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Lukáš Kohout
Signal Processing
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Leoš Kafka
Signal Processing
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Foreword

Processors and memories are two unavoidable sub-parts of any computing system,
as they are at the heart of the ability of the system to compute. Until the turn
of the twenty-first century, system engineers using these components as building
blocks could assume ever increasing performance gains, by just substituting any
of these components by the next generation of the same. Then they ran into two
obstacles. One was the memory wall, i.e. the increasing divergence between the
access time to memory and the execution time of single instructions. The second was
the sequential performance wall, i.e. the increasing divergence in single processors
between performance gains by architectural optimizations and the power-area cost
of these optimizations. A third potential wall is now profiling on the horizon: the
end of Moore’s law, or more precisely a potential limit on the maximum number
of silicon CMOS–based transistors per unit of area on chip. These obstacles are the
stretch marks of a speculation bubble ready to burst. Unless solutions are devised
within a decade, the economy of the IT industry of applications, currently based on
an expectation of future cheap performance increases in computing systems, may
need a serious, globally disruptive reform.

The responsibility to rescue the computing industry falls mostly in the hands
of computer engineers, foremost computer architects and systems engineers. An
essential step for architects is to find new ways to arrange CMOS logic into different,
more efficient combinations of processors and memories. This book is one of the
results of a broader initiative taken by the Apple-CORE project, funded by the Eu-
ropean Commission, where the expertise of seven international partners was brought
together to co-design a new generation of processing tools and components based
on hardware multithreading and hardware-supported concurrency management over
many cores on chip. A cornerstone of Apple-CORE’s scientific and technical output,
the UTLEON3 processor demonstrates on FPGAs how novel levels of processing
efficiency can be achieved on simple RISC cores with microthreading, paving the
way for larger and scalable many-core designs.

However, devising new components may imply invalidating previous assump-
tions about component semantics. This is the price to pay to take a step forward and
break free of the current limitations. The Apple-CORE perspective, for example,
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vi Foreword

limits the use of interrupt-driven preemption, and thus takes away from the hands of
software implementers the responsibility of organizing the activation and scheduling
of threads. This is why standalone innovation is not sufficient; the outer question of
innovation, namely how to ensure that the innovation will be understood, reused and
applied, must also be addressed. And this is where this book shines: by provisioning
modular VHDL source code for UTLEON3 under an open license, together with a
thorough discussion of the design’s internals, motivations and possible applications,
the authors have smoothed the learning curve towards understanding and using their
design, and demonstrated the tractability of their proposal.

The readers who will most benefit from this monograph are likely newcomers
to computer architecture and systems engineering. By relying on FPGA technology
and open, modular components, this in-depth review of UTLEON3 both delivers an
approachable insight in the future of architecture research and provides an educative
and inspiring foundation to build new generations of single-core and multi-core
chips.

Amsterdam, The Netherlands Chris Jesshope
Raphael ‘kena’ Poss



Preface

The UTLEON3 processor has been derived from the LEON3 processor distributed
in the GRLIB package by Aeroflex-Gaisler. The main motivation for this work
was the evaluation of the performance and hardware cost of the microthreaded
computing model in a single core as the first step to designing novel multi-core
systems with better scaling properties. The time we spent researching this topic
with our colleagues from the Apple-CORE project belongs to the most inspiring
and productive periods in our lives as the project created a rare opportunity for
interaction between the ‘software’ and ‘hardware’ people.

This book presents the design, implementation and evaluation of instruction set
extensions for fine-grain multithreading implemented in UTLEON3. The first part
of the book defines new processor instructions for thread management in a way
compatible with the existing SPARC V8 opcodes, proposes the necessary hardware
extensions to LEON3 and describes them on a functional level.

The second part describes implementation details of the implemented architec-
tural extensions that are required to execute microthreads both in the processor
pipeline and in specialized hardware accelerators. We have tried to describe the
structure of the new blocks in a way that would provide guidance to the actual
VHDL sources of the blocks without going into unnecessary details.

The description is accompanied with an analysis of performance gains; these
were evaluated by comparing the cycle count of microthreaded assembler programs,
executed on UTLEON3 in the microthreaded mode, to reference legacy assembler
programs, coded using the standard SPARC V8 instructions and executed on
LEON3 and UTLEON3 in the legacy mode.

The main text is supplemented with appendices that provide additional infor-
mation on LEON3 together with a scheduling example and resource requirements
for UTLEON3. As the book is released in parallel with the UTLEON3 sources, a
tutorial is also provided that gives instructions on the basic set-up of the VHDL
package with the UTLEON3 sources.
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We hope you will enjoy the book and UTLEON3.

Praha, Czech Republic Martin Daněk
Leoš Kafka

Lukáš Kohout
Jaroslav Sýkora

Roman Bartosiński



Acknowledgements

This book is one of the results of a nearly 4-year research carried out in the project
Apple-CORE. Apple-CORE was funded in the seventh Framework Programme of
the European Commission (Project No. FP7-ICT-215216), and also by the Czech
Ministry of Education (Project No. 7E08013). For more information about the
Apple-CORE project see [17].

In the broader context, the book builds on a 10-year tradition of embedded
systems research at the Department of Signal Processing, Institute of Information
Theory and Automation of the Academy of Sciences of the Czech Republic (ÚTIA
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Chapter 1
Introduction

The current silicon technology has reached its limits in maximum operating
frequency, thus it has become more important to improve the organization of
computation to gain further performance improvements. One area for improvements
is to eliminate computation stalls on execution of long-latency operations. In
processors these situations can be eliminated by organizing the computation in
several independent threads, and switching the context to threads that are ready for
execution in situations when processor execution would be stalled otherwise.

As the silicon area becomes cheaper as a consequence of the Moore’s law, it has
become viable to extend processors to support in hardware execution of multiple
threads in one processor or in a multiprocessor cluster. Two significant examples
are the SUN Microsystems OpenSPARC T1/T2 and the MIPS MT processors.
OpenSPARC T1/T2 is an open-source version of the UltraSPARC T1/T2 [13, 16];
T1 has been ported to the Xilinx FPGAs, while MIPS MT [12] is a commercial
processor available as an ASIC. We believe the architecture complexity of the open-
source OpenSPARC T1/T2 is too high for embedded applications, which is due
to their primary domain in server and desktop computing. Also the context switch
time for T1/T2 is high, about 1,000 clock cycles. We do not know of any other
multithreaded processor available in the source code to the design community.

We have designed and implemented instruction set extensions for the simpler
LEON3 SPARCv8 processor [4] suitable for embedded applications. The reasons
why we have chosen LEON3 are its availability in VHDL under GPL, the
availability of the standard GNU toolchain for LEON3 together with linux ports,
and last but not least the development support we received from Gaisler Research
(now Aeroflex-Gaisler) within the project Apple-CORE funded by the European
Commission.

This book describes the resulting architecture of the modified LEON3 processor
that we call UTLEON3, and the impact of the architectural improvements on the
processor performance and hardware requirements. The goal has been twofold: first,
we wanted to implement in silicon machine-level instructions that were identified as
necessary for efficient microthreading – a variant of multithreading with fast context
switching [11] to have a true picture how these extensions are expensive in terms of

M. Daněk et al., UTLEON3: Exploring Fine-Grain Multi-Threading in FPGAs,
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4 1 Introduction

silicon (compared to optimistic performance results from the functional simulation).
Second, as the first step to full multi-core implementation of microthreading, we
wanted to show that we could achieve an efficient single-core implementation of
these extensions by outperforming the original LEON3 processor by better handling
of memory and execution latencies.

Still the biggest promise of microthreading remains to be proven in silicon –
whether, given the current technological limitations, a multi-core system based
on microthreading can achieve linear scalability with respect to the number of
processing cores as indicated in functional simulations.

1.1 Microthreading

Microthreading is a multithreading variant that decreases the complexity of context
management. The goal of microthreading is to tolerate long-latency operations
(LD/ST and multi-cycle operations such as floating-point) and to synchronize
computation on register access. An overview of multithreading is provided in [18].

In a simple case the context can be represented by the program counter and by
window pointers to the register file. Microthreading has been developed both on
the assembler and C levels. The basic conceptual unit is a family of threads that
share data and implement one piece of computation. In a simple view one family
corresponds to one for-loop in the classical C; in microthreading each iteration
(each thread) of a hypothetical for-loop (represented by a family of threads) is
executed independently according to data dependencies. A family is synchronized
on termination of all its threads. More details on microthreading can be found
in [9–11].

A possible speedup generated by microthreading comes from the assumption that
while one thread is waiting for its input data, another thread has its input data ready
and can be scheduled ideally in zero clock cycles and executed. Another assumption
is that load and store operations themselves need not be blocking since the real
problem arises just when an operation accesses a register that does not contain a
valid data value. Finally, the thread management logic is considered simple enough
to fit in the processor hardware reasonably well in the current technologies.

The hardware requirements of microthreading are: use of a self-synchronizing
register file (i-structures, [1]), register states to be managed autonomously in the
register file, pipeline stalls prevented by context switch in hardware, and thread
status and context switch managed autonomously in a hardware thread scheduler.

The microthreading support on the machine level is represented by the following
assembler instructions:

• launch – switches the processor from the legacy mode (user or protected) to the
microthreaded mode.

• allocate – allocates a family table entry, needed to create a family of threads.
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• set. . . – several instructions that fill in the allocated family table entry with
parameters required by the create instruction.

• create – creates (a family of) threads based on a family table entry.
• .registers – a pseudoinstruction at the beginning of the thread code that specifies

the number of global, local and shared registers needed by a thread (integer and
floating-point specified separately).

Furthermore, each 32-bit instruction word is extended by another two bits
that together encode an instruction modifier for thread scheduling. The defined
modifiers are:

• cont – continue thread execution (default),
• swch – switch the context to another thread, e.g. on memory load to prevent

possible pipeline stall,
• end – end thread execution, i.e. the thread ends at this instruction.

The format of assembler instructions has been extended by a field delimited by a
semicolon that may contain an explicit instruction for the scheduler. If the field is
missing, cont is assumed by default.

clr %r2
ld [%r1 + %g0], %r3 ; swch
add %r3, %g0, %r4 ; end

To keep the 32-bit organization of the memory system in SPARCv8, 2-bit
extensions or modifiers for groups of 15 instructions are grouped in one 32-bit
instruction word that is located at the beginning of each instruction cache line (one
cache line is formed by 16 words). The first word of each cacheline is skipped in
the microthreaded mode (explained in more detail later in the text). The instruction
cache organization is shown in Fig. 1.1.

Microthreading relies on the use of a self-synchronizing register file based on the
i-structures [1]. To implement the i-structures registers are extended with states.
A register can be:

• empty – on power-on reset,
• pending – a memory load operation has been requested and no thread has

accessed the register since,
• waiting – a memory load operation has been requested and a thread has accessed

the register since,
• full – the register contains valid data.

In the micro-threading model a pending register can be accessed by at most one
thread – either by the thread that initiated the pending data update, or by its direct
sibling (only unidirectional data dependencies between direct sibling threads are
allowed in microthreading to prevent deadlock).

A sample program execution is shown in Fig. 1.2. The processor starts in the
legacy mode on power-on reset, then it switches to the microthreaded mode.
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Fig. 1.1 Organization of the instruction cache in the microthreaded mode. 16 words = 1 cache
line

The parent thread gets synchronized with the children threads by reading the
register %l2 (this can be omitted when thread synchronization is not required).
On completion of all microthreads the processor switches back to the legacy mode.

1.2 UTLEON3

UTLEON3 is a microthreaded processor derived from LEON3. LEON3 is a
successor of the ERC and LEON2 processors, all developed by Jiri Gaisler and
later Gaisler Research for the European Space Agency. LEON3 is a RISC processor
based on the SPARC V8 specification, standardized by IEEE as Std 1754–1994.
It is distributed under the GNU GPL scheme in a freely available GRLIB package
with all necessary VHDL source codes. The level of available documentation is
sufficient for building complex systems on chip (similar to commercial products
such as Xilinx EDK or Altera SOPC Builder) featuring one or more LEON3 cores
with the necessary peripherals. The UTLEON3 processor is distributed under the
GNU GPL scheme in a UTGRLIB package derived from the GRLIB package.

The book is organized in three parts. The first part focuses on the programming
interface to microthreading in UTLEON3. After a presentation of background
information on the GRLIB library and LEON3, the new microthread management
instructions are described, followed by a functional description of the LEON3
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Fig. 1.2 Program flow

processor. The first part is concluded with a few programming examples that
demonstrate the approach to writing microthreaded assembler programs.

The second part describes the implementation details. It starts with describing
the structure of the key new blocks, including hardware acceleration of families of
microthreads and interrupt handling, and evaluates efficiency of the microthreaded
model in terms of resource requirements, operating frequency and execution
efficiency.

Supplementary information, including an analysis of resource requirements of
UTLEON3 for an FPGA and ASIC implementations can be found in the appendices.



Chapter 2
The LEON3 Processor

This section contains a brief description of the LEON3 SPARC V8 processor
implementation developed by Gaisler Research, with an emphasis on information
relevant to the derived UTLEON3 microthreaded processor. The LEON3 processor
is part of the GRLIB package that is under continuous development; the following
description is based on GRLIB Version 1.0.17. The description provided in this
section is organized in a top-down manner, starting with a view of the whole IP
library GRLIB and going down to the LEON3 integer pipeline.

2.1 The GRLIB Library

GRLIB is a library of VHDL source codes of IP cores for designing a complete
system on chip centered around the LEON3 processor [4,5]. The library is structured
into directories that group IP cores according to the contributor’s company. There
are more subdirectories with complete IP cores organized in packages in the direc-
tories. These directories contain VHDL source codes of packages for simulation
and synthesis and files with package configurations. A package configuration is
propagated to VHDL entities via generics. The library is managed by an automated
tool based on GNU make that manages configurations and compilation of packages
for simulation and synthesis.

2.1.1 Two-Process Coding Style

The majority of the VHDL code in the GRLIB library is coded using the two-process
method developed by Gaisler [2], where one process forms the combinational part of
the logic and uses variables to compute the results, and the other process implements
register updates. All buses are coded as records; this reduces the coding effort when
adding or removing interface signals.

M. Daněk et al., UTLEON3: Exploring Fine-Grain Multi-Threading in FPGAs,
DOI 10.1007/978-1-4614-2410-9 2, © Springer Science+Business Media, LLC 2013
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10 2 The LEON3 Processor

The advantage of this coding method is shorter simulation time, but the price
paid is lower readability of the code for designers not familiar with this coding
style (namely due to C-like sequential dependencies between variable assignments
in the combinational process in contrast to the usual parallel nature of VHDL signal
assignments). Newer versions of doxygen can be used to extract documentation from
the VHDL sources.

2.1.2 GRLIB Directory Structure

The LEON3 processor consists of several parts. The main parts of the processor
implementation are placed in the $GRLIB/lib/gaisler/leon3 directory. VHDL
files with the SPARC V8 instruction codes and support functions for instruction
disassembly during simulation are placed in the $GRLIB/lib/grlib/sparc directory.
User designs with top-level files that instantiate complete SoC designs are located
in the $GRLIB/designs directory.

2.2 LEON3

LEON3 is an implementation of the SPARC V8 architecture with several specific
features. Figure 2.1 shows a block diagram of the LEON3 processor with optional
parts (e.g. DIV32, MUL32, DSU, MMU).

The minimal configuration of the LEON3 processor consists of an integer
pipeline, 3-port register file, instruction cache and data cache. A more powerful
configuration can contain a memory management unit, 32-bit integer multiplication
and division unit, 16-bit integer multiply-accumulate unit, debug interface and trace
buffers according to its configuration. LEON3 has two extension interfaces, usually
used by a floating-point unit and a co-processor.

More information about the SPARC V8 architecture and the LEON3 implemen-
tation are in [3, 5, 7, 15]. One of our initial design requirements was that the new
UTLEON3 processor be binary compatible with the original LEON3 processor.
To better understand the design decisions we took for UTLEON3 we describe the
relevant parts of LEON3 in the following text.

2.2.1 Pipeline Operation

The LEON3 processor execution is controlled by the integer pipeline. The pipeline
is implemented in seven independent stages that use delayed branches and several
forwarding paths to achieve high performance. A schematic view of the pipeline is
shown in Fig. 2.2.
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I-Cache D-Cache

3-Port Register File

AMBA AHB Master (32-bit)

AHB I/F

7-Stage
Integer pipeline

Interrupt controller

Co-Processor

HW MUL/DIV

IEEE-754 FPU Trace Buffer

Debug port

Interrupt port

Debug support unit

Local DRAMLocal IRAM

SRMMU DTLBITLB

Fig. 2.1 Structure of the LEON3 processor

The integer pipeline is coded in the file iu3.vhd. The state of the whole iu3
pipeline is captured in one signal, named r. This signal is a record of records,
where each level-1 record corresponds to each pipeline stage. The level-2 records are
tailored to the requirements of each pipeline stage, some items propagate through
several pipeline stages. The structure of the pipeline data structure is included in
Appendix A.

2.2.2 Instruction Set

Instructions in the LEON3 processor are encoded in three 32-bit formats. Instruction
formats and an excerpt from the instruction table is included in Appendix B.
The LEON3 integer pipeline implements the full SPARC V8 standard, including
hardware multiply and divide instructions, and in addition it implements hardware
multiply-accumulate instructions.

Instructions can be divided in six categories: load/store, integer arithmetic, con-
trol transfer, read/write control registers, floating-point operations and co-processor
operations. There are several free places in the Format 3 (op = 2) instruction set
table. The load/store instructions can use alternate address spaces defined by the
8-bit field ASI in the instruction code. LEON3 uses only a few address spaces, and
there are a lot of spaces for possible extensions. There are three empty places for
new branch (flow control) instructions.
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All instructions can behave differently in the user and privileged modes, and
they can cause an exception if they are called in an improper mode. Load/store data
from/to an improper address space can cause the invalid memory access exception.

2.2.3 Registers

The LEON3 processor includes all the necessary registers as defined in the
SPARC V8 specification. It contains general-purpose registers (the %r registers)
and control/status registers (%psr, PC, etc.) as shown in Appendix C.

The general-purpose registers are included in a register file that is connected to
the processor instruction pipeline through three ports. The register file is organized
as 8 global registers and an implementation dependent number of 16-register sets.
Instructions can access all 8 global registers (global), 16 registers of the current
window (local, in) and the 8 in registers of the next window (out). The current
window is changed only by the SAVE and RESTORE instructions or when entering
or returning from a trap. The SPARC V8 specification recommends to implement 8
register sets for compatibility reasons. Four r registers have a special function. The
register %r15 (%o7) is used for saving the program counter of a CALL instruction.
When a trap occurs, the pc and npc are copied into registers %r17 and %r18 (%l1
and %l2) of the trap’s new register window. Register %r0 (%g0) behaves in a
specific way; if %r0 is a source operand, the constant value 0 is read. When %r0 is
used as a destination operand, the result of the operation is discarded.

2.2.4 Exceptions

LEON3 implements the general SPARC trap model. The table of the implemented
traps and their individual priorities is in the GRLIB IP User’s Manual [5]. Trapping
is enabled by setting the bit ET in processor status register. LEON3 supports single
vector trapping (SVT) that can reduce the code size of trap handlers. In the SVT
mode all traps use a handler to reset a trap, and the trap type is indicated in the field
TT in the register TBR.

2.2.5 Software Tools

The software tools needed for building a microthreaded processor from the LEON3
VHDL source codes are fully described in the GRLIB User’s Manual [4]. These
tools don’t have to be modified.
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Programs for the LEON3 processor can be processed using a modified GNU
toolchain for the SPARC architecture. The source code of these tools is available
on the Gaisler Research web site. The minimal setting requires at least the GNU
assembler to program the processor.

2.3 From LEON3 to UTLEON3

The internal structure of the UTLEON3 processor is derived from LEON3, but
certain parts are different. These are namely:

Instruction decoder – new instructions that support microthreaded execution.
Integer pipeline – new instructions, new program flow control mechanism

(thread switch).
Register file – new registers, new register state bits, new register allocation

scheme.
Traps – new traps due to error states in the microthreaded mode.
Caches – new cache controllers that support delayed memory ac-

cesses (R/W), independent register file updates, and refer-
ence counting.

Program flow – a distributed call stack equivalent stored in the register file,
thread scheduler and instruction cache.

UTLEON3 maintains the standard SPARCv8 instruction formats and opcode
table. New microthread management instructions have been implemented over
specific cases of the SPARCv8 RDASR and WRASR instructions.



Chapter 3
Microthreaded Extensions

This chapter defines the microthreaded extensions to LEON3 that can be seen on the
assembler level. These are namely the processor identification and program status
register, and the new instructions that switch the processor to the microthreaded
mode and manage thread creation and execution.

3.1 Definitions

A thread is a part of the program that implements one iteration of a hypothetical
loop. A family of threads is a group of threads that implements computation of one
loop. A family is defined by its index start, end, step, and also by its body – the
program code that executes one thread. A parent thread is the wrapper code that
created a given family of threads. A child thread is one thread that represents one
iteration of a hypothetical loop. Sibling threads execute simultaneously within one
family, i.e. they represent different iterations of a hypothetical loop.

All families that exist in the system are listed in the family table. The table
contains a pointer to the first thread of each family in the thread table. The thread
table contains all threads that have been created in the system and have not finished
yet, that is the threads that are running, ready, waiting and/or suspended in the
system. Each thread in a given family is represented by its unique thread identifier
(TID). Each family that exists in the system is represented by its unique family
identifier (FID).

Thread execution can be synchronized both between sibling threads and between
the parent and children threads. The synchronization is implemented through
register reads in the self-synchronizing register file. In most situations a parent
thread will get synced on family completion by reading the register that contains
the family return value – the register marked as pending on family creation will get
updated on family completion.

In the following simple case a family of threads is equivalent to one unrolled
loop, where each thread computes one loop iteration.

M. Daněk et al., UTLEON3: Exploring Fine-Grain Multi-Threading in FPGAs,
DOI 10.1007/978-1-4614-2410-9 3, © Springer Science+Business Media, LLC 2013
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$index=$start
do {

... thread_body ...
$index = $index + $step;

} while ($index < $limit);

Default values start=0, limit=0, step=1 implement one pass through the loop, i.e.
they will result in the creation of just one thread. An infinite loop can be created by
setting step=0. The loop index need not reach exactly the limit value to terminate
the loop. The loop terminates when index >= limit (similar to C).

It is also worth mentioning here that the loop control instructions (decrements,
branching) are not used in the microthreaded code as these are executed in the
hardware thread scheduler. We will return to this later.

3.2 UTLEON3 Program Status Register

Each SPARC CPU type is identified by two fields of the PSR – identification of the
implementation (4bits) and implementation version (4bits). UTLEON3 is identified
by the implementation version 0xAE (original LEON3 value is 0× 3).

1 cons tant VENDOR APPLECORE : am ba vendor t ype := 16#AE# ;

Two new devices are included in the Gaisler Research GRLIB tools: UTLEON3
with device type 0x1, and UTLEON3DSU with device type 0× 2.:

1 cons tant APPLECORE UTLEON3 : a m b a d e v i c e t y p e := 16#001#;
cons tant APPLECORE UTLEON3DSU : a m b a d e v i c e t y p e := 16#002#;

The microthreaded mode is indicated by bit 19 in the PSR (a newly-defined
Microthreaded Mode bit).

3.3 Switching from the Legacy Mode to the Microthreaded
Mode

The processor switches from the legacy to the microthreaded mode on execution
of the launch instruction (see Fig. 4.2). An address of the first instruction of the
microthreaded code is provided as its argument. The launch instruction is the last



3.5 New UTLEON3 Instructions 17

instruction that is processed in the legacy mode; the subsequent legacy instruction is
annuled; it will be re-fetched when the processor switches back to the legacy mode.
The instruction that will be executed instead is provided by the thread scheduler.

3.4 Switching from the Microthreaded Mode
to the Legacy Mode

The processor switches back to the legacy mode when Thread 0 decodes an
instruction with the END modifier (see Fig. 4.2).

3.5 New UTLEON3 Instructions

An overview of new instructions together with the relevant part of the opcode is
shown in Table 3.1.

NOTE: Instructions marked with an asterisk (*) have not been implemented in
UTLEON3 yet.

Table 3.1 Summary of the
new UTLEON3 instructions
for microthreaded execution

Instruction R/W op uT

launch W b0001
allocate R b0001
setstart W b0010
setlimit W b0011
setstep W b0100
setblock W b0101
setthread W b0110
setregg* W b1000
setregs* W b1001
create R b0010
getfid R b0100
gettid R b0011
break* W b1010
kill* W b1011
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3.5.1 Launch

Switch UTLEON3 from the legacy to microthreaded mode.

UTLEON3 syntax:

launch %reg_rs1

It is defined as a special case of the instruction

WRASR %reg_rs1, %reg_rs2, %ASR20

with bit i set to ‘0’ and a part of the instruction opcode replaced with a new field
op uT that identifies the instruction launch; it is equal to b0001.

• %reg rs1 – address of the microthreaded code starting address.

Instruction format:

Description:

The extended LEON3 processor can execute both the legacy and the microthreaded
code. The legacy code is executed without any changes compared to execution
on the standard LEON3 processor. The code execution always starts in the legacy
mode, and after an initial set up the processor is switched to the microthreaded mode
with the launch instruction. The instruction passes the starting address address of
the microthreaded code to the thread scheduler. When the microthreaded execution
finishes, the processor is switched back to the legacy mode. This behaviour is very
similar to a subprogram call.

Semantics:

1. Switch the UTLEON3 mode from the legacy mode to the microthreaded mode.
2. Wait until the legacy instructions in the integer pipeline finish.
3. Send the microthreaded code starting address to the scheduler.
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Complexity:

O(1)

Affected data structures:

• Family table.
• Thread table.
• Thread scheduler.
• Processor pipeline.

Integration in IU3:

• DE – switch the IU3 into the microthreaded mode, invalidate the subsequent
instruction.

• RA – read the microthreaded code start address from the register.
• EX – write the microthreaded code start address to the thread scheduler.

Exceptions:

None.
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3.5.2 Allocate

Allocate entries in the family table.

UTLEON3 syntax:

allocate %reg_rd

The instruction is defined as a special case of the instruction

RDASR %ASR20, %reg_rd

with bit i set to ‘0’, and a part of the instruction opcode replaced with a new field
op uT that identifies the instruction allocate; it is equal to b0001.

• %reg rd – index of the allocated family (FID)

Instruction format:

Description:

The instruction returns in a register a pointer to a free entry in the family table
and marks this entry as allocated. If no entry is free, the instruction generates an
exception.

Semantics:

• If there is a free entry in the family table:

– Allocate an entry (set the entry status to ALLOCATED, also called as FID
valid).

– Set the output register to the FID value.

• If there is no free entry in the family table:

– Generate an exception.

Complexity:

O(1)
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Affected data structures:

• Family table
• Destination register

Integration in IU3:

• RA – read empty FID from the family table.
• WB – write the FID to a register.

Exceptions:

None
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3.5.3 SetStart

Set the initial index value.

UTLEON3 syntax:

setstart %reg_rs1, %reg_rs2
setstart %reg_rs1, imm9

The instruction is defined as a special case of the instruction

WRASR %reg_rs1, %reg_rs2, %ASR20

with bit i set to:

• ‘0’ – the second operand is a register
• ‘1’ – the second operand is a 9b unsigned immediate value

and a part of the instruction opcode replaced with a new field op uT that identifies
the instruction setstart; it is equal to b0010.

• %reg rs1 – the FID of the previously allocated family
• %reg rs2 or imm9 – the value of the family initial index

Instruction format:

Description:

The instruction sets a parameter required to create a family of threads using the
create instruction. It sets the initial index value for a family. A default value is 0.

Semantics:

• Write a value to the start field of the specified family table entry.
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Complexity:

O(1)

Affected data structures:

• Family table – one table entry.

Integration in IU3:

• RA – read an FID value from a register.
• EX – write a value to the family table.

Exceptions:

The instruction generates an exception if the FID specifies an unallocated family
table entry.
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3.5.4 SetLimit

Set the final index value.

UTLEON3 syntax:

setlimit %reg_rs1, %reg_rs2
setlimit %reg_rs1, imm9

is defined as a special case of the instruction

wrasr %reg_rs1, %reg_rs2, %reg_rd

with bit i set to :

• ‘0’ – the second operand is a register
• ‘1’ – the second operand is a 9-bit unsigned immediate value

and a part of the instruction opcode replaced with a new field op uT that identifies
the instruction setlimit; it is equal to b0011.

• %reg rs1 – the FID of the previously allocated family
• %reg rs2 or imm9 – the value of the family limiting index.

Instruction format:

Description:

The instruction sets a parameter required to create a family of threads using the
create instruction. It sets the final index value for a family. The default value is 0.

Semantics:

• Write a value to the limit field of a specified family table entry.

Complexity:

O(1)
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Affected data structures:

• Family table – one table entry.

Integration in IU3:

• RA – read an FID value from a register.
• EX – write a value to the family table.

Exceptions:

The instruction generates an exception if the FID specifies an unallocated family
table entry.
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3.5.5 SetStep

Set the index increment.

UTLEON3 syntax:

setstep %reg_rs1, %reg_rs2
setstep %reg_rs1, imm9

is defined as a special case of the instruction

WRASR %reg_rs1, %reg_rs2, %ASR20

with bit i set to :

• ‘0’ – the second operand is a register
• ‘1’ – the second operand is a 9-bit unsigned immediate value

and a part of the instruction opcode replaced with a new field op uT that identifies
the instruction setstep; it is equal to b0100.

• %reg rs1 – the FID of the previously allocated family
• %reg rs2 or imm9 – the value of the family index increment

Instruction format:

Description:

The instruction sets a parameter required to create a family of threads using the
create instruction. It sets the index increment for a family. The default value is 1.

Semantics:

• Write a value to the limit field of a specified family table entry.
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Complexity:

O(1)

Affected data structures:

• Family table – one table entry.

Integration in IU3:

• RA – read an FID value from a register.
• EX – write a value to the family table.

Exceptions:

The instruction generates an exception if the FID specifies an unallocated family
table entry.
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3.5.6 SetBlock

Set the limit of the number of threads in the thread table that belong to one family
of threads.

UTLEON3 syntax:

setblock %reg_rs1, %reg_rs2
setblock %reg_rs1, imm9

is defined as a special case of the instruction

WRASR %reg_rs1, %reg_rs2, %ASR20

with bit i set to:

• ‘0’ – the second operand is a register
• ‘1’ – the second operand is a 9-bit unsigned immediate value

and a part of the instruction opcode replaced with a new field op uT that identifies
the instruction setblock; it is equal to b0101.

• %reg rs1 – the FID of the previously allocated family
• %reg rs2 or imm9 – the value of the family block size

Instruction format:

Description:

The instruction sets a parameter required to create a family of threads using the
create instruction. It sets the maximal number of threads from one family that
can be created at one time. The default value is 0; in this case the actual value is
calculated as the minimum of the size of the thread table (the number of entries)
and the number of threads in the family.
Semantics:

• Write a value to the block field of a specified family table entry.
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Complexity:

O(1)

Affected data structures:

• Family table – one table entry.

Integration in IU3:

• RA – read an FID value from a register.
• EX – write a value to the family table.

Exceptions:

The instruction generates an exception if the FID specifies an unallocated family
table entry.
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3.5.7 SetThread

UTLEON3 syntax:

setthread %reg_rs1, %reg_rs2
setthread %reg_rs1, imm9

is defined as a special case of the instruction

WRASR %reg_rs1, %reg_rs2, %ASR20

with bit i set to:

• ‘0’ – the second operand is a register
• ‘1’ – the second operand is a 9-bit unsigned immediate value

and a part of the instruction opcode replaced with a new field op uT that identifies
the instruction setthread; it is equal to b0110.

• %reg rs1 – the FID of the previously allocated family.
• %reg rs2 or imm9 – the value of the family thread function.

Instruction format:

Description:

The instruction sets a pointer to the family thread function.

Semantics:

• If the family with the specified FID is allocated (and not created):

– Write the value to the thread address field of the specified family table entry.

• If the FID is invalid or the family has already been created:

– Generate an exception TT UTERR.
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Complexity:

O(1)

Affected data structures:

• Family table – one table entry.

Integration in IU3:

• RA – read an FID value from a register.
• EX – write a value to the family table.

Exceptions:

The instruction generates an exception if the FID specifies an unallocated family
table entry.
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3.5.8 SetRegs*

Set the base addresses of the register windows for children threads (i.e. pointers to
the register file).

UTLEON3 syntax:

setregg %reg_rs1, %reg_rs2
setregg %reg_rs1, imm9
setregs %reg_rs1, %reg_rs2
setregs %reg_rs1, imm9

are defined as a special case of the instruction

WRASR %reg_rs1, %reg_rs2, %ASR20

with bit i set to:

• ‘0’ – the second operand is a register
• ‘1’ – the second operand is a 9-bit unsigned immediate value

and a part of the instruction opcode replaced with a new field op uT. For the
instruction setregg the field is equal to b1000. For the instruction setregs
it is equal to b1001.

• %reg rs1 – the input register with the FID of the previously allocated family.
• %reg rs2 or imm9 – the input register with a new index to register file for

global and shared registers.

Instruction format:

Description:

The instruction sets the base addresses of register windows global and shared
registers (i.e. pointers to the register file) for the children threads. The instruction
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is actually implemented as two separate instructions setregg and setregs for
global and local registers, respectively.

Semantics:

• Write a value to the regs and regs2 field of the specified family table entry.

Complexity:

O(1)

Affected data structures:

• Family table – one table entry.

Integration in IU3:

• RA – read an FID value from a register.
• EX – write a value to the family table.

Exceptions:

The instruction generates an exception if the FID specifies an unallocated family
table entry.

Note:

Not implemented.
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3.5.9 Create

Initiate creation of a family of threads.

UTLEON3 syntax:

create %reg_rs2, %reg_rd

is defined as a special case of the instruction

RDASR %ASR20, %reg_rd

with bit i set to ‘0’ and a part of the instruction opcode replaced with a new field
op uT that identifies the instruction create; it is equal to b0010.

• %reg rs2 – the FID.
• %reg rd – the family termination code.

Instruction format:

Description:

The instruction issues a request for creation of a specified family of threads.
The family was allocated with the allocate instruction and set with the
set... instructions. The source register %reg rs2 must contain a valid FID.
The destination register is set to PENDING at the time the instruction is executed.
When the family finishes, the destination register is set to FULL by the hardware
thread scheduler, and it contains the family termination code.

Semantics:

After the create instruction is issued, the hardware thread scheduler will:

• Determine the number of family threads from the values start, limit, step:

– step > 0 . . . increment index, #threads = �((limit − start)/step)�
• Determine the maximal number of threads executed at once (the size of the block

of threads):

– block = 0 . . . block = min(#threads,#tids)
– block �= 0 . . . the size of the block is the value of block



3.5 New UTLEON3 Instructions 35

• Determine the number of registers assigned to one thread from the first word of
the thread code (the assembler .register pseudo-instruction stored at address
thread starting address− 0x4)

• Allocate the required number of registers from the pool of free register blocks.
• Allocate thread IDs in the thread table (at most #block threads) sequentially and

for each thread perform the following steps:

– Calculate the thread index.
– Determine the TID.
– Initialize the thread registers.
– Initialize the thread state and link the thread table entries and family table

entries for all created threads.

A thread can read its index value in its first local register (%l0).
A running thread is suspended when it accesses a PENDING register, e.g. a register
to be written by other threads, or a destination register of a data load operation
(cache miss). This mechanism is also used to synchronize the execution of a parent
thread and its children threads.

Complexity:

O(1)

Affected data structures:

• Family table – one table entry, data update.
• Thread scheduler.
• Register file – mark a destination register PENDING.

Integration in IU3:

• RA – read an FID value from a register.
• EX – write a value to the family table.
• WB – mark a register with the FID value PENDING.

Exceptions:

An exception can be generated when the specified FID is invalid.
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3.5.10 GetFID

Read the physical FID – the unique hardware family slot index of the current thread.

UTLEON3 syntax:

getfid %reg_rd

is defined as a special case of the instruction

RDASR %ASR20, %reg_rd

with bit i set to ‘0’, and a part of the instruction opcode replaced with a new field
op uT that identifies the instruction getfid; it is equal to b0100.

• %reg rd – the destination register that will be written with the FID of the current
thread.

Instruction format:

Description:

The instruction returns a unique index of the current thread’s family in the hardware
family table, i.e. the physical FID (Family Index).

Each hardware family of threads has a unique physical FID in the range 0 to
2**FT A WIDTH-2. The FID returned by this instruction in a child thread is the
same as the original allocated FID in the parent thread. Physical FIDs can be used
for family-global memory management.

Semantics:

• Write the destination register %reg rd with the index of the current thread’s
family in the hardware family table.

Complexity:

O(1)
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Affected data structures:

• Destination register

Integration in IU3:

• EX – read the FID from the Thread Table.
• WB – write the FID to a register.

Exceptions:

None.
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3.5.11 GetTID

Read the physical TID – the unique hardware thread slot index of the current thread.

UTLEON3 syntax:

gettid %reg_rd

is defined as a special case of the instruction

RDASR %ASR20, %reg_rd

with bit i set to ‘0’, and a part of the instruction opcode replaced with a new field
op uT that identifies the instruction gettid; it is equal to b0011.

• %reg rd – the destination register that will be written with the TID of the current
thread.

Instruction format:

Description:

The instruction returns a unique index of the current thread in the hardware thread
table, i.e. the physical TID (Thread Index). Note that the physical TID is different
from the logical thread index that is passed to threads in the register %tl0.

Each thread has a unique physical TID in the range 0 to 2**TT A WIDTH-2.
Physical TIDs can be used for thread-local stack management. When a thread is
created it often needs to obtain a private memory range inside which the thread’s
software stack, heap and other private data can be stored. This memory area must be
exclusive to this thread. One way to determine the location of the private memory
area inside any thread is by using its physical TID as an index into a global table
of pointers. Alternatively, the target location can be computed in an arithmetic
expression from the physical TID.

When a thread terminates and later another unrelated thread is created with the
same physical TID, the new thread assumes control of the same memory area.
Typically the stack segment of the private memory area is reset (discarded), but the
heap segment is kept as there still may be live data objects left over by the previous
thread. Depending on the runtime system a local garbage collector may be required
for managing the heap segment.



3.5 New UTLEON3 Instructions 39

Semantics:

• Write the destination register %reg rd with the index of the current thread in
the hardware thread table.

Complexity:

O(1)

Affected data structures:

• Destination register

Integration in IU3:

• EX – read TID from the Thread Table.
• WB – write the TID to a register.

Exceptions:

None.
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3.5.12 Break*

Terminate a family of threads from inside a children thread.

UTLEON3 syntax:

break %reg_rs2
break imm9

is defined as a special case of the instruction

WRASR %reg_rs1, %reg_rs2, %ASR20

with bit i set to :

• ‘0’ – the operand is a register
• ‘1’ – the operand is a 9-bit unsigned immediate value

and a part of the instruction opcode replaced with a new field op uT that identifies
the instruction break; it is equal to b1010.

• %reg rs2 or imm9 – the return family termination code
• 0 means FID = 0 + the type of the stored value (BREAK)

Instruction format:

Description:

This instruction terminates a family of threads from within the family based on a
dynamic condition. An example use would be a termination of an infinite loop (step
set to 0). Any thread in a family can terminate the execution of the whole family
(the whole execution subtree) it belongs to.

Semantics:

• Terminate creation of new threads in the family.
• Terminate running threads in this family.
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• Force cancellation of all synchronization events for the threads in this family
(teminate suspended threads that accessed registers marked PENDING).

• Write the return value of this family of threads, to be read by the parent thread
(the value specified in the break instruction).

• Write the termination code BREAK to the register specified during the creation
of this family (read by the parent thread).

Complexity:

O(n)

Affected data structures:

• Family table – one table entry.
• Thread table.
• Thread scheduler.
• RegFile – write the termination code.
• Processor pipeline.

Integration in IU3:

• RA – read the family termination code.
• EX – execute the instruction (multi-cycle execution ⇒ halt the pipeline).

Exceptions:

None

Note:

Not implemented.
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3.5.13 Kill*

Terminate a family of threads from its parent thread.

UTLEON3 syntax:

kill %reg_rs1

is defined as a special case of the instruction

WRASR %reg_rs1, %reg_rs2, %ASR20

with bit i set to ‘0’ and a part of the instruction opcode replaced with a new field
op uT that identifies the instruction kill; it is equal to b1011.

• %reg rs1 – an FID of a family to be killed

Instruction format:

Description:

Any thread (from a different family of threads) that knows a correct FID value can
force termination (kill) of a family of threads identified by the FID value. The FID
value is passed through a register.

Semantics:

• Terminate creation of new threads in the family FID.
• Force termination of running threads in this family.
• Force cancellation of all synchronization events for the threads in this family

(terminate suspended threads that accessed registers marked PENDING).
• Kill all families of threads created by threads in this family (execute kill).
• Write the termination code KILLED to the register specified during the creation

of this family (read by the parent thread).

Complexity:

O(n)
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Affected data structures:

• Family table – one table entry.
• Thread table.
• Thread scheduler.
• Register file – write the termination code.
• Processor pipeline.

Integration in IU3:

• RA – read a family identifier.
• EX – execute the instruction (multi-cycle execution ⇒ halt the pipeline).

Exceptions:

An exception can be generated when an invalid FID (e.g. a nonexistent family of
threads) is specified.

Note:

Not implemented.



Chapter 4
The Basic UTLEON3 Architecture

This section summarizes the basic extensions to the LEON3 processor that support
the microthreaded model of program execution. Please note that execution of
families of threads in hardware accelerators and microthreaded interrupt handling
are covered in separate chapters. The structure of the basic UTLEON3 processor is
shown in Fig. 4.1.

The major features of the basic UTLEON3 processor are:

• Legacy mode for backward binary compatibility with LEON3.
• Microthreaded mode for hardware microthreading.
• Automated context switch management through queues of ready and waiting

processes, together with the program counter information stored in the register
file.

• General-purpose registers used to store thread identifiers for threads that are
waiting for register updates from the memory.

• Context switch in zero clock cycles in most cases (three clock cycles in the worst
case).

• Register allocation in windows on a per-thread basis.
• Memory access in 16-word burst transactions.
• Non-blocking memory access on cache miss.
• Autonomous register update on D-Cache line fetch.

4.1 Program Execution

The UTLEON3 processor supports execution of both legacy and microthreaded
binaries. The execution of the legacy code generates the same results on UT-
LEON3 as on LEON3. The UTLEON3 program execution starts in the legacy
mode (see Fig. 4.2). After initialization the software switches UTLEON3 to the
microthreaded mode using the launch instruction. The starting address of the

M. Daněk et al., UTLEON3: Exploring Fine-Grain Multi-Threading in FPGAs,
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Fig. 4.1 Block diagram of the basic UTLEON3 processor

microthreaded code is passed to the thread scheduler. When the microthreaded exe-
cution finishes, i.e. when there are no threads to be executed, the processor switches
back to the legacy mode. This behavour is very similar to a subprogram call.

A typical UTLEON3 execution consists of these steps:

• Reset – the processor is initialized in the legacy mode.
• launch – the processor is switched to the microthreaded mode.
• Execution of the main (parent) thread in Family 0.
• allocate – allocation of a space in the family table (FT).
• set... – setting the parameters necessary to create a family of threads (FT) in

the family table.
• create – creation and execution of a family of threads (FT).

– Execution of the parent thread until it reads a register marked pending or
waiting.

– Execution of children threads – each thread can terminate either when it
finishes its computation, or when the break or kill instruction is executed.

• Continued execution of the parent thread.
• Processor switches back to the legacy mode when all threads have finished.

The basic unit of microthreaded computation is a family of threads that groups
threads that form one kernel. Each thread can access a set of family global
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Fig. 4.2 Program flow

registers %tgi, thread local registers %tli, thread dependent registers %tdi and
thread shared registers %tsi. The global registers are shared among all threads in
a family. The local registers are unique for each thread; they serve as a thread local
storage. Dependent and shared registers allow passing data from one thread to its
direct sibling thread in one direction only – the shared registers of the thread i and
dependent registers of the thread i+1 are mapped to the same addresses.

All possible bubbles inserted in the processor pipeline due to unsatisfied data
dependencies are eliminated by a thread switch. The switch can be either implicit,
meaning that it occurs in the runtime when a source register does not contain valid
data or on an I-Cache line miss, or it can be requested explicitly by the swch
modifier. A thread switch causes another thread to enter the processor pipeline,
while the current thread returns in the pipeline later when the corresponding data
are available.
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4.2 Processor Functional Model

Figure 4.3 shows a simplified functional model of the UTLEON3 processor. Several
things can be noted. Instructions originate either in the I-Cache or in the scheduler.
The I-Cache supplies instructions either to the fetch stage or to the scheduler to
implement a zero clock cycle (CC) switch on an I-Cache miss. The program counter
is calculated either in the processing pipeline, or a new value is supplied by the
scheduler on a context switch. On a D-Cache hit the pipeline operates as the normal
SPARC pipeline; on a D-Cache miss (LD) the pipeline marks the destination register
as pending and continues processing; the register update happens autonomously in
the background; on a D-Cache miss (ST) the value to be written is put in a store
queue (not shown).

An overview of the pipeline operation on an instruction or data miss is shown in
Figs. 4.4 (legacy mode) and 4.5 (microthreaded mode). The numbers in the boxes
between the pipeline stages denote the size of the bubble incurred in the pipeline.
In the legacy mode the pipeline stalls on instruction or data misses, while in the
microthreaded mode a context switch brings in a new thread that has data ready for
execution.

Fig. 4.3 A functional model of the UTLEON3 processor

Fig. 4.4 Latencies in the legacy LEON3 processor pipeline
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Fig. 4.5 Latencies in the microthreaded UTLEON3 processor pipeline

4.3 Context Switch

The processor implements blocked (coarse) multithreading, meaning a thread is
switched out of the pipeline only when an unsatisfied data dependence (i.e. a
dependence on a long-latency operation) has been encountered. This improves the
single-thread performance, but it requires the pipeline to have fully bypassed stages.
A thread switch can be triggered in three pipeline stages:

• FE SWITCH – occurs on an I-Cache miss, the scheduler supplies a new
instruction of another thread.

• DE SWITCH – occurs on decoding the swch instruction modifier, the scheduler
supplies a new instruction of another thread.

• EX SWITCH – occurs on reading a pending register that does not contain valid
data, the pipeline is flushed and up to 3CCs are lost.

When a thread switch occurs, the affected thread’s instructions in the previous
pipeline stages must be flushed. For example, when a thread in the Execute Stage of
the pipeline reads a register in the PENDING state, it must be switched out as the
data in the register is not valid, and thus the two previous pipeline stages (Decode,
Register Access) must be cleared as well – but only if they contain instructions from
the same thread as the processor allows for instructions from different threads to be
present in distinct pipeline stages at the same time.

To optimize this the architecture allows the programmer to mark instructions
where a context switch will occur with the swch modifier (Fig. 4.6); this will cause
the thread to voluntarily switch itself out of the pipeline early in the Fetch Stage.
This is convenient in cases where the compiler or programmer anticipates the in-
struction depends on a result produced by a long-latency instruction. The voluntary
switch causes zero overhead in most cases as there is no pipeline bubble inserted.
However, the dependent instruction must be annuled and later re-executed, so in a
typical case the synchronization cost is one clock cycle, while without the modifier
it is three clock cycles.
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Fig. 4.6 Switch modifier in the processor pipeline

Fig. 4.7 Register states
(FULL, PENDING,
WAITING) and the main
transitions between them.
Note: LL long-latency
operation, such as a memory
load with cache miss

4.4 Integer Register File

Fine-grained synchronization and communication between threads in one family,
and between the processor pipeline and long-latency units (cache, FPU) is accom-
plished by a self-synchronizing register file (i-structures [1], Fig. 4.7). Each 32b
register in the file is extended with a state information. When a register contains
valid data, it is in the FULL state. If data are to be delivered into the register
asynchronously (from the cache, FPU etc.), but they have not been required by the
pipeline yet, the register is in the PENDING state. Finally, if the data were required
by a thread, but were not available at the time, the register is in the WAITING state;
only on the PENDING ⇒ WAITING transition the thread has to be switched out
and suspended.
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Table 4.1 Register structure State 2b enc 32b value

PENDING 01 N.U.
WAITING 10 TID
FULL 11 DATA

4.4.1 Data Word

Each data word stored in the register file consists of 2 state bits and 32 data bits.
A register can be in one of the following states:

• PENDING – invalid data. A register is waiting to be updated asynchronously, i.e.
independent of the IU3 operation.

• WAITING – invalid data. A register is waiting to be updated; furthermore, a thread
has tried to read this register when it was PENDING. The thread identifier (TID)
of the thread is stored in the data part.

• FULL – data valid.

Table 4.1 shows the coding of the state bits and content of the data part of the
register for the register states mentioned above.

4.4.2 Reading and Writing

When reading a register, the integer register file simply reads both the data and state
bits. Writing a register is more complicated, since it involves both a read and write
operations to set the register state correctly.

When writing a register, the current register state and the register data of the target
register have to be read before the register is written. The current and new register
states are compared. If the current state is WAITING and the new state is FULL, a
thread wake-up request is generated. This request includes thread identifier (TID)
of the thread that is waiting for the register data.

When the integer pipeline issues a register write, the address of the register is
passed through a dedicated R port one clock cycle before the actual write operation.
The UTLEON3 integer pipeline write operations are fully pipelined and non-
blocking. Write requests that are issued by the units running in parallel with the
integer pipeline (register update controller, scheduler, pipelined integer multiplier,
trap and interrupt controller, HW families of threads) are served asynchronously
through separate R and W ports (one each). As in the case of the integer pipeline, the
address of the register is issued on the R port one clock cycle before the actual write
operation in order to generate thread wake-up events for registers marked WAITING.
These write requests are also fully pipelined, but they can be blocked as the port is
arbitrated between more components. In this case the blocked component has to
wait until the register file finishes the write request issued by a component with a
higher priority to avoid data loss.
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Table 4.2 Table of possible register state transitions (N.U. = not used, N.C. = not changed)

Instruction %reg A, %reg B, %reg C (add %rs1, %rs2, %rd)
Current register states New register state

%reg A %reg B %reg C %reg A %reg B %reg C
PENDING PENDING N.U. WAITING PENDING N.C.

FULL FULL
FULL PENDING N.U. FULL WAITING N.C.

FULL FULL PENDING
FULL

Instruction %reg A, imm, %reg C (add %rs1, 0x10, %rd)
Current register states New register state
PENDING imm N.U. WAITING N.C.
FULL FULL PENDING

FULL

4.4.3 State Transitions

Table 4.2 defines valid combinations of register state transitions initiated by the
integer pipeline operations.

All the registers are initialized as FULL during system reset. Thread global
registers are allowed to remain in the FULL state only. Any integer pipeline
operation that would make them PENDING is not permitted, and indicates a
program error.

Thread shared registers are set to the PENDING state by the hardware thread
scheduler only when a thread is being created to enable thread-synchronization
based on reading and writing shared and dependent registers. As in the case of thread
global registers, any integer pipeline operation that would make them PENDING is
not permitted, and indicates a program error.

Thread local registers are set to PENDING individually when long-latency
operations, such as a memory load, are dispatched in the processor pipeline. If a
thread local register is in the PENDING state, it can be updated only through the
asynchronous write port, then its state is set back to FULL. A write operation to a
PENDING thread local register initiated in the integer pipeline indicates a program
error.

When a thread reads a register that is PENDING, the read event changes the
register state to WAITING, stores the thread identifier (TID) in the data part of the
register, and suspends the thread. Each register can hold only one TID, i.e. only
one thread can be waiting for a given register. Note that individual writes of the
PENDING and WAITING states are triggered only in the integer pipeline as a result
of operations that read the corresponding registers. The asynchronous write port can
set register states only to the FULL state through individual register writes.

The PENDING to WAITING transition is determined in the register access stage
of the processor pipeline, but the new state is written in the write back stage. It may
happen that at the same time the same register is updated through the asynchronous



4.4 Integer Register File 53

Fig. 4.8 Integer register file schema

port, with its state changed to FULL. In this case the request from the processor
pipeline must not modify the register, but it must generate a wake-up request with
the TID taken from the processor pipeline instead of the register.

Accessing a register that is in the FULL state will not result in changing its state.

4.4.4 Register File Ports

The register file is a fully synchronous module that has six ports (see Fig. 4.8):

• Two read ports used by the integer pipeline to read the source registers (including
their states).

• One read port used by the integer pipeline to read the destination register to get
its state and an optional TID for thread wake-up.

• One write port used by the integer pipeline to write the destination register (both
the state and data or TID).

• One asynchronous read port for delayed updates and/or thread wake-up.
• One asynchronous write port for delayed updates.

The asynchronous read and write ports (active only in the microthreaded mode)
are arbitrated between components that implement namely asynchronous register
file update and thread management. These components are listed below together
with events that require them to access the register file (starting with the highest
priority):

Trap and interrupt controller – when an interrupt request occurs or an interrupt
handler finishes.

Pipelined integer multiplier – when the result of a multiplication is ready.
D-Cache – when updating the integer register file with values

from the data cache.
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Table 4.3 The number of
register file ports

Read Write

Integer pipeline access 3 1
Asynchronous access 1 1
Total 4 2

Scheduler – when a thread is created.
HW Families – when a HW family is created or finishes.

When more components attempt to access the register file at once, the component
with the lower priority has to wait. As the register update controller and pipelined
integer multiplier access the register file often, to increase their throughput each uses
a FIFO to store pending write requests.

All operations get dispatched at the execute stage. A single instruction in
the integer pipeline reads up to two source registers. Integer instructions usually
execute in one clock cycle, bypass the memory and get written back to the register
file synchronous with the operation of the integer pipeline. These operations are
scheduled by the compiler.

Memory loads complete synchronously on an L1 cache hit. If a memory access
generates a data cache hit, data is read from the data cache and written to the integer
register file through the integer pipeline write port. If a memory access generates a
miss, the corresponding register is marked as PENDING, and a D-Cache line fetch is
requested from the memory subsystem. When the data return from the higher level
memory, they are written to the integer register file through the asynchronous port.

When a register is being written, the current and new register states must be
compared. This means the integer register file needs to perform one additional read
operation prior to each write operation. Two write ports imply two state read ports
used internally in the integer register file. Table 4.3 sums up the integer register file
ports needed.

4.4.5 Register Allocation

The UTLEON3 processor allows each thread to individually specify the number of
required registers from 1 up to the architectural limit of 32 registers per thread given
by the SPARCv8 instruction encoding (Fig. 4.9). This is done through the .registers
pseudo-instruction given at the beginning of each thread routine that informs the
scheduler how many registers it must allocate to each thread from the family.

During thread creation the scheduler assigns registers to threads on a per-thread
basis. The allocation is based on assigning a free register window to each thread.
The Register Allocation Unit (RAU) is a module that is responsible for allocating
and deallocating regions of registers in the integer register file. The RAU structure
is shown in Fig. 4.10.
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Fig. 4.9 Partitioning of the register file among dynamically executed families of threads

Fig. 4.10 Register Allocation Unit (RAU)

To increase the efficiency of the register file usage the RAU can allocate registers
in window sizes 32, 16, 8 and 4 registers. To split a 32-register block to smaller sub-
blocks the RAU uses a table of block masks; the table is addressed by the register
block base address.

On an allocate request the RAU returns the base address of a free region in the
integer register file so that its size is the smallest possible to fit in the number
of requested registers. This mechanism allows to minimize the number of unused
yet allocated registers in the region. When a request consumes a full block of 32
registers, the free block component is used directly.
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Requests that can be satisfied with register sub-blocks of sizes 16, 8 and 4 are
executed in more steps. First, the RAU checks whether the free sub-block component
contains a free sub-block of the appropriate size. If so, the sub-block will be used;
at the same time if this is the last sub-block in a 32-register block assigned to the
free sub-block component, the block is marked as used. If such a sub-block is not
available, a new block from the free block component is assigned to the free sub-
block component, it will be partitioned to the required sub-block size, and its first
sub-block will be used. On allocation the corresponding bits in the used mask are set.

On register deallocation the base address of the register region to be deallocated
is required as well as the size of the block to be released. The corresponding bits
in the used mask are reset. When all the bits in the used mask of a sub-block are
cleared, the block can be released back to the queue of free blocks in the free block
component.

4.5 Memory Interface

The memory interface in UTLEON3 is derived from LEON3. Memory is accessed
through the cache subsystem that consists of an instruction cache and a data cache.
Both the I-Cache and D-Cache share access to the AMBA AHB bus; bus arbitration
is done in acache.

Memory requests are generated on cache line miss, on cache line eviction and on
cache flush. Each request is stored in a FIFO and served on a one-at-a-time basis.
UTLEON3 features a write-back data cache with independent store queues for each
pending memory request.

When the cache subsystem reaches a situation when all cache lines that can
serve a memory request are busy serving previous requests, it suspends the integer
pipeline operation until a cache line becomes available.

4.5.1 Data Cache

Memory accesses complete synchronously on an L1 data cache hit. If a memory
access generates a data cache hit, data is read from the data cache and written to
the integer register file in a subsequent clock cycle. If a memory access generates
a miss, the corresponding register is marked PENDING, and a cache line fetch is
requested from the memory subsystem. When the cache line data return from the
higher level memory, they are written later via a dedicated write port to the integer
register file. The delayed writes are implemented in the register update controller
(RUC).

Possible data cache line fetch scenarios are shown in Fig. 4.11.
The D-Cache line has to be extended to contain information used for delayed

register updates (see Fig. 4.12). The two new fields are marked in grey; these contain
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Fig. 4.12 D-Cache line structure in UTLEON3

the head and tail pointers (physical register numbers) to the linked list structure
maintained in the register update controller, and are used to build the update linked
lists and trigger register updates.

4.5.2 Register Update Controller

The register update controler (RUC) consists of two finite state machines – one
manages a linked list that is used to perform register writes on a data cache line
fetch completion, and the other manages a queue of register update requests from
the D-Cache on cache line fetch completion. Figure 4.13 shows its block diagram.

One line of the linked list for register writes consists of two parts – a register
ID of the next request (tail) in the first part with a cache line ID, identified by its
(set, offset, line index), in the second part. The linked list is implemented using
a table.
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Fig. 4.13 Register update controller (RUC) – block diagram and use scenario

The RUC performs three operations – init, append and update. The meaning of
the RUC operations is as follows:

init – creates the head of the list (operation 2b in Fig. 4.11). The tail part of the
row addressed by the register ID is set to the current register ID. The address of
the required data word within the data cache (set, offset, line index) is stored in
the cache line ID part.

append – appends a new element to the linked list (operation 2b in Fig. 4.11).
The tail part of the row addressed by the register ID is not changed. The tail
part of the row addressed by the previous register ID is set to the current register
ID. The address of the required data value within the data cache (set, offset, line
index) is stored in the cache line ID part.

update – when a data cache line fetch finishes, delayed writes to integer registers
that are waiting for the cache line get initiated (operation 5b in Fig. 4.11).
The head and tail values are stored in the update request queue. The RUC update
FSM reads the linked list and generates corresponding data cache read requests
and integer register file writes.

4.5.3 Instruction Cache

The microthreaded architecture decouples instruction execution from memory
operations so that while one group of instructions is being requested or fetched from
the memory, another group of instructions (microthread) executes. The instruction
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Fig. 4.14 Instruction cache line fetch scenario – requests initiated in the fetch stage

cache serves requests from the integer pipeline and from the thread scheduler; this
means it arbitrates the access to the main memory between three sources: the integer
pipeline fetch stage, the integer pipeline execute stage, and the thread scheduler.

• The fetch stage access corresponds to the instruction fetch, i.e. to the common
CPU execution.

• The execute stage access is generated by the setthread instruction that is issued
prior to the create instruction; this instruction passes the .registers word from the
memory to the scheduler.

• The scheduler access is required so that the scheduler can check the availability
of cache lines required to start threads and mark waiting threads as ready for
execution.

The three possible instruction cache line fetch scenarios are shown in Figs.
4.14–4.16.

Microthreading requires that no I-Cache line be evicted if at least one thread
exists in the processor (active, waiting or suspended) whose program counter points
to an instruction within the I-Cache line; this is to maintain consistency as to which
event caused a thread to be suspended (unsatisfied data dependency) or waiting
(instruction cache miss), never both at once. Furthermore, on restarting a suspended
thread an instruction cache miss must not occur for the restarted instruction. This
requires the instruction cache line be extended with a field that contains the number
of threads that currently use a given I-Cache line (the grey field denoting the
reference counter in Fig. 4.17).
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4.6 Thread Management

4.6.1 Family Creation

The allocate instruction (see Fig. 4.18) gets the first item from a queue of indexes
(FIDs) of free family table entries. If the queue is empty, an exception is thrown.
The corresponding family table entry is initialized for a new family by default values
and updated with a family index (FID) and thread index (TID) of the parent thread.
The FID valid flag is set and the family created flag is cleared as well, which enables
the set. . . instructions to modify this family table entry.

The setstart, setlimit, setstep, setblock and setthread instructions write their
operands into the start, limit, step, block and thread/pc fields of the specified family
table entry respectively. The FID valid and created flags are checked to ensure
that parameters are updated only for family entries that have been allocated but not
used by the create instruction. The setthread instruction sets an address of the first
instruction of a family code and initiates loading of the corresponding cache-line.

The create instruction takes an allocated family entry, and it issues a request to
create the family. The created flag is set to avoid further writes to this family entry.
This step ends the creation process as far as the parent thread is concerned. All other
operations happen in hardware in the thread scheduler component, asynchronously
to the parent thread execution.

The sequence of operations performed by the thread scheduler in order to create
a family is as follows:

1. At the time the create instruction is being executed, the thread scheduler checks
whether the family’s first cache-line has been already loaded. The scheduler also
requires the .register word (see Fig. 1.1). The fetch of the cache-line that contains
.registers has already been initiated by the setthread instruction. If the cache-
line has been loaded, the family is put in the create queue immediately. If the
cache-line has not loaded yet, the family is put in this queue on completion of
the family’s first cache-line fetch. The reference count for this cache-line is not
increased since no thread from the family has been created yet.

2. If the create queue is not empty and threads of no other families are being created,
a family is picked from the head of the create queue.

3. The scheduler checks whether the family has been already initialized. If it has
been initialized, the processing continues with thread creation. If it has not been
initialized, the processing continues with family initialization.
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Fig. 4.18 Family creation

4. Parameters of the parent thread are loaded in order to calculate the address of the
parent global and shared registers for the family being created. These registers
are mapped to the local registers of the parent thread.

5. Family initialization is finished, the family-initialized flag is set and the process
continues with thread creation.

The family creation scenario for one CPU is shown in Fig. 4.19.

4.6.2 Thread Creation

The thread creation process can either allocate new thread table entries and create
new threads for a family, or reuse thread table entries that have been allocated to
threads of the same family that have already finished their execution and have been
cleaned up. The thread table entries are identified by their index (TID).
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When new thread table entries are allocated, thread creation is started by reading
the FID from the create queue. If the FID refers to the family that has not been
initialized yet, the family initialization phase is performed first. The thread creation
process is then performed until:

1. The number of thread table entries that are allocated for the family is equal to the
block size. This means that this family has reached its maximal allowable number
of co-existing threads; in this situation additional threads of the same family
can be created only through reusing the thread table entries already allocated by
previous threads from this family.

2. All entries in the thread table have been allocated. The FID is put back in the
create queue, and the creation of new threads is postponed until a thread table
entry is released.

3. A TID from the family occurs in the cleanup queue. Reuse of thread table entries
has a higher priority than allocating new thread table entries, thus the FID is put
back in the create queue, and the TID from the cleanup queue is processed.

4. All family threads have been created.

When reusing thread table entries, thread creation is started by reading the TID
from the cleanup queue. The TID can be reused only for threads from the same
family. When all threads from a family have been created, the thread table entry is
released to the pool of free thread table entries, and can be used by any family.

Note that the cleanup process has a higher priority, so that the next thread in the
index sequence will reuse the old thread table entry.
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Thread creation is performed by the hardware thread scheduler and consists of
these steps:

1. When using a new thread table entry (as opposed to reuse of an already allocated
thread table entry for a TID that has been cleaned up), allocate a new thread
table entry, evaluate offsets in the register file for the thread local and dependent
registers, and include the thread in the family member list.

2. Initialize values and states of the registers: the %tl0 register contains the thread
index, all shared registers are set to PENDING.

3. Request the thread first instruction from the instruction cache. This event
increases the reference counter in the corresponding cache-line.

4. Update the thread table entry; update the family table entry.
5. If the instruction requested in Step 3 has been provided in the meantime, the

thread is put in the active queue. Otherwise the thread is marked as waiting, and
will be put in the active queue later when the cache finishes the corresponding
cache-line fetch.

4.6.3 Instruction Fetch

Instructions that are to be issued to the UTLEON3 processor pipeline come from
two sources:

• The instruction cache provides instructions during a regular program run in the
same way as in the original LEON3 processor.

• The thread scheduler provides the first instruction that the thread should start
with after a thread switch.

The thread scheduler provides all the necessary data required to initiate thread
execution to the processor pipeline inputs. The data of the first active thread are
held at these inputs until a thread switch occurs. When a switch occurs, the data of
the next active thread are provided, and the thread enters the pipeline with zero clock
cycle latency. If there are no active threads available, the force-nop interface signal
is set, meaning that the fetch stage should issue NOP instructions to the processor
pipeline until a thread becomes active.

4.6.4 Thread Switch

A thread switch (context switch) occurs in the following situations:

• On an I-Cache miss – this event occurs in the fetch stage of the processor
pipeline when a cache miss is detected at the I-Cache interface. The current
thread becomes WAITING, and is expected to be woken up by I-Cache at the
time the corresponding cacheline load will have finished.
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Fig. 4.20 Thread states
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Fig. 4.21 Context switch scenario

• On an explicit thread switch request – this event occurs in the decode stage of the
processor pipeline when the SWCH instruction modifier is detected. The current
thread leaves the pipeline, nevertheless it remains ACTIVE. This switch occurs
even if there are no other active threads available.
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• On accessing a pending register – this event is invoked in the execute stage of
the processor pipeline when at least one instruction operand is in the PENDING
state. The current thread becomes SUSPENDED, and is expected to be woken
up by the register file at the time the corresponding register is updated and set to
the FULL state.

Switches due to an I-Cache miss and thread switch request do not introduce any
bubbles in the processor pipeline. On the other hand, switches due to operations with
pending registers introduce up to three clock-cycle long bubbles since the decode
stage, register-access stage and execute stage of the processor pipeline have to be
annuled (if the TID of the instructions in those stages is the same as of the instruction
that caused the thread switch).

Thread switch does NOT occur in the following situations:

• Execution of a long-latency operation – the operation marks the destination
register as PENDING, but does not force thread switch. A switch occurs only at
the time when the PENDING register is accessed by a subsequent instruction.

• Crossing of an I-Cache line boundary – this does not cause thread switch
provided the target cacheline is present in the instruction cache, i.e. a cacheline
request hit.

The thread switch scenario is shown in Fig. 4.21, while Fig. 4.20 shows the thread
state diagram.



Chapter 5
UTLEON3 Programming by Example

The purpose of this chapter is to explain basic rules of a practical microthreaded
assembler-level programming for UTLEON3. This will be achieved by explaining
a couple of increasingly complex assembler programs. The first program, called
VADD, will illustrate the basic structure of an assembler microthreaded program.
The second program, called FIB, will show how to use family shared registers
to implement loop-carried variables. Finally, the third program, called CCRT, will
demonstrate a continuation create.

5.1 Programming Framework

Each program displayed here constitutes a self-contained code which can be
executed directly on the UTLEON3 processor. To achieve that, common hardware
initialization routines are provided in the programming environment. These routines
execute in the legacy mode and then the control transfers to the microthreaded mode,
as depicted in Fig. 4.2. In all the examples herein we assume the launch instruction
has been just executed, starting our code at the ut main label.

5.2 Program VADD: Integer Vector Addition

We will demonstrate the basics of microthreaded programming on the most simple
program imaginable: integer vector addition. The algorithm of the program is
displayed in Listing 1. This algorithm consists of one for-loop. The looping
construct at line 1 specifies the number of iterations, while its body at line 2
describes the algorithm to take on each iteration. Assuming the input and output
arrays are distinct we can directly see the loop is completely data-parallel and thus
eligible for microthreaded implementation.

M. Daněk et al., UTLEON3: Exploring Fine-Grain Multi-Threading in FPGAs,
DOI 10.1007/978-1-4614-2410-9 5, © Springer Science+Business Media, LLC 2013
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Listing 1 : Program VADD – the algorithm

for ( i n t i = 0 ; i <= VECLEN−1; ++ i )
2 wdata0 [ i ] = r d a t a 0 [ i ] + r d a t a 1 [ i ] ;

Listing 2 : Program VADD (mtsparc assembler listing)

/∗ e x p o r t e d assem b l e r sym bo l s ∗ /
2 . g l o b a l ut main , u t vadd , r d a t a 0 , r d a t a 1 , wdata0

4 /∗ c o n s t a n t s ∗ /
. equ CACHELINE , 16∗4

6 . equ BLOCKSIZE 1 , 4
. equ VECLEN, 256 /∗ array s i z e ∗ /

8

. s e c t i o n ” . b s s ” /∗ u n i n i t i a l i z e d DATA i n RAM ∗ /
10 . a l i g n 16

12 /∗ a l l o c a t e space i n t h e bs s da t a segment ∗ /
. lcomm r d a t a 0 , (VECLEN∗4) /∗ i n p u t ar ray 0 ∗ /

14 . lcomm r d a t a 1 , (VECLEN∗4) /∗ i n p u t ar ray 1 ∗ /
. lcomm wdata0 , (VECLEN∗4) /∗ o u t p u t ar ray 0 ∗ /

16

/∗ ========================================================= ∗ /
18 . t e x t /∗ program t e x t i n ROM ∗ /

. a l i g n CACHELINE
20 . r e g i s t e r s 0 0 31 0 0 0 /∗ 0 GR, 0 SR , 31 LR ∗ /

u t m a i n :
22 s e t r d a t a 0 , %t l 0 /∗ sub−%t g0 = rda t a0 ∗ /

s e t r d a t a 1 , %t l 1 /∗ sub−%t g1 = rda t a1 ∗ /
24 s e t wdata0 , %t l 2 /∗ sub−%t g2 = wdata0 ∗ /

26 /∗ t h e f a m i l y ∗ /
a l l o c a t e %t l 2 0

28 s e t (VECLEN−1)∗4 , %t l 2 1
s e t l i m i t %t l 2 0 , %t l 2 1 /∗ s e t i n d e x upper v a l u e ∗ /

30 s e t s t e p %t l 2 0 , 4 /∗ s e t i n d e x i n c r e m e n t ∗ /
s e t u t vadd , %t l 2 1

32 s e t t h r e a d %t l 2 0 , %t l 2 1 /∗ s e t t h r e a d t e x t a d d r e s s ∗ /
s e t b l o c k %t l 2 0 , BLOCKSIZE 1

34 /∗ s e t t h e b l o c k s i z e parame t e r ∗ /
c r e a t e %t l 2 0 , %t l 2 0

36

mov %t l 2 0 , %t l 2 1 ; SWCH !
38 /∗ w a i t f o r f a m i l y t o t e r m i n a t e ∗ /

nop ; END !
40 . s i z e ut main , .− u t m a i n

The corresponding microthreaded assembler source code of the algorithm is
given in Listings 2 and 3. The source code can be divided into three parts:
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Listing 3 : Program VADD (mtsparc assembler listing) cont’d

/∗ ========================================================= ∗ /
42 /∗ v e c t o r add ∗ /

/∗ %t l 0 = i n d e x ‘ i ’
44 ∗ %t g0 = rdata0 , %t g1 = rdata1 , %t g2 = wdata0

∗ /
46 . a l i g n CACHELINE

. r e g i s t e r s 3 0 4 0 0 0 /∗ 3 GR, 0 SR , 4 LR ∗ /
48 u t v a d d :

l d [% t g0 + %t l 0 ] , %t l 1
50 l d [% t g1 + %t l 0 ] , %t l 2 ; SWCH !

add %t l 1 , %t l 2 , %t l 3
52 s t %t l 3 , [% t g2 + %t l 0 ] ; END !

. s i z e ut fam1 , .− u t f am 1

1. Lines 1–16: assembler headers, data space reservations.
2. Lines 17–40: family creation, corresponding to line 1 in Listing 1 (looping

construct).
3. Lines 41–52: the thread definition, corresponding to line 2 in Listing 1 (loop

body).

The assembler source code will be explained in a bottom-up fashion. The for-
loop body at line 2 in Listing 1 is implemented as thread at lines 41–52 in Listings 2
and 3. Threads will be run for each value of the index variablei. From the loop-body
‘wdata0[i ] = rdata0 [ i ] + rdata1 [ i ]; ’ we see that four symbols are required: rdata0,
rdata1, wdata0, and i. The first three symbols are constant within the body.
We can either load their values each time the iteration is taken, or use global registers
to hold them. The code presented uses three thread global registers %tg0, %tg1, and
%tg2 to hold the base addresses of arrays rdata0, rdata1, wdata0.

The number of thread global registers used has to be declared in the
.registers directive at line 47. The .registers pseudo-instruction inserts
a specially formatted data word (Register Info) into the program text informing the
UTLEON3 processor how many local registers to allocate to each thread and how
many global and shared registers are used. This information uniquely defines the
mapping between an architectural register number (encoded in the 5-bit fields of
the SPARC instructions) and the physical register address within a large processor
register file.

The organization of the thread prologue code at lines 46–48 is very important as
it has to adhere to the layout presented in Fig. 1.1. First, the code has to be aligned
on a cacheline beginning (line 46), i.e. a multiple of 16 words. In the very first
word of every instruction cacheline (offset 0) there is the Control Word which is
inserted automatically by the assembler tool and needs not be inserted explicitly by
the assembler programmer. Then, at offset 1, the register information word comes.
This word is specified at the beginning of the thread (only on its first cacheline) by
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the assembler programmer through the use of the .registers pseudo-instruction.
In the example program we specify three thread global registers, 0 thread shared
registers, and four thread local registers.

Each thread has a set of thread local registers, referenced as %tl0–%tln in
the assembler source. The actual number of these registers is specified in the
.registers pseudo-instruction. Note that the total number of thread-visible
registers has to be less than or equal to 31, i.e.

GR+ 2 ·SR+LR≤ 31.

In our case we have 3+ 2 ·0+ 4= 7 ≤ 31.
The thread local register %tl0 is special as it automatically receives the iteration

index when the thread is started. In the example code we use the iteration index in
%tl0 to offset the array base addresses in the three global registers. To be able to
do so the index has to be scaled by 4 (the machine word size) so that the address
obtained is correct. This is easily achieved by scaling the loop limit and iteration step
during family creation at lines 28 and 30. Finally, to end a thread the END modifier
is specified with the st instruction at line 51.

Moving further up, the second part of Listings 2 and 3 (lines 17–40) contains
mainly the thread family initialization code. This part is itself a thread, and so it has
to use a similar prologue code (at lines 19–21) as the one discussed previously.
Because the ut main thread is started by the launch instruction, its register
layout is fixed and thus the corresponding .registers pseudo-instruction has
to specify the number of registers exactly as shown.

A new family is allocated at line 27, and its handle, called Family ID (FID),
is stored in register %tl20. Then a couple of the set. . . instructions (setstart,
setlimit, setstep, setthread, setblock) at lines 28–33 are executed
on this handle to setup the family. The order of these instructions does not matter.
The setstart instruction is not used here as the starting index value automatically
defaults to zero. The setlimit instruction (line 29) is used to set the last valid
value of the index counter. This is VECLEN-1 in our case. To enable the use of
the index directly as array offset we perform an optimization and scale it by 4.
Consequently, the index increment value, set by the setstep instruction at line 30,
is also 4 instead of 1 which is specified in the original algorithm. The setthread
instruction has to be always present to set the thread text code address. Finally, the
setblock instruction can be used to specify the family blocksize parameter.

Before the create instruction is issued at line 34, the family global (and shared)
registers have to be initialized. This is done in advance at lines 22–24. The values
are written into local registers of the parent thread, starting at register %tl0.1 They
will be made visible in the child family of threads as registers %tg0–%tg2. Note
that the architecture requires that these registers be in the FULL state upon family
creation.

1The setregg/setregs instructions, currently not implemented, could be used to specify
register offset where the register mapping would be based.
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The child family of threads is started by the create instruction at line 34.
The first argument specifies the FID, while the second one specifies the destination
register for the family exit code–the so-called sync register. Upon creation the sync
register is set to PENDING, and the parent thread continues running. Usually we
want to make the parent thread wait until the child family has completed. This is
achieved by reading the sync register at line 36 by a simple mov instruction. As we
expect the mov instruction to block due to accessing the PENDING source register
(%tl20) the instruction is annotated with SWCH, so the parent thread is switched
out of the pipeline prematurely.

Once the child family completes, the sync register receives the family exit code,
and the parent thread is woken up at line 36. The ut main thread is ended at line
37 on execution of the instruction with the END modifier. As this thread was created
from the launch instruction, its completion causes the processor to switch back to
the legacy mode.

5.3 Program FIB: Fibonacci Number Generator

The second program to be shown calculates the Fibonacci sequence (1, 1, 2, 3,
5, 8, 13, 21, . . .), and is called FIB. This example will demonstrate the use of
shared registers to implement loop-carried variables. Loop-carried variables are
those whose values are calculated in one loop iteration and then consumed in
another, dependent one. As they represent true data dependencies, they cause the
loop to be executed sequentially (in general it is better to avoid them if possible).

Listing 4 shows the algorithm we will use to implement the Fibonacci generator.
Each Fibonacci number in the sequence is simply a sum of the two preceding
numbers in the series. This computation can be seen at line 8 in the listing, where
the local variable ‘ int fn’ is calculated. Each newly calculated number in the series
is stored in an output array ‘ int fibdata [FIBNUM+2]’. The two initial numbers of the
Fibonacci series are ‘1’, and they are written at line 5.

The most interesting part of the algorithm is the use of the two variables
‘ int p1, p2’ to hold the two last calculated values in the series. Alternatively, the
two predecessor values could be obtained directly from the ‘fibdata’ array, but this
approach would require more load instructions, and–perhaps more importantly–it
would require a totally sequential implementation of the loop.

Listings 5 and 6 displays the microthreaded implementation of the algorithm.
The loop body is implemented as a thread at lines 40–52. The thread has one
global register, two shared registers, and two local registers. The global register
%tg0 contains the output array base address (‘fibdata’). This address is set into the
register just before family creation at line 21. At line 24 the address is advanced by
2 integer-sizes so that it points to ‘ fibdata [2]’. This simplifies pointer arithmetic in
the thread routine.

The two shared registers are actually visible in the thread routine twice: first
as the so-called dependent registers (%td0, %td1) which hold values from the
immediately preceding thread, and second as the shared registers (%ts0, %ts1)
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Listing 4 : Program FIB – the algorithm

i n t f i b d a t a [FIBNUM+ 2 ] ; /∗ t h e o u t p u t ar ray ∗ /
2 i n t p1 , p2 ; /∗ p r e v i o u s two f i b . numbers ∗ /

4 /∗ s t a r t w i t h ones ∗ /
p1 = p2 = f i b d a t a [ 0 ] = f i b d a t a [ 1 ] = 1 ;

6

for ( i n t i = 0 ; i <= FIBNUM−1; ++ i ) {
8 i n t fn = p1 + p2 ; /∗ new f−number ∗ /

p1 = p2 ;
10 p2 = fn ;

f i b d a t a [ i +2] = fn ;
12 }

to hold this thread output values to be passed to its successor thread. The loop-
carried variable ‘ int p1’ (that contains the last but one preceding Fibonacci number)
is mapped to the %td0 (input) and %ts0 (output) registers. Similarly, the variable
‘ int p2’ is mapped to the %td1 (input) and %ts1 (output) registers. The initial values
of the input dependent registers (%td0, %td1) of the first thread in the family are set
to one at lines 18–19. Notice how the parent’s local registers %tl0, %tl1, and %tl2
are mapped to the thread registers %tg0, %td0, and %td1.

The thread output shared registers (%ts0, %ts1) are always initialized to the
PENDING state. Therefore, when a dependent thread i+ 1 tries to read its input
(line 48, %td0 and %td1), it is in fact reading the thread i output (%ts0, %ts1),
and as the values have not been produced yet, the thread i + 1 is blocked and
must wait. This way the correct thread ordering is established even when individual
threads are created and executed concurrently. However, once a value is written
to a thread output shared register, it must not be changed. Apart from the explicit
synchronization through the shared registers, all threads in a given family are
(conceptually) created and executed concurrently. In the FIB example in all threads
the st instructions at line 51 are independent of each other and thus executed
concurrently.

5.4 Program CCRT: Continuation Create

The program CCRT illustrates a so-called continuation create. ‘Continuation create’
is a microthreaded construct to emulate a Unix-like fork() command. It allows
a parent thread to create a detached child family that will run and terminate
independently of the parent. The child family can terminate before or after the parent
has terminated.
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Listing 5 : Program FIB (mtsparc assembler listing)

/∗ CONSTANTS ∗ /
2 . equ FIBNUM , 16

/∗ how many numbers i n t h e sequence t o c a l c u l a t e ∗ /
4 . equ BLOCKSIZE , 4

. equ CACHELINE , 16∗4
6 . g l o b a l u t m a i n

8 . s e c t i o n ” . b s s ”
. a l i g n 16

10 . lcomm f i b d a t a , ( ( FIBNUM+ 2)∗4)
/∗ c a l c u l a t e d f i b . s e r i e s i s s t o r e d here ∗ /

12

/∗ ========================================================= ∗ /
14 . s e c t i o n ” . t e x t ”

. a l i g n CACHELINE
16 . r e g i s t e r s 0 0 31 0 0 0 /∗ 0 GR, 0 SR , 31 LR ∗ /

u t m a i n :
18 /∗ s e t t h e f i r s t two F i bonacc i numbers f o r

∗ t h e f i r s t t h read , i . e . t h e t h r e a d 0 d e p e n d e n c i e s
20 ∗ r e g i s t e r s ∗ /

mov 1 , %t l 1 /∗ sub−%t d0 ∗ /
22 mov 1 , %t l 2 /∗ sub−%t d1 ∗ /

/∗ s t o r e t h e f i r s t two F i bonacc i numbers : 1 , 1 ∗ /
24 s e t f i b d a t a , %t l 0 /∗ sub−%t g0 ∗ /

s t %t l 1 , [% t l 0 ]
26 s t %t l 1 , [% t l 0 +4]

add %t l 0 , 8 , %t l 0 /∗ %t l 0 = @f ibdata [ 2 ] ; ∗ /
28

a l l o c a t e %t l 2 0
30 s e t s t a r t %t l 2 0 , 0 /∗ s t a r t := 0 ∗ /

s e t (FIBNUM∗4−1) , %t l 2 2
32 s e t l i m i t %t l 2 0 , %t l 2 2 /∗ l i m i t := f ibnum ∗ /

s e t s t e p %t l 2 0 , 4 /∗ s t e p := 4 ∗ /
34 s e t b l o c k %t l 2 0 , BLOCKSIZE

s e t f i b t h r , %t l 2 1
36 s e t t h r e a d %t l 2 0 , %t l 2 1

c r e a t e %t l 2 0 , %t l 2 0
38 /∗ w a i t f o r f a m i l y t o t e r m i n a t e ∗ /

mov %t l 2 0 , %t l 2 1
40 nop ; END

. s i z e ut main , .− u t m a i n

The main attributes of a continuation create are:

• The parent does not wait for a child family to complete. Therefore it specifies
%r0 as the exit code synchronization register.

• The child family does not have any global or shared registers. This is because
these registers are allocated in the parent thread and they are only made visible
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Listing 6 : Program FIB (mtsparc assembler listing) cont’d

/∗ ========================================================= ∗ /
44 . a l i g n CACHELINE

. r e g i s t e r s 1 2 2 0 0 0 ! 1 GR, 2 SR , 2 LR
46 /∗ %t l 0 = r e s u l t word o f f s e t [ t h r e a d i n d e x ] ∗ /

/∗ %t g0 = a d d r e s s o f f i b d a t a ∗ /
48 /∗ %td0 ,% t s 0 = second−to− l a s t f i b o n a c c i number

∗ [ i −2] , p1 ∗ /
50 /∗ %td1 ,% t s 1 = l a s t f i b o n a c c i number

∗ [ i −1] , p2 ∗ /
52 f i b t h r :

add %td0 , %td1 , %t l 1 /∗ f n = p1 + p2 ; ∗ /
54 mov %td1 , %t s 0 /∗ p1 = p2 ; ∗ /

mov %t l 1 , %t s 1 /∗ p2 = f n ; ∗ /
56 s t %t l 1 , [% t l 0+%t g0 ] ; END !

. s i z e f i b t h r , .− f i b t h r

in the child (mapped to its register space). But if the child is expected to outlive
its parent, once the parent is gone, the mapping would be corrupt. If parameters
are to be transported to the child, it must be done through global variables, or
through the family index counter.

The continuation create will be demonstrated on an artificial algorithm in
Listing 7. The algorithm is written using an ad-hoc xfork() function. It has similar
meaning as the well-known Unix fork() function call, only the xfork() does not
separate memory spaces of the parent and child, i.e. it forks a thread, not a process.

The algorithm in Listing 7 creates a one-thread child family at line 9. Then the
parent thread enters the busy-waiting loop at line 24, where it awaits completion
of the other part of the algorithm. The completion is signalled through a classical
global memory–variable ‘resv [1]’. Meanwhile the child thread at line 11, running
in parallel with the parent, checks the value of another global variable ‘resv [0]’.
If its value is greater than zero, the thread decrements it (line 14) and then forks
another thread–this is the second continuation create in this example (lines 15–17).
Otherwise, if the value of ‘resv [0]’ is zero, it signals (at line 20) to the original
parent thread (waiting at line 24) that the first half of the algorithm has finished.
Notice that in general this signalling leaf thread is not the first child thread created
by the first parent thread.

A microthreaded implementation of the algorithm is displayed in Listings 8
and 9. First of all the child family must not have any global or shared registers
(line 35). This is because these registers are allocated in the parent thread, and they
are only made visible in the child (mapped to its register space). But if the child is
expected to outlive its parent, once the parent is gone, the mapping would be corrupt.
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Listing 7 : Program CCRT – the algorithm

cons t i n t CCLENGTH = 10 ;
2 i n t r e s v [ 3 ] ;

4 void main ( )
{

6 r e s v [ 0 ] = CCLENGTH;
r e s v [ 1 ] = r e s v [ 2 ] = 0 ;

8

i f ( x f o r k ( ) == 0) {
10 /∗ I am t h e c h i l d ∗ /

c h i l d :
12 i f ( r e s v [ 0 ] > 0) {

/∗ c o n t i n u e t h e c o n t i n u a t i o n ∗ /
14 r e s v [ 0 ] = r e s v [ 0 ] − 1 ;

i f ( x f o r k ( ) == 0)
16 /∗ a n o t h e r c h i l d c r e a t e d ∗ /

goto c h i l d ;
18 } e l s e {

/∗ w r i t e s t o p code t o s i g n a l t h e o r i g i n a l grand−∗ p a r e n t ∗ /
20 r e s v [ 1 ] = 1 ;

}
22 } e l s e {

/∗ I am t h e p a r e n t ; p e r i o d i c a l l y check c o n t e n t s o f ’ r e s v [1] ’ ∗ /
24 whi le ( r e s v [ 1 ] == 0)

;
26 r e s v [ 2 ] = 1 ;

}
28 }

There are two create instructions used in the ‘continuation’ sense (lines 21 and
47) in the example. They can be easily recognized for they specify the %r0 register
as the synchronization register where the family exit code is to be eventually written.
It must be done this way; if a common local register was used, the register could be
written by the hardware well after the parent terminated, which would corrupt the
processor state for another unrelated thread to which the register was allocated in
the meantime.

The SWCH modifier used with the ld instruction at line 24 is very important.
Lines 23–27 implement the busy-waiting loop of the parent thread. Without the
SWCH annotation three unnecessary bubbles would be inserted in the processor
pipeline due to the pending state of the synchronization register accessed by the
next instruction.

Figure 5.1 shows the execution profile of the CCRT program. In the figure the
time is advancing from the left to the right. The horizontal lines represent various
threads that run in the processor. The first row corresponds to the ut main thread.
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Listing 8 : Program CCRT (mtsparc assembler listing)

/∗ CONSTANTS ∗ /
2 . equ CCLENGTH, 10 /∗ number o f c o n t i n u a t i o n c r e a t e s ∗ /

. g l o b a l u t m a i n
4

. s e c t i o n ” . b s s ”
6 . a l i g n 16

. lcomm r e sv , ( 3∗4 ) /∗ a l l o c a t e t h e o u t p u t r e s v array ∗ /
8

/∗ ========================================================= ∗ /
10 . s e c t i o n ” . t e x t ”

. a l i g n CACHELINE
12 . r e g i s t e r s 0 0 31 0 0 0 /∗ 0 GR, 0 SR , 31 LR ∗ /

u t m a i n :
14 s e t CCLENGTH, %t l 1

s e t r e sv , %t l 2
16 s t %t l 1 , [% t l 2 ] /∗ r e s v [0] = CCLENGTH; ∗ /

s t %r0 , [% t l 2 +4] /∗ r e s v [1] = 0; ∗ /
18 s e t c h i l d t h r , %t l 2 1

a l l o c a t e %t l 2 0
20 s e t t h r e a d %t l 2 0 , %t l 2 1

c r e a t e %t l 2 0 , %r0 /∗ ’ cont−c r e a t e ’ ∗ /
22

1 : /∗ p e r i o d i c a l l y check c o n t e n t s o f ’ r e s v [1] ’ ∗ /
24 l d [% t l 2 + 4] , %t l 1 ; SWCH

cmp %t l 1 , 1
26 bne 1b

nop
28

s e t 1 , %t l 1
30 s t %t l 1 , [% t l 2 +8] ; END

. s i z e ut main , .− u t m a i n

Fig. 5.1 Execution profile of the CCRT program when executed on the processor

After the initialization the first child thread is created. Its life span is displayed in
the second row. From this child several other new threads are created progressively
(the other rows), while the old ones terminate–this is the continuation create at line
47 of Listings 8 and 9. In the meantime the main thread executes the busy-waiting
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Listing 9 : Program CCRT (mtsparc assembler listing) cont’d

/∗ ========================================================= ∗ /
34 . a l i g n CACHELINE

. r e g i s t e r s 0 0 8 0 0 0 /∗ 0 GR, 0 SR , 8 LR ∗ /
36 c h i l d t h r :

s e t r e sv , %t l 1
38 l d [% t l 1 ] , %t l 2

subcc %t l 2 , 1 , %t l 2
40 bneg 2 f /∗ i f n e g a t i v e , s t o p t h e c o n t i n u a t i o n ∗ /

nop
42

s t %t l 2 , [% t l 1 ] /∗ r e s v [0] = r e s v [0] − 1; ∗ /
44 s e t c h i l d t h r , %t l 3

a l l o c a t e %t l 4
46 s e t t h r e a d %t l 4 , %t l 3

c r e a t e %t l 4 , %r0 ; END
48 /∗ ’ cont−c r e a t e ’ and end t h i s c h i l d ∗ /

50 2 : /∗ w r i t e s t o p code t o s i g n a l t h e w a i t i n g u t m a i n t h r e a d ∗ /
s e t 1 , %t l 2

52 s t %t l 2 , [% t l 1 +4] ; END
. s i z e c h i l d t h r , .− c h i l d t h r

loop if it has a chance to do so (the first row). Finally, once the last thread (leaf),
displayed in the 12th row, signals its end to the main thread by writing ‘resv [1]’, the
main thread can exit the busy-waiting loop and finish.
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Chapter 6
UTLEON3 Implementation Details

This chapter describes the key functions and implementation of the key new
components in UTLEON3. An analysis of performance data and used resources for
the Xilinx Virtex 5 LXT xc5vlx110t-1-ff1136 FPGA as well as tcbn90ghptc TSMC
90 nm technology can be found in Appendix E.

6.1 Integer Register File

The integer register file consists of memory blocks (32b data, 2b register state),
thread wake up request generator, data multiplexer used for arbitration of an
asynchronous access port between the data cache, thread scheduler or integer
multiplier, register state cleanup logic and register allocation unit. A block diagram
of the integer register file is shown in Fig. 6.1.

The memory blocks, both the 32b data and 2b register state parts, are built
from dual-port memories (BRAM). As the integer register file needs six ports (two
write and four read ports) instead of the two ports provided by the basic BRAM
entity in an FPGA, the number of ports is increased by time division multiplexing.
The integer register file works with a clock frequency that is three times faster than
the main design clock frequency (see Fig. 6.2).

6.1.1 Register Allocation Unit

The register allocation unit (RAU) is responsible for allocating and releasing blocks
of registers. The RAU structure is shown in Fig. 6.3. The allocate and release
requests are generated in the thread scheduler where register blocks are assigned
to threads. The allocated register blocks can be of size 32, 16, 8 and 4 registers,
sub-blocks of sizes 16, 8 and 4 are partitioned from blocks of size 32. Blocks of size

M. Daněk et al., UTLEON3: Exploring Fine-Grain Multi-Threading in FPGAs,
DOI 10.1007/978-1-4614-2410-9 6, © Springer Science+Business Media, LLC 2013
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Fig. 6.1 Integer register file – block diagram

32 are stored in the FREE BLOCKS FIFO structure. Blocks of sizes 16, 8 and 4 use
a more complex data structure called PARTIALLY ALLOCATED BLOCKS (PAB).
The PAB uses a valid bit, a base address and an offset for each valid block size.
Each block of size 32 has its bit mask of used sub-blocks, the masks are stored in
an extra table addressed by the block base address.

On an allocate request the RAU checks whether the PAB contains a record for
the requested block size (its valid bit is active). If so, the next part of the PAB block
will be used. If the allocation uses the last free sub-block in a block, its valid bit will
be reset. If not so, a new block will be taken from the FIFO, its address will be
written to the PAB, it will be partitioned to sub-blocks of the requested size, and the
first sub-block will be allocated. On sub-block allocation the corresponding bits of
the used mask are set in the mask table.

On sub-block release the corresponding bits of the used mask are reset in
the mask table. When all the bits are cleared for the current block (IS EMPTY
component in Fig. 6.3), the block is returned back to the FIFO.
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edge 2 0 1 2 0 1 2 0 1 2 0

X 0A 1A 2A

X 0B 1B 2B

X 0C 1C 2C

X 0D 1D 2D

addra X 0E 0A 0C 1E 1A 1C 2E 2A

addrb X 0F 0B 0D 1F 1B 1D 2F 2B

douta X D(0E) D(0A) D(0C) D(1E) D(1A) D(1C) D(2E)

doutb X D(0F) D(0B) D(0D) D(1F) D(1B) D(1D) D(2F)

dina X D_NEW(0E) D_NEW(1E) D_NEW(2E) X

dinb X D_NEW(0F) D_NEW(1F) D_NEW(2F) X

wea

web

clk3x

addr_r0 X 0A 1A 2A X

addr_r1 X 0B 1B 2B X

addr_r2 X 0C 1C 2C X

addr_r3 X 0D 1D 2D X

dout_r0 X D(0A) D(1A)

dout_r1 X D(0B) D(1B)

dout_r2 X D(0E) D(0A) D(0C) D(1E) D(1A) D(1C) D(2E)

dout_r3 X D(0F) D(0B) D(0D) D(1F) D(1B) D(1D) D(2F)

addr_w0 X 0E 1E 2E X

addr_w1 X 0F 1F 2F X

din_w0 X D_NEW(0E) D_NEW(1E) D_NEW(2E) X

din_w1 X D_NEW(0F) D_NEW(1F) D_NEW(2F) X

we_w0

we_w1

clk
I /

 O
in

ne
r 

/ F
F

s
B

R
A

M

Fig. 6.2 Integer register file – time division multiplexing

6.1.2 Register Value and State Preset Logic

Register value and state preset logic (PRESET) is a simple write request generator.
It receives requests from the thread scheduler for initializing continuous blocks of
registers with the same value and state. The request comprises the address of the first
register and the number of registers to be written. Addresses of the next registers are
computed from the first one by incrementing them. The busy signal is kept active
until all registers are written.
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Fig. 6.3 The register allocation unit (RAU) – block diagram

6.1.3 Wake Up Generator

The wake up generator (see Fig. 6.4) issues requests to the thread scheduler to wake
up threads on completion of relevant register updates. This means that the wake up
generator is active with every write request to the register file. To generate a wake
up request the unit needs to know the current register state (all writes to the register
file are preceded by a read operation), the new register state (the state that will be
written to the register) and the current TID to identify the thread to be woken up. If
the current state is WAITING and the new state is FULL, the generator issues a wake
up request.

The generator distinguishes between write operations coming from the processor
pipeline (IU3) and write operations on the shared write port (data cache, scheduler,
multiplier, . . .). As the wake up requests can arise at the same moment, the generator
has to manage the requests by their priority (IU3 requests have the higher priority).
To avoid losing requests from the shared port the generator may use a FIFO to
store them.

A wake up request from the shared port can be supplemented with a high-priority
flag for requests coming solely from the trap and interrupt controller (see Sect. 9). It
causes prioritized wake up request to the thread scheduler, which can wake up the
corresponding thread preferably.
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Fig. 6.4 The wake up generator – block diagram

6.1.4 Data Multiplexer

The data multiplexer (DataMUX) is responsible for arbitrating access to the
asynchronous ports (one R and one W) between all components that update the
register file asynchronously (register update ctl, scheduler, etc.). It accepts all read
and write requests, and consequently it controls the read-write sequence to generate
wake-up requests properly. Optionally the DataMUX inputs can be extended with
FIFOs to store pending requests in the case of multiple accesses. In the current
implementation FIFOs are used for the register update controller and the integer
multiplier. If two components access the asynchronous port at the same time, the
DataMUX halts the component with the lower priority or puts its request in the
FIFO if the FIFO is not full. As the integer multiplier operates synchronously with
the integer pipeline, it cannot be halted separately, but the whole system must be
halted using the holdn signal.

6.2 Family and Thread Tables

6.2.1 Family Table

The family table consists of a data memory and an allocation unit. The family table
unit block diagram is shown in Fig. 6.5.

The data memory holds global parameters and states of families (see Table 6.1).
Single fields of the family table are merged into groups according to the number
and type of components that access these fields in order to reduce the number of
required memory ports and utilize wide FPGA BlockRAMs efficiently. Each group
is mapped to a dual-port memory soft macro (DP RAM) that is implemented using
one or more dual-port BRAMs.
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Allocation Unit

sch_members_rsch_members_rw

sch_ctrl_o.alloc
sch_ctrl_o.release

sch_ctrl_o.fid

sch_ctrl_i.busy

sch_ctrl_i.valid
sch_ctrl_i.empty

sch_ctrl_i.fid

sch_ctrl_i.err

Family Table
DP RAM

sch_data_rw sch_data_r

DP RAM

Fig. 6.5 Family table – block diagram

The allocation unit manages the list of family table entries. It consists of a queue
of unused entries (their indexes, FIDs) in the family table and a 1-bit wide RAM with
a flag that indicates which indexes have been allocated and thus can be accessed by
read/write operations.
Operations of the allocation unit:

• Allocate returns the index of the first unused family table entry and removes this
index from the queue of unused FIDs.

• Release puts the index back to the queue of unused FIDs.
• Check checks whether read/write operations access valid entries (i.e. the entries

that have been allocated).

Time complexity of the operations:

• Allocate – zero clock cycles (asynchronous response).
• Release – one clock cycle.
• Check – zero clock cycles (asynchronous response).

6.2.2 Thread Table

The thread table consists of a data memory only. Its block diagram is shown in
Fig. 6.6.
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Table 6.1 Family table – field descriptions

R/W/ UTLEON3
RTL name /R-W Size (generic name) value

tail 1/0/1 TT A WIDTH 8
p fid 1/0/1 FTT A WIDTH 5
p tid TT A WIDTH 8
index.start FTT TINDEX WIDTH 16
index.limit FTT TINDEX WIDTH 16
index.step FTT TINDEX WIDTH 16
index.next index FTT TINDEX WIDTH 16
reginfo.addr globals REG A WIDTH 10
reginfo.addr shared REG A WIDTH 10
reginfo.addr base REG A WIDTH 10
reginfo.addr latest REG A WIDTH 10
reginfo.addr top REG A WIDTH 10
reginfo.num globals REGS PER THREAD WIDTH 5
reginfo.num shared REGS PER THREAD WIDTH 5
reginfo.num locals REGS PER THREAD WIDTH 5
exit regaddr REGS PER THREAD WIDTH 5
flags.created 1 1
flags.init done 1 1
flags.first thread 1 1
flags.allocation done 1 1
block size TT A WIDTH 8
block used TT A WIDTH 8
pc 32 32

The Data memory contains static and runtime parameters of threads (see
Table 6.2). As in the case of the family table, single fields of the thread table are
merged into groups. Nevertheless, the ways these fields are accessed require the use
of ten independent groups, with only two of them consisting of more than one field.
Furthermore, two groups required three ports instead of two. All but the state groups
are mapped to a dual-port memory soft macro (DP RAM) that is implemented using
one or more dual-port BRAMs. Multiple read ports are served by multiple instances
of the same memory. Each state group is mapped to a state mem component that
allows to set/clear single bits of the group independently.

6.3 Thread Scheduler

The thread scheduler is responsible for thread management. It is a brand new
component in the UTLEON3 processor that does not have a counterpart in the
original LEON3 processor.
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DP RAM
sch_pc_w

Thread Table

sch_fprev_w

sch_fnext_w

state_killed_w
State MEM

DP RAM

DP RAM

DP RAM

sch_inst_w
DP RAM

sch_pc_r1

sch_fprev_r

sch_fnext_r

state_killed_r

sch_pc_r2

sch_inst_r

state_next_killed_w
State MEM

state_next_killed_r

state_prev_cleaned_up_w

State MEM

state_prev_cleaned_up_r1

state_prev_cleaned_up_r2

State MEM

state_cleaned_up_w
State MEM

state_cleaned_up_r

sch_fid_w
DP RAM

sch_fid_r

sch_data_rw
DP RAM

sch_data_r

Fig. 6.6 Thread table – block diagram

As shown in Fig. 6.7, the thread scheduler consists of four main functional
blocks:

• Create – family initialization and finalization, thread creation
• Pick – provides threads to processor pipeline inputs
• Push – processes threads from processor pipeline outputs
• Cleanup – cleans up finished threads

The functions of the scheduler are:

• Resource allocation (family table entries, thread table entries, registers in the
register file).

• Update of family parameters and family states.
• Family initialization prior to thread creation.
• Thread creation, using either new thread table entries, or reusing the entry of a

preceding thread that has already finished.
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Table 6.2 Thread table – field descriptions

R/W/ UTLEON3
RTL name /R-W Size (generic name) value

pc 2/1/0 32 32
inst.inst 1/1/0 32 32
inst.flow 2 2
fprev 1/1/0 TT A WIDTH 8
fnext 1/1/0 TT A WIDTH 8
fid 1/1/0 FTT A WIDTH 5
data.reg base 0/1/1 REG A WIDTH 10
data.reg producer REG A WIDTH 10
data.is tid 0 1 1
data.is last in family 1 1
data.index FTT TINDEX WIDTH 16
state.killed 1/1/0 1 1
state.next killed 1/1/0 1 1
state.prev cleaned up 2/1/0 1 1
state.cleaned up 1/1/0 1 1

• Preparation of threads for execution in the processor pipeline.
• Processing of threads at the processor pipeline writeback stage.
• Performing thread wake-ups – both threads that are waiting due to an I-Cache

miss and threads that are suspended due to reading pending source registers.
• Cleanup of finished threads for further reuse (thread table entries, registers, TLS).
• Family finalization.
• Resource release.

A block diagram of the thread scheduler and its interfaces to other components is
shown in Fig. 6.7. The list of the interfaced components including the functional
connections is as follows:

• Family table

– Update family global parameters and family states (see Table 6.1).
– Serve requests for family table entries – allocation, release, check.

• Thread table

– Update thread static and runtime parameters (see Table 6.2).

• I-Cache

– Request the first instruction of a thread. This response is asynchronous to the
request issued by the scheduler.

– Request the register mask information (.registers) of a family prior to its
initialization.
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• Integer pipeline (IU3)

– Provide all the necessary parameters of a thread that is to enter the pipeline to
pipeline inputs.

– Process commands issued from the processor pipeline.
– Process threads from the processor pipeline XC stage.

• Register file

– Generate requests for allocation of a block of registers.
– Update register values and states.

The main function of the thread scheduler is thread management. Each thread
is identified by an index to a thread table entry (Thread ID, TID) that was
assigned to this thread. Thus, the terms thread, TID and thread table entry are used
interchangeably in the text below when it does not change the meaning.

Each thread can be set to one of the seven states that are defined in the list below.
State transitions and events that caused these transitions are shown in Fig. 6.8.

• Empty

– The thread table entry is not used by any thread.
– This is an initial value of each thread table entry. Second, a TID becomes

empty again when it is no longer needed by the family it was assigned to.
– Empty TIDs are stored in the empty queue in the scheduler

• Active

– The thread is ready to be executed in the processor pipeline.
– A thread changes its state from waiting to active when an I-Cache wakeup

request occurs. It means that the required cacheline has been loaded in the
I-Cache, and the first instruction that the thread should start with has been
stored in the inst field of the thread table. Second, a running thread becomes
active when an instruction with the SWCH modifier was decoded in the
processor pipeline. This transition happens at the time the corresponding
instruction passes the XC stage of the processor pipeline.

– Active TIDs are stored in the active queue in the scheduler.

• Running

– The thread is in the processor pipeline.
– A thread becomes running when it enters the processor pipeline. It remains in

this state until an I-Cache miss occurs in the FE stage, or the END or SWCH
modifier is decoded in the DE stage, or a PENDING register is read in the EX
stage of the processor pipeline. All these transitions happen at the time the
corresponding instruction passes the XC stage of the pipeline.

– Running threads are not listed explicitly in any queue. They are qualified as
running by their presence in the processor pipeline instead.
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Fig. 6.8 Thread states and their transitions

• Suspended

– The thread is waiting for a register to be updated to the FULL state.
– A thread becomes suspended when a PENDING register is read in the EX

stage of the processor pipeline. The source register becomes WAITING, and
the TID is stored in its data part.

– TIDs of suspended threads are stored in the data part of the register that each
thread is waiting for. Note that only one thread can be waiting for a given
register.

• Waiting

– The thread is waiting for an instruction (e.g. after an I-Cache miss)
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Table 6.3 Thread scheduler – timing of operations

Throughput Latency
Operation [CC per TID] [CC] Comment

IU3 interface
Pick 1 buffered 3 Pipeline+ buffer

2 direct
Push 1 1 Buffer
Internal operations
Create (one thread) 1+ 1+ #%ts 1+ 1+ #%ts Not pipelined
Wakeup from I-Cache 1 1 Buffer
Wakeup from regfile 2 3–4 Buffer + pipeline
Cleanup 2 1 first thread Not pipelined

2 subsequent threads

– A thread becomes waiting when an instruction it should start with is requested
from the I-Cache (thread initialization, register file wake-up), or if an I-Cache
miss occurs in the FE stage of the processor pipeline.

– TIDs of waiting threads are stored in internal data structures in the I-Cache

• Killed

– The thread has finished
– A thread becomes killed when the END modifier is decoded in the DE stage

of the processor pipeline.
– Finished threads are identified by the state.killed flag in the thread table.

• Killed & cleaned up

– The thread has finished, and the thread table entry is ready to be reused by
another thread from the same family or released for another family

– A thread becomes killed & cleaned up when the previous thread is killed &
cleaned up and the next thread is killed.

– Killed & cleaned up TIDs are stored in the cleanup queue in the scheduler.

The timing of the basic scheduler operations is listed in Table 6.3. To explain the
meaning of the terms in the table:

Pick – the thread scheduler holds two threads in a buffer in the Pick stage to be
able to serve two subsequent thread switch requests with zero latency. In case of
more requests in a line the Pick stage provides a new thread every other clock
cycle. Once the requests end, the Pick stage restores the buffer, and then again it
is able to serve thread switch requests with zero latency.

Push – the Push stage is able to process threads in the rate of one thread per clock
cycle.

Pipeline – in the table means the interface (or operation) is pipelined. The
processing of the first item takes the “Latency” clock cycles, but subsequent
items are produced in a rate shown in the “Throughput” column.
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Buffer – denotes that a buffer of a sufficient length is used at the interface to avoid
blocking the producer when inserting wait cycles on the consumer side of the
interface.

Not pipelined – the interface or operation is not pipelined.
Pipeline+Buffer – a pipeline and buffer can be combined in one interface.

The Pipeline+Buffer combination means that the data are passed through the
pipelined processing first and are then stored into the buffer to be picked by the
consumer.

Buffer+Pipeline – the Buffer+ Pipeline combination means that the data are put
into the buffer by the producer and then picked from the buffer and processed in
the pipeline.

6.3.1 Processor Pipeline

The original LEON3 processor pipeline was extended to be able to process
microthreaded code. The pipeline can work in two modes – the legacy mode
and the microthreaded mode. When in the legacy mode, the pipeline is backward
compatible with the original LEON3 processor pipeline. In the microthreaded mode
all the microthreaded extensions are enabled, and the pipeline is able to process the
microthreaded code. The pipeline is switched to the microthreaded mode when the
launch instruction is decoded, and back to the legacy mode when thread 0 ends.

The microthreaded extensions of the processor pipeline are shown in Fig. 6.9.
Unlike the original processor and the legacy mode of the UTLEON3 processor,
where a single stream of instructions is processed, multiple threads are active
concurrently in the microthreaded mode, and their instruction streams are interlaced
in the processor pipeline. The thread scheduler is responsible for providing threads
to the pipeline inputs and capturing threads at the pipeline outputs in order to update
their state. This is performed through three interfaces:

• sch pre – the input for threads that are to be executed in the pipeline. It
consists of

– Thread identifier (TID)
– Program counter and prefetched instruction that the thread should start with
– Address and numbers of registers that the thread can access
– Additional parameters and flags
– Nullification request force nop, asserted when no threads are active

• sch wb – the output for threads that leave the pipeline. It consists of

– Thread identifier (TID)
– Program counter that the thread should start with the next time it enters the

pipeline
– Thread state (EMPTY, RUNNING, SWITCHED, SUSPENDED, WAITING,

KILLED)
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• sch cmd – commands from the pipeline to the scheduler

– Commands derived from the decoded instructions (launch, allocate,
set. . ., create)

– Request for a thread switch
– Additional parameters

The three processor pipeline stages most influenced by the microthreaded exten-
sions are

• Fetch stage (FE)
• Decode state (DE)
• Execute stage (EX)

The fetch stage computes an address of the next instruction, and sets the initial
state of a thread.

The fetch stage computes an address of the next instruction, provides this address
to I-Cache inputs, and passes this address (i.e. the program counter) along with
the instruction returned by the I-Cache to the decode stage one clock-cycle later.
Unlike the legacy mode, in which the processor pipeline is stalled on an I-Cache
miss, the thread switch (FE SWITCH) is asserted in the microthreaded mode on
an I-Cache miss, and a program counter value and an instruction of the next active
thread are provided to the decode stage instead. This allows to perform thread switch
on an I-Cache miss with a zero clock-cycle latency (i.e. no bubbles are inserted in
the pipeline). Note that the next program counter (npc) is provided to the decode
stage as well. The program counter (pc) refers to the current instruction (inst) which
will be the last instruction that the thread will process when a thread switch occurs.
The next program counter (npc) refers to the instruction that the thread will continue
with the next time it enters the pipeline.

The thread state is set as RUNNING by default, provided that an active thread
is ready at the pipeline input. The thread state is set to EMPTY otherwise, which
means that the slot in the pipeline will be nullified. Nevertheless the pipeline is
never stalled.

The decode stage decodes the 2-bit instruction modifier, computes register
addresses, and updates the thread state.

The 2-bit modifier is decoded, and if the value SWCH or END is recog-
nised, a thread switch (DE SWITCH) is asserted. As in the case of FE SWITCH,
DE SWITCH is performed with a zero clock-cycle latency.

Register addresses are computed from the parameters (base addresses and
numbers of registers) provided by the scheduler and the RS1, RS2 and RD fields
of the instruction. Unlike the legacy mode, the window pointer cwp is not used.

The thread state is set to SWITCHED (KILLED) when a SWCH or (END)
instruction modifier is recognized. The thread state is set to WAITING when an
I-Cache miss occurs for the following instruction of the thread. It means that the
instruction in the decode stage will be the last instruction of the thread, and the
thread can continue after the cacheline that the following instruction belongs to has
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been loaded in the I-Cache. Furthermore, this instruction will be stored in the thread
scheduler so that it can provide it at the pipeline input at the time the thread enters
the pipeline again.

The execute stage checks states of the instruction operands.
If at least one of the operands is PENDING, a thread switch ( EX SWITCH) is

asserted. In this case the decode (DE), register access (RA) and execute (EX) stages
have to be annuled, which introduces a three-cycle long bubble in the pipeline.
The register state is changed from PENDING to WAITING, and the thread index
(TID) is written into this register. The current program counter value (pc) is stored
in the next program counter value field (npc), since this instruction has to be reissued
at the time the WAITING source register becomes FULL.

The thread state is set as SUSPENDED when an (EX SWITCH) occurs.

6.4 Data Cache and Register Update

The data memory access mechanism required by the microthreaded model is
implemented in two parts. The first part is a new data cache controller that reads
requests from the integer pipeline, and implements memory operations to guarantee
data availability and accuracy. The second part is a register update controller
(RUC) that reads specific data cache line locations and updates the corresponding
PENDING or WAITING registers in the integer register file. The operation of the
update controller is controlled and triggered by the data cache controller.

6.4.1 Data Cache Subsystem

The data cache subsystem consists of four control units (see Fig. 6.10):

• D-Cache controller that interacts with the integer pipeline and issues cache-line
requests and pending store requests to the D-Cache memory controller.

Integer
pipeline

(iu3)

D-Cache
controller
(dcache)

Memory
AMBA
access

(acache)

DCRAM
(cachemem)

Fetch request
(dcldst_uT)

D-Cache
memory

controller
(dmemctl)

Register update
controller

Store request 
(dcstst_uT)

Fig. 6.10 D-Cache subsystem – block diagram
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• D-Cache memory controller reads pending cache line fetch requests and pending
store requests, and fetches the data from the memory and modifies it accordingly.

• D-Cache line fetch request FIFO stores pending fetch requests.
• D-Cache pending store request FIFO stores pending store operations to be

executed on cache line fetch completion by the memory controller.

The cache RAM memory is organized as follows. The data part is implemented
as one dual-port memory block. The tag part is regrouped and decomposed into
several dual-port memory blocks; this is because both the data cache controller and
data cache memory controller access different tags (at different offsets) at the same
time (see Fig. 6.11).

Parts accessed by the data cache controller:

• ST (R/W) – the current state of a cacheline as seen by the data cache memory
controller set to valid on completion of register updates from the cache line.

• TAG (R) – the last valid tag (higher address bits) to support writeback.
• STREQ (R/W) – the current state of a cacheline as seen by the data cache

controller – valid or loading (requested).
• TAGREQ (R/W) – the higher address bits as seen by the data cache controller,

updated on a cache miss.
• HEAD (W) – the head of the linked list of registers that request a given cache

line (RUC init).
• TAIL (R/W) – the tail of the linked list of registers that request a given cache line

(RUC init, append).
• WRITEMASK (R/W) – flags that mark dirty cache words (store first, writeback).

Parts accessed by the data cache memory controller:

• ST (R/W) – the current state of a cacheline as seen by the data cache memory
controller.

• TAG (R/W) – the last valid tag (higher address bits) to support writeback.
• STREQ (R/W) – the current state of a cacheline as seen by the data cache

controller.
• TAGREQ (R/W) – the requested tag (i.e. new tag of the cache line to be fetched).
• HEAD (R) – the head of the linked list of registers that request a given cache line

(RUC update).
• TAIL (R) – the tail of the linked list of registers that request a given cache line

(RUC update).
• WRITEMASK (W) – flags indicating the dirty cache words (writeback).

The state transition diagram for data cache lines is shown in Fig. 6.12. After
power-on all cache lines are marked as invalid. On a cache line fetch request the
corresponding cache line is marked as loading. On a fetch completion the line is
either marked as valid when no register updates have been registered for this cache
line and the corresponding store queue is empty, otherwise it is marked as updating
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Fig. 6.11 Data cache – tag access

Fig. 6.12 The D-Cache line status transitions

until the register updates and/or store queue have been processed. The store queue
is implemented as a set of 16 independent FIFOs (dcstst) where each FIFO maps to
exactly one pending cache line fetch request stored in another FIFO (dcldst).

A simplified diagram of the data cache controller is shown in Fig. 6.13, and the
data cache memory controller is shown in Fig. 6.14. Both parts do not synchronize
their execution directly, they communicate through the load and store FIFOs and
through the tag part of the cache line stored in the cachemem block. The RUC
update structures are initialized and filled in by the data cache controller, and the
actual register update sequence is triggered by the data cache memory controller on
cache line fetch completion.
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Fig. 6.13 D-Cache controller simplified block diagram (part 1 of 2)

As the data cache on the pipeline side provides shared access to the integer
pipeline and the register update controller, it is necessary to guarantee proper ad-
dress generation when switching between various modes of operation. In the normal
operating mode the access is granted to the integer pipeline before the register
update controller. When the pipeline is recovering from a stall (holdn active), it is
necessary to guarantee completion of possible write operations performed at the end
of each RUC update cycle (change of line status). In these situations one or more
additional wait states must be inserted; this is caused by sharing a single port of a
dual-port BRAM memory for this access (the other is used on the memory side of
the D-Cache controller) and by the one clock cycle latency of the memory. The most
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Fig. 6.14 D-Cache controller simplified block diagram (part 2 of 2)

ST1

ST1LD2

EADDR MADDR

RD TAG1,DATA1

RD TAG2, DATA2
WR TAG1, DATA1

ST1

ST1LD2

EADDR MADDR

RD TAG1,DATA1

ISSUE WAITSTATE
WR TAG1, DATA1

ST1LD2 RD TAG2, DATA2

Fig. 6.15 D-Cache example 1 – normal pipeline access

important situations are shown in Figs. 6.15–6.17. In each figure the left part shows
an ideal situations where we can process each memory access instruction in one
clock cycle, and the right part shows the real implementation in UTLEON3.

The first situation – an ST instruction followed by an LD instruction – requires
an additional wait state to be inserted (pipeline stalled for one clock cycle) to finish
the read/write cycle of the first instruction before the next address can be applied to
the cache BRAM.

The second situation extends this further by halting the pipeline after the first
clock cycle of the ST instruction. When holdn is active, RUC can access the cache
BRAM at any time, thus it is necessary to guarantee a proper pipeline restart when
holdn goes inactive by inserting one additional wait state as in the previous case.

This is further complicated in the third situation where in the last cycle of holdn
active RUC finishes an update round, which requires the corresponding tag be
updated. In this case three additional wait states have to be inserted, one to modify
the tag due to RUC, one to restart the ST operation and one to write the new data in
the ST operation.
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WR TAG1, DATA1
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Fig. 6.16 D-Cache example 2 – pipeline access with an interleaved RUC access due to holdn
active
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Fig. 6.17 D-Cache example 3 – pipeline access with an interleaved RUC access due to holdn
active with RUC done active in the last active cycle of holdn

From the examples it can be seen the data cache controller on the pipeline side
operates in these modes:

• The address is taken from the pipeline execute stage.
• The address is taken from the pipeline memory access stage.
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• The address is taken from the pipeline memory access stage and a wait state is
generated (the pipeline is stalled for one clock cycle). This happens only on a
cache miss, on accessing different cache lines, when ST is immediately followed
by LD/ST, or on LDD/STD

• The address is taken from the RUC interface when holdn is active or the pipeline
does not access the cache RAM.

• The address is taken from the RUC interface when holdn is inactive and this is
the last access in a register update batch.

6.4.2 Register Update Controller

The register update controller (RUC) consists of four blocks. Its structure is shown
in Fig. 6.18:

• Decoder – is a combinational logic that receives init and append requests from
the data cache controller, and translates them to operations on the linked list.

• Linked list – is a data structure based on two dual-port memory blocks that store
(register ID, cache line ID) pairs. The register ID is a pointer to the next entry, and
the cache line ID identifies the location of the data within the cache memory. Two
memory blocks are required as two different list items (two memory addresses)
are accessed at the same time.

• Update request block – is simply a FIFO that stores update requests formed by
(head, tail) pairs issued by the data cache memory controller.

• RUC FSM – is a finite state machine that reads the cached data and executes
register writes based on the linked list.

The RUC executes three operations: init, append and update. Init and append
modify the linked lists (one list per cache line), update triggers a regfile update.
The operations are further explained below:

• Init – The tail item addressed by the register ID is set with the current register
ID. The cache line ID item is set with the current values (see Fig. 6.19).

head = regnum
tail = regnum
BRAM1[regnum] = tail (i.e. Register ID)
BRAM2[regnum] = (set, offset, line) (i.e. Cache

line ID)

• Append – The tail item addressed by the register ID is not set with any value.
The tail item addressed by the previous register ID is set with current register ID.
The cache line ID item is set with current values (see Fig. 6.20).

tail = regnum
BRAM1[prev_regnum] = tail
BRAM2[regnum] = (set, offset, line)
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Fig. 6.18 The register update controller (RUC) – block diagram

set1, offset2, line3
regnum

head

BRAM1 BRAM2INIT

(set1, offset2, line3)regnum=head

Fig. 6.19 The register update
controller (RUC) – operation
init

• Update – The head and the latest tail are stored in the update request structure.
Both values are register IDs. The RUC FSM generates requests given by the
relevant linked list entries to the data cache controller and receives the valid data.
The data are written to the integer register file (see Fig. 6.21).

6.5 Instruction Cache

The instruction cache receives requests for memory access from three places: the
integer pipeline fetch stage as part of the instruction fetch, the integer pipeline
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Fig. 6.21 The register update controller (RUC) – operation update

execute stage when the setthread instruction is executed, and the thread scheduler.
The structure of the instruction cache subsystem is shown in Fig. 6.22.

The instruction cache on the pipeline side must support the following concurrent
operations:

1. Fetch instructions – generate hit/miss, pass the flow information (2-bit instruction
modifiers) to the scheduler, generate CL fetch requests on misses.

2. Execute setthread – pass .registers to the scheduler, generate CL fetch
requests on misses.
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Fig. 6.22 I-Cache subsystem – block diagram

3. Increment and decrement reference counters as threads enter and leave I-Cache
lines.

4. Annul IU3 CL fetch requests in the EX stage that were generated in the FE
stage for the instruction in the EX stage in situations where unsatisfied data
dependencies in the thread have been detected prior to the instruction that
generated the cache miss.

5. Test instruction availability for the scheduler – generate a hit/miss response,
generate a CL fetch request on miss. This is used at the beginning of thread
creation to guarantee all threads have their I-Cache lines prefetched. In the
current implementation this request always results in an I-Cache miss; this is
to relieve the pressure on the pipeline side BRAM port by moving these requests
to the memory side BRAM port.

On the memory side the I-Cache controller must perform the following exclusive
operations:

• Generate a thread wake up request on I-Cache line fetch completion. This is a
response to an I-Cache miss generated on instruction fetch (step 1 in the previous
list).

• Pass .registers to the scheduler. This is a response to executing setthread
(step 2 in the previous list).

• Pass an instruction and flow (2-bit instruction modifier) to the scheduler. This is
a response to the operation in step 5 in the previous list.
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Fig. 6.23 Instruction cache – reference counter implementation

6.5.1 Reference Counters

In the microthreaded model the coherence of thread scheduling and instruction
cache is maintained via reference counters that store for each cache line the number
of threads that are currently using it. Each reference counter is incremented when
a thread enters a cacheline (both on cache hit and miss). Each reference counter is
decremented when a thread leaves a cacheline (always hit – by definition).

The instruction cache subsystem must be able to increment and decrement at least
two independent thread counters in one clock cycle (instruction fetch). Furthermore,
thread counters can be incremented on execution of the setthread instruction, and by
a scheduler query when marking threads ready for execution. Given the limitations
of the current FPGA technology (dual-port block RAM primitives), this leads to the
architecture shown in Fig. 6.23.
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Fig. 6.24 Instruction cache – tag access

It can be seen that a reference counter for one cache line is computed out of three
independent reference counters – incrementors:

• REFCNT-I – is the number of reference counter increments generated by the
integer pipeline (both in the fetch and execute stages).

• REFCNT-D – is the number of reference counter decrements generated by the
integer pipeline (in the fetch stage).

• REFCNT-IS – is the reference counter offset written by the instruction cache
memory controller on completion of a cache line fetch. Its initial value is
calculated as a sum of REFCNT-I and REFCNT-D counters at the time of the
cache line fetch incremented by one; this reduces the need to reset the two other
reference counters, and hence reduces the number of necessary write ports. This
value is also incremented on scheduler requests.

6.5.2 Tag Access

Figure 6.24 shows tag organization and possibilities of independent access. At one
time the tag can be requested from the instruction cache controller side indepen-
dently by the

1. Integer pipeline fetch stage,
2. Integer pipeline execute stage,
3. Thread scheduler.

As the implementation allows only one access from the instruction cache controller
side, these requests are arbitrated in the order shown above.

The tag contains two other fields that store the cache line word #0 that
corresponds to the 2-bit extensions (instruction modifiers) of the microthreaded
instruction set, and to word #1 that corresponds to the possible .registers
value required by the scheduler when launching new threads. Word #0 is accessed
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Fig. 6.25 Instruction cache – cache line storage organization

instantly, and it is desirable to decrease the latency when accessing word #1. These
fields are duplicated in the instruction cache line to maintain compatibility with
the legacy LEON3 code. The instruction cache memory organization is shown
in Fig. 6.25.



Chapter 7
Execution Efficiency of the Microthreaded
Pipeline

When analyzing execution efficiency of the microthreaded pipeline, we are inter-
ested in two key things:

1. The number of stall clock cycles in the processing pipeline.
2. The latency tolerance for blocking and non-blocking long-latency operations.

This chapter will discuss these topics and present UTLEON3 performance data for
simple legacy and microthreaded assembler programs executed in UTLEON3.

7.1 Pipeline Execution Profile

We begin by analysing executions of simple DSP kernels on the original LEON3
processor and on the UTLEON3 processor, both in the legacy mode (L3) and in the
new microthreaded mode (UT).

Sources of delays (latencies) in the legacy program execution are described in
the first part. The analysis is valid both for the original LEON3 processor and
the UTLEON3 processor in the legacy mode. A simple example of a dot-product
kernel is used for the demonstration. Afterwards the example is implemented in the
microthreaded (UT) mode to show how microthreading can overcome the delays.

In the second part pipeline execution profiles are evaluated experimentally using
three DSP kernels. A comparison of an overall program runtime and a breakdown
of the pipeline execution profile is provided as well.

It will be shown that the execution of a microthreaded code on the UTLEON3
processor is 1.86 faster on average than the execution of the legacy code on the
original LEON3 processor, and 1.66 times faster than the execution of the legacy
code on the UTLEON3 processor. Furthermore, a single UTLEON3 core achieves
0.83 instructions per cycle (IPC) on average in the microthreaded mode, but only
0.52 IPC on average in the legacy mode. This indicates a higher efficiency of the
microthreaded mode.

M. Daněk et al., UTLEON3: Exploring Fine-Grain Multi-Threading in FPGAs,
DOI 10.1007/978-1-4614-2410-9 7, © Springer Science+Business Media, LLC 2013
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7.1.1 Sources of Delays in Program Execution

Program runtime in terms of an overall number of clock cycles needed for program
execution depends on the number of instructions that the program is composed of
and the number of additional delays imposed by data dependencies. In the legacy
mode, the processor pipeline is stalled when an unresolved data dependency occurs.
Microthreading should overcome this issue as the code is split into simple threads
that can execute independently. If an unresolved data dependency occurs, a thread
switch is performed, and another thread is executed instead. Data dependencies can
be either external, defined by external components such as the memory subsystem,
or internal, defined by the internal architecture of the processor pipeline.

External data dependencies are one source of pipeline stalls. A typical cause is
the latency of the memory subsystem. If the ld instruction is being processed in the
legacy mode, the pipeline is stalled until the cache subsystem returns the required
data. The microthreaded mode deals with this issue through a thread switch that is
performed whenever a pipeline stall can occur. More precisely, the thread switch is
not performed at the time the ld instruction is executed, but when the data required
by a subsequent instruction are not available. The switch happens automatically, the
thread affected by a cache miss is suspended until the corresponding data are loaded,
and the processor pipeline executes other threads in the meantime.

The latency due to external data dependencies cannot be evaluated by a static
analysis of the program code. Nevertheless, its impact on the overall execution time
can be significant, especially when processing sparse data arrays which may induce
high cache miss rate.

Internal data dependencies are another source of pipeline stalls. They are defined
by the instruction set architecture (ISA) and structure of the data paths in the
processor.

Some constraints imposed by the LEON3 processor architecture are:

• The distance between the ld instruction and the subsequent instruction that
depends on its result must be three slots at least. The bubbles (i.e. unused slots)
in processor pipeline are induced otherwise, resulting in up to 2CC long delay.

• The distance between the MUL instruction and the subsequent instruction that
depends on its result must be two slots at least. As in the previous case, shorter
distances result in a bubble 1CC long.

• The distance between an arithmetic instruction that sets the integer condition
codes (ICC) and a branch instruction must be at least three slots. As in the
previous case, shorter distances result in a bubble up to 2CCs long.

• A MUL instruction always generates a bubble 4CCs long.

The first three constraints mentioned above are imposed by internal data de-
pendencies between two instructions. They can be eliminated by rearranging the
instructions in the source code, but this technique may not be always applicable as
will be shown later.
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   ld [%r1 + %r8], %r10   /* %r10 = a[i] */
2: ld [%r2 + %r8], %r11   /* %r11 = b[i] */
   subcc %r8, 4, %r8      /* i -= 4 */
   umul %r10, %r11, %r10 /* +(1+4)CC bubble /*
   add %r10, %r9, %r9 /* +1CC bubble /*
   bpos,a 2b              /* if (i > 0) goto 2: */
   ld [%r1 + %r8], %r10   /* %r10 = a[i] (delay slot) */

Fig. 7.1 Legacy assembler code of an optimized dot-product loop. The comments reflect the
bubbles generated by particular instructions

The microthreaded mode also cannot deal with these internal data dependencies
implicitly, but they can be eliminated through an explicit thread switch by appending
the swch instruction modifier to the producer instruction of the data-dependent
instruction pair.

The last constraint in the list above is caused by the latency of the integer
multiplier. In the legacy mode the processor pipeline has to wait until the multiplier
provides the result that can be written to the destination register.

On the contrary, in the microthreaded mode multiplication is treated as a
long-latency operation. This means that the destination register is set to pending
when the MUL instruction is issued, and it is updated later when the result is
available. This approach supports multiplier pipelining implicitly, which increases
the utilization of the integer multiplier.

We can conclude that all the constraints mentioned above can be fully eliminated
in the microthreaded mode, which leads to reduction of program execution time
and higher instruction-per-cycle values. The following case study analyzes a simple
dot-product loop.

7.1.1.1 Program Execution in the Legacy Mode

Figure 7.1 shows a dot-product in the assembler code that has already been
optimized in order to reduce the number of bubbles in the processor pipeline.
Despite the optimization, one iteration of the loop still generates 6CC bubbles:
2CCs are due to inter-instructions dependencies; 4CCs are due to the multiplier
latency. As the length of the loop body is equal to six instructions only, these bubbles
represent 50 % of the overall loop-iteration runtime (i.e. 12CC) provided that only
internal data dependencies are taken into account.

The problem of data dependencies can be partially reduced by loop unrolling.
A higher number of instructions within a loop body allows to arrange the in-
structions in a more efficient way that leads to a more efficient code. Figure 7.2
shows a dot-product loop with an unroll factor 2. The bubbles caused by the inter-
instructions dependencies were eliminated completely. The remaining 8CC bubbles
are caused by the latency of the multiplier. As the length of the loop body is equal to
12 instructions, the proportion of bubbles in the overall loop-iteration runtime (i.e.
20CC) was reduced to 40 %.



114 7 Execution Efficiency of the Microthreaded Pipeline

   add %r1, %r8, %r20    /* a+i */
2: add %r2, %r8, %r21    /* b+i */
   ld [%r20 + 0], %r10   /* %r10 = *((a+i)+0) */
   ld [%r20 + 4], %r12   /* %r12 = *((a+i)+4) */
   ld [%r21 + 0], %r11   /* %r11 = *((b+i)+0) */
   ld [%r21 + 4], %r13   /* %r13 = *((b+i)+4) */
   subcc %r8, 2*4, %r8   /* i -= 8 */
   umul %r10, %r11, %r10 /* +4CC bubble /*
   umul %r12, %r13, %r12 /* +4CC bubble /*
   add %r10, %r9, %r9
   add %r12, %r9, %r9
   bpos,a 2b             /* if (i > 0) goto 2: */
   add %r1, %r8, %r20    /* a+i (delay slot */

Fig. 7.2 Legacy assembler code of a dot-product loop, optimized by loop unrolling with unroll
factor 2

   set a, %l1                 /* set %g1 */
   set b, %l2                 /* set %g2 */
   set 0, %l3                 /* clear %d0 */

   allocate %l4               /* allocate a family */
   setlimit %l4, %g3          /* set upper bound */
   setstep %l4, 4             /* set cycle step */
   set dp_uthread, %l5 /* get address of the code */
   setthread %l4, %l5 /* set start address */
   create %l4, %l4            /* request family creation */

   mov %l4, %l5 ; SWCH        /* sync */

Fig. 7.3 Microthreaded assembler code for initialization of a family that computes a dot-product

An additional loop unrolling still improves the code runtime since the loop
control code of a fixed length becomes shared by more loop iterations. Nevertheless
the number of bubbles is still proportional to the number of the MUL instructions.

7.1.1.2 Program Execution in the Microthreaded Mode

Microthreading can eliminate the issues mentioned in the previous text completely.
The original loop is replaced by a so-called family of threads; each iteration of the
loop is represented by a single thread. Thread management that replaced the loop
control completely is performed by the hardware thread scheduler. A microthreaded
assembler code for initialization of a family of threads is shown in Fig. 7.3; A mi-
crothreaded assembler code for the dot-product computation is shown in Fig. 7.4.

The number of instructions that are needed to compute one result value is reduced
since the loop control instructions are not present in this code. The thread index is
provided in the first local register of the thread; this register is set by the hardware
thread scheduler when a thread is in the initialization phase.
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   .registers 3 1 3    /* GR, SR, LR */
   /* %g1 = a */
   /* %g2 = b */
   /* %l0 = i */
   /* %d0 = sum(i-1) */
   /* %s0 = sum(i) */
dp_uthread:
   ld [%g1+%l0], %l1          /* %l1 = *(a+i) */
   ld [%g2+%l0], %l2  ; SWCH  /* %l2 = *(b+i) */
   umul %l1, %l2, %l2 ; SWCH
   add %d0, %l2, %s0  ; END   /* sum += %l2 */

Fig. 7.4 Microthreaded assembler code for a thread that performs a dot-product computation

swch modifiers are used to eliminate stalls imposed by data dependencies.
The swch behind the second ld instruction prevents a 2CC bubble due to the
inter-instructions data dependency (the ld-umul instruction pair). Furthermore,
it gives more time to the cache-subsystem to update the destination register of an
ld instruction on a D-Cache miss before it is requested by the next instruction.
Nevertheless, if the thread re-enters the pipeline and the data are still not available
for the umul instruction, a regular thread switch occurs and the thread is suspended
until the data are ready. This is the only case that results in a 1CC bubble; no bubbles
are induced otherwise. A swch behind the umul instruction forces another explicit
thread switch. As the umul instruction is a long-latency operation, the succeeding
add instruction would cause a regular switch anyway. By the use of the explicit
switch proactively, the thread is switched and is likely to re-enter the pipeline
after the destination register of umul instruction had been updated, thus the add
instruction can be executed immediately. No bubbles are induced as a result.

As the thread code (Fig. 7.4) consists of four instructions and there are no pipeline
bubbles, except the single case mentioned above, the static runtime of a single
thread, which corresponds to one loop iteration, is just 33 % of the runtime required
by the original legacy code.

The loop initialization consists of four instructions in the case of the legacy code,
and ten instructions (see Fig. 7.3) in the case of the microthreaded code. Its impact
on the overall loop runtime depends on the number of loop iterations, but it can be
considered as negligible.

7.1.2 Experimental Results

This subsection provides results of two experiments. The first one deals with three
various DSP kernels, the second one deals with the impact of an unroll factor of the
FIR filter inner loop to program runtime.
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Table 7.1 Pipeline execution profile for three DSP kernels, executed in the legacy mode (L3) and
the microthreaded mode (UT)

Total Working Holdn(cache) Stall UT overhead

Core Program [1] [1] [%] [1] [%] [1] [%] [1] [%]

LEON3 L3 FIR 4x 7,477 4,105 55 268 4 3,104 42
UTLEON3 L3 FIR 4x 7,421 4,105 55 212 3 3,104 42
UTLEON3 UT FIR 4x 4,210 3,890 92 14 0 98 2 208 5
LEON3 L3 MATRIX 1,717 692 40 337 20 688 40
UTLEON3 L3 MATRIX 1,586 692 44 228 14 688 43
UTLEON3 UT MATRIX 900 665 74 0 0 57 6 178 20
LEON3 L3 DCT 6,634 2,920 44 1,854 28 1,860 28
UTLEON3 L3 DCT 5,066 2,920 58 286 6 1,860 37
UTLEON3 UT DCT 3,493 2,890 83 22 1 286 8 313 9

Every DSP kernel was hand-coded in assembler in two variants – as the original
legacy code (L3) and as the new microthreaded code (UT). These two variants are
equivalent in terms of generated data outputs. Three available combinations of the
processor core and a program version are considered as follows.

• LEON3-L3 – a legacy program on the original LEON3 processor
• UTLEON3-L3 – a legacy program on the new UTLEON3 processor
• UTLEON3-UT – a microthreaded program on the new UTLEON3 processor

UTLEON3 was configured for these experiments as follows: the family thread
table contained 32 rows, the thread table contained 256 rows, the register file
contained 1,024 registers and two write ports, and the D-Cache consisted of 2 sets,
1 kB each.

7.1.2.1 Various DSP Kernels

This section shows experimentally evaluated pipeline execution profiles for the
following DSP kernels:

• FIR 4x – 26-tap FIR filter with 4x unroll factor
• MATRIX – 4× 4 matrix-vector multiplication
• DCT – 2-D 8× 8 forward DCT from JPEG

The experimental results for all the three kernels are shown in Table 7.1. The first
column shows the processor core; the second column contains the version (L3 vs.
UT) and the name of the DSP kernel. The third column contains the overall clock
cycle counts. The next eight columns contain a pipeline execution profile breakdown
in the form of four couples, each containing the number of clock cycles and the
corresponding share in the overall runtime. Four processor pipeline states were
considered:

• Working – the processor pipeline is processing useful instruction
• Holdn(cache) – the processor pipeline is idle due to external data dependencies
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Fig. 7.5 Pipeline execution profile for the 26-tap FIR filter kernel

Fig. 7.6 Pipeline execution profile for the 4× 4 matrix-vector multiplication kernel

Fig. 7.7 Pipeline execution profile for the 2-D 8× 8 forward DCT kernel

• Stall – the processor pipeline is idle due to internal data dependencies
• UT overhead – the processor pipeline is idle due to thread management overhead

The processor pipeline state was evaluated as instructions passed through the XC
stage of the processor pipeline.

The same numbers are shown graphically in Fig. 7.5 for the 26-tap FIR filter
example, Fig. 7.6 for the 4× 4 matrix-vector multiplication example and Fig. 7.7
for the 2-D 8× 8 forward DCT.

First, if we compare execution of the same code on both processor cores,
UTLEON3 (in the legacy mode) was 1.13 times faster on average. This was due
to the different cache-update strategy which reduces the delays caused by external
data dependencies (see the column Holdn). The numbers in the Working column
should be equal as the same code was executed. The numbers in the Stall column
should be equal as the internal data dependencies are handled in the same way.

Second, if we compare execution of both program versions on the UTLEON3
processor, the execution of the UT code was 1.66 faster on average than the
execution of the corresponding L3 code. This is due to the elimination of both
internal and external data dependencies as was shown on the theoretical example
in Sect. 7.1.1.

The further pipeline execution profile breakdown shows the lower number of
instructions needed to perform a given task and a significantly smaller overall
number of pipeline stalls for the microthreaded code.

The most significant reduction occurs for stalls due to internal data dependencies
(see the column Stalls). The reason for this was explained on the simple dot-product
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Table 7.2 Pipeline execution profile for a 26-tap FIR filter

Total Working Holdn(cache) Stall UT overhead

Core Program [1] [1] [%] [1] [%] [1] [%] [1] [%]

LEON3 L3 FIR 1x 8,976 4,873 54 231 3 3,872 43
UTLEON3 L3 FIR 1x 9,703 4,873 50 190 2 4,640 48
UTLEON3 UT FIR 1x 5,877 3,506 60 16 0 107 2 2,248 38
LEON3 L3 FIR 2x 8,230 4,873 59 253 3 3,104 38
UTLEON3 L3 FIR 2x 8,189 4,873 60 212 3 3,104 38
UTLEON3 UT FIR 2x 4,612 4,274 93 12 0 104 2 222 5
LEON3 L3 FIR 4x 7,477 4,105 55 268 4 3,104 42
UTLEON3 L3 FIR 4x 7,421 4,105 55 212 3 3,104 42
UTLEON3 UT FIR 4x 4,210 3,890 92 14 0 98 2 208 5

example above. It was not eliminated even more mainly due to the presence of
two-cycle store instructions, whose first cycle is classified as working, while the
second cycle as stalled.

A reduction of latencies due to external data dependencies (see the column Holdn
(cache)) is not so obvious in this experiment. It is mainly due to the fact that an
external memory setup with a short latency of 1CC was used. It is expected that
while the runtime of legacy code lengthens with an increasing memory latency,
the runtime of the microthreaded code should not change. Experiments with longer
memory latencies will be shown later.

The UT versions contains an additional overhead due to thread management (see
the column UT Overhead). This state occurs when no thread is ready to be executed,
thus NOPs have to be inserted at pipeline inputs instead.

Finally, if we compare the total number of clock cycles for execution of the L3
code on the LEON3 processor with the total number of clock cycles for execution
of the UT code on the UTLEON3 processor, we can conclude that the latter one
was 1.86 times faster on average. As in the previous case, it is mainly due to the
elimination of both internal and external data dependencies.

7.1.2.2 FIR Filter with Different Unroll Factors

Several FIR filter executions with various unroll factors were compared in the
second experiment. All versions are equivalent in terms of generated data outputs.
A higher unroll factor should reduce the runtime in both the legacy mode and the
microthreaded mode. In the case of the legacy mode the higher unroll factor enables
a better arrangement of instructions as mentioned above. In the microthreaded mode
higher unroll factors result in longer threads, which reduces the load on the thread
scheduler.

The results are shown in Table 7.2 and Fig. 7.8. Examples with the unroll factor
1, 2 and 4 were used for both the legacy code (marked as L3 FIR 1x, L3 FIR 2x,
L3 FIR 4x respectively) and the microthreaded code (marked as UT FIR 1x,
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Fig. 7.8 Pipeline execution profile for a 26-tap FIR example

UT FIR 2x, UT FIR 4x respectively). The structure of the table and the graph is
the same as in the previous experiment.

As expected, the number of pipeline stalls due to internal data dependencies (see
the column Stalls) was smaller in versions with higher unroll factors. Nevertheless
the reduction due to loop unrolling was noticeably smaller when compared to the
reduction due to the use of microthreading. Considering the UTLEON3 processor,
the application of microthreading reduces the number of stalls 35 times on average
– while it represented 43 % of the overall runtime on average in the legacy code, it
was just about 2 % of the overall runtime for the microthreaded code.

The higher unroll factor results in a lower number of stalls due to thread
management (see the column UT Overhead). This overhead is 38 % for unroll factor
1 (UT FIR 1x), and decreases down to 5 % for higher unroll factors (UT FIR 2x,
UT FIR 4x).

7.1.3 Summary

Sample DSP kernels have been coded in the common SPARC V8 assembler and in
the extended version that supports microthreading. The program runs have been
compared and analysed in terms of the overall runtime and pipeline execution
profile. The results show that even a single-core implementation of a microthreaded
processor can achieve better execution performance compared to the original
architecture, achieving significantly higher instruction per cycle numbers.

7.2 Long-Latency Operations

Previous works [14, 19] have dealt with an analysis of multithreading efficiency
with respect to the number of available hardware thread contexts (denoted N, see
Table 7.3), average run length between cache faults (R), cache latency (L), register
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Table 7.3 Parameters

Parameter Description (Units)

R Average run length between two LL ops. (cycles, instructions)
LN Non-pipelined latency, e.g. a cache fault (cycles)
LP Pipelined latency, e.g. FP operation (cycles)
N Supported number of thread contexts (number of threads)
B Family blocksize (number of threads)
c Thread context size (registers)
S Context switch cost (cycles)
f Register file size (registers)

LL long-latency, FP floating point

file size (F), and the required context size (the number of registers per thread;
C). However, as the previous processor architectures did not have the concept of
families of threads, they could not analyse the impact of the blocksize parameter
(B) with its implications to fine-grain parallelism. In [14] only cache fault latencies
(i.e. non-pipelined ones) were stochastically analysed, and the number of contexts
(N) was considered a machine parameter, while in the UTLEON3 architecture it is a
program-controlled (but implementation bounded) variable. This chapter discusses
effects of this parameter on the efficiency of the microthreaded execution in the
UTLEON3 processor. We show that the blocksize parameter has a similar effect as
the number of thread contexts had in the previous architectures. The outcomes of
the work can be used to improve the compilation technology for the microthreaded
architecture.

7.2.1 Analysis of the Problem Situation

We classify long-latency (LL) operations in two groups: (a) pipelined LL operations
are executed in a fully pipelined unit (e.g. an integer multiplier, a floating-point unit)
which means the processor can initiate a new computation in the unit every clock
cycle, and the processing takes LP cycles. (b) non-pipelined LL operations must be
served sequentially in the unit as they compete for some exclusive resource, e.g. a
system/memory bus in the case of a cache fault, and we assume the operation takes
LN cycles to complete.

Upon creation of a family the total number of threads n in the family (equal to
the number of iterations of a hypothetical for-loop) and the blocksize parameter B
are specified by the program. The scheduler unit then reserves B entries in its thread
table and allocates B ·C registers in the (large, but shared) register file. Thus, in the
family no more than B threads can execute concurrently at any moment. But if the
requested number of resources cannot be allocated (for they were spent on existing
k families: ∑k(Bk ·Ck)≤ F), the hardware scheduler must reduce the value of B until
the allocations succeed so that the computation can proceed.
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a

b

Fig. 7.9 Thread schedule for pipelined long-latency operations. A new operation can be issued
while the previous one is processing, e.g. a pipelined integer multiplication, a floating point
operation. (a) Linear region (LP > R(B−1)) – small blocksize; the CPU pipeline is waiting for
the long-latency operation. (b) Saturation (LP < R(B−1)) – large blocksize; the CPU pipeline is
kept busy, but one family may consume excess resources

Clearly each family of threads contributes a different amount of parallelism to
the processor execution. By optimizing the value of B for each family a compiler or
assembly-level programmer can achieve better utilization of processor resources.

7.2.1.1 Impact of the Pipelined Long-Latency Operations

Let us assume a family of n threads with blocksize B. Each thread of the
family executes R− 1 short-latency (one cycle) instructions and one long-latency
instruction; thus the run length between two long-latency operations is R cycles.
The long-latency operation takes LP cycles to complete, and it is fully pipelined.
The thread switch cost is S cycles.

Figure 7.9 shows what happens in the processor pipeline with respect to the
blocksize B and latency LP. In Fig. 7.9a the long-latency operation has a latency LP

much higher than the combined computational load of B threads, i.e. LP > R(B−1).
In this case the family operates in the linear region because increasing B gains more
performance.
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Fig. 7.10 Theoretical performance of long-latency operations. (a) Pipelined long-latency
operations, e.g. a pipelined FP operation. (b) Non-pipelined long-latency operations, e.g. cache
faults

In Fig. 7.9b the latency LP is shorter than R(B − 1), and thus the program
computation is limited only by the processor pipeline performance (and the context
switch cost). Increasing the blocksize parameter B cannot gain more performance
here because the pipeline is already saturated.

The perceived runtime in cycles per LL operation is plotted in Fig. 7.10a. As the
total program runtime depends on the number of instructions executed in the
processor, in practice we normalize it to obtain the execution efficiency to compare
execution for different benchmarks. The efficiency of one family in the linear region
ηP,lin can be calculated by considering R to be the ideal number of Busy cycles:

ηP,lin =
Busy

Busy+ Switching+ Idle
=

R

R+ S+ LP
B

=
R ·B

(R+ S) ·B+LP
(7.1)

In the saturation the efficiency does not depend on the blocksize, but the cost of
context switches is more pronounced:

ηsat =
R

R+ S
=

1

1+ S
R

(7.2)

Note that the saturated efficiency ηsat is the same for the pipelined and non-pipelined
classes of long-latency operations.

7.2.1.2 Impact of the Non-pipelined Long-Latency Operations

A non-pipelined long-latency unit can process at most one request at a time because
of an occupancy of some exclusive resource. Each request will take LN cycles to
process; any new request issued in the meantime must be blocked or stored in a
FIFO queue to be served later. This is the model of a cache fault where each instance



7.2 Long-Latency Operations 123

a

b

Fig. 7.11 Thread schedule for non-pipelined long-latency operations (e.g. cache faults). A new
operation can be issued on completion of the previous operation. (a) LN < R – the processor
pipeline is saturated. (b) LN > R – the long-latency unit (memory bus) is saturated

requires an access to the memory bus. An impact of a limited memory bandwidth
on a multithreaded processor was theoretically studied e.g. in [6].

The best case in the microthreaded mode occurs when the processor pipeline
or the long-latency unit are saturated (Fig. 7.11). Blocksize B = 2 is theoretically
sufficient to keep at least one of the two resources fully occupied so that the program
perceives minimal latency max(R+ S,LN) (Fig. 7.10b). Thus in the microthreaded
mode for non-pipelined long-latency operations the efficiency ηN of a family of
threads does not depend on the blocksize:

ηN =
R

max(R+ S,LN)
(7.3)

7.2.2 Experimental Evaluation

Experiments were carried out on an FPGA-synthesizable VHDL model of the
UTLEON3 processor. We modified the processor’s integer multiplier to simulate a
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long-latency pipelined unit with an arbitrary delay of LP cycles. Similarly, the model
of the main memory was extended so that it can simulate a non-pipelined delay of
LN cycles. A synthetic benchmark program creates a family of threads in which each
thread executes (R−1) short-latency (one cycle) and one long-latency instructions.
The family blocksize value is specified by the setblock instruction before a
family is created. Efficiency of early voluntary context switches is compared by
using the swch modifier in the first (short-latency) instruction that depends on the
long-latency one and comparing it to a run without the swch modifier.

The results in Fig. 7.12a show CPU utilization efficiency ηP with respect
to the pipelined long-latency operation LP that was simulated by the modified
multiplier unit. The run-length of the test program was RP = 15 cycles. Different
blocksizes BP = {6,8,16,24} and the presence of the swchmodifier were evaluated
(Swithout−swch = 3 cycles, Swith−swch = 1 cycle).

As shown in the analysis the blocksize parameter B determines the point (latency
LP) when the family transitions from the saturated region, where it executes with
the maximal efficiency ηsat (Eq. 7.2), to the linear region, where the efficiency
ηP,lin (Eq. 7.1) decreases with LP. Presence of the swch modifier affects the context
switch cost S that influences the saturated efficiency ηsat =

R
R+S (Eq. 7.2). Without

the swchmodifier the theoretical saturated efficiency with the given R = 15 is 0.83,
but with the swch modifier it is 0.93. This analytical prediction agrees with the
measurement in Fig. 7.12a.

Figure 7.12b shows the CPU utilization efficiency ηN with respect to a non-
pipelined long-latency operation LN . In this case the run-length of the test program
was RN = 49 cycles, and different blocksizes BN = {4,8,16} and the presence of
the swch modifier were evaluated.

As expected the blocksize parameter does not influence the CPU efficiency ηN

so much when compared to the previous case. The effect of the swch modifier
is not very pronounced in the plot, but that is because RN � S in the presented
measurement.

We believe that the chosen values have a connection to real-world situations.
In the pipelined long-latency operation the RP = 15 cycles corresponds to a 6 %
arithmetic intensity. For example the Discrete Cosine Transform (DCT) kernel
from the Independent JPEG Group [8] compiled for the SPARC architecture has
an arithmetic intensity of 15 %. In the non-pipelined long-latency operation the
RN = 49 cycles corresponds to a cache miss rate of 2 % over all instructions
executed; given a typical ratio of memory access instructions of 20 % in common
programs (every fifth instruction is Load/Store), this implies a 10 % D-Cache miss
rate. Albeit quite large for contemporary single-threaded processors, this miss rate
can be expected in processors that execute multithreaded workloads that increase
pressure on the cache subsystem.
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Fig. 7.12 Influence of the blocksize parameter on execution efficiency – experimental results
obtained for the FPGA implementation of the UTLEON3 processor. (a) Efficiency of pipelined
long latency operations. For short latencies the efficiency is optimal even with small blocksize
values (the processor is saturated) and the effect of the ‘swch’ modifier is most profound. Longer
latencies require higher blocksize values to stay in the saturation. Measured for RP = 15 cycles,
blocksize BP = {6,8,16,24}. (b) Efficiency of non-pipelined long latency operations. Once the
memory bus is congested increasing the blocksize value does not improve the execution efficiency.
Measured for RN = 49 cycles, blocksize BN = {4,8,16}
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7.2.3 Summary

We have analysed the impact of long-latency instructions, the family blocksize
parameter, and the thread switch modifier on execution efficiency of families of
threads in the UTLEON3 processor that implements the microthreaded model.
Experimental evaluations run in the FPGA implementation of the processor support
the analysis.

We classify long-latency operations as either pipelined or non-pipelined. The
analysis shows that the blocksize parameter that controls thread resource allocation
in the processor hardware has profound effects when the latency is pipelined, i.e. in-
creasing the blocksize value can improve the performance up to the saturation point
ηsat . In the non-pipelined long-latency case the efficiency reaches its maximum even
for small blocksize values, beyond which it cannot improve due to the occupancy of
an exclusive resource (memory bus congestion).

As the compiler specifies the blocksize parameter for each family of threads
individually, the analysis can be used to optimize resource usage. The compiler
should specify smaller blocksize values for memory-intensive families of threads to
save resources, while compute-intensive families with many pipelined FP operations
could benefit from larger blocksize values. Ideally each family should operate just
at its saturation point where the efficiency reaches its maximum while the resource
utilization is optimal.

The presented analysis of the impact of the non-pipelined long-latency operations
in UTLEON3 relates to the current implementation of its memory subsystem.
The memory is connected over the AMBA AHB bus which cannot serve multiple
memory transactions concurrently, hence the memory is a non-pipelined resource.
More advanced memory buses (such as AMBA AXI) can process several outstand-
ing requests in an interleaved manner. An improved interconnect architecture and
a more advanced memory controller could be characterized (to some extent) as a
pipelined resource from the processor point of view, which performance-wise would
enable better results.



Chapter 8
Hardware Families of Threads

This chapter describes Hardware Families of Threads: a method of connecting
hardware accelerators (co-processors) to a microthreaded processor.

8.1 Interaction of Software Families and Hardware Families

The UTLEON3 processor is backwards binary compatible with LEON3: after reset
it starts in the legacy mode. To switch to the microthreaded mode the instruction
launch has to be executed. Afterwards the other microthreaded instructions
(allocate, set..., create, etc.) can be used as depicted in Fig. 4.2. Fig-
ure 8.1 shows a block diagram of the UTLEON3 processor extended with a new
hardware accelerator for families of threads on the right-hand side of the picture,
and Fig. 8.2 illustrates the principle of a HW family execution.

Hardware families of threads are designed to have no impact on the instruction
code of a microthreaded program. Hardware and software families that perform an
identical task are coupled together by the memory address of the software family.
In software this is set by the setthread instruction as the memory address of
the first instruction of the thread code. At the same time it serves as a tag that
uniquely identifies a hardware family that implements the same functionality in the
hardware accelerator. The subsystem of the hardware families keeps an associative
Thread Mapping Table that maps software memory addresses to particular instances
of hardware accelerators and their configurations. A system code must execute a
subprogram (in the legacy mode) to initialise the subsystem of hardware families.
The key part of the initialization process is writing the family look-up addresses to
the associative table; see the arrow marked (1) in Fig. 8.2.

After entering the microthreaded mode the processor executes all instructions
as usual up to the create instruction. When the create instruction is issued,
the processor checks the Thread Mapping Table; see Fig. 8.2. In the example the
address of the software thread 0x200 is looked-up in the table. If the address is
found, the system will execute the family in the hardware accelerator. Conversely,

M. Daněk et al., UTLEON3: Exploring Fine-Grain Multi-Threading in FPGAs,
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Fig. 8.1 Block diagram of the UTLEON3 processor with a hardware accelerator for families
of threads

if the address is not found, the system will create an ordinary software family in the
processor. From an application point of view the creation scheme is transparent.

8.2 Analysis of Feasibility of Implementing a Family
in Hardware

Before deciding that a given family should execute in hardware one must analyze
the possible performance advantage. In general not all families are suitable to be
implemented in hardware. For example, threads executed only a few times (a small
family) or those that have a complex behaviour may not present an opportunity
for a speed-up. Profiling techniques should be used to identify families suitable for
hardware acceleration. Good candidates are families that exhibit a simple data-flow
behaviour without many data dependencies. In these cases a pipelined implementa-
tion of the hardware family should achieve a rate of one result per clock cycle.

Achieving the rate of one result per cycle is easy when there are no data
dependencies between threads. Figure 8.3 illustrates the situation for a hardware
thread that has four pipeline stages (A–D). At each clock cycle a new thread can be
started (T0-T2) and – after the initial latency of L = 4 cycles–one result per clock
cycle is obtained.
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Fig. 8.2 Program flow: software/hardware families

Fig. 8.3 A thread pipeline
without dependencies
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In the presence of data dependencies the situation is more complicated. We will
consider threads with an associative coupling operator. The computation of the
family of threads can be described by the formula

d0 ◦T0 ◦T1 ◦T2 ◦ . . .◦Tn = sn

where ◦ is an associative coupling operator, T0 −Tn are threads, d0 is a dependent
register of thread T0 (mapped to the parent thread), and sn is a shared register of the
last thread Tn.

Assuming the threads are associative, we can regroup the threads (add brackets)
as needed:

(d0 ◦T0 ◦T1 ◦ . . .◦Tk−1)◦ (e◦Tk ◦Tk+1 ◦ . . .◦T2k−1)

◦(e◦T2k ◦ . . .◦T3k−1)◦ (e◦T3k ◦ . . .◦T4k−1) = sn

In the example we have partitioned the family (of size n+ 1) into four groups of k
threads:

k =
n+ 1

L
=

n+ 1
4

as the latency of one thread is still L = 4 clock cycles. We had to introduce a
neutral element e into the formula. The neutral element is used as the input value
(a dependent) in all groups except the first one. The numerical value of the neutral
element depends on the nature of the associative operation (e.g. for addition it is 0,
for multiplication it is 1).

Having partitioned the threads into the groups it is easy to construct a pipeline
schedule, because the computation in the distinct groups is independent – see
Fig. 8.4. We simply interleave the computation of distinct groups one after another,
so by the time the second thread of a group is starting, the previous thread in the
group has just finished. Finally we need to perform reduction of the partial results
at the end of the computation (denoted R in Fig. 8.4) to obtain the final result sn.

In practical programs the coupling operator ◦ usually is not only associative,
but also commutative. In such cases we can reorder the threads and use a different
partitioning:

(d0 ◦T0 ◦T4 ◦ . . .◦T4k−4)◦ (e◦T1 ◦T5 ◦ . . .◦T4k−3)

◦(e◦T2 ◦ . . .◦T4k−2)◦ (e◦T3◦ . . .◦T4k−1) = sn

Again the threads were partitioned in four groups. The first group consists of
threads that satisfy: index(T )≡ 0(mod 4), the second group: index(T ) = 1(mod 4),
and so on. The advantage of this partitioning scheme is that the pipeline schedule
(after interleaving the threads of different groups) will issue threads in the natural
order: T0,T1,T2,T3,T4, . . . ,Tn (apart from that the schedule looks the same as in
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Fig. 8.4 Associative dependent threads – the pipeline schedule

Fig. 8.4). This is a very important property for it is more likely to provide better
memory access pattern along with a simplified hardware implementation.

To conclude, it was shown that we can provide a well-performing pipelined
implementation of data-flow threads in hardware not only when the threads are
independent, but also in the case of dependent threads with commutative and
associative coupling.

8.3 Implementing a Family in Hardware

As explained above, we will focus on a class of threads with a dataflow behaviour.
We will require threads to be independent, or to exhibit an associative and
commutative behaviour.

Each hardware family class is unique and exhibits different properties. To
deal with the complexity, the family-specific pipelines are encapsulated in the
Basic Computing Element cores (BCE, see Fig. 8.5). The BCE has a unified I/O
interface that consists of dual-port memories (A, B, Z in the picture), common
design primitives found in modern FPGA platforms. Although the actual number of
memories per one BCE may vary, the structure of the BCE interface remains stable.
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Fig. 8.5 Encapsulation of a thread in a BCE

Fig. 8.6 A generalized BCE core

This in turn simplifies the overall design of the proposed HW Family subsystem
described in the following text.

To ease partial reconfiguration in the FPGA and facilitate hardware reuse the
internal structure of some BCE cores may be further generalized as dataflow/control
units as depicted in Fig. 8.6. The generalized BCE is more complex, but it can be
reconfigured by changing its firmware in its program memories (P0, P1).

8.4 Example: Developing a New Hardware Family

The implementation methodology for creation of hardware families will be illus-
trated on an simple FIR filter. A FIR filter output is given by

zk =
L−1

∑
i=0

bixk+i (8.1)
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Fig. 8.7 A complete FIR program; legacy (left), microthreaded (right)

Fig. 8.8 FIR: Pipelined computation in inner threads

where x and z represent filter inputs and outputs, respectively. The parameter
L specifies the length of the filter. In typical embedded DSP applications (echo
cancellation, ADSL) the length is often of the order of tens of elements (taps); we
can safely assume here a typical L = 32.

Figure 8.7 shows a complete software implementation of a FIR filter that
computes the filter equation over an array of N elements. The inner family F2
implements the filter equation by unrolling the sum into a family of dependent
threads (using a shared integer s). These threads are coupled by the addition operator
(line s += b[ i ] ∗ x[k+i ]; ) which is both associative and commutative. Therefore the
inner family of threads can be scheduled in an optimal way suitable for efficient
hardware implementation (Fig. 8.8).

Another possibility is to partition the program one level higher, i.e. to implement
the family F1 in hardware. This has two advantages. First, threads of the family are
independent (no shared registers). Second, the family F1 offers a better granularity
of the computation (because N � L). Therefore, we will transform family F1 (and
everything below it) to a hardware family.
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Fig. 8.9 A version of a BCE that implements FIR

Figure 8.9 shows a possible implementation of the FIR family in the BCE core.
The dual-port memory A contains an input array x[], the memory B holds an array
of the FIR coefficients b[], and finally the memory Z stores the resulting array z[].

The picture suggests that this particular specialized BCE can compute only the
FIR family, but this does not have to be so. We could use the generalized BCE
(Fig. 8.6), and the computation of the FIR family will be coded in the BCE firmware
as a sequence of basic kernels to be applied on the data to generate the desired
result. The interface (dual-port memories) remains the same for different internal
implementations.

8.5 Conceptual Structure of the Hardware Family Subsystem

The previous sections in this chapter have described a conversion of a particular
software family of threads to a form suitable for accelerated hardware. The hardware
families are implemented and executed in the BCE cores that have unified interfaces
based on dual-port memories (Block RAMs in the FPGA). In this section we will
describe the control subsystem for the hardware families (HWFAM). The conceptual
block diagram is shown in Fig. 8.10.

The hardware families are encapsulated in the BCE cores; two instances are
shown in Fig. 8.10 at the top. Depending on its complexity a BCE core can be
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Fig. 8.10 A conceptual block diagram of the hardware family subsystem

tailored to contain only a single-function or it can be programmable. The BCE
interface, consisting of DP-RAM memories P0, P1, Z, A, B, is connected to an
internal interconnect bus. The bus is driven by the DMA Engine. The DMA engine
transfers data between the BCE DP-RAM memories and an external main memory
over the system AMBA bus. The DMA engine should implement a bus coherency
protocol to allow seamless data sharing with the processor cache subsystem. The
Job Control Unit (JCU) is the central control machine of the subsystem. Its function
can be summarized as follows: after detecting a HW-Family create event DMA
transfers are initiated, then BCE executes its function, and finally family completion
is signalled back to the scheduler (a detailed scenario will be given below). The JCU
cooperates with the Thread Mapping Table unit. This unit functions as a filter that
determines which software creates (i.e. the processor’s create instructions) are to
be handed-over to the JCU to be executed in the hardware accelerator.
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8.6 Elementary Use-Case Scenario

This scenario gives a basic example how a family can be executed in the hardware
family subsystem. The situation is illustrated on a family that implements a Finite
Impulse Response (FIR) filter (see Sect. 8.4). A particular software implementation
of the algorithm has the following calling convention:

Register Description

%tg0 Pointer to an input vector X
%tg1 Pointer to an output vector Z
%tg2 Pointer to a vector of coefficients B
%tg3 Number of coefficients (elements in vector B; filter taps)
Family start/limit Generates indices over the input and output vectors X and Z

Listing 10 shows one possible instantiation of the FIR family in an application.
When the processor issues the create instruction at line 15 in the listing, the
following sequence of events happens:

1. The scheduler sends a query to the Thread Mapping Table unit, checking it
whether the family of threads being created could be run in the hardware
accelerator (Fig. 8.10, step (1)). The query includes:

• Thread address – identifies the family of threads (the address used in the
setthread instruction);

• Synchronizing register number – the register where the family exit code is
stored on completion (this is taken from the create instruction);

• Family ID (FID) – it is used to release the line in the family table when the
computation finishes.

• Base addresses of the Global and Shared registers so that the family
parameters can be retrieved.

• Start/step/limit parameters of the family.

2. The Thread Mapping Table receives a query from the scheduler. The thread
address is treated as an opaque tag that uniquely identifies the hardware family.
The tag is looked up in the table to find out if the family can be executed in the
hardware accelerator. The table also specifies the minimum and maximum size
of the family that can be executed in the hardware accelerator.

3. The Thread Mapping Table communicates its result back to the scheduler:

(a) The result is positive, meaning the family can be executed in hardware. The
scheduler ceases family creation, i.e. it just marks the family as allocated.
At the same time the Thread Mapping Table passes the parameters of the
accepted new family to the Job Control Unit.

(b) The result is negative, meaning the family cannot be executed in the hard-
ware accelerator subsystem (the hardware configuration does not exist), or
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Listing 10 Creating the FIR family (mtsparc assembler listing)

s e t xvec , %t l 0
2 /∗ %t l 0 = a d d r e s s o f xvec ; becomes %t g0 i n t h e f a m i l y ∗ /

s e t zvec , %t l 1
4 /∗ %t l 1 = a d d r e s s o f z v e c ; becomes %t g1 ∗ /

s e t bvec , %t l 2
6 /∗ %t l 2 = a d d r e s s o f bvec ; becomes %t g2 ∗ /

s e t (BVEC LEN−1)∗4 , %t l 3
8 /∗ %t l 3 = b v e c l e n ; becomes %t g3 ∗ /

10 /∗ FIR f a m i l y ∗ /
a l l o c a t e %t l 2 0

12 /∗ a l l o c a t e a new f a m i l y o f t h r e a d s ∗ /
s e t s t a r t %t l 2 0 , 0

14 /∗ s e t i n d e x s t a r t = 0 ∗ /
s e t (XVEC LEN−1)∗4 , %t l 2 1

16 s e t l i m i t %t l 2 0 , %t l 2 1
/∗ s e t i n d e x l i m i t = l e n g t h o f X array ∗ /

18 s e t s t e p %t l 2 0 , 4
/∗ s e t i n d e x i n c r e m e n t = 4 ∗ /

20 s e t f i r f a m i l y , %t l 2 1
s e t t h r e a d %t l 2 0 , %t l 2 1

22 /∗ s e t t h r e a d f u n c t i o n ∗ /
s e t b l o c k %t l 2 0 , BLOCKSIZE 1

24 /∗ s e t t h e b l o c k s i z e parame t e r ∗ /
c r e a t e %t l 2 0 , %t l 2 0

26 /∗ run t h e f a m i l y ∗ /
mov %t l 2 0 , %t l 2 1

28 /∗ w a i t f o r t h e f a m i l y t o t e r m i n a t e ∗ /

there are not enough resources left in the accelerator to execute the family.
The scheduler continues with creating and executing the family in software
as usual.

4. The Job Control Unit (JCU) receives a request to run a new family (step (2) in
Fig. 8.10). The request consists of identification of the family together with the
register number to store the exit code to and the FID. The JCU writes the data
into its internal table of running hardware families.

5. The JCU assigns BCEs to the new job, determines the BCE firmware programs
that are then downloaded to the selected BCEs (if needed) (see the ‘BCE Setup
Phase’ in Fig. 8.11). The firmware is loaded from the main memory through the
DMA engine into the P0 or P1 BRAM of the BCE. The JCU can also select a
BCE that has a firmware already loaded from the previous run. Thus the two
distinct program memories (P0, P1) in the BCE can act like a firmware cache.

6. In the meantime, the JCU reads the family global and shared registers through
the asynchronous register file port of the UTLEON3 processor. The number of
the fetched registers is specific to each hardware family, and it is part of the
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Fig. 8.11 A sample JCU control flowchart
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JCU programming. In the FIR example, there are four global registers to be
read from the RF: %tg0–%tg3.

7. In the case of the FIR example, the JCU initially schedules one DMA operation
to transfer the vector of coefficients (bvec = %tg2, length %tg3) from the
memory to BRAM B of the assigned BCE (step (5) in Fig. 8.11).

8. The total number of words to compute in the accelerator is: LENGT H :=
(LIMIT −START)/sizeo f (word). The work is divided into batches of no more
than 256 words as in our particular example the BCEs have only 1,024-word
local memories: BATCHES := LENGT H/256. Thus each BCE data BRAM
consists of 4 segments of 256 words each.

9. The computation schedule in the BCE is organized in three phases: initializa-
tion, steady state and wind-up. The BCE program is run in iterations, each
iteration consumes one segment (256 W) of the input data in BRAM A, and
produces one segment of results in BRAM Z. Steps (4)–(7) in the Fig. 8.11 are
executed repeatedly.

(a) During the initialization phase the first three segments (i.e. the first 768 W)
of BRAM A are filled with the FIR input data (buffer at address %tg0).
Then, the BCE is run once to process the first segment.

(b) In the steady state phase, in which the computation spends the majority of
the time, three operations are executed in parallel during each iteration.
An iteration is completed when all the three operations scheduled have
completed:

• Load the input data in the next input segment of BRAM A. Segment
numbers (#0 to #3) are treated modulo 4. (In the very first iteration after
the initialization phase the last segment (#3) of BRAM A is loaded.)

• Save the output data from the last output segment of BRAM Z. (In the
very first iteration after the initialization phase the first segment (#0) of
BRAM Z is saved.)

• Run the BCE once, configure it to process the segment already prepared
in BRAM A. (In the very first iteration after the initialization phase
segment #1 from BRAM A is processed, and the results are written to
segment #1 in BRAM Z.) Note that when the BCE is processing an input
segment n, the segment (n+ 1) is already loaded in the input BRAM A.
This is to allow the BCE algorithm to see the next data in the input
stream continuously.

(c) During the wind-up phase we let the BCE process all the remaining data.
There can be a partial DMA transfer (not the whole 256-word segment),
and the BCE can be configured to process only a part of the input buffer
(LENGTH mod 256).

10. When the data processing has completed, the JCU writes the family exit code
to the family synchronization register. The JCU also signals the scheduler to
release the family (step (8) in Fig. 8.11).
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8.7 Sample Design and Its Implementation

The UTLEON3 processor with the Hardware Families of Threads was implemented
in the Xilinx XUP-V5 board. Figure 8.12 shows the block diagram of the imple-
mented system. The following modules are depicted from the top-left to the bottom:

• BCE Worker: a very simple BCE core that computes Zi := Ai +Bi was imple-
mented to develop the BCE data/control interfaces.

• XBAR Switches: a simple switched bus was implemented to facilitate data and
control transfers within the subsystem. The switch component is instantiated
twice: the BRAM XBAR carries data between the local dual-port memory banks
(‘BRAMs’) and the DMA Engine; the CONF XBAR is used for configuration
access to the modules.

• DMA Engine: a controller that transfers data between the main memory (over the
system AMBA bus) and the local dual-port memory banks (‘BRAMs’).

• Host Bridge: it maps the local dual-port memories (‘BRAMs’) and the module
configuration memories to the AMBA address space. This allows an external
entity, such as a legacy setup code running in the UTLEON3, to access the
internals of the subsystem easily.

• UTLEON3 Interface: through this interface the create queries from the mi-
crothreaded scheduler are issued, and the processor register file can be accessed.

• Job Control Unit: the controller responsible for running a family in a particular
BCE core and managing all data transfers via the DMA Engine.

The following text describes a detailed implementation of the HW-Families
subsystem.

8.7.1 Internal Backbone Buses and the Host Bridge

The two XBAR switches create a backbone to which all the modules are connected.
They facilitate data and control transfers within the subsystem. The switches have a
configurable number of master and slave ports (see Fig. 8.13).

Masters arbitrate a path through the switch by setting the appropriate
slave address (xbar master down.slave addr), and activating their request signal
(xbar master down.request). In the next clock cycle the xbar signals if an
access was granted (xbar master up.granted). If not, the master continues
holding the request line active until it eventually succeeds.

When the access has been granted, the master sends data through the switch
(xbar master down.data dwn, xbar master up.data up). During the
granted phase a master must not change the target slave address (a master must
not change the target slave address while holding the request line active). Once a
path has been granted to a master, it will stay granted to the master as long as the
master is holding its request line active. This simplifies the design of both the master
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Table 8.1 BRAM and CONF XBAR slave devices and their AMBA address space mapping. In
the demonstrator design: xxx = 0xB00, and yyy = 0xB01

AMBA address space extent Slave Function

xxx0 0000 – xxx0 0FFF BRAM 0 Bank A of the BCE core
xxx1 0000 – xxx1 0FFF BRAM 1 Bank B of the BCE core
xxx2 0000 – xxx2 0FFF BRAM 2 Bank Z of the BCE core
xxx3 0000 – xxx3 0FFF BRAM 3 Bank P of JCU: PicoBlaze firmware
yyy0 0000 – yyy0 03FF CONF 0 DMA Engine configuration registers
yyy1 0000 – yyy1 03FF CONF 1 BCE core configuration registers
yyy2 0000 – yyy2 03FF CONF 2 JCU configuration registers
yyy3 0000 – yyy3 03FF CONF 3 UTLEON3/HWT interface configuration registers

and the slave device. Only by de-activating the request line the master relinquishes
the path, and the granted signal is deactivated by the xbar in the very next clock
cycle. To change a target slave a master must relinquish its current path (deactivate
request), set a new target slave address, and then it may re-activate the request line
to arbitrate a path.

As depicted in Fig. 8.12, the ‘BRAM XBAR’ is to carry data between the local
dual-port memory banks (BRAMs 0–3 connected as Slaves 0–3) and the DMA
Engine (Master port 0). The local memory banks can be also accessed from the
Job Control Unit (through the port Master 2) and the Host Bridge (through the port
Master 1).

The ‘CONF XBAR’ switch is a configuration access bus. It provides a unified
protocol for accessing the control and status information stored in all the other units
from the Host Bridge and the Job Control Unit. Each of these slave units provides a
256-word configuration address space for its registers.

Table 8.1 displays the device numbers of the slaves connected to the switches,
along with their AMBA address space mapping. The transparent AMBA mapping
of the configuration registers and the local memory banks is performed by the Host
Bridge module. The bridge is an AMBA-AHB slave device connected to the system
bus. It implements two continuous address space extents, prefixed xxx and yyy in
Table 8.1, to which the XBAR slave address spaces are mapped. In the demo design
the prefixes are assigned as follows:

• xxx = 0xB00, and
• yyy = 0xB01.

8.7.2 DMA Engine

The DMA Engine autonomously transfers data to and from the main memory (over
the system AMBA bus) and the local dual-port memory banks (‘BRAMs 0–3’). It
implements 16 independent channels (configurable during core instantiation) that
can upload or download chunks of data to the local memory banks.
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Fig. 8.14 The DMA engine (block diagram)

The DMA engine internal structure is depicted in Fig. 8.14. It has three main
interfaces:

• BX-Master is connected to the BRAM XBAR Master port 0. Through this port
the data is transferred to and from the local memories.

• AHB-Master is an AMBA-AHB Master port. This interface is used to access the
AMBA system bus and the external system memory.

• CONF Slave is a slave port of the CONF XBAR. Through this interface the
configuration registers are accessed.

The engine is configurable through the ‘CONF Slave’ interface. Its internal
registers are mapped to the 256-word address space available through the interface,
see Fig. 8.15. Each of the 16 Channels has four configuration registers as depicted
in the picture. The purpose of the registers is further detailed in Table 8.2. Once
the channel registers are set, the channel can be enqueued for processing. This is
done by writing the channel number into the ‘Channel FIFO’ register in the ‘Global
Ctrl. Reg.’ area. A bit-map of the all currently active (enqueued) channels is also
provided along with the FIFO status bits (‘A’, ‘B’ in the figure).

8.7.3 BCE Core

A simple BCE core that implements a family of threads Zi := Ai+Bi was developed
for demonstration purposes. The core is connected to three dual-port memory banks
(‘BRAM 0–2’). The first two contain the input data. When the computation is over,
the third one contains the results.
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Fig. 8.15 The DMA engine: configuration address space

Table 8.2 DMA channel registers

Register Data type Function

direction std ulogic (1b) Direction of the data transfer; 0=download into
BRAM, 1=upload to the main memory

count count word t (up to 16b) Number of words to transfer; unsigned
maddr memory addr t (32b) Memory base address of the transfer
bank slave addr t (up to 16b) Identification of the target BCE BRAM, i.e. the

slave target number
baddr bmem addr t (up to 16b) Starting word address within the target BRAM
bstep count word t (up to 16b) baddr increment; signed
va std ulogic (1b) maddr is virtual; At present this has to be zero as

this feature has not been implemented
rcode dma result code t (4b) Result of the transfer: “0000” means ok, “0001”

means memory bus error

The core is controlled through the CONF interface. The configuration address
space, depicted in Fig. 8.16, is divided in two regions: the input region (words 0x00–
0x7F) and the output region (words 0x80–0xFF). The core is controlled through the
Control and Status Words. The other words in the configuration space are used to
pass additional parameters such as the number of words to be computed and the
starting addresses.
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Fig. 8.16 A simple BCE core: the configuration address space

The input Control Word contains the ‘Go’ bit (G, 1b) and the input tag (itag,
2b). The output Status Word contains the ‘Running’ bit (R, 1b), the ‘Busy’ bit (B,
1b), and the output tag (otag, 2b). The ‘G’ bit is used as a general enable/disable;
when cleared, the core is reset. The ‘R’ bit indicates if the core is running; basically
this status bit reflects the input ‘G’ bit. The ‘B’ bit indicates if the core is busy, i.e.
whether it is performing a computation. Figure 8.17 displays the state diagram of a
BCE core.

The itag and otag fields are used to implement a barrier synchronization when
submitting tasks. Whenever itag �= otag, the core is busy performing the requested
computation. Once the work is done, it sets otag := itag. Then the user can retrieve
the results, set up new parameters, and trigger a new computation by writing an itag
value different from the previous one.

8.7.4 UTLEON3 Processor Interface

The UTLEON3 Processor Interface unit implements a direct interface device
between the UTLEON3 scheduler and the HW-Families subsystem (the indirect
interface is via the Host Bridge). Figure 8.18 shows its block diagram.
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Fig. 8.17 The BCE state diagram
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Fig. 8.18 The UTLEON3/HWT interface unit (block diagram)

The unit implements the UTLEON3 scheduler query/response interface. Its main
part is the Thread Mapping Table (register file) that contains the specification of the
hardware families of threads available in the particular implementation. The unit
uses this table to decide, upon a family-create query from the UTLEON3 scheduler,
whether a particular family of threads can be created in the hardware accelerator.

The structure of one row of the Thread Mapping Table is visible in Fig. 8.18.
A principal component of the table is the thread addr field. This field’s value is
matched against the software thread address given by the setthread instruction
to pair the hardware and software implementation of the same family of threads.
Furthermore, the minsize and maxsize fields can be used to filter out families of
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threads whose size (limit − start) is too small (or too big) to be executed in the
hardware accelerator with good efficiency.

Figure 8.19 depicts the layout of the configuration address space of the device.
The address space is divided in four regions:

1. Thread Mapping Table at words 0x00–0x7F. The table can contain up to 16
entries.

2. UTLEON3 Register File Interface at words 0xD0–0xDF. The interface allows
the JCU to directly read/write the processor registers through its asynchronous
port. This is useful for reading family global registers and for writing the family
synchronization register.

3. UTLEON3 Scheduler Interface at words 0xE0–0xEF. When a family create from
the processor scheduler has been accepted, it is visible in this area for the JCU to
read and interpret. When the create message has been consumed by the JCU, it
can be dequeued by setting bit ‘D’ in the Control Register (word 0xF0).

4. Ctrl+Release Registers at words 0xF0 and 0xF1. The Control Register allows
to enable/disable the interface unit (‘E’ bit), and to dequeue the actual create
message from the Scheduler Interface area. The FID Release field allows to send
the Family Release response back to the UTLEON3 processor scheduler when a
particular family of threads has been completed in the hardware.

8.7.5 Job Control Unit

The Job Control Unit is a controller responsible for interpreting a family create
message, which was received from the UTLEON3 scheduler, driving the DMA
Engine, and controlling the BCE cores. The JCU implementation can be either
programmable, employing a simple processor, or a hard-wired with a fixed finite
state automaton (FSM). As a part of the development process three solutions have
been implemented:

1. JCU-FSM: a hard-wired FSM implementation. This JCU version is not pro-
grammable, but it is the fastest one. It gives us the lower bound on the control
overhead required to execute a family in the hardware accelerator.

2. JCU-PB8: uses a simple programmable 8-bit CPU PacoBlaze 3 (equivalent to
the KCPSM3 from Xilinx). It was discovered that the PicoBlaze 3 CPU is not
very suitable for the function, mainly due to its 8b design and unfitting I/O port
interface.

3. JCU-PB16: uses a programmable 16-bit CPU PacoBlaze 3e, loosely based on the
KCPSM3 from Xilinx. The processor has 16-bit data paths, and its I/O interface
was extended with a port busy signal that allows an external I/O device to stall
the processor. These two modifications greatly simplified controller firmware
programming and improved the overall speed.

The JCU module has four interfaces (see Fig. 8.12):
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• The CONF Slave interface allows the main UTLEON3 processor to control the
JCU during system initialization.

• The Bank P port connects to the local memory bank (‘BRAM 3’) that contains
the firmware for the simple CPU. This is not needed for the JCU-FSM version.

• The CX-Master port allows the JCU to access the configuration registers of all
the other modules in the subsystem.

• The BX-Master port allows the JCU to directly read/write the local memory
banks. This functionality is not currently used in the demonstrator design.

8.7.6 Putting It All Together

To validate the design described a simple VADD program (Sect. 5.2) was used as a
basis for the demonstration purposes.

The microthreaded assembler source code is displayed in Listing 2. The family
of threads ut vadd computes an integer vector addition, i.e. Zi := Ai +Bi. As the
same functionality is available in the simple BCE core (Sect. 8.7.3), we used it as
one configuration of the hardware accelerator.

The program flowchart is shown in Fig. 8.20. The UTLEON3 processor starts in
the legacy mode. After ensuring the JCU and BCE are stopped (step L1), the DMA
Engine is used to download the appropriate JCU firmware to the local memory
‘Bank P’ (step L2). In the meantime the Thread Mapping Table (Sect. 8.7.4) is
set up: one of its entries is filled up with the address of the software thread
ut vadd (step L3). Then the JCU is enabled (step L4), and the processor enters
the microthreaded mode (step L5). All these configuration accesses are done by the
UTLEON3 processor through the Host Bridge.

In the microthreaded mode the ut vadd family is about to be created. First, its
global registers %tg0–%tg2 are set up (step UT1); they contain pointers to the two
input arrays (%tg0, %tg1) and the output array (%tg2). Then the family is allocated
and set up (step UT2), and finally created (step UT3). At this time the processor
scheduler sends a create query to the UTLEON3 Processor Interface. The interface
device consults the thread mapping table and tries to pair the software family with
one of the hardware configurations. The look-up process is based on the thread
starting address that was specified in the setthread instruction. In our case the
look-up is successful as the same address was written to the table in step L3. Were
it not the case, an unsuccessful create query would result in the family of threads
being executed in software as usual.

In the meantime the JCU is awaiting a create message from the UTLEON3
Processor Interface (step H1). When the create message is delivered, the JCU loads
the family global registers and some other parameters (step H2). The DMA Engine
is set up and engaged to download the two input arrays of the VADD program from
the main memory to the local memory Banks A and B (BRAMs 0, 1) (step H3).
Afterwards the selected BCE core is configured (step H4) and run (step H5). While
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Fig. 8.20 The VADD program as a hardware family of threads

the BCE accelerator is computing, the JCU can theoretically serve other requests.
Once the computation in the BCE has finished, the DMA Engine uploads the results
from the local memory Bank Z (BRAM 2) to the main memory at address %tg2
(step H6). Finally, the JCU writes the family synchronization register (step H7), and
signals the processor scheduler to release the family from the Family Table.
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8.8 Implementation Characteristics

The crucial point in efficient use of hardware families of threads is the efficiency of
accessing the Thread Mapping Table (TMT) during the family create process. This
section evaluates how UTLEON3 can tolerate different TMT access latencies and
its behaviour on a microthreaded implementation of a FIR filter shown in Listing 11.

The program was transformed by hand into the mtsparc assembler for exe-
cution in the microthreaded processor UTLEON3. Simultaneously an accelerated
implementation in a hardwired BCE core was developed. The FIR BCE core was
instantiated twice in the HWFAM subsystem to allow a concurrent execution of
up to two families of threads in hardware. The JCU allocates a FIR BCE for a
particular instance of a family of threads dynamically. In our implementation the
JCU temporarily switches off the TMT unit while both the BCE cores are occupied.
However, other job scheduling schemes can be implemented in the JCU firmware.

Listing 11 Program FIR in the microthreaded C language

/∗ M i cro t hreaded MAC ( M u l t i p l y−Accumulate ) ∗ /
2 thread mac ( shared i n t sum , i n t ∗x , i n t ∗y )
{

4 index i ; /∗ l o c a l t h r e a d index , a s s i g n e d
accord i ng t o t h e c r e a t e ( ) a t l i n e 14 ∗ /

6 sum = sum + x [ i ] ∗ y [ i ] ;
}

8

/∗ Computes FIR a t p o i n t z [ k ] . ∗ /
10 thread f i r 1 ( i n t ∗x , i n t ∗b , i n t ∗z , i n t t )

{
12 index k ;

i n t f i d , s = 0 ;
14 c r e a t e ( f i d ; s t a r t =0; s t e p =1;

l i m i t = t −1; )
16 mac ( s , &x [ k ] , b ) ;

sync ( f i d ) ;
18 z [ k ] = s ;

}
20

/∗ Computes FIR f o r t h e whole v e c t o r z [ ] ∗ /
22 vo i d f i r ( i n t ∗x , i n t ∗b , i n t ∗z ,

i n t t , i n t n )
24 {

i n t f i d ; /∗ f i d = Fami ly ID ∗ /
26 c r e a t e ( f i d ; s t a r t =0; s t e p =1;

l i m i t =( n−t ) ; )
28 f i r 1 ( x , b , z , t ) ;

sync ( f i d ) ;
30 }
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Fig. 8.21 Data transfers and computation in the hardware families of threads

In the experiments we chose the number of FIR taps to be constant (t = 24) as
this is a typical value used in the embedded DSP domain for signal processing tasks.

The whole design (UTLEON3 processor, HWFAM subsystem, peripheral mod-
ules) can be synthesised in the Xilinx XUP-V5 Board that is also supported in the
GRLIB package. In the experiments the main system memory had a latency of two
cycles per word as this is the required configuration of the external on-board 1 MB
SRAM.

Figure 8.21 shows a representative breakdown of a computation in the hardware
accelerator.

8.8.1 Synthesis Results

The UTLEON3 with the HWFAM system was synthesized using Synopsis Synplify
D-2010.03 and Xilinx ISE 12.3 in Xilinx Virtex 5 xc5vlx110t. Table 8.3 lists the
synthesis results. Apart from the FIR BCE core, a hardware implementation of
the Discrete Cosine Transform (DCT) from JPEG was developed; however, its
performance is not discussed here further. The number of the TMT rows r governs
the number of classes of families of threads (i.e. distinct functions) that can be
mapped to hardware accelerators at the same time. In the presented experimental
setup with two equivalent FIR BCEs we required only one TMT row that maps the
symbolic address &(thread fir1) to a FIR BCE.

In our simple implementation of the TMT unit the content-addressable memory
performs lookups in O(1) time. However, from Table 8.3 we see that in terms of
hardware resources the implementation does not scale well when the number of
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Table 8.3 Synthesis results in Xilinx Virtex 5 technology (XC5VLX110T). r = Number of rows in
the associative Thread Mapping Table

Component BRAM FFs LUTs DSP48E

UTLEON3 86 5,405 10,874 4
DMA + Bridge + Internal bus 15 495 549 0
Job Control Unit 4 126 409 0
FIR BCE 6 216 114 3
DCT BCE 2 542 451 4
Thread Mapping Table

r = 16 rows 9 915 644 0
r = 8 rows 8 665 529 0
r = 4 rows 8 539 495 0
r = 2 rows 8 475 455 0

TMT rows r increases. Other implementation techniques can improve the resource
scaling issue, but probably at the cost of increased lookup latency; this issue is dealt
with in the following section.

8.8.2 TMT Latency and Execution Efficiency

We evaluate the impact of the TMT latency on the overall processor execution. The
processor must cope with additional latencies as all the create events are routed
through the TMT unit. The latency tolerance can be measured in terms of the CPU
efficiency, or IPC (Instructions Per Cycle):

IPC =
IC
CC

(8.2)

where IC is the instruction count, and CC is the total running time in clock cycles.
We ran eight identical FIR computations in software to simulate higher workload

and to average out transient effects of the dynamic thread scheduling. We limited the
number of concurrently scheduled FIRs to at most three by the blocksize parameter
so that we obtain more realistic (less parallel) workload.

8.8.2.1 Baseline Efficiency Degradation

Table 8.4 shows the IPC degradation when the TMT unit is switched on. All create
events, including those not belonging to any hardware accelerated family, are routed
through the TMT unit, but no families of threads are actually executed in the
accelerators (otherwise the instruction count IC would no longer be constant). We
see that in the worst case (n = 26) the IPC degradation is 2.5%-points, but typically
it is less than 1%-point.
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Table 8.4 CPU efficiency IPC degradation due to the added latency of the TMT unit; n is FIR
input vector length; number of taps: t = 24

n
CPU IPC

IPC Degradation
no TMT with TMT

26 0.659 0.634 −0.025
32 0.665 0.661 −0.004
40 0.676 0.673 −0.002
48 0.681 0.676 −0.005
64 0.680 0.673 −0.007
80 0.679 0.673 −0.006
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Fig. 8.22 CPU IPC degradation when TMT unit’s latency increases

8.8.2.2 TMT Latency Scaling

So far we have assumed the TMT unit’s latency to be only a few clock cycles.
An implementation of the TMT unit with large number (tens to hundreds) of rows
r would allow us to simultaneously map many classes of families of threads to
hardware. One example is to map kernels from the BLAS package. However, in
such an implementation the TMT latency will likely be in the order of O(logr), or
even O(r) if sequential search is used.

To simulate this situation we modified the TMT unit to impose an additional
artificial non-pipelined latency during its processing of the create events coming
from the processor; Fig. 8.22 plots the efficiency IPC with respect to the additional
latency. In the worst case (n = 26) the IPC degrades from 0.640 to 0.615 when
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Table 8.5 Extended measurement data for a 26-tap FIR filter with different vector lengths. Top
– execution in UTLEON3 without HWFAM, middle – execution always in HWFAM, bottom –
combined execution in UTLEON3 or HWFAM according to the vector length

n Kernel cc Coherency cc CPU IC DMA cc FIR BCE cc RF cc Total cc Speedup

26 849 0 403 0 0 0 849 1.0 (base)
40 3,344 0 2,111 0 0 0 3,344 1.0 (base)
48 4,752 0 3,087 0 0 0 4,752 1.0 (base)
128 19,028 0 12,847 0 0 0 19,028 1.0 (base)
26 2,620 584 37 226 84 9 3,204 0.26
40 2,957 729 37 352 420 9 3,686 0.91
48 3,143 799 37 424 612 9 3,942 1.21
128 5,702 1,536 37 1,151 2,532 9 7,238 2.63
26 905 0 403 0 0 0 905 0.94
40 3,429 0 2,111 0 0 0 3,429 0.98
48 3,143 799 37 424 612 9 3,942 1.21
128 5,702 1,536 37 1,151 2,532 9 7,238 2.63

TMT latency increases by 64 cycles. This shows that the microthreaded processors
tolerates the latencies introduced by our coupling scheme and validates the approach
(see also Table 8.5).

8.8.3 Family Size and Execution Efficiency

The FIR BCE computes one multiply-accumulate operation (MAC) per cycle while
the software implementation requires at least four cycles for the same computation
(2x LOAD, 1x MUL, 1x ADD). However, the main disadvantage of the hardware
implementation is the need to transfer the I/O data to/from the main memory. In
the experiments we considered the worst case scenario: at the beginning the data
were live in the processor cache, they had to be flushed to the main memory, then
downloaded into the BCE local buffer memory by the DMA engine, and at the
end the results uploaded back to the main memory. Combined with other control
overheads in the JCU the software implementation of a family can easily be faster.

Figure 8.23 shows a speedup of a single FIR computation with respect to the
input vector length n. The number of the FIR taps is constant (t = 24). The
computation requires t · (n− t + 1) = (nt − t2 + t) MAC operations, and (t + n+
(n − t + 1)) = (2n + 1) words have to be transferred over the system bus and
evicted/flushed from the processor D-Cache beforehand, which roughly doubles the
actual number of clock cycles it takes. Indeed, the sample accelerated hardware FIR
BCE reaches a speedup of 2x for n = 96 (i.e. 1,752 MACs); however for n < 44 (i.e.
less than 504 MACs) the software implementation is faster due to the data transfers
(the ◦ plot has the speedup much less than 1 in that region). The performance of the
HWFAM coupling scheme can be improved by filtering families of threads in the
TMT unit according to their size so that short FIR families will be always executed



8.8 Implementation Characteristics 157

n: FIR input array length [words]

S
pe

ed
up

 o
ve

r 
S

W
 im

pl
. [

−
]

24 32 40 48 56 64 72 80 88 96

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Always in the FIR BCE
Dynamically according to size

Fig. 8.23 Speedups (including data transfers) over all-software implementation for short input
vectors n where accelerator overheads are most pronounced. Single FIR BCE, t = 24 taps, 24 · (n−
23) MAC operations

in software. This is shown by the 
 plot which almost restores the performance
in the troublesome region. The remaining speedup degradation is due to the added
latency of the create events introduced in the TMT unit.

8.8.4 HWFAM Execution Profile

We will conclude the characterisation with a pipeline execution profile for a 25-tap
FIR filter with loop unroll factor 4 (also see Sect. 7.1.2). The measured data are
shown in Table 8.6 and Fig. 8.24. As in the previous performance tables the first
column shows the execution core. The second column contains the overall number
of clock cycles. The remaining columns contain cycle breakdown. Four processor
pipeline states and three HWFAM states were considered:

• Working – processor pipeline is processing useful instruction
• Holdn(cache) – processor pipeline is idle due to external data dependencies
• Stall – processor pipeline is idle due to internal data dependencies
• UT ovhd – a processor pipeline is idle due to thread management overhead
• HW DMA – HWFAM data transfers between the external DDR and internal

BRAMs
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Table 8.6 Pipeline execution profile for a 26-tap FIR filter, loop unroll factor 4 – LEON3 vs.
UTLEON3 vs. HWFAM

Core Total Working Holdn (cache) Stall UT ovhd HW DMA HW ovhd HW working
[1] [1] [1] [1] [1] [1] [1] [1]

LEON3 7,405 4,105 196 3,104
UTLEON3 4,353 3,890 10 95 358
HWFAM 1,390 242 289 859

0 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000

Legacy (L3)

Microthreaded (UT)

HWFAM

Execution Time [cc]

CPU Working Cache Hold Stall UT Overhead HWFAM DMA Transfers HWFAM Working HWFAM Overhead

Fig. 8.24 Execution profile – HWFAM compared to LEON3 and UTLEON3

• HW ovhd – overhead due to setting up HWFAM control registers
• HW working – HWFAM performing the user computation

We can see that the HWFAM can execute the computation about 5x faster than
LEON3 and about 3x faster than UTLEON3 including the data accesses to the
external DDR memory.

8.9 Summary

The proposed microthreaded scheme for coupling reconfigurable accelerators to
processors can be used with any processor that implements the microthreaded
computing model. The benefit of the microthreaded coupling is that it handles
concurrency in a uniform manner for both software and hardware execution.

In the performance evaluation we have intentionally focused only on specific
features of the proposed design and evaluated the possible negative effects of
increased latencies in the processor on its performance. The filtering of short
families of threads in the TMT unit ensures that the custom hardware accelerators
are not invoked if the expected overheads outweigh the speedup. On the other hand,
it was shown that in the worst case the coupling scheme will degrade the processor
efficiency by 2.5%-points in our case study, but typically less than 1%-point.

The performance data indicate external accelerators can be connected to the
microthreaded pipeline efficiently enough to take over simple data-intensive tasks
without degrading the integer pipeline performance.



Chapter 9
I/O and Interrupt Handling
in the Microthreaded Mode

An I/O (Input/Output) subsystem is provided by standard peripherals connected
via the AMBA bus to the UTLEON3 processor. From the user perspective the
peripherals are available in the non-cacheable address space. In the microthreaded
mode a common peripheral access is provided in the same manner as in the legacy
mode; the UTLEON3 processor does not require any extra modifications. The only
difference is in interrupt (or trap) handling. The function of the peripherals in the
legacy mode is described in the GRLIB IP Core User’s Manual (see [5]). In the
UTLEON3 processor interrupts are viewed as traps invoked by a peripheral. From
the hardware point of view interrupts are handled by the multiprocessor interrupt
controller (IRQMP [5]) in the legacy mode. The interrupt scheme is depicted in
Fig. 9.1.

To handle interrupts in the microthreaded mode the UTLEON3 processor is
extended with a new trap and interrupt controller (TIC). The block diagram of the
UTLEON3 processor with TIC is shown in Fig. 9.2.

9.1 Trap Handling

The UTLEON3 processor supports traps due to external interrupts. The traps invoke
special threads that service them, nevertheless the thread execution principles are the
same as what has been described in the previous chapters. Trap handling requires us
to introduce two new events in the UTLEON3 processor pipeline:

• Registration of a thread as a trap (or interrupt) handler, and
• Invocation of a thread when a trap (or interrupt) occurs.

These events are recognised and handled in a new trap and interrupt controller
and the thread scheduler.

M. Daněk et al., UTLEON3: Exploring Fine-Grain Multi-Threading in FPGAs,
DOI 10.1007/978-1-4614-2410-9 9, © Springer Science+Business Media, LLC 2013
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Fig. 9.1 UTLEON3 multiprocessor system with the multiprocessor interrupt controller [5]

2xR

D-Cache

UTLEON3
CPU

I-Cache

ct
rl

cm
d

RUC

Thread
table

Thread scheduler

W

CREATE PICK

PUSH CLEANUP

Family
table

W

PC

FE

WB

XC

MA

EX

RA

DE

A-Cache

M
E

M
O

R
Y

H
W

 F
am

ili
es

R/W

A
M

B
A

Integer
pipeline

PC,INST

NPC INST

LD/ST

RS

RD
PC, NPC

HW
Create

Inputs, Completion value

Completion value

Reg alloc/rel

CPU pipeline 
access

Thread
management
and memory 
access

Hardware
families

Register
file

RAU

TIC

W

W

LD update

Trap type value

Trap

Register

Fig. 9.2 Block diagram of the UTLEON3 processor with TIC

9.1.1 Thread Registration

A thread is registered as a trap handler through an execution of the lda instruction
on a specific address and address space. This lda instruction always results in a D-
Cache miss that marks the lda target register as pending as if a cache line fetch was
issued. The only difference from the usual cache miss is that the fetch request is not
generated. The instruction also updates the data structures in the TIC component.
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When the thread reads the target register of the lda instruction, it gets suspended,
and the target register is marked as WAITING; this enables the thread to be woken
up later on.

9.1.2 Thread Invocation

A trap is triggered by the integer pipeline (IU3). The IU3 passes the trap request
to the thread scheduler. The scheduler forces a thread switch, and forces the IU3 to
execute nop operations (force-nop) in the pipeline to prevent threads from entering
the processor pipeline. The IU3 passes the trap request to TIC as well. If there
is a handler thread that is registered for the given trap type, the corresponding
register is updated, which generates a high-priority thread wakeup request. The
thread scheduler checks if the the handler code is present in the I-Cache, and issues
a cache line fetch request if necessary. If the handler code is present in the I-Cache
(or the fetch request has been completed), the scheduler bypasses the regular list of
active threads and sets the integer pipeline to execute the handler thread.

9.1.3 Thread State Transitions

Threads used as trap handlers are managed in the same way as normal threads.
The only difference is in the thread wakeup procedure mentioned above. A short
execution time of a trap handler execution can be ensured only if:

• The part of the thread handler that is to be executed between a thread wakeup
and subsequent thread registration fits in one I-Cache line,

• No long-latency operation is used in the trap handler,
• No swch instruction modifier is used in the trap handler.

If the conditions mentioned above are met, the thread handler state will change
as shown in the left part of Fig. 9.3. A running thread becomes suspended at the
time it registers itself for a given trap type and accesses the target register of the
corresponding lda operation. When a trap occurs, the thread may become waiting
for a short time until the I-Cache has fetched the required cacheline, then it becomes
running immediately. The thread becomes suspended again at the time it re-registers
itself for the next trap event.

If the conditions are not met, the thread handler state changes will be more
complex as shown in Fig. 9.4. The trap handler run time will not be deterministic,
and short execution time cannot be guaranteed.
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Fig. 9.3 Thread state transitions – short-latency trap handler

Fig. 9.4 Thread state transitions – general trap handler

9.2 Trap and Interrupt Controller

The trap and interrupt controller (TIC) provides two basic functions:

• Handler thread registration, and
• Handler thread wake up.
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Fig. 9.5 Simplified block diagram of the trap and interrupt controller

TIC consists of a data structure and an auxiliary logic used to process input requests,
to process data from the data structure, and to write data to registers in the register
file through the shared asynchronous access port. The data structure is a table with
lines consisting of three items:

• Line valid indicator,
• Thread ID (TID) of the handler thread, and
• Physical number of the corresponding register (regnum).

The table is indexed by the trap type (TT) register that identifies the current trap
to be handled. The SPARC V8 specification defines up to 256 traps with the
corresponding trap type values from 0x00 to 0xFF. Inside the range there is a block
of values that are reserved as implementation dependent; the block starts with 0x60
and it ends with 0x7F. TIC supports registration of a universal handler that serves
all unregistered traps. A particular trap type assigned to the universal handler as a
placeholder is equal to 0x60. As the UTLEON3 processor uses trap types from 0x00
to 0x3F (6 bit index), TIC has a special register to store the TID of the universal
handler. This register has the same structure as the table line.

As the registration and wake-up operations can access the trap table at the same
time, and both of them need to prefetch the previous value before writing, the
table needs up to four ports. Figure 9.5 shows a simplified block diagram of TIC.
Assuming the use of a dual-port memory (BlockRAM entity in the FPGA) the TIC
operations will take two clock cycles. In the case of successive operations of the
same type in subsequent clock cycles the holdn signal becomes active and halts
the processor pipeline until TIC is ready to accept new operations. The processor
pipeline is also halted when registration and wake-up requests are generated in the
same clock cycle because of the shared access to the integer register file.
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9.3 Interrupt Registration

A thread is registered as an trap handler by executing the lda instruction that
accesses a specific address in a specific address space:

lda [ADDR] ASI, %rd,

where

• ADDR is the address that corresponds to the trap type (TT), the address is shifted
by 4 bits – the first 2-bit shift ensures memory address alignment, the second
2-bit shift is to improve readability of the trap types in the assembler code,

• ASI is the address space identifier (ASI) 0x12, and
• %rd is the destination register related to the trap handler thread that is used as a

synchronizing register.

TIC detects registration transactions by monitoring the D-Cache input interface (dci)
(see Fig. 9.6). The ci values are used to write data to the corresponding table line or
special register; this depends on the current trap-type value. The registration takes
two clock cycles. In the first clock cycle the required line from the table (given by
the trap type) or the register (when the trap type is 0x60) are read to obtain the valid
bit. In the second clock cycle new values are written to the table or the register, and
a register file request is generated according to the value of the valid bit:

• 0 – a write request to the register file is not generated; this means that no trap
handler is registered for the requested trap type. The table line or the register stay
unchanged.

• 1 – a write request to the register file is generated only when the current and new
TIDs are not equal. This means that the re-registration operation is required by
another thread for the input trap type. The written data is marked as KILLED
(0xFFFFFFFF), the state written is FULL. This write request is not prioritized.
The valid flag becomes reset in this case.

Figure 9.7 shows the waveform on the register file interface.

clk

ut_mode

req

addr X A1(TT1) X A2(TT2) A3(TT3) X A4(TT4) X A5(TT5) X

asi X 0x12 X 0x12 X 0x12 X 0x12 X

regnum X R1 X R2 R3 X R4 X R5 X

tid X TID1 X TID2 TID3 X TID4 X TID5 X

holdn

Fig. 9.6 Transaction on dci with a TIC register
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clk

we

waddr X A0 X A1 X A2 A3 X

wdata X FID&TT X FID&TT(A1) X KILLED X

wstate X FULL X FULL X FULL X

priority

busy

Fig. 9.7 Register file request interface

9.4 Interrupt De-registration

A trap handler de-registration is initiated on execution of the lda instruction
when the destination register is %r0. The input trap type determines whether the
corresponding line valid flag or register valid flag are reset. This operation initiates a
write request to the register file with the KILLED value as well as the de-registration
operation.

9.5 Interrupt Request

An interrupt request is processed in the exception stage of the processor pipeline. It
consists of the TT number related to the interrupt request and the family identifier
(FID) of the interrupted family. The input interrupt request interface is shown in
Fig. 9.8. The operation in TIC takes two clock cycles. It consists of getting the
information about the registered handler (TT matches the line from the trap table
or the special register), updating the table or the special register, and updating
the corresponding register in the integer register file. In the first clock cycle the
corresponding line from the table and the register is read. If the table line is invalid,
the register will be used. The value of the valid bit determines the behaviour during
the second clock cycle:

• 0 – the interrupt request is ignored; this means that neither the general, nor a
specific interrupt handler is registered for the requested trap type. The table line
and the register are left unchanged.

• 1 – the interrupt request is taken. The valid bit is reset, and a write request
to the register file is generated; the data to be written consist of the input FID
(Family ID) and the trap type, the new register state is FULL. This write request
is accompanied with a high-priority wake up request to the scheduler. Figure 9.7
shows the register file interface waveform on interrupt request.

The TIC block diagram is shown in Fig. 9.9.
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clk

req

tt X TT1 X TT2 TT3 X

fid X FID1 X FID2 FID3 X

holdn

Fig. 9.8 Interrupt request
interface

9.6 Interrupt Handler Example

An interrupt handler for a given trap type is formed by a family of threads with just
one thread. The interrupt handler family is created via the regular family creation.
The body of a handler thread within the family performs a sequence of operations
outlined below:

1. A thread is registered as an interrupt handler through the lda instruction
that accesses a specific address in a specific address space (lda [ADDR]
ASI, %rd). The address space reserved for TIC is 0x12. Individual addresses
correspond to trap type identifiers shifted by 4 bits to the left. The destination
register %rd acts as a synchronizing register.

2. The UTLEON3 trap/interrupt subsystem is enabled when the ET bit in the
PSR register is set, and when the interrupt request of the interrupting device is
unmasked in the multiprocessor interrupt controller.

3. The thread becomes suspended when the synchronizing register is read.
4. On an interrupt request the thread is woken up and the synchronizing register is

read to determine if the thread is to be ended (the KILLED wakeup value) or the
interrupt routine executed.

5. The interrupt routine is executed.
6. Go to Step 1.

An example of a timer interrupt handler is shown in Listings 12 and 13, The
interrupt handler starts with the thread creation (lines 2–10). The code can continue
with another thread creation. When all regular threads are finished, the thread
that executes the interrupt handler is also finished (lines 12–20). The interrupt
handler body starts at line 24 with the initialization part; the registers are initialized
with values that will be constant during the handler execution. The main part of
the thread is formed by the loop, its body contains the handler registration and
interrupt routine. The interrupt is registered through the lda instruction (line 43).
Sequentially, traps are enabled and interrupt requests from the timer are unmasked
in the multiprocessor interrupt controller. After that the handler thread becomes
suspended until an interrupt request occurs (line 46). When the thread is woken
up, the value of the synchronizing register is evaluated. If the value corresponds to
the KILLED flag (0xFFFFFFFF), the thread will be ended, otherwise the interrupt
routine will be executed.

The routine uses a buffer of pending interrupts located in the main memory with a
pointer to the top of the buffer. To make the interrupt processing as short as possible
the routine only increments the pointer and writes the data read from the peripheral
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Listing 12 An interrupt handler example (mtsparc assembler listing)

/∗ c r e a t e t i m e r i n t e r r u p t h a n d l e r f a m i l y ∗ /
2 a l l o c a t e %t l 2 3

s e t s t a r t %t l 2 3 , 0
4 s e t l i m i t %t l 2 3 , 0

s e t s t e p %t l 2 3 , 1
6 s e t b l o c k %t l 2 3 , BLOCKSIZE

s e t f t i c 1 s t a r t , %t l 2 1
8 s e t t h r e a d %t l 2 3 , %t l 2 1

c r e a t e %t l 2 3 , %t l 2 3
10

. . .
12

/∗ u n r e g i s t e r t h e h a n d l e r f a m i l y so t h a t i t can be f i n i s h e d ∗ /
14 s e t TT TIMER , %t l 1

lda [% t l 1 ]0 x12 , %r0
16 /∗ u n r e g i s t e r ˜ r e l e a s e t h e f t i c 1 s t a r t f a m i l y ∗ /

18 mov %t l 2 3 , %t l 2 1
/∗ w a i t f o r f a m i l y f t i c s t a r t t o t e r m i n a t e ∗ /

20 nop

22 . . .

24 /∗ t i m e r i n t e r r u p t h a n d l e r f a m i l y ∗ /
. a l i g n CACHELINE

26 . r e g i s t e r s 0 0 10 0 0 0 /∗ 0 GR, 0 SR , 10 LR ∗ /
f t i c 1 s t a r t :

28 s e t ET MASK, %t l 1
rd %psr , %t l 2

30 and %t l 2 , %t l 1 , %t l 2
wr %t l 2 , %p s r /∗ d i s a b l e t r a p s ∗ /

32 s e t TT TIMER , %t l 3 /∗ TT − i n t e r r u p t l e v e l 8 − t i m e r ∗ /
s e t KILLED , %t l 5

34 s e t INTCTRL MASK BASE , %t l 1
s e t TIMER MASK VAL , %t l 7

36 s e t TIMER UNMASK VAL, %t l 8
s e t IRQ BUFF PTR , %t l 9

38 /∗ P o i n t e r t o pend i ng i n t e r r u p t b u f f e r ∗ /

to the buffer. The routine ends with a jump to the start of the inner loop to make
a new registration in the TIC component to keep the handler alive. The data in the
buffer are processed by another thread.

It should be noted that traps are disabled automatically when an interrupt request
occurs in the processor pipeline. They must be enabled in each loop iteration.
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Listing 13 An interrupt handler example (mtsparc assembler listing) cont’d

/∗ ========================================================= ∗ /
40 . a l i g n CACHELINE

f t i c 1 c o n t : /∗ l oop ∗ /
42 rd %psr , %t l 2

or %t l 2 , 0x20 ,% t l 2
44 lda [% t l 3 ]0 x12 , %t l 4 /∗ r e g i s t e r ∗ /

wr %t l 2 , %p s r /∗ enab l e t r a p s ∗ /
46 s t %t l 8 , [% t l 1 ] /∗ unmask i n t e r r u p t ∗ /

mov %t l 4 , %t l 4 /∗ make t h r e a d PENDING u n t i l t r a p occurs ∗ /
48 cmp %t l 4 , %t l 5 /∗ i s i t ’KILLED ’ wakeup or TRAP wakeup ? ∗ /

be f t i c 1 k i l l e d
50 l d [% t l 9 ] , %t l 6 /∗ d e l a y s l o t − g e t c u r r e n t p i n t e r ∗ /

52 f t i c 1 h a n d l e r : /∗ i n t e r r u p t r o u t i n e ∗ /
i nc %t l 6 /∗ c a l c u l a t e new p i o n t e r ∗ /

54 s t b %t l 3 , [% t l 6 ] /∗ s t o r e TT t o b u f f e r ∗ /
s t %t l 6 , [% t l 9 ] /∗ s t o r e new p o i n t e r ∗ /

56 ba f t i c 1 c o n t /∗ keep t h e t h r e a d a l i v e ∗ /
nop /∗ d e l a y s l o t ∗ /

58

f t i c 1 k i l l e d : /∗ end t h e t h r e a d −> end f a m i l y ∗ /
60 s t %t l 7 , [% t l 1 ] ; END ! /∗ mask i n t e r r u p t ∗ /

9.7 UTLEON3 Interrupt Subsystem Characteristics

The usage of the interrupt subsystem is limited by hardware constraints of the cur-
rent UTLEON3 implementation. There are two possible scenarios of the UTLEON3
processor usage to be considered. First, the UTLEON3 processor works with data
from the peripheral which interrupts the processor when the data are ready. The
question is how often the processor can be interrupted without losing some of the
interrupt requests. Second, when a computation has to be finished in certain time,
we are interested in knowing how the computation runtime is influenced by the
incoming interrupt requests.

9.7.1 Minimal Time Between Two Interrupt Requests

The most important characteristics of an interrupt service routine is the time it takes
to process an interrupt request, in other words the minimum allowable amount of
time between two consecutive interrupt requests in a row such that no interrupt
request will be lost (tIRQ min). There are three reasons why an interrupt request can
be lost:
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Listing 14 A computing thread example (mtsparc assembler listing)

. a l i g n CACHELINE
2 . r e g i s t e r s 2 0 2 0 0 0 /∗ 2 GR, 0 SR , 2 LR ∗ /

f 1 s t a r t :
4 s l l %t l 0 , 2 , %t l 1

6 /∗ number o f r e p e a t e d i n s t r u c t i o n ∗ /
. rept COMP INSTR CNT

8 i nc %t l 1
dec %t l 1

10 . endr

12 s t %t l 0 , [% t g1+% t l 1 ] ; END !

• The time between two consecutive interrupt requests is less than tIRQ min.
• The interrupt handler code is not loaded in the I-Cache when an interrupt request

occurs.
• A handler is not registered for the request.

To get tIRQ min it is assumed that the interrupt handler is locked in the I-Cache,
and the data buffer and the pointer to the top of this buffer are always available in the
D-Cache. The number of instructions in the loop inside the handler (see Listing 13)
has to fit in one cache line. An example program we will use to evaluate the TIC
properties consists of one family of threads and one interrupt handler for the timer;
the computation is interrupted by the timer. Listing 14 shows the thread body; it
just sets an output vector to 0, 1, 2, 3, etc. The COMP INSTR CNT compile-time
constant located on line 7 gives the number of instruction repetitions in its body to
the compiler; the body consist of inc and dec instructions. The more the instructions,
the longer the thread will execute. The additional instructions will not affect the
results. In the measurements the constant was set to 20. The interrupt handler is the
same as was presented in Sect. 9.6 (see Listings 12 and 13).

This program was compiled and then executed for several different settings of
the timer. The time between two interrupt requests was decreased from 88 to 42
clock cycles. Figure 9.10 shows the experimental results. If the time is shorter than
58 clock cycles, the system is not able to response to all interrupt requests.

9.7.2 Impact of Interrupt Handling on the Program Runtime

The interrupt handling negatively influences the computation time; it makes the
runtime longer. Equation 9.1 shows a runtime dependency on the time spent in the
interrupt handler:

ttotal = tc+
N

∑
i=0

thi (9.1)
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Fig. 9.10 The minimal time between two consecutive interrupt requests tIRQ min =58 clock cycles
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Fig. 9.11 The impact of interrupt handling on the program runtime

where tc is the time taken to execute the program without interrupts, and thi is
the time required for handling one interrupt request. In the tests we used exactly
the same program as described in Sect. 9.7.1. The only difference is that the time
between two interrupt requests was decreased from 220 to 80 clock cycles. We set
the time required to finish the computation to 6,500 clock cycles. The results are
shown in Fig. 9.11. The runtime increases linearly with the increased interrupt count.
To complete the computation in the required time limit, it must not be interrupted
more than 60 times.
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9.8 Summary

The proposed microthreaded scheme for handling interrupts can be used with any
processor that implements the microthreaded computing model. The benefit of the
interrupt handling in the microthreaded mode is that there is no need to switch the
UTLEON3 processor from the microthreaded to the legacy mode.

There are certain limitations on the implementation of trap handlers that are
given by the current implementation of UTLEON3. The first is that in the current
UTLEON3 the main body of a trap handler has to fit in one I-Cache line. This
can be removed by implementing a mechanism in the I-Cache that would allow to
explicitly lock certain cachelines used by handlers. The second limitation, rather
an implementation characteristics, is the minimal time between two consecutive
interrupt requests that can be processed by UTLEON3. At present it is 58 clock
cycles; more frequent events will be lost.



Appendix A
The IU3 Pipeline

A.1 IU3 Pipeline Register

The Table A.1 shows the basic register structure that implements the iu3 pipeline.
Different table columns denote different pipeline stages (FE, DE, RA, EX, MA, XC,
WB), each row lists register names for accessing one specific information in a given
pipeline stage if it exists.

M. Daněk et al., UTLEON3: Exploring Fine-Grain Multi-Threading in FPGAs,
DOI 10.1007/978-1-4614-2410-9, © Springer Science+Business Media, LLC 2013
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Appendix B
Excerpts from the LEON3 Instruction Set

B.1 LEON3 (SPARC V8) Instruction Formats

Table B.1 Format 1 (op=1): CALL

31 30 29 0

op disp30

Table B.2 Format 2 (op = 0): SETHI and branches

31 30 29 28 25 24 22 21 0

op rd op2 imm22
op a cond op2 disp22

Table B.3 Format 3 (op = 2 or 3): Remaining instructions

31 30 29 25 24 19 18 14 13 12 5 4 0

op rd op3 rs1 0 asi rs2
op rd op3 rs1 1 simm13
op rd op3 rs1 opf rs2

M. Daněk et al., UTLEON3: Exploring Fine-Grain Multi-Threading in FPGAs,
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Table B.4 Table of instructions (op = 2)

op3[5:4]
0 1 2 3

9 RDPSR RETT
A UMUL UMULcc RDWIM Ticc
B SMUL SMULcc RDTBR FLUSH

op3[3:0] C SUBX SUBXcc SAVE
D RESTORE
E UDIV UDIVcc UMAC
F SDIV SDIVcc SMAC

Table B.5 Table of
instructions (op = 3)

op3[5:4]
0 1 2 3

2 LDUH LDUHA
8
9 LDSB LDSBA
A LDSH LDSHA

op3[3:0] B
C
D LDSTUB LDSTUBA
E
F SWAP SWAPA

B.2 Format 3 Instructions

B.3 Description of Assembler Instruction in GNU AS

The operation code from an assembler instruction is structured as shown in the table
of instruction in the binutils/opcodes/sparc-opc.c file. The structure of the table is
defined in the binutils/include/opcode/sparc.h header file. Each entry contains the
following fields:

• An assembler instruction
• Bits in the operation code which must be set
• Bits in the operation code which do not have to be set
• Valid arguments as a string in a specific format
• Instruction flags (delayed, conditional/unconditional branch, . . . )
• A bitmask of the allowed SPARC architectures



Appendix C
Relevant LEON3 Registers and Address Space
Identifiers

C.1 LEON3 Registers

• r registers
• IU control/status registers

– Processor State Register (PSR)
– Window Invalid Mask (WIM)
– Trap Base Register (TBR)
– Multiply/Divide Register (Y)
– Program Counters (PC, nPC)
– Implementation-dependent Ancillary State Registers (ASRs)

C.2 LEON3 Processor State Register

C.2.1 Fields of the Processor State Register

Bits Field Description
b31-b28 impl Identifier of implementation
b27-b24 ver implementation-dependent version

of implementation
b23-b20 icc Integer Condition Codes

b23 - N - negative
b22 - Z - zero
b21 - V - overflow
b20 - C - carry

b19-b14 reserved
b13 EC Enable Coprocessor
b12 EF Enable FPU

M. Daněk et al., UTLEON3: Exploring Fine-Grain Multi-Threading in FPGAs,
DOI 10.1007/978-1-4614-2410-9, © Springer Science+Business Media, LLC 2013
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b11-b8 PIL Processor Interrupt Level
b7 S Supervisor/user mode
b6 PS Previous Supervisor (S bit at the

time of
the most

recent trap)
b5 ET Enable Traps

b4-b0 CWP Current Window Pointer

C.2.2 Identifiers of Known SPARC V8 Implementations

PSRimpl PSRver Company - Part Number Label Used
0 0 Fujitsu - MB86900/1A Fujitsu0

& LSIL - L64801
1 0,1 Cypress - CY7C601 Cypress0

& LSIL - L64811
1 3 Cypress - CY7C611 Cypress1
2 0 BIT - B5010 BIT0
5 0 Matsushita - MN10501 Matsushita0

F 3 Gaisler - LEON LEON3

C.3 LEON3 Ancillary State Registers

C.3.1 List of Ancillary State Registers

#ASR Description
1-15 Reserved

16 SEU protection of the IU/FPU register file (LEON3FT)
17 Processor Configuration Register
18 UMAC,SMAC least 32bits of result
19 Power-down register
20
21
22
23
24 HW breakpoint 0, address register
25 HW breakpoint 0, mask register
26 HW breakpoint 1, address register
27 HW breakpoint 1, mask register
28 HW breakpoint 2, address register
29 HW breakpoint 2, mask register
30 HW breakpoint 3, address register
31 HW breakpoint 3, mask register



C Relevant LEON3 Registers and Address Space Identifiers 183

C.3.2 Processor Configuration Register: ASR17

Bits Field Description
b31-b28 INDEX Processor index.
b27-b18 Reserved.

b17 CS Clock switching enabled. Switching
between AHB/CPU freq. is available.

b16-b15 CF CPU clock frequency. CPU core runs
at (CF+1) times AHB frequency.

b14 DWT Disable write error trap.
tt=0x2b will be ignored.

b13 SVT Single vector trapping enable.
b12 LD Load delay - the pipeline uses

2-cycle LD otherwise 1-cycle LD.
b11-b10 FPU Type of FPU. noFPU/GRFPU/MeikoFPU/

FRFPULite
b9 M Optional MAC instruction is available.
b8 V8 SPARC V8 multiply,divide instructions

are available.
b7-b5 NWP Number of implemented watchpoints.
b4-b0 NWIN Number of implemented windows (NWIN+1).

C.4 LEON3 Address Space Identifiers

ASI * Address Space
0x01 c Forced cache miss
0x02 c System control registers (cache control register)
0x08 s User Instruction
0x09 s Supervisor Instruction
0x0A s User Data
0x0B s Supervisor Data
0x0C c Instruction cache tags
0x0D c Instruction cache data
0x0E c Data cache tags
0x0F c Data cache data
0x10 c Flush instruction cache
0x10 m MMU flush page
0x11 c Flush data cache
0x13 m MMU flush context
0x14 m MMU diagnostic D-Cache context access
0x15 m MMU diagnostic I-Cache context access
0x19 m MMU registers
0x1C m MMU bypass
0x1D m MMU diagnostic access

* s-SPARC V8 specification, c-LEON3 cache, m - LEON3 MMU



Appendix D
Scheduler Example

The example shows how the thread scheduler works with family and thread table
entries.

D.1 Linked Lists Example: Initial Conditions

• Family 0

– The thread that creates Family 1 and waits until it is finished

• Family 1

– The threads computes
– Parameters

· Family size: 8
· Indexes: 10 .. 17
· Block size: 6

M. Daněk et al., UTLEON3: Exploring Fine-Grain Multi-Threading in FPGAs,
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D.2 Linked Lists Example: 1/8

It is assumed that the Thread 0 in the Family 0 is running. Thread 0 is setting
parameters that are required for Family 1 creation.

• Family 0

– TID 0 running

• Family 1

– Empty

Fig. D.1 Transitional digram of the thread states
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D.3 Linked Lists Example: 2/8

Thread 0 initiated creation of Family 1 and is suspended, threads from Family 1
have been just created, thread 1 is running.

• Family 0

– TID 0 suspended

• Family 1

– TID 1 running
– TID 2 active
– TID 3 active
– TID 4 active
– TID 5 active
– TID 6 active
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D.4 Linked Lists Example: 3/8

Thread 1 and Thread 2 are waiting for cacheline 0, Thread 3 is running.

• Family 0

– TID 0 suspended

• Family 1

– TID 1 waiting
– TID 2 waiting
– TID 3 running
– TID 4 active
– TID 5 active
– TID 6 active
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D.5 Linked Lists Example: 4/8

A context switch occurred in the running Thread 3. Thread 3 state has been changed
to active, Thread 4 is running.

• Family 0

– TID 0 suspended

• Family 1

– TID 1 waiting
– TID 2 waiting
– TID 3 active
– TID 4 running
– TID 5 active
– TID 6 active
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D.6 Linked Lists Example: 5/8

Cacheline 0 has been loaded, Thread 1 and Thread 2 have been woken up.

• Family 0

– TID 0 suspended

• Family 1

– TID 1 active
– TID 2 active
– TID 3 active
– TID 4 running
– TID 5 active
– TID 6 active
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D.7 Linked Lists Example: 6/8

Threads with index 10 (Thread 1) and 11 (Thread 2) have been killed, Thread 1 has
been cleaned up.

• Family 0

– TID 0 suspended

• Family 1

– TID 1 cleaned up
– TID 2 killed
– TID 3 active
– TID 4 running
– TID 5 active
– TID 6 active
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D.8 Linked Lists Example: 7/8

Thread 1 has been reused for thread with index 16, it changed the thread state to
active.

• Family 0

– TID 0 suspended

• Family 1

– TID 1 active
– TID 2 killed
– TID 3 active
– TID 4 running
– TID 5 active
– TID 6 active
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D.9 Linked Lists Example: 8/8

Thread 2 has been reused for thread with index 17, Thread 3 killed & cleaned up,
Thread 4 killed.

• Family 0

– TID 0 suspended

• Family 1

– TID 1 active
– TID 2 active
– TID 3 cleaned up
– TID 4 killed
– TID 5 running
– TID 6 active



Appendix E
Used Resources

E.1 Implementation Results

This section presents implementation results of the UTLEON3 processor from
various aspects.

The first set of experiments provides synthesis results for the FPGA technology.
First, the UTLEON3 processor is compared to the original LEON3 processor in
four different configurations. Second, a breakdown of resource requirements per a
particular component is provided. Finally, a breakdown of resource requirements for
the hardware accelerator for families of threads is evaluated.

The second experiment evaluates the implementation of both processors in an
FPGA in terms of their maximal operating frequency.

The third set of experiments analyzes implementation results for the ASIC
technology. A comparison of overall resource requirements and circuit delay is
provided.

In all the experiments four processor configurations were considered (see
Table E.1). The configurations differ in six parameters – the I-Cache set size, D-
Cache set size, D-Cache associativity level, Register File size (RF), Family Thread
Table size (FTT) and Thread Table Size (TT). Note that the latter three parameters
are valid for the UTLEON3 processor only. As a result, configuration 0 equals
to configuration 2 and configuration 1 equals to configuration 3 for the LEON3
processor. A register file with one write port was considered in all cases.

M. Daněk et al., UTLEON3: Exploring Fine-Grain Multi-Threading in FPGAs,
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Table E.1 Design
configurations for synthesis

CFG Description

0 ICache 1 kB, DCache 1 kB, asociativity 1
RF 256, FTT 8, TT 64

1 ICache 1 kB, DCache 1 kB, asociativity 4
RF 256, FTT 8, TT 64

2 ICache 1 kB, DCache 1 kB, asociativity 1
RF 1024, FTT 32, TT 256

3 ICache 1 kB, DCache 1 kB, asociativity 4
RF 1024, FTT 32, TT 256

E.1.1 FPGA Synthesis

This section presents implementation results for the FPGA technology. The XST re-
lease 12.3, xst M.70d (lin64) was used for synthesis; the Virtex 5 LXT (xc5vlx110t-
1-ff1136) FPGA was selected as the target.

E.1.1.1 Comparison of the LEON3 and UTLEON3 Processors

This subsection provides overall resource consumption for the LEON3 and UT-
LEON3 processor cores. Four various configurations were considered as shown in
Table E.1.
The synthesis results are shown in Table E.2. The first column contains configuration
indexes (see Table E.1); the next three columns show resource requirements in
terms of slice flip-flops, 6-input LUTs (LUT6) and dedicated 36 kbit RAM blocks
(RAMB36) respectively. The upper part contains results for the original LEON3
processor. As this core does not contain microthreaded modules, configuration 0
is equal to configuration 2, and configuration 1 to configuration 3. The lower part
contains results for the UTLEON3 core. The resources used are also evaluated as
the ratio to the resource requirements of the LEON3 core of the same configuration.

Table E.2 FPGA synthesis – resource requirements summary.
Configurations are described in Table E.1. Resource requirements
are provided in terms of slice flip-flops, 6-input LUTs and dedicated
36 kbit RAM blocks

LEON3s
CFG Slice Flip Flops LUT6 RAMB36

0, 2 1,324 4,804 7
1, 3 1,619 5,434 11
UTLEON3s
CFG Slice Flip Flops LUT6 RAMB36

0 4,874 3.7x 12,413 2.6x 29 4.1x
1 5,243 3.2x 14,428 2.7x 36 3.3x
2 5,175 3.9x 12,937 2.7x 30 4.3x
3 5,544 3.4x 14,691 2.7x 37 3.4x
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The UTLEON3 core is 3.6 times larger in terms of flip-flops, 2.7 times in terms
of LUTs and 3.8 times in terms of RAM blocks on average.

E.1.1.2 Distribution of Resources

This section shows the distribution of resources between processor subblocks. The
distribution for the original LEON3 processor is shown followed by the distribution
for the UTLEON3 processor. Configuration 0 shown in Table E.1 was considered in
both cases.

The functional blocks of the original LEON3s core included in this experiment
are cache (CACHE), integer pipeline (IU3) and register file (RF). The resource
distribution is shown in Table E.3. Note that the overall resource requirements for
the whole processor (column LEON3) may differ from the sum of partial resource
requirements of these subblocks. The first reason is that just three most important
components are shown in the breakdown, but not all the components that the
UTLEON3 core is composed of. The second reason is that a separate synthesis of
the components cannot achieve some inter-component optimizations.

Table E.3 FPGA synthesis –
distribution of FPGA
resources between the
LEON3 modules

Resource type LEON3s CACHE IU3 RF

Slice Flip Flops 1,324 246 969 0
Total 6 input LUTs 4,804 1,651 2,805 8
Used as logic 4,765 1,651 2,766 8
Used as shift registers 39 0 39 0
Used as RAMs 0 0 0 0
BRAMs 36 kb 7 5 0 1

In the case of the original LEON3 processor the integer pipeline consumes most
resources – about 58 % of overall requirements in terms of 6-input LUTs, and 73 %
in terms of flip-flops. The integer pipeline consumes almost 1.7 times more than
the cache subsystem in terms of 6-input LUTs and 1.13 more in terms on flip-flops.
Resource requirements of the register file were negligible.

Resource distribution for the UTLEON3 processor is shown in Table E.4. The
blocks of the microthreaded UTLEON3s core are the cache (UTCACHE), the
integer pipeline (UTIU3), the register file (UTRF) and three new blocks: the family
thread table (FTT), thread table (TT) and thread scheduler (SCHED).

In contrast to the original LEON3 core, the highest resource requirements came
from the cache subsystem in the UTLEON3 core – about 50 % of all resources
in terms of 6-intput LUTs, 44 % in terms of flip-flops and 45 % in terms of block
RAMs.
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Table E.4 FPGA Synthesis – resource requirements of the UTLEON3 blocks.

Resource type UTLEON3s UTCACHE UTIU3 UTRF FTT TT SCHED

Slice Flip Flops 4,874 2,123 1,478 292 31 0 850
Total 6 input LUTs 12,413 6,204 3,809 604 58 8 1,880
Used as logic 12,084 6,176 3,694 554 38 8 1,778
Used as shift registers 137 0 115 0 0 0 0
Used as RAMs 192 28 0 50 20 0 94
BRAMs 36 kb 29 13 0 1 7 7 1

E.1.1.3 Hardware Families of Threads

This subsection shows the FPGA synthesis results for the hardware accelerator for
families of threads. The setting of the synthesis tool was the same as in the previous
cases.

The hardware accelerator for families of threads was configured so as to support
concurrent execution of 2x FIR tasks, 1x DCT task and 1x simple integer task.

The synthesis results are listed in Table E.5. The table shows resource require-
ments for the top-level entity (HWT03) that implements the hardware accelerator
for families of threads and for its subblocks. These subblocks are the interface to
the UTLEON3 processor (UT IF), DMA Engine with internal bus infrastructure
(COMM), Job Control Unit (JCU), FIR worker (FIR BCE) and DCT worker
(DCT BCE),

Table E.5 Distribution of FPGA resources between the HWFAM modules

Resource type HWT03 UT IF COMM JCU FIR BCE DCT BCE

Slice Flip Flops 2,606 637 488 256 307 315
Total 6 input LUTs 5,031 884 519 672 457 593

Used as logic 4,225 568 487 468 393 539
Used as shift registers 12 0 0 0 0 12
Used as RAMs 794 316 32 204 64 42

BRAMs 36 kb 18 0 7 1 3 1

The interface to the UTLEON3 core (UT IF) has the highest resource require-
ments in terms of flip-flops and 6-input LUTs.

E.1.2 FPGA Implementation

Both the processor cores were implemented in an FPGA on the Xilinx XUP-V5
board [20] in order to verify correct function of the cores and evaluate the maximal
clock frequency. The maximal frequency was 110 MHz for the original LEON3
core, and 33.3 MHz for the new UTLEON3 core.
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E.1.3 ASIC Synthesis

This section shows implementation results for the ASIC technology. The Synopsys
Design Compiler D-2010.03-SP3 was used for synthesis; the selected target tech-
nology was tcbn90ghptc (TSMC 90 nm general purpose high performance, typical
case timing).

E.1.3.1 Comparison of the LEON3 and UTLEON3 Processors

Four configurations were considered as in the case of the FPGA synthesis (see
Table E.1). A register file with one write port was used in all cases.

First, the area requirements in square millimeters are shown in Table E.6. The
UTLEON3 processor is 8.5 times bigger than the original LEON3 processor on
average.

Table E.6 ASIC synthesis –
resource requirements
summary. Configurations are
described in Table E.1.
Resource requirements are
shown in terms of square
millimeters

LEON3s

CFG Area
0, 2 0.42
1, 3 0.64
UTLEON3s

CFG Area
0 3.62 8.6x
1 4.78 7.5x
2 4.13 9.8x
3 5.29 8.3x

Second, the length of a critical path is shown in Table E.7. The UTLEON3
processor is 1.19 times slower than the original LEON3 core on average.

Table E.7 ASIC Synthesis –
critical path length [ns] for all
configurations described in
Table E.1

LEON3s

CFG Delay [ns]
0, 2 2.06
1, 3 2.09
UTLEON3s

CFG Delay [ns]
0 3.71 1.80x
1 3.69 1.77x
2 3.71 1.80x
3 3.72 1.78x
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E.1.3.2 Distribution of Resources

The breakdown for all four configurations is in the Table E.8.

Table E.8 ASIC synthesis – area requirements of the UTLEON3 blocks in square
millimeters

CFG UTLEON3s UTCACHE UTIU3 UTRF FTT TT SCHED

0 3.59 1.49 0.06 0.31 0.23 1.22 –
1 4.69 2.65 – 0.31 0.23 1.22 –
2 4.04 1.57 – 0.67 0.23 1.22 –
3 5.20 2.73 – 0.67 0.23 1.22 –
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Tutorial

F.1 Overview

This tutorial shows an implementation of the microthreaded UTLEON3 processor
on the Xilinx XUPV5-LX110T Evaluation Board (XUP-V5). The described setup
executes a microthreaded program that computes the first 16 Fibonacci numbers.

F.2 Scope

This document describes a microthreaded UTLEON3 template design customized
for the Xilinx XUPV5-LX110T Evaluation Board (XUP-V5), the board is shown in
Fig. F.1. The template design is intended to help users become familiar with the
UTLEON3 processor and the GRLIB IP library. It also includes a demonstration
how to execute microthreaded programs.

F.3 Requirements

The following hardware and software components are required in order to use and
implement the XUP-V5 UTLEON3 template design.

• UTGRLIB IP Library 1.0.17.
• PC with linux or Windows 2000/XP with Cygwin.
• XUP-V5 with the JTAG programming cable.
• RS232 serial null modem cable (Table F.1 shows serial terminal settings).
• Xilinx ISE 12.3 development software.
• Synopsys Synplify Pro 2011.03-SP2.

RS232 serial terminal settings are shown in Table F.1.

M. Daněk et al., UTLEON3: Exploring Fine-Grain Multi-Threading in FPGAs,
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Table F.1 Serial terminal
settings

Setting Value

Speed 115,200
Data bits 8
Stop bits 1
Parity None
Flow control None

Fig. F.1 Xilinx XUPV5-LX110T Evaluation Board (XUP-V5)

For the UTLEON3 software development the following tools are recommended:

• Modified binutils for the SPARC V8 processor.
• Modified binutils for the microthreaded SPARC processor.
• The binrep tool that changes the target platform identifier in an object file.
• GRMON v1.1.52.

UTLEON3 can be simulated with Mentor Graphics ModelSim 6.6e or GHDL.
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F.4 Installation

The example design is included in the UTGRLIB IP library. The library is provided
as a gzipped tar file. To extract it, execute

tar xzf ut-grlib-1.0.17.tar.gz

This will create a directory called ut-grlib-1.0.17 with all IP cores and template
designs. On MS Windows hosts the extraction and all further steps should be made
inside a Cygwin shell.

F.5 Template Design Overview

The template design is located in ut-grlib-1.0.17/designs/utleon-xup-v5. It consists
of three key files:

• config.vhd – the VHDL package with design configuration parameters.
• leon3mp.vhd – the top level entity and instantiates all on-chip IP cores. It uses

config.vhd to configure the instantiated IP cores.
• testbench.vhd – the testbench with external memory that emulates parts of the

XUP-V5 board.

Each core in the template design is configurable with VHDL generics. The values
of these generics are assigned from the constants declared in config.vhd, created e.g.
with the make xconfig tool.

F.6 Simulation

The template design can be simulated in the testbench that emulates the prototype
board. The testbench includes an external PROM that is pre-loaded with a test
program. The test program will execute on the microthreaded UTLEON3 processor,
and test various functions of the design. The test program will print diagnostics
on the simulator console during the execution. Type the following commands to
compile and simulate the template design and testbench in ModelSim:

make vsim
vsim -novopt testbench

A simulation is initiated in the transcript window, type

run -all

After that you should see a similar listing:

# Xilinx XUPV5 Evaluation Board
# GRLIB Version 1.1.0, build 4104
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# Target technology: virtex5 , memory library: virtex5
# ahbctrl: AHB arbiter/multiplexer rev 1
# ahbctrl: Common I/O area disabled
# ahbctrl: AHB masters: 4, AHB slaves: 8
# ahbctrl: Configuration area at 0xfffff000, 4 kbyte
# ahbctrl: mst0: AppleCore AppleCore UTLEON3 Processor
# ahbctrl: mst1: Gaisler Research AHB Debug UART
# ahbctrl: mst2: Gaisler Research JTAG Debug Link
# ahbctrl: mst3: Gaisler Research SVGA frame buffer
# ahbctrl: slv1: Gaisler Research AHB/APB Bridge
# ahbctrl: memory at 0x80000000, size 1 Mbyte
# ahbctrl: slv2: Gaisler Research Leon3 Debug Support Unit
# ahbctrl: memory at 0x90000000, size 256 Mbyte
# ahbctrl: slv3: European Space Agency Leon2 Memory Controller
# ahbctrl: memory at 0x20000000, size 512 Mbyte
# ahbctrl: memory at 0x40000000, size 32 Mbyte, cacheable, prefetch
# ahbctrl: slv6: Gaisler Research Generic AHB ROM
# ahbctrl: memory at 0x00000000, size 1 Mbyte, cacheable, prefetch
# apbctrl: APB Bridge at 0x80000000 rev 1
# apbctrl: slv0: European Space Agency Leon2 Memory Controller
# apbctrl: I/O ports at 0x80000000, size 256 byte
# apbctrl: slv1: Gaisler Research Generic UART
# apbctrl: I/O ports at 0x80000100, size 256 byte
# apbctrl: slv2: Gaisler Research Multi-processor Interrupt Ctrl.
# apbctrl: I/O ports at 0x80000200, size 256 byte
# apbctrl: slv3: Gaisler Research Modular Timer Unit
# apbctrl: I/O ports at 0x80000300, size 256 byte
# apbctrl: slv4: Gaisler Research PS2 interface
# apbctrl: I/O ports at 0x80000400, size 256 byte
# apbctrl: slv5: Gaisler Research PS2 interface
# apbctrl: I/O ports at 0x80000500, size 256 byte
# apbctrl: slv6: Gaisler Research SVGA frame buffer
# apbctrl: I/O ports at 0x80000600, size 256 byte
# apbctrl: slv7: Gaisler Research AHB Debug UART
# apbctrl: I/O ports at 0x80000700, size 256 byte
# apbctrl: slv8: Unknown vendor Unknown Device
# apbctrl: I/O ports at 0x80000800, size 256 byte
# apbctrl: slv9: Gaisler Research AMBA Wrapper for OC I2C-master
# apbctrl: I/O ports at 0x80000900, size 256 byte
# apbctrl: slv10: Gaisler Research General Purpose I/O port
# apbctrl: I/O ports at 0x80000a00, size 256 byte
# apbctrl: slv12: Gaisler Research AMBA Wrapper for OC I2C-master
# apbctrl: I/O ports at 0x80000c00, size 256 byte
# utia apbperfcnt8: PERFCNT rev 1
# i2cmst12: AMBA Wrapper for OC I2C-master rev 2, irq 11
# grgpio10: 13-bit GPIO Unit rev 1
# i2cmst9: AMBA Wrapper for OC I2C-master rev 2, irq 14
# svgactrl6: SVGA controller rev 0, FIFO length: 384, FIFO part length: 128,

FIFO address bits: 9, AHB access size: 32 bits
# apbps2_5: APB PS2 interface rev 2, irq 5
# apbps2_4: APB PS2 interface rev 2, irq 4
# gptimer3: GR Timer Unit rev 0, 8-bit scaler, 2 32-bit timers, irq 8
# irqmp: Multi-processor Interrupt Controller rev 3, #cpu 1, eirq 0
# apbuart1: Generic UART rev 1, fifo 8, irq 2
# ahbrom6: 32-bit AHB ROM Module, 164 words, 8 address bits
# ahbjtag AHB Debug JTAG rev 1
# ahbuart7: AHB Debug UART rev 0
# dsu3_2: LEON3 Debug support unit + AHB Trace Buffer, 8 kbytes
# utleon3_0: UTLEON3 processor rev 0
# utleon3_0: icache 1*4 kbyte, dcache 4*4 kbyte
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# clkgen_virtex5: virtex-5 sdram/pci clock generator, version 1
# clkgen_virtex5: Frequency 100000 KHz, DCM divisor 2/5

F.7 Synthesis and Place&Route

The template design can be synthesized with Synplify Pro 2011.03-SP2. The
synthesis can be executed in a batch mode or interactively. To use synplify in the
batch mode, use the command:

make synplify

To use synplify interactively, use :

make scripts
synplify_pro leon3mp_synplify.prj

Next run place&route for the netlist generated with Synplify Pro:

make ise-synp

The final configuration bitstream is stored in the file leon3mp.bit.

F.8 Board Re-Programming

The XUP-V5 FPGA configuration PROM (xc5vlx110t-1-ff1136) can be pro-
grammed from the shell window with the following command:

impact -batch download.cmd

F.9 Software Development

The UTLEON3 processor supports both the legacy and microthreaded code execu-
tion. Two different toolchains are needed.

• binutils – standard binutils for the SPARC V8 architecture extended with the
launch instruction.

• mtbinutils – modified binutils for the SPARC V8 architecture with the mi-
crothreaded extensions.

F.9.1 Legacy Code

The legacy code compilation requires only the standard binutils.
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program.elf

program

Fig. F.2 Microthreaded code compile flow

F.9.2 Microthreaded Code

As the microthreaded program code consists of both the legacy and microthreaded
parts, the legacy and microthreaded parts have to be linked together. The necessary
steps are as follows (see Fig. F.2):

1. Make an object file from the legacy assembler code with binutils
2. Make an object file from the microthreaded assembler code with mtbinutils.
3. Change the target platform code in the legacy object file from SPARC to

microthreaded SPARC with the binrep tool.
4. Link the legacy and microthreaded object files into one.

A typical compile flow can be seen below.

sparc-elf-as legacy.s -o legacy.o
mtsparc-elf-as ut.s -o ut.o
./binrep legacy.o legacy_mod.o
mtsparc-elf-ld --script=linkprom-mt-allram legacy_mod.o ut.o -o

out.elf --cref
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F.10 Description of the Test Code

The sample program computes the first 16 Fibonacci numbers. The microthreaded
part of the code is shown below.

/* CONSTANTS */
.equ FIBNUM, 16
.equ BLKSIZE, 4

.section ".text"

.global ut_main, __M0, __M1

.type ut_main, #function

.proc 04

.align 4*16
.registers 0 0 31 0 0 0 /* Thread 0 cannot have any global, */

/* local or shared registers */
ut_main:
__M0:

set fibdata, %tl1 /* %tg1 */
/* the first two fibonacci numbers: 1, 1 */
mov 1, %tl8
st %tl8, [%tl1]
st %tl8, [%tl1+4]

/* set first two fibonacci numbers for the first thread */
mov 1, %tl8 /* %td0 */
mov 1, %tl9 /* %td1 */

allocate %tl20
add %tl1, 8, %tl1
/* start := 0 */
setstart %tl20, 0
/* limit := fibnum */
set (FIBNUM*4-1), %tl22
setlimit %tl20, %tl22
/* step := 4 */
setstep %tl20, 4
/* blocksize */
setblock %tl20, BLKSIZE
/* thread := f1_start */
set f1_start, %tl21
setthread %tl20, %tl21
/* and go */
create %tl20, %tl20
nop

/* wait for family to terminate */
mov %tl20, %tl21
nop

__M1:
nop ; END

.size ut_main, .-ut_main

.type f1_start, #function

.proc 04

.align 4*16
f1_addr1:

.registers 8 2 2 0 0 0 ! GR, SR, LR
/* %tg1 = address of fibdata */
/* %tL0 = result word address [thread index] */
/* %tD0,%tS0 = second-to-last fibonacci number [N-2] */
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/* %tD1,%tS1 = last fibonacci number [N-1] */
f1_start:

add %td0, %td1, %tl1
mov %td1, %ts0
mov %tl1, %ts1
st %tl1, [%tl0+%tg1]
nop ; END !

.size f1_start, .-f1_start

F.11 GRMON

The whole system is controlled through the Aeroflex-Gaisler GRMON tool. Invoke
the tool by typing:

grmon-eval -xilusb -ramws 2

You should see a similar listing in your terminal window:

GRMON LEON debug monitor v1.1.52 evaluation version

Copyright (C) 2004-2011 Aeroflex Gaisler - all rights reserved.
For latest updates, go to http://www.gaisler.com/
Comments or bug-reports to support@gaisler.com

This evaluation version will expire on 10/10/2012
Xilinx cable: Cable type/rev : 0x3
JTAG chain: xc5vlx110t xccace xc95144xl xcf32p xcf32p

Device ID: : 0x509
GRLIB build version: 4104

initialising .................
detected frequency: 40 MHz

Component Vendor
UTLEON3 Processor AppleCore
AHB Debug UART Gaisler Research
AHB Debug JTAG TAP Gaisler Research
SVGA Controller Gaisler Research
AHB/APB Bridge Gaisler Research
LEON3 Debug Support Unit Gaisler Research
LEON2 Memory Controller European Space Agency
AHB ROM Gaisler Research
Generic APB UART Gaisler Research
Multi-processor Interrupt Ctrl Gaisler Research
Modular Timer Unit Gaisler Research
PS/2 interface Gaisler Research
PS/2 interface Gaisler Research
Performance Counter AppleCore
AMBA Wrapper for OC I2C-master Gaisler Research
General purpose I/O port Gaisler Research
AMBA Wrapper for OC I2C-master Gaisler Research

Use command ’info sys’ to print a detailed report of attached cores

grlib>

Next enable the instruction and AHB trace buffers in GRMON by typing:

grlib> tmode both
Combined instruction/AHB tracing(0)
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Next load the binary file with the sample program into the RAM:

grlib> load ../../software/utbench/demo-fib-ut/demo-fib-ut.mtram.elf
section: .text at 0x40000000, size 656 bytes
total size: 656 bytes (831.3 kbit/s)
read 47 symbols
entry point: 0x40000000

note: loaded file is an MTSPARC executable

You can check that the program has been loaded in the memory:

grlib> disas 0x40000000
40000000 81980000 mov 0, %tbr
40000004 01000000 nop
40000008 01000000 nop
4000000c 83580000 mov %tbr, %g1
40000010 82886ff0 andcc %g1, 0xff0, %g1
40000014 32800028 bne,a 0x400000b4
40000018 01000000 nop
4000001c 821020c0 mov 192, %g1
40000020 81884000 mov %g1, %psr
40000024 81900000 mov 0, %wim
40000028 81800000 mov 0, %y
4000002c 3d140000 sethi %hi(0x50000000), %fp
40000030 bc17a270 or %fp, 0x270, %fp
40000034 9c27a060 sub %fp, 96, %sp
40000038 01000000 nop
4000003c 01000000 nop

This listing can be compared with the object dump of the executed program file:

mtsparc-elf-objdump -D demo-fib-ut.mtram.elf

Run the program:

grlib> run

The program results (Fibonacci numbers) are stored in the memory. To dump the
memory area that contains the results use the mem command:

grlib> mem 0x40000290 100

40000290 00000001 00000001 00000002 00000003 ................
400002A0 00000005 00000008 0000000d 00000015 ................
400002B0 00000022 00000037 00000059 00000090 ..."...7...Y....
400002C0 000000e9 00000179 00000262 000003db .......y...b....
400002D0 0000063d 00000a18 00000000 00000000 ...=............
400002E0 00000000 00000000 00000000 00000000 ................
400002F0 00000000 00000000 00000000 00000000 ................

When the XUPV5 board is connected via RS232, you should see a similar listing in
your serial terminal window:

===== Fibonacci demo =====

index Fibonacci number
1: 0
2: 1
3: 1
4: 2
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5: 3
6: 5
7: 8
8: 13
9: 21
10: 34
11: 55
12: 89
13: 144
14: 233
15: 377
16: 610

The contents of the integer register file can be displayed with the register command:

grlib> register

INS LOCALS OUTS GLOBALS
0: 00000000 00000000 0000063D 00000000
1: 00000000 00000000 00000A18 00000001
2: 00000000 00000000 00000000 FFFFFFFF
3: 00000000 00000000 00000000 80000808
4: 00000000 00000001 00000000 8000080C
5: 00000000 00000001 00000000 00000000
6: 50000270 0000003F 50000210 00000000
7: 00000000 00000000 00000000 00000000

psr: F30000E0 wim: 00000000 tbr: 40000000 y: 00000000

pc: 400000b8 ta 0x1
npc: 400000bc nop

Commands inst and hist can be used to display the contents of the instruction trace
buffer, ahb to display the AHB trace buffer. You should see similar results as the
ones below. You can clearly identify specific parts of the microthreaded code being
executed on the UTLEON3 processor.

grlib> inst 50
time address instruction result

2266 4820024c mov %sp, %o3 [00000059]
2267 48200250 mov %g2, %o4 [00000090]
2269 48200254 st %g2, [%g1 + %g4] [400002bc 00000090]
2270 48200258 nop [00000000]
2280 48300248 add %o5, %sp, %g2 [000000e9]
2281 4830024c mov %sp, %o3 [00000090]
2282 48300250 mov %g2, %o4 [000000e9]
2284 48300254 st %g2, [%g1 + %g4] [400002c0 000000e9]
2285 48300258 nop [00000000]
2288 48400248 add %o5, %sp, %g2 [00000179]
2289 4840024c mov %sp, %o3 [000000e9]
2290 48400250 mov %g2, %o4 [00000179]
2292 48400254 st %g2, [%g1 + %g4] [400002c4 00000179]
2293 48400258 nop [00000000]
2294 48100248 add %o5, %sp, %g2 [00000262]
2295 4810024c mov %sp, %o3 [00000179]
2296 48100250 mov %g2, %o4 [00000262]
2298 48100254 st %g2, [%g1 + %g4] [400002c8 00000262]
2299 48100258 nop [00000000]
2307 48200248 add %o5, %sp, %g2 [000003db]
2308 4820024c mov %sp, %o3 [00000262]
2309 48200250 mov %g2, %o4 [000003db]
2311 48200254 st %g2, [%g1 + %g4] [400002cc 000003db]
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2312 48200258 nop [00000000]
2315 48300248 add %o5, %sp, %g2 [0000063d]
2316 4830024c mov %sp, %o3 [000003db]
2317 48300250 mov %g2, %o4 [0000063d]
2319 48300254 st %g2, [%g1 + %g4] [400002d0 0000063d]
2320 48300258 nop [00000000]
2321 48400248 add %o5, %sp, %g2 [00000a18]
2322 4840024c mov %sp, %o3 [0000063d]
2323 48400250 mov %g2, %o4 [00000a18]
2325 48400254 st %g2, [%g1 + %g4] [400002d4 00000a18]
2326 48400258 nop [00000000]
2432 48000218 mov %l5, %l6 [00000001]
2436 4800021c nop [00000000]
2437 48000220 nop [00000000]
2439 48200180 nop [00000000]
3207 48200184 flush 0x0 [00000000]
3281 48200188 nop [00000000]
3282 4820018c sethi %hi(0x40000000), %g1 [40000000]
3283 48200190 or %g1, 0xa4, %g1 [400000a4]
3357 48200194 jmp %g1 [40000194]
3361 48200198 nop [00000000]
3364 482000a4 mov -1, %g2 [ffffffff]
3365 482000a8 nop [00000000]
3698 482000ac flush 0x0 [00000000]
3772 482000b0 nop [00000000]
3776 482000b4 mov 1, %g1 [00000001]
3777 482000b8 ta 0x1 [trapped]

grlib> ahb
time address type data trans size burst mst lock resp hirq

3734 400000d8 read 01000000 3 2 1 0 1 0 0000
3738 400000dc read 01000000 3 2 1 0 1 0 0000
3742 400000e0 read 01000000 3 2 1 0 1 0 0000
3746 400000e4 read 01000000 3 2 1 0 1 0 0000
3750 400000e8 read 01000000 3 2 1 0 1 0 0000
3754 400000ec read 01000000 3 2 1 0 1 0 0000
3758 400000f0 read 01000000 3 2 1 0 1 0 0000
3762 400000f4 read 01000000 3 2 1 0 1 0 0000
3766 400000f8 read 01000000 3 2 1 0 1 0 0000
3770 400000fc read 01000000 3 2 1 0 1 0 0000

The UTLEON3 processor uses performance counters to measure the activity of the
processor components or frequency of events that occur in the processor. Table F.2
describes the meaning of the counters, their values are in clock cycles. To show them
in GRMON use the command appleperf :

grlib> appleperf count

Counter 0: 437
Counter 1: 76
Counter 2: 0
Counter 3: 0
Counter 4: 319
Counter 5: 76
Counter 6: 0
Counter 7: 0
Counter 8: 119
Counter 9: 51
Counter 10: 0
Counter 11: 61
Counter 12: 49
Counter 13: 0
Counter 14: 0
Counter 15: 0
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Counter 16: 0
Counter 17: 0
Counter 18: 0
Counter 19: 239
Counter 20: 0
Counter 21: 18
Counter 22: 3
Counter 23: 101
Counter 24: 18
Counter 25: 1
Counter 26: 0
Counter 27: 0
Counter 28: 0
Counter 29: 0
Counter 30: 0
Counter 31: 0
Counter 32: 0
Counter 33: 0
Counter 34: 0
Counter 35: 0
Counter 36: 0
Counter 37: 0
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Table F.2 Performance counters

Performance counter Description

0 program runtime
1 holdn generated by I-CACHE
2 holdn generated by D-CACHE
3 holdn generated by the FP unit
4 all force NOPs
5 UTLEON3 holdn
6 scheduler.pick to iu3 busy
7 scheduler.push to iu3 busy
8 the number of committed instructions (pipeline valid)
9 I-CACHE grant
10 D-CACHE grant
11 regfile – write on sync port
12 regfile – write on async port
13 regfile – write on both ports concurrently
14 RAU – release register block
15 RAU – allocate register block
16 D-CACHE miss
17 holdn generated by the scheduler
18 holdn generated by the regfile
19 iu3 XC state – force NOP
20 iu3 XC state – annuled due to instruction loading latency
21 iu3 XC state – data dependencies
22 iu3 XC state – annuled due to an operation that accessed a

PENDING register
23 iu3 XC state – working
24 iu3 DE switch
25 iu3 EX switch
26 HWFAM DMA – AMBA occupancy
27 HWFAM DMA – words downloaded from the main memory
28 HWFAM DMA – words uploaded to the main memory
29 HWFAM – n.o. queries
30 HWFAM – families created
31 HWFAM – reading from the regfile
32 HWFAM – writing to the regfile
33 HWFAM – waiting for the regfile
34 HWFAM – FIR0 – busy
35 HWFAM – FIR0 – running
36 HWFAM – FIR1 – busy
37 HWFAM – FIR1 – running
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M. Daněk et al., UTLEON3: Exploring Fine-Grain Multi-Threading in FPGAs,
DOI 10.1007/978-1-4614-2410-9, © Springer Science+Business Media, LLC 2013

215

http://www.gaisler.com/doc/vhdl2proc.pdf
http://www.gaisler.com/doc/vhdl2proc.pdf
http://www.ijg.org/


216 References

17. The Apple-CORE Consortium Architecture paradigms and programming languages for effi-
cient programming of multiple COREs. http://www.apple-core.info. Accessed September 7,
2012
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