between cause and effect (or a lag between an input and an
output).

● Magnetic hysteresis: the phenomenon of changes of flux density B lagging
behind the magnetizing force H in a ferromagnetic material, such as iron.

● Hysteresis curve (or hysteresis loop) shows the relationship between the
induced magnetic flux density (B) and the magnetizing force (H).

Practice problems

8.1
1. ( ) force is a force between charged objects around their electric

and magnetic fields.
2. ( ) is a place near a magnet or a moving electric charge where

magnetic properties are produced.
3. The magnetic field lines travel from the South Pole to the North Pole

( ) the magnet.
4. Like poles ( ), unlike poles attract.
5. Magnetic flux is a measure of the amount of magnetic field ( )

passing through a surface area in a magnetic field.
6. Magnetic flux ( ) is a measure of the amount of magnetic flux in an

area.
7. The unit of magnetic flux density is the ( ).
8. ( ) is the physical phenomenon in which certain materials can

become permanent magnets when subjected to a magnetic field.
9. ( ) theory of magnetism states that inside a magnet all the atoms are

aligned in the same directions.
10. A magnetic ( ) is a small region in which the magnetic fields of

atoms are grouped together and aligned.
11. The amount of flux present in a round magnetic bar was measured at

0.016 Wb. If the material has a diameter of 20 cm, what is the flux
density?

8.2
12. Charging is a transfer of ( ) between the two objects.
13. Charging by induction is transfer of charge from one object to

another ( ) direct contact.
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14. ( ) electricity is an accumulation of an electric charge on the surface
of an object.

15. An electric ( ) is the area near a charged object experiences electric
forces that fill the area.

16. Electric current (or a moving electric charge) can produce a ( )
field.

17. ( ) is a magnetic field that is created by an electric current.
18. Moving a loop of wire through a magnetic field, or moving a

magnetic field relative to a coil will produce an electric ( ).
19. Electric motor is a device that converts ( ) energy into mechanical

energy.

8.3
20. ( ) is analogous to the resistance in an electrical circuit.
21. Ohm’s law for magnetic circuits gives the relationship between flux,

magnetomotive force, and ( ).
22. The unit of magnetomotive force is the ( ).
23. The absolute permeability of a piece of steel is 3.2 � 10�9 Wb/A�m.

Calculate the relative permeability of this steel material.
24. What is the magnetomotive force in a 100 turn coil of wire when

there are 2.4 A of current through it?
25. There is 0.2 A of current through an air core coil of wire with 120

turns and a length of 220 cm. Determine the flux density for the coil.
26. There is 0.28 A of current through a coil of wire with 400 turns.

Determine the reluctance of the circuit if the magnetic flux is
0.34 mWb.

8.4
27. Magnetic field ( ) is a measure of the actual magnetic field within a

material.
28. Magnetic hysteresis is the phenomenon of changes of ( ) B lagging

behind the magnetizing force H in a ferromagnetic material.
29. Hysteresis ( ) shows the relationship between the induced magnetic

flux density (B) and the magnetizing force (H).
30. There is 0.5 A of current through a coil of wire with 180 turns. If the

length of the magnetic circuit is 15 cm, determine the magnetic field
intensity.
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9.1 Introduction to alternating current (AC)

9.1.1 The difference between DC and AC
DC (direct current)
● The DC power supply provides a constant voltage and current, hence all

resulting voltages and currents in DC circuit are constant and do not change
with time.

● The polarity of DC voltage and direction of DC current do not change, only
their magnitude changes.

● Before the nineteenth century, the DC power supply was the main form of
electrical energy to provide electricity.

AC (alternating current)
● An alternating voltage is called AC voltage and alternating current is called

AC current.
● The AC voltage alternates its polarity and the AC current alternates its direc-

tion periodically.
● Since the AC power supply provides an alternating voltage and current, the

resulting currents and voltages in AC circuit also periodically switch their
polarities and directions.

Advantages of AC
● In the nineteenth century, DC and AC have had constant competition, AC

gradually showed its advantages and rapidly developed in the latter of the
nineteenth century, and is still commonly used in current industries, busi-
nesses, and homes throughout the world.

● This is because the AC power can be more cost-effective for long-distance
transmission from power plants to industrial, commercial, or residential areas.

● This is why power transmission for electricity today is nearly all AC. It is also
easy to convert from AC to DC, allowing for a wide range of applications.

9.1.2 DC waveforms
DC voltage and current
● The DC voltage and current do not change their polarity or direction over time

and only their magnitude changes.
● A DC waveform (a graph of voltage and current versus time) is shown in

Figure 9.1.
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Pulsing DC
There is also a type of DC waveform known as the pulsing DC, in which

● the amplitude of DC pulse changes periodically from zero to the maximum
with time.

● its polarity or direction do not change with time (always above zero), so it still
belongs to the DC category.

● Figure 9.2 shows some pulsating DC waveforms.

Directcurrent
(DC)

– The polarity of DC voltage and direction of DC current do not change.
– The pulsing DC changes pulse amplitude periodically, but the polarity

does not change.

9.1.3 AC waveforms
AC waveforms
● AC voltage and current periodically change polarity or direction with time.

A few examples of AC waveforms are shown in Figure 9.3.
● The sinusoidal or sine AC wave is the most basic and widely used AC wave-

form, and is often referred to as AC, although other waveforms such as square
wave, triangle wave, etc. also belong to AC.

0

V or I

t

Figure 9.1 DC waveform

0

0

0

V or I

V or I

V or I

t

t

t

Figure 9.2 Pulsing DC waveforms
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Sine AC wave
● The sine AC wave energy is the type of power that is generated by the utility

power industries around the world.
● AC voltage and current vary with sine (or we could use cosine by adding 90� to

the sine wave) function, the symbol of AC source is .
● AC quantities are represented by lowercase letters (e, v, i, etc.) and DC

quantities use uppercase letters (E, V, I, etc.).

Alternating
current (AC)

– The polarity of voltage and direction of AC current periodi-
cally change with time (such as sine wave, square wave, saw-
tooth wave, etc.).

– Sine AC (or AC) varies over time according to sine (or cosine)
function, and is the most widely used AC.

● A sine function can be described as a mathematical expression of f (t) ¼ Fm

sin(wt þy). This is the expression of sine function in the time domain (the
quantity versus time).

● Applying the expression of sine function to electrical quantities will obtain
general expressions of AC voltage and current as follows.
– Sinusoidal voltage: v(t) ¼ Vm sin(wt þy)
– Sinusoidal current: i(t) ¼ Im sin(wt þy)

9.1.4 Period and frequency
Period and frequency
● The waveform of a sinusoidal function is shown in Figure 9.4.
● Period T: the time to complete one full cycle of the waveform, or the positive

and negative alternations of one revolution.

0

0

0

+
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V or I

V or I

t

t

t

Figure 9.3 AC waveforms
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● Frequency f : the number of cycles of waveforms within 1 s. The frequency is
measured in Hertz (Hz).

For instance, in Figure 9.5, the number of complete cycles in 1 s is 2, so it has a frequency
of 2 Hz.

Calculating period and frequency

● Relationship of T and f : The frequency f of the waveform is inversely

proportional to the period T of the waveform, that is, f ¼ 1
T

.

Period and frequency

– Period T: the time to complete one full cycle
– Frequency f: number of cycles per second

– f ¼ 1
T

Calculating frequency

● Frequency ¼ 1
Period

or f ¼ 1
T

● Units: Hertz (Hz) f = 1
T Second (s)

0
π 2π

ωt

T

f (t)

Fm

Figure 9.4 Sinusoidal waveform

0

f (t)

t = 1 s

t (s)

Figure 9.5 Frequency of sine waveform
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9.1.5 The peak value and angular velocity of a sine function
The peak value of a sine wave
● There are three important components in the expression of the sine function

f(t) ¼ Fm sin(wt þy): peak value Fm, angular velocity w, and phase shift y.
● Peak value Fm:

– Fm is the peak value or amplitude of the sine wave (Im for current or Vm

for voltage).
– Fm is the distance from zero of the horizontal axis to the maximum point

(positive or negative) that a waveform can reach during its entire cycle
(Figure 9.6(a)).

The angular velocity of a sine wave
● Angular velocity w (the Greek letter omega):

– Angular velocity or angular frequency of a sine wave reflects the rate of
change of the rotation of the wave.

– Angular velocity ¼ rotating distance/time
(same with the linear motion: velocity ¼ distance/time)

● Since the time required for a sine wave to complete one cycle is period T, the
distance of one cycle is 2p as shown in Figure 9.4, so the angular velocity can

be determined by: w ¼ 2p
T

● The relationship between the angular velocity and frequency is:

w ¼ 2p
T

¼ 2pf ðf ¼ 1

T
Þ

So, the angular velocity is directly proportional to the frequency, this is also called
the angular frequency.

9.1.6 The phase of a sine function
The phase shift y of a sine wave
● Phase shift or phase y (the Greek letter phi): an angle that represents the

position of the wave shifted from a reference point at the vertical axis (0�).
● A sine wave may shift to the left or right of 0�. The range of phase shift is

between �p and þp.
y¼ 0, y< 0, and y> 0

0 00

ψ

2π

(a) (b) (c)

ωt ωtωtπ

f(t) f(t) f(t)
Fm

ψ

Figure 9.6 The peak value and phase of the sine wave
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● If phase shift y¼ 0, the waveform of sine function f(t) ¼ Fm sin(wt þ 0) or
f(t) ¼ Fm sinwt starts from t ¼ 0 as shown in Figure 9.6(a).

● If phase shift y has a negative value (y< 0), the waveform of sine function
f(t) ¼ Fm sin(wt �y) will shift to the right side of 0� as shown in
Figure 9.6(b).

● If phase shift y has a positive value (y> 0), the waveform of sine function
f(t) ¼ Fm sin(wt þy) will shift to the left side of 0� as shown in
Figure 9.6(c).

Three important
components of a
sine function

f ðtÞ ¼ Fm sinðwt þ yÞ
– Fm: Peak value (amplitude)
– w: Angular velocity or angular frequency

w ¼ 2p
T

¼ 2pf ðp ¼ 180�Þ
– y: Phase or phase shift

y> 0: waveform shifted to the left side of 0�
y< 0: waveform shifted to the right side of 0�

Units:

● f (t) = Fm sin (ωt + ψ)
Radian or degree (rad or °)

Radian/second

●

Hertz (Hz) 

Second (s) 

ω = 2� = 2�fT

9.1.7 An example of a sine voltage

Example 9.1: Given a sinusoidal voltage v(t) ¼ 6 sin(25t � 30�) V, determine its
peak voltage, phase angle, and frequency, and plot its waveform.

Solution:

● Peak value: Vm ¼ 6 V

● Phase: y ¼ �30
� ð, y < 0;waveform shifted to the right side of 0�Þ
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● Frequency: f ¼ 1
T

, w ¼ 2p
T

; and w ¼ 25 rad=s

, T ¼ 2p
w

¼ 2p rad
25 rad=s

� 0:25 s

and f ¼ 1
T
¼ 1

0:25 s
¼ 4 Hz

● The waveform is shown below:

9.1.8 Phase difference of the sine function
Phase difference j
● For two different sine waves with the same frequency, the angular displace-

ment of their phases is called phase difference and denoted by j (lowercase
Greek letter phi).

● Phase difference is a phase angle by which one wave leads or lags another.

For instance, given the general expressions of sinusoidal voltage and current as

vðtÞ ¼ Vm sinðwt þ yvÞ and iðtÞ ¼ Vm sinðwt þ yiÞ
The phase difference between voltage and current is

j ¼ ðwt þ yvÞ � ðwt þ yiÞ ¼ yv � yi

j¼ 0, j> 0, and j< 0
● If j¼yv �yi ¼ 0, the two waveforms are in phase as shown in Figure 9.8(a).
● If j¼yv �yi > 0, voltage leads current, or current lags voltage as shown in

Figure 9.8(b).
● If j¼yv �yi < 0, current leads voltage, or voltage lags current, as shown in

Figure 9.8(c).

0
2π

ψ = 30°

π

v(t)

Vm = 6V

T = 0.25 s 

ωt

Figure 9.7 Waveform for Example 9.1
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j ¼ � p
2
;j > 0; and j < 0

● If j ¼ yv � yi ¼ �p
2

(or �90�), then voltage and current are orthogonal, or is

a right angle. It is shown in Figure 9.8(d).
(The Greek orthos means ‘‘straight’’, and gonia means ‘‘angle’’.)

● If j¼yv �yi ¼�p (or �180�), voltage and current are 180 degrees out of
phase as shown in Figure 9.8(e).

0
ωt

i

v

Figure 9.8(a) Two waveforms are in phase

0 0ωt
i

v

φ ψv

ψi

φ

v i

ωt

Figure 9.8(b) Current lags voltage

0 0

ψv

ψiφ

φ

 
ωt ωt

i

v
i v

Figure 9.8(c) Current leads voltage
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2
2−

φ =
φ =

ωt

π

i
v

π

v i

ωt

Figure 9.8(d) Voltage and current are orthogonal
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Phase difference j

j ¼ yv � yi

For two waves with the same frequency such as

vðtÞ ¼ Vm sin ðwt þ yvÞ; iðtÞ ¼ Im sin ðwt þ yiÞ

– If j¼ 0: v and i in phase
– If j> 0: v leads i
– If j< 0: v lags i

– If j ¼ �p
2

: v and i are orthogonal

– If j¼�p: v and i are 180 degrees out of phase

9.1.9 An example of phase difference

Example 9.2: Determine the phase difference of the following functions and plot
their waveforms.

(a) vðtÞ ¼ 20 sinðwt þ 30
� Þ V; iðtÞ ¼ 12 sinðwt þ 60

� Þ A

(b) vðtÞ ¼ 5 sinðwt þ 60
� Þ V; iðtÞ ¼ 2:5 sinðwt þ 20

� Þ A

Solution:

(a) j¼yv �yi ¼ 30� � 60� ¼ 30� < 0
So, voltage lags current by 30� as shown in Figure 9.9(a).

π 2π
ωt

iv

0

Figure 9.8(e) Voltage and current are out of phase

0

20

30°

30°

60°

i

v

ωt

Figure 9.9(a) Figure for Example 9.2(a)
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(b) j¼yv �yi ¼ 60� � 20� ¼ 40� > 0
So voltage leads current by 40� as shown in Figure 9.9(b).

9.2 Sinusoidal AC quantity

9.2.1 Peak value and peak–peak value
AC voltage or current can be described in a number of ways
● A sinusoidal AC quantity such as AC voltage or current can be described in a

number of ways. They can be described by their peak value, peak–peak value,
instantaneous value, average value or rms (root-mean-square) value.

● The different expressions will provide different ways to analyze the sinusoidal
AC quantity, and it is also because a sinusoidal wave always varies periodi-
cally and there is no one single value that can truly describe it.

Peak value Fpk

● The peak value is the amplitude or maximum value Fm in sine function
f (t) ¼ Fm sin(wt þy).

● The peak value is denoted by Fpk as shown in Figure 9.10.

Peak–peak value Fp-p

● The peak–peak value Fp-p represents the distance from negative to positive
peak, or minimum to maximum peak, or between peak and trough of the
waveform.

● The peak–peak value Fp-p ¼ 2Fpk as shown in Figure 9.10.

(To determine the maximum values that electrical equipment can withstand, the peak values or
peak–peak values of the AC quantities should be considered.)

0

5

40°

20°

60°

i

v

ωt

Figure 9.9(b) Figure for Example 9.2(b)
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9.2.2 Average value
Average value is defined as the average of f(t)’s half-cycle
● Because of the symmetry of the sinusoidal waveform, its average value in a

complete full cycle is always zero.
● For a sinusoidal function f (t) ¼ Fm sin(wt þy), its average value is defined as

the average of its half-cycle (0 to p), as shown in Figures 9.11 and 9.12.

Derive average value
● The average value of a half-cycle sinusoidal wave with a zero phase shift can

be derived by using integration as follows:
● Note: If you have not learned calculus, then just keep in mind that FAvg ¼ 0.637Fm is the

equation for the average value of a half-cycle sinusoidal wave, and skip the following
mathematic derivation process.

FAvg ¼ Area
p

¼ 1
p

ðp

0

f ðtÞdt ¼ 1
p

ðp

0

Fm sinwtdwt

¼ Fm

p
�coswt½ �p0 ¼ �Fm

p
cosp� cos 0½ �

¼ �Fm

p
ð�1 � 1Þ ¼ 2Fm

p
� 0:637Fm

i.e., FAvg ¼ 0:637Fm

● Therefore, the average value of a half-cycle sinusoidal wave is 0.637 times the
peak value, as shown in Figure 9.12.

0

f (t)

Fp-p

Fm = Fpk

ωt

Figure 9.10 Peak and peak–peak value

0
ωt

Fm

f (t)

π

Figure 9.11 Average value
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9.2.3 Instantaneous value
Instantaneous value of the sinusoidal waveform
● The instantaneous value of the sinusoidal waveform f(t) varies with time, and it

is the value at any instant time t (or wt) in any particular point of a waveform.
● Instantaneous values of the variables are denoted by lowercase letters, such as

voltage v, current i, etc.

Example 9.3: Given a sinusoidal AC voltage v(t)¼ Vmsinwt as shown in Figure 9.13,
determine the instantaneous voltage v1 (voltage at 30�) and v2 (voltage at 135�) when
Vm ¼ 5 V.

Solution:

v1 ¼ Vm sinwt ¼ 5 sin30� ¼ 2:5 V

v2 ¼ Vm sinwt ¼ 5 sin135� � 3:54 V

Peak value, peak–peak
value, instantaneous
value, and average value

For a sinusoidal waveform:

– Peak value Fpk ¼ Fm: the amplitude or maximum value

– Peak–peak value Fp-p: Fp-p ¼ 2Fpk

– Instantaneous value f(t): the value at any time in any
particular point of the waveform

– Average value FAvg: FAvg ¼ 0.637Fm

0 π

0.637

ωt

Fm

f (t)

Figure 9.12 Average value

0 135°30° 90°
ωt

Vm = 5 V

v2
v1

v(t)

Figure 9.13 Figure for Example 9.3
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9.2.4 RMS (root-mean-square) value
Applications of RMS value
● RMS value (also referred to as the effective value) of the sinusoidal waveform

is widely used in practice.
● For example, the values measured and displayed on instruments and the

nominal ratings of the electrical equipment are rms values.
● In North America, the single-phase AC voltage 110 V from the wall outlet is a

RMS value.

The physical meaning of RMS value
● For a sinusoidal waveform, the physical meaning of the AC RMS value is the

heating effect of the sine wave.
● An AC source RMS value will deliver the equivalent amount of average power

to a load as a DC source.
● For instance, whether turning on the switch 1 (connect to DC) or switch 2

(connect to AC) in Figure 9.14, 20 V DC or 20 V AC RMS value will deliver
the same amount of power (40 W) to the resistor (lamp).

● If the lamp is replaced by an electric heater, then the heating effect delivered
by 20 V DC and 20 V AC RMS will be the same.

9.2.5 Quantitative analysis of RMS value
The average power of AC
● The average power generated by an AC power supply is:

pac ¼ iac
2R ¼ ðImsinwtÞ2R ¼ ðIm

2sin2wtÞR

pac ¼ Im
2 1

2
ð1 � cos2wtÞ

� �
R ¼ Im

2R
2

� Im
2R
2

cos2wt sin2wt ¼ 1
2
ð1 � cos2wtÞ

1 2

20 V DC 20 V RMS

P = 40 W
R = 10 Ω

I = 2 A

Figure 9.14 RMS value
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● Only the first part in the above power expression represents the average power
of AC, since the average value of the second part in the power expression

(a cosine function) is zero, i.e., Pac ¼ Im
2R

2

● The average power generated by DC voltage is Pavg ¼ I2R

RMS value of AC current
● According to the physical meaning of RMS, the average AC power is

equivalent to the average DC power when the AC source is a RMS value, so

Im
2R

2
¼ I2R or I2 ¼ Im

2

2

● Taking square root on both sides of equation gives,

I ¼
ffiffiffiffiffiffiffi
Im

2

2

s
¼ Imffiffiffi

2
p � 0:707Im or Im ¼ ffiffiffi

2
p

I � 1:414I (9.1)

● The current I in the above equation is the RMS value of the AC current, and Im

is the peak value or amplitude of the AC current.

RMS value of AC voltage
● RMS value of AC voltage can be obtained in the same approach by obtaining

the RMS value of the AC current, i.e.,

V ¼ Vmffiffiffi
2

p ¼ 0:707Vm or Vm ¼ ffiffiffi
2

p
V ¼ 1:414 V (9.2)

● The voltage V in (9.2) is the RMS value of AC voltage, and Vm is the peak
value or amplitude of the AC voltage.

9.2.6 RMS value of a periodical function
The RMS value of a non-sine wave function
● Equations (9.1) and (9.2) indicate the relationship between the RMS value and

the peak value of a sine wave, which is related by
ffiffiffi
2

p
.

● That relation only applies to the sine wave. For a non-sine wave function f (t),
the following general equation can be used to determine its RMS value:

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

ðT

0
f 2ðtÞdt

s
ðT is the period of the functionÞ
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Root-mean-square
The name root-mean-square (RMS) is obtained from the above equation, in which
the term of

– ffip denotes square root (root).
– 1/T denotes the average (mean).
– f 2(t) denotes square (square).

RMS value of AC
function

– RMS value or effective value of AC: an AC source with RMS
value will deliver the equivalent amount of power to a load as a
DC source.

– V ¼ 0.707Vm , I ¼ 0.707Im

or Vm ¼ ffiffiffi
2

p
V; Im ¼ ffiffiffi

2
p

I

– The general equation to calculate RMS value:

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

ðT

0
f 2ðtÞdt

s

9.3 Phasors

9.3.1 Introduction to phasor notation
A phasor
● A phasor is a vector that contains both magnitude and direction or amplitude

and phase information.
● A phasor can be used to represent AC quantities. Since phasors have magni-

tudes and directions, they can be represented as complex numbers.

A phasor notation
● A phasor notation or phasor-domain is a method that uses complex numbers to

represent the sinusoidal quantities for analyzing AC circuits.
Charles Proteus Steinmetz, a German-American mathematician and electrical engineer,
developed the phasor notation in 1893.

● A phasor notation can represent sine waves in terms of their peak value
(magnitude) and phase angle (direction). The peak value can be easily con-
verted to the RMS value.

● The phasor notation can simplify the calculations for AC sinusoidal circuits,
therefore, it is widely used in circuit analysis and calculations.

The same frequency
● The phasor notation can be used for sinusoidal quantities only when all

waveforms have the same frequency.
● In an AC circuit, AC source voltage and the current are the sinusoidal values

with the same frequency, so the resulting voltages and currents in the circuit
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should also be sinusoidal values with the same frequency or angular
frequency.

● Voltages and currents in an AC circuit can be analyzed by using the phasor
notation, i.e., they can be determined by the peak value or RMS value and the
phase shift of the phasor notation.

Phasor

– A phasor is a vector that contains both amplitude and angle information, and
it can be represented as complex number.

– Phasor notation is a method that uses complex numbers to represent the
sinusoidal quantities for analyzing AC circuits when all quantities have the
same frequency.

9.3.2 Complex numbers review
Complex numbers
● The key for understanding the phasor notation is to know how to use complex

numbers. Therefore, we will review some important formulas of complex
numbers that you may have learned in previous mathematics courses.

● The complex number has two main forms, the rectangular form and the polar
form.

Rectangular form

● Rectangular form: A ¼ x þ jy j ¼ ffiffiffiffiffiffiffi�1
p Þ�

where x is the real part and y is the imaginary part. j is called the imaginary
unit.

● The symbol i is used to represent imaginary unit in mathematics. Since i has
been used to represent AC current in the circuit analysis, j is used to denote the
imaginary unit rather than i to avoid confusion.

Polar form
● A ¼ affy This is the abbreviated form of the exponential form A ¼ aejy, in

which a is called modulus of the complex number, and the angle y is called
argument of the complex number.

Convert rectangular form to polar form

● Let A ¼ x þ jy ¼ affy
● Apply a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Pythagorean theory

gives A ¼ x þ jy ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ Y 2

p
tan�1 y

x
¼ aff y Refer to Figure 9.15.

Convert polar form to rectangular or triangular form
● x ¼ a cosy and y ¼ a siny can be obtained from Figure 9.15.

● so, A ¼ affy ¼ x þ jy ¼ aðcosyþ j sinyÞ
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Convert triangular form to exponential form
● Euler’s formula can be used for the conversion from triangular form to

exponential form:

● ejy ¼ cosyþ j siny or aejy ¼ aðcos yþ j sin yÞ

Operations on complex numbers
● Given two complex numbers,

A1 ¼ x1 þ jy1 ¼ a1 <y1 and A2 ¼ x2 þ jy2 ¼ a2 >y2

● Addition: A1 þ A2 ¼ (x1 þ x2) þ j (y1 þ y2)

● Subtraction: A1�A2 ¼ (x1�x2) þ j (y1�y2)

● Multiplication:
– Polar form: A1 � A2 ¼ a1 a2 < (y1 þy2)

– Rectangular form:

A1 �A2 ¼ ðx1 þ jy1Þðx2 þ jy2Þ ¼ ðx1x2 � y1y2Þ þ jðx2y1 þ x1y2Þ

j2 ¼ ffiffiffiffiffiffiffi�1
p ffiffiffiffiffiffiffi�1

p ¼ ð ffiffiffiffiffiffiffi�1
p Þ2 ¼�1

● Division:

– Polar form:
A1

A2
¼ a1

a2
ffðy1 � y2Þ

– Rectangular form:

A1

A2
¼ x1 þ jy1

x2 þ jy2
¼ ðx1 þ jy1Þðx2 � jy2Þ

ðx2 þ jy2Þðx2 � jy2Þ ¼
x1x2 þ y1y2

x2
2 þ y2

2
þ j

x2y1 � x1y2

x2
2 þ y2

2

(It will be much simpler to use the polar form on operations of multiplication and division.)

0

+j

ψ

a

y

x
+

Figure 9.15 Complex number
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Complex numbers

– Rectangular form: A ¼ x þ j y
– Polar form: A ¼ affy
– Conversion between rectangular and polar forms:

A ¼ x þ jy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
tan�1 y

x
¼ affy

A ¼ affy ¼ x þ jy ¼ aðcosyþ j sinyÞ
– Addition and subtraction: A1 � A2 ¼ (x1 � x2) þ j (y1 � y2)

– Multiplication: A1 � A2 ¼ a1 a2 < (y1 þy2)¼ (x1 þ jy1) (x2 þ jy2)

– Division:
A1

A2
¼ a1

a2
ffðy1 � y2Þ ¼

x1 þ jy1

x2 þ jy2

9.3.3 Phasor domain
Real part and imaginary part of complex numbers
● Using the phase notation to represent the sinusoidal function is based on

Euler’s formula ejj¼ cosjþ jsinj.
● For a sinusoidal function f (t) ¼ Fm sin (wt þy), replacing j with (wt þy) in

Euler’s formula gives,

ejðwtþyÞ ¼ cosðwt þ yÞ þ j sinðwt þ yÞ
where cosðwt þ yÞ ¼ Re ejðwtþyÞ� �
and sinðwt þ yÞ ¼ Jm ejðwtþyÞ� �

● ‘‘Re [ ]’’ and ‘‘Jm [ ]’’ stand for ‘‘real part’’ and ‘‘imaginary part’’ of the
complex numbers, respectively.

The rotating factor and the phasor

● Sine function f ðtÞ ¼ Fm sinðwt þ yÞ ¼ Jm FmejðwtþyÞ� � ¼ Jm Fmejy � ejwt½ �
That is, a sinusoidal function is actually taking the imaginary part of the
complex number

f ðtÞ ¼ Jm Fmejy � ejwt½ � (9.3)

● There are two terms in (9.3), Fmejy and ejwt.
– The second term ejwt is called the rotating factor that varies with time t.
– The first term is the phasor of the sinusoidal function

Fmejy ¼ Fmffy ¼ F

● So, (9.3) of sine function can be written as:

f ðtÞ ¼ Fmsinðwt þ yÞ ¼ Jm½Fejwt�
● The first term in (9.3) is F = Fm ffy, where bold-face letter F represents a

phasor (vector) quantity. (Similar to the boldface that indicates a vector quantity in
mathematics and physics.)
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● A phasor quantity can also be represented by a little dot on the top of the letter,
such as _F ¼ Fmffy.

● There is no difference between operations on phasors and complex numbers,
since both of them are vectors.

Sinusoidal currents and voltages in the phasor domain
● If the sinusoidal currents and voltages in an AC circuit are represented by

vectors with the complex numbers, this is known as phasors.
● The sinusoidal voltage v(t) ¼ Vmsin(wt þy) and current i(t) ¼ Imsin(wt þy) in

an AC circuit can be expressed in the phasor domain as:
– Peak value:

_V ¼ Vmffyv or V ¼ Vmffyv

_I ¼ Imffyi or I ¼ Imffyi

– RMS value:

_V ¼ Vffyv or V ¼ Vffyv

_I ¼ Iffyi or I ¼ Iffyi

9.3.4 Phasor diagram
A phasor diagram
● Since a phasor is a vector that can be represented by a complex number, it

can be presented with a rotating line in the complex plane as shown in
Figure 9.16.

● The length of the phasor is the peak value Fm (or RMS value F). The angle
between the rotating line and the positive horizontal axis is the phase angle y
of the sinusoidal function. This diagram is called the phasor diagram.

–

–

–
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Example 9.4: Use the phasor notation to express the following voltage and current
in which 12 and �10 are the peak values.

(a) v ¼�10 sin(60t þ 25�) V

(b) i ¼ 12 sin(25t � 20�) A

Solution:

(a) _V m ¼ �10ff25�V

(b) _I m ¼ 12ff� 20� A

Example 9.5: Use the instantaneous value to express the following voltage and
current in which 120 and 12 are the RMS values.

(a) _V ¼ 120ff30� V

(b) _I ¼ 12ff0� A

Solution:

(a) v ¼ 120
ffiffiffi
2

p
sin ðwt þ 30Þ� V

(b) i ¼ 12
ffiffiffi
2

p
sinwt A

9.3.5 Rotating factor
Rotating factor ejwt

● In the sinusoidal expression of f (t) ¼ Fmsin(wt þy) ¼ J-m[Fmejy � ejwt], the
term ‘‘ejwt’’ varies with time t, known as the rotating factor or time factor.

● As time changes, the rotating factor rotates counterclockwise at angular
frequency w in a radius Fm of the circle, as shown in Figure 9.17.

0

+j

+

ψ

ψ

Fm
F = Fm

Figure 9.16 Phasor diagram
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● The rotating factor ejwt can be represented by Euler’s formula

ejwt ¼ cos wt þ j sin wt

when wt ¼ �90�: e�j90� ¼ cosð�90�Þ þ j sinð�90�Þ ¼ �j

cosð�90�Þ ¼ 0; sinð�90�Þ ¼ 1

Therefore, � j is also the rotating factors (�j ¼�90�).

Rotating factor ejwt or � j ¼�90�

Sine wave and phasors
● A sinusoidal function can be represented by a rotating phasor that rotates in

360� in a complex plane as shown in Figure 9.18.
● The instantaneous value of the sinusoidal wave at any time is equal to the

projection of its relative rotating phasor on the vertical axis (j) at that time.

The geometric meaning of the sinusoidal function f (t) ¼ Fmsin(wt þy) ¼ Jm

[Fmejy � ejwt] represented by the rotational phasor motion can be seen from the
following example.

Example 9.6:

In Figure 9.18,

● when t ¼ t0 ¼ 0, the phasor is F ¼ Fm ffy
● when t ¼ t1, the phasor is F ¼ Fm ff90�

● It goes from y to 360�.

0

••••

+1

+j

–j

Fm
ω

ψ

Figure 9.17 Rotating factor
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9.3.6 Differentiation and integration of the phasor
Note: Skip the following part and start from Example 9.8 if you have not learned
calculus.

Differentiation of the phasor
● For a sinusoidal function f (t)¼ Fm sin(wt þy), the derivative of the sinusoidal function with

respect to time can be obtained by its phasor F multiplying with jw,

i.e.,
df ðtÞ

dt
, jw F

● This is equivalent to a phasor that rotates counterclockwise by 90� on the complex plane
(since +j ¼ +90�).
(Appendix B provides the details for how to derive the above differentiation of the sinusoidal
function in the phasor notation.)

Integration of the phasor
● The integral of the sinusoidal function with respect to time can be obtained from its phasor

divided by jw, i.e.,

ð
f ðtÞdt ¼ _F

jw

● This is equivalent to a phasor that rotates clockwise on the complex plane by 90�.

ðsince
1
j
¼ �j ¼ �90

�
:Þ

Differentiation and
integration of the
sinusoidal function
in phasor notation

– Differentiation:
df ðtÞ

dt
, jwF or jw _F ðþj ¼ þ90

� Þ

– Integration:
ð

f ðtÞdt , F

jw
or

1
jw

_F
1
j
¼ �j ¼ �90

�
� 	

0

ψ

+j

• • • •

–j

90°0

Fm

Fmt = t1

t = t0

t = t1t = t0
ψ

ωt

ω

Figure 9.18 Sine wave and phasor motion
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9.3.7 Examples of phasor domain

Example 9.7: Convert the following sinusoidal time domain expression to its
equivalent phasor domain, and determine voltage _V (or V).

2v � 6
dv

dt
þ 4

ð
vdt ¼ 20 sinð4t þ 30

� Þ

Solution:

2 _V � 6jw _V þ 4
_V

jw
¼ 20ff30

�

Since w¼ 4 in the original expression, so

2 _V � 6j 4 _V þ 4
_V

j4
¼ 20ff30

�

_V ð2 � 24j � jÞ ¼ 20ff30
�

_V ¼ 20ff30
�

2 � j25
� 20ff30

�

25ff�85:43
� ¼ 0:8ff115:43

�

Note:
– The complex number of the denominator is

Z ¼ x þ jy ¼ 2 � j25 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
tan�1 y

x
– Since x is positive and y is negative in (2�j25), the angle should be in the fourth

quadrant, i.e., �85.43�.

Example 9.8: Convert the phasor domain voltage and current to their equivalent
sinusoidal forms (time domain).

(a) _I ¼ j 5e�j30
�

mA
(b) _V ¼ �6 þ j8 V

Solution: (a) _I ¼ j 5ff�30
�

mA ¼ 5ff90
�ff�30

�
mA j ¼ 90

�

¼ 5ffð90
� � 30

� Þ mA ¼ 5ff60
�

mA

; iðtÞ ¼ 5 sinðwt þ 60
� Þ mA

(b) _V ¼ �6 þ j8 V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�6Þ2 þ 82

q
tan�1ff 8

�6
V � 10ff126:87

�
V

(Since y is positive and x is negative, it should be in the second
quadrant.)

; vðtÞ ¼ 10 sinðwt þ 126:87
� Þ V
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If the phasors are used to express sinusoidal functions, the algebraic operations of
sinusoidal functions of the same frequency can be replaced by algebraic operations
of the equivalent phasors, which is shown in Example 9.9.

Example 9.9: Calculate the sum of the following two voltages.

v1(t) ¼ 2sin(wt þ 60�) V and v2(t) ¼ 10sin(wt � 40�) V

Solution: Convert the sinusoidal time domain voltages to their equivalent phasor
forms:

_V 1 ¼ 2ff60
�

V and _V2 ¼ 10ff � 40
�

V

So _V 1 þ _V 2 ¼ 2ff60
� þ 10ff�40

�
affy ¼ aðcosyþ j sin Þ

¼ 2 cos60
� þ j 2 sin60

� þ 10 cosð�40
� Þ þ j 10 sinð�40

� Þ
� 1 þ j1:732 þ 7:66 � j6:43

¼ 8:66 � j4:698

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:662 þ ð�4:698Þ2

q
tan�1ð�4:698

8:66
Þ

� 9:85ff� 28:48
�

V

(Since y is negative and x is positive, it should be in the fourth quadrant.)

, vðtÞ ¼ 9:85 sinðwt � 28:48
� Þ V

9.4 Resistors, capacitors, and inductors in sinusoidal
AC circuits

9.4.1 Resistor’s AC response
R, L, and C’s AC response
● Any AC circuit may contain a combination of three basic circuit elements,

resistor (R), inductor (L), and capacitor (C).
● When R, L, and C are connected to a sinusoidal AC voltage source, all

resulting voltages and currents in the circuit are also sinusoidal and have the
same frequency as AC voltage source.

● All voltages and currents in the AC circuit can be converted from the sinusoidal
time domain form f(t) ¼ Fm sin(wt þy) to the phasor domain F ¼ Fm ffy.

Resistor’s AC response
● A resistor is connected to a sinusoidal voltage source as shown in Figure 9.19(a).
● Where the source voltage is:

e ¼ Vm sinðwt þ yÞ
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● The sinusoidal current in the circuit can be obtained by applying Ohm’s law for
AC circuits (v ¼ Ri),

i.e., iR ¼ e

R
¼ VRm

R
sinðwt þ yÞ ¼ IRm sinðwt þ yÞ

– Peak value: IRm ¼ VRm

R

– RMS value: I ¼ VR

R

● Voltage across the resistor is the same with the source voltage, i.e., e ¼ vR

or vR ¼ Vm sinðwt þ yÞ

9.4.2 Resistor’s AC response in time domain
Angular frequency and phase angle of vR and iR
● The sinusoidal expressions of resistor voltage vR and current iR indicate that vol-

tage and current in the circuit have the same angular frequency (w) and the same
phase angle y (or vR and iR are in phase). This is also illustrated in Figure 9.19(b).

● Assuming the initial phase angle is zero, i.e., y¼ 0�, then,

iR ¼ vR

R
iR ¼ IRm sinwt

vR ¼ R iR vR ¼ VRm sinwt

● This is illustrated in Figure 9.19(c).

0
R

ψ

(a) (b)

vRe

iR

+

–

vR

iR
ωt

Figure 9.19 Resistor’s AC response

0
ωt

vR

iR

Figure 9.19(c) When y¼ 0�

280 Understandable electric circuits: key concepts, 2nd edition



The vR and iR in the time domain
The sinusoidal expressions of resistor voltage (vR) and current (iR) are in the time
domain.

Relationship of voltage and current
of a resistor in an AC circuit

– Instantaneous values (time domain):

vR ¼ VRm
sin(wt þy)

iR ¼ IRm
sin(wt þy)

– Ohm’s law:

Peak value: VRm
¼ IRm

R

RMS value: VR ¼ IRR

9.4.3 Resistor’s AC response in phasor domain
● The peak and RMS values of the resistor voltage and the current in phasor

domain also obey the Ohm’s law as follows:

– Peak value: _IRm ¼
_VRm

R
or VRm ¼ IRm R

A phasor can be represented by the boldface or a little dot on the top of the letter.

– RMS value: _IR ¼
_VR

R
or VR ¼ IRR

● If it is expressed in terms of conductance, it will give

_IR ¼ G _VR G ¼ 1
R

� 	

● The relationship of the resistor voltage and current in an AC circuit can be
presented by a phasor diagram illustrated in Figure 9.20(b).

+

–

0

+j•
IR

••
E

•

•

(a) (b)

R VR

VR

IR

ψ
+

Figure 9.20 The phasor diagram of the AC resistive circuit
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Example 9.10: If R ¼ 10 W; iR ¼ 6
ffiffiffi
2

p
sin ðwt � 30

� Þ A in Figure 9.20(a), deter-
mine the voltage across resistor in the phasor domain.

Solution: vR ¼ RiR ¼ 10 	 6
ffiffiffi
2

p
sinðwt � 30

� Þ ¼ 60
ffiffiffi
2

p
sinðwt � 30

� Þ
so _VRm ¼ 60

ffiffiffi
2

p ff� 30
�

V

Resistor’s AC response in
phasor domain

Ohm’s Law:

– Peak value: _VRm ¼ _IRm R or VRm ¼ IRm R

– RMS value: _VR ¼ _IRR or VR ¼ IRR

– Using conductance: _IR ¼ G _VR G ¼ 1
R

� 	

Phasor diagram: IR VR
• •

(AC resistor voltage and current are in phase)

Note that we can use Ohm’s law in AC circuits as long as the circuit quantities are consistently
expressed, i.e., both the voltage and current are peak values, RMS values, instantaneous values,
etc.

9.4.4 Inductor’s AC response
Sinusoidal expression of the iL and vL

● If an AC voltage source is applied to an inductor as shown in Figure 9.21(a),
the current flowing through the inductor will be

iL ¼ ILm sinðwt þ yÞ (9.4)

● The relationship between the voltage across the inductor and the current that
flows through it is

vL ¼ L
di

dt
(9.5)

0

+

–
90°

vL

iL

ωtvL
e

iL

(a) (b)

L

Figure 9.21 Inductor’s AC response
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● Note: If you have not learned calculus, then just keep in mind that

vL ¼ wLILm sinðwt þ yþ 90
� Þ

is the sinusoidal expression of the inductor voltage, and skip the following
mathematic derivation process.

● Substituting (9.4) into (9.5) and applying differentiation gives

vL ¼ L
diL
dt

¼ L
d ILm sinðwt þ yÞ½ �

dt
¼ wLILm cosðwt þ yÞ

¼ wLILm sinðwt þ yþ 90
� Þ , cosj ¼ sinðwt þ 90

� Þ

● Therefore, vL ¼ wLILm sin ðwt þ yþ 90
� Þ (9.6)

Angular frequency and phase angle of the vL and iL
● The sinusoidal expressions of the inductor voltage vL and current iL indicate

that in an AC inductive circuit, the voltage and current have the same angular
frequency (w) and a phase difference.

● The inductor voltage vL leads the current iL by 90� as illustrated in Figure 9.21(b)
if we assume that initial phase angle y¼ 0�.

9.4.5 The current and voltage in an inductive circuit
Ohm’s law for an inductive circuit
● The relationship between the voltage and current in an inductive sinusoidal AC

circuit can be obtained from (9.6), which is given by
– Peak value: VLm

¼wLILm

– RMS value: VL ¼wLIL

● This is also known as Ohm’s law for an inductive circuit.

Inductive reactance and susceptance
● wL is called inductive reactance and is denoted by XL,

i.e., XL ¼wL ¼ 2pfL (w¼ 2pf )

– Peak value: VLm ¼ XLILm or XL ¼ VLm

ILm

– RMS value: VL ¼ XLIL or XL ¼ VL

IL
● XL is measured in ohms (W) (it is the same as resistance R).

● In an inductive circuit, the reciprocal of reactance is called inductive sus-

ceptance and is denoted by BL, i.e., BL ¼ 1
XL

, and is measured in siemens (S)

or mho (℧).
Recall that the conductance G is the reciprocal of resistance R.
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Relationship of voltage and
current of inductor in
an AC circuit

– Instantaneous values (time domain):

iL ¼ ILm
sin(wt þy)

vL ¼ XLILm
sin(wt þyþ 90�)

– Ohm’s Law:

Peak value: VLm
¼ XLILm

RMS value: VL ¼ XLIL

– Inductive reactance: XL ¼wL ¼ 2pfL

Unit: Ohm (W)

– Inductive susceptance: BL ¼ 1
XL

Unit: Siemens (S) or mho (℧)

9.4.6 Characteristics of an inductor
Angular frequency and inductor voltage
● In an AC inductive circuit, the relationship between the voltage and current is

not only determined by the value of inductance L in the circuit but also related
to the angular frequency w.

● If an inductor has a fixed value in the circuit of Figure 9.21(a), inductance L in
the circuit is a constant, and the higher the angular frequency w, the greater the
voltage across the inductor.

VL "¼ XLIL ¼ ðw " LÞ IL

● When w ! ?, VL ! w
i.e., when the angular frequency (w) approaches to infinite, the inductor
behaves as an open circuit in which the current is reduced to zero.

● The lower the angular frequency w, the lower the voltage across the inductor:

VL #¼ XLIL ¼ ðw # LÞ IL

When w¼ 0, VL ¼ 0

● i.e., the AC voltage across the inductor now is equivalent to a DC voltage since
the frequency (w¼ 2pf ) does not change any more.

Pass AC and block DC
● Recall that the inductor is equivalent to a short circuit at DC. In this case, the

inductor is shortened because of zero voltage across the inductor.
● An inductor can pass the high-frequency signals (pass AC) and block the low-

frequency signals (block DC).

Characteristics of an inductor
– An inductor can pass AC (open-circuit equivalent).
– An inductor can block DC (short-circuit equivalent).

284 Understandable electric circuits: key concepts, 2nd edition



9.4.7 Inductor’s AC response in phasor domain
The vL and iL in phasor domain
● The sinusoidal expressions of the inductor voltage vL and current iL are in the

time domain. The peak and RMS values of the inductor voltage and the current
in phasor domain also obey Ohm’s law as follows:

– Peak value: _VLm ¼ j XL _I Lm or VLm ¼ j XL ILm

– RMS value: _VL ¼ j XL _I L or VL ¼ j XL IL

● This is because vL ¼ L
di

dt
, L jwIL Differentiating: multiply by jw

So, _VL ¼ ð jwLÞ_I L or _VL ¼ jXL _I L XL ¼ wL

The phasor diagram of the AC inductive circuit
● The relationship of the inductor voltage and current in an AC circuit

can be presented by a phasor diagram illustrated in Figure 9.22(b) and (c).
● Figure 9.22(b) is when the initial phase angle is zero, i.e., y¼ 0�, and

Figure 9.22(c) is when y 6¼ 0� (the inductor current lags voltage by 90�.)

Inductor’s AC response in
phasor domain

Ohm’s law:

– Peak value: _V Lm ¼ j XL _I Lm or VLm ¼ j XLILm

– RMS value _V L ¼ j XL _I L or VL ¼ j XLIL

Phasor diagram:

0
90°

IL

VL

Inductor voltage leads the current by 90�.

0

L

iL

+

vL

– 90°

+j

+ +

+j

90°

0
ψ

•
VL

•
VL

•
IL

•
IL

(a) (b) (c)

e

Figure 9.22 The phasor diagram of the AC inductive circuit
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Example 9.11: In an AC inductive circuit, given vL ¼ 6
ffiffiffi
2

p
sinð60t þ 35

� Þ V, and L
is 0.2 H, determine the current through the inductor in time domain.

Solution: Inductive reactance XL ¼wL ¼ (60 rad/s)(0.2 H) ¼ 12 W

_ILm ¼
_VLm

j XL
¼ 6

ffiffiffi
2

p ff35
�

V
j 12 W

¼ 6
ffiffiffi
2

p ff35
�

V

12ff90
� W

¼ 0:5
ffiffiffi
2

p
ff� 55

�
A j ¼ 90

�

Convert the inductor current from the phasor domain to the time domain

iL ¼ �0:5
ffiffiffi
2

p
sinð60t � 55

� Þ A

9.4.8 Capacitor’s AC response
Sinusoidal expression of the iC and vC

● If an AC voltage source is applied to a capacitor as shown in Figure 9.23(a),
the voltage across the capacitor will be

vC ¼ VCm sinðwt þ yÞ
● The relationship between the voltage across the capacitor and the current

through it is

iC ¼ C
dvC

dt

● Substituting vC into the above expression and applying differentiation gives

iC ¼ C
d½VCm sinðwt þ yÞ�

dt
¼ wCVCm sinðwt þ yþ 90

� Þ

That is

iC ¼ wCVCm sinðwt þ yþ 90
� Þ (9.7)

0

+

–

90°

(a) (b)

vC

iC

vC

iC

e ωtC

Figure 9.23 Capacitor’s AC response
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Angular frequency and phase angle of the vC and iC
● The sinusoidal expressions of the capacitor voltage vC and current iC indicated

that in an AC capacitive circuit, the voltage and current have the same angular
frequency (w) and a phase difference.

● The capacitor current leads the voltage by 90� as illustrated in Figure 9.23(b),
if we assume that the initial phase angle y¼ 0�.

9.4.9 The current and voltage in a capacitive circuit
Ohm’s law for an capacitive circuit
● The relationship between voltage and current in a capacitive sinusoidal AC

circuit can be obtained from (9.7), which is given by
– Peak value: ICm

¼ (wC) VCm

– RMS value: IC ¼ (wC) VC

● This is also known as Ohm’s law for a capacitive circuit.

Capacitive reactance and susceptance
● wC is called capacitive reactance that is denoted by the reciprocal of XC,

i.e., XC ¼ 1
wC

¼ 1
2pfC

w ¼ 2pf C

– Peak value: XC ¼ vCm

ICm

– RMS value: XC ¼ vC

IC

● XC is measured in ohms (W).
That is the same as resistance R and inductive reactance XL.

● Recall that the inductive susceptance BL is the reciprocal of the inductive
reactance XL. The reciprocal of capacitive reactance is called capacitive

susceptance and is denoted by BC, i.e., BC ¼ 1
xC

, and it is also measured in

siemens (S) or mho (℧) (the same as BL).

The relationship of voltage and current
of capacitor in an AC circuit

– Instantaneous values (time domain):
vC ¼ VCm

sin(wt þy)

iC ¼wCVCm
sin(wt þyþ 90�)

– Ohm’s law:
Peak value: VCm

¼ XC ICm

RMS value: VC ¼ XC IC

– Capacitive reactance: XC ¼ 1
wC

¼ 1
2pfC

Unit: Ohm (W)

– Capacitive susceptance: BC ¼ 1
XC

Unit: Siemens (S) or mho (℧)
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9.4.10 Characteristics of a capacitor
Angular frequency and capacitor voltage
● Similar to an inductor, in an AC capacitive circuit not only is the relationship

between voltage and current determined by the value of capacitance C in the
circuit but it is also related to angular frequency w.

● If there is a fixed capacitor in Figure 9.23(a), the capacitance C in the circuit is
a constant, and the higher the angular frequency w, the lower the voltage across
the capacitor:

VC #¼ XCIC ¼ IC

w " C

When w ! 1; VC ! 0

● i.e., when the angular frequency w approaches infinite, the capacitor behaves
as a short circuit in which the voltage across it will be reduced to zero.

● The lower the angular frequency w, the higher the voltage across capacitor.

VC "¼ IC

w # C

When w ! 0; VC ! 1
● i.e., the AC voltage across the capacitor now is equivalent to a DC voltage

since the frequency (w¼ 2pf ) does not change any more.

Pass DC and block AC
● Recall that a capacitor is equivalent to an open circuit at DC. In this case, the

capacitor is open because there will be no current flowing through the
capacitor.

● This indicates that a capacitor can block the high-frequency signal (block AC)
and pass the low-frequency signal (pass DC).
(The characteristics of a capacitor are opposite to those of an inductor.)

Characteristics of a capacitor
– A capacitor can pass DC (short-circuit equivalent).
– A capacitor can block AC (open-circuit equivalent).

9.4.11 Capacitor’s AC response in phasor domain
The vC and iC in phasor domain
● The sinusoidal expressions of the capacitor voltage vC and current iC are in the

time domain.
● The peak and RMS values of the capacitor voltage and the current in phasor

domain also obey Ohm’s law as follows:
– Peak value: _V Cm ¼ �jXC _I Cm or VC ¼ �jXCICm

– RMS value: _V C ¼ �jXC _I C or VC ¼ �jXCIC
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● This is because iC ¼ C
dvC

dt
, C jwVC Differentiating: multiply by jw

So _IC ¼ jwC _VC ¼ j
1

XC

_VC XC ¼ 1
wC

or _VC ¼ �jXC _IC
1
j
¼ �j

� 	

The phasor diagram of the AC capacitive circuit
The relationship of the capacitor voltage and current in an AC circuit can be
presented by a phasor diagram and is illustrated in Figure 9.24(b) and (c).

● Figure 9.24(b) is when the initial phase angle is zero, i.e., y¼ 0� (capacitor
voltages lags current by 90�).

● Figure 9.24(c) is when y 6¼ 0�

Capacitor’s AC
response in phasor
domain

Ohm’s law:

– Peak value: _V Cm ¼ �jXC _I Cm or VCm ¼ �jXC ICm

– RMS value: _V C ¼ �jXC _I C or VC ¼ �jXC IC

Phasor diagram:

0
90°

IC
•

VC
•

Capacitor current leads voltage by 90�.

Example 9.12: Given a capacitive circuit in which vC ¼ 50
ffiffiffi
2

p
sinðwt � 20

� Þ V,
capacitance is 5 mF, and frequency is 500 Hz, determine the capacitor current in the
time domain.

0

+

– 90°

+j

+ +

+j

90°

0
ψ

•

• IC
•

•

(a) (b) (c)

IC

ic

e C

VC

vc VC

Figure 9.24 The phasor diagram of an AC capacitive circuit
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Solution: w ¼ 2pf ¼ 2pð500 HzÞ � 3;142 rad=s

XC ¼ 1
wC

¼ 1

ð3142 rad=sÞð5 	 10�6 FÞ � 63:65 W

;ICm ¼ Vcm

XC
¼ 50

ffiffiffi
2

p
V

63:65 W
� 786

ffiffiffi
2

p
mA

iC ¼ 786
ffiffiffi
2

p
sin ðwt � 20� þ 90�Þ

¼ 786
ffiffiffi
2

p
sin ðwt þ 70�Þ mA

Summary

Direct current (DC)

● The polarity of DC voltage and direction of DC current do not change.
● The pulsing DC changes the amplitude of the pulse, but does not change the

polarity.

Alternating current (AC)

● The voltage and current periodically change polarity with time (such as sine
wave, square wave, saw-tooth wave, etc.).

● Sine AC varies over time according to the sine function, and is the most widely
used AC.

Period and frequency

● Period T is the time to complete one full cycle of the waveform.

● Frequency f is the number of cycles of waveforms within one second f ¼ 1
T

� 	
.

Three important components of the sinusoidal function f (t) ¼ Fm sin(wt þy)

● Fm: Peak value (amplitude)

● w: Angular velocity (or angular frequency) w ¼ 2p
T

¼ 2pf

● y: Phase or phase shift

– y> 0: Waveform shifted to the left side of 0�

– y< 0: Waveform shifted to the right side of 0�

Phase difference j: For two waves with the same frequency such as

vðtÞ ¼ Vm sinðwt þ yvÞ and iðtÞ ¼ Im sinðwt þ yiÞ j ¼ yv � yi
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● If j¼ 0: v and i in phase
● If j> 0: v leads i
● If j< 0: v lags i

● If j ¼ �p
2

: v and i are orthogonal

● If j ¼ �p: v and i are out of phase by 180 degrees

Peak value, peak–peak value, instantaneous value, and average value of sine
waveform

● Peak value Fpk ¼ Fm: the amplitude
● Peak–peak value Fp-p: Fp-p ¼ 2Fpk

● Instantaneous value f (t): value at any time at any particular point of the
waveform.

● Average value: average value of a half-cycle of the sine waveform FAvg ¼ 0.637 Fm

RMS value (or effective value) of AC sinusoidal function

● If an AC source delivers the equivalent amount of power to a resistor as a DC
source, which is the effective or RMS value of AC.

V ¼ Vmffiffiffi
2

p ¼ 0:707Vm; I ¼ Imffiffiffi
2

p ¼ 0:707Im

● The general formula to calculate RMS value is F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

ðT

0
f 2ðtÞdt

s

Complex numbers

● Rectangular form: A ¼ x þ jy
● Polar form: A ¼ a ffy
● Conversion between rectangular and polar forms:

A ¼ x þ jy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
tan�1 y

x
¼ affy

A ¼ affy ¼ x þ j y ¼ aðcosyþ j sin yÞ
● Addition and subtraction: A1 � A2 ¼ (x1 � x2) þ j (y1 � y2)

● Multiplication: A1 � A2 ¼ a1 � a2 ff(y1 þy2) ¼ (x1 þ jy1) (x2 þ jy2)

● Division:
A1

A2
¼ a1

a2
ffðy1 � y2Þ ¼

x1 þ j y1

x2 þ j y2

Phasor

● A phasor is a vector that contains both amplitude and angle information, and
can be represented as a complex number.

● The phasor notation is a method that uses complex numbers to represent the
sinusoidal quantities for analyzing AC circuits when all quantities have the
same frequency.
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Differentiation and integration of the sinusoidal function in phasor notation

● Differentiation:
df ðtÞ

dt
¼ jwF or jw _F þj ¼ þ90

�

● Integration:
Ð

f ðtÞdt ¼ F

jw
or

1
jw

_F
1
j
¼ �j ¼ �90

�

● Rotation factor: ejwt or � j ¼ �90
�

Characteristics of the inductor and capacitor

Element DC: when w¼ 0 AC: when w ! ? Characteristics

Inductor L Short circuit Open circuit Pass DC and block AC
Capacitor C Open circuit Short circuit Pass AC and block DC

Three basic elements in an AC circuit

Element Time
domain

Phasor
domain

Resistance
and reac-
tance

Conductance
and suscep-
tance

Phasor
diagram

Resistor VR ¼ RiR _V R ¼ _I RR R G ¼ 1
R

IR VR
• •

Inductor vL ¼ L
di

dt
_V L ¼ j XL _I L XL ¼wL BL ¼ 1

XL 0
90°

IL

VL

Capacitor iC ¼ C
dvC

dt
_V C ¼ �j XC _IC XC ¼ 1

wC
BC ¼ 1

XC

0
90°

·IC

·VC
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Practice problems

9.1
1. The difference between the AC and DC is that AC changes ( ),

and DC does not.
2. When the time to complete a full cycle of a sinusoidal waveform is

2 ms, the frequency of this waveform will be ( ).
3. Determine the peak value, phase angle, angular frequency, period,

and frequency of the sinusoidal current i (t) ¼ 20 sin(30t þ 45�) A,
and also plot the waveform of this current.

4. Determine the phase differences of the voltages and currents for the
expressions in (a) and (b), and also determine their relationships of
leading or lagging.

(a) vðtÞ ¼ 5 sin ðwt þ 40
� Þ V; iðtÞ ¼ 20 sinð30t þ 30

� Þ A
(b) vðtÞ ¼ 20 sin ðwt � 60

� Þ V; iðtÞ ¼ 15 sinðwt � 30
� Þ A

5.
(a) v and i are ( ) if the phase difference j is 180 degrees;
(b) v and i are ( ) if the phase difference j is �90�.

9.2
6. Write the sinusoidal expressions (instantaneous expressions) for

values in (a) and (b).

(a) Im ¼ 50 mA, wt ¼ 30�

(b) Vm ¼ 15 V, T ¼ 20 ms

7. Determine the average value for a half-cycle of sinusoidal waveform
that has the peak value of 15 V.

8. Determine the average value for a full cycle of sinusoidal waveform
that has the peak value of 10 V.

9. Determine the peak value, peak–peak value, average value, and RMS
value of the sinusoidal voltage v (t) ¼ 20 sin(wt þ 30�) V.

9.3
10. Perform the following operations and express the result in rectangular

form:

3 � 2 þ j1

3 � j2

11. Convert the following sinusoidal expressions to polar forms:

vðtÞ ¼ 30 sinðwt � 45
� Þ V; iðtÞ ¼ 15 sinð30t þ 35

� Þ
12. Convert the following polar forms to instantaneous forms (30 and 15

are RMS values):
_V ¼ 30ff45

�
V; _I ¼ 15ff�60

�
A
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13. Convert the following polar forms to sinusoidal forms (10, �10, and
20 are peak values):
(a) _V ¼ 10ff� 45

�
V

(b) _I ¼ �10ff5
� þ 20ff10

�
A

14. Convert the following equation to polar form and sinusoidal form:

3
di

dt
þ 4iðtÞ ¼ 5 sinð3t � 30

� Þ A

15. Determine the difference of the following two sinusoidal expressions
(i1 � i2):

i1 ¼ 5 sinðwt þ 45
� Þ A; i2 ¼ 20 sinðwt � 10

� Þ A

9.4
16. The resistance R is 3W in a purely resistive circuit, and the current is

iR ¼ 5
ffiffiffi
2

p
sinðwt þ 45

� Þ A. Determine the phasor form of the resistor
voltage _V Rm.

17. In a purely inductive circuit, the inductance is 0.008 H, and the cur-
rent is iL ¼ 5 sin(60t þ 30�) A. Determine the instantaneous expres-
sion of the inductor voltage vL in this circuit.

18. In a purely capacitive circuit, the capacitance is 0.09 mF, and the
current is iC ¼ 0.08 sin(120t þ 45�). Determine the instantaneous
expression of the capacitor voltage vC in this circuit.
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10.1 Impedance and admittance

10.1.1 Impedance
Ohm’s law of AC circuits
● The phasor forms of relationship between voltage and current for resistor,

inductor, and capacitor in an AC circuit are as follows:

_VR ¼ _IRR; _VL ¼ j_I LXL; _VC ¼ �j_ICXC

● The above equations can be changed to a ratio of voltage and current:

_VR

_IR
¼ R;

_VL

_IL
¼ jXL;

_VC

_IC
¼ �jXC

● The ratio of voltage and current is the impedance of an AC circuit, and it can

be generally expressed as ¼
_V
_I

. This equation is also known as Ohm’s law of

AC circuits.

The impedance of R, L, and C
● The physical meaning of the impedance (Z ) is that it is a measure of the

opposition to AC current in an AC circuit. It is similar to the concept of
resistance in DC circuits, so the impedance is also measured in ohms (W).

● The impedance can be extended to the inductor and capacitor in an AC cir-
cuit. It is a complex number that describes both the amplitude and phase
characteristics.

● The impedance of resistor (R), inductor (L), and capacitor (C) are as follows:

ZR ¼ R ¼
_VR

_IR
; ZL ¼ jXL ¼

_VL

_IL
; ZC ¼ �jXC ¼

_VC

_IC

Impedance (Z)

– Z is a measure of the opposition to AC current in an AC circuit.

– Ohm’s law in AC circuits: Z ¼
_V
_I

– Unit of Z: ohm (W)

10.1.2 Admittance
Admittance Y
● Recall that the conductance G is the inverse of resistance R, and it is a measure

of how easily current flows in a DC circuit. It is more convenient to use the
conductance G in a parallel DC circuit.
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● The admittance is the inverse of impedance Z, it is denoted by Y,

Y ¼ 1
Z

● The admittance Y is measured in siemens (S) or mho (℧).
● The admittance Y is a measure of how easily a current can flow in an AC

circuit. It can be expressed as the ratio of current and voltage of an AC circuit,

i.e., Y ¼
_I
_V

.

The admittance of R, L, and C
● It is more convenient to use the admittance in a parallel AC circuit.
● The admittance of resistor (R), inductor (L), and capacitor (C) are as follows:

– The admittance of R: YR ¼ 1
R

– The admittance of L: YL ¼ 1
jXL

¼ �j
1

XL
j ¼ 1

�j

� �

– The admittance of C: YC ¼ 1
�jXC

¼ j
1

XC

Admittance (Y)

– Y is a measure of how easily current can flow in an AC circuit.

– Y is the inverse of impedance Z: Y ¼ 1
Z

– Ohm’s law in AC circuits: _I ¼ _V Y
– The unit of Y: siemens (S) or mho (℧)

10.1.3 Characteristics of the impedance
Impedance Z
● The impedance Z is a vector quantity; it can be expressed in both polar form

and rectangular form (complex number) as follows:

Z ¼ zffj ¼ R þ jX ¼ zðcosjþ jsinjÞ
– Polar form: Z ¼ zffj
– Rectangular form: Z ¼ R þ jX ¼ z (cosjþ jsinj)

● The rectangular form is the sum of the real part and the imaginary part, where
– the real part of the complex is the resistance R,
– the imaginary part of the complex is the reactance X.

● The reactance X is the difference of inductive reactance XL and capacitive
reactance XC,

i.e., X ¼ XL � XC
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● The lower case letter z in zffj is the magnitude of the impedance, which is

z ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ X 2

p

● The corresponding angle j between the resistance R and reactance X is called

the impedance angle and can be expressed as follows: j ¼ tan�1 X

R

Impedance, voltage, and current triangles
● The relationship between R, X, and Z in the equation of the impedance is a

right triangle, and can be described using the Pythagoras’ theorem. This can be
illustrated in Figure 10.1(a).

● Figure 10.1(a) is an impedance triangle. If we multiply each side of the
quantity in the impedance triangle by current _I the following equations will be
obtained:

_VR ¼ Z _I R; _V X ¼ _I XX ; _VZ ¼ _I ZZ

● These can form another triangle that is called the voltage triangle, which is
illustrated in Figure 10.1(b).

● If we divide each side of the value by voltage _V in the impedance triangle, the
following equations will be obtained:

_I Z ¼
_V Z

Z
; _IX ¼

_V X

X
; _I R ¼

_V R

R

● The above equations can form another triangle that is called the current tri-
angle, and it is illustrated in Figure 10.1(c).

The characteristics of the impedance triangle
The characteristics of the impedance triangle in Figure 10.1(a) can be summarized
as follows:

● If X > 0 or X ¼ XL � XC > 0, XL > XC: The reactance X is above the horizontal
axis, and the impedance angle j> 0. The circuit is more inductive as shown in
Figure 10.2(a).

● If X < 0 or X ¼ XL � XC < 0, XC > XL: The reactance X is below the horizontal
axis, and the impedance angle j < 0. The circuit is more capacitive as shown
in Figure 10.2(b).

(a)

Z Vz Iz

VR IR

IXVX

R

Xφ φ φ

(b) (c)

Figure 10.1 Impedance, voltage, and current triangles
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● If X ¼ 0 or X ¼ XL � XC ¼ 0, XC ¼ XL: the impedance angle j¼ 0, the circuit
will look like a purely resistive circuit (z ¼ R) as shown in Figure 10.2(c).

10.1.4 Impedance examples

Example 10.1: Determine the impedance Z in the circuit of Figure 10.3 and plot
the phasor diagram of the impedance.

Solution:

● The impedances in series in an AC circuit behave like resistors in series.

So, Z ¼ ZR þ ZL þ ZC ¼ R þ jX ¼ R þ jðXL � XCÞ
¼ 1:5 Wþ jð2:5 � 3Þ W ¼ 1:5 W� j0:5 W

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:52 þ ð�0:5Þ2

q
tan�1 �0:5

1:5
� 1:58 ff � 18:44�W

Z ¼ zffj; j ¼ tan�1 X

R
z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ X 2

p
Note: Since the imaginary term is �0.5 on the y-coordinate, the real term is þ1.5 on the
x-coordinate, the impedance angle for this circuit is located in the 4th quadrant.

0 +

+j +j +j

XL
XL XL

Z

R

R R = Z
R

ZXC
XC

XC

XL – XC

XL – XC

φ > 0, (XL > XC) φ < 0, (XC > XL) φ = 0, (XL = XC)

φ φ +0 +0

(a) (b) (c)

Figure 10.2 The phasor diagrams of the impedance

ZR

Z

R = 1.5 Ω XL = 2.5 Ω 

Xc = 3 Ω Zc 

ZL

Figure 10.3 Figure for Example 10.1
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● The circuit for Example 10.1 is more capacitive since XC > XL, and j< 0 as
shown in Figure 10.4:

10.1.5 Characteristics of the admittance
Admittance Y
● The admittance is also a complex number; it can be expressed in both polar and

rectangular forms as follows:

Y ¼ yffjy ¼ G þ jB ¼ yðcosjþ jsinjÞ
– Polar form: Y ¼ yffjy

– Rectangular form: Y ¼ G þ jB ¼ y (cosjþ jsinj)
● The real part of the complex is the conductance G, and the imaginary part is

called the susceptance B.
● The susceptance is measured in the same way as the admittance, i.e.,

siemens (S) or mho (℧).
● The susceptance is the difference of the capacitive susceptance BC and

inductive susceptance BL, i.e., B ¼ BC � BL

● The lower case letter y in Y ¼ yffjy is the magnitude of the admittance, i.e.,

Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ B2

p

● The corresponding angle j between the conductance G and susceptance B is

called the admittance angle and can be expressed as jy ¼ tan�1 B

G

+j

+

XL = 2.5 Ω

Xc = 3 Ω

XL – Xc = –0.5 Ω

R = 1.5 Ω
φ
z

0

Figure 10.4 Impedance angle for Example 10.10
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The characteristics of the admittance triangle
The characteristics of the admittance triangle in Figure 10.5 can be summarized as
follows:

● If B > 0 or B ¼ BC � BL > 0, BC > BL: The susceptance B is above the hor-
izontal axis, the admittance angle jy > 0, and the circuit is more capacitive as
shown in Figure 10.5(a).

● If B < 0 or B ¼ BC � BL < 0, BL > BC: The susceptance B is below the hor-
izontal axis, the admittance angle jy < 0, and the circuit is more inductive as
shown in Figure 10.5(b).

● If B ¼ 0, or B ¼ BC � BL ¼ 0, BL ¼ BC: The admittance angle jy ¼ 0, the
circuit will look like a purely resistive circuit (Y ¼ G) as shown in
Figure 10.5(c).

The characteristics of impedance and admittance

X > 0 – If X > 0, j> 0, B < 0, jy < 0: The circuit is more inductive.

X < 0 – If X < 0, j <0, B > 0, jy > 0: The circuit is more capacitive.

X ¼ 0 – If X ¼ 0, j¼ 0, B ¼ 0, jy ¼ 0: The circuit is purely resistive.

Impedance, admittance, and susceptance
● The admittance of resistor (R), inductor (L),and capacitor (C) are as follows:

YR ¼ 1
R
¼ G YL ¼ 1

jXL
¼ �j

1
XL

YC ¼ 1
�jXC

¼ j
1

XC

● The impedance (Z), admittance (Y), susceptance (B), and their relationship can
be summarized as given in Table 10.1.

(a) (b) (c)

0

BC BC BC

BL BL

BL+

+j
+j +j

G

BC – BL

BC – BL

Y +
G

Y

0 0 +
G

G = Y

φy > 0, (BC > BL) φy < 0, (BL > BC) φy = 0, (BL = BC)

φy
φy

Figure 10.5 The phasor diagrams of the admittance
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10.1.6 Admittance examples

Example 10.2: Determine the admittance in the circuit of Figure 10.6 and plot the
phasor diagrams of the admittance.

Solution:

● The admittances in parallel in AC circuits behave like the conductances in
parallel in DC circuits.

So; Y ¼ YR þ YL þ YC ¼ G þ jB ¼ G þ jðBC � BLÞ G ¼ 1
R

¼ 1
13:3 W

þ j
1

13:3 W
� 1

5:72 W

� �
BC ¼ 1

XC
;BL ¼ 1

XL

� 0:075 S þ jð0:075 � 0:175ÞS

¼ 0:075S � j0:1S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0752 þ ð�0:1Þ2

q
tan�1 �0:1

0:075
¼ 0:125ff � 53:13�S

Y ¼ G þ jB ¼ yffjy; y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ B2

p
; jy ¼ tan�1 B

G

13.3 Ω 5.72 Ω 13.3 Ω
Y R XL

XC

Figure 10.6 Figure for Example 10.2

Table 10.1 Relationship between the impedance (Z), admittance (Y), and
susceptance (B)

Component Impedance Z ¼
_V
_I

Admittance Y ¼ 1
Z Conductance (G) and susceptance (B)

Resistor (R) ZR ¼ R YR ¼ G
Conductance: G ¼ 1

R
Inductor (L) ZL ¼ jXL YL ¼�jBL Inductive susceptance: BL ¼ 1

XL

Capacitor (C) ZC ¼ �jXC j ¼ 1
�j

YC ¼ jBC Capacitive susceptance: BC ¼ 1

XC

Z, Y, X, and B Z ¼ zfff ¼ R þ jX

z ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ X 2

p

j ¼ tan�1 X

R

Y ¼ yffjy ¼ G þ jB

y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ B2

p

jy ¼ tan�1 B

G

Reactance: X ¼ XL � XC

Susceptance: B ¼ BC � BL

XL ¼ wL; XC ¼ 1
wC

� �
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Note: The admittance angle for this circuit is located in the fourth quadrant
since
– the imaginary term is negative 0.1 on the y-coordinate,
– the real term is positive 0.075 on the x-coordinate.

● Since BL > BC (BL ¼ 0.175, BC ¼ 0.075) and jy < 0, the circuit is more
inductive as shown in Figure 10.7.

10.2 Impedance in series and parallel

10.2.1 Equivalent impedance
Impedance of a series circuit
● The impedances in series and parallel AC circuits behave like resistors in

series and parallel DC circuits, except the phasor form (complex number) is
used.

● The equivalent impedance (or total impedance) for a series circuit in
Figure 10.8 is given:

Zeq ¼ Z1 þ Z2 þ . . .þ Zn

+ j 

+

Bc = 0.075 S

BL = 0.175 S

Bc – BL

G = 0.075 S

φy = –53.1°

Y = 0.125 S

0

Figure 10.7 Admittance angle for Example 10.2

Z1 Z2

Zeq

ZnL

Zeq = Z1 + Z2 + ... + Zn 

Figure 10.8 Impedance of a series circuit
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Impedance of a parallel circuit
● The equivalent impedance (or total impedance) for a parallel circuit in

Figure 10.9 is given as

Zeq ¼ 1
1
Z1

þ 1
Z2

þ � � � þ 1
Zn

¼ Z1==Z2 . . . ==Zn

Yeq ¼ Y1 þ Y2 þ . . .þ Yn

● The equivalent impedance is the reciprocal of equivalent admittance,

Zeq ¼ 1
Yeq

:

● If only have two impedances in parallel, the equivalent impedance is given as

Zeq ¼ Z1Z2

Z1 þ Z2
¼ Z1==Z2

Impedances in series
and parallel

– Impedances in series: Zeq ¼ Z1 þ Z2 þ . . . þ Zn

– Impedances in parallel: Zeq ¼ Z1//Z2 // . . . //Zn,

Yeq ¼ Y1 þ Y2 þ . . . þ Yn

– Two impedances in parallel: Zeq ¼ Z1Z2

Z1 þ Z2

10.2.2 The phasor forms of KVL, KCL, VDR, and CDR
The phasor forms of VDR and CDR
● The voltage divider and current divider rules in phasor form in AC circuits are

very similar to the DC circuits (Figure 10.10).

● Voltage divider rule (VDR): _V 1 ¼ z1

z1 þ z2

_E; _V 2 ¼ z2

z1 þ z2

_E

● Current divider rule (CDR): _I 1 ¼ z2

z1 þ z2

_I T; _I 2 ¼ z1

z1 þ z2

_I T

VDR and CDR in DC circuits: V1 ¼ R1

R1 þ R2
E; V2 ¼ R2

R1 þ R2
E;

I1 ¼ R2

R1 þ R2

_I T; I2 ¼ R1

R1 þ R2

_I T

Zeq Z1 Z2 L Zn

Figure 10.9 Impedance of a parallel circuit
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The phasor forms of KVL and KCL
The phasor forms of KVL and KCL also hold true in AC circuits.

● KVL: S _V ¼ 0 or _V 1 þ _V 2 þ � � � þ _Vn ¼ _E
● KCL: S _I ¼ 0 or _I in ¼ _I out

Phasor forms of VDR,
CDR, KVL, and KCL

– VDR: _V 1 ¼ z1

z1 þ z2

_E ; _V 2 ¼ z2

z1 þ z2

_E

– CDR: _I 1 ¼ z2

z1 þ z2

_I T; _I 2 ¼ z1

z1 þ z2

_I T

– KVL: S _V ¼ 0 or _V 1 þ _V 2 þ � � � þ _V n ¼ _E

– KCL: S_I ¼ 0 or _I in ¼ _I out

10.2.3 Equivalent impedance examples
To determine the equivalent impedance, currents, and voltages in series and par-
allel AC circuits, use the same method that determines the equivalent resistance in
series and parallel DC circuits.

Example 10.3: Determine the following values for the circuit in Figure 10.11.

(a) The input equivalent impedance Zeq

(b) The current _I 3 in the branch of RL and XL

0°

I1

I2

Z2
Z3

I3

Z1R1 = 4 kΩ

XC = 8 kΩ
RL = 4 kΩ

XL = 8 kΩE = 100 V

Figure 10.11 Figure for Example 10.3

Ė
Ė

Z1
Z1 Z2

V1

Z2

.
IT
.

I1
.

I2
.

V2
.

Figure 10.10 Voltage and current dividers
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Solution:

(a) Zeq ¼ Z1 þ Z2==Z3

Z1 ¼ R1 ¼ 4 kW

Z2 ¼ �jXC ¼ �j8 kW

Z3 ¼ RL þ jXL ¼ 4 kWþ j8 kW � 8:94ff63:44� kW

Z2==Z3 ¼ Z2Z3

Z2 þ Z3
¼ ð�j8Þð4 þ j8Þ

�j8 þ 4 þ j8
kW ¼ 64 � j32

4
kW � 71:55ff� 26:57

4ff0�
kW

Z ¼ R þ jX ¼ zffj
¼ 17:9 ff� 26:57� kW ¼ 17:9 cosð�26:57�Þ þ jsinð�26:57�Þ½ � kW

¼ ð16 � j8Þ kW

Z ¼ R þ jX ¼ zðcosjþ jsinjÞ
Zeq ¼ Z1 þ Z2==Z3

¼ ½4 þ ð16 � j8Þ� kW ¼ ð20 � j8Þ kW � 21:54ff � 21:8� kW

(b) _I 3 ¼ z2

z2 þ z3

_I 1

_I 1 ¼
_E

zeq
¼ 100ff0� V

21:54ff� 21:8� W
� 4:64ff21:8� mA

; _I 3 ¼ z2

z2 þ z3

_I 1

¼ 4:64ff 21:8� mA
8ff � 90� kW

ð�j8 þ 4 þ j8Þ kW
¼ 37:12ff� 68:2�

4ff0�
mA

¼ 9:28ff � 68:2� mA

Example 10.4: Determine the voltage across the inductor L for the circuit in
Figure 10.12(a).

e = 40sin 
(2t–30°) V

(a) (b)

E = 40 V  –30°

R = 120 Ω
C = 20 mF

Z1 = 120 Ω

Z2 = j20 Ω Z3 = 
–j25 Ω

VLVLL = 10 H
+

–

+

–

Figure 10.12 Figure for Example 10.4
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Solution:

● Convert the time domain to the phasor domain as shown in Figure 10.12(b) first.

● After converting the phasor form to the time form gives

VL ¼ 25:61 sin ð2t þ 20:2�Þ V

10.3 Power in AC circuits

10.3.1 Instantaneous power
Instantaneous power p
● There are different types of power in AC circuits such as instantaneous power,

active power, reactive power, and apparent power.
● The instantaneous power p is the power dissipated in a component of an AC

circuit at any instant time.
● The instantaneous power p is the product of instantaneous voltage v and cur-

rent i at that particular moment (Figure 10.13), i.e., instantaneous power can be
expressed as:

p ¼ vi

Loadv

+

–

i

Figure 10.13 Instantaneous power
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Derive the equation of the instantaneous power
● If v ¼ Vmsinðwt þ jÞ and i ¼ Im sinwt

Then, p ¼ v i ¼ VmIm sinwt sinðwt þ jÞ
, � sin x sin y ¼ 1

2
cosðx þ yÞ � cosðx � yÞ½ �

; p ¼ � 1
2

VmIm cosð2wt þ jÞ � cosj½ � x ¼ wt; y ¼ j

¼ VIcosj� VI cosð2wt þ jÞ ðVm ¼ ffiffiffi
2

p
V ; Im ¼ ffiffiffi

2
p

IÞ
¼ VIcosj� VIðcos2wt cosj� sin2wt sinjÞ x ¼ 2wt; y ¼ j

cosðx þ yÞ ¼ cosx cosy � sinx siny

● Therefore, instantaneous power is given as

p ¼ VI cosj ð1 � cos2wtÞ þ VI sinj sin2wt

10.3.2 The waveform of instantaneous power
The waveform of instantaneous power
● The waveform of the instantaneous power p can be obtained from the product

of instantaneous voltage v and current i at each point on their waveforms as
shown in Figure 10.14.

● Such as:
– at time t ¼ 0: i ¼ 0, p ¼ vi ¼ 0
– at time t ¼ t1: v ¼ 0, p ¼ vi ¼ 0
– between time 0 � t1: v > 0 and i > 0, ; p ¼ vi > 0
– between time t1 � t2: v < 0 and i > 0, ; p ¼ vi < 0
– between time t2 � t3: v < 0 and i < 0, ; p ¼ vi > 0

Instantaneous power and energy
● When instantaneous power p > 0 (p is positive), the component stores energy

provided by the source.
● When instantaneous power p < 0 (p is negative), the component returns the

stored energy to the source.

0

V

p

i

t1

t3 t
t2

Figure 10.14 The waveform of instantaneous power
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Instantaneous
power p

p is the product of instantaneous voltage and current at any instant
time.

p ¼ vi ¼ VI cosj (1 � cos2wt) þ VI sinjsin2wt.
p > 0: the component absorbs (stores) energy.
p < 0: the component returns (releases) energy.

10.3.3 Instantaneous power for a resistive component
The formula of instantaneous power for a resistive load
● Since voltage and current in a purely resistive circuit is in phase, i.e., j¼ 0,

substituting this into the equation of the instantaneous power gives

pR ¼ vi
¼ VI cosjð1 � cos2wtÞ þ VI sinjsin2wt
¼ VI cos0�ð1 � cos2wtÞ þ VI sin0� sin2wt j ¼ 0

¼ VI � VI cos2wt cos0� ¼ 1; sin0� ¼ 0

● Instantaneous power for a resistive load (pR):

pR ¼ VIð1 � cos2wtÞ (10.1)

The waveform of instantaneous power for a resistive load
● The first part VI in (10.1) is average power dissipated in the resistive load

(p > 0, the load absorbs power).
● The second part in (10.1) is a sinusoidal quantity with a double frequency 2w,

this indicates that when voltage and current waveforms oscillate one full cycle
in one period of time, power waveform will oscillate two cycles as illustrated
in Figure 10.15.

● The mathematic equation and the waveform all show that instantaneous power
of a resistive load is always positive, or a resistor always dissipates power,
indicating that the resistor is an energy-consuming element.

(The current is always in phase with the voltage, and the generator is delivering positive
power.)

0

pR

V

i
t

VI

Figure 10.15 The waveform of instantaneous power for an R load
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10.3.4 Instantaneous power for inductive/capacitive components
Formulas of the instantaneous power for inductive/capacitive loads
● In a purely inductive load circuit, voltage leads current by 90�.
● In a purely capacitive circuit, voltage lags current by 90�.
● Substituting j¼	90� into the equation of instantaneous power gives

p ¼ VI cosjð1 � cos2wtÞ þ VI sinjsin2wt

¼ VI cosð	90�Þð1 � cos2wtÞ þ VI sinð	90�Þsin2wt j ¼ 	90�

¼ 	VI sin2wt (10.2)

cos90� ¼ 0; sinð	90�Þ ¼	1

● The instantaneous power for inductive and capacitive loads can be obtained
from (10.2):
– Instantaneous power for an inductive load: pL ¼ VI sin2wt
– Instantaneous power for a capacitive load: pC ¼�VI sin2wt

The waveforms of instantaneous power for inductive/capacitive loads
● The diagrams of instantaneous power for inductive and capacitive loads are

illustrated in Figure 10.16.
● As seen from the formula (10.2) and waveforms in Figure 10.16, both the

instantaneous powers of inductive and capacitive loads are sinusoidal quantities
with a double frequency 2w. They have an average value of zero over a com-
plete cycle since the positive and negative waveforms will cancel each other out.

● When instantaneous power is positive, the component stores energy; when
instantaneous power is negative, the component releases energy.

● Therefore, the inductor and capacitor do not absorb power, they convert or
transfer energy between the source and elements. This also indicates that the
inductor and capacitor are energy storage elements.

Instantaneous power for R, L,
and C components

– pR ¼ VI (1 � cos2wt)
– pL ¼ VI sin2wt
– pC ¼�VI sin2wt

Stored/Released/Stored/Released

0 0

i
v

pCpL

i
v

t t

Released/Stored/Released/Stored 

Figure 10.16 The waveforms of instantaneous power for L and C loads
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10.3.5 Active power (or average power)
The active power P
● The active power is also known as average power, which is the product of the

RMS voltage and RMS current in an AC circuit.
● The active power is actually the average power dissipation on the resistive

load, i.e., the average power within one period of time (one full cycle) for a
sinusoidal power waveform in an AC circuit.

● The active power is also called true or real power since the power is really
dissipated by the load resistor, and it can be converted to useful energy such as
heat or light energy, etc. (Electric stoves and lamps are examples of this kind of
resistive load.)

● The instantaneous power always varies with time and is difficult to mea-
sure, so it is not very practical to use. Since it is the actual power dissipated
in the load, average or active power P is used more often in AC sinusoidal
circuits.

● Average power is easy to measure by an AC power meter (an instrument to
measure AC power) in an AC circuit.

● Average power is the average value of instantaneous power in one period of
time. It can be obtained from integrating for instantaneous power in one period
of time.

Derive active power
● Note: If you have not learned calculus, then just keep in mind that P ¼ VI cosj is the

equation for average power, and skip the following mathematical derivation process.

P ¼ VI cosjð1 � cos2wtÞ þ VI sinjsin2wt

P ¼ 1
T

ðT

0
pðtÞdt ¼ 1

T

ðT

0
VI cosjð1 � cos2wtÞ þ VI sinj sin 2wt½ �dwt

P ¼ 1
T

VIcosjðwtÞjT0 þ VI sinj
1
T

ðT

0
sin2wt dwt ¼ VI cosj ð10:3Þ

● Where j is a constant, and wt is a variable, so the first part of the integration is a constant VI
cosj. The integration of the second part is zero (integrating for sine function), since the
average value for a sine wave in one period of time is zero.

● The active power or average power: P ¼ VI cosj

10.3.6 Active power and j
Absorbs or release active power
● Active or average power P is a constant. It consists of the product of RMS

values of voltage and current VI and cosj, where cosj is called power factor (it
will be discussed at the end of this section).

● When active power P > 0, the element absorbs power;
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When active power P < 0, the element releases power.

Active power and j
● When j¼ 0�, the voltage and current are in phase, the circuit is a purely

resistive circuit, and PR ¼ VIcos0� ¼ VI cos0� ¼ 1

Therefore, PR ¼ VI ¼ I2R ¼ V 2

R

or PR ¼ VI ¼ Vmffiffiffi
2

p Imffiffiffi
2

p ¼ 1
2

VmIm V ¼ Vmffiffiffi
2

p ; I ¼ Imffiffiffi
2

p

● When j¼ 90�, the voltage leads the current by 90�, the circuit is a purely
inductive circuit, and PL ¼ VI cos90� ¼ 0 cos90� ¼ 0

i.e., PL ¼ 0
● When j¼�90�, the current leads the voltage by 90�, the circuit is a purely

capacitive circuit, and PC ¼ VI cos(�90�) ¼ 0 cos(�90�) ¼ 0

i.e., PC ¼ 0

Active power P (or
average power,
real power, and
true power)

The active power is the average value of the instantaneous power
that is actually dissipated by the load.
P ¼ VI cosj The unit of P: Watt (W)

– When j¼ 0� PR ¼ VI ¼ 1
2

VmIm ¼ I2R ¼ V 2

R
– When j¼ 90� PL ¼ 0
– When j¼ –90� PC ¼ 0

10.3.7 Reactive power
Reactive power Q
● Since the effect of charging/discharging in a capacitor C and storing/releasing

energy in an inductor L is that energy is only exchanged or transferred back
and forth between the source and the component and will not do any real work
for the load.

● The reactive power Q can describe the maximum velocity of energy transfer-
ring between the source and the storage element L or C.

Calculating reactive power
● The first part in (10.3) is active or average power. The integration of the sec-

ond part of (10.3) is zero, and that is the reactive power.

P ¼ 1
T

VIcosjðwtÞjT0 þ VI sinj
1
T

ðT

0
sin2wt dwt ¼ VI cosj (10.3)

● While energy is converting between the source and energy store elements, the
load will do not do any actual work, and average power dissipated on the load
will be zero.
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● Because the physical meaning of the reactive power is the maximum velocity
of energy conversion between the energy storing element and the source, the
peak value of the second part is reactive power, denoted as Q.

● Reactive power can be expressed mathematically as Q ¼ VI sinj.
● The reactive power Q is measured in volt-ampere reactive (VAR).

Reactive power and j
● When j¼ 0�, the circuit is a purely resistive circuit:

QR ¼ VI sin0� ¼ 0 sin0� ¼ 0

● When j¼ 90�, the circuit is a purely inductive circuit:

QL ¼ VI sin90� ¼ VI sin90� ¼ 1

Substituting V ¼ I XL or I ¼ V 2

XL
into QL gives

QL ¼ VI ¼ I2XL ¼ V 2

XL

● When j¼�90�, the circuit is a purely capacitive circuit:

QC ¼ VI sinð�90�Þ ¼ �VI sinð�90�Þ ¼ �1

Substituting V ¼ IXC or I ¼ V

XC
into QC gives

QC ¼ �VI ¼ �I2XC ¼ �V 2

XC

Reactive
power Q

Q is the maximum velocity of energy conversion between the source and
energy-storing element.

Q ¼ VI sinj

The unit of Q: volt-ampere reactive (VAR)

– j¼ 0�: QR ¼ 0

– j¼ 90�: QL ¼ VI ¼ I2XL ¼ V 2

XL

– j¼ –90�: QC ¼ �VI ¼ �I2XC ¼ �V 2

XC

Absorbs or release reactive power
● When power > 0, the element absorbs power;

When power < 0, the element releases power.
● Since QL is positive (QL > 0) and QC is negative (QC < 0),

– the inductor absorbs (consumes) reactive power,
– the capacitor produces (releases) reactive power.
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10.3.8 Apparent power
Apparent power S
● When the voltage V across a load produces a current I in the circuit of

Figure 10.17, the power produced in the load is the product of voltage and
current VI.

● If the load Z includes both the resistor and storage element inductor or
capacitor, then VI will be neither a purely active power nor a purely reactive
power.

● Since VI is the expression of the power equation, it is called apparent power.
● Apparent power is the maximum average power rating that a source can pro-

vide to the load or maximum capacity of an AC source and is denoted as S.

Calculating apparent power
● The mathematical formula of apparent power is the product of the source

current and voltage, i.e.,

S ¼ IV

● Apparent power S is measured in volt-amperes (VA).

● Substituting I ¼ V

Z
or V ¼ IZ into apparent power S ¼ IV gives

S ¼ I2Z ¼ V 2

Z

Usually the power listed on the nameplates of electrical equipment is the apparent power.

Apparent
power S

– S is the maximum average power rating that a source can provide to an
AC circuit.

– S ¼ IV ¼ I2Z ¼ V 2

Z
– The unit of S: volt-amperes (VA)

+I

Z V

–

Figure 10.17 Apparent power
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10.3.9 Power triangle
The relationships between P, Q, and S
● What are the relationships between the active power P, reactive power Q and

apparent power S in AC circuits?
● These three powers (P, Q, and S) related to one another in a right triangle, is

called the power triangle, and can be derived as follows.

Circuit triangles
● For a series resistor, inductor and capacitor circuit, if the circuit is more

inductive (X ¼ XL � XC > 0, j> 0), then the impedance triangle, voltage tri-
angle and current triangle can be illustrated as shown in Figure 10.18(a)–(c)
(refer to Section 10.1).

● If we multiply all quantities on each side of the voltage triangle by the current
I, it will yield

VI ¼ S; IVX ¼ Q; and VRI ¼ P

● This can be illustrated as a power triangle as shown in Figure 10.18(d).
● If the circuit load is more capacitive (XC > XL, j< 0), the circuit triangles will

be opposite to the inductive circuit triangles as shown in Figure 10.19.

(a)

Impedance triangle

R

Z V

S

P

Q

.

I
.

I
.

VR
.

IR
.

VX
.

IX
.

X
φ φ

φ

φ

(b) (c)

Voltage triangle Current triangle

(d) Power triangle 

Figure 10.18 Circuit triangles for an more inductive circuit

R
φ φ φ φ

X
Z V

.

VR
.

IR
.

IX
.

I
.VX

.
S

Q

P

Figure 10.19 Circuit triangles for a more capacitive circuit
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10.3.10 Impedance angle and phasor power
Impedance angle j
● The impedance triangle indicates that it has an angle j between resistance R

and impedance Z of the circuit. It is called the impedance angle; j is also in the
power triangle.

● j is also called the power factor angle. (Later on we will introduce the power
factor cosj.)

● The impedance angle j can be obtained from circuit triangles (either
inductive or capacitive circuit in Figure 10.18 or Figure 10.19) and can be
expressed as

j ¼ tan�1 Q

P
¼ tan�1 X

R
¼ tan�1

_V X

_V R
¼ tan�1

_I X

_I R

The relationship between different powers in the power triangle
● The relationship between different powers in the power triangle can be

obtained from the Pythagoras theorem, i.e.,

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ Q2

p

● Active power P and reactive power Q can be expressed with the impedance
angle j and obtained from the power triangle in Figure 10.18 or Figure 10.19 as

P ¼ S cosj
and Q ¼ S sinj

Phasor power
● If express by complex numbers, apparent power S is

_S ¼ P þ jQ

This is known as the phasor power.
● The phasor apparent power can also be expressed as

_S ¼ _V _I ¼ _I 2Z ¼
_V

2

Z

10.3.11 Power in AC circuits
Different types of power in AC circuits are summarized in Table 10.2.
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Power triangle

S

P

Q
φ

P ¼ Scosj;Q ¼ Ssinj; S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ Q2

p

Impedance angle:

Q ¼ tan�1 Q

P
¼ tan�1 X

R
¼ tan�1

_V X

_V R
¼ tan�1

_I X

_I R

Phasor power: _S ¼ _V _I ¼ I
0 2

Z ¼ V
0 2

Z ; _S ¼ P þ jQ

10.3.12 Power factor
Power factor PF
● The ratio of active power P and apparent power S is called the power factor PF,

and represented by cosj.

● The power factor also can be obtained from the power triangle as

PF ¼ P

S
¼ cosj

Table 10.2 Power in AC circuits

Power General
expression

R L C

Instanta-
neous
power

p ¼ VI cosj (1 �
cos2wt) þ
VI sinj sin2wt

pR ¼ VI (1 �
cos2wt)

pL ¼ VI sin2wt pC ¼�VI sin2wt

Active power

p ¼ VI cosj
PR ¼ VI ¼ 1

2
VmIm

¼ I2R ¼ V 2

R

PL ¼ 0 PC ¼ 0

Reactive
power

Q ¼ VI sinj QR ¼ 0 QL ¼ VI

¼ I2XL ¼ V 2

XL

QC ¼ �VI

¼ �I2XC ¼ �V 2

XC

Apparent
power S ¼ IV ¼ I2Z ¼ V 2

Z
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Resistive and reactive circuit
● For a purely resistive circuit (j¼ 0�), the reactive power Q is zero, so

– the apparent power S is equal to the active power P, i.e.,

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ Q2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ 02

p
¼ P

– the power factor is 1, i.e., cosj ¼ P

S
¼ P

P
¼ 1

– 1 is the maximum value for the power factor cosj.

● For a purely reactive load (j¼	90�), active power P in the circuit is zero, so

the power factor is also zero, i.e., cosj ¼ P

S
¼ O

P
¼ 0

● The range of the power factor cosj:
– cosj is between 0 and 1.
– The impedance angle j is between 0� and 	90�. cos(	90�) ¼ 0,

cos0� ¼1

The power factor is an important factor in circuit analysis
● The circuit source will produce active power P to the load, and the amount of

the active power P can be determined by the power factor cos j. (This is
indicated in the equation of P ¼ S cosj)

● If the power factor cos j of the load is the maximum value of 1, the active
power produced by the source is the maximum capacity of the source, and all
the energy supplied by the source will be consumed by the load (P ¼ S,
cosj¼ 1).

● If the power factor cos j decreases, the active power P produced by the source
will also decrease accordingly (P # ¼ S cosj #).

10.3.13 Power factor correction
Power-factor correction can increase the power factor
● Increasing the power factor can increase the real power in a circuit. But how to

increase the power factor of a circuit? A method called power-factor correction
can be used.

● Power-factor correction can increase the power factor and does not affect the
load voltage and current.

● Since most of the loads of the electrical systems are inductive loads (such as
the loads that are driven by a motor), an inductive load in parallel with a
capacitor (Figure 10.20(b)) can increase the power factor of the load.

Power-factor correction can reduce the line power loss
● The power triangle in Figure 10.20(c) indicates that when a capacitor C is in

parallel with the inductive load, the reactive power Q in the circuit will be
reduced to Q0 (Q0 ¼ Q � QC). Therefore,
– the impedance angle will reduce from j to j0,
– the power factor cosj will increase to cosj0.
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● Since j#?cosj", for instance, cos30� ¼ 0.866 is >cos60� ¼ 0.5, the total

current I will also decrease, since I #¼ P

V cosj ". (P ¼ S cosj¼ VI cosj)

● This can reduce the source current and line power loss (I2R). This is why
increasing the power factor has a significant meaning.

10.3.14 Total power
PT, QT, and ST

● When calculating the total power in a complicated series–parallel circuit,
determine the active power P and reactive power Q in each branch first.

● PT: The sum of all the active powers is the total active power PT.

PT ¼ P1 þ P2 þ . . .þ Pn

● QT: The difference between QLT and QCT is the total reactive power QT.

QT ¼ QLT � QCT ¼ ðQL1 þ QL2 þ � � �Þ � ðQC1 � QC2 þ . . .Þ
– QLT is the sum of all reactive powers for the inductors.
– QCT is the sum of all reactive powers for the capacitors.

● ST: The total apparent power ST can be determined by using QT and PT using
the Pythagoras’ theorem, i.e., ST ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PT

2 þ QT
2

p

Total power factor PFT

● PFT: The total power factor PFT can be determined by using the total active
and reactive power.

● Calculating PFT: PFT ¼ cosjT ¼ PT

ST

Power factor
(cos j)

– Power factor PF: cosj ¼ P

S
(0 
 cosj 
 1, cosj—without unit)

– When cosj¼ 1: All energy supplied by the source is consumed by
the load.

– Power factor correction: An inductive load in parallel with a capa-
citor can increase cosj.

I

(b) (c)(a)

R R

L L
C S

P
φ'

φ Q'

QC

Q

Figure 10.20 Increasing the power factor
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Total power

– Total active power: PT ¼ P1 þ P2 þ . . . þ Pn

– Total reactive power:
QT ¼ QLT � QCT ¼ (QL1

þ QL2
þ . . . ) � (QC1

þ QC2
þ . . . )

QLT: the total reactive power for inductors.
QCT: the total reactive power for capacitors.

– Total apparent power: ST ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PT

2 þ QT
2

p
– Total power factor: PFT ¼ cos jT ¼ PT

ST

10.3.15 Power factor examples

Example 10.5: Determine the total power factor cos j in the circuit of Figure 10.21
and plot the power triangle for this circuit.

Solution:

● Total power factor: PFT ¼ cosjT ¼ PT?

ST?
; ST ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PT?2 þ QT?2

p
ðThe symbol ‘‘?’’ indicates an unknown:Þ

– Total active power: PT ¼ P1 þ P2 þ P3 ¼ 10 W þ 30 W þ 20W ¼ 60 W
– Total reactive power: QT ¼ QLT � QCT ¼ 70 Var � 15 Var ¼ 55 Var

– Total apparent power: ST ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PT

2 þ QT
2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
602 þ 552

p
¼ 81:39 VA

– Total power factor:

PFT ¼ cosjT ¼ PT

ST
¼ 60 W

81:39 VA
� 0:74 cosj� no unit

E = 10 V ∠0°

P1 = 10 w

P2 = 30 w P3 = 20 w

QC = 15 Var QL = 70 Var

Z1

Z2 Z3

Figure 10.21 Figure for Example 9.5
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● Impedance angle: j¼ cos�1jT ¼ cos�10.74 � 42.3�

● Power triangle Figure 10.22:

Example 10.6: Determine the following values in the circuit shown in
Figure 10.23:

(a) the total power PT, QT, and ST for the circuit
(b) power factor cosj
(c) power triangle
(d) source current I
(e) the capacitance C needed to increase the power factor cosj to 0.87
(f) the source current I 0 after increasing the power factor

Solution:

– Lamp: P1 ¼ 5 � 100 W ¼ 500 W 5 lamps

– Heating: P2 ¼ I2R ¼ (10 A)2(5 W) ¼ 500 W

Q2 ¼ I2XL ¼ ð10 AÞ2ð5 WÞ ¼ 500 Var

E = 110 V∠0°

I

f = 60 Hz

XL = 5 Ω

R = 5 Ω

10 A
6 kW

0.75 PF C

L

L

5 lamps
100 W/each

Lamps Heating Electric stove

.

Figure 10.23 Figure for Example 10.6

ST = 81.39 VA

φ = 42.3°
QT = 55 Var

PT = 60 w

Figure 10.22 The power triangle for Example 10.5
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– Electric stove: P3 ¼ 6 kW ¼ 6,000 W

j ¼ cos�10:75 � 41:4� PF ¼ cosj ¼ 0:75

Q3 ¼ P3 tan j ¼ ð6;000 WÞðtan41:4�Þ � 5;290 Var j ¼ tan�1Q=P

S

P

Q
φ

– Total power:

P T ¼ P 1 þ P 2 þ P 3 ¼ 500 W þ 500 W þ 6;000 W ¼ 7;000 W

QT ¼ Q1 þ Q2 þ Q3 ¼ 0 þ 500 Var þ 5; 290 Var ¼ 5;790 Var

ST ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PT

2 þ QT
2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7;0002 þ 5;7902

p
� 9;084:3 VA

(a) Power factor: PFT ¼ cosjT ¼ PT

ST
¼ 7;000

9;084:3
� 0:77

(b) Power triangle (as shown in Figure 10.24):

j ¼ cos�10:77 � 39:7�

(c) Source current I: , ST ¼ EI

; I ¼ ST

E
¼ 9;084:3 VA

110 V
� 82:6 A

Therefore _I ¼ 82:6ff�39:7� A _I ¼ Iffj
(Voltage leads current or current lags voltage in the inductive load, so j¼�39.7�)

(d) The capacitance C that needs to increase the power factor to 0.87 can be
determined by the following way:

C ¼ 1
2pfXC?

) QC ¼ �V 2

XC
) XC ¼ � V 2

QC?
) XC ¼ 1

2pfC

� �

QT ¼ QC þ QT
0? ) QT

0 ¼ PT tanj0? ) j0 ¼ cos�10:87

(as shown in Figure 10.25)

ST = 9,084.3 VA

PT = 7,000 W

QT = 5,790 Var
φ = 39.7°

Figure 10.24 Power triangle for Example 10.6
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● To increase the power factor to 0.87, the power factor angle should be
reduced to
j0 ¼ cos�10.87 � 29.5�

● The new power factor angle j0 is shown in Figure 10.25.
● The reactive power can be determined from the above equation as

QT
0 ¼ PT tan j0 ¼ 7;000 tan 29:5� � 3;960 Var

● QC can be obtained from Figure 10.25:

QC ¼ QT � QT
0 ¼ 5;790 � 3;960 ¼ 1;830 Var

XC ¼ � V 2

QC
¼ � E2

QC
¼ � 1102 V

1;830 Var
� 6:61 W

(the voltage across XL and R is equal to E)

● C: C ¼ 1
2pfXC

¼ 1
2pð60 HzÞð6:61 WÞ � 0:0004 F ¼ 400 mF

The capacitance C needed to increase the power factor to

0:87 should be 400 mF:

(e) The source current I 0 after increasing the power factor can be determined by
the following equation:

P ¼ S cosj ¼ IE cosj
S

P

Q
φ

So, I 0 ¼ PT

Ecosj0 ¼
7;000 W

110 V cos29:5�
� 73:1 A

● Comparing with the original source current I ¼ 82.6 A from step (d), after
a capacitor is in parallel and the power factor is increased, the source
current is I 0 ¼ 73.1A.

ST = 9,084.3 VA

φ' = 29.5° QT' = 3,960 Var

P

Qc

QT

Figure 10.25 New power factor angle
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● So, the source current can decrease 9.5 A (I � I’ ¼ 82.6 A� 73.1 A¼ 9.5
A). This can reduce the line power loss (I2R) and utilize the capacity of the
source more efficiently.

10.4 Methods of analyzing AC circuits

10.4.1 Mesh current analysis
Analysis methods
● All analysis methods that we have learned for analyzing DC circuits with one

or two more sources can also be used for analyzing AC circuits, such as the
branch current analysis, mesh analysis, node voltage analysis, superposition
theorem, Thevenin’s and Norton’s theorems.

● The phasor form will be used to represent the circuit quantities in these ana-
lysis methods in AC circuits.

● Since these analysis methods have been discussed in detail for DC circuits
(Chapter 4 and 5), some examples will be presented to use these methods in
AC circuits or networks. (Reviewing Chapters 4 and 5 before reading the
following contents is highly recommended.)

Mesh current analysis
The procedure for applying the mesh current analysis method in an AC circuit:

1. Identify each mesh and label the reference directions for each mesh current
clockwise.

2. Apply KVL around each mesh of the circuit, and the numbers of KVL equa-
tions should be equal to the numbers of mesh. Sign each self-impedance vol-
tage as positive and each mutual-impedance voltage as negative in KVL
equations.
● Self-impedance: An impedance that only has one mesh current flowing

through it.
● Mutual-impedance: An impedance that is located on the boundary of two

meshes and has two mesh currents flowing through it.
3. Solve the simultaneous equations resulting from step 2, and determine each

mesh current.

Note:

● Convert the current source to the voltage source first in the circuit, if there is
any.

● If the circuit has a current source, the source current will be the same with the
mesh current, so the number of KVL equations can be reduced.
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10.4.2 Mesh current analysis example

Example 10.7: Use the mesh current analysis method to determine the mesh cur-
rent I1 in the circuit of Figure 10.26.

Solution: Convert the current source to the voltage source (connect R and X to Z) as
shown in Figure 10.26(b).

There, _E2 ¼ _I R3 ¼ ð2:5Aff0�Þð4 WÞ ¼ 10 Vff0�

1. Label all the reference directions for each mesh current _I 1 and _I 2 (clockwise),
as shown in Figure10.26(b).

2. Write KVL around each mesh, and the number of KVL is equal to the number
of meshes (there are two meshes in Figure 10.26(b)).

Sign each self-impedance voltage as positive, and each mutual-impedance
voltage as negative in KVL ðS _V ¼ S _EÞ.

Mesh 1: ðZ1 þ Z2Þ_I 1 � Z2 _I 2 ¼ � _E1

Mesh 2: �Z2 _I 1 þ ðZ2 þ Z3Þ_I 2 ¼ � _E2

Substitute the following values of Z1, Z2, and Z3 into the above equations,

Z1 ¼ ð6 � j6ÞW;Z2 ¼ 2 W; and Z3 ¼ ð4 þ j8ÞW
so; ð8 � j6Þ_I 1 � 2_I 2 ¼ �10 V

� 2_I 1 þ ð6 þ j8Þ_I 2 ¼ �10 V

3. Solve the simultaneous equations resulting from step 2 using the determinant
method, and determine the mesh current _I 1:

_I 1 ¼

����10ff0� �2
�10ff0� 6 þ j8

���
��� 8 � j6 �2

�2 6 þ j8

���
� 1:18ff�151:9� A

E1 = 10 V∠0°

R1 = 6 Ω R2 = 2 Ω

XL = 8 Ω

R3 = 4 Ω
R1 = 6 Ω

I1
Z1

Z2

Z3

I2
R2 = 2 Ω

R3 = 4 ΩXL = 8 Ω

XC = 6 ΩXC = 6 Ω

.

I = 2.5 A∠0°
.

E1 = 10 V∠0°
.

E2 = 10 V∠0°
.. .+

(a) (b)

–

+

–

+

–

Figure 10.26 Figure for Example 10.7
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10.4.3 Node voltage analysis
The procedure for applying the node analysis method in an AC circuit
1. Label the circuit:

● Label all the nodes and choose one of them to be the reference node.
Usually ground or the node with the most branch connections should be chosen

as the reference node (at which voltage is defined as zero).
● Assign an arbitrary reference direction for each branch current (this step

can be skipped if using the inspection method).
2. Apply KCL to all n � 1 nodes except for the reference node (n is the number of

nodes).
● Method 1: Write KCL equations and apply Ohm’s law to the equations.

– Assign a positive sign (+) to the self-impedance voltage and entering
node current.

– Assign a negative sign (�) for the mutual-impedance voltage and
exiting node current.

● Method 2: Convert voltage sources to current sources and write KCL
equations using the inspection method.

3. Solve the simultaneous equations and determine each nodal voltage.

The procedure for applying the node voltage analysis method in an AC circuit is demon-
strated in the following examples.

10.4.4 Node voltage analysis example

Example 10.8: Write node equations for the circuit in Figure 10.27(a).

(a) (b)

a

–j1 Ω

–j1 Ω

I1 =

1 Ω

5 V∠0°

2 V∠0°

5∠0°
1∠–90°

5 Ω

j1 Ω

–j1 Ω

–j1 Ω

1 Ω

5 Ω
2.5 Ω

j1 Ω

2.5 Ω
c bd

+

–

a

b
c d

= 5j A
.

+–

I2 =
2∠0°

1∠90°
= –2j A

.

Figure 10.27 Figure for Example 10.8
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1. Label nodes a, b, c, and d, and choose ground d to be the reference node as
shown in Figure10.27(a).

2. Convert two voltage sources to current sources from Figure 10.27(a) to
Figure 10.27(b), and write KCL equations to n�1 ¼ 4�1 ¼ 3 nodes by
inspection (method 2):

_Va _Vb _Vc _I

● Node a
1
5
þ 1
�j1

þ 1
j1

� �
_Va � 1

j1
_Vb � 1

�j1
_Vc ¼ �2j

● Node b � 1
j1

� �
_Va þ 1

2:5
þ 1

j1
þ 1
�j1

� �
_Vb � 1

�j1
_Vc ¼ 5j � ð�2jÞ

● Node c � 1
�j1

� �
_Va � 1

�j1
_Vb þ 1

1
þ 1
�j1

þ 1
�j1

� �
_Vc ¼ �5j

After simplifying

0:2 _Va þ j _Vb � j _Vc ¼ �j2

j _Va þ 0:4 _Vb � j _Vc ¼ j7

�j _V a � j _Vb þ ð1 þ 2jÞ _Vc ¼ �j5

3. Three equations can solve three unknowns that are node voltages.

10.4.5 Superposition theorem
The procedure for applying the superposition theorem in an
AC circuit
1. Turn off all power sources except one.

– Replace the voltage source with the short circuit (placing a jump wire).
– Replace the current source with an open circuit.
– Redraw the original circuit with a single source.

2. Analyze and calculate this circuit by using the single source method.
3. Repeat steps 1 and 2 for the other power sources in the circuit.
4. Determine the total contribution by calculating the algebraic sum of all con-

tributions due to single sources.
Note: The result should be positive when the reference polarity of the

unknown in the single source circuit is the same with the reference polarity of
the unknown in the original circuit, otherwise it should be negative.

The procedure for applying the superposition theorem in an AC circuit is demonstrated in
the following example.
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Example 10.9: Determine _V C in circuit as shown in Figure 10.28(a) by using the
superposition theorem.

Solution:

1. Choose Ė to apply to the circuit first, and use an open circuit to replace the
current source İ as shown in Figure 10.28(b).

2. Calculate _VC
0

in the circuit of Figure 10.28(b):

_VC
0 ¼ _E

Z2

Z1 þ Z2
¼ �10ff0� V

75 Wff � 90�

10 W� j7:5 W

¼ �75ff � 90�

12:5ff � 36:87� V ¼ �6ff � 53:13� V A ¼ x þ jy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
tan

y

x
¼ affj

3. When the current source İ is applied to the circuit only and the voltage source Ė
is replaced by a short circuit, the circuit is as shown in Figure 10.28(c).

Calculate _VC
00

in Figure 10.28(c):

_VC
00 ¼ _I ðZ1==Z2Þ

Z1==Z2 ¼ Z1Z2

Z1 þ Z2
¼ 10ð�j7:5Þ

10 � j7:5
W

� 75ff � 90�

12:5ff � 36:87� W ¼ 6ff � 53:13� W

_V C
00 ¼ _I ðZ1==Z2Þ ¼ ð2ff0�AÞð6ff � 53:13� WÞ ¼ 12ff � 53:13� V

4. Calculate the sum of voltages _VC
0

and _VC
00
:

_VC ¼ _VC
0 þ _VC

00 ¼�6ff�53:13� Vþ12ff�53:13� V

¼ �6 cosð�53:13�Þ�6j sinð�53:13�Þþ12 cosð�53:13�Þþ12 jsinð�53:13�Þ½ �V
� �3:6þ j4:8þ7:2� j9:6½ �V¼ð3:6� j4:8ÞV¼ 6ð�53:13�ÞV

(a) (b) (c) 

R = 10 Ω
R = 10 Ω R = 10 Ω

Xc = 7.5 Ω

Z1 Z2 Z1 Z1

Z2
Z2

Xc = 7.5 Ω
Xc = 7.5 Ω

Vc'Vc.
. . .

Vc''
.

E = 10 V∠0°
I = 2 A∠0°

.
I = 2 A∠0°

.
E = 10 V∠0°

–

+

–

+ = +

–

+
–

+

+

–

Figure 10.28 Circuits for Example 10.9
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10.4.6 Thevenin’s and Norton’s theorems
The procedure for applying Thevenin’s and Norton’s theorems in an
AC circuit
1. Open and remove the load branch (or any unknown current or voltage branch)

in the network, and mark the letter a and b on the two terminals.
2. Determine the equivalent impedance ZTH or ZN: It should be equal to the

equivalent impedance when you look at it from the a and b terminals when all
sources are turned off or equal to zero in the network. i.e.

ZTH ¼ ZN ¼ Zab

● A voltage source should be replaced by a short circuit.
● A current source should be replaced by an open circuit.

3.
● Determine Thevenin’s equivalent voltage VTH: It equals the open circuit

voltage from the original linear two-terminal network of a and b,
i.e., VTH ¼ Vab

● Determine Norton’s equivalent current IN: It equals the short-circuit cur-
rent for the original linear two-terminal network of a and b,

i.e., IN ¼ ISC where ‘‘SC’’ means the short circuit.

4. Plot Thevenin’s or Norton’s equivalent circuit, and connect the load
(or unknown current or voltage branch) to a and b terminals of the equivalent
circuit. Then the load (or unknown) voltage or current can be determined.

The procedure for applying Thevenin’s and Norton’s theorems method in an AC circuit is
demonstrated in the following example.

10.4.7 Thevenin’s and Norton’s theorems—an example

Example 10.10: Determine the current İL in the load branch of Figure 10.29(a) by
using Thevenin’s theorem, and use Norton’s theorem to check the answer.

Solution:

1. Open and remove the load branch ZL, and mark a and b on the terminals of the
load branch as shown in Figure 10.29(b).

2. Determine Thevenin’s equivalent impedance ZTH (the voltage source Ė is
replaced by a short circuit) in Figure 10.29(b).

ZTH ¼ Zab ¼ Z3 þ Z4 þ Z1==Z2

ZTH ¼ 1 � j1 þ �j2:5ð2:5 þ j2:5Þ
�j2:5 þ ð2:5 þ j2:5Þ

� �
W ¼ 1 � j1 þ 6:25 � j6:25

2:5

� �
W

¼ ð1 � j1 þ 2:5 � j2:5ÞW ¼ ð3:5 � j3:5ÞW � 4:95ff � 45� W
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3. Determine Thevenin’s equivalent voltage _V TH by using Figure 10.29(c) to
calculate the open-circuit voltage across the terminals a and b:

_V TH ¼ _V ab ¼ _V cd

Since _I ¼ 0 for Z3 and Z4 in Figure10.29(c), voltages across Z3 and Z4 are also zero,

; _V TH ¼ _V cd ¼ _E
Z2

Z1 þ Z2
¼ 5ff0� V

2:5 þ j2:5
�j2:5 þ ð2:5 þ j2:5Þ W

� 5ff0� Vð1:414ff45�Þ � 7:07ff45� V

4. Plot Thevenin’s equivalent circuit as shown in Figure 10.29(d). Connect the
load ZL to a and b terminals of the equivalent circuit and calculate the load
current İL.

(a) (b)

(c)

–j 2.5 Ω –j 2.5 Ω
j2.5 Ω

–j Ω

2.5 Ω

1 Ω

–j Ω

j 2.5 Ω IL

2.5 Ω

1 Ω

–j Ω

–j2.5 Ω

E = 5V∠0°

j2.5 Ω .

2.5 Ω

1 Ω

Z4

Z1

Z3

VTHZ2

ZL = (1.5 + j3.5) Ω

Z1
Z2

RTH = Zab

Z3

Z4

.
E = 5 V∠0°

–

+

a

b

.

a

b

c

d

.

Figure 10.29 Circuit for Example 10.10

a

.
IL

ZL

b

(d)

ZTH = 4.95 Ω∠–45°

= (1.5 + j3.5) Ω

VTH = 7.07∠45° V
+

–

.

Figure 10.29(d) Thevenin’s equivalent circuit for Example 10.10
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_I L ¼
_V TH

ZTH þ ZL
¼ 7:07ff45 �V

ð3:5 � j3:5ÞWþ ð1:5 þ j3:5ÞW ¼ 7:07ff45� V
5 W

� 1:4ff45�A

ZTH ¼ ð3:5 � j3:5ÞW ðStep 2Þ

5. Determine Norton’s equivalent circuit in Figure 10.29(a) as seen by ZL.

● Norton’s equivalent impedance ZN:

ZN ¼ ZTH ¼ 3:5 � j3:5 ¼ 4:95ff � 45� W

A ¼ x þ jy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
tan

y

x
¼ affj

● Norton’s equivalent current IN: It is equal to the short circuit current for the
original two-terminal circuit of a and b (as shown in Figure 10.29(e) (I)).

_I N ¼ _I SC ¼ _I
Z2

Z2 þ ðZ3 þ Z4Þ The current divider rule

There; _I ¼
_E

Z1 þ Z2==ðZ3 þ Z4Þ ¼
5ff0� V

�j2:5 þ ð2:5 þ j2:5Þð1 � j1Þ
ð2:5 þ j2:5Þ þ ð1 � j1Þ

� �
W

¼ 5ff0� V

�j2:5 þ 5
3:5 þ j1:5

� �
W

� 1:54ff68:2� A

A ¼ affy ¼ x þ jy ¼ aðcosyþ j sinyÞ

Therefore; _I N ¼ _I SC ¼ _I
Z2

Z2 þ ðZ3 þ Z4Þ

¼ 1:54ff68:2� A
ð2:5 þ j2:5ÞW

2:5 þ j2:5 þ ð1 � j1Þ½ �W � 1:43ff90�A

(e)

–j 2.5 Ω

–j Ω

j 2.5 Ω

a

b

2.5 Ω

1 Ω

(I) (II)

I

Z1

Z4

Z2

Z3E = 5 ∠0° V

4.95∠–45° Ω

1.43∠90.1° A

a

.

.

.

IN

. IN ZN

IL

ZL = (1.5 + j3.5) Ω

.

Figure 10.29(e) Norton’s equivalent circuit for Example 10.10

Methods of AC circuit analysis 331



6. Use Norton’s theorem to check the load current İL: Determine the load current
İL on the terminals of a and b in Figure 10.29(e) (II) by using Norton’s
equivalent circuit.

_I L ¼ _I N
ZN

ZN þ ZL
¼ 1:43ff90� A

4:95ff � 45� W
ð3:5 � j3:5Þ þ ð1:5 þ j3:5Þ½ � W

ZN ¼ ZTH ¼ 3:5 � j3:5

¼ 1:43ff90� A
4:95ff � 45� V

5
� 1:4ff45�A

Therefore, İL is the same by Norton’s theorem as the method by using
Thevenin’s theorem (checked).

Summary

Impedance and admittance

Component
Impedance Z ¼

_V
_I

Admittance Y ¼ 1
Z

Conductance (G) and
susceptance (B)

Resistor (R) ZR ¼ R YR ¼ G
Conductance: G ¼ 1

R

Inductor (L) ZL ¼ jXL YL ¼�jBL Inductive susceptance: BL ¼ 1

XL

Capacitor (C)
ZC ¼ �jXC j ¼ 1

�j
YC ¼ jBC Capacitive susceptance: BC ¼ 1

XC

Z, Y, X,
and B

Z ¼ zffj ¼ R þ jX

z ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ X 2

p

j ¼ tan�1 X

R

Y ¼ yffjy ¼ G þ jB

y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ B2

p

jy ¼ tan�1 B

G

Reactance: X ¼ XL � XC

Susceptance: B ¼ BC � BL

XL ¼ wL; XC ¼ 1
wL

� �

Quantity Quantity symbol Unit Unit symbol

Impedance Z Ohm W

Admittance Y Siemens (or mho) S (or ℧)

Susceptance B Siemens (or mho) S (or ℧)

Conductance G Siemens (or mho) S (or ℧)
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Impedance, voltage, current, and power triangles

● For a more inductive circuit:

Q

P

Z
X

V
.

I
.

I S
.

VR
.

VX
.

IX
.

IR
.

R

φ φ φ φ

● For a more capacitive circuit:

Z
X

R
φ φ φ φ

VR
.

V
. VX

. Q

P

S

IR
.

IX
.

I
.

● Impedance angle: j ¼ tan�1 X

R
¼ tan�1

_V X

_V R
¼ tan�1

_I X

_I R
¼ tan�1 Q

P
Characteristics of impedance and admittance:

● The inductive load: X > 0 (XL > XC), j> 0, B < 0 (BL > BC), jy < 0

● The capacitive load: X < 0 (XC > XL), j< 0, B > 0 (BC > BL), jy > 0

● The resistive load: X ¼ 0 (XC ¼ XL), j¼ 0, B ¼ 0 (BL ¼ BC), jy ¼ 0

Impedances in series and parallel

● Impedances in series: Zeq ¼ Z1 þ Z2 þ . . .þ Zn

● Impedances in parallel:

Zeq ¼ 1
1
Z1

þ 1
Z2

þ � � � þ 1
Zn

¼ Z1==Z2== . . . ==Zn

Zeq ¼ 1
Yeq

Yeq ¼ Y1 þ Y2 þ . . .þ Yn

● Two impedances in parallel: Zeq ¼ z1z2

z1 þ z2
¼ Z1==Z2

The phasor forms of VDR, CDL, KVL, and KCL

● VDR for impedance: _V 1 ¼ z1

z1 þ z2

_E; _V 2 ¼ z2

z1 þ z2

_E

● CDR for impedance: _I 1 ¼ z2

z1 þ z2

_IT ; _I 2 ¼ z1

z1 þ z2

_IT

● The phasor form of KCL: S _I ¼ 0 _I in ¼ _I out

● The phasor form of KVL: S _V ¼ 0 _V 1 þ _V 2 þ � � � _V n ¼ _E
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Power in AC circuits

Power General
expression

R L C

Instanta-
neous
power

p ¼ VI cosj (1 �
cos2wt) þ
VI sinj sin2wt

pR ¼ VI (1� cos2wt) pL ¼ VI sin2wt pC ¼�VI sin2wt

Active power p ¼ VI cosj
PR ¼ VI ¼ 1

2
VmIm

¼ I2R ¼ V 2

R

PL ¼ 0 PC ¼ 0

Reactive
power

Q ¼ VI sinj QR ¼ 0 QL ¼ VI

¼ I2XL ¼ V 2

XL

QC ¼ �VI

¼ �I2XC ¼ �V 2

XC

Apparent
power S ¼ IV ¼ I2Z ¼ V 2

Z

Quantity Quantity symbol Unit Unit symbol

Instantaneous power p Watt W

Active power P Watt W

Reactive power Q Volt-amperes reactive Var

Apparent power S Volt-amperes VA

Power triangle

φ
Q

P

S

P ¼ S cosj; Q ¼ S sinj; S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ Q2

p

Impedance angle: j ¼ tan�1 Q

P
¼ tan�1 X

R
¼ tan�1

_V X

_V R
¼ tan�1

_I X

_I R

Phasor power: _S ¼ _V _I ¼ I_
2
Z ¼ V_

2

Z ; _S ¼ P þ jQ

Power factor
(cosj)

– Power factor PF: cosj ¼ P

S
(0 
 cosj 
 1), cosj without unit)

– When cosj¼ 1: All energy supplied by the source is consumed by
the load.

– Power-factor correction: A capacitor in parallel with the inductive
load can increase the power factor.
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Total power

– Total active power: PT ¼ P1 þ P2 þ . . . þ Pn

– Total reactive power:
QT ¼ QLT � QCT ¼ (QL1

þ QL2
þ . . . )� (QC1

þ QC2
þ . . . )

QLT: the total reactive power for inductors.

QCT: the total reactive power for capacitors.

– Total apparent power: S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ Q2

p
– Total power factor: PFT ¼ cosjT ¼ PT

ST

Analysis methods for AC sinusoidal circuits
All analysis methods that are used to analyze DC circuits with one or two more
sources can also be used to analyze AC circuits.

Practice problems

10.1
1. In an RLC series circuit, R ¼ 20 W, XC ¼ 10 W, and XL ¼ 15 W.

Calculate the input impedance of this circuit and plot its phasor
diagram.

2. If the input impedance Zeq of an RLC series circuit is 100 ff30� W,
XL ¼ 36 W, and R ¼ 47 W. Calculate the capacitive impedance ZC of
this circuit.

3. In an RLC parallel circuit, R ¼ 5 kW, XL ¼ 2 kW and XC ¼ 4 kW.
Calculate the input admittance and plot phasor diagram of this
circuit.

10.2
4. Determine the input equivalent impedance Zeq for the circuit in

Figure 10.30 (w¼ 10 rad/s).

C1 = 2 mF

C3 = 4 mF

R1 = 20 Ω

R2 = 50 Ω

L2 = 2 H

Zeq 

Figure 10.30
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5. Determine the input equivalent impedance Zeq, capacitor branch
current İC, and inductor branch current İL for the circuit in
Figure 10.31.

10.3
6. Calculate the total powers PT, QT, ST, the power factor cos j, and

plot the power triangle for the circuit of Figure 10.32.

7. Calculate the active powers, reactive powers, total powers PT, QT, ST,
power factor cosj, and total current İT for each component in the
circuit of Figure 10.33, and also plot the power triangle for this
circuit.

QL = 45 Var

QC = 50 Var

P = 30 W
P = 40 We

+

–

Figure 10.32

E = 10 V∠0° XL = 2 Ω R = 5 Ω XC = 3 Ω

IT

.

.

–

+

Figure 10.33

.
E = 50 V

XL = 3 Ω

XC = 20 ΩR = 30 Ω0°
+

Figure 10.31
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10.4
8. Write the mesh equations for the circuit shown in Figure 10.34.

9. Calculate the mesh current I for the circuit shown in Figure 10.35
using the superposition theorem.

10. Determine the node voltages for the circuit shown in Figure 10.36.

5 A∠120°

1.6 V∠70°+
–

a

8 Ω

10 Ω 10 Ω

4 Ω

2 Ω

b

Figure 10.36

.
E1 = 6∠0° V

.
I1 = 3∠0° A

5∠30° V
.

E2

R1 = 5 Ω

XC1 = 4 Ω

XL1 = 5 Ω XL2 = 10 Ω

R2 = 3 Ω
R3 = 5 Ω

+

–

+

–

Figure 10.34

j2 Ω

1 Ω
1 Ω

3 Ω

1 Ω

2 Ω

–j10 Ω

j2 Ω

3 Ω

I

E1 = 12∠90° V

6∠0° V

+

–

Figure 10.35
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11. Determine the Thevenin equivalent circuit as viewed from terminals
a and b for the circuit shown in Figure 10.37.

a

10 Ω 3∠90° A

20∠0° V
j20 Ω

–j30 Ω

20 Ω

5 Ω 15 Ω 10 Ω

+

–

b

Figure 10.37
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Chapter 11

RLC circuits and resonance
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11.1 Series resonance

11.1.1 Introduction to series resonance
Introduction to resonance
The resonance phenomena have a wide range of applications in electrical and
electronic circuits, particularly in communication systems and signal processing.



● Resonant circuits are simple combinations of inductors (L), capacitors (C),
resistors (R), and a power source ð _EÞ.

● The capacitor or inductor voltage/current in a resonant circuit could be much
higher than the source voltage or current, a small input signal can produce a
large output signal when resonance appears in a circuit. This is why the reso-
nant circuit has many important applications in communications systems.

● Resonance may also damage the circuit elements if it is not used properly. So,
it is very important to analyze and study resonance phenomena and to know its
pros and cons.

Series resonance
● Resonance may occur in a series RLC circuit, as shown in Figure 11.1, when

the inductor reactance XL is equal to the capacitor reactance XC.
● When the magnitudes of XL and XC are equal (XL¼ XC), or when reactance X is

zero (X ¼ XL �XC ¼ 0), the equivalent or total circuit impedance Z is equal to
the resistance R, i.e., _Z ¼ R þ jðXL � XCÞ ¼ R.

● When XL ¼ XC, and Z ¼ R, resonance will occur in the RLC series circuit.
● When resonance occurs in a series RLC circuit, the energy of the reactive

components in the circuit will compensate each other (XL ¼ XC), and the
equivalent impedance Z of the series RLC circuit will be the lowest (Z ¼ R).
This is the characteristic of the series resonant circuit.

Series resonance XL ¼ XC; X ¼ 0; Z ¼ R

11.1.2 Frequency and impedance of series resonance
Frequency of series resonance
● The angular frequency of the series resonant circuit can be obtained from

XL ¼ XC or wL ¼ 1
wC

● Solving for w gives wr ¼ 1ffiffiffiffiffiffiffi
LC

p (The subnotation ‘‘r’’ stands for resonance.)

Since w ¼ 2pf

R

C

L

•

VS

•

VR

•

VL

•

VC

•

I

Figure 11.1 An RLC series circuit
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Solving for f from the above equation gives the series resonant frequency as

fr ¼ 1

2p
ffiffiffiffiffiffiffi
LC

p

● The resonant frequency fr is dependent on the circuit elements L and C,
meaning that it may produce or remove resonance by adjusting the inductance
L or capacitance C in the RLC series circuit.

Frequency of series resonance

Resonant frequency: fr ¼ 1

2p
ffiffiffiffiffiffiffi
LC

p

Resonant angular frequency: wr ¼ 1ffiffiffiffiffiffiffi
LC

p

Impedance of series resonance
● When series resonance occurs, the circuit’s equivalent impedance is at the

minimum (Z ¼ R). This is illustrated in Figure 11.2, which is the response
curve of the impedance Z versus frequency f in the series resonant circuit.

● When f ¼ fr , the impedance Z is at the lowest point on the curve.

11.1.3 Current and phasor diagram of series resonance
Current of series resonance

● When resonance occurs in a series RLC circuit, the impedance of the circuit is

equal to the resistance (Z ¼ R), and the resonant current will be _I ¼
_V

z
¼

_V

R
.

● When f ¼ fr , XL ¼ XC, the only opposition to the flow of the current is resis-
tance R, i.e., the impedance is minimum and current is maximum in a series
resonant circuit.

● Figure 11.3 illustrates the response curve of current I versus frequency f in
the series resonant circuit, and the current is at the highest point on the curve
when f ¼ fr .

Z

f
fr

0

Figure 11.2 The response curve of Z vs. f for series resonance
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I and Z of series resonance
– Impedance is minimum at series resonance: Z ¼ R

– Current is maximum at series resonance: _I ¼
_V

Z
¼

_V

R

Phasor diagram of series resonance
● An RLC series resonant circuit is equivalent to a purely resistive circuit since

Z ¼ R.
● The capacitor and inductor voltages in the series resonant circuit are equal in

magnitude but are opposite in phase, since XL ¼ XC: _vL ¼ jXLiL and
_vC ¼ jXCiC

● The resistor voltage is equal to the source voltage ð _VR ¼ _EÞ since X ¼ 0 when
series resonance occurs.

● The current _I and source voltage _E are also in phase (since _VR and _I in phase),
and the phase difference between _E and _I is zero (j¼ 0).

● A phasor diagram of the series resonant circuit is illustrated in Figure 11.4.

Phasor relationship of
series resonance

– _V L and _VC are equal in magnitude but opposite in phase.
– _I and _E are in phase, and j¼ 0.

f
fr

0

•

I

Figure 11.3 The response curve of I vs. f for series resonance

+j

0
•

VR = E

•

VL

•

VC

•

•

I
+

Figure 11.4 Phasor diagram of the series resonant circuit
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11.1.4 Response curves of XL, XC, and Z versus f
Response curves
● The response curves of the inductive reactance XL, capacitive reactance XC,

and impedance Z versus frequency f are illustrated in Figure 11.5.
● XL and f are directly proportional (XL ¼ 2pfL), i.e., as frequency increases XL

increases.
● XC and f are inversely proportional ðXC ¼ 1

2pfC
Þ, i.e., as frequency increases

XC decreases.
● When frequency f is zero in the circuit, XL ¼ 0, XC and Z approach infinity,

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 2pfL � 1

2pfc

� �2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ð0 �1Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R þ12

p
) 1

0
@

1
A

Characteristics of series resonance
● The response curves of XL, XC, and Z versus f show that when the circuit

frequency is below the resonant frequency fr ( f < fr), the inductive reactance
XL is lower than the capacitive reactance XC and the circuit appears capacitive.

● When the circuit frequency is above the resonant frequency fr ( f > fr), the
inductive reactance XL is higher than the capacitive reactanceXC, and the cir-
cuit appears more inductive.

● Only when the circuit frequency is equal to the resonant frequency fr ( f ¼ fr),
the resonance occurs in the circuit. Impedance Z is equal to the circuit resis-
tance R and has a minimum value, and the circuit appears purely resistive.

Characteristics of
series resonance

– When f < fr, XL < XC: the circuit is more capacitive.
– When f > fr, XL > XC: the circuit is more inductive.
– When f ¼ fr, XL ¼ XC, I ¼ Imax, Z ¼ Zmin ¼ R: the circuit is

purely resistive and resonance occurs.

f0
fr

(Z = R)

XL

XL > XCXL < XC

XC

Z

Figure 11.5 The response curves of XL, XC, and Z vs. f
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11.1.5 Phase response of series resonance
Phase response of series resonance
● The phase response of the series resonant circuit can also be obtained from

Figure 11.5.
● When the frequency of the circuit is above the resonant frequency fr, the circuit

is more inductive XL > XC, voltage leads current, and the phase difference is
between zero and positive 90� (0 � j � +90�).

● When the frequency of the circuit is below the resonant frequency fr, the circuit
is more capacitive XL < XC, the voltage lags current, and the phase difference
is between zero and negative 90� (� 90� � j � 0).

● When the frequency of the circuit is equal to the resonant frequency fr,
XL ¼ XC, Z ¼ R, voltage and current are in phase, and the phase difference is
zero (j¼ 0).

● The phase response of the series resonant circuit can be illustrated in
Figure 11.6.

Relation between frequency and phase angle
The following characteristics of the series resonant circuit can also be obtained
from Figure 11.6.

● When the frequency increases from the resonant frequency fr to infinity, the
phase angle j approaches positive 90�.

● When the frequency decreases from the resonant frequency fr to zero, the phase
angle j approaches negative 90�.

● The equation of the phase angle j is

j ¼ tan�1 X

R
¼ tan�1 XL � XC

R
¼ tan�1

2pfL � 1
2pfC

R

Phase response of
series resonance

– When f ! 1; j ! þ90�
– When f ! 0; j ! �90�

0

+90°

–90°

φ

fr
f

Figure 11.6 Phase response of the series resonant circuit
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11.1.6 Quality factor
Quality factor Q
● There is an important parameter known as quality factor in the resonant circuit,

which is denoted as Q.
● The quality factor is defined as the ratio of stored energy and consumed energy in

physics and engineering, so it is the ratio of the reactive power stored by an inductor
or a capacitor and average power consumed by a resistor in a resonant circuit,

i:e:; Quality factor Q ¼ Reactive power=average power (11.1)

● The quality factor can be used to measure the energy that a circuit stores and
consumes.

The lower the energy consumption of a resistor (power loss) in a circuit, the
higher the quality factor, and the better the quality of the resonant circuit.

● If substituting the equations of the reactive power and average power into the
quality factor equation (11.1), the quality factor of the series resonance will be

obtained as follows: Q ¼ I2XL

I2R
¼ XL

R
¼ wL

R
where R is the total or equivalent resistance in the series circuit.

● The quality factor Q can also be expressed by the capacitive reactance and the

resistance as: Q ¼ XC

R
¼ 1

wCR

Winding resistance Rw and Q
● The quality factor Q can be used to judge the quality of an inductor (or coil).
● A coil always contains a certain amount of winding resistance Rw, which is the

resistance of the wire in the winding.

● The quality factor Q for a coil is defined as the ratio of the inductive reactance

and the winding resistance, i.e., Q ¼ XL

Rw

● The lower the winding resistance Rw of a coil, the higher the quality of the coil.

Quality factor Q

– Quality factor: the ratio of the reactive power and average power.

– Quality factor of the series resonance: Q ¼ XL

R
¼ XC

R
.

– Quality factor of the coil: Q ¼ XL

Rw
(Rw—winding resistance).

(The lower the Rw, the higher the quality of the coil.)

Note: Both the quality factor and reactive power are denoted by the letter Q, so be careful not to
confuse them. The quality factor is a dimensionless parameter, and the unit of reactive power is
Var, which can be used to distinguish between these two quantities.
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11.1.7 Voltage of series resonance
Voltage resonance

● Multiplying current _I for both the denominator and numerator of the quality

factor equation Q ¼ XL

R
, gives Q ¼ XL

R
¼

_I XL

_I R
¼

_V L

_E

Similarly, for Q ¼ XC

R
Q ¼ XC

R
¼

_I XC

_I R
¼

_V C

_E

● When the resonance occurs in a RLC series circuit:

_V L ¼ _V C ¼ _EQ (11.2)

● The quality factor Q is always greater than 1, so the inductor or capacitor
voltage may greatly exceed the source voltage in a series resonant circuit, as
can be seen from (11.2).

● This means that a lower input voltage may produce a higher output
voltage; therefore, the series resonance is also known as the voltage resonance.
That is one of the reasons that series resonant circuits have a wide range of
applications.

● When choosing the storage elements L and C for a series resonant circuit, the
affordability of their maximum voltage should be taken into account, or else
the high resonant voltage may damage circuit components.

A small input force can produce a large output vibration
● The concept of circuit resonance is similar to resonance in physics, which is

defined as a system oscillating at maximum amplitude at resonant frequency,
so a small input force can produce a large output vibration.

● There are many examples of resonance in daily life,
– such as pushing a child in a playground swing to the resonant frequency, which makes

the swing go higher and higher to the maximum amplitude with very little effort.
– Another example is bouncing a basketball. Once the ball is bounced to the resonant

frequency, it will yield a smooth response, and the ball will reach maximum height
since the small force produces a large vibration.

● Resonance may also cause damage.
For example, a legend says that when a team of soldiers walking a uniform pace passed
through a bridge, the bridge collapsed since the uniform pace reached resonant frequency
resulted in a small force producing a large vibration.

Relationship of
voltage and Q

– A lower input voltage may produce a higher output voltage.
– Inductor or capacitor voltage may greatly exceed the supply voltage.

_V L ¼ _V C ¼ _EQ ðQ > 1Þ
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11.1.8 Series resonance example

Example 11.1: A series resonant circuit is shown in Figure 11.7. Determine the
total equivalent impedance, quality factor, and inductor voltage of this circuit.

Solution:

● Z ¼ RT ¼ R þ RW ¼ ð2 þ 0:5ÞW ¼ 2:5ff0� W

● fr ¼ 1

2p
ffiffiffiffiffiffiffi
LC

p ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2:5 mHÞð0:25mFÞp � 6366 Hz

XL ¼ 2pfL ¼ 2pð6366Þð2:5 mHÞ � 100 W

Q ¼ XL

RT
¼ 100 W

2:5 W
¼ 40

● _V L ¼ jXL � _I ¼
_E

Z
� jXL

¼ 2:5ff0� V
2:5ff0� W

� 100ff90� W ¼ 100ff90� V

● This example shows that the inductor voltage of the series resonant circuit is
indeed greater than the supply voltage.

ð _V L ¼ 100ff90� VÞ > ð _E ¼ 2:5ff0� VÞ

11.2 Bandwidth and selectivity

11.2.1 The bandwidth of series resonance
Bandwidth (BW)
● When a RLC series circuit is in resonance, its impedance will reach the

minimum value and the current will reach the maximum value. The curve of
the current versus frequency of the series resonant circuit is illustrated in
Figure 11.8.

L = 2.5 mH

Rw = 0.5 Ω
E = 2.5 V∠0°

C = 0.25 μFR = 2 Ω

+

–

•

Figure 11.7 Circuit for Example 11.1
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● The current reaches the maximum value Imax as the frequency closes in on the
resonant frequency fr, which is located at the center of the curve (as displayed
in the diagram).

● The characteristic of the resonant circuit can be expressed in terms of its
bandwidth (BW) or pass-band. The BW of the resonant circuit is the difference
between two frequency points f2 and f1, i.e., BW ¼ f2 � f1

Critical frequencies
● f2 and f1 are called critical, cutoff, or half-power frequencies.
● The BW of the resonant circuit is a frequency range between f2 and f1 when

current I is equivalent to 0.707 of its maximum value Imax, or 70.7% of the
maximum value of the curve (as shown in Figure11.8).

Half-power frequency
● The power delivered by the source at the points f1 and f2 can be determined

from the power formula P ¼ I2R

Pf 1 ¼ I2
f1

R ¼ ð0:707ImaxÞ2R � 0:5I2
maxR ¼ 0:5Pmax

and

Pf 2 ¼ I2
f2

R ¼ ð0:707ImaxÞ2R ¼ 0:5I2
maxR ¼ 0:5Pmax

● At both points f2 and f1, the circuit power is only one-half of the maximum
power that it is produced by the source at resonance frequency fr, where f2 is
the upper critical frequency, and f1 is the lower critical frequency.

Bandwidth
(pass-band)

– Bandwidth (BW ¼ f2 � f1) is the range of frequencies at _I ¼ 0:707_I max.
– f2 and f1 are critical or cutoff or half-power frequencies. Pf 1;2 ¼ 0:5Pmax.

11.2.2 The selectivity of series resonance
The selectivity curve of the series resonant circuit
● Figure 11.8 shows the frequency range between f2 and f1 at which the current is

near its maximum value, and the series resonant circuits can select frequencies
in this range.

0.707 Imax
2
1

f

Pmax

fr

BW

f1 f2
0

Imax

I

Figure 11.8 Bandwidth of a series resonant circuit
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● The curve in Figure 11.8 is called the selectivity curve of the series resonant
circuit. The selectivity is the capability of a series resonant circuit to choose
the maximum current that is closer to the resonant frequency fr .

● The steeper the selectivity curve, the faster the signal attenuation (reducing),
the higher the maximum current value, and the better the circuit selectivity.

● For example, in Figure 11.9, the selectivity curve 1 has a bandwidth of BW1

and a maximum current I1max , which has a better current selectivity than
selectivity curve 2 or 3.

● This means that the series resonant circuit of curve 1 has a higher quality and can

be expressed as Q ¼ fr

BW
. (Q is the quality factor of the series resonant circuit.)

Current selectivity
● The bandwidth BW is an important characteristic for the resonant circuit.
● A series resonant circuit with a narrower BW has a better current selectivity.
● A series resonant circuit with a wider BW is good for passing the signals.

Sometimes in order to take into account both aspects, the selectivity curve between nar-
row and wide curves may be chosen (such as the selectivity curve 2 (BW2) in Figure 11.9.)
Therefore, the concepts of BW and selectivity may apply to different circuits with different

design choices.

Selectivity of the
series resonance

The capability of the circuit to choose the maximum
current Imax closer to the resonant frequency fr.

11.2.3 The quality factor and selectivity
Q and Selectivity
● The quality factor Q in the resonant circuit is a measure of the quality and

selectivity of a resonant circuit.

I1max

I2max

I3max

BW1

BW2

BW3

f

I

0

3
2

1

Figure 11.9 Selectivity of a series resonant circuit
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● The higher the Q value, the narrower the BW ðBW # ¼ fr
Q "Þ, the higher the

maximum current, and the better the current selectivity, which is desirable in
many applications.

Q represents the quality of a resonant circuit
● The disadvantage of the narrower BW or higher Q is that the ability for passing

signals in the circuit will be reduced.

● The lower the Q value, the wider the BW ðBW "¼ fr
Q #Þ, and the better the

ability to pass signals; however, it will have a poor current selectivity.
● Q is denoted as the ‘‘quality’’ factor since it represents the quality of a resonant

circuit.

Example 11.2 Given a series resonant circuit shown in Figure 11.10(a), determine
the BW and current _I (phasor-domain) of this circuit with three resistors that are 50,
100, and 200 W and plot their selectivity curves.

Solution:

● When R ¼ 50 W: Q ¼ XL

R
¼ 2 kW

50 W
¼ 40; BW1 ¼ fr

Q
¼ 50 Hz

40
¼ 1:25 HZ

_I ¼
_E

Z
¼

_E

R
¼ 10ff0� V

50 W
¼ 0:2ff0� A

● When R ¼ 100 W: Q ¼ XL

R
¼ 2 kW

100 W
¼ 20; BW2 ¼ fr

Q
¼ 50 Hz

20
¼ 2:5 Hz

_I ¼
_E

Z
¼

_E

R
¼ 10ff0� V

100 W
¼ 0:1ff0� A

● When R ¼ 200 W: Q ¼ XL

R
¼ 2 kW

200 W
¼ 10; BW3 ¼ fr

Q
¼ 50 Hz

10
¼ 5 Hz

_I ¼
_E

Z
¼

_E

R
¼ 10ff0� V

200 W
¼ 0:05ff0� A

+

–
XC  = 2 kΩfr = 50 Hz

E = 10 V∠0°
XL = 2 kΩ

R = 50 Ω

•

Figure 11.10(a) The circuit for Example 11.2
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● Example 11.2 shows that the selectivity curve of a resonant circuit depends
greatly upon the amount of resistance in the circuit.

● When resistance R in a series resonant circuit has a smaller value, the selec-
tivity curve of the circuit is steeper, the quality factor Q has a higher value, the
current at the resonant frequency fr has a higher value, and the selectivity
is better.

● However, the pass-band (BW) of the circuit with a smaller R value is narrower,
and the ability to pass signal will be poor.

Quality factor
and selectivity

– Quality factor: a measure of the quality and selectivity of a reso-

nant circuit, Q ¼ fr

BW
.

– Q "¼ XL

R # ) BW #¼ fr

Q ": the steeper the selectivity curve, the

better the current selectivity, but the worse the ability to pass
signals.

– Q #¼ XL

R " ) BW "¼ fr

Q #: the flatter the selectivity curve, the

worse the current selectivity, but the better the ability to pass
signals.

The analysis method of the series resonant circuit can also be applied to the parallel resonant
circuits.

0

•

I

0.05 A

0.1 A

0.2 A

f

fr = 50 Hz

BW3 = 5 Hz

BW2= 2.5 Hz

BW1 = 1.25 Hz

Figure 11.10(b) The selectivity curve for Example 11.2
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Series resonance summary

Characteristics Series resonance

Condition of resonance XL ¼ XC; X ¼ 0; Z ¼ R

Resonant frequency
fr ¼ 1

2p
ffiffiffiffiffiffiffi
LC

p

Impedance Z ¼ R minimum (admittance Y maximum)

Current
_I T ¼

_V

R
maximum

BW
BW ¼ f2 � f1 ¼ fr

Q

Quality factor
Q ¼ XL

R
¼ XC

R

Relationship of voltage and
quality factor

_V L ¼ _V C ¼ _EQ

11.3 Parallel resonance

11.3.1 Introduction to parallel resonance
Parallel resonance
● Resonance may occur in a parallel resistor, inductor, and capacitor (RLC)

circuit, as shown in Figure 11.11, when the circuit inductive susceptance BL is
equal to the capacitive susceptance BC.

● The analysis method of the parallel resonance is similar to series resonance.

Admittance of parallel resonance
● When the magnitudes of the capacitive susceptance BC and the inductive sus-

ceptance BL are equal (BC ¼ BL), or when the susceptance B is zero (B ¼ BC –
BL ¼ 0), the circuit input equivalent (total) admittance Y is equal to the circuit
conductance G, i.e.,

Y ¼ G þ jB ¼ G

● Under the above condition, resonance will occur in the RLC parallel circuit.

jwL jwC
1

•

IT
•

IR
•

IL
•

IC

•

E R

Figure 11.11 A parallel RLC circuit
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The characteristic of the parallel resonant circuit
● When the resonance occurs in a RLC parallel circuit, the energy of the reactive

components in the circuit will compensate each other (BC ¼ BL).
● The equivalent admittance Y of the parallel RLC circuit is at the lowest (Y ¼ G).

Parallel resonance BC ¼ BL; B ¼ 0; Y ¼ G

11.3.2 Frequency and admittance of parallel resonance
Frequency of parallel resonance
● The angular frequency of the parallel resonant circuit can be obtained from

Y ¼ G þ jðBC � BLÞ ¼ 1
R
þ j wC � 1

wL

� �

● From BC ¼ BL or wC ¼ 1
wL

solving for w gives wr ¼ 1ffiffiffiffiffiffiffi
LC

p

● Since w¼ 2pf

the parallel resonant frequency is fr ¼ 1

2p
ffiffiffiffiffiffiffi
LC

p
● The parallel resonant angular frequency is wr and resonant frequency fr are the

same with those in the series resonant circuit.
● The resonant frequency fr is dependent on the circuit elements L and C,

meaning that by adjusting the inductance L or capacitance C in the RLC par-
allel circuit, resonance may be produced or removed.

Frequency of
parallel resonance

– Resonant frequency: fr ¼ 1

2p
ffiffiffiffiffiffiffi
LC

p

– Resonant angular frequency: wr ¼ 1ffiffiffiffiffiffiffi
LC

p

Admittance

● When parallel resonance occurs, the equivalent admittance Y of the circuit is at
the minimum (Y ¼ G), B ¼ BC – BL ¼ 0, so the circuit equivalent impedance Z

is at a maximum ðZ "¼ 1
Y #Þ. (This is shown in Figure 11.12, which is the

response curve of the impedance Z versus the frequency f in the parallel
resonant circuit.)

● When f ¼ fr , the impedance Z is at the highest point on the curve and this is
opposite to the series resonance.
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11.3.3 Current of parallel resonance
The total current in the parallel resonant circuit
● When resonance appears in a parallel RLC circuit, the impedance of the circuit

is equal to the resistance (Z ¼ R), and the total current in the circuit will be

_I T ¼
_V

Z
¼

_V

R

● When f ¼ fr, in the parallel resonant circuit,

– the admittance Y is at the minimum:

BC ¼ BL; Y ¼ G; Y ¼ G þ jðBC � BLÞ
– the impedance Z is at the maximum:

Z "¼ 1
Y #

– the current is at the minimum:

_I T #¼
_V
_Z " ¼

_V

R

Response curve for parallel resonance
● Figure 11.13 illustrates the response curve of current I versus frequency f in the

parallel resonant circuit.
● Current is at the lowest point on the curve when f ¼ fr. (This is opposite to

series resonance.)

Z

f
fr

0

Figure 11.12 The response curve of Z vs. f for parallel resonance

I

f
fr

0

•

Figure 11.13 The response curve of I vs. f for parallel resonance
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I and Z of parallel
resonance

– Impedance is maximum at parallel resonance:

Z ¼ R ðB ¼ 0; Y ¼ GÞ Y ¼ G þ jðBC � BLÞ
– Current is minimum at parallel resonance:

_I T ¼
_V
_Z
¼

_V

R

11.3.4 Phasor diagram of parallel resonance
The capacitor and inductor branch currents in the parallel resonant
circuit
● An RLC parallel resonant circuit is equivalent to a purely resistive circuit since

Y ¼ G and Z ¼ R.

● The capacitor and inductor branch currents in the parallel resonant circuit
are equal in magnitude but opposite in phase, since BL ¼ BC ðBL ¼ 1

XL
;

BC ¼ 1
XC
Þ

and _I L ¼ VL

jXL
¼ �j

VL

XL
; _I C ¼ VC

�jXC
¼ j

VC

XC
þ j ¼ �1

j

i:e:; _I L ¼ �_I C

Phasor diagram of the parallel resonant circuit
● The resistor voltage is equal to the source voltage _V R ¼ _E in the parallel

resonant circuit of Figure 11.11.
● The total current ð_I TÞ and the source voltage ð _EÞ are in phase (since _V R and _E

are in phase).
● The phase difference between _E and _I T is zero, i.e., the admittance angle

jy ¼ 0.
● A phasor diagram of the parallel resonant circuit is illustrated in Figure 11.14.

•

IT

•

IC

•

IL

E = VR
••

Figure 11.14 Phasor diagram of the parallel resonant circuit
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Phasor relationship of
parallel resonance

– _I L and _I C are equal in magnitude but opposite in phase.

_I L ¼ �_I C

– _I T and Ė are in phase, and jy ¼ 0.

11.3.5 Quality factor of parallel resonance
Quality factor Q
● Recall: The quality factor is the ratio of the reactive power stored by an inductor

or a capacitor and the average power dissipated by a resistor in a circuit, i.e.,

Quality factor Q ¼ Reactive power=average power

● The quality factor of a parallel resonance: If we substitute the equations of the

reactive power ðPL ¼
_V

2
L

XL
Þ and average power ðPR ¼

_V
2
R

R
Þ in Figure 11.11 into

the quality factor equation, the quality factor of a parallel resonance will be
obtained as follows:

Q ¼
_E

2
=XL

_E
2
=R

¼ R

XL
ð, _V L ¼ _V R ¼ _EÞ

● The quality factor Q can be expressed by the capacitive reactance and the
resistance as:

Q ¼ R

XC

● The quality factor of a parallel resonant circuit is inverted with the series
resonant circuit.

ðRecall the quality factor of a series resonant circuit : Q ¼ XL

R
¼ XC

R
Þ

Quality factor Q

Quality factor of the parallel resonance:

Q ¼ R

XL
¼ R

XC

11.3.6 Current of parallel resonance
The inductor and capacitor current

● Dividing the voltage Ė for both the denominator and numerator of the quality

factor equation Q ¼ XL

R
,

gives Q ¼
_E=XL

_E=R
¼

_I L

_I T
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● Similarly, for Q ¼ XC

R

Q ¼
_E=XC

_E=R
¼

_I C

_I T

● The inductor or capacitor current: When resonance occurs in an RLC parallel
circuit, the inductor or capacitor current

_I L ¼ _I C ¼ _I TQ (11.3)

Current resonance
● Usually the quality factor Q is always great than 1, the inductor or capacitor

branch current may greatly exceed the total supply current in a parallel reso-
nant circuit. (This can be seen from (11.3).)

● Current resonance: A lower input current may produce a higher output current
in a parallel resonant circuit, and therefore the parallel resonance is also known
as current resonance.

● The higher resonant current may damage circuit components: When choosing
the storage elements L and C for a parallel resonant circuit, it should be taken
into account the affordability of their maximum current, or else the higher
resonant current may damage circuit components.

Relationship
of current

A lower input current may produce a higher output current. The inductor
or capacitor current may greatly exceed the supply current:

_I L ¼ _I C ¼ _I TQ ðQ > 1Þ

11.3.7 The bandwidth of parallel resonance
BW of parallel resonance
● The characteristic of the parallel resonant circuit can be expressed in terms of

its BW or pass-band. Recall

BW ¼ f2 � f1

or BW ¼ fr

Q

● The BW of the parallel resonant circuit is illustrated in Figure 11.15.
● When the RLC parallel circuit is in resonance, its current reaches the minimum

value.
● The BW of the parallel resonant circuit is a frequency range between the cri-

tical or cutoff frequencies f2 and f1, when the current is equivalent to 0.707 of
its maximum value Imax, or 70.7 % of the maximum value of the curve.
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Parallel resonance summary

Characteristics Parallel resonance

Conditions of resonance BL ¼ BC, B ¼ 0, Y ¼ G

Resonant frequency
fr ¼ 1

2p
ffiffiffiffiffiffiffi
LC

p

Impedance Z ¼ R maximum
(admittance Y minimum)

Current
_I T ¼

_V

R
minimum

BW
BW ¼ f2 � f1 ¼ fr

Q

Quality factor
Q ¼ R

XL
¼ R

XC

Relationship of current and quality factor _I L ¼ _I C ¼ _I TQ

11.4 A practical parallel resonant circuit

11.4.1 Resonant admittance
A practical parallel circuit
● In practical electrical or electronic system applications, the parallel resonant

circuit usually is formed by an inductor (coil) in parallel with a capacitor.
● A practical coil always has internal resistance (wounding resistance), an actual

parallel resonant circuit will look like the one illustrated in Figure 11.16.

Resonant admittance
● The input equivalent admittance of the practical parallel circuit shown in

Figure 11.16 is:

Y ¼ 1
R þ jXL

þ j
1

XC
Y ¼ 1

Z

I

f
fr

0
f1 f2

BW0.707Imax

Imax

Figure 11.15 The BW of the parallel resonance
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● Multiplying (R � jXL) to the numerator and denominator of the first term in the
above equation gives

Y ¼ R

R2 þ XL
2 � j

XL

R2 þ XL
2 þ j

1
XC

or Y ¼ R

R2 þ XL
2 þ j

1
XC

� XL

R2 þ XL
2

� �
(11.4)

● Resonant admittance: The parallel resonance occurs when the circuit admit-
tance Y is equal to the circuit conductance G (Y ¼ G), so when the resonance
occurs for the practical parallel circuit in Figure 11.16, the resonant admittance
should be:

Y ¼ G ¼ R

R2 þ XL
2 ð,Y ¼ G þ jBÞ

11.4.2 Resonant frequency
Resonant angular frequency and frequency
● According to the parallel resonant conditions, resonance occurs when the

capacitive susceptance BC is equal to the inductive susceptance BL, i.e., BC ¼
BL, thus (11.4) gives

XL

R2 þ XL
2 ¼ 1

XC
XL ¼wL; XC ¼ 1

wC

or
wL

R2 þ ðwLÞ2 ¼ wC (11.5)

● The resonance frequency and angular frequency for the circuit in Figure 11.16
can be obtained from (11.5) as follows:

– Resonance angular frequency: wr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L � CR2

L2C

r
¼ 1ffiffiffiffiffiffiffi

LC
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � CR2

L

r

– Resonance frequency: fr ¼ 1

2p
ffiffiffiffiffiffiffi
LC

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � CR2

L

r
w¼ 2pf

C
L

R

•

IL

•

IC

•

VS

•

I

Figure 11.16 A practical parallel circuit
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Condition for resonance
● Resonance will occur in the circuit of Figure 11.16 only when

1 � CR2

L
> 0; 1 >

CR2

L
; R2 <

L

C
; or R <

ffiffiffiffi
L

C

r

● If 1 � CR2

L
< 0 or R >

ffiffiffiffi
L

C

r
resonance will not occur.

Practical parallel
resonance

– Resonant admittance: Y ¼ R

R2 þ XL
2

– Resonant angular frequency: wr ¼ 1ffiffiffiffiffiffiffi
LC

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � CR2

L

r

– Resonant frequency: fr ¼ 1

2p
ffiffiffiffiffiffiffi
LC

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � CR2

L

r

– When 1 � CR2

L
> 0 or R <

ffiffiffiffi
L

C

r
, resonance occurs.

11.4.3 Applications of the resonance
The purpose of resonant circuits
● Resonant circuits are used in a wide range of applications in communication

systems, such as filters, and tuners.
● The purpose of resonant circuits are the same

– to select a specific frequency (resonant frequency fr) and reject all others,
– or select signals over a specific frequency range that is between the cutoff

frequencies f1 and f2.

A parallel tuning circuit
● The key circuit of a communication system is a tuned amplifier (tuning circuit).
● A simplified parallel radio tuning circuit: Figure 11.17 is a simplified parallel

radio tuning circuit for a radio circuit. The combination of a practical parallel
resonant circuit and an amplifier can select the appropriate signal to be amplified.

C

•

Z

RW

L

ffr
0

Figure 11.17 A simplified parallel radio tuner
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● The input signals in the radio tuner circuit have a wide frequency range,
because there are many different radio signals from different radio stations.

● When adjusting the capacitance of the variable capacitor in the practical par-
allel resonant circuit (i.e., adjusting the switch of the radio channel), the circuit
resonant frequency fr will consequently change.

● Once fr matches the desired input signal frequency with the highest input
impedance, the desired input signal will be passed, and this is the only signal
that will be amplified.

● After it is amplified by the amplifier in the circuit, this signal of the corre-
sponding station can be clearly heard.

A series tuning circuit
● Figure 11.18 is a simplified series radio tuning circuit. It is similar to the

parallel tuning circuit.
● When adjusting the capacitance of the variable capacitor in the series resonant

circuit, the circuit resonant frequency fr will change.
● Once fr matches the desired input signal frequency with the highest current, the

desired input signal will be passed and amplified.

Summary

Series/parallel resonance

Characteristics Series resonance Parallel resonance

Conditions of reso-
nance

XL ¼ XC; X ¼ 0; Z ¼ R BL ¼ BC; B ¼ 0; Y ¼ G

Phasor relationship

– _VL and _VC are equal in mag-
nitude but opposite in phase.

– _I and _E in phase, and j¼ 0.

– _I L and _I C are equal in mag-
nitude but opposite in phase.

– _I T and _E in phase, and
jy ¼ 0.

(Continues)

L

R

C

•

•

VS

I

ffr
0

Figure 11.18 A simplified series radio tuner
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(Continued)

Characteristics Series resonance Parallel resonance

Phasor diagram

+j

+0 •
VR = E

•

VL

•

VC

•

•
I 0

•

IT

•

IC

•

IL

VRE
••

=

Resonant frequency fr ¼ 1

2p
ffiffiffiffiffiffiffi
LC

p fr ¼ 1

2p
ffiffiffiffiffiffiffi
LC

p

Impedance

Z ¼ R minimum
(admittance Y maximum)

Z

f
fr

0

Z ¼ R maximum
(admittance Y minimum)

Z

f
fr

0

Current

_I ¼
_V

R
maximum

•

I

f
fr

0

_I T ¼
_V

R
minimum

f
fr

0

•

I

BW BW ¼ f2 � f1 ¼ fr

Q
BW ¼ f2 � f1 ¼ fr

Q

Quality factor Q ¼ XL

R
¼ XC

R
or Q ¼ fr

BW
Q ¼ R

XL
¼ R

XC
or Q ¼ fr

BW

Relationship of voltage/
current and Q

_VL ¼ _VC ¼ _EQ _IL ¼ _IC ¼ _ITQ

Practical parallel resonance

– Resonant admittance:

Y ¼ R

R2 þ XL
2

– Resonant angular frequency:

wr ¼ 1ffiffiffiffiffiffiffi
LC

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � CR2

L

r

– Resonant frequency:

fr ¼ 1

2p
ffiffiffiffiffiffiffi
LC

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � CR2

L

r

– Resonance occurs when 1 � CR2

L > 0; or R <
ffiffiffi
L
C

q
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BW and selectivity

● BW (pass-band): the frequency range corresponding to _I ¼ 0:707 _I max.

BW ¼ f2 � f1

● f2 and f1: critical or cutoff or half-power point frequencies.

Pf1;2 ¼ 0:5Pmax

● Quality factor: a measure of the quality and selectivity of a resonant circuit.
● Selectivity: the capability of the circuit to choose the maximum current closer

to the resonant frequency fr.
● In a series resonant circuit, VL or VC may greatly exceed the supply voltage E,

i.e., a lower input voltage may produce a higher output voltage.
● In a parallel resonant circuit, IL or IC may greatly exceed the total current IT,

i.e., a lower input current may produce a higher output current.

Practice problems

11.1
1. If the inductance in a series resonant RLC circuit is decreased, the

resonant frequency ( ).
2. The total reactance of a series RLC circuit at resonance is ( ),

and the impedance is ( ).
3. When a series RLC circuit is in resonance, its impedance will reach

the ( ) value and the current will reach the ( ) value.
4. In a series RLC resonant circuit, the current is 20 mA, the inductor

voltage is 60 V and the source voltage is 5 V. Determine the resonant
impedance Z, inductive reactance XL, and the capacitive reactance XC

for this circuit.
5. In a series RLC resonant circuit, _E ¼ 10ff0� V, R ¼ 9 W, L¼ 10 mH,

RW ¼ 1 W and C ¼ 1mF. Determine the resonant frequency, total reso-
nant impedance, current, inductor voltage and quality factor Q for this
circuit.

11.2
6. f1 and f2 are called ( ) frequencies or ( ) frequency points.
7. The BW is the frequency range when the current İ ¼ ( ) İmax.
8. The capability of the circuit to choose the maximum current closer to

the resonant frequency fr is called ( ).
9. The higher the Q value, the narrower the BW, the higher the max-

imum ( ), and the better the current selectivity.
10. In a RLC series resonant circuit, the resistance R is 10 W, the capa-

citive reactance XC is 5 kW and the resonant frequency fr is 60 Hz.
Determine the BW of this circuit.

RLC circuits and resonance 363



11.3
11. The RLC parallel resonant angular frequency wr and resonant fre-

quency fr are the ( ) with those in the RLC series resonant circuit.
12. When the RLC parallel resonance appears, a lower input current may

produce a higher output current. The inductor or capacitor current
may greatly exceed the ( ) current.

11.4
13. A practical parallel resonant circuit is formed by a capacitor in par-

allel with an ( ).
14. Resonance will occur in a practical parallel resonant circuit only

when ( ) or ( ).
15. In a practical parallel resonant circuit, VS ¼ 6.3 V, R ¼ 20 W, L ¼ 50

mH, and C ¼ 47 pF. Determine the resonant frequency fr and the
impedance Z for this circuit.
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Chapter 12

Mutual inductance and transformers
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12.1 Mutual inductance

12.1.1 Mutual inductance and self-inductance
Induced voltage
● Recall: When a changing current flows through a coil (inductor), it will pro-

duce an electromagnetic field around the coil, and as a result an induced vol-
tage vL will across it.

● Self-inductance is the ability of a coil to produce an induced voltage due to the
changing of the current in the coil itself.

● Mutual inductance is the ability of a coil to produce an induced voltage due to
the changing of the current in another coil nearby.



The principle of mutual inductance
● Self-induced voltage v1: In Figure 12.1, a coil L1 is placed close to another

coil L2. When AC current i1 flows through the first coil L1, the changing of
alternating current will produce a changing electromagnetic field and flux f1,
resulting in a self-induced voltage v1 across the first coil L1.

● Induced voltage v2: Since the two coils are very close, there is also a portion of
magnetic flux, f1–2, that is produced by changing the electromagnetic field
linked to the coil L2, and consequently produces the induced voltage v2 across
the second coil L2.

● Inductive coupling: The phenomenon of a portion of the flux of a coil linking
to another coil is called inductive coupling, and this is the principle of mutual
inductance.

12.1.2 Factors affecting mutual inductance
Factors affecting mutual inductance
● There are three factors that affect mutual inductance: inductances of the two

coils L1, L2, and the coupling coefficient k.
● The coefficient of coupling k determines the degree of the coupling between

the two coils, and it is the ratio of f1–2 and f1:

k ¼ f1�2

f1

● f1 is the magnetic flux generated by the current i1 in the first coil L1.
● f1–2 is the portion of the magnetic flux that is generated by the current i1 in the

first coil L1 and linked to the second coil as shown in Figure 12.2(a). f1–2 is
called the cross-linking flux.

Mutual inductance
Mutual inductance is denoted by LM and can be expressed mathematically using the
following formula:

LM ¼ k
ffiffiffiffiffiffiffiffiffiffi
L1L2

p

+

–

+

–

v2L2L1
v1

i1

e

Figure 12.1 Magnetic coupling
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Mutual
inductance

An induced voltage in one coil due to a current change in a
nearby coil.

LM ¼ k
ffiffiffiffiffiffiffiffiffiffi
L1L2

p

12.1.3 Coefficient of coupling
Induced voltages

● The induced voltage in the coil L1: The voltage generated by a changing cur-

rent (AC) that flows through the coil L1 is given by v1 � L
di1
dt

(Chapter 6).

● The induced voltage in the coil L2: When the AC current i1 flows through the

second coil L2, the induced voltage in the coil L2 is given by v2 ¼ LM
di1
dt

, or

_V 2 ¼ jLM _I 1 in the phasor form.

Leakage flux
● Leakage flux: In practice, not all of the magnetic flux generated by current i1

will pass through L1 and L2, and the portion of the magnetic flux that does not
link with L1 and L2 is known as a leakage flux.

● Cross-linking flux Ø1–2: The closer the two coils are placed (or if the two coils
have a common core as shown in Figure 12.3(b)), the higher the cross-linking
flux Ø1–2 and the lower the leakage flux.

Coefficient of coupling

● The full-coupling occurs when k ¼ f1�2

f1
¼ 1, i.e., f1–2 ¼ f1

● When all of the flux link coils 1 and 2, there will be no leakage flux.
● If the gap between the two coils is large, it will cause

– the cross-linking flux to decrease,
– the leakage flux to increase,
– the coupling coefficient k to decrease. k is in the range between 0 and 1

(0 � k � 1).

k k

f1
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Figure 12.2 Mutual inductance

Mutual inductance and transformers 367



Coefficient of
coupling

– The coefficient of the coupling: k ¼ f1�2

f1
(0 � k � 1)

– f1: The flux generated by the current i1 in the first coil L1.
– f1–2: The flux generated by the current i1 in the coil L1 cross-

linking to coil L2.

12.1.4 Dot convention
Dot convention method
● The dot convention method can be used to indicate whether the induced

voltage in the second coil is in phase or out of phase with the voltage in the
first coil.

● The dot convention method places two small phase dots (�) or asterisk (*),
one on the coil L1 and the other on the coil L2, to indicate that polarities of the
induced voltage v1 in the coil L1 and v2 in the adjacent coil L2 are the same at
these points, as shown in Figure 12.3.

Corresponding terminals
● The polarity of the induced voltage across the mutually coupled coils can be

determined by the dot convention method.
● Corresponding terminals: The dotted terminals of coils should have the same

voltage polarity at all time, and dotted terminals are known as corresponding
terminals.

Dot convention Dotted terminals of coils have the same voltage polarity.

12.2 Basic transformer

12.2.1 Transformer
Introduction to transformers
● A transformer is an electrical device formed by two coils that are wound on a

common core. You may have seen transformers on top of the utility poles.
● A transformer uses the principle of mutual inductance to convert AC electrical

energy from input to output.
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Figure 12.3 Dot convention
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● Simplified transformer circuits: Figure 12.4 shows two simplified transformer
circuits. A changing current from the AC voltage source in the first coil pro-
duces a changing magnetic field, inducing a voltage in the second coil.
– The first coil connected to a AC power source is called primary winding.
– The second coil connected to the load ZL is called secondary winding.

● Structurally, the transformers are categorized as two main types: the air-core
and iron-core transformers. The symbols for them are shown in Figure 12.4(a)
and (b), respectively.

The main applications of transformer
● Increase or decrease the voltage or current
● Transfer electric energy from one circuit to another
● Prevent DC from passing from one circuit to the other
● Isolate two circuits electrically
● Impedance matching

. . . . . .

Transformer
A transformer uses the principle of mutual inductance to convert AC

electrical energy from input to output.

12.2.2 Air-core transformer
Air-core transformer
● An air-core transformer is not necessary to have a physical core,

– it can be obtained by placing the two coils L1 and L2 close to each other
(Figure 12.5(a)),

– or by winding both the coils L1 (primary coil) and L2 (secondary coil) on a
hollow cylindrical-shaped core with isolating material (Figure 12.5(b)).

● The circuit of an air-core transformer is shown in Figure 12.5(a),
– R1 represents the primary winding resistance of the transformer.
– R2 represents the secondary winding resistance of the transformer.

Linear transformer
● The air-core transformer is also known as a linear transformer.
● When the core of the transformer is made by the insulating material with constant

permeability such as air, plastic, wood, and cardboard, it is a linear transformer.

(a) Air-core Iron-core(b)

L1 ZLL2
e e ZL

Figure 12.4 Simplified transformer circuits
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Air-core
transformer

A linear transformer that can be obtained by placing the two coils close
to each other or winding two (or more) coils around an insulating
substance.

The air-core transformers are usually used in high-frequency circuits, such as in instrumentation,
radio and TV circuits, and communication devices.

12.2.3 Iron-core transformer
Iron-core transformer
● The coils of the iron-core transformer are wound on the ferromagnetic material

that are laminated sheets insulated to each other, as illustrated in Figure 12.6.
● When two coils are wound on a common core, it will have higher cross-linking

flux and lower leakage flux.
● The ferromagnetic materials can provide an easy path for the magnetic flux.

The coupling coefficient k � 1
● If two coils are wound on a common core, the flux generated in the coil L1 will

almost all link with the coil L2.
● This means that the coupling coefficient k is close to 1, and this is the reason that

iron-core transformer is usually considered as the ideal transformer (k ¼ 1).

Applications
● Iron-core transformers are widely used transformers in which the efficiency is

high compared to the air-core-type transformer.
● Iron-core transformers are usually used in power systems, audio circuits, etc.

Iron-core
transformer

– A transformer that has laminations of ferromagnetic material with
coils wound on it.

– The coupling coefficient k is close to 1 (k � 1).

R1 R2

(a) (b)

L2

L2

L1

L1vs ZL

Figure 12.5 Air-core transformer
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12.2.4 Ideal transformer
Ideal transformer
● Ideal transformer: An ideal transformer has no losses (imaginary transformer).

Efficiency of this transformer is considered as 100%.
● Full-coupling (k ¼ 1): The coupling coefficient k of an ideal transformer is 1,

i.e., ideal full-coupling, neglecting winding resistance and magnetic losses in
the coils of the transformer.

● Figure 12.6(a) is a circuit of an ideal transformer with the voltage source, and the
load. (The portion within the dashed line is the symbol of the ideal transformer.)

● An iron-core transformer is considered an ideal transformer because it uses
ferromagnetic materials with high permeability as its core.

● Common core: The primary and secondary windings are wound on a common
core, which have near zero leakage flux and can achieve a full-coupling (k ¼ 1).

Transformer parameters
The parameters of an ideal transformer in Figure 12.6(a) are listed in Table 12.1.

The turns ratio of a transformer
● The turns ratio of a transformer is the ratio of the number of turns, i.e., the number

of turns on the secondary coil NS to the number of turns on the primary coil Np.
● The turns ratio can be derived from the voltage ratio of the secondary and

primary voltages.

Derive the turns ratio (n)

● From Faraday’s law described in Chapter 6, vL ¼ N
df
dt

, we can get

– The primary voltage vp ¼ Np
dj
dt

– The secondary voltage vS ¼ NS
dj
dt

● Turns ratio n: Dividing vS by vP gives the transformer’s turns ratio n:

vS

vP
¼ NS

NP
¼ n

+

–

+

–

• •
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iP NP NS

ZP

e
vP vs ZS = ZL

iS
ϕ

Figure 12.6 Iron-core transformer
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Power
● If the transformer is an ideal transformer, i.e., that transformer has no power

loss itself, the input power is equal to the output power,

● i.e., PP ¼ PS or vPip ¼ vSiS,

so
iP

iS
¼ vS

vP
¼ n (12.1)

Voltage and current

● The primary voltage vp ¼ vS

n
can be obtained from (12.1). n ¼ vS

vp

● The primary current ip ¼ n iS can also be obtained from (12.1).
ip
iS

¼ n

Impedance
● The primary impedance can be obtained by substituting vp and ip into Zp as

follows:

ZP ¼ vP

iP
¼ vS=n

n iS
¼ 1

n2
ZL Z ¼ v

i

or n2 ¼ ZL

ZP
; n ¼

ffiffiffiffiffi
ZL

Zp

s

● The secondary impedance is the load impedance ZL: ZL ¼ vS

iS

Table 12.1 Parameters of an ideal transformer

Parameters Name

vp Primary voltage

vS Secondary voltage

Np Number of turns on the primary coil

NS Number of turns on the secondary coil

ip Primary current

iS Secondary current

Zp Primary impedance

ZS Secondary impedance

ZL Load impedance (ZL ¼ ZS)
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Turns ratio

– Instantaneous form:
n ¼ NS

NP
¼ vS

vP
¼ iP

iS
¼

ffiffiffiffiffi
ZL

ZP

r
; or ZL ¼ n2Zp

– Phasor form: n ¼ NS

NP
¼

_V S

_V P
¼

_I P

_I S
¼

ffiffiffiffiffi
ZL

ZP

r

Power
– Instantaneous form: pS ¼ iS vS, pP ¼ iP vP

– Phasor form: _PS ¼ _I S _V S; _PP ¼ _I P _V P

12.2.5 Transformer parameters conversion
● Conversion of the voltage, current, and impedance: The expressions of the

transformer’s turns ratio indicate that a transformer can be used to convert
voltage, current, and impedance.

● Voltage conversion:
– Convert from the primary to the secondary, multiplying by n:

vS ¼ nvP n ¼ vS

vp

– Convert from the secondary to the primary, multiplying by
1
n
:

vp ¼ 1
n

vS n ¼ vS

vp

● Current conversion:
– Convert from the primary to the secondary, multiplying by

1
n
:

iS ¼ 1
n

ip n ¼ ip
iS

– Convert from the secondary to the primary, multiplying by n:

ip ¼ n iS n ¼ ip

iS

● Impedance conversion:
– Convert from the primary to the secondary, multiplying by

1
n2

:

ZP ¼ 1
n2

ZL ZL ¼ n2ZP

– Convert from the secondary to the primary, multiplying by n2:

ZL ¼ n2ZP
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The converted impedance is also called the reflected impedance, meaning the reflection of
the primary impedance results in the secondary impedance.

Transformer parameters
conversion

– Voltage conversion: vS ¼ nvP; vp ¼ 1
n

vS

– Current conversion: iS ¼ 1
n

ip; ip ¼ niS

– Impedance conversion: ZP ¼ 1
n2

ZL; ZL ¼ n2ZP

12.2.6 Transformer parameters conversion—an example

Example 12.1: The number of turns on the primary is 40 for an ideal transformer,
and the number of turns on the secondary is 100. _V p ¼ 50 V, _I p ¼ 5 A, and ZL ¼ 2 W.
Determine the transformer’s turns ratio, secondary voltage, secondary current, primary
impedance (reflected from the secondary), and the primary power (the amplitude only).

Solution:

Np ¼ 40; NS ¼ 100; _V P ¼ 50 V; _I P ¼ 5 A; and ZL ¼ 2 W

– Turns ratio: n ¼ NS

NP
¼ 100

40
¼ 2:5

– Secondary voltage: _V S ¼ n _V P ¼ ð2:5Þð50 VÞ ¼ 125 V

– Secondary current: _I S ¼
_I P

n
¼ 5 A

2:5
¼ 2 A

– Primary impedance: ZP ¼ ZL

n2
¼ 2 W

2:52 ¼ 0:32 W

– Primary power: _PS ¼ _I S _V S ¼ ð2 AÞð125 VÞ ¼ 250 W ¼ 0:25 kW

12.3 Step-up and step-down transformers

12.3.1 Step-up transformer
Characteristics of a step-up transformer
● A step-up transformer is a transformer that can increase its secondary voltage,

since a step-up transformer always has more secondary winding turns than the
primary.

● vS > vp: The secondary voltage of a step-up transformer (vS) is always higher
than the primary voltage (vp), i.e., vS > vp.
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● The value of the secondary voltage depends on the turns ratio (n).

● NS > NP: The equation of n ¼ NS

NP
¼ vS

vP
indicates that to have a higher

secondary voltage, the number of turns on the secondary winding must be
greater than that of the primary’s, i.e., NS > NP as illustrated in Figure 12.7(a).

● n > 1: NS > NP means the turn ratio n ¼ NS

NP
> 1. This is an important char-

acteristic of a step-up transformer.

Step-up transformer

– vS > vp

– NS > NP

– n > 1

12.3.2 Step-down transformer
Characteristics of a step-down transformer
● A step-down transformer is a transformer that can decrease its secondary

voltage.
● vS < vp: Since a step-down transformer always has less turns on the secondary

winding than the primary, the secondary voltage of a step-down transformer
(vS) is always lower than the primary voltage (vp), i.e., vS < vp.

● The value of the secondary voltage depends on the turns ratio (n).

● NS < NP: The equation of n ¼ NS

NP
¼ vS

vP
indicates that to have a voltage that is

lower in secondary than primary, the number of turns on the secondary coil
must be less than primary’s, i.e., NS < NP as illustrated in Figure 12.7(b).

● n< 1: NS < NP means the turns ratio n ¼ NS

NP
< 1. This is an important char-

acteristic of a step-down transformer, which is opposite of a step-up transformer.

(a) (b)Step-up Step-down 

vP

NP

NS

vS vP vS

NS

NP

Figure 12.7 Step-up and step-down transformers
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Step-down transformer

– vS < vp

– NS < NP

– n < 1

Example 12.2: If a transformer has 125 turns of secondary windings and 250 turns
of primary windings, calculate its turn ratio and determine if it is a step-up or a
step-down transformer.

Solution:

NS ¼ 125; NP ¼ 250; NS < NP

● Turns ratio: n ¼ NS

NP
¼ 125

250
¼ 1

2
¼ 0:5 < 1

● n ¼ 0.5 < 1

It is a step-down transformer.

12.3.3 Applications of step-up and step-down transformers
The functions of step-up and step-down transformers
● Transformers can be used to convert voltage, current, and impedance.
● In the power system, the basic usage of transformers is stepping up or stepping

down the voltage or current, which will require converting voltage or current
from primary to secondary winding.

● The functions of step-up and step-down transformers are to increase or
decrease the voltage of their secondary windings, and have important appli-
cations in the power transmission system.

Power transmission system
● A simplified power transmission system is illustrated in Figure 12.8.
● Step-up voltage: The voltage generated from the generator of a power plant

needs to rise to a very high value through the step-up transformer so that it can
be delivered through long distance transmission lines.

● Improve efficiency: Step-up voltage can reduce the loss of energy or power created
due to the winding resistance in the line (I2 Rw ¼ PLoss) for a long distance line
transmission, and improve the efficiency of the electricity transmission.

Power plant Step-up
transformer

Step-down
transformer

Industries 

Step-down
transformer

 
Commercial areas 

Step-down
transformerResidential areas  

22 kV

220 V/110 V

500 kV

4,800 V

66 kV

Figure 12.8 Power transmission system
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● Step-down current: Decreasing the current to reduce the power loss on the
transmission line may reduce the output power (p ¼ iv) of the transmission
system.

● Reduce the power loss: If the voltage is increased through the step-up trans-
former before the transmission, it can maintain the same output power, but
reduce the power loss on the line (decrease the current), i.e.,

!
P! ¼ ðI #ÞðV "Þ ) ðI2 #ÞðRÞ ¼ PLoss #

● Example: If a step-up transformer is used to increase the voltage by 100 V, then the

current will reduce by 100 A ½ vS " ¼ ðn "ÞðvpÞ; iS #¼ 1
n "

� �
ðiPÞ�, and the loss

of the power due to the winding resistance in the line will reduce to 10,000 W, since

I2Rw ¼ PLoss; and I2 # Rw ) PLoss # :

● Step-down voltage: The local distribution stations require step-down trans-
formers to reduce the very high voltage by the long-distance transmission and
can send it to commercial or residential areas.

12.3.4 Other types of transformers
There are other types of commonly used transformers listed as follows:

● Center-tapped transformer: It has a tap (connecting point) in the middle of the
secondary winding, and it can provide two balanced output voltages with the
same value, as shown in Figure 12.9(a).

● Multiple-tapped transformer: It has multiple taps in the secondary winding,
and it can provide several output voltages with different values, as shown in
Figure 12.9(b).

● Adjustable (or variable) transformer: The output voltage of adjustable transformer
across the secondary winding is adjustable. The secondary winding of the adjus-
table transformer can provide an output voltage that may be variable in a range of
zero to the maximum values. An adjustable transformer is shown in Figure 12.9(c).

● Autotransformer: It is a transformer with only a single winding, which is a
common coil for both the primary and the secondary coils, and a portion of the
common coil acts as part of both the primary and secondary coils, as shown in
Figure 12.9(d). An autotransformer can be made smaller and lighter.

Figure 12.9(a) Center-tapped transformer
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12.4 Impedance matching

12.4.1 Maximum power transfer
Impedance matching
In addition to stepping up and stepping down voltages, a transformer has another
important application, matching the load and source impedance in a circuit to
achieve the maximum power transfer from the source to the load. It is known as
impedance matching.

Maximum power transfer in DC circuits
● RL ¼ RS: The maximum power delivered from a source to a load in a DC

circuit can be achieved when the load resistance is equal to the internal resis-
tance of the source (RL¼ RS).

Figure 12.9(b) Multiple-tapped transformer

Figure 12.9(c) Adjustable transformer

Figure 12.9(d) Autotransformer
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● RL ¼ RTH ¼ RN: The maximum power delivered from a source to a load in
a DC circuit can also be achieved when the load resistance is equal to the
Thevenin/Norton’s equivalent resistance of the network (RL ¼ RTH ¼ RN).
The theory of maximum power transfer in DC circuits was introduced in Chapter 5.

Maximum power transfer in AC circuits
● R ? Z: Maximum power transfer theory can also be applied to an AC circuit

by replacing the resistance R with impedance Z.
● ZL ¼ ZS: When the load impedance ZL is equal to the source internal impedance

ZS, the power received by the load from the source reaches the maximum, this is
shown in Figure 12.10.

Maximum power
transfer

When ZL ¼ ZS, the power delivered from the source to the load
reaches the maximum.

12.4.2 Impedance matching
To achieve the maximum power transfer
● Internal resistance is fixed: In the practical circuits (or Thevenin’s equivalent

circuits), the internal resistance of the source is fixed, usually is not matching
with the load impedance, and also not adjustable.

● Impedance matching: A transformer with an appropriate turns ratio n can
be placed between the load and source to make the load impedance and the
source internal resistance equal, and to achieve the maximum power transfer,

i.e., n ¼
ffiffiffiffiffi
ZL

Zp

s
.

Impedance
matching

Place a transformer with n ¼
ffiffiffiffiffi
ZL

Zp

s
between the source and the load to

achieve maximum power transfer.

ZS
ZL

e

Figure 12.10 Impedance matching
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Example 12.3: A simplified amplifier circuit is illustrated in Figure 12.11(a). The
circuit within dashed lines is Thevenin’s equivalent circuit for the amplifier circuit,
and its internal resistance is 100 W. How do we deliver the maximum power to the
speaker if the resistance of the speaker is 4 W (so that the speaker can have the
maximum volume)?

Solution:

● Since the load impedance (ZL ¼ RL ¼ 4 W) does not match with the source
internal impedance (ZS ¼ RS ¼ 100 W) currently, the maximum power cannot
be delivered to the speaker if the source and load are connected directly.

● Choose an audio transformer with the appropriate turns ratio n, i.e.,

n ¼
ffiffiffiffiffi
ZL

Zp

s
¼

ffiffiffiffiffiffiffiffi
4

100

r
¼ 0:2 ¼ 1

5

● Therefore, if placing an impedance matching transformer with the turns ratio
of 1/5 between the amplifier and speaker as illustrated in Figure 12.11(b), the
speaker will have the maximum volume.

Summary

Mutual inductance
● Self-inductance is the ability of a coil to produce an induced voltage due to the

changing of the current in the coil itself.
● Mutual inductance is the ability of a coil to produce an induced voltage due to

the changing of the current in another coil nearby.

LM ¼ k
ffiffiffiffiffiffiffiffi
I1I2

p

n = 1/5

100 Ω

(a) (b)

100 Ω

4 Ω 4 Ω
e

e

Figure 12.11 Circuit for Example 12.2
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● Coefficient of coupling: k ¼ f1�2

f1
(0 � k � 1)

– f1: The flux generated by the current i1 in the first coil L1.
– f1–2: The flux generated by the current i1 in the coil L1 cross-linking to

coil L2.
● Dot conversion: dotted terminals of coils have the same voltage polarity.

Transformers

● Transformer: It uses the principle of mutual inductance to convert AC elec-
trical energy from input to output.

● Air-core transformer: A linear transformer that can be obtained by placing the
two coils close to each other or winding two (or more) coils around an insu-
lating substance.

● Iron-core transformer: A transformer that has laminations of ferromagnetic
material with coils wound on it. The coupling coefficient k is close to 1.

● Ideal transformer: An ideal transformer has no losses (imaginary transformer).
Efficiency of this transformer is considered as 100%.

● An iron-core transformer is considered the ideal transformer because it uses
ferromagnetic materials with high permeability as its core.

The parameters of an ideal transformer (k ¼ 1):

Parameters Name

vp Primary voltage

vS Secondary voltage

Np Number of turns on the primary coil

NS Number of turns on the secondary coil

ip Primary current

iS Secondary current

Zp Primary impedance

ZS Secondary impedance

ZL Load impedance ZL ¼ ZS

● Turns ratio: n ¼ NS

NP
¼ vS

vP
¼ iP

iS
¼

ffiffiffiffiffi
ZL

ZP

r
; or ZL ¼ n2Zp

In phasor form: n ¼ NS

NP
¼

_V S

_V P
¼

_I P

_I S
¼

ffiffiffiffiffi
ZL

ZP

r

● Power: pS ¼ iS vS; pP ¼ iP vP

_PS ¼ _I S _V S; _PP ¼ _I P _V P
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● Transformer parameters conversion (V, I, and Z):

– Voltage conversion: vS ¼ nvp; vP ¼ 1
n

vS

– Current conversion: iS ¼ 1
n

iP; iP ¼ n iS

– Impedance conversion: ZL ¼ n2ZP; ZP ¼ 1
n2

ZL

● Impedance matching: Place a transformer with the turns ratio n ¼
ffiffiffiffiffi
ZL

Zp

s

between the source and the load to achieve maximum power transfer from the
source to the load.

Step-up and step-down transformers

● Step-up transformer:

vS > vp

NS > NP

n > 1

● Step-down transformer:

vS < vp

NS < NP

n < 1

Practice problems

12.1
1. ( ) inductance is the ability of a coil to produce an induced

voltage due to the changing of the current in another coil nearby.
2. The closer the two coils are, the greater the flux linkage, and the ( )

the value of the coupling coefficient k.
3. The polarity of the induced voltage across the mutually coupled coils

can be determined by the ( ) convention method.
4. f1–2 represents the portion of the magnetic flux that is generated by

the current i1 in the first coil L1 and linked to the ( ) coil.
5. LM ¼ 1.5 mH, L1 ¼ 1 mH, and L2 ¼ 4 mH for a mutual inductor.

Determine the coupling coefficient of this mutual inductor.
12.2

6. Structurally, the transformers are categorized as two main types: the
( )-core and ( )- core transformers.

7. A transformer uses the principle of mutual inductance to convert
( ) electrical energy from input to output.
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8. If the turns ratio of a transformer is 5:1 and the secondary voltage is
20 V, the primary voltage is ( ) V.

9. If the turns ratio of a transformer is 0.3 and the number of turns in the
primary coil is 200, the number of turns in the secondary coil is ( ).

12.3
10. If the primary voltage of a transformer is 110 V and the turns ratio

is 4, what is the secondary voltage for this transformer? Is it a step-up
or step-down transformer?

11. What is the turns ratio of a step-down transformer if a 220 V voltage
is reduced to 110 V?

12.4
12. In what condition can an AC source transfer maximum power to

its load?
13. Determine the turns ratio for the transformer in the circuit shown in

Figure 12.12 that can transfer maximum power from the AC source
to the speaker.

50 Ω

8 Ω
12 V

Figure 12.12
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13.1 Dependent sources

13.1.1 Introduction to dependent sources
Independent sources

● Independent voltage/current source: A voltage source or a current source that
acts independently and provides fixed voltage/current in a branch. It will not be
affected by other voltages and currents in the circuit.

● Symbols of independent sources: The DC and AC circuits we have discussed
in the previous chapters have independent voltage/current sources (Figure 13.1).

Dependent (or controlled) sources

● Dependent (or controlled) source: A voltage source or a current source whose
value is controlled by or dependents on other voltage or current somewhere
else in the circuit (or network).

● Applications: Dependent sources are a useful concept in modeling and
analyzing electronic components such as transistors, amplifiers, and filters.



● The circuits we will analyze in this chapter have dependent (or controlled)
sources, in which the source voltage or current is a function of other voltage or
current in the circuit.

Dependent (controlled)
sources

A voltage or a current source whose value is controlled by
or dependents on other voltage or current somewhere
else in the circuit.

13.1.2 Types of dependent sources
Four types of dependent sources
The dependent sources can be categorized into the following four types according
to whether it is controlled by a circuit voltage or current, as well as whether the
dependent source itself is a voltage source or current source:

● Voltage-controlled voltage source (VCVS)
● Voltage-controlled current source (VCCS)
● Current-controlled voltage source (CCVS)
● Current-controlled current source (CCCS)

Symbols of independent sources
The above dependent sources can be represented by the symbols in Figure 13.2.

Control coefficients

● k1, k2, k3, and k4: In Figure 13.2, k1, k2, k3, and k4 are called control coefficients
or gain parameters.

● A voltage-controlled source has a voltage across its two terminals that equals
to a control coefficient k multiplied by a controlling voltage or current else-
where in the same circuit.

● A current-controlled source has a current in its branch that equals to a control
coefficient k multiplied by a controlling voltage or current elsewhere in the
same circuit.

V

I

i

v

Figure 13.1 Independent sources
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13.1.3 Circuits with dependent sources
Circuits with dependent sources

● CCCS: 5 İ in the circuit of Figure 13.3(a) represents a CCCS.
– Its control coefficient k is 5.
– The current İ is a controlling current through the 5 W resistor branch in the

same circuit.
● VCVS: 8 _V in the circuit of Figure 13.3(b) is a VCVS.

– Its control coefficient is 8.
– The voltage _V is a controlling voltage across the resistor R2 in the same circuit.

Applications

● CCCS: After you take an analog electronics course, you will understand that a
good example for modeling a CCCS is a transistor circuit.

● Transistor: Based on the property of a bipolar transistor, a current amplifier, its
large collect current ic is proportional to the small base current ib according to
the relationship ic ¼ bib. In this equation, the current gain b is the same as the
control coefficient k in the dependent source.

+ –+

V

I

–

+ –

(VCVS)

k1 V

k2 I

k3 V

k4 I

(VCCS)

(CCVS)

(CCCS)

(a) Controlled sources (b)Controlling sources

Figure 13.2 Dependent sources

5 V

2 Ω 3 Ω R1

R2

E1
5 Ω

5 I

.
.

8 V
.

.
E2
.

I

.
V

+ –

+ –(a) (b) 

Figure 13.3 Circuits with dependent sources
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13.1.4 Equivalent conversion of dependent sources
Equivalent conversion

● Equivalent conversion of dependent sources is the same as the equivalent
conversion of independent sources.
– Internal resistance RS of the source does not change before and after the

conversion.
– Apply Ohm’s law to convert the source.

● Controlled current source ? controlled voltage source:

RS ¼ RS; _V S ¼ _I SRS

● Controlled voltage source ? controlled current source:

RS ¼ RS; _I S ¼
_V S

RS

Voltage-controlled source $ current-controlled source
For instance, the voltage-controlled source in Figure 13.4(a) can be converted
equivalently to a current-controlled source as shown in Figure 13.4(b), and vice versa.

Equivalent conversion
of dependent sources

The same as the equivalent conversion of independent sources:

– Internal resistance RS of the source does not change.
– Apply Ohm’s law to convert the source.

13.1.5 Examples of equivalent conversion

Example 13.1: The voltage-controlled voltage source (VCVS) in Figure 13.5(a)
can be converted equivalently to a voltage-controlled current source (VCCS) as
shown in Figure 13.5(b).

b

⇔+
–

a

.

R3

VS
.

..

IS RS

a

b

RS = RS, VS = IS RS

..
RS = RS, =IS RS

VS 

(a) (b)

Figure 13.4 Equivalent conversion
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Example 13.2: The current-controlled current source (CCCS) in Figure 13.6(a) can
be converted equivalently to a current-controlled voltage source (CCVS) as shown
in Figure 13.6(b).

13.2 Analyzing circuits with dependent sources

13.2.1 KVL and KCL

● The analyzing methods for circuits with dependent sources are similar to that
of circuits with independent sources.

● The following examples will describe these methods.

Example 13.3: Determine the current I in the circuit of Figure 13.7(a).

Solution:

● Simplify and convert the circuit of Figure 13.7(a) to that in Figure 13.7(b).

b

+
–

a a

b

+

–

.
V = V∠0°

.
I = 5∠0° mA

.
I  =

.
V10∠0° V

10 V∠0°
=5 ∠0° mA

V∠0°

R = 2 kΩ

R = 2 kΩ

2 kΩ

–

+

V
R

(a) VCVS 
(b) VCCS 

Figure 13.5 Circuits for Example 13.1

b

+
–

a a

b

I = I∠0°A 10∠0° mA I∠0° A V = 50∠0° V5 kΩ

5 kΩ

⇒ I
. ..

V = I RS = (10∠0° mA)(5 kΩ) = 50∠0°V
. .

(a) CCCS (b) CCVS 

Figure 13.6 Circuit for Example 13.2
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There, 3 A � 2 A ¼ 1 A

2 Wþ 4 W==4 W ¼ 4 W
Note: This circuit has a CCCS, simplify the circuit without changing the CCCS
(both controlling branches and controlled source).

● Write the KCL equation for the node a in Figure 13.7(b):

SI ¼ 0 : 1 A � 2I � I þ 0:5I ¼ 0

● Current I can be solved from the above equation:

�2:5 I ¼ �1 A

; I ¼ 0:4 A

Example 13.4: Determine the voltage V in the circuit of Figure 13.8.

Solution:

● Applying KVL, SV ¼ 0: �6 þ 2I þ 4V þ 8 þ 3I ¼ 0
That is, 2 þ 5I þ 4V ¼ 0

2 I 2 I

a

II2 Ω

2 Ω 2 Ω0.5 I 0.5 I
4 Ω 4 Ω

4 Ω2 A 3 A 1 A

(a) (b)

Figure 13.7 Circuit for Example 13.3

2 Ω

3 Ω

V

4 V

6 V

I
+

+ –

–

8 V

Figure 13.8 Circuit for Example 13.4
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● Substituting V ¼�3I into the above equation gives:

2 þ 5I þ 4 �3Ið Þ ¼ 0

● Solving for I: 2 þ 5I � 12I ¼ 0

2 � 7I ¼ 0

I � 0:29 A

● Solving for V: V ¼ �3I

¼ ð�3 WÞð0:29 AÞ
¼ �0:87 V

Analyzing circuits with
dependent sources

Analyzing circuits with dependent sources is similar to the
methods of analysis for circuits with independent sources.

13.2.2 Node voltage analysis

Example 13.5: Write node voltage equations for the circuit in Figure 13.9 using the
node voltage analysis method.
Tip: Write KVL by treating the dependent source as an independent source first,
and then represent the control quantity as node voltages.

Solution: The procedure for applying the node voltage analysis method (Chapter 4,
Section 4.4) to the above circuit is as follows:

1. Label nodes a, b, and c, and choose ground c as the reference node as shown in
Figure 13.9.

a b

R1

E1

3 V  (VCCS)R2 R4

R3

V

c

–+

Figure 13.9 Circuit for Example 13.5

Circuits with dependent sources 391



2. Write KCL equations to n � 1 ¼ 3 � 1 ¼ 2 nodes (nodes a and b) by inspection.

Node a:
1

R1
þ 1

R2
þ 1

R3

� �
Va � 1

R3
Vb ¼ 1

R1
E1 (13.1)

Node b: � 1
R3

Va þ 1
R3

þ 1
R4

� �
Vb ¼ 3 V (13.2)

Substituting the control voltage V ¼ Va � Vb to (13.2) gives,

� 1
R3

Va þ 1
R3

þ 1
R4

� �
Vb ¼ 3ðVa � VbÞ (13.3)

3. Solving (13.1) and (13.3) can determine the node voltage Va and Vb (if R1, R2,
R3, and E1 are given).

13.2.3 Mesh current analysis

Example 13.6: Use the mesh current analysis method to write mesh equations for
the circuit in Figure 13.10.
Tip: Write KVL by treating the dependent source as an independent source first,
and then represent the controlling quantity as mesh current.

Solution: The procedure for applying the mesh current analysis method (Chapter 4,
Section 4.3) to the above circuit is as follows:

1. Label all the reference directions for each mesh current I1, I2, and I3 (clock-
wise) as shown in Figure 13.10.

2. Apply KVL around each mesh, and ensure the number of KVL equations is
equal to the number of meshes (there are three meshes in Figure 13.10).

Mesh 1: ðR1 þ R2ÞI1 � R1I2 � R2I3 ¼ E (13.4)

+
–

+–
(CCVS)

I

E
I1

R1

R3

R2 R4

I0

7 I0I2

I3

Figure 13.10 Circuit for Example 13.6
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Mesh 2: � R1I1 þ ðR1 þ R3ÞI2 � R3I3 ¼ �7I0 (13.5)

Mesh 3: � R2I1 � R3I2 þ ðR2 þ R3 þ R4ÞI3 ¼ 0

Substituting the controlling current I0 ¼ I1 � I2 to (13.5) yields,

�R2I1 þ ðR1 þ R3ÞI2 � R3I3 ¼ �7ðI1 � I2Þ (13.6)

3. Solve three simultaneous equations (13.4), (13.5), and (13.6) resulting from
step 2 can determine three mesh currents I1, I2, and I3.

13.2.4 Superposition theorem

Example 13.7: Determine the branch current I for the circuit in Figure 13.11 by
using the superposition theorem.
Tip: The dependent source will not act separately in the superposition theorem. Do
not change the dependent source in the circuit when another independent source is
acting in the circuit.

Solution: The procedure for using the superposition theorem (Chapter 5,
Section 5.1) to the above circuit is as follows:

1. Choose 20 V voltage source applied to the circuit first, replace the 6 A current
source with an open circuit as shown in Figure 13.11(b), and calculate I0:

I 0 ¼ 20V
4 Wþ 2 W

� 3:33 A I ¼ V

R

2. When a 6 A current source is applied to the circuit, replace the 20 V voltage
source with a short circuit as shown in Figure 13.11(c), and calculate I00:

I 00 ¼ �6A
2 W

2 Wþ 4 W
¼ �2 A I1 ¼ IT

R2

R1 þ R2

(The 6 A current is negative due to its assumed direction to be opposite to I00.)
3. Calculate the sum of currents I0 and I00:

I ¼ I 0 þ I 00 ¼ 3:33 A þ ð�2 AÞ ¼ 1:33 A

20 V

I = ?
4 Ω

2 Ω
2 Ω 2 Ω

6 A4 Ω 4 Ω

4 I
(CCVS)

4 I
4 I

Iʹ I''

+
–

6 A

– –
+

+

+
=

20 V

(a) (b) (c)

Figure 13.11 Circuit for Example 13.7
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13.2.5 Thevenin’s theorem

Example 13.8: Determine the voltage across the two terminals a and b in
Figure 13.12(a) by using Thevenin’s theorem (plot Thevenin’s equivalent circuit).

Solution: The procedure for using Thevenin’s theorem (Chapter 5, Section 5.2) to
the above circuit is as follows:

1. Open and remove the load branch resistor RL, and mark a and b on the term-
inals of the load branch as shown in Figure 13.12(b).

2. Determine Thevenin’s equivalent voltage VTH: Since the branch a and b is
open, I ¼ 0, and the CCCS is also 0 (2I ¼ 0) in the circuit of Figure 13.12(b),

so : VTH ¼ Vab ¼ 5 V

3. Determine Thevenin’s equivalent resistance RTH: Replace the 5 V voltage source
with a short circuit and convert CCCS to CCVS as shown in Figure 13.12(c).

RTH ¼ Rab ¼ Vab

I
¼ 6I þ ð2 Wþ 3 WÞI

I
¼ 11 W

4. Plot Thevenin’s equivalent circuit as shown in Figure 13.12(d).

5 V 5 V

2 Ω

(a) (b) (c)

2 Ω 2 Ω

2I (CCCS) 2I = 0

II I = 0

RL

3 Ω 3 Ω 3 Ω
(2I × 3) = 6I

+ – a

b

a

b
b

a

CCCS CCVS

Figure 13.12 Circuits for Example 13.8

(d)

RTH = 11 Ω

RL

VTH = 5 V

a

b

Figure 13.12(d) Thevenin’s equivalent circuit
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Summary

Dependent (controlled) source: A voltage or a current source whose value is
controlled by or dependents on other voltage or current somewhere else in the
circuit.

● Voltage-controlled voltage source (VCVS)
● Voltage-controlled current source (VCCS)
● Current-controlled voltage source (CCVS)
● Current-controlled current source (CCCS)

+ –

+ –

++

–

(VCVS)

k1 V

V

I

k2 I

k3 V

k4 I

(VCCS)

(CCVS)

(CCCS)

Equivalent conversion of dependent sources is the same as the equivalent con-
version of independent sources:

● Controlled current source ? controlled voltage source:

RS ¼ RS; _V S ¼ _I S RS

● Controlled voltage source ? controlled current source:

RS ¼ RS; _I S ¼
_V S

RS

The method of analysis for circuits with dependent sources is similar to the
methods of analysis for circuits with independent sources.

Practice problems

13.1
1. Convert the dependent source circuits in Figure 13.13(a) and (b).
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13.2
2. Write the node equations for the circuit shown in Figure 13.14.

3. Write the mesh equations for the circuit shown in Figure 13.15.

b

a

I = I∠0° A
1.2∠0° mA

. 25 Ω

(a)

Figure 13.13(a)

V∠0° V
V = 8∠0° V

40 Ω

(b)

+

–

a

b

–

+

Figure 13.13(b)

a
b

V

5 V
(VCCS)

R3

R5

R2

R4

R1

E1

c

+ –

Figure 13.14

+
–10 V I1

2 Ω

6 Ω

4 Ω

5 Ω

7 Ω

.

I0
.

I3
.

I2 5 I0
. .

3 Ω

Figure 13.15

396 Understandable electric circuits: key concepts, 2nd edition



4. Determine the Norton’s equivalent circuit in the circuit of Figure 13.16.

5. Determine the voltage V0 in the circuit of Figure 13.17 using the
superposition theorem.

1.2 A

a
3 Ω

I0

2.5 Ω

1.5 Ω

5 Ω1.5 I0

b

Figure 13.16

0.5 A2 A0.1 V0

V0

1 Ω

3 Ω

5 Ω

15 Ω

Figure 13.17
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14.1 Three-phase circuits

14.1.1 Introduction to three-phase systems
Two-phase AC power systems
There are two types of systems in an electric circuit, single-phase and three-phase
AC power systems.

● In a single-phase AC circuit, there is only one phase (one coil in a magnetic field).
● In a three-phase AC circuit, there will be three phases carrying AC voltages

that are offset by 120� (three coils in a magnetic field).

Three-phase power system
It is a common method of AC power generation, transmission, and distribution.

● A three-phase power system gives the three-phase voltage of equal magnitude
and frequency.

● The three windings (coils) in a magnetic field are placed at 120� apart. The
individual voltage (and current) will be 120� apart.

● Most industrial and commercial electrical power systems use a three-phase
configuration.



The reason for using three-phase power system

● A three-phase circuit is more economical than three single-phase circuits
because it uses less conductor material to transmit and distribute the same
amount of power.

● A three-phase power system is more efficient and reliable to produce, transmit,
and consume electricity.

● The power produced by a three-phase AC voltage source is less pulsating
(smooth) than a single-phase AC power.

Three-phase
power system

– A common method of AC power generation, transmission and
distribution.

– It gives the three-phase voltage of equal magnitude and frequency.
– Three-phase voltage (and current) offset by 120�.

14.1.2 Two connection methods
Two connection methods
Both the three-phase source and the three-phase load can be connected either wye
(Y) or delta (D) in a three-phase AC system (Figure 14.1).

The wye (Y) or star configuration
The starting (the generator side) or finishing (the load side) points of three phases
are connected together at a single neutral point (it can be earthed) (Figure 14.2).

● There is a neutral point in the wye-connected system.
● Wye connection is used where it requires neutral terminal to obtain phase

voltage.
● The wye-connected system is general and typical used in power transmission

system.

Figure 14.1 Y and D connections

(a) 3-phase 4-line (b) 3-phase 3-line 

Figure 14.2 Y configuration

400 Understandable electric circuits: key concepts, 2nd edition



● Three-phase four-wire or three-wire systems can be derived from the wye
connection.

● In wye configuration, the phase voltage is low as 1=
ffiffiffi
3

p
of the line voltage, so,

it needs less number of turns, hence, saving in conductor material.

The delta (D) configuration is when three phases in an AC power system are con-
nected like a triangle (Figure 14.3). (Three wires are taken out from the coil joints.)

● There is no neutral point in the delta-connected system.
● Delta connection is general and typically used in the distribution system.
● Three-phase three-wire system is derived from the delta connection.
● In delta configuration, the phase voltage is equal to the line voltage, hence, it

needs more number of turns (compare with the wye connection).

Balanced three-phase circuit

● All three sources are balanced (three voltages of the same amplitude,
frequency but apart by 120�).

● Source and load impedances are equal in all three phases. Z ¼ ZA ¼ ZB ¼ ZC

14.2 Analysis of the three-phase sources

14.2.1 Wye-connected voltage sources
Phase voltages and currents

● Phase voltage (Vp) is the voltage measured between any phase and neutral (across
a single component) in a three-phase circuit. Phase voltage: line-to-neutral

● Phase current (Ip) is the current through any one component in a three-phase
circuit.

Line voltages and currents

● Line voltage (VL) is the voltage measured between any two lines (line-to-line
voltage) in a three-phase circuit (Figure 14.4). Line voltage: line-to-line

● Line current (IL) is the current through any one line in a three-phase circuit.

Relationship between phase current and line current

● Line current (IL) is equal to phase current (Ip) in a balanced wye circuit.

● Line current ¼ phase current IL ¼ Ip

Figure 14.3 D configuration
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Relationship between phase voltage and line voltage

● Line voltage (VL) is equal to phase voltage (Vp) times the square root of 3 in a
balanced wye circuit.

Line voltage ¼ ffiffiffi
3

p
phase voltage VL ¼ ffiffiffi

3
p

Vp

● Line voltage leads phase voltage by 30� (Figure 14.5). VL ¼ ffiffiffi
3

p
Vpff30�

The polar equations for the phase voltages
VAN ¼ VANff0�

VCN ¼ VCNff120�

VBN ¼ VBNff�120� Lines A, B, C, and neutral N.

Phasor diagram of voltages (Figure 14.5)

Example 14.1: Given the phase voltage VAN ¼ 220ff0� V in a balanced three-phase
wye source. Determine each phase and line voltage.

Solution:

● Phase voltages:VAN ¼ 220ff0� V

VCN ¼ 220ff120� V

VBN ¼ 220ff �120� V

VCN
VCA

VBC

30°

30°

30°
VAN 

VAB 

VBN

Figure 14.5 Phasor diagram of voltages in Y configuration

A A

B
B

N
Vp

IL = IP

VL
N 

C C

Figure 14.4 Voltages and currents in Y configuration
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● Line voltages: VAB ¼ ffiffiffi
3

p
Vp ¼ ffiffiffi

3
p

VAN

¼ ffiffiffi
3

p ð220ff30� VÞ � 381ff30� V VL ¼ ffiffiffi
3

p
Vpff30�

VCA ¼ ffiffiffi
3

p
Vp ¼ ffiffiffi

3
p

VCN

¼ ffiffiffi
3

p ð220ffð30� þ 120�ÞÞV
� 381ff150� V

VBC ¼ ffiffiffi
3

p
Vp ¼ ffiffiffi

3
p

VBN

¼ ffiffiffi
3

p ð220ffð30� � 120�ÞÞV
� 381ff �90� V

Y-connected source

Quantity Formula

Voltages VL ¼ ffiffiffi
3

p
Vp; VL ¼ ffiffiffi

3
p

Vpff30�

Currents IL ¼ IP

14.2.2 Delta-connected sources
Relationship between phase voltage and line voltage

● Line voltage (VL) is equal to phase voltage (Vp) in a balanced delta circuit
(Figure 14.6).

● Line voltage ¼ phase voltage VL ¼ Vp

Relationship between phase current and line current

● Line current (IL) is equal to phase current (Ip) times the square root of 3 in a

balanced delta circuit. Line current ¼ ffiffiffi
3

p
phase current IL ¼ ffiffiffi

3
p

Ip

● Line current leads phase current by 30�. IL ¼ ffiffiffi
3

p
Ipff30�

IL

IP VL = VP

Figure 14.6 Voltages and currents in D configuration
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The polar equations for the line voltages

● VAB ¼ VPff0�

● VCA ¼ VPff120�

● VBC ¼ VPff�120�

The polar equations for the phase currents

● IPA ¼ IPff0�

● IPC ¼ IPff120�

● IPB ¼ IPff�120�

Phasor diagram of currents (Figure 14.7)

Example 14.2: Given the phase current IPA ¼ 13ff0� A in a balanced delta circuit.
Determine each phase and line current.

Solution:

● Phase currents: IPA ¼ 13ff0� A

IPC ¼ 13ff120� A

IPB ¼ 13ff �120� A

● Line currents: IL1 ¼ ffiffiffi
3

p
Ip ¼ ffiffiffi

3
p

IPA

¼ ffiffiffi
3

p ð13ff30� AÞ � 22:5ff30� A 0� þ 30�

IL2 ¼ ffiffiffi
3

p
Ip ¼ ffiffiffi

3
p

IPC

¼ ffiffiffi
3

p ð13ff150� AÞ � 22:5ff150� A 30� þ 120�

IL3 ¼ ffiffiffi
3

p
Ip ¼ ffiffiffi

3
p

IPB

¼ ffiffiffi
3

p ð13ff � 90�AÞ ¼ 22:5ff �90� A 30� � 120�

IPB

IL2

IPA

IL1

30°

30°

30°

IPC

IL3

Figure 14.7 Phasor diagram of currents in D configuration
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D-connected source

Quantity Formula

Voltages VL ¼ VP

Currents IL ¼ ffiffiffi
3

p
IP; IL ¼ ffiffiffi

3
p

IPff30�

14.3 Analysis of the Y–Y and Y–D systems

14.3.1 Y–Y system
Four configurations
Source-load can be connected in four possible configurations.

● Y–Y, Y–D, D–Y, D–D.
● The source and load can be either Y- or D-connected.

General Y–Y connection (Figure 14.8)

Voltages and currents
(They are true for both a balanced and an unbalanced load.)

● Voltages: Load voltage ¼ phase voltage VLoad ¼ VP VL ¼ ffiffiffi
3

p
VP

● Currents: Load Current ¼ phase current ¼ line current

ILoad ¼ IP ¼ IL IL ¼ IP

● Neutral current: IN ¼ ILoad A þ ILoad B þ ILoad C IN ¼ 0 in a balanced system:

Example 14.3: Given VAN ¼ 120ff0� V, RA ¼ RB ¼ RC ¼ 30 W, and XA ¼ XB ¼
XC ¼ 40 W in a Y–Y, three-phase four-wire system. Determine each load and phase
voltage, and the line and load currents.

N IN
Vp

IL = IP

VLoad
ILoad

Figure 14.8 Y–Y connection
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Solution:

● Load and phase voltages:

VAN ¼ VLoad A ¼ 120ff0� V VLoad ¼ VP

VBN ¼ VLoad B ¼ 120ff120� V

VCN ¼ VLoad C ¼ 120ff �120� V

● Impedance:

ZA ¼ ZB ¼ ZC ¼ R þ jX ¼ 30 Wþ j 40 W ¼ 50ff53:13� W

● Line and load currents:

IAB ¼ ILoad A ¼ VLoad A

ZA
¼ 120ff0�

50ff53:13� W
¼ 2:4ff �53:13� A IL ¼ Ip

ICA ¼ ILoad C ¼ VLoad C

ZC
¼ 120ff120� V

50ff53:13� W
¼ 2:4ff66:87� A

IBC ¼ ILoad B ¼ VLoad B

ZB
¼ 120ff � 120� V

50ff53:13� W
¼ 2:4ff �173:13� A

Y–Y system

Quantity Formula

Voltages VLoad ¼ VP

Currents IL ¼ IP ¼ ILoad, IN ¼ ILoad A þ ILoad B þ ILoad C

14.3.2 Y–D system
General Y–D connection (Figure 14.9)

Voltages and currents

● Voltages: Load voltage ¼ line voltage
VLoad ¼ VL

IL = IP

N
VL = VLoad

ILoad

Figure 14.9 Y–D connection
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● Currents: Line current ¼ ffiffiffi
3

p
times phase current ¼ ffiffiffi

3
p

times load current

IL ¼ ffiffiffi
3

p
IP ¼ ffiffiffi

3
p

ILoad

Load current ¼ Load voltage divided by load impedance

ILoad ¼ VLoad
Z

Example 14.4: Given VAB ¼ 110ff0� V (line voltage), Z ¼ 55ff45� W in a balanced
Y–D system. Determine each load voltage and current.

Solution:

1. Load voltages:

VLoad A ¼ VAB ¼ 110ff0� V VLoad ¼ VL

VLoad C ¼ VCA ¼ 110 V 120� V

VLoad B ¼ VBC ¼ 110 V ff �120� V

2. Load currents:

ILoad A ¼ VLoad A

Z
¼ 110ff0� V

55ff45� W
¼ 2ff �45� A ILoad ¼ VLoad

Z

ILoad C ¼ VLoad C

Z
¼ 110ff120� V

55ff45� W
¼ 2ff75� A

ILoad B ¼ VLoad B

Z
¼ 120ff � 120� V

55ff45� W
¼ 2ff �165� A

Y–D system:

Quantity Formula

Voltages VLoad ¼ VL

Currents
IL ¼ ffiffiffi

3
p

IP ¼ ffiffiffi
3

p
ILoad; ILoad ¼ VLoad

Z

14.4 Power in balanced three-phase systems

14.4.1 Power in balanced Y- or D-connected systems
Recall: Power in single-phase AC circuits (Figure 14.10)
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Symbol Quantity Formula Unit

P Real power P ¼ VI cosq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � Q2

p
Watt (W)

Q Reactive power Q ¼ VI sinq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � P2

p
Volt-ampere-reactive (VAR)

S Apparent power S ¼ VI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ Q2

p
Volt-ampere (VA)

Power in balanced wye and delta circuits
Real power

● The real power per phase: PP ¼ VPIP cosq

● The total three-phase real power: PT ¼ 3PP ¼ 3VPIP cosq
or PT ¼ ffiffiffi

3
p

VLIL cosq

– In a balanced Y-connected load: VL ¼
ffiffiffi
3

p
VP; IL ¼ IP;

PT ¼ 3VPIP cosq ¼ 3
vLffiffiffi

3
p IL cosq ¼

ffiffiffi
3

p
VLIL cosq

– In a balanced D-connected load: VL ¼ VP; IL ¼
ffiffiffi
3

p
IP;

PT ¼ 3VPIP cosq ¼ 3VL
ILffiffiffi

3
p cosq ¼

ffiffiffi
3

p
VLIL cosq

Apparent power

● The apparent power per phase: SP ¼ VPIP

● The total three-phase apparent power: ST ¼ 3VPIP ¼ ffiffiffi
3

p
VLIL

Reactive power

● The reactive power per phase: QP ¼ VPIP sinq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

p � P2
p

q

● The total three-phase reactive power: QT ¼ 3QP ¼ ffiffiffi
3

p
VLILsinq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

T � P2
T

p

Power factor: PF ¼ cosq ¼ P

S

S   Q

P

Figure 14.10 Power in AC circuits
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Power in balanced wye and delta circuits

Symbol Formula Unit

PP PP ¼ VPIP cosq Watt (W)

PT PT ¼ 3PP ¼ 3VPIP cosq ¼ ffiffiffi
3

p
VLIL cosq Watt (W)

QP QP ¼ VPIP sinq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SP

2 � PT
2

p
Volt-ampere-reactive (VAR)

QT QT ¼ 3QP ¼ ffiffiffi
3

p
VLIL sinq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ST

2 � PT
2

p
Volt-ampere-reactive (VAR)

SP SP ¼ VPIP Volt-ampere (VA)

ST ST ¼ 3VPIP ¼ ffiffiffi
3

p
VLIL Volt-ampere (VA)

PF
PF ¼ cosq ¼ P

S

14.4.2 Three-phase power examples

Example 14.5: The phase voltage is 110 V, the phase current is 15 A, and the total
real power is 4.5 kW in a balanced wye-connected load circuit. Determine the line
voltage and current, apparent powers, power factor, real power per phase, and
reactive powers.

Solution: VP ¼ 110 V, IP ¼ 15 A, PT ¼ 4.5 kW

● Line voltage: VL ¼ ffiffiffi
3

p
VP ¼ ffiffiffi

3
p

110 V � 190:5 V

● Line current: IL ¼ IP ¼ 15 A

● Apparent power per phase: SP ¼ VPIP ¼ ð110 VÞð15 AÞ ¼ 1;650 VA

● Total apparent power: ST ¼ 3SP ¼ 3ð1,650 VAÞ ¼ 4,950 VA

● Power factor: PF ¼ cosq¼ P
S ¼

4,500 W
4,950 VA

� 0:91 ¼ 91%

● Real power per phase: PP ¼ VPIP cosq ¼ ð110 VÞð15 AÞð0:91Þ
¼ 1,501:5 W

● Reactive power per phase: QP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SP

2 � PP
2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1,6502 � 1,501:52

p
¼ 684:1 VAR

● Total three-phase reactive power: QT ¼3QP ¼3ð684:1 VARÞ¼ 2,052:3 VAR
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Example 14.6: The phase voltage is 110 V, the phase current is 15 A, and the total real
power is 4.5 kW in a balanced delta-connected load circuit. Determine the line voltage
and current, apparent powers, power factor, real power per phase, and reactive powers.

Solution: VP ¼ 110 V, IP ¼ 15 A, PT ¼ 4.5 kW

● Line voltage: VL ¼ VP ¼ 110 V

● Line current: IL ¼ ffiffiffi
3

p
IP ¼ ffiffiffi

3
p ð15 AÞ � 25:98 A

● Apparent power per phase: SP ¼ VPIP ¼ ð110 VÞð15 AÞ ¼ 1,650 VA

● Total apparent power: ST ¼ 3SP ¼ 3ð1,650 VAÞ ¼ 4,950 VA

● Power factor: PF ¼ cosq¼ P
S ¼

4,500 W
4,950 VA

� 0:91 ¼ 91%

● Real power per phase: PP ¼ VPIP cosq ¼ ð110 VÞð15 AÞð0:91Þ
¼ 1,501:5 W

● Reactive power per phase: QP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SP

2 � PP
2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1,6502 � 1,501:52

p
¼ 684:1 VAR

● Total three-phase reactive power: QT ¼ 3QP ¼ 3ð684:1 VARÞ
¼ 2,052:3 VAR

Note that the results here are the same as for Example 14.5.

Summary

Three-phase power systems

● A common method of AC power generation, transmission, and distribution.
● It gives the three-phase voltage of equal magnitude and frequency.
● Three-phase voltage (and current) offset by 120�.

Phase voltages and currents

● Phase voltage (Vp) is the voltage measured between phase and neutral in a
three-phase circuit. Phase voltage: line-to-neutral

● Phase current (Ip) is the current through any one component in a three-phase
circuit.

Balanced three-phase circuit

● All three sources are balanced (three voltages of the same amplitude, fre-
quency but apart by 120�).

● Source and load impedances are equal in all three phases. Z ¼ ZA ¼ ZB ¼ ZC
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Line voltages and currents

● Line voltage (VL) is the voltage measured between any two lines (line-to-line
voltage) in a three-phase circuit. Line voltage: line-to-line

● Line current (IL) is the current through any single line in a three-phase circuit.

The wye (Y) or star configuration

● The starting or finishing points of three phases are connected together at a
single neutral point.

● Y-connected source:

Quantity Formula

Voltages VL ¼ ffiffiffi
3

p
VP; VL ¼ ffiffiffi

3
p

Vpff30�

Currents IL ¼ IP

The delta (D) configuration

● It is when three phases in an AC power system are connected like a triangle.
(Three wires are taken out from the coil joints.)

● D-connected source

Quantity Formula

Voltages VL ¼ VP

Currents IL ¼ ffiffiffi
3

p
IP; IL ¼ ffiffiffi

3
p

IPff30�

Y–Y system

Quantity Formula

Voltages VLoad ¼ VP

Currents IL ¼ IP ¼ ILoad, IN ¼ ILoad A þ ILoad B þ ILoad C

Y–D system

Quantity Formula

Voltages VLoad ¼ VL

Currents
IL ¼ ffiffiffi

3
p

IP ¼ ffiffiffi
3

p
ILoad, ILoad ¼ VLoad

Z
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Power in balanced wye and delta circuits

Symbol Quantity Formula Unit

PP Real power per
phase

PP ¼ VPIP cosq Watt (W)

PT Total three-phase
real power

PT ¼ 3PP ¼ 3VPIP cosq Watt (W)

QP Reactive power
per phase

QP ¼ VPIP sinq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

p � P2
p

q
Volt-ampere-

reactive (VAR)

QT Total three-phase
reactive power

QT ¼ 3Qp ¼ ffiffiffi
3

p
VLIL sinq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

T � P2
T

p
Volt-ampere-

reactive (VAR)

SP Apparent power
per phase

SP ¼ VPIP Volt-ampere (VA)

ST Total three-phase
apparent power

ST ¼ 3Sp ¼ 3VPIP ¼ ffiffiffi
3

p
VLIL Volt-ampere (VA)

PF Power factor PF ¼ cosq ¼ p

s

Practice problems

14.1
1. The three windings in a magnetic field are placed at ( ) apart in a

three-phase power system.
2. A three-phase circuit is more economical than three single-phase

circuit because it uses less conductor material to transmit and ( )
the same amount of power.

3. Three-phase four-wire or three-wire systems can be derived from the
( ) connection.

4. The delta configuration is when three phases in an AC power system
are connected like a ( ).

14.2
5. Phase voltage is the voltage measured between phase and

( ) in a three-phase circuit.
6. Phase current is the current through any one ( ) in a

three-phase circuit.
7. Line voltage is the voltage measured between any two ( ) in a

three-phase circuit.
8. Line current is equal to phase current in a balanced ( ) circuit.
9. Line current is equal to phase current times the square root of 3 in a

balanced ( ) circuit.
10. Line voltage is equal to phase voltage in a balanced ( ) circuit.
11. Given VAN ¼ 110ff0� V in a balanced three-phase wye source.

Determine each phase and line voltage.
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12. Given IAN ¼ 6ff0� A in a balanced delta circuit. Determine each
phase and line voltage.

14.3
13. Given VAN ¼ 110ff0� V, RA ¼ RB ¼ RC ¼ 25 W and XA ¼ XB ¼ XC ¼

30 W in a Y–Y, three-phase four-wire system. Determine each load
and phase voltage, and line and load current.

14. Given VAB ¼ 120ff0� V, Z ¼ 54ff35� W in a balanced Y–D system.
Determine each load voltage and current.

15. Given the phase voltage is 130 V, the phase current is 12 A, the total
real power PT ¼ 4 kW in a balanced wye-connected load circuit.
Determine the line voltage and current, apparent powers, power
factor, real power per phase, and reactive powers.

16. Given the phase voltage is 130 V, the phase current is 12 A, the total
real power PT ¼ 4 kW in a balanced delta-connected load circuit.
Determine the line voltage and current, apparent powers, power
factor, real power per phase, and reactive powers.
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Appendix A

Greek alphabets

Uppercase/lowercase Letter Uppercase/lowercase Letter

A a Alpha N n Nu
B b Beta X x Xi
G g Gamma O o Omicron
D d Delta P p Pi
E e Epsilon P r Rho
Z z Zeta S s or V Sigma
H h Eta T t Tau
Q q Theta Y u Upsilon
I i Iota F f Phi
K k Kappa X c Chi
L l Lambda Y y Psi
M m Mu W w Omega
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Appendix B

Differentiation of the phasor

● For a sinusoidal function f ðtÞ ¼ Fm sinðwt þ yÞ, taking the derivative of the
f (t) with respect to t gives:

df ðtÞ
dt

¼ Fm w cosðwt þ yÞ

● and

df ðtÞ
dt

¼ Fm w sinðwt þ yþ 90�Þ
¼ Jm wFmejðwtþyþ90�Þ� � ¼ JmðwFmejwtejyej90� Þ ¼ JmðjwFejwtÞ

● where F ¼ Fmejy,
● and ej90� ¼ j (from Euler’s formula, ej90� ¼ cos90� þ jsin90� ¼ j).

● Therefore, the phasor of
df ðtÞ

dt
is jwF (where ejwt is the rotating factor),

i.e.
df ðtÞ

dt
, jwF

● Therefore, the derivative of the sinusoidal function with respect to time can be
obtained by its phasor F multiplying with jw, this is equivalent to a phasor that
rotates counterclockwise by 90� on the complex plane (since þj ¼ þ90�).
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Answers

Answers: Practice problems

Chapter outline

Answers to selected odd-numbered problems .................................................... 419

Answers to selected odd-numbered problems

Chapter R
1.

(a) 0.439 m
(b) 223.6 A
(c) 0.0000483 kV
(d) 25 hW
(e) 890 mV
(f) 0.167 kW
(g) 30 mA

3.
(a) 4,000 mA
(b) 63,006 V
(c) 5,290 mA
(d) 28.87 kW

5.
(a) 3,578
(b) 0.000043

7.
(a) 36.7 � 106

(b) 4.56 � 10�6

9.
(a) 17.447 � 109

(b) 2.2857 � 10�6



Chapter 1

5. Coulomb (C)
7. Joule (J)
9. Flux; 1 Weber ¼ 108 Maxwell

11. Source voltage, wire, and load
13. See Table 1.1
15. Ammeter, A

17. 2 amperes (A)
19. positive, negative
21. potential difference, V
23. load
25. ohmmeter Ω
27. T
29. I ¼ 0.2 A
33. the same

Chapter 2

1. Work
3. Power
5. P ¼ 9 W
7. I � 0.0316 A
9.

(a) P ¼� 0.5 W (Releasing energy)
(b) P ¼ 2.4 W (Absorption energy)

11. V ab ¼ 4 V
13. P2 ¼ 0:16 W
15. I1 ¼ 5 A, I2 ¼ 2 A, I3 ¼ 1 A
17. I1 ¼ 4 A, I2 ¼ 3 A, I3 ¼ 6 A, I4 ¼ 7 A
19.

(a) VAB ¼�RI � E; (b) VAB ¼ RI � E

21.
(a) RS ¼ 108:8 W; (b) V ab ¼ 9:2 V

Chapter 3

3.
(a) I � 0:59 A; (b) V R2 ¼ 5:9 V; (c) P ¼ 5:9 W

5. V R1 � 3:81 V, V R2 � 1:9V, V R3 � 2:86 V

V R4 � 4:76 V, V R5 � 6:67 V

7. R1 ¼ 3 kW, R2 ¼ 9 kW

(R1 ¼ VR1?

E
RT?, RT ¼ E

I
, V R1 ¼ E � V R2 , V R1 ¼

1
3

V R2 )
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11. IT � 17 mA, I1 ¼ 2 mA, I3 ¼ 5 mA, PT ¼ 0:17 W
13.

(a) R2 ¼ 5 W; (b) R2 ¼ 150 k W

17.
(a) Req ¼ R1 þ ðR3 //R2Þ þ ðR4 //R5Þ þ R6

(b) Req ¼ R1 þ R2 //R3 //ðR5 þ R6 þ R7Þ þ R4

19. V R4 � 2:66 V; V R5 � 5:145 V
21.

(a) Ra ¼ 34 W, Rb ¼ 20.4 W , Rc � 22.7 W
(b) Ra � 6.33 kW , Rb ¼ 19 kW , Rc ¼ 4.75 kW

23. RX � 26:7 kW

Chapter 4

1. IS ¼ 3 A, RS ¼ 6 W
3. IL � 0.455 mA, IL � 0.455 mA
5. n ¼ 4, b ¼ 6, Mesh ¼ 3
7. I2 � 3.26 A
9. I1 � �5.11 mA, I2 � �3.52 mA, V R2 ¼ �0:89 V

11. Ia � 23.3 mA, Ib � �170 mA
13. Va ¼ �14:86 V

Chapter 5

1. IR1
� 1.715 mA, IR3

� 1.278 mA
3. I � 3.06 A
5. I ��0.447 mA
7.

(a) RL ¼ RS ¼ 47 W (b) RL ¼ RS ¼ 8.2 W

9. I � 719 mA

Chapter 6

1. (b)
3. Q ¼ 150 mC
5. Ceq � 5.88 mF, Q ¼ 147 mC
7. C2 � 1:29 mF
9. Ceq ¼ 3 mF

11. conductor; electromagnetic field
13. N ;A; m; l
15. wL ¼ 1 J
17. Leq ¼ 30:075 mH
19. Leq � 3:71 H
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Chapter 7

1. RL; RC; differential
3.

(a) after (b) before

5.
(a) 0�; inductor (b) 0þ; capacitor

7. vC ¼ 50 1 � e
�t

10:5�10�3

� �
V; iC � 14:29e

�t
10:5�10�3 mA

9. t ¼ 1t ¼ 15 ms
11.

(a) t ¼ 0:05 s
(b) uC ¼ 10 e�20t V, i ¼ 2 e�20t mA
(c) 3.68 V, 1.35 V, 0.5 V, 0.18 V, 0.067 V

13. t ¼ 1:33 ms, vL ¼ 20 e
�t

1:33 ms V

vR ¼ 20 1 � e
�t

1:33 ms

� �
V, iL � 4:44 e

�t
1:33 ms mA

15. vL ¼ �10e
�t

0:32 ms V, iL ¼ 4 e
�t

0:32 ms mA

Chapter 8

1. Electromagnetic
3. inside
5. lines
7. Tesla (T)
9. Domain

11. 0.51 T
13. without
15. field
17. Electromagnetism
19. electric
21. reluctance
23. 0.255 � 10�2

25. 137.1 � 10�7 T
27. intensity
29. curve

Chapter 9

1. direction
3. Im ¼ 20 A, y¼ 45�, w¼ 30 rad/s, T � 0.21 s , f � 4.76 Hz
5. out of phase, orthogonal
7. VAvg ¼ 9:555 V;
9. Vpk ¼ 20 V, Vp-p ¼ 40 V, VAvg ¼ 12:74 V, V � 14.14 V
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11. _V ¼ 30ff� 45� V, _I ¼ 15ff35� A
13.

(a) v ¼ 10 sin(wt � 45�) V
(b) i ¼ 10.08 sin(wt þ 14.95�) A

15. 17:6ff156:6� A
17. vL ¼ 2.4 sin(60t þ120�) V

Chapter 10

1. Z � 20:62ff14:04� W
3. Y � 0:32ff1 � 51:34� mS
5. Zeq � 14:2ff�49:6 W, _I L ¼ 3:52ff49:6� A, _I C ¼ 2:92ff83:3� A
7. PT ¼ 20 W

QT ¼ 16:7 Var
ST � 26:1 VA
cosj � 0:77
_I T ¼ 2:61ff39:7� A

9. _I � 1:61ff35:7� A
11. ZTH � 18:9ff�12:8� W, _VTH � 16:1ff125:5� V

Chapter 11

1. increases
3. minimum, maximum
5. fr � 1; 592 Hz, ZT ¼ 10 W, _I ¼ 1ff0�A

_VL ¼ 100ff90� V, Q ¼ 10

7. 0.707
9. current

11. same
13. inductor (coil)
15. fr � 104 kHz, Z � 53:4 MW

Chapter 12

1. Mutual
3. dot
5. k ¼ 0.75
7. AC
9. NS ¼ 60 turns

11. n ¼ 0.5
13. n ¼ 0.4
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Chapter 13

1.
(a) 30ff0� mV, 25 W
(b) 0:2ff0� A, 40 W

3.

Mesh 1 : ð2 þ 4 þ 6Þ_I 1 � 4_I 2 � 6_I 3 ¼ �10 V
Mesh 2 : � 4_I 1 þ ð3 þ 4 þ 7Þ_I 2 � 7_I 3 ¼ �5_I 0

Mesh 3 : � 6_I 1 � 7_I 2 þ ð6 þ 7 þ 5Þ_I 3 ¼ 0
ð_I 0 ¼ _I 2 � _I 1Þ

5. 12.5 V

Chapter 14

1. 120�

3. wye
5. neutral
7. lines
9. delta

11. – Phase voltages: VAN ¼ 110ff0� V
VBN ¼ 110ff120� V
VCN ¼ 110ff�120� V

– Line voltages: VAB ¼ 110
ffiffiffi
3

p
VP ¼ 190:5ff30� V

VCA ¼ 190:5ff150� V
VBC ¼ 190:5ff�90� V

13.
– Load and phase voltages: VAN ¼ VLoadA ¼ 110ff0�

VBN ¼ VLoadB ¼ 110ff120� V
VCN ¼ VLoadC ¼ 110ff�120� V

– Line and load currents: IAB ¼ ILoadA ¼ 2:82ff�50:19� A
ICA ¼ ILoadB ¼ 2:82ff69:81� A
IBC ¼ ILoadC ¼ 2:82ff�170:19� A

15. – Line voltage: VL � 225.2 V
– Line current: IL ¼ IP ¼ 12 A
– Apparent power per phase: SP ¼ 1,560 VA
– Total apparent power: ST ¼ 4,680 VA
– Power factor: PF ¼ cosq � 85.47%
– Real power per phase: PP � 1,333.3 W
– Reactive power per phase: QP � 809.88 VAR
– Total three-phase reactive power: QT ¼ 3QP ¼ 2,429.65 VAR
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Index

AC circuits 295, 324
active power 311–12, 318

absorbs or release 311–12
derivation 311

adjustable transformer 377
admittance 296–7, 300–1, 332
admittance triangle 301
air-core and iron-core

inductors 192
air-core transformer 369–70
alternating current (AC) 256–8, 290
ammeter 23, 30, 39
ampere 17
amplitude 257, 260
angular frequency 260, 271, 280,

283–4, 288
angular velocity 260
apparent power 314, 408

calculating 314
applied voltage 27, 39
autotransformer 377
average power 268, 312
average value 266–7, 291

balanced bridge 97–9, 101
balanced three-phase circuit 401,

407, 410
balanced wye and delta circuits

408
bandwidth (BW) 347–8, 357
basic electric circuit 18–19
block AC, 288
block DC, 284
branch 55, 62, 69
branch current analysis 116–21,

131–2
vs. mesh current analysis 121

breakdown voltage 180, 201

capacitance 17, 176–7
calculation 177
equivalent (total) parallel

capacitance 185
equivalent (total) series capacitance

185
factors affecting 178–9
series equivalent (total) capacitance

184–5
total or equivalent capacitance 183
units of 178

capacitive circuit
Ohm’s law for 287

capacitive reactance 287
capacitive susceptance 287, 332
capacitor voltage 211–12, 217, 288
capacitors 172, 176–7

AC response 286, 288
branch currents 355
calculating capacitor energy 183
characteristics of 288
charging 174, 180, 201, 206–7
discharging 175–6, 201, 206–7
energy storage element 175
energy stored by 182–3
fixed capacitor 173
in parallel 186
schematic symbols 173
in series 185–6
in series–parallel 188
variable capacitor 173

center-tapped transformer 377
characteristics

of admittance 300, 333
of a capacitor 202, 288, 292
of impedance 333
of an inductor 202, 284, 292
of a resistor 202



charging 241, 250
charging current 214
charging equations 214
charging process of an RC

circuit 210
chassis ground 81, 99
chemical energy 45
circuit analysis techniques 116
circuit current 227–8
circuit diagrams 20
circuit ground 81
circuit responses 207
circuit symbols 20–1, 39
circuit triangles 315
circuits with dependent sources 385
closed-loop circuit 50
coefficient of the coupling 367–8
common ground 81, 99
complex number 271–4, 291

real part and imaginary
part of 273

conductance 31–2, 39, 281, 283,
296, 302

conductance form of Ohm’s law
32–3, 40

conduction 241
control coefficients 386
controlled source 385, 395
conventional current flow

version 24, 39
conversion of dependent sources 395
corresponding terminals 368
Coulomb 17
critical frequencies 348
cross-linking flux 367
current 21–2, 39

direction 23–4, 39
of parallel resonance 356
reference direction of 35–6
resonance 357
selectivity 349
source 66–8
sources in parallel 115
sources in series 115–16
triangle 298

current-controlled current source
(CCCS) 386–7, 389

current-controlled source 388
current-controlled voltage source

(CCVS) 386, 389, 395
current divider rule (CDR) 86–8,

100, 304
current source!voltage source

111, 130
current/voltage, mutually

related reference polarity
of 37–8

cutoff frequency 348

DC Blocking 182
DC circuit analysis 109

branch current analysis 116–21
current sources in parallel 115
current sources in series 115–16
mesh analysis 121–4
nodal voltage analysis 125–30
source conversion examples 111–13
source equivalent conversion

109–10
verifying source conversion 111
voltage sources in parallel 114
voltage sources in series 113

DC voltage 182
delta configuration 91–2, 401, 411
delta to wye conversion 93–6

to simplify bridge circuits 96–7
delta-connected sources 403, 405
dependent sources 385, 395

circuits 387
equivalent conversion 388

derived quantities 2
dielectric constant 178
direct current (DC) 256, 290
discharge current 217
discharging equations 218
discharging process of the RC circuit

215
domain theory of magnetism 240
dot convention 368
double-subscript notation 81, 99
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earth ground 81, 99
effective value 268, 270, 291
electric charge 240
electric circuit theory 17–18
electric circuits 15–16, 18, 38
electric current 21–4, 39, 242, 251
electric field 241, 251
electric generator 243
electric motor 242
electric power 46–8
electric voltage 24–7
electrical energy 45
electrical load 19
electrolytic capacitor 180
electromagnetic field 189
electromagnetic force 238, 249
electromagnetic induction 242, 251
electromagnetism 240, 242, 251

induction 189
electromotive force (EMF) 25,

27, 39
electron flow version 24, 39
energy 44–6, 69

and work 44–5
energy releasing equations for RL

circuit 228
energy-releasing process 226–7
energy storage element 175
energy stored by a capacitor

182–3
energy stored in an inductor 196
energy storing equations for an RL

circuit 225
energy-storing process of an RL

circuit 223–4
engineering notation 8–9
equivalent (total) series resistance 77,

99
equivalent conversion 388
equivalent impedance 303, 305
equivalent parallel capacitance 186
equivalent parallel inductance 199
equivalent parallel resistance 84, 100
equivalent resistance 77, 88, 99
equivalent series capacitance 185

equivalent series inductance 199
Euler’s formula 272–3, 276
excitation 208

factors affecting capacitance 178
factors affecting inductance 194–5,

202
factors affecting resistance 28–30,

39
Faraday’s law 17, 190, 201
ferromagnetic materials 240
ferromagnetism 240
first-order circuit 206
fixed capacitor 173
fixed resistors 28
flashlight circuit 20
flashlight or torch circuit and

voltage 25
flux density 245, 252
frequency 258–9, 290, 344
frequency of series resonance 340

galvanometer 99
gravitational potential energy 45

half-power frequency 348
heat/thermal energy 45
Henry 18
Hertz 18
hysteresis curve 248, 253
hysteresis loop 248

I–V characteristic 34–5
ideal current source 66–9
ideal transformer 371
ideal voltage source 63, 69
impedance 296, 301, 304, 372–4

angle 316
matching 378–9
in parallel 333
parallel circuit 304
in series 333
in series and parallel 303
series circuit 303
triangle 298
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independent sources 385
symbols 386

induced voltage 365, 367
inductance 193, 202

calculating 195
equivalent inductance 198
factors affecting 194–5
vs. inductor 193
self-inductance 192–3

induction 241
inductive circuit, Ohm’s law for 283
inductive coupling 366
inductive reactance 283–4
inductive susceptance 283–4, 302
inductive/capacitive components 310

formulas 310
waveforms 310

inductor 172, 192
AC response 282, 285
air-core and iron-core inductors 192
and capacitor current 356–7
characteristics 284
electromagnetism induction 189
energy stored in 195–7
Ohm’s law for 193
in parallel 199
in series 199
in series–parallel 200
winding resistor of 197–8

inductor branch currents 355
inductor current 223
inductor voltage 224–5, 228–9,

283–4
initial conditions 215, 226
initial state 207–8
input 208
instantaneous power 307–8

and energy 308–9
for resistive load 309

instantaneous quantity 180–1
instantaneous value 267, 291
internal resistance 64–5
International System of Units (SI) 1–6
iron-core transformer 369–70

Joule 18

kinetic energy 45
Kirchhoff’s current law (KCL) 55–62,

70, 125–6, 304–5, 333, 389
circuit terminologies 62
experimental circuit 58
nodes and branches 55
physical property 58–9
supernode 60–2

Kirchhoff’s voltage law (KVL) 50–5,
70, 121–4, 304–5, 333, 389

closed-loop circuit 50
experimental circuit 53–4
extension 54–5

law of conservation of electric charge
241, 251

law of conservation of energy 45
leakage current 180, 201
leakage flux 367
Lenz’s law 17–18, 191, 201
light energy 45
line current 401, 403, 411
line voltage 402, 411

and currents 401
polar equations 404

linear circuit 138, 143
linear network 139, 143
linear transformer 369
linear two-terminal network with

power supplies 143
linear two-terminal network with the

sources 165
linearity property 138
load 19, 39
load currents 407
load voltage 27, 39, 407
loop 62, 69

magnet 237, 249
magnetic circuits

Ohm’s law for 246
magnetic domain 240
magnetic field 238, 249

intensity 246–7, 253
magnetic flux 239, 250

density 239, 250
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magnetic hysteresis 246, 248, 252–3
magnetic poles 238, 249
magnetism 237, 249

domain theory of 240
magnetized material 239
magnetizing force 246–7
magnetomotive force 244, 251
maximum load power 158–9
maximum power 157–8
maximum power transfer 157–60,

378–9
Maxwell’s equations 18
mechanical energy 45
mesh 62, 69
mesh current analysis 121–4, 131,

324–5, 392–3
branch current analysis vs., 121

metric conversion 3–4
metric prefixes 2–3
metric system 1
milestones of the electric circuits

17–18, 38
Millman’s theorem 160–2
multimeter 53, 58
multiple-tapped transformer 377
mutual inductance 365, 380

factors affecting 366
principle 366

mutually related ref. polarity of
V and I, 37–8, 40

natural response 208
network 138
network theorems 138
nodal voltage analysis 125–32

vs. mesh current analysis 130
node 62, 69
node voltage analysis 326–7, 391–2
non-zero initial capacitor voltage and

inductor current 209
Norton’s theorem 143–55, 329–32
nuclear energy 45

Ohm’s law 17, 32–4, 40, 283, 287
of AC circuits 296
for a capacitor 181–2

I–V characteristics of 34–5
for an inductor 193
for magnetic circuits 246, 251–2
resistance and 27

ohmmeter 30, 39
operations on complex numbers 272
output 208

parallel circuit 82–3, 100
parallel current 84, 100
parallel equivalent capacitance 187
parallel power 85, 100
parallel resistance and power 84–5
parallel resistive circuits 82–3, 85–6
parallel resonance 352, 358–9

admittance 352–3
characteristics 353
frequency 353
phasor diagram of 355
quality factor of parallel resonance

356
response curve 354
total current in 354

parallel voltage 83–4, 100
pass AC, 284
pass DC, 288
pass-band 363
passing DC, 202
peak value 260, 265, 291
peak–peak value 265, 291
period 258–9, 290
permanent magnet 237, 249
permeability 243, 251
phase angle 280, 283, 344
phase current 401, 403, 410

polar equations 404
phase difference 262–4
phase shift 260–1, 271
phase voltage 402, 410

and currents 401
polar equations 402

phasor 270–1, 276
diagram 274–5, 281, 355
differentiation of 277
domain 273, 278, 281, 288, 292
integration of 277
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notation 270–1
of parallel resonance 355
power 316–17

polar form 271–3, 291
potential difference/voltage 25–7, 39
power 46, 69, 372

in AC circuits 307
and energy 43–50
reference direction of 48–9
source 19, 38
supply 19, 38
triangle 315–16, 333

power factor 317
power-factor correction 318–19
power transmission system 376
practical parallel circuit 358
pulsing DC, 257

quality factor 345, 349, 356, 363
quantity analysis of the RC

discharging process 216

RC circuit 206, 210–18
RC time constant 218–19
reactance 283–4, 302
reactive circuit 318
reactive power 312–13, 408

absorbs or release 313
calculating 312

real current source 68–9
real power 408
real voltage source 64–6, 69
rectangular form 271–3
reference direction of current 35–6,

40
reference direction of power 48–50,

69
reference polarity of voltage 36–7, 40
relative permeability 243, 251
reluctance 244, 251
requirements of a basic circuit

18–19, 38
resistance 27–8, 39
resistive circuit 318
resistivity 29, 40

resistor voltage 213, 217, 224, 228
resistors 28, 172

AC response 279, 281
resonant circuit 345, 360
response 207
response curves 343
retentivity 248
right-hand rule 242, 251
right-hand spiral rule 189
RL circuit 222–32
RL time constant 229–30
RMS (root-mean-square) value 268,

270, 291
of AC current 269
of AC voltage 269
applications of 268
of a non-sine wave function 269
physical meaning of 268
quantitative analysis of 268

rotating factor 273, 275–6

schematics 20–1, 39
scientific notation 6–8
selectivity 349, 363
self-induced voltage 366
self-inductance 192–3
series circuit 76, 78–9, 99
series current 77–8, 99
series power 77–8, 99
series resistive circuits 76
series resonance 339–40, 346, 361

characteristics 343
current of 341
example 347
impedance of 341
phase response 344
phasor diagram of 342

series voltage and resistance 77
series–parallel capacitor circuits 188
series–parallel inductive circuit 200
series–parallel resistive circuits 75,

88–91
analysis 88–9
currents and voltages of 90–1
equivalent resistance 88
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short circuit 66, 68
simplified transformer circuits 369
sine AC wave energy 258
sine function

peak value and angular velocity of
260

phase difference of 262–3
phase of 260

sine voltage 261–2
single-subscript notation 81, 99
sinusoidal AC quantity 265
sinusoidal currents and voltages in the

phasor domain 274
sinusoidal expression 275, 280, 282
sinusoidal function 258, 266, 273,

276, 292
sinusoidal waveform 267
sound energy 45
source conversion

examples 111–13
verifying 111

source equivalent conversion
109–10, 130

source voltage 39
source-free response 208, 215,

226
star configuration 400, 411
static discharge 241, 251
static electricity 241, 251
steady state 207, 212
step response 207–8, 210, 222
step-down transformer 375, 382

applications 376
step-up transformer 374, 382

applications 376
subscript notation 81–2
substitution theorem 163–5
supernode 60–2, 69
superposition examples 139–40
superposition theorem 138–9, 165–6,

327–8, 393
susceptance 283, 287, 301, 332
switching circuit 209
symbols and units of electrical

quantities 40

t ¼ 0– 209–10
t ¼ 0þ 209–10
tee (T) and pi (p) circuits 92–3
Thevenin’s theorem 143–55, 166,

329–32, 394
three-phase circuits 399
three-phase power system 399–400
three-phase sources 401
time constant 219–21
time domain 258, 280–1
total parallel power 85
total power 78, 319–24
total series power 78
total series resistance 77, 99
total voltage 77
transformer 365, 368–9, 381
transformer parameters 371, 382
transient state 206–7
true power 312
tuning circuit 360–1
turns ratio 371, 382
two connection methods 400
two-phase AC power systems 399
two-terminal network 143

unit factor method 4–5
unit-step response 208–9

variable capacitor 173
variable resistors 28
viewpoints 148–9, 151–2
volt 17
voltage 24–7, 39, 298

and current 372
drop 27, 39
phasor diagram 402
reference polarity of 36–7
rise 27, 39
source 63
sources in parallel 114, 130
sources in series 113–14, 130
subscript notation 81–2
triangle 298, 333

voltage-controlled current source
(VCCS) 386, 395

Index 431



voltage-controlled source 388
voltage-controlled voltage source

(VCVS) 386, 395
voltage divider rule (VDR) 79–80,

99, 304
voltage resonance 346
voltage source!current source 111,

130
voltmeter 27, 30, 39

water gun and voltage 24
water pressure vs. voltage 25

Watt 17
waveform of instantaneous power 308
Wheatstone bridge 96
winding resistance 197, 202, 345
winding resistor of inductor 197–8
wires 19, 38
work 43–4, 69
wye and delta configurations 91–2
wye configuration 91–2, 400, 402, 411
wye to delta conversion 94–5
wye-connected voltage sources 401
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