
Hassan Salmani

Trusted
Digital
Circuits
Hardware Trojan Vulnerabilities,
Prevention and Detection

Trusted Digital Circuits

Hassan Salmani

Trusted Digital Circuits
Hardware Trojan Vulnerabilities, Prevention
and Detection

123

Hassan Salmani
EECS Department
Howard University
Washington, DC, USA

ISBN 978-3-319-79080-0 ISBN 978-3-319-79081-7 (eBook)
https://doi.org/10.1007/978-3-319-79081-7

Library of Congress Control Number: 2018937677

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG part
of Springer Nature.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-79081-7

To Maryam and Karim

Preface

The complexity of modern designs, the significant cost of research and development,
and the shrinking time-to-market window heavily enforce the horizontal integrated
circuit design flow. Many entities across the globe might be involved in the flow
and none are necessarily trusted. A malicious party can launch a hardware Trojan
attack through manipulating a circuit to undermine its characteristics under rare
circumstances at different stages of the flow before and after circuit manufacturing.
Detection of hardware Trojans using existing pre-silicon and post-silicon verifica-
tion techniques is a very challenging task because of the complexity of modern
designs, their variety of application, and limited time for verification.

This book is entirely dedicated to study hardware Trojans across the integrated
circuit design flow. Unprecedentedly, the book carefully studies integrated circuits
at register-transfer level, gate level, and layout level against hardware Trojans.
Vulnerabilities of each level to hardware Trojan insertion are discussed, and existing
solutions for preventing and detecting hardware Trojans are studied. The book
extends its study to hardware Trojan detection after integrated circuit manufacturing
and deliberates current testing techniques for hardware Trojan detection. Vulnera-
bilities of mixed-signal circuits do not remain hidden, and the book studies possible
hardware Trojan design in mixed-signal circuits and evaluates existing techniques
for hardware Trojan prevention and detection in mixed-signal circuits.

This book is organized into nine chapters. Chapter 1 provides insights into the
global integrated supply chain accompanied by statistics. It further defines hardware
Trojans and explores their details. Chapter 2 studies vulnerabilities of an integrated
circuit at the register-transfer level to hardware Trojan insertion. It comprehensively
studies some of promising techniques for vulnerability quantification. In two
major parts, Chap. 3 continues with hardware Trojan prevention and detection at
the register-transfer level and discusses their effectiveness. Chapter 4 targets the
vulnerabilities of gate-level circuits to hardware Trojans. Its main focuses are on
techniques suggesting vulnerability quantifications at this level. Chapter 5 presents
some of the best known techniques for hardware Trojan prevention and detection in
a gate-level circuit. Chapter 6 continues with vulnerabilities of an integrated circuit
to hardware Trojan insertion at the layout level. Chapter 7 then discusses some of

vii

viii Preface

the known techniques for hardware Trojan prevention and detection at the layout
level in detail. Chapter 8 presents an overview on some existing trusted test pattern
generation for hardware Trojan detection after integrated circuit manufacturing.
Chapter 9, the last chapter, demonstrates hardware Trojan implementation in mixed-
signal circuits. It then studies some of the existing techniques for their prevention
and detection.

The book offers a comprehensive and detailed analysis of hardware Trojans
before and after integrated circuit manufacturing. This book provides design
practitioners with guidance on protecting their designs against hardware Trojans and
reveals research shortcomings that require attention to address hardware Trojans.
The author would like to acknowledge that a part of this book is based on his
research during a PhD program under the supervision of Dr. Tehranipoor at the
University of Connecticut.

Washington, DC, USA Hassan Salmani

Contents

1 The Global Integrated Circuit Supply Chain Flow
and the Hardware Trojan Attack . 1
1.1 The Global Integrated Circuit Supply Chain . 1
1.2 The Hardware Trojan Attack . 5
1.3 Conclusions . 10
References . 11

2 Circuit Vulnerabilities to Hardware Trojans
at the Register-Transfer Level . 13
2.1 Circuits at the Register-Transfer Level . 13
2.2 Value Range Analyses for Vulnerability Assessments 14

2.2.1 Statement Analysis . 14
2.2.2 Observerability Analysis . 18
2.2.3 Application of Value Range-Based Vulnerability Analysis . . . 20

2.3 Unspecified IP Functionality . 23
2.3.1 Hardware Trojans in Don’t Cares . 24
2.3.2 Dangerous Don’t Cares Identification . 24

2.4 Formal Verification and Coverage Analysis for Vulnerability
Analyses . 26

2.5 Conclusions . 27
References . 28

3 Design Techniques for Hardware Trojans Prevention
and Detection at the Register-Transfer Level . 31
3.1 Hardware Trojan Prevention at the Register-Transfer Level 31

3.1.1 Dual Modular Redundant Schedule at High-Level Synthesis 31
3.1.2 Proof-Carrying Hardware . 33

3.2 Hardware Trojan Detection at the Register-Transfer Level 35
3.2.1 Control-Flow Subgraph Matching . 35

3.3 Conclusions . 37
References . 38

ix

x Contents

4 Circuit Vulnerabilities to Hardware Trojans at the Gate Level. 39
4.1 Circuits at the Gate-Level. 39
4.2 Analyzing Vulnerabilities Based on Functional Analyses 39
4.3 Analyzing Vulnerabilities Based on Structural and Parametric

Analyses . 40
4.3.1 Hardware Trojan Ranking . 43

4.4 Analyzing Vulnerabilities in Finite State Machines and
Design-for-Test Structures . 45

4.5 Conclusions . 47
References . 47

5 Design Techniques for Hardware Trojans Prevention
and Detection at the Gate Level . 49
5.1 Hardware Trojan Prevention at the Gate Level . 49

5.1.1 Information Flow Tracking for Hardware Trojan Prevention. 49
5.2 Hardware Trojan Detection at the Gate Level . 51

5.2.1 Signal Correlation-Based Clustering for Hardware
Trojan Detection . 51

5.2.2 Score-Based Classification for Hardware Trojans Detection . 53
5.2.3 The Controllability and Observability Hardware Trojan

Detection (COTD) . 55
5.3 Conclusions . 66
References . 67

6 Circuit Vulnerabilities to Hardware Trojan at the Layout Level 69
6.1 Circuits at the Layout Level . 69
6.2 Motivation . 70
6.3 Layout Vulnerability Analysis Flow . 74

6.3.1 Cell and Routing Analyses . 74
6.3.2 Net Analysis . 76

6.4 Simulation Results . 77
6.5 Conclusions . 91
References . 92

7 Design Techniques for Hardware Trojans Prevention
and Detection at the Layout Level . 93
7.1 Hardware Trojan Prevention at the Layout Level . 93

7.1.1 Dummy Scan Flip-flop Insertion and Layout-Aware
Scan Cell Reordering . 93

7.1.2 Ring Oscillator Network . 95
7.1.3 Trojan Prevention and Detection (TPAD) Technique 95
7.1.4 Infrastructure IP for Security (IIPS) Technique 98

Contents xi

7.2 Hardware Trojan Detection at the Layout Level. 99
7.2.1 The Current Integration Technique . 99
7.2.2 Delay-Based Hardware Trojan Detection Using

Shadow Registers . 100
7.2.3 Temperature-Based Hardware Trojan Detection 101
7.2.4 Circuit Layout Reverse Engineering for Hardware

Trojan Detection . 104
7.3 Conclusions . 106
References . 106

8 Trusted Testing Techniques for Hardware Trojan Detection 109
8.1 Fault Simulation-Based Test Pattern Generation . 109
8.2 Multiple Excitation of Rare Switching (MERS). 111
8.3 Sustained Test Vector Methodology. 113
8.4 Monte Carlo-Based Test Pattern Generation Method 114
8.5 Test Pattern Generation Based on ATPG and Model Checking. 115
8.6 Test Pattern Generation for Malicious Parametric Variations 117
8.7 Conclusions . 119
References . 119

9 Hardware Trojans in Analog and Mixed-Signal Integrated Circuits . . 121
9.1 Hardware Trojans Design in Analog and Mixed-Signal

Integrated Circuits . 121
9.1.1 Hardware Trojans in Wireless Cryptographic ICs. 121
9.1.2 Dynamic Analog Hardware Trojans . 122
9.1.3 Hardware Trojan Trigger by Capacitor . 125
9.1.4 Stealthy Dopant-Level Hardware Trojans . 125

9.2 Hardware Trojans Prevention and Detection in Analog and
Mixed-Signal Integrated Circuits. 127
9.2.1 Positive Feedback Loop Analyses . 127
9.2.2 Information Flow Tracking in AMS Circuits 127
9.2.3 Side-Channel Fingerprinting . 128

9.3 Conclusions . 129
References . 130

Chapter 1
The Global Integrated Circuit Supply
Chain Flow and the Hardware Trojan
Attack

1.1 The Global Integrated Circuit Supply Chain

Integrated circuits (ICs) are the brain of any electronic computing machine that are
woven into the fabric of modern living where they deliver accuracy, throughput, and
dependability. Their usages have been expanded over the decades from main frames
and personal desktop computers to smart wristwatches, autonomous vehicles, and
smart homes thanks to Internet of Things (IoT). IoT offers connectivity of electronic
devices and enables information-based decision making to provide services in more
efficient manners. Figure 1.1 shows revenues from the semiconductor industry
market for integrated circuits worldwide from 2009 to 2018. In 2018, revenue
from integrated circuit sales is expected to reach US $364.03 billion predicted
by Statista [1]. The same source has predicted that the global IoT market will
reach more than US $1.7 trillion by 2019, with the number of connected devices
worldwide forecast to reach 20.35 billion in the same year.

In spite of the huge market of integrated circuits that has created an intense race
between semiconductor vendors, such as Intel and Samsung, the cost of a new
design start at 45 nm or below is now approaching (or will even exceed) $50M.
Given this research and development (R&D) investment in a single-chip design
start, the semiconductor supplier undertaking this design start would need to sustain
a significant percentage of a $500M+ market for the return on investment (ROI) on
that chip to make sense. In addition to cost, time-to-market plays a critical role in this
race. Market windows for new products are becoming short. Therefore, it becomes
critical for semiconductor suppliers to ensure that designs arrive the market as early
as possible within the target market window in order to maximize the revenues from
that design. Otherwise, a significant loss of potential revenue or even a total loss of
the market opportunity is plausible. These realities have made the need for design
techniques based on intellectual property (IP) reuses (the horizontal integrated
circuit design flow) a necessity to amortize these costs over several applications (or
generations thereof) in order to get the desired ROI on their initial investment [2].
Further, the companies have outsourced their manufacturing to merchant foundries,

© Springer International Publishing AG, part of Springer Nature 2018
H. Salmani, Trusted Digital Circuits, https://doi.org/10.1007/978-3-319-79081-7_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79081-7_1&domain=pdf
https://doi.org/10.1007/978-3-319-79081-7_1

2 1 The Global Integrated Circuit Supply Chain Flow and the Hardware Trojan Attack

2009
0

50

100

200 190.34

249.9 247.07 238.24

277.3 276.7274.48

340.19
364.03

251.78

R
ev

en
ue

 in
 b

ill
io

n
U

.S
. d

ol
la

rs

300

400

250

350

450

150

2010 2011 2012 2013 2014 2015 2016 2017* 2018*

Fig. 1.1 The statistic shows the global revenue from integrated circuits from 2009 to 2018 [1]

and they even further have outsourced the design and verification of their chips to the
third-party design service companies. Instead they have focused on core competence
like research and development of new technologies and defining protocols [3].

This trend has significantly driven the semiconductor silicon IP market at the
rapid pace in the recent years. The market is estimated to change from the value
of US $3.306 billion in 2017 to a value of US $6.45 billion by 2022, at a CAGR
of 11.71% over the forecast period 2017–2022 [4]. The various applications of the
IP market include smart devices, automotive, and computers & peripherals. The
major drivers of the market are the emerging consumer devices adoption, demand
for connected devices, coupled with the demand for modern system-on-chip (SoC)
designs. A SoC is a complete system that is realized on one chip. The “system”
mainly consists of a microprocessor, memory, and peripherals. The processor may
be a custom or standard microprocessor. There may be multiple processors that
are connected through the network-on-chip interconnection. Figure 1.2 presents
a typical SoC with Advanced RISC Machine (ARM) processor, dedicated digital
signal processing (DSP) processors, and various kinds for input/output ports such
as Ethernet and serial lines that are interconnected through the APB and ASB/AHB
interconnections.

There are three main categories of IPs [5]: soft, firm, and hard. Soft IP blocks
are specified at the register transfer level (RTL) or higher-level descriptions. As
a hardware description language (HDL) is process-independent, they are more
suitable for digital cores. They are highly flexible, portable, and reusable, but not
necessarily optimized in terms of timing and power. Presented at the layout level,
hard IP blocks are highly optimized for a given application in a specific process.

1.1 The Global Integrated Circuit Supply Chain 3

JTAG
Scan

ARM
Processor

Voltage
Regulator

EBI

SRAM

Flash
A

S
B

/
A

H
B

Flash
Programmer

Peripheral
Data Controller

Peripheral
Bridge

A
P

B

M
em

er
y

C
on

tr
ol

le
r

Application-Specific
Logic

CAN

USB Device

Ethernet MAC

PID Ctrl.

Debug Unit
Real Time Timer

Watchdog Timer
Prog. Int. Timer

Power On Reset
Brownout Detect

RC Osc

Reset Ctrl.

Osc

PLL

Power Mgt. Ctrl.
Advanced Int. Ctrl.

System Controller

P
IO

USART0-1

SPIP
IO

Two Wire Interface

ADC0-7

PWM Ctrl

Synchro Serial Ctrl

Timer/Counter 0-2

P
IO

Fig. 1.2 A typical SoC design realized by integration of various IP blocks

Their characteristics are already determined; however, this comes with high cost
and lack of flexibility. Firm IP blocks are parameterized circuit descriptions, so they
can be optimized according to specific design needs. Firm IPs are between soft and
hard IPs, being more flexible and portable than hard IPs, yet more predictable than
soft IPs.

Outsourcing causes the emergence of design service companies where there are
extensive resources of human intellectuals at a reduced labor cost. For example,
the total revenue from very large integrated circuit (VLSI) design services market
in India was estimated at US $0.76 billion in 2007 and expected to grow to US
$1.38 billion by 2010. Almost 70% of the business comes from the USA while
Europe is the next largest contributor. The Indian VLSI design services market
comprises of original equipment manufacturers (OEMs), electronic manufacturing

4 1 The Global Integrated Circuit Supply Chain Flow and the Hardware Trojan Attack

Table 1.1 VLSI projects breakup by the type of design in India between 2007 and 2010 [6]

2007 (%) 2008 (%) 2009 (%) 2010 (%)

Specification to tape-out 10.9 11.0 12.5 13.8

Module design and verification 41.8 40.4 39.5 38.4

Physical design 24.7 24.3 22.8 21.4

IP development 15.8 16.0 16.1 17.0

Chip testing 6.8 8.3 9.1 9.4

service (EMS), chip design companies, electronic design automation (EDA) tool
companies, IP companies, design services companies, testing and verification
companies, and fabrication equipment companies. The instances of specification
to tape-out projects are in constant increase in India. End-to-end product design
will gain more traction as the market matures further. There will be an increase in
IP development with more design services moving closer to product development.
With an increase in skill set in the testing space, the chip testing market will go up.
Table 1.1 presents VLSI projects breakup by the type of design in India between
2007 and 2010 [6].

In early day of the semiconductor industry, a single company would often be
able to design, manufacture, and test a new chip. However, the costs of building
manufacturing facilities—more commonly referred “fab”—have gone extremely
high. A fab could cost over US $200 million back in the 1980s; however, by
employing advanced semiconductor manufacturing equipment to produce chips
with ever-smaller features, a modern fab costs much more [7]. For example, in
late 2012 Samsung made a new fab in Xian, China that cost US $7 billion. It has
been estimated that “[i]ncreasing costs of manufacturing equipment will drive the
average cost of semiconductor fabs between $15 billion and $20 billion by 2020”
[8]. While the congressional interest is the retention of high-value semiconductor
manufacturing in the United States, US companies are building semiconductor
fabrication plans (fabs) abroad, primarily in Asia. Furthermore, some semiconductor
firms are becoming “fab-less,” focusing corporate resources on chip design and
relying on contract fabs abroad to manufacture their products. At year-end 2015,
there were 94 advanced fabs in operation worldwide, of which 17 were in the United
States, 71 in Asia (including 9 in China), and 6 in Europe. The Chinese government
regards the development of a domestic, globally competitive semiconductor industry
as a strategic priority with a stated goal of becoming self-sufficient in all areas of the
semiconductor supply chain by 2030. China faces significant barriers to entry in this
mature, capital-intensive R&D-intensive industry [9]. It would be also interesting to
look at how the foundry market by feature dimension is being predicted till 2025
in Fig. 1.3 [10]. A considerable growth is being predicted for technology nodes less
than 10/7 nm. The predication can be interpreted as a higher force behind design
outsourcing due to the significant cost of fabs at such low technology nodes.

1.2 The Hardware Trojan Attack 5

$100B

$75B

$50B

$25B

$0B
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

≤10/7nm

≥0.25μm

16/14nm

20nm

28nm
45/40nm
65nm
90nm
0.13μm
0.18/0.15μm

F
ou

nd
ry

 M
ar

ke
t

Fig. 1.3 Foundry market by feature dimension [10]

Table 1.2 Dependability attributes

Attribute Definition

Availability Readiness for correct service

Reliability Continuity of correct service

Safety Absence of catastrophic consequences on the users and the environment

Integrity Absence of improper system alteration

Maintainability Ability to undergo modification and repairs

Confidentiality The absence of unauthorized disclosure of information

1.2 The Hardware Trojan Attack

The dependability of a computer system determines its accountability. The depend-
ability of a system is based on the compliance of delivered services by the system
with its functional specifications. The function of the system is described by
functional specifications in terms of functionality and performance. The service
delivered by the system, on the other hand, is its behavior as it is perceived by its
user(s). A broad concept, dependability encompasses availability, reliability, safety,
integrity, and maintainability attributes as described in Table 1.2 [11].

Security is more specific, focusing on availability, integrity, and confidentiality.
System security demands availability for only authorized actions, integrity with
improper meaning unauthorized, and confidentiality. Trust is the dependency of a
system (system A) to another system (system B), through which the dependability of
system A is affected by the dependability of system B. Trustworthiness in a system
is the assurance that the system will perform as expected [11].

A modern society utterly depends on integrated circuits, or chips, which are
the virtual brains for all electronics. While economical matters push the global
supply chain for integrated circuits, they are becoming increasingly vulnerable

6 1 The Global Integrated Circuit Supply Chain Flow and the Hardware Trojan Attack

Design Specification

IPsoft IPfirm IPhard Codeing

Circuit Development

Physical Design

GDSII GenerationD
es

ig
n

D
ev

el
op

m
en

t

Chip Fabrication and
Packaging

PCB Fabrication

PCB Assembly

Unit Assembly

System Assembly

Wafer and Package Test

Bear Board Test

Board Test

Unit Test

System Test

Functional Verification

Parametric Verification

Programmable/reconfigurable
component

System Specification

Functional/Parametric
Verification

Fig. 1.4 System integration and test process

to malicious activities such as reverse engineering, overproduction, and hardware
Trojan insertion. A computer system development, as shown in Fig. 1.4, consists
of several steps which are not necessarily performed all in the same design house.
The first step is to determine system specifications based on the customer’s needs.
A complex system may require a variety of components like memories and chips
with different applications and functionality.

After providing the system specifications and choosing the structure of sys-
tem and its required components, design development requires different tools.
Each component demands specific attention to meet all the system specifications.
To expedite system development and to reduce the final cost, outsourced alter-
natives have gradually replaced in-house processes. Third-party IP cores have
displaced the in-house libraries of logic cells for synthesis. Commercial software
has supplanted homegrown computer-aided design (CAD) tool software. In the
next step, designed chips are signed off for fabrication. Nowadays, most companies
are fabless, outsourcing mask production and fabrication. Beside custom designs,
companies can reduce total cost and accelerate system development by using
commercial-off-the-shelf (COTS), reprogrammable modules, like microcontrollers,
reconfigurable components, or field programmable gate arrays (FPGAs). Afterward,
they manufacture printed circuit boards (PCBs) and assemble system components
on them. Finally, the PCBs are put together to develop units; the entire system is the
integration of these units.

In each step, different verifications or tests are performed to ensure its correct-
ness, as shown in Fig. 1.4. Functional and parametric verifications ascertain the
correctness of design implementation in terms of service and associated require-
ments, like power and performance. Wafer and package tests after the fabrication

1.2 The Hardware Trojan Attack 7

Insertion phase Abstraction level Activation mechanism Effect Location

Hardware Trojans

Physical characteristic

Specification
Design
Fabrication
Testing

Always on
Triggered

Internally
Time-based

System
Development environment
Register-transfer
Gate

Change the functionality
Degrade performance
Leak information
Denial of service

Processor
Memory
I/O
Power supply

Distribution
Size
Type

Parametric
Assembly and package Physical-condition-based

Externally
User input
Component output

Layout
Physical

Clock grid

Structure

Functional

Layout-same
Layout-change

Fig. 1.5 Hardware Trojan Taxonomy [13]

of custom designs separate defective parts and guarantee delivered chips. The PCB
fabrication is a photolithographic process and susceptible to defects; therefore, a
PCB should be tested before placing devices on it. After the PCB assembly, the
PCB is again tested to verify that the components are properly mounted and have
not been damaged during the PCB assembly process. The tested PCBs create units
and finally the system, which is also tested before shipping for field operation [12].

Each step of system development is susceptible to security breaches. An adver-
sary may change system specifications to make a system vulnerable to malicious
activities or susceptible to functional failures. As external resources, like third-
party IPs and COTSs, are widely used in design process and system integration,
adversaries may hide extra circuit(s) in them to undermine the system at a specific
time or to gain control over it. The untrusted foundry issue is rooted in the
outsourcing of design fabrication. The untrusted foundry, however, may change the
designs by adding extra circuits, like back doors to receive confidential information
from the chip, or altering circuit parameters, like wire thickness to cause a reliability
problem in the field. The PCB assembly is even susceptible, as it is possible to
mount extra components on interfaces between genuine components. In short, a
cooperative system development process creates opportunities for malicious parties
to take control of the system and to run vicious activities. Therefore, as a part of
the system development process, security features should be installed to facilitate
trustworthiness, validation, and to unveil any deviation from genuine specifications.

In general, a hardware Trojan is defined as any intentional alteration to a design
in order to alter its characteristics. A hardware Trojan has a stealthy nature and
can alter design functionality under rare conditions. It can serve as a time bomb
and disable a system at a specific time, or it can leak secret information through
side channel signals. A hardware Trojan may affect circuit AC parameters such
as delay and power; it also can cause malfunction under rare conditions. Figure 1.5
presents the hardware Trojan taxonomy where hardware Trojans are classified based
on insertion phase, abstraction Level, activation Mechanism, effect, location, and
physical characteristic [13].

In insertion phase, a hardware Trojan can be introduced by changing the deign
specification, like temperature to degrade the design dependability. Fabrication
stages are also subjected to tampering. A hardware Trojan can be realized by
adding some extra gates to a design’s netlist or by changing its masks. Hardware

8 1 The Global Integrated Circuit Supply Chain Flow and the Hardware Trojan Attack

Trojan insertion at the testing phase refers to trustworthy testing of a design after
fabrication where an adversary may manipulate testing to keep an inserted hardware
Trojan undetected. Finally, unprotected interconnections between chips are prone to
hardware Trojan interference even if the chips are trustworthy by themselves. An
unshielded wire connection could introduce unintended electromagnetic which an
adversary can exploit for information leakage or fault injection.

Based on abstraction level, the level of abstraction determines the control of
advisory on hardware Trojan implementation. At the system level, a design is
defined in terms of modules and interconnections between them, with an adversary
being limited to the modules’ interfaces and their interactions. At the development
environment level, a hardware Trojan can be inserted into the modules by taking
advantage of CAD tools and scripting languages. In more detail, each module
is described in terms of signals, registers, and Boolean functions at the register-
transfer level. In this level, an adversary has full access to the functionality
and implementation of the modules and can easily change them. A design is
represented as a list of gates and their interconnections at the gate level. Here,
an adversary can implement hardware Trojans in detail, and hardware Trojans’
gates and their interconnections can be decided. At the layout level, the impact of
hardware Trojans on design power consumption or its delay characteristics can be
controlled. Hardware Trojans can be realized even by changing the parameters of
an original circuit’s transistors. Finally, all circuit components and their dimensions
and locations are determined at physical level. A hardware Trojan can be inserted
in white/dead spaces of the design layout with the least impact on the design
characteristics.

Based on activation mechanism, hardware Trojans may always function, or they
become conditionally activated. Always-on hardware Trojans start as soon as their
hosting designs are powered on while conditional hardware Trojans seek specific
triggers either internally or externally to launch. The internal triggers can be timing-
based (a hardware Trojan is activated after certain time), or physical-condition-
based (a hardware Trojan is activated by certain events, e.g., specific temperature).
The externally triggered hardware Trojans track user inputs or components’ outputs,
and the hardware Trojans get activated if activation condition(s) are met.

Hardware Trojans can be characterized based on their effects. They may change
a design’s functionality, for example, by modifying the data path of a processor.
Hardware Trojans can reduce the design performance or degrade its reliability by
changing the design parameters. A hardware Trojan may leak the secret key of
a cryptographic processor or can cause the denial of a service for an authorized
requested service at specific time.

Based on location, any part of a design is potentially subjected to hardware
Trojan insertion. A hardware Trojan can be distributed over several parts or
tightened in one part. A hardware Trojan can tamper with a processor to obtain
control over its controller or data path units. A hardware Trojan in a memory
can change stored values or block read/write accesses to the memory. On a PCB
including several chips, an inserted hardware Trojan on chips’ interfaces can disturb
communication. A hardware Trojan can even affect the design power supply and

1.2 The Hardware Trojan Attack 9

alter current and voltage characteristics. Design delay characteristics can change
with interrupting the clock grid by a hardware Trojan. The hardware Trojan can
freeze part of clock tree and disable some functional modules.

Based on physical characteristic, hardware Trojan physical characteristics rep-
resent various hardware manifestations. A hardware Trojan can be a functional or
parametric type where functional hardware Trojans are realized by transistors/gates
addition or deletion and parametric hardware Trojans by wire thickness or any other
design parameter modification. The number of transistors/gates added or removed
determines the hardware Trojan size. Hardware Trojan distribution indicates how
loose or tight hardware Trojan cells are placed in the physical layout. Hardware
Trojan structure refers to possible modification of original physical design for
hardware Trojan cells placements.

Hardware Trojan detection is very challenging in the era of automated vehicles,
smart cities, and IoTs where sophisticated integrated circuits are used in their hearts
to deliver performance, bring accuracy, and provide security. Design verification
to ensure its correctness is done before and after its manufacturing. It has been
observed that verification of modern designs constitutes a considerable portion of
system design, incurring a cost of about 57% of the total project time, on average.
While traditional verification has more focused on functional and parametric design
specifications, security has become a critical requirement for electronic devices
for modern designs that are equipped with the connectivity feature. Unfortunately,
security requirements are not well specified even in the first place, and they need to
be met for devices that were not originally intended to be connected. As a result,
a hardware Trojan can impact devices outside of its embedding device through
communication networks [14].

Design verification before manufacturing mainly consists of architecture verifi-
cation, pre-silicon verification, and emulation FPGA prototyping [14]. The archi-
tecture verification focuses on functional parameters of the design, communication
protocols among IPs, power and performance management schemes, and security
protocols among many others. In this stage, the design goes under verification based
on typical use cases of the device to identify parameter values that satisfy the device
target in terms of power, performance, area, and security. Pre-silicon verification
is performed on individual IPs and on integrated IPs in an SoC with different
functionality and requirements. Individual IPs are verified to ensure they function
as expected. Most SoC integration verification includes system-level simulation
under typical use cases. However, such a simulation is very slow at the register-
transfer level (soft IPs) and the fact encourages emulation and FPGA prototyping.
Verification by emulation and FPGA prototyping is a bridge between pre-silicon and
post-silicon verification. An RTL design is mapped into FPGA and can be executed
about hundreds to thousands times faster than an RTL simulator. It should be noted
that the controllability and observability of design become limited using emulation
and FPGA prototyping and any reconfiguration and remapping may take several
hours.

Contrary to decades of study and practice of verification, modern designs have
challenged aforementioned verification techniques. One motivation for the global

10 1 The Global Integrated Circuit Supply Chain Flow and the Hardware Trojan Attack

IC supply chain is the reduction of time to market. This need enforces shrinking
verification time while incomplete security analyses leave room for various types
of hardware Trojans such as time bombs. Another major issue that is becoming
more and more intense is the scalability limitation of existing verification techniques
confronting sophisticated SoC designs with tens of various IP cores. Such a
limitation eases the implementation of hardware Trojan extended across several IP
cores. Another major issue for verification is ambiguities in design specifications
including security requirements that are being exacerbated in the era of complex
designs and applications. While sometimes the ambiguities are intentional for the
sake of intellectual property protection, it leaves considerable opportunities for
untrusted downstream entities for hardware Trojan insertion. The ambiguities in
design specifications even make it challenging to define a golden reference on
which many existing hardware Trojan techniques rely. Modern designs intended
for IoT applications contain various analog modules such as sensors and actuators.
Verification of analog modules is complex and expensive. And, some researchers
have demonstrated hardware Trojans in analog circuits where their manipulations
incur none to low design overhead.

Post-silicon validation enables to test a design at its target clock speed and
perform nonfunctional testing such as power consumption, physical stress, tem-
perature tolerance, and electrical noise margin. Meanwhile, the controllability and
observability of internal activities of a design become significantly limited and
any change in the design requires silicon respin (i.e., redesign, validate again,
and expensive re-fabrication). Furthermore, the amount of time dedicated to post-
silicon verification is limited and governed by the time to the market. Physical
reality in functional testing, for example, effects of temperature and electrical
noise, negatively impacts post-silicon validation. For example, small extra power
consumption becomes masked by process and environmental variations [15].
An untrusted foundry can take advantage of these practical limitations and design
hardware Trojans with minimal impacts on design functional and nonfunctional
specifications. For example, a hardware Trojan can exist in an IP A, and its goal is
to modify some internal signals of an IP B when both IPs are powered on. Detection
of such a hardware Trojan could be very challenging during post-silicon verification
as the two IPs may not be powered on at the same time due to power management
protocols.

1.3 Conclusions

The complexity of modern designs, the diversity of their applications, and the
shrinking time to market are all driving the horizontal integrated circuit design
flow. To be competitive, different IP vendors are reached for various IPs. Then,
provided IPs are integrated by another vendor whose design is finally fabricated by
an offshore foundry. The final testing might be even performed by another vendor.
This complex flow that is stretched across the globe is executed by all untrusted

References 11

entities. Unfortunately, existing pre-silicon and post-silicon validation techniques
cannot cope with the verification needs of modern designs. The fact does leave
extensive opportunities for malicious entities at various levels across the design
flow to manipulate a design and undermine its original functional and nonfunctional
specifications.

References

1. Statista: forecast of worldwide semiconductor sales of integrated circuits. https://www.statista.
com/statistics/519456/forecast-of-worldwide-semiconductor-sales-of-integrated-circuits/.
Accessed 22 Jan 2018

2. S. Patel, Changing SoC design methodologies to automate IP integration and reuse. https://
www.design-reuse.com/articles/21207/ip-integration-reuse-automation.html. Accessed 22 Jan
2018

3. K.M. Mohan, Outsourcing Trends in Semiconductor Industry, Massachusetts Institute of
Technology, 2010

4. Semiconductor silicon IP market. https://www.mordorintelligence.com/industry-reports/
global-semiconductor-silicon-intellectual-property-market-industry. Accessed 22 Jan 2018

5. R. Saleh, S. Wilton, S. Mirabbasi, A. Hu, M. Greenstreet, G. Lemieux, P.P. Pande, C. Grecu,
A. Ivanov, System-on-chip: reuse and integration. Proc. IEEE 94(6), 1050–1069 (2006)

6. India Semiconductor and Embedded Design Service Industry (2007–2010), Market, Technol-
ogy and Ecosystem Analysis (India Semiconductor Association, Bangalore, 2008)

7. J. Villasenor, Compromised By Design? Securing the Defense Electronics Supply Chain (The
Center for Technology Innovation at Brookings, Washington, 2013)

8. B. Johnson, D. Freeman, D. Christensen, S.T. Wang, Market trends: rising costs of production
limit availability of leading-edge fabs. https://www.gartner.com/doc/2163515/market-trends-
rising-costs-production. Accessed 22 Jan 2018

9. M.D. Platzer, J.F. Sargent Jr., U.S. semiconductor manufacturing: industry trends, global
competition, federal policy (2016)

10. H. Jones, Whitepaper: semiconductor industry from 2015 to 2025. http://www.semi.org/en/
node/57416. Accessed 22 Jan 2018

11. A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr, Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans. Dependable Secure Comput. 1(1), 11–33
(2004)

12. L.-T. Wang, C.-W. Wu, X. Wen, VLSI Test Principles and Architectures (Morgan Kaufmann
Publishers, San Francisco, 2006)

13. H. Salmani, M. Tehranipoor, R. Karri, On design vulnerability analysis and trust benchmarks
development, in 2013 IEEE 31st International Conference on Computer Design, ICCD 2013,
Asheville, NC, 6–9 October 2013, pp. 471–474

14. W. Chen, S. Ray, J. Bhadra, M. Abadir, L.C. Wang, Challenges and trends in modern SoC
design verification. IEEE Des. Test 34(5), 7–22 (2017)

15. P. Mishra, R. Morad, A. Ziv, S. Ray, Post-silicon validation in the SoC era: a tutorial
introduction. IEEE Des. Test 34(3), 68–92 (2017)

https://www.statista.com/statistics/519456/forecast-of-worldwide-semiconductor-sales-of-integrated-circuits/
https://www.statista.com/statistics/519456/forecast-of-worldwide-semiconductor-sales-of-integrated-circuits/
https://www.design-reuse.com/articles/21207/ip-integration-reuse-automation.html
https://www.design-reuse.com/articles/21207/ip-integration-reuse-automation.html
https://www.mordorintelligence.com/industry-reports/global-semiconductor-silicon-intellectual-property-market-industry
https://www.mordorintelligence.com/industry-reports/global-semiconductor-silicon-intellectual-property-market-industry
https://www.gartner.com/doc/2163515/market-trends-rising-costs-production
https://www.gartner.com/doc/2163515/market-trends-rising-costs-production
http://www.semi.org/en/node/57416
http://www.semi.org/en/node/57416

Chapter 2
Circuit Vulnerabilities to Hardware
Trojans at the Register-Transfer Level

2.1 Circuits at the Register-Transfer Level

At the register-transfer level, a hardware description language (HDL), such as
VHDL or Verilog, is used to describe a circuit by concurrent algorithms (behav-
ioral). There are generally three different approaches to writing HDL architectures:
the dataflow style, the behavioral style, and the structural style.

In date flow style, a circuit is specified as a concurrent representation of the flow
of data through the circuit. This style is preferred for small and primitive circuits.
The behavioral style models how the circuit outputs will react (or behave) to the
circuit inputs. In comparison to the dataflow style, the behavioral style provides
no details as to how the design is implemented in actual hardware. The structural
style is used to manage and organize the implementation of a complex system.
In the structural style, a system is expressed in terms of subsystems which are
interconnected by signals, for example, a system consisting of RAM, CPU, and
ROM. Each subsystem may in turn be composed of a collection of subsubsystems,
for example, a CPU consisting of ALU and Register bank, and so on. Until it finally
reaches a level only consisting of primitive components, described purely in terms
of their behavior. The top-level system can be thought of as having a hierarchical
structure.

Circuits at the register-transfer level may not necessarily show how their final
implementation at the gate level after the synthesis would look like as the register-
transfer-level circuits are technology independent. There is a high flexibility in
implementing a circuit at the register-transfer level. For given design specifications,
two designers may provide two different implementations using supporting con-
structs by a specific language while their input–output relationships match. Such
flexibility makes the security evaluation of a provided register-transfer-level circuit
against hardware Trojans very challenging.

© Springer International Publishing AG, part of Springer Nature 2018
H. Salmani, Trusted Digital Circuits, https://doi.org/10.1007/978-3-319-79081-7_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79081-7_2&domain=pdf
https://doi.org/10.1007/978-3-319-79081-7_2

14 2 Circuit Vulnerabilities to Hardware Trojans at the Register-Transfer Level

Fig. 2.1 Vulnerability
analysis flow at the
register-transfer level

Behavioral Description

Statement
Analysis

Statement Weight
Statement Hardness

Observability
Analysis

Signal Reachability
Signal Observability

Trojan Detectability
Analysis

Trojan Detectability

2.2 Value Range Analyses for Vulnerability Assessments

Figure 2.1 shows a proposed circuit vulnerability analysis flow to hardware Trojan
insertion at the register-transfer level in [1]. The data and control flows of the circuit
determine the difficulty of executing a statement and the observability of internal
signals. Statement Analysis in Fig. 2.1 measures statement weight and statement
hardness of a statement which quantify conditions under which the statement
executes. In the following, Observerability Analysis evaluates reachability of signals
from each other and determines their observability through circuit primary outputs.
A circuit at the register-transfer level is vulnerable to hardware Trojan insertion
where statement hardness is high or observability is low. A hardware Trojan at the
register-transfer level (also called “a behavioral hardware Trojan”) can change a
statement rarely executed or carry out an attack through a signal with very low
observability. Hardware Trojan Detectability Analysis gauges the detection of a
malicious change of a statement or the inclusion of a new statement based on its
weight and observability of its target signal.

2.2.1 Statement Analysis

The proposed vulnerability analysis at the register-transfer level quantifies (1)
statement hardness for each circuit statement and (2) observability for each circuit
signal, based on a weighted value range. Adopted from the work presented in [2] to
improve the accuracy of static value and branch prediction in compilers, the notation
{W [L,U]} is developed for each signal where W represents the weight of the value
range, and L and U show the lower and upper limits of the value range. Circuit
control and dataflows determine W , L, and U for each statement. The technique
creates a condition stack to track the circuit control flow. Further, it generates an
individual stack for each signal to pursue the circuit dataflow. While the circuit code

2.2 Value Range Analyses for Vulnerability Assessments 15

Fig. 2.2 A sample
register-transfer-level code

is being parsed, observing a condition block limiting the value range of a signal,
such as loop and condition statements, pushes a new condition into the condition
stack and a new weighted value range into the stack of the signal. Reciprocally,
exiting a condition block pops from the condition stack and may update the stacks
of signals.

A weighted value range is determined by a condition or assignment statement.

The weight of a range is defined as
(

U−L+1
UO−LO+1

)
, where U and L are the upper and

lower limits of the controlling signal at the top of the condition stack, and UO and
LO are the declared upper and lower limits of the controlling signal. If different
assignment statements to one target signal take place under different conditions in
one condition block, the weighted value ranges of the target signal will merge when
exiting the condition block. Further, the statement hardness is defined as the reverse
of the weight of the controlling signal of that statement (the statement weight).

The technique was applied to a small register-transfer-level code, shown in
Fig. 2.2, and the statement hardness and the weighted value range of controlling
signals X, K , and P are presented in Table 2.1. Further, Fig. 2.3 shows the condition
stack and stacks for the controlling signals over the code execution.

The program in Fig. 2.2 consists of one sequential block between Lines 13 and
32. In Line 13, where the block begins, the condition stack is empty. The controlling

16 2 Circuit Vulnerabilities to Hardware Trojans at the Register-Transfer Level

Ta
bl

e
2.

1
St

at
em

en
th

ar
dn

es
s

an
d

va
lu

e
ra

ng
e

of
co

nt
ro

lli
ng

si
gn

al
s

fo
r

th
e

co
de

in
Fi

g.
2.

2

V
al

ue
ra

ng
e

L
in

e
nu

m
be

r
St

at
em

en
th

ar
dn

es
s
(1

/
T

W
)

X
K

P

13
1

{1[
0,

15
]}

{1[
0,

15
]}

{1[
0,

15
]}

14
1

{1[
0,

15
]}

{1[
0,

15
]}

{1[
0,

15
]}

15
1/

0.
62

5
{0.

62
5[0

,
9]}

{1[
0,

15
]}

{1[
0,

15
]}

16
1/

0.
12

5
{0.

12
5[0

,
1]}

{1[
0,

15
]}

{0.
12

5[0
,
1]}

17
1/

0.
62

5
{0.

62
5[0

,
9]}

{1[
0,

15
]}

{0.
12

5[0
,
1]}

18
1/

0.
25

{0.
25

[6,
9]}

{1[
0,

15
]}

{0.
12

5[0
,
1]}

19
1/

0.
01

56
25

{0.
25

[6,
9]}

{0.
25

[7,
7]}

{0.
01

56
25

[12
,
15

]}
20

1/
0.

25
{0.

25
[6,

9]}
{1[

0,
15

]}
{0.

01
56

25
[12

,
15

]}
21

1/
0.

23
43

75
{0.

25
[6,

9]}
{0.

25
[0,

6],
0.

25
[8,

15
]}

{0.
23

43
75

[2,
8],

0.
23

43
75

[10
,
15

]}
22

1/
0.

25
{0.

25
[6,

9]}
{1[

0,
15

]}
{0.

25
[2,

8],
0.

25
[10

,
15

]}
23

1/
0.

62
5

{0.
62

5[0
,
9]}

{1[
0,

15
]}

{0.
62

5[0
,
8],

0.
62

5[1
0,

15
]}

24
1

{1[
0,

15
]}

{1[
0,

15
]}

{0.
62

5[0
,
8],

0.
62

5[1
0,

15
]}

25
1

{1[
0,

15
]}

{1[
0,

15
]}

{0.
62

5[0
,
8],

0.
62

5[1
0,

15
]}

26
1/

0.
43

75
{1[

0,
15

]}
{1[

0,
15

]}
{0.

43
75

[0,
6]}

27
1/

0.
19

14
06

25
{0.

19
14

06
25

[0,
6]}

{1[
0,

15
]}

{0.
43

75
[0,

6]}
28

1/
0.

04
78

51
56

25
{0.

19
14

06
25

[0,
6]}

{1[
0,

15
]}

{0.
04

78
51

56
25

[3,
6]}

29
1/

0.
19

14
06

25
{0.

19
14

06
25

[0,
6]}

{1[
0,

15
]}

{0.
43

75
[0,

6]}
30

1/
0.

43
75

{1[
0,

15
]}

{1[
0,

15
]}

{0.
43

75
[0,

6]}
31

1
{1[

0,
15

]}
{1[

0,
15

]}
{0.

62
5[0

,
8],

0.
62

5[1
0,

15
]}

32
1

{1[
0,

15
]}

{1[
0,

15
]}

{0.
62

5[0
,
8],

0.
62

5[1
0,

15
]}

2.2 Value Range Analyses for Vulnerability Assessments 17

Fig. 2.3 The control flow for the code in Fig. 2.2

signals are set to their full range with the weight of 1. The first statement in Line
14 executes unconditionally and its statement hardness is set to 1. The loop in Line
14 limits the controlling signal X between 0 and 9, so L = 0 and U = 9. While
LO = 0 and UO = 15, as declared in Line 5, the weight of the value range is(

9−0+1
15−0+1 =

)
0.625. Therefore, the hardness of the statement in Line 15 is 1

0.625 .

Represented as X14 in the condition stack, where the subscripted 14 shows the line
number, the signal X is pushed to the condition stack in Line 14 and {0.625[0, 9]}
into the stack of signal X.

The immediate condition statement in the next line, Line 15, again pushes the
signal X (X15) into the condition stack and pushes the new weighted value range
{0.125[0, 1]} into the stack of signal X. The hardness of Line 16 is 1

0.125 and the
assignment statement for this line defines a new weighted value range for the signal
P ; the weighted value range, {0.125[0, 1]}, is then pushed into the stack of signal
P . The ELSE statement in Line 17 in Fig. 2.2 pops from the condition stack (X15)

and from the stack of signal X. Afterward, the top element of the condition stack
is X14, so the statement hardness of Line 17 is 1

0.625 . Further, the ELSE statement
in Line 17 pushes X (X17) into the condition stack, generates a new weighted value
range {0.25[6, 9]}, and pushes into the stack of signal X.

In the following, the hardness of executing statements in Line 18 is 1
0.25 . In Line

18, a new condition block is defined over K inside the condition block already
defined in Line 17. The last condition statement limits the controlling signal K to
7, and the new weighted value range of K , that is, {0.25[7, 7]}, is pushed into the
stack of signal K and K18 into the condition stack. By executing the assignment
statement in Line 19, a new weighted value range {0.015625[12, 15]} is pushed into
the stack of signal P . The ELSE condition statement in Line 20 pops K18 from
the condition stack and removes the top range of the stack of signal K . Afterward,
the top controlling signal is X17 that determines the statement hardness of Line 20.
Then, the new value range of the signal K , {0.25[0, 6], 0.25[8, 15]}, is pushed into
the stack of signal K . The rest of code can be analyzed in the same manner.

A signal’s weighted value range indicates the range of values the signal can take.
Constrained by circuit data and control flows, the range may only cover part of
the original declared range of the signal. The weight of the range, determined by
statement hardness, represents the difficulty of assigning the range to the signal.
Table 2.2 shows the weighted value range of the output signal Z and the internal
signal P for the code in Fig. 2.2.

The declared value range of P and Z is [0, 15]. However, the value range
of the signal P considering the circuit control and dataflows does not include

18 2 Circuit Vulnerabilities to Hardware Trojans at the Register-Transfer Level

Table 2.2 The value range
of internal and output signals
for the code in Fig. 2.2

Signal name Value range

P {0.625[0, 8], 0.625[10, 15]}
Z {0.0478515625[3, 6]}

the value 9. Similarly, Table 2.2 shows that the output signal Z only covers the
value range of [3, 6] with comparatively low weight, and the signal does not cover
75% of its declared range. Uncovered value ranges can be potentially used for
behavioral hardware Trojans implementation because circuit verification and the
normal operation of the circuit do not reach values out of range. Knowing that, an
attacker may design a hardware Trojan to propagate unexpected values and initiate
a malfunction.

Independent from circuit input vectors, statement hardness provides a
quantitative measure of the difficulty of executing a statement. A statement with
a high level of hardness is rarely executed and its correctness cannot be fully
examined with applying a limited number of test input vectors in a testbench form.
In the example above, the assignment statement in Line 19 with a statement hardness
of (1/0.015625=)64 is the most difficult statement in the code to be exercised due
to nested conditional statements which control the execution of the statement.
Therefore, modifications to the statement or the inclusion of new statements under
the same condition will be hard to detect. This analysis reveals parts of a circuit
that are more vulnerable to hardware Trojan insertion. As another measure, the
observability of a signal characterizes the difficulty of observing the signal through
a circuit primary output.

2.2.2 Observerability Analysis

A behavioral hardware Trojan usually targets a signal with low observability to carry
out an attack. The vulnerability analysis technique develops a weighted data graph
of a circuit while it parses circuit code in order to calculate observability along with
statement hardness. The graph shows the connectivity of signals that appeared in
code. Figure 2.4 shows the data graph of the code in Fig. 2.2.

The nodes of the data graph are circuit signals, and directed edges show their
dependency. Edges are weighted with the sum of the weights of assignment
statements that represent the source node as an input and the destination node as
the target signal. For example, the signal X appears in two assignment statements
in Lines 16 and 19 where the target signal is the signal P in both. The weights
of the assignment statements, as shown in Table 2.1, are 0.125 and 0.015625,
respectively; therefore, the weight of the edge from the signal X to the signal P

is (0.125 + 0.015625 =)0.140625. In another case, the weight of the edge from
the signal K to the signal P is the weight of the assignment statement in Line 21,

2.2 Value Range Analyses for Vulnerability Assessments 19

Fig. 2.4 The data graph for
the code in Fig. 2.2 X

K

P

Z

0.0478515625

0.234375
0.140626

Table 2.3 The reachability and observability of signals for the code in Fig. 2.2

Signal name Target signal Reachability Observability(TO)

X Z 0.006729 0.006729

X P 0.140625 0

P Z 0.047851 0.047851

K Z 0.011215 0.011215

K P 0.234375 0

which is 0.234375, as shown in Table 2.1. Based on the data graph, it is possible to
calculate the reachability of signals from each other and the observability of signals
at circuit outputs. Table 2.3 shows the reachability and observability of signals in
the circuit in Fig. 2.2, based on the data graph in Fig. 2.4.

The vulnerability analysis flow at the register-transfer level determines the
reachability of signals that can directly or indirectly reach each other. With the
assignment statement in Line 28, the signal P directly reaches the signal Z with
a reachability of 0.047851, which is the weight of edge from P to Z. As the signal
Z is an output signal, the observability of H is also 0.047851.

The signal X reaches the signal P , and its reachability is 0.140625. But its
observability is 0 as the signal P is not an output signal. However, the signal X

is observable through the signal Z, an output signal. The reachability of the signal
X to the signal Z is (0.140625 × 0.047851 =)0.006729, and with the same value,
it is observable. In a similar manner, the reachability and observability of signal
pairs can be calculated. The signal P has the highest observability, as it is directly
assigned to the output signal Z. On the other hand, the signal X is only observable
with the minimum value of 0.006729 through the output signal Z.

Reachability of a signal pair signifies driving strength of a source signal in
determining the final value of a destination signal. As shown in Fig. 2.4, the signal P

is driven by the signals X and K . The reachability of the pair K and P is 0.234375
and that of the pair X and P is 0.140626, that is, the signal K has more contribution
in the final value of the signal P . Confirmedly Table 2.1 indicates the signal K

determines the widest range of the signal P with a higher weight compared with
the signal X which derives the signal P in Lines 16 and 19 with smaller ranges and
lower weights.

20 2 Circuit Vulnerabilities to Hardware Trojans at the Register-Transfer Level

The vulnerability analysis flow determines the statement hardness of each
statement in a code. The statement hardness exposes parts of the code which are
more vulnerable to hardware Trojan insertion. Further, it is possible to obtain the
weighted value range of circuit signals at any line of the code. This information
can be used to determine the root of high statement hardness. The flow makes
it also possible to calculate the reachability of signals from each other and their
observability by an output signal. The reachability analysis determines to what
extent a signal can impact a target signal, and the observability analysis indicates
how difficult it is to monitor an internal signal by an output signal.

The vulnerability analysis flow consists of two main steps. In the first step, as a
code is being parsed, the hardness of each statement is calculated and a data graph
is developed. In the following step, the reachability and observability of signals are
calculated using the data graph. The complexity of the first step is O(L), where L

is the number of statements. Suppose S is the number of signals; the complexity of
the second step would be O(S × S). Therefore, the complexity of the vulnerability
analysis algorithm is O(L) + O(S2). It is expected that the number of signals in a
circuit is much less than the number of statements (S � L), thus the complexity of
the vulnerability analysis algorithm is approximated to O(L).

2.2.3 Application of Value Range-Based Vulnerability Analysis

The proposed vulnerability analysis is applied to several benchmarks, and in this
section results on b01, b02, b03, b04, and b05 of ITC99’s [3], and SAP benchmarks
[4] are presented. Table 2.4 demonstrates the details of each benchmark. As there
is no unique way of implementing a circuit at a high level of abstraction (i.e., here,
register-transfer level), we modified the circuits slightly to prepare for analysis using
our automated flow, while keeping the original functionality intact.

The results for vulnerability analysis for the benchmarks are presented in
Table 2.5. The minimum statement hardness of the five benchmarks is 1, which
means the corresponding statement is executed unconditionally. Nested conditional
statements increase statement hardness. The highest statement hardness of b01

Table 2.4 Benchmarks characteristics

Name # VHDL Lines PI PO Function

b01 115 4 2 FSM

b02 55 3 1 IsBCD

b03 175 6 4 Arbiter

b04 93 13 8 MinMax

b05 278 3 6 Memory contents elaboration

SAP 396 2 2 8-bit 8080-based microprocessor

2.2 Value Range Analyses for Vulnerability Assessments 21

Table 2.5 Vulnerability
analysis for the benchmarks

Statement hardness Observability

Name Min Max Min Max

b01 1 1/0.015625 0 0.5

b02 1 1/0.035714286 0 0

b03 1 1/0.005208333 0 0.166

b04 1 1/0.041666667 0 0.25

b05 1 1/2.26E−06 0 0

SAP 1 1/0.002403846 0 0.25

is (1/0.015625 =) 64, where the corresponding statement is executed when four
conditions are met. b01 has one internal signal which is not observable through any
of its outputs; therefore, the minimum observability for b01 is 0. Two primary inputs
are observable through one of its outputs and determine the maximum observability
of b01, which is 0.5.

b02 benchmark is the smallest circuit, and its minimum and maximum statement
hardnesses are 1 and (1/0.035714286 =) 28, respectively. The only output of the
circuit is assigned constant values, so no internal signals or primary inputs are
observable. Hence, the minimum and maximum observability for b02 are 0.

None of primary inputs of b03 is observable through its primary outputs;
therefore, the minimum observability is 0. The only internal signal that is assigned
constant values is observable with the maximum observability of 0.1666. The max-
imum statement hardness of b03 is (1/0.005208333 =) 192, and the corresponding
statement is executed when four conditions are met.

All internal signals of b04 circuit are observable only through its primary output,
and b04 has the highest maximum observability with value of 0.25. The minimum
observability is 0, which belongs to some primary inputs. The maximum statement
hardness of b04 is (1/0.041666667=) 24, whose corresponding statement is executed
when four conditions are met.

b05 has the highest maximum statement hardness among all with the value of
(1/2.26E−06 =) 442,477. The considerable high statement hardness is attributed to
the deep nested condition blocks. The corresponding statements are executed when
11 conditions are met. The minimum and maximum observability of b05 are 0 as all
outputs are assigned to constant values. SAP is the largest circuit with the maximum
statement hardness of (1/0.002403846 =) 416, and with the minimum and maximum
observability of 0 and 0.25, respectively.

In above circuits, signals with 0 observability mainly serve as condition signals
for concurrent or sequential conditional and selected signal assignments. Therefore,
they cannot be directly observed through any primary output.

Figure 2.5 shows the distribution of statement weight for the benchmarks.
“Normalized Frequency” in the figure indicates the number of lines with a specific
statement weight in a benchmark divided by the number of VHDL lines inside
the benchmark’s VHDL process statements. As soon, a portion of statements in
the circuit presents very low statement weight. Assuming that any statement with

22 2 Circuit Vulnerabilities to Hardware Trojans at the Register-Transfer Level

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

No
rm

al
ize

d
Fr

eq
ue

nc
y

Statement Weight

b01
b02
b03
b04
b05
SAP

<0.0001

Fig. 2.5 Statement weight analysis

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

250200150100500

St
at

em
en

t H
ar

dn
es

s

Fig. 2.6 Statement hardness for b05

statement weight lower than 0.0001 is a rarely executed statement, one can further
analyze these statements and generate test benches to activate them and analyze the
responses.

The statement hardness analysis for b05 shown in Fig. 2.6 presents the number of
lines with significant large statement hardness ranging from 1.13E+04 to 4.42E+05.
To prevent hardware Trojan insertion in a circuit at the register-transfer level, it
is possible to define a specific threshold on statement weight (statement hardness)
and modify the circuit such that the statement weight (statement hardness) of all
statements stands above (below) the threshold.

The detail analysis reveals the statement hardness depends on both the value
range and the control flow. Defining a condition block on signals with a wide value
range increases the statement hardness of statements inside the condition block.

2.3 Unspecified IP Functionality 23

Nested condition blocks may increase statement hardness of interior statements
as well. In above examples, although the statements with the highest statement
hardness in b01 and b03 are both executed when four conditions are met, the
execution of the statement in b03 is limited over the larger value range, which
increases its statement hardness 3 times. On the other hand, for b04 benchmark,
it is observed that the statement with the highest statement hardness is executed
when five conditions are met, while its statement hardness is the minimum among
all the benchmarks due to the limited value range.

The significance of this vulnerability analysis is that it determines which parts
of a circuit are hard to activate without needing a testbench. While developing
a testbench to examine all control and data paths is a challenging task by itself,
this vulnerability analysis is based on weighted value range. The weighted value
range exactly determines the range of values under which a statement executes.
This information can be used to develop a testbench intended to exercise potential
hardware Trojan locations.

2.3 Unspecified IP Functionality

Verification and testing of modern designs is a major bottleneck in hardware design,
and it is estimated that over 70% of hardware development resources are consumed
by the verification task [5]. This situation is more exacerbated by the fact that
commercial verification tools have primarily focused on increasing confidence in
the correctness of specified functionality from security perspective. Behavior which
is not modeled will not be verified by existing methods, meaning any security
vulnerabilities occurring within unspecified functionality will go unnoticed [6]. An
attacker can augment circuit functionality by modifying circuit behavior out of
design expected specifications while any maliciously added functionality remains
from existing verification methods.

As an example, Fig. 2.7 shows a malicious circuitry shown in red whose
operation is hidden in the unspecified specification of the first-in-first-out (FIFO)
circuit: “how should the circuit behave if the signal read_data is deasserted?” The

Fig. 2.7 FIFO augmented by adding a hardware Trojan shown in red that operates in the
unspecified functionality [7]

24 2 Circuit Vulnerabilities to Hardware Trojans at the Register-Transfer Level

FIFO executes two main operations: (1) it stores the input write_data into the FIFO
if the signal write_enable is ‘1’ and the FIFO is not full, and (2) puts data from the
FIFO on the output read_data when the signal read_enable is ‘1’ and the FIFO is not
empty. In this implementation, the input write_data and the output read_data are two
different signals, and they can be controlled separately. In a normal store operation,
the input read_enable is deasserted while the input write_enable is asserted to store
the input write_data. The malicious hardware Trojan in red in Fig. 2.7 can then leak
the signal secret_value on the output read_data, as no verification scenario may pay
attention to the value of the output read_data when the input write_enable is ‘1’ and
the input read_enable is ‘0’.

2.3.1 Hardware Trojans in Don’t Cares

Design specification may only determine how a circuit should operate under certain
combinations of inputs. Therefore, it is implicitly assumed any other input vector
will never be applied to the circuit. The outputs of a circuit to unexpected input
vectors are considered don’t cares, and a behavioral synthesizer can take advantage
of don’t cares to maximally optimize the outcome logic.

In HDL languages, such as Verilog, don’t cares can be literally expressed using
the literal “X,” and a variable assigned “X” can be assigned ‘1’ or ‘0’ by the
synthesizer. While don’t cares are being extensively used for logic optimization,
they indeed introduce undetermined zones where a hardware Trojan can be inserted
without violating any expected behavior from a circuit.

Figure 2.8 presents a circuit with one counter and two state machines. One state
machine (Lines 21–27) is controlled by the counter and the other state machine
(Lines 32–35) is controlled through a primary input. While the counter is a 3-bit
counter and can vary between 0 and 7, it just counts between 0 and 3. As a result,
the Line 27 is not ever reachable. Line 26 is an assignment to the 4-bit internal signal
pattern. Bits 3 and 0 of the signal pattern are determined but bits 1 and 2 are defined
don’t cares. At the first glance, both bits can be used to leak certain data through the
only primary output out. A detailed analysis shows that only possible leakage can
occur through the intermediate signal tmp in Line 35 when it is coincident with the
counter that becomes 4. As a result, only the bit 2 of pattern is observable from the
outside of module. A vulnerability analysis tool should distinguish between Xs and
identify those that can subvert the security of design.

2.3.2 Dangerous Don’t Cares Identification

A don’t care (dci) is considered dangerous if the statement assigning dci to a
design variable is reachable (it is not necessarily the variable to be accessible from a
primary input), and the value of the variable must propagate to a circuit output. The

2.3 Unspecified IP Functionality 25

1 module simple_state (clk, reset, control, data, key, out) ;
2 input clk, reset ;
3 input [1:0] control ;
4 input [3:0] data, key ;
5 output reg [3:0] out ;
6 reg [3:0] tmp ;
7 reg [2:0] counter , next_counter ;
8 reg [3:0] pattern ;
9 // Truncated Counter 0-4
10 // 5, 6, and 7 never appear
11 always @ (*) begin
12 if (counter < 3'h4)
13 next_counter <= counter + 3'b1 ;
14 else next_counter <= 3'b0 ;
15 end
16 always @(posedge c lk) begin
17 if (~ reset) counter <= 3'b0 ;
18 else counter <= next_ counter ;
19 end
20 always @ (*) begin
21 case (counter)
22 3'd0:pattern <= 4'b1010 ;
23 3'd1:pattern <= 4'b0101 ;
24 3'd2:pattern <= 4'b0011 ;
25 3'd3:pattern <= 4'b1100 ;
26 3'd4:pattern <= 4'b1xx1 ;
27 default:pattern <= 4 'bxxxx ;
28 endcase
29 end
30 always @ (*) begin
31 case (control)
32 2'b00:tmp <= data ;
33 2'b01:tmp <= data ^ key ;
34 2'b10:tmp <= ~ data ;
35 2'b11:tmp <= data ^ { pattern [3] , pattern [2:0] & counter } ;
36 endcase
37 end
38 always @ (posedge clk) begin
39 if (~reset) out <= 4'b0 ;
40 else out <= tmp ;
41 end
42 endmodule

Fig. 2.8 A simple state machine [7]

problem of finding if such an input sequence exists has been formulated in [7] as a
sequential equivalence checking problem. Then, to determine a specific reachable
dci is dangerous, the equivalence check is performed between two near-identical
versions of the design: one version with dci = 0 and the other version with dci = 1.
If the designs are identical under all possible input sequences, dci cannot possibly
be used to leak design information.

26 2 Circuit Vulnerabilities to Hardware Trojans at the Register-Transfer Level

Fig. 2.9 Equivalence checking formulation [7]

To study the relationship between multiple don’t cares in the design, the problem
is formulated in terms of state reachability analysis and combinational equivalence
checking in [8], and the X-analyzer tool is being developed. State reachability
analysis is performed first to distinguish ones that are reachable through a sequence
of inputs. Afterward, combinational equivalence checking is performed on the set
of reachable don’t care. To do so, all flop-flops in a sequential circuit are removed
and their data inputs of flip-flops are defined as pseudo primary outputs (PPOs) and
their data outputs of flip-flops are defined as pseudo primary inputs (PPIs). In the
following, combinational equivalence checking is performed between two versions
of the original design: Cdci = 0, and Cdci = 1, by constructing the miter as shown
in Fig. 2.9 and checking the satisfiability of node z. If z is not satisfiable, then dci is
safe. Otherwise, the equivalence checker returns a distinguishing input vector. Note
that when analyzing dci , all remaining n−1 don’t care bits are made primary inputs.

The X-analyzer tool is being applied on Elliptic Curve Processor (ECP) which
performs the point multiplication operation optimized for an FPGA implementation
[9]. The report of X-analyzer tool is presented in Table 2.6. The ECP design has 572
primary input bits, 467 primary output bits, and 11,232 state elements, resulting in a
gate count over 300,000. There are 538 don’t care bits in the design analyzed by the
tool. 282 correspond to assignments made during states 0–38 to bits in cwl and cwh,
33 correspond to the default assignments (state >38, which should be unreachable)
of these signals, and 233 are from a default assignment in the quadblk module.

2.4 Formal Verification and Coverage Analysis for
Vulnerability Analyses

Coverage analyses and functional analyses are used to determine vulnerable
portions of a register-transfer level circuit through exhaustively examining all
defined functionality in design specifications [10]. All functionality are translated

2.5 Conclusions 27

Table 2.6 Classification of don’t cares [7]

Row # # of don’t care bits Signal(s) affected

Class 1: definitely dangerous (32 bits)

1 2 cwh[4], cwh[7], when state == 15

2 1 cwh[12], when state == 2

3 32 cwl, for various state ≤ 38

Class 2: possibly dangerous (272 bits)

4 6 nextstate[5 : 0], when state > 38

5 23 cwh[22 : 0], when state > 38

6 10 cwh[9 : 0], when state > 38

7 233 d[232 : 0], when cwh[19 : 16] == 1 or cwh[19 : 16] == 15

Class 3: definitely safe (231 bits)

to properties (assertions) and coverage metrics are used to identify suspicious parts
in a circuit under authentication. Coverage metrics include the code coverage and
the functional coverage. While covering various types of analyses, code coverage
toward hardware Trojan covers line, statement, toggle, and finite state machine
(FSM) coverage. The functional coverage is the determination of how much
functionality of the design has been exercised by the verification environment.

If all the assertions generated from the specification of a circuit are successful
and all the coverage metrics such as line, statement, and FSM are 100%, then
it can be assumed with high confidence that the circuit is hardware Trojan-
free. Otherwise, the uncovered lines, statements, states in FSM, and signals are
considered suspicious. All the suspicious parts constitute the suspicious list. For
example, Table 2.7 presents results of coverage and functional analyses for a
hardware Trojan (HT-RS232) inserted in the RS232 circuit and looks for a special
input sequence 8′ha6–8′h75–8′hc0–8′hff. Upon activation, the hardware Trojan
changes the FSM in the transmitter of RS232 from state Start to Stop, which means
RS232 will stop transmitting data (this hardware Trojan is similar to RS232-T700,
RS232-T900, and RS232-T901 on Trust-Hub [11]). Table 2.7 indicates that there
exist cases that the coverage is not 100% in many cases, and it flags several lines
of the RS232 circuit at the register-transfer level as suspicious statements. Further,
different test benches present different coverage and by increasing the number of
test patterns more coverage can be obtained at the cost of more analysis time.

2.5 Conclusions

In this chapter, the vulnerability of register-transfer-level circuits to hardware
Trojans insertion was discussed. Incomplete design specifications and the significant
complexity of modern designs create considerable opportunities for rough entities
to maliciously manipulate a circuit’s functionality. While considerable portion
of design development of a circuit is on its verification, traditional verification

28 2 Circuit Vulnerabilities to Hardware Trojans at the Register-Transfer Level

Table 2.7 Coverage and functional analyses for hardware Trojan HT-RS232 [10]

Testbench # Testbench 1 Testbench 2 Testbench 3 Testbench 4 Testbench 5

Test patterns # 2000 10,000 20,000 100,000 1,000,000

Verification time 1 min 6 min 11 min 56 min 10 h

Line coverage
(%)

89.5 95.2 98.0 98.7 100

FSM state
coverage (%)

87.5 87.5 93.75 93.75 100

FSM transition
coverage (%)

86.2 89.65 93.1 96.5 100

Path coverage
(%)

77.94 80.8 87.93 97.34 100

Assertion Successful Successful Successful Successful Failure

techniques have yet mainly focused on required and specified design requirements.
There is a need for a systematic approach to investigate circuit vulnerability to
hardware Trojan insertion at the register-transfer level. The vulnerability analysis
based on value range is to determine range of existing but unused values that
can be used for hardware Trojan insertion. Studying a different vulnerability, the
X-analyzer tool identifies dangerous don’t cares in a circuit that can be misused
for secret keys leakage. Coverage analyses use the existing metrics for circuit
verification to catch any possible malicious line in a register-transfer-level circuit.
While these techniques have some degrees of success in the vulnerability analysis
of circuits at the register-transfer level, their evaluation needs to be extended to
industrial sized circuits to evaluate their weaknesses and strengths.

References

1. H. Salmani, M. Tehranipoor, Analyzing circuit vulnerability to hardware Trojan insertion at
the behavioral level, in 2013 IEEE International Symposium on Defect and Fault Tolerance in
VLSI and Nanotechnology Systems (DFTS) (2013), pp. 190–195

2. W.H. Harrison, Compiler analysis of the value ranges for variables. IEEE Trans. Softw. Eng.
3(3), 243–250 (1977)

3. ITC99 benchmarks. http://www.cad.polito.it/downloads/tools/itc99.html. Accessed 22 Jan
2018

4. Simple-as-possible (SAP) microprocessor. http://opencores.org/project,sap. Accessed 22 Jan
2018

5. M. Dale, Verification crisis: managing complexity in SoC designs. https://www.eetimes.com/
document.asp?doc_id=1215507. Accessed 22 Jan 2018

6. N. Fern, S. Kulkarni, K.-T.T. Cheng, Hardware Trojans hidden in RTL don’t cares – automated
insertion and prevention methodologies, in International Test Conference (ITC), October 2015

7. N. Fern, K.-T.T. Cheng, Verification and trust for unspecified IP functionality, in Hardware IP
Security and Trust (Springer, 2017)

http://www.cad.polito.it/downloads/tools/itc99.html
http://opencores.org/project,sap
https://www.eetimes.com/document.asp?doc_id=1215507
https://www.eetimes.com/document.asp?doc_id=1215507

References 29

8. N. Fern, I. San, K.-T.T. Cheng, Detecting hardware Trojans in unspecified functionality through
solving satisfiability problems, in Asia and South Pacific Design Automation Conference (ASP-
DAC), January 2017

9. C. Rebeiro, D. Mukhopadhyay, High Speed Compact Elliptic Curve Cryptoprocessor for
FPGA Platforms (Springer, Berlin, 2008), pp. 376–388

10. X. Zhang, M. Tehranipoor, Case study: detecting hardware Trojans in third-party digital IP
cores, in 2011 IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST) (2011), pp. 67–70

11. Trust-HUB. https://www.trust-hub.org/. Accessed 22 Jan 2018

https://www.trust-hub.org/

Chapter 3
Design Techniques for Hardware Trojans
Prevention and Detection at the
Register-Transfer Level

3.1 Hardware Trojan Prevention at the Register-Transfer
Level

3.1.1 Dual Modular Redundant Schedule at High-Level
Synthesis

Dual Modular Redundant (DMR) schedule during High-Level Synthesis (HLS)
has been proposed to ensure security against hardware Trojans at the register-
transfer level [3]. The technique targets hardware Trojans in third-party intellectual
properties (3PIPs) that only cause computational output value change (and produces
no other impact). Only a third-party vendor is considered untrustworthy, and an
adversary or rogue designer only in the third-party house can manipulate the
modules/IPs such as decoders, comparators, and multipliers.

Conversion of a circuit behavioral description into its corresponding register-
transfer level structure is accomplished through HLS which involves the process
of design space exploration (DSE) that includes evaluation of alternative candidate
design solutions based on objectives such as area and delay. The conversion process
involves multiple subprocesses such as scheduling, allocation, and binding. The
process of DSE becomes convoluted with the involvement of an auxiliary variable
called loop unrolling factor for control-data flow graph (CDFG) applications as it
adds an extra dimension to explore based on conflicting user constraints of area and
delay. Loop unrolling plays an important significance in dictating the final area and
delay of a design.

Figure 3.1 presents the flow for low-cost security aware high-level synthesis
solution for hardware Trojan secured datapath [3]. The aim of proposed approach is
to explore the design space of a hardware Trojan Secured DMR schedule comprising
of candidate solutions for DMR schedule resource configurations (architecture),
candidate loop unrolling factor, and candidate vendor assignment procedure, all
hybrid encoded.

© Springer International Publishing AG, part of Springer Nature 2018
H. Salmani, Trusted Digital Circuits, https://doi.org/10.1007/978-3-319-79081-7_3

31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79081-7_3&domain=pdf
https://doi.org/10.1007/978-3-319-79081-7_3

32 3 Design Techniques for Hardware Trojans Prevention and Detection at the. . .

Fig. 3.1 The flow for low-cost security aware high-level synthesis solution for hardware Trojan
secured datapath [3]

A solution for Trojan secured DMR schedule is an optimal Xi where {Xi} =
{N(R1), N(R2), . . . , N(Rd), U, Pv}, while exploring the design space of a given
CDFG and satisfying conflicting user constraints and minimizing the overall cost.
Xi indicates a resource set of a particular particle solution with unrolling and
allocation procedure information; N(R1), N(R2), . . . , N(Rd) indicates the number
of instances of resource type ‘1’, . . .,‘d’; U indicates the unrolling factor; and
Pv indicates vendor allocation procedure type. The problem is formulated as
minimizing Hybrid Cost (ADMR

T , T DMR
E), for optimal {Xi}, subjected to ADMR

T <

Acons and T DMR
E < Tcons and hardware Trojan security. ADMR

T indicates the total
area of a DMR design; Acons indicates the user-specified area constraint; T DMR

E

indicates the total execution time of a DMR design; and Tcons indicates the user
specified execution time constraint. The loop unrolling transformation duplicates
the body of the loop multiple times controlled by U (The unrolling factor) to expose
additional parallelism that may be available across loop iterations. Pv is the vendor
allocation procedure capable of holding only a binary value (where Pv = ‘1’
indicates all operations of a specific unit being strictly assigned to resources of the
same vendor type, for example, all operations of original unit strictly assigned to
the same vendor V1 and all operations of duplication to the other vendor V2; while
Pv = ‘0’ indicates alternate vendor assignment to operations in a control step of a

3.1 Hardware Trojan Prevention at the Register-Transfer Level 33

unit). The variable Pv is crucial for hardware Trojan secured schedule optimization,
as both Pv = ‘0’ and Pv = ‘1’ provide vendor distinctness in DMR design resulting
in hardware Trojan security.

For hardware Trojan detection in 3PIPs that only change computational output
value (and produces no other impact), minimum two distinct third-party vendors
are required. Even if the IPs from two different vendors have different timing, but
functional similarity of two distinct IPs, allow for comparison at the DMR output.
In the proposed approach we only require two distinct vendors for generating a
hardware Trojan secured schedule. The technique optimizes the cost of solution
by regulating the internal allocation process of two distinct vendors within DMR
schedule through a variable Pv during exploration. Imposing a diverse set of 3PIP
vendors as security constraints during allocation step for similar operations in
DMR design during HLS provides detection of malicious output. The technique
simultaneously explores an optimal schedule and optimal U combination for a
low-cost hardware Trojan security aware DMR schedule using the Particle Swarm
Optimization (PSO) algorithm.

To obtain a hardware Trojan secured DMR schedule, its corresponding DMR
schedule is first obtained. The complete duplication is done for all the unrolled oper-
ations of the CDFG based on U . Once operations of the CDFG are unrolled, then
both the operations of original unit and duplicate unit are concurrently scheduled
based on the information of the schedule architecture (N(R1), N(R2), . . . , N(Rd))
in the candidate design solution (Xi). This enables to determine the final delay
CDMR

T . The DMR logic uses a specific vendor allocation rule to design a hardware
Trojan secured schedule. The vendor allocation rule states that two distinct vendors
are required for operation assignment in DMR such that the similar operations v

of original unit (WOG) and v′ of duplicate unit (WDP) are assigned to the distinct
vendors. This enables hardware Trojan detection as for cases where no sub-IP exists,
it is highly unlikely that different hardware Trojans in different 3PIPs will produce
identical wrong outputs. The distinct vendor assignment rule for hardware Trojan
detection can be realized in various ways; therefore, the PSO algorithm is used to
obtain the most optimal distinct vendor allocation.

3.1.2 Proof-Carrying Hardware

It is possible to express properties of systems in the form of logical statements, and
then use theorem provers to prove or disprove the properties of systems expressed
as logical statements. The proof-carrying hardware (PCH) framework integrates
interactive theorem prover and SAT solvers (shown in Fig. 3.2) to verify security
properties of register-transfer level designs [1]. The approach is based on the proof-
carrying code (PCC). In PCC, a software customer provides safety properties and
untrusted software vendor develops safety proof for these properties. Afterwards,
the vendor submits the customer a PCC binary file that includes the formal proof of

34 3 Design Techniques for Hardware Trojans Prevention and Detection at the. . .

Fig. 3.2 Working procedure of the PCH framework [1]

the safety properties encoded along with the executable code of the software. The
customer then validates the PCC binary file using its own proof checker.

Note that the PCH framework does not provide protection against hardware
Trojans whose behaviors and attributes are not captured by the set of security
properties. Furthermore, there is also an assumption that the attacker has detailed
knowledge of the design to identify critical registers and modify them in order to
carry out the attack.

In PCH framework, Hoare-logic style reasoning is used to prove the correctness
of the RTL code and implementation is carried out using the Coq proof assistant.
Coq is indeed a formal proof management system that provides a formal language to
write mathematical definitions, executable algorithms, and theorems, as terms in the
Gallina specification language, together with an environment for semi-interactive
development of machine-checked proofs. In its original implementation, Coq does
not recognize hardware description languages and security properties expressed in a
natural language. The PCH framework integrates the semantic translation of HDLs
and informal security specifications to the Calculus of Inductive Construction (CIC).
In the PCH framework, an IP customer provides both functional specifications
and a set of security properties to an IP vendor. The functional specifications are
materialized into HDL codes. Then the HDL codes and security properties are
translated to CIC. Proofs are constructed for security theorems and the transformed
HDL code. The HDL code and proof for security properties are combined into a
trusted bundle and delivered to the IP customer. The IP customer first generates the
formal representation of the design and security properties in CIC. The translated
code, combined with formal theorems and proofs, was quickly validated using the
proof checker in Coq platform.

3.2 Hardware Trojan Detection at the Register-Transfer Level 35

3.2 Hardware Trojan Detection at the Register-Transfer
Level

3.2.1 Control-Flow Subgraph Matching

A verification approach is proposed to detect hardware Trojan at the register-transfer
level by exploiting an efficient control-flow subgraph matching algorithm [2]. For a
process P of a design under verification (DUV) at RTL, a control-flow graph (CFG)
for P is a tuple CFG(P) = (B,E, ρ, s, e) where B = b1, . . . , bn is the finite set
of basic blocks, that is, sequences of consecutive instructions without any branch;
E ⊆ B × B is the finite set of edges between the blocks such that (b1, b2) ∈ E if
and only if b2 can be executed after b1 in at least one of the possible executions of
the process P; ρ : E → (0, 1] is the function such that ρ(b1, b2) is the probability
that b2 follows b1 during an execution of P; s, e ∈ B are the first and last basic
blocks, respectively.

Figure 3.3 presents the overview of the proposed approach. The inputs are the
design under verification (DUV) and a hardware Trojan library at the register-
transfer level. Three scenarios of hardware Trojans insertion at RTL are considered:
(1) an in-house rogue designer intentionally hides malicious behavior in the RTL
modules before design verification and synthesis steps; (2) third-party RTL modules
provided by untrusted parties have already been manipulated and contain hardware
Trojans; and (3) a hardware Trojan might be automatically inserted by a computer-
aided design tool used for design syntheses and analyses. Considering the different
hardware Trojan insertion scenarios, a hardware Trojan library is developed based

Fig. 3.3 Hardware Trojan detection at the register-transfer level using control-flow subgraph
matching [2]

36 3 Design Techniques for Hardware Trojans Prevention and Detection at the. . .

a b c

Fig. 3.4 Examples of the CFGs of hardware Trojan triggers in the proposed hardware Trojan
library. The dashed boxes represent the instructions (in pseudo-code) inserted in the basic blocks
associated to the nodes. In case of a node with two outgoing edges, the left and the right edges
correspond to the case in which the branching condition evaluated in the node is true and false,
respectively [2]. (a) Cheat code. (b) Dead machine. (c) Ticking time bomb

on known hardware Trojan triggers and their camouflaged variants. The hardware
Trojan triggers are classified in three categories: cheat code, dead machines, and
time bombs as samples of them are shown in Fig. 3.4.

A cheat code is a value (or sequence of values) that enables the payload upon
observation. Figure 3.4a presents an example of CFG of a cheat code’s trigger based
on two processes. A dead machine activates the hardware Trojan when specific
state-based conditions are met. It can be indeed considered a generalization of cheat
code hardware Trojans to realize more complex conditions for hardware Trojan
activation. Figure 3.4b shows a possible implementation. A ticking time bomb
enables the payload when a certain number N of clock cycles has been counted.
In fact, if N is sufficiently high, dynamic methods require long simulations, while
formal approaches face the state explosion problem. Figure 3.4c illustrates the CFG
of a possible implementation of this trigger based on two processes. The hardware
Trojan library includes a basic implementation and a configuration file for each of
the aforementioned hardware Trojan triggers. The basic implementation is the sim-
plest form of the trigger’s code. The configuration file makes the triggers parametric
using extension directives and confidence directives. The extension directives are
used to automatically modify the CFG of the trigger’s basic implementations. This
would make it possible for the hardware Trojan detection technique to stay resilient
against various implementation of one hardware Trojan trigger. The confidence
directives are used to define the structural characteristics of the trigger’s CFG. The
detection algorithm checks the structural characteristics to determine a confidence
value and to avoid false positive, after a possible instance of a HT is found in the
DUV.

After establishing the hardware Trojan library, the extraction algorithm is
executed. The extraction algorithm creates the CFG for the RTL DUV for each
process included in the DUV. The algorithm generates the CFGs of the triggers
and payloads included in the HT library as well. In this way, both the structures of
the DUV and the HTs are represented with graph-based models that highlight their
execution paths and simplify the detection of HTs. In the following, the detection

3.3 Conclusions 37

algorithm identifies the HTs by using a subgraph isomorphism algorithm. First, it
looks for the parts of the CFG of the DUV that match the CFGs extracted from the
triggers of the HT library. Afterward, it analyzes the matched instances to provide
confidence values that help discard the false positives. The confidence values take
into account the structural characteristics of the CFGs and the related payloads.

Some hardware Trojans can be similar to actual legal code, so it is necessary
to give a confidence value for each match returned by the detection algorithm.
Four characteristics are considered to determine the confidence value of the match:
(c1) presence of variables, (c2) presence of the reset logic, (c3) average distance
of the probabilities of the match and the corresponding pattern, and (c4) degree
of dependence between the match and the most affine payload. The c1 verifies if
the match uses some variables in the same way of the corresponding pattern. For
example, in the case of time bomb, it checks if there is a variable used as a counter
in the match, but not necessarily with the same name of one in the trigger. The
c2 checks if the match has a reset logic similar to the reset logic of the pattern.
For example, in the case of time bomb, it checks if a variable (counter) is reset
whenever the DUV is reset. The c3 calculates the distance between the probabilities
of traversing each edge in the match and the expected probabilities for traversing
the corresponding edges in the pattern; nearer are the probabilities, more is likely
that the match is a real instance of the pattern. The c4 verifies if there are shared
variables, that is, registers, between the match and one of the payloads specified in
the HT library. To determine final confidence level (β), the four values are linearly
combined as β = α1 × c1 + α2 × c2 + α3 × c3 + α4 × c4 where αi depends on the
trigger and

∑
i αi = 1.

3.3 Conclusions

This chapter reviewed some major works in hardware Trojan prevention and detec-
tion at the register-transfer level. Some techniques have suggested the incorporation
of various vendors at a fine granularity to prevent hardware Trojan activation. Some
have relied on the existence of a hardware Trojan library and searched into a
design data/control graph to find subgraphs may match possible hardware Trojans.
Embedding security properties into circuit development for later checking has been
also recommended with assumption that hardware Trojans behaviors and attributes
are known. While the techniques are successful in their goals, their limitations
in scalability to large design yet require thorough analyses as they may incur
significant area, power, and performance overhead. Further, their evaluation time
may considerably increases as designs become larger and more complex. One share
assumption among many hardware Trojan detection techniques is the need for a
hardware Trojan library that is a challenging issue.

38 3 Design Techniques for Hardware Trojans Prevention and Detection at the. . .

References

1. E. Love, Y. Jin, Y. Makris, Proof-carrying hardware intellectual property: a pathway to trusted
module acquisition. IEEE Trans. Inf. Forensics Secur. 7(1), 25–40 (2012)

2. L. Piccolboni, A. Menon, G. Pravadelli, Efficient control-flow subgraph matching for detecting
hardware Trojans in RTL models. ACM Trans. Embed. Comput. Syst. 16(5s), 137:1–137:19
(2017)

3. A. Sengupta, S. Bhadauria, S.P. Mohanty, TL-HLS: methodology for low cost hardware Trojan
security aware scheduling with optimal loop unrolling factor during high level synthesis. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 36(4), 655–668 (2017)

Chapter 4
Circuit Vulnerabilities to Hardware
Trojans at the Gate Level

4.1 Circuits at the Gate-Level

In its early stages, a design can be stated using high-level specification languages
such as synthesizable subsets of ANSI C/C++/SystemC/MATLAB. The behavioral
synthesis analyzes, architecturally constrains, and schedules to create a register-
transfer level (RTL) hardware description language (HDL). The RTL circuit then
undergoes the logic synthesis to obtain its corresponding gate-level netlist based
on a target technology library. A gate-level netlist is simply a description of the
connectivity of a circuit. A netlist for a digital circuit contains gates and their
interconnections in the simplest form.

The logic synthesis aims at design optimization based on performance, power,
or/and area depending on design specifications provided by a costumer. Optimiza-
tion goals or manipulating design specifications may create undefined or unused
zones that provide a malicious designer opportunities to insert hardware Trojan into
the gate-level circuit. For example, an optimized state machine may have several
unused transitions that can be used to realize a hardware Trojan trigger. Or, an output
vector signal in a specific state of a state diagram can be manipulated to covertly leak
some key information.

4.2 Analyzing Vulnerabilities Based on Functional Analyses

A static Boolean function analysis, called Functional Analysis for Nearly unused
Circuit Identification (FANCI), has been proposed to find signals with weakly
affecting inputs [1]. FANCI is grounded on the fact that a hardware Trojan
trigger input generally has a weak impact on output signals. FANCI quantifies
the dependency between two signals based on a metric called control value that
measures the degree of control of a signal on another signal in a gate-level netlist.
Figure 4.1 presents the identification of vulnerable signals which present small

© Springer International Publishing AG, part of Springer Nature 2018
H. Salmani, Trusted Digital Circuits, https://doi.org/10.1007/978-3-319-79081-7_4

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79081-7_4&domain=pdf
https://doi.org/10.1007/978-3-319-79081-7_4

40 4 Circuit Vulnerabilities to Hardware Trojans at the Gate Level

Fig. 4.1 Suspicious signals
in a gate-level netlist by
FANCI [1]

impacts on signals in their fan-out cone. A functional truth table is constructed for
every signal out of signals in their fan-in cone in a gate-level netlist. Given an input
signal wi and an output signal wo, the control value is the ratio of the number of
times the value of wo changes when wi changes while other signals in the fan-in
cone of wo are constant (count) to the size of the trust table of wo signal (size(T)).

Upon calculating the control values for a target signal and signals in its fan-in
cone in a gate-level netlist, FANCI determines a confidence level based on four
other measures: median, mean, median and mean, and triviality. While mean is the
common average and median is the middle value in the list of numbers, triviality
calculates a weighted average of the vector of control values. While these measures
can identify vulnerable and suspicious signals, they may result in false conclusion
due to the circuit implementation. Each measure needs a cutoff threshold to decide
a signal is vulnerable or suspicious or not. Such a threshold can be based on a
previous knowledge or be determined based on the distribution of computed control
values. Figure 4.2 presents results of vulnerability analyses by FANCI over some
hared Trojan-free circuits available on Trust-Hub [2]. The results indicate different
measures interpret control values differently in most cases for larger circuits.

4.3 Analyzing Vulnerabilities Based on Structural and
Parametric Analyses

Functional hardware Trojans are realized by adding or removing gates; therefore,
the inclusion of hardware Trojan gates or the elimination of circuit gates affects
circuit side-channel signals such as power consumption and delay characteristics,
as well as the functionality. To minimize a hardware Trojan’s contribution to the
circuit side-channel signals, an adversary can exploit hard-to-detect areas (e.g.,
nets) to implement the hardware Trojan. Hard-to-detect areas are defined as areas

4.3 Analyzing Vulnerabilities Based on Structural and Parametric Analyses 41

Fig. 4.2 These are the total number of suspicious wires detected by each method for each type
of backdoor design on average. For each design and each of the four methods we tried, we
always found at least one suspicious wire. Thus, each of the four methods is empirically effective.
However, some turned up larger portions of the trigger critical paths, proving to be more thorough
for those cases [1]

in a circuit not testable by well-known fault-testing techniques (stuck-at, transition
delay, path delay, and bridging faults) or not having noticeable impact on the circuit
side-channel signals.

Figure 4.3 shows a vulnerability analysis flow that performs power, delay, and
structural analyses on a circuit to extract the hard-to-detect areas [3]. Any transition
inside a hardware Trojan circuit increases the overall transient power consumption;
therefore, it is expected that hardware Trojan inputs are supplied by nets with low
transition probabilities to reduce activity inside the hardware Trojan circuit.

The Power Analysis step in Fig. 4.3 is based on analyzing switching activity;
it determines the transition probability of every net in the circuit assuming the
probability of 0.5 for ‘0’ or ‘1’ at primary inputs and at memory cells’ outputs.
Then, nets with transition probabilities below a certain threshold are considered
as possible hardware Trojan inputs. The Delay Analysis step performs path delay
measurement based on gates’ capacitance. This allows to measure the additional
delay induced by hardware Trojan by knowing the added capacitance to circuit
paths. The Delay Analysis step identifies nets on noncritical paths as they are
more susceptible to hardware Trojan insertion and harder to detect their changed
delay. To further reduce hardware Trojan impact on circuit delay characteristics, it
also reports the paths to which a net belongs to avoid selecting nets belonging to
different sections of one path. The Structural Analysis step executes the structural
transition delay fault testing to find untestable blocked and untestable redundant

42 4 Circuit Vulnerabilities to Hardware Trojans at the Gate Level

Gate-levelNetlist

Delay Analysis Structural Analysis

Nets with transition
probabilities smaller than

a specific threshold

Nets on non-critical paths
with the list of paths to

which a net belongs

Nets which are
untestable-block or

untestable-redundant

Hard-to-detect
nets identification

Unique hard-to-detect nets

Power Analysis

Fig. 4.3 The vulnerability analysis flow [3]

nets. Untestable redundant nets are not testable because they are masked by a
redundant logic, and they are not observable through primary output or scan cells.
Untestable blocked nets are not controllable or observable by untestable redundant
nets. Tapping hardware Trojan inputs to untestable nets hides hardware Trojan
impact on delay variations.

At its end, the vulnerability analysis flow reports unique hard-to-detect nets that
are the list of untestable nets with low transition probabilities and nets with low
transition probabilities on noncritical paths while not sharing any common path.
Note that when a hardware Trojan impacts more than one path, it provides greater
opportunities for detection. Avoiding shared paths makes a hardware Trojan’s
contribution to affected paths’ delay minimal, which can be masked by process
variations, making it difficult to detect and distinguish the added delay from
variations. The reported nets are ensured to be untestable by structural test patterns
used in production tests. They also have low transition probabilities, so hardware
Trojans will negligibly affect circuit power consumption. As the nets are chosen
from noncritical paths without any shared segments, it would be extremely difficult
to detect hardware Trojans by delay-based techniques.

The vulnerability analysis flow can be implemented using most electronic design
automation (EDA) tools, and the complexity of the analysis is linear with respect to
the number of nets in the circuit. The flow is applied to the Ethernet MAC 10GE
circuit [4], which implements 10 Gbps Ethernet Media Access Control functions.
Synthesized at 90 nm Synopsys technology node, the Ethernet MAC 10GE circuit
consists of 102,047 components, including 21,830 flip-flops. The Power Analysis
shows that out of 102,669 nets in the circuit, 23,783 of them have a transition
probability smaller than 0.1, 7003 of them smaller than 0.01, 367 of them smaller

4.3 Analyzing Vulnerabilities Based on Structural and Parametric Analyses 43

than 0.001, and 99 of them smaller than 0.0001. The Delay Analysis indicates
that the largest capacitance along a path, representing path delay, in the circuit is
0.065717825 pF, and there are 14,927 paths in the circuit whose path capacitance is
smaller than 70% of the largest capacitance, assuming that paths longer than 70%
in a circuit can be tested using testers. The Structural Analysis finds that there is no
untestable fault in the circuit. By excluding nets sharing different segments of one
path, there are 494 nets in the Ethernet MAC 10GE circuit considered to be areas
where hardware Trojan inputs could be used while ensuring the high difficulty of
detection based on side-channel and functional test techniques.

4.3.1 Hardware Trojan Ranking

A hardware Trojan’s impact on circuit characteristics depends on its implementa-
tion. Hardware Trojan inputs tapped into nets with higher transition probabilities
will aggrandize switching activity inside the hardware Trojan circuit and increase
its contribution to circuit power consumption. Furthermore, the hardware Trojan
might affect circuit delay characteristics due to additional capacitance induced by
extra routing and hardware Trojan gates. Hardware Trojan detectability can establish
a fair comparison among different hardware Trojan detection techniques since it is
based on induced variations by a hardware Trojan in side-channel signals.

The hardware Trojan detectability metric is determined by (1) the number of
transitions in the hardware Trojan circuit and (2) extra capacitance induced by
hardware Trojan gates and their routing. This metric is designed to be forward-
compatible with new approaches for hardware Trojan detection by introducing a
new variable, for example, a quantity related to the electromagnetic field.

Transitions in a hardware Trojan circuit reflect hardware Trojan contribution to
circuit power consumption, and hardware Trojan impact on circuit delay character-
istic is represented by measuring the added capacitance by the hardware Trojan.
Assuming AT rojan represents the number of transitions in the hardware Trojan
circuit, ST rojan the hardware Trojan circuit size in terms of the number of cells,
ATjFree the number of transitions in the hardware Trojan-free circuit, STjFree

the hardware Trojan-free circuit size in terms of the number of cells, T IC the
added capacitance by hardware Trojan as hardware Trojan-induced capacitance, and
CTjFree the hardware Trojan-affected path with the largest capacitance in the corre-
sponding hardware Trojan-free circuit, hardware Trojan detectability (TDetectability)
at the gate level is defined as

TDetectability = |t | (4.1)

where

t =
(

AT rojan/ST rojan

ATjFree/STjFree
, T IC

CTjFree

)
(4.2)

44 4 Circuit Vulnerabilities to Hardware Trojans at the Gate Level

TDetectability at the gate level is calculated as follows:

1. Apply random inputs to a hardware Trojan-free circuit and obtain the number of
transitions in the circuit (ATjFree).

2. Apply the same random vectors to the circuit with a hardware Trojan and obtain
the number of transitions in the hardware Trojan circuit (AT rojan).

3. Perform the Delay analysis on the hardware Trojan-free and hardware Trojan-
inserted circuits.

4. Obtain the list of paths whose capacitance is changed by the hardware Trojan.
5. Determine the hardware Trojan-affected path with the largest capacitance in the

corresponding hardware Trojan-free (CTjFree) and the added capacitance (T IC).
6. Form the vector t (4.2) and compute TDetectability as defined in Eq. (4.1).

Note that hardware Trojan detectability represents the difficulty of detecting a
hardware Trojan.

Tables 4.1 and 4.2 show detailed analysis of a selected number of gate-level
benchmarks. In Table 4.2, Column 3 indicates that b19 circuit, in Row 2, is the
largest circuit in size (62835) among the selected circuits. Table 4.1 also shows
the number of nets with transition probability less than 0.0001 in b19, 4530

Table 4.1 Design vulnerability analysis of a selected number of hardware Trojan-free circuits
presented at [2]

Power analysis Delay analysis
Structural
analysis

Circuit # Nets <0.1 <0.01 <0.001 <0.0001

Critical path
capacitance
(pF)

<70% of
critical path
capacitance

untestable
faults

b19 70,259 14,482 8389 5533 4530 0.37723719 474,358 8

s38417 5669 589 291 219 69 0.050146392 41,901 0

s38584 7203 817 197 85 30 0.044666893 27,689 0

s35932 6269 0 0 0 0 0.00851317 3156 0

Table 4.2 The detectability (TDetectability) of a selected number of gate-level hardware Trojans
inserted in the circuits in Table 4.1

Trojan ATjFree STjFree AT rojan ST rojan T IC(pF) CTjFree(pF) TDetectability

b19-T100 4,037,383 62,835 0 83 0.000945429 0.037849663 0.024978531

s38417-T100 2,717,682 5329 59 11 0.004167929 0.032341219 0.139390942

s38417-T200 2,717,682 5329 1328 11 0.005313744 0.030518107 0.4108472958

s38417-T300 2,717,682 5329 257 15 0.000457899 0.03078216 0.0484715731

s38584-T100 423,986 6473 705 9 0.000945429 0.015039353 1.2587797351

s38584-T200 423,986 6473 0 83 0.000414827 0.029841803 0.0139008691

s38584-T300 423,986 6473 16 731 0.012461155 0.004379333 2.8457800321

s35932-T100 353,304 5426 354 15 0.000494403 0.006985635 0.8664403555

s35932-T200 353,304 5426 733 12 0.003160179 0.009732743 1.2628060457

s35932-T300 353,304 5426 738 36 0.000497869 0.008230419 0.3753278457

4.4 Analyzing Vulnerabilities in Finite State Machines and Design-for-Test. . . 45

in Row 2 and Column 6, is larger than that of the other circuits, and b19 has
considerable number of paths whose capacitances are less than 70% of its critical
path’ capacitance, 474358 in Column 8. Further, there are eight untestable faults in
b19, in Column 9. These provide significant opportunity for implanting hardware
Trojans resilient against power and delay side-channel analyses in b19. Table 4.2
confirms that b19-T100 with TDetectability = 0.024978531, in Column 8, is the
second most difficult hardware Trojan to detect as no transition inside the hardware
Trojan is observed, 0 in Column 4, and it induces small capacitance, 0.000945429
pF in Column 6, on a noncritical path, 0.037849663 pF in Column 7. s38584-
T200, in Row 7, has the lowest detectability, 0.0139008691 in Column 8; similar
to b19-T100, there is no switching activity in s38584-T200, 0 in Column 4, and
s38584-T200 induces less capacitance, 0.000414827 pF in Column 6, on a shorter
path, 0.029841803 pF in Column 7, compared to b19-T100.

4.4 Analyzing Vulnerabilities in Finite State Machines and
Design-for-Test Structures

Beyond pure gates and paths analyses, it is possible to perform functional-oriented
vulnerability analyses at the gate level [5, 6]. A finite state machine (FSM) is the
heart of any computing system as it controls all operations in the system. An FSM
mainly consists of some memory elements that keep the current state of system
and a combinational circuit that determines the next state of system. During logic
synthesis, don’t-care states and transitions might be introduced that are not intended
at the register transfer level. Traditional verification techniques may not be capable
of identifying and analyzing introduced don’t cares; therefore, a rogue designer may
exploit them to realize stealthy hardware Trojans with small footprints [5]. Using
design-for-test (DFT) architectures such as the scan chain architecture is a common
practice considering today’s sophisticated designs with multimillion transistors and
a dozen functionality. Such architectures facilitate testing of a manufactured circuit
by providing extensive controllability and observability of internal signals through a
limited number of the circuit’s primary outputs. However, from security perspective,
DFT architectures can be exploited to access key information inside a circuit [6].

Nahiyan et al. [5] presents a framework that accepts a gate-level netlist along
with FSM synthesis report and RTL FSM report. Using FSM synthesis report and
RTL FSM report, Don’t-care states and transitions are extracted. If a don’t-care state
exists that has direct access to a protected state, such a don’t-care state introduces
a vulnerability in the FSM as the attacker becomes enabled to utilize the don’t-care
state to insert a hardware Trojan to gain access to the protected state. Knowing the
set of protected states provided by a designer, the framework isolates dangerous
don’t-care states (DDCS) and uses the following metric to evaluate the vulnerability
of an FSM to hardware Trojan insertion:

V FT ro = Total number of s′

TotalT ransition

where s′ ∈ DDCS (4.3)

46 4 Circuit Vulnerabilities to Hardware Trojans at the Gate Level

Table 4.3 Vulnerability
analysis for scheme I and
scheme II of RSA [5]

V FT ro

Scheme I 0

Scheme II 0.1

The AVFSM framework is to a simplified FSM of an RSA encryption module
implementing the Montgomery ladder algorithm [7]. This FSM is composed
of seven states, {Idle, Init, Load1, Load2, Multiply, Square, Result}. Here, the
attacker’s objective is to bypass the intermediate rounds of ‘Square’ and ‘Multiply’
states and access the ‘Result’ state to get either the key or premature result of RSA
encryption. Therefore, for this FSM, the set of protected states is P = {Result} and
set of authorized states is L = {Square}. Two encoding schemes {000, 001, 010,
011, 100, 101, 110} and {001, 010, 011, 100, 101, 110, 000} represented as scheme
I and scheme II, respectively to implement the FSM. The result reported by AVFSM
framework is shown in Table 4.3.

The scan chain architecture provides access to internal flip-flops in a design.
While it significantly enhances design testability, it may compromise design
confidentiality by leaking key information to the outside of chip. Test points are
added to eliminate hard-to-test areas. Like the scan architecture, it may facilitate
various attacks on a chip. The Joint Test Action Group (JTAG) improves testability
of SoC design by providing access to primary inputs and outputs of comprising
IPs. However, JTAG can extend the attack surface by providing access to individual
module inside the chip [6]. Violation of integrity at the gate-level netlist is defined
as the existence of some inputs or control points that can be used for control of a
critical module and drive it to some unspecified/dangerous states [6].

The integrity analysis flow [6] identifies control point(s) of an interested asset.
The control points are considered as a set of activation vectors in the fan-in of the
asset to force it to change its value or enable or disable some features. An integrity
report is generated at the end of the analysis. The report contains the list of flagged
vulnerabilities and corresponding activation vectors for any asset.

As a case study, the integrity analysis flow is applied to the controller circuit
of a MIPS microprocessor [6]. The MIPS microprocessor is a pipeline architecture
with five stages including the instruction decode stage. The control path transforms
a given opcode to individual instruction control lines needed by proceeding stages.
The control path generates control bits, such as MemRead, MemWrite, PCWrite,
for the multiplexers, the data memory, and the ALU control. These control bits are
expected to be only controlled by the opcode and should not be influenced by user
controlled inputs. Thus, control signals MemRead, MemWrite, and PCWrite are
analyzed for integrity. Table 4.4 shows the results of their integrity vulnerabilities.
Column 3 shows the number of primary inputs and SFFs that an adversary needs
to control the asset. An adversary can exploit these vulnerabilities to gain access to
memory, escalate user privileges, or modify the program counter value to change
the normal flow of a program.

References 47

Table 4.4 Integrity analysis of MIPS memory access [6]

Asset Function Detected control points

MemRead Read from memory 5

MemWrite Write to memory 5

PCWrite Change program counter 5

4.5 Conclusions

The hardware trust community needs to be placed in a common ground to more
effectively address the hardware Trojan detection problem. Efforts have be paid to
develop automatic vulnerability analysis tools to determine roots of vulnerabilities
in gate-level netlist and quantify their severity. Some work studies the vulnerabilities
in terms of gates and timing paths, and some others consider functionality at the
module level to analyze susceptibility of designs to malicious modifications. The
vulnerability analyses help circuit designers to study the security perspective of their
designs and ensure that used design techniques for optimization or testability do not
create any room for hardware Trojans. Further, deep vulnerability analyses assist in
developing effective countermeasure to prevent and detect hardware Trojans.

References

1. A. Waksman, M. Suozzo, S. Sethumadhavan, FANCI: identification of stealthy malicious logic
using boolean functional analysis, in Proceedings of the 2013 ACM SIGSAC Conference on
Computer and Communications Security (2013), pp. 697–708

2. Trust-HUB. https://www.trust-hub.org/. Accessed 22 Jan 2018
3. H. Salmani, M. Tehranipoor, R. Karri, On design vulnerability analysis and trust benchmarks

development, in 2013 IEEE 31st International Conference on Computer Design, ICCD 2013,
Asheville, NC, 6–9 October 2013, pp. 471–474

4. Ethernet 10GE MAC. http://opencores.org/project,xge_mac. Accessed 22 Jan 2018
5. A. Nahiyan, K. Xiao, K. Yang, Y. Jin, D. Forte, M. Tehranipoor, AVFSM: a framework for

identifying and mitigating vulnerabilities in FSMS, in 2016 53nd ACM/EDAC/IEEE Design
Automation Conference (DAC) (2016), pp. 1–6

6. G.K. Contreras, A. Nahiyan, S. Bhunia, D. Forte, M. Tehranipoor, Security vulnerability
analysis of design-for-test exploits for asset protection in SoCs, in 2017 22nd Asia and South
Pacific Design Automation Conference (ASP-DAC) (2017), pp. 617–622

7. B. Sunar, G. Gaubatz, E. Savas, Sequential circuit design for embedded cryptographic applica-
tions resilient to adversarial faults. IEEE Trans. Comput. 57(1), 126–138 (2008)

https://www.trust-hub.org/
http://opencores.org/project,xge_mac

Chapter 5
Design Techniques for Hardware Trojans
Prevention and Detection at the Gate
Level

5.1 Hardware Trojan Prevention at the Gate Level

5.1.1 Information Flow Tracking for Hardware Trojan
Prevention

A hardware Trojan may aim to compromise integrity and confidentiality of design.
Gate-Level Information Flow Tracking (GLIFT) has been proposed to precisely
measure and manage all digital information flows in the underlying hardware [3].
Data are assigned a label to indicate the level of their security in information flow
tracking (IFT). The label is then propagated along with data through the system. IFT
monitors the flow of information to check whether secret data pass to an unclassified
domain or high-integrity data are violated by an untrusted party. For example,
Fig. 5.1a presents a 2-input AND gate, where A, B, and O are the inputs and output
of AND-2, and at , bt , and ot are the security labels of A, B, and O, respectively. The
security labels can be either ‘1’ or ‘0’. It can be assumed ‘1’ indicated untrusted,
so A is trusted input (at = 0) and B is untrusted (bt = 1) in Fig. 5.1b. Figure 5.1b
shows whether it is possible to trust the out O by analyzing at .

It is possible that security labels take more than two values in practice. To address
this requirement, GLIFT constructs a library of 2-input primitive gates with m
security labels. For a given digital circuit, it is synthesized to a gate-level netlist com-
posed of the primitive gates found in the GLIFT library. Then, one can discretely
instantiate tracking logic for each primitive gate in the netlist through a constant-
time mapping operation. Figure 5.2 illustrates such a constructive approach [3].

To calculate the security level of a signal, GLIFT defines laws similar to Boolean
logic identities such as Absorption, Distributive, Associative, and Dot Product. For
example, for 2-input AND gate with A and B as the inputs and O as the output and
with multilevel security for each input and output (At , Bt , and Ot), Ot = At

⊙
Bt

when A = B = 0, and Ot = At

⊕
Bt when A = B = 1 where

⊕
and

⊙
are defined as

the least upper and greatest lower bound operators, respectively. Applying GLIFT

© Springer International Publishing AG, part of Springer Nature 2018
H. Salmani, Trusted Digital Circuits, https://doi.org/10.1007/978-3-319-79081-7_5

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79081-7_5&domain=pdf
https://doi.org/10.1007/978-3-319-79081-7_5

50 5 Design Techniques for Hardware Trojans Prevention and Detection at the Gate. . .

Fig. 5.1 The GLIFT method. (a) I/O of AND-2 and its GLIFT logic; (b) partial truth table of
GLIFT logic for AND-2; (c) GLIFT logic of AND-2 [3]

Fig. 5.2 The constructive method for GLIFT logic generation [3]

on an optimized circuit may result as false positive (i.e., incorrect conclusions on
integrity compromise or information leakage). To eliminate false positives, GLIFT
is being applied on a circuit without static hazard (i.e., any function contains
all its prime implicants). However, finding all prime implicants has been proven
an NP-hard problem. To eliminate all logic hazards while retaining acceptable
computational complexity, synthesis of static-logic-hazard-free circuits using binary
decision diagrams (BDDs) is suggested.

GLIFT can be used as a design technique to prevent leakage of secret information
by a hardware Trojan at the gate level by tracking the flow information between
gates in a circuit. Meanwhile, it should be considered that GLIFT incurs overhead.
On average, GLIFT logic created using the BDD method reports 4.51× in total
more number of operators, 3.65× in area, 1.74× in delay, and 3.43× in power,
respectively, than those generated by the constructive method which includes all
prime implicants of a logic function.

5.2 Hardware Trojan Detection at the Gate Level 51

5.2 Hardware Trojan Detection at the Gate Level

5.2.1 Signal Correlation-Based Clustering for Hardware
Trojan Detection

A simulation-based technique for detecting hardware Trojans using a statistical
correlation clustering is proposed in [1]. The technique postulates a hardware Trojan
logic has weak statistical correlation with the rest of the circuit. The technique
consists of three major steps; in the first step, a correlation-based similarity
weight is computed for the input-output pairs of each gate in a circuit using the
simulation data. In the second step, the gate-level design is converted to a circuit
graph, and edges are weighed by the similarity values calculated in the previous
step. It is expected that hardware Trojan triggers are driven by gates with very
low controllability, and hardware Trojan payloads are appeared as gates with a
low observability. Therefore, it is likely that a correlation-based weighting would
identify such gates as outliers of the graph. To detect that, in the third step, a density-
based clustering algorithm is applied to flag the outliers.

To generate simulation data, functional tests are generated and these test patterns
target different regions of the circuit. It is aimed to excite as many nodes as possible
to estimate the statistical correlation between adjacent nodes in the circuit graph.
The output of a gate undergoes switching activities when the inputs of the gate
change their values. Any input that has statistically higher correlation to the output
indeed determines the value of the output. Considering signals as nodes of the circuit
graph and gates connecting signals as its edges, the correlation between two adjacent
signals, where one signal is input of a gate and the other signal is the output of the
same gate, determines the weight of the edge.

To determine the weight of an edge, the cross-correlation of all adjacent signal
pairs is calculated and then the energy of every resulted signal out of the cross-
correlation is calculated. The calculated energy can show and quantify how much
two signals are similar to each other. To perform the outlier analysis over the graph,
the structural similarity between any adjacent signals based on the energy between
them is calculated as

σ(u, v) =
∑

x∈�(u)∩�(v) w(u, x).w(v, x)√∑
x∈�(u) w2(u, x)

√∑
x∈�(v) w2(v, x)

(5.1)

where u ∈ V and v ∈ V are adjacent vertices connected with the edge e ∈ E and
weight w(u, v) ∈ W in the weighted graph G = (V ,E,W). The weight w(u, u) is
defined as 1. �(u) denotes the neighborhood of the node u including u and its all
adjacent vertices, and formally stated as �(u) = {v ∈ V |{u, v} ∈ E} ∪ {u}.

After obtaining σ for every edge between any two nodes u and v, the distance
between u and v is calculated as the sum of the inverse of σ of all edges on the

52 5 Design Techniques for Hardware Trojans Prevention and Detection at the Gate. . .

Fig. 5.3 Types of reachability plots observed with TrustHub Trojan benchmarks [1]. (a) Reacha-
bility plot for RS232-800 showing the receiver (REC) and the transmitter (TX) modules of the
UART circuit with hardware Trojan (TJ) logic pushed to the border of the REC cluster. (b)
Reachability plot for AES-1800 with the hardware Trojan (TJ) logic appearing as a separate cluster
at the end of the ordered list

Table 5.1 The results of
signal correlation-based
clustering for hardware
Trojan detection in selected
Trust-HUB benchmarks [1]

Name TPR (%) SPC (%)

s15850-100 61 99

s35932-200 27 99

s38417-100 100 99

s38584-200 99 98

AES-1800 92 99

wb-conmax-200 28 96

PIC16F84-100 75 96

RS232-800 80 94

shortest path between u and v. Then the Ordering Points To Identify the Clustering
Structure (OPTICS) that is a density-based clustering algorithm is applied to obtain
the reachability plot.

It is expected that a hardware Trojan delivers functionality that is different from
the rest of circuit. Divergence in functionality manifests itself as an outlier with
high reachability-distances to the borders of the clusters or explicitly showing the
malicious logic as a different cluster in case of a large hardware Trojan.

For example, Fig. 5.3 shows the result of applying the signal correlation-based
clustering technique on RS232-800 and AES-1800 available on Trust-Hub [8]. The
results show that inserted hardware Trojans are distinguishable and stay far from
the main circuits. Table 5.1 shows the true positive rate (TPR) and the specificity
(SPC) for various trust benchmarks in Trust-Hub [8]. The average TPR is about
70% while TPR ranges from 27% to 100%. The TPR results show the percentage
of hardware Trojan gates that are correctly being identified. The SPC results tell the
ratio of the true negatives over the number of non-hardware-Trojan gates. The SPC
is the fraction of gates that are falsely flagged as being suspicious and will need to
be ruled out in detailed review. The results show the average SPC is 97.5%, and the
worse case value of SPC is 94% for RS232-800.

5.2 Hardware Trojan Detection at the Gate Level 53

Fig. 5.4 Weak classification nets [4]. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. (e) Case 5. (f)
Case 6. (g) Case 7. (h) Case 8. (i) Case 9

5.2.2 Score-Based Classification for Hardware Trojans
Detection

A score-based classification method is presented for identifying hardware Trojans
in [4]. The technique first extracts features for hardware Trojan nets based on
hardware Trojans introduced at Trust-Hub [8]. Figure 5.4 depicts the extracted
features of hardware Trojan nets. Nets with any of these features are called the weak
classification nets. In Fig. 5.4, bold signals indicate weak classification nets, and a
low switching logic gate (LSLG) refers to either AND, NAND, OR, or NOR gate.

While a normal net can take one of the cases in Fig. 5.4. Considering the fact,
weak classification nets are divided into groups. Group 1 consists of Case 1, Case
2, Case 3, Case 4, and Case 5, and Group 2 consists of Case 6, Case 7, Case 8,
and Case 9. Nets in Group 1 are scored 1, and nets in Group 2 are scored 2. A net
may belong to several cases in Fig. 5.4. As a result, the score of a net is the sum
of all scores associated with the cases to which the net belongs. It is expected that
a hardware Trojan does not frequently interfere circuit functionality; it therefore
remains in constantly dormant state (e.g., a hardware Trojan net stays at ‘0’). To
further distinguish hardware Trojan nets from the others, random input vectors are
applied to primary inputs of a circuit under test for 1M clock cycles, and all the
max score nets obtained in the previous subsection are monitored. It is possible
that a normal net even with low score remains constant for a very long time, and
it is wrongly identified as a hardware Trojan net. It has been observed that in this
scoring, the number of max score nets will decrease if the max score is higher and
it will increase if the max score is lower. Therefore, gate-level netlists are expected
to be HT-free if the number of max score nets is large enough.

Based on above observations, it is assumed that a net is a hardware Trojan net if
it satisfies one of the following conditions: (1) if the score of net is three or more,

54 5 Design Techniques for Hardware Trojans Prevention and Detection at the Gate. . .

For each net n in max score nets

Max score < 3

Max constant net count > 5

Max score cycles < 999,996

Add n to strong Trojan nets

All max score nets checked

Number of strong Trojan nets = 0

HT–free HT–inserted

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

Fig. 5.5 The score-based hardware Trojan identification flowchart [4]

net is a hardware Trojan net; (2) if maximum constant cycles of net are 999,996 or
more and the number of the maximum score nets in the netlist is five or less, the
net is a hardware Trojan net. Figure 5.5 presents the score-based hardware Trojan
identification flowchart.

Figure 5.6 shows 3D illustration of three hardware Trojan factors for max score
nets in all the gate-level Trust-Hub benchmarks. Since hardware Trojan nets in
Trust-Hub are known, X shows a hardware Trojan net and O shows a normal net, that
is, X and O are the correct answers. Shaded rectangles in Fig. 5.6 demonstrate results
of the score-based hardware Trojan identification technique. Shaded rectangles only
include the correct hardware Trojan nets marked by ‘X’, and at least one hardware
Trojan net in each benchmark is detected by the technique.

5.2 Hardware Trojan Detection at the Gate Level 55

Fig. 5.6 3D illustration of three hardware Trojan factors [4]

5.2.3 The Controllability and Observability Hardware Trojan
Detection (COTD)

To reduce hardware Trojan detectability, the hardware Trojan trigger might be
connected to nets with low activity to create a rare triggering vector, and the
hardware Trojan payload might restitch nets whose deviations are not readily
observable. As a result, it is expected that hardware Trojan signals present a very low
switching activity and small correlation with other signals in a circuit as considered
in [1, 4] and [9]. However, the circuit may contain some genuine signals with low
switching activity, and they can be wrongly identified as hardware Trojan signals
(i.e., false positive). On the other hand, a smart implementation of hardware Trojan
can realize a low-active hardware Trojan trigger whose hardware Trojan trigger does
not match any cases studied in [4]. It is also possible that a hardware Trojan has no
trigger as it is an always-on hardware Trojan, and its payload is not connected to
any net in the circuit. For example, an inverter-based ring-oscillator hardware Trojan
only consists of an odd number of inverters. This hardware Trojan is not connected
to any internal net and is to reduce design reliability over the time. Such a hardware
Trojan can easily evade the hardware Trojan detection techniques presented in [1]
and [4] (i.e., false negative).

Testability is a relative measure of the effort or cost of testing a logic circuit,
and it can be used to identify nets with poor testability [10]. Testability considers
the circuit implementation and gates’ interconnections. Low-testability signals
more infrequently determine circuit primary outputs and its states; therefore,
their manipulation highly remains hidden. Testability analysis can be performed
by calculating the controllability and observability of each signal. The Sandia
Controllability/Observability Analysis Program (SCOAP) is the most popular testa-
bility program that measures testability of each signal s in a circuit logic based
on several numerical values including CC0(s)—combinational 0-controllability

56 5 Design Techniques for Hardware Trojans Prevention and Detection at the Gate. . .

of s, CC1(s)—combinational 1-controllability of s, and CO(s)—combinational
observability of s. These combinational testability measures roughly determine the
number of signals that must be manipulated in order to control or observe s from
primary inputs or at primary outputs. The values of controllability measures range
between 1 and ∞, while the values of observability measures range between 0 and
∞. As a boundary condition, the CC0 and CC1 values of a primary input are set to
1, and the CO value of a primary output is set to 0 [10].

From the security perspective, signals with low controllability or low observ-
ability are more susceptible to be used for the hardware Trojan trigger and the
hardware Trojan payload. While a target signal might be highly observable but
hardly controllable or vice versa, the pair 〈CC,CO〉 is created for each signal in
the circuit and the magnitude of pair is defined as

|〈CC,CO〉| =
√

CC2(s) + CO2(s). (5.2)

While the value of CO can be directly obtained from the SCOAP program, the
CC value is defined as

CC(s) =
√

CC02(s) + CC12(s). (5.3)

It is expected for hardware Trojan signals to have low testability to avoid
frequent impact on design functionality. Figure 5.7 presents the controllability
and observability hardware Trojan Detection (COTD) flow [5]. It takes a gate-
level netlist as the input, and the Controllability and Observability Analyses step
performs the controllability and observability analyses to determine controllability
and observability values, that is, CC0, CC1, and CO values. Afterward, the
Unsupervised Clustering Analysis step is performed to cluster signals based on
their controllability and observability values. Two signal lists are produced: Trojan
Signals List and Genuine Signals List. The Genuine Signals List only contains
all genuine/original signals in the netlist. The Trojan Signal List only contains all
hardware Trojan signals if any hardware Trojan exists. If this list is empty, the circuit
is hardware Trojan free; otherwise, the circuit is hardware Trojan inserted.

One major issue associated with hardware Trojan detection is the lack of golden
circuit as a reference. Unsupervised learning is a type of machine learning algorithm
used to explore datasets consisting of input data without labeled responses. Cluster
analysis or clustering is the most common unsupervised learning method used for
grouping data. It groups a set of objects in such a way that objects in the same
group/cluster are more similar to each other than to those in other groups/clusters.
The clusters are modeled using a measure of similarity metrics such as Euclidean.
Two factors determine the quality of clustering: intra-cluster distance and interclus-
ter distance. While clustering, it is desired to maximize intercluster distances and to
minimize intra-cluster distances. One of the most common clustering algorithms is
k-means clustering that strives to meet both goals at the same time [6].

5.2 Hardware Trojan Detection at the Gate Level 57

Fig. 5.7 The COTD flow [5]
Gate-Level

Netlist

Controllability and
Observerability Analyses

Signal’s Controllability and
Observerability Values

Unsupervised
Clustering Analysis

Trojan Signals
List

Empty

Trojan FreeTrojan Inserted

YesNo

Genuine Signals
List

k-means clustering aims to partition n observations into k clusters in which each
observation belongs to the cluster with the nearest mean, serving as the center (or
centroid) of the cluster. Given a set of observations (x1, x2, . . . , xn), where each
observation is a d-dimensional real vector, k-means clustering aims to partition the
n observations into k sets S = {S1, S2, . . . , Sk} so as to minimize the within-cluster
sum of squares. In other words, its objective is to find:

arg min
S

k∑
i=1

∑
x∈Si

||x − μi ||2 (5.4)

Using Eq. (5.2), the COTD technique obtains the magnitude of pair 〈CC, CO〉
for every signal in a circuit. Then it passes them in the form of a 2-dimensional
dataset to the k-means algorithm where k = 3. Signals can be divided into three
clusters (k = 3): (1) genuine signals whose both CC and CO values are small,
and hardware Trojan signals (2) with large CC values or (3) with large CO values.
Therefore, the k parameter is set to 3 to distinguish hardware Trojan signals from
genuine signals. It is possible for a hardware Trojan signal to have both large CC

and CO values. Such a hardware Trojan signal is still distinguished and reported in
Trojan Signal List.

As hardware Trojan signals should have large CC or CO values to avoid their
detection as opposed to genuine signals that should have small CC or CO values
to be testable, the 3-means algorithm effectively separates all genuine signals
in one cluster and isolates all hardware Trojan signals in different clusters with

58 5 Design Techniques for Hardware Trojans Prevention and Detection at the Gate. . .

considerable intercluster distances from the cluster of genuine signals. Considering
the small CC or CO values for genuine signals and the relatively small size
of hardware Trojans, the cluster of genuine signals is easily distinguishable as
its centroid is the closest to the corner 〈CC, CO〉 = 〈0, 0〉 compared with the
centroids of hardware Trojan clusters, and it contains the larger portion of circuit
signals. Therefore, the COTD technique can effectively determine whether a circuit
is hardware Trojan inserted without the need for any golden circuit.

5.2.3.1 Complexity: COTD vs. Some Existing Techniques

Usability of any hardware Trojan detection technique strongly depends on its
time complexity. In this subsection, the time complexity of COTD is compared
with HaTCh, VeriTrustX, and FANCIX techniques [2]. Both VeriTrustX and
FANCIX techniques require monitoring of all sequential stages of design. Ver-
iTrustX monitors the activation history of each entry in the truth table instead
of terms in SOP/POS form of the Boolean function. Assuming m the number of
circuit inputs, the time complexity of VeriTrustX is O(2m), that is, an exponential
computation [2]. To compute the control value of each signal in a circuit, FANCIX
needs to go through the each entry of developed truth tables and for all primary
input combinations. This leads to the time complexity O(m2m) [2]. Assuming n

represents the total number of wires in the circuit and d the worst case trigger signal
dimension, HaTCh has the time complexity of O((2n2)d) [2]. n and d may have a
linear relationship and a logarithmic relationship with m, respectively. On the other
hand, COTD consists of two steps in sequence: Step-1 determining controllability
and observability values, and Step-2 executing k-mean clustering. Step-1 has the
time complexity O(n), and Step-2 has the time complexity of O(nkdi) using
the Lloyd’s algorithm where n is the number of wires, d is the number of data
dimensions, k the number of clusters which is set to 3 for COTD, and i the number
of iterations needed until convergence. On data that do have a clustering structure,
the number of iterations until convergence is often small, and results only improve
slightly after the first dozen iterations. Therefore, the Lloyd’s algorithm is often
considered to be of “linear” time complexity in practice (O(n)). In total, the time
complexity of COTD is O(n) + O(n) = O(n).

Figure 5.8 shows a comparison of time complexity of different countermeasures.
HaTCh-2in and HaTCh-4in show the complexities for the m-input AND gate circuit
implementation with 2-input and 4-input AND gates, respectively. While HaTCh is
sub-exponential in m and not exponential in m as for FANCIX and VeriTrustX,
COTD outperforms and presents a linear relationship with m. The inconsiderable
time complexity of COTD makes it a perfect choice for hardware Trojan detection
in a gate-level netlist.

The COTD technique can be easily integrated into current integrated design
flow as it is based on widely used commercial tools. Furthermore, the COTD
technique does not require any pattern application; therefore, it outperforms the
current existing techniques in terms of performance. As the COTD technique is

5.2 Hardware Trojan Detection at the Gate Level 59

1.0E+00
1.0E+05
1.0E+10
1.0E+15
1.0E+20
1.0E+25
1.0E+30
1.0E+35
1.0E+40
1.0E+45
1.0E+50
1.0E+55
1.0E+60
1.0E+65
1.0E+70
1.0E+75
1.0E+80

1 2 4 8 16 32 64 128 256

Ti
m

e
Co

m
pl

ex
ity

 (t
im

e
un

it)

of inputs of the circuit

Time Complexity of Countermeasures

FANCIX
VeriTrustX
HaTCh-2in
HaTCh-4in
COTD

Fig. 5.8 Comparison of computational complexities of different hardware Trojan
countermeasures [5]

based on controllability and observability analyses, any hardware Trojan circuit not
connected to the main circuit would have infinite CC or CO values. As a result, they
are separately clustered with high intercluster distance and can be identified easily.
In addition, using the unsupervised clustering technique eliminates the need for a
golden circuit as Hardware Trojan signals are clustered as signals with considerably
low testability and with considerable intercluster distance from genuine signals.

5.2.3.2 Simulation Analyses

The COTD technique is applied to gate-level Trojan-inserted netlist provided on
Trust-HUB [8] and some other circuits infected by Trojans proposed by DeTrust
[11], always-on Trojans and HaTCh [2]. In two consecutive steps, COTD firstly
obtains CC0(s), CC1(s), and CO(s) for every signal s in a circuit using Synopsys
TetraMAX [7], and then it executes unsupervised k-mean clustering with k = 3 to
identify Trojan signals. Synopsys TetraMAX can report the SCOAP controllability
and observability numbers in a set of numbers “CC0-CC1-CO.” When each of these
values exceeds the 254 limit that the program can track, it reports “*” for that value.
In this work, “*” is replaced with 254 to execute COTD.

Table 5.2 presents the results of applying COTD to gate-level Trust-HUB bench-
marks. While the first column indicates the name of benchmark, the second and
third columns present the size of trigger and payload of inserted Trojan in terms of
the number of gates. The next set of two columns presents the intercluster distances
between the genuine-signal cluster and two Trojan-signals clusters. The next set
of two columns indicates the amount of time required to obtain controllability
and observability values and to perform clustering and identifying Trojan signals.
The last two columns show the number of signals identified as genuine signals
(No Genuine Signals) and the number of signals identified as Trojan signals (No

60 5 Design Techniques for Hardware Trojans Prevention and Detection at the Gate. . .

Ta
bl

e
5.

2
D

et
ec

tin
g

ha
rd

w
ar

e
T

ro
ja

ns
in

T
ru

st
-H

U
B

ga
te

-l
ev

el
ne

tli
st

us
in

g
C

O
T

D
[5

]

T
ri

gg
er

Pa
yl

oa
d

In
te

rc
lu

st
er

di
st

an
ce

Pr
oc

es
si

ng
tim

e
(m

in
:s

)
N

o
ge

nu
in

e
N

o
T

ro
ja

n

T
ro

ja
n

si
ze

si
ze

G
en

C
ls

t-
T

j.
C

ls
t1

G
en

C
ls

t-
T

j.
C

ls
t2

C
tr

l&
O

bs
r

C
lu

st
er

in
g

si
gn

al
s

(F
N

)
si

gn
al

s
(F

P)

s3
84

17
-T

10
0

11
1

31
6.

97
25

5.
69

00
:0

3.
47

00
:0

.0
8

56
29

(0
)

12
(0

)

s3
84

17
-T

20
0

11
4

24
6.

66
24

7.
41

00
:0

2.
89

00
:0

.0
6

56
29

(0
)

15
(0

)

s3
84

17
-T

30
0

15
29

43
1.

11
24

6.
87

00
:0

2.
66

00
:0

.0
7

56
29

(0
)

44
(0

)

E
th

er
ne

t-
T

70
0

12
1

29
8.

14
24

7.
86

00
:1

1.
97

00
:1

.0
4

10
28

52
(0

)
13

(0
)

E
th

er
ne

t-
T

71
0

12
1

28
3.

50
24

7.
45

00
:0

9.
96

00
:1

.1
0

10
28

52
(0

)
13

(0
)

E
th

er
ne

t-
T

72
0

12
1

29
8.

14
24

7.
80

00
:0

8.
98

00
:1

.1
0

10
28

52
(0

)
13

(0
)

E
th

er
ne

t-
T

73
0

12
1

29
8.

14
24

7.
75

00
:0

9.
75

00
:1

.0
8

10
28

52
(0

)
13

(0
)

R
S2

32
-T

10
00

10
3

33
5.

77
25

1.
23

00
:0

0.
53

00
:0

.0
1

24
1(

0)
13

(0
)

R
S2

32
-T

11
00

11
1

34
5.

72
25

1.
20

00
:0

0.
69

00
:0

.0
0

24
1(

0)
12

(0
)

R
S2

32
-T

12
00

12
1

37
5.

98
25

1.
21

00
:0

0.
96

00
:0

.0
2

24
1(

0)
13

(0
)

R
S2

32
-T

13
00

6
2

29
4.

32
25

1.
23

00
:0

1.
24

00
:0

.0
0

24
1(

0)
8(

0)

R
S2

32
-T

14
00

12
1

34
5.

53
25

1.
15

00
:0

0.
81

00
:0

.0
1

24
1(

0)
13

(0
)

R
S2

32
-T

15
00

12
3

34
6.

33
25

1.
23

00
:0

0.
91

00
:0

.0
2

24
1(

0)
15

(0
)

R
S2

32
-T

16
00

9
2

36
2.

77
25

1.
23

00
:0

0.
96

00
:0

.0
0

24
1(

0)
11

(0
)

s1
58

50
-T

10
0

26
1

33
1.

02
25

0.
80

00
:0

0.
83

00
:0

.0
3

24
05

(0
)

27
(0

))

s3
59

32
-T

10
0

13
2

43
5.

86
25

0.
52

00
:0

0.
80

00
:0

.0
7

63
86

(0
)

15
(0

)

s3
59

32
-T

30
0

12
24

25
0.

51
25

1.
03

00
:0

0.
95

00
:0

.0
6

63
86

(0
)

36
(0

)

s3
85

84
-T

20
0

12
6

1
43

1.
49

25
2.

14
00

:0
.9

7
00

:0
.0

8
72

72
(0

)
12

7(
0)

s3
85

84
-T

30
0

11
42

1
43

4.
46

24
9.

01
00

:0
1.

05
00

:0
.0

9
72

72
(0

)
11

43
(0

)

vg
a_

lc
d-

T
10

0
4

1
24

8.
12

24
6.

60
00

:0
7.

08
00

:0
.7

1
69

83
2(

0)
5(

0)

w
b_

co
nm

ax
-T

10
0

11
4

18
4.

42
15

3.
41

00
:0

2.
02

00
:0

.2
4

22
18

2(
0)

15
(0

)

5.2 Hardware Trojan Detection at the Gate Level 61

Trojan Signals). Further, false negative (FN) rate, the number of signals wrongly
identified as genuine signals, and false positive (FP) rate, the number of signals
wrongly identified as Trojan signals, are reported.

While the circuits have different sizes, and they contain Trojans with different
sizes and functionality, all Trojans are successfully detected. For all benchmarks,
signals are grouped in three clusters. All genuine signals are isolated in one cluster
(Gen Clst), and all Trojan signals are divided into two clusters: one with high
CC values (Tj. Clst1) and the other with high CO values (Tj. Clst2). The results
in Table 5.2 highlight there is considerable intercluster distance between genuine
signals and Trojan signals such that they can be easily distinguished. The average
intercluster distances of Gen Clst and Tj. Clst1 and Gen Clst and Tj. Clst2 are about
328 and 245, respectively.

The processing timing analysis shows time to determine a circuit containing a
Trojan has taken less than 14 s in the worst case. This result supports that the timing
complexity of COTD is a linear order of the number of signals in the circuits as
discussed in Sect. 5.2.3.1. Table 5.2 also presents the number of genuine and Trojan
signals for each benchmark, and it shows both FN and FP rates are 0 for all cases.
The zero rates indicate that there is no signal that is wrongly identified as a genuine
signal while it is truly a Trojan signal and vice versa.

The results signify that realizing a stealthy hardware Trojan getting rarely
activated would result in Trojans whose signals have significantly high control-
lability and observability values, that is, very difficult to control and observe.
Otherwise, they are easily detectable. Interestingly, two gate-level Trojans in Trust-
HUB benchmarks present low controllability and observability values, and they are
frequently activated by only applying few hundred test patterns, shown in Table 5.3.

Shown in Table 5.3, s35932-T200 benchmark contains a Trojan whose trigger
has 11 gates and its payload one gate. The analysis indicates that the maximum CC
and CO for the genuine circuit and the Trojan circuit are 〈8.48, 12〉 and 〈17.02, 20〉,
respectively. Comparing with Trojans in Table 5.2, the Trojan in s35932-T200
benchmark has very low controllability and observability values; therefore, it is
observed the Trojan is activated 42 times by only applying random test patterns for
4261 test clock cycles. s38584-T100 benchmark also contains a small Trojan with
low controllability and observability values. For this case, the maximum CC and CO
values for the Trojan circuit are even less than those for the genuine circuit. Table 5.3
indicates that this Trojan is activated 21 times within only 3286 test clock cycles.
Results in Table 5.3 emphasize that the controllability and observability values of
Trojan signals cannot be small and close to those of genuine signals; otherwise
Trojans frequently interfere the normal operation of a circuit.

The controllability and observability values of Trojan signals should be signifi-
cantly high so that the Trojan remains hidden during circuit authentication. Table 5.4
presents the maximum and minimum of |〈CC,CO〉| for signals in the genuine
circuit and Trojan circuit for Trust-HUB gate-level netlist, respectively. The results
clearly indicate even the minimum magnitude of |〈CC,CO〉| for Trojan signals is
much higher than the maximum magnitude of |〈CC,CO〉| for genuine signals. The
larger this difference is, the stealthier a Trojan behaves. Almost all Trojans have a

62 5 Design Techniques for Hardware Trojans Prevention and Detection at the Gate. . .

Ta
bl

e
5.

3
G

at
e-

le
ve

lT
ro

ja
ns

in
T

ru
st

-H
U

B
w

ith
lo

w
co

nt
ro

lla
bi

lit
y

an
d

ob
se

rv
ab

ili
ty

va
lu

es
[5

]

T
ri

gg
er

si
ze

Pa
yl

oa
d

si
ze

G
en

ui
ne

ci
rc

ui
t

T
ro

ja
n

ci
rc

ui
t

#
of

T
ro

ja
n

ac
tiv

at
io

n
#

Te
st

cl
oc

k
cy

cl
es

T
ro

ja
n

M
ax

C
C

M
ax

C
O

M
ax

C
C

M
ax

C
O

s3
59

32
-T

20
0

11
1

8.
48

12
17

.0
2

20
42

42
61

s3
85

84
-T

10
0

8
1

35
.3

5
32

7.
07

9
21

32
86

5.2 Hardware Trojan Detection at the Gate Level 63

Table 5.4 Analysis of
controllability and
observability values for
genuine and Trojan
signals [5]

Genuine circuit Trojan circuit

Trojan Max |〈CC,CO〉| Min |〈CC,CO〉|
s38417-T100 101.57 254.03

s38417-T200 254.05

s38417-T300 255.13

Ethernet-T700 88.01 254.01

Ethernet-T710 254.01

Ethernet-T720 254.03

Ethernet-T730 254.00

RS232-T1000 13.19 254.00

RS232-T1100 254.03

RS232-T1200 254.00

RS232-T1300 254.00

RS232-T1400 254.00

RS232-T1500 254.00

RS232-T1600 254.00

s15850-T100 86.15 254.00

s35932-T100 12.08 254.03

s35932-T300 254.00

s38584-T200 35.41 256.26

s38584-T300 254.13

vga_lcd-T100 42.05 256.00

wb_conmax-T100 98.34 142.39

minimum |〈CC,CO〉| value above 254 while the maximum |〈CC,CO〉| value for
genuine signals ranges between 12 and 101.

Figure 5.9 depicts the results of unsupervised k-mean clustering with k = 3
for selected gate-level Trojans in Table 5.4. The figure shows genuine signals are
localized in the bottom left corner of graph while Trojan signals are mainly located
in three other corners of graph where CC, CO, or both are high. Furthermore,
Fig. 5.9 depicts the significant intercluster distance between Trojan signals and
genuine signals.

Among Trojans in Table 5.4, the maximum |〈CC,CO〉| value for genuine signals
in wb_conmax-T100 benchmark is relatively close to the minimum |〈CC,CO〉|
value for the Trojan inserted in this benchmark. While this Trojan is correctly
detected, the low value of minimum |〈CC,CO〉| value for the Trojan compared
to the other Trojans may expose its existence during the authentication phase.
Random test patterns have been applied for 3779 test clock cycles to wb_conmax-
T100 benchmark, and the Trojan becomes activated 5 times. While the Trojan
in wb_conmax-T100 benchmark is stealthier than Trojans in s35932-T200 and
s38584-T100 benchmarks analyzed in Table 5.3, having Trojan signals with low
|〈CC,CO〉| values reveals the Trojan existence in a short time. This fact signifies
that the minimum |〈CC,CO〉| values for Trojan signals should be considerably high

64 5 Design Techniques for Hardware Trojans Prevention and Detection at the Gate. . .

Fig. 5.9 Unsupervised k-mean clustering with k = 3 for selected gate-level Trojans on Trust-
HUB [5]

to avoid Trojan activation during authentication time. On the other hand, COTD can
catch Trojan signals as they stand in a cluster with considerably high intercluster
distance from genuine signals.

Hardware Trojan Recovery It is so valuable to fully recover an inserted Trojan
in a circuit to understand the purpose of adversary. Identifying Trojan trigger and
Trojan payload circuitry presents detailed information about Trojan implementation.
Further, it would also make it possible to determine (1) which signals are being used
as inputs for the Trojan trigger, and (2) which signals are targeted by the Trojan
payload.

After isolating Trojan signals using COTD, it is possible to fully recover a
hardware Trojan inserted in a gate-level netlist. Figure 5.10 presents the proposed
hardware Trojan recovery flow in a gate-level netlist. Trojan signals identified
by COTD and Trojan-inserted circuit are used as inputs. The Trojan Gates Iden-
tification step extracts Trojan gates, and their input and output pins. With this

5.2 Hardware Trojan Detection at the Gate Level 65

Fig. 5.10 The hardware
Trojan recovery flow for
gate-level netlist [5]

Trojan Signals
List

Trojan Gates
Identification

Trojan Gates Trojan Input/
OutputPins

Trojan
Reconstruction

Trojan Internal
Signals

Trojan Primary
input Signals

Payload Signal
and Gates

Trojan Trigger Trojan Payload

Gate-level
Netlist

information, it is possible to execute the Trojan Reconstruction step. In this step,
Trojan trigger and Trojan payload circuitry are restored. Signals connected to
Trojan gates’ pins are obtained, and the interconnection between Trojan gates is
reconstructed. Further, it is determined which signals from the main circuit are
being used as Trojan triggering signals, and which signals in the main circuit are
attacked by the Trojan payload. Any signal that drives a Trojan gate and is not
driven by any Trojan gate is identified as a Trojan triggering signal. Any signal that
is not a Trojan signal but passing through a Trojan gate is identified as a Trojan
payload signal. Any gate whose one of inputs is a payload signal composes the
Trojan payload circuitry. The remaining Trojan gates compose the Trojan trigger
circuitry. The hardware Trojan recovery flow is implemented in Synopsys’ design
compiler and only consists of about 100 lines, and its complexity is an order of
the number of Trojan signals. The flow is being applied to all gate-level netlist on
Trust-HUB, and all Trojans are successfully recovered.

As a sample, Fig. 5.11 presents the output of flow for the s38417-T100 Trojan
on Trust-HUB. While Fig. 5.11 shows a part of report, the report includes (1)
Trojan gates for each of which input and output pins with their connected nets are
reported, (2) Trojan internal signals are distinguished, (3) Trojan triggering signals
are detected, and (4) Trojan payload gates, along with targeted nets are identified.
Comparing the report in Fig. 5.11 with the Trojan inserted in s38417-T100 circuit
shows the proposed hardware Trojan recovery flow can perfectly extract the inserted
Trojan. While a Trojan circuit can be completely isolated, it is also possible to clean
up the Trojan-inserted circuit.

66 5 Design Techniques for Hardware Trojans Prevention and Detection at the Gate. . .

Fig. 5.11 The restored
s38417-T100 Trojan [5]

Trojan Gates ...
Trojan1234_NOT

Trojan1234_NOT/IN1:Tj_OUT1
Trojan1234_NOT/IN2:Tj_OUT2
Trojan1234_NOT/IN3:Tj_OUT3
Trojan1234_NOT/IN4:Tj_OUT4
Trojan1234_NOT/Q:Tj_OUT1234

Trojan2
Trojan2/IN1:n3023
Trojan2/IN2:n3000
Trojan2/QN:Tj_OUT2

.

.

.

.
Trojan Triggering Signals.......................................

n3023:U5423/Q
n3000:U5415/Q
n3751:U6726/QN
n3749:U6724/QN
n2792:U4217/QN
n2632:U4219/QN
n3008:U5419/Q
n3068:U4737/QN
n3128:U4743/QN
n3036:U4734/QN
n2351:U4179/QN
n2430:U4182/QN
n3758:U6728/QN
n3788:U6730/QN
n3065:U4739/Q
n3016:U5180/Q

Trojan Payload Gates..
Trojan_Payload

n4263_Tj_Payload->DFF_1563_Q_reg

≈ ≈

5.3 Conclusions

The extensive practice of integrated circuit horizontal design flow and demand for
untrusted third-party firm intellectual properties underline the need for hardware
Trojan detection at the gate level. This chapters reviewed some of major existing
techniques and discussed their effectiveness. Majority of techniques rely on switch
activity analyses while such analyses do not seem applicable to large and complex
designs such as system of chips. Eliminating false positive and negative rates in
a reasonable time is a major existing challenge for all techniques. While some
techniques seem promising, there is need for considerable evaluations on industrial-
size circuits to determine their effectiveness.

References 67

References

1. B. Çakir, S. Malik, Hardware Trojan detection for gate-level ICs using signal correlation based
clustering, in Proceedings of the 2015 Design, Automation and Test in Europe Conference and
Exhibition (DATE) (2015), pp. 471–476

2. S.K. Haider, C. Jin, M. Ahmad, D.M. Shila, O. Khan, M.V. Dijk, HaTCh: a formal framework
of hardware Trojan design and detection, Cryptology ePrint Archive, Report 2014/943 (2014)

3. W. Hu, D. Mu, J. Oberg, B. Mao, M. Tiwari, T. Sherwood, R. Kastner, Gate-level information
flow tracking for security lattices. ACM Trans. Des. Autom. Electron. Syst. 20(1), 2:1–2:25
(2014)

4. M. Oya, Y. Shi, M. Yanagisawa, N. Togawa, A score-based classification method for identi-
fying hardware-Trojans at gate-level netlists, in Proceedings of the 2015 Design, Automation
and Test in Europe Conference and Exhibition (DATE) (2015), pp. 465–470

5. H. Salmani, COTD: reference-free hardware trojan detection and recovery based on controlla-
bility and observability in gate-level netlist. IEEE Trans. Inf. Forensics Secur. 12(2), 338–350
(2017)

6. G.A.F. Seber, Multivariate Observations (Wiley, Hoboken, 1984)
7. Synopsys’s TetraMAX. http://www.synopsys.com/Tools/Pages/default.aspx
8. Trust-HUB benchmarks. https://www.trust-hub.org/taxonomy
9. A. Waksman, M. Suozzo, S. Sethumadhavan, FANCI: identification of stealthy malicious logic

using Boolean functional analysis, in Proceedings of the 2013 ACM SIGSAC Conference on
Computer and Communications Security (CCS) (2013), pp. 697–708

10. C. Wu, L. Wang, X. Wen, VLSI Test Principles and Architectures: Design for Testability.
The Morgan Kaufmann Series in Systems on Silicon (Morgan Kaufmann Publishers, San
Francisco, 2006)

11. J. Zhang, F. Yuan, Q. Xu, DeTrust: defeating hardware trust verification with stealthy
implicitly-triggered hardware Trojans,in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security (CCS) (2014), pp. 153–166

http://www.synopsys.com/Tools/Pages/default.aspx
https://www.trust-hub.org/taxonomy

Chapter 6
Circuit Vulnerabilities to Hardware
Trojan at the Layout Level

6.1 Circuits at the Layout Level

The high complexity of modern designs, the shortened time-to-market window,
and the cost restriction of final product highly drive the horizontal design process.
The third-party intellectual properties (3PIPs) are widely used in the forms of soft,
firm, and hard IPs to expedite the design process. As making and maintaining of a
fabrication site are very expensive, external fabs are preferred to reduce the product
cost. While a cooperative design supply chain is widely practiced in the interest of
economy, the appearance of different external parties across the design development
provides opportunities to malicious ones to tamper with the design by inserting extra
circuits called hardware Trojans.

A circuit layout is the result of the physical design synthesis. The physical
design synthesis obtains a synthesized netlist together with a technology library
and delivers a valid placement layout. The physical design synthesis flow contains
four major steps to meet design functional and parametric specifications: placement,
buffering and resizing, clock-tree synthesis, and routing. Placement is an essential
step of the flow and assigns the exact location for various circuit components
within the chip’s core area. Placement is twisted with cell resizing and buffering
that are essential for timing and signal integrity satisfaction. Clock-tree synthesis
and routing follow completing the physical design process. When all design
requirements are met, the circuit layout is signed off for fabrication.

When a circuit layout becomes available to an untrusted foundry for fabrication,
it can insert hardware Trojans that leave minimum footprints. To reduce a Trojan
activation probability, its triggers are connected to nets with low transition probabil-
ities. However, to minimize Trojan impacts, other parameters including availability
of whitespace, unused routing channels for Trojan placement should be studied.
Furthermore, the existence of nets with low transition probability on noncritical
paths should be investigated. Therefore, it is necessary to develop a systematic
approach to analyze the susceptibility of circuit layout to hardware Trojan insertion.

© Springer International Publishing AG, part of Springer Nature 2018
H. Salmani, Trusted Digital Circuits, https://doi.org/10.1007/978-3-319-79081-7_6

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79081-7_6&domain=pdf
https://doi.org/10.1007/978-3-319-79081-7_6

70 6 Circuit Vulnerabilities to Hardware Trojan at the Layout Level

6.2 Motivation

Like genuine cells of a circuit, hardware Trojan cells need to be placed and routed
to realize Trojan functionality. To minimize a hardware Trojan’s footprint, empty
regions (whitespaces) in a circuit layout with available routing channels in metal
layers above the regions are suitable candidates for Trojan cells placement.

For example, ITC99’s b15 benchmark [1] consists of 3296 cells, and Fig. 6.1
shows the distribution of whitespace as a unit of INVX0 (the smallest gate in
SAED_EDK90nm library) across the b15 layout after synthesizing the benchmark
using the Synopsys’s SAED_EDK90nm library at 90 nm technology node [2]. The
layout is divided into tiles with the area AT equal to W 2 where W is the width of
the largest cell in the design library, that is, AT = 560.7424 μm2.

The detailed results indicate that the densest area of b15 layout has 84.83 units
of INVX0 around the center of the layout, and the average density is 53.71 units
of INVX0. With the average size of 41.41 units of INVX0, whitespaces are more
prevalent in areas closer to the layout boundaries, and plenty of areas with low
density are also available across the b15 layout.

Figure 6.2 presents normalized average available routing channel for 9-metal
layer implementation of b15 benchmark. With the maximum and average routing
congestion of 0.36 and 0.15, respectively, a significant amount of unused routing
channel is available to be used for routing Trojan cells without requiring to modify
the original circuit routing. The results indicate the availability of 0.84 unused
routing channel on average per unit of AT . Regions of circuit layout containing
whitespace and unused routing channel are highly susceptible to Trojan insertion.

0
2

4
6

8
10

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12

W
hi

te
sp

ac
e

De
ns

ity
 (u

ni
t o

f I
N

VX
0)

Row

Co
lu

m
n

Fig. 6.1 The distribution of whitespace across the b15 layout

6.2 Motivation 71

0

3

6

9

12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12

Av
er

ag
e

av
ai

la
bl

e
ro

u�
ng

 p
er

 L
ay

er

Row

Co
lu

m
n

Fig. 6.2 Average available routing area at different metal layers of b15 layout

While availability of whitespaces and routing channels reduces efforts in insert-
ing a hardware Trojan, such existence does not necessarily promise a stealthy
implementation of hardware Trojan circuit. For example, if one or some of
triggering signals of a hardware Trojan are connected to cells located in considerable
distance, Trojan induced delay (TID) due to wiring connection may reveal Trojan
existence. Therefore, more detailed analysis is required to consider Trojan impact
on design specifications.

To reside away from delay-based detection techniques, Trojan triggers and
payloads may be connected to nets on noncritical paths whose delay is less than
75% of the critical path of circuit. Figure 6.3 shows the distribution of noncritical
paths across the b15 layout. The analysis shows that there are about 17 nets on
noncritical paths per region, on average. Furthermore, there is tendency toward the
center of circuit such that the figure increases to about 24 nets, on average. The
existence of a considerable number of nets on noncritical paths per region brings
vulnerability to Trojans resistant to delay-based detection techniques.

Power-based Trojan detection techniques examine circuit power consumption to
distinguish Trojan contribution. To minimize Trojan activity, Trojan triggers might
be connected to nets with low transition probabilities. Figure 6.4 shows the distribu-
tion of nets with transition probability smaller than a transition probability threshold
(Pth) equal to 1E−04 in b15 benchmark. The figure shows the considerable number
of nets with low transition probabilities in some regions. For example, the region
160 in row 12 and column 4 contains 12 nets with transition probabilities smaller
than 1E−04. This detailed analysis shows, in total, there are only 358 nets (11% of
total nets in b15 benchmark) with transition probability smaller than 1E−04, and
these nets can be flagged as possible Trojan triggers.

72 6 Circuit Vulnerabilities to Hardware Trojan at the Layout Level

0

3

6

9

12

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10 11 12

Co
lu

m
n

Th
e

nu
m

be
r o

f n
on

-c
ri�

ca
l p

at
hs

Row

Fig. 6.3 The distribution of noncritical path in b15 benchmark

0 1 2 3 4 5 6 7 8 9101112

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10 11 12

Column

Th
e

nu
m

be
ro

fn
et

sw
ith

tr
an

si
tio

n
pr

ob
ab

ili
ty

le
ss

th
an

1e
-0

4

Row

Fig. 6.4 The distribution of nets with transition probabilities smaller than Pth = 1e−04 in b15
benchmark

6.2 Motivation 73

0

1

2

3

4

5

6

7

8

9

10

1.0E-10 1.0E-09 1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01

Sl
ac

k
of

 th
e

Lo
ne

st
 P

at
h

(n
s)

Transition probability

Fig. 6.5 The slack time of the longest path passing through a net versus the net transition
probability for all nets of b15 benchmark

Some Trojan detection techniques perform multiple-parameter analyses to cap-
ture Trojan effects on several parameters, like power and delay, at the same time.
Ideally to escape delay and power-based detection techniques, Trojan Triggers
and Payloads should have two characteristics: (1) To be connected to nets with
low transition probabilities (2) To be placed on paths among which the path
with maximum delay is yet a noncritical path These two conditions ensure the
minimum contribution of a Trojan into circuit power consumption and the least
impact on circuit performance characteristic. Figure 6.5 shows nets’ transition
probability versus the slack time of the longest path passing through each net for b15
benchmark. The figure clearly shows there are a significant number of nets with low
transition probability on noncritical paths. These nets can be used to provide Trojan
trigger and payload with minimum impact on design characteristics. Figure 6.6
presents the distribution of nets whose transition probability is smaller than 1E−04
and the delay of the longest path passing through is less than 75% of the critical
path. The figure reveals there are regions with a considerable number of nets that
can be used for Trojan trigger and payload. For example, in the region 111 at row 8
and column 7, there are 11 nets that can realize a Trojan trigger with the activation
probability of 6.96E−58 while Trojan induced delay would be inconsiderable as
input triggers are on noncritical paths.

Analyzing b15 benchmark signifies that the vulnerability analysis of circuit
layout to hardware Trojan insertion is required to perform a detailed analysis and
isolate regions that are more susceptible to hardware Trojan insertion. Furthermore,
quantifying the vulnerability of each region of circuit layout to different types
of Trojans may reduce design efforts to prevent hardware Trojan insertion in
backend design stages. And, it may provide Trojan detection guidance based on
the vulnerability of a region.

74 6 Circuit Vulnerabilities to Hardware Trojan at the Layout Level

0
3

6
9

12

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10 11 12

Column

Th
e

nu
m

be
ro

fn
et

sw
ith

lo
w

tra
ns

iti
on

pr
ob

ab
ili

tie
so

n
no

n-
cr

iti
ca

lp
at

hs

Row

Fig. 6.6 The distribution of nets with low transition probabilities on noncritical paths for b15
benchmark

6.3 Layout Vulnerability Analysis Flow

A physical design tool takes a synthesized netlist and associated technology library
information and performs placement and routing considering design constraints
such as performance, size, and manufacturability. Cells are typically placed in rows
and their interconnections are realized through metal layers above the cells. Large
circuits such as system-on-chips take larger areas for placement and require more
metal layers for routing to meet circuit constraints, besides circuit functionality.
However, a final circuit layout may contain a considerable amount of whitespaces
in substrate and empty routing channels in metal layers above the substrate. These
empty spaces can be used by an untrusted foundry to place and route hardware
Trojan cells with minimum impact on circuit specification. Figure 6.7 shows a flow
to analyze the vulnerability of a circuit layout to hardware Trojan insertion.

6.3.1 Cell and Routing Analyses

A gate-level synthesized netlist, along with design constraints and technology
library information, is fed into a physical design tool for placement and routing. The
circuit layout, the output of physical design, shows gates’ location and their detail
wiring through metal layers. In addition to the circuit layout, an updated design
netlist with circuit parasitic parameters is obtained. The proposed flow includes two
novel steps: the Cell Analysis and the Routing Analysis to study cell distribution and

6.3 Layout Vulnerability Analysis Flow 75

Fig. 6.7 The layout
vulnerability analysis flow Gate-level

Synthesized Netlist Library

Physical Design
Tool

Circuit
Layout

Design
Constrains

Net
Analysis

Routing
Analysis

Extracted netlist with
parasitic parameters

Cell
Analysis

routing congestion. The Cell Analysis step screens the circuit silicon to extract cells’
location. It then determines whitespaces distribution and their size. The Routing
Analysis step extracts used routing channels in each metal layer and determines
unused ones.

After obtaining the circuit layout, the Cell Analysis obtains the circuit size and
collects placed cells and their coordination by screening the circuit layout. Using
these information, whitespaces in the circuit substrate are identified. Any whitespace
whose area size is greater than that of the smallest cell in the technology library
is considered a potential location for one or more Trojan cells insertion. The Cell
Analysis also obtains the distribution of cells and whitespaces across the layout.
The Routing Analysis collects used and unused routing channels in metal layers
above the substrate. Available routing channels can potentially be used for Trojan
cells interconnection and their connections to the main circuit. Similar to the Cell
Analysis, the Routing Analysis also collects the distribution of used and empty
routing channels in all metal layers. After determining whitespace and unused
routing channels distributions of a circuit layout, the vulnerability of a region of
circuit layout to hardware Trojan cells placement is defined as

V (r) = WS(r) × UR(r) (6.1)

where V (r) indicates the vulnerability of region r , WS(r) the normalized whites-
pace of region r , and UR(r) the normalized unused routing channels of region r . It
is expected that Trojan cells are inserted in regions with high V (r) where there are
equally high WS(r) and UR(r).

While being inserted in a region with high V may not guarantee Trojan detection
avoidance, to remain hidden from delay-based detection techniques, Trojans should
be inserted in regions with enough whitespace and empty routing channels and
tapped to nets on noncritical paths. The value of vulnerability to delay-resistance
Trojans (VT d(r)) in the region r can be defined as

VT d(r) = V (r) × NNC(r) (6.2)

76 6 Circuit Vulnerabilities to Hardware Trojan at the Layout Level

where NNC(r) is the number of noncritical path in the region r and V (r) is the
vulnerability of region r as defined by Eq. (6.1).

To stand the power-based detection technique, Trojans should be connected to
nets with low transition probabilities and placed in regions with enough whitespace
and unused routing channel. The value of vulnerability to power-resistance Trojans
(VTp(r)) in the region r can be defined as

VTp(r) = V (r) × NLP (r) (6.3)

where NLP (r) is the number of nets with transition probability smaller than a
predefined Pth in the region r , and V (r) is the vulnerability of region r as defined
by Eq. (6.1).

Trojans resistant to multiparameter detection techniques should be placed in
regions with empty space and unused routing channels and connected to nets with
low transition probabilities located on noncritical paths. The value of vulnerability
to power and delay-resistance Trojans (VT dp(r)) in region r can be defined as

VT dp(r) = V (r) × NNC&LP (r) (6.4)

where NNC&LP (r) is the number of nets with transition probability less than a
predefined Pth on noncritical paths in the region r and V (r) is the vulnerability
of region r as defined by Eq. (6.1).

6.3.2 Net Analysis

In general, a functional Trojan consists of two parts: a Trojan trigger and a Trojan
payload. The Trojan trigger is connected to some internal nets, and the Trojan
payload restitches some other nets. The Trojan trigger determines conditions under
which the Trojan payload propagates erroneous values into the main circuit. The
Net Analysis performs a comprehensive analysis of each net in a circuit. The
analysis determines the transition probability of each net in the circuit. With
incorporating the circuit layout information, it is possible to obtain the distribution
of transition probability across the circuit layout. Using a timing analysis tool, the
slack distribution of worst paths passing through a net can be obtained. Nets with
low transition probability located on noncritical paths are suitable candidates for
Trojan trigger inputs.

A hardware Trojan may deem to leak secret information from a design or cause
denial of service or functionality change. To launch such attacks, a Trojan payload
may target signals with low testability to reduce Trojan detection probability.
Testability is a relative measure of the effort or cost of testing a logic circuit,
and it can be used to identify nets with poor testability [3]. From the security
perspective, nets with low testability less frequently determine the values of
circuit primary outputs and its states; therefore, their manipulation highly remains
hidden. Testability analysis can be performed by calculating the controllability

6.4 Simulation Results 77

and observability of each signal. Controllability reflects the difficulty of setting
a signal line to a required logic value and observability reflects the difficulty of
propagating the logic value of the signal line to observation points. The Sandia
Controllability/Observability Analysis Program (SCOAP) is the most popular testa-
bility program that measures testability of each signal s in a circuit logic based
on several numerical values including CC0(s)—combinational 0-controllability
of s, CC1(s)—combinational 1-controllability of s, and CO(s)—combinational
observability of s. These combinational testability measures roughly determine the
number of signals that must be manipulated in order to control or observe s from
primary inputs or at primary outputs. The values of controllability measures range
between 1 and ∞, while the values of observability measures range between 0 and
∞. As a boundary condition, the CC0 and CC1 values of a primary input are set to
1, and the CO value of a primary output is set to 0. From the security perspective,
signals with low controllability and low observability are more susceptible to be
targeted by a Trojan payload. The susceptibility of a signal s to Trojan payload
attack (Payload(s)) based on their testability measures is defined as

Payload(s) = 1√
CC02(s) + CC12(s) × CO(s)

. (6.5)

A signal s with high Payload(s) is a signal which is highly observable or highly
controllable. Otherwise, a signal s with low Payload(s) is difficult both to control
and observe; therefore, such signals are highly susceptible to Trojan Payload attack.

In conclusion, the layout-level vulnerability analysis flow identifies regions of a
circuit that are more vulnerable to Trojans resistant to delay-based, power-based,
and multiparameter-based detection techniques. Furthermore, the vulnerability of
a region is quantified, and this provides a detailed and fair comparison between
different circuit implementations. With such knowledge, it is possible to incorporate
effective prevention techniques with the least impact on main design specifications.
In addition, the flow may provide insightful guidance for authenticating circuits after
manufacturing.

6.4 Simulation Results

The layout vulnerability analysis flow is applied on several benchmarks including
b15, b19, and Ethernet benchmarks [1, 4]. The Synopsys’s SAED_EDK90nm
library at 90 nm technology node [2] is used, and 9 metal layers are considered
for routing. The Routing Analysis, Cell Analysis, and Net Analysis are developed
using the tool control language (Tcl), and they can be easily integrated into any
commercial electronic design automation (EDA) tool. In this paper, the Routing
Analysis and Cell Analysis are performed using Synopsys’s IC Compiler and
the Net Analysis using Synopsys’s Design Compiler, Synopsys’s PrimeTime, and
Synopsys’s Tetramax.

78 6 Circuit Vulnerabilities to Hardware Trojan at the Layout Level

To determine NNC for each region, the circuit layout is obtained and correspond-
ing circuit netlist and circuit parasitics after physical design using Synopsys’s IC
Compiler. Circuit netlist and circuit parasitics are passed to Synopsys’s PrimeTime.
Meantime, the location of each net in the circuit is obtained in Synopsys’s IC
Compiler and passed to Synopsys’s PrimeTime. In Synopsys’s PrimeTime, the delay
of the longest path passing through each net is obtained. If this delay is less than
75% of the circuit clock period, the net is flagged noncritical. By knowing that a
net is critical or noncritical and combining with the location of net, it is possible to
determine NNC in each region of circuit layout. To determine NLP , the transition
probability of every net in the circuit is determined in Synopsys’s Design Compiler
using a program in TcL that is already made available by author on www.trust-
hub.org website. In a similar manner, net transition probability and net location are
combined to determine NLP in each region. Finally, NNC&LP value is obtained by
combing net location, net transition probability, and the delay of the longest path
passing through a net. To evaluate the significance of the proposed metrics, several
Trojans are implemented and the metrics are calculated and compared against
Trojans’ impact of design characteristics.

The significance of the flow is that it is developed based on existing commercial
tools; therefore, it benefits from their high-performance execution. The complexity
of determining NNC , NLP , and NNC&LP is O(n) where n is the number of nets in a
circuit. The complexity of determining the transition probability of every net in the
circuit is effectively O(n), as well. Collecting the whitespace and unused routing
channels is performed in Synopsys’s IC Compiler, and the procedure is a function
of the size of circuit layout. Therefore, the proposed vulnerability flow has a linear
relation with circuit size and can be applied on large industrial circuits.

In the following, the vulnerability analysis for b15 benchmark is explained in
detail, and the same analysis for the other circuits is performed and the results are
only presented.

Case Study 1: b15 For example, the average available white space and unused
routing channel are about 41 unit of INVX0 and 0.84 per layer, respectively. After
performing layout vulnerability analysis flow, Fig. 6.8 presents the vulnerability of
b15 benchmark to Trojan insertion at the layout level as defined by Eq. (6.1). The
average vulnerability is about 0.46 and about 40% of regions have V above 0.5.
These signify considerably high susceptibility of the layout to Trojan insertion.

Figure 6.9 shows the vulnerability of b15 benchmark to Trojans resilient to delay-
based detection techniques across the layout. The results indicate the region 95 in
Row 7 and Column 4 is the most susceptible region to delay-resistance Trojan with
VT d(95) = 20.44, where NNC(95) = 28 and V (95) = 0.73. Interestingly, the
adjacent region 94 in Row 7 and Column 3 has considerably higher number of
noncritical paths (NNC(94) = 40); however, the region 94 has low whitespaces
or unused routing channels, V (94) = 0.21. Therefore, the susceptibility of region
94 is much lower with VT d(94) = 8.4.

www.trust-hub.org
www.trust-hub.org

6.4 Simulation Results 79

0

2
4

6
8

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12

Vu
ln

er
ab

ili
ty

Row

Co
lu

m
n

Fig. 6.8 The vulnerability of b15 benchmark to Trojan insertion at the layout level (V (r))

0
3

6
9

12

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11 12

Column

Vu
ln

er
ab

ili
ty

to
de

la
y-

re
sis

ta
nc

e
Tr

oj
an

s(
V T

d)

Row

Fig. 6.9 Vulnerability of b15 benchmark to delay-based Trojans

80 6 Circuit Vulnerabilities to Hardware Trojan at the Layout Level

0 123456789101112

0

1

2

3

4

5

6

7

0 1 52 3 4 6 7 8 9 10 11 12

Column

Vu
ln

er
ab

ili
ty

to
po

w
er

-re
sis

ta
nc

e
Tr

oj
an

s(
V Tp

)

Row

Fig. 6.10 Vulnerability of b15 benchmark to power-based Trojans with Pth = 1e−04

The vulnerability of b15 benchmark to Trojans resilient to power-based detection
techniques across the layout is shown in Fig. 6.10 with Pth = 1e−04. The results
show that the region 147 in row 11 and column 4 has the maximum vulnerability
to power-resistance Trojan with VTp(147) = 7.71 where V (147) = 0.70 and
NLP (147) = 11.

Comparing results for delay-resistance Trojans and power-resistance Trojans
reveals that b15 benchmark is more susceptible to delay-resistance Trojans as the
maximum VT d is greater than the maximum VTp. Furthermore, regions with the
maximum VT d and VTp are different such that the most susceptible region to delay-
resistance Trojan is region 95 and the most susceptible region to power-resistance
Trojan is region 147 for b15 benchmark.

Figure 6.11 shows the vulnerability of b15 benchmark to Trojans resilient to
multiparameter power and delay Trojan detection techniques. The results reveal that
the region 150 in row 11 and column 7 is the most susceptible region to Trojans
resilient to power and delay-based detection techniques with VT dp(150) = 5.32
where V (150) = 0.53 and NNC&LP (150) = 10. The analysis signifies even
with using multiparameter Trojan detection techniques, it is possible to implement
a Trojan whose full activation probability can be about 1−E40 while there is
still considerable whitespace and unused routing channels in the region 150. This
analysis flags regions that are highly susceptible to Trojan insertion; therefore, it
can effectively limit Trojan investigation into a limited number of regions. The
detailed analysis for b15 benchmark shows that 21 regions out of 169 regions have
VT dp above 3 that indicates the moderate existence of regions with considerable

6.4 Simulation Results 81

0123456789101112

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12

Co
lu

m
n

Vu
ln

er
ab

ili
ty

to
de

la
y&

po
w

er
-re

sis
ta

nc
e

Tr
oj

an
s

(V
Td

p)

Row

Fig. 6.11 Vulnerability of b15 benchmark to Trojans resilient to multiparameter Trojan detection
techniques

whitespace and unused routing channels and a considerable number of nets with
low transition probability on noncritical paths.

The detailed results for b15 benchmark show that the percentage of regions with
VT d above 5, 10, and 15 are 75%, 17%, and 3%, respectively. The percentage of
regions with VTp above 2, 4, and 5 are 14%, 4%, and 0.6%, and the percentage
of regions with VT dp above 2, 4, and 5 are 12%, 2%, and 0%. The results
emphasize that the b15 benchmark has a higher percentage of regions vulnerable
to Trojans resilient to delay-based Trojan detection techniques. Further, by using
multiparameter power and delay Trojan detection techniques these percentages
significantly drop.

To reduce Trojan detection probability, Trojan payload may target nets with
low testability. Table 6.1 lists 10 nets with the lowest Payload value in b15
benchmark. For the signal n3689, 〈CC0, CC1, CO〉 values are 〈34, 97, 133〉 and
Payload(n3689) is the lowest (7.31E−05). The testability analysis indicates the
signal n3689 has low controllability for both 0 and 1 and low observability. Table 6.1
also indicates in which region of a circuit layout a signal is located (r) and what its
V (r) is. Although the signal n3689 has a very low Payload value, it is located in
the region 69 (r = 69) with a low vulnerability (V (69) = 0.17); therefore, the
signal n3689 may not be a good candidate for an attack by Trojan Payload. The
next signal with the lowest Payload value is the signal add_0_root_add_371_3/n17
with Payload = 8.13E−05. Although this signal is located in a region with higher
vulnerability (V (36) = 0.25), it is located on a critical path whose slack time is
0.60 ns. Therefore, this signal may not be a good candidate for Payload attack as

82 6 Circuit Vulnerabilities to Hardware Trojan at the Layout Level

Table 6.1 The net analysis for Trojan payload in the b15 layout

Net CC0 CC1 CO Payload Slack (ns) r V

n3689 34 97 133 7.31E−05 5.80 69 0.17

add_0_root_add_371_3/n17 2 251 49 8.13E−05 0.60 36 0.25

add_0_root_add_360_3/n15 2 245 50 8.16E−05 4.59 23 0.77

add_0_root_add_371_3/n16 2 229 49 8.91E−05 0.60 35 0.11

n3682 1 66 169 8.96E−05 5.38 69 0.17

add_0_root_add_360_3/n14 2 223 50 8.97E−05 4.59 35 0.11

add_0_root_add_371_3/n15 2 208 49 9.81E−05 0.60 35 0.11

add_0_root_add_360_3/n13 2 202 50 9.90E−05 4.59 34 0.28

N3424 34 34 196 1.06E−04 5.80 69 0.17

add_0_root_add_371_3/n14 2 188 49 1.09E−04 0.60 34 0.28

add_0_root_add_360_3/n6 2 182 50 1.10E−04 4.59 34 0.28

Table 6.2 The vulnerability analysis for Ethernet benchmark

Power-resistant Delay-resistant Power and Delay-resistant
Vuln. Tj. Vuln. Tj. Vuln. Tj. Vuln.

r V r NLP V VTp r V NNC VT d r V NNC&LP VT dp

0 0.889 499 15 0.690 10.350 514 0.750 33 24.734 499 0.690 11 7.590

182 0.872 498 19 0.418 7.938 579 0.575 39 22.438 496 0.422 8 3.378

770 0.854 434 25 0.287 7.182 499 0.690 29 20.010 498 0.418 8 3.342

2752 0.845 435 13 0.520 6.765 665 0.735 26 19.120 432 0.371 6 2.225

235 0.841 497 16 0.365 5.845 435 0.520 36 18.734 435 0.520 4 2.082

527 0.840 579 9 0.575 5.178 684 0.643 28 17.993 53 0.563 3 1.689

2880 0.836 433 14 0.323 4.519 385 0.664 27 17.919 665 0.735 2 1.471

171 0.835 665 5 0.735 3.677 496 0.422 42 17.735 497 0.365 4 1.461

546 0.830 495 5 0.724 3.619 449 0.645 25 16.113 495 0.724 2 1.448

3200 0.824 496 7 0.422 2.956 367 0.664 24 15.937 434 0.287 5 1.436

any modification of it high likely impacts design performance. Table 6.1, instead,
indicates that the signal add_0_root_add_360_3/n15 with Payload = 8.16E−05
is located in the region r = 23 with high vulnerability (V (r) = 0.77), and it is
located on noncritical paths (slack = 4.59 ns). Therefore, it can be concluded that
the signal add_0_root_add_360_3/n15 in b15 benchmark is highly susceptible to
Trojan Payload attack.

Case Study 2: Ethernet The vulnerability analysis flow is also applied to Ethernet
benchmark, and the results are presented in Table 6.2. In four sets of columns,
Table 6.2 shows the vulnerability (labeled Vuln.), the vulnerability to power-
resistant Trojans (labeled Power-resistant Tj Vuln.), the vulnerability to delay-
resistant Trojans (labeled Delay-resistant Tj Vuln.), and the vulnerability to power
and delay-resistant Trojans (labeled Power and Delay-resistant Tj Vuln.).

The Vuln. column set presents regions of Ethernet layout with the highest
vulnerability due to existence of considerable whitespace and unused routing

6.4 Simulation Results 83

channels. The next set of columns, Power-resistant Tj Vuln., shows the most vul-
nerable regions of Ethernet benchmark to Trojan resistant to power-based detection
techniques where Pth is set to 1E−04. Interestingly, none of these regions are listed
in Vuln. column set so that it signifies the importance of VTp metric. The third set
of columns presents the vulnerability of Ethernet benchmark to Trojans resistant
to delay-based detection techniques. While the clock period is set to 20 ns and the
critical path has about 0.37 ns slack time, Ethernet benchmark presents significant
vulnerability to Trojan resistant to delay-based detection techniques. Comparing
VTp and VT d values indicates that Ethernet is more vulnerable to Trojans resistant
to delay-based detection techniques rather than power-based detection techniques.
The comparison also indicates that the regions with the highest vulnerability to
Trojans resistant to delay-based detection techniques and Trojans resistant to power-
based detection techniques are different, and the magnitude of vulnerability to
Trojans resistant to delay-based detection techniques is much higher. The last set
of Columns, Power and Delay-resistant Tj. Vuln., presents the most vulnerable
regions of Ethernet layout to Trojans resistant to power and delay-based detection
techniques. While multiparameter detection techniques increase Trojan detection
probability, VT dp values for the 10 most vulnerable regions also indicate small
vulnerability of Ethernet benchmark to Trojans resistant to power and delay-based
detection techniques.

Studying VTp, VT d , and VT dp values for the 10 most vulnerable regions of
Ethernet benchmark shows that the region 499 at row 7 and column 51 of Ethernet
layout is significantly vulnerable to Trojans resistant to power-based, delay-based,
and power and delay-based detection techniques. Interestingly the region 44 is
not one of the 10 regions with highest whitespace and unused routing channels.
This analysis provides insightful guidance for design authentication such that it
prioritizes regions for circuit based on their vulnerability to different types of
Trojans.

Table 6.3 presents 10 nets with the lowest Payload value in Ethernet benchmark.
The analysis shows the nets have low Payload value and they do not pass any critical

Table 6.3 The net analysis for Trojan payload in the Ethernet layout

Net CC0 CC1 CO Payload Slack (ns) r V

n145918 44 8 44 5.08E−04 14.06 1631 0.61

n145968 44 8 43 5.20E−04 14.10 1124 0.50

n145942 36 9 45 5.99E−04 13.04 1057 0.52

n145943 32 6 49 6.27E−04 12.66 994 0.60

n21414 36 1 39 7.12E−04 18.63 496 0.42

n21392 1 41 34 7.17E−04 18.63 496 0.42

n145971 36 9 37 7.28E−04 14.26 1565 0.50

n145972 32 6 41 7.49E−04 13.87 1629 0.55

n146014 28 1 46 7.76E−04 16.32 432 0.37

n145917 15 6 73 8.48E−04 10.56 1630 0.49

84 6 Circuit Vulnerabilities to Hardware Trojan at the Layout Level

Table 6.4 The vulnerability analysis for b19 benchmark

Power-resistant Delay-resistant Power and Delay-resistant
Vuln. Tj. Vuln. Tj. Vuln. Tj. Vuln.

r V r NLP V VTp r V NNC VT d r V NNC&LP VT dp

25 0.960 2513 20 0.697 13.940 2466 0.782 39 30.493 2513 0.697 20 13.940

2715 0.953 185 17 0.643 10.932 1740 0.810 34 27.536 185 0.643 17 10.932

2706 0.951 1860 14 0.756 10.582 2301 0.793 34 26.971 1538 0.697 13 9.062

2708 0.951 1538 13 0.697 9.062 954 0.643 40 25.702 1868 0.493 16 7.891

2716 0.949 1868 16 0.493 7.891 1824 0.738 34 25.079 1382 0.693 11 7.628

50 0.949 1382 11 0.693 7.628 1823 0.648 38 24.615 1862 0.687 11 7.558

2709 0.944 1862 11 0.687 7.558 2316 0.825 28 23.106 1604 0.687 11 7.556

1325 0.943 1604 11 0.687 7.556 1840 0.786 29 22.792 939 0.741 10 7.409

2749 0.943 939 10 0.741 7.409 2455 0.653 34 22.203 336 0.643 11 7.077

2714 0.942 2000 10 0.735 7.351 1856 0.735 30 22.042 186 0.643 11 7.076

path. Furthermore, they are located in regions with relatively high V . Therefore,
the listed nets are highly vulnerable to Trojan payload attack as their manipulation
would leave inconsiderable impact on Ethernet circuit’s characteristics.

Case Study 3: b19 Table 6.4 presents the 10 most vulnerable regions in b19
benchmark after applying the vulnerability analysis flow. The Vuln. column set
indicates significant amount of whitespace and unused channel in b19 layout that
can be potentially used for Trojan insertion. The Power-resistant Tj Vuln. column
set presents the most vulnerable regions of b19 layout to Trojans resistant to power-
based detection techniques. While none of these regions are recognized in the Vuln.
column set, they show relatively high VTp due to considerably high NLP and V .
The Delay-resistant Tj Vuln. column set points out much higher vulnerability of
b19 layout to Trojans resistance to delay-based detection techniques. While the
clock period of b19 circuit is set to 11 ns, there is a considerable number of nets
in each region that do not pass through any critical path; therefore, with large V

and NNC , b19 layout has large VT d . The vulnerability of b19 circuit to Trojans
resistant to delay and power-based detection techniques is presented in the Power
and Delay-resistant Tj Vuln. column set. The analysis shows that the majority of
regions with the highest VTp also have high VT dp, that is many nets in these regions
are on noncritical paths.

Table 6.5 shows the vulnerability of b19 benchmark to Trojan payload attack.
Interestingly, 10 nets with the lowest Payload in b19 benchmark are located on
paths whose slack time is very close to 25% of b19’s clock period, that is, 2.75 ns. If
these nets are manipulated by Trojan payload attack, there is possibly of detection
using faster-than-clock-speed testing techniques. Therefore, the analysis suggests
an attacker should avoid these nets and find some other nets, although with higher
Payload value, located on noncritical path.

As VTp, VTd, and VTdp metrics are based on circuit implementation, they make
it possible to perform inter-circuit analysis and determine which implementation is

6.4 Simulation Results 85

Table 6.5 The net analysis for Trojan payload in the b19 layout

Net CC0 CC1 CO Payload Slack (ns) r V

P1_mult_1420/CARRYB_23__0_ 45 248 234 1.70E−05 2.81 2264 0.44

P1_mult_1421/CARRYB_23__0_ 45 248 234 1.70E−05 2.91 1647 0.64

P1_mult_1420/CARRYB_24__1_ 47 220 251 1.77E−05 2.82 2263 0.43

P1_mult_1421/CARRYB_24__1_ 47 220 251 1.77E−05 2.92 1594 0.69

P1_mult_1420/CARRYB_22__0_ 43 238 223 1.85E−05 2.81 2264 0.44

P1_mult_1421/CARRYB_22__0_ 43 238 223 1.85E−05 2.91 1647 0.64

P1_mult_1420/CARRYB_23__1_ 45 212 243 1.90E−05 2.82 2263 0.43

P1_mult_1421/CARRYB_23__1_ 45 212 243 1.90E−05 2.92 1646 0.49

P1_mult_1420/CARRYB_21__0_ 41 228 215 2.01E−05 2.82 2264 0.44

P1_mult_1421/CARRYB_21__0_ 41 228 215 2.01E−05 2.91 1647 0.64

0

5

10

15

20

25

30

35

b15 b19 Ethernt b15 b19 Ethernt b15 b19 Ethernt
dpTVdTVpTV

Fig. 6.12 Inter-circuit vulnerability analysis for the 10 most vulnerable regions in b15, b19, and
Ethernet benchmarks

less or more vulnerable against different attacks. Figure 6.12 compares b15, b19,
and Ethernet benchmarks against VTp, VT d , and VT dp for the most 10 vulnerable
regions. The results show that all three circuits are more vulnerable to Trojans that
are resilient to delay-based Trojan detection techniques with average 15.95, 25.05,
and 19.07 for b15, b19, and Ethernet benchmarks, respectively. And b19 is more vul-
nerable than others. Results of VTp indicate that benchmarks are less vulnerable to
power-based Trojan detection techniques with 4.69, 8.99, and 5.80, on average, for
b15, b19, and Ethernet benchmarks, respectively. The vulnerability of benchmarks
is further reduced against multiparameter Trojan detection techniques to 4.11, 8.61,
and 2.61, on average, for b15, b19, and Ethernet benchmarks, respectively. Results
indicates while benchmarks are significantly vulnerable to Trojans resilient to delay-
based detection techniques, their vulnerabilities are significantly reduced by 3.88X,
2.90X, and 7.30X using multiparameter Trojan detection, for b15, b19, and Ethernet

86 6 Circuit Vulnerabilities to Hardware Trojan at the Layout Level

benchmarks, respectively. These detailed analyses make it possible to fairly compare
different design implementations against different attacks.

Trojan Analysis Based on the Trojan taxonomy [5, 6], a Trojan can have a loose
distribution or a tight distribution. With a loose distribution, Trojan cells are placed
relatively far from each other. On the other hand, Trojan cells are placed relatively
close to each other in a limited area in a tight distribution. To study the impact of
Trojan distribution on its power consumption, a Trojan comparator with 11 cells
consisting of six NOR2X1 gates and five AND2X1 gates is implemented both with
loose and tight distributions in b15 circuit. To realize the distributions, the tight
Trojan is dispersed over 900 μm2 and the loose Trojan over 25,110 μm2. For both
implementations, the same inputs are used and Table 6.6 shows the impact of Trojan
distribution on its power consumption.

Table 6.6 shows Trojan induced capacitance on Trojan trigger inputs in a loose
distribution is considerably higher than that in a tight distribution. The same holds
true with Trojan internal capacitance as Trojan gates are located in a farther distance
from each other. Table 6.6 indicates that the total Trojan induced delay is 0.134pF

and 0.358pF in tight and loose distribution, respectively. Considering that both
Trojans are connected to the same triggering inputs, Trojan power consumption is
0.2205 and 0.2236 μW for tight and loose distribution, respectively. The comparator
with the loose distribution consumes about 1.4% more power as the total induced
capacitance in the loose distribution is about 2.6X more than that in the tight
distribution.

To study the VTp metric, a Trojan is inserted in three regions with different VTp

values. The Trojan is a 3-bit synchronous counter whose enable signal is driven
by a 3-input AND gate. When the output of the AND gate is ‘1’, the counter
is incremented by 1; otherwise, the previous value is kept. The three Trojans are
labeled Counter_R1, Counter_R2, and Counter_R3, and Table 6.7 presents V (r)

Table 6.6 The impact of Trojan distribution on power consumption for 12-input comparator

Distribution Tight Loose

Dispersion (μm2) 900 25110

Trojan inputs capacitance (pF) 0.092 0.205

Trojan internal capacitance (pF) 0.042 0.153

Capacitance of Trojan nets (inputs + internals) (pF) 0.134 0.358

Power (W) 2.205E−07 2.236E−07

Table 6.7 The VTp metric and Trojan power consumption

Trojan Counter_R1 Counter_R2 Counter_R3

V (r) 0.7737 0.835 0.1835

VTp(r) 6.963 3.34 2.0189

of partial activity 14 5 9

Average power consumption (W) 4.94E−007 5.29E−007 5.67E−007

6.4 Simulation Results 87

and VTp(r) for each Trojan. The V (r) value for Counter_R2 is the highest with
0.835 that indicates the existence of considerable whitespace and unused routing
channels. However, Table 6.7 shows that Counter_R1 has the highest VTp(r), that
is, Counter_R1 is in a region with higher susceptibility to power-resistance Trojans.
The same test pattern set is applied to the three Trojans and ‘# of partial activity’
in Table 6.7 presents the number of switching activity inside each Trojan circuit,
and the last row of Table 6.7 presents the average power consumption of each
Trojan. The results interestingly indicate although Counter_R3 has the lowest # of
partial activity equal to 9, its average power consumption is the highest (0.567 μW).
On the other hand, Counter_R1 with # of partial activity equal to 14 has the
lowest average power consumption (0.494 μW). The measurements signify the
importance of VTp metric. The larger value of VTp(r) indicates that a region r is
more susceptible to power-resistance Trojans as they consume less power and would
be more challenging to detect them. In comparison with Counter_R3, Counter_R1
experiences more switching activities and consumes less power compared with
Counter_R3 and its VTp = 6.963. On the other hand, the Counter_R3 Trojan
consumes more power so that it would be easier to detect it, that is less susceptible
to power-resistance Trojans with smaller VTp(= 2.0189).

To hide Trojan impact on design delay characteristics, Trojan should be con-
nected to nets on noncritical paths. Furthermore, to reduce Trojan induced delay
(TID), the distance between cells driving Trojan triggers and the cells of Trojan
trigger should be as small as possible. Otherwise, the long wiring would consider-
ably impact the delay of Trojan triggering signals. To study the impact of distance,
one Trojan gate with the input capacitance of about 1.194X of SAED_EDK90
INVX0 is inserted in three different locations (Tj_Loc1, Tj_Loc2, and Tj_Loc3 in
Table 6.8) and connected to the same input. Table 6.8 shows the distance of the
Trojan gate from its driving gate. The Tj_Loc1 Trojan is about 7.12 μm far from its
driving gate, and this causes TID of about 0.008 ns. The second Trojan, Tj_Loc2, is
placed in a distance about 33.50 μm, and it increases the delay of driving signal by
about 0.024 ns. To realize a Trojan connection, an attacker may route the connection
among different layers to reduce the wiring length; however, a long wiring can still
expose Trojan if it is connected to a critical path. The Tj_Loc3 Trojan is placed in
about 265.32 μm far from the driving cell. Considering that the width of the largest
cell in Synopsys’s SAED_EDK90nm library is about 23 μm, the Tj_Loc3 Trojan
is placed as far as about 11 the largest cell in the library. Due to this considerable
distance, a significant increase of TID of about 0.180 ns is observed. The results in
Table 6.8 signify that the distance of a Trojan from its driving cells is deterministic,
and a long connection may result in considerable TID.

Table 6.8 The impact of
distance of a Trojan trigger
input from its driving gate on
Trojan induced delay (TID)

Trojan TID (ns) Distance (μm)

Tj_Loc1 0.008 7.12

Tj_Loc2 0.024 33.50

Tj_Loc3 0.180 265.32

88 6 Circuit Vulnerabilities to Hardware Trojan at the Layout Level

5.45 5.5 5.55 5.6 5.65 5.7 5.75 5.8 5.85 5.9 5.95
Slack (ns)

0
50

100
150
200
250
300
350
400
450
500

Fr
eq

ue
nc

y

n4971
Tj In
Tj Free

(c)

0
50

100
150
200
250
300
350
400
450
500

5.45 5.5 5.55 5.6 5.65 5.7 5.75 5.8 5.85 5.9 5.95

Fr
eq

ue
nc

y

Slack (ns)
5.45 5.5 5.55 5.6 5.65 5.7 5.75 5.8 5.85 5.9 5.95

Slack (ns)

n4983
Tj In
Tj Free

0
50

100
150
200
250
300
350
400
450
500

Fr
eq

ue
nc

y

n4977
Tj In
Tj Free

(b)(a)

Fig. 6.13 The slack distribution of 1000 worst paths passing through each triggering signal of a
3-bit synchronous counter Trojan inserted in Region 33 of b15 benchmark with VT d(33) = 2.71.
(a) Slack distribution for n4983 (b) Slack distribution for n4977 (c) Slack distribution for n4971

The VT d metric determines vulnerability of a region of circuit to Trojans resistant
to delay-based detection techniques. A 3-bit synchronous counter Trojan is inserted
in the region 33 at Column 7 and row 2 with VT d(33) = 2.71 (V (33) = 0.1430 and
NNC(33) = 19). The enable signal of counter is provided by 3-bit AND gates driven
by the triggering signals n4983, n4977, and n4971 of b15 benchmark. Figure 6.13
shows the slack distribution of the 1000 worst paths passing through each triggering
signal before and after Trojan insertion. While the clock period of b15 benchmark is
set to 15 ns, the average slack for the n4983, n4977, and n4971 signals respectively
are 5.678, 5.680, and 5.695 ns with the same standard deviation of 0.057 ns in the
Trojan free circuit-the paths are long paths but not critical paths as their slack times
are greater than 25% of the clock period. After inserting the Trojan, reductions of
about 0.030, 0.028, and 0.020 ns are observed in the slack for the 1000 worst paths
passing through the n4983, n4977, and n4971 signals, respectively. The reduction
is indeed T ID that causes the increase in the paths’ delay. Although the value of
VT d(33) is small, the 3-bit synchronous counter Trojan is also small and its impact
on circuit delay characteristics may not be caught using conventional delay testing
methods. The 3-bit synchronous counter Trojan taps to only three triggering signals
and to reduce its impact on delay characteristics, the 3-bit AND gate needs to be
placed close to the triggering signals.

6.4 Simulation Results 89

0
10
20
30
40
50
60

6.5 7 7.5 8 8.5 9 9.5 10 10.5

Fr
eq

ue
nc

y

n3934
TjIn
TjFree

Slack (ns)

(c)

0
10
20
30
40
50
60

6.5 7 7.5 8 8.5 9 9.5 10 10.5

Fr
eq

ue
nc

y

n3882
TjIn
TjFree

0

25

50

75

100

125

6.5 7 7.5 8 8.5 9 9.5 10 10.5

Fr
eq

ue
nc

y

Slack (ns) Slack (ns)

N2393
TjIn
TjFree

(b)(a)

Fig. 6.14 The slack distribution of all paths passing through each triggering signal of a 3-bit
synchronous counter Trojan inserted in Region 95 of b15 benchmark with VT d(95) = 20.42.
(a) Slack distribution for N2393 (b) Slack distribution for n3882 (c) Slack distribution for n3934

The same 3-bit synchronous counter Trojan is placed in the region 95 at Column
4 and Row 7 with VT d(95) = 20.42 (V (95) = 0.7293 and NNC(95) = 28).
The VT d(95) value indicates the considerably high vulnerability of region 95 to
Trojans resistant to delay-based detection techniques. Figure 6.14 shows the slack
distribution of all paths on which the triggering signals of the counter pass through-
the N2393, n3882, and n3934 signals. As the number of paths passing through each
signal is small, their slack distribution does not show a normal distribution. The
analysis shows the minimum and maximum slacks are about 6.5 and 10 ns for the
three triggering signals in Trojan-free circuit. The analysis also shows the T ID for
the three signals is about 0.01 ns after Trojan insertion, and Fig. 6.14 indicates it is
almost impossible to distinguish Trojan-inserted and Trojan-free circuits based on
the circuit delay characteristics. Comparing to the TID of the counter Trojan in the
region 33, the smaller TID of the Trojan in the region 95 is attributed to the higher
VT d(95) compared with the smaller VT d(33) so that the Trojan can be placed and
routed with much less impact on original design characteristics. Therefore, the VT d

metric can effectively represent the vulnerability of a region to Trojans resistant to
delay-based detection techniques.

The VT dp metric determines the vulnerability of a region to Trojans which are
resistant to both delay-based detection techniques and power-based detection tech-
niques. One 3-bit synchronous counter Trojan and one 12-bit comparator separately
inserted into b15 benchmark and Figs. 6.15 and 6.16 respectively show their delay

90 6 Circuit Vulnerabilities to Hardware Trojan at the Layout Level

0
50

100
150
200
250
300
350
400
450
500

5.4 5.45 5.5 5.55 5.6 5.65 5.7 5.75 5.8 5.85 5.9 5.95

Fr
eq

ue
nc

y

Slack (ns)

n4846
TjIn
TjFree

0.00E+00
1.00E-04
2.00E-04
3.00E-04
4.00E-04
5.00E-04
6.00E-04
7.00E-04

TjFree TjIn
Circuit

Power(W)

Trojan cells: 6.84E-07 (W)

(d)(c)

0
50

100
150
200
250
300
350
400
450

5.4 5.45 5.5 5.55 5.6 5.65 5.7 5.75 5.8 5.85 5.9 5.95

Fr
eq

ue
nc

y

Slack (ns)

n4839
TjIn
TjFree

0
50

100
150
200
250
300
350
400
450
500

5.4 5.45 5.5 5.55 5.6 5.65 5.7 5.75 5.8 5.85 5.9 5.95

Fr
eq

ue
nc

y

Slack (ns)

n4845
TjIn
TjFree

(b)(a)

Fig. 6.15 The circuit power consumption and the slack distribution of 1000 worst paths passing
through each triggering signal of a 3-bit synchronous counter Trojan inserted in Region 42 of b15
benchmark with VT dp(42) = 4.149. (a) Slack distribution for n4839 (b) Slack distribution for
n4845 (c) Slack distribution for n4846 (d) Trojan cells’ power

and power impacts. The counter Trojan is inserted in the region 42 at Column 3
and Row 3 with VT dp(42) = 4.149 (V (42) = 0.4149 and NNC&LP (42) = 10).
Figure 6.15a–c show the slack distribution of the 1000 worst paths passing through
the three triggering signals of the counter. The analysis indicates the amount of
TID for the three signals is about 1 ns, on average, and the minimum slack for each
signal after Trojan insertion still is so large that the worst path does not become
a critical path. Figure 6.15d also presents the very small power consumption of the
Trojan circuit (≈ 6.84E−07 W), and the circuit power consumption before and after
Trojan insertion has almost remained the same, about 6.49E−04 W. Therefore, the
3-bit synchronous counter Trojan may remain hidden from both delay- and power-
based Trojan detection techniques.

A similar analysis is performed for 12-bit comparator inserted in the neighboring
region 43 at Column 4 and Row 3 with VT dp(43) = 4.7035 (V (43) = 0.78
and NNC&LP (43) = 6). The slack distributions of three selected inputs of the
comparator with the minimum slacks are presented in Fig. 6.16a–c. The amount of
TID is 0.018 ns, on average, and the delay of the worst path is not large enough to be
considered a critical path. In Fig. 6.16d, the Trojan power consumption is very small
(≈ 4.44E−07 W). With a small impact on circuit delay characteristics and power
consumption, the comparator Trojan may also remain hidden. Comparing the 3-bit

6.5 Conclusions 91

0.00E+00
1.00E-04
2.00E-04
3.00E-04
4.00E-04
5.00E-04
6.00E-04
7.00E-04

(d)(c)

(b)(a)

0

50

100

150

200

250

300

350

400

5.4 5.5 5.6 5.7 5.8 5.9

5.4 5.5 5.6 5.7 5.8 5.9 5.4 5.5 5.6 5.7 5.8 5.9

6

Fr
eq

ue
nc

y

n4842
TjIn
TjFree

0

50

100

150

200

250

300

350

400

Fr
eq

ue
nc

y

n4841
TjIn
TjFree

0

50

100

150

200

250

300

350

400

Fr
eq

ue
nc

y

Slack (ns)

Slack (ns)

Slack (ns)

n4840
TjIn
TjFree

TjFree TjIn
Circuit

Power (W)

Trojan cells: 4.44E-07 (W)

Fig. 6.16 The circuit power consumption and the slack distribution of 1000 worst paths passing
through three selected triggering signal of a 12-bit comparator Trojan with minimum slack inserted
in Region 43 of b15 benchmark with VT dp(43) = 4.7035. (a) Slack distribution for n4840 (b)
Slack distribution for n4841 (c) Slack distribution for n4842 (d) Trojan cells’ power

synchronous counter and 12-bit combinational comparator indicates that the counter
consumes more power than the comparator although the size of comparator circuit
is larger. This is attributed to the fact the counter is a sequential circuit and the
clock inputs of its flip-flops are connected to circuit clock. Furthermore, TID for the
comparator circuit is smaller than that of the counter which is because of the higher
VT dp value of the comparator. Therefore, the VT dp metric can effectively identify
regions vulnerable to Trojans resilient to delay and power-based techniques.

6.5 Conclusions

The existence of untrusted manufacturers necessitates a novel layout vulnerability
analysis flow to determine susceptibility of a circuit layout to hardware Trojan

92 6 Circuit Vulnerabilities to Hardware Trojan at the Layout Level

insertion. While there has not been that many considerable and comprehensive
work toward vulnerability at the layout level, this chapter reviewed one existing
work that proposed layout vulnerability analysis flow. The proposed layout vul-
nerability analysis flow enabled to determine the susceptibility of a circuit layout
to hardware Trojan insertion. Based on a circuit layout’s placement and routing
information, metrics were introduced to quantify the vulnerability of a region
of circuit layout to hardware Trojan insertion. Metrics enabled to quantitatively
evaluate the vulnerability of each region of layout to various types of hardware
Trojans. The results have indicated the considerable vulnerability of circuit layout to
hardware Trojans resistant to delay-based, power-based, and multiparameter-based
Trojan detection techniques. The analysis made is possible an in-detailed analysis
of each gate and net of circuit, considering its placement and routing. Such an
analysis may provide guidance for Trojan prevention during circuit development and
Trojan detection after fabrication. The proposed vulnerability flow mainly considers
hardware Trojan impacts on power and performance characteristics. However,
a hardware Trojan may affect other characteristics such as electromagnetic or
temperature as well. Therefore, a comprehensive layout vulnerability needs to
consider various parameters to more accurately quantify the vulnerability of a
circuit layout to hardware Trojans resilient to different hardware Trojan detection
techniques.

References

1. ITC99 benchmarks. http://www.cad.polito.it/downloads/tools/itc99.html. Accessed 22 Jan 2018
2. Synopsys 90nm generic library for teaching ic design. http://www.synopsys.com/Community/

UniversityProgram/Pages. Accessed 22 Jan 2018
3. L. Wang, C. Wu, X. Wen, VLSI Test Principles and Architectures: Design for Testability. The

Morgan Kaufmann Series in Systems on Silicon (Morgan Kaufmann Publishers, San Francisco,
2006)

4. Ethernet 10GE MAC. http://opencores.org/project,xge_mac. Accessed 22 Jan 2018
5. Trust-HUB. https://www.trust-hub.org/. Accessed 22 Jan 2018
6. R. Karri, J. Rajendran, K. Rosenfeld, M. Tehranipoor, Trustworthy hardware: identifying and

classifying hardware Trojans. Computer 43(10), 39–46 (2010)

http://www.cad.polito.it/downloads/tools/itc99.html
http://www.synopsys.com/Community/UniversityProgram/Pages
http://www.synopsys.com/Community/UniversityProgram/Pages
http://opencores.org/project,xge_mac
https://www.trust-hub.org/

Chapter 7
Design Techniques for Hardware Trojans
Prevention and Detection at the Layout
Level

7.1 Hardware Trojan Prevention at the Layout Level

Hardware Trojan prevention at the layout level has mainly focused on design
techniques that merely prevent hardware Trojan insertion in a circuit layout or
facilitate hardware Trojan detection after design manufacturing. In this section some
of major design techniques for hardware Trojan prevention are discussed.

7.1.1 Dummy Scan Flip-flop Insertion and Layout-Aware Scan
Cell Reordering

Dummy scan flip-flop insertion and scan cell reordering techniques are two com-
plementary design techniques that improve hardware Trojan detection resolution
by increasing partial switching activity of hardware Trojan circuit and reducing
overall circuit switching activity [1, 2]. The two techniques facilitate hardware
Trojan detection based on power analysis. It is expected that hardware Trojan inputs
are driven by signals with low switching activity to reduce the probability of full
activation of hardware Trojan during circuit authentication. To increase hardware
Trojan partial activation (i.e., increasing switching activity inside a hardware Trojan
circuit), the dummy scan flip-flop insertion technique restitches signals with very
low ‘1’ or ‘0’ probabilities [1]. Signals with very low ‘0’ probabilities are restitched
through the structure in Fig. 7.1a, and signals with very low ‘1’ probabilities are
restitched through the structure in Fig. 7.1b.

In Fig. 7.1, the signal TE is the test enable signal that distinguishes between the
functional and test modes. The signal SI is the serial input signal that is either driven
by another dummy scan flip-flop or by a primary input on which ‘1’ and ‘0’ are
applied with the equal probability.

© Springer International Publishing AG, part of Springer Nature 2018
H. Salmani, Trusted Digital Circuits, https://doi.org/10.1007/978-3-319-79081-7_7

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79081-7_7&domain=pdf
https://doi.org/10.1007/978-3-319-79081-7_7

94 7 Design Techniques for Hardware Trojans Prevention and Detection at the. . .

CLK

‘1’

SI
TE

CLK

Net i with Pi0 >> Pi1Net i with Pi0 << Pi1

‘0’

SI
TE

(P’i0, P’i1)(P’i0, P’i1)

(b)dSFF-OR(a)dSFF-AND

Fig. 7.1 The dummy flip-flop structures when (a) Pi0 � Pi1 and (b) Pi0 � Pi1 [1]

Scan chain 1

Scan chain 4

Scan chain 2

Scan chain 3

Scan-in 1 Scan-out 1 Scan-in 2

Test Enable (TE)

Scan-out 2

Scan-in 4 Scan-out 4 Scan-in 3 Scan-out 3

Fig. 7.2 Layout-aware scan-cell reordering concept [2]

If a signal (Net i in Fig. 7.1) has considerably low transition probability and
the probability of ‘0’ is significantly smaller than the probability of ‘1’, Net i is
passed through dSFF-AND in Fig. 7.1a. dSFF-AND increases the probability of ‘0’
on net i in the authentication mode. In the functional mode, the functionality of
Net i is remained intact. On the other hand, if Net i has considerably low transition
probability and the probability of ‘1’ is significantly smaller than the probability of
‘0’, Net i is passed through dSFF-OR in Fig. 7.1b.

Hardware Trojan detection resolution depends on hardware Trojan activity
directly and circuit activity reversely. The scan-cell reordering technique reorders
scan cells based on their placement during physical design to reduce circuit
switching activity by limiting it into a specific region [2]. This helps magnify
hardware Trojan contribution to the total circuit transient power by increasing the
ratio of hardware Trojan to circuit power consumption. Figure 7.2 shows the basic
concept of the layout-aware scan-cell reordering. Assume that a design with four
scan chains is divided into four regions. The method forms the scan chains such
that scan cells placed in each selected region are connected to each other. It is to
ensure that the scan chains have the same length, but that is not a requirement. The

7.1 Hardware Trojan Prevention at the Layout Level 95

technique enables magnifying the hardware Trojan impact by increasing the ratio of
hardware Trojan to circuit power consumption through maximizing switching in the
target region (e.g., the region containing scan chain 4) while minimizing switching
in all the other regions (1, 2, and 3).

7.1.2 Ring Oscillator Network

A ring oscillator is a chain of odd number of inverting components where the last
component is driving the input of the first component. In its simplest form, the ring
oscillator is made of inverters. While any inverter in the ring oscillator produces a
period waveform, the period of this waveform is determined by the total delay of
all inverters in the presence of supply voltage variations and process variations. The
ring oscillator can serve as a power monitor as well since its frequency depends
on supply voltage and any variation on power supply changes the frequency of the
ring oscillator. As any switching activity in a hardware Trojan circuit consumes
power, any unexpected change in the frequency of a ring oscillator can indicate
the existence of the hardware Trojan circuit near to the ring oscillator. Based on
this assumption, a ring oscillators network (RON) where each serves as a power
monitor is distributed across the circuit layout such that each row of the circuit
under authentication contains at least one inverter of an RO in the RON, as shown
in Fig. 7.3.

This on-chip structure includes a Linear Feedback Shift Register (LFSR), one
decoder, one multiplexer, and one counter. The LFSR supplies random functional
patterns for the entire circuit during the signature generation and authentication
processes; the same seed must be used for each golden circuit and each circuit under
authentication. A decoder and multiplexer are used to select which ring oscillator is
measured. The output of a selected RO provides the clock input of the counter that
measures the cycle count of the selected ring oscillator over a specified duration.

Assuming that a set of hardware Trojan-free circuits exist, the RON for each
circuit is characterized by obtaining the frequency of each ring oscillator of the RON
under the same functional patterns. Any circuit under authentication also becomes
characterized under the same functional patterns. Any considerable mismatch
beyond the impact of process variations flags the hardware Trojan existence.

7.1.3 Trojan Prevention and Detection (TPAD) Technique

Using a combination of new design techniques and new memory technologies, the
hardware Trojan Prevention and Detection (TPAD) technique is to detect hardware
Trojans during integrated circuit testing and during system operation in the field [4].
TPAD assumes that a trusted register-transfer level circuit or system specification
exists and system assembly is also trusted. Therefore, logic synthesis tools, physical

96 7 Design Techniques for Hardware Trojans Prevention and Detection at the. . .

Fig. 7.3 The on-chip structure with each gate of the ring oscillators placed in a standard-cell
row [3]

design tools, as well as IC fabrication are untrusted. Toward ultimate assurance,
an entire circuit can be implemented using reconfigurable computing modules such
as Filed Programmable Gate Arrays. However, the final design suffers significant
area, performance, and power overhead. To mitigate the overhead, TPAD applies
reconfigurability on only the critical portion of a circuit. A complex system may
consist of several chips that communicate either directly or through an on-chip
network. TPAD suggests encoding the communication between the chips to further
prevent hardware Trojan attacks with the assumption the on-chip network is trusted
by itself and a hardware Trojan exists in at least one of the chips. Figure 7.4 shows
the implementation of TPAD at the system level, and Fig. 7.5 presents the detailed
implementation of TPAD inside a chip.

Each chip in the system encodes its outputs and receives encoded inputs.
Specifically, chip 1 outputs data and corresponding check bits, so chip 2 can use
them to verify the data. Encoded error signals sent from each chip convey the state
of all checkers within the chip. The error monitors then interpret these signals
and determine if an attack has occurred. Each chip implemented using TPAD

7.1 Hardware Trojan Prevention at the Layout Level 97

Fig. 7.4 Trusted system.
Each chip is implemented
with TPAD. Data
communication between
chips is encoded. Error
monitors check encoded error
signals and determine if an
attack has occurred

Fig. 7.5 TPAD architecture
for each chip, including
output encoding, input
decoding, oncurrent error
detection (CED) for logic,
and error encoding [4]

includes four modules: (1) output encoding; (2) input encoding; (3) concurrent error
detection-based hardware Trojan detection; and (4) error encoding.

Primary outputs of each chip are encoded using randomized parity encoding to
generate output check bits accompanying the primary outputs. The output check bits
are generated based on a randomized parity code word that is calculated during each
clock cycle and depends on the previously generated check bits. Such a dependency
over the time can reveal hardware Trojans that become activated at certain time and
affect primary outputs of a chip. A separate encoding is used for each subsequent
chip in the system that receives a different set of the primary outputs; the same
encoding is used for chips receiving the same set of primary outputs. Concurrent
error detection (CED) is used to protect the circuit logic as shown in Fig. 7.5. To
deliver reasonable security, all combinational logic circuits should be first identified,
and each combinational logic circuit becomes protected by a separate CED.

Error signals produced by CED checkers can be manipulated by a hardware
Trojan if these signals are easily interpretable. To prevent such a attack, the error
signals are protect by introducing randomness in the Error Encoding module in
Fig. 7.5 by using a programmable linear feedback shift register (LFSR). The error
signals then need to be examined by a trusted Error Monitor module (Fig. 7.4)
to determine if an attack has occurred or not. The error monitor module includes
LFSRs that are set with the same characteristic polynomial, seed, and clock as the
LFSRs used in the error encoding module. To realize this error monitor, an older
technology node from a trusted foundry may be used.

A hardware Trojan may target an on-chip memory module and interfere with
its read and write operations or its address decoder. To detect such attacks, a
randomized parity code is used to protect the memory module. In the write-through
write operation, TPAD records the values on the address bus and the data bus, and
calculates check bits based on these values to ensure that correct data are written

98 7 Design Techniques for Hardware Trojans Prevention and Detection at the. . .

to the correct location. The check bits are stored along with the data. In the read
operation, the address and data values are used to calculate the expected check bits.
These are compared with the check bits read out from the memory and an attack is
detected if they do not match.

7.1.4 Infrastructure IP for Security (IIPS) Technique

In a similar effort to address security of complex designs, an Infrastructure IP for
Security (IIPS) is introduced to address various security issues including scan-based
attacks in cryptographic systems, reverse engineering, cloning and overproduction
attacks, and hardware Trojan attacks in system-on-chip designs [5].

The block diagram of IIPS is provided in Fig. 7.6. It consists of a Master Finite
State Machine that controls the working mode of IIPS, a Scan Chain Enabling
FSM to provide individual control over activation of the scan chains in an SoC,
and a clock control module to generate necessary clock and control signals for
performing path delay-based hardware Trojan detection. Specifically targeting
hardware Trojans, IIPS integrates the clock sweeping technique proposed in [6]
for hardware Trojan detection through path delay measurement. IIPS provides a
centralized infrastructure for characterization of path delays in individual IPs.

As tapping into any original signal would modify its delay characteristics, the
clock sweeping technique collects the delay testing response over various clock
frequencies, and then performs statistical analyses to identify possible hardware
Trojans. IIPS makes the clock frequency tunable to support a fine-grained frequency

CoreNCore2Core1 FCLK

Scan Enable
FSM

Master
FSM

FCLK

SC_EN1 SC_EN2

SC_EN

ScanPUF
TrojDet

Clock
Select

Delay
Line

Lou Cap

Test Control

SC_ENn

6

FCLK

CLK

WRSTN

FCLK
IIPS_RSTN

WRCK

ShiftWR

CaptureWR

SelectWR

UpdateWR

WSI

WRSTN

PLL

W
S
P

IIPS

Fig. 7.6 Block diagram of the IIPS module showing an interconnection with other IP cores in an
SoC using SoC boundary scan architecture [5]

7.2 Hardware Trojan Detection at the Layout Level 99

sweeping over a wide range. Hardware Trojans might be mounted inside the
functional cores or they could tamper with the interconnection among cores. IIPS
has two modes for hardware Trojan detection: (1) INTEST_SCAN that allows
inward facing test for a a specific core while other cores are set to BYPASS mode;
(2) EXTEST that allows the regional analyses of interconnection that are driven by
a specific core while other cores are being set to BYPASS mode.

7.2 Hardware Trojan Detection at the Layout Level

The primary inputs and outputs are logical access and observation points (channels)
of a chip. However, there are other channels that can reflect computation activities
inside the chip that are known as side channels. For example, analyzing power
consumption of a chip through monitoring power/ground pins can reveal what
computation is being performed at a time by knowing the detailed implementation
inside the chip. Side channels can take various forms such as timing information,
electromagnetic information, thermal information, and power information. The
side-channel information is of great concern in the field of cryptography as it
extremely facilitates determining secret keys stored inside the chip. Considering
effectiveness of side-channel attacks on crypto chips, various hardware Trojan
detection techniques have been proposed to capture hardware Trojan footprints in
side-channel signals. In the following some of these techniques are being discussed.

7.2.1 The Current Integration Technique

The amount of current drawn by a hardware Trojan can be so small that it submerges
into the envelope of noise and process variation effects, where it cannot be detected
by measurement equipment. However, hardware Trojan detection resolution can
greatly improve if the current is measured locally from multiple power pads. The
more instances of switching on hardware Trojan inputs and inside hardware Trojan
circuitry, the greater the hardware Trojan’s power consumption.

Since small Trojans are expected to be inserted into chips to reduce the
probability of detection, the local current impact could be more significant than
the global current measured from power pins. A current integration methodology
is presented in [7] which accumulates the impact of a hardware Trojan over the
time while it is expected that the process variations impact is canceled out by
integration. Figure 7.7 shows the current integration methodology for detecting
hardware Trojans.

It is assumed that an untrusted manufacturer inserts some hardware Trojans into
a selected number of chips. The exhaustive testing on a few randomly selected
chips can help identify some golden chips (i.e., chips without hardware Trojans).
After identifying the golden chips, an average current waveform is formed in

100 7 Design Techniques for Hardware Trojans Prevention and Detection at the. . .

Fig. 7.7 Current integration method [7]

response to a test pattern set. Next, the test pattern set is applied to each circuit
under authentication, and the current is measured locally via power pads or C4
bumps. Using this current integration method, the small current consumption
difference between hardware Trojan-inserted and hardware Trojan-free circuits
can be increased through the integration process. In the case of a hardware
Trojan’s existence in a chip, more current difference can be measured by applying
more patterns to the chip, making hardware Trojan detection easier. When the
current difference surpasses a pre-defined threshold, hardware Trojan existence is
concluded and pattern application has stopped.

7.2.2 Delay-Based Hardware Trojan Detection Using Shadow
Registers

Inserting hardware Trojans in only some of fabricate chips would demand additional
masks that are expensive. Therefore, some work assumes that a hardware Trojan is
inserted in all manufacture chips if an untrusted manufacturer wants to insert. Some
techniques including [8] have been proposed to detect hardware Trojans based on
delay analyses. As a hardware Trojan is expected to cause minimal delay deviations,
a path selection scheme is proposed to select paths which maximize the additional
delay induced by the hardware Trojan with respect to the nominal path delays and
effects of process variations [8]. The path selection scheme targets timing paths
having the smallest path delay values to maximize the impact of the hardware Trojan
on each path’s delay. Further, new logic and timing conditions are derived that
must be satisfied to detect a hardware Trojan at a desired confidence level and at
a minimum cost.

It is assumed that a hardware Trojan is tapped into one or more original
signals of a circuit in a manner that changes the delay of the original signals

7.2 Hardware Trojan Detection at the Layout Level 101

Combinational path
Output
register

Input
register

CLK 1

Skew: Δ

CLK 1

CLK 2 CLK 2

CLK 1

Shadow
register

Fig. 7.8 Path delay measurement architecture [8]

even minimally. To measure small hardware Trojan-induced delay, the path delay
measurement architecture in Fig. 7.8 is proposed. Taking advantage of the existing
scan architecture on modern designs, the output of any target timing path is routed
to a second register (the shadow register in Fig. 7.8). The shadow register is driven
by a different clock which is being applied with the skew � relative to the circuit
main clock. The approach does not require high-frequency clocks so that it avoids
problems associated with excessive heat dissipation during testing of short delay
paths. The total delay of a timing path P consists of three parameters: (1) nominal
delay of path P, (2) the effect of process variations on the delay of P, and (3) extra
delay induced by a hardware Trojan, if it exists. The effect of process variations
follows random distribution, which is typically bi-directional around a mean. In
contrast, extra delay induced by surrogate is uni-directional and always increases
the total delay of path P. The proposed architecture is being applied on short timing
paths as induced delay by a hardware Trojan constitutes a larger percentage of total
delay of a short timing path compared to that of a long timing path.

While the technique assumes that it exists in all fabricated chips if a hardware
Trojan is inserted by an untrusted manufacturer, the following question is what is
the minimum number of fabricated chips sufficient to provide the correct disposition
of the fabricated chips – either hardware Trojan-free or hardware Trojan-inserted –
with low probability of decision error. A nonparametric test is proposed to identify
the existence of the target hardware Trojan using the likelihood-ratio test.

7.2.3 Temperature-Based Hardware Trojan Detection

As modern and sophisticated designs utilize various sensors including thermal
sensors for dynamic thermal management, some techniques including [9] have
been proposed for online detection of deviations in power/thermal profiles caused

102 7 Design Techniques for Hardware Trojans Prevention and Detection at the. . .

Fig. 7.9 Phases of the temperature tracking approach [9]

by hardware Trojan activation. The proposed framework for temperature-based
hardware Trojan detection consists of three major phases: design-time, test-time,
and run-time phases (shown in Fig. 7.9). In the design phase, an IC’s power/thermal
dynamics is statistically characterized. The test-time phase is used to calibrate each
manufactured design due to fabrication variations. The run-time phase integrates the
information from the previous phases with thermal sensor measurements to detect
an activated hardware Trojan. Two mechanisms are suggested to detect hardware
Trojan activation during run-time. The first is a local sensor-based approach that
uses information from thermal sensors, statistical information provided by the
test phase, and hypothesis testing. The second is a global approach that exploits
correlation between sensors and maintains track of the IC’s thermal profile using a
Kalman filter (KF).

There is a strong correlation between temperature and power consumption.
Therefore, any change in circuit power consumption due to any switching activity
inside hardware Trojan circuit should also be reflected in circuit thermal profile.
There are two major challenges to overcome: sensor infrastructure and noise,
and fabrication variations. Firstly, temperature tracking highly depends on sensor
placement, number of sensors, and sensor noise. Secondly, fabrication variations
make it more challenging to track temperature as well as detect hardware Trojans
as (1) It introduces larger uncertainty in the estimated thermal profile, and (2) It
makes it difficult to distinguish between deviations in power/temperature due to
manufacturing and hardware Trojan presence.

The above challenges are addressed in three phases (Fig. 7.9). At the design-
time phase, assuming some hardware Trojan-free designs are available, the
power/temperature profiles of hardware Trojan-free designs are obtained using
the RC thermal model, benchmarks, and either state-of-the-art simulation tools or
prototype ICs. Further, sensor placement is performed to optimize the temperature

7.2 Hardware Trojan Detection at the Layout Level 103

tracking/hardware Trojan detection. In the second phase, parameter calibration is
performed. This is needed as fabrication variations cause manufactured designs
that present different physical, electrical, and performance parameters from the
nominal design so that fabrication variations make it more challenging to accurately
detect hardware Trojans and track temperature. Calibration can be accomplished
by applying test vectors to a manufactured design, measuring power consumption,
and estimating probability distribution functions (pdfs) after fabrication. In the third
phase, run-time, it is determined whether a circuit is hardware Trojan free/inactive
or hardware Trojan inserted.

Two mechanisms are proposed to answer the above question. The first is a local
sensor-based approach that uses a hypothesis testing (HT) framework. The second
is a global approach that exploits correlation between sensors and maintains track
of the design’s thermal profile with a Kalman filter. In the hypothesis testing (HT)
approach, one assumes that S[k], one sensor measurement at timestep k, can only
come from one of two pdfs: S0 or S1 which corresponds to temperature in hardware
Trojan-free/Trojan-inactive and hardware Trojan-active designs respectively. The
correct state is selected as the one with the highest probability of occurrence given
S[k] (i.e., argmax Pr(Hx |S[k]), x ∈ {0, 1}) where

{
H0 The state is hardware Trojan − free or hardware Trojan − inactive

H1 The state is hardware Trojan − active

In Kalman filter-based approach, the correlation between sensors is exploited
and a Kalman filter is used to dynamically track the system’s thermal profile at run-
time. An autocorrelation-based metric then decides between hypotheses H0 and H1
(Trojan-free/Trojan-inactive and Trojan-active). The Kalman filter relies on (1) a
state-space equation to model the random dynamics of the state being estimated and
(2) a measurement equation to relate measurements with the state being estimated.
The state-space equation for temperature tracking is the discrete form RC thermal
model equation as following

�T [k] = A �T [k − 1] + B �P [k − 1]

The above equation assumes that the current thermal state �T [k] depends on the
previous thermal state �T [k − 1] and also local power dissipation �P [k − 1]. Due to
variations in the voltage supply noise, system workload, etc., the power �P is random
at each timestep and �T [k] cannot be precisely computed with the state-space model
alone. To improve the estimate, the Kalman filter uses measurements collected by
thermal sensors and the following measurement model

�S[k] = H �T [k] + �v[k]

where �S[k] is a vector of sensor measurements at timestep k; H is a transformation
matrix based on the sensor placement; and �v[k] is a Gaussian random vector with

104 7 Design Techniques for Hardware Trojans Prevention and Detection at the. . .

zero mean and known covariance R representing measurement noise. The Kalman
filter estimates the thermal state of a chip and it recursively performs predict
and update based on new sensor measurement after each estimation. While the
Kalman filter can accurately track temperature, a rule is needed to decide on the
correct state (H0 or H1). The suggested decision rule is based on the Kalman filter
residual and uses the autocorrelation function of the residual process. In the Kalman
filter, residual �e[k] indicates the difference between the predicated temperature and
actual thermal sensor measurements. If �e[k] is small (large), the predicted and
actual temperature measurements agree (disagree) on the thermal state. Assuming
the state-space model/parameters and the sensor noise covariance are reasonably
accurate, the autocorrelation of the residual should be close to zero on average.
When a hardware Trojan becomes activated, the state-space model (which does not
account for the power of an active Trojan) becomes less accurate and should cause
the autocorrelation to diverge from zero.

7.2.4 Circuit Layout Reverse Engineering for Hardware
Trojan Detection

For hardware Trojan detection at the layout level, many works rely on the existence
of a hardware Trojan free design obtained through reverse engineering. It should
be noted that performing reverse engineering is very expensive and takes lots of
time and consumes intensive manual effort. Meantime it is also very error prone,
and there is a need for a robust reverse engineering to identify hardware Trojan free
designs [10].

Three types of hardware Trojans at the layout level are being considered in
[10]: (1) Hardware Trojan Addition (TA): These hardware Trojans add transistors,
gates, and interconnects into the original layout. (2) Hardware Trojan Deletion (TD):
These hardware Trojans delete transistors, gates, and interconnects from the original
layout. (3) Hardware Trojan Parametric (TP): These hardware Trojans perform
physical changes to the transistors, gates, and interconnects of the original layout.

The goal is to determine a provided chip by an untrusted manufacturer is
hardware Trojan inserted or hardware Trojan free. This problem can be viewed
as a classification problem described as following. Assume there are two classes
of objects denoted by C0 and C1. Let each object (e.g., an untrusted chip) be
represented by a feature vector x = (x1, . . . , xn), where xi denotes the ith feature,
xi ∈ R, and n denotes the number of features. Given an untrusted chip A, the
problem is to determine the correct class of the chip A: hardware Trojan free or
hardware Trojan inserted that contains TA, TD, and TP. It is assumed that a batch of
chips manufactured by the same foundry will be either all hardware Trojan free or
all hardware Trojan-inserted.

As a hardware Trojan is inserted by an untrusted foundry, it is assumed that the
original physical layout (referred to as the golden layout) for all the layers of the

7.2 Hardware Trojan Detection at the Layout Level 105

Fig. 7.10 The block diagram of SVM-based hardware Trojan detection approach [10]

chip exists. Figure 7.10 presents the overall approach for hardware Trojan detection
using one-class support vector machine (SVM). SVM is a classification approach
striving to classify some objects based on some of the objects’ features. SVM is
first trained on training samples to obtain a classifier and then uses this classifier to
classify a given object.

The golden layout is taken as an input, N chips to classify, and parameter values
for grid size, noise margin dnm, etc. The N chips undergo some steps of reverse
engineering that give images for all layers of all N chips. In the following, the images
are divided as the images for each layer of all N chips into nonoverlapping grids.
Breaking the images into smaller grids enables parallelized or distributed processing
for each grid. Afterward, features are extracted for all N chips for each grid in each
layer. The classifier is then trained and a decision boundary for each layer is obtained
using a subset of the chips. After training, the grids in the each layer of all the N
chips are classified as hardware Trojan free or hardware Trojan inserted based on
the ν-SVM decision boundaries of each layer. Finally, each chip is labeled based on
these grid classifications.

Features are key in labeling chips. Five features are used and they are determined
based on area and centroid differences between the reverse-engineering and golden
layouts, referring to Fig. 7.11. The first three features are obtained by calculating
the intersection of different areas between the golden layout and reverse-engineered
layout. They are given by the following equations:

f1 = A(Y∩Zin)
A(Zin)

f2 = 1 − A(Y∩Zout)
A(Y)

f3 = 1 − A(Y∩Zout)

A(Zout)

Equations for the two centroid difference features are as follows:

f4 = |CX(Z)−CX(Y)|
grid’s length

f5 = |CY(Z)−CY(Y)|
grid’s height

where CX(Z) and CY(Z) denote the x and y coordinates of Zs centroid.
The final labeling for each chip is decided by looking at the number of grids

classified as hardware Trojan inserted and their location. A chip is not classified as
hardware Trojan inserted if it has only a few sparse hardware Trojan inserted grids.
Rather, it is assumed that in order for the chip to be classified as hardware Trojan

106 7 Design Techniques for Hardware Trojans Prevention and Detection at the. . .

Fig. 7.11 Golden layout and
SEM image of real layout
within one grid. Solid
rectangle and curve denote Z
and Y, respectively, while
rectangles in dashed line are
Zin and Zout [10]

Structures in the golden layout

Structures in the real layout

inserted there must be at least n neighboring hardware Trojan inserted classified
grids in the chip. Neighboring grids can be defined within layers (horizontally
adjacent grids) and between neighboring IC layers (vertically adjacent grids).

7.3 Conclusions

This chapter studied some of existing techniques that aim at developing design for
hardware trust techniques and facilitating hardware Trojan detection after design
manufacturing. These techniques are mainly to improve hardware Trojan detection
based on analyzing side-channel signals such as power, delay, and temperature.
Some techniques benefit from various statistical analyses to determine the confi-
dence level in their conclusion whether a manufactured design is hardware Trojan
inserted or not. They have presented some degrees of success considering their false
positive and false negative analyses. However, some of outstanding challenges are
the need for hardware Trojan free circuit as a reference model, and their considerable
time requirement and cost. As a result, there is still a need for effective techniques
that can address hardware Trojan detection and prevention at the layout level.

References

1. H. Salmani, M. Tehranipoor, J. Plusquellic, A novel technique for improving hardware Trojan
detection and reducing Trojan activation time. IEEE Trans. Very Large Scale Integr. Syst. 20(1),
112–125 (2012)

2. H. Salmani, M. Tehranipoor, Layout-aware switching activity localization to enhance hardware
Trojan detection. IEEE Trans. Inf. Forensics Secur. 7(1), 76–87 (2012)

3. X. Zhang, A. Ferraiuolo, M. Tehranipoor, Detection of trojans using a combined ring oscillator
network and off-chip transient power analysis. J. Emerg. Technol. Comput. Syst. 9(3), 25:1–
25:20 (2013)

4. T.F. Wu, K. Ganesan, Y.A. Hu, H.S.P. Wong, S. Wong, S. Mitra, TPAD: hardware Trojan
prevention and detection for trusted integrated circuits. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 35(4), 521–534 (2016)

References 107

5. X. Wang, Y. Zheng, A. Basak, S. Bhunia, IIPS: infrastructure IP for secure SoC design. IEEE
Trans. Comput. 64(8), 2226–2238 (2015)

6. K. Xiao, X. Zhang, M. Tehranipoor, A clock sweeping technique for detecting hardware
Trojans impacting circuits delay. IEEE Des. Test 30(2), 26–34 (2013)

7. X. Wang, H. Salmani, M. Tehranipoor, J. Plusquellic, Hardware trojan detection and isolation
using current integration and localized current analysis, in 2008 IEEE International Symposium
on Defect and Fault Tolerance of VLSI Systems (2008), pp. 87–95

8. B. Cha, S.K. Gupta, Trojan detection via delay measurements: a new approach to select paths
and vectors to maximize effectiveness and minimize cost, in 2013 Design, Automation Test in
Europe Conference Exhibition (DATE) (2013), pp. 1265–1270

9. D. Forte, C. Bao, A. Srivastava, Temperature tracking: an innovative run-time approach for
hardware Trojan detection, in 2013 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD) (2013), pp. 532–539

10. C. Bao, D. Forte, A. Srivastava, On reverse engineering-based hardware Trojan detection. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 35(1), 49–57 (2016)

Chapter 8
Trusted Testing Techniques for Hardware
Trojan Detection

8.1 Fault Simulation-Based Test Pattern Generation

Given a specific trigger condition, it is not possible to target an arbitrary signal
of the circuit, as the effect of the induced logic malfunction by a hardware Trojan
might not become propagated to an observation point. Based on this observation, a
fault simulation-based framework is proposed that enumerates the feasible hardware
Trojan payload signals for a specific triggering condition [1]. The framework
benefits from a genetic algorithm (GA)- based Automatic Test Pattern Generation
(ATPG) technique, enhanced by automated solution to an associated Boolean
Satisfiability problem. The inherent parallelism of GA enables relatively rapid
exploration of a search space; therefore, GA can deliver reasonably good test
coverage over the fault list very quickly. Meanwhile, GA does not guarantee the
detection of all possible faults, specially hard-to-detect faults. On the other hand,
SAT-based test generation has been found to be remarkably useful for hard-to-detect
faults. It has an interesting feature that it can declare whether a fault is untestable or
not.

In theory any combination of rare signals can be used as a hardware Trojan trig-
ger. However, many of these trigger conditions are not actually satisfiable, and thus
cannot constitute a feasible trigger. Assuming small combinational and sequential
hardware Trojans, in practice, most of the easy-to-excite trigger conditions as well
as a significant number of hard-to-excite trigger conditions can be detected by the
GA within reasonable execution time. The remaining unresolved trigger patterns are
fed to the SAT tool; if any of these trigger conditions is feasible, then SAT returns
the corresponding test vector. Otherwise, the pattern will be declared unsolvable by
the SAT tool itself.

Figure 8.1 presents the test generation and evaluation flow for hardware Trojan
detection. It is assumed that hardware Trojans are small (the number of inputs for
a hardware Trojan is up to four), and they flip the value of a payload signal upon
activation. The probability analysis is performed to obtain the transition probability
of signals in the circuit netlist. Assuming small hardware Trojans, random sampling

© Springer International Publishing AG, part of Springer Nature 2018
H. Salmani, Trusted Digital Circuits, https://doi.org/10.1007/978-3-319-79081-7_8

109

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79081-7_8&domain=pdf
https://doi.org/10.1007/978-3-319-79081-7_8

110 8 Trusted Testing Techniques for Hardware Trojan Detection

Fig. 8.1 The complete test generation and evaluation flow [1]

is performed by selecting a number of combination of rare signals as hardware
Trojan trigger signals (S in Fig. 8.1). In the following, GA is used to generate test
vectors for S in Algorithm 1 in Fig. 8.1. The initial test vector population for GA is
generated by solving a small number of triggering conditions using SAT. Crossover
and mutation operations are used to generate new test vectors. Two terminating
conditions are used: (1) when the total number of distinct test vectors crosses a
certain threshold value #T, or (2) if 1000 generations had been reached.

GA cannot guarantee that would be able to activate all the hard-to-trigger
patterns. SAT can be used to tackle this issue (Algorithm 2 in Fig. 8.1). Considering
S′ as subset of S that contains trigger conditions that GA could not satisfy, SAT is
solved for each s ∈ S′ to a test vector to satisfy the trigger condition s.

While GA and SAT strive to obtain a test vector for a triggering condition, this
provides no guarantee regarding the propagation of hardware Trojan payload by
the test vector to the primary output to cause a functional failure of the circuit.

8.2 Multiple Excitation of Rare Switching (MERS) 111

Further, it is possible that GA and SAT report several test vectors for one triggering
condition {t si }. Algorithm 3 in Fig. 8.1 generates a 3-valued pseudo test vector (PTV)
out of all patterns for a triggering condition. The pseudo test vector is obtained by
crossmatching vectors and leaving bits with the constant value intact and replacing
the others by don’t care (X). At the next step, a three-value logic simulation of the
circuit with the PTVs is performed, and the value of any signal in the fan-out cone
of any triggering signal in a trigger vector is recorded. In the following, a stuck-at
fault is defined over any signal in the fan-out cone of the trigger vector based on the
value observed during the logic simulation. The list of faults FS and {t si } is passed to
fault simulator whose outputs are the set of faults that are detected (F s

detected ⊆ Fs)
as well as the corresponding test vectors which detect them. The rest of steps in
Fig. 8.1 is performed to evaluate the effectiveness of generated test vectors.

The proposed test pattern scheme is based on the dual strengths of a genetic
algorithm and Boolean satisfiability. The technique has presented good test coverage
and compaction for small hardware Trojans while it needs more comprehensive
analyses toward reasonably more realistic hardware Trojans.

8.2 Multiple Excitation of Rare Switching (MERS)

The effectiveness of side-channel signal analyses can be improved if there exit
test vectors that highlight hardware Trojan contribution beyond large process
variations. Multiple Excitation of Rare Switching (MERS) is a side-channel-aware
test generation approach to improve hardware Trojan detection resolution based on
power analyses [2]. An effective side-channel analysis in detecting hardware Trojans
requires test vectors that (1) Maximize switching activities inside a hardware Trojan
circuitry; (2) Minimize switching activities in the rest the circuit so that the relative
switching effect is maximized. Figure 8.2 presents the Test generation framework
for side-channel analysis-based hardware Trojan detection based on MERS [2].

First, logic simulation is performed using provided random test patterns to
identify internal nodes with low probability that will be considered as rare nodes
(R). In the following, it is counted how many rare nodes take their rare values (RV)
with each random pattern. The test patterns are then sorted decreasingly based on
their RV , meaning that the vector with ability to activate the most number of rare
nodes is ranked first. Next, a rare switching counter (SI), with initial value 0, is
considered for each rare signal. Then the test patterns are applied, and SI for each
rare signal is determined. The goal is to have a rare signal obtain its rare value N

(a predefined value). It is possible that there remain rare signals whose SI < N

after applying the test patterns. Targeting only such rare signals, each test pattern is
mutated by changing one bit and then logic simulation is performed. If the new test
pattern increase any SI , the test pattern is kept. This will be repeated till SI for all
rare signals becomes greater than N .

The obtained test patterns can increase switching activity of rare signals, but they
may also create considerable switching activity over the entire circuit. As a result,

112 8 Trusted Testing Techniques for Hardware Trojan Detection

Fig. 8.2 Test generation
framework for side-channel
analysis-based hardware
Trojan detection [2]

the hardware Trojan detection resolution will not increase significantly. To address
the issue, two approaches are suggested: (1) A heuristic approach based on hamming
distance of test vectors, which can reduce the total switching (2) A simulation-
based technique strives to balance the rare switching and the total switching If two
consecutive input vectors have the same values in most bits, it is very possible that
the internal nodes will also have a lot of values in common. From a hardware Trojan
detection perspective, the second vector would not generate significant switching
activity over the entire circuit. Hamming distance between two vectors is used to
represent the similarity. Then test patterns in the testset are reordered based on
Hamming distance. The algorithm is a greedy approach to explore all candidate
vectors and take the best one in terms of Hamming distance. MERS originally
tries to increase switching of rare signals with goal of increasing switching activity
inside a hardware Trojan circuitry. However, this objective is vague as the location
and type of the hardware Trojan is unknown. A suggested solution is to consider
rare switching between two vectors. To consider both switching activity inside a
hardware Trojan circuitry and over the entire circuit, a new objective is defined as

maximiz (w1 × RareSwitch − w2 × T otalSwitch)

8.3 Sustained Test Vector Methodology 113

where the ratio of w1 over w2 is defined as C which is an input of the framework in
Fig. 8.2. Using logic simulation, test patterns are reordered such that the objective
becomes maximized.

8.3 Sustained Test Vector Methodology

To improve hardware Trojan detection based on power analyses, a sustained vector
methodology is proposed at [3]. This methodology suggests repeating each test
vector multiple times at the input of both the genuine and the hardware Trojan
circuits that ensure the reduction of extraneous toggles within the genuine circuit.
In the following, regions with wide variations in the power behavior are analyzed
to isolate the infected gate(s). The proposed approach has two major steps. The first
step (called Toggle Minimization) aims to detect the presence of a hardware Trojan
while the second step (called Infected Region Isolation) tries to isolate the region
within the circuit that may contain it.

Circuit power consumption depends on signal switching activity in a circuit.
Knowing that power consumption by a hardware Trojan circuit is very small
compared to the rest of the original circuit, it is essential that the overall power
consumption in the genuine circuit should be minimized. Circuit activity within the
combinational frame of the circuit is induced in two ways: (1) with the changing
inputs and (2) with the changing state. Among these, primary inputs are fully
controllable but the state variables are not. In order to limit the switching activity
within the circuit, the proposed technique restricts the input variations to an extent
that the state variables are the only factor for inducing toggles. This is achievable by
sustaining the same vector at the input pins over multiple clock cycles. Naturally
this would help in minimizing the overall circuit activity and keep the power
consumption of the overall circuit low, which is a primary objective of the technique.
Based on experiments by the authors [3], a set of 1000 random input vectors is
generated, each of which is sustained to a maximum of 25 cycles. For a vector V,
after sustaining it k times (k < 25), if it is found that the circuit has reached a stable
state where no further change in the state variables occurs, the next test vector is
applied. Holding the same vector at its input helps the circuit to traverse a local state
space, and changing and sustaining the input vector serve as a jump to explore some
other regions of the state space.

After applying sustained test vectors on both a genuine circuit and a circuit under
test, a differential power profile plot is obtained. The differential power profile plot
is used to to identify region(s) of the circuit that are likely to be insertion points
of a hardware Trojan. Upon identifying a variation on circuit power consumption
beyond the impact of process variations, the corresponding sustained vector, along
with time of occurrence, is used for further investigation.

114 8 Trusted Testing Techniques for Hardware Trojan Detection

8.4 Monte Carlo-Based Test Pattern Generation Method

For testing against hardware Trojan, normally a fixed large number of random
patterns are applied. Therefore, it is not guaranteed the length of test vector set
is long enough to be representative or whether it is already over testing. To
address these issues, a Monte Carlo (MC)- based test pattern generation method
for hardware Trojan detection is proposed at [4]. Figure 8.3 presents the Monte
Carlo-based hardware Trojan detection flow [4].

First, a metric called power percentage difference (PPD) for detection decision
is defined based on the signal percentage difference between a golden circuit and
circuit under test (CUT). PPD is defined as

PPD = PCUT − PGolden

PGolden

where PCUT and PGolden are the estimated power values of the circuit under test
and the golden chip, respectively.

Based on the flow (Fig. 8.3), both the golden circuit and circuit under test are
first subjected to random patterns and the target signal, in this case, the total power
dissipation, is estimated. After test vectors application, the logical values at primary
outputs between the circuit under test and the golden circuit are compared. If there
is a mismatch, it indicates hardware Trojan existence. Otherwise, PPD is calculated
between the golden chip and the circuit under test. The new PPD is combined
with the previous PPDs. New mean and standard deviation of the PPD values are
calculated. The new PPD value is checked to see whether it satisfies the defined
error level. For a desired confidence level 1 − α with a given percentage error ε, the
stopping criterion of simulations can be written as

tα/2 × ST

μT × √
N

< ε

where N is the number of iterations, tα/2 is obtained from the t distribution, μT the
sample average, and ST sample standard deviation.

If the error is beyond the error-tolerance level, the simulation will move to the
next sample. Or else, the simulation terminates at the end of this sample. After that,
the MC simulation results are then reported, including the number of samples and
the average PPD value. Finally, the average PPD value is compared to the threshold,
if it is less than the threshold, the circuit under test is deemed as hardware Trojan-
free. Otherwise, it is considered as hardware Trojan-inserted.

8.5 Test Pattern Generation Based on ATPG and Model Checking 115

START

Load Golden circuit and CUA

Applying a new sample of random patterns and simulate

Check output vectors between CUA and
golden circuit

Calculation of new signal difference level (PPD)
between golden chip and CUA

Check maximum expected error for desired confidence

Is error acceptable?

Combine new PPD with previous PPDs

Estimate target signals

END

Yes

No

If match?

Yes

CUA is Trojan-free

Report number of sample results

If < threshold?
No

Yes CUA is Trojan-inserted

No

Fig. 8.3 The Monte Carlo-based hardware Trojan detection flow [4]

8.5 Test Pattern Generation Based on ATPG and Model
Checking

Any hardware Trojan detection technique should not suffer from completeness
and scalability. Further, it should feature efficient tests generation to activate the
potential hidden hardware Trojan. A test generation approach is proposed at [5]
to enable activating malicious functionality hidden in large sequential designs.

116 8 Trusted Testing Techniques for Hardware Trojan Detection

Fig. 8.4 The hardware Trojan detection flow using ATPG and model checking [5]

Automatic test pattern generation (ATPG) works well on full-scan designs, whereas
model checking is suitable for logic blocks without scan chain. The proposed
technique combines ATPG and model checking approaches for hardware Trojan
detection. Model checking is used on a subset of non-scan elements and ATPG on
scan elements to avoid common pitfalls of running the original design using any one
of these techniques. Figure 8.4 presents the proposed hardware Trojan detection
flow using ATPG and model checking [5]. The method identifies suspicious
branches/gates which may be used as triggering conditions for hardware Trojans.
In order to generate tests for rare nodes activation, scan replacement is done in the
next step. Security properties are generated targeting the activation of equivalent
signals/gates of rare nodes in the gate-level netlist. The scan replaced netlist as well
as the security properties are then used by the model checker. A set of constraints is
generated using the model checker to facilitate directed test generation using ATPG
tool.

Initial analysis is performed at the register-transfer level (RTL) to isolate
suspicious gates in the gate-level netlist. In a design at the register-transfer level,
rare branches are defined as branches that are not covered after applying random test
vectors up to millions of cycles. After identifying rare branches at RTL, mapping of
the RTL branches to the gate-level netlist after design synthesis is performed. The
circuit branches identified as rare are used in model checking property generation
and ATPG stuck-at faults/node justification.

8.6 Test Pattern Generation for Malicious Parametric Variations 117

ATPG performance heavily depends on the scan architecture and the presence
of non-scan sequential elements reduces its effectiveness. Model checking is used
to generate traces transformed into constraint structures for the ATPG tool and
facilitate test generation for rare nodes with non-scan flip-flops in their fan-in.

In the following, ATPG with N-detect testing is used to generate test vectors.
The activation levels of all relevant internal signals from the suspicious node’s fan-
in cone and scan replacements are extracted from the trace and combined together
with an ATPG primitive AND gate referred to as stuck-at circuit. The addition of
the primitives is merely for test generation purposes and has no effect on the design
functionality. Note that the propagation is not concerned as the goal is to generate
switching activities on rare nodes. A stuck-at 0 fault is added to the tool’s fault
list corresponding to each stuck-at circuit. In the event that no test pattern can be
generated for a rare node due to justification conflicts, nothing can be stated about
the existence of a Trojan in the design.

8.6 Test Pattern Generation for Malicious Parametric
Variations

A hardware Trojan may negatively impact design reliability through instantaneous
increase of power consumption (the power virus) or extensive heat generation (the
temperature virus) upon application of a specific test (input sequence) [6]. The
power and temperature viruses can be targeted in a gate-level intellectual property
using test vectors or processor intellectual properties using programs/benchmarks.

To detect the power virus at the gate level, the goal is to find a pair of test vectors
that causes excessive power consumption by generating high transitions on circuit
signals such that it exceeded a predefined threshold based on design specifications.
An effective technique to know about the existence of such a pair is the cost-benefit
analysis approach [6]. First gates are sorted by the number of fan-out number in
decreasing order. The first gate (g) is selected, and it is tried to obtain a pair of test
vectors that holds g(x1) ⊕ g(x2) = 1 using backtracking and implication. This
procedure is repeated for all gates in the circuit. While the procedure strives to
obtain a pair of test vectors for each individual gate, the successive application of
the pairs may impact their effectiveness in practice as early test vectors may restrict
some other switching in following test vectors. Therefore, a cost-benefit analysis
technique is proposed to facilitate the overall optimization process. The technique
iteratively enables transitions in high fan-out gates while considering the trade-off
between switching of new gates (benefit) and blocking of gate transitions in the
future iterations (cost) due to switching of the currently selected one [7]. Figure 8.5
presents the cost-benefit analysis flow. The cost-benefit analysis selects the most
beneficial gate in terms of the highest number of transitions. The gate is considered
a tried gate and the obtained pair of test vectors is applied to the circuit, and the flow
continues with an untried gate.

118 8 Trusted Testing Techniques for Hardware Trojan Detection

Untried
Gates

All Candidate
Assignments

Cost-Benefit
Evaluation

Select Most
Beneficial Gate

Transition
Assignment

Circuit
Values Update

Fig. 8.5 The cost-benefit analysis flow [7]

Fitness
Values

System
Simulator

Genetic
Algorithm

Multithreaded Synthetic 1
Multithreaded Synthetic 2

Multithreaded Synthetic n

Code
Generator

Thread 1:<P11,..,P1m>
Thread 2:<P21,..,P2m>

Thread k:<Pk1,..,Pkm>

:
::

:

Binary Programs
(Power Viruses)

Compiler
Synthetic C-code

with assembly
instructions

Tune
Parameters

Fig. 8.6 A framework for multi-threaded power virus generation using a genetic algorithm [8]

A power virus can exist in complex circuits such as processors where the virus
can cause excessive power consumption such that the embedded cooling system
cannot manage the situation and the power management logic cannot stop the
processor in time. Figure 8.6 presents a framework for multi-threaded power virus
generation using a genetic algorithm [8]. A complex processor is made of several
cores, tens of intellectual property modules that are connected through a network
of chips. Several parameters need to be considered to find the extreme corners of
power consumption. The parameters may include the number of threads, percent
memory access to shared data, average branch predictability, integer instructions
(ALU, mul, div), and mean of memory level parallelism. The framework in Fig. 8.6
uses the Genetic Algorithm to set these parameters. Afterward, a code generation
is performed to generate a synthetic machine code based on set parameters. The
processor executes the code using a simulator and it is determined whether fitness
values for the genetic algorithm need an improvement. If needed the procedure
is repeated and finally a program at the machine code level is obtained that
evaluates the extreme power consumption of the processor. The temperature virus is
a variation of the power virus where sustained high power consumption can produce
peak temperature. Existing techniques for the power virus can be extended to obtain
a set of successive test vectors that keep a design in its high power consumption.

References 119

8.7 Conclusions

There are two factors that determine hardware Trojan detection resolution after
circuit manufacturing: switching activity of hardware Trojan circuit and switching
activity of the original circuit. Some test pattern generation technique focus on one
of factors and some consider both factors at the same time. While some techniques
even benefit from sophisticated techniques such as SAT and the genetic algorithm,
some outstanding challenging issues such as considerable false positive and negative
rates, the need for a golden model, high reliance on sophisticated measurement
tools for side-channel analyses, and considerable authentication time still remain.
Therefore, there is a serious demand for effective and efficient test patterns for
hardware Trojan detection in modern complex designs after their manufacturing.

References

1. S. Saha, R.S. Chakraborty, S.S. Nuthakki, Anshul, D. Mukhopadhyay, Improved test pattern
generation for hardware Trojan detection using genetic algorithm and Boolean satisfiability.
IACR Cryptology ePrint Archive 2015:1252 (2015)

2. R.S. Chakraborty, F. Wolff, S. Paul, C. Papachristou, S. Bhunia, MERO: A Statistical Approach
for Hardware Trojan Detection (Springer, Berlin, 2009), pp. 396–410

3. M. Banga, M.S. Hsiao, A novel sustained vector technique for the detection of hardware Trojans,
in 2009 22nd International Conference on VLSI Design (2009), pp. 327–332

4. X. Mingfu, H. Aiqun, H. Yi, L. Guyue, Monte carlo based test pattern generation for hardware
Trojan detection, in 2013 IEEE 11th International Conference on Dependable, Autonomic and
Secure Computing (2013), pp. 131–136

5. J. Cruz, F. Farahmandi, A. Ahmed, P. Mishra, Hardware Trojan detection using ATPG and model
checking, in International Conference on VLSI Design (2018), pp. 1–6

6. Y. Huang, P, Mishra, Test generation for detection of malicious parametric variations, in
Hardware IP Security and Trust (Springer, Cham, 2017)

7. H. Hajimiri, K. Rahmani, P. Mishra, Efficient peak power estimation using probabilistic cost-
benefit analysis, in 2015 28th International Conference on VLSI Design (2015), pp. 369–374

8. K. Ganesan, L.K. John, Maximum multicore power (MAMPO)—an automatic multithreaded
synthetic power virus generation framework for multicore systems, in 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis (SC) (2011),
pp. 1–12

Chapter 9
Hardware Trojans in Analog and
Mixed-Signal Integrated Circuits

9.1 Hardware Trojans Design in Analog and Mixed-Signal
Integrated Circuits

While hardware Trojans in digital circuits are realized by inclusion of extra gates,
hardware Trojans in AMS ICs do not necessarily incur any overhead. Hardware
Trojans in AMS circuits can be realized by exploiting inherently available solutions
due to feedback loops. A hardware Trojan in an AMS circuit can put the circuit
under a specific condition to drive it to a malicious solution where the circuit
behavior can be misused. The existence of analog and digital modules in one die
makes it possible to design hardware Trojans that their activation in one domain
could affect the execution of the other domain. In the following, some implemented
hardware Trojans in AMS ICs are studied.

9.1.1 Hardware Trojans in Wireless Cryptographic ICs

Today applications such as internet of things bring together various analog (e.g.,
sensors, actuators, wireless communication modules) and digital modules (micro-
processors). This trend considerably extends the attack surface as attackers without
need for physical access can take the control of system. Authors in [1] have shown
that how a hardware Trojan inserted in a cryptographic module can leak the secret
key through a wireless transmitter. Figure 9.1 presents a wireless cryptographic
IC that consists of a digital part and an analog module. The digital module is an
advanced encryption standard (AES) core. The analog module is an ultra-wideband
(UWB) transmitter (TX).

Two hardware Trojans are demonstrated. They do not have any trigger, and they
are capable of transmitting the 128-bit AES key hidden in the wireless transmission
power amplitude/frequency margins allowed for process variations while ensuring
that the circuit continues to meet all of its functional specifications. The first

© Springer International Publishing AG, part of Springer Nature 2018
H. Salmani, Trusted Digital Circuits, https://doi.org/10.1007/978-3-319-79081-7_9

121

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79081-7_9&domain=pdf
https://doi.org/10.1007/978-3-319-79081-7_9

122 9 Hardware Trojans in Analog and Mixed-Signal Integrated Circuits

Fig. 9.1 Hardware Trojan modifications in digital and analog parts [1]

hardware Trojan (Trojan-I) is located in the power amplifier (PA), and the second
hardware Trojan (Trojan-II) is located in the radio frequency (RF) pulse generators.

For Trojan-I, a pMOS transistor (shown in red in Fig. 9.1) is placed between
VDD and the output of the PA of the UWB TX, and the stolen key bit is connected
to the gate of this pMOS transistor. If the stolen key bit is ‘0’, the pMOS transistor is
turned ON and draws a small additional current from the power supply to the output,
thereby slightly increasing the transmission power. Conversely, when the stolen key
bit is ‘1’, the pMOS transistor is turned OFF, so no additional current is drawn to the
output, with the circuit, essentially, continuing to operate as in the Trojan-free case.
For Trojan-II, two transistors are added at the input of each RF pulse generator (RF
Pulse Generator ‘1’ and RF Pulse Generator ‘0’ in Fig. 9.1). When the stolen key
bit is ‘0’, the pMOS transistor in Trojan-II is turned ON. By carefully crafting the
sizes of added pMOS and nMOS transistors, it is possible to generate pulses with
close but slightly higher frequencies than of original pulses. Figure 9.2 presents
transmission power waveform of Trojan-II infested chip when the stolen key bit is
‘0’ and ‘1’ when transmitting a ciphertext bit of value ‘0’ or ‘1’ [1].

9.1.2 Dynamic Analog Hardware Trojans

An AMS circuit can have multiple modes of operations depending on some initial
conditions, for example the initial values of storage elements. It has been shown
that how it is possible to realize a hardware Trojan in the Wein bridge oscillator by
manipulating some initial conditions as shown in Fig. 9.3 [2]. Figure 9.3a depicts the
Wein bridge oscillator whose output (VOUT) to ground path passes two capacitors
(C1 and C2) than can take different initial value. When the initial value of C1 and
C2 is high, the circuit behaves as expected and oscillates as shown in Fig. 9.3b.
However, if the initial value of C1 and C2 is low, the circuit does not oscillate as
shown in Fig. 9.3c For the same Wein bridge oscillator, it is possible to have several
dynamic oscillating modes under different initial conditions for C1 and C2. When
the initial conditions added at C1 and C2 are the same, the circuit can oscillate with
an amplitude (peak value) as 0.4 V. However, when the initial conditions added at

9.1 Hardware Trojans Design in Analog and Mixed-Signal Integrated Circuits 123

(b)(a)

Fig. 9.2 Difference in transmission power waveform of Trojan-II infested chip when the stolen
key bit is ‘0’ and ‘1’ (a) while transmitting a ciphertext bit of value ‘0’, and (b) while transmitting
a ciphertext bit of value ‘1’ [1]

Fig. 9.3 (a) The Wein bridge oscillator, (b) a dynamic oscillating mode, and (c) a stable static
mode [2]

124 9 Hardware Trojans in Analog and Mixed-Signal Integrated Circuits

VDD

M3 M4

M5

M1 M2

VOUT

-100 0 100 200
3.5

4

4.5

5

Temperature (°C)

V
ol

ta
ge

 (
V

)

(b)(a)

Fig. 9.4 (a) The Inverse Widlar Reference Generator, and (b) the temperature characteristics with
three equilibrium points for −4 ◦C <T < 173◦C when the width of transistors M1, M2, M3, M4,
and M5 are 3 μm, 3 μm, 1.5 μm, 110 μm, and 6.5 μm, respectively [3]

the two capacitors are different, the circuit can oscillate in another mode, with a
different amplitude 2.5 V, but a similar frequency.

Many basic analog circuits such as bias generators, voltage references, and
temperature sensors use positive feedback or bootstrapping to generate outputs that
have a low sensitivity to the supply voltage. Invariably these circuits incorporate
positive feedback loops. These types of analog circuits often have two stable
equilibrium points and a start-up circuit is typically added to remove the undesired
equilibrium point. However, it can be very challenging to determine the need for
a start-up circuit or ensure the effectiveness of a start-up circuit. Therefore, the
redundant state may still exist that can harbor an analog hardware Trojan. Knowing
the fact, insertion of an analog hardware Trojan in the inverse Widlar bias generator
is studied in [3]. Figure 9.4a presents the Inverse Widlar Reference Generator
circuit and Fig. 9.4b shows the voltage-temperature characteristics of the circuit. It
clearly shows that there exist three equilibrium points when the temperature changes
between −4 ◦C < T < 173◦C (the isolation region). Therefore, it is possible to have
three different output voltages at a specific temperature. For example at 100 ◦C,
the voltage can be about 3.75, 4.25, or 5 V. If the normal operation is far from
where the isolation region occurs and the isolation region occurs is even narrow,
it is possible to realize a temperature triggering hardware Trojan even without an
additional circuit overhead.

9.1 Hardware Trojans Design in Analog and Mixed-Signal Integrated Circuits 125

Fig. 9.5 Design concepts of
analog trigger circuit based
on capacitor charge sharing
[4]

VDD

Cunit Cmain

Clk
Clk

Time

VDD

Clk

Cap
Voltages

Cunit

Cmain

9.1.3 Hardware Trojan Trigger by Capacitor

It has shown that an untrusted manufacturer can leverage an analog circuit to realize
stealthy hardware Trojans with inconsiderable footprint [4]. Figure 9.5 presents the
basic concept of the analog hardware Trojan trigger. Figure 9.5a depicts in the
insertion one extra capacitor (Cunit) that charges the level charge of an original
capacitor (Cmain). Cunit is charged when the level of a controlling signal (Clk) is
low. The level of charge in Cmain changes when Clk becomes ‘1’. Figure 9.5b shows
how level charge in Cmain raises from logic ‘0’ to logic ‘1’ after the burst alternation
of the Clk signal. If Cmain represents an active high reset signal of some state flip-
flops, the state of circuit can change when Cmain maliciously changes to logic ‘1’
and it can cause catastrophic malfunctions. Authors in [4] used white spaces in an
already placed and routed design to construct an analog hardware Trojan trigger that
uses capacitors to siphon charge from nearby wires as they transition between digital
values. They launched an attack on a victim flip-flop that holds the privilege bit in
the OR1200 microprocessor. A wire that is controllable from software is selected
and a malicious capacitor (indeed Cunit) is attached to it. The malicious capacitor
serves as the analog hardware Trojan trigger and manipulates the set signal of the
victim flip-flop.

9.1.4 Stealthy Dopant-Level Hardware Trojans

A stealthy hardware Trojan insertion by an untrusted manufacturer is proposed in
[5]. This hardware Trojan is realized by changing the dopant polarity of a few
existing transistors in the original circuit. The basic idea of this hardware Trojan
is that a gate of the original design is modified by applying a different dopant
polarity (changing dopant concentration) to specific parts of the active area of gate.
These modifications change the behavior of the target gate in a predictable way.
Figure 9.6 presents an example of dopant-level hardware Trojan implementation by
manipulating an inverter that constantly produces the output VDD voltage (logic
‘1’).

Figure 9.6a presents the original inverter whose upper part is a p-MOS transistor
and lower part is an n-MOS transistor. The p-MOS transistor is realized by a N-

126 9 Hardware Trojans in Analog and Mixed-Signal Integrated Circuits

Fig. 9.6 (a) Figure of an unmodified inverter gate, and (b) figure of a Trojan inverter gate with a
constant output of VDD [5]

well in which positive p-dopant for source and drain regions and the gate region
are grown. On the other hand, the n-MOS transistor is realized by an P-well in
which negative n-dopant for source and drain regions and the gate region are grown.
To realize the dopant-level inverter hardware Trojan that constantly outputs VDD
as shown in Fig. 9.6b, the positive p-dopant for source and drain and the active
area of the p-MOS transistor is replaced by negative n-dopant. Consequently a
permanent path created between VDD and the drain of p-MOS transistor. Further,
the connection between the n-MOS transistor’s drain contact and GND is constantly
disabled by applying p-dopant to the source contact of the n-MOS transistor while
leaving the drain contact untouched. This disconnects n-MOS transistor and GND
independent from its gate input.

Showing the potential, the authors showed a hardware Trojan attack against
a design derived from Intel’s cryptographically secure random number generator
design used in the Ivy Bridge processors, and a dopant hardware Trojan that allows
attacking a side-channel resistant advanced encryption standard SBox implementa-
tion. Since the hardware is usually the root of trust in a system, even small malicious
modifications of the hardware can be devastating to system security [5].

9.2 Hardware Trojans Prevention and Detection in Analog and Mixed-Signal. . . 127

9.2 Hardware Trojans Prevention and Detection in Analog
and Mixed-Signal Integrated Circuits

A hardware Trojan state in an AMS circuit may inherently exist, and an analog
hardware Trojan mostly exists at the transistor level. The analog hardware Trojan
can be even triggered by process, voltage, and temperature variations. For example,
a circuit block may continuously work and increase its surrounding temperature,
and the adjacent block in another power domain may enter into a hardware Trojan
state when it starts up from the sleep mode [6]. In the following, some of the major
hardware Trojan prevention and detection techniques in AMS ICs are studied.

9.2.1 Positive Feedback Loop Analyses

Positive feedback loops in analog circuits may create multiple operating points of
which some can be hardware Trojan states. Circuit-level homotopy methods have
been used to determine all operating points in the positive feedback loop circuit
[6]. There exist two stable operating points of which only one is desired and
one unstable operating point in a single positive feedback loop. Therefore, there
exist two hardware Trojan state. AMS circuits are usually large and complex due
to feedback structure and smart compensation techniques so that many hardware
Trojan states may exist to be identified.

The proposed technique has two major steps: (1) identifying positive feedback
loops in a circuit, and then (2) applying the homotopy methods to each positive
feedback loops. To identify the positive feedback loops, the circuit is transformed
to a directed dependency graph, and the positive feedback loops are identified
based on the graph theory and the small signal analysis of the circuit. The positive
feedback loops are broken and current or voltage source is inserted in place of
broken edges. Then the homotopy method is applied, each inserted source is swept
to find all possible solutions. Any solution other than the designers’ given solution
is considered a hardware Trojan state. Figure 9.7 presents the application of the
proposed technique on the Wilson bias generator. It indicates that there is only one
operating point at 0 ◦C and 50 ◦C, and there are three operating points between
100 ◦C ∼ 250 ◦C, and there is only one operating point at 300 ◦C.

9.2.2 Information Flow Tracking in AMS Circuits

Hardware Trojans in AMS circuit can cross the analog/digital interface or digi-
tal/analog interface. A methodology based on proof-carrying hardware intellectual
property (PCHIP) has been proposed to enable systematic formal evaluation of
information flow policies in AMS circuits [7]. The information flow tracking (IFT)

128 9 Hardware Trojans in Analog and Mixed-Signal Integrated Circuits

Fig. 9.7 The Wilson bias generator (a) circuit, (b) directed dependency graph, (c) broken Positive
feedback loop, and (d) Homotopy method over 0–300 ◦C temperature range [6]

is to extend the transistor level, and a unified framework is developed to enforce
information flow policies in digital, analog, and mixed-signal circuits.

Information, e.g. bits of a secret key, in an AMS circuit can be leaked in
various ways: (a) information may be carried through both voltage and current;
(b) a transistor in an AMS circuit can serve as a common source, common gate,
or common drain; thereby, producing gate-to-drain, drain-to-source, or gate-to-
source data flows, respectively. Moreover, changing voltage on the source or the
drain impacts the drain-to-source current; (c) the voltage on the bulk terminal of
a transistor may also be manipulated to leak information to the source or drain
terminals; and (d) other components, such as capacitors, resistors, can also involve
in information flow. Based on the above observation, some information flow policies
for analog circuits have been developed for MOSFETs and bipolar transistors,
capacitors, inductors and resistors, and diodes. As a case for bipolar transistors, any
value on the base terminal is transferred to the emitter and the collector terminals.
And, any sensitive value on the emitter terminal is transferred to the collector
and vice versa [7]. Figure 9.8 presents the sample module definitions of analog
components. These definitions enable integration of digital and analog circuits in
one place to perform information tracking across the domains.

9.2.3 Side-Channel Fingerprinting

Hardware Trojan effects on circuit side-channel signals is systematic that is contrary
to effects of process and environmental variations. This systematic impact cannot
be avoided as the attacker extracts hidden information based on that. For the

9.3 Conclusions 129

1 // Modeling analog data flow in capacitors
2 // Resisitors, inductors and diodes are defined similarly
3 module cap (a, b);
4 inout a, b;
5
6 assign a = a & b;
7 assign b = a & b;
8 endmodule
9

10 // Modeling analog data flow in NMOS transistors
11 // PMOS transistors are defined similarly
12 module nch (d, b, g, s);
13 input g;
14 inout d, b, s;
15
16 assign d = d & b & g & s;
17 assign s = d & b & g & s;
18 endmodule
19
20 // Modeling analog data flow in NPN transistors
21 // PNP transistors are defined similarly
22 module npn (b, c, e);
23 input b;
24 inout c, e;
25
26 assign c = b & c & e;
27 assign e = b & c & e;
28 endmodule

Fig. 9.8 Sample module definitions to mimic analog data flows in VeriCoq-IFT [7]

analog Trojans inserted in the UWB TX [1], the systematic impact results in an
extra statistical structural to the transmission power of integrated circuits. It has
shown that the principal component analysis (PCA) can effectively reveal the added
statistical structural by a hardware Trojan [1].

Assuming the existence of hardware Trojan-free circuit, PCA is performed on 40
hardware Trojan-free circuits, and 40 circuits with hardware Trojan-I and Trojan-
II (shown in Fig. 9.1) over randomly selected six different blocks of plaintext that
are encrypted through the AES using a randomly chosen 128-bit key. Each of the
resulting six blocks of ciphertext was then transmitted by the UWB TX and the
total transmission power for each block over the public channel was measured
for all circuits. Figure 9.9a clearly indicates that hardware Trojan-free circuits and
hardware Trojan-inserted circuit are indistinguishable. However, PCA on the three
principal components of the original data could effectively separate and identify the
hardware Trojans (Fig. 9.9b).

9.3 Conclusions

This chapter reviewed some of the major studies in hardware Trojans in analog
and mix-signal circuits. It has been discussed by different researches that hardware
Trojan states inherently exist in AMS circuits, and traditional measures such as
startup circuits cannot prevent such hardware Trojans. The design and test of

130 9 Hardware Trojans in Analog and Mixed-Signal Integrated Circuits

Fig. 9.9 Projection of hardware Trojan-free and hardware Trojan-infested circuits on a 3-D space
(a) before applying PCA and (b) after applying PCA over total transmission power for transmitting
one ciphertext block [1]

the AMS circuits demands various expertise in control system, analog circuits,
digital signal processing, and devices. Its interdisciplinary nature makes its security
analyses very challenging and requires collaboration of various research teams
with different backgrounds from academia and industry. While the current state-
of-knowledge presents simple types of analog hardware Trojans in very simple
AMS circuits, to effectively tackle the analog hardware Trojan issue, there is need
to realistic scenarios for the analog hardware Trojan in complex designs. It should
be clarified how the trigger and payload of an analog hardware Trojan may look
like. It should be carefully studied how analog and digital domains can negatively
affect each other and facilitate the realization of analog hardware Trojans. These
efforts can lead to development of effective design and testing technique for analog
hardware Trojan detection and prevention.

References

1. Y. Liu, Y. Jin, A. Nosratinia, Y. Makris, Silicon demonstration of hardware Trojan design and
detection in wireless cryptographic ICs. IEEE Trans. Very Large Scale Integration (VLSI) Syst.
25(4), 1506–1519 (2017)

2. Q. Wang, R.L. Geiger, D. Chen, Hardware Trojans embedded in the dynamic operation of analog
and mixed-signal circuits, in 2015 National Aerospace and Electronics Conference (NAECON)
(2015), pp. 155–158

References 131

3. X. Cao, Q. Wang, R.L. Geiger, D.J. Chen, A hardware Trojan embedded in the inverse Widlar
reference generator, in 2015 IEEE 58th International Midwest Symposium on Circuits and
Systems (MWSCAS) (2015), pp. 1–4

4. K. Yang, M. Hicks, Q. Dong, T. Austin, D. Sylvester, A2: analog malicious hardware, in 2016
IEEE Symposium on Security and Privacy (SP) (2016), pp. 18–37

5. G.T. Becker, F. Regazzoni, C. Paar, W.P. Burleson, Stealthy Dopant-Level Hardware Trojans
(Springer, Berlin, 2013), pp. 197–214

6. Y.T. Wang, Q. Wang, D. Chen, R.L. Geiger, Hardware Trojan state detection for analog circuits
and systems, in NAECON 2014 – IEEE National Aerospace and Electronics Conference (2014),
pp. 364–367

7. M.M. Bidmeshki, A. Antonopoulos, Y. Makris, Information flow tracking in analog/mixed-
signal designs through proof-carrying hardware IP, in Design, Automation Test in Europe
Conference Exhibition (DATE) (2017), pp. 1703–1708

	Preface
	Contents
	1 The Global Integrated Circuit Supply Chain Flow and the Hardware Trojan Attack
	1.1 The Global Integrated Circuit Supply Chain
	1.2 The Hardware Trojan Attack
	1.3 Conclusions
	References

	2 Circuit Vulnerabilities to Hardware Trojans at the Register-Transfer Level
	2.1 Circuits at the Register-Transfer Level
	2.2 Value Range Analyses for Vulnerability Assessments
	2.2.1 Statement Analysis
	2.2.2 Observerability Analysis
	2.2.3 Application of Value Range-Based Vulnerability Analysis

	2.3 Unspecified IP Functionality
	2.3.1 Hardware Trojans in Don't Cares
	2.3.2 Dangerous Don't Cares Identification

	2.4 Formal Verification and Coverage Analysis for Vulnerability Analyses
	2.5 Conclusions
	References

	3 Design Techniques for Hardware Trojans Prevention and Detection at the Register-Transfer Level
	3.1 Hardware Trojan Prevention at the Register-Transfer Level
	3.1.1 Dual Modular Redundant Schedule at High-Level Synthesis
	3.1.2 Proof-Carrying Hardware

	3.2 Hardware Trojan Detection at the Register-Transfer Level
	3.2.1 Control-Flow Subgraph Matching

	3.3 Conclusions
	References

	4 Circuit Vulnerabilities to Hardware Trojans at the Gate Level
	4.1 Circuits at the Gate-Level
	4.2 Analyzing Vulnerabilities Based on Functional Analyses
	4.3 Analyzing Vulnerabilities Based on Structural and Parametric Analyses
	4.3.1 Hardware Trojan Ranking

	4.4 Analyzing Vulnerabilities in Finite State Machines and Design-for-Test Structures
	4.5 Conclusions
	References

	5 Design Techniques for Hardware Trojans Prevention and Detection at the Gate Level
	5.1 Hardware Trojan Prevention at the Gate Level
	5.1.1 Information Flow Tracking for Hardware Trojan Prevention

	5.2 Hardware Trojan Detection at the Gate Level
	5.2.1 Signal Correlation-Based Clustering for Hardware Trojan Detection
	5.2.2 Score-Based Classification for Hardware Trojans Detection
	5.2.3 The Controllability and Observability Hardware Trojan Detection (COTD)
	5.2.3.1 Complexity: COTD vs. Some Existing Techniques
	5.2.3.2 Simulation Analyses

	5.3 Conclusions
	References

	6 Circuit Vulnerabilities to Hardware Trojan at the Layout Level
	6.1 Circuits at the Layout Level
	6.2 Motivation
	6.3 Layout Vulnerability Analysis Flow
	6.3.1 Cell and Routing Analyses
	6.3.2 Net Analysis

	6.4 Simulation Results
	6.5 Conclusions
	References

	7 Design Techniques for Hardware Trojans Prevention and Detection at the Layout Level
	7.1 Hardware Trojan Prevention at the Layout Level
	7.1.1 Dummy Scan Flip-flop Insertion and Layout-Aware Scan Cell Reordering
	7.1.2 Ring Oscillator Network
	7.1.3 Trojan Prevention and Detection (TPAD) Technique
	7.1.4 Infrastructure IP for Security (IIPS) Technique

	7.2 Hardware Trojan Detection at the Layout Level
	7.2.1 The Current Integration Technique
	7.2.2 Delay-Based Hardware Trojan Detection Using Shadow Registers
	7.2.3 Temperature-Based Hardware Trojan Detection
	7.2.4 Circuit Layout Reverse Engineering for Hardware Trojan Detection

	7.3 Conclusions
	References

	8 Trusted Testing Techniques for Hardware Trojan Detection
	8.1 Fault Simulation-Based Test Pattern Generation
	8.2 Multiple Excitation of Rare Switching (MERS)
	8.3 Sustained Test Vector Methodology
	8.4 Monte Carlo-Based Test Pattern Generation Method
	8.5 Test Pattern Generation Based on ATPG and Model Checking
	8.6 Test Pattern Generation for Malicious Parametric Variations
	8.7 Conclusions
	References

	9 Hardware Trojans in Analog and Mixed-Signal Integrated Circuits
	9.1 Hardware Trojans Design in Analog and Mixed-Signal Integrated Circuits
	9.1.1 Hardware Trojans in Wireless Cryptographic ICs
	9.1.2 Dynamic Analog Hardware Trojans
	9.1.3 Hardware Trojan Trigger by Capacitor
	9.1.4 Stealthy Dopant-Level Hardware Trojans

	9.2 Hardware Trojans Prevention and Detection in Analog and Mixed-Signal Integrated Circuits
	9.2.1 Positive Feedback Loop Analyses
	9.2.2 Information Flow Tracking in AMS Circuits
	9.2.3 Side-Channel Fingerprinting

	9.3 Conclusions
	References

