

CHAPTER 1
ADDING I/O DEVICES TO A MODERN PC

The personal computer (PC) has been around for a long time, in computer years.
The first IBM PC was announced in 1981, and since then we’ve all wanted to add
hardware to our PCs. The power of the PC has grown—the number of tasks we
want the PC to do has grown—and the number of devices we want to connect to
the PC has grown. But until recently there has been a practical limit to the
number of available ports one could connect devices to.

Enter the Universal Serial Bus, USB. You may have heard USB referred to as

“the best thing” to happen to the personal computer for some time. The list of

USB features is impressive:

¢ Hot-pluggable: I/O devices can be added while the PC is running.

e Ease of use: I/O device attachment is recognized by the PC and appropriate
device drivers, and configuration is done automatically.

» Single connector type: all devices plug into the same socket type.

¢ High performance: 12 Mbps is much faster than existing serial and parallel
ports.

e Upto 127 devices: there is no practical limit to I/O device expandability.

¢ Power supplied by cable: most devices will not need an additional power
source.

e Power management: devices automatically power down when not in use.

e Error detection and recovery: errors are detected and transactions are retried
to ensure that data is delivered reliably.

¢ External to the PC: there is no need to open the PC or design cards that must
be installed in the PC.

Acknowledging the benefits of USB and designing an I/O device interface are
two different things, however. Until now, you’ve had only the USB
Specification to read for technical details. A specification by its nature usually
provides few if any implementation examples. So, even after reading the
specification, you still might not know how to design a simple I/O port for USB,
let alone design a telephone or a camera-based I/O device.

2

USB Design by Example

HANDS-ON EXAMPLES

Most USB books, including the specification, position USB as a technical
wonder, which it is. But these books lack practical, how-to examples that include
schematics and code. That’s where this book comes in. It is intended to help you
add /O devices to your PC, and I have tried to make this as much of a
“cookbook” as I can. All the examples are fully documented, and prototype
boards are available for you to build upon and expand your ideas and solutions.
A variety of vendor solutions are demonstrated so you can choose the solution
closest to your application.

I’ve used the term “PC” to refer to Intel-based computers running an operating
system that supports USB (I used Windows 98 in the examples).

e The PC host software examples use Visual Basic to hide some complexities
of operating system programming and allow the examples to be portable.

e The microcontroller examples are mainly in MCS51 assembler code; I chose
this architecture because many manufacturers have used it as the basis for
their intelligent USB controllers.

e The 8051 is an uncomplicated architecture with few programming “tricks,”
so the examples should be easy to port to another microcontroller family.

I have not repeated sections from the USB Specification but have included the
full specification on the companion CD-ROM.

This book describes how to connect to a PC host the usual PC-type peripherals,
such as scanners, proximity detectors, keypads, and printers, and also how to
connect to everyday items such as lights, switches, motors, temperature sensors,
speakers, video, and a telephone.

You will soon discover that adding I/O devices to a modern PC host is both easy
and fun. The range of devices is limited only by your imagination.

How MucH TECHNICAL BACKGROUND DO You NEED?

I assume you have some fundamental electronics and programming skills, but I
don’t expect these to be your major field. Instead, I assume that you want to use
the PC to do something useful. This book takes a practical approach to adding
devices to a PC. This task is much easier to do today when compared with
previous generations of personal computers. Today we connect to an external,
standard USB socket and don’t even have to open up the case of the computer—a
much more civilized approach and far less prone to error.

Chapter 1 Adding I/O Devices to a Modern PC 3

Focus OF THIS BOOK

This book focuses on I/O device design. The book also covers PC host software
to let us view and control our I/O devices. The hidden part of USB is the PC host
software—we’ll see that the implementation on Windows 98 uses a layered
approach so that we can access USB features and services at a level suitable for
our application. One of Intel’s goals in working with Microsoft on their USB
software was to eliminate the need for the user to write any OS-level software;
almost all of the PC host software examples in this book use applications-level
software.

When USB was being developed, a base assumption was the creation of “easy,
low-cost I/0 devices.” The resulting standard is asymmetric with most of the
complexity on the PC host side. The operating system and available host
controller silicon take care of this complexity so we need deal only with the so-
called “easy part,” the I/O device. Hub design is presented, but to be honest, it’s
more productive for you to buy one of the many units available in the
marketplace and instead focus your efforts on your unique value-added I/O
subsystem.

THE MODERN PC: A SHORT HISTORY

What is a modern PC? And if you have an old PC, how do you make it modern?
This section gives a brief history of the modern PC and introduces USB as a
solution to simple, low-cost I/O expansion.

When IBM announced the PC, the company documented the PC internals
thoroughly. The availability of this information, along with a strong desire to
add hardware to the PC, caused many people to develop plug-in cards so the PC
could monitor and even control their environment. Initially the slots inside the
IBM PC didn’t even have a name. The name ISA, for Industry Standard
Architecture, was coined in the early 1980s. There were no official guidelines on
how a PC should be expanded, so cards made by vendor A could not be used at
the same time as cards made by vendor B. It took until the early 1990s for the
ISA bus to be documented (ISA & EISA Theory and Operation by Edward Solari
is the classic text for this information). Some developers took a lower-risk
approach and created attachments that plugged into the serial and parallel ports.
But this port resource was quickly depleted, and when more serial and parallel
ports were added via plug-in cards, the internal design of the PC could not

4 USB Design by Example

support enough interrupts, DMA channels, or other system resources.
Sometimes the interactions were subtle and failed only under certain conditions.
The bandwidth of these data paths in and out of the PC was also quite low. A
better solution was required.

Many PC and PC component vendors, including Compagq, Digital Equipment,
NCR, IBM, and Intel Corporation, worked together to define a high-bandwidth
expansion bus that was eventually called the Peripheral Components Interconnect
bus, or PCL. This bus definition included configuration information and controls
to alleviate the vendor-to-vendor conflicts of ISA. The PCI bus was included
beside the ISA bus inside the PC host. Software support for automatic
configuration was added to Windows so that PCI cards became easy to install.
This was the start of Plug and Play, an industry-wide initiative that governs the
way add-in hardware should identify itself.

PCI was an instant success for high-bandwidth devices but was seen by many to
be excessive and complex for the simpler /O devices. The PCI interface
components typically cost more than a simple I/O device. Another main
disadvantage was the location of the PCI connectors; just like their ISA
predecessor, they were inside the PC case, which had to be opened, clamping
screws undone, boards plugged exactly right into connectors that were difficult to
identify, and then the system reassembled. This was discouraging for many
would-be users because there was a perceived concern that the PC could be
easily broken by these actions. PCI was a better solution but did not address
“simple [/O.”

Several PC-industry leaders worked together to define an external expansion bus.
Driven by customer demand, it was essential that this bus be simple and low cost.
Consumer focus groups demanded that PC expansion be as easy as connecting a
VCR to a TV—you should not need to set switches or run software, and you
must be allowed to plug and swap cables while the equipment is turned on.

Simple to Use and Low Cost

With the goals of simple-to-use and low cost to implement, industry leaders
turned their attention to a high-speed serial bus that was later called Universal
Serial Bus (USB). Serial was preferred over parallel because the cables would be
cheaper, and it would be easier to implement dynamic configuration. “Dynamic
configuration” means that the /O subsystem can be extended or reconfigured by
swapping cables while the PC is running. Rebooting a modern PC takes several
minutes, so this situation has to be avoided in every solution.

Chapter 1 Adding /O Devices to a Modern PC 5

A typical configuration includes one PC host and many I/O devices. To reduce
costs, a master-slave implementation was chosen for USB. The PC host would
be the master controlling all traffic on the serial bus—the additional silicon
complexity needed to implement the controlling protocols would need to be
implemented only once in the host. The slave I/O device could then be made
simpler and therefore cheaper. This asymmetric solution means that the two ends
of a cable are NOT equal—we need to know which end connects to the master
and which end to the slave! The terminology adopted by the USB specification
is “upstream” (toward the PC host) and “downstream” (toward the I/O device)
(Figure 1-1). The upstream end of the cable controls the protocol and instructs
the downstream end to reply at defined times.

Upstream

Downstream

Figure 1-1. A USB cable has two different ends

Another major decision that would support both design goals was to officially
supply power from the PC host. Different operating modes that specify power
limits are defined, and a good understanding of this feature enables cheaper and
easier-to-use I/O devices to be built. You can, for example, eliminate the cost of
a power supply in simpler I/O devices and ease the design of more complex I/O
devices. Some implementation trade-offs in the I/O devices could also be made
when the system specifies minimum and maximum power levels.

6 USB Design by Example

USB TERMINOLOGY

The USB specification introduced new terms that are used throughout the USB
literature. This section introduces those terms and presents an overview. Later
chapters discuss each element in detail.

A typical configuration has a single PC host with multiple devices interconnected
with USB cables (Figure 1-2). The PC host has an embedded hub, also called
the root hub, which typically contains two USB ports.

PC Host

Hub

/O Device

USB Cable

USB Cables

Figure 1-2. Standard USB terminology

Device configurations range from simple to complex:

e Hub: If a device contains only more USB ports, then it is called simply
a hub.

e T/O device: An I/O device adds a capability to the PC host. It has a single
upstream connection and interacts with the real world to create or consume
data on behalf of the PC host.

e Compound device: If a device includes some I/O functionality as well as hub
functionality, it is called a compound device.

e Composite device: If a single device implements two or more sets of diverse
functions, it is called a composite device (for example, a keyboard with
embedded speakers).

As far as the PC host is concerned, devices are the important feature, and up to
126 can be interconnected using external hubs up to five levels deep (Figure 1-3).

Chapter 1 Adding I/O Devices to a Modern PC 7

Hub Hub Hu

USB cables USB cables USB cables USB cables
to more hubs to more hubs to more hubs to more
or devices or devices or devices devices

PC Host
Hub

I/O Device

USB Cable

USB cables
to more hubs
or devices

Figure 1-3. Devices can be nested five hub levels deep

PC Host

A typical configuration has a single PC host. You can connect multiple PC hosts
using USB, and this special case is discussed in Chapter 6. The PC host runs
USB-aware operating system software that supports two distinct functions—
initialization and run time.

The USB initialization software is active at all times and not just during PC host
power-on. Because the initialization software is always active, USB devices can
be added and removed at any time. Once a device is added to a PC host, the
device is enumerated by the USB initialization software and assigned a unique
identifier that is used during run-time. This enumeration process is described in
detail in Chapter 3.

USB Design by Example

Figure 1-4 shows how the USB host software is layered; layering supports many
classes of devices. A class is a grouping of devices, with similar characteristics,
that can be controlled by a generic class device driver. Examples of classes
include mass-storage devices, communications devices, audio devices, and
human interface devices. A single I/O device can belong to multiple classes. If a
device fits neatly into one or more of these predefined classes, then you don’t
need to write operating system software, such as a device driver. The software
structure allows you to focus more of your I/O device design efforts on the
function and usability of the I/O device and less on the inner workings of an
operating system. Vendor-defined commands are also available for those who
want specific functionality for their device only.

Application Code

“File” Interface
(Open, Close, Read, Write)

|
[

Class Libraries
T User

Kernel
Class Device Driver

“Transaction” Interface
(Buffer Movement)

|-
I

Bus-specific Device Driver

USB Driver

“Packet’ Interface
(Sync, Data, ACK, NAK)

A

|
|
Host Controller Driver

“Physical” Interface
(Differential Signaling)

s
-

[USB Cable |

Figure 1-4. PC host software for USB is defined in layers

USB Cable

A USB cable includes both power supply and data signals.

Power supplied by the USB cable is an important benefit of the USB
specification. A simpler I/O device can rely on the USB cable for all its power
needs and will not require the traditional “black brick” plugged into the wall.
The power resource is carefully managed by USB with the hub device playing
the major role.

Chapter 1 Adding I/O Devices to a Modern PC 9

A hub or /O device can be self-powered or bus-powered.

e Self-powered is the traditional approach in which the hub or I/O device has
an additional power cable attached to it. If the hub is self-powered, it can
make up to 500 mA available for each of its downstream ports.

¢ A bus-powered device relies solely on the USB cable for its power needs. If
the hub is bus-powered, then it has a maximum of 500 mA available. The
hub will use 100 mA for itself and have only 100 mA available for each of
four downstream USB ports (unless the socket is suspended).

The USB cable connectors were specially designed with the power pins longer
than the signal pins so that power is always applied before signals. Two different
connector types were defined to ensure that illegal configurations could not be
made (Figure 1-5). An A-type connector defines the upstream end of the cable,
and a B-type connector defines the downstream end of the cable.

Upstream A
Connector

Downstream B
Connector

Courtesy of Newnex Technology Corp.

Figure 1-5. Different connectors define the ends of a USB cable

The maximum length of the USB cable was an engineering trade-off. Electrical
signals on the wires take a finite time to travel the length of the cable. The cables
must be series-terminated at the characteristic impedance of the cable to
minimize signal reflections so we do not have to wait for the signals to “settle.”
The shorter the cable, the higher the signaling rate can be. A data rate of about

1 megabyte per second (MBps; implemented as 12 megabits per sec, Mbps) was
chosen to support today’s current desktop peripherals and many of tomorrow’s
devices. This results in a maximum cable length of 5 meters, which is sufficient
for most desktop applications.

10

USB Design by Example

A cable with a 12-Mbps data rate makes a good antenna, unfortunately, so cable
shielding is required. But shielding adds to the cost of the cable. An alternative
approach is to reduce the signaling rate to 1.5 Mbps so that shielding is not
required; this approach is cheaper. The USB specification allows a system to use
a mixture of 12-Mbps and 1.5-Mbps devices.

The USB specification defines differential signaling on its data wires
(Figure 1-6) to reduce the effects of induced system noise. Chapter 2 explains
this in detail.

D+ s A\ I \ - ¥ 3 ¥ g
[N N]
D~ ———] J
Bus Idle |
SOP |__ First Bit
of Packet
Bus Driven to
Last Bit J State at end
of Packet of EOP
Bus
SEO Floats
|- Portion -
Bus Idle
f EOP
"r | B 1 0 o v D+
JEN - o

Figure 1-6. USB defines differential signaling

The USB bus is a point-to-point connection that operates in half-duplex mode.
The fundamental element of communication on the USB bus is a packet, and
defined sequences of packets are used to build a robust communications channel.
Chapter 2 describes packet types and communications protocol in detail.

Chapter 1 Adding I/O Devices to a Modern PC 11

Hub Device

The hub has two major roles: power management and signal distribution.

An external hub has one upstream connection and multiple downstream
connections. The USB specification does not limit the number of downstream
connections, but seven seems to be the practical limit. The most popular hub size
is four.

A hub can be self-powered or bus-powered.

e Self-powered is the traditional approach in which the hub or I/0 device has
an additional power cable attached to it. If the hub is self-powered, it can
make up to 500 mA available for each of its downstream ports.

e A bus-powered device relies solely on the USB cable for its power needs. If
the hub is bus-powered, then it has a maximum of 500 mA available. The
hub will use 100 mA for itself and have only 100 mA available for each of
four downstream USB ports (unless the socket is suspended).

Because of the power limitation, I do not recommend bus-powered hubs except
in exceptional situations. A bus-powered hub can support only 100 mA on each
of its downstream USB ports. Although this is enough to enumerate all /O
devices, it is typically not enough for most I/O devices to operate. The current
implementation of Windows 98 does not flash lights or make warning sounds if
an enumerated device can’t operate because of lack of hub power, so the user is
left wondering why the newly attached device doesn’t work—not a good user
experience. This situation can get worse: Nothing prevents someone from
adding a second bus-powered hub onto a port of the first bus-powered hub; the
second hub uses all of the 100 mA for itself and cannot supply enough power to
even enumerate additional I/O devices. This confuses a user even more. A future
release of Windows 98, and Windows 2000, will alert the user if a high-power
device is attached to a low-power hub and will recommend a better system
configuration.

When first attached to a USB socket, an I/O device (or hub) can always expect
100 mA to be available. The device uses this power to operate during the
enumeration stage. The device may NOT use more than 100 mA until it is
configured; if it does, the power source on the USB socket will be removed and
an error sent to the PC host. If the I/O device requires more than 100 mA for
run-time operation, it can request up to 500 mA from the hub. If the hub can
supply this power, it does so; otherwise, the I/0 device is not configured, and an
error message is sent to the PC host. If the I/O device requires more than

12

USB Design by Example

500 mA for run-time operation, the device must be self-powered and will need a
power cord.

It is worth the design effort to reduce your I/O device power to less than 500 mA
because this eliminates the need for an external power source.

An I/O device is required to power itself down, or suspend, when there is no
activity on the USB bus. From the USB specification definition, “no activity”
means no bus signaling for 3 ms. The maximum amount of power allowed to be
drawn during a suspend is 0.5 mA; this is a larger design challenge, as we shall
see in later chapters.

I/0 Device

An I/O device creates data for, or consumes data from, the real world, as shown
in Figure 1-7. A scanner is a good example of a data creator, and a printer isa
good example of a data consumer.

PC Host

USB Connection

USB Cable

§

I/O Device

Figure 1-7. /O device connects USB to the real world

A single I/O device could support both a data creator and a data consumer, so a
different software driver may be required for these two distinct tasks. The
software, or logical, view of the USB connection is shown in Figure 1-8. The
logical view is deliberately general in nature so that all types of real-world
connections can be made. This diagram is best explained from the bottom up.

The term endpoint is used to describe where data enters or leaves a USB system.
An IN endpoint is a data creator, and an OUT endpoint is a data consumer.

Chapter 1 Adding /O Devices to a Modern PC 13

A typical real-world connection may need multiple IN and/or OUT endpoints to
implement a reliable data delivery scheme. This collection of endpoints is called
an interface and is directly related to a real-world connection. The operating
system will have a software driver that corresponds to each interface.

PC Host

PC Host sends and receives
data from 1/O devices

1/0O Device

i Configuration N |
Configuration 2|

Configuration 1

i Interface M 1

| Interface 2 | |
Interface 1 !

T R ||

EP1| IN P1)UT :

EPO | IN : EPO JUT '

IN : ouTt !

ENDPOINTS send and receive
data from the Real World

Figure 1-8. Logical view of an I/O device

Some real-world devices may have multiple interfaces—a telephone, for
example, has a keypad interface and an audio interface. The operating system
will manage the keypad and audio using two separate device drivers. This
decomposition of complex devices into smaller logical interfaces means that
building-block software elements can be quickly used to manage these complex
devices. We don’t have to invest the time and effort to write a special telephone
device driver—we can be operational with the class drivers already included in
the operating system. All the interfaces run concurrently.

14 USB Design by Example

A collection of interfaces is called a configuration, and only one configuration
can be active at a time. A configuration defines the attributes and features of a
specific model. Using configurations allows a single USB connection to serve
many different roles, and the modularity of this system solution saves
development time and support costs.

IMPACT OF USB ON PC HosT

As well as simplifying I/O device design, USB can have a major impact on the
PC host design. All of the basic features of a PC are implemented in highly
integrated components, and a view inside today’s PC shows a motherboard
similar to Figure 1-9; most of the physical space is taken up by PCI and/or ISA
slots!

Courtesy of Systems Group, Intel Corp.

Figure 1-9. Typical PC host motherboard

Chapter 1 Adding I/O Devices to a Modern PC 15

If all I/O expansion could be external, then there would be no requirement for
expansion slots on the motherboard. As well as saving physical space, we also
have savings in the power supply design. ISA slots have a power allowance of
25 watts, and PCI slots have a power allowance of 10 watts. This means a PC
with no I/O expansion slots (“slotless™) needs to have only a 50-to-80-watt power
supply rather than a 180- or 240-watt unit. Less heat will be generated inside the
system, so a single cooling fan will be adequate. Figure 1-10 shows an example
of a slotless motherboard that is only 8 inches square.

Courtesy of Desktop Architecture Laboratory, intel Corp.

Figure 1-10. Slotless motherboard (8 inches square)

16

USB Design by Example

Figure 1-11 shows two concept platforms built around a slotless motherboard.
The platforms contain the same motherboard and the same peripherals, a 6-GB
hard drive, and a DVD-ROM, and they differ only in the physical placement of
the subunits. These PCs are very quiet and don’t look like typical “beige-box”
PCs. They will be attractive for several new applications such as home use.

Courtesy of Desktop Architecture Laboratory, Intel Corp.

Figure 1-11. Concept PCs buiit with slotless motherboard

Chapter 1 Adding I/O Devices to a Modern PC 17

These concept platforms also introduce new I/O paradigms. There are many
peripherals available today that attach to the serial or parallel ports of the
traditional PC. A peripheral device expander (Figure 1-12) could be used to
attach these peripherals to a concept platform. Software drivers on the PC host
would redirect I/O requests to this expander, so no changes in applications
software would be required. The device shown in Figure 1-12 is from

Fujitsu Ltd.; it additionally includes a four-port hub, an Ethernet connection, and
sound. Although targeted at USB-enabled laptop computers, the device expander
would complement a slotless desktop implementation.

DC Input
USB Upstream
4 x USB Downstream
PS/2 Keyboard

PS/2 Mouse

Ethernet

RS232C

L

Printer

Audio Volume 7
IN/OUT Jacks

Courtesy of Fujitsu Limited.

Figure 1-12. Integrated hub and /O expander

18

USB Design by Example

CHAPTER SUMMARY

The Universal Serial Bus (USB) was the result of a tremendous amount of
cooperative industry effort, and its inclusion and operating system support in a
PC defines a modern PC. If your old notebook or desktop PC does not have USB
sockets, these can be added via a PCMCIA card or a PCI card (see examples in
Figure 1-13).

Courtesy of ADS Technologies, Inc. (left) and Entrega Technologies, Inc. (right).

Figure 1-13. Adding USB capability to a PC host

The PC host software is layered and interfaces are defined to allow the simple
addition of application programs. The higher up the USB software stack we go,
the farther we are from the actual I/O devices we are controlling. This
abstraction allows the software and hardware to be developed on different
schedules by different people. The hardware and software communicate via
standardized interfaces that have the added benefit that they can be either
swapped-out or upgraded independently. This new freedom will promote more
diverse uses of the PC platform.

19

CHAPTER 2
CLOSETO THE WIRE

This chapter studies host PC requests on the USB bus from the bottom up:

e We look at the signaling on the wires and learn that it reveals a packetized
structure.
¢ We learn that sequences of packets are used to generate transactions.

e We learn that three types of transactions are used during run time (interrupt,
bulk, and isochronous), and control transactions are used during enumeration
and run time.

¢ We list the available control requests that a PC host can use to interact with
an [/O device and a hub device.

DIFFERENTIAL SIGNALING

If you were to put an oscilloscope on the USB data wires, you would see a pair of
differential signals (Figure 2-1). This section assumes we are observing a full-
speed connection. (A low-speed connection is a little different; see “Differences
for a Low-speed Device” at the end of this chapter.) All communication is
initiated from the root hub (see Chapter 3 for one exception) and is repeated by
the external hubs. The USB data wires are connected point-to-point and the
signaling is half-duplex, which means that only one end of the wire is driven at a
time. The protocol, presented below, expects the two ends of the wire to take
turns transmitting information. In the following discussion, the upstream device
is the transmitter, and the downstream device is the receiver unless noted.

20 USB Design by Example

D+ 1 f] ¥ -
o0 e
D- __l‘ 1 1] T
Bus Idle |
SOP | FirstBit
of Packet
Bus Driven to
Last Bit J State at end
of Packet of EOP
Bus
Float
SEO oals
|~ Portion
Bus Idle
f EOP
o ¥ I o w D+
[X X]
_J1 o

Figure 2-1. USB data wires generally driven differentially

The USB data wires do not include a CLOCK signal, so the communication
between nodes is described as asynchronous. All devices on the bus
communicate at a nominal 12 MHz, but each device has its own 12-MHz
oscillator. When receiving a signal from the bus, a device will typically
oversample the signals (typically at 48 MHz) so that transitions can be better
detected. Later we’ll see that a CLOCK signal is embedded in the data.

An IDLE full-speed bus has D+ high and D—low. Some call this the “1” state of
the bus, but to avoid later confusion and provide consistency with the USB
specification, we’ll call this the “J” state.

Chapter 2 Close to the Wire 21

THE FUNDAMENTAL PACKET

The fundamental element of communication on the USB data bus is a packet. A
packet consists of three pieces: a start, some information, and an end, as shown
in Figure 2-2.

Sync PID ‘ Optional l
r———»’q———» -
! Ny
- Information ‘ T
|

I‘

Start End

Figure 2-2. Anatomy of a packet

The start of a packet is signaled by a transition out of the J state into the K state;
both D+ and D- switch to the opposite polarity. Six more transitions are driven
by the transmitter on the next available 12-MHz bit times, to produce a SYNC
sequence. The receiver uses this SYNC sequence to tune its receive clock with
the transitions of the received data, thus ensuring reliable reception of the
information portion of the packet. The SYNC sequence is eight bits of data
(KJKJKJKK), and the packet information starts in bit-time eight.

The packet information varies from one byte to 1025 bytes. The first byte is
always a Packet Identifier, or PID, that will define how the other information
bytes should be interpreted. A packet identifier byte is formed with 4 bits and the
complement of these 4 bits; this redundancy allows the receiver to error-check
the PID. Of the possible 16 PID types that this encoding scheme allows, ten are
currently defined and six are reserved as shown in Table 2-1.

22

USB Design by Example

Table 2-1. Ten packet types are defined

PID Value Packet Type Packet Category

0101 SOF Token

1101 SETUP Token
1001 IN Token

0001 ouT Token

0011 DATAO Data

1011 DATA1 Data

0010 ACK Handshake

1010 NAK Handshake

1110 STALL Handshake

1100 PRE Special

Others RESERVED RESERVED

There are four categories of packets. Token packets are used to set up Data
packets, which are acknowledged by Handshake packets. There is also one
Special packet used to implement a low-speed connection. The next section
discusses each packet type in detail. Each will be presented as a discrete building
block, and we’ll use a sequence of these building blocks to define a robust
communications channel.

The last part of a packet is an End-Of-Packet identifier. Both D+ and D— are
driven low for two bit times to signal this End-Of-Packet. This is not a
differential signal. It is an easily identified single-ended zero, or SEO.

As an aside, it is worth mentioning the term “bit stuffing” that is used in the USB
specification. The data lines on the bus reflect the information that is being
transmitted. There is no separate CLOCK signal, and the receiver relies on
regular signal transitions to maintain synchronism with the transmitter. A
nonreturn to zero inverted, or NRZI, transmission encoding is used on the data
lines. The encoding and decoding occur at the transmitter and receiver,
respectively, so the process is transparent to all other parts of USB. The process
will, however, be observed on the bus.

Chapter 2 Close to the Wire 23

The NRZI protocol requires the following:

e Toggle each bit time for multiple data Os.

¢ Do not toggle each bit time for multiple data 1s.
e Toggle each data 1 to O pair.

e Do not toggle each data 0 to 1 pair.

This scheme results in no bus transitions for long sequences of data 1s, and as a
result, the receiver could lose synchronism. The USB specification requires that
a 0 data bit is added, or stuffed, after six consecutive 1 data bits to ensure that the
bus transitions often enough. We do not have to account for this during any part
of the design, but if you put an oscilloscope on the bus, you will see these
“extra” bits.

DIFFERENT PACKET TYPES

Start-Of-Frame Token Packet

The root hub transmits a SOF packet every 1.0 milliseconds. The time

between two SOF packets is called a frame. Within this frame, there are

(1.00 ms/12 MHz) = 12,000 theoretical bit times or 1500 bytes of data,
maximum. The SYNC and EOP overhead will reduce this number to a practical
upper limit of 1200 bytes of data that could be transmitted in each frame.

The USB signaling scheme includes robust error checking. This Cyclic
Redundancy Check, or CRC, code is generated by the transmitter and received by
the receiver. The receiver also generates a CRC code over the same data bits and
compares this with the received code. If they are different, the packet is rejected
and not acted upon.

A SOF packet has 11 bits of data and 5 bits of CRC error checking (Figure 2-3).

24

USB Design by Example

#* DN
OO

Tokén Packet

) S AL LRt by

Figure 2-3. Start-Of-Frame packet

The 11 bits of data in a packet is a monotonically increasing frame number. It
has no absolute value but is used by real-time devices to synchronize their data
transfer. This number rolls over every 2048 milliseconds, or approximately
every 2 seconds.

So with no other USB activity on the bus, our oscilloscope would see a SOF
packet every millisecond. Any device attached to the bus could receive this SOF
packet and use it as a regular “heartbeat” signal. We shall see in Chapters 11 and
12 that real-time devices, such as audio and video, rely heavily on this regular
SOF packet.

The SOF packet is the only packet that does not have a destination address. It is
broadcast for all USB devices to use and does not require an acknowledgment.

Chapter 2 Close to the Wire 25

Setup, IN, and OUT Token Packets

The other three token packets, SETUP, IN, and OUT, have the same format as
shown in Figure 2-4. They contain a 7-bit device address, a 4-bit endpoint
address, and a 5-bit CRC.

Figure 2-4. SETUP, IN, and OUT token packets

These three token packets are used to set up data transfers between the root hub
and a specific data source or sink on a specific device (this data source or sink is
called an endpoint; it is defined in the next chapter).

* An IN packet sets up a data transfer from the device to the root hub, and an
OUT packet sets up a data transfer from the root to the device.

¢ IN and OUT packets can address any endpoint on any device.

* A SETUP packet is a special case of an OUT packet; it is “high priority,”
which means that the device MUST accept it even if this means aborting a

previous command, and it is always targeted at the bidirectional control
endpoint 0.

26

USB Design by Example

Data Transfer Packets

The data transfers initiated by the SETUP, IN, and OUT token packets are
implemented with DATAQ and DATA1 packets (Figure 2-5).

Payload
Data

Payload
Data

Data Packet Data Packet

Figure 2-5. Data transfer packets

A data transfer packet can have a payload varying from 0 to 1023 bytes and a
16-bit CRC. (Some restrictions apply to payload size; these are detailed in the
sections about the different transfer types further on in this chapter.) There are
two data packet types to provide error detection. A transmitter will alternate
DATAO and DATALI packets, and the receiver should check that alternate
DATAO and DATA1 packets are being received. For example, if two DATAQ
packets are received back-to-back, this indicates a loss of a DATAI packet and is
an error condition.

Handshake Packets

Handshake packets are used by a receiver to indicate the good, bad, or ugly
reception of token and/or data packets. Figure 2-6 shows the three handshake
packet types: ACK, NAK, and STALL.

A handshake packet consists only of PID. There is no CRC:; the redundant
encoding in the PID provides the required error-checking.

e An ACK handshake indicates the successful reception of a token and/or data
packet.

e A NAK handshake indicates that the receiver is currently too busy or doesn’t
have the resources to deal with the token and/or data packet right now. A
device is allowed to NAK all transactions, except a SETUP token, while the
root hub is not allowed to NAK any transactions. The root hub is inside a
PC, so it should always have the time and resources to receive a packet; this
will simplify the buffering on an I/O device.

Chapter 2 Close to the Wire 27

e If something is very wrong at the device, then a STALL handshake is used to
tell the root hub that some help is required. For example, an I/O device will
generate a STALL handshake for all commands that it doesn’t understand.

There also exists a special PRE packet; for a discussion of this packet type, see
“Differences for a Low-speed Device” at the end of this chapter.

H/S Pkt

H/S Pkt

Figure 2-6. Handshake packets

28

USB Design by Example

BUILDING A TRANSACTION

A predefined sequence of packets is used to define data movement between the
root hub and an I/O device. Each transaction must occur within the same frame;
a transaction is not allowed to straddle multiple frames. Once a sequence is
started, it must be completed with no intervening packets from other transactions.

The USB specification defines four different transaction types to handle different
types of data that will be transmitted over the bus. All the transactions use the
same building-block packets just presented but differ in how the packets are
scheduled and the response to an error. The PC host software has two parameters
to deal with—delivery time accuracy and delivery quality accuracy. The time
and quality attributes have different importance to different data types. Table 2-2
summarizes the four transaction types and highlights the delivery attributes of
each type.

Table 2-2. Four transaction types

Type Important Attributes Maximum Size Example
Interrupt Quality 64 (8 for LS) Mouse, keyboard
Bulk Quality 64 Printer, scanner
Isochronous Time 1024 Speakers, video
Control Time and Quality 64 (8 for LS) System control

The PC host guarantees time accuracy by reserving portions of a frame for
isochronous and control transfers.

The PC host guarantees quality accuracy by using a handshake mechanism. In
general:

e If data is received correctly, then an ACK handshake is generated.

e If there is a problem with the data transfer, a NAK handshake is generated.
e If the data receiver is confused, a STALL handshake is generated.

The next section looks at each transfer type individually and studies their
characteristics.

In the following diagrams about the different types of transfers, packets
transmitted by the root hub are shown in white and packets transmitted by the [7/6)
device in black. Only full-speed transactions are described here; low-speed
differences are covered at the end this chapter.

Chapter 2 Close to the Wire 29

Interrupt Transfers

Using the term “Interrupt Transfer” for this transaction is very generous.
Hardware designers think of an Interrupt as an immediate response to an external
event. But this is not how USB Interrupt Transfers occur. Instead, the root hub
polls the I/O device to inquire if it needs attention. The root hub can poll as often
as every frame, which is 1,000 times a second, but for many mechanical or
human-related devices, polling once every 10 frames, or 100 times a second, will
be an ample response time. If your I/O device needs attention faster than

1 millisecond, then the microcontroller should preprocess the data and handle a

response locally, and a status update should be sent to the PC host at a convenient
time later.

Figure 2-7 shows several interrupt transfers.

Tok

en Packet
1A E c c
D|[N]|R Payload C
; D|iD|IC Data 1
A[R[|IP||5 6
jbkg Packet J — Data Packet

Figure 2-7. Interrupt transfers

30

USB Design by Example

The first sequence in Figure 2-7 shows a successful data transfer from the /O
device to the root hub. The data payload size varies from O to 64 bytes (0 to 8 for
a low-speed device). The ACK is a positive response for a valid data transfer.

To be able to respond so quickly, the /O device must have had the data ready
and be waiting for an IN token. If the I/O device did not have data ready, it
would generate a NAK as shown in Figure 2-7 (center), and the root hub would
retry in the next frame.

The third sequence shows a successful data transfer from the root hub to the /0
device. Note that OUT transactions were added in USB Specification V1.1. In
this example, the I/O device must have had a buffer ready to accept the data,
because it was able to respond immediately.

If the I/O device has no new data since the previous time it was polled, it can
respond with a NAK. This preserves bus bandwidth, and the transaction will not
be retried until the next scheduled polling interval.

If the I/O device is confused, it responds with a STALL, and the root hub alerts
higher levels of software so that the situation at the /O device can be resolved.

Bulk Transfers

The packets used to implement bulk data transfers are identical to those used for
interrupt transfers—the differences are in the allowable data sizes and the system
scheduling and response to a NAK handshake. USB provides “good delivery” of
bulk data. The transfer quality is guaranteed such that no data is lost, but the
transfer time is not guaranteed. Bulk transfers use the time available in a frame
after all of the guaranteed transfers have been scheduled. This means that a long
printout to a USB printer will take longer on a busy USB bus. On the other hand,
if there is a lot of time available within a frame for bulk transfers, the PC host can
schedule multiple transfers to the same I/O device in a single frame. The data
packets will alternate between DATAOQ and DATA1 tokens for error checking.

An I/O device can NAK a data packet if, for example, the device has no buffer
space to put the incoming data in. The PC host will retry the transfer in the next
frame.

Chapter 2 Close to the Wire 31

Isochronous Transfers

The packets used to implement isochronous data transfers are similar to those
used for bulk transfers but have different system scheduling and are not
acknowledged. Before a PC host agrees to support isochronous data transfers
to/from an /O device, the PC host negotiates a guaranteed data delivery
schedule. Isochronous transfers occur every frame, and the PC host will ensure
there is available bandwidth within the frame before agreeing to set up the
connection. Once set up, the I/O device is guaranteed a slice of every frame;
however, the position within the frame is not guaranteed, so the /O device must
buffer the data and allow for delivery time jitter.

Figure 2-8 shows the isochronous packets; there is no handshake packet with
each data transfer. Isochronous packets are time-dependent, and the late delivery
of a packet is as useless as no delivery, so bad packets are not retried. An I/O
device will typically use the data from a prior packet again. DATAO tokens are
used with a data payload that varies from 0 to 1023 bytes.

Payload
Data

=030

Token Packet

Data Packet

Payload
Data

mO:UOj
=201V 0

[vozm |

0
[
Q
x
@
i

[

8 zoo»

Data Packet

Figure 2-8. I1sochronous packets

32

USB Design by Example

Control Transfers

Control transfers are the most complicated. Control transfers need a lot of
system protocol overhead to ensure that the commands and data are correctly
received. This is not a major concern for system performance, because these
transfers typically occur only during enumeration or command initialization.
A control transfer is divided into three phases, each of which uses some of the
building-block packets already defined. These phases, shown in Figure 2-9,
always start with a setup phase and end with a status phase. The data transfer
phase is optional. All control transfers address endpoint 0 on the targeted

1/0 device.

Setup
Phase

Figure 2-9. Control transfer phases

The setup phase consists of a setup packet, a DATAQ packet, and a handshake
packet (Figure 2-10). The DATAO packet always contain 8 bytes, and the format
of this data is predefined (and presented in the next section). The handshake
packet is always an ACK, because the I/O device is not allowed to NAK or
STALL a setup packet. A setup packet must always be accepted even if this
requires aborting the execution of a previous control transfer request.

Chapter 2 Close to the Wire 33

, C
AllE]C 8Bytes ||R
||D R
o C Setup (|C
IR 5 Data 1
6
Token Packet Data Packet

Figure 2-10. Setup phase of a control transfer

The setup phase will specify if a Data Phase is required. Some setup commands
can be completely specified by the 8 bytes of data in the setup phase, and others
require more data to be written to, or read from, the I/O device. Figure 2-11
shows a typical control read data from the I/O device.

Data Packet H/S': Pkt

Data Packet

H/S Pkt

I —

Token Packet

Data Packet H/S Pkt

Figure 2-11. Control read data phase

34

USB Design by Example

Some setup commands require a lot of data to be read from the I/O device. If
there is more data than can be contained in a single packet, then the /O device
must send the data in multiple packets; Figure 2-11 shows a multipacket
response. The maximum size of a packet is implementation-dependent but must
be a minimum of 8 bytes. Other legal sizes are 16, 32, and 64. The next chapter
discusses how a particular I/O device informs the root hub of the maximum-sized
packets that will used.

The root hub may want to provide more data to the /O device—this would be
specified in the setup phase. A control write data phase is used in this case. The
example in Figure 2-12 uses multiple packets to supply all of the data.

——
AllE|lC c
D{|N}|R Payload C

||D||D C Data 1

{|R||P||5 6

en Packet] Data Packet B
(EE 1
~l|AllE]lC c
“/|DI{[N||R Payload c
. |D||DJ|C Data 1
R|{P||5 6
Token Packet] | Data Packet)

Figure 2-12. Control write data phase

Chapter 2 Close to the Wire 35

A control transfer always ends with a status phase (Figure 2-13):

 If there is no data phase, then the I/O device is acknowledging receipt of the
setup phase.

* If the data phase is a control read, then the root hub is acknowledging receipt
of all the data from the I/O device.

e If the data phase is a control write, then the /O device is acknowledging
receipt of all the data.

The status phase is an IN packet if the I/O device is providing the status or an
OUT packet if the root hub is providing the status. A zero-length data packet is
used to signify success, and a NAK or STALL response denotes an error
condition.

—
E
I/0 Device N
Acknowledge D
P
] |
en Pacl

PC Host
Acknowledge |}

g)-?[Tozm |

Figure 2-13. Final status phase of a control transfer

36 USB Design by Example

PC HOST REQUESTS

Figure 2-14 shows a fixed format for the 8-byte DATAQ packet within a control
transfer request.

RequestType |7(6(5]|413({2{1|0

Request

DataValue

IndexValue

Length

Definition of Request Type Bit Fields
Bit7 0 = Transfer Host Data to Device 1 = Transfer Device Data to Host

Bit6-5 00=Standard 01=Class 10 = Vendor 11 = Reserved

Bit4-0 0000 = Device 00001 = Interface 00010 = Endpoint 00011 = Other
All other codes are Reserved

Figure 2-14. Format of a PC host request

The RequestType parameter is a bt field with bit 7 indicating the direction of
the transfer for the next transaction. Bits 6 and 5 are a top-level switch of how
the Request byte at offset 1 should be interpreted—this chapter covers only
Standard Requests and Class Requests for a hub device. Other class requests are
covered in later chapters. The lower four bits specify the destination of this
request; the PC host can send requests to the device, to an interface, or to an
endpoint.

Chapter 2 Close to the Wire 37

The Request parameter indicates which information the PC host wants.
Table 2-3 lists the standard requests for a device along with the required action

by the I/0O device. Table 2-4 is a similar list for a hub device.

Table 2-3. Standard PC host requests of an I/O device

Request
Get_Status
Clear_Feature
Set_Feature
Set_Address
Get_Descriptor
Set_Descriptor
Get_Configuration
Set_Configuration
Get_lInterface
Set_Interface

Required Device Action

Return current status

Clear Specified Feature

Set Specified Feature

Store Unique USB Address and use from now on
Return requested descriptor
Set Specified Descriptor

Return Current Configuration or 0O if not configured
Set Configuration to the one specified

Return Current Interface

Set Interface to the one specified

Sync_Frame

Synchronize USB Frame Numbers (Async device)

38

USB Design by Example

Table 2-4. PC host requests of a hub device

Type

Standard
Standard
Standard
Standard

Standard
Standard
Standard

Standard
Standard
Standard
Standard
HUB Class
HUB Class
HUB Class
HUB Class
HUB Class
HUB Class
HUB Class
HUB Class
HUB Class

Request
Get_Status
Clear_Feature
Set_Feature
Set_Address

Get_Descriptor
Set_Descriptor
Get_Configuration

Set_Configuration

Required Device Action
Return current status
Clear Specified Feature
Set Specified Feature

Store Unique USB Address and use from now
on

Return requested descriptor
Optional: Set Specified Descriptor

Return Current Configuration or O if not
configured

Set Configuration to the one specified

Get_Interface
Set_Interface
Sync_Frame
Get_Bus_State
Get_Hub_Status

Get_Hub_Descriptor
Set_Hub_Descriptor

Set_Hub_Feature
Clear_Hub_Feature
Get_Port_Status
Set_Port_Feature
Clear_Port_Feature

Optional: Return Current Interface

Optional: Set Interface to the one specified
Optional: Synchronize USB Frame Numbers
Optionél (for diagnostics): Return D+, D-
Return Hub Status with Changed Identified
Return Hub Descriptor

Optional: Set Hub Descriptor
Enable a standard hub feature
Disable a standard hub feature

Return Port Status with Changed Identified
Enable a standard port feature

Disable a standard port feature

The remaining 6 bytes of the PC host Request are used as data to support the
request. If a single byte or word Data Value is required, it is supplied in byte
offset 2 and/or 3. If a single Index Value is required, it is supplied in byte offset
4 and/or 5. The Length word in byte offset 6 and 7, if greater than 1, specifies
the total length of the subsequent data transfer.

The optional second phase of a control transfer moves any required data to
support the request between the PC host and the /O device.

Chapter 2 Close to the Wire 39

It is easier to understand these requests and their response through an example.
In the next chapter we’ll step through an enumeration sequence and identify all
requests and responses.

ERROR HANDLING

A lot of care and effort went into creating a robust communications channel for
USB. T have briefly mentioned some of the factors during this “Close to the
wire” discussion. If we were building a USB transceiver, then I would go into
much more detail at this point. The focus of this book, however, is using USB.
There are many USB transceivers available (see a listing on the CD-ROM), and
all of the implementations have been verified for correctness to the USB
specification. If you are a silicon designer who needs to include a transceiver on
your ASIC, refer to the reference design material in the Chapter 2/Silicon Design
directory on the CD-ROM.

DIFFERENCES FOR A LOW-SPEED DEVICE

A low-speed device can handle interrupt and control transactions; it does not
support bulk or isochronous transactions.

The root hub knows the operating speed of each USB device, so the root hub
knows when it is about to initiate a transaction with a low-speed device (how the
speed is known is described in the next chapter). The root hub prefixes a special
PRE token before all other tokens it generates for low-speed interrupt or control
transactions to warn downstream hubs that a low-speed transaction is coming.
Figure 2-15 shows a representative low-speed interrupt transaction. I won’t
describe this in detail because the I/O device itself does not see these PRE tokens
and therefore does not need to deal with them. The hub acts on the PRE tokens
by passing them through to all full-speed downstream ports and passing only the
following token to low-speed downstream ports. Chapter 13 covers hub design
in more detail.

40

USB Design by Example

One implication of adding the PRE prefix to interrupt and control transactions is
that a low-speed device will never see a SOF token.

TOO>»
a0

vnoZm

Token Packet)

Payload
Data

Data Packet

‘ H/S Packet)

—r

Figure 2-15. Low-speed packets are eight times longer

Chapter 2 Close to the Wire 41

VIEWING THE USB PACKET Bus

It is interesting and educational to use an oscilloscope to look at the differential
signals on the USB data wires, but this is not a productive tool to use in
debugging a system. What we need is an observation tool that understands the
packetized nature of the bus and can display the bus transactions at a higher
level. Computer Access Technology Corporation has been working with USB
since its inception, and their insight into the design challenges of a USB
subsystem is obvious in their CATC tools (Figure 2-16).

R

Courtesy of Computer Access Technology Corp.

Figure 2-16. USB bus-specific tools from CATC

The CATC tools range from their Detective for USB observation to the Chief
that can analyze, capture, replay, and run tests. All the tools capture activity on
the USB bus and display it in the form of packet diagrams (Figure 2-17). Each
token packet is displayed in a different color, and the sequence of packets that
make up a transaction are grouped together.

42 USB Design by Example

ATE USE Uhret Bus and Protocal Analgzer [data ush CATC deloult |

:
4718

Packet m
4722

Packet wm
4723

Packet m
4724
Packet w
4739

Packet »
4748

'

Figure 2-17. USB packets displayed as packets

All of the CATC tools capture bus activity for later analysis. The use of color to
display different packet types and the grouping of building-block packets into
transactions allow the designer to quickly interpret what has happened on the
bus. The simpler CATC tools capture all bus activity while the more elaborate
tools have programmable capture and programmable triggers. Being able to
isolate packets sent to a specific device or triggering after, for example, device 42
has received 58 DATAO packets, aids the debugging of more sophisticated USB
devices. The high-end CATC tools can also be used to generate bus traffic for
device reliability testing and failure analysis.

CHAPTER SUMMARY

This chapter provided insight into the signals on the bus, the fundamental
packetized nature of the bus, and the transactions used to exchange data on the
bus. The PC host uses a defined set of requests to control all of the devices
attached to the bus, and these devices need to respond in a defined manner. Bus
observation, or “sniffer” tools as they are called, are available to monitor and
analyze these low-level bus signals.

43

CHAPTER 3
THE ENUMERATION PROCESS

Let us assume that the PC host meets all of the requirements described in

Chapter 1, is running a USB-aware operating system, and has an available USB
port. This port could be on the PC host itself (an embedded hub) or could be on
an external hub. Now we have a new USB I/O device that we want to add to this
running system. What actually happens between the host, the hub, and the device
to deliver the many USB features?

After understanding what the PC host is doing, we learn the responsibilities of a
general I/O device. All devices describe themselves using a set of descriptor
tables. We start by looking inside the simplest example and then expand the
discussion to cover the general case. We then derive the minimum hardware
requirements for a device.

There are many “chicken-vs.-egg” situations in this section, so I'll need to defer
some technical discussions to keep the flow of the concepts moving forward.

44 USB Design by Example

DEVICE DETECTION

Figure 3-1 shows details about the USB cable. The cable has four wires: two
power wires for Ve and Gnd and two signal wires for D+ and D—. The cable
end that attaches to the hub has a Series A connector, and the cable end that
attaches to the new device is either connected directly (no connector) or has a
Series B connector. Both connectors have longer power and ground connector
pins to ensure that the device has good voltages before signals are applied.

The hub socket supplies Vcc and Gnd. The current limiter will initially prevent
more than 100 mA from being drawn, even instantaneously, from the hub. If
excess current is drawn, then the hub informs the host software of this error (see
“Enumeration steps,” step 5), an error message is displayed on the PC screen, and
the device is not configured.

Because we haven’t plugged in the /O device yet, it is in the unattached state.

In Figure 3-1, note the two biasing resistors in the hub; they ensure that D+ and
D- are low when no device is plugged in. There is a single biasing resistor on
the device that is attached to either D+ or D-. When the USB cable is plugged
in, the biasing resistor causes D+ or D— to rise above ground, and this changed
voltage difference is recognized by the hub. We have detected a cable being
plugged in! By convention, if the device-biasing resistor is connected to D+, we
are informing the hub that this device is full speed (12 Mbps), while a biasing
resistor on D— indicates a low speed (1.5 Mbps) device. Simple and effective!

Biasing Resistor

Series A Series B e
curent | Connector Connector :-1
Limiter
Vce Vee
Hub > SIS ST S ST = Device
Controller —Gnd Gnd Controller
15K USB Cable
15K
Dual Biasing
Resistors
Hub 1/O Device

Figure 3-1. USB cable connection details

Chapter 3 The Enumeration Process 45

The I/O device is now in the attached state, and, because this hub is already
configured and operational, the device moves to its powered state.

The hub updates a STATUS_CHANGE register following detection of the new
device and then waits to be told what to do.

The PC host controls the enumeration phase and, during this phase, sends
requests to two devices. The hub that identified the newly attached device will
receive many requests for action, and the newly attached I/O device will also
receive requests. If there are any other hubs between this hub and the root hub,
they will not take part in this process. They will repeat the signals on the USB
bus, because that is one of their roles, but because they are not being addressed
by the PC host software during this process, they may be ignored.

The PC host software regularly polls all connected hubs looking for work to do.
In most cases a hub has nothing to report so will NAK this interrupt transfer. But
this time the hub responds with the STATUS_CHANGE data indicating which
port has had a change in status—the PC host-based enumeration process has
begun!

ENUMERATION STEPS

In the following description the PC host is initiating all requests. I have used a

ToHub: prefix if the addressed device is the hub, or a ToIO: prefix if the

addressed device is the newly attached I/0 device.

1. ToHub:Get_Port_Status: Host discovers newly attached device.

2. ToHub:Clear_Port_Feature(C_PORT_CONNECTION): Clears the flag
in the STATUS_CHANGE register that started this process.

3. ToHub:Set_Port_Feature(PORT_RESET): The hub responds by sending
a reset to the I/O device. The hub maintains this reset for a minimum of
10 milliseconds. It then updates the RESET_CHANGE bit in its
PORT_CHANGE register and enables the port for USB traffic by setting the
PORT_ENABLE bit in the PORT_STATUS register. The PORT_CHANGE
register update causes an update to the STATUS_CHANGE register. The
PC host will notice this on its next scheduled poll.

4. ToHub:Get_Port_Status: The PC host discovers that the reset is complete.

46

USB Design by Example

10.

11.

ToHub:Clear_Port_Feature(C_PORT_RESET): Clears the flag in the
STATUS_CHANGE register. At this time the I/O device has power and has
been reset; therefore, it is in its default state. The device will now respond to
PC host requests to device address 0 (the default address). If another device
were attached at this same instant in time, the PC host software will defer
servicing it until the enumeration sequence on the current I/O device is
completed. In other words, there will be only one device that responds to
device address 0 at any one time.

ToIO:Get_Device_Descriptor: The PC host makes its first move to
discover what kind of device has been attached. The device responds with a
device descriptor (Figure 3-2). This data structure is described in the next
section.

ToIO:Set_Address: The PC host allocates a device address to the newly
attached /O device. All subsequent requests are sent to this new device
address. The device is now in its addressed state.

TolO:Get_Device_Descriptor: The PC host repeats this request to the new
address. It should get the same response shown in Figure 3-2. Any different
response, Or a device timeout, indicates an error condition that the PC host
software must deal with.

TolO:Get_Configuration_Descriptor: The device driver starts collecting
information about the device, its interfaces, and its endpoints. In a feature-
rich /O device, the configuration can be quite extensive (for a preview, see
Figure 3-15). For now, we will review the simpler example in Figure 3-3.
All of the parameters will be explained later in this chapter. If the device has
multiple configurations, then the driver typically reads them all. After some
processing that may (hopefully not) require some user interaction, the host
software will move to the next step.

Select Device Driver: From the PC host’s perspective, it needs to determine
which device driver is needed to support this newly attached I/O device. The
algorithm for choosing a device driver is covered later. If the selected device
driver is not currently in memory, it is loaded now.
TolO:Set_Configuration: The device is now configured and operational, so
it moves into its configured state.

Chapter 3 The Enumeration Process 47

DEVICE DESCRIPTOR

Figure 3-2 shows the device descriptor that is returned following the PC host’s
Get_Device_Descriptor request. We’ll investigate each parameter but will use
default values during this early discussion.

Length=18
Type=1

usB
Version#

Ciass
SubClass
Protocol
EPO Size Note: Fields in italics

Vendor are indexes into a
ID STRING descriptor.

Product
ID

Version
Number

Manufacturer
ProductName
SerialNumber
Configurations

Figure 3-2. Device response to GET_DEVICE_DESCRIPTOR

The first three values, Length of this descriptor, Type of this descriptor, and
Version of the USB Specification that we are compliant to, are easy to fill in
(18, 1, and 100H, respectively). The Class, Subclass, and Protocol need some
explanation.

Classes were created within the USB Specification to make it easier to write PC
host software. In some cases, as we shall see, we do not need to supply any host
software. Classes are somewhat confusing and appear unnecessary to the
hardware designer, but because much of USB revolves around them, we will
have to learn this subject! So what are the benefits of classes to the hardware
designer?

48

USB Design by Example

The host operating system groups the diverse world of I/O devices into classes:
1/O devices with similar characteristics are grouped together, and a generic
device driver is provided for this class. Some examples include “Human-
Interface-Device,” “Audio,” “Mass Storage,” and “Power Supplies.”

A subclass is a finer granularity grouping within a class. Protocol is used in
some class definitions. So, if we can describe the /O device within one of the
predefined classes, the operating system will recognize the /O device and will
already have a software interface (that is, device driver) embedded in the
operating system to converse with the 1/0 device. This means that we don’t have
to supply any Windows 98 code, any iMac code, any Linux code, or whatever to
enable our /O device to operate with these systems. A good point to note here is
that USB devices can be used on all systems that support a USB port and these
class drivers: An Intel PC keyboard operates on an iMac computer, and an iMac
mouse operates on an Intel PC (aren’t standards wonderful!).

If we are building a unique I/O device that the host operating system will not
know about, we must supply a device driver, or n device drivers, one for each OS
that we want to support. This is a lot of work, and we will avoid this in all the
examples in this book. (My next book will include the gory details of device
driver programming.)

There are two special class codes: 0 indicates that the class code is defined in a
later descriptor; OFFH indicates a vendor-supplied class code (this is even more
work and beyond the scope of this book).

All other codes describe a USB Specification Class Type—this list is constantly
growing, and an on-line reference is kept on www.usb.org. [have provided more
discussion about device classes later in this chapter.

EPO size defines the maximum number of bytes that can be sent or received by
endpoint 0 in each data payload (the control endpoint that is always open). This
is implementation-dependent, and many vendors have chosen the minimum USB
Specification value of 8.

To sell USB products in the open market, you must have a Vendor ID. These
are issued by admin@usb.org for a small registration fee. For our examples we’ll
use 04242H, which is my Vendor ID. We choose whatever values are
appropriate for Product ID and Version#.

The next three values are indexes into an array of strings. We’ll use real values
in our later examples, but for now we’ll use 0 for the default values.

The final value of Configurations defines the number configurations that this
device has. Let us assume for now that this is 1.

Chapter 3 The Enumeration Process 49

To recap enumeration step 6 (and 8), the PC host discovered that the device was
a conforming I/0 device that it should talk to. Any illegal values in the device
descriptor would cause the PC host software to ignore the device.

In enumeration Step 9, the PC host requests a configuration descriptor.

Figure 3-3 shows the minimum example—this is for a device that has one
configuration with a single interface that uses only endpoint 0 to exchange data.
Endpoint 0 is predeclared, and, because it always exists, it need not be
redeclared.

Configuration Interface
Length=9 Length=9
Type=2 Type=4
Total Thisinterface
Length Alternate
Interfaces Endpoints
ThisConfig. Class
ConfigName SubClass
Attributes Protocol
Max. Power InterfaceName

Figure 3-3. Descriptors for a minimal I/O device

Configuration Descriptor

A configuration descriptor has a fixed length and type: 9 and 2, respectively.

When the PC host requests the configuration descriptor, the device responds with
all the descriptors that it uses to describe the functionality and operation of the
device. These descriptors are concatenated together and sent as a single large
block to the PC host. The TotalLength of this block is entered at byte offsets 2
and 3.

The number of interfaces supported by this configuration is entered at byte
offset 4. A minimum I/O device will enter a 1 here.

A device with multiple configurations will have multiple configuration
descriptors (we’ll discuss this in the next section). Each configuration descriptor
must have a unique identifier, called ThisConfig, and this is entered at byte

offset 5.

The byte at offset 6 is an index into a string array. Because we aren’t using these
yet, we enter a O for this entry.

50

USB Design by Example

Configuration Attributes is a bit-mapped field with bits 7, 6, and 5 defined as
shown below and bits 4 through O reserved (set to 0):

e Bit 7 set indicates that this device is powered by the USB cable.
e Bit 6 set indicates that this device has its own power source.
e Bit 5 set indicates that this device can generate a remote wakeup.

We will use 50 in the MaxPower entry to indicate that we need only the 100 mA
that was initially provided. With this value, we would be considered a low-
power device. We could request up to 500 mA from the bus, and some of the
later examples will need this. Current requirements over 500 mA demand a self-
powered device that includes a “wall-bug.” A device can use both USB power
and self-power. It is common to power the USB interface from the bus and use
an external source for other device power. If the device power levels can be kept
below 500 mA, then the device will not need an external power source. This will
decrease the cost of the device and make it easier to use. It is worth the design
effort to come in under the 500 mA limit. A device that needs to generate a
REMOTE_WAKEUP will need external power to be able to generate this signal.

Interface Descriptor

A minimum device will have a single interface descriptor. The length and type
are fixed at 9 and 4, respectively. We will enter 0 in the Interface, Alternate,
and Endpoints fields, because they are not used in a minimum device.

A PC host device driver is bound to this interface descriptor. A device that
supports multiple interfaces will have a device driver bound to each interface. It
is important to realize that the PC host software views USB as a large collection
of SOFTWARE INTERFACES—the /O device is a convenient hardware
implementation and container for these software interfaces. Although there is a
matching software driver for each interface descriptor, multiple, similar interface
descriptors can be supported by a single driver. The Class, Subclass, and
Protocol entries determine which software driver will be bound to this interface.

We use 0 for the InterfaceName because we are not yet using strings.

Chapter 3 The Enumeration Process 51

CHOOSING A DEVICE DRIVER

The Windows 98 driver selection scheme gives you an extreme amount of
control. You can use the Vendor ID, Product ID, and Device Revision number to
pinpoint a driver that exactly matches the hardware. You will, of course, need to
write this device driver yourself because it will be unique to the I/O device.

The strategy I follow in this book is to make use of the device drivers already
installed in the operating system. This will mean that we will not need to write
our own device driver—this is a specialized task that requires a certified wizard
to complete. Let’s look at the nonwizard methods we can use to choose a device
driver.

The key to our solution is to request a device driver that Windows already has.
We expect the search for a driver based on Vendor ID, Product ID, and Device
Revision to fail, because we have not supplied a device driver that matches those
elements. Once the search fails, the PC host software looks at the Interface
Class, Subclass, and Protocol. The operating system supports an array of class
drivers, and for our first set of examples we declare our I/O device as belonging
to the Human Interface Device, or HID, class.

Mice, keyboards, and gamepads are good examples of HID devices. They react
very slowly (when compared with a 500-MHz Pentium Il processor) and transfer
only small amounts of information between the PC host and the I/O device. The
information transfer for USB HID devices is further standardized using Reports.
A report is a preformatted data structure that defines how much data is
exchanged and how this data should be interpreted. This logical representation
allows the I/O device to be radically changed providing it maintains its Report
interface. This structure gives hardware independence to the software, enabling
both to be improved on different schedules. The details with a Report are
described later in this chapter. Our first example in Chapter 6 uses a report for
data exchange.

A device with the minimum descriptors just described would enumerate
correctly, and a custom device driver would have been loaded to support the
device. Let’s look at some additional entries we need to make in the descriptor
tables so that we don’t have to supply our own device driver. How does a mouse
or keyboard enumerate so that the operating system uses one of its internal
drivers? These devices are Human Interface Devices (HID), and the operating
system knows a lot about these! The operating system supports many other
classes; I’ll present these in later chapters when appropriate examples require
them.

52 USB Design by Example

DEFINING AN HID

An HID-class device is identified by a class code of 9 in the interface descriptor.
This entry will prompt the PC host to look for an HID Descriptor and a Report
descriptor as shown in Figure 3-4.

These would have been concatenated with other descriptors and supplied to the
PC host following a Get_Configuration request.

HID Report
Length=9 Report(0)
Type=21H Report(1)
HID | |
Version# r—R_GM)_]
CountryCode
Hl|Ddescriptors
Report=22H
Total Report
Length=M

Figure 3-4. HID and report descriptor formats

HID Descriptor

Many of the examples in this book are human interface devices, so we need to
slow down here to absorb all of the information in this section. Although HID
operation sounds difficult at the first reading, it will turn out to be the easiest
option to use to connect a unique /O device to the PC host.

The HID class consists primarily of devices that people use to control the
operation of computer systems. Typical examples include:
e Keyboards and pointing devices: mouse devices, trackballs, joysticks
e Front panel controls: knobs, switches, buttons, sliders

e Controls that might be found on devices such as telephones, VCR remote
controls, games or simulation devices: data gloves, throttles, steering
wheels, pedals

e Devices that may not require human interaction but provide data in a similar
format to HID-class devices: bar code readers, thermometers, voltmeters

Chapter 3 The Enumeration Process 53

Many typical HID class devices include indicators, specialized displays, audio
feedback, and force or tactile feedback. Therefore, the HID class definition
includes support for various types of input and output directed toward the user.

The first four entries of an HID descriptor have standard values: 9, 21H, 100H,
and 0. If the HID device operates only in a single country, then CountryCode
should be set appropriately (for more information, see Section 6.2.1 of USB
Documents/HID Class Definition.pdf on the CD-ROM). A keyboard would be a
good example of a country-specific I/O device.

The fifth entry, HIDDescriptors, contains a count of the number of HID class
descriptors that follow. A single I/O device could have several HID interfaces.

The sixth entry is fixed at x22H indicating that this interface contains a report
descriptor, and the seventh entry contains the TotalLength of this report
descriptor.

Report Descriptor

The primary and underlying goals of the Report Descriptor are:

e Be as compact as possible to save device data space.

e Allow the software application to skip unknown information.
¢ Be extensible and robust.

e Support nesting and collections.

e Be self-describing to allow generic software applications.

A type of pseudocode has been generated that is able to generically describe any
style and quantity of data (in Chapter 5, I’ll describe an HID tool that does the
work for you). The coding was chosen to be very compact and to make it easy
for the PC host to parse and generate. As a result, it is a little difficult to read, as
evidenced by the keyboard descriptors in Figure 3-5. I have added comments to
help you decipher the report. This report generates a 3-byte buffer that is sent to
the keyboard to illuminate the status LEDs; from the keyboard, the report
receives a 6-byte buffer that can contain up to six keystrokes. Reports are
introduced in the next chapter, but for a full discussion of the Report structure,
see the USB documentation directory on the CD-ROM.

USB Design by Example

A Report Generator tool is provided on the CD-ROM to help build custom
reports. All reports used in our initial HID examples use the same buffer format:
A byte-wide buffer of up to 64 entries can be sent to the I/O device, and the I/O
device can supply a similar buffer. Each example will individually interpret the

byte fields.

Usage Page (Generic Desktop),
Usage (Keyboard),
Collection (Application),
Usage Page (Key Codes),
Usage Minimum (234),
Usage Maximum (231),
Logical Minimum (0),
Logical Maximum (1),
Report Count (8),
Report Size (1),

Input (Data, Variable, Ab
Report Count (5),

Report Size (1),

Usage Page (LEDs),
Usage Minimum (1),
Usage Maximum (5),

;Use the Generic Desktop
;Start Keyboard collection

:Fields values from O to 1

;Add fields to the input report.

solute),
;LED Report = 5 LEDs
;Size of each report item is 1 bit

Output (Data, Variable, Absolute),

Report Count (3),
Report Size (1),
Output (Constant),
Report Count (6),
Report Size (8),
Logical Minimum (0),
Logical Maximum (101),
Usage Page (Key Codes),
Usage Minimum (0),
Usage Maximum (101),
Input (Data, Array),
End Collection,

End Collection

Figure 3-5

;3 bits of Padding
;6 characters are buffered
;Characters are byte wide

;6 character buffer

. Commented keyboard report

Chapter 3 The Enumeration Process 55

I/O DEVICE’S POINT OF VIEW

We have already seen that the I/O device exists in various states—disconnected,
attached, powered, etc. Figure 3-6 shows the complete state diagram that an I/O
device must adhere to. A new state, called suspended, is important for correct
I/0O device operation and is introduced here.

Bl Bus Inactive for 3ms

SA Bus Activity OR Reset
OR Power Interruption

Attached

Hub
Configured

Hub Reset or
Deconfigured

BI
Powered)‘ SA (Suspended

Reset Power Interruption

Bl

fault Suspended
Defau l SA (P

Address .
Assigned Reset OR Power Interruption
Bl
Suspended
Addressed 2 SA (P!

Device Device Deconfigured OR
Configured Reset OR Power Interruption
Bl ‘
Configured >‘ SA T Suspended

Figure 3-6. Required I/O device state diagram

If an I/O device detects no bus activity for 3 ms, the device is required to move
to a low-power suspended state, in which it draws no more than 0.5 mA from the
bus. No bus activity for 3 ms means that the PC host has stopped sending SOF
packets,; this is a result of the PC host powering down. There’s no point in
keeping most I/O devices powered on if the PC host has powered down! Any
activity on the bus will result in the I/O device returning from a suspend state
into one of the active states.

56

USB Design by Example

It is possible for the /O device itself to bring the PC out of its powered-down
state. This capability, called REMOTE_WAKEUP, is the only time a signal is
initiated by the /O device. If the I/O device were a telephone, for example, it
would want to wake up the PC if the phone rang. This capability must be
predeclared in the device configuration descriptor so that the PC host knows to
prepare for such an event.

The T/O device drives a remote wakeup signal (a Kstate onto the idle bus) to alert
its local hub. Hubs propagate this signal up to the root hub, which informs the
PC to wake up.

Tt should be noted that the PC host is allowed to send control requests even after
the /O device is in the configured state. Indeed, the PC host could send a
Set_Configuration request specifying the zero configuration that moves the /O
device back to the addressed state where it stops responding to the real world.

Enumeration from the device point of view is straightforward (Figure 3-7).
Requests are received from the PC hosts, and the 1/O device must respond to
them. The /O device designer predeclares all of the descriptors and supplies the
correct information to the PC host on request. We will work through several
design examples in Chapter 6.

| Reset I

I Initialization I
——L— A
Receive Packet or

Real World interrupt

rRespond to TYPEJ rRespond to Interrupﬂ
‘Z ’——L '—&—‘ — I / LI \ LA
“House Keeping” Commands Real World /O Commands
It AR |) | 1 I 11

Y \ \ \L Y \ \

Figure 3-7. Typical software structure of an I/0 device

Chapter 3 The Enumeration Process 57

MiNiMum 1/O DEVICE

With multiple states to operate in and with control and data packets to respond to,
we can agree that even a minimal USB I/O device is more than “a few PALs.”
Figure 3-8 shows a block diagram of the essential elements of a USB I/O device.

]
1
i r&_ Data
! ; Bytes
B+= ! 4& In?:r?aacl:e SIE | | Protocol [| Other | _Real
B Engine Interface | |Controller VO [World
! —D— Control
) N
i 4 -
1

Figure 3-8. Essential elements of a USB I/O device

A USB transceiver is required to meet the electrical characteristics of the bus.
These electrical requirements are generally integrated into a USB device
controller, but, if required, Philips has a PDIUSBP11 component (Figure 3-9).

OE# — | p—- D-

SPEED — |
VMO —M8M8M | D
+

PIN CONFIGURATION - P —
NC E ~ 14 vee +1—4
OE# [2] 13 vmo AoV -
RCV [3] [12] vpPO
VP [4] T1] D+ :
VP /4 ==
wM [5] [10] D-
SUSPND [8] [9] sPEED
GND [7] [3] Ne /
M %

FUNCTIONAL DIAGRAM

Figure 3-9. Stand-alone USB transceiver

58

USB Design by Example

An essential part of a USB interface is the Serial Interface Engine, or SIE. The
SIE receives bits from the USB transceiver, validates them, and provides valid
bytes to the SIE interface. Similarly, bytes are received from the SIE interface
and transmitted serially onto the USB bus.

The SIE contains intelligence to manage the bus bit-level protocol including the
bit-stuffing algorithm. A vendor can include more intelligence in the SIE if
desired or can pass raw data with possible error status to the protocol controller.
The richness of the SIE interface also varies with different vendors—some
supply the bytes from USB in FIFOs, some in memory; some supply error status
flags and expect the protocol controller to deal with error conditions, while some
error-check the incoming data, implement the USB handshake protocol, and only
interrupt the protocol controller once clean, validated data has been received.
We’ll use a variety of USB components in the examples and will get first-hand
experience of these implementation differences.

Several stand-alone SIE components are available (see the CD-ROM for a full
list), and these vary in their SIE interface. Two popular interfaces are the parallel
port and I12C serial interface as shown in Figure 3-10.

Chapter 3 The Enumeration Process

59

Netchip NET2888

o[7:01
)

1oR#
Tows
oRa
DACK#
otk
1Rae Local Bus
RESETH Controker
150K

WAKEUPH

SUSPY
DEVCFGH
BUSPWRY
PWRGOOD#
Lok

IRNIRINERENTRRNNNY

LRESET#

Interrupt Endpoiot

Philips PDIUSBD12

sMHz

&

National Semiconductor USBN9602

AUALE

D[7:0/AD[7:0]

INTR MODE[1:0]

wa
I

Microcontroller Interface

t i

Endpoint/Control FIFOs

"’ Control

Status

EP2

RX

Endpoint0
EP3 | EP4

EP1

EPS | EP6

T

SIE T ¢

+— RESET
+—f Veo
+— GND

48 MHz
Oscillator

[XIN
[—* XOUuT

Clock

Generator

CLKOULT

Media Access Controller (MAC) H Rgclgsgry ’
Physical Layer Interface (PHY) H USDBGS‘Q"' ‘

Transceiver

I

V3.3

AGND

D- Upstream Port

UPSTREAM PLL INTEGRATED
- -
SIE UNIT

REGULATOR

INTERFACE

Philips PDIUSBD11

12 MHz

UPSTREAM
PORT

PLL

BIT CLOGK
RECOVERY

PHILIPS
SIE

INTEGRATED
AAM

INTERRUPT

|e—s- 507

- scL

Figure 3-10. Stand-alone SIE peripherals

60

USB Design by Example

All SIE components have the same structure because they all interface to the
same USB bus definition. Implementations differ depending on the number and
type of endpoints that are supported and the supported speed of connection, full
at 12 Mbps or low at 1.5 Mbps.

The Protocol Controller can be implemented in a variety of ways, and the most
common is a programmable microcontroller. Many microcontroller suppliers
have implemented a SIE into their family of devices to create a single-chip USB
controller. Different vendors use different microcontrollers so different
instruction sets are used. There is a large span of program memory space varying
from 0.5K to 32K. Most vendors produce a family of devices so you can better
match your requirements. The microcontroller’s program memory may be ROM,
EPROM, or even EEPROM. If ROM is used, then an external, serial EPROM is
typically used to customize a reasonably fixed I/O device configuration. EPROM
devices are programmable, and some versions are shipped in a plastic package
for lower cost—these sealed devices are not erasable and are referred to as One-
Time-Programmable (OTP). An EEPROM, sometimes called a flash device, is
programmable in-circuit. These differences will become clear once we discuss
the development environments in Chapter 5.

For microcontrollers, there is an even wider diversity of implementations
available, ranging from a simple 8-bit implementation such as the Cypress 63100
device to the 32-bit Motorola 823 device (Figure 3-11).

Chapter 3 The Enumeration Process

61

6 MHz
CERAMIC RESONATOR/
CRYSTAL

L

AiCexr

i

—\>

E
INSTRUCTION
CACHE SYSTEM INTERFACE UNIT
INSTRUCTION
MMU
INSTRUCTION MEMORY CONTROLLER
POWERPC wd | INTERNAL EXTERNAL
CORE -] BIY BIU
” SYSTEM FUNCTIONS
LOAD / STORE DATA CACHE REAL-TIME CLOCK
BUS DATA PCMCIA INTERFACE
MMU
FOUR | WTERRUPT | Af};OHT y
TIMER TIMERS | CONTROLLER A
VIRTUAL SERIAL
AND LCD AND VIDEO
BAUD RATE 32.BIT RISC MICROCONTROLLER I
INDEPENDENT CONTROLLERS
GENERATORS AND PROGRAM ROM DMA CHANNELS
GENERAL MAC
PURPOSE 110
/ y / /
usB l scce II SPl I l Pe | SMC1 I I sMC2
TIME SLOT ASSIGNER SERIAL INTERFACE

Figure 3-11. Wide range of USB microcontrollers available

62

USB Design by Example

usB

The density and complexity of the integrated I/O capability also vary greatly. It
is best to design your I/O device first, and then look for the best match of features
from a list of available components (see Appendix A for a selection guide).

One device we’ll use in several examples is the EZ-USB component from
Anchor Chips (Figure 3-12). This component has a unique implementation in
that the program memory of the protocol controller is RAM. On power-up, an
intelligent SIE holds the protocol controller in reset. The SIE understands the
enumeration process and can complete the process without help from the
protocol controller. The device driver specified by the EZ-USB device descriptor
knows how to do one thing: Download a program into the program RAM and
remove the reset from the protocol controller. We thus soft-load a program into
the I/O device!

The EZ-USB component then programmatically detaches itself from the hub and
reattaches itself with its newly loaded personality. Anchor Chips calls this
process “renumeration,” and it means that the device doesn’t have to be built
with a mask ROM, be programmed, or even be flashed. If you think that your
I/O device program may change after it ships to users, then software update is as
easy as providing a new file on the PC host. No product to recall. No new parts
or EPROMs to manufacture and supply. Just ask your users to download an
update from the Internet!

|_I__:.:

Counter
Timer

RAM —

UART

Serial
XCVR Interface

Address/
Data Bus

l_I::

170
8051 Ports [

Engine Reset

INT

[2c

Local Expansion

Figure 3-12. EZ-USB component from Anchor Chips

Chapter 3 The Enumeration Process 63

The EZ-USB component is a little more expensive than ROM or EPROM parts
because its program in RAM means that the die is larger. For low- and medium-
volume projects, however, use of this component could be a cheaper solution
overall. Anchor Chips has compatible ROM parts for high volume—these are
not downloadable, but you are not penalized for designing a successful product
(the part has a lower unit cost but fewer features). Because the many examples in
this book have different personalities, I will use the Anchor Chips EZ-USB
component for these examples.

COMPLEX I/O DEVICE

This section expands on the minimal descriptors described earlier in the chapter.
Edit the descriptors slowly so you can appreciate their building-block nature.

First we’ll add a Strings descriptor. This has a variable length header followed
by variable length string entries (Figure 3-13). The header consists of a length
and type entry (2N+2 and 3) followed by an array (N) of Languageldentifiers.
Each string entry consists of a length and type entry followed by a unicode
string. A unicode string uses a word to represent each character and is not
NULL-terminated. For more information on unicode, please refer to The
Unicode Standard, Worldwide Character Encoding, produced by The Unicode
Consortium and published by Addison-Wesley, Reading, Massachusetts, U.S.

String
Length=2N+2 Type=3 Language ldentifier(0) Language Identifier(N) I
Length=2A+2 Type=3 UNICODE Char(0) UNICODE Char(A
CENgN=2B+ Type=3 | UNICUDE
= = T UNTCUDE CITaT(U7
=ZD+ =3 I UNTCODE Char(U)

. Denotes a repeated field

Figure 3-13. Format of a strings descriptor

For the examples here, I use a NULL in the high byte and an ASCII character in
the low byte. The order in which the strings are declared will define their
INDEX—the indexes start from 1 because a 0 is used to define “no string.” We
can now use useful, human-readable strings in our I/O device and go back to our
descriptors and back-fill the string index entries. These strings are helpful during
the debug and enumeration phases because they allow Windows to better identify
the device (or it uses “unknown device,” which is not very helpful).

64

USB Design by Example

Our minimal descriptors used the pre-existing endpoint 0 for run-time data
exchanges. This is adequate for interrupt transfers, but endpoint 0 does not
support bulk or isochronous transfers. If we need one or more of these types of
endpoints, we declare them using endpoint descriptors (Figure 3-14).

Endpoint
Length=7
Type=5
EndpointAddress
Attributes
Max Packet
Size
Polling Interval

Figure 3-14. Format of an endpoint descriptor

The length and type of an endpoint descriptor are fixed at 7 and 5, respectively.
If multiple endpoints are defined, each will need an endpoint descriptor that is
uniquely identified by the EndpointAddress entry.

The endpoint address uses bits 3:0 to specify the endpoint number and bit 7 to
specify if this is an IN endpoint (=1) or an OUT endpoint (=0). Bits 6:4 are
reserved and set to 0.

The Attributes entry uses bits 1:0 to specify the endpoint type, control (=00),
isochronous (=01), bulk (=10), or interrupt (=11). Bits 7:2 are reserved and set
to 0.

The word at byte offset 4 specifies the MaxPacketSize that this endpoint can
support.

The Interval entry is used by isochronous endpoints (must be set to 1) and by
interrupt endpoints (set a value from 1 to 255) to specify the interval time, in
milliseconds, of PC host polling.

A typical device has multiple interfaces and therefore multiple interface
descriptors. Each interface descriptor specifies one or more endpoint descriptors
required to implement this interface. Because these multiple interfaces are
supported concurrently, each must specify exclusive use over its endpoints. That
is, an endpoint cannot be referenced by more than one active interface descriptor.

An interface descriptor is active if it is specified in the current configuration.
Some devices have more than one configuration, and only one configuration may
be selected at one time. Each configuration may reference some of the interface

Chapter 3 The Enumeration Process

65

descriptors of other configurations, but these become active only if contained in

the currently selected configuration.

The flexible scheme results in a collection of descriptors (Figure 3-15). The total
length of a configuration descriptor can be quite long (remember, this is the

concatenation of all the descriptors except the device descriptor and the strings

descriptor).
Device Configuration Interface Endpoint
Length Length A Length
Type L Type ﬂ- Type
usB Total 4 This Interface
Version Length g Alternate
Class Interfaces '5- Endpoints
Sub Class This Config. B Class
Protocol Config. Name 4 Sub Class
EPO Size H Attributes H Protocol
Vendor Max. Power 'H Interface Name
MIJ‘ L —TTTETTETE VAT
D ‘ ‘ "'nnm‘rawwa'mv'['
Product
ID
Version
Number
Manufacturer
Product Name Notes: Fields in italics are indexes
Serial Number into the STRINGs descriptor
Configurations . Denotes a repeated field
HID
r. Length Report(0)
- Type Report(M)
— HID
Version
- CountryCode
L | HID Descriptors
| Report
— Total Report
Length
TenmguT——— |
Strings
Length Type Language Identifier(0) Language Identifier(N) |

Length Type
[l Ei‘ E? | Type l 1
]

UNICODE Char(0)

UNIVUDE Ul

UNTLUDEOT

UNICODE Char(A)

UNICODE Thar(0]

Figure 3-15. Descriptors for a complex I/O device

66

USB Design by Example

CHAPTER SUMMARY

It has now been about 100 ms since the beginning of this chapter, and the PC
host is ready to use the /O device that we have added.

We saw how the enumeration phase was completed and learned the
responsibilities of an I/O device. We stepped through the initialization and
configuration information that was delivered to the PC host. The descriptors for
a simple device are small, but the scheme allows for complex devices that can
have several configurations, each supporting multiple interfaces. An I/O device
requires a USB transceiver, a Serial Interface Engine, and a protocol controller.
This is more than “a few PALs,” but low-end USB controllers may even be
cheaper than these PALs. A wide range of hardware exists to engineer a USB
/O device—a device can be selected to match the design task.

67

CHAPTER 4
RUN-TIME SOFTWARE ONTHE PC HosST

In this chapter we’ll write two example PC host programs, both of which will set
us up for writing our application program in Chapter 6.

e Example 1: This will be a USB Device Display program that extracts and
displays all of the descriptors, introduced in the previous chapters, from all of
the devices currently attached via the USB bus. The program does this by
searching for devices on the USB bus, so we’ll learn valuable techniques for
the “low-level” USB activity.

e Example 2: This will be an HID Display program that searches for and
displays information on the currently installed human interface devices
(HID). The program uses a high-level file-style access to the I/O devices so
that we focus on the information transferred between the PC host and the
I/O device and not on the details within the USB packets.

The final section of this chapter describes the standardized REPORT mechanism
used to exchange data between the PC host and an HID. I will present the
general approach first and then give a specific example that will be used in later
chapters.

Before jumping into coding, we should discuss operating system support for
USB. Figure 4-1 shows the layered support for USB in the Windows 98
operating system.

68

USB Design by Example

N\
USB Device Display HID Display
[
HIDCLASS.SYS >—— Application Code
[
HIDUSB.SYS
T / User)
! USB Driver Interface
\ Kernel
USBHUB.SYS
USBD.SYS
| | >—— USB Driver Stack
UHCD.SYS OpenHC1.SYS
PCI Enumerator
J

USB Cable]

Figure 4-1. USB support in Windows 98 is layered

The USB Driver Interface of Windows 98 is part of the Win32 Driver Model
(WDM) layered architecture. Our device display program will interface directly
to the kernel-level USB driver stack, and our HID display program will interface
with the HID Class driver stack. I have written the example programs in Visual
Basic, which hides some of the complexities of writing a Windows application
program. Use of Visual Basic also makes applications more portable if your
target OS is not Windows. Both example programs make extensive use of
system calls; these are declared in a separate module to allow the programs to be
more easily understood. The source of both programs can be found in the
Chapter 4 directory on the CD-ROM.

Chapter 4 Run-time Software on the PC Host 69

VISUAL BASIC REVIEW

I chose Visual Basic to allow the example programs to be easy to read and easy
to understand. There are a few things about Visual Basic that I should repeat
here for your convenience.

A Visual Basic program is built around a graphical human interface that uses
objects such as buttons, graphics, and text (Figure 4-2). The visible window that
you interact with during program construction is called a FORM, and a single
program could include many forms to present information to the user. The user
interacts with the program by clicking the mouse when it’s over an object on the
form or by entering text from the keyboard.

- ‘ elgn By Exampual ' Humallerfac .

Get User Input

Figure 4-2. Visual Basic has a graphical human interface

Each object has many properties that can be set or tested. When one of these
properties changes, Visual Basic first checks to see if you have defined an
“action” subprogram, or script, to run in response to this interaction. A
BUTTON object, for example, will be informed when the mouse is over it and if
one of the mouse buttons is clicked. Visual Basic does all of the hard work for
you, letting you focus on a few responses to actions on key visual objects.

70

USB Design by Example

Both example programs make extensive use of the ListBox feature of Visual
Basic. A ListBox can be displayed as a multiline list (with scroll bars if required)
or as a single line with the list contents available in a drop-down menu.

Figure 4-3 shows both styles.

s USB Design By Example: Using the ListBox featue

Before Selection

Choose an entry .

[Choose an entry
Choice 1
. |[Choice 2
{Choice 3

Figure 4-3. Two styles of ListBox

The two styles of ListBox allow related visual information to be quickly
assimilated by the user. The programmer has a lot of control over the displayed
elements, and Visual Basic generates an “event” if the user clicks on any of the
entries of a multiline list or chooses an entry from a drop-down menu.

A ListBox has two data values associated with each line: The displayed text is
called a LIST (n) value, and there is a hidden element called ITEMDATA (n).
This feature allows programmer-useful information to be coupled with user-
useful information that, in turn, simplifies the example software.

Other key Visual Basic attributes are described briefly below.

Variable Names—The size of all variables is declared by adding a symbol after
a variable’s name:

e “&” means “32-bit integer”

e “%” means “16-bit integer”

e “$” means “a string”

There are others, but I have not used them in these example programs.

Chapter 4 Run-time Software on the PC Host 71

User-Defined Data Types—Complex data types can be constructed using the
base data types supported by Visual Basic. We saw in the previous chapters that
large data structures are used to describe the functions and features within USB.
These data structures can be defined as user-defined data types, and this allows
our software to be written more simply and clearly.

Parameter Passing—All of the OS libraries that we will be calling are written in
C and expect parameters to be passed by VALUE. The convention that Visual
Basic uses is to pass parameters by REFERENCE, i.e., the address of the
variable. C programs often include pointers to variables, and the programmer
can manipulate pointers as easily as manipulating data variables. Visual Basic
does not allow this—using pointer arithmetic, it is as easy to write buggy code as
it is to write efficient, elegant code! Careful declaration of the called libraries
will implement any parameter conversions necessary. Where this parameter
conversion could not be finessed via the function or subroutine declaration, I
have used an “AddressFor” function supplied with Dan Appleman’s Visual Basic
5.0 Programmers Guide to the Win32 API (ISBN 1-56276-446-2). This library
is supplied, with permission, in the Chapter 4 directory on the CD-ROM.

System Call Parameter Values—Microsoft provides a lot of scope and
flexibility with their operating system libraries. With this flexibility comes
responsibility: If you pass an invalid parameter to one of these libraries, the
results are not always predictable. I have limited the amount of damage that can
be done by using “magic” numbers, typically hexadecimal values, in these calls.
DO NOT CHANGE THESE unless, of course, you know what you are doing.
Many books have been written on API programming, and my goal is not to
explain the benefits and dangers of these functions but to USE THEM to
implement USB-focused applications.

There are many textbooks available for Visual Basic, and I recommend getting a
good understanding before proceeding further in this chapter.

72

USB Design by Example

EXAMPLE 1: USB DEVICE DISPLAY

Because USB supports the dynamic attach and detach of /O devices, the address
at which a particular device is located will vary according to the order in which it
is attached and which other devices are already attached. Thus, we can’t rely on
a static address to locate an I/O device; instead, we must work with the operating
system and gain access to its system tables. Windows 98 provides system calls
to allow us to do this.

We must first locate the root of the Plug and Play I/O subsystem and then search
for USB host controllers. USB host controllers have a predeclared name of
“HCDx,” where “x” is a digit and identifies a unique host controller. The OS can
support multiple USB host controllers, and each can support up to 126 devices on
its 12-Mbps shared bus. Systems that use several high-bandwidth I/O devices
may have multiple host controllers, and these must be interrogated too.

Once a USB host controller is found, its corresponding root hub is identified.
The ports of this hub are then queried to discover if a device or another hub is
connected. If another hub is discovered, then the ports on that are queried. All
hubs are queried recursively to the maximum depth of five as defined in the USB
Specification. Figure 4-4 shows the algorithm used to create a list of attached
USB devices.

(stat)

|dentify
USB Host
Controller,

Identify Root Hub

Iterate over Ports

Hub
Connected?

Figure 4-4. Search algorithm for USB devices

Chapter 4 Run-time Software on the PC Host 73

Example 1—Step 1: Human Interface Design

The first part of any Visual Basic program is the design of the user’s view, or
Human Interface, of the program. I chose to use two forms—the first to display
the topology of the attached USB devices and the second to display the
descriptors of a chosen device. Figure 4-5 shows the opening form for this
example. It consists of four buttons labeled Host Controller O through Host
Controller 3, a Status Line, and a Display area.

| & USB Design By Example: Display USB Devices

. \Device Display

Figure 4-5. The first, and opening, form

74

USB Design by Example

Figure 4-6 shows the second form; it is designed to look as similar to the
descriptor diagrams in the previous chapters as possible. All devices will have a
Device descriptor and at least one Configuration and one Interface descriptor.
A device may have one or more Endpoint descriptors and may have one or more
Class descriptors (such as HUB, Human Interface Device, Communications
Device). This human interface design allows one of each descriptor type to be
displayed at a time; a CHOICE box above each descriptor type selects one if
multiple descriptors are detected on this device. The CHOICE box also allows
the names of each descriptor parameter to be displayed. As an aid to learning, if
any parameter name of any descriptor is clicked, the program displays the
corresponding parameter value. The final CHOICE box displays the String
descriptors if present on this device.

W USB Des!gn By Example: Display Descript

Display Names
Length : Length Length Length
Type Type | Type ' Type
usB . Total | Thisinterface ThisEndpeint |
Version | Length Alternate Attributes
Class ‘ Interfaces Endpoints | Max. Packet
SubClass - ThisConfig. Class | Size .
Protocol | ConfigName | SubClass . | Polling Interval |
EPO_Size | | Attributes Protocol .
Vendor | Max.Power InterfaceName
D] = : e
Product
D
Version
Number
iManufacturer
iProductName
{ | iSerial# |
. Configurations

Display String Text

Figure 4-6. Descriptor display form

Chapter 4 Run-time Software onthe PCHost 75

Example 1—Step 2: Initializing Program

As the program loads, Visual Basic sends a “loading form” event to the program.
If a subroutine called FORM_LOAD is present, then this will be executed. Our
example uses this subroutine to search for USB host controllers as shown in
Figure 4-7. The example searches for up to four controllers—if you expect more,
then add more “Host Controller” buttons. The buttons are declared as an array
[HCD (3)], so no new software will be required for these additional buttons.

If a host controller is found, the program changes the background color of the
corresponding button to green and enables that button. A system identifier for
the host controller is stored in the button’s TAG field for later use. If a host
controller is not found, the program changes the background color of the
corresponding button to orange and disables the button. The result of this
FORM_LOAD subroutine is an indication of how many host controllers are
present and a prompt to the user to select one to study.

" Look for Host Controllers.
* Ilimit the search to 3. There may be more but this is unlikely.
" The Host Controller Buttons are HCD(0) to HCD(3)
" Try opening the controller using its Symbolic Name
For ControllerIndex& =0 To 3
HostControllerName$ = "W\HCD" & ControllerIndex&
HostControllerHandle& = CreateFile(HostControllerName$, &H40000000, 2, 0, 3, 0, 0)
If HostControllerHandle& > 0 Then
HCD(ControllerIndex&).Tag = HostControllerHandle&
HCD(ControllerIndex&).BackColor = RGB(0, 256, 0) ‘Green = GO
HCD(ControllerIndex&).Enabled = True
Else
HCD(ControllerIndex&).BackColor = RGB(256, 128, 0) "Amber = wait
HCD(ControllerIndex&).Enabled = False
End If
Next ControllerIndex&
StatusBox.Text = "Select a Host Controller”

Figure 4-7. FORM_LOAD identifies host controllers

76 USB Design by Example

Example 1—Step 3: Choosing a Host Controller

This step does all of the USB-sensitive work in this program, so we’ll move more
slowly here. Clicking on a host controller button will start the USB device data
collection process. Many operating system calls will be made, and I chose to
encapsulate each of these in a separate subroutine. Having separate routines
enables error-checking following each call, and the routine returns only if there
are no errors. The approach allows for precise local error-checking, and the
calling routine does not need to check for errors.

A Windows I/O subsystem consists of many nodes. These could be USB
devices, SCSI devices, hard disk controllers, PCI bus connectors, or many others.
The operating system refers to all I/O devices by their node detail information
and their node connection information—this may appear verbose for our USB
example, but remember that the I/O subsystem has to handle all I/O devices in a
consistent way. Each I/O device family is connected to a root node, so our first
task is to identify the USB root node.

Windows maintains symbolic names for all of the I/O devices it supports. We
saw in “Example 1—Step 2: Initializing Program” that the root node name for a
USB host controller was “HCDn.” Using a standard system call, we can ask the
operating system for the name of the node at the next level down in the /O
device hierarchy. We can repeat this process and thus identify all of the
connections to all of the nodes. We are, in fact, traversing the tree structure of
the 1/O devices starting at the root.

Chapter 4 Run-time Software on the PC Host 77

Example 1—Step 3.1: Identifying the Root Hub Node

We have an operating system handle for the host controller (obtained in
Form_Load and stored in the button’s TAG field)—now we can request the name
of the root hub using the DeviceloControl system call. The operating system
requires a two-stage process to get this name (Figure 4-8). The first system call
returns the LENGTH of the name and the second returns the name in UNICODE
format. The GetNameOf$ subroutine also converts the Unicode format into
Visual Basic string format.

Function GetNameOf$(DeviceName$, DeviceHandle&, API_ID&)
Dim NameBuffer As UNameType

" First need to get the length of the name string

Status& = DeviceloControl(DeviceHandle&, API_ID&, 0, 0, NameBuffer.Length, 260, BytesReturned&, 0)
If Status& = 0 Then ErrorExit ("Could not get LENGTH of " & DeviceName$ & " Name")

If NameBuffer.Length > 256 Then ErrorExit (Name$ & " Name > 256 Characters”)

‘

... and then the string. It will be returned in UNICODE format

Status& = DeviceloControl(DeviceHandle&, API_ID&, NameBuffer.Length, NameBuffer.Length, _
NameBuffer.Length, NameBuffer.Length, BytesReturned&, 0)

If Status& = 0 Then ErrorExit ("Could not get TEXT of " & DeviceName$ & " Name")

temp$ ="":i=0 ’A simple unicode to basic string conversion

Do While NameBuffer.UnicodeName(i) <> 0

temp$ = temp$ & Chr(NameBuffer.UnicodeName(i)): i =i + 2: Loop

GetNameOf$ = temp$

End Function

" Get the name of the host controller

HostController$ = GetNameOf("Host Controller”, HCD(Index).Tag, &H220424)
StatusBox.Text = "Host Controller: " & HostController$ & " selected”

" Get the name of the Root Hub and open a connection to it
RootHubName$ = GetNameOf("Root Hub", HCD(Index).Tag, &H220408)

Figure 4-8. Getting the root hub name

N I e

|
|

78

USB Design by Example

We can now make a connection to the root hub using a CreateFile system call.
This operating system call returns a handle we can use to discover information
about this node. We’ll use a DeviceloControl system call to retrieve this
information, and Figure 4-9 shows the node information returned. Important for
our traversal of the device tree is RootHubNode.NodeDescriptor.PortCount,
because this defines the number of connection points for other nodes.

Because we may want to get more information on this connection later, we store
key parameters in a large data table. Note that we could not use the
Listbox.ItemData feature because there is more than a single variable.

Public Type HubDescriptor)
Length As Byte: HubType As Byte: PortCount As Byte: Characteristics(1) As Byte
PowerOn2Good As Byte: MaxCurrent As Byte: PowerMask(63) As Byte: End Type

Public Type NodeInformation
NodeType As Long: NodeDescriptor As HubDescriptor: HublsBusPowered As Byte: End Type

Figure 4-9. Node information data structure

Example 1—Step 3.2: Probing Root Hub Connections

Now that we have identified a set of ports to the root hub, we request
NodeConnectionInformation from the operating system so we can identify what,
if anything, is connected to each port of the hub. A DeviceloControl system call
is used to retrieve this information, and Figure 4-10 shows the connection
information returned. Information relevant for our traversal of the device tree is
USBDevicelnfo.ConnectionStatus and USBDevicelnfo.DevicelsHub. We use
this information to decide if we need to reiterate on the ports of another hub.

Public Type DeviceDescriptor
Length As Byte: DescriptorType As Byte: USBSpec(1) As Byte: Class As Byte
SubClass As Byte: Protocol As Byte: MaxEP0Size As Byte: VendorID(1) As Byte
ProductID(1) As Byte: DeviceRevision(1) As Byte: ManufacturerStringIndex As Byte
ProductStringIndex As Byte: SerialNumberStringIndex As Byte: ConfigurationCount As Byte: End Type

Public Type NodeConnectionInformation
ConnectionIndex As Long: ThisDevice As DeviceDescriptor: CurrentConfiguration As Byte
LowSpeed As Byte: DevicelsHub As Byte: DeviceAddress(1) As Byte: OpenEndPoints(3) As Byte
ThisConnectionStatus(3) As Byte: MyEndPoints(29) As EndPointDescriptor: End Type

Figure 4-10. Connection information data structure

Chapter 4 Run-time Software on the PC Host 79

Again, key information is logged into our USBDevicelInformation data table, and
the device display is updated. Figure 4-11 shows the subroutine that implements
the node traversal and data collection. This GetPortData function calls itself if it
discovers that a hub is connected to one of the ports. No special programming is
required in Visual Basic for this recursive operation, because all subroutines and
functions automatically support recursion.

The GetPortData function will eventually complete when all branches of the tree
have been traversed.

Function GetPortData&(Handle&, PortCount As Byte, HubDepth&)
Dim ThisDevice As Byte :

For PortIndex& = 1 To PortCount
Call GetNodeConnectionData(Handle&, PortIndex&)

ThisDevice = 0 * default value, no device connected
PortStatus& = DeviceData(Datalndex).ConnectionData. ThisConnectionStatus(0) * save some typing!
If PortStatus& = 1 Then
ThisDevice = DeviceData(DataIndex).ConnectionData.DeviceAddress(O)
DeviceData(Datalndex).DeviceHandle = Handle&
End If
"Create an indented display so that Hubs and their connections are easily seen
Indent$ =" ": For i& = 1 To HubDepth&: Indent$ = Indent$ & ".": Next i&
DeviceName$ = ThreeDecimalCharacters$(ThisDevice) & Indent$ & " Port["
Mid$(DeviceName$, 10) = ":"

If PortStatus& <> 1 Then * There is not a valid device on this port, tell user
Device_Display.AddItem DeviceName$ & PortIndex & "] =" & ConnectionStatus$(PortStatus&)
Else *have a Device or a Hub connected to this port

If DeviceData(Datalndex).ConnectionData.DevicelsHub Then

" Need to discover how many ports are supported on this hub.
Follow the same proceedure as we did for the root hub = get it’s name, "open" it and get the node info.
ExternalHubName$ = GetExternalHubName(PortIndex&, Handle&)
ExternalHubHandle& = OpenConnection(ExternalHubName$)
Call GetNodelInformation(ExternalHubHandle&)
DeviceData(Datalndex).DeviceType = 2 'Hub
LAST thing we do is update the display status of this device connection
Device_Display.AddItem DeviceName$ & PortIndex & "] = Hub Connected"

" Discover what, if anything, is connected to the ports of this Root Hub
Level& = GetPortData&(ExternalHubHandle&, _
DeviceData(Datalndex - 1).NodeData.NodeDescriptor.PortCount, HubDepth& + 1)

Else ‘we have a device connected to this port
DeviceData(DataIndex).DeviceType = 3 TODevice
Device_Display.AddItem DeviceName$ & PortIndex & "] = IO Device Connected”
End If 'USBDevicelnfo.DeviceIsHub
End If PortStatus& <> 1
Next PortIndex&
End Function

Figure 4-11. GetPortData function collects device data

80 USB Design by Example

Example 1—Step 4: Descriptor Display

The result of Step 3 is a completed USBDeviceInformation data table and a
completed Device_Display. If the device list is longer than the display space
allocated, then Visual Basic automatically creates scroll bars so that all of the
device entries can be viewed.

The user selects a device by clicking on an entry in the Device_Display ListBox.
The Device_Display_Click subroutine identifies the selected entry and passes
control to the Display_Descriptor module.

All of the data we have accessed up to now has been provided from operating
system tables. We now need to collect the descriptor information for the selected
device, and this will involve sending USB requests to the selected device.

Example 1—Step 4.1: Collecting Device Descriptor Information

Request Packets (Figure 4-12) must be created and sent to the USB device. The
same process is used to send any type of request: A packet is preformatted and a
DeviceloControl system call is made. To retrieve a Configuration Descriptor, for
example, two calls must be made: The first retrieves just the 18-byte
configuration descriptor, and the second uses the TotalLength parameter to read
all of the descriptors. If the selected device has multiple configurations, then the
data for each must be retrieved. Figure 4-12 shows the subroutine that
implements this data collection.

Private Sub CollectDescriptors(Selected&)
“ Collect all of the descriptors from the selected device and store them in the DescriptorData byte array
“ Start with the Device Descriptor
Fori& =1 To 18: DescriptorData(i&) = DeviceData(Selected&).ConnectionData.’I'hisDevice.Contents(i& - 1): Nexti&
Nexti& = 18
“Now get local copies of some key variables
Dim Configuration As Byte: Dim StringIndex As Byte
Handle& = DeviceData(Selected&).DeviceHandle
Connectionlndex& = DeviceData(Selected&).ConnectionData.ConnectionIndex
ConfigurationCount = Devichata(Selected).ConnectionData.ThisDevice.Contents(17)
For Configuration = 1 To ConfigurationCount
TotalLength& = GetConﬁgurationDescriptor(Handle&, ConnectionIndex&, Configuration - 1)
’ Copy the Configuration Descriptor into the DescriptorData byte array
For i& = 1 To TotalLength&: DescriptorData(Nexti& + i&) = PCHostRequest.ConﬁgurationDescriptor(i& - 1): Next i&
Nexti& = Nexti& + TotalLength&: Next Configuration
" Check for Strings
StringIndex = 0
Do While TotalLength& <> 0
TotalLength = GetStringDescriptor(Handle&, ConnectionIndex&, StringIndex)
StringIndex = StringIndex + 1
For i& = 1 To TotalLength&: DescriptorData(Nexti& + i&) = PCHostRequest.ConﬁgurationDescriptor(i& - 1): Nexti&
Nexti& = Nexti& + TotalLength&: Loop
End Sub

Figure 4-12. Retrieving all of the descriptor data

Chapter 4 Run-time Software on the PC Host 81

Example 1—Step 4.2: Interpreting the Configuration Descriptor

Step 4.1 returns a large, unformatted buffer of bytes that is a concatenation of the
device descriptors. Rather than just display this raw data, the ParseDescriptor
subroutine (Figure 4-13) interprets the data and extracts indexes into the buffer;
these indexes are stored in the CHOICE ListBox.ItemData entries for easier
display. The format of the descriptor data, with an initial LENGTH byte and a
subsequent TYPE byte, makes the data parsing quite straightforward.

Private Sub ParseDescriptors()
DeviceCount = 0: ConfigurationCount = 0: InterfaceCount = 0: EndpointCount = 0: ClassCount = 0
Index& =1
Do While DescriptorData(Index&) <> 0
Select Case DescriptorData(Index& + 1) * What TYPE of descriptor is this?
Case 1
DeviceCount = DeviceCount + 1: Choice(0).AddItem "Display Values"
Choice(0).ItemData(Choice(0).ListCount - 1) = Index&
Case 2
ConfigurationCount = ConfigurationCount + 1: Choice(1).AddItem "Configuration " & ConfigurationCount
Choice(1).ItemData(Choice(1).ListCount - 1) = Index&
Case 3
If StringCount <> 0 Then Choice(5).AddItem "String " & TwoHexCharacters$(CByte(StringCount)) & _
" =" & GetString$(Index &)
StringCount = StringCount + 1
Case 4
InterfaceCount = InterfaceCount + 1
Choice(2).AddItem "Interface " & ConfigurationCount & ":" & InterfaceCount
Choice(2).ItemData(Choice(2).ListCount - 1) = Index&
Case 5
EndpointCount = EndpointCount + 1
Choice(3).AddItem "Endpoint " & ConfigurationCount & ":" & EndpointCount
Choice(3).ItemData(Choice(3).ListCount - 1) = Index&
Case Else *Must be a Class Descriptor
ClassCount = ClassCount + 1
Choice(4).Addltem "Class(" & TwoHexCharacters$(CByte(DescriptorData(Index& + 1))) & ") " _
& ConfigurationCount & ":" & ClassCount
Choice(4).ItemData(Choice(4).ListCount - 1) = Index&
End Select
Index& = Index& + DescriptorData(Index &)
Loop
"Fill out the default data for the Descriptors
Fori% =0To 4
If Choice(i%).ListCount = 1 Then " this descriptor type is not present so remove it from the display
Choice(i%). Visible = False: Descriptor(i%).Visible = False
Else ‘fill with data
Choice(i%).ItemData(0) = Choice(i%).ItemData(1): Call AddDescriptorData(i%, 0)
End If
Next i%
If StringCount = 0 Then Choice(5). Visible = False
End Sub

Figure 4-13. Parsing the device descriptor information

82 USB Design by Example

Example 1—Step 4.3: Displaying Individual Descriptors

The descriptor display initializes with all text entries in the display boxes. The
individual descriptors are listed in the CHOICE box above each display box as
previewed in Figure 4-6. Individual text entries can be replaced by their value by
clicking on an entry, or the whole descriptor data can be displayed by choosing
its entry from a CHOICE box. Figure 4-14 shows a typical display following
several user interactions.

s, USE Design By Example: Display Descriptors

Display Names

L Type v
| ThisEndpoint |
| Attributes |
Max. Packet |
_ | Size [
00H | | Polling Interval &

| Attributes ||
: Max.Power [

Figure 4-14. Descriptor display in operation

Example 1—Summary

The example demonstrated the code required to identify all of the USB Devices
attached to a PC host. A specific device was identified. The example listed all
devices, and a user selected one. Other programs could search through the
collected information and choose a device based on some identifying criteria.
Note that the device descriptor, which contains VendorID, ProductID, and
Version#, is contained within the NodeConnectionInformation data structure, so
searching on these parameters is straightforward. A targeted request packet was
sent to the identified device. The example requested all of the device descriptors,
but your program could send any valid request—the program structure is the
same. “Low-level” passing of request packets was successfully demonstrated.

Chapter 4 Run-time Software on the PC Host 83

EXAMPLE 2: HID DISPLAY

The second example is simpler because we need to extract and display only a
single system table. Windows will keep all HIDs in a single table regardless of
their source (multiple USB controllers, PCI bus, or legacy ports). We will also
extract some device-specific information because our application program in
Chapter 6 will need to search on this.

We’ll follow the same steps as in the first example, but there is less work to do.

Example 2—Step 1: Human Interface Design

This example is a display-only program, so we don’t need buttons, etc. The
value of this program is the data collected; this is displayed in a window
(Figure 4-15). For each HID discovered, the program lists, if present, the
VendorlD and Manufacturer’s name and the ProductID and Product name.

wi. USB Design By xample Diplay

Checking HID device 19 ;

PID = ADA3
‘g*, PID = 0101 'O
‘Agiler', PID = 000Z 'USB Mouse'

, PID = 0003
, PID = 0300

'Microsoft', PID = 0007 'SideWinder USB game pad V1.0'
'BTC', PID €782 'USB Keyboard and Mouse'
‘BTC', PID 6782 'USB Keyboard and Mouse'

Figure 4-15. The first, and only, form

84

USB Design by Example

Example 2—Step 2: Initializing Program

Because there is no user interaction in this program, all of the work can be done
in the Form_Load subroutine. We start searching for information at a system
root node. The currently active I/O devices are listed at the system Plug and Play
node, so we open a connection to this node, selecting information on HIDs
(Figure 4-16).

Private Sub Form_Load()
* Look for HIDs.

’

Dim hidGuid As Guid

* First, get my class identifier
Call HidD_GetHidGuid(hidGuid.Data(0))

* Get a handle for the Plug and Play node, request currently active HIDs
PnPHandle& = SetupDiGetClassDevs(hidGuid.Data(0), 0, 0, &H12)

Figure 4-16. Connecting to the Plug and Play node

The operating system will return a list of devices with as many entries as there
are active devices. We must search from the beginning of the list looking for
valid entries. Once a valid entry is identified, we can request the system name
relating to this entry. A two-stage process is required to get the system name:
The first call returns the length of the name, and the second returns a byte array
containing the name. This byte array must be converted to a Visual Basic string
so that a connection can be opened to the HID. Figure 4-17 shows the code
required to identify and open an HID.

‘.

Let’s look for a maximum of 20 HIDs
For HIDdevice& =0 To 19
DevicelnterfaceData.cbsize = 28 'Length of data structure in bytes

' TIs there an HID at this table entry
TIf SetupDiEnumDeviceInterfaccs(PnPHandle&, 0, hidGuid.Data(0), HIDdevice&, _
DevicelnterfaceData.cbsize) Then
' There is a device here, find out its system name. Get the length of the name first
RequiredLength& =0
success = SetupDiGetDeviceInterfaceDetail(PnPHandle&, DevicelnterfaceData.cbsize, _
0, 0, RequiredLength&, 0)
’ Now get the name itself
PredictedLength& = RequiredLength&
FunctionClassDeviceData.cbsize = 5
success = SetupDiGetDeviceInterfaceDetail(PnPHandle&, DevicelnterfaceData.cbsize, _
AddressFor(FunctionClassDeviceData.cbsize), PredictedLength&, RetunedLength&, 0)
“Convert data array to Visual Basic String
Temp$ = "": i& = 0: Do While FunctionClassDeviceData.DataPath(i&) <> 0
Temp$ = Temp$ & Chr(FunctionClassDeviceData.DataPath(i&)): i& = i& + 1: Loop
"Can now open this HID
HidHandle& = CreateFile(Temp$, &HC0000000, 3, 0, 3,0, 0)

Figure 4-17. Opening a connection to an HID

Chapter 4 Run-time Software on the PC Host 85

Example 2—Step 3: Displaying HID Information

Once we have a handle to a human interface device, getting information is
straightforward because Microsoft has done all of the work already. The
HID.DLL program contains subroutines to access the HID information, so all we
have to do is make a library call and the desired information is placed in a buffer
for us! Figure 4-18 lists the available function calls in HID.DLL that we can use.
The first half of the list deals with Descriptor information, and the second half
deals with the HID Report mechanism that is presented in the next section.

HidD_GetAttributes - returns VendorID, ProductID, Version#
HidD_GetManufacturerString
HidD_GetProductString
HidD_GetIndexedString
HidD_GetSerialNumberString
HidD_GetConfiguration
HidD_SetConfiguration
HidD_GetPreparsedData
HidD_FreePreparsedData
HidD_GetFeature
HidD_SetFeature
HidD_GetNumlInputBuffers
HidD_SetNumInputBuffers
HidD_GetPhysicalDescriptor

Figure 4-18. HID.DLL is used to access HID data

Example 2—Summary

Working with human interface devices is simple because there is a lot of support
within the operating system (I used Windows 98 in my examples, but other
operating systems have similar capabilities). Our HID display example was easy
because of the HID support within the operating system. Windows 98 supports
the keyboard and mouse as HIDs, and the HID.DLL library provides access to
the same software drivers.

86 USB Design by Example

EXCHANGING DATA WITH AN HID

The mechanism used by the PC host to exchange data with an HID has been
standardized via reports. A great deal of collaborative industry effort was used
to define a mechanism that was both general enough to support every kind of
human interface device available today, yet compact enough to be readily
supported by low-cost I/O devices. The result was a form of pseudocode that is
easily parsed by the operating system. The next few pages give an overview of
the general solution and a specific solution that will be used in our Chapter 6
examples.

Report Descriptor

The primary and underlying goals of the report descriptor are:

e Be as compact as possible to save device data space.

e Allow the software application to skip unknown information.
¢ Be extensible and robust.

e Support nesting and collections.

e Be self-describing to allow generic software applications.

Report descriptors are composed of pieces of information called items. An item
is a piece of information about the device. All items have a one-byte prefix that
contains the item tag, item type, and item size as shown in the upper section of
Figure 4-19. An item can include optional data. The size of the data portion of
an item is determined by its fundamental type. There are two basic types of
items: short items and long items. A short item’s optional data size may be 0, 1,
2, or 4 bytes. A long item’s bSize value is always 2. The lower section of
Figure 4-19 illustrates possible values within the one-byte prefix for a long item.
All examples in this book use short items.

Chapter 4 Run-time Software on the PC Host

87

Bits 8n...8 7654 32 10
))

Parts {data] bTag :bType: bSize
| |

Bytes 1-n 0

Part Description
bSize Numeric expression specifying size of data:
0 =0 bytes 1=1byte 2 = 2 bytes 3 =4 bytes
bType Numeric expression identifying type of item where:
0 = Main 1 = Global 2 = Local 3 = Reserved
bTag Numeric expression specifying the function of the item
[data] Optional data
Bits 8n...24 23222120191817 16 15141312111098 7654 3 2 10
1]
Parts [data) blLongitemTag bDataSize 111 : 1 : 10
|]
Bytes 3-n 2 1 0

Long ltem Format

Figure 4-19. Format of an item within an HID report

The report descriptor is unlike other descriptors in that it is not simply a table of

values. The length and content of a report descriptor vary depending on the
number of data fields required for the device’s report or reports. The report
descriptor is made up of items that provide information about the device. The
first part of an item contains three fields: item type, item tag, and item size.

Together these fields identify the kind of information the item provides.

A report descriptor must include each of the following to describe data about a

control (all other items are optional):

Usage Page
Usage

Main Items
Logical Minimum
Logical Maximum
Report Size
Report Count

USB Design by Example

These itemns are organized into a tree structure as shown in Figure 4-20.

Application
Collection

{

Collection

Main Iltem

Main ltem

Report Size

Report Size

Report Count

Report Count

Logical Minimum

Logical Minimum

Logical Maximum

Logical Maximum

Main ftem

Report Size

Report Count

| I Usage I

Figure 4-20. The structure of a report descriptor

Chapter 4 Run-time Software on the PC Host 89

Figure 4-21 shows an example of a three-button mouse. Remember that this I/O
device can report any of three button pushes and changes in its X-Y coordinate
position. No information is output to a mouse.

Usage Page (Generic Desktop), ;Use the Generic Desktop Usage Page
Usage (Mouse),

Collection (Application), ;Start Mouse collection

Usage (Pointer),

Collection (Physical), ;Start Pointer collection

Usage Page (Buttons)

Usage Minimum (1),

Usage Maximum (3),

Logical Minimum (0),

Logical Maximum (1), ;Fields return values from O to 1
Report Count (3),
Report Size (1), ;Create three 1-bit button fields
Input (Data, Variable, Absolute), ;Add fields to the input report
Report Count (1),
Report Size (5), ;Create 5-bit constant field
Input (Constant), ;Add field to the input report
Usage Page (Generic Desktop),
Usage (X),
Usage (Y),
Logical Minimum (-127),
Logical Maximum (127), ;Fields return values from -127 to 127
Report Size (8),
Report Count (2), ;Create two fields (X & Y position)
Input (Data, Variable, Relative), ;Add fields to the input report

End Collection,

End Collection

Figure 4-21. Report descriptor of a 3-button mouse

Examination of Figure 4-21 shows how each of the items is used. An array of
bytes is required for the I/0 device, and a tool called the HID descriptor tool (to
be described in Chapter 5) can be used to generate the text of Figure 4-21 and the
data structure that will be embedded in the I/O device.

90

USB Design by Example

Figure 4-22 shows the report descriptor for a standard keyboard. An output
report is required to light the NumLock, CapsLock, and ScrollLock LEDs, and
the input report allows for multiple keys to be read at a time.

Usage Page (Generic Desktop), ;Use the Generic Desktop Usage Page
Usage (Keyboard),
Collection (Application), ;Start Keyboard coliection
Usage Page (Key Codes),
Usage Minimum (234),
Usage Maximum (231),
Logical Minimum (0),
Logical Maximum (1), ;Fields return values from 0 to 1
Report Count (8),
Report Size (1),
Input (Data, Variable, Absolute), ;Add fields to the input report.
Report Count (5), ;LED Report
Report Size (1), :Create 8-bit constant field
Usage Page (LEDs),
Usage Minimum (1),
Usage Maximum (5),
Output (Data, Variable, Absolute),
Report Count (1),
Report Size (3),
Output (Constant), ; 3 bits of Padding
Report Count (6), ; 6 characters are buffered
Report Size (8),
Logical Minimum (0),
Logical Maximum (101),
Usage Page (Key Codes),
Usage Minimum (0),
Usage Maximum (101),
Input (Data, Array), ; 6-character buffer
End Collection,
End Collection

Figure 4-22. Report descriptor of a keyboard

Chapter 4 Run-time Software on the PC Host 91

Design Example

The first few examples in Chapter 6 will exchange fixed length data buffers using
the report descriptor shown in Figure 4-23. The contents of the buffers will be
known by the PC host applications program and the /O device firmware
program—in USB specification terms, this means “vendor-specific.”

Usage Page (Vendor Specific), ;The examples use unique data
Usage (Vendor Specific),
Collection (Application), ;Start our collection
Usage Minimum (0),
Usage Maximum (255),
Logical Minimum (0),
Logical Maximum (255), ;Fields can be any byte value
Report Count (8), ;8 bit fields = 1 byte
Report Size (1), ;Byte count
Input (Data, Variable, Absolute), ;Add fields to the input report.
Output (Data, Variable, Absolute), ; Output report is the same size

End Collection,
End Collection

Figure 4-23. An example report descriptor

Two example subroutines will be written—WriteUSBdevice and
ReadUSBdevice. The PC host will create a buffer and pass it to the
WriteUSBdevice routine, which will create a report and use HID.DLL to deliver
the report to the target I/O device. Similarly, ReadUSBdevice will create a
GetReport request, and HID.DLL will retrieve a buffer from the target /O
device. The source for the WriteUSBdevice and ReadUSBdevice routines is
included in the Chapter 4 directory on the CD-ROM.

92

USB Design by Example

CHAPTER SUMMARY

This chapter has demonstrated the key pieces of PC host software required to
access USB devices. The examples were written in Visual Basic so that many of
the complexities of Windows applications programming could be hidden and
focus could be applied to the USB aspects of the design. If “low-level” access is
required, the approach taken by Example 1 is appropriate. The “high-level”
approach taken by Example 2 is simpler because most of the required software is
supplied in an operating system library, and all we need to do is call the
appropriate routines. The generalized report mechanism for exchanging data
between a PC host and USB I/O device is verbose, but two subroutines,
WriteUSBdevice and ReadUSBdevice, were provided to simplify the examples
used in this book. The source code for all of these examples is provided on the
CD-ROM, and the “Learning Version” of Visual Basic is adequate to modify the
examples to suit your needs.

93

CHAPTER 5
DEVELOPMENT TOOLS

In Chapter 3 we learned that an I/O device consists of a USB transceiver, a Serial
Interface Engine (SIE), a protocol controller (typically a microcontroller), and
interfaces to the real world. The USB Specification defines SIE functionality,
and all available USB devices are tested for compliance to that specification.
Some vendors have augmented the base SIE capabilities to offload the protocol
controller; this augmentation is also included within the USB Specification. This
chapter assumes that we will not develop an SIE, but that instead we’ll use one of
the available products. Thus, the development task consists of engineering a
protocol controller that interfaces to the SIE and to the real world.

The choice of protocol controllers is large, and the development task will be
specific to the protocol controller chosen. This chapter starts at a high general
level and then describes different groups of solutions using a representative
example from each group.

94 USB Design by Example

THE DEVELOPMENT ENVIRONMENT

In this section the I/O device that we are developing is called the target and the
PC platform is called a host—because it will host all of our development tools.
Figure 5-1 shows an ideal development environment where the target includes its
own USB-connected PC platform.

Development Host PC Target PC

Development
Tools

Bus
Analyzer

Target usB
1/0 Device Cable

Oscilloscope

Logic Analyzer

Figure 5-1. Ideal development environment

Chapter 5 Development Tools 95

The logic analyzer and oscilloscope are used to capture signals on the target
board. The bus analyzer captures all of the packets on the USB cable. The target
PC runs the enumeration and then the application for our target board. Having a
separate PC gives us flexibility and control during the debug process—if the
target PC were to hang during development (a typical situation during code
debugging), we still have control via the development host. The debug tool will
vary with different groups of solutions, but its role of connecting the
development PC host to the target is unchanged: Software developed on the
development host can be downloaded into the target and its execution controlled
and observed by the debug tool. Figure 5-2 shows the development environment
that will be used for the examples in Chapter 6.

Development Host
and Target PC

g Development
s/ Tools

Debug
Tool

Target
I/O Device

Figure 5-2. Adequate development environment for Chapter 6 examples

The examples in Chapter 6 start by being relatively easy; they are simple enough
that neither a logic analyzer nor an oscilloscope is required. Only a limited
number of USB packets will be used, so a bus analyzer is not essential. Finally,
the risk of a system crash is small with our Chapter 6 examples because the
examples are predebugged; thus, it is acceptable to use a single PC for both tasks.
(To generate the examples, I used the equipment shown in Figure 5-1.) Once we
move beyond the Chapter 6 examples, however, we’ll need more development
tools. First we’ll add a bus analyzer (for a range of available equipment, see the
Chapter 6/bus analyzer directory on the CD-ROM). The software environment is
similar for all target implementations. Before discussing the software
development and debug environment, let’s look at the different development
hardware that is available.

96

USB Design by Example

TARGET IMPLEMENTATIONS

D+
D~

The USB I/O device can be implemented in three different ways (Figure 5-3).

usB
Microcontroller

Data
Bytes

USB

Serial

Interface

Peripheral

SiE
Interface
|
Protocol
Controller

S
—}— Engine Control

Protocol
Controller

e iRy

usB B Other 10

Figure 5-3. USB /O device implementation options

The USB microcontroller integrates the SIE and a microcontroller onto a single
component. The microcontroller contains data memory that can be expandable
off-chip. The microcontroller can also contain program memory enabling a
single chip solution to be implemented. Program memory can be expanded off-
chip in some implementations. Two general development approaches are taken
depending on the expansion capabilities of the microcontroller:

e The “bond-out” solution for single chip microcontrollers

e The “debug monitor” solution for external program memory
microcontrollers

The USB peripheral contains the SIE and associated endpoint FIFOs in a single
component. The protocol engine is implemented by an attached processor that
could be any processor! The attached processor views the USB peripheral the
same as other peripherals, such as a serial port or a network controller: The USB
peripheral has status and control registers, and the peripheral is either the source

Chapter 5 Development Tools 97

or recipient of the data. Two common connections to the attached processor are
a three-wire I2C bus and an 8-bit parallel bus if high performance is required.
From a development perspective, this solution is developed and debugged using
tools targeted for the attached processor.

The USB ASIC integrates the SIE, controller, and all required I/O into a single
chip. This integrated chip results in the lowest product cost for the USB I/O
device but the highest development cost. The development environment is
similar to the bond-out solution except that different code generation tools are
used on the development PC.

A Bond-out Example

A microcontroller with embedded program memory and only I/O signals on its
pins is almost impossible to debug because of the limitations on observing its
operation. To enable easy design and debug of these single-chip solutions, most
manufacturers provide bond-out versions of their microcontrollers (Figure 5-4).

RS-232 Link to PC Host

Instant ICE Self-test
Now Control Program
in ROM

Address, Data and Control Buses

Program &
Interrupt Data
Controller RAM

Figure 5-4. Bond-out part needs a bigger package

The development component is referred to as “bond-out” because extra internal
signals not found on the pins of a production part are bonded-out to pins in a
larger package. Providing these signals gives increased visibility into the
operation of the microcontroller; special control circuitry can also be added to
single-step the program, halt it at specific address or data accesses, and trace
operation. During the debug phase, the program is stored in RAM memory
because it is writable at execution speeds—we do not need to program and erase

98 USB Design by Example

EPROM s to edit the program. The added capabilities and large packages ofa
bond-out part mean that it is a lot more expensive than the production part, but

we need only one.

Figure 5-5 shows a representative bond-out development kit. This unit from
Cypress Semiconductor includes a cable that operates just like a production
microcontroller as far as the target I/O board is concerned.

e i T tiassaiiiiiss . e g e

X3

Courtesy of Cypress Semiconductor Corp.

Figure 5-5. Example of debug board using a bond-out component

Chapter 5 Development Tools 99

A Debug Monitor Example

If the microcontroller executes from external program memory, it is
straightforward to build a debug monitor development tool. The example in
Figure 5-6 is an Intel 8x930 board that includes more program memory, both
EPROM-based and RAM-based. Following power-up, the microcontroller
executes from the on-board EPROM where a monitor program is stored. The
monitor program is used to download a program via the serial port into RAM and
to control its execution. The benefit of this approach is that there is no difference
between the component used for development and the one used for production.

The 8x930 board supports a range of USB microcontrollers: The 8x931 has a
fast MCC51 core and a large collection of specialized 1/0 devices; the 8x930 has
a faster MCS251 core (enhanced MCS51 with larger address range, improved
addressing modes, orthogonal instruction set that operates on bits, bytes, words
and dwords). Each of these core microcontrollers is available as an I/O device or
as a compound I/O device with a 4- or 6-port hub. User manuals for this product
line are included on the CD-ROM.,

[G1Y
NADE 1% USA

;2K
X

=
zm
N
SR

254 b
RE3a.. 16

Courtesy of Intel Corp.

Figure 5-6. Example of debug monitor environment

100 USB Design by Example

An Integrated Debug Monitor Example

An innovative approach to the debug monitor solution has been taken by Anchor
Chips with their EZ-USB product line.

The EZ-USB product is designed to download a program via the USB cable
during enumeration. The development board in Figure 5-7 downloads a debug
monitor during enumeration. To download the target program, you can use either
a Windows application program or the debug monitor. The development
environment is fully symbolic and includes a Keil C compiler as well as the

assembler and linker toolkit.

The development board contains more hardware for test applications and
debugging but uses exactly the same microcontroller device that will be used in

production.

IREXRRERN]

FSERERRE
ISEXRRRE R

@

<
3

EZ-u
Development Boord

y)
ua

<
o
Q
X
(&
=
g

rarraEt
Y lminisinin]
[Ra et Ja LAT)
. LR3%
[iemi] 05
Monitor

BKPT/

Courtesy of Anchor Chips, Inc.

Figure 5-7. EZ-USB has soft-loadable program

Chapter 5 Development Tools 101

USB Peripheral Example

Figure 5-8 shows a representative development system for a USB peripheral.

This example is a Clearview Mathias system from TechTools designed to support
the PIC family of microcontrollers. In this example the USB connection is
provided by a Philips PDIUSBD11 12C-to-USB peripheral.

Courtesy of TechTools, Inc.

Figure 5-8. Example USB peripheral development system

The Clearview Mathias system uses bond-out components from MicroChip to
provide the control, monitoring, and download capabilities required for design
and debug. A cable from a personality module plugs into the I/O target system,
and this cable operates just as a production microcontroller would operate.

102 USB Design by Example

USB ASIC Example

There is a lot more development work to do with the ASIC approach to USB /O
device design, because all the component hardware must also be created.
However, this approach gives the designer much more freedom in the design,
which can be tuned exactly to the requirements of the I/O device. The initial
hardware design consists of configuring a “sea-of-gates” ASIC with the required
elements of the design. VAutomation’s solution has many prepackaged building
blocks, such as the SIE, device and host controller, digital phase lock loop
circuits, and a microcontroller interface. VAutomation also has a full 8-bit RISC
microcontroller available as an ASIC library element to include in a design.

Figure 5-9 shows the development board, which includes hardware interfaces to
audio, video, and parallel and serial ports. VAutomation includes example
programs that exercise all of these interfaces.

Courtesy of VAutomation, Inc.

Figure 5-9. USB ASIC development board

Chapter 5 Development Tools 103

SOFTWARE DEVELOPMENT TOOLS

Software for the protocol controller will be created on the development PC host.
Tools specific for the microcontroller architecture will be used to write the code
that delivers the responses to the PC host’s requests and that implements the real-
world I/O interactions. For most of the examples in this book, I have used
assembler code for the microcontroller because there is a large amount of bit-
handling and direct I/O manipulation. C compilers are also available for several
microcontrollers; for a medium-to-large I/O design, you should first consider
using C because the code will be easier to modify and maintain.

Most microcontroller vendors supply example code that implements the
enumeration stage of a design. In the next chapter, we’ll work through an
example to see how the protocol controller interfaces to the Serial Interface
Engine. Once you have written (or obtained) this enumeration code, you can
reuse it on all projects, because the enumeration code does not change the
personality of an I/O device; instead, such change is caused by entries in the
descriptor tables. The run-time code will also change, of course, because
different real-world interfaces will be used. In a USB I/O device project, you can
take advantage of having a large opportunity to write modules of code—the
microcontroller code behind an Interface Descriptor will be reusable on all
designs that use the same descriptor.

Once the program code is written, it is assembled/compiled and an executable
module is created. This module must be downloaded into the target system for
debug. All of the development systems described in this chapter allow this
module to be downloaded into RAM for the debug process—we don’t have to
program an EPROM yet!

A debug monitor program will already be resident in the target system—this will
be PROM or can be downloaded before our target program. When creating the
target program, ensure that it does not use any of the memory space or I/O
resources of the debug monitor program.

The debug monitor program will be used to control execution of our target
program. The debug monitor program also allows memory, microcontroller
registers, and I/O ports to be displayed and modified. The target program can be
single-stepped or run with breakpoints. The debug monitor sets a breakpoint by
substituting a “trap” instruction in place of the actual instruction at the breakpoint
address. When the microcontroller reaches this address, it switches from
executing the target program back into executing the debug monitor program so
that variables can be analyzed and program execution studied.

104

USB Design by Example

Some tools include a real-time trace facility that captures the execution address
of the microcontroller for later analysis. This trace tells you exactly where the
microcontroller has been. The trace can be stopped when the microcontroller
accesses certain memory addresses, typically those it should not be addressing
anyway, and the trace is studied to understand where the microcontroller “took a
wrong turn.” A trace tool, or attached logic analyzer with similar characteristics,
is invaluable when you are trying to track down program bugs that send the
microcontroller off-course.

In Chapter 6 we’ll see that most of the protocol controller program runs under
interrupt control. While this interrupt-driven approach is the most efficient
method to use, it can create bugs that are hard to track down if we are not precise
with interrupt handling. More care must be taken on microcontrollers that
support multiple levels of interrupt nesting—a stack overflow is a common bug
in such programs and is hard to track down.

In the Chapter 5 directory on CD-ROM, I have included a set of tools for the
MCS 51 microcontroller. These tools were kindly provided by Keil Corporation,
and they can be used to re-create all of the MCS 51 examples in the next chapter.
These free tools are 100 percent functional but have been modified so they can
create a target program only up to 2 KB long. This is ample for our examples. A
set of tools that supports programs greater than 2 KB is available directly from
Keil. The Keil tools on the CD-ROM also incorporate a sophisticated debug
monitor program called Dscope that allows full symbolic access to all of the
variables and memory locations—this is a lot easier than dealing with
hexadecimal numbers.

Chapter 5 Development Tools 105

USB-SPECIFIC TOOLS

To ease the development of the target I/O board, a variety of tools is available
and included on the CD-ROM.

USB Single Step

The enumeration phase, when controlled by the operating system, is very fast.
USB Single Step puts the USB host software into a diagnostic mode, which lets
us single-step through each packet exchange as shown in Figure 5-10.

B Single Step Transaction

00 00 O0D DO 00 OO0 OO OO0 OO0 OO0 OO OO 00 00 0D DO
00 O0D OO OO 00 OO 0O OO OC OO OO DO OO OO 0O OO0

Figure 5-10. USB singie-step tool

Host requests can be made in the same order as the enumeration phase, and the
responses provided by the I/O device can be observed. Incorrect data or data
lengths are easy to sift out at this stage. Once the I/O device successfully
completes the enumeration phase, data packets can be sent and received to check
the run-time operation.

106 USB Design by Example

USB View

USB View uses the data tables and USB routines of the operating system to draw
a table of attached USB devices (Figure 5-11). The device descriptors are read

and displayed.

E1- My Computer
(- Intel 823718 PCI to USB Universe

&= HootH ub
&2 [Part1] DeviceConnected

[P

[Port2] DeviceCont
[Port3] DeviceCont
[Port4] NoDeviceC
[Pont5] DeviceCont
{Port6] DeviceConr

... [Port3] NoDeviceConr
... [Portd] DeviceConnect:
... [Port2] NoDeviceConnecte

Figure 5-11. Operating system’s view of USB devices

Chapter 5 Development Tools 107

Hidview
Starting Hidview puts the operating system USB software into diagnostic mode
for newly attached HID devices. The tool can then observe and monitor HID

reports (Figure 5-12).

i

i

DY i
hi

=
-

i

Figure 5-12. Debug of HID device using Hidview

108 USB Design by Example

HID Table Creator

An HID report is a complex, compacted data structure. The HID table creator is
an interactive program that guides you through creating a report descriptor
(Figure 5-13). You can save the output in multiple formats that can be pasted
into an assembler file or used as a C declaration file. This tool saves a lot of
time.

HID Descriptor T 0l mfr

JUSAGE (Mouse)
COLLECTION (Application)
| USAGE_MAXIMUM USAGE (Pointer)
DESIGNATOR_INDEX . COLLECTION (Physical)
 |[DESTIGNATOR_MINIMUM USAGE_PAGE (Button)
|DESIGHATOR_MAXIMUM USAGE_MINIMUM (Button 1)
. USAGE_MAXIMUM (Button 3)
LOGICAL_MINIMUM (O)
LOGICAL_MAXIMUM (1)
FEFCRT_COLNT (3)
REPORT_SIZE
INPUT (Data,Var,Abs)

REPORT_COUNT (1)

COUNT

Figure 5-13. Use HID tool to create report descriptors

Chapter 5 Development Tools 109

CHAPTER SUMMARY

The development environment for a USB I/O device is mature. Different tools
are available that match the target solution for the I/O device. These tools are
available from multiple vendors and support their microcontroller solutions very
well. Third-party tools are also available to support development efforts, and 1
have included a suite of these tools on the CD-ROM. I’ve also provided several
host-based programs that will help in the development of your I/O device.

So what are we waiting for? Let’s move on to the next chapter and build
something!

111

CHAPTER 6
BUTTONS AND LIGHTS

In this chapter we’ll build several I/O devices, using what we learned about PC

host software in Chapter 4 and what we learned about the responsibilities of an

I/O device in Chapters 2 and 3. To make it easier to focus on the method, we’ll

start with a simple design and gradually expand the design:

* Example 1: Simple design implements button functions and LEDs using a
microcontroller that has an integrated USB port.

e Example 2: Simple design implements button functions and LEDs (same as
above) using a generic different microcontroller and an external USB port.

e Example 3: Design includes adding more ports (independent of
microcontroller).

e Example 4: Design includes adding lots more ports (independent of
microcontroller) and supporting two configurations.

Figure 6-1 represents the overall design task. A Visual Basic application
program on the PC host writes blocks of a buffer to an I/O device and reads
buffers of data from an I/O device. The format of these data buffers will be
known by the application program and by the microcontroller firmware.

Application

Program

Buffer
Movement

 Microcontroller
Firmware

Figure 6-1. Overall task design

112

USB Design by Example

We’1l have multiple examples, so each I/O device, its hardware, and its matching
firmware must be uniquely identified by its Product Code and Name. The Visual
Basic application program will first “open” a named I/O device to ensure that the
hardware matches the software. The program will also “close” the connection as
it exits.

When you develop an /O device', you choose a USB interface, a microcontroller
(or a microcontroller with a USB interface), and the required I/O devices (for
guidance, see Appendix A). Then you write the subroutines that respond to the
commands sent by the PC host.

EXAMPLE 1: SIMPLE DESIGN, INTEGRATED USB PORT

This simple example implements buttons and lights. In the example, the
microcontroller has an integrated USB port.

The application goes through various stages of initialization:

e The /O device is attached and enumerated. The I/O device enumerates as an
HID device, and the system creates an entry for it in the HID device list
attached to the root Plug and Play node. The second software example in
Chapter 4 explained this operation in detail.

e The Visual Basic application starts executing. The Visual Basic application
searches the list for “Buttons and Lights.” If this is not present, the
application prompts the user to plug in the 1/0 device. Because we haven’t
built our hardware yet, the Visual Basic program is going to wait a long time
to detect the presence of an I/O device! -

' An alternative method using synthesizable cores was discussed in Chapter 4.
This chapter will focus on the lower volume implementation using a
microcontroller.

Chapter 6 Buttons and Lights 113

Example 1—Step 1: Design the Hardware

Figure 6-2 shows our first USB I/O device: a simple, bus-powered I/O device
consisting of a single 8-bit input port, with “buttons,” and a single 8-bit output
port, with “lights.” I’'m using a simple I/O device so we can focus on the

method.
Vdd
N [/l
__Iq'\‘—
1 Lights
1
IS e
11
o , <
D-— .1 Microcontroliler
Gnd —./'/.__
4
. 4
P 4 Buttons
— 7
— .
T | =4
Vss

Figure 6-2. Our first USB I/O device

In this first example, design work consists mostly of writing firmware that is
executed during the enumeration phase of initialization. The firmware looks
quite verbose, but the good news is that we don’t need to change it much for all
of the other examples. Let’s work through the example slowly so that we fully
understand the steps.

114 USB Design by Example

Example 1—Step 2: Complete the Descriptors

Our first step is to complete the descriptors for this HID device. We have one
interface and one configuration in this single device. The interface descriptor
will point to an HID descriptor that in turn points to our single report. The report
descriptor was generated using the HID tool introduced in Chapter 5. Figure 6-3
shows the descriptors for our first example.

Device Configuration Interface HID
Length=18 Length=9 Length=9 Length=9
Type=1 Type=2 Type=4 Type=21H
USB Version Thisinterface=1 HID Version
—110H Total Length Atermatoss ~110H
Class=0 Interfaces=1 Endpoints=0 CountryCode=0
Sub Class=0 This Config.=1 Class=3 HID Descriptors=1
Protocol=0 ConfigName=4 SubClass=0 Report=22H
EPO Size=64 Attributes=80H Protocol=0 Total Report
Vendor ID Max. Power=50 InterfaceName=5 Length
=4242H
Product ID ‘ Report(0)
=1
Report(M)

VersionNumber

Manufacturer=1
ProductName=2
Serial #=3
Configurations=1

String

Length=4 Type=3 Language ldentifier
Length=2A+2 UNICODE Char(0)
enqui=Zp

ONTCODE Charnu]
| TemgezTTZ OTCOD 0

UNICODE Char(A)

UIN LU dlB5

I UNTCODE CharU}

Figure 6-3. Descriptors for our first example

Chapter 6 Buttons and Lights 115

Table 6-1 lists the Standard Request Codes and the Class Request Codes that the
PC host may send to our /O device. Each request can be targeted at the device,
an interface, or an endpoint, so the number of possible requests is quite large.
Our general response to each request is also listed, but the details will vary. With
so few features in this first example, many of the responses will be null
subroutines. Our software structure allows for fuller responses in later examples.

Table 6-1. Requests that our I/O device must respond to

Type Request Our Action*

Standard Get_Status Return current status

Standard Clear_Feature Do nothing, we have no clearable features
Standard Set_Feature Do nothing, we have no settable features
Standard Set_Address Do it

Standard Get_Descriptor Return requested descriptor

Standard Set_Descriptor Do nothing, our descriptors are static
Standard Get_Configuration Return it or O if not configured

Standard Set_Configuration Do nothing, we have only one

Standard Get_Interface Return it

Standard Set_Interface Do nothing, we have only one

Standard Sync_Frame Report error since we are not an Async device
Standard all others Report error via a Stall

Class Get_Report Return it

Class Get_ldle Return it

Class Get_Protocol Do nothing, we are not a boot device
Class Set_Report Do it

Class Set_ldle Do it

Class Set_Protocol Do nothing, we are not a boot device
Class all others Report error via a Stall

* “Do Nothing” requires the correct handshaking protocol. If an “Unknown” request is

received, we must stall our request queue.

116 USB Design by Example

Example 1—Step 3: Implement Microcontroller Code

Now we’re ready to implement the microcontroller code. Any of the

microcontrollers presented so far could be used here. Each has a different SIE

interface that requires slightly different software, but the overall structure of the

solution will be the same.

For this example, I'll use the Anchor Chips EZ-USB because it is the easiest to

explain. This microcontroller has an integrated USB port. (In Example 2, I'll

substitute the Philips 12C-based peripheral but otherwise use the same simple

design.)

I have divided the code into six modules (Figure 6-4):

e Three modules define program variables and fixed constants: DECLARE,
DTABLE, and VECTOR.

e Three modules contain code: MAIN, INTERRUPT, and TIMER.

Define all Define all Define fixed
Program Variables Descriptors Program Vectors

MAIN INTERRUPT TIMER

r{wen }———

Initialization Validate Strobe LEDs
MAIN _JSI_UBFLO_IUtiEej Manage Idle_Time
L
L 1

Figure 6-4. Overview of the /O device firmware

The MAIN module receives control following power-on. After initializing the
program variables and microcontroller peripherals, the module executes the
MAIN task forever. The MAIN module receives buffers from the PC host,
interprets their contents, and acts upon them. This module also generates buffers
for the PC host and supplies them on request.

Chapter 6 Buttons and Lights 117

NOTE

All of the examples in this chapter will be able to use the same INTERRUPT module,
because buffer interpretation and creation are handled in MAIN.

The INTERRUPT module does most of the work for the first example, because
this module deals with the interrupts signaled by the SIE. It handles all standard
requests and most of the HID class requests. Two of the HID class requests,
SetReport and GetReport, result in data buffers that are passed to the MAIN
module for processing.

Figure 6-5 shows how the EZ-USB responds to a control read transfer. The
EZ-USB has a particularly smart SIE that validates received packets, generates
the correct handshake packet, and interrupts the protocol microcontroller only
after a good transaction has been received. The SIE generates separate interrupts
for each transaction type and vectors the microcontroller, via a jump table, to the
correct interrupt service routine. The EZ-USB also has multiple buffers to
simplify the handling of control transfers.

-« SETUP Stage ———»

8 RAM
ETUPD.
Bytes | SETUPDAT

Token Packet Data Packet

LSUDAV Interrupt

- DATA Stage

D
|D
R

H/S Pkt Token Packet

LEPOIN Interrupt

aOIO

Data I’acket

EPOIN Interrupt —j

Token Packet Data Packeyt

-«— STATUS Stage ——»

SUDPTRH/L

64 Bytes

GOIO

Data Pkt) QIR

Token Packet

Figure 6-5. Operation of a control read transfer

118

USB Design by Example

The TIMER module is interrupt-driven. It has two tasks: (1) manage the LED
ON time and (2) manage Idle_Time. In this first example the LEDs are strobed
on one at a time, thus allowing the total power consumption of the example to
stay below 100 mA. The TIMER module also handles Idle_Time processing,
which allows and disallows the I/O device to respond to a GetReport request as
specified for HID devices.

The protocol microcontroller will be interrupted by SIE once a valid control
request has been received in the setup buffer. It is the responsibility of the
protocol controller to service this request. The request types, detailed in
Chapter 2, can be divided into three categories:

e Send data to the PC host.
e Receive data from the PC host.
e Handshake with the PC host.

Figure 6-5 shows the first case of sending data to the PC host. The protocol
controller selects the data to send and places its address in a 16-bit SUDPTR
register. Writing the low byte of this register prompts the SIE to send the data to
the host. If the data is longer than 64 bytes (the maximum size of EPO on the
EZ-USB), then the SIE will send multiple data packets using DATAI and
DATAQO headers alternately. The SIE will also respond with an ACK to the PC
host handshake. Because of the richness of the SIE implementation, there is not
a lot for the protocol controller to do.

Receiving data from the PC host via an OUT transfer is similarly straightforward
(Figure 6-6). The SIE notes the length of the data to be sent by reading bytes 6
and 7 of the SETUP DATA buffer. The SIE then copies received bytes into the
OUTOBUF until the required length is reached, generates an EPOOUT interrupt
to the protocol controller, and manages a handshake sequence to the PC host.

Chapter 6 Buttons and Lights 119

~———— SETUP Stage ————— =

aODO

Token Packet Data Packet

L SUDAV Interrupt

-t DATA Stage
ollAl[E|lC ~llallgllc 5
U D R Payload D R Payload c
T D c Data D o} Data 1
R 5 R 5
Token Packet Data Packet f&ken Packet ' Data Packet

L EPO-IN Interrupt EPO-IN interrupt J

STATUS Stage

aOIO
aOITO

A A
D D
D D
R R

Figure 6-6. Responding to a control write

Thus, to implement an enumeration phase with the SIE interface in this example,
the code needs to interpret SETUPDAT after a SUDAV (SetUp_Data_Available)
interrupt and respond with data packets or absorb and react to data packets. This
example accepts Standard and Class Requests for three recipients: Device,
Interface, and Endpoint. The bit field encoding of RequestType lets us easily
identify requests that are invalid for us. Figure 6-7 (repeated here from Chapter 2
for your convenience) shows that a 1 in bit positions 6, 4, 3, or 2 is not allowed,
and our action would be to stall Endpoint 0. Having eliminated the majority of
the invalid requests, this example creates an index (Figure 6-8) into the
CommandTable using the valid bits from RequestType combined with the
defined bits of Request. Figure 6-9 shows the CommandTable itself.

120 USB Design by Example

RequestType |7|6|5(|4|3|211|0

Request

DataValue

IndexValue

Length

Definition of Request Type Bit Fields
Bit 7 0 = Transfer Host Data to Device 1 = Transfer Device Data to Host

Bit6-5 00=Standard 01=Class 10 = Vendor 11 = Reserved

Bit 4-0 0000 = Device 00001 = Interface 00010 = Endpoint 00011 = Other
All other codes are Reserved

Figure 6-7. Format of a PC host request

Request Type Request
0| (0j0]0 of{ojo|o
l — T
If 1 Force 11
—
0|0

Command Index

Figure 6-8. Creating an index into the CommandTable

Chapter 6 Buttons and Lights 121

NOTE

The CommandTable in Figure 6-9 includes all possible requests that an HID I/O device
needs to respond to, so this approach will apply to all other examples in this chapter.

Requests that are not valid for this particular example will be routed to the
INVALID routine. Note that 11 in bits 1:0 of RequestType is not valid, so, for
coding convenience, the top quarter of the CommandTable is used for HID

commands.

CommandTable:

;First 16 commands are for the Device
Device_Get_Status
Device_Clear_Feature
Invalid
Device_Set_Feature
Invalid
Device_Set_Address
Device_Get_Descriptor
Device_Set_Descriptor
Device_Get_Configuration
Device_Set_Configuration
Invalid
Invalid
Invalid
Invalid
Invalid
Invalid

;Next 16 commands are for the Interface
Interface_Get_Status
Interface_Clear_Feature
Invalid
Interface_Set_Feature
Invalid
Invalid
Class_Get_Descriptor
Class_Set_Descriptor
Invalid
Invalid
Interface_Get_Interface
Interface_Set_Interface
Invalid
Invalid
Invalid
Invalid

;Next 16 commands are for the Endpoint
Endpoint_Get_Status
Endpoint_Clear_Feature
Invalid
Endpoint_Set_Feature
Invalid
Invalid
Invalid
Invalid
Invalid
Invalid
Invalid
Invalid

; Table Index

; 00
;01
;02
;03
; 04
;05
; 06
;07
; 08
;09
; OA
; OB
; 0C
; 0D
; OE
; OF

;10
;11
;12
;13
; 14
;15
;16
;17
;18
;19
;1A
;1B
3 1C
;1D
; 1E
s 1F

;20
;21
;22
;23
;24
125
;26
;27
;28
;29
s 2A
;2B

122 USB Design by Example

Endpoint_Sync_Frame ;2C
Invalid ;2D
Invalid 3 2E
Invalid ; 2F
:Next 16 commands are Class Requests
Invalid ;30
Get_Report ;31
Get_Idle ;32
Get_Protocol ;33
Invalid ;34
Invalid ;35
Invalid ;36
Invalid 337
Invalid ;38
Set_Report ;39
Set_Idie :3A
Set_Protocol ;3B
Invalid ;3C
Invalid ;3D
Invalid ; 3E
Invalid ;3F

Figure 6-9. CommandTable for requests to HID /O device

Chapter 6 Buttons and Lights

123

INTERRUPT Module Code

We must write a subroutine for each command. Many of these routines are

similar but operate on different data. Rather than describe each routine here, I’ve

added extra comments to the code for the INTERRUPT module (Figure 6-10).

; This module services requests from the SIE

>

CSEG
ServiceSetupPacket:
MOV
MOVX
MOV
MOV
ANL
INZ
MOVX
MOV
ANL
IC
IJNB
MOV
NotB5: ANL
SWAP
MOV

INC
MOVX
ANL
ORL
CALL

JB
JNB
JB

MOV
MOV
MOV
CopyRB: MOV
MOVX
DEC
DEC
DINZ
MOV
SendEPOInBuffer:
MOV
StartXfer: MOVX
HandShake:
MOV
SetEPOControl:
MOV
MOVX
ORL
MOVX
RET

DPTR, #SETUPDAT
A, @DPTR

C, ACC.7
SendData, C
A, #01011100b
BadRequest

A, @DPTR
C,ACC.O

C, ACC.1
BadRequest
ACC.5, NotB5
A, #00000011b
A, #00000011b
A

Temp, A

. DPTR

A, @DPTR

A, #00001111b
A, Temp
CorrectSubroutine

STALL, BadRequest
SendData, HandShake
IsDescriptor, LoadSUDPTR

DPTR, #EPOInBuffer+2
RO, #ReplyBuffer+3
Temp, #3

A, @RO

@DPTR, A

DPL

RO

Temp, CopyRB

A, @RO

DPTR, #InOByteCount
@DPTR, A

Temp, #00000010b

DPTR, #EPOControl
A, @DPTR

A, Temp

@DPTR, A

; Point to Setup Packet data
; Get the RequestType

; Bit 7 = 1 means IO device needs to send data to PC Host

; IF RequestType[6.4.3.2] = 1 THEN goto BadRequest

; IF RequestType[1&0] = 1 THEN goto BadRequest

; IF RequestType[5] = 1 THEN RequestType[1,0] = [1,1]

; Set CommandIndex[5,4] = RequestType[1,0]

; Save HI nibble of CommandIndex
; Set CommandIndex[3,0] = Request[3,0]

; Point to Request

; Only 13 are defined today, handle in table

; goto CommandTable(CommandIndex)
; Returns STALL=1 if a stall is required

; EZ-USB has a short cut for descriptors

; Send data in ReplyBuffer

; Copy maximum byte count

; Get real byte count

; This write initiates the transfer

; Handshake with host

; Set HSNAK to tell the SIE that we’re done

124 USB Design by Example

LoadSUDPTR: ; Send the data pointed to by DPTR
MOV Temp, DPL
MOV A, DPH
MOV DPTR, #SUDPTR
MOVX @DPTR, A
MOV A, Temp

INC DPTR
IMP StartXfer
BadRequest: ; Invalid Request was received
MOV Temp, #00000011b ; Set EPOSTALL and HSNAK
IMP SetEPOControl
NextDPTR: ; Returns (DPTR + byte DPTR is pointing to)
MOVX A, @DPTR
BumpDPTR: ; Returns (DPTR + ACC)

ADD A, DPL
MOV DPL, A

JNC Skip
INC DPH ; Need 16 bit arithmetic here
Skip: RET
CorrectSubroutine: ; Jump to the subroutine that DPTR is pointing to
MOV DPTR, #CommandTable
CALL BumpDPTR ; Point to entry
MOVX A, @DPTR ; Get the offset
MOV DPTR, #CommandTable
CALL BumpDPTR ; Get the routine address
PUSH DPL : Create a RETURN address on stack
PUSH DPH : Note: JIMP @ A+DPTR not used since ...
MOV RO, #ReplyBuffer+2 ; ... A and DPTR needed in subroutines
CLR A
MOV @RO, A ; Clear ReplyBuffer
DEC RO
MOV @RO, A
DEC RO
MOV @RO, #1 : Default non-descriptor reply
MOV DPTR, #SETUPDAT+2 ; Point to LOW(wValue)
MOVX A, @DPTR ; Many of the routines need these
MOV B, A ; LOW(wValue) in B
INC DPTR
MOVX A, @DPTR ; HIGH(wValue) in A

CLR STALL
CLR IsDescriptor
RET ; Go to service routine

: Since the table only contains byte offsets, it is important that all these routines are
; within one page (100H) of CommandTable

CommandTable:

- First 16 commands are for the Device
DB Device_Get_Status - CommandTable
DB Device_Clear_Feature - CommandTable
DB Invalid - CommandTable
DB Device_Set_Feature - CommandTable
DB Invalid - CommandTable
DB Invalid - CommandTable ; SIE implements Device_Set_Address
DB Get_Descriptor - CommandTable
DB Set_Descriptor - CommandTable
DB Get_Configuration - CommandTable

Chapter 6 Buttons and Lights 125

DB Set_Configuration - CommandTable
DB Invalid - CommandTable
DB Invalid - CommandTable
DB Invalid - CommandTable
DB Invalid - CommandTable
DB Invalid - CommandTable
DB Invalid - CommandTable
; Next 16 commands are for the Interface
DB Interface_Get_Status - CommandTable
DB Interface_Clear_Feature - CommandTable
DB Invalid - CommandTable
DB Interface_Set_Feature - CommandTable
DB Invalid - CommandTable
DB Invalid - CommandTable
DB Get_Class_Descriptor - CommandTable
DB Set_Class_Descriptor - CommandTable
DB Invalid - CommandTable
DB Invalid - CommandTable
DB Get_Interface - CommandTable
DB Set_Interface - CommandTable
DB Invalid - CommandTable
DB Invalid - CommandTable
DB Invalid - CommandTable
DB Invalid - CommandTable
; Next 16 commands are for the Endpoint
DB Endpoint_Get_Status - CommandTable
DB Endpoint_Clear_Feature - CommandTable
DB Invalid - CommandTable
DB Endpoint_Set_Feature - CommandTable
DB Invalid - CommandTable
DB Invalid - CommandTable
DB Invalid - CommandTable
DB Invalid - CommandTable
DB Invalid - CommandTable
DB Invalid - CommandTable
DB Invalid - CommandTable
DB Invalid - CommandTable
DB Endpoint_Sync_Frame - CommandTable
DB Invalid - CommandTable
DB Invalid - CommandTable
DB Invalid - CommandTable
; Next 16 commands are Class Requests
DB Invalid - CommandTable
DB Get_Report - CommandTable
DB Get_Idle - CommandTable
DB Get_Protocol - CommandTable
DB Invalid - CommandTable
DB Invalid - CommandTable
DB Invalid - CommandTable
DB Invalid - CommandTable
DB Invalid - CommandTable
DB Set_Report - CommandTable
DB Set_Idle - CommandTable
DB Set_Protocol - CommandTable
DB Invalid - CommandTable
DB Invalid - CommandTable
DB Invalid - CommandTable
DB Invalid - CommandTable

126 USB Design by Example

; Many requests are INVALID for this example

Get_Protocol:
Set_Protocol:
Set_Descriptor:
Set_Class_Descriptor:

; We are not a Boot device
; We are not a Boot device
; Our Descriptors are static
; Our Descriptors are static

Set_Interface: ; We only have one Interface
Get_Interface: ; We do not have an Alternate setting
Device_Set_Feature: : We have no features that can be set or cleared
Interface_Set_Feature: ; We have no features that can be set or cleared
Endpoint_Set_Feature: : We have no features that can be set or cleared
Device_Clear_Feature: : We have no features that can be set or cleared
Interface_Clear_Feature: . We have no features that can be set or cleared
Endpoint_Clear_Feature: : We have no features that can be set or cleared
Endpoint_Sync_Frame: ; We are not an Isochronous device
Invalid: : Invalid Request made, STALL the Endpoint
SETB STALL
Reply: RET
Set_Report: ; Host wants to sent us a Report.
- The ONLY case in this example where host sends data to us
JNB Configured, Invalid ; Need to be Configured to do this command
MOV DPTR, #OUTOQ7IEN ; Enable EPOOUT interrupt so that MAIN will ...
MOVX A, @DPTR receive the Report

ORL A, #00000001b
MOVX @DPTR, A

RET

Get_Report: : Host wants to know our Buttons Value
JNB Configured, Invalid ; Need to be Configured to do this command
MOV A, Old_Buttons
INC RO ; Point to ReplyBuffer(1)
MOV @RO, A
RET

Set_Idle: : Host wants to tell us how often we should talk
JNB Configured, Invalid : Need to be Configured to do this command
MOV Idle_Time, A
RET ; Handshake with host

Get_Idle: : Host must have forgotten what he told us to do
JNB Configured, Invalid ; Need to be Configured to do this command
INC RO ; Point to ReplyBuffer(1)
MOV @RO, Idle_Time
RET

Get_Configuration:
JNB Configured, Reply
; If configured return a 1 (via Device_Get_Status)

Device_Get_Status: ; Only two bits of Device Status are defined
INC RO ; Point to ReplyBuffer(1)
MOV @RO, #1 : Bit 1=Remote Wakeup(=0), Bit 0=Self Powered(=1)
RET

Interface_Get_Status: ; Interface Status is currently defined as O

Endpoint_Get_Status:
MOV @RO, #2
RET

Chapter 6 Buttons and Lights

127

Set_Configuration:

MOV
Jz
DEC
INZ
SETB
RET
Deconfigured:
CLR
RET
Get_Descriptor:
SETB
DEC
MOV
JZ
DEC
MOV
iz
DEC
INZ
MOV
CLR
SUBB
INC
MOV
MOV
NextString:
iz
MOV
CALL
MOV
DEC
IMP

A,B
Deconfigured
A

Invalid
Configured

Configured

IsDescriptor

A

DPTR, #DeviceDescriptor
Reply

A

DPTR, #ConfigurationDescriptor
Reply
A

Invalid

A B

C

A, #5

Invalid

A, B

DPTR, #String0

FixUpthenReply
NextDPTR

AB

A

NextString

Get_Class_Descriptor:

SETB
CLR
SUBB
MOV
JZ
DEC
MOV
JZ

; DEC

; JZ
JMP

IsDescriptor

C

A, #21H

DPTR, #HIDDescriptor
Reply

A

DPTR, #ReportDescriptor
Reply

A
Send_Physical_Descriptor
Invalid

; Valid values are 0 and 1
; Get LOW(wValue)

; Host wants to know who/what we are

; Valid Values are 1, 2 and 3

; Get string index

; Only have 4 strings
; Asked for a string I don't have
; Now point to String O

; Save string index

; Check if we are there yet
; Valid values are 21H, 22H, 23H for Class Request

; This example does not use Physical Descriptors

;’ Error check: this MUST be on within a page of CommandTable
WithinSamePage EQU $ - CommandTable

FixUpthenReply:

; EZ-USB Rev D has a String Descriptor bug
; Need to fill the INOBUF myself

; Note, the version of Dscope that I am using does not support EZ-USB features
; such as Dual DPTR’s or the PageReg at SFR 92H, so do the move the old way

MOVX
MOV
MOV
MOV

A, @DPTR
R7, A

B, A

RO, #80H

; Get the string length
; Save counter

128 USB Design by Example

Copyl: MOVX A, @DPTR ; First copy the string to low memory
MOV @RO, A
INC DPTR
INC RO
DINZ R7, Copyl
MOV AB
MOV R7, A

MOV DPTR, #EPOInBuffer
MOV RO, #80H

Copy2: MOV A, @RO
MOVX @DPTR, A

INC DPTR

INC RO

DINZ R7, Copy2 ; Copy the String Descriptor into INOBUF
; Fixup complete, get back to the program flow

POP ACC ; Get rid of the return address

POP ACC

MOV AB ; Retrieve byte count

IMP SendEPOInBuffer

Figure 6-10. INTERRUPT module

Chapter 6 Buttons and Lights 129

MAIN Module Code

Figure 6-11 shows the MAIN module. Most of the module consists of system
and variable initialization. This initialization code will be reusable in many of
the other examples. The MAIN module also includes the service routines for
processing the Input Report and creating the Output Report—these routines are
the ones that will change with each of the examples.

; This module initializes the microcontroller then executes MAIN forever

Reset: MOV SP, #STACK-1
MOV DPTR, #USBControl
MOVX A, @DPTR
ANL A, #11110011b
MOVX @DPTR, A
CALL Wait100msec
MOVX A, @DPTR
ORL A, #00000110b
MOVX @DPTR, A
CLR A
MOV FLAGS, A
TurnOffLLED:s:
MOV LEDValue, A
MOV Old_Buttons, A
MOV LEDstrobe, #11H
Initialize4msecCounter:
INC A
MOV Expired_Time, A
MOV Msec_counter, A
CALL InitializeIOSystem
CALL InitializeInterruptSystem
; Initialization Complete.
MAIN: NOP
IMP MAIN

; We are a slave, we wait to be told what to do

ProcessOutputReport:

; The report is only one byte long in this first example
; It contains a new value for the LEDs

MOV
MOVX
MOV
RET
CreateInputReport:

DPTR, #EPOOutBuffer
A, @DPTR
LEDValue, A

; The report is only one byte long in this first example
; It contains a new value for the Buttons

MOV
MOV
MOVX
MOV
MOV
MOVX
RET

DPTR, #EP1InBuffer
A, Old_Buttons
@DPTR, A

DPTR, #IN1ByteCount
A, #1

@DPTR, A

; Initialize the Stack
; Simulate a disconnect

; Clear DISCON, DISCOE

; Give the host time to react

; Reconnect with this new identity

; Set DISCOE to enable pullup resistor

; Set RENUM so that 8051 handles USB requests

; Start in Default state

; Work around the Dscope monitor I/O needs
; First initialize the USB level then the main level

; Not much of a main loop for this example
; All actions are initiated by interrupts

; A Report has just been received

; Point to the Report
; Get the Data
; Update the local variable

; Called from TIMER which detected the need

; Point to the buffer
; Get the Data
; Update the Report

; Endpoint 1 now 'armed’, next IN will get data

Figure 6-11. MAIN module

130 USB Design by Exampie

TIMER Module Code

The TIMER module (Figure 6-12) receives constant regular interrupts and imple-
ments time-based tasks such as strobing the LEDs and counting down the Report-
based Idle_Time. I used the Start-Of-Frame Interrupt because this was convenient.

: This module services the real time interrupt
- Tt is also responsible for the "real world" buttons and lights

- Get a Real Time interrupt every One millisecond (using SOF interrupt)
. HID devices work on a 4 millisecond timer

; We have two tasks

a) Strobe the LEDs (only one is ever really on, saves power)
b) Check Report Idle_Time to see if we have a report to send

»

>

ServiceTimerRoutine:
DINZ Msec_counter, Done ; Only need to check every 4msec
MOV Msec_counter, #4 ; Reinitialize
; LED task
; Light the next LED in sequence
MOV A, LEDStrobe ; Get the current enabling pattern
RL A
MOV LEDStrobe, A ; Save for next time
ANL A, LEDValue : Get the LED image
CALL WriteLEDs ; Update the real world

:Handle Idle_Time task
: Check if Buttons have changed or Idle_Time has expired
CALL ReadButtons : Have the buttons changed in the last 4msec?
MOV LEDValue, A
MOV Temp, A
XRL A, Old_Buttons
JZ NoChange
MOV 0Old_Buttons, Temp ; Update current button position
IMP ResetExpiredTime
: Buttons have not changed, Check Idle_Time
NoChange:
MOV A, Idle_Time
Z Done ; Check special case = 0 (only on change)
; IF Idle_Time <> 0, THEN check the expired time
DINZ Expired_Time, Done
; Idle_Time has expired, reinitialize and enable response to IN 1
ResetExpiredTime:
MOV Expired_Time, Idle_Time
CALL CreateInputReport
Done: RET

- Talk to the "real world" buttons and lights
ReadButtons:
MOV DPTR, #PortA_Pins
MOVX A, @DPTR
RET
WriteLEDs:
CPL A ;0=LED on
MOV DPTR, #PortB_Out
MOVX @DPTR, A
RET
Figure 6-12. TIMER module

Chapter 6 Buttons and Lights

131

DECLARE Module Code
The DECLARE module is straightforward to code (Figure 6-13).

; This module declares the variables and constants used in the program

; Declare Special Function Registers used

EI DATA 0ASH
EIE DATA OE8H ; EZ-USB specific
EXIF DATA 091H ; EZ-USB specific
EICON DATA OD8H ; EZ-USB specific
; "External” memory locations used, EZ-USB specific
SETUPDAT EQU 07FES8H
SUDPTR EQU 07FD4H
EPOControl EQU 07FB4H
EPOInBuffer EQU 07F00H
EPOOutBuffer EQU 07ECOH
EPl1InBuffer EQU 07E80H
INOByteCount EQU 07FBSH
IN1ByteCount EQU 07FB7H
INO7IEN EQU 07FACH
INO7IRQ EQU 07FA9H
OUTO7IEN EQU 07FADH
OUTO7IRQ EQU 07FAAH
USBIEN EQU 07FAEH
USBIRQ EQU 07FABH
USBControl EQU 07FD6H
PortA_PINS EQU 07F99H
PortB_PINS EQU 07F9AH
PortA_Config EQU 07F93H
PortB_Config EQU 07F94H
PortB_OUT EQU 07F97H
PortA_OE EQU 07FOCH
PortB_OE EQU 07F9DH
; Byte Variables
DSEG AT 20H
FLAGS: DS 1 ; This register is bit-addressable
MonitorSpace: DS 1FH ; Used by Dscope
Temp: DS 1 ; A temporary working register
Msec_counter: DS 1 ; Counts milliseconds
Qld_Buttons: DS 1 ; Stores current button positions
Idle_Time: DS 1 ; The time the PC host wants us to wait
Expired_Time: DS 1 ; A downcounter for timed Reports
LEDstrobe: DS 1 ; Strobe to turn on one LED at a time
LEDValue: DS 1 ; Stores current LED values
ReplyBuffer: DS 3 ; First byte is Count
STACK: DS 20
; Bit Variables
Configured EQU FLAGS.0 ; Is this device configured
STALL EQU FLAGS.1 ; Need to STALL endpoint 0
SendData EQU FLAGS.2 ; Need to send data to PC Host
IsDescriptor EQU FLAGS.3 ; Enable a shortcut reply

»

Figure 6-13. DECLARE module

132 USB Design by Example

DTABLE Module Code
The DTABLE module is straightforward to code (Figure 6-14).

: This module declares the descriptors

: This example has one Device Descriptor with:

; One Configuration - single IN port and single OUT port
One Interface - there is only one method of accessing the ports
One HID Descriptor - to make PC host software simpler

One Report Descriptor - one byte IN and one byte OUT reports
Multiple Sting Descriptors - to aid the user

; One Endpoint Descriptor - for HID Input Reports

CSEG
DeviceDescriptor:
DB 18,1 ; Length, Type
DW 101H ; USBRev 1.1
DB 0,0,0 ; Class, Subclass and Protocol
DB 64 ; EPO size
DW 4242H, 1, 1 ; Vendor ID, Product ID and Version
DB 1,2,0 : Manufacturer, Product & Serial# Names
DB 1 ; #Configs
ConfigurationDescriptor:
DB 9,2 ; Length, Type
DB LOW(ConfigLength), HIGH(ConfigLength)
DB 1,1,3 . #Interfaces, Configuration#, Config. Name
DB 10000000b ; Attributes = Bus Powered
DB 50 ; Max. Power is 50x2 = 100mA
InterfaceDescriptor:
DB 9,4 ; Length, Type
DB 0,0,1 : No alternate setting, HID uses EP1
DB 3 ; Class = Human Interface Device
DB 0,0 ; Subclass and Protocol
DB 4 ; Interface Name
HIDDescriptor
DB 9,21H ; Length, Type
DB 0,1 : HID Class Specification compliance
DB 0 ; Country localization (=none)
DB 1 ; Number of descriptors to follow
DB 22H ; And it’s a Report descriptor
DB LOW(ReportLength), HIGH(ReportLength)
EndpointDescriptor:
DB 7,5 ; Length, Type
DB 10000001b ; Address = IN 1
DB 00000011b ; Interrupt
DB 64,0 : Maximum packet size (this example only uses 1)
DB 100 ; Poll every 0.1 seconds
ConfigLength EQU $ - ConfigurationDescriptor
ReportDescriptor: : Generated with HID Tool, copied to here
DB 6, 0, OFFH ; Usage_Page (Vendor Defined)
DB 9,1 ; Usage (I/0 Device)
DB 0A1H, 1 ; Collection (Application)
DB 19H, 1 : Usage_Minimum (Button 1)
DB 29H, 8 ; Usage_Maximum (Button 8)
DB 15H,0 ; Logical_Minimum (0)
DB 25H, 1 ; Logical_ Maximum (1)

Chapter 6 Buttons and Lights 133

DB 75H, 1 ; Report_Size (1)

DB 95H, 8 ; Report_Count (8)

DB 81H, 2 ; Input (Data,Var,Abs)

DB 19H, 1 ; Usage_Minimum (Led 1)

DB 29H, 8 ;5 Usage_Maximum (Led 8)

DB 91H, 2 ; Output (Data,Var,Abs)

DB 0COH ; End_Collection
ReportLength EQU $-ReportDescriptor
String0: ; Declare the UNICODE strings

DB 4,3,9,4 ; Only English language strings supported
String1: ; Manufacturer

DB (String2-String1),3 ; Length, Type

DB "u",0,"s",0,"B",0," ",0,"D" 0 "e",0,"s",0,"1",0,"g",0,"n",0," ", 0

DB "B",0,"y",0," ",0,"E",0,"x",0,"a",0,"m",0,"p",0,"1",0,"e",0
String2: ; Product Name

DB (String3-String2),3

DB "B",0,"u",0,"t",0,"t",0,"0",0,"n",0,"s",0," ",0

DB "&",0," ",0,"L",0,"i",0,"g" O "h" ,0,"t",0,"s",0
String3: Conﬁguratlon Name

DB (String4-String3),3

DB "$",0,"i",0,"m",0,"p",0,"1" 0 "e",0," ",0,"I",0,"/",0

DB "0",0," ",0,"D",0, b e",0,"v",0,"1",0,"¢c",0,"e",0
String4: Interface Name

DB (EndOfDescriptors -String4), 3

DB "F",0,"",0,"r",0,"s",0,"t",0," ",0,"H",0,"1",0,"D",0

DB "",0,"E",0,"x" O "a",0,"m",0,"p",0,"1",0,"¢",0
EndOfDescriptors:

DwW 0 ; Backstop for String Descriptors

Figure 6-14. DTABLE module

134 USB Design by Example

VECTOR Module Code
The VECTOR module is straightforward to code (Figure 6-15).

: This module contains all of the interrupt vector declarations and
- the first level interrupt servicing (register save, call subroutine,

: clear interrupt source, restore registers, return)

Suspend and Resume are handled totally in this module

; A Reset sends us to Program space location 0
CSEG AT 0 ; Code space
USING 0 ; Reset forces Register Bank 0
LIMP Reset
: The interrupt vector table is also located here
. EZ-USB has two levels of USB interrupts:
: 1-the main level is described in this table (at ORG 43H)
; 2-there are 21 sources of USB interrupts and these are described in USB_ISR
: This means that two levels of acknowledgement and clearing will be required
; LIMP INTO_ISR

; ORG O0BH
H LIMP TimerO_ISR
; ORG 13H
) LIMP INT1_ISR
: ORG 1BH
; LIMP Timerl _ISR
; ORG 23H
; LIMP UARTO_ISR
; ORG 2BH
H LIMP Timer2_ISR
; ORG 33H
; LIMP WakeUp_ISR
; ORG 3BH
; LIMP UARTI1_ISR
ORG 43H
LIMP USB_ISR ; Auto Vector will replace byte 45H
; ORG 4BH
; LIMP 12C_ISR
: ORG 53H
; LIMP INT4_ISR
; ORG 5BH
) LIMP INTS_ISR
H ORG 63H

; LIMP INT6_ISR
ORG OEOH ; Keep out of the way of Tscope monitor

- When a feature is used insert the required interrupt processing here
- This example only used Endpoints 0 and 1 and also SOF for timing

Reserved

INTO_ISR:

TimerQ_ISR:

INTI_ISR:

Timerl_ISR:

UARTO_ISR:

Timer2_ISR:

UARTI_ISR:

12C_ISR:

Chapter 6 Buttons and Lights

135

INT4_ISR:
INTS_ISR:
INT6_ISR:
SUTOK_ISR:
EPOIn_ISR:
EP1In_ISR:
EP10ut_ISR:
EP2In_ISR:
EP20ut_ISR:
EP3In_ISR:
EP30Out_ISR:
EP4In_ISR:
EP4Out_ISR:
EP5In_ISR:
EP50ut_ISR:
EP6In_ISR:
EP60ut_ISR:
EP7In_ISR :
EP70ut_ISR:
Not_Used:
RETI

ClearINT2:
MOV A, EXIF
CLR ACC4
MOV EXIF, A
RET

USBReset_ISR:

PUSH ACC

CLR Configured
CALL ClearINT2

POP ACC

RETI
Suspend_ISR:

PUSH PSW

PUSH ACC

CLR A

CALL WriteLEDs
MOV A, PCON

ORL A, #1
MOV PCON, A
NOP
NOP
NOP
CALL ClearINT2
POP ACC
POP PSW
RETI

WakeUp_ISR:

CLR EICON.4
RETI

; Should not get any of these

; Tell the hardware that we'’re done

; Clear the Interrupt 2 bit

; Bus has been Reset, move to DEFAULT state

; No need to clear source of interrupt

; SIE detected an Idle bus

; Turn off the lights and ...

H ... g0 to sleep!

; Wake up here due to a USBResume

; Not using external WAKEUP in this example
; So this must be due to a USBResume

; Clear the wakeup interrupt source

136 USB Design by Example

SUDAV_ISR: ; A Setup packet has been received
PUSH PSW : Save Registers before the service routine
PUSH ACC
PUSH DPL
PUSH DPH

CALL ServiceSetupPacket
CALL ClearINT2
; Clear the source of the interrupt
MOV DPTR, #USBIRQ
MOV A, #00000001b
MOVX @DPTR, A

POP DPH ; Restore Registers
POP DPL
POP ACC
POP PSW
RETI
SOF_ISR: : A Start-Of-Frame packet has been received
PUSH PSW ; Save Registers before the service routine
PUSH ACC
PUSH DPL
PUSH DPH

CALL ServiceTimerRoutine
CALL ClearINT2
; Clear the source of the interrupt
MOV DPTR, #USBIRQ
MOV A, #00000010b
MOVX @DPTR, A

POP DPH ; Restore Registers
POP DPL
POP ACC
POP PSW
RETI
EPOOut_ISR: ; An Set Report has been received
: The only data the PC Host sends in this example
PUSH PSW ; Save Registers before the service routine
PUSH ACC
PUSH DPL
PUSH DPH
CALL ProcessOutputReport
MOV DPTR, #OUTO7IEN ; Disable this interrupt now

MOVX A, @DPTR
ANL A, #11111110b
MOVX @DPTR, A
CALL ClearINT2
; Clear the source of the interrupt
MOV DPTR, #OUTO7IRQ
MOV A, #00000001b
MOVX @DPTR, A

POP DPH ; Restore Registers
POP DPL

POP ACC

POP PSW

RETI

ORG ($+0FFH) AND OFFOOH
: Auto Vector requires this on a page boundary

Chapter 6 Buttons and Lights

137

USB_ISR:LIMP

SUDAV_ISR
0 ; Pad entries to 4 bytes
SOF_ISR

0
SUTOK_ISR
0
Suspend_ISR
0
USBReset_ISR
0

Reserved

0

EPOIn_ISR

0
EPQOut_ISR
0

EP1In_ISR

0
EP10ut_ISR
0

EP2In_ISR

0
EP20ut_ISR
0

EP3In_ISR

0
EP30ut_ISR
0

EP4In_ISR

0
EP40ut_ISR
0

EPSIn_ISR

0
EP50ut_ISR
0

EP6In_ISR

0
EP60ut_ISR
0

EP7In_ISR

0
EP70ut_ISR ; End of Interrupt Vector tables

Figure 6-15. VECTOR module

138 USB Design by Example

Example 1—Step 4: Application Code

Figure 6-16 shows a screen shot of the Visual Basic application program. There
are two sets of buttons—one is “soft” and the other is a copy of the real buttons.
The “soft” LEDs are a copy of the real LEDs and respond the same way. The
LEDs are operated by the two sets of buttons (A = soft buttons, B = real buttons)
as:

A only

AORB

A AND B

AXORB

B only
This scheme allows software to control the LEDs, hardware (the real buttons) to
control the LEDs, or a combination of both. The full source code is provided on
the CD-ROM.

, B esin Em|e: —

LTI

A ="soft" buttons B ="real” buttons

Figure 6-16. Buttons and lights application program

Chapter 6 Buttons and Lights 139

Example 1—Design Summary

The example was a simple 8-bit input port and an 8-bit output port so we could
focus on the method. We have successfully used external hardware to change the
operation of PC host software. We have also used software to change some
hardware external to the PC. This is a significant milestone—we have PC host
software interacting with a custom I/O board. Now that we have achieved this
first step, we can investigate monitoring and controlling many other external

hardware examples.

EXAMPLE 2: SIMPLE DESIGN, EXTERNAL USB PORT

Before extending our first, simple example, I want to reuse the example but
substitute a different microcontroller so that a wider range of applications can be
covered.

Example 2—Step 1: Design the Hardware

This example uses a generic microcontroller with an attached USB peripheral to
implement the USB port (Figure 6-17). The microcontroller is an MCS51, and
the USB peripheral in this example is the Philips PDIUSBD11, which has an I12C
interface. I have included a photograph of the Philips part in Figure 6-18 to show
how small the circuitry for a USB connection can be.

Vdd

INT R
+5V

L —— Phillips
D+ ————3+— PDIUSBDI11 |g
Gnd -

M

Microcontroller

\ 4

12C Bus

Vss

Figure 6-17. Microcontroller with external USB connection

140

USB Design by Example

Courtesy of Philips Semiconductors.

Figure 6-18. Philips PDIUSBD11 USB peripheral

Example 2—Step 2: Complete the Descriptors

This step is the same as in Example 1. No changes are required.

Example 2—Step 3: Implement Microcontroller Code

The SIE interface presented by the PDIUSBD11 consists of a single interrupt and
a large set of registers that are accessed over an 12C bus. The PDIUSBDI11 is a
slave 12C device, and the microcontroller is the master. Many microcontrollers
include an on-chip I2C master device, but some do not—this interface is easy to
“pit-bang” as described in Application Note 476 in the Chapter 6 directory on the
CD-ROM. My example microcontroller has an on-chip 12C master device. The
PDIUSBD11 component requires some initialization that is added to our MAIN
module, but most of the changes will be in the INTERRUPT module.

When a packet arrives, the PDIUSBD11 drives its interrupt line low. The
microcontroller services this interrupt by first reading the interrupt status register
of the PDIUSBD11 and then reading other registers to acquire the packet type
and packet data information. In contrast with the EZ_USB implementation,
which only generates an interrupt request on a successful transaction, the
PDIUSBDI11 (and many other devices) generates an interrupt on every packet.
The sequences of packets were described in Chapter 2, and the service routine in
this example must monitor and control the sequencing and check for all errors.
This is a lot more work, and fortunately Philips provides example code for their
component. I have modified this slightly so that it will generate the same

Chapter 6 Buttons and Lights 141

subroutine calls as our previous example, enabling the reuse of the request
decoding and response code. The original Philips software and the extra
software required for the Philips PDIUSBD11 are included on the CD-ROM. 1
have also included several other examples in the Chapter 6/Philips directory on
the CD-ROM.

Example 2—Step 4: Application Code

This example uses the same application program as in Example 1. It is
worthwhile to point out that the Visual Basic application program has no
knowledge of the different hardware of Example 2. The application program
talks to the Interface provided by the I/O device descriptors, and because both
examples use the same descriptor tables, then the operation of the application
software will be identical. This “hardware-independence” is a key USB attribute.

Example 2—Design Summary

A USB connection was added to an existing microcontroller simply by using one
of the available USB peripheral components. I've used a serial connection (12C)
because high performance is not required in the example. If higher performance
is necessary, there are several parallel interface USB peripherals available (see
Appendix A). The complete working code for an MCS51 microcontroller is
demonstrated and included on the CD-ROM. This code can be ported to another
microcontroller family if required (this is left as an exercise for the reader).

142 USB Design by Example

Example 2—Real-world Product Example

Figure 6-19 shows an interesting variation of this example. This diagram shows
the Anchor Chips EZ-USB with its integrated USB and an I2C -connected USB.
Why have two USB connections? Well, we could connect each USB to a
different PC host and thus create a PC-to-PC link! With some software added to
this, we could create a potent high-speed link. Anchor Chips offers a product
called EZ-Link (see Appendix A) that implements all of this for you.

USB System A USB System B
Microcontroller [2C-UsB
with USB Peripheral

Figure 6-19. A microcontroiler with two USB connections

Chapter 6 Buttons and Lights 143

EXAMPLE 3: ADDING MORE PORTS, MICROCONTROLLER-
INDEPENDENT

Extending the number of 1/O ports is very straightforward given the
infrastructure we’ve built. The data buffers that the PC host and I/O device
exchange will be longer, but this has almost no impact on the software we have
written so far. The code is independent of the microcontroller and could thus
apply to either Example 1 or 2.

The application program will generate more data that the I/O device needs to
interpret.

Example 3—Step 1: Design the Hardware

I'have chosen a simple extension of the buttons and lights example in the form of
a “reader board.” This example (Figure 6-20) expands from our single column of
LEDs to make a 40-column x 7-row display. Each of the columns is enabled
sequentially and strobes at a rate faster than 30 Hz, so that human persistence of
vision will make them appear always on. Each column of seven LEDs consumes
150 mA if all LED:s are lit, so strobing the columns saves power. A transistor is
required to sink each column’s current, and a line driver is used to provide
current for each row.

—{—1{00000000C ,)00000000
—{—1{00000000C $>00000000¢
—100000000C £)00000000C

Row Drive —— 10000000 0OC 3)000000OO
—£:F@®@@@@ ©C 5)0000OOOOC
—[1-{00000000C Z)00000000¢
0000000OC £)0000OOD O

=

RS T R

Figure 6-20. 40-column x 7-row reader board

144 USB Design by Example

To access the 40 individual columns, the microcontroller can use one of two
basic methods: parallel decode or serial decode (Figure 6-21). Both methods
have their benefits and drawbacks.

e The parallel decoder uses six buffered /O lines and cascaded 3-to-8-line
decoders to select a single line from an address on the six I/O lines.
Unfortunately, all of the available components are built with the selected line
active low, which means that inverters would need to be added before the
transistor driver.

e The serial decoder uses a series of shift registers to rotate a “selection bit”
across the columns. The shift registers have a CLR input that sets all outputs
low so the drive transistors are turned off. A CLK input shifts the DatalN
signal to the right. This DataIN signal would be high when the first column
is selected and low at all other times. The disadvantage of the serial scheme,
in this example, is that multiple columns could be accidentally selected
because of a program bug—this would cause an excessive current draw.

40 “Select” Lines

3-to-8-Line 3-to-8-Line 3-to-8-Line 3-to-8-Line 3-to0-8-Line
Decoder Decoder Decoder Decoder Decoder
6
“Address”
Lines o | —
=1
28
-E_ 5—;8 — “Group” Selects
40 “Select” Lines
DatalN— 8-bit Shift 8-bit Shift || 8-bit Shift || 8-bit Shift || 8-bit Shift
Register Register Register Register Register
CLR
CLK

Figure 6-21. Parallel and serial selection schemes

Chapter 6 Buttons and Lights 145

The choice of parallel or serial enabling is a local one. Only the microcontroller
needs to know which method is being used. The interface seen by the PC host
application program is a 40-byte buffer. This hardware independence will be
demonstrated again in Example 4.

Figure 6-22 shows the final circuit for Example 3; I chose a serial scheme to use
with eight 5x7 dot-matrix LED components (see the data sheets in the Chapter 6
directory on the CD-ROM).

Current
Source
Transistors F---
uC — 7415245 5 — 5
S |5 !
l , _% ! I
DlR : O !
OF] LED Matrix |+ o | LED Matrix
—Lryzfl'rs'rz—ﬁrr‘l LTP-1157A |1 & | | LTP-1157A
1 98!
| o N A A A aa| |3 !
] I LO
uC — ~ LT
PortB —74L8244[N
Data 74HC164 i o ' 7anC164
Clock ; !
Reset HI:

Figure 6-22. 40-column x 7-row reader board example

Example 3—Step 2: Complete the Descriptors

There are two minor changes to the descriptors:
* We change the product code and description in the device descriptor.
¢ The length of the Reports in the ReportDescriptor is increased.

146 USB Design by Example

Example 3—Step 3: Implement Microcontroller Code

Few changes are needed to convert our code from Example 1 to the reader board

code:

e The ProcessOutputReport routine and the CreateInputReport routine must
accommodate the extra report lengths.

e We extend the TIMER routine to handle the multiple columns.

That’s it. The full source is available on the CD-ROM.

Example 3—Step 4: Application Code

The reader board example allows individual LEDs to be set ON or OFF. The
program first reads the current display from the /O device and allows editing
that will be downloaded to the display later. The I/O device maintains the
display after the application software has exited. Figure 6-23 shows the human
interface design—it is extended from Example 1. The full source is available on
the CD-ROM.

Design By Example: Hedel Board

Reader Board

Figure 6-23. Example human interface design, reader board

Chapter 6 Buttons and Lights 147

EXAMPLE 4: ADDING LOTS MORE PORTS,
MICROCONTROLLER-INDEPENDENT

In this example we extend the number of 1/O ports to be even more than in
Example 3. The data buffers that the PC host and I/O device exchange will be
longer, but this has almost no impact on the software we have written so far. To
make this example more interesting, we shall add another configuration as
described in step 2.

This example expands to a 120-column x 21-row reader board display of LEDs
from the previous 40 columns (Figure 6-24). The design could be extended to
support many more columns that could even “overflow” into multiple lines.

Example 4—Step 1: Design the Hardware

I recommend using a parallel drive solution—that is, run multiple, parallel blocks
of the 40x7 display we have just designed. The row drivers need to latch their
row data from the data bus so that each block can be driven with different row
data. Although they are drawn as separate blocks in Figure 6-24 (to show the
component interconnect), each horizontal block would be physically adjacent to
the next to form a continuous display. One column of all blocks will be on at any
one time, so higher-power column transistors will be required, and the total
power dissipation will rise.

Data Bus
2l 7x 40 display 7 x 40 display 7 x 40 display
$||||||||||||||||||||||| TTTTTTITTTTITTI T T uHH””””HHH”H
1 1 1
7 x 40 display 7 x 40 display 7 x 40 display
‘|||||||||||||||l||”|” *|||||||”|||||||||||||| u||||||||”|”|||||||||
1 1 1
7 x 40 display -E 7 x 40 display 7 x 40 display

TTTTTTTTTTITTR T aee e TITTTTTRRTTTOITTIT oo TR eer T
1

e SRR

Figure 6-24. Large reader board example

148 USB Design by Example

Example 4—Step 2: Complete the Descriptors

It would be more convenient to be able to input ASCII text into the reader board.
To do this, we need to translate the ASCII characters into a 5x7 dot pattern.
While this could be done by the application program, it would be a better design
choice to implement this hardware-dependent feature in the I/O device. Let’s
enhance our I/O device to support two configurations—a raw data mode and an
ASCII mode.

The first step is to extend the descriptors to include two configuration descriptors
(Figure 6-25). Each has an associated Interface Descriptor, but no added
endpoints are specified because our communication with the PC host uses the
HID report mechanism, which targets Endpoint 0.

; This module declares the descriptors

Th1s example has one Device Descriptor with:
; Two Configurations - RAW and ASCIL
; Since the RAW and ASCII reports are different lengths need two HID descriptors
; Mutltiple Sting Descriptors - to aid the user

CSEG
DeviceDescriptor:

DB 18,1 ; Length, Type

DW 101H ; USB Rev 1.1

DB 0,0,0 ; Class, Subclass and Protocol

DB 64 ; BPO size

DW 4242H, 1, 1 ; Vendor ID, Product ID and Version

DB 1,2,0 ; Manufacturer, Product & Serial# Names

DB 2 ; #Configs
RAWConfigurationDescriptor:

DB 9,2 ; Length, Type

DB LOW(RAWConfigLength), HIGH(RAWConﬁgLength)

DB 1,1,3 ; #Interfaces, Configuration#, Config. Name

DB 10000000b ; Attributes = Bus Powered

DB 50 ; Max. Power is 50x2 = 100mA
RAWInterfaceDescriptor:

DB 9,4 ; Length, Type

DB 0,0,0 ; No alternate setting, only uses EPO

DB 3 ; Class = Human Interface Device

DB 0,0 ; Subclass and Protocol

DB 0 ; Interface Name
RAWHIDDescriptor:

DB 9,21H ; Length, Type

DB 0,1 ; HID Class Specification compliance

DB 0 ; Country localization (=none)

DB 1 ; Number of descriptors to follow

DB 22H ; And it's a Report descriptor
DB LOW(RAWReportLength), HIGH(RAWReportLength)

Chapter 6 Buttons and Lights

149

RAWEndpointDescriptor:
DB

7,5 ; Length, Type
DB 10000001b ; Address =IN 1
DB 00000011b ; Interrupt
DB 64,0 ; Maximum packet size
DB 100 ; Poll every 0.1 seconds
RAWConfigLength EQU $ - RAWConfigurationDescriptor
RAWReportDescriptor: ; Generated with HID Tool, copied to here
DB 6, 0, OFFH ; Usage_Page (Vendor Defined)
DB 9,1 ; Usage (/O Device)
DB 0AlH, 1 ; Collection (Application)
DB 19H, 1 ; Usage Minimum (LED 1)
DB 29H, 8 ; Usage_Maximum (LED 8)
DB 15H, 0 ; Logical_Minimum (0)
DB 25H, 1 ; Logical_Maximum (1)
DB 75H, 8 ; Report_Size (8)
DB 95H, 250 ; Report_Count (250)
DB 81H, 2 ; Input (Data,Var,Abs)
DB 91H, 2 ; Output (Data,Var,Abs)
DB 0COH ; End_Collection

RAWReportLength EQU $-RAWReportDescriptor

ASCIIConfigurationDescriptor:

DB 9,2 ; Length, Type

DB LOW(ASCIIConfigLength), HIGH(ASCIIConfigLength)

DB 1,1, 4 ; #Interfaces, Configuration#, Config. Name

DB 10000000b ; Attributes = Bus Powered

DB 50 ; Max. Power is 50x2 = 100mA
ASCllInterfaceDescriptor:

DB 9,4 ; Length, Type

DB 0,0,0 ; No alternate setting, only uses EPO

DB 3 ; Class = Human Interface Device

DB 0,0 ; Subclass and Protocol

DB 0 ; Interface Name
ASCIIHIDDescriptor:

DB 9,21H ; Length, Type

DB 0,1 ; HID Class Specification compliance

DB 0 ; Country localization (=none)

DB 1 ; Number of descriptors to follow

DB 22H ; And it’s a Report descriptor

DB LOW(ASCIIReportLength), HIGH(ASCIIReportLength)
ASCIIEndpointDescriptor:

DB 7,5 ; Length, Type

DB 10000001b ; Address =IN 1

DB 00000011b ; Interrupt

DB 64,0 ; Maximum packet size

DB 100 ; Poll every 0.1 seconds
ASCHConfigLength EQU $ - ASCHConfigurationDescriptor
ASCIIReportDescriptor: ; Generated with HID Tool, copied to here

DB 6, 0, OFFH ; Usage_Page (Vendor Defined)

DB 9,1 ; Usage (I/O Device)

DB 0Al1H, 1 ; Collection (Application)

DB 19H, 1 Usage_Minimum (LED 1)

DB 20H., 8 . Usage Maximum (LED 8)
DB 15H, 0 ; Logical_Minimum (0)

DB 25H, 1 Logical_Maximum (1)

DB 75H, 8 ; Report_Size (8)

DB 95H, 250 ; Report_Count (250)

DB 81H,2 ; Input (Data,Var,Abs) = bits

150

USB Design by Example

DB 95H, 40 ; Report_Count (40)

DB 91H, 2 ; Output (Data,Var,Abs) = characters

DB 0COH ; End_Collection
ASCIIReportLength EQU $-ASCIIReportDescriptor
String0: ; Declare the UNICODE strings

DB 4,3,9,4 ; Only English language strings supported
Stringl1: ; Manufacturer

DB (String2-String1),3 ; Length, Type

DB "U",0,"s",0,"B",0," ",0,"D",0,"¢",0,"s",0,"i",0,"g",0,"n",0," ", 0

DB "B",0,"y",0," ",0,"E",0,"x",0,"a",0,"m",0,"p",0,"1",0,"¢",0
String2: ; Product Name

DB (String3-String2),3

DB "R",0,"¢",0,"a",0,"d",0,"e",0,"r",0," ",0

DB "B",0,"0",0,"a",0,"r",0,"d",0
String3: ; Configuration 1 Name

DB (String4-String3),3

DB "R",0,"A",0,"W",0," ",0,"D",0,"a",0,"t",0,"a",0
String4: ; Configuration 2 Name

DB (EndOfDescriptors-String4),3

DB "A",0,"$",0,"C",0,"",0,"1",0," ",0,"D",0,"a",0,"t",0,"a",0
EndOfDescriptors:

DW 0 ; Backstop for String Descriptors

Figure 6-25. Supporting two configurations

Example 4—Step 3: Implement Microcontroller Code

From the microcontroller’s perspective, the difference in the configurations is
how the data buffer received from the host PC is interpreted. No interpretation is
done in the raw configuration, and character lookup is done in the ASCII
configuration. This is a simple example of multiple configurations, so you can
focus on the design method.

The microcontroller code for implementing this two-configuration example is
included on the CD-ROM for detailed review.

Example 4—Step 4: Application Code

The application program is also enhanced to support the two configurations. In
ASCII mode the entered characters are set to the I/O device, which does the
character lookup and then returns a raw buffer for editing if required. The source
code for this Visual Basic application is also included on the CD-ROM for you to
edit and enhance.

Chapter 6 Buttons and Lights 151

CHAPTER SUMMARY

We accomplished a great deal in this chapter. We implemented the concepts we
learned from previous chapters into a working “buttons and lights” example.
This simple example demonstrated the PC host manipulating a physical external
device (the LEDs) and demonstrated a physical external device (the BUTTONS)
controlling the operation of the PC host. This milestone was made possible by
the underlying infrastructure of USB.

The basic design was then extended to access more physical I/O. An I/O device
with two configurations was built, and an application program manipulated both
configurations.

We will build on this knowledge in the upcoming chapters. If we can operate
some buttons and lights, we ought to be able to operate anything. . . .

153

CHAPTER 7
MIGRATION FROM ISA

So what’s wrong with ISA? Why am I encouraging you to move off of the ISA
bus? It boils down to system performance—have you noticed how your
Internet access slows down while you are printing, how your screen seems to
freeze when scanning or accessing a floppy disk? These effects are due to the
operation of the ISA bus.

If we compare the architecture of the first PC (Figure 7-1) with that of a modern
PC (Figure 7-2), we notice that both have a processor at the top and the ISA bus
at the bottom. The original PC contained an 8-MHz Intel 8088 processor; in
many PCs today, the processor is a 400-MHz Intel Pentium II processor.
Processor performance has increased by over a thousand times while the ISA bus
has remained the same.

Host Bus
8 MHz

DRAM
8 MHz

ISA 8 MHz

Slots

-
l ISA
1

| — v———]

I—
[—
[—

Figure 7-1. Original IBM PC architecture

154

USB Design by Example

Slots

2Xx
USB

ISA
Slots

ISA 8 MHz

Figure 7-2. Today’s PC architecture

Figure 7-3 shows another reason to migrate away from ISA: Tomorrow’s PC
will not have an ISA bus! The PC 98 and PC 99 System Design Guide
documents from Intel and Microsoft have predicted the end of ISA since the end
of 1997. PC platforms with ISA-based peripherals will not receive Microsoft’s
“Designed for Windows” Logo from June 1999 on.

Chapter 7 Migration from ISA

155

Intel
Pentium Il

AGPSet

The ISA bus limits growth of the PC platform because of its operation with
today’s processors and its general lack of modern features such as power
management, hot-swap, and configuration management.

Figure 7-3. Tomorrow’s PC architecture

156

USB Design by Exampie

IN AND OUT ARE SPECIAL

Fundamental to Intel Architecture microprocessors is the mechanism to access
real-world Input/Output. The Intel Architecture instruction set includes specific
instructions, IN and OUT, to manipulate data from the real world. Because the
timing of a real-world device is not known, the processor waits for an IN or OUT
instruction to complete before moving on. In the “old” PC with the 8088
processor, this effect of waiting for completion could be ignored because
instruction timings and I/O timings were about the same. Today, if we want
optimum system performance, we need to take the IN/OUT semantics into
account. The Pentium II processor gains performance by dynamically reordering
the instructions it is executing; it also looks ahead in the instruction stream to
determine the optimal order in which to execute instructions. The processor will
not reorder IN and OUT instructions, because they are tied to events in the real
world. While waiting for an IN or OUT instruction to complete, the processor
loses the opportunity to optimize program flow.

The real loss in performance is caused by the slow ISA bus. Referring to today’s
architecture (Figure 7-2), when the processor issues an IN or OUT instruction, it
must gain and hold the PCI bus. Once the processor owns the PCI bus, it must
then gain and hold the ISA bus; the instruction is completed, and all the buses are
now freed. Unfortunately, ISA timing matches the timing of an 8-MHz 8088
processor; so, in the same time period, a 400-MHz Intel Pentium II processor
could have executed 400 to 600 instructions. Retaining the ISA bus in a system
costs us the opportunity to increase system performance.

Chapter 7 Migration from ISA 157

BUILDING AN ISA CARD

Because there was initially no official documentation on how to build an ISA
card, many people “reverse-engineered” the requirements from IBM’s original
design. This worked for a while, until other manufacturers such as Compaq
started to build IBM-compatible PCs. The lack of ISA documentation caused
minor incompatibilities and resulted in some ISA cards not operating in some
machines.

Intel processors support 64 KB of Input/Output address space, but the original
PC design included only 10 of the 16 I/O address lines. This resulted in an /O
space of only 1 KB. IBM used some addresses in this space for the system timer,
DMA, interrupt controller, and peripherals (serial ports, parallel ports, keyboard,
floppy drive, speakers). The I/O addresses were extracted from the BIOS listing
by each ISA card builder who located an ISA card in an unused (by IBM)
address space. There were, of course, address conflicts; many manufacturers
resolved this by making the ISA card address jumper-selectable. But this simply
moved the problem to the user.

ISA card manufacturers also used the IBM system interrupts and DMA channels.
These too had to be made jumper-selectable, adding confusion for the user.
These limited resources were soon used up, and it became burdensome to add
more ISA cards to a PC platform.

The inadequacies of ISA were highlighted when the PC industry first started to
ship “multimedia upgrade kits.” It was difficult to add sound to an early PC, and
it required an ample supply of system resources such as interrupt lines and DMA
channels. The user was initially reluctant to take the cover off the PC. Would
you take the cover off your VCR to “upgrade” it? Tiny jumpers had to be set,
ISA cards had to be reinserted into the PC platform, and software had to be
installed. It shouldn’t surprise us that over 60 percent of these upgrade kits were
returned! The upgrade process was too difficult and error-prone for the average
consumer to deal with. This was a very valuable (although expensive) lesson for
the PC industry. The PC platform had been embraced by the engineering
community, but the consumer is a very different customer—to whom even the
color and shape of the box are part of the purchase-decision process. Of
paramount importance is Ease of Use.

168

USB Design by Example

PLUG AND PLAY ISA

To try to make it easy for a user to add ISA cards to a PC, Microsoft launched a
Plug and Play campaign within the ISA card manufacturer community. Many
electronics manufacturers collaborated with Microsoft to define mechanisms and
standards that would enable ISA cards to be programmable. The operating
system would then interrogate the new ISA cards to understand their system
resource requirements and to program each card’s /O address, interrupt, and
DMA channel to be exclusive.

Unfortunately, the hardware complexity of the resulting Plug and Play
implementation far exceeded the functionality of the simpler I/O cards.
Manufacturers of the simpler cards ignored the recommendations. Manufacturers
of high-functionality cards integrated Plug and Play capability into their bus
interface ASICs, so the general ISA situation was improved—but the situation
was not ideal.

A modern Plug and Play requirement is power management. With power
management, a device powers itself down if it is not being used. The ISA bus
cannot support this; in fact, an ISA card can prevent a PC from powering down
even when the ISA card is not being used. The ISA bus cannot support
“hot-plug” either (hot-plug means that cards are inserted and extracted with the
system power still applied). This general lack of features has caused many
people to migrate off of ISA already. But you must still have an ISA-based
design, because you are reading this chapter!

To increase the throughput of an ISA system, Compaq Computer proposed and
drove a standard extension to ISA called EISA—this extension stretched the bus
to 32 bits and added block mode transfers. The Plug and Play scheme for ISA
was also embraced and extended. Best of all, however, was a two-tier connector
that allowed standard ISA cards to plug in and operate as before while EISA
cards would connect to the added signals and thus operate with increased
functionality. This extension served the industry well for many years but has
now been almost completely replaced by PCL

Chapter 7 Migration from ISA 159

MIGRATION FROM ISA

The discussion so far has looked at half of the migration task—the hardware.

The software is equally important, and for this chapter I assume that the original
application code cannot be changed. That is, the software designer may have
moved on or the original source code may have been lost. So our solution will be
based on the executable object code. Figure 7-4 shows our current design task.
We have a software application that makes MS-DOS calls and directly accesses
some custom hardware. MS-DOS, of course, also accesses the hardware. The
hardware is an ISA card with custom I/O that interfaces to the ISA bus.

We’ll look at the software and hardware tasks separately in the discussion that

follows.
App.
App.
DOS
bosS VMM VXD
HW Windows
HW

Figure 7-4. The migration design task

160 USB Design by Example

Software Migration

I assume the application program is written for the MS-DOS environment,
because this has been the case with most customers I have discussed this solution
with. Our goal is to move this program, unchanged, to a Windows environment.
By unchanged, I mean that we are going to move the executable version of the
program. I assume we do not have the luxury of being able to edit the source
code. This approach will create a general solution for all MS-DOS programs and
not a specific solution for a single application program.

In Windows, Microsoft included many features to allow this OS to easily support
MS-DOS programs. Microsoft’s focus was on general applications, games, and
software that directly manipulate the I/O devices found on a typical PC (for
example, mouse, gameport, SoundBlaster sound, printer, and serial ports). They
did a very thorough job and supplied many pieces of system software that
support almost every commercial MS-DOS application software that can be
purchased. We’ll look at how they did this task, and we’ll use the same
techniques to move our custom, ISA hardware—based MS-DOS application
program into a Windows environment.

MS-DOS View of the World

When writing an MS-DOS program, programmers assume they have total and
singular control over the hardware inside the PC. Some memory is reserved for
MS-DOS and some system I/O devices are also reserved, but in general all of the
microprocessor’s address space and all hardware components inside the PC are
available for programmers to use. The excellent documentation on the inner
construction of PC hardware provided by IBM also includes a BIOS listing so
MS-DOS programmers could get very close to the hardware devices.

Our MS-DOS program talks to custom I/O on an ISA card. The first design
decision is where to put these I/O ports in the PC /O address map. The IBM PC
design chose I/O port addresses for all of the system hardware, and lists were
published of these reserved addresses (I have included such a list in the Chapter 7
directory on the CD-ROM). Some unused I/O addresses were chosen, and the
custom I/O card was designed around these. For this example, let’s assume that
/O addresses from 300H to 30FH are being used.

Chapter 7 Migration from ISA 161

Windows View of the World

Windows 98 is a 32-bit, multitasking operating system that can support several
application programs running at the same time. The programs could be
MS-DOS-based, and, as we have just learned, each program believes it has
exclusive use of all of the PC host hardware. How can this work out? Let’s look
a little deeper into how Windows 98 is able to run multiple programs, and we’ll
discover some excellent techniques that will let us easily move our custom I/O
application program.

Windows 98 makes extensive use of the protected-mode features of the Intel
Architecture processor. From the Intel486 processor on, all Intel Architecture
processors have supported a four-ring protection model (Figure 7-5). In a
Windows environment, the operating system is in the central, most privileged
ring, and application or user programs are in the outermost, least privileged ring.

Virtual Memory
Address Mapping and Physical
Space Protection Tables Memory

Data

Figure 7-5. Intel Architecture protection model

162

USB Design by Example

During the initialization of protected mode, the operating system programmer
can choose to disallow certain instructions to be executed in ring 3. Key
instructions such as “Disable Interrupts” or “Halt” would affect the reliability of
the operating system and are therefore not permitted to be executed from a user
program. If you try to execute them from a user program, the hardware
protection mechanisms inside the Intel processor will trap these privileged
instructions before they execute and will vector the processor to an interrupt
service routine inside ring 0. The operating system then decides what to do with
the “buggy” application program; choices can include terminating the program
and deleting it from memory!

User programs also operate in a virtual address space. When writing an
application, the MS-DOS programmer assumes access to all of the

processor’s memory space. When the Windows operating system loads a
program into memory, the OS needs the flexibility to load the program into any
free physical memory space. During loading, the OS creates a system memory-
mapping table that the user program accesses transparently to create a physical
address. This table includes limits, so a “buggy” application program that tries
to access a memory location outside the range that has been allocated will cause a
protection trap to the operating system—which can deal with this “memory
violation error.” This scheme prevents multiple application programs from
interfering with each other and with the operating system.

Of particular interest to us for this example are the IN and OUT instructions.
These are privileged instructions that a user program is not allowed to execute.
Attempts to execute them cause a trap to the operating system. Because
Microsoft expected many programs to continue to include IN and OUT
instructions, their solution to this “illegal instruction” is very elegant and
efficient. Let us first agree that an application program cannot own any real /0
ports—this would be disastrous if two running programs were to intermingle
VO requests to a printer, for example. All the real /O ports are owned by the
operating system, which can selectively allow programs to believe they are
accessing I/O ports. The terms “hardware emulation” and “Virtual Device
Driver” are used to describe this implementation.

Chapter 7 Migration from ISA 163

The Windows 98 operating system has the capability to install a virtual device
driver, or VxD, on a per /O port basis. Typically, however, a VxD will service a
group of I/O ports. The operating system includes a complete set of VxDs that
manage user access to system I/O resources such as the serial ports and printer
ports. So a “simple” IN or OUT instruction, when used in a user application
program, actually causes the operating system to execute a virtual device driver
that does the real I/O for us. All this is transparent to the user program except
that the instruction can take many hundreds of system clocks rather than four.
We will demonstrate this timing difference in an example later in this chapter.

I have included a utility on the CD-ROM, in the Tools directory, called
VXDVIEW. This program was written by Vireo Software and is supplied with
their permission. VXDVIEW allows you to observe the VxDs currently running
on your PC host—there are a lot of them, and we will add a new one later in this
chapter.

So, in summary, each application program has a protective “wrapper” around it
so that the operating system can monitor and control its execution. This allows
multiple applications to run at the same time, each believing that it has exclusive
access to the PC system.

164 USB Design by Example

OuR CusTtOoM I/O EXAMPLE

Now that we understand the Windows mechanisms for supporting memory and
/O accesses from a user program, we can implement a solution for our custom
/O board. Remember that our example application program makes I/O accesses
to ports 300H to 30FH. Figure 7-6 shows our solution diagrammatically.

DOS
Application

Read/Write
to Port 30xH

Trapped

i

USB.SYS

Host USB Micro-

_controller

Controller

g

uSsSB

Figure 7-6. implementing a “hardware redirector”

We’ll write a virtual device driver that is called when the user program wants an
1/O access completed, and we’ll send the request to a USB microcontroller. The
microcontroller will implement the real I/O access and pass the results back to
the virtual device driver for a read. In turn, the driver will return to the user
program. Thus, we are transparently redirecting the I/O accesses—the user
program will not know that this is happening “behind-the-scenes” and need not
be modified in any way. This sounds as if it will take a LONG time to execute,
but in fact it is similar to other system VxDs in operation. We shall measure the
actual performance of our solution later.

Chapter 7 Migration from ISA 165

To make this example more tangible, consider the simple ISA /O board shown
in Figure 7-7. This board is a custom display system made up of eight
components, each of which has a matrix of 5x7 LEDs in it. The total LED matrix
is 40 LED columns long by 7 LEDs high. The ISA card strobes the columns on,
one at a time, and relies on human persistence of vision to see all of the display
actually lit up. A shift register arrangement is used to strobe each column on in
turn. The board has four I/O addresses that are configurable at four different ISA
base addresses. ISA I/O writes are used to update the display.

The MS-DOS application program reads up to six characters from the command
line and then writes to the display. The program does the character lookup for
the 5x7 character to create a 40-byte buffer that is then sent to the custom I/O
board. This buffer is continually sent to the display to keep it refreshed, and, for
demonstration purposes, all of the operations can be timed.

Figure 7-7. Custom ISA display board

166

USB Design by Example

Figure 7-8 shows a development board from SMSC Microsystems. SMSC has
been a major supplier to the PC motherboard market, and their Super /0
components appear in many production designs. They understand the PC-style
/O business and are excited about the new PC I/O possibilities that USB is

creating.

Courtesy of Standard Microsystems Corp.

Figure 7-8. USB+ISA development board from SMSC

The development board shown in Figure 7-8 is a USB-based peripheral that has a
full complement of PC-style 1/O (parallel port, serial ports with infrared,
keyboard, mouse, floppy disk controller, speaker) and two ISA slots. In
operation it connects a complete PC /O subsystem at the end of a USB cable.
USB is fast enough to support this I/O subsystem at full speed.

Chapter 7 Migration from ISA 167

SMSC designed and manufactures a special USB microcontroller to excel at ISA
I/O device operation. SMSC’s expertise and knowledge of ISA systems was
used to create the 97C100 controller whose block diagram is shown in

Figure 7-9. The 97C100 uses an MCS51 microcontroller as a protocol engine
and has a wide array of special-purpose hardware to support the ISA bus in all of
its operating modes. The 97C100 can maintain ISA timing, and an ISA add-in
card will not know that it is not inside a PC.

Serial ;
——— XCVR Interface — SIE |—] : l;/lrogram
Engine Q emory
Arbiter 8051 ;
MMU :
i | Power 4K 8237
i |Control RAM — DMA — GPIO ——

Quasi ISA Bus

Figure 7-9. Block diagram of 97C100

Our custom I/O board uses only programmed I/O and is very easy for the SMSC
development board to support. SMSC has demonstrated more complex cards,
using ISA interrupts and DMA, operating successfully in this environment. I
have used a simple example so we can study the concepts.

168 USB Design by Example

So the first step in our migration is to remove the custom ISA card from the PC
and insert it into an ISA slot on the SMSC development board (Figure 7-10).

PCbt othrbod SMSC Development Board

Figure 7-10. Moving the ISA card

The VxD is now loaded onto the PC and invoked. The VxD installs trap vectors
for /O ports 300H to 30FH. Any read or write to this range of ports will cause a
USB interrupt transfer to be generated and sent to the 97C100 board, just like all
the examples in the previous chapter. On receiving the interrupt transfer, the
97C100 creates an ISA write cycle that updates our display. The VxD and the
source of the 97C100 code can be found in the Chapter 7 directory of the
CD-ROM.

The first stage of the migration is complete! We have successfully moved a
custom ISA card out of the PC and into a USB device without having to change
the software that was driving the I/O card. Measuring the performance of this
simple I/O card using system timers showed no detectable difference (less than
5 percent difference).

Chapter 7 Migration from ISA 169

Notice that we have accomplished a huge side benefit—we have decoupled the
custom MS-DOS software from the custom ISA hardware. The original IN and
OUT instructions are still there, but we have intercepted them using a virtual
device driver and have redirected them to new hardware. If we keep the same
interface to the MS-DOS application, we can change the hardware to achieve
lower costs if desired.

The second stage of the migration would be optimization of the hardware
solution.

Design Optimizations

The actual design directions taken at this point depend on the complexity of your
real MS-DOS/ISA solution and how many units you need to build (balancing
cost and time targets). I'll describe basic directions to let you choose the one best
for your project.

Multiboard Example

If your custom ISA /O consists of several boards, it would be less risky to
optimize the design of the SMSC development board. The key component,
97C100, can drive up to four ISA slots, so a range of solutions is possible. The
development board includes schematics in ORCAD format, so the design
challenge is reduced to a baseboard layout exercise—good low risk.

I do not advocate this ISA-based I/O subsystem rack for new designs, because
there are much better methods for solving this problem. What I have described is
a transition solution.

170 USB Design by Example

Many Individual Boards Example

A very creative solution implemented by National Instruments may apply to your
situation. National Instruments has a wide range of individual ISA boards that
implement interfaces to analog and digital instrumentation. A custom USB-to-
ISA bridge board, shown in Figure 7-11, enabled National Instruments to create
an “instant” USB product line. The bridge board, and its companion ISA board,
are powered from USB; this allows the pair of boards to be packaged in a
convenient, stand-alone enclosure as shown in Figure 7-12.

Courtesy of National Instruments Corp.

Figure 7-11. A custom USB-to-ISA bridge

Chapter 7 Migration from ISA 171

Courtesy of National Instruments Corp.

Figure 7-12. Creative packaging produces a USB I/O device

172 USB Design by Example

Single, Simple ISA Board Example

If the custom ISA card is simple, as it was in this display example, with no
interrupts and no DMA, then we don’t really need the elegance and thoroughness
of the 97C100 solution. A simpler USB microcontroller could be used

(Figure 7-13).

Vdd

Microcontroller

Control Bus
Buffers
v — | I
D+ e | ISA "Slot’
Gnd — | |

Data Bus| |Address Bus
Buffers Buffers

Ll

VSS

Figure 7-13. Simple ISA card migration

The USB microcontroller in Figure 7-13 re-creates an ISA bus using its I/O ports.
The ISA address is generated, and then ISA controls are generated under
program control of the microcontroller. The bus timings will not be the same as
ISA timings (as they were with the 97C100 example), so this introduces some
risk. For simple I/O boards, however, such as our custom display example, the
ISA signal timing was not a critical part of the design. Example microcontroller
code for a simple ISA bus converter can be found in the Chapter 7/Anchor Chips
directory on the CD-ROM.

Chapter 7 Migration from ISA 173

Depending on your packaging or other hardware constraints, the ISA interface on
your custom I/O board could be replaced with a USB interface. If the total power
drawn by the custom I/O is less than 500 mA, then we can even supply the power
from USB. We have just built a USB dongle that operates the same as the
original ISA-based design, and we didn’t have to change the MS-DOS software
at all! (A “dongle” is an intelligent adapter. A physical adapter lets you connect,
for example, a serial mouse to a PS/2 port. But a dongle also changes signal
levels and protocols, etc.)

CHAPTER SUMMARY

Migrating from an MS-DOS/ISA environment into a Windows/USB environment
is now straightforward if you use the tools and techniques described in this
chapter. No change to the original MS-DOS application software is required—
our solution creates a software-transparent link. Furthermore, the solution
decouples the ISA hardware from the MS-DOS software so we can consider
hardware design optimizations. The I/O solutions can range from a complete
slave ISA-based 1/O subsystem, through a single board ISA bridge, to a simple,
optimized microcontroller solution. The flexibility of USB also lets you choose a
solution that best matches the application that you are moving.

175

CHAPTER 8
BUILDING USB BRIDGES

In this chapter we assume that you already have a PC peripheral, such as a
modem, scanner, or other device that attaches to the PC’s RS-232 serial or
parallel ports. Your peripheral works fine, but you’re considering a USB
connection because of the excitement around USB and the reality that these
“legacy” ports will be eliminated on future PCs.

We’ll present multiple alternatives so you can choose the one that’s best for your

product.
¢ First we’ll design a USB-to-serial bridge. We’ve supplied code for this
alternative.

® Then we’ll design a high-speed communications peripheral—a 56-Kbps
modem—that uses a USB connection.

* We'll look at other standard connections found in the PC industry, such as
floppy disk, SCSI, and CardBus, and build bridges from all of them to USB.

* And we’ll finish with a design that converts a custom peripheral, a bar code
scanner, into a USB peripheral.

Adding USB capability to an existing product is straightforward, and the new
product inherits all of the benefits of USB.

DESIGN OF A USB-T0-RS-232 BRIDGE

The RS-232 connection to a PC has proved to be a popular interface choice for
peripheral device manufacturers—so popular, in fact, that many users have had
to buy more plug-in serial port cards or external switch boxes to accommodate all
of the peripherals! The original IBM PC had a single serial port and allowed
adding three more. The MS-DOS operating system called these ports COM1,
COM2, COM3, and COM4, and most Windows applications also assume that up
to four devices exist.

One drawback of the RS-232 connection is that it is point-to-point, which means
that only one peripheral device can be connected to one serial port. Multidrop
serial port connections, such as RS-422, exist in the industry but have not proved
popular in the PC peripheral business because no PC system manufacturer has
put an RS-422 connector on their motherboard.

176 USB Design by Example

In contrast, USB can be thought of as a multidrop, high-speed connection. Note
that USB is NOT a multidrop serial bus like RS-422; it is point-to-point, and
hubs are used to enable more connectivity. But a USB solution operates as, and
has similar attributes to, a multidrop solution.

Figure 8-1 shows an existing PC peripheral connected to a PC host using an
RS-232 connection.

RS-232

Figure 8-1. Using an RS-232 connection between PC and a peripheral

Using our buttons-and-lights example from Chapter 6, we swap the buttons for
an RS-232 receiver and swap the lights for an RS-232 transmitter. Then we
modify the firmware to match, and we have thus built a USB-to—RS-232 bridge,

or dongle (Figure 8-2).

(=3

USB-to-RS-232
“Dongle”

- RS-232

USB Cable

Figure 8-2. Using a USB-to-RS-232 dongle

Chapter 8 Building USB Bridges 177

All of the microcontrollers used in the Chapter 6 examples could easily do this
USB-t0—-RS-232 bridging task. The task is simpler if the microcontroller has an
integrated serial port, but the software needed to “bit-bang” a serial port is
straightforward (there’s an example in the Chapter 8/Serial Port directory on the
CD-ROM).

If the serial I/O device has a low data rate, then this converted buttons-and-lights
approach is a good solution. If the serial I/O device is a communications device,
such as a modem, there’s a better way of doing it, and a full USB modem design
is implemented later in this chapter. Figure 8-3 shows a representative low-data-
rate serial device. It is a security badge system from RFIdeas, and we’ll use it as
an example of an RS-232 serial device that will have a USB interface added.

Courtesy of RFldeas, Inc.

Figure 8-3. Representative low-data-rate serial device

The RFIdeas AIR ID product is a proximity-activated identification system. You
wear the badge, and the detector is attached to the PC that needs to be protected.
When you walk up to the PC, you are automatically recognized and logged on.
More important, however, is that when you walk away, you are automatically
logged off. This simple security method can prevent unauthorized access to
company data.

178 USB Design by Example

Looking more closely at the dongle and receiver connection, we find two
microcontrollers: one in the bridge and one in the AIR ID receiver (Figure 8-4)
(many similar devices would have the same block diagram).

USB . | Microcontroller _Do_,__LDD_ Microcontrolier

t
! |
} 1
1 1
! l 1
H I = 1
! 1 = \
1 1 e 1
1 ' = H
1 . O 1
uUsB 'RS-232) Receiver L :
i £ '
1 o 1
1 3 |
i 3 '
]
I O]
! 1
! 1
1]

Figure 8-4. Block diagram of dongle plus serial device example

We can make some design optimizations:

e We could use a USB—to—RS-232 bridge as a separate product (several are
available; see Appendix A) and offer this as an option with our serial device
product. This has the lowest development cost but the highest product cost;
it is useful for test-marketing a “USB-based” product.

e We could move the bridge microcontroller inside the unit (Figure 8-5). This
also has a low development cost and has the flexibility of including both a
serial interface and a USB interface on the product.

USB
— + | Microcontroller

f :< Receiver
',_D),_ Microcontroller
i

1

g

=]
. e
! O
1

T8
‘ I i
= 5

@

=}

O

Figure 8-5. Moving the bridge inside the serial product

Chapter 8 Building USB Bridges 179

If our USB product proves to be very successful, we will then want to
cost-reduce the dual microcontroller solution shown in Figure 8-5. The ease of
this solution depends on which two microcontrollers we need to merge. If the
product microcontroller is an MCS51-based microcontroller, the task is
manageable, because we have included working examples with this book. If
your product uses a different microcontroller, I recommend the I2C-to-USB

approach. This approach involves porting the I2C example code to your
microcontroller. Figure 8-6 shows an example of a completed product—it
includes both a manufacturing option to build RS-232 units (as long as customers
still want to buy them) and a USB option for new customers.

LI
LA UR VA YY)

) 1997,98 IDec
ID BU Rew: Bl

Courtesy of RFideas, Inc.

Figure 8-6. USB product built from a serial device

180

USB Design by Example

Now that we have a USB-connected peripheral device, we can consider adding
more features. An RS-232 connection has a data channel in both directions. A
USB connection has this data channel but also has a control channel to the
peripheral device. Does your peripheral have option switches to set, or does it
need to be calibrated, or does it need to be customized at run time? All of these
features can be added at no extra hardware product cost. The USB version will
be self-identifying and easier for customers to use.

The previous section focused on the RS-232 legacy connection on the PC

host. The same technique can be used with parallel port devices or game port
devices. The USB microcontroller is implemented as a bridge between USB and
a parallel connection or a game port connection. You could select a ready-built
USB-to—parallel adapter (see Appendix A), or you could integrate the device into
your I/O device—similar to our serial port design.

Figure 8-7 shows a clever implementation of a game port device from Microsoft.
The microcontroller inside the joystick also supports USB and feeds the D+ and
D- signals to two unused pins on the game port connector. An adapter cable
allows the joystick to be used in a USB environment.

Courtesy of Microsoft Corporation.

Figure 8-7. Combination game port/USB device

Chapter 8 Building USB Bridges 181

DESIGN OF A SERIAL COMMUNICATIONS PERIPHERAL

Our buttons-and-lights examples were implemented as HID devices so that the
software task would be simpler. The HID class was designed for low-data-rate
peripherals that typically interact with a person; this class does not support bulk
or isochronous transfers. Interacting with another computer can be done at a
much higher data rate, and the USB specification includes a Communications
Class that has optimizations for this implementation. Let’s use the same example
of an RS-232 connected communications device, i.e., a modem, that we will
migrate to a USB-connected modem.

First, a Look at Communications Standards

Let’s look at the USB Communications Class in general and then investigate how
USB is having a dramatic impact on the modem industry.

A great number of communications standards exist in the industry, and many of
these are evolving to keep pace with new technologies that push the speed of
information transfer higher and higher while bringing the cost lower and lower.
The USB Communications Class does not invent new protocols or standards, nor
does it dictate how existing communications equipment should be used. Rather,
it defines an architecture that embraces all existing equipment but with an initial
focus on telecommunications services and medium-speed networking services.

The Communications Class defines three classes:

¢ Communications Device Class—this is a device-level definition that
identifies a communications device that has several different types of
interfaces.

e Communications Interface Class—defines a general-purpose mechanism that
supports all types of communication services. This is the primary interface
for device management; it includes the setup and teardown of calls and
management of the device’s operational parameters.

e Data Interface Class—defines a general-purpose mechanism to support octet
data streams using bulk or isochronous transfers. This class is used when
another predefined class, such as Audio, is not appropriate.

182

USB Design by Example

The Communications Device Class currently outlines the following two

categories of devices:

e Telecommunications devices—analog modems, ISDN (Integrated Services
Digital Network) terminal adapters, digital telephones, and analog telephones

e Networking devices—ADSL modems (asymmetric digital subscriber line),
cable modems, 10BASE-T Ethernet adapters, and Ethernet equivalents

A device will identify itself as a Communications Class device by entering a

value of 02 as the Class code value of a device or interface descriptor. Table 8-1

shows several subclasses that are currently defined; many of these have different

protocols defined.

Table 8-1. Communication interface subclass codes

Code Subclass

0 Reserved

1 Direct Line Control Model

2 Abstract Control Model

3 Telephone Control Model

4 Multi-Channel Control‘ Model

5 CAP! Control Model

6 Ethernet Networking Control Model
7 ATM Networking Control Model
8-127 Reserved for Future Use

128-255 Reserved for Vendor-specific Use

As seen in Table 8-1, the list of supported models is extensive. We’ll work
through a Direct Line Control example. Many other options are available, and
the interested reader should refer to “Class Definitions for Communications
Devices” in the USB Documents directory on the CD-ROM.

Chapter 8 Building USB Bridges 183

Direct Line Control Modem Example

A Direct Line Control modem is a recent modem implementation that has been
enabled by USB. The software is simplified because of advances in modem
hardware design. We’ll use this hardware implementation for discussion,
because it has a direct impact on the software. Figure 8-8 shows a traditional
modem connected to USB using the bridge design described earlier in this
chapter. Note the large collection of components: We can eliminate many of
them to create a lower-cost, yet higher-performance modem.

Telephone
Line

DSP

Front-end
ISOLATION
|
Data Access
Arrangement

i]]
=~ 1 { Microcontroller _Do_,_,_D)_
1 1

ko)
1 sl L
USB ! usB RS-232! 5

g

L

s

Modem Analog

Figure 8-8. Traditional modem with USB—to—RS-232 bridge

Most traditional modems are implemented with four to six major components.
These include:

e Microcontroller responsible for interpreting the Hayes modem control codes
(the “AT” command set) as well as other housekeeping and speaker driver

e Digital signal processor (DSP) for signal modulation and demodulation
¢ Apnalog modulation and demodulation

¢ Equipment isolation

e Data access arrangement (DAA)

A modem used to be a straightforward device but today includes increasingly
sophisticated modulation techniques to squeeze larger amounts of data through a
fixed-bandwidth telephone line. Now, what can we start eliminating in our race
to keep up with the data flow?

184 USB Design by Example

For example, a recently approved scheme, ITU V.34, defines a 1000+ point
Quadrature Amplitude Modulation (QAM) trellis coding that can support

33 Kbps or 56 Kbps under certain circumstances. Designers no longer use
analog methods to create these signals; the arrival of relatively inexpensive
digital signal processors (DSPs) in the late 1980s changed this. The Internet has
also been a driving force for change as consumers have demanded lower costs for
higher speeds. USB is going to create as big a change as single-chip DSPs did.

The DAA is particular to a country and its regulations. The common thread
throughout these regulations is signal isolation: The modem, or other equipment,
must not be able to inject high voltages or currents into the telephone line. This
isolation has been implemented using a transformer, which is bulky, heavy, and
less reliable. We’ll see a change here, too.

Removing the RS-232 Connection

The first thing to eliminate is the RS-232 connection. The highest speed that a
PC serial port can operate at is 115.2 Kbps, and a USB connection will remove
this bottleneck. The RS-232 scheme includes two serial signal paths, one in each
direction, that are used to transfer in-band commands and data. Commands and
status must be intermingled with data because there is only one channel in each
direction. USB supports separate command and data channels, which enables
out-of-band status reporting—this segregation of command and data channels
enables a simplified command structure.

Moving Command Set Interpretation to the PC Host

Of the components found in a traditional modem, the microcontroller task of
interpreting the Hayes command set is better handled by the PC host processor.
Microsoft includes a Unimodem driver in its communications stack (Figure 8-9)
to implement all of these functions. The Microsoft VCOMM port drivers can
redirect output originally destined for the serial ports to be transparently passed
to the Windows Device Driver Model (WDM) class driver. The WDM class
driver can then direct this output to a USB device. Input from the USB device
can be similarly passed back from the WDM class driver, through the VCOMM
driver to the Unimodem driver, and back to the applications program. This
fundamental partitioning of the logical I/O to the physical I/O that WDM
provides gives Windows its “hardware-independent” feature set.

Chapter 8 Building USB Bridges 185

Telecommunications Application Program

I

I TAPI.DLL I
I Vendor.tsp l I unimodem.tsp l
User
Kernel
| unimodem.vxd |
VCOMM.VXD VCOMM
Port
Drivers
WDM Comm Class Driver WDM
Comm
Class

commusb.sys ceserial.sys Minidrivers

USB Bus ISA Bus

Figure 8-9. Communications stack in the Windows operating system

Removing the DSP Component

The role of the Digital Signal Processor can also be moved to the PC host
processor. The modern PC host has ample performance capacity to do
significant amounts of real-time signal processing besides the traditional task of
supporting user applications. Intel added a set of DSP-like instructions—the
MMX instructions—to the original Pentium processor; these instructions are also
included in the Pentium II and Pentium I processors. The MMX instructions
make short work of the DSP algorithms with the significant side benefit of being
a “soft” implementation. The signal-processing algorithm is not fixed as it would
be using a physical DSP component. Instead, the algorithm is loaded from disk
Just like every other PC host program; therefore, it can be easily changed to keep
up with the latest, ever-changing communications standards. Lower cost and
improved functionality with an obsolescence-proof implementation—the design
is going in the right direction!

186 USB Design by Example

Can Anything Else be Removed or Simplified?

The only elements left in our modem now are the final modulation stages, signal
isolation, and a data access arrangement. Figures 8-10 and 8-11 represent how
this reduced design can be implemented with and without a transformer (for the
full-sized schematics, see the CD-ROM). A reference design guide from
STMicroelectronics details these two implementations; the guide is included in
the Chapter 8/Modem directory on the CD-ROM.

Auxws 2
Verns [
AGNDZ [

Courtesy of STMicroelectronics
Figure 8-10. Modem using transformer isolation

(For the full-sized schematic, see the CD-ROM.)

Chapter 8 Building USB Bridges 187

Courtesy of STMicroelectronics

Figure 8-11. Modem using a silicon data access arrangement (DAA)

(For the full-sized schematic, see the CD-ROM.)

188 USB Design by Example

Result of Design Optimization

Figure 8-12 shows a very small transformer-based modem design commercially
available from Shark Multimedia Inc.; this 56-Kbps fax/data modem is smaller
and lighter than a box of kitchen matches.

Courtesy of Shark Multimedia, Inc.

Figure 8-12. Pocket-sized 56-Kbps modem from Shark Multimedia

Chapter 8 Building USB Bridges 189

Figure 8-13 shows an even smaller and lighter reference design from
STMicroelectronics; the transformer has been replaced with a set of high-voltage
isolation capacitors.

Courtesy of STMicroelectronics.

Figure 8-13. Transformerless reference design from STMicroelectronics

190

USB Design by Example

We have taken almost all the cost out of a high-performance modem by replacing
most of the hardware with software on the PC host. The USB architecture
facilitates this migration of hardware into software and also enables a simpler
direct line model Communications Interface Class, shown in Figure 8-14.

Data Compression (V.42bis)

Error Correction (V.42)

Carrier Modulation (datapump)

Command
and Control

Audio Communication
Class Class
Interface USB Host Interface
USB Device
POTS Interface (CODEC)
I Control

Data Access Arrangement

Figure 8-14. Direct line model

The Communications Interface Class uses a minimum of two pipes for control:
one for the management function and the other for the notification function. The
Data Interface Class also uses two or more pipes. The example in Figure 8-14
used an Audio Class Interface (see Chapter 11) to present the digitally converted
data to the PC host. This type of connection would also be useful for a voice-
only device such as an answering machine. A basic telephone would also require

an HID interface to handle the keypad.

Chapter 8 Building USB Bridges 191

Table 8-2 lists the Requests and Notifications that can be made over the
Communications Interface Class. As expected, the requests and notifications are

telephone-line specific.

Table 8-2. Direct line model requests and notifications

Request Code Description Req’d/Opt
SET_AUX_LINE_STATE 10h Request to connect or disconnect Optional
secondary jack from POTS circuit
or CODEC, depending on hook
state.
SET_HOOK_STATE 11h Select relay setting for on-hook, Required
off-hook, and caller ID.
PULSE_SETUP 12h Initiate pulse dialing preparation. Optional
SEND_PULSE 13h Request number of make/break Optional
cycles to generate.
SET_PULSE_TIME 14h Setup value for time of make and Optional
break periods when pulse dialing.
RING_AUX_JACK 15h Request for a ring signal to be Optional
generated on secondary phone
jack.
Notification
AUX_JACK_HOOK_STATE 08h Indicates hook state of secondary Optional
device plugged into the auxiliary
phone jack.
RING_DETECT 09h Message to notify host that ring Required

voltage was detected on POTS
interface.

The Windows operating system supports all of the Communications Class
devices. Today’s existing telecommunications software, such as DialTone from
Shark Multimedia, can immediately take advantage of these high-performance,
low-cost, USB-based modems. New applications can add even more capabilities,

such as voice-controlled dialing, using the extra features that the USB

infrastructure provides.

192 USB Design by Example

PARALLEL DEVICE EXAMPLES

Many parallel interfaces in a PC platform can be replaced by a USB connection.
We have already discussed the legacy parallel-printer port, so this section looks
at other parallel interfaces both inside and outside of a PC platform chassis.

Floppy Disk Drive

The floppy disk drive is becoming an optional peripheral device in today’s PC
platform. Most software is now shipped on CD-ROM, and many users are
moving to Zip-style (100 MB) or Jaz-style (1 GB) removable media—more
about these later. However, it is still useful to have an occasionally connected
floppy disk drive that can be shared between multiple users and used as
necessary.

Figure 8-15 shows the basic circuitry required to implement an attached floppy
drive. The example looks just like our buttons-and-lights example but with a
floppy disk controller replacing the switches and LEDs. The microcontroller
firmware is much more complicated because of the inherent complexity of the
floppy drive controller, but the concept of the design is the same. The I/O device
identifies itself as a mass storage device with certain characteristics, and the PC
host uses a mass storage device driver to send requests to the I/O device, which
implements them via reading and writing from the attached floppy disk drive.

Vdd
o
£
£
£ Floppy
& Disk
5 Drive
E
(=]
+5V o
Bt____{:_—‘__ Microcontroller
Gnd ——
Floppy
1 Disk
1 Controller
T
Vss

Figure 8-15. Attached floppy disk drive circuitry example

Chapter 8 Building USB Bridges 193

Figure 8-16 shows a commercially available product from Y-E Data. The
hardware is partitioned differently, as shown in Figure 8-17, but the block
diagram is the same. The unit is powered from the USB cable so no extra
connections are required.

Courtesy of Y-E Data.

Figure 8-16. Floppy disk drive from Y-E Data

: Status/ i Flo

H ' PRy

E Control DMA FOC Disk

H I : Drive
— usB | | Device | | nterface

H Transceiver Control Control :

| Floppy Disk

: i Power Control

! Data | | :

' Mux :

i ASIC :

SRAM Microcontroller

Figure 8-17. Block diagram of Y-E Data example

194

USB Design by Example

SCSI Devices

The SCSI parallel connection is a popular interface supporting data rates up to

5 MBps (for a standard interface, both fast and wide interfaces are available with
higher data rates). A SCSI connection can be confusing because of the variety of
«standard” connectors, the multitude of cables and adapters required, and the fact
that signal terminators are required only at the ends of the collection of
peripherals. USB is a simpler connection scheme, and manufacturers of popular
SCSI devices, such as the SuperDisk drive (left) and Zip drive (right) shown in
Figure 8-18, now include a USB option.

Courtesy of Imation (left) and lomega Corp. (right).

Figure 8-18. USB peripherals derived from SCSl interfaces

The SuperDisk drive uses an external bridge buried in the interconnecting cable.
The smart cable is USB at one end and SCSI at the other. The SuperDisk itself is
unchanged.

The Zip drive uses the embedded bridge technique via a new internal design.
This new design also includes a manufacturing option of a SCSI/parallel
interface.

Chapter 8 Building USB Bridges 195

OTHER BRIDGES

Today’s megapixel digital cameras use flash memory cards to store their
photographic data (Figure 8-19). Once this memory card is full, the data needs to
be downloaded to a PC host for storage and/or manipulation.

Courtesy of Ariston Technologies.

Figure 8-19. Photographic data stored on flash cards

There is a lot of data to download from a camera, and a serial link running even
at 115.2 Kbps can take over five minutes to download eight pictures. The delay
becomes frustrating as larger memory cards store even more data. Figure 8-20
shows a better download solution that uses a USB—to—flash card converter. This
interface can read and write memory cards to enable easy movement of data.

Courtesy of Ariston Technologies.

Figure 8-20. Camera memory card interface from Ariston

196

USB Design by Example

A block diagram of the memory card peripheral (Figure 8-21) shows a USB~to—
parallel converter with the microcontroller enumerating as a bulk transfer device.
Ariston supplies an application program to manage their device, and all transfers
use their vendor-defined protocol because the device isn’t easily defined by one
of the predefined device classes.

Vdd

Microcontroller

Address Latches

and Buffers
+5V ——M8 imi |
Timing
Bt g — and ——rMemory Card Connectorl
Gnd — Control l

Data Buffers

Ll

VSS

Figure 8-21. Block diagram of memory card peripheral

Chapter 8 Building USB Bridges 197

Another bridge component worth mentioning is the USB-to-Ethernet bridge.
Figure 8-22 shows an example from ADS. This bridge has been implemented
with single components to reduce costs and is not “user-programmable,” as many
of the other examples have been. But because its function is well defined, there
would be little reason to modify these programs anyway.

Courtesy of ADS Technologies.

Figure 8-22. USB bridges to Ethernet

198 USB Design by Example

BAR CODE SCANNER EXAMPLE

My final example of a USB bridge is the bar code scanner from Symbol
Technologies, Inc. (Figure 8-23).

Courtesy of Symbol Technologies, Inc.

Figure 8-23. Bar code scanner from Symbol Technologies

Symbol Technologies has been a major supplier of industrial and consumer bar
code scanners for many years. A Synapse proprietary protocol is used to supply
scanned information to a wide variety of data processing equipment. The 6-wire
Synapse connector implements a sophisticated multimaster protocol that can be
interrupt-driven from both devices. The hardware interface can be minimized for
volume products that do not require all of the capabilities. A software layer
above this hardware provides a generic interface between a scanner and an
interface cable.

Chapter 8 Building USB Bridges 199

Symbol decided to build an intelligent bridge between the Synapse connector and
USB. The bridge uses one microcontroller to manage the Synapse protocol and
another to mimic a standard USB keyboard (Figure 8-24). This design choice
makes the scanner particularly easy to use in any PC environment. The scanner
enumerates as a standard Windows keyboard so bar codes can be instantly read
and input into any Windows application program. The USB cable provides
power for the scanning motor, LEDs, and bar code scanner electronics.

]
1
' I
—_—] 1
uUsB ! usB Synapse Protocol]
— 1 | Microcontroller Microcontroller :
-

Figure 8-24. Synapse connector-to-keyboard bridge

The user is unaware of the sophistication inside the dongle. As Figure 8-25
shows, the user just attaches the dongle to the scanner and starts to use it.

Courtesy of Symbol Technologies, Inc.

Figure 8-25. Easy-to-use Synapse dongle

200 USB Design by Example

CHAPTER SUMMARY

I hope this chapter has stimulated thoughts about how any low- to medium-speed
device can be simply bridged to USB. Low speed devices use HID class drivers
to minimize the amount of software that must be written. Medium speed devices
should be categoried in one of the other supported classes, because this too
reduces the amount of software that must be written.

This chapter described the possibility of interfacing a variety of peripheral
devices to USB. Having a microcontroller in the peripheral gives us the
flexibility to translate the standard reports or packets from the PC host software
into custom real-world signals as required by each peripheral. This distributed
intelligence approach, a key architectural feature of USB, gives a USB system its
flexibility and ease of use.

20

CHAPTER 9
CONNECTING TO THE DIGITAL WORLD

Previous chapters have presented the bridging of USB to industry-standard
computer interfaces such as RS-232, parallel, and SCSI. This chapter deals with
other low-level digital interfaces such as 12C, thermometer controls, and infrared
signaling.

I chose these diverse applications so I could demonstrate different techniques for
implementing a variety of USB devices. Let’s hope that your application is close
to one of the ones covered here. All examples are implemented fully and can be
found in the Chapter 9 directory on the CD-ROM.

THE 12C INTERFACE

While debugging the second example in Chapter 6, a generic microcontroller
with an I2C-attached USB peripheral, I realized that I had much more than just
another buttons-and-lights example. I have modified how this example is drawn
(see Figure 9-1) so that the impact is clearer. Now we see an 12C bus being
controlled by the PC host—to put it another way, the application program
running on the PC host can send and receive I2C messages. We have an 12C
development system!

uC

USB Bus

I/F

I2C Bus

Figure 9-1. PC host as an I2C controller

202

USB Design by Example

The example in Chapter 6 used 12C as a means to an end. Our goal was to
control buttons and lights, and the I2C connection was a convenient method to
implement a solution. If we shift our focus to the I2C bus, we can change the PC
host application program to be a potent I12C development system.

Before getting too involved in the details, I'll provide an overview of the I12C bus
architecture. You will discover many diverse components that use an I2C
interface, so the ability to control them from a PC program will be a very useful
tool.

The 12C Specification

SDA (Serial Data Line)

The I2C bus was developed by Philips Semiconductors over 20 years ago as a
serial Inter-Integrated Circuit bus. The bus uses two wires (Figure 9-2) to
implement a simple, bidirectional, multimaster bus. The full specification is
included in the Chapter 9/ 12C directory on the CD-ROM; I have provided
highlights from the specification below.

+VDD

pull-up
resistors RP R

SCL (Serial Clock Line)

Device 1 Device 2

Figure 9-2. Connection of 12C components to 12C bus

Chapter 9 Connecting to the Digital World 203

The I2C bus is a “wired-OR” bus. A resistor pulls up the Serial Clock Line
(SCL) and the Serial Data Line (SDL), and any device connected to the bus can
pull the signal low. A rigid protocol is built on top of this simple signaling
scheme to implement efficient intercomponent communication. The I2C bus is a
multimaster bus, but only one master can ever be in control. The current master
can pass control to an alternate master using a defined handoff sequence.

The master is responsible for generating the clock signal. Data bits are
transmitted in 9-bit frames that are marked by a START and STOP condition
(Figure 9-3). The master is responsible for generating the start and stop
conditions. Data is allowed to change on the bus while the clock signal is low;
data is considered valid when the clock signal is high. A slow I/O device can
hold the clock low to give itself more time to operate—this is called “clock
stretching.”

START condition STOP condition

Figure 9-3. Bit-level signaling on I12C bus

The data transfer is as follows:

1. A master always outputs a 7-bit address and a read/write bit in its first frame.
All I2C devices have preassigned family addresses; for multiple identical
components, such as memory, local jumpers set the low part of the address.
Thus, each device on an I2C bus will have a unique address.

2. The master waits for an acknowledge from the addressed slave before
proceeding.

3. The listener acknowledges the receipt of the byte and, by driving the data
line low, gives the master permission to send the next byte.

4. Datais transferred in the next frame from the master to the slave for a write
and from the slave to the master for a read.

5. The master can initiate another data transfer or signal a STOP condition.

204

USB Design by Example

More data transfers use subsequent addresses. In each case, the data receiver
acknowledges the receipt of the data by driving the data line low. Figure 9-4
shows this acknowledge sequence.

1
Data Output ! \ / X) X X /
by Transmitter E !)< —-
1
: i
] 1 -—— -
]
Data Output : E ___/—
E I
!
I
]
1

by Receiver
Master E___?___ ! 2 -t ! s :
START \ f
Condition Clock Pulse for
Acknowledgment

Figure 9-4. Data handshake via acknowledge

Some microcontrollers have an integrated 12C buffer and sequencer and can
operate at the standard 100-kHz rate or the faster 400-kHz rate. Microcontrollers
without this buffer and sequencer can generate the clock and data sequences with
only a small amount of programming. For more detail, see the Application Note
in the Chapter 9/12C directory on the CD-ROM.

Figure 9-5 shows a simple I2C controller application. The application is written
in Visual Basic, and the source is included in the Chapter 9/12C directory on the
CD-ROM. You can initiate I2C sequences from the PC host and see responses
displayed on the screen. Many I2C devices require extensive initialization, so I
added a capability to read long sequences from a text file. Long response
sequences can also be saved to a text file.

Chapter 9 Connecting to the Digital World 205

Figure 9-5. 12C development application

The range of I2C devices that we can connect to the microcontroller is extensive.
A typical piece of consumer equipment, like a television or a VCR, is made up of
building blocks interconnected with an I2C bus. Look on www.philips.com for a
wide selection of parts that you could consider using with this USB-based
example.

For more information about the 12C bus, I recommend The I2C Bus, from Theory
to Practice, by Dominique Paret, published by Wiley with ISBN 0-471-96268-6.

206 USB Design by Example

12C Summary

We built an USB-to-I12C converter using a single component. In the example, I
used the Anchor Chips USB microcontroller; its integrated I2C support made the
solution particularly elegant. Other USB microcontrollers also have an I2C
interface; those that don’t can implement one in software. The microcontroller
firmware was almost trivial, and its execution used almost no processor time—
which means that an I2C bridge could be added to almost every USB example to
give excellent added value.

The I2C interface is used extensively in the consumer industry, and our USB-to-
12C dongle allows the PC host to become a potent 12C prototyping and
development system.

THERMOMETER APPLICATIONS

In this section, we’ll design several thermometer examples. Each uses a different
serial protocol, but this will be masked from the PC host application program.
This is the general process:

1. A uniform byte-oriented buffer is exchanged between a Windows application
program and the USB microcontroller.

2. The application program reads and writes temperatures and limits as simple
byte variables.

3. The microcontroller implements the bit handling and protocol required to
actually read a temperature or write a limit.

4. The uniform byte-oriented interface will essentially decouple the hardware
solution from the software solution so that each can evolve separately. I'll
demonstrate this hardware independence by changing only the hardware in
the second example.

Chapter 9 Connecting to the Digital World 207

Example 1: Reading Temperatures

Figure 9-6 shows our first thermometer example using the Dallas Semiconductor
DS1620. The product operates using a 3-wire interface and a control register.
For the full data sheet, see the Chapter 9/Thermometer directory on the

CD-ROM.
DQogi1 8 fm Voo
CLK/CONV of | 2 7 O THigH . L
RSTod|3 6 | Tiow Pin Description
GND 4 5 fm Toou DQ - 3-wire Input/Output

DS16208 8-Pin SOIC (208 MiL) CLK/CONV - 3-wire ook Input \an?Input

RST - 3-wire Reset Input
GND - Ground
THIGH - High Temperature Trigger
pa (]t 8] voo Trow - Low Temperature Trigger
CLK/CONV [] 2 7 11 Thign Tcom - High/Low Combination Trigger
RT3 &[0 Tiow Voo - Power Supply Voltage (3V-5V)
GND [] 4 5[Tcom

DS1620 8-Pin PDIP (300 MIL)

Figure 9-6. DS1620 digital thermometer

The operation of the 3-wire interface is similar in principle to the 12C interface:

1. A CLK is generated by a master.

2. Data is exchanged on a wired-OR DQ line. DQ data is valid for read and
write transactions on the rising edge of CLK.

3. A third signal, RST, must be high for the DS1620 to be enabled.

4. Once triggered, a DS1620 takes approximately 400 ms to create a valid result
(worst case is 1000 ms), so we’ll poll at 100-ms intervals.

208 USB Design by Example

The components are interconnected with the CLK and DQ lines bused and
separate RST lines (Figure 9-7). The RST signal is essentially a chip-select.

uUsB CLK
Microcontroller | I] DQ

USB —

1620 1620 1620 1620 1620 1620

RST

Figure 9-7. Using six thermometers

Fixed format packets are sent to a DS1620 to initiate an action. This example
sets up the six thermometers operating in parallel in continuous temperature
conversion mode. The USB microcontroller poll eachs thermometer and store
the value locally.

The PC host application is written in Visual Basic, and its human interface is
shown in Figure 9-8. The full source code is provided on the CD-ROM.

The interface to the PC host is an 8-byte buffer that can send all of the
temperatures to the host on request. If the temperature values have not changed
since the previous poll by the PC host, then the request is NAK’ed to preserve
USB bus bandwidth.

Chapter 9 Connecting to the Digital Worid 209

Figure 9-8. Human interface for the temperature sensor

Most of the firmware is identical to the buttons-and-lights example in Chapter 5.
The report format is different, and the TIMER routine that enters data into the
report is different. We’ll change our product name in the Device Descriptor and
make some minor changes to the initialization, and we’re done! The full source
code for this firmware is included on the CD-ROM. The thermometers are
initialized to operate in continuous conversion mode, and we will poll them every
100 ms. Each thermometer will update its internal copy of temperature
asynchronously to our polling.

210 USB Design by Example

Example 2: Adding Temperature Limits

The controlling PC host application may not be interested in the actual
temperatures at each sensor but would be most concerned if any of them
exceeded some predefined limits. The human interface from the first
thermometer example is extended to include temperature limits as shown in
Figure 9-9.

s U» DesiganybEupI T — i IE

Adding Temperature Limits
Sensor1
Sensor 2

~ Sensor6

| 15]
sensor 3 I IE

| 40|

| 15 |

Figure 9-9. Adding temperature limits to PC host application

Although the DS1620 can detect out-of-range results locally, the following
example provides out-of-range detection using firmware in the USB
microcontroller.

Chapter 9 Connecting to the Digital Worid 211

In this second example, I have defined two more reports:

e Output report: used by the PC host application to update the temperature
limits on each thermometer.

e Alarm input report: alerts the PC host application that a problem is
developing. The USB microcontroller checks the temperature limits during
each TIMER polling routine and enables the transmission of the alarm input
report if required.

The source code for the PC host application program and the microcontroller
firmware can be found in the Chapter 9/Thermometer/Example 2 directory on the
CD-ROM.

Example 3: Using a Multidrop Thermometer

Our first two examples required multiple wires between the USB microcontroller
and the thermometer. Each DS1620 requires a 3-wire signaling interface and two
more wires for power and ground. This wiring can be cumbersome for more than
six to eight thermometers. So, let’s look at a multidrop thermometer, called the
DS1820, also from Dallas Semiconductor (Figure 9-10).

DALLAS
DS1820

NC —] 1 16 NC
NC =2 15 F=NC Pin Description
12 NC—]3 14 = NC
NG — 4 13 F— NG GND - Ground
I I No —]5 12 = ne DQ - Data In/Out
NC =6 11 =ane Voo - Optional Voo
o g 8 Voo 7 10 [=INC NC - No Connect
g ° > pQ—8 9 F=anNo
DS1820 DS1820S
PR35 Package 16-pin SSOP
Bottom View

Figure 9-10. DS1820 multidrop thermometer

212

USB Design by Example

The DS1820 is a member of the MicroLAN family, which requires that only two
wires be bused between all devices. One wire is GROUND, and the other wire is
sometimes POWER and sometimes SIGNAL. Each MicroLAN device collects
power from the POWER line and saves it in a local capacitor. When a device
needs to signal, the master temporarily removes the power source so that
signaling can take place and then restores power once signaling is complete.

This complicates the protocol somewhat, but the savings and simplicity in wiring
are worth the complexity. For a full MicroLAN tutorial, see Chapter
9/MicroL AN directory on the CD-ROM.

Each MicroLAN device is manufactured with a unique 64-bit identifier used for
communication with devices on a MicroLAN. The technology has applications
in much wider fields than our third thermometer example, and the USB-to-
MicroLAN controller we are about to develop can be used in this much broader
context.

The hardware for our third example, as shown in Figure 9-11, is simpler than the
previous example.

a

+5V

Rpullup

33%pF
——'K———l |-—-—> 1-Wire Bus

. \—u

Micro- =) ,5_1K1 | I Q1
USB —{ controller [=1 . II‘ 2N7000
|_
C2 wmbem

220pF I
|

Figure 9-11. USB-to-MicroWire converter

Chapter 9 Connecting to the Digital World 213

The initialization firmware is more complicated because the ID of each of the

DS 1802 thermometers must be discovered, but the polling routine in TIMER is
basically the same. The report structures do not need to change, so the PC host
application does not need to change either—yet another example of swapping out
the “real-world” electronics (in this case, replacing the DC1620s with DS1820s)
and not having to change the PC host software at all.

Thermometer Applications Summary

The thermometer examples show how the USB microcontroller could implement
an arbitrary serial protocol and mask changes in this protocol by providing a
simple byte-oriented interface to the PC host applications software. The
low-level bit-handling details were off-loaded from the PC host (which is very
poor at this task) and implemented efficiently by the attached USB
microcontroller. Furthermore, temperature limit checking was also off-loaded to
the microcontroller, and the PC host was interrupted only when a policy decision
was needed.

USB makes it easy to add intelligent slaves that will share an overall task, and
this means better use of the PC host. See the next chapter for a larger example.

214

USB Design by Example

INFRARED SUBSYSTEMS

Laptop computers have had infrared signal generators and detectors for some
time. The desktop PC, however, has missed out on the versatility of this
signaling scheme. In this section we’ll design an USB-to-infrared dongle that
supports the PC-industry IR standards and the consumer industry IR remote
controller implementations.

PC-industry IR Standards

Infrared has been used by the PC industry to solve two different needs. The first
was a need to transfer large amounts of data from a PC to a peripheral such as a
printer. This file-oriented data transfer has also proved useful for PCs and
personal data assistants (PDAs; for example, the Palm Pilot) to exchange files.
The standard is called IrDA Data, and the full specification, provided by the
Infrared Data Association (www.irda.org), is included in the Chapter 9 directory
on the CD-ROM.

The second need involved data transfer to and from wireless peripherals such as
keyboards, mice, and game pads. The requirements of this data transfer are quite
different from those of IrDA Data, so a different specification, called IrDA
Control, was developed for this application. This specification is also included
on the CD-ROM.

Unfortunately, the same piece of hardware cannot be used for both standards.
Even the LEDs are different because of different data transfer requirements.
However, we’ll discover that the hardware requirements are quite modest and
easily implementable on a USB dongle. The hardware for IrDA Data can also
generate and receive consumer IR (i.e., a TV remote control), and this will be
described in a later section.

Chapter 9 Connecting to the Digital World 215

Example 1: IrDA Data

Infrared communication relies on line-of-sight data transmission between a
transmitter and a receiver. In a typical desktop environment, this line-of-sight
could be easily broken (by a coffee cup in the way, for example), so the IrDA
group also defines a set of communications protocols above the physical layer to
ensure reliable transfer of data.

e The IrDA 1.0 specification has an upper speed limit of 115.2 Kbps, because
this is the fastest that an asynchronous UART can operate.

e The IrDA 1.1 specification describes operation up to 4 Mbps while
maintaining compatibility with Version 1.0 products. A synchronous UART
is required for this.

Both solutions will be presented. The IrDA protocol stack (Figure 9-12) is fully

implemented in Windows 98 and other operating systems. It is straightforward
to redirect the physical layer to a USB dongle.

TRANSPORT
PROTOCOL

trLMP - T
LINK MANAGEMENT PROTOCOL

IrLAP LINK ACCESS PROTOCOL

IrDA PHYSICAL LAYER

Figure 9-12. IrDA protocol stack

216 USB Design by Example

The IrDA Data 1.0 physical layer was designed as a low-cost add-on to existing
PC hardware. Figure 9-13 shows a typical implementation on a PC serial port.

UART ENCODE/DECODE CIRCUITRY LED DRIVER/RECEIVER KT
SOFTWARE
BYTE PARALLEL e SZ
PULSE WIDTH
TO SERIAL MODULATOR LED
EDGE
SERIAL
0 DETECTOR AND
L = PULSE WIDTH -
DE-MODULATOR
PIN
SERIAL /O DIGITAL
INTERFACE INTERFACE

Figure 9-13. Implementation of IrDA Data 1.0 physical layer

The serial bit stream from the UART is not used directly to turn on the
transmitter LED, because this would result in the LED being on for long periods
of time. The LED would overheat unless the drive current were reduced. But
reducing the drive current reduces the range that can be used for successful
detection. To resolve this dilemma and to keep the LED on brightly for a shorter
amount of time, a narrow (3/16 width), return-to-zero inverted encoding and
decoding scheme is used (Figure 9-14).

Start . Stop
Bt ~——— Data Bits — Bit

0 1 0|1 0 1 01 0 1

UART
FRAME

FRTME J-I ” ﬂ_j ﬂ

po1 4 3644

Figure 9-14. Encoding scheme used for IrDA 1.0

Chapter 9 Connecting to the Digital World 217

The encoder/decoder (sometimes called an “endec”) could be an external
component, such as Hewlett Packard’s HSDL-7000, or it could be integrated into
the UART component. An external encoder/decoder requires a 16x clock that is
used to correctly position the LED activation signal with a bit time.

The IrDA 1.0 specification has an upper speed limit of 115.2 Kbps, because this
is the fastest that an asynchronous UART can operate. The IrDA 1.1
specification describes operation up to 4 Mbps, and a synchronous UART is
required for this. A different LED encoding scheme, Pulse Position Modulation
(PPM), is also used because it has twice the data density. Rather than encoding a
single bit in a 3/16 pulse within a bit time, PPM encodes two bits within a 500-ns
bit time (Figure 9-15).

i

9.6 K ~ 115.2 Kbps 0 1 0 1

>l

T=8.68 us ~ 104 ys

T
1.152 Mbps r—I 0 ’o—l 1

N T =868 ns ! ‘ ‘
125 ns
|

NN
awes [oo | [loslyof [1ys 1

Taow] 1 1

Figure 9-15. Encoding scheme used for IrDA 1.1

NN

-

218 USB Design by Example

An IrDA 1.1 encoder/decoder is not available as an external component; it is only
available integrated into a Synchronous Serial Communications controller (SSC).
There are two options to obtain an IrDA 1.1—compliant SSC controller:

e Several manufacturers produce IR controllers (IBM, SMSC, and TT; for data
sheets, see the Chapter 9 directory on the CD-ROM).

e A larger number of manufacturers produce Super-1/O components that
include an IrDA 1.1-compliant SSC controller. One might think that the
Super-I/O component, which also includes a floppy disk controller,
keyboard, mouse, and serial and parallel ports, would cost more, but because
these products are produced in much higher volumes for the PC market
segment, this solution is actually cheaper.

A 4-Mbps link requires a byte of data every two microseconds. Typically this is
too fast for a microcontroller to move bytes under program control, so some
DMA scheme is required to maintain this throughput. Figure 9-16 shows an
example of the hardware using an SMSC USB evaluation board. The board uses
a 97C100 microcontroller and an FDC37C67X super I/O controller.

MODULATION/DEMODULATION CIRCUITRY LED DRIVER/RECEIVER CIRCUIT

52 3/16 ENCODER
J LED
4 PPM MODULATOR
SOFTWARE
BYTE
3/16 DECODER - =
%

PIN

4 PPM DEMODULATOR

INFRARED COMMUNICATION CONTROLLER

Figure 9-16. Fast IR physical layer

Chapter 9 Connecting to the Digital World 219

Example 2: IrDA Control

IrDA Control is quite different from IrDA Data technology. While IrDA Data is
a peer-to-peer, file-oriented data transmission system, IrDA Control is a master-
slave, command-and-control transmission system. IrDA Control is specifically
designed to pass short control packets between a host and a collection of wireless
I/O devices. The standard is not designed to move large amounts of data.

A PC host will poll up to eight wireless devices in sequence to determine if they
have any control information to provide. Up to four of these eight devices can be
active at any time. IrDA Control devices have a range of up to seven meters, so a
mouse, keyboard, or remote control can interact with a PC at the other end of the
room.

An IrDA Control system is defined in layers as shown in Figure 9-17. IrDA
Control devices are a good match to USB HID devices, and in this section we
will build an IrDA-Control dongle.

HID DEVICE | | HOME APPLIANCE | !
APPLICATION | | APPLICATION | ! APPLICATION !
e eeeeemeeeam I !
HID-IDA | ! : | FUTURE DEVICE |
ConTROL | ~ HALLC LLC :
IDA CONTROL MAC
IrDA CONTROL PHY

Figure 9-17. IrDA Control layered implementation

The IrDA Control Specification (included on the CD-ROM) defines the
transmission schemes, modulation schemes, and wavelengths of the infrared
transmitter and receiver. A serial data stream uses a 16 Pulse Sequence
Modulation (16 PSM) format to modulate a 1.5-MHz carrier frequency to
achieve an overall data throughput of 75 Kbps.

220

USB Design by Example

A 16 PSM encoder takes four information bits at a time and creates a Data
Symbol that it transmits over the optical link (Figure 9-18). Similarly, the
decoder re-creates a serial bit stream, four bits at a time, from received Data
Symbols.

TRANSCEIVER
-] | ENCODER | IR Tx -
w
-
d
Q MODEM
'—
pd
3
«| | DECODER | |~ IR Rx -—

Figure 9-18. IrDA Control physical layer block diagram

The serial bit stream is generated by the Media Access Layer in frames

(Figure 9-19). Following a preamble to synchronize the receiver host address,
peripheral address and control information are sent with the payload data. This is
similar to the USB interrupt packet technique.

0 - 9 BYTES (SHORT FRAME)
8 BITS 4BITS 4BITS 0-97 BYTES (LONG FRAME)

MAG
HA PA | WO MAC PAYLOAD
| |
1 1
! | 8 BIT (SHORT FRAME)
1 16 BIT (LONG FRAME)
AGC | PRE | STA MAC FRAME CR sTO

NOTES:

HA: Host Address field

PA: Peripheral Address field
MAC CNTL: MAC Control field

Figure 9-19. IrDA Control MAC frame structure

Chapter 9 Connecting to the Digital World 221

Because the IrDA Control specification is relatively new, there is a limited
choice of hardware to implement a reference design. The single example I found
is very complete, however. The Sharp LZ85202 is a full USB—to-IrDA Control
subsystem needing only a USB transceiver (for example, PDIUSBPD11 from
Philips) and an infrared transceiver (for example, CP2W2001YK from Sharp) to
implement the complete hardware design (Figure 9-20). Figure 9-20 also shows
the hardware/firmware required at the wireless peripheral.

User
Application
uP

Peripheral Engine -—-\

PC99 Designed

IR Transceiver
for Type 1 & 2

usB
HOST
C

{ Assistant LED

Figure 9-20. Complete USB-to-IrDA Control subsystem

222

USB Design by Example

Example 3: Consumer Industry IR

It is difficult to find standards for IR remotes from the consumer industry. All
vendors seem to do their own designs, and the infrared systems from different
manufacturers are rarely interoperable. A growing industry is now providing
“yniversal” or “learning” remotes so that a single, complex unit can take the
place of several simple units. This section looks inside a “universal” remote, and
we’ll design an IR receiver/transmitter that allows a PC to respond to an IR
remote and also generate IR remote signals to control consumer electronics
components. With a PC host added to the control loop, we can implement more
sophisticated and user-friendly sequences.

Almost all IR remotes transmit bursts of modulated infrared light. The light is
modulated at a frequency between 30 kHz and 60 kHz, because this reduces the
interference effects from ambient lighting. A few remotes, I am told, do not
modulate their outputs and just send pulses of light—this is supposed to save
battery power and help reduce the cost of the device. All the remotes I tested
used modulated light, and no two used the same frequency.

The bursts of modulated light and no light encode serial data. The length of the
burst, or the spacing between the bursts, or both, is different for a logical 0 and a
logical 1. Figure 9-21 shows a representative signal transmitted from a remote
when a key is pressed.

Figure 9-21. Consumer IR signal sequence

Our controller will operate in two distinct modes or configurations. The first
mode will MEASURE the signals from an existing IR remote controller and will
create a Translation Table. This table is then provided to the OPERATE mode,
which sends and receives IR signals.

Chapter 9 Connecting to the Digital World 223

The measure mode uses several tasks to successfully decode the signal from a
given remote controller to reproduce its signal:

e Determine modulation frequency

¢ Characterize the pulse and gap lengths

¢ Determine the Command Length

We have a lot of counting to do! A microcontroller could easily control a known
IR remote in software. Detecting an unknown high frequency is much more
difficult for the microcontroller because of the granularity of instruction timings.

To successfully detect frequencies in the range of 30 to 60 kHz, we need a
hardware timer and some kind of capture mechanism (Figure 9-22).

T2M

Divide by 12
y Ol

CLK24 1 j C/T2
l 3 CLK O 78 15
Divide by 4 1 | T2 | TH2 -
I fllllllllllllllll

»
L

T2 pin
P HEEEEENREEREEEN
TR2 | mrcAP2L | RCAP2H
0 78 15
ITF2 ‘:
L= |

EXEN2 —I_ CAPTURE
B Lo} Do
T2EX pin>———— > EXFz ‘

Figure 9-22. Using a timer to measure pulse width

224

USB Design by Example

Most microcontrollers have an integrated timer, which can be used for this pulse-

width type of measurement. The Anchor Chips EZ-USB has two timer/capture

registers, but we use only one. The timer needs to be clocked at a rate that will

give us good discrimination between adjacent frequencies. Here is the overall

process:

1. The value of the timer is saved.

2. On the transition of the input signal, the microcontroller is interrupted and
saves this value.

3. At the next transition of the input signal, the timer is captured and the
microcontroller is interrupted again.

4. The microcontroller subtracts the stored value from the new value to
determine the width of the input pulse.

In our example we will measure all of the input pulses that represent frequencies
between 30 kHz and 60 kHz and average them to best determine the modulation
frequency. This frequency range corresponds to 33.3 ms to 16.6 ms, and we
should use a timer frequency that produces about 100 sample points between
these two extremes. The example program collects pulse width data in a
histogram format and stops collecting if an overflow is detected on one of the
8-bit counters, or if the input signal expires.

If a pulse width outside of this 33.3 ms to 16.6 ms range is measured, then we
have measured the interburst gap. Subtracting saved values will also produce the
width of the burst. This detail is shown in Figure 9-23.

Burst Gap
Length | Length

I I

—». L Cycle Length

Figure 9-23. Three key measurements are made

Chapter 9 Connecting to the Digital World 225

The example program saves the burst length and gap length in a table and then
calculates the next burst and gap lengths. Measurements are made until the input
signal expires or our table is full. The collected information is supplied to the PC
host in a measurement report.

The PC host application program analyzes this data to determine the modulation
frequency and the 1 and O encoding scheme. A translation table is built in
which the names engraved on the IR remote buttons are paired with a
hexadecimal representation of the transmitted signal stream, for example,
“Volume Up = 03F4.”

Once all of the IR remote buttons have been decoded, the translation table is
downloaded to the microcontroller during reconfiguration.

The microcontroller is now switched out of MEASURE mode into OPERATE
mode by choosing a different CONFIGURATION. A single entry report can
now be exchanged between the PC host and the microcontroller. IR signals
detected by the microcontroller are decoded and sent to the PC host as “button
press detected”; the PC host will send “button requests” to the microcontroller,
which will generate the correct IR signal sequence.

The example on the CD-ROM also includes the feature of saving and reading
translation tables from disk so that the MEASURE mode need be used only once
per IR remote type.

Infrared Subsystems Summary

We learned that there are three basic types of infrared that a PC host can
comprehend. IrDA Data is used for short-range peer-to-peer file transfer, and we
built a USB dongle to demonstrate this. IrDA Control is used to manage a
collection of slave peripherals in the same room as a PC host, and we built a USB
dongle to demonstrate this. There is a wide variety of infrared controls (e.g., TV
remote) available with no industry standards. We built an adaptive infrared
receiver that could analyze and then re-create the signals for any selected remote.
We built a USB dongle to demonstrate this.

In all cases the USB microcontroller managed the low-level encoding and
decoding of the infrared signal while the PC host did the data processing. We did
not meet the goal of having a single USB dongle to implement all of the infrared
solutions, but the examples presented can be integrated, in a building-block
fashion, into a variety of solutions.

226 USB Design by Example

CHAPTER SUMMARY

The common thread throughout this chapter has been the USB microcontroller’s
ability to generate an arbitrary serial waveform using any protocol, yet present a
byte-oriented interface to the PC host. This partitioning of the task between the
data processing abilities of the PC host and real-time responses of the USB
microcontroller is an area in which the intelligent slave architecture of USB can
be very effective. USB makes this style of system implementation both easy and
hardware-independent. The software and hardware can evolve and improve at
their own rates, and, providing the software interfaces remain constant, the USB
solution will continue to operate.

227

CHAPTER 10
CONNECTING TO THE REAL WORLD

The world of digital electronics operates at very low power levels. A typical
microcontroller output is capable of sinking 5 mA from a 5-volt source—this is
only 25 mW. While this is enough to trigger another electronic part and just
enough to light a small LED, it is not enough to control the real world. Some
kind of amplification is required, and this will be the first topic of this chapter.

A typical microcontroller input can discriminate between a logical 0 and a
logical 1. Logical 0 is between 0 and 0.7 volts at less than 1 mA, and a logical 1
is between 2.4 and 5.0 volts at less than 1 mA. Signals in the real world are not
like this; they vary from very small millivolt signals up to hundreds of volts on
heavy equipment. These signals are often continuously variable and do not have
convenient logical 0 and logical 1 values. Some kind of signal conditioning must
be done before the microcontroller can accept this signal, and this will be the
second major topic of this chapter.

OUTPUT SIGNAL CONDITIONING

A transistor can be used to amplify the power of a microcontroller output signal
as shown in Figure 10-1.

+V
+5V
R2
+5V R1
T c
B T2
Micro-
controller
T
L L

Figure 10-1. Switching larger power levels

228

USB Design by Example

When the microcontroller output is LOW, that is, close to 0 volts, then transistor
1 is OFF. Current is supplied by R1, which turns transistor 2 ON. Assuming
transistor gains of 100, transistor 2 could be switching 10 amps through its load
resistor R2.

When the microcontroller output is HIGH, that is, close to 5 volts, then transistor
1 is turned ON. The voltage at point B will drop to 0.1 volts, which will in turn
cause transistor 2 to turn OFF. The 10 amps that was flowing through R2 now
stops.

The simple transistor circuit shown in Figure 10-1 allows the power switching of
a microcontroller output to be amplified by 1000 times. R2 does not need to be
connected to the same +5-volt supply as the microcontroller—it could be
connected to a higher DC voltage supply that further increases the power levels
that can be switched.

The load resistor R2 does not need to be a resistor as shown in Figure 10-2—it
could be an indicator lamp or a relay that could switch even higher power levels.

-:_/ +V
T2 T2

Figure 10-2. Switching high power loads

The diode across the coils of the relay of Figure 10-2 prevents high reverse
voltage from occurring across transistor T2 when the transistor turns off. The
inductance of the relay coils will resist the current flow from being turned off and
will cause a high reverse voltage, called the back electromotive force (EMF), to
be generated at point C. The diode safely conducts the high-current pulse away.

Chapter 10 Connecting to the Real World 229

Another benefit of the relay circuit is the isolation of the load and its supply
voltage from the microcontroller circuitry. Potentially harmful (to the
microcontroller) voltages are prevented from coming into contact with the
control circuitry.

Driving coils is not limited to relays; an electric motor is also made up of coils.
We have already learned enough to control large coil currents, so let’s look at
what a small amount of logic can do for motor control.

CONTROLLING A MOTOR

Electric motors, whatever their size, come in two basic types: stepper motors
that rotate in discrete steps and DC motors that rotate at a variable speed. First
we’ll control a stepper motor, and then we’ll move on to a DC motor.

Example 1: Stepper Motor

Figure 10-3 shows a simplified diagram of a stepper motor. There are two sets of
motor windings, called Phase A and Phase B, and two poles. Real stepper
motors have many sets of poles, which results in less rotation for each “step”:
The simplified two-pole stepper motor will rotate 360/4 = 90 degrees for each
full step while a typical twelve-pole stepper motor will rotate 360/24 = 15
degrees for each full step. The following discussion uses a two-pole example,

so remember to divide the step size by the number of real poles on your stepper
motor.

Phase A

I

|

Phase B

Figure 10-3. Simplified stepper motor

230 USB Design by Example

The rotor of the stepper motor is stable in many discrete orientations as indicated
by the numbered positions in Figure 10-3. To move the rotor to an adjacent
stable position, Phase A and Phase B are activated in a sequence.

In Figure 10-4, part A shows the connection of power transistors used to drive
the motor coils. In the simplest case, Por QON and R or S ON, current flows
through each coil left-to-right or right-to-left. This gives four possible states and
results in four possible positions for the rotor (Figure 10-4, part B).

Phase A Phase B
L AYYYYYYY L | L AYYYYYYY |
x X
Pl la RIS

A. Power transistors drive the coils

SN N

P ON OFF OFF ON
Q OFF ON ON OFF
R ON ON OFF OFF
S OFF OFF ON ON

B. Position of rotor is determined by control signals

Figure 10-4. Moving rotor to adjacent stable position

Chapter 10 Connecting to the Real World 231

Moving from one stable position to the next stable position is called a “step.” It
is possible to create another mode for each of the coils by defining more states
where P and Q are OFF or R and S are OFF. This results in stable half-step
positions as shown in Figure 10-5.

S — \{ l S — X T
ON OFF OFF OFF OFF OFF ON ON
OFF OFF ON ON ON OFF OFF OFF

ON ON ON OFF OFF OFF OFF OFF
OFF OFF OFF OFF ON ON ON OFF

WIDO

Figure 10-5. More control states produce a haif-step

A problem with this half-step solution is uneven torque created by one or two
coils ON at any instant—the full-step example always has two coils on. The
uneven torque can create vibration and/or mechanical noise. The solution is to
reduce the current drive when both coils are ON or overdrive the current through
a single coil when it is ON. This will produce a constant torque and will be more
reliable.

If we are prepared to make our control circuitry more complicated (hey, we have
a microcontroller, so this is NO PROBLEM), we can define more stable states.
This technique, called microstepping, involves varying the current drive into each
coil by discrete amounts. So rather than ON + OFF, which is 100% + 0%, we
could define

* 100% + 66% + 33% + 0% for quarter steps, or

* 100% +92.4% + 83.1% + 70.7% + 55.5% + 38.2% + 19.5% + 0% for eighth
steps

232

USB Design by Example

Figure 10-6 shows an example of an Allegro 2916 controller, which supports
quarter steps. The microcontroller moves up the sequence for clockwise rotation
and down the sequence for counterclockwise rotation.

Stepper
Phase A% O Motor
VY'Y

Phase B

Ves

O

1
I

To
Microcontroller
To §
Microcontroller &
2 v,
REF
£
VRer I
C R
T T
Vee
RT CT +5V

Figure 10-6. Stepper motor controller from Allegro

A full working example is included in the Chapter 10 directory on the CD-ROM.
The beauty and simplicity of a stepper motor control system is that it is reliable
enough to operate “open-loop.” Open loop means that the microcontroller does
not need to sense where the rotor is—the stepper motor reliably and repeatedly
moves to the next stable position following a sequence command. Worm gears
or toothed belts are often used to translate the stepper motor’s rotational accuracy
to linear positioning accuracy.

Chapter 10 Connecting to the Real World 233

Example 2: DC Motor

Some applications do not require precise position control, but they do require
precise speed control. This can be achieved with a cheaper DC motor. The
speed of a DC motor is proportional to the voltage applied across its terminals;
this assumes that the voltage is within the designed operating range of the motor.
The direction of rotation of the motor can be changed by swapping the input
drive signals. High-power transistors are required to drive the coils of a DC
motor, and the circuit shown in Figure 10-4 for a stepper motor will also operate
a DC motor. Because there is only one coil on a DC motor, only one set of
power transistors is used.

The torque of a DC motor is also a function of its input voltage, so if we require
reliable starting even at low speeds, we should use the maximum voltage allowed
for the motor. If this maximum voltage were maintained, then the motor would
rotate at its maximum speed. If a slower speed is required, the supply voltage is
removed and then periodically reapplied again as shown in Figure 10-7.

Full Speed

Half Speed

wems | [T

Figure 10-7. DC motor speed control

The technique shown in Figure 10-7 is called pulse width modulation, and the
speed of the motor is determined by the average voltage level. It is difficult to
predict the final speed for a given input voltage, so “closed-loop” feedback is
often used with a DC motor system. In a closed-loop system, some kind of
sensor would be included on the shaft of the motor that provides feedback to the
microcontroller so the microcontroller can determine the exact speed of rotation.
Noncontact, Hall-effect devices are often used for this application; several data
sheets are included in the Chapter 11 directory on the CD-ROM.

234 USB Design by Example

CONTROLLING A LINE-POWERED DEVICE

While a relay coil can be used to control a LINE-powered device, it is not the
preferred method. A transistor-based solution will provide superior performance,
be more reliable, and be price competitive.

Example 3: Lighting Panel

First let’s address the relay’s major attribute of signal isolation. Figure 10-8
shows an alternate method of implementing signal isolation using an
optoisolator. The load seen by the microcontroller is a current-limited light-
emitting diode that can be turned on by a 5-mA output signal. The light causes
the transistor to turn on, and this in turn can switch higher power loads.

+V

+5V +5V

Micro-
controller

I l L

Figure 10-8. Isolating control and load signals

Chapter 10 Connecting to the Real World 235

Particularly important when the microcontroller is switching high-power loads
such as AC LINE signals, signal isolation adds an important safety aspect. The
alternating voltage also gives us more opportunity to control the output power—
the output load is switched on and off every power cycle, and the ratio of the
ON/OFF time gives us 0 to 100 percent continuously variable power control with
a single ON/OFF signal (Figure 10-9). Note that the OFF time occurs at the next
Zero crossing.

A
U

Full On Half On Quarter On Full Off

Figure 10-9. Continuous power control

Consider the transistor circuit shown in part A in Figure 10-10. When the
microcontroller turns transistor T1 ON, by driving a HIGH output, transistor T2
will also turn on. Transistor T2 will now maintain transistor T1 ON even when
the microcontroller stops driving a HIGH. Or, to put it another way, the
microcontroller needs to supply only a pulse to turn on the transistors. The only
way to turn off these two cross-coupled transistors is to reduce the supply voltage
to 0. An AC supply does this every half-cycle so the transistors will stop
conducting at the next zero-crossing.

The two NPN transistors used in A in Figure 10-10 will control the positive half-
cycles of the AC supply. We also want to control the negative-going half-cycle
of the AC line supply, so we add two PNP transistors (B in Figure 10-10). The
four-transistor combination has proved so useful to control AC circuits that it is
fabricated as a single device and called a TRIAC. Rather than connect the
TRIAC gate directly to the microcontroller output, it is preferable to use an
optoisolator (C in Figure 10-10).

236 USB Design by Example

AC Supply AC Supply AC Supply
- -

|y L /o
1 1 1

A. Two NPN transistors used B. Two PNP transistors added

AC Supply

+5V +5V

Micro-
controller —

1

C. Optoisolator added

Figure 10-10. Full-cycle AC control using a TRIAC

Chapter 10 Connecting to the Real World 237

To have full control over the power delivered to an AC load, the microcontroller
need detect only a zero-crossing of the AC power circuit, wait a calculated time,
and then pulse the TRIAC on. Figure 10-11 shows a USB-controlled lighting
panel. The application on the PC host has six “intensity” slider controls that
supply data to a USB lighting panel controller that determines when each of six
TRIAC:s should be pulsed. Using the framework we created in Chapter 6, I took
less than a day to design, code, build, and test this application. For the full
source code and schematics, see the Chapter 10/Lighting Panel directory on the
CD-ROM.

Figure 10-11. A lighting control panel

238 USB Design by Example

REAL-WORLD ANALOG SIGNALS

Thus far in this chapter, we have discussed two simple methods of generating an
analog output using digital pulses:

e The pulse width modulation method produces an analog voltage equivalent
to the integrated average voltage of the pulses; this technique is useful for
slowly changing analog voltages.

e The delayed-pulse method of triggering a TRIAC was successful because our
supply voltage was an analog function.

The next section discusses creating an arbitrary analog waveform.

Analog Conversion Examples

We need to understand two fundamental variables when creating an analog
voltage using a digital method:

e Accuracy—how much error can be tolerated in the signal
e Speed—how fast the signals need to be

Figure 10-12 shows the effect of increasing accuracy when generating a sine
wave.

Figure 10-12. Generating an accurate analog waveform

Chapter 10 Connecting to the Real World 239

The difference between the maximum signal and the minimum signal is divided
into steps—the smaller the steps, the more accurate the output signal will be—
but the cost also increases with accuracy. 8-bit digital-to-analog converters
(DACs) are common, but converters of 12, 18, and 24 bits are also available. An
8-bit DAC can create 256 discrete steps from a reference voltage. Figure 10-13
shows a typical 8-bit DAC.

VOUt

B N N N I I I

Figure 10-13. An R-2R ladder DAC

The digital inputs control the connection of current-steering resistors to a VREF
source or to ground. Starting at the least significant bit of the digital input, each
resistor has a value twice that of the previous source, with the exact value set by
the ratio of two resistors. The outputs of all of the current sources that are on are
summed to produce the desired analog output voltage. This is a relatively simple
architecture to implement, assuming the resistors for each current source can be
properly adjusted to the necessary precision. The resistors in commercial DAC
components are usually thin-film and are laser-trimmed to their final value.

240 USB Design by Example

The speed at which the microcontroller can calculate and output a new value will
determine the maximum frequency that this technique can generate. Analog
amplifiers are used to create the desired output voltage from the DAC output.

Of several methods for reading an analog voltage, the choice depends on the
highest frequency that needs to be captured (Figure 10-14).

28

24

T
1
|
1
|
1
'
)
Fo—m—— -
]
I
1
]
1

N
o

T
)
]
1
|
]
|
|
-
1
1
)
'
]
)
1
I
|
]
1

S M UG P

T
)
1
]
)
I
]
1
-
|
]
|
]
1
1
|
4
)
I
)
|
|
|
1
4
1
1
|

JE E R

Resolution (bits)
>

it o

Multistage
12 f------- foenooes Sy @400 BB e
i ‘ Successive Half-
: : Approximation Flash
8 -------- E -------- :I- ------- 1 1 1 t -
: ! : i ! : !
4 b 1)] 1 1 1

10K 100K iM 10M 100M 1G
Samples/Sec

—
o
-y
o
o
pry
P

Figure 10-14. A range of analog-to-digital converter (ADC) solutions is available

Chapter 10 Connecting to the Real World 241

Very high frequency waveforms are captured with a flash converter

(Figure 10-15)—this essentially consists of # comparators with an increasing
fraction of VREF on their input pins. The analog input is applied to all
comparators whose outputs indicate if the input voltage is greater or smaller than
their reference voltage. A digital output is extracted from this array.

Vin -
Vref +
R —
+ Linear
to Parallel

Binary Data Out
Encoder

Figure 10-15. A high-speed flash analog-to-digital converter

A variation of the flash, the half-flash, or subranging converter, makes two
passes at the signal—an initial “coarse” quantization, which is subtracted from
the input signal, and a second “fine” quantization of what remains. Half-flash
takes up less space on an IC and still offers relatively high speeds; however, a
sample-and-hold circuit will now be required at the input.

242

USB Design by Example

Vi L] Successive
Approximation
Register

A successive approximation ADC uses a DAC to create a voltage and compares
this voltage with the input voltage. A binary search is used to hone in on the
input voltage (Figure 10-16). The input voltage should remain stable throughout
the resolution phase through use of a sample-and-hold circuit.

Comparator

Control
Logic

Vref

DAC

Figure 10-16. A successive approximation ADC

A sigma-delta DAC is a modern converter design made possible by advances in
digital, rather than analog, integrated circuit manufacturing. The hardware is
similar to a successive approximation analog-to-digital converter (ADC) but has
an added integrator (Figure 10-17). The input signal is oversampled, typically at
a rate 64 times the maximum input frequency, and these samples are integrated to
produce a Difference signal. This is fed back to be summed with the input
signal, and the cycle repeats with the bit-stream generated closely tracking the
input signal. The 64x oversampling means that sample-and-hold circuitry is not
required at the input, and steep antialiasing filters are not required at the outputs.

Sum Amplifier

Comparator

T

Integrator

Serial Bit Stream

DAC

Figure 10-17. A sigma-delta ADC

Chapter 10 Connecting to the Real World 243

It is possible to build both the successive approximation DAC and sigma-delta
DAC using precision resistors and operational amplifiers and let a
microcontroller run the control loop. But I do not recommend this approach.
Instead, I recommend using integrated, tested DAC and ADC components that
are readily available from a variety of suppliers such as Analog Devices, supplier
of DAC and ADC components and Burr-Brown.

I recommend that the interested reader refer to Digital Signal Processing and the

Microcontroller by Grover and Deller (ISBN 0-13-081348-6) for a
comprehensive study of analog-to-digital and digital-to-analog converters.

Sensor Inputs

Now that we know how to get an analog voltage into the PC host using USB, we
can look at various sources of analog voltages. A sensor, also called a
transducer, creates an electrical signal because of some physical change. The
signal can be generated because of a change in resistance, capacitance, or
inductance, and we can use various techniques to detect and amplify these

signals.

The range of sensors/transducers is as varied as the physical property that we are
trying to measure. Table 10-1 lists just a few of the possible devices to consider.

Table 10-1. Physical attributes that could be measured

Angle or displacement

Anguiar acceleration/deceleration
Displacement and proximity
Extension or compression

Flow in gas, liquid, or solid
Humidity, absolute or relative

Linear acceleration/deceleration

Position, absolute or relative
Pressure in gas or liquid or sound
Temperature, absolute or relative
Torque or strain

Velocity

Weight and volume

244 USB Design by Example

For help in deciding on the correct transducer and signal conditioning, see the
very useful Transducer Handbook by H.B. Boyle (ISBN 0-1506-1194-4). Bob
Boyle has spent most of his career working with all types of transducers, and he
is able to recommend how to solve many difficult problems. The book also
includes an extensive supplier’s directory to get your project started on the
right foot.

An innovative approach to sensors is being taken by Hohner Corporation
(Figure 10-18). All of the required sensor electronics are integrated directly in
the sensor, which then interfaces directly to USB.

Courtesy of Hohner Corp.

Figure 10-18. Integrated shaft encoder and surface sensor from Hohner

Hohner’s shaft encoder operates in two modes depending on a selection in the
software driver. The encoder can report absolute position information or speed
information with up to 24 bits of accuracy. The range will vary according to
your application, and this too is programmable. All control and measurement is
actually done by the USB microcontroller inside the sensor, so there is no
concern about the non-real-time nature of the Windows operating system. The
shaft encoder is supplied with a graphing demonstration program, hooks to
enable it to input data directly into an Excel spreadsheet, and an interface to
enable it to operate within a LabVIEW environment (to be described in the next
section).

The Hohner surface sensor is an optical noncontact device that can measure
characteristics such as roughness, reflection index, and color. Because the device
is noncontact, it allows measurements of soft, liquid, or gel surfaces in difficult-
to-reach places. The USB microcontroller uses a single light source and

Chapter 10 Connecting to the Real World 245

measures the reflected light distribution at two sensors. This light distribution
data is collected in real-time and reported to the PC host on request. The unit can
also be calibrated to support a wide range of applications. Software is included
with the surface sensor, which displays graphical data or can supply information
to a data acquisition program.

Hohner Corporation is extending its range of USB sensors to meet customer
requirements. As this book was being written, Hohner was introducing several
new devices, including a USB spectrometer and a USB ellipsometer (used for
measuring the polarization of light). For datasheets, see the Chapter 10/Hohner
directory on the CD-ROM.

DATA ACQUISITION AND INSTRUMENTATION

Perhaps you do not want to build your own real-world analog and digital input
and output modules—you just want to buy and use them. This section discusses
two approaches: a USB module-based series from National Instruments and an
Industrial Control Base from Granite Microsystems.

USB Module Examples

Figure 10-19 shows some National Instruments industrial modules and a screen
shot of LabVIEW, a Windows-based application that simplifies the management
and operation of data acquisition and instrumentation applications.

RETURE 4

Courtesy of National Instruments.

Figure 10-19. Industrial USB-based data acquisition modules

246 USB Design by Example

National Instruments has built up a large range of data acquisition equipment
with the PC as the controlling element (Figure 10-20). The company has recently
added a USB-based set of instrumentation that is proving popular in smaller or
portable installations.

Network

Computer

Instrumentation Network

Data Acquisition
and Signal
Conditioning

Image
Acquisition

Unit

Under Test)

Motion Control

Industrial

Stimulus Communication

Control

g
Y Temperature

Process Pressure
Flow

Courtesy of National Instruments.

Figure 10-20. Large range of data acquisition products

Chapter 10 Connecting to the Real Worid 247

The heart of the National Instruments product line is an extensive software driver
base called NI-DAQ. This measurement and automation software manages the
low-level communications to all of the data acquisition hardware. When a USB
data acquisition product is added to the PC, its enumeration directs the driver to
NI-DAQ. The device is then fully integrated into the measurement and
automation system. All instruments are controlled from the PC host using visual-
based software (Figure 10-21).

Courtesy of National Instruments

Figure 10-21. Visual control of instrumentation

248

USB Design by Example

Different applications are available to provide a range of features. LabVIEW, for
example, includes an array of building blocks used to model the experiment or
data acquisition project you are working on. The data is collected from the real
world and displayed graphically at the PC host. I was particularly impressed
with the Virtual Instruments software that is a set of prewritten LabVIEW
programs that operate as instruments. Figure 10-22 shows a virtual oscilloscope
that will operate with the USB-based hardware also shown.

Courtesy of National Instruments.

Figure 10-22. An oscilloscope is software plus hardware

Chapter 10 Connecting to the Real World 249

All of National Instruments USB-based products are built using the enclosed,
portable design shown in Figure 10-22. This makes them particularly useful for
on-site data acquisition. The equipment under test is connected to signal
conditioning circuits as shown in Figure 10-23. The signal conditioning can
provide isolation, amplification, attenuation, or whatever is required to
preprocess the signals for instrumentation. The operator arrives with a laptop
computer, connects to the USB data acquisition equipment, and takes
measurements; the operator then returns to the lab to analyze the data.

DAQPad-5020F

STl MOEUnE N oo Gy fir LISH:

it
seneiinin @

7 NATIONAL
INSTRUMENTS

Courtesy of National Instruments.

Figure 10-23. USB enables walk-up instrumentation

250 USB Design by Example
Inside each USB-based instrument is the now familiar block diagram shown in
Figure 10-24. The microcontroller manages the data communications to the PC
host and controls the analog and digital data acquisition circuitry that connects,
via an external signal conditioning unit, to the equipment under test.
Vad Power Isolation
(Transformer)
Microcontroller
DAC, ADC, or Real
5V Parallel /0 World
D+ —— 1
D-- — 11—
Gnd
e Signal Isolation
- (Opto-couplers)
gy

VSS

Figure 10-24. Block diagram of data acquisition module

Chapter 10 Connecting to the Real World 251

The USB solution can successfully monitor 32 to 48 points at a sample rate of
100 kHz. If more points are required, then multiplexer circuitry can be added—
National Instruments has a wide range. In typical applications this circuitry is
attached to the equipment under test, and the data acquisition equipment
(Figure 10-25) is connected later. Multiplexing will, of course, reduce the
sample rate.

1/O connection to data acquisition
device (plug-in DAQ board)

oy

«

44 . Backplane bus
L]

Low-noise analog bus
Timing and triggering
Digital (communication)

I/O signal and sensors

Signal Conditioning Block

- Control Block

Courtesy of National Instruments.

Figure 10-25. Multipoint, high-speed data acquisition system

252 USB Design by Example

Many of the available instrument racks communicate using the GPIB protocol
(General Purpose Instrumentation Bus). This solution first appeared on Hewlett
Packard equipment in the 1990s and has now been adopted by most of the
instrument manufacturers. National Instruments provides a USB-to-GPIB bridge
that instantly enables a USB-equipped laptop to manage and control this setup
(Figure 10-26).

Courtesy of National instruments.

Figure 10-26. USB-to-GPIB controller

Chapter 10

Connecting to the Real World 253

USB Industrial Series Example

Granite Microsystems has expanded its expertise in industrial control by adding a
USB Industrial Series line to its current expansive line of products. The first two
products are an engine module and an 10-24 module that can be attached to the
engine module (Figure 10-27). Figure 10-28 shows the block diagrams of each
of these modules.

Courtesy of Granite Microsystems.

Figure 10-27. USB industrial series from Granite Microsystems

Address Bus

Address

Upstream 5 Decode
usB b
HUB | § FLASH
C—+— 8x930Hx Signals g RAM Memory
o
H E Data/Control Bus
! | Address Bus
Address 2 Parallel
5 Decode S /O
4x 5
Downstream 2
uUsB 5
© 8 Parallel
&8 o)

Data/Control Bus

Figure 10-28. Block diagrams of

Granite modules

254

USB Design by Example

The engine module is designed around the Intel 8x930AX, although the
8x930HX, with its four hub connections, can also be used. The physical hub
connections are located on the 10-24 module. A large installation would have
multiple engine modules fed by USB cables from an 10-24 hub module, which
would have a single USB cable back to the PC host. Individual sensors such as
those from Hohner or the USB modules from National Instruments could also be
attached to the 10-24 hub board.

Each engine module uses flash memory, and Granite Microsystems supplies a
utility that enables the microcontroller firmware to be field-upgraded.

The expansion connector is a key part of the design and enables multiple
stackable modules. The engine module also contains two RS-422 connectors for
serial expansion and eight uncommitted status LEDs. The I0-24 module
provides a 50-pin connector that is compatible with industry-standard I/O
modules from Opto-22 and Grayhill I/O modules

Device Bay Example

No discussion of real-world /O and USB would be complete without an
introduction to device bay. Device bay is a mechanical standard designed around
USB (and IEEE 1394) that allows muitiple manufacturers to build interoperable
modules.

Figure 10-29 shows the two approved form factors with the “condo” of most
interest to this chapter.

Figure 10-29. Device bay form factors

Chapter 10 Connecting to the Real World 255

A device bay module is a fixed-size, metal box with hot-plug USB (and IEEE
1394) connectors on the back and device connections on the front. This format
can be used in a PC environment to add such components as disk drives, DVD
players, and broadcast tuners. It can also be used in data acquisition and process
control applications where a configurable instrument is required. Note that
device bay is a mechanical, form-factor standard—the electronics inside the
module are the same as in the previous examples.

The benefit of the device bay format is that it makes the resulting equipment
easier to use.

CHAPTER SUMMARY

The real world is a big place. Fortunately it is easy to interface almost any piece
of electronics equipment and almost every type of sensor to USB. We discussed
a variety of examples from lamps and motors, to analog signals and sensors, to
three examples of data acquisition and process control. The versatility of USB
has been amply demonstrated, and its intelligence to pre- and postprocess data
for the PC host enables it to be used in the widest variety of applications.
Software is available for the PC host to take advantage of current applications
and is ready to tackle new applications as they arrive.

257

CHAPTER 11
| LIKE THE SOUND OF THAT

Audio on the PC has come a long way from the beeps and chirps of the first IBM
PC. Sound was initially designed into the PC platform as an alerting mechanism,
so the obnoxious noise was warranted. Today, however, the sound quality of the
PC is comparable with high-end consumer audio equipment.

There is much talk currently about “digital audio,” standards such as AC-97 and
MPEG, but in fact we have had digital audio since 1983 when the Musical
Instrument Digital Interface, or MIDI, was introduced. The growth of MIDI has
been hampered by lack of standardization. Fortunately today, thanks mainly to
the publication of the General MIDI System specification and its inclusion in the
Windows operating system, MIDI is seeing widespread use in all aspects of the
PC platform.

Before we look at specific implementations of audio on USB, it is useful to look
at the different sound formats to understand why multiple industries are
converging. First let’s address the fundamental issue of why “go digital” at all.
Typical sounds are generated in an analog way, and our ears hear in an analog
way. So why convert to digital and back again? If the listener of an audio signal
is close to the source of the audio signal, there is no need to go digital. However,
if the audio source has to be distributed to the listener, then digital technology
can be a big benefit. Traditional audio distribution systems are analog-based and
include some amount of noise. Along the distribution path to the listener, this
audio signal will pick up more noise. Once delivered to the listener, the signal
and noise are not separable, so the received audio quality is lower than the source
audio quality. The ratio of signal-to-noise has decreased.

A digital distribution system, a CD-ROM for example, stores an audio signal
with a very high signal-to-noise ratio along with more error-check information.
If noise is later added to this digital signal, it may be filtered out at the receiver
using the digital check-bits. The received audio quality is the same as the source
audio quality.

A digital approach to sound also enables more capabilities.

Once in a digital format, sound can be processed just like any other computer
data type. We are no longer limited to two static channels, left and right. Audio
separation can be added digitally. We can also implement 3-D positional sound.

258

USB Design by Example

The digital AC97 specification includes 5.1 digital channels: left front, center,
right front, rear left, rear right, and special effects.

Before the advent of digital mixing, mixing multiple audio sources of different
sampling rates and sizes was difficult. Digital mixing also allows all application
programs to share the same sound generation hardware on the PC.

USB allows this sound generation hardware to be outside the PC chassis. There
are many high-frequency clocks, disk drives, and switching-mode power supplies
inside the modern PC—this is not a friendly environment for creating high-
quality analog audio. USB allows the digital-to-analog converter (DAC) to be in
a separate box at the far end of a USB cable. The improved fidelity is noticeable.

What we are seeing is a convergence of multiple audio sources into a single PC
platform implementation. And USB is a catalyst making this happen.

CREATING DIGITAL SOUND

Digital sound files can be created using two basic methods: real-world sound can
be sampled or a sound can be synthesized.

Sampled Sound

Figure 11-1 shows a typical analog waveform.

Figure 11-1. A typical analog waveform

Chapter 11 | Like the Sound of That 259

The analog waveform is sampled by the PC using an analog-to-digital converter
that periodically converts the instantaneous signal amplitude into a digital
number. The sample period, or sample rate, is constant and must be at least twice
the highest frequency within the incoming waveform. This sampling process is
called Pulse Code Modulation, or PCM, and is the predominant method for
storing uncompressed sounds in digital format. Windows .WAYV files store
PCM-coded information. Multiple industry-standard, signal-quality levels have
been defined that vary in the accuracy of the sample and the sampling rate.
Playback of a PCM-coded file requires sending the digital samples to a digital-to-
analog converter at the same rate as they were sampled. Figure 11-2 shows a
PCM audio subsystem overview.

PCM
Digital
Audio
ADC
Line IN —» —— Line OUT

Y
Fixed Sample Rate

Figure 11-2. Overview of a PCM audio subsystem

The de facto standard in a PC platform for sample and playback has been the
Sound Blaster series of add-in cards. Different models are available to cover the
standard range of sound qualities. The programming interface to a Sound Blaster
card is a range of I/O ports, so all application software is effectively “tied” to this
hardware implementation. DOS applications write directly to these I/O ports
with mutually exclusive access. Any alternate solution needs to be register-
compatible with a Sound Blaster card so applications software would not change.
Microsoft has now defined a software interface for ALL audio devices, and new
applications should be written to this more portable interface. Microsoft’s
DirectX and WDM drivers make this legacy DOS hardware interface virtual and
add mixing capabilities that enable multiple clients access to the sound hardware

260 USB Design by Example

(in much the same way as the Windowing GUI does for the display). Microsoft
also includes a Sound Blaster Emulator with Windows 98; the emulator is a
WDM driver that intercepts accesses to the range of I/O ports used by a Sound
Blaster card and translates them into the new audio interface.

The Windows 98 audio driver can redirect sound files to a USB device that will
implement the digital-to-analog conversion outside of the PC host. Later in the
chapter we’ll design one of these I/O devices.

Synthesized Sound

Figure 11-3 shows a waveform of a typical synthesized sound waveform. It has a
start, a middle, and an end. The middle consists of four sections—the initial
sound or attack, an early loss of initial amplitude or decay, a continuance of
sound or sustain, and finally a release. The richness of sounds is described by
this envelope; a simple on-off sine wave is not representative of real-world
sounds.

RS
1
|

|

1

|

I

|

|

|

|

|

Attack 1 Decay Sustain Release

Figure 11-3. A typical synthesized sound waveform

The waveform in Figure 11-3 can be represented in two MIDI messages, each of
which is only three bytes’ worth of data! The MIDI protocol is a very efficient
method of representing musical performance information. The de facto standard
for MIDI was defined by the MPU 401 from the Roland Corporation (now
Edirol). This was also an I/O port interface. A synthesizer is required to
translate MIDI messages into sounds, as shown in Figure 11-4. Although the
original synthesizer was implemented in hardware on a Sound Blaster board, this

Chapter 11 | Like the Sound of That 261

is not required. The synthesizer can be implemented in hardware or software,
inside or outside the PC host. The Windows operating system includes a
hardware-independent device driver that allows different hardware
implementations with no change to the application software.

MIDI
Digital
Audio

» Synthesizer

Figure 11-4. Overview of a MIDI audio subsystem

Looking deeper inside MIDI, we discover that there are actually four
components: the MIDI communications protocol, the MIDI hardware interface,
the MIDI synthesizer, and the MIDI stored file format.

MIDI PROoTOCOL

MIDI information is transmitted in MIDI messages, which can be thought of as
instructions that tell the synthesizer how to play a piece of music. The
synthesizer receiving the MIDI data generates the actual sounds. MIDI messages
are transmitted as a serial bit stream at 31.25 Kbps with 10 bits transmitted per
byte (a start bit, 8 data bits, and one stop bit). Why 31.25 Kbps? The original
hardware divided the 8-MHz ISA bus clock signal by 256! The protocol divides
the single physical MIDI channel into 16 logical channels that are controlled
independently. A MIDI message is made up of a status byte that is generally
followed by one or two data bytes. At the highest level, MIDI messages are
classified as being either Channel Messages, which are targeted for a logical
channel, or System Messages, which control the entire performance.

262

USB Design by Example

The MIDI protocol defines the activation of a particular note and the release of
the same note as two separate events. For example, when a key is pressed on a
MIDI keyboard, it transmits a Note On message on one preprogramed MIDI
channel. The Note On status byte is followed by two data bytes, which specify
key number (indicating which key was pressed) and velocity (how hard the key
was pressed). When the key is released, the keyboard will send a Note Off
message. The Note Off message also includes data bytes for the key number and
the velocity.

At the beginning of a MIDI sequence, a system message is sent on each channel
used in the performance to set up the appropriate instrument sound for each part.
The General MIDI Specification includes the definition of a General MIDI
Sound Set (a patch map), a General MIDI Percussion map (mapping of
percussion sounds to note numbers), and a set of General MIDI Performance
capabilities (number of voices, types of MIDI messages recognized, etc.). A
MIDI sequence that complies with the General MIDI Specification will play
correctly on any General MIDI synthesizer or sound module.

MIDI Hardware Interface

The first implementation of a MIDI interface on a PC platform used the game
port. Idon’t know why—that would appear to be the worst choice, because this
port was designed to interface to analog joysticks. The only valuable attributes I
could discover for this port were that it was available and FREE—it was included
on all early PC platforms, and few people used it. A lot of software, and
processor bandwidth, is required to send and reccive serial messages on this
parallel port. Compared with the MIDI protocol, however, the processor has lots
of time to do this, and if the PC platform isn’t doing anything else, then there’s
no problem. But as people wanted the processor to do more things, the
“resource-wasting” software had to be replaced by a serial controller, typically on
the sound card.

Chapter 11 | Like the Sound of That 263

There are two ways of implementing a MIDI interface cable: cheaply and
correctly. The difference is shown in Figure 11-5: A cheap cable puts the
signals on the correct pins, and the correct cable uses optoisolators and careful
shield screening to eliminate “hum.”

W

ouT

+5V
IN

I

out
GND

Joystick
Port

Figure 11-5. MIDI cables are cheap or correct

The modern PC does not have a joystick port—it was removed in the PC 99
System Design Guide because its burden on system performance was becoming
excessive.

264 USB Design by Example

The modularity and layered implementation of the Windows operating system
allows a MIDI application’s system calls to the MIDI hardware to be intercepted
and redirected. The Roland Corporation supplies a device driver that redirects
MIDI requests to USB. A USB subsystem, called the S-MPU64, receives these
requests and drives the real MIDI ports. The S-MPU64 includes 4 MIDI IN
connections and 4 MIDI OUT connections (Figure 11-6). This entry-level
system is powered by the USB port and provides the connectivity required for a
range of MIDI equipment.

non,

Courtesy of Edirol Corp.

Figure 11-6. USB-to-MIDI interface from Edirol (Roland)

Roland has recently introduced a “big brother” to the S-MPU64 that includes

multiple audio connections. Roland included audio line input and output, and
local guitar and microphone inputs, on their UA-100 product (Figure 11-7) to
create a complete digital audio subsystem.

GUTPUT DIG(TAL
auteUT

PHONES

VOLUME

Courtesy of Edirol Corp.

Figure 11-7. USB-based audio subsystem from Edirol (Roland)

Chapter 11 | Like the Sound of That 265

The Roland UA-100 enumerates as an 1/O device with four separate functions. A
block diagram (Figure 11-8) highlights the major elements connected to a single
USB cable. The MIDI connection requires custom software, but later in this
chapter we will design an audio subsystem similar to this solution.

MIDI MIDI Volume,
IN ouT Effects
Local |—— Line IN
Custom 1/0O Controls l«—— MIC IN
usB usB l«—— Guitar IN
11— Micro- Codec
controller — Phones OUT
— Optical OUT
FLASH RAM DSP | .
Memory — Line OUT
B MPU64
- - UA-100

A
\

Figure 11-8. Block diagram of Edirol’s audio subsystem

MIDI Synthesizer

Three methods are currently used to synthesize sounds: frequency modulation,
wavetable, and physical modeling.

Frequency Modulation, or FM, synthesis involves combining fundamental sine
waves of different frequencies and amplitudes to create a complex waveform.
FM synthesis is a good technique for beeps, bangs, explosions, and space-type
noises but is not suitable for creating the richness of a musical instrument.

Wavetable synthesis starts with actual music instruments; these are recorded,
and short digitized sections are stored. When 7in application program requests a
particular sound, a sample is retrieved, processed, played back, and typically
looped. Wavetable sound quality is generally very good, provided the original
recordings are of high quality.

266

USB Design by Example

Physical modeling is a combination of physics and art; a mathematical model
that takes into account all of the forces on, say, a violin string, is used to predict
the sound that plucking or bowing the string would make. The result is an
incredibly lifelike reproduction, though the initial coding of each model is time-
consuming.

The output of a synthesizer is sound; this could be analog sound in the case of a
hardware implementation of a synthesizer, or it could be digital sound, high-
resolution PCM format, for a software implementation. Hardware
implementations have been popular in the past, but the increased performance of
today’s PC platform processor allows the processor to do a superior job for lower
system Costs.

MIDI File Format

MIDI data files are very small when compared with PCM data files (that is,
WALV files). For instance, PCM files require about 10 MB for each minute of
CD-quality audio while a typical MIDI file might consume less than 10 KB for
each minute. This reduction is possible because the MIDI file contains only the
instructions required to re-create the sounds and not the sounds themselves. A
synthesizer will generate the actual sounds from these instructions.

The International MIDI Association publishes a Standard MIDI Files
Specification that defines how time-stamped MIDI data should be stored. The
interested reader can purchase this specification from www.midi.org (they would
not provide a copy for inclusion on the CD-ROM). This standard allows
different applications such as sequencers, scoring packages, and multimedia
presentation software to share MIDI data files.

Chapter 11 | Like the Sound of That 267

USB’S SUPPORT FOR SOUND

USB was designed to support sound very well. The isochronous transfer type
was specifically designed into USB to support audio and other time-dependent
data transfers. Refer back to Chapter 2 to recap the attributes and system
scheduling of isochronous transfers. The characteristics of this USB data type
are similar to those of PCM digital audio.

USB transmits frames from the PC host at a 1-ms rate, and an isochronous I/O
device will require data transmitted in every frame. For example, CD-quality
sound at 16 bits (4 bytes for left and right channels) and a sample rate of

44.1 kHz will need 176.4 bytes of data transferred in a 1-ms frame. Because you
can’t practically transfer 0.4 bytes, the operating system sends nine frames of
176 bytes and then one frame of 180 bytes to maintain the 44.1-kHz sample rate.
The I/O device would receive this data at the high USB bus speed, buffer it, and
supply it at 44.1-kHz to the left- and right-channel DACs. Isochronous transfers
are not allowed on a low-speed connection.

During enumeration an isochronous I/O device typically requests no USB
bandwidth. Bandwidth will be allocated once the sound application is initialized
and the device is configured. If the PC host has this bandwidth available, then
the isochronous 1/0 device is enabled and is guaranteed to get the data requested
at the data rate requested. If the PC host does not have the bandwidth available,
it interrogates the isochronous I/O device to discover if it can operate at a lower
bus bandwidth. The isochronous I/O device provides this information via
Alternate Configurations that request less and less of the USB bandwidth. An
isochronous I/O device is required to have a setting that uses no USB
bandwidth—yes, this means that the device will not be operational, but the
operating system is now able to give sensible error messages to the user and is
still able to communicate with the device. This was preferred over leaving the
isochronous device in an unconfigured state, which can potentially confuse the
user— “I plugged it in, why isn’t it working?”

Once enumerated, an isochronous I/O device provides or consumes data at its
negotiated rate. If an error occurs on the data transmission, the data packet is not
retried. Because the data is time-critical, late data is as useless as no data. The
receiver typically uses the previo» sly received data rather than leaving “a gap”
and tries to resynchronize with the data source as soon as possible.

268 USB Design by Example

Example 1: Audio Output

Building USB speakers is very easy because almost all of the work is already
done for us in the operating system and via the USB Specification. The bytes are
already ordered exactly as they are needed to be sent to the DAC. One hardware
wrinkle in the design is the availability of DACs for stereo audio applications.
All of the available components are manufactured with a serial interface designed
to operate gluelessly with a DSP, and they include ADC input channels (that is,
they are coder/decoders—codecs). The interface is too fast for a microcontroller
to “bit-bang.” Parallel interface stereo audio DACs are available, but these
components also include analog inputs and other mixing circuitry. So our choice
is a serial codec (such as the AD1849) and a parallel-to-serial converter with a
PAL controller, or a parallel codec (such as the AD1845). Figure 11-9 shows the
hardware implementation using an Anchor Chips device and a serial codec.

Data IN
74LS - i} — Ao _E:l
Am|
165 P
A

UsSB Load Data CLK -

——EZ-USB Flag AD1859

po
-

-

PAL
88.2kHz _ 44.1 kHz _

- || Right
24 MHz A Amp

Figure 11-9. Discrete implementation of USB speakers

Y

The Anchor Chips device supports double buffering on isochronous endpoints
(see why it’s called the EZ-USB?!), so our task is to empty one buffer while the
other is being filled from USB. This example empties the buffer under interrupt
control.

An internal timer is used to g=nerate an 88.2-kHz sampling signal, and the
overflow of this timer causes the EZ-USB to run an interrupt service routine.
The microcontroller outputs the right-high byte, raises a flag, and then outputs
the right-low byte. The flag causes the PAL to copy the high byte into the
parallel-to-serial converter and to start the serial data transfer into the AD1849.

Chapter 11 | Like the Sound of That 269

At the next interrupt, the microcontroller outputs the left-high byte, clears the
flag, and then outputs the left-low byte. This interrupt processing consumes less
than 20 percent of the processing time of the Anchor Chips device, giving it
scope to implement other tasks. The complete code and equations for the
parallel-to-serial control PAL can be found in the Chapter 11/Speakers directory
on the CD-ROM.

No software needs to be written for the PC host, because the required support is
already embedded in the operating system.

An applications note that implements the same design for an Intel 8x930AX
microcontroller and a parallel DAC is also included in the Chapter 11/Speakers
directory. This note contains more background and timing information.

If you don’t plan on using the “spare” processing power of the microcontroller,
then a simpler solution is available from Dallas Semiconductor (Figure 11-10).

Courtesy of Dallas Semiconductor Corp.

Figure 11-10. Single-chip implementation of USB speakers

270 USB Design by Example

Dallas Semiconductor has integrated the USB transceivers, the SIE, the control,
and the DACs onto a single component (Figure 11-11). The microcontroller
firmware is not available to change as it is in the previous example—the
traditional tradeoff between flexibility and simplicity. The Dallas DS4201 also
includes analog inputs that may be mixed with the digital audio from the PC, but
these features are not used in this first example.

Vg Vp DGND AGND V, VREFI VCM Xil X10 X2 X20 SPM
A A A

Y \ A \ Y Y Y \
VOLTAGE POWER ETTe
POWER rrcimeoeel| oscilaToRs || manacement [T SUSO
LEFT Y
| Fro e B | arrumuTe > b LOUT
194 BYTES
D+ ={>| usB usB
jt—>1
v RIGHT 16-BIT
D- XCVR Dgg,':‘f L=~ FFO s D/A\—> ATTN/MUTE > - ROUT
194 BYTES
1— LAUX
DEVICE ATTN/MUTE
1 CONTROL <1~ RAUX
LMIC
ATTN/MUTE
RMIC

Figure 11-11. Block diagram of the DS4201

Chapter 11 1 Like the Sound of That 271

Example 2: Audio Input

The next example also includes audio input capabilities. Figure 11-12 shows a
photograph of the demonstration board, and Figure 11-13 shows the block
diagram of a Philips UDA1335 Audio Playback and Recording Peripheral.
Dedicated hardware does all of the low-level USB and audio handling, and an
internal MCS51 microcontroller implements the higher-level USB protocols.
The UDA1335 is ROM-based, and the program is available to OEMs under
license. Most users will find the customization “hooks” adequate for their
applications.

* *

£ ¥

* *

* *

s *

» #

» *

. &

* ¥

4 #

2 %

» 3

L d ¥

» &

2 -

- ®

8 *

k] »

» %

] *

3 ©
s

Courtesy of Philips Semiconductors.

Figure 11-12. Philips UDA1335 demonstration board

272 USB Design by Example
ﬂ » 1
cLK O o ¢ P07 10 P0G 1 P2otaPRT
27 8 6 l 7.5, %84 14, 16, 18, 20, v
I il 6260, 58 56 22, 2% 28, 30 & | Voo
V.
Vaax | 24 10 | Vem
11 | Vgae
XTALTb | 25 o5t ANALOG FRONT-ENG =T
XTALZG | 26 48;@;2 TIMING 12 | Vope
Yppx | 28 2 | Yooo
33 | ¥s50
Yopaa | 52 L
XTAL?a | 53 38| VDDM
wTelsa (5 0S¢ | ANALOG | [[S_—)| USB-PROCESSOR s | Vasai
Vgsag | 95 Ao PLL 42 | Yopae
ﬂ 44 | Vssaz
GP2DO | 83 R
© GPawso [1 -
_GP4BOKO [2 M
GPYDI | 13 " DIGITAL 1O -
GPoBeK: | 17 - 18 Seb
“ » MIGRO- 2 sos
GPSASH | 15 CONTROLLER |4 >
«
BSEN | 31] {}
¢ i MU —>—|7 FIFO |
DA | 57 SAMPLE
“— » AUDIO FEATURE
. WS | 56 158U FREQUENCY "‘i FAOCESSING DSP J<:>
N INTERFACE
- ' DECIMATOR {}
_ FILTER —»—r UPSAMPLE FILTERS 4| sHTCB
A | 48 TEST %170
CONTROL [
ALE | 50 {} BLOCK A
[VARIABLE HOLD REGISTER I *
VNG | 42 PG LEFT J l d-ORGER NOISE SHAPER |
> 3 ADC i
I UDA1335H LEFT vouT
VinR | &7 RIGHT ore ’
| POA £3ADG
VOUuTA
vene | g6 REFERENCE VOLTAGE AIGHT —
L LiAR LY [DAC
VAP | 51
L. Tr 2
1/45(46 41 i)

ne.

VeatiAD}

x

L"mtgml

=

Figure 11-13. Block diagram of UDA1335 APRP

FURRERIT

The UDA1335 supports four typical configurations via selection inputs and a
custom configuration via an I2C EEPROM. The EEPROM is also used to change
the vendor ID and USB strings. Because most users will want their own

identification strings, Philips makes it easy to program the EEPROM by

providing a CODEC Configuration Editor program (supplied in the
Chapter 11/Philips directory on the CD-ROM).

Chapter 11 | Like the Sound of That 273

The 12C bus is also used to enable more inputs and outputs. This is useful if you
need buttons and/or lights on your peripheral device. The HID report technique
we learned in Chapter 6 is used to access these buttons and lights—we just add
an HID descriptor along with the many other descriptors in this example.

The UDA1335 has more features worth pointing out. It supports a 24-bit audio
data format for higher fidelity. It includes software-controlled volume, treble,
and bass via a Feature Unit. The device also provides a connection to an Inter-IC
Sound, or 128, bus.

The 12S bus was developed by Philips to efficiently move digital sound data
between components. It is a 3-wire serial bus consisting of a data line for two
time-multiplexed data channels (left and right), a word select line, and a clock
line. A Digital Signal Processor may be connected to this bus to provide more
local capability if required.

Function Control by Software

Our USB-to-LineOut example contains only AUDIOSTREAMING descriptors,
which describe the isochronous data rates. We did not use the additional analog
inputs on the device. A more sophisticated example would use these features and
would want them controlled via software. USB also defines a set of
AUDIOCONTROL descriptors that standardize the control of a generic audio
device. Application software such as Cakewalk’s suite and Sonic Foundry’s
Sound Forge use these interfaces.

Audio Control descriptors are fully described in “USB Device Class Definition
for Audio Devices,” which is included in the “USB Documentation” directory on
the CD-ROM. The following section gives an introduction to the basic elements.

The requirement to describe physical entities such as signal inputs, signal
outputs, selector switches, mixers, and other controls created a software model
that defined these entities as standard terminals or units. A connected collection
of terminals and units can be used to describe any audio device. A descriptor is
defined for each terminal and unit type.

An Input Terminal describes the source of an audio input signal; this could be a
“real-world” analog signal or a digital audio input stream.

An Output Terminal describes the destination of an audio output signal; this
could be a “real-world” analog signal or a digital audio output stream.

A Mixer Unit transforms a number of input channels into a number of output
channels (typically only one output channel), while a Selector Unit directs one
of several input channels to an output channel.

274 USB Design by Example

A Feature Unit provides basic control over the incoming logical channel. It
provides features such as volume, mute, tone, and graphic equalization. More
sophisticated controls are implemented by a Processing Unit, Dolby Prologic
Unit, Stereo Extender Unit, Reverberation Unit, or other units. Figure 11-14
shows the building block icons used to model the physical audio entity;

Figure 11-15 shows an example using all of the features of the Dallas DS4201.

(- (o) tek

Input Terminal Output Terminal Mixer Unit
O—
| A\Q&—O O—lfls—+—0 O— —O
O—o
Selector Unit Feature Unit Up/down Mix Processing Unit

—Q0c o @ro o JJ_M —0

Dolby Prologic Unit 3D Stereo Extender Unit Reverberation Unit

Figure 11-14. Icons used to model an audio device

Chapter 11 | Like the Sound of That 275

oo o
i O
#5
O— Line
Aux In o #%Jr OO %\ Out
#6 O__)\/ #8
Mic In

OO

#7

Figure 11-15. Software model of the DS4201

After uniquely identifying each of the terminals and units, a descriptor is written
for each item and declared alongside the other USB descriptors. The full set of
descriptors for the DS4201 is included on the CD-ROM under Chapter 11/Dallas
Semiconductor/DS4201 Descriptors.pdf.

Following enumeration of this audio class device, it can be accessed and
controlled by audio-based application software.

Before leaving the world of high-end audio equipment, I’ll mention some
products that use these, or similar, components in the configurations described.
Figure 11-16 shows two USB-to-audio peripherals that make getting audio in and
out of the PC easy, with high quality. These peripherals also support fiber optic—
based interequipment connections for minimum system noise. I recently
purchased a Pioneer Audio CD-ROM Jukebox and was impressed to discover a
fiber optic output connector. I can directly import 24-bit sounds into my PC for
distribution around the whole house.

276 USB Design by Example

Super MPUBA

Uengs
AR el RSN LN

| 2 3 1

—YJEII_-.‘EEW

o OWER

Courtesy of Edirol Corp., Opcode Systems, Inc., and Jazz Hipster Corp.

Figure 11-16. Examples of commercial digital-audio equipment

Chapter 11 | Like the Sound of That 277

THE TELEPHONE CONNECTION

The uniform treatment of digital sound within the USB architecture makes it easy
to build an I/O device that is a combination of buttons, lights, and sounds. The
telephone has been the number one tool for increasing business productivity for a
long time. USB makes it easy to integrate it with the number two device—the
PC platform. Together they can create a tool that should exceed our productivity
expectations.

To get us in the right frame of mind, please don’t think of this as adding a
telephone to a PC computer. This will limit our imagination to obvious
conclusions such as “well, the PC could do the dialing, I suppose.” It is much
better to think that you are adding a powerful PC to a telephone—what more
could the telephone do if it had a 500-MHz Pentium Il processor, 64-MB
memory, and a 6-GB disk inside it?

Possibilities for an improved telephone now start to open up. Today’s PC can
easily do speech recognition, so saying “computer, dial Bob” is deliverable
today. Figure 11-17 shows a USB-based business telephone from Nortel—the
Meridian 9617.

Courtesy of Northern Telecom Ltd.

Figure 11-17. USB telephone from Nortel

278

USB Design by Example

Nortel includes Personal Voice Dialer software that implements the speaker-
independent, voice-controlled dialing with their telephone. Once you've used
this speaker phone, you’ll wonder why you’ve been pushing those dialing buttons
for so many years! The Meridian 9617 is a two-line business phone and includes
advanced features such as call forwarding and conferencing, which can be
controlled via Nortel’s drop-and-drag Call Manager software. The phone makes
extengive use of Caller ID for call tracking and recording and can even announce
an incoming call while you’re busy in an application—*it’s your boss, you
should take this call.”

A “home” or “small-business” telephone would also include a PC-based
answering machine. A software-based solution is more flexible and extensible; it
could have multiple mail boxes—some public ones for callers to leave messages
for specific people and some “password-protected” ones for the home owners to
leave messages for each other or to activate home-automation tasks such as
sprinklers or recording a TV program. The greeting played could be based on the
time-of-day and implement a “do-not-disturb” feature to eliminate those

2:00 a.m. wrong-number calls. Automatic out-dialing could be used to distribute
key messages to a group of people—"the little league game is canceled because
the other team’s bus broke down, see you at Monday’s 4:30 practice.”

Integration of the telephone and PC platform can create some very compelling
products. Let’s look at the design of a USB-based telephone so we can build
similar, or maybe better, capabilities into our I/O device.

Chapter 11 | Like the Sound of That 279

Example 3: Telephone Design

Figure 11-18 shows the design problem of a USB-based telephone divided into
elements that we already have solutions for. The Data Access Arrangement
(DAA) will vary from phone system to phone system, and there are many
restrictions relating to phone-line connected equipment. These regulations vary
by country; local documents can be obtained that define the scope and testing of
a particular telephone authority interface.

ADC _~1
AN Data — Analog
Access Phone
l\ DAC Arrangement Line

Micro-
USB—— controller

Buttons

Ringer

Figure 11-18. Major elements of USB-based telephone

A basic telephone could be designed around the Philips UDA1335 shown in
Figure 11-12. More circuitry to generate and detect the local telephone
company’s signaling scheme would need to be added. In the U.S., a dual-
frequency-based data transfer scheme (DTMF) is used with standard,
flow-control tones (such as dial and busy), and components are available to
implement this.

280 USB Design by Example

A speaker phone uses extensive digital signal processing, such as echo-
cancellation and noise reduction, and these features require more processing at
the PC host or via a local DSP. Figure 11-19 shows a component derived from
the Philips UDA1335 that includes an embedded 50-MIP DSP with many of the
DSP algorithms already implemented. This DA010 from ZMM was designed
specifically to meet the needs of transferring processed audio signals between the
PC host and the real world. Adding capabilities to the telephone, such as fax,
modem, voice recognition, and speech compression, is now a simple matter of
adding software. Designed primarily for telephone applications (analog, ISDN,
and cellular), the component is also used in interactive toys.

6 1/0 Lines

Local I/O

Audio Out

Audio In

(External ROM):
Courtesy of ZMM.

Figure 11-19. USB-audio component from ZMM includes DSP

Chapter 11 | Like the Sound of That 281

The ZMM DSP+Codec part can implement DTMF dialing and detection and all
of the telephone flow-control signals in software, so no added hardware is
required. A software-based fax modem could also be implemented with the
support of host-based drivers (see the modem section of Chapter 8 for a
discussion of the host-based processing approach). ZMM produces an evaluation
board for OEMs (Figure 11-20).

Figure 11-20. Evaluation board for ZMM’s USB DSP CODEC

282

USB Design by Example

CHAPTER SUMMARY

The features built into USB enable it to support sound as easily as it supports
other data types. Sound uses the isochronous capability of USB to implement
real-time data delivery. The operating system already includes all of the software
drivers required to implement a high-quality, digital audio system—this means
that we have no PC host software to write (always a good sign). An audio design
task consists of implementing the descriptors that define the device and its
features, and writing a service subroutine for the isochronous interrupts.
Alternately, one of the prebuilt audio devices could be used (see Appendix A for
a full list).

The modular, building-block structure of USB allows sound to be easily added to
any USB /O device.

For More Information

Sound Blaster: The Official Book, by Ridge, Golden, Luk, and Sindorf.
McGraw-Hill, 1994. ISBN 0-07-882000-6

A Programmer’s Guide to Sound, by Tim Kientzle. Addison-Wesley, 1997.
ISBN 0-201-41972-6

The General MIDI Specification can be obtained via www.midi.org.

Software-based answering machine: DialTone from www.sharkmm.com.

283

CHAPTER 12
| CAN SEE YOU

As far as USB is concerned, digital video is just like digital audio except there is
a lot more data! Digital video uses the same isochronous features of the USB
architecture, so there is no new theory to learn. It is time, however, to look at the
amount of real data that we can put into a USB frame. Digital video will start to
push the bandwidth limits of USB, so a good understanding of the actual packet
timing is required to successfully implement a digital video I/O device.

We know that USB transmits packets of data at 12 Mbps in 1-ms frames. The
following discussion will use the variable “Byte Times per Frame,” or BTF, to
identify how much data throughput can be expected. For a full theoretical
analysis, see Chapter 12/USB Bandwidth Analysis on the CD-ROM. A summary
of this paper is given here.

The maximum raw number of BTF is (12 Mbps / 1-ms) / 8bits/byte = 1500. We
must reduce this number by the protocol overhead required to manage the link.
Specific sources of overhead include packet organization, Start-Of-Frame and
End-Of-Frame signaling, clock adjustment, and time reserved for control
transfers. This reduces the useful BTF to about 1300.

Many of our early examples transferred small amounts of data between the PC
host and the I/O device. Interrupt packets were used to guarantee delivery, so the
transactions consisted of {Setup-Data INorOUT-Handshake} sequences. At full
speed, a one-byte data packet is equivalent to 12 BFT, and at low speed this is
(12*8) + (2 for preamble) = 98 BTF. Even at low speed this is a small load on
USB, and in fact the actual load is much smaller than this because these interrupt
packets are not sent every frame.

Our CD-quality audio example in Chapter 11 required isochronous packets with
nine frames at 176 bytes and one frame at 180 bytes to maintain a 44.1-kHz
sample rate with 16-bit samples. With 10 BTF of isochronous transaction
protocol overhead per frame, this gives us a maximum of 190 BTF. Still a small
load for USB. We have enough bandwidth for (1300 / 190)—almost seven
separate CD-quality stereo audio channels on USB!

284 USB Design by Example

SIZING VIDEO DATA

This chapter deals with video, and one of the first things you realize about video
data is that there is a lot of it. An NTSC TV screen, for example, is 720 x 480 x
24 bit = 1.0368 MBytes of data (a PAL TV screen is 720 x 576 x 24 bit =

1.244 MBytes of data). A TV picture is updated at 59.96 fields per second (two
fields per frame), which results in a raw data rate of 31 MBps or 20,750 BTF.
Because this far exceeds the maximum BTF of USB, it is easy to conclude that
we cannot support full-screen, full-frame rate on USB. But let’s see what some
signal processing can do!

There are some easy choices we could make to reduce the data rate:

Take fewer samples. A video signal is characterized by its YUV components
(Y = luminance or brightness of the image, UV = chrominance or color depth
of the image), and the 24 bits assumes full data capture (YUV = 4:4:4). The
human vision system has poor color acuity, so it is possible to subsample the
U and V components without the viewer noticing. By sampling both
chrominance components at half the rate horizontally (YUV = 4:2:2), the
sample size is reduced to 16 bits. By also sampling at half the rate vertically
(YUV = 4:2:0), the sample size is reduced to 12 bits.

Reduce the frame size. Industry standard sizes include CIF (352x288), QCIF
(176x144) , and “small” (160x120). Figure 12-1 shows the resulting frame
rate if we limit the maximum BTF for the video source to 1000.

Reduce the frame rate. Flicker will be noticeable at frame rates below 15 fps
and slow-motion effects will be evident at frame rates below 2 fps.

CIF 352 x 288 x 2 = 203 KB/frame 0.5 fps
QCIF 176 x 144 x 2 = 51 KB/frame 2 fps
Small 160 x 120 x 2 = 38.4 KB/frame 2.6 fps

Figure 12-1. Resulting frame rates at 1000 BTF

Chapter 12 | Can See You 285

This scheme of transmitting raw video on USB does not produce very good
results, and I should mention that a video camera operating at 1000 BTF would
not be considered a good citizen. Names such as “data hog” come to mind. A
single I/O device using this much of the USB bandwidth should have a
WARNING label on the front because it will impact the operation of all other
USB devices. If you must use an I/O device in this way, an acceptable solution is
to install another USB root hub in the PC host. Each root hub can support

12 Mbps, so installing a second root hub would effectively produce 24 Mbps.
Early USB video cameras operated this way and prompted many users to add
another USB root hub just for the video camera.

Video Compression Is Essential

A better solution for reducing the data rate from the video source is to compress
the video data, transmit the compressed data on USB, and then decompress the
data on the PC host for display. A modern PC host has ample processor
performance to decompress all styles of video encoding in software, so no cost is
incurred at the host. Today’s second-generation USB cameras use codecs and
compression techniques that make them very usable in most PC applications.

Two main methods are used for video compression:

¢ Intraframe, also called spatial compression, in which the data within each
frame is compressed individually, with no reference to other frames.
Examples of codecs that mainly use intraframe compression are run-length
encoding (RLE) and JPEG compression.

e Interframe, also called temporal compression, in which the compression
concentrates on just the parts of the image that change from one frame to the
next. Sometimes key frames are included to reset image data once the
changes become excessive. Examples of codecs that mainly use interframe
compression are frame-differencing and MPEG.

It is possible to combine these two methods in the same codec.

286

USB Design by Example

Figure 12-2 shows a typical second-generation camera. Some signal processing,
such as the compression algorithm, is implemented in hardware at the camera,
but much signal processing, such as white balance, color correction, dead-pixel
correction, and lens correction, are implemented in software on the PC host.
Sharing the data processing allows the hardware cost to be reduced while still
delivering an excellent product.

Software Processing:
Decomposition
White Balance
Color Correction |
Dead-pixel Correction |-
Lens Correction

Camera = Sensor on a wire

Video | Raw | Hardware USB
1] Sensor [yigeo | Compression

Figure12-2. Digital signal processing is shared

RANGE OF VIDEO SOLUTIONS

Several manufacturers (see Appendix A on the CD-ROM for a full list) have
implemented full video-to-USB subsystems. We’ll look at a range of example
designs and then discuss some new applications that this low-cost, high-quality
video is enabling. All of the examples use a custom USB controller with a
dedicated task of video capture.

e USB enables a videoconferencing camera to be just plugged in to a modern
PC—we will look inside a popular USB camera, from Ezonics, and discover
how they can ship a product of this quality for less than $100.

e We’ll then look at a video-capture example that accepts composite video
from a camcorder or other NTSC (or PAL or SECAM) source.

e We’ll then look at a full digital video creation and editing subsystem that
can be used to create high-quality movies for a small fraction of the cost of a
professional studio.

e Finally we’ll look at a range of USB-enabled video applications that use
digital video as an element of their overall design.

Chapter 12 | Can See You

287

Example 1: Videoconferencing Camera

Figure 12-3 shows the end-user view, and an OEM view, of a videoconferencing
camera from Ezonics. The Ezonics product is a turnkey videoconferencing
solution, and, because of its high functionality and low cost, the camera will be

employed in multiple other applications. Inside the case is a robust video design

from VLSI Vision Ltd.; Figure 12-4 shows a block diagram of this OEM
solution.

83

€1
Al

¢
<,

Courtesy of VLSI Vision Ltd. (OEM design) and Ezonics Corp. (consumer design).

Figure 12-3. Video conferencing design

Camera Head Module Compression PCB
6409 Sensor
9-wire
Interface Video Video 256Kb x 16
ADC Processor [~] Compressor [1] DRAM
Lens

/ | []

IR Controller USB IFF

Filter

Note: Design could be
implemented on single PCB

Figure 12-4. VLSI Vision OEM reference design

usB

288

USB Design by Example

The CMOS image sensor in the VLSI Vision reference design is a single-chip
device that includes the imaging array and all the control logic required to
generate digital video. The block diagram (Figure 12-5) includes the photodiode
array that is controlled by shift registers. The array generates pixel data that is
digitized and formatted into two nibbles per pixel. The sensor also contains
control functions for black-level calibration, exposure, image format, and a serial
interface to allow control of the sensor from the coprocessor chip.

CLKI »
CLKO Black Image Exposure Serial SDA
- Calibration Format Registers Interface | sSCL
SIN »
» D[3:0]
Output QCLK
i Format
vertical Photo Diode FST
Registers Array ~TOEB

8-Bit
ADC

Sample and Hold
Analog i
Voltage
Refs. Horizontal Shift Gain
Register Stage

Figure 12-5. CMOS sensor block diagram

The CMOS sensor is controlled by the Color Processor Interface ASIC via a
serial bus. Nibble data from the sensor is strobed into the CPIA for processing.
The only other component required is a 4-Mbit DRAM, which provides the
frame store and run-length buffer. The CPiA performs the color processing,
implements a proprietary interframe compression encoder, and manages the USB
interface. The whole design takes less than 100 mA, so it can be powered
directly from the USB cable.

The camera defines a single device descriptor, a single configuration descriptor,
and four interface descriptors paired with four isochronous endpoint descriptors.
The Default interface requests no USB bus bandwidth as required by the USB
specification—this means that the device will be successfully enumerated but

Chapter 12 |1 Can See You 289

will not use bus bandwidth until an application program selects an alternate
interface. The alternate interfaces request more and more of the USB bandwidth.

The highest selection is equivalent to 968 BTF, and this allows a CIF format
video to be displayed at 25 fps (depending on the amount of movement in the
scene and performance of the PC). If this bandwidth cannot be supported, then
an alternate setting 2 requests 712 BTF. A third alternate setting requests

456 BTF, and if this low setting cannot be supported, then the user is requested to
remove an existing isochronous device from the USB bus so the new camera can

be used.

Example 2: Composite Video

My second example accepts a standard composite video signal (NTSC, PAL, or
SECAM), digitizes it, compresses it, and transmits it over USB using only three
major components. The reference design for the Nogatech NT1003 is a small
video dongle as shown in Figure 12-6. Also shown is a commercially available
product from Dazzle Multimedia, the Digital Photo Maker, that implements the
Nogatech reference design and adds comprehensive digital image processing
software to enable creative users to be immediately productive.

Courtesy of Dazzle Multimedia, Inc. (consumer design, left) and Nogatech, Inc. (OEM design, right).

Figure 12-6. Converting composite video to USB digital video

290 USB Design by Example

Figure 12-7 shows a block diagram of the Nogatech Reference Design. The heart
of the design is a single-chip hardware video compressor with integrated USB
interface. A 4-Mb DRAM is required for frame storage and to buffer the
isochronous USB data. A Philips SAA7111A is used to convert the composite
video into digitally encoded video for the NT1003. An 12C interface and HID
driver are also included to manage the video source, if required, and for system

setup.
D‘g\%’v‘ Memory Access Unit
. . Digital Digital Digital B
CompOSIte] S;fx';'ﬁ Video [H Video | Video mgrsface usB
Video IN Interface Scaler Compressor
12C 5
12C Controller Register
‘} Bank
Available Control and
© Status | | Power
- Programmable 1/O Management

Figure 12-7. Block diagram of Nogatech’s reference design

In standard operation the NT1003 will provide the system with the following
services:

Compressed Video Channel: The NT1003-1 connects to YUV video digital
source, scales the image on the fly horizontally and vertically, compresses the
data, and sends it to the host computer via the USB port. The bandwidth usage
can be set from 0.5 Mbps to 8 Mbps in 0.5-Mbps increments. The NT1003-1
scaler supports zoom-in-like effects by applying combinations of zooming and
cropping built-in functions. The unique method of compression is a special
design of Nogatech, to allow easy and fast software-only decompression. The
decompression software driver will accept the compressed data and convert it
back to standard video formats in less time than it takes to read raw video from
any external port.

Chapter 12 | Can See You 291

Video Source Control: Control and status monitoring is implemented with a
built-in serial interface, or direct I/O pins. They support a direct-attach camera
including a CCD sensor. These controls can also be used by the application
software to control and monitor other remote devices. In a videoconference
application, for example, this allows the local or remote user to set the focus,
zoom, and other parameters of the camera, or even to switch the camera to the
power-down mode. The NT1003-1 also supports the use of an external capture
button that can be mounted on the camera board and used for capturing still
frames on the host computer disk. Still images are captured and sent via the USB
in the best quality and resolution that the camera can provide.

Example 3: Digital Video Creation

My third example is a full-digital video creation and editing system from Dazzle
Multimedia (Figure 12-8). Figure 12-9 shows a block diagram of this system.
The central element is a hardware MPEG compressor from C-cube that Dazzle
has integrated with an audio codec and a USB subsystem.

Courtesy of Dazzle Multimedia, Inc.

Figure 12-8. Digital video creation system

292 USB Design by Example
SVHS —— 7112 Frame
IN Video CcLM4111 Buffer
NTSC —3——Decode 2MB
MPEG

SVHS —— 7120 Encoder FIFO USB
ouT Video Decoder Buffer Miero [— UsB
NTSC E=———Encode 0.5MB
Audio —F—]
IN —— .

Audio
Audio == Codec| g Custom Controller
OUT ———

Figure 12-9. Block diagram of the hardware subsystem

MPEG, which stands for Moving Picture Experts Group, defines a set of
standards used for coding audiovisual information (such as movies and music) in
a digital compressed format.

The major advantage of MPEG compared to other video and audio coding
formats is that MPEG files are much smaller for the same quality. This is
because MPEG uses very sophisticated compression techniques. The MPEG
strategy is to predict motion from frame to frame in the temporal direction and
then to use discrete cosine transforms (DCTs) to organize the redundancy in the
spatial directions. The DCTs are calculated on 8x8 blocks, and the motion
prediction is done in the luminance channel on 16x16 blocks. In other words,
given the 16x16 block in the current frame that is to be coded, a close match to
that block is sought in a previous or future frame. The DCT coefficients of either
the actual data, or the difference between this block and the close match, are
quantized, which means that you divide them by some value to drop bits off the
bottom end. We hope that many of the coefficients will then end up being zero.
The results, which include the DCT coefficients, the motion vectors, and the
quantization parameters, are Huffman-coded using fixed tables. This algorithm
is well suited for a hardware encoding implementation, and a Pentium processor
with MMX instructions can decode this MPEG data to produce a full-screen
display in real time.

Chapter 12 | Can See You 293

One side effect of the MPEG encoding is that data cannot be lost—the Pentium
processor requires ALL of the encoded data to be able to decode the picture data.
So, in contrast with the other digital video solutions presented in this chapter, this
MPEG solution uses bulk transfers on USB because their delivery is guaranteed.
During video capture the USB bus and the PC host’s processor will be busy most
of the time, and other activity is not recommended because this will result in
some loss of video frames.

The USB hardware operates in two modes: It is either inputting digital video and
audio into the PC host, or it is outputting digital video and audio from the PC
host.

e Let’s discuss the input function first. The analog video is digitized by a
Philips SAA7112; this multistandard component can create YUV digital
video from an NTSC, PAL, or SECAM signal source. This video is
compressed at a real-time frame rate by the C-cube CLM4111 MPEG
compressor. The compressor needs 2 MB of memory for a frame buffer and
for run-length encoding. Compressed output is fed into a 0.5-MB FIFO that
is emptied by a USB microcontroller using bulk transfers. At the same time,
two audio channels are digitized using a codec, and this data is also sent to
the PC host using bulk transfers.

e For playback the PC host will use bulk transfers to move video and audio
data to the Dazzle hardware subsystem. The custom controller feeds the
video data back through the CLM4111 MPEG encoder-decoder, which uses a
Philips SAA7121 video encoder to create NTSC (or PAL/SECAM) video
OUT. The custom controller uses an external audio codec to regenerate the
sound.

An impressive suite of software enables the real-time capture of video and

synchronized audio for later editing. The power of this video studio rivals the
capabilities of $3000-$5000 professional installations at one-tenth of the cost.

294 USB Design by Example

USB-ENABLED VIDEO APPLICATIONS

Digital Microscope

Figure 12-10 shows a variation on the videoconferencing camera. Intel and
Mattel are collaborating on the design of a digital microscope that will be used in
schools and will be very popular in the home.

Rather than each student having to peer down an eyepiece to observe a specimen,
a USB camera displays an image on the PC screen so that the whole class can
see. The image is “live,” so that focusing and positional adjustments can be
made, and then a higher-resolution image can be captured and stored on disk.
These images can be included later in a school report. Science was never this
much fun when I went to school!

At home, children will be able to explore their world and then have creative fun
doing things with their discoveries that they can show to their friends.

Courtesy of Intel Corp. and Mattel, Inc.

Figure 12-10. A digital microscope from Mattel-Intel

Chapter 12 | Can See You 295

Biometrics

The decreasing cost of capturing complex data types such as images is bringing
biometrics applications to the USB-enabled PC. Biometrics is a technology that
verifies a person’s identity by measuring a unique-to-the-individual biological
trait. Biometric technologies include retinal/iris scanning, face-shape
recognition, dynamic signature verification, voice recognition, and fingerprint
identification.

Biometric identification is superior to lower-technology identification methods in
common use today. Today, physical objects or behaviors-based-on-memory are
used to identify a user. Physical objects include smart cards or magnetic-stripe
cards; behaviors-based-on-memory include the act of entering a PIN number or a
secret password.

The primary use of a physical object or behaviors-based-on-memory has a clear
set of problems and limitations. Objects are often lost or stolen, and a behavior-
based-on-memory is easily forgotten. Also, the use of a valid password on a
computer network does not mean that an identity is genuine. These limitations
decrease trust and increase the possibility of fraud. They are at the root of
widespread distrust of the Internet and are the biggest weakness in true network
security. Trust is the problem—without biometrics it is simply not possible to
trust or prove that a person is really who they claim to be. Even worse—without
biometrics the risk of fraud is very high, while paradoxically the proving of
fraud is impossible.

Biometrics is a better alternative because it increases trust by creating a context
of confidence and undeniable personal responsibility. It is very difficult to share
your face or fingerprint. It is nearly impossible to replicate a voice pattern or
duplicate the creation of a handwritten signature.

In the past—because of a lack of desktop computer speed and narrow available
network bandwidth—there was no practical alternative to the use of physical
objects and behaviors-based-on-memory. These old technologies flourished
because there was no attainable practical alternative. The future destiny of
computerized network security and identification is biometrics. The limiting
factors of speed and bandwidth are now a thing of the past. The sensors and
electronics to implement biometrics used to be what you saw in science fiction
movies—now you can buy them for less than a hundred dollars.

Two interesting biometrics applications are the U.are.U fingerprint analyzer
shown in Figure 12-11 and the IriScan application shown in Figure 12-12.

296

USB Design by Example

Fingerprint Identification

Image sensors, as described earlier in this chapter, are only the first step in
capturing and verifying a fingerprint. The fingerprint sensor is often dirty
because of its frequent use, and patterns in the shape of previous fingerprints are
already on the sensor before we start. When a new finger is applied, the detector
must create a new image knowing the previous dirt on the sensor.

The sensor could send the raw, new image up to the PC host for processing, but
this is a security risk! It is easy to observe all of the data transactions on a USB
cable, so a clever spy could record the data stream of a valid user’s fingerprint
and inject this data stream later. To prevent this type of fraud, the U.are.U sensor
uses a high-performance USB microcontroller inside the unit to preprocess the
data (Figure 12-11). It then manages a secure handshake with PC host-based
software and sends encrypted results on the USB cable. Recording the data
stream for later misuse will not work!

Courtesy of DigitalPersona, Inc.

Figure 12-11. Fingerprint identification on the PC

Chapter 12 1 Can See You 297

IriScan Application

IriScan’s iris recognition technology identifies people by the unique patterns in
the iris of the human eye. This capability is possible because no two irises are
alike in their structural detail, not even between identical twins or triplets.

A high-definition (640x480x24-bit) image is required for effective iris pattern
recognition (Figure 12-12). The intricate and personally distinct patterns of the
iris are shaped from a complex information-rich meshwork of tissue. From this
special pattern, a unique “bar code” is mathematically computed that is unlike
any other in the population. In fact, the identification accuracy of IriScan’s iris
recognition technology outperforms DNA testing. This pattern, a very personal
ID code, is safely and noninvasively acquired by a camera, analyzed, and
encoded into a 512-byte IrisCode record. The IrisCode record is used to confirm
a person’s identity.

The sensor is able to detect eye movement in a live picture, so attempted fraud by
using a photograph of a valid user will not work. Sorry! As the world’s
criminals get more sophisticated, then so must our protection schemes.

In the product configuration shown in Figure 12-12, processing is done on a PC
host, requiring a secured cable connection from the imager to the PC host.

Courtesy of IriScan, Inc.

Figure 12-12. IriScan application on the PC

298

USB Design by Example

CHAPTER SUMMARY

Video capture with a PC host used to be expensive and difficult. USB has
removed almost all of the complexity and cost from this solution. It is now easy
to include video in your custom I/O application. Several manufacturers build
custom USB microcontrollers that are specifically designed to compress video so
it can be transported efficiently over a USB cable. Some vendors use a
proprietary compression algorithm and supply a Windows driver to decompress
the digital video. One vendor uses a standard MPEG encoding scheme to
implement a combined video and audio solution. This hardware proliferation
will encourage software developers to write more creative applications, which
will mean more hardware vendors will make even better-quality video devices at
lower cost. And this spiral will continue with the consumer gaining the most
benefit.

299

CHAPTER 13
DESIGNING A HUB

The hub is an essential part of the USB architecture, and its operation contributes
significantly to USB’s ease-of-use. The hub has two major roles—to provide
more connectivity for USB devices, and to provide and manage power for these
devices. In this chapter, I will describe the elements of a basic hub and their
operation. The USB specification defines a basic hub exactly; in fact, several
manufacturers supply a complete, turnkey solution in silicon. Then we’ll look at
a hub design with a variety of embedded I/O devices.

Figure 13-1 shows a representative basic hub product and its block diagram. It
appears to be a simple signal splitter/combiner, but this section will reveal what
really goes on “under the hood.”

Upstream Port
to PC Host

_ :Lower

Downstream Ports to I/O Devices

Courtesy of Interex, Inc.

Figure 13-1. A hub provides connectivity and system power

300 USB Design by Example

More interesting, from our I/O device perspective, is a compound device thatis a
hub with embedded I/O devices (Figure 13-2). A compound device can also be
thought of as an I/O device with more downstream USB sockets that support the
daisy-chaining of more I/O devices.

O

Embedded
1/0 Device

Embedded
/0O Device

Hub

Hub

Figure 13-2. Two equivalent views of a compound device

THE BAsIC HuB

We can identify three major hub elements: the hub repeater, the hub controller,
and the port power control (Figure 13-3).

Upstream Connector

| I
— S
zl |2
2 o]
7] o
W
Controller :\? er
o =
k] L oo
Q 2 E
% 3 o
o (&)

|__|_

Downstream Connectors

Figure 13-3. Identifying the major elements of a hub

Chapter 13 Designing a Hub 301

Hub Repeater

The upstream port always operates at 12 Mbps while the downstream ports can
operate at 12 Mbps or 1.5 Mbps, depending on the capabilities of the device
attached to the port. If no device is attached to a downstream port, it is disabled.
To better understand hub operation, let’s look at how signals pass through the
hub. Let us assume, for the following discussion, that there are full-speed
devices on ports 1 and 3, a low-speed device on port 2, and no device on port 4.

The hub decides on a packet-by-packet basis how to propagate signals between
the upstream and downstream ports. All packets arriving from the upstream port
will be full-speed, and the repeater replicates these packets on all enabled,
full-speed downstream ports. Some of these packets will initiate response
packets from a device, and in the case of a full-speed device, a packet received
on any of the downstream ports is replicated to the upstream port. The USB
protocol allows only one “talker”—this is typically the PC host but will be the
addressed slave device during the response phase. Therefore, the hub does not
have to deal with multiple responses from many downstream ports because this is
not permitted.

For full-speed packets, the hub broadcasts downstream packets to all enabled
downstream ports and routes response packets from one of the downstream ports
to the upstream port. This is summarized in Figure 13-4,

A

[T L
L3

]
L]

Downstream Upstream

— M H L H HIH -
\ \

Figure 13-4. Downstream packets are broadcast, upstream packets are routed

302

USB Design by Example

Low-speed I/O devices get special treatment. Packets destined for low-speed /O
devices are sent from the PC host with a preamble token, which alerts the hub
that the following packet is low-speed. The hub will replicate the preamble token
and the subsequent low-speed packet on all enabled full-speed downstream ports
and will propagate the low-speed packet, without the preamble, onto enabled
low-speed ports. Only low-speed packets are propagated on low-speed
downstream ports because of the filtering action of the hub. The PC host will
always send at least one packet to all low-speed downstream ports every frame,
to prevent them from suspending when there is no other low-speed bus traffic.

A low-speed 1/0 device will, of course, respond at low speed. The hub replicates
this response on the upstream port.

The operation of the hub repeater is autonomous and does not need the assistance
of the hub controller. The hub controller’s role is to manage system
configuration changes.

Hub Controller

A hub is an /O device. When first attached to a PC host, it is enumerated like
any other USB device. Figure 13-5 shows the descriptors that a basic hub will
present to the PC host during enumeration. The host software discovers that this
is a hub by the Class code (byte at offset 5). A basic hub has one configuration
and one interface, and it requires an interrupt endpoint 1 to report status changes.
The hub class of devices includes a HUB descriptor.

Device Configuration Interface Endpoint HUB
Length Length Length Length Length
Type Type Type Type Type
USB Total This Interface This Endpoint PortCount
Version Length Alternate Attributes Features
Class Interfaces Endpoints Max Packet PowerGoodTime

Sub Class This Config. Class Size MaxPower

Protocol Config. Name Sub Class Polling Interval Removable

EPO Size Attributes Protocol PwrMask
Vendor Max. Power Interface Name

ID
Product
ID
Version
Number
Manufacturer
Product Name Notes: Fields in italics are indexes
Sorial Number into the STRINGs descriptor
Configurations l Denotes a repeated field

Figure 13-5.

Descriptors for a basic hub

Chapter 13 Designing a Hub 303

We have seen device, configuration, interface, and endpoint descriptors before
(Chapter 3), and a hub uses the same definitions. The new HUB descriptor has
the following entries.

A hub descriptor has a variable Length depending on the number of downstream
ports that it is supporting.

The Type field is always 9.

The PortCount field identifies the number of downstream ports that this hub
supports. This will include embedded I/O functions.

The Features field is bit-mapped as shown in Figure 13-6.

(olo]ofo[o]o[o[o]o[o]o]x]x]x]x]x]

00 - Ganged switching
01 - Individual switching
1x - No switching

1 - Hub is part of a Compound Device

00 - Global over-current protection
01 - Individual over-current protection
1x - No over-current protection

Figure 13-6. Definition of Features bit fields

The time that software should wait after power is applied to a hub is entered in
the PwrGoodTime field in 2-ms increments.

The MaxPower field indicates the maximum current that the hub electronics will
consume.

Removabile is a bit field that indicates if a device on this port can be removed.
Later in this chapter you’ll find that this field is important when we add
embedded I/O devices to the basic hub. Embedded devices are not removable,
and the system software can make some operational optimizations.

PwrMask is also a bit field that indicates if the port has independently
switchable power.

As a hub-class device, the hub controller must accept hub-class requests in
addition to standard requests. For the full list of requests that must be serviced,
see Table 13-1.

304 USB Design by Example

Table 13-1. Requests that a hub-class device receives

Type Request Our Action
A Standard Get_Status Return current status
Standard Clear_Feature Clear Specified Feature
Standard Set_Feature Set Specified Feature
Standard Set_Address Store Unique USB Address and use from now on
Standard Get_Descriptor Return requested descriptor
Standard Set_Descriptor Optional: Set Specified Descriptor
Standard Get_Configuration Return Current Configuration or 0 if not
configured
Standard Set_Configuration Set Configuration to the one specified
Standard Get_Interface Optional: Return Current Interface
N Standard Set_lInterface Optional: Set Interface to the one specified
Standard Sync_Frame Optional: Synchronize USB Frame Numbers
HUB Class Get_Bus_State Optional (for diagnostics): Return D+, D-
HUB Class Get_Hub_Status Return Hub Status with Changed Identified
rHUB Class Get_Hub_Descriptor Return Hub Descriptor
HUB Class Set_Hub_Descriptor Optional: Set Hub Descriptor
HUB Class Set_Hub_Feature Enable a standard hub feature
HUB Class Clear_Hub_Feature Disable a standard hub feature
HUB Class Get_Port_Status Return Port Status with Changed Identified
HUB Class Set Port_Feature Enable a standard port feature
HUB Class Clear_Port_Feature Disable a standard port feature

Chapter 13 Designing a Hub 305

Power Control

Port power control consists of overcurrent protection, power-switching, or a
combination of the two. Power can be supplied to all downstream ports in
parallel or individually. It is cheaper to supply power to all downstream ports in
parallel because fewer devices are required, but an overcurrent fault on one port
will cause the other ports, in the same hub, to trip also—not a good user
experience. Individually powered ports would also include separate overcurrent
indicators that can be supplied to the operating software so that specific error
messages can be presented to the user.

It is possible to derive the output power for the downstream ports from the
upstream bus port. This would be called a bus-powered hub, and I do not
recommend this approach. A total of 500 mA is available from a USB port, so a
bus-powered hub would need to redistribute this power to its downstream ports.
The hub electronics use 100 mA and could provide only 100 mA for each of four
downstream ports. If an I/O device that needed more than 100 mA for operation
were attached to this bus-powered hub port, it would be enumerated but not
enabled. This could confuse many users. Irecommend self-powered hubs,
which means the hub has a separate power-in connector, so that 500 mA is
always available for the downstream ports. A future release of the Windows
operating system will alert a user if a high-power device is attached to a low-
power hub socket. The Windows software will recommend an alternate
attachment point if possible.

The USB Specification defines the maximum amount of voltage drop and
minimum acceptable output voltages. For bus-powered hubs, the industry has
responded by supplying power switch devices with low series resistance, devices
such as the Texas Instruments TPS2014/5 and the Micrel MIC2525 (datasheets
are reproduced, with permission, in the Chapter 13 directory on the CD-ROM).

To meet the voltage drop, droop, and EMI requirements in the USB
Specification 1.1, careful PCB layout is necessary. The following guidelines
must be considered:

306

USB Design by Example

Keep all Vbus traces as short as possible and use at least 50-mil, 1-ounce copper
for all Vbus traces.

e Avoid vias as much as possible. If vias are necessary, make them as large as
feasible.

e Place the output capacitor and ferrite beads as close to the USB connectors as
possible.

e Use a separate ground and power planes if possible.

The USB Specification also defines overcurrent protection for the downstream
ports. Overcurrent protection is required on self-powered hubs and may be
implemented with a resettable PTC such as Raychem’s miniSMDC150 or a
power distribution switch such as Texas Instruments TPS2014/5 (data sheets and
application information are included, with permission, in the Chapter 13
directory). Some hubs, such as the Philips ISP1122, integrate individual power
control and the overcurrent protection. Power control is performed using a
pMOS transistor on each port, and the “ON” resistance (Rds) of the transistors is
used to trigger an overcurrent condition when too much current passes through
them. The Philips ISP1122 reference design (included in the Chapter 12/Philips
directory on the CD-ROM) details this feature in their Figure 8. Figure 13-7
shows a typical downstream port within a hub.

Power-switching Overcurrent
Device (Note 1) Protection (Note 2) r—T
Hub Ve
Power | I | -0
D+—1 @
Fault <
Detect
D-——@
Hub
Ground ®
N—

Note 1: Required for bus-powered hubs, optional for self-powered hubs.
Note 2: Required for self-powered hubs, optional for bus-powered hubs.

Figure 13-7. Power management of a downstream port

Chapter 13 Designing a Hub 307

Basic Hub Summary

The operation of a basic hub is well defined by the USB Specification. Many
implementations exist (see Appendix A) that are broadly categorized as
hard-logic controlled or microprogrammed. Hard-logic devices, such as the
Texas Instruments TUSB2043 and the Philips ISP1122, operate as a hub with no
extra effort. You just “connect the dots” with careful PCB layout as
recommended by their reference design, and you have a working hub.

A microprogrammed device, such as the Intel 8x930HX or the
STMicroelectronics ST92161, includes a microcontroller that executes a program
to implement the hub controller functions. The hub repeater functions are hard-
wired in these devices to meet the timing constraints of the USB Specification.
The manufacturers of these devices supply prewritten code for a hub design, so
this approach is also connect-the-dots for a working hub.

The design freedom comes in the power controller, but I recommend
self-powered with individually controlled outputs.

308

USB Design by Example

BUILDING A COMPOUND DEVICE

Now that we understand the construction and operation of a basic hub, let’s look
in detail at the design of a hub with I/O functionality, or at an I/O device with
hub functionality—both are equivalent descriptions of a compound device.
Figure 13-8 looks inside a typical compound device.

Upstream Connector

Controller

Power Control
2

Repeater

Tt

Embledded /10 Devllces

Downstream Connectors

Figure 13-8. A compound device has embedded ports

The number of “external” downstream ports and the number of “internal”
downstream ports is ours to decide. An external downstream port is exactly what
you would find on a basic hub. Embedded I/O functions are implemented on
internal downstream ports. The PC host is unaware of this “external” and
“internal” hardware implementation—it just sees devices connected to a hub. A
compound device is a hardware optimization that gives the hub controller a little
more work to do but saves us the cost of a USB interface and separate controller.

Chapter 13 Designing a Hub 309

DESIGN EXAMPLE

A convenient place to put a USB hub is inside the monitor of a PC system. An
alternative “computer” place is the keyboard, but I prefer the monitor because it
has power connected that allows the hub to be self-powered. Many other
examples could be chosen. I’ll use a monitor example as a vehicle to explain the
design but will be as flexible as possible so you can fit the concepts into your
application.

To make this example a little more interesting, I am going to design a range of
monitors as shown in Figure 13-9. The entry system is just a monitor—it has a
VGA connector on the back and a set of buttons that control the adjustment of
the monitor picture (size, position, pincushion) in a simple base. The models get
more elaborate as [add more features—the first has a USB hub in the base. Then
I add a combination of features to produce higher-end products—features such as
an IR data transfer port, ports for a keyboard and mouse, speakers, microphone,
perhaps even parallel and serial ports and a smart card reader. The flexibility of
the solution allows easy configuration of any combination of features.

Figure 13-9. A range of monitor solutions

310 USB Design by Example

Figure 13-10 shows the internal block diagram of a typical monitor with its
connection to the PC. It is microcontroller-based with an I2C bus
interconnecting the building blocks.

Geometry
On-screen
Display
Video
Processor Buttons
PC
.
RGB
[S — N
] {l] Micro-
N A DDC controller
“YGA” Cable
[____

Figure 13-10. Block diagram of a typical monitor

The connection to the PC is minimally a VGA connection. Monitor
manufacturers typically implement a Display Data Channel (DDC) using an 12C
bus in the same cable that is used in their manufacturing group for monitor
alignment. The lack of a standard Windows driver for this connection has
hampered its inclusion on standard video cards, so, for the foreseeable future,
monitors will continue to have separate alignment buttons. Our example design
implements these buttons in an exchangeable base unit.

There are many options for adding a USB hub to this example, and each involves
different tradeoffs.

Chapter 13 Designing a Hub 311

Step 1: Adding a Hub

If we just want to include a basic hub, then a ready-built hub with 12C
connection, such as a Texas Instruments TUSB2140 or a Philips PDIUSBH11A,
would be a good choice (Figure 13-11). These components appear as slave [12C
peripherals to the monitor microcontroller, and we would need to add minimal
firmware to the monitor microcontroller to support them.

Geometry
On-screen
Display
Video poommmmmmEEITS 1
Processor —i Buttons :
PC e mmaaa] !
—
RGB
.’,‘} 1"\‘, Monitor
by ey Micro- 2
-— DDC controller @
“VGA” Cable O
oL
USB Cable HUB
_J Peripheral
==

4 Downstream Ports

Figure 13-11. Using an I2C connected hub

312

USB Design by Example

The 12C bus from the USB hub peripheral component is addressable via USB
(remember our examples in Chapters 6 and 8). Low-bandwidth data can be
transferred between the PC host and the monitor microcontroller using this I2C
embedded /O function.

We’ll replace the physical alignment buttons on the monitor with software on the
PC host. The command set required to implement picture adjustment using 12C
has been standardized by a VESA working group (VESA = Video Electronics
Standards Group at www.VESA..org), and the document is included in the
Chapter 13/VESA directory on the CD-ROM. Figure 13-12 shows a
demonstration program written by STMicroelectronics that sends these picture
adjustment commands via USB and the hub’s I2C bus to the monitor
microcontroller. When the monitor microcontroller powers up, it looks for a
“button-base” or a “hub-base” on its I2C bus and operates accordingly.

We have replaced the cost of the buttons with the cost of the hub circuitry; to put
it another way, we got a USB hub for free!

Chapter 13 Designing a Hub 313

STMicroelectronics USB Monitor Manager

Pincushion Balance
Parallelogram
Trapezoidal

Tilt Rotation

_ 5TMicroelectronics USB Monitor Manager
v i S

Figure 13-12. An application controls monitor alignment

314 USB Design by Example

Step 2: Adding I/0O Devices

We are going to design modular I/O functionality in the monitor, so a hub
component with an integrated microcontroller and more endpoints (Figure 13-13)
would be a better choice. We’ll discover that the “alignment button” application
and the “hub controller” application use little of the capabilities of the hub
microcontroller. To look at it another way, we have ample headroom to add
functionality without adding high cost to the solution.

Geometry
On-screen
Display
Video [iaiaiaiaie et]
Processor L Buttons !
PC b e mmae e]
—
RGB
[S — A}
— — Monitor @
. T Micro- o
— DDC controller O
“YGA” Cable &L
USB Cable HUB Micro-
controller
|

T Lo E &~

Downstream Ports gmbedded

/0
Functions

Figure 13-13. Adding I/O flexibility with a microcontroller

Chapter 13 Designing a Hub 315

Step 3: Extensible Design

Figure 13-14 shows an example of a high-end monitor implementation. The left
side of the diagram shows the hardware and the right side shows the software.
For full schematics and application software, see the Chapter 13 directory on the

CD-ROM.
Picture
Upstream Port Adjustment - ®
c [Z]
ol g ® 2 3
o I s | s | 58S | =8
25 | £8 | 28 | BF®
g9 g9 2L 80
25 58 s 8%
e La oo >0
< S< 5< §<
Hub Microcontroller .s__:' pos
8 x 930HX =
i] i. IL IL Core Functions
Downstream 5
IR Codec Ports
@ Hardware Layer
i LSy

Figure 13-14. High-end USB monitor example

The core firmware to manage the hub and embedded function capabilities is
included on the CD-ROM. Descriptors and applications code to match the I/O
hardware is added on top of this core code in a building-block fashion. Each I/O
function is described by a unique interface descriptor that specifies independent
endpoints. All of these interfaces will run concurrently. The example includes a
four-port hub, picture adjustment controls via the I2C bus, speakers and
microphone using asynchronous endpoints, and an IR data transfer port. There is
still capability with the Intel 8x930HX component (three unused endpoints) that
would allow adding more functions such as a printer port, serial ports, mouse,
keyboard, floppy disk, or a smart card reader.

316

USB Design by Example

A videoconferencing camera needs its own special-purpose controller to
implement data compression, so this could not be added as an application on top
of the core firmware. A camera could be attached to one of the downstream hub
ports (we will do this in the next chapter). All these features and we have only
one USB connection back to the PC host! Figure 13-15 shows a photograph of
the completed example design.

HORNYAX3 O/

Courtesy of Intel Corp.

Figure 13-15. Incremental features for a monitor solution

Chapter 13 Designing a Hub 317

CHAPTER SUMMARY

This chapter has shown that a hub design is very straightforward. Several
manufacturers build plug-and-go hub components that are hard-coded to operate
in a USB environment. Care must be taken on the power management and
overcurrent protection, and detailed design recommendations are included on the
CD-ROM. Some hub components use an embedded or external microcontroller
to implement more embedded I/O functionality—the firmware to implement the
base functionality is often provided by the component manufacturer.

Embedded I/O devices are easy to add to a hub controller that supports multiple
device endpoints. The design methodology is the same as that for a stand-alone
1/0 device. Modules of code to support each interface can even be moved from a
stand-alone I/O device into an embedded device supported by the same
microcontroller.

I/O devices embedded in a hub give the USB designer an additional degree of
freedom when designing a system. And, as we have seen, the design is not
difficult.

319

CHAPTER 14
PUTTING IT ALL TOGETHER

The previous chapters have described buttons and lights (HID devices), audio,
video, and hub design as discrete elements. This chapter will show how easy it is
to integrate the multiple diverse elements that we have covered in the previous
chapters into a single, very functional device. We shall see how USB interface

descriptors can be added to an I/O device and how the PC host interacts with
each independent interface. The building-block nature of USB will be very

evident and will promote the reusability of software and hardware elements. The
example I have chosen is a TV-tuner dongle. This bus-powered device is

implemented as a collection of devices and a stand-alone hub, packaged in a

single enclosure as shown in Figure 14-1. The video will be displayed on the PC
monitor, the sound will be heard on the PC speakers, and channel tuning will be
implemented via a Visual Basic application on the PC.

TV-Tuner

RF-IN

Y

Video
Codec

-

Control

Audio
Codec

Y

HUB

Figure 14-1. Block diagram of TV-tuner dongle

USB

320 USB Design by Example

OVERVIEW OF DESIGN EXAMPLE

The heart of this example is a prebuilt TV-tuner specially designed for
multimedia applications. The tuner provides the analog front-end processing of
cable or antenna-based RF signals, to supply a composite video output and stereo
audio outputs. All of the setup and channel selection of the tuner is implemented
via an I2C bus. The tuner’s composite video output is fed into a video-to-USB
subsystem that was presented in Chapter 12. The tuner’s audio outputs are fed
into a stereo codec subsystem that was presented in Chapter 11. A hub is
included inside our dongle to combine the video subsystem and the audio
subsystem into a single USB cable, as was presented in Chapter 13. An 12C
control bus must be generated, and we have several implementation options.
This full design needs to consume less than 500 mA so that it can be
implemented as a bus-powered device.

The design looks like a composite device, but it is implemented as a stand-alone
bus-powered hub with two bus-powered devices permanently attached and
packaged in a single enclosure. The PC host software will not realize that we
have a collection of independent devices in a single enclosure, so we will have no
special software to write on the PC host (always a plus!). The PC host will first
enumerate the hub; then it will enumerate the audio device and the video device
as separate devices, which will cause separate device drivers to be loaded.

The hardware for this example neatly partitions into five subsystems: tuner front
end, video-to-USB, audio-to-USB, 12C control, and hub/power distribution
subsystem.

Chapter 14 Putting It All Together 321

Step 1: Tuner Front-end Subsystem

This design example uses a Temic 4039 FR5 (Figure 14-2). There is a lot of
analog magic inside this module that we fortunately do not have to deal with!
Some very clever analog designers have integrated a hyperband tuner that covers
a frequency range from 54 to 805 MHz (so it can be used worldwide), an IF-strip
with SAW-filter, IF-amplifier, and video and sound demodulators into a single
tested module that is controllable digitally via an I2C bus. For the full data sheet,
see the Chapter 14/Temic directory on the CD-ROM. I chose the Temic 4039
because it was the smallest physical size for our dongle implementation. The
data sheet also describes FM signal reception that is not highlighted in this design
example. The 4039 includes complete FM signal processing, including
demodulation and stereo decoding. The example design includes all of the
hardware to support tuning to FM stations, but a human interface on the PC host
is not implemented in this example design—the current source code is provided
for an interested reader to add these capabilities.

Courtesy of Temic Telefunken Hochfrequenztechnik GmbH

Figure 14-2. TV tuner from Temic

322 USB Design by Example

The 4039 module requires no external components. You hook up +5 volts and it
works! Some initialization is required, and this is implemented by the 12C

control subsystem.

Step 2: Video-to-USB Subsystem

The Nogatech video example from Chapter 12 is used. The Nogatech reference
design is self-contained and includes all the required descriptors and endpoints to
manage the video capture and conversion to USB isochronous packets. The
design includes an I12C control bus that is intended to operate a camera; we are
using a tuner instead of a camera in this design example, and we could use the
I2C bus to control the tuner. For the circuit diagram for the video subsystem, see

Figure 14-3.
Y
Video SAA
IN 7111
uv
24.576 MHz

M5M4V4256
Cntl Data Address
1K5
NT1003-1 g‘fﬁ
48 MHz

Figure 14-3. Video subsystem schematic

Chapter 14 Putting It All Together 323

Step 3: Audio-to-USB Subsystem

Chapter 11 discussed the various options of dealing with audio. I chose the
Philips UDA1335 for this design example because of its small size and
simplicity.

The UDA1335 contains all of the descriptors and endpoints required to fully
implement the audio capture task. It also includes software-programmable
volume, bass and treble, and an I2C interface that could be used to control the TV
tuner. Figure 14-4 shows the circuit diagram for the audio subsystem. The audio
OUT channels of the UDA1335 are not used in this example, although you are
free to use them if you choose.

12C Control i I2C Expansion !
..... (optional) !
1K5
Audio |
" — UDA 1335 oop
48 MHz

Figure 14-4. Audio subsystem schematic

Chapter 14 Putting It All Together 325

Step 5: 12C Control Subsystem

We have three choices to implement an 12C control bus:

e Use I2C from the Nogatech video subsystem.

e Use I2C from the Philips audio subsystem.

e Use a microcontroller with an I2C interface on a spare downstream port.

The third option would be the least design effort because we could just copy the
example from Chapter 9. This is also the most expensive from a unit-cost
perspective. As it turns out (Jook ahead to step 6), we do not have enough power
available for a microcontroller if we want to keep the total dissipation below

500 mA. So we must choose the video or audio I2C solution.

The Nogatech and Philips designs use independent Vendor Defined commands to
control the I2C bus. This is a little different from the HID approach in Chapter 9,
so we will require a small change to our application software

Step 6: Power Distribution

The components require a mix of 5V and 3.3V as shown in Table 14-1.

Table 14-1. Maximum power consumption

5V 3.3v

TV tuner 230 —

Video — 73

subsystem

Audio 4 56

subsystem

Hub — 100
electronics

Total 463 mA

We want the total power dissipation to be less than 500 mA so that we can power
the dongle from the bus. A 3.3V voltage regulator will be required for the audio
subsystem and the hub electronics. One regulator is already included in the video
subsystem design, and this has the capacity to supply up to 400 mA for a camera.
Because the design doesn’t include a camera, we can use the power for the audio
and hub electronics.

326 USB Design by Example

Step 7: Design Optimizations

The hardware subsystems were designed independently. As a result, there are
more components that a little extra design work could eliminate—for example,
there are three 48-MHz crystals. If I were taking this design into production, I
would apply more effort to reduce the component count while still maintaining a
reliable and robust design.

The video, audio, and hub subsystem could be manufactured on a board
approximately the same size as the TV tuner case (3.0 inches x 1.5 inches) as
shown in Figure 14-6. When the board is mounted in a plastic case, we have
created a highly functional and desirable dongle.

Figure 14-6. Representative dongle design

Chapter 14 Putting It All Together

32

Step 8: PC Host Application

The Windows operating system includes drivers for the video and audio
subsystems, so all that is required for the PC host application is some human
interface design and the control task to change bands and channels on the TV
tuner. This software stack is shown in Figure 14-7 with the human interface
program (the one we have to write) highlighted.

Application Human Interface

HIDCLASS.SYS

HIDUSB.SYS
User

Kernel
WDM Video WDM Audio
Driver Driver
USBHUB.SYS

uUsSBD.SYS

UHCD.SYS OpenHCILSYS

Figure 14-7. Most of the required software is included in the operating system

328 USB Design by Example

Figure 14-8 shows a representative human interface that operates with the control
panel applet for audio volume, balance, and tone. The program code behind the
channel-select buttons is included in the Chapter 14 directory on the CD-ROM.
The code basically consists of a look-up table that sends the correct 12C control
codes to the tuner using the program structure that was developed in Chapter 6.
Vendor-defined commands are used to control the I2C bus because that’s how the
chosen components operate.

USE Design By Example: T¥ Tuner Dongle

Figure 14-8. Human interface for the TV tuner

Chapter 14 Putting It All Together 3

CHAPTER SUMMARY

Can you believe it? We have just implemented a TV tuner dongle. This
bus-powered device collects TV station input from an antenna or from cable an
displays the result on the PC host monitor screen with full stereo sound! A sing
USB connection manages video, audio, and channel selection—pretty
impressive.

The design was implemented using a building-block approach for both the I/O
device hardware and the PC host software. Each building block has an interfac
definition: The PC host software interacts with an interface to provide or
consume data, and the I/O device accepts or provides data via this interface and
manages real-world hardware corresponding to this data. A single USB device
can have multiple interfaces, each operating independently, enabling rich
applications to be quickly realized. The USB architecture was designed to enat
comprehensive applications to be implemented as a set of building-block
elements.

CHAPTER 1!
INCREASING DATA BANDWIDTI
INTO THE HOMI

This final chapter takes a forward look at some exciting applications that are
being enabled by USB technology. While designed to give you a flavor of the
possibilities and expanded scope of products that USB can deliver, many of the
examples in this chapter have already been prototyped by Intel, and complete
reference designs are available for license. If you would like more information
about the projects discussed here, please e-mail the author at
john@usb-by-example.com.

PC communications is a rapidly growing application area that is complemented
by USB technology. We’ll look at three existing media types currently supplyir
information into the home (telephone line, TV cable coaxial cable, and satellite
broadcast), and we’ll investigate how we can better use this pre-existing
infrastructure for computer-to-computer communications.

We will discover that USB makes this application area quite straightforward anc
creates many possibilities that are really exciting.

332 USB Design by Example

THE PLAIN OLD TELEPHONE SERVICE (POTS)

The analog telephone line that the telephone company brings up to your home,
and the telephone wiring inside your home, is much underused. The bandwidth
required to support dialing and speech is only 20 Hz to 3.4 kHz. And the
installed wires are capable of supporting 20 Hz to 10 MHz! Figure 15-1 shows a
proposed bandwidth allocation of these telephone wires.

A

POTS

xDSL

Signal Strength

Home
PNA

]] 1 1 } [l
1 T 1 I ¥ L

20 Hz 3.4 kHz 25 kHz 1.1 MHz 55 MHz 9.5 MHz

Frequency

Figure 15-1. Proposed bandwidth allocation of telephone wires

The POTS bandwidth allocation is for a standard analog telephone.

xDSL is a Digital Subscriber Loop that allows high-frequency data
communication between a home and a local telephone exchange. An xDSL
modem operates at speeds of 400 Kbps, which is eight times faster than a
56-Kbps modem. The telephone company needs to install equipment at their
branch exchange to communicate with this modem, so the service will not be
available in some areas.

Chapter 15 Increasing Data Bandwidth into the Home 333

Networking is an in-home signaling scheme that can be used to interconnect
multiple PCs in a single home. These networking signals do not propagate to the
telephone company branch exchange (in fact, they are blocked from doing this to
preserve your privacy), so no equipment needs to be installed there. The
HomeRun consortium has been formed to standardize networking
implementations.

All three services can operate on the same telephone wires at the same time with
no interference between the services. An xXDSL modem can be used at the same
time as voice telephone calls—you effectively get your telephone line back!

An xDSL Modem Reference Design

The hardware connection to a POTS line to support xDSL is simplified following
the introduction of purpose-built components. Figure 15-2 shows a block
diagram of an xDSL modem using the Analog Devices chipset.

] POTS
UsSB usB o ATM Frame Multitone {— Analog [High-current Line
<! Controller | ‘5, Interface - Coprocessor| | Front-end Amplifiers
8x930 S AD6438 AD6439 | AD6437 | AD8016
B Hybrid
13
[0]
[&3
£
“Flash” 2 DSP Interleaved
Memory [15[AD2183 RAM EPROM

Figure 15-2. Block diagram of an xDSL modem

The design uses two microcontrollers that share the modem task. A Digital
Signal Processor (AD2183 in the figure) is responsible for the analog side of the
interface and includes high-output current amplifiers (AD8016) to drive the
POTS line. Several supporting components (AD6437/8/9) construct outgoing
ATM frames and decode incoming ATM frames that are processed by an Intel
8x930AD microcontroller.

334

USB Design by Example

The 8x930 handles modem initialization, configuration, and the high-speed, bulk
data transfers to/from the PC host. The modem enumerates as a Communications
Class Device, and the operating system uses an NDIS 5 Miniport Driver to
communicate with the modem (Figure 15-3). Standard TCP/IP and IPX/SPX
drivers included with the Windows 98 operating system allow the modem to be
treated just like a network connection, so no other drivers are required.

TCP/IP IPX/SPX

NDIS

NDIS 5 Miniport Driver

USB Device Driver

Figure 15-3. NDIS 5 miniport driver enables networking software

Figure 15-4 shows a photograph of the current example design.

Courtesy of intel Corp., Architecture Development Laboratory.

Figure 15-4. Example xDSL modem design

Chapter 15 Increasing Data Bandwidth into the Home 335

Home Networking Over Phone Wires

The Home Phoneline Networking Alliance (HomePNA) was formed with the
objective of quickly creating a de facto standard and widely available in-home
networking solution that leverages the existing phoneline. The HomePNA has
two goals: to endorse an initial available technology at 1 Mbps that meets all of
the above criteria, and to rapidly deliver a roadmap to higher performance and
functionality that is backward-compatible with the existing 1-Mbps solution.
This technology promises to bring the power of networking to home users for the
first time in a way that is inexpensive and easy to use.

Figure 15-5 shows a possible home network diagram, and the phone line to PC
connection is a natural one for USB.

Public Networks
PSTN, Internet

Network
Camera

Set-top Box

Home Net
Hub

Shared Printer

Scanner

Figure 15-5. Possible home network using phone wires

336

USB Design by Example

Intel has introduced a single-chip Phoneline/Ethernet LAN controller that can be
designed inside a PC host or in a USB dongle with a supporting microcontroller
such as the Intel 8x930 (Figure 15-6). The PC host will use its included
networking support, so no more software will be required. Full peer-to-peer
networking will make it straightforward for multiple home PCs to share
resources such as disk drives, printers, and scanners.

“Flash”
Memory POT
USB usB PhoneLine Lines
— Controller LAN Controller || Physical
Interface
8x930 21145
Data Buffers

Figure 15-6. Possible USB-to-phoneline networking dongle

A NEw LooK AT CABLE COAX

The cable coax coming into your home represents a very large-capacity data
pipe. Most cable TV systems are analog at this time, and the designs in this
section interface directly to this signaling scheme. Some newer installations are
digital cable, and these designs are covered in the following “Digital Broadcast
and the PC” section. Two aspects of using cable coax will be covered: a cable
modem design that allows a very high bandwidth connection to the Internet; and
an in-house, all-functions, network currently in user trials by Peracom
Corporation.

Chapter 15 Increasing Data Bandwidth into the Home 337

Cable Modem Example

Although they share a similar name, a telephone modem and a cable modem are
quite different in operation. A cable modem is a modem in the true sense of the
word—it MOdulates and DEModulates signals. But the similarity ends there,
because cable modems are practically an order of magnitude more complicated
than their telephone counterparts. Cable modems can be part-modem, part-tuner,
part-encryption/decryption device, part-bridge, part-router, part-NIC card, part-
SNMP agent, and part-Ethernet hub. In the typical home installation shown in
Figure 15-7, a splitter is used to connect both a cable modem and a TV to the
same coax cable. The cable modem sends and receives data in two slightly
different ways. In the downstream direction, the digital data is modulated and
then placed on a 6-MHz television carrier, somewhere between 42 MHz and

750 MHz. This signal can be placed in a 6-MHz channel adjacent to TV signals
on either side without disturbing the cable television video signals. The upstream
channel, also known as the reverse path, is transmitted between 5 and 40 MHz.

Internet

Headend
Controller

Courtesy of COM21, Inc.

Figure 15-7. Cable modem and TV signals use the same coax

338 USB Design by Example

Figure 15-8 shows the bigger picture that includes the cable company’s headend
equipment and their very high-speed connection to the Internet. A cable modem
is always on, so there is no need to dial up or otherwise wait for a connection.
The modem’s speed is between 200 Kbps and 2 Mbps—Iarge files that can take
up to 10 minutes to download using a telephone modem at 28.8 Kb will
download in about 8 seconds using a cable modem. Once you’ve used one, you
will never want to give it back!

Telecommuter,
Corporation A

Corporation A 1.5M/1.5M

Private T ~ 1M/200K SOHO/Sm i
) all Office
Network . Up to 8 Devices

200K/50K

Residential

INTERNET

Courtesy of COM21, Inc.

Figure 15-8. Cable modem/TV system overview

Chapter 15 Increasing Data Bandwidth into the Home 339

USB is an ideal connection for the cable modem to the PC because it is easy,
supports the data rate requirements, and creates a good demarcation between “my
PC” and “the cable company’s modem.” Earlier versions of cable modem were
implemented as a PCI plug-in card, and a skilled technician was required to
install and set up a user’s environment—quite an expensive procedure. So let’s
look inside a cable modem to see how it is built. Figure 15-9 shows a block
diagram of a typical cable modem; this example is based on Broadcom’s chipset.

DRAM SRAM | | |_{ MOdulator | | A, og
(4 MB) (256 KB) Media BCM3037 Front End | Coax
usB usB Access Cable
<mmmmm) Controller Controller <m—)
SL11R | Tuner
] » 2 ry
MCU M’Z;Sc?ry BCM3220 | | peModulator || g’{;‘f;‘;‘;’
MC68360(| 4 mg) BCM3037

Figure 15-9. Block diagram of a cable modem

The incoming modulated data (downstream) in 50-to-850-MHz frequency band
is amplified and converted to baseband by the front-end tuner. The baseband
signal is digitized and processed by a QAM demodulator/error corrector
(BCM3116). The corrected data stream is presented to a Media Access
Controller (BCM3220 in the figure) that parses the incoming data frames and
extracts timing information, control messages, and data packets, and stores them
in high-speed shared memory. The system microcontroller (MC68360EN)
accesses this data in shared memory and performs transactions that are requested
by the headend equipment. This microcontroller runs embedded code stored in
the flash memory and uses its local DRAM for data and code. All
communication between the microcontroller and other units in the system occurs
over the system bus, which provides a 32-bit data path to DRAM and 8/16-bit
interface to other units. The microcontroller forwards IEEE 802.3 data packets
that are directed to the PC host from SRAM into the USB controller (SL11R).
The USB controller manages a high-speed data connection to the PC host, the
transfer occurring, in this example, as many bulk data transfers.

340

USB Design by Example

In addition to supporting the standard device requests on Endpoint 0, the cable
modem also supports Communications Device Class requests. Specifically, the
modem supports the Ethernet Networking Control Model as identified by the
subclass code. The PC host software is built around an NDIS Miniport driver
(just as the xDSL modem was) with a DOCSIS-compliant (Data-Over-Cable
Service Interface Specification) interface above that. For an example design, see
Figure 15-10.

Courtesy of Architecture Development Laboratory, Intel Corp.

Figure 15-10. Example design implementation

Chapter 15 Increasing Data Bandwidth into the Home 341

Cable Networking Example

This section uses Peracom’s HomeConnex product as an example of the ease of
use that can be created with USB technology. HomeConnex uses the existing
cable infrastructure in a home and adds capability via intelligent slave units,
called casters, as shown in Figure 15-11.

Coax IN from

Cable Company Cable Modem

(optional)

AN Modulator

AV Modulator e,
- - - A/ Modulator

b

Courtesy of Peracom Networks, Inc.

Figure 15-11. Peracom’s HomeConnex networking product

342

USB Design by Example

PC Caster Overview

Each computer connects to a coaxial cable through a PC modulator that enables
print and file sharing over a Computer Data Highway. The PC Modulator also
creates an in-home channel of your broadcast-enabled PC’s screen, making it
much easier for DVD-equipped computers to display to any TV in the house.
With an IR keyboard and RF mouse, you can control your computer from any
room in the house. The computer can send IR codes over the network, as well as
control which IR signals go where, so your entire home network can be
controlled by the PC.

Media Caster Overview

An Audio/Video Modulator allows you to connect any audio/video device to the
coaxial cable network in your home, and send the output to every TV set in your
house. No special wiring is needed: simply plug the system side of the
modulator into an existing Cable TV (CATV) outlet in any room of your house;
then plug the TV side into your television; and finally, connect your audio/video
device, such as a VCR, into the RCA jacks. The A/V modulator will be
broadcast to every TV in your home, on its own channel (that you choose). This
will work with any device with A/V outputs, including DSS, DVD, Laser Disc,
VCR, Audio Jukebox, and Security Cameras. The modulator is equipped with an
IR port as well, which allows you to control any device that uses infrared from
anywhere in your home.

Cable Caster Overview

A distribution unit distributes Cable TV, in-home TV channels, a Computer Data
Highway, and an Infrared Highway to multiple coax drops. The distribution unit
couples upstream TV to the other coax drops connected to the bidirectional

F connectors. The distribution unit also amplifies signals from the cable
company or TV antenna for home distribution. There is a notch filter built into
the distribution unit to prevent in-home channels and data networking channels
from leaving the home.

Chapter 15 Increasing Data Bandwidth into the Home 343

The coax cable is the carrier of multiple independent channels (Figure 15-12). In
addition to the expected cable TV channels, the system is designed for 16
in-home channels that can be created by a PC caster or an A/V caster. The

coax also has a computer data “channel,” an infrared “channel,” and allocation
for shared cable modem ‘“channel.”

55 to 900
MHz
5 to 42 MHz
2.5t0 5 MHz Infrared Highway
Oto 2.5 MHz Computer Data Highway

Figure 15-12. Bandwidth allocation on the HomeConnex network

Computer Data “Channel”

Multiple computers can share files and printers using the computer data
“channel.” The hardware connection to the PC is via USB, and the PC caster
units communicate with each other over this computer data channel. The
software used to transfer files and to print on remote printers is already built into
the Windows operating system. An IrDA Data channel provides the file transfer
mechanism over the infrared channel for laptop computers and IR-equipped
desktop computers.

344

USB Design by Example

The Infrared “Channel”

Almost all consumer electronics devices are controllable via an infrared remote
control. Unfortunately, they are all different, so you need n remotes for n
devices. Multibrand and learning remotes have eased the coffee-table clutter of
remotes, and Peracom’s HomeConnex system can take us the next step. We now
have a PC host in the control loop that gives the system a lot more flexibility and
ease of use. Signals from any remote control can be directed to any receiver—
you can even play your Sony PlayStation from_any room by tuning into your
PlayStation channel and using a Sony IR remote control. The PC host can also
create IR control signals to stop and start VCRs or do whatever an old IR remote
did.

Cable Modem “Channel”

In the previous section we learned how wonderful a cable modem is—it’s so
good that everyone will want one. The HomeConnex system lets every PC host
in the house share a single modem transparently.

HomeConnex Summary

If you have more than two PCs and more than two televisions, you will discover
that HomeConnex is an excellent home networking product. I emphasize the
word home because we are interconnecting more than just the PCs—we are
creating a whole-house video and sound system.

Projects that you have put off, such as a security camera over your yard or music
on the deck, are very simple additions with this system. I've been using the
product for several months now, and new uses are appearing all the time—I can
view my son’s PC screen from my office and feel comfortable that he is doing
his homework. I can also see how well he is doing on his Sony PlayStation
game. We now have a “Mom” channel that turns on every TV in the house, if
they are not on, and allows my wife to rally the household for dinner.

The ease in which my laptop can connect into the home-networking, infrared
channel from almost every room in the house means that I can be even more
productive at home. System reconfiguration and upgrades are also easy because
of the combination of USB and infrared peripherals.

This is the kind of science fiction system that George Jetson would have, and
with USB it is available today.

Chapter 15 Increasing Data Bandwidth into the Home 345

DIGITAL BROADCAST AND THE PC

The availability of a high-speed digital data delivery mechanism integrated into
the satellite direct broadcasting system creates a unique opportunity to design and
introduce a new PC peripheral. This peripheral would receive the standard
digital broadcast signal from a direct broadcast satellite (DBS) or a digital
broadcast over the cable network, and would forward the demodulated digital
stream to a PC. Because this digital data stream can carry data of any nature, the
peripheral can be used with video, audio, and computer data broadcasts that,
being received by PC, could be handled by software to create adequate
presentation to the PC user. In the case of digital TV, the software will be able to
decompress and display video on a PC screen. If audio data is filtered by the
peripheral from the composite multichannel stream, the software can decompress
and re-create audio and send it to speakers via the standard audio subsystem.
High-speed data streams can be used to deliver a rich data content, and their use
is limited only by the creativity of the content and application developer.

The development of digital broadcasting services evolves at a surprisingly fast
pace. From the technical perspective, the infrastructure for digital data
distribution is already in place, with more capacity and features to follow in the
near future. The existing broadcast systems that appeared primarily for digital
TV are built on well-defined standards and specifications, which are suitable for
data broadcast as well. The international standards used for digital TV
broadcasting provide a solid foundation for future interoperability.

This section introduces the design of a low-cost, stand-alone, USB-based,
receiver designed to receive satellite broadcasts, demodulate the signal, filter
appropriate data streams, and forward them to a PC host. The system uses
transport streams and data formats, which are defined by the ISO 13818 (MPEG
Transport stream) and the ETSI DVB-S specifications. The material is presented
to give a flavor of the design; full details are available, under license, by
contacting the author.

346

USB Design by Example

The receiver is one of the components of the broadcast system based on the DVB
specifications. The whole system consists of the satellite headend, direct
broadcast satellite(s), low-noise outdoor unit with a dish antenna and LNBF unit,
the indoor receiver, and a PC with appropriate software (Figure 15-13).

j§ Communication Salellite
B with Transponders

RF Modulators and
Uplink Transmitters

Headend
Multiplexor

Satellite
Receiver
Video Stream 1——
Video Stream 1——
Data Stream 1 ——
Sl Stream

Home PC

Figure 15-13. Direct broadcast satellite system

At the headend, TV and digital data streams are multiplexed, and an RF signal is
modulated by the composite data stream. The uplink transmitter working in the
17.3-to-17.8-GHz frequency band sends the signal to the satellite, which is
equipped with transponders. The transponder receives this uplink signal,
converts its frequency to one of the Ku-band downlink channels, amplifies it, and
sends it back to Earth with a directional antenna. There may be several
transponders on the satellite, each tuned to a separate individual uplink and
downlink frequency.

Chapter 15 Increasing Data Bandwidth into the Home 347

usB

Each transponder can deliver up to 41-Mbps data streams that may contain
multiple audio, video, and data channels. The downlink transmitters use circular
polarization to reduce dependencies on the atmosphere conditions and simplify the
receiver antenna alignment. When the 12-GHz Ku-band satellite signal reaches
the dish antenna, it is first amplified by the low-noise microwave amplifier and
then converted to the first intermediate frequency (950-to-2150 MHz). These
functions are done by an integrated LNBF unit to simplify the transmission and
further processing of the signal, and to reduce the overall noise level in the
system. It is important, however, that all 22 transponder signals are present in the
wide-band signal sent over coaxial cable from the dish to the satellite receiver.
Figure 15-14 looks inside the satellite receiver.

DRAM Flash
2 MB) Memory
uss (4 MB) Demodulator Analo Satellite
Interface MPEG & Frontend | Dish
Transport |+ Forward [
Netchip Demultiplexer Error Tuner. ete
2888 Smart Card MCU Correction
interface LSI L64108

Figure 15-14. Block diagram of a satellite receiver

When the first IF signal reaches the tuner, it filters only one transponder’s band
and further amplifies and converts the signal into a second IF signal. After
filtering, the IF signal is demodulated, and Forward Error Correction algorithms
are applied. These techniques guarantee the reliable demodulation even in the
presence of noise and RF interference. Unlike the conventional analog TV that
uses a separate frequency channel for each TV program, multiple digital TV
programs can be sent in the same multiplexed MPEG transport stream on the
same carrier frequency. Therefore, before data can be viewed, the transport
stream must be demultiplexed, and individual streams must be extracted for
audio, video, and data.

348

USB Design by Example

The USB interface controls data exchange over the USB bus. It supports several
logical data connections, and it is the only interface to the PC host. The biggest
portion of the USB bandwidth is used for a unidirectional data stream from the
MPEG transport demultiplexer. When the data is received by the USB port in
the PC, it is processed first by the USB controller driver, which supports the
physical USB interface, and then by the operating system that in turn dispatches
the received packets to the applications to which they belong. For example,
video and audio streams are directed to the MPEG player application, which
decompresses the data and presents it on the PC screen.

CHAPTER SUMMARY

USB is a very convenient, high-speed pipe used to get data into and out of a PC
host. This chapter has reviewed several methods of increasing the data
bandwidth into the home (or small office!). In all cases the connection to the PC
host was USB, which simplified each installation. Sharing information via an
in-home network and having instant (no dial-up) access to the Internet will
enable the whole family to be more efficient. Whether it’s researching the Civil
War for a school project, downloading large specifications, or high-speed
surfing, USB can deliver the capability of easy-to-use operation.

Important too for the telecommunications applications discussed in this chapter is
the demarkation between “my PC” and “your communications equipment.”
Because the connection is a standard USB cable, the equipment at each end can
be independently tested to isolate “my problem” from “your problem.”

USB is already having a positive effect on the PC host and a growing number of
applications. With the help and information from this book, you too will be able
to make an impact! Good luck.

