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Preface



During the last decade, rapid development of electronics has produced new high-speed devices at
nanoscale dimensions. These nanodevices have tremendous applications in modern communication
systemsandcomputers.

Thisbook,Transport of Information-Carriers in Semiconductors and Nanodevices,isintendedtobe
thefirstinaseriesof3volumestitledSemiconductor Nanodevices: Physics, Modeling, and Simulation 
Techniques.

Themainpurposeofthiscourseistodevelopanappreciationandadeepunderstandingforthecon-
ceptualfoundationsunderlyingtheoperationofemergingnanoelectronicdevices.

I’vedecidedtodedicatethefirstvolumetotalkabouttransportmodelling,whichcanserveboth
academiciansandprofessionals.ThenextbookwillcovertheModeling and Simulation Techniques,
andwillberatherdedicatedforprofessionalsandpostgraduatestudentsindevicesimulation.Thethird
bookisaboutPhysics and Operation of Modern Nanodevices.However,forthematterofcompleteness
ineachbook,Isqueezeothervolumesinasinglechapterorasillustrativecasestudies.

Inthisbook,westudythetransportmodelsofinformationcarriers(e.g.,electronsandphotons)in
semiconductorsandnanodevices.Itcontainsacomprehensivediscussionaboutcarriertransportphe-
nomenaandincludessometopicsnotpreviouslyassembled,altogether,inasinglebook.

Imeanbyinformationcarriers,theparticlesorparticlecharacteristicsthatcarryandtransportsignals
insemiconductormaterialsandsolid-statedevices.Forinstance,theelectronicchargeinconventional
semiconductordevices,theelectronicspininspintronicdevicesandphotonsinoptoelectronicdevices.
Infact,thecharacteristicofanyparticlemaybeutilizedforinformationtransport.Forexample,aquan-
tumbit(orqubit)ofinformationcanbemanipulatedandencodedinanyofseveraldegreesoffreedom,
notablythephotonpolarization.Inaddition,otherquasiparticles,suchasphonons(latticevibration
waves)maybeconsideredas informationcarriers,becausetheyarecapableof transportingthermal
energyfrompointtoanotherinsolid-statedevices.Infact,someoralloftheseinformationcarriers
mayinteractinthesamedevice.Indeed,electronsandphononsinteractinallsemiconductorsdevices.
Theyalsointervene,togetherwithphotonsinphotonicdevices,likelaserdiodes.Intheso-calledspin
lightemittingdiode(spinLED),theelectronspinplaysabasicrolewithalltheaforementionedtypes
ofinformationcarriers.

Themainsubjectofthisbookis,therefore,focusedaroundthetransportequations,whichgovern
thetransportofinformationcarriers.Thesetransportequationsformthephysicaldevicemodelsofall
semiconductordevices,includingtheemergingnanodevices.TheTCAD(TechnologyComputer-Aided
Design)toolsmakeuseofthesetransportmodelstosimulatethebehaviorofsolid-statedevicesand
circuits,intermsofthedevicestructureandexternalboundaryconditionsofbiasvoltageorcurrent.
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Preface

TheutilizationofTCADtoolsisessentialbecausetheyacceleratetheR&Dcycleandnowadays,they
becomeessentialmorethanever.Infact,thedevicesimulationhasthreemainpurposes;tounderstand
theunderlyingphysicsofadevice,todepictthedevicecharacteristicsandtopredictthebehaviorofnew
devices.Actually,theadventofnewnanodeviceshasbeenaneverydayoccurrence.Forexample,some
versionsofthe6thgenerationofIntelCoreprocessors,ismanufacturedusinga14nmprocess.Projecting
theadvanceofsemiconductorindustryforthenextfewyears,weexpecttoseenanodevicesapproaching
thesizeofafewatoms(1nm).Thedevicesatsuchnanoscaledisplayspecialquantumpropertieswhich
arecompletelydifferentfromthecaseofbulksystems.Therefore,theavailabilityofpowerfultransport
models,whichaccountfortheunderlyingquantumeffects,isveryimportantforthesimulationofsuch
nanodevices.Everybodyworkinginthefieldofmodelingandsimulationofstate-of-the-artdevicesfeels
thatcurrentTCADtoolsshouldbepushedbeyondtheirpresentlimits.

Almostallscientistsinthefieldofsemiconductors,agreesthatarigorousstudyofcarriertransport
innanodevicesneedsamany-bodyquantumdescription.Suchadescriptionrequiresthesolutionofa
hugenumberofequationsdescribingeachcarrierofthesystem.Actually,thedescriptionoftransport
inarealdeviceshouldincludetherealnumberofcarriersinboththedeviceanditscontactstothe
externalworld,andthisisbeyondtheabilityoftypicalcomputingplatforms.Therefore,manylevelsof
approximationthatsacrificesomevitalinformationaboutthephysicsoftransportprocessarenecessary.
Thefigurebelowillustratesthehierarchyofmaintransportapproaches,whichareusedindescribing
carriertransportinsemiconductorsandnanodevices.

Manyauthorsdistinguishbetweenthreeclassesoftransportmodels,namely;

• Quantummodels,
• Kineticmodels,and
• Macroscopic(fluiddynamics)models.

Thequantumapproachliesatthetopleveloftransporttheories,formany-bodyproblems.Totreat
quantumproblems,amean-field(e.g.,theHartee-Fockpotential)approximationisusuallyadoptedto

Figure 1.  
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Preface

transformthemany-bodysystemintoone-electronproblem.TheNon-equilibriumGreenfunction(NEGF)
methodisverypopularasaquantumapproaches.Abovethisarequantumkineticapproachessuchasthe
Liouville-vonNeumannequationofmotionforthedensitymatrix,orWignerdistributionthatcontain
quantumcorrelationsbutretaintheformofsemiclassicalapproaches.Whenwemovefromquantumto
classicaldescriptionofcarriertransport,informationconcerningthephaseoftheelectronanditsnon-
localbehaviorarelost,andelectronictransportistreatedintermsofalocalizedparticleframework.

ThesemiclassicaltransporttheoryisbasedontheBoltzmanntransportequation(BTE),whichrep-
resentsakineticequationdescribingthetimeevolutionofthedistributionfunctionofparticle.TheBTE
hasbeentheprimaryframeworkfordescribingtransportinsemiconductorsandsemiconductordevices
withmicro-scaledimensions.TherearethenapproximationstotheBTE,givenbymomentexpansions
oftheBTEwhichleadtothehydrodynamic,thedrift-diffusion,andrelaxationtimeapproximationap-
proachestotransport.Finally,theso-calledcompact modelscomeatanempiricallevelascircuitmodels
forcircuitsimulation.

Thisbookconsistsof11chapters,whichareorganizedasfollows.

Chapter 1:IntroductiontoInformation-CarriersandTransportModels
Chapter 2:SemiclassicalTransportTheoryofChargeCarriers(PartI:MicroscopicApproaches)
Chapter 3:SemiclassicalTransportTheoryofChargeCarriers(PartII:MacroscopicApproaches)
Chapter 4:QuantumTransportTheoryofChargeCarriers
Chapter 5:CarrierTransportinLDSandNanostructures
Chapter 6:CarrierTransportinNanotubesandNanowires
Chapter 7:PhononTransportandHeatFlow
Chapter 8:PhotonTransport
Chapter 9:SpinTransportandSpintronicDevices
Chapter 10:Polarons,Plasamons,andPolaritonsTransport
Chapter 11:CarrierTransportinOrganicSemiconductorsandInsulators

Figure 2.  
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Preface

Istartwiththeclassicalapproachesandendwiththequantumdescriptionforcompositequasipar-
ticles,suchaspolarons,plasmons,andpolaritons.

Eachchapterstartswitharecapofconcernedconceptsandprovidesthestateoftheartadvancesin
thefieldaswellassomecasestudiesandoverviewoftheliterature.Somephysicalandmathematical
notesareinserted(withoutinterruptingthemaincontext)toclarifythejargons,thatareunavoidably
utilizedinsuchaspecializedbook.

InChapter1,Ireviewthefundamentalpropertiesofsemiconductors,andexplainthetransportphe-
nomenawithintheframeworkoftheclassicalDrudémodel.TheDrudéclassicalmodelisfrequently
introducedtodescribetheelectricalconductivityinsolids.Thismodelisstillveryrelevantbecausefree
particlepicturecanstillbeusedasfaraswecanassumeparabolicenergybandswithasuitableeffective
mass,nearequilibrium.Infact,theDrudémodelsucceededtoexplain(tosomeextent)theelectrical
conductivity,thethermalconductivity,theHallEffect,aswellasthedielectricfunctionandtheoptical
responseofsolids.Everythingweexplaininthischapteraboutsemiconductorpropertiesandcarrier
transportiscorrecttothezeroorderapproximation.Inordertogetintothedetailsofcarriertransportin
semiconductordevices,weproceedinthefollowingchapters,andsearchforamastertransportequation,
intwovertices,namely:thesemiclassicalandquantumtransporttheories.

InChapter2,Icovertheessentialaspectsofchargecarriertransportthroughsolidmaterials,within
thesemiclassicaltransporttheory.Westartwithareviewofthesemiclassicalapproachesthatleadsto
theconceptsofdriftvelocity,driftmobility,electricalconductivityandthermalconductivityofcharge
carriersinmetalsandsemiconductors.ThesemiclassicaltransporttheoryisbasedontheBoltzmann
transportequation(BTE).TheBoltzmanntransportequationcanbederivedfromtheLowvilleequation,
whichdescribestheevolutionofthedistributionfunctionchangesinphasespaceandtime.Idiscussthe
variousapproximationsandphenomenologicalapproacheswhichmaketheequationusefulandsolv-
ableforsemiconductordevices.Forinstance,Ipresentthesphericalharmonicexpansion(SHE)andthe
MonteCarlo(MC)stochasticMethodsaswellasthemicroscopicrelaxation-timeapproximation(RTA),
whichleadstotheconventionaldrift-diffusionmodel(DDM).

InChapter3,Idiscussthehydrodynamicmodel(HDM)forsemiconductordevices,whichplaysan
importantroleinsimulatingthebehaviorofthechargecarrierinnanodevices.Thismodelconsistsofa
setofnonlinearconservationlawsfortheparticledensity,currentdensity,andenergydensity.Thehy-
drodynamicmodelforsemiconductorsisaninexpensivealternativetoolfortwo-andthree-dimensional
devicesimulation.Thesetofhydrodynamicequations(HDEs),whichisderivedfromthefirstfewmo-
mentsofthesemiclassicalBTE,isindeedmoreaccuratethantheconventionalDDMandlesscomplex
thanthedirectsolutionoftheBTE(bye.g.,theSHEandMonteCarloMethods).

InChapter4,Ipresentthequantumtransportapproaches,whicharenecessarytosimulatenanode-
vicesincludingtunnelingandotherquantizationeffects.Thequantumtransporttheoryoriginatesfrom
severaldirections,includingthequantumLiouville(vonNeumann)equation,theFeynmanpathintegral
aswellastheWigner-Boltzmanntransportequation(WBTE).ThequantumLiouvilleequationdescribes
thetemporalevolutionofthedensityoperator.Thedensitymatrixoperatoristhefavoritemathemati-
calinstrumentinquantumstatisticalphysics.Theso-calledPauli Masterequation(PME)isderived
fromthequantumLiouvilleequation.ThePMEisfrequentlyusedtodescribeirreversibleprocessesin
quantumsystems.ThekineticequationfortheWignerdistributionfunctionincludingscatteringeffects
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Preface

iscalledtheWigner-Boltzmanntransportfunction(WBTE).AftersolvingtheWBTE,andcalculating
theWignerdistributionfunction(WDF),wecancalculatethespatialdensityofcarriersandcurrent,as
wellastheaveragevalueofanymicroscopicphysicalparameter.

Based on the WBTE, the quantum corrected Boltzmann equation, the quantum hydrodynamic
model(QHDM),andthedensitygradient(DG)approximationcanbeobtained.Also,theWDFmaybe
definedastheenergyintegraloftheGreen’sfunction.TheGreen’sfunctionapproachcanbeusedto
givetheresponseofasystemtoaconstantperturbationintheSchrödingerequation.Theso-callednon-
equilibriumGreen’sfunction(NEGF)formalismisaverypowerfultechniquetoevaluatethetransport
propertiesofquantumsystemsinboththermodynamicequilibriumandnon-equilibriumconditions.At
theendofthischapter,Ipresentthemulti-bandtransportmodelsandthemajorbandstructurecalcula-
tionmethods.Thisincludestheabinitiomodels,suchasthedensityfunctionaltheory(DFT),andthe
approximatemethods,suchas,thetightbinding(TB)model,pseudopotentialmethods,aswellasthe
GWapproximation.

InChapter5, Idemonstrate thecarrier transportphenomena in low-dimensionalsemiconductors
(LDS),where,freeelectronsareonlypermittedtomoveinoneortwodimensions.Idescribesome
LDSstructures,suchasquantumwells,quantumwiresandquantumdotsandthetransportmodelsof
chargecarriersacrossthem.IdiscusstheconductanceofLDSsystems,usingtheLandauerformalism
(for2-terminaldevices)orthegeneralizedLandauer-Büttikerformalism(formulti-terminaldevices).I
alsodescribesomequantumeffectsthattakeplaceinsuchnanostructures,suchasquantumCoulomb
blockade,Aharonov–Bohm,Shubnikov-DeHaasoscillationsandKondoeffects.

InChapter6,IhandletransportacrossCarbonnanotubes(CNT’s),whichareoneofthemostinter-
estingmaterialsinnanotechnolog.Nanotubesandnanowireswithdimensionsonthenanometerlength
scalecannotbetreatedasclassicalconductorsbecausetheirdiametersareassmallasthemeanfree
pathlength(betweencollisions),buttheirlengthislargeforthefullquantumtreatment.Therefore,such
mesoscopicstructuresneedaspecialframeworkoftransportmodels,whichwediscussinthisChapter.

InChapter7,Iinvestigatephonontransportandthermalconductivityinsemiconductorstructures
andnanodevices.MicroscopicapproachessuchasthePeierls-Boltzmanntransportequation(phonon
BTE)andphononMonte-Carlosimulationcancapturequasi-ballisticphonontransport.Thesemodels
arevalidonlywhenheattransportisdiffusiveandthecharacteristiclengthscalesaremuchlargerthan
thephononmeanfreepath.Whenphasecoherenceeffectscannotbeignored,thesesemiclassicalap-
proachesfailandresultinerroneousresults.Therefore,Ihandlethetopicofballistic(non-diffusive)
phonontransportfornanoscalestructuresandnanodevices.

Chapter8isdedicatedforphotonictransportmodels.Accuratemodelingofphotonicdevicesises-
sentialforthedevelopmentofopticalcomponentsinfieldslikecommunications,sensing,biomedical
instrumentation, consumer electronics and defense. The specific challenge of optoelectronic device
simulationliesinthecombinationofphotonicsandelectronics,includingthesophisticatedinteraction
ofphotonsandelectrons.MathematicalmodelsforphotontransportincludetheMonteCarlosimulation
method,numericalsolutionofthesemiclassicalandquantumtransportequations,aswellasphenomeno-
logicalmodels.Macroscopicphotonictransportanalysisrequirestheconsiderationofsevenindependent
variables:threespatialdirections,twoangulardirections,frequencyandtime.
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Theso-calledradiativetransportequation(RTE)isanintegro-differentialequationthatdescribethe
diffusionandscatteringofphotonsinsidematter.Thediffusionapproximationalleviatesthesolutionof
thisequation.Also,theopticalBlochequations,whicharesometimescalledtheMaxwell-Blochequa-
tions(MBEs),describethedynamicsoftwo-statequantumsystemsinteractingwiththeelectromagnetic
modesofanopticalsystem.Withinasemiclassicalapproach,wherethelightfieldistreatedasaclassi-
calelectromagneticfieldandthematerialexcitationsaredescribedquantummechanically,allquantum
effectscanbetreatedmicroscopicallyonthebasisofthesemiconductorBlochequations(SBEs).The
quantumapproachesarebasedonsomesortofdynamicwaveequations(Schrodinger-likeorHeisenberg-
like)inthemicroscopiclevelortheSBEsinthemacroscopiclevel.Theso-calleddynamics-controlled
truncation(DCT)formalismisanothersuccessfulmicroscopicapproachthatdescribescoherentcor-
relationsinopticallyexcitedsemiconductors.Ontheotherhand,themostsuccessfulapproachtostudy
incoherent effects and correlations in highly excited semiconductors is the nonequilibrium Green’s
functions(NEGF)approach.Wediscussthesemodelswithillustrativeexamples,toshowthefeatures
andweaknessofeachmodel.

InChapter9,Ipresentafullquantumandasemiclassicaldescriptionofspintransport,whichexplains
howthemotionofcarriersgivesrisetoaspincurrent.Theso-calledtwo-componentspin-drift-diffusion
model(SDDM)isasimplesemiclassicalandstraight-forwardmethodforspintransportmodeling.The
semiclassicalmodelscanbeusefulforinvestigationofabroadclassoftransportproblemsinsemicon-
ductors,buttheydonotincludeeffectsofaspinphasememory.Thequantumapproachofspindensity
matrixwithspinpolarizationvectorofaspinstateismoreappropriateforthiscase.TheclassicalBloch
equationsforspintransportaretheanalogueoftheclassicalBTEforparticletransport.Theycanbeex-
tendedtotime-dependentnon-equilibriumquantumtransportequations,usingasuitablenon-equilibrium
quantumdistributionfunction,likethespinmagnetizationquantumdistributionfunction(SMQDF).The
so-calledspinor-BTEresemblestheBoltzmannkineticequationwithspin-orbitcouplinginamagnetic
fieldtogetherwithspin-dependentscatteringterms.Bytakingthemacroscopicmomentsofthespinor-
BTE,wecangetadensity-matrixbasedversionoftheSDDM.Thelastsectionofthischaptercovers
thelatestprovenspintronicdevices,suchasspin-FET,MRAMandspinLED.

InChapter10,Ipresentthesemiclassicalandfullquantummodelsofcompositequasiparticles,such
aspolarons,plasmonsandpolaritons.Theseinformationcarriersplayasignificantroleintheemerging
nanoelectronicandnanophotonicdevicesandsystems.

InChapter11,Ifocustheattentiononthecarriertransportinorganicsemiconductorsandinsulator
materials.Organicsemiconductorsarehydrocarbonmolecularcrystalsorpolymers.Inordertounder-
standchargetransportinorganicsolids,Ireviewthetransportandtunnelingmechanismsindisordered
materials.Thereupon, Idiscuss the recent transportmodels, suchas the semiclassicalandquantum
formalismsofMarcustheory.

Asthereadercanseefromtheabovedescriptionofthisbook,Itriedtogiveabalancedamountof
theoryforalmostallknowntransportmodelsofchargecarriers,phonons,photonsandspininsemiconduc-
torsandnanodevices.However,Ididmybesttoavoiddrowningthereaderintotheminormathematical
details.Iconsiderthisacriticalpoint,becauseeventhespecializedreadermaygetboredfromthearcane
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mathematicalproofs.Infact,thebasicinterestofthereaderswhohaveanengineeringbackground,is
todiscoverandthentoknowwhenandhowtoapplythedifferenttransportmodels.ForthesereadersI
wrotethisbook.However,when,somemathematicaldetailsareimportantImentionthem,inbrief,as
anote,sothatthereadercanbypassthemwithoutinterruptingthemainsubject.

Althoughthisbookisprimarilytheoreticalinapproach,Ifrequentlyrefertoexperimentalresults,
whichshowthevariationoftransportparametersaswellastheirmeasurementmethods.Ialsosupple-
menteachchapter,withoneortwocasestudiesofrealdevicesthataidunderstandingofthetreated
theoryinthischapter.Thebookhasmanyillustrationsanddiagramstoclarifythepresentedtransport
models,andcomprehensivelyreferencedforfurtherstudy.

Thisone-stopbook(foralmostallsemiconductortransportmodels)isdedicatedforengineersand
researchersinsolid-statephysicsandnanodevices,aswellasstudentsinnanoelectronicsandnanotech-
nology.

Muhammad El-Saba
Ain-Shams University, Egypt
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Chapter  1

DOI: 10.4018/978-1-5225-2312-3.ch001

1. OVERVIEW AND CHAPTER OBJECTIVES

During the last decade, the rapid development of electronics technology has produced several new 
devices at nanoscale dimensions (nanodevices). Nanodevices, are the tiny devices whose dimensions 
are in the order of nanometers (or less than 100nm however). The information carriers in these devices 
are the particles or quasi particles that can carry and transport information objects or signals. The most 
famous example of an information carrier is the electron charge in conventional semiconductor devices. 
Also, photons in photonic and optoelectronic devices and the electron spin in spintronic devices can 
be considered as information carriers. In addition, other quasi particles, such as phonons (quasi par-
ticles associated with lattice vibration waves) may be considered as information carriers, because they 
are capable of transporting energy from point to another in solid-state devices. The recent research in 
nanodevices is focused around the control of such information carriers and to exploit their features to 
build new devices with superior characteristics in terms if speed and integration density. Naturally, great 
efforts have been dedicated to understanding the transport mechanisms of such information carriers in 
semiconductors and nanostructures.

The transport theory of information carriers forms the basis of any physical device model. The 
transport models are used in Technology/Computer-Aided Design (TCAD) tools to simulate the device 
behavior, in terms of its structure and geometry as well as external boundary conditions of voltage and 
current. In fact, the transport of information carriers is a non-equilibrium phenomenon, where the role 
of external forces plays a crucial role. External forces which drive the device out of equilibrium may be 
electromagnetic in origin, such as the electric fields associated with an applied bias, or the excitations 
of electrons by optical sources. Alternately, thermal gradients and electrochemical potentials may also 
provoke the transport of charge carriers and therefore create external currents and voltages drops, across 
the device. The Figure1 depicts the role of carrier transport models in TCAD simulation tools and how 
they are used to calculate the current-voltage (I-V) and capacitance-voltage (C-V) characteristics of a 
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certain device and interact with other electronic design automation (EDA) tools. Also, Figure 2 depicts 
the different levels of transport models, in device simulation. As shown, the TCAD tools are based on 
semiclassical and quantum transport models. These models range from ab-initio physical models, which 
describe the transport of information carriers from first principles down to compact models that describe 
the outer behavior (usually the I-V and C-V) of devices and circuits. The success of nanotechnology 
to produce well-functioning nanodevices and systems is mortgaged by the availability of suitable and 
efficient transport models that meet the challenges at the nanoscale.

As shown in Figure 2, the transport models cover a wide scale, from classical to quantum transport, 
according to their accuracy and the required computational costs. Actually, a single description in the 
hierarchy of transport models may not be suitable to provide the correct behavior of all devices.

Depending on the device length scale, the carrier transport may be semiclassical or purely quantum. 
Nowadays, the most famous semiclassical approaches for the simulation of charge-carrier transport 
in semiconductor devices are the drift-diffusion model (DDM), the hydrodynamic model (HDM), the 
Spherical harmonic expansion (SHE) as well as the Monte Carlo method (MCM). DDM and HDM 
descriptions of particle transport are macroscopic in nature and enable a quick computation of device 
characteristics (in terms of macroscopic quantities like the carrier density). Depending on the particular 
application, the macroscopic transport models are applicable to devices with characteristic lengths in 

Figure 1. Electronic design automation (EDA) lifecycle and carrier transport modeling in TCAD Tools; 
in the EDA section, DFT=Design for Testability, LVS=Layout versus Schematic, DRC=Design Rule 
Checking and GDSII is a design file format.
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the range of micrometers or some hundred nanometers, where microscopic-size and quantum effects 
are not dominant. For even smaller devices, it is necessary to resort to microscopic approaches, which 
are based on the semiclassical Boltzmann transport equation (BTE) or its quantum counterparts, e.g., 
the quantum Liouville equation (QBTE) or the Wigner BTE (WBTE).

The solution of the BTE by MCM or SHE approaches may yield accurate results for the transport 
characteristics in many small devices. However, the semiclassical approaches (both microscopic and 
macroscopic) fail as soon as quantum mechanical effects dominate and a description of the information 
carriers as localized particles becomes invalid. Indeed, the description of carrier transport in modern 
nanodevices requires sophisticated many–body quantum approaches. Clearly, the full quantum description 
including the actual number of carriers in a device is beyond the ability of any computational platform 
nowadays1. Therefore, approximations are necessary to simulate and predict the behavior of such devices. 
In order to construct a successful approximation (model), we need to understand the phenomena behind 
the real problem, and under which physical limits, the approximation can be assumed.

Hence, successive levels of approximation, that sacrifice some information about the exact nature of 
transport, are sometimes utilized in any nanodevices. As shown in Figure 2, the quantum models range 
from ab-initio models, such as density-functional theory (DFT), and the tight-binding (TB) models that 
predict the band structure, to the quantum Liouville equation (QBTE) and its variant master equations 
as well as the non-equilibrium green functions (NEGF) to predict the device characteristics.

When the appropriate transport model is selected and utilized by a suitable device simulator, we can 
get the device input/output characteristics and understand the device behavior. Finally, the so-called 
compact models are non-linear circuit models that capture the device behavior, and are suitable for 
circuit simulation.

Although we assume a basic knowledge of solid-state physics in this Book, we start with the theoreti-
cal fundamentals of semiconductors. This Chapter is a general review of the fundamentals physics of 
charge carrier transport in semiconductors, with emphasis on the classic transport models.

Upon completion of this chapter, students will

Figure 2. Complexity (accuracy) of transport models versus computational time (cost)
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• Understand the concept of transport modeling and information carriers in semiconductors and 
nanodevices.

• Be familiar with the different models of information carrier transport.
• Review the fundamentals of semiconductor physics, such as energy band structure, density of 

states, drift and diffusion of charge carriers and carrier scattering mechanisms.
• Explain the advantages and disadvantages of the classical transport theory of charge carriers in 

metals and semiconductors.
• Describe the electrical, thermal, magnetic and optical properties of metals and semiconductors, on 

the basis of the simple Drudé model.
• Decide what evidence can be used to support or refuse a carrier transport model.

2. CLASSIFICATION OF INFORMATION CARRIERS

The term Information Carriers has its origin in computer science and information technology and has 
been applied in many different ways. In computer science, an information carrier is a means to keep 
(store) information. However, I mean by information carriers in electronic devices, the particles or par-
ticle characteristics that can carry, transport or store signals within a device. For instance, the electron 
charge in conventional semiconductor devices and the spin of electrons in spintronic devices as well as 
photons in photonic devices are all examples of information carriers. In addition, other quasi particles, 
such as phonons (quasi particles associated with lattice vibration waves) may be considered as informa-
tion carriers, because they are capable of transporting energy from point to another in solid-state devices. 
Other examples of information carriers are shown in Figure 3.

A charge carrier is a moving particle, which carries an electric charge. Examples are moving electrons, 
ions and holes. In a conducting medium, an electric field can exert work (force) on the free particles, 
causing a net motion of their charge through the medium; this is what is referred to as electric current. 
In metals, the charge carriers are electrons. Free (or more precisely quasi free) electrons in good conduc-
tors are able to move about freely within the material. Free electrons can also be generated in vacuum 
and act as charge carriers. As well as charge, an electron has another intrinsic property, called spin. A 
spinning charge carrier produces a magnetic field similar to that of a tiny bar magnet.

Figure 3. Examples of information-carriers in electronic, spintronic, optoelectronic, thermoelectric and 
quantum devices
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In melted ionic solids or electrolytes, such as salt water, the charge carriers are ions, atoms or molecules 
that have gained or lost electrons so they are electrically charged. Atoms that have gained electrons and 
become negatively charged are called anions, while atoms that have lost electrons become positively 
charged and called cations.

In semiconductors, electrons and holes (moving vacancies in the valence band) are the charge carriers. 
In fact, holes are considered as mobile positive carriers in semiconductors. In semiconductor devices, 
most of the electrical, thermal and electrical properties of interest have their origins from electrons (in 
the conduction band) and holes (in the valence band).

Of course electrons and holes carry electrical charges as well energy. Other important energy carri-
ers are phonons (lattice vibrations). Actually, the thermal energy transport in crystals occurs primarily 
due to the vibration of atoms about their equilibrium positions. In semiconductors, the heat conduction 
process takes place, primarily, through lattice vibrations (phonons).

The property of coherence was originally connected with light propagation in optics but now it is 
defined in all types of waves. In quantum mechanics coherence is due to the nature of the wave functions, 
which are associated with moving particles. Coherence means that the phase difference between wave 
functions is kept constant for coherent particles. The delay over which the phase or amplitude wanders 
by a significant amount is defined as the coherence time (usually termed τc), as shown in Figure 5. The 
coherence length λc is defined as the distance the wave travels in time τc. The spatial coherence of a 
wave is defined as the cross-correlation between two points in the wave for all times. The most popular 
experimental technique which provides direct information about charge carrier coherence in semicon-
ductors is four-wave-mixing (FWM) spectroscopy.

Figure 4. Information-carriers in electronics and spintronics

Figure 5. Illustration of the concept of phase coherence of the wave functions
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3. CLASSIFICATION OF TRANSPORT MODELS

The nature of transport in a semiconductor device depends on the characteristic length of the device 
active region. The carrier motion can be described with classical laws, when the length of the device 
active region is much larger than the corresponding carrier wavelength. When the device dimensions 
(or one of them) are comparable to the carrier wavelength, the carriers can no longer be treated as clas-
sical point-like particles, and the effects originating from the quantum- nature of propagation begin to 
determine transport.

The appearance of quantum effects can be determined by comparing the device size2, L, to the elec-
tron mean-free path (λn), or the dephasing length (λϕ) or the de Broglie wavelength (λdB =h/p, where h is 
Planck’s constant and p is the electron momentum). The dephasing length (or phase coherence length), 
λϕ, is a physical quantity which describes the quantum interference and may be defined as follows:

Dephasing length → λϕ = √(Dn τϕ) (1)

where Dn is the electron diffusion constant and τϕ is the dephasing (or phase-breaking) time. One way 
to obtain the dephasing time (τϕ,) is to measure the magneto-resistance of the material (Pierret, 2003).

The quantum interference and strong coherence phenomena can be observed in nanostructures, when

λdB ≈ L, λn << λϕ (2)

As the temperature is raised, the quantum interference smears out and the coherent states start to appear 
and participate in conduction. The so-called “weak localization” is expected at the following conditions:

L > λT, λdB ≈ λn < λϕ ,  (3)

where λT is called the temperature length (or thermal correlation length) which is defined as follows:

Temperature length →λT =< ℏ Dn/kBTL (4)

where ℏ=h/2π and kB is Boltzmann’s constant.
On the other hand, the semiclassical approach can be still used in small devices as long as:

λdB << λn, , , λϕ<<L (5)

Figure 6 depicts the hierarchy of transport models, which are currently known and utilized to describe 
electronic transport in semiconductors and nanodevices. At the top level we find the Schrodinger equation3 
for many-body problems, which are only tractable for tiny structures with a few numbers of electrons. 
In order to treat the many-body quantum problem, some sort of mean- approximation is necessary to 
transform the problem into an effective one-electron problem. This is done in the so-called Hartee-Fock 
(H-F) equation and other variant methods, such as the Kohn-Sham (K-S) functional approach.

Following to this level, we find the quantum kinetic approaches in terms of the Liouville equation 
of motion for the density matrix (QBTE), or Wigner transport equation (WBTE) that contains quantum 
correlations but have the form of semiclassical approaches.
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In semiclassical approaches, we assume that the spatial extent (Δx) of the wave packet, which is as-
sociated with the motion of an information carrier, is much smaller than the mean free path between 
collisions (Δx << λn) in the device area. This means that we can talk about the motion of localized (or 
point-like) quasi-particles. Therefore, the main feature size of the device (L) should be much greater than 
the mean free length between collisions (L >>λn). The motion should also be localized in the k-space 
so that we can talk about a mean wavenumber k>>Δk (satisfying the Heisenberg uncertainty principle 
Δx.Δk ≈1). This is the level of the Boltzmann transport equation (BTE), which is a kinetic equation 
describing the time evolution of the distribution function of particles. The BTE has been the primary 
framework for describing transport in semiconductors devices down to submicron scale. There are then 
approximations to the BTE, given by hydrodynamic moments of the BTE which lead to the hydrodynamic 
model (HDM), the drift-diffusion model (DDM), and relaxation time approximation approaches (RTA).

Figure 8 illustrates the details of transport models of different sophistication levels to describe the 
transport of charge carriers in semiconductor devices.

Figure 6. Hierarchy of information-carrier transport models

Figure 7. Schematic of the extension of a particle wave packet and its Fourier transform in the k-space



8

Introduction to Information-Carriers and Transport Models
 

4. CHARGE-CARRIER TRANSPORT MODELS IN SEMICONDUCTORS

We know that any thermodynamic system is in thermal equilibrium forever unless it is acted upon by 
external forces, i.e. when no exchange of energy is done with the exterior. We may consider a semicon-
ductor in state of thermal equilibrium, as long as it is not acted upon by any external force field (e.g., 
electric field, magnetic field, electromagnetic field or light). However, the individual atoms and electrons 
in a solid still exchange energy between themselves, even when no external force is applied. Therefore, 
the equilibrium state is called “dynamic thermal equilibrium”.

4.1 Semiconductor Conductivity Model

A semiconductor is neither a true conductor nor an insulator, but half way between. The discovery of 
semiconductor properties, dated back to Michael Faraday (1839) who noticed that the conductivity of 
some materials decreases as temperature increases, inverse to the behavior of known metals. A variety of 
substances, such as germanium (Ge), silicon (Si) and gallium arsenide (GaAs), exhibit semiconducting 
properties. In this section we first review the model of conduction in semiconductors using the silicon 
as an example. In fact silicon was established as a good semiconductor material about 80 years ago (the 
1930s). At this time, Alan Wilson applied Felix Bloch energy band theory to study the energy band struc-
ture of silicon. Actually, the Si atom has 14 electrons distributed over energy levels of different orbitals 
(1s2, 2s2, 2p6, 3s2, 3p2). The incomplete outer shell of silicon atom contains 4 electrons (3s2, 3p2). The 
silicon lattice has a diamond lattice and its atoms have tetrahedral covalent bonds as shown in Figure 9.

In pure silicon lattice all electrons are bound, in the valence band, and there are no free charge car-
riers (no free electrons!) at zero absolute temperature (0K). Therefore, behaves like an insulator and 
the application of an electric field does not result in electric current. In order to produce an electrical 

Figure 8. Detailed illustration of information-carrier transport models
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current in a semi-conductor, some valence electrons must be freed from their bonds. This can be done 
by supplying the crystal by external energy, usually in the form of heat or light. The minimum energy 
that is required to free an electron in a pure semiconductor is equal to the height of its energy gap Eg. In 
Si, the energy gap is about 1.2eV at 300K. Each free electron in a pure semiconductor leaves a broken 
bond (or a hole) as shown in Figure 10. Such a free electron roams everywhere in the crystal with equal 
probability in all directions. A free electron can also recombine with a vacant bond (a hole) to produce 
a bond, while transmitting its excess energy in the form of light quanta (photons) or lattice vibrations 
(phonons)

e hole bond+
 →
← 

Recombination

Generation

 (6)

If an electric field ζ is applied to a crystal, the free electrons will be acted upon by a force F = -e.ζ 
and they begin to drift against the field direction. If the concentration of free electrons in the conduction 
band is n electrons per unit volume (electrons/cm3) and their average drift velocity is vn, then the electron 
current density Jn (A/cm2) is given by:

Jn = - e n vn = σn .ζ (7a)

where σn = - e n (vn / ζ) is called the electrical conductivity of electrons. Unlike metals the conductivity 
of semiconductors depends actually on many ambient parameters such as temperature, illumination, etc. 

Figure 9. Diamond lattice and covalent bonds in pure elemental semiconductors, like silicon

Figure 10. Generation of an electron-hole pair by breaking a covalent bond
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Regarding the valence band, it is more convenient to consider the motion of holes instead of the motion 
of valence electrons, as shown in Figure 11. This is because the number of holes is usually much less 
than the number of valence electrons4. If there are p holes (vacant bonds in the crystal lattice) per unit 
volume in the valence band, then the current produced by the motion of valence electrons to fill in these 
holes, against field direction, is equal to the current produced by the motion of holes, along the field 
direction. Therefore, the hole current density Jp is given by:

Jp = e p vp = σp ζ (7b)

where σp = e p (vp / ζ) is called the electrical conductivity of holes and vp is their average velocity .
Therefore, there exist two types of charge carriers in semiconductors, Electrons in the conduction 

band, and Holes in the valence band.
The conduction electrons (and valence holes) in pure semiconductors can be produced by thermal 

or optical excitations. Extra conduction electrons (or valence holes) can also be obtained in semicon-
ductors by doping them with impurity atoms. Accordingly, semiconductors are called intrinsic (pure) 
semiconductors or extrinsic (impure) semiconductors.

4.2 Concentration of Electrons and Holes

In intrinsic semiconductors, the charge carriers (electrons and holes) are mainly generated by thermal 
excitation of the valence electrons. When the supplied thermal energy is high enough, some covalent 
bonds are broken and electron-hole pairs are produced. Therefore, the number of broken bonds and hence 
the concentration of generated electron-hole pairs is proportional the ambient temperature. Consequently, 
the concentration of electrons (n) must equal to the concentration of holes (p) in intrinsic semiconductors:

n = p = ni (8)

where ni is called the intrinsic carrier concentration. The intrinsic carrier concentration is temperature 
dependent and is given by:

ni = A T3/2 exp (-Eg / 2kBT) (9a)

Figure 11. Motion of electrons and holes in the valence band of a semiconductor
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where A is a constant. Hence, the value of ni is strongly dependent on temperature and the type of semi-
conductor material. For the matter of comparison, we can express ni by the following relations for Si 
and 4H-SiC:

ni (Si) = 3.67x1016 T3/2 exp (-7020 / T) (9b)

ni (SiC) = 1. 7x1016 T3/2 exp (-20800 / T) (9c)

In silicon, ni is almost 1.38 x1010 (electron/cm3) at T= 300 K. On the other hand, ni is as small as 
6.74 x10-11 (electron/cm3) or practically zero in SiC at 300 K. For this reason, SiC is more suitable for 
high temperature devices.

At thermal equilibrium, the process of electron-hole pair thermal generation is compensated by an 
opposite electron-hole recombination process, such that the rate of thermal generation gth is equal to 
the rate of recombination R. Therefore, the net rate of change of electron-hole pair concentration ∂n/∂t 
=(gth - R) is null at thermal equilibrium and the intrinsic carrier concentration remains fixed.

In order to increase the number of free charge carriers (electrons or holes) in a semiconductor, and 
hence to increase its conductivity, semiconductors are usually doped with impurity atoms. In this case 
the semiconductor is called an extrinsic semiconductor. In extrinsic semiconductors extra conduction 
electrons are typically produced by doping the semiconductor with impurity atoms of the group V of 
the periodic table of elements, like phosphorous (P). This type of impurities is called donors. A semi-
conductor which is doped with donors is said to be of n-type.

Similarly, extra valence holes can be produced by doping the semiconductor with impurity atoms of 
the group III, like Boron (B). This type of impurities is called acceptors. A semiconductor which is doped 
with acceptors is said to be of p-type. The more abundant charge carriers in a piece of semiconductor are 
called majority carriers, which are primarily responsible for current transport. In n-type semiconductors 
majority carriers are electrons, while in p-type semiconductors they are holes. The less abundant charge 
carriers are called minority carriers. Minority carriers in n-type semiconductors are holes, while in p-
type semiconductors they are electrons.

The density of electrons in the conduction band is equal to the density of occupied states5. Also the 
density of occupied states is equal to the density of states in the conduction band gc(E) multiplied by the 
probability of occupation which is given by the Fermi-Dirac energy distribution function for electrons 
fn(E). Therefore, the density of electrons is given by the following integration:

Figure 12. Basic bond pictures of n-type (a) and p-type (b) semiconductors
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The Fermi energy, EF, refers to the energy of the highest occupied energy level at absolute zero 
temperature (0K). Also, the density of holes in the valence band is equal to the density of vacant states. 
The density of vacant states is equal to the density of states in the valence band gv(E) multiplied by the 
probability of non-occupation by electrons, which is given by the Fermi-Dirac distribution for holes 
fp(E)=1-fn(E),
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Figure 13. Taxonomy of semiconductors, according to doping type
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The density of states g(E) in a certain band can be deduced from the E-k relation of the material, 
using the relation.

g E
E k

( ) =
( )∇

∫∫
1

2 3π
ds

kConst.E.Surface

 (14)

Here, the surface integral is taken over a constant energy surface (CES), where E(k) = constant. Figure 
14 shows the density of occupied state, which is the product of the density of sates by the Fermi-Dirac 
distribution function of the concerned carriers. The Figure 15 illustrates this for electrons and holes.

Usually free charge carriers (electrons or holes) reside at the bottom of conduction bands or the 
top of valence bands. Therefore, we assume that the E(k) relation of the semiconductor is almost qua-
dratic close to extreme points, which concave up conduction bands or concave down valence bands. 
The approximated E(k) relation is then similar to the dispersion relation of free electrons in free space 
(E=p2/2mo=ℏ2k2/2mo). However, in order to account for the internal lattice field, the free electron mass 
(mo) should be replaced with the carrier effective mass (m*), which depends on the curvature of the 
semiconductor E(k) relation. When the semiconductor is anisotropic, the carrier effective mass is a 2nd 
order tensor, whose components are given by:

Figure 14. Schematic illustration of the carrier occupation and carrier density

Figure 15. Product of the density of states and the Fermi-Dirac distribution function for electrons and 
holes in n-type (left graph) and p-type (right graph) semiconductors.
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When the semiconductor is isotropic then the effective mass tensor reduces to a scalar quantity 
(zero-order tensor), such that: m* = mxx = myy= mzz and other coefficients are null. Therefore, the inverse 
effective mass m*-1= (1/ℏ2).∂2E/∂k2.

It comes from the above discussion that the effective mass and so many other characteristics of charge 
carriers, depend on the band structure E(k), or more precisely, the shape of constant energy surfaces of 
the material. In cubic semiconductors, like Si and GaAs, we can distinguish three types of constant energy 
surfaces: spherical, ellipsoidal and warped energy bands. Figure 17 shows a general band structure model 
of cubic semiconductors (near main extreme points). Note that the energy gap may be direct or indirect. 
The Figure 18 is a schematic of the real band structure, E(k) of Si and GaAs, in certain directions of the 
k-space. Also, Figure 19 shows the shape of constant energy surfaces of main conduction and valence 
bands of such semiconductors. As we’ll see in Chapter 7, the application of strain on a semiconductor 
shifts the energy levels of the conduction and valence bands and can remove the band degeneracy.

Case 1: Spherical Constant Energy Surfaces

In certain direct-gap semiconductors, like GaAs, the constant energy surfaces of the E-K relation are 
almost spherical and isotropic, near extreme points. The E-k relation in this case may be approximated 
as follows:

E E
m

k k
o o

= ± −( )�2 2

2 *
 (16a)

Figure 16. Schematic representation of the conduction and valence bands around their extreme points 
in two-dimensional k-space
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Figure 17. Schematic representation of the band structure of a cubic semiconductor

Figure 18. Energy band structure of Si and GaAs

Figure 19. Shapes of the constant energy surfaces in cubic semiconductors
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where Eo is a constant and the ± sign denotes either the conduction or the valence bands. If the number 
of equivalent minima (or valleys) in the conduction band is denoted by Mc, and the effective mass of 
electrons is denoted by mn*, then the density of states in the conduction band is given by:
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Similarly, the density of states in the valence band is given by:
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where Mv is the number of maxima in the valence band and mp* is the effective mass of holes there. Note 
that for Si, Mc=6 (six valleys in the main conduction band) and Mv =1 (if we only considered heavy and 
light hole valence bands).

Case 2: Ellipsoidal Constant Energy Surfaces

In indirect gap semiconductors, like Si, the constant energy surfaces are ellipsoidal (or approximated 
so). The E-k relation is hence a more complicated than the spherical isotropic case. The effective mass 
is no longer a scalar quantity but depends on the direction (a tensor). If the directions are chosen such 
that m* is a diagonalized tensor with diagonal elements mxx*, myy* and mzz*, then, the E-k relation is 
approximated as follows:
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where Eo = E(kxo,kyo,kzo) is a constant. For instance, the main conduction band of some indirect-gap 
semiconductors (like Si) has kxo=kyo=0 and kzo=kmin such that
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where we put mxx*=myy*=mt* (transverse effective mass) and mzz*=ml* (longitudinal effective mass). 
The density of states in the conduction band is then:
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where m
nd
*  is called the density-of-states effective-mass in the conduction band.
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In Si, mxx*= myy *=m m
t o
* .= 0 19  and mzz*=m m

l o
* .= 0 916 , so that mnd* = 1.08 mo, according to 

Singh (1993).

Case 3: Warped Constant Energy Surfaces

The valence bands of cubic semiconductors (like Si) are approximately quadratic. The constant energy 
surfaces of the two upper warped bands (for heavy and light holes) are fluted spheres. The E(k) relation 
of such semiconductors may be described by the following relations near k= 0,
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where A, B and C are constants and the ± signs correspond to light holes and heavy holes bands, respec-
tively. For the valence band of light holes (with plus sign and designated by the letter l), the effective 
mass is usually denoted mlh*. At the band edge, the light holes mass mlh* (for Si) 6 is given by:

m m A B C m
lh o o
* .= + +( ) =2 21 6 0 153  (21a)

Figure 20. Constant energy surfaces of the principal conduction band of silicon. The symmetric points 
in the first Brillouin zone of the k-space are shown in the left figure.
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Also, for the valence band of heavy holes (with minus sign and designated by the letter h), the ef-
fective mass is usually denoted mhh*. At the band edge, the heavy hole mass mhh* (for Si) is given by:

m m A B C m
hh o o
* .= − +( ) =2 21 6 0 537   (21b)

Equation (20), which describes the E(k) relation of the two upper valence bands (the l and h valence 
bands) in cubic semiconductors, is sometimes written using polar k-coordinates as follows:
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θ ϕ θ φ= −
�2 2

2
 (22)

where mv* is the isotropic hole effective mass, while g(θ, ϕ) contains the l and h valence bands anisotropy 
information. As shown in the following figure, the constant-energy surfaces of l and h hole bands are 
warped, like a cube with rounded corners and dented-in faces. This is more pronounced in heavy holes.

The third valence band in cubic semiconductors is called the split-off band (s-band). This band is 
only populated at higher hole energies, and its E(k) relation may be described by the following simple 
parabolic relation:
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2
 (23)

where Δs is the shift between the top of the s-band and the top of the l and h valence bands. In Si, Δs =0.044 
eV below the l and h bands. The effective mass of split-off holes in Si is given by mh,so* = 0.234 mo.

The density of states in the valence band is generally given by:

Figure 21. Constant energy surfaces of light- and heavy-hole valence bands of silicon
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where mpd is the density-of-states effective-mass in the valence band:
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.  (25)

where mlh* is the effective mass of light holes and mhh* is the effective mass of heavy holes. For Si, mlh* 
= 0.16 mo and mhh*=0.49 mo, so that mpd*=0.81mo.

Substituting gc(E) from Equation (18) into (10) yields the following expression for the density of 
electrons in the conduction band:
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where NC is called the effective density of states in the conduction band:
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Also F1/2(ζn) is the Fermi-Dirac integral of order ½. The Fermi-Dirac integral is defined as follows7:
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with

x = E/kBT and ζ
n F c B

E E k T= −( )  (27b)

In non-degenerate semiconductors, where (E-EF) >> kBT, the number of electrons is much smaller 
than the effective density of states in conduction band. Then, we have n << Nc (diluted gas of electrons) 
and the Fermi-Dirac distribution may be approximated by the Boltzmann (exponential) distribution. As 
shown in Figure 21, the Fermi integral may be then approximated as:
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F x x dx
n n n

o
1 2

1 22
ζ
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ζ ζ( ) ≅ −( ) = ( )

∞

∫ exp exp  (27c)

Therefore, the density of electrons may be written as follows:

n N E E k T
c c F B

= − −( )



exp  (28a)

Similarly, the density of holes in the valence band, in non-degenerates semiconductors, is given by:

p N E E k T
V F v B

= − −( )



exp  (28b)

where NV is effective density of states in the valence band and given by:
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Table 1 depicts the values of Nc and Nv as well as the density of states effective mass in the bulk of 
some semiconductors at 300K.

In compound semiconductors and alloys, like GaAs, which have upper and lower energy valleys with 
different band edges (e.g., Ec1 and Ec2), the density of states in the conduction band maybe expressed 
as follows:
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 (29)

where Mc1 and Mc2 are the number of upper and lower equivalent valleys. For instance, Mc1 = Mc2 =1 in 
GaAs and Mc1 = 4, Mc1 = 2 in Si1-xGex. In the latter case, the shift in energy levels (Ec1 - Ec2) is expressed 
in terms of the mole fraction x, such that Nc becomes a function of x.

It worth notice that equations (28a) and (28b) are not ready for the calculation of the electron and 
hole concentrations (n, p) because we don’t know yet the Fermi level position (Ec - EF or EF -Ev). In the 

Table 1. Effective density of states in conduction and valence bands of some semiconductors at 300K

Semiconductor Eg (eV) mnd / mo mpd / mo Nc (cm-3) Nv (cm-3)

Si 1.12 1.08 0.56 2.8 x1019 1.04 x1019

Ge 0.67 0.55 0.37 1.04 x1019 6.0 x1018

GaAs 1.42 0.067 0.48 4.7 x1017 7.0 x1018

According to Yu and Cardona (1996).
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following sections we show how to determine the electron and hole concentrations in equilibrium, by 
an alternative method, from the mass action law and the neutrality condition.

4.3 Mass Action Law in Semiconductors

It follows from the above discussion that the concentration of electrons and holes depends on the loca-
tion of Fermi level Ef. In thermal equilibrium, the np product is independent of the Fermi-level position 
and given by:

n p Thermal equilibrium n  p N N
E

k To o c v

g

B

. ( ) exp= = −











 (30)

Here, the subscript ‘o’ denotes the values of n, p at the thermal-equilibrium state.
The above equation is called the mass-action law in semiconductors. According to this law, the n.p 

product is equal to a constant independent of time and of the type of added impurities. In intrinsic semi-
conductors we have no=po= ni, then the mass-action law can be written as follows:

no po = ni
2 (31)

Figure 22. Normalized electron concentration (n/Nc) versus normalized Fermi energy ζF = (EF-Ec).kBT, 
with different approximations at low- and high-doping concentrations
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This means that the n.p product in semiconductor, at thermal equilibrium, is constant equal to the 
square of the intrinsic carrier concentration.

4.4 Neutrality Equation in Semiconductors

The electron and hole concentrations as well as the location of the Fermi-energy level in a semicon-
ductor can be calculated by the aid of the so-called “neutrality condition”. According to the neutrality 
condition, the total charge in a semiconductor at thermal equilibrium is zero. If the charge density (per 
unit volume) is labeled by ρ then:

ρ = + − +



 =

+ −e p N e n N
o od a

( ) ( ) 0  (32a)

Therefore,

n N p N
o oa d
+ = +− +  (32b)

where Nd
+ and Na

- are the densities of ionized donors (bound positive charges) and ionized acceptors 
(bound negative charges), respectively. For the calculation of the Fermi-level, each term in the above 
equation must be expressed in terms of EF. For non-degenerate semiconductors, if the impurity atoms 
are localized and singly ionized, then the neutrality equation may be written as follows:

2

1 2

2

1 4

N
F

N

E E

k T

N
F

N

E
c

n
d

d F

B

v
p

a

π π
1 2 1 2
+

+ −
−









= +

+exp exp aa F

B

E

k T

−









 (33a)

where we substituted the ionization ratios for donors and acceptors (Nd
+/Nd and Na

-/Na,, respectively) 
using Gib’s law8, for singly-ionized impurities (Sze, 1969):
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 (33b)

N
N

E E k T
a

d

a a F B

− =
+ −( )( )1 γ exp /

 (33c)

Here, Ed is the donor energy level and γd is the donor degeneracy factor (2 for P in Si, Ge and most 
semiconductors). Like most of V-group impurities Ed is close to the bottom of conduction band (44 meV 
for P in Si). Such impurities are called shallow-level impurities. Also, Ea is the acceptors energy level 
and γa is the acceptors degeneracy factor (4 for B in Si, due to spin and the folded valence band, for light 
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and heavy holes). For most III-group impurities, Ea is close to the top of valence band (about 10meV), 
so that Na

- ≈ Na at room temperature.
The Figure 23 depicts shallow acceptor and donor levels in p-type and n-type semiconductors. Shal-

low impurities are of great interest in semiconductors, since they define the conductivity and the type 
of semiconductor.

The neutrality Equation (33a) can be solved graphically, to find out the Fermi level EF. In special 
cases, the analytical solution of this equation may be simple.

4.5 Carrier Density and Fermi Level in Intrinsic Semiconductors

In intrinsic semiconductors, the number of electrons is equal to the number of holes (vacant places or 
broken bonds). Thus, in thermal equilibrium we have:

no = po = ni (34)

where ni is the intrinsic-carrier concentration in the semiconductor
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Substituting both Nv and Nc expressions into (35) yields the following expression for ni
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The Figure 24 shows the intrinsic carrier concentration of Si, Ge, and GaAs as a function of tem-
perature. Naturally, the Fermi level in intrinsic materials is almost midway between the conduction and 
valence band (EF ≈ Ei = EV +½ Eg). More precisely, we have:

Figure 23. Energy levels of acceptor and donor impurities in p-type and n-type semiconductors
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Figure 24. Intrinsic carrier concentrations of Si, Ge and GaAs vs. temperature
Source: Semiconductors (Smith, 1979).

Figure 25. The product of the density of states and the Fermi-Dirac distribution function for electrons 
and holes in intrinsic semiconductors
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E E k T N N E k T m m
F i B v c i B pd nd
≅ + ( ) = + ( )ln ln * *3

4
.  (36)

Note 1: Meaning of the Fermi Level and Chemical Potential

The Fermi level is the term used to describe the top of the collection of electron energy levels in a solid at 
absolute zero temperature. At absolute zero temperature (T=0K), electrons pack into the lowest available 
energy states and build up a Fermi gas, just like a sea of energy states. The Fermi level is the surface of 
that sea at 0K where no electrons will have enough energy to rise above the surface.

The concept of the Fermi energy is a crucially important concept for understanding the electrical and 
thermal properties of solids. The Figure 26 shows the Fermi-Dirac energy distribution, f(E), at different 
temperatures over the energy band diagram of an intrinsic semiconductor.

According to statistical thermodynamics, the term (μ) that actually appears in the Fermi-Dirac dis-
tribution (f(E)=1/[1+exp-(E-μ)/kBT]), is called the chemical potential of the gas of electrons. However, 
the Fermi energy of a free electron gas is related to the chemical potential by the following equation 
(Kireev, 1979):
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Hence, the chemical potential is approximately equal to the Fermi energy at temperatures much less 
than the characteristic Fermi temperature TF = EF/kB. At room temperature, the Fermi energy and chemi-
cal potential are essentially equivalent.

4.6 Fermi-Level and Carrier Density in Extrinsic Semiconductors

The density of charge carriers (electrons and holes) in an extrinsic semiconductor at thermal equilibrium 
can be calculated by solving two basic equations, namely, the mass-action law:

n p n
o o i
= 2  (37)

Figure 26. Fermi-Dirac distribution
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and the neutrality equation:

n N p N
o a o d
+ = +− +  (38)

Combining these two equations yields:
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By solving the above two algebraic equation, we get the equilibrium concentrations no and po= ni
2/no
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where the ± sign (inside the square brackets) stands for the type of majority carries. That is the + sign 
is taken when we calculate no from (40a) in n-type materials or po from (40b) in p-type materials. The 
minority carriers can be then calculated, simply from the relation po no = ni

2.

Case 1: Fermi Level in n-Type Semiconductors

For n-type semiconductors, the electrons are majorities. At moderate temperatures, where all impurities 
are ionized (Nd

+=Nd, Na
- =Na) we can consider no= Nd - Na. Substituting no into (26) yields:

E Ec k T
N

N NF B
c

d a

= −
−












ln  (41)

Therefore, the Fermi level decreases linearly as the temperature is raised. However, at very low 
temperature, the Fermi level in n-type semiconductors rises initially with temperatures and reaches a 
maximum and then begins to go down towards the intrinsic level at high temperature. The initial rise of 
EF with T is due to the fact that, the donor atoms are not all yet ionized at low temperature. Then, the 
Fermi level at low temperature may be described by the following relation:
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This equation reduces to the following relation at very low temperature, where kBT << (Ec –Ed),
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Hence, the Fermi level lies at the mid-point between the conduction band edge Ec and the donor level 
Ed at 0K, and raising the temperature will result in an increase in EF. Substituting this EF into Equation 
(26), gives us an expression of electron concentration, n, at very low temperatures.
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Case 2: Fermi Level in p-Type Semiconductors

Similarly, for p-type semiconductors, holes are majorities. At moderate temperatures, where all acceptors 
are ionized (Na

- =Na Nd
+=Nd,) we can consider po = Na - Nd

-. Substituting po into (27) yields:
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Thus, the Fermi level increases linearly as T is raised and EF tends to Ei as T tends to high values.
At very low temperature, the fraction of ionized impurities is given by the Gibbs law and the Fermi 

level is given by:
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This may be approximated as follows:
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Therefore, at T=0, the Fermi level in p-type materials lies midway between the valence band edge 
Ev and the acceptor level Ea. Substituting this EF into Equation (27), gives us an expression of hole con-
centration, p, at very low temperatures.
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The Figure 27 depicts the variation of Fermi level in the above three cases with temperature. Also, 
Figure 28 depicts the variation of electron and hole densities with temperature in n-type and p-type 
semiconductors.

4.7 Scattering of Charge Carriers

The motion of free charge carriers in a solid (e.g., electrons in a metal or electrons and holes in a semi-
conductor) is different from their motion in free space because of collisions with the vibrating nuclei of 
the solid, as shown in Figure 29. Carriers may also collide with impurity atoms or themselves as well 
as other crystal defects. These collisions cause the free electrons to scatter in different directions and 
the resulting motion of electrons is equally probable in all directions (random!) so that there is no net 
displacement.

Figure 27. Variation of the Fermi level position in semiconductors with temperature

Figure 28. Variation of electron and hole concentration in semiconductors with temperature
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Thus, under no external bias the net current is zero. The thermal speed of charge carriers changes with 
temperature. For instance, the thermal speed of electrons and holes in a non-degenerate semiconductor 
is given by (Sze, 1981):

v electrons
k T

m
v holes

k T

mth
B L

n

th
B L

p

( ) , ( )
* *

= =
3 3

   (49)

where TL is the crystal lattice temperature, mn* and mp* are the effective masses of electrons and holes, 
respectively. At room temperature, the mean thermal velocity of electrons in a Si is about 107 cm/s.

The average distance, an electron travels between collisions, is called the mean free path (λ) and its 
order of magnitude is about 100Å at room temperature. The average time between collisions (mean free 
timeτ) is related to the mean free path by the simple relation: λ = vth τ .

5. CLASSICAL TRANSPORT THEORIES (DRUDÉ MODEL)

The Drudé transport model is a classical transport model, which was initially introduced by Paul Drudé 
in 1900, to explain9 the transport properties of electrons in metals (Drudé, 1900). This model assumes a 
free electron gas inside metals. The Drudé model, assumes independent and free particle approximation.

This model results from the application of the classical kinetic theory to electrons in a solid mate-
rial. It assumes that the solid material contains immobile positive ions and an electron gas of classical 
non-interacting electrons, whose motion is damped by a frictional force, due to collisions with the ions.

If the electron density is n and their collisions with ions are characterized by a mean relaxation time 
τ then, under an applied electric field ζ, the conduction current density J is given by:

J = e2 n (τ / m*) ζ= σζ (50)

where e and m* are the electronic charge and effective mass inside the solid. The electrical conductivity 
σ is then given by:

Figure 29. Schematic of the electrons scattering and the effect of electric field in a piece of semiconductor
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σ = e2 n (τ / m*) (51)

This simple classical model leads to surprisingly good results which explain the electrical conduc-
tivity and some other physical phenomena, like the Hall Effect and the thermal conductivity in metals.

The Drudé model is based on the following classical equation of motion of free charge carriers (e.g., 
electrons in metals), under the effect of an external force F (electric or magnetic fields or both):

m*(dv/dt) + m*v/τ=F (52)

where F is the external force: F=± e (ζ + vn x B), and the ± sign stands for the type of charge carrier 
(- for electrons and + for holes). Also, τ is the mean free time between collisions and the medium term 
(m*v/τ) represents the internal friction force, due to collisions. In steady state (where dv/dt =0), the 
solution of this equation gives the average carrier velocity v:

v= τ F/ m*= ± (eτ /m*).(ζ+vn xB) (53)

The charge carrier current density (flux) is given, by definition, as follows:

J = ± e nv= e2 n (τ / m*).(ζ+vn xB) (54a)

or

J= σζ= σo (ζ+vn xB) (54b)

with the electrical conductivity: σo = e2 n (τ / m*).
For sinusoidal time-varying electric fields where ζ = ζo.exp(jt), the electrical conductivity becomes 

complex and given by:

σ = σo /(1- jωτ). (55)

Figure 30. Guided electron motion under the influence of electric field in a conductor
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The Drudé theory has an unknown parameter (τ), which is the mean free relaxation time between 
collisions (of electrons with crystal lattice atoms and other collision centers). The problem is how to 
calculate this parameter? Actually, we don’t know. But we can calculate it from the electrical conduc-
tivity measurements of different conductors, as listed in the following Table. Note in this table that the 
mean free time decreases with temperature in metals, where the electron collisions with crystal lattice 
vibrations (phonons) are dominant.

6. DRIFT MOBILITY OF CHARGE-CARRIERS IN SEMICONDUCTORS

It should be noted that the Drudé model was originally developed for metals. However, we may consider 
semiconductors as an extreme case, with both electron and holes as charge carriers, while considering 
the composite effect of different scattering mechanisms.

From the Drudé model, we can define the charge carrier drift velocity under the effect of electric 
field, as follows:

vdrift = ± (eτ / m*).ζ (56)

Therefore, the steady-state carrier drift velocity is proportional to the electric field. The constant of 
proportionality between the carrier drift velocity vdrift and the electric field ζ is called the carrier drift 
mobility and termed by μ

vdrift = ± μζ with μ = e τ / m* (57)

As the effective mass of electrons and holes in a semiconductor are different, the mobility of electrons 
is not equal to the mobility of holes. The mobility of electrons is usually denoted by μn and the mobility 
of holes is denoted by μp. Therefore, we can write:

vn (drift) = - μnζ for electrons  (58a)

Table 2. Mean free (relaxation) time from conductivity measurements (units of 10-14s)

Element τ at 77K τ at 273K (0C) τ at 373K (100∘C)

Cu 21 2.7 1.9

Ag 20 4 2.8

Au 12 3 2.1

Mg 6.7 1.1 0.74

Nb 2.1 0.42 0.33

Fe 3.2 0.24 0.14

Zn 2.4 0.49 0.34

Al 6.5 0.8 0.55

Pb 0.57 0.14 0.099

Source: Vapail, 1970.
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vp (drift) = + μpζ for holes  (58b)

Figure 31 depicts the drift velocity of electrons and holes in Si at 300K versus electric field. As shown 
in figure, the drift velocity of electrons and holes is initially proportional to the applied field and then 
saturates at high electric fields to a saturation velocity vsat. Therefore, the charge carrier drift mobility 
is constant at low fields (ζ < 103 V/cm) and decreases at high fields. When the applied field is further 
increased, the carrier-drift mobility becomes field dependent and the drift velocity is approximately 
given by:

v
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v
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µ ζ

µ ζ1 1/
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   (59)

where μno and μpo are called the low-field mobility of electrons and holes. Also, vn
sat and vp

sat are the elec-
tron and hole saturation velocities. At high fields, the carrier drift velocity saturates to a maximum value.

It should be noted that the carrier saturation velocity is generally different from the carrier thermal 
velocity. Because of collisions with the semiconductor crystal lattice, charge carriers may loss part of 
their energy (phonon emission process) or gain additional energy (phonon absorption process). The col-
lision with optical phonons becomes dominant at the onset of saturation regime and the carrier saturation 
velocity can be given by:
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= =
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,    (60)

Figure 31. Drift velocity of electrons and holes in Si at 300K versus electric field
After Arora, Hauser and Roulston (1982).
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where Eop is the optical phonon energy (about 60 meV in Si). Generally speaking, the saturation velocity 
of charge carriers in semiconductors depends on the lattice temperature TL and the semiconductor band 
structure. For instance, in Si at 300K we’ve the saturation velocity of electrons vn

sat = 107cm/s and that 
of holes vp

sat is approximately 8x106 cm/s.
At higher fields (in the order of 100 kV/cm), the energy gained from the field becomes greater than 

the optical phonon energy and the carrier drift velocity is already saturated. Hence, the drift energy (½ 
m*v2) reaches to its maximum value and any increase in carrier energy will no longer increase the car-
rier velocity, but rather increases the carrier temperature. In other words, the increase in carrier energy, 
at very high field, is not transformed into a drift energy (1/2.m*v2), but rather to a thermal energy (3/2.
kBT). Therefore, the charge carriers will be hotter than the lattice and therefore called hot carriers.

The behavior of electrons in some compound semiconductors, like GaAs, at high fields is different 
from Si. Specifically, the velocity-field curve of GaAs crystals reaches a peak value before saturation at 
a lower value of velocity. Therefore, there exists a region where the differential mobility (the slope of the 
velocity-field curve) is negative. According to Thornber (1980), the field dependent electron mobility 
in such materials can be modeled by the following camel-like form.

v
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4

21
 (61)

where ζc is the critical electric field. In GaAs, we may take ζc = 4 kV/cm. The carrier drift mobility is 
also dependent on both the impurity doping concentration (due to carrier scattering over impurity atoms) 
and the ambient temperature (due to carrier scattering over phonons) as shown in Figure 32.

As we have seen so far, the carrier current density is related to the carrier density and average veloc-
ity by the convection current relation (2). If the semiconductor is acted upon by an electric field ζ, then 
the carrier drift currents are given by the following relations:

Jn(drift) = - e nvn(drift) for electrons  (62a)

Figure 32. Schematic of the carrier drift mobility as function of temperature and doping
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Jp(drift) =+ e pvp(drift) for holes  (62b)

Substituting vn and vp from Equations (2) yields:

Jn(drift) = e n μnζ = σnζ (63a)

Jp(drift) = e p μpζ = σpζ (63b)

where σn = enμn and σp = epμp are the electron and hole electrical conductivity, respectively.
The total drift current density is given by the sum of electron and hole drift current densities:

Jdrift =Jn(drift) + Jp(drift) = σζ (64)

where σ = σn +σp is the total conductivity of electrons and holes.
As shown in Figure 33, the current-field relation is linear at low fields as long as the mobility is 

constant, and saturates at high fields. Thus, the famous Ohm’s law is satisfied in semiconductors at low 
electric fields. In fact the above relation is equivalent to the well-known Ohm’s formula: I = V/R where 
R is the sample resistance, V is the applied voltage and I is the resultant flowing current. The resistance 
of a semiconductor sample is related to the sample geometry and the resistivity (ρ =1/σ). Taking L and 
A as the length and cross section of a semiconductor rod, then its resistance R, at low fields, is simply 
given by: R = ρ L/A.

In a multi-valley semiconductor, the electrical conductivity is equal to the conductivity of individual 
valleys

σ = e Σi ni μi (65)

Table 3. Intrinsic drift mobility and saturation velocity of electrons & holes of some semiconductors (in 
their purest form) at 300K

Semiconductor μno
[cm2/Vs]

μpo
[cm2/Vs]

vn
sat (Electrons)

[cm/s]
vp

sat (Holes)
[cm/s]

Si 1500 450 107 8.0x106

Ge 3900 1900 6.0x106 6.0x106

GaP 110 7.5 - -

3C-SiC 380 12.5 2.5x107

C(diamond) 1800 1200 2.7x107

GaAs 8500 400 2x107

In Sb 80000 1250

Source: Fundamentals of Semiconductors, Dargys & Kundrotas, 1994.
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where nk and μk are the charge carrier concentration and drift mobility of the kth valley of the semicon-
ductor. Evidently, the total concentration of carriers is equal to the sum of carrier concentrations in each 
valley (n=Σ nk).

Physical Note 2: Mobility and Conductivity Tensors

Generally speaking, the drift mobility is a 2nd order tensor (a 3x3 matrix), whose components depend 
on the direction of carrier drift.

µ
µ µ µ
µ µ µ
µ µ µ

=





















xx xy xz

yx yy yz

zx zy zz

 

The mobility tensor may be diagonalized (such that μij = 0 for i≠j) by the appropriate choice of the 
x, y, z coordinates. On the other hand, the carrier conductivity (σn = e n μn) is also a tensor such that:

σ
σ σ σ
σ σ σ
σ σ σ
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xx xy xz

yx yy yz

zx zy zz

 

Therefore, the electron drift current in the z-direction is given by:

Figure 33. Schematic of the drift current density - versus electric field in a semiconductor
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= = + +(σ ζ µ ζ µ ζ µ ζ)  

It worth noting that the product of the conductivity tensor σn and the electric field ζ is a vector. Thus, 
the electron current density Jn is a vector. The tensorial properties of the mobility and conductivity fol-
low directly from the dependence of the conductivity on the reciprocal effective mass tensor.

It should be also noted that the effective mass, which is used in the calculation of the average electri-
cal conductivity is called the conductivity effective mass.

The conductivity effective mass of electrons in a multi-valley semiconductor is given by:

m

m m m

nc

xx yy zz

* =
+ +

3
1 1 1

 (66a)

For instance, in Si, where mxx = myy = mt = 0.19mo and mzz = ml = 0.98mo, the electron conductivity 
effective mass of electrons is hence given by:

m

m m

nc

t l

* =
+

3
2 1

= 0.26 mo (66b)

However, the recent optical measurements show that mnc ≈ 0.275mo at T=300K (Rife, 2002). Also, 
the hole conductivity effective mass in Si is given by:

m
m m

m mpc
lh hh

lh lh

*
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=

+

+

3 2 3 2

1 2 1 2
= 0.38 mo (66c)

In thermal equilibrium, the average energy of electrons in the conduction band (or holes in the va-
lence band) is given by:

w m v t m v k T
o th B L
= = =1

2
2 1

2
2 3

2
* *( )  (67a)

where TL is the lattice temperature. Therefore, the average carrier energy in a semiconductor in equi-
librium is proportional to the semiconductor lattice temperature. This physical fact coincides with our 
definition of the lattice temperature (in Chapter 3), and its relation to the average energy of the gas of 
electrons in the heat bath of phonons, filling the lattice space.

When an electric field is applied on a semiconductor, the carrier drift velocity component has to be 
considered. Therefore, the average energy of electrons in the conduction band near equilibrium is given by:

w m v t m v m v k T m v
n n n th n d B L n n
= = + = +1
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2
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2
2 3
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1
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Also, the average energy of holes in the valence band near equilibrium is:

w m v t m v m v k T m v
p p p th p d B L p p
= = + = +1

2
2 1

2
2 1

2
2 3

2
1
2

2* * * *( )  (67c)

In the above equations, we assume that the gas of electrons is perfect and that its temperature is equal 
to the lattice temperature TL. This assumption may be acceptable near equilibrium. However, at high 
electric fields, when the drift velocity reaches to its saturation value, and the electric field is further 
increased, the carrier temperature will be hotter than the crystal lattice.

7. DIFFUSION OF CHARGE CARRIERS

When there exists a spatial variation of carrier concentration (electrons or holes), the mobile charge 
carriers will move from the location of higher concentration to the location of lower concentration. This 
thermodynamic process is called the diffusion charge carriers.

7.1 Diffusion Current of Charge Carriers

The current resulting from the diffusion of electrons (or holes) is proportional to their concentration 
gradient (Elliot & Gibson, 1982) such that:

Jn, diffusion = e Dn.∇n (68a)

Jp, diffusion = -e Dp.∇p (68b)

where the constants of proportionality Dn and Dp are called the diffusion coefficients of electrons and 
holes, respectively. Also ∇ is the spatial gradient operator. Equation (68) is called the first Fick’s law. 
It’s a phenomenological description of the charge carrier diffusion process in semiconductors.

Note 3: Fick’s Law

The diffusion coefficient of charge carriers is generally a second order tensor (3x3 matrix) whose com-
ponents depend on the direction of diffusion.
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Therefore, the electron diffusion current in the z-direction is given by first Fick’s law:
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As we stated above, the Einstein relation is not valid at high fields (Nonlinear transport regime). 
A more precise definition of the diffusion coefficient is given by the following relation (in xy-plane):

Dxy = ½ d/dt < (x - <x>)(y - <y>) > 

where the angular brackets denote the statistical average. Also, the longitudinal diffusion coefficient 
(along the z-direction) is given by:

Dzz = ½ d/dt < (z - <z>)2 > 

According to Jacoboni & Regiani (1983), this may be further simplified as: Dzz = ½t <(z -<z>)2>. 
We dully note that the diffusion coefficient tensor may be diagonalized (such that Dij = 0 for i≠j) by 
the appropriate choice of the x, y, z coordinates. The above relation is used in Monte Carlo, which is a 
statistical method for studying the carrier transport phenomena simulation (Fawcet, 1973; Cercignani, 
& Gabetta, 2007).

Note that the carrier diffusion coefficient is roughly equal to the product of the carrier mean-free path 
λ = vthτ and the carrier thermal velocity vth, such that D =λ.vth. This is based on the fact that the carrier 
diffusion process is driven by the thermal energy. The diffusion constant in a semiconductor can be 
determined by the Haynes–Shockley experiment (Shockley, 1950). Alternatively, if the carrier mobility 
is known, the diffusion coefficient can be determined from the Einstein relation.

Figure 34. Diffusion of electrons due to electron concentration gradient
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7.2 Einstein Relation

The Einstein relation expresses the ratio of drift mobility to diffusion coefficient, near equilibrium. In 
this condition, the carrier current density is almost null and the drift and diffusion currents are equal. 
Therefore, the carrier diffusion coefficient is proportional to the carrier drift mobility as follows (Ashcroft 
& Mermin, 1976):

Dn /μn = e n / [dn / dEF ] (69a)

Substituting the density of carriers at equilibrium (n ≈ no) by the appropriate relation, results in the 
generalized Einstein relations for carriers. For instance, in the bulk of a 3D semiconductor, we can 
substitute (22) into (69a) to get:

Dn /μn =VT [2F1/2(ηn)/F-1/2(ηn)], (69b)

Dp /μp =VT [2F1/2(ηp)/F-1/2(ηp)] (69c)

where VT =(kB TL/e) is the thermal voltage, F1/2 and F-1/2 are the Fermi integrals and the arguments ηn = 
(EF-Ec)/kBTL and ηp = (EV -EF)/kBTL. The Fermi integral, F1/2(x), has been already defined by Equation 
(23). The definition of the Fermi integral, F-1/2(x) is similar to that of F1/2, with x½ is replaced with x-½. 
The above relations are valid near the state of equilibrium, i.e., for small external perturbations (electric 
fields). Therefore, the Einstein relation is useful when the total current is very small compared with 
either drift or diffusion components.

For non-degenerate semiconductors, these relations can be reduced to the well-known Einstein rela-
tions (Ashcroft & Mermin, 1976):

Dn / μn = Dp / μp = VT (70)

Some authors claim that this relation is also valid for degenerate gasses in metals and other materials 
(Palenskis, 2013). However, the above relation may be simply derived from the phenomenological rela-
tions D =λvth and μp=eτp/m, such that D/μ=mvth

2/e=kBTL/e, where we substituted ½ mvth
2 = <E> = ½ kBTL.

7.3 Drift-Diffusion Model of Semiconductors

When both carrier-concentration gradient and electric field are present in a semiconductor, the resultant 
convection current is the sum of carrier-drift and carrier-diffusion currents.

Jn =Jn, drift+Jn, diffusion = en μnζ+ e Dn∇ n (71a)

Jp =Jp, drift +Jp, diffusion = e p μpζ- e Dp∇p (71b)
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In fact, the currents in semiconductors are composed of two components, namely, the convection 
currents (Jn, Jp) due to moving carriers, and the displacement current due to time-varying fields. Hence, 
the total current density is equal to the sum of electron and hole currents, Jn and Jp, in addition to the 
displacement current Jd when the electric field is time variant.

J=Jn +Jp, +Jd, (72a)

Jd = ε. ∂ζ/∂ t (72b)

where ε is the electrical permittivity of the semiconductor. The above current equations are the basis of 
the so-called drift-diffusion model (DDM) of semiconductors. This model is based on the assumption 
that all carriers have the same temperature as the crystal lattice, which contains them. Therefore, the 
drift-diffusion is sometimes called the isothermal transport model. The drift-diffusion model is only 
valid for small perturbations (for electric fields up to 104 V/cm in silicon). At high fields, carriers can 
acquire high energies and their temperature may be different from the lattice temperature.

8. THERMAL DIFFUSION AND THERMAL 
CONDUCTIVITY OF CHARGE CARRIERS

In our previous discussion, we assumed that the temperature is constant overall the semiconductor 
crystal. In the presence of a spatial temperature gradient, ∇TL, across the semiconductor lattice, the 
charge carriers diffuse from hot to cold lattice points. This thermal diffusion mechanism results in an 
additional current component; called the thermal diffusion current. For electrons, the thermal diffusion 
current density is given by (Elliot & Gibson, 1982):

Jn (thermal diffusion) = e Dn
th ∇TL (73a)

where Dn
th is the thermal diffusion coefficient of electrons. Similarly for holes, the thermal diffusion 

current is given by:

Jp (thermal diffusion) = - e Dp
th ∇TL (73b)

where Dp
th is the thermal diffusion coefficient of holes. Therefore, in the presence of temperature gra-

dients, the total electron current density becomes:

Jn = e n μnζ+ e Dn ∇n + e Dn
th ∇TL (74a)

Similarly, the total hole current density becomes:

Jp = e p μnζ- e Dp ∇p - e Dp
th ∇TL (74b)
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The thermal diffusion coefficient of charge carriers in a semiconductor are related to the thermal 
conductivity of the material (kth). The thermal conductivity of the semiconductor is also related to the 
thermal conductivity due to charge carriers (kn

th, kp
th). In fact, the carrier thermal conductivity is a very 

small fraction of the material thermal conductivity kth, in semiconductors. This is because the thermal 
energy is predominantly transported by lattice vibrations (phonons) in semiconductors. However, in 
metals the electron thermal conductivity is dominant. Generally, the material thermal conductivity may 
be expressed as follows:

kth = k1
th (phonons) + kn,p

th (carriers) + k3
th (mixed conduction)  (75)

8.1 Thermal Transport

The following figure depicts the shift of the Fermi surface (constant energy surface) caused by electrical 
conduction (with current density J) and thermal conduction (with heat flux Q). In electrical conduction, 
the Fermi surface is shifted by a small amount corresponding to the drift velocity due to the electric 
field. Therefore, an excess of electrons travel towards the right. In thermal conduction, hot electrons 
head right and cool electrons head left. The long arrows in the figure indicate phonon scattering events, 
which hinders the electrical and thermal currents. The short arrows represent the phonon scattering 
events at low temperatures. Note that the phonon scattering reduces the thermal current by warming up 
cold electrons and cooling hot electrons

8.2 Wiedemann-Franz Law

In 1853, two German physicists, Gustav Wiedemann and Rudolf Franz, found that the ratio of thermal 
and electrical conductivity for all METALS is constant (kth/σ =L) at a given temperature (at room tem-

Figure 35. Representation of the alteration of the Fermi surface caused by electrical conduction (a) 
Current density J and thermal conduction (b) Heat flux Q; black circles represent filled states and white 
circles empty states.
After Vapaille (1970).
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perature and above). Later it was found by Hendrik Lorenz that this constant is proportional to the tem-
perature (kth/σ =L.T). The origin of this empirical observation did not become clear until the discovery 
of the electron and the advent of quantum theory. A moving electron must carry both heat and charge: 
that is why the ratio does not vary from metal to metal. Therefore, thermal and electrical conductivity 
of charge carriers may be also related by the Wiedemann-Franz law, as follows:

kn
th = γn (kB /e)2 σn Tn, kp

th = γp (kB /e)2 σp Tp (76)

where γn and γp are the Lorentz coefficients for electrons and holes. Also, Tn and Tp are called the electron 
and hole temperatures, which are equal to the lattice temperature near equilibrium. In metals, where the 
thermal conductivity is mainly due to electrons (kth ≈ kn,

th) and the electron temperature can be replaced 
by the lattice temperature (Tn =TL), the Lorentz coefficient is constant and given by the Somerfield value:

γn (metals)= (π2/3) (77)

In this case, the Wiedemann-Franz law takes the conventional form:

kn
th / σn = (π2/3).(kB /e)2 . TL=L. TL (78)

where L ≈ 2.44x10-8 Watt Ω K-2 is the Lorentz number (for metals). For metals, the Wiedemann-Franz law 
is in good agreement with experiment, regardless of the energy band structure, as shown in the Figure 36.

Figure 36. (a) The Wiedemann-Franz law in metals and alloys; (b) variation of the Lorentz number with 
Fermi level
After Rowe (1995).
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Nevertheless, for semiconductors, the Wiedemann-Franz coefficient is strongly correlated to the 
dominant collision mechanism and its dependence on the carrier energy. Therefore, the Lorentz coef-
ficient may be expressed as follows:

γn (semiconductor) = 5/2 + rn,  

where rn is called the scattering parameter. Figure 36b illustrates the variation of Lorentz number with 
Fermi level, as derived from the Fermi-Dirac statistics for two electron scattering mechanisms (ionized 
impurities scattering parameter rn = 3/2 and acoustic phonons rn=-1/2).

8.3 Heat Flow Equation

Semiconductors generate heat during use. This heat must be removed in order to prevent further heat-
ing and consequent destruction of the semiconductor. In this section we briefly describe the nature of 
heat transfer through semiconductors. Heat transfer refers to the movement of heat from one point to 
the other due to temperature difference. Generally speaking, the heat energy is transported in matter by 
either of three methods, namely:

• Conduction,
• Convection,
• Radiation.

Conduction is a method of heat transfer in which heat is exchanged between two elements that are 
situated close to one another or in still fluids or gaseous materials. Convection refers to heat transfer in 
a liquid or gas by the circulation or flow of the liquid or gas from one region to another. Radiation refers 
to heat exchange through electromagnetic heat exchange in the form of waves and rays. Radiation can 
also occur in a vacuum. Heat transfer through radiation increases as the fourth power of temperature and 
is only relevant for high temperatures (Steffan-Boltzmann law). In solids, the heat is mainly transported 
by conduction. The lattice heat flux QL is defined as heat energy per unit area per unit time (W/cm2). It 
can be expressed by the classical Fourier relation:

QL = - kth ∇TL (79)

where kth is the total thermal conductivity of the material and TL is the lattice temperature. Neglecting 
recombination losses and the Joule heating effects due to external-fields, the heat continuity equation 
is as follows:

ρL cv ∂TL /∂t + ∇.QL = 0 (80a)

where cv is the lattice specific heat and ρL is the lattice density. Substituting the lattice heat flux QL = 
-kth∇ TL, yields:

ρL cv ∂T/∂t - ∇ .(kth∇ TL) = 0 (80b)
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When the Joule heating effects due to external electric fields J.ζ and cooling due to net recombination-
generation mechanisms (R-G) are present, the heat continuity equation becomes:

ρL cv ∂T/∂t - ∇ .(kth∇ TL) = Hs (81)

The heat flux source term, Hs, may be modeled as follows:

Hs =J. ζ- e Eg (R - G) (82)

Note that the energy lost in the recombination process should be considered. This energy may be 
converted to heat or light. In addition to the Joule heating term and the recombination cooling effect, 
one can also consider the heat radiation from the lattice and the relaxation of the lattice temperature.

9. THERMOELECTRIC EFFECTS

There exist a further number of relations between the thermal transport and electrical transport in con-
ductors and semiconductors. We present in the following subsections a phenomenological summary 
of the so-called thermoelectric effects. We assume here that the temperature of carriers is equal to the 
temperature of the lattice. This approximation is acceptable at small electric fields near equilibrium. At 
such small fields, the transport is linear and one can make use of the relaxation time approximation. The 
Figure 37 depicts the most famous thermoelectric effects, namely the Seebeck effect and the Peltier effect.

9.1 Seebeck Effect

The Seebeck effect (Seebeck, 1822) refers to the built-in electrical potential which is induced as a result 
of applying a temperature gradient across a junction of two different conductors, while no current passing 
between them. The device that works on this principle is known as the thermocouple. When no current 
is passing (Jn=0) an electric field should appear across the junction to counter balance the effect of the 
temperature gradient. This induced field is proportional to the temperature gradient, such that:

Figure 37. Schematic illustration of the Seebeck and the Peltier thermoelectric effects metals
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ζ = - Pth ∇T (83)

where the proportionality factor Pth is called thermoelectric power or the Seebeck coefficient (in V/°C). 
The thermal voltage ΔV which is induced between two different conductors, due to a temperature dif-
ference is given by:

ΔV = VA – VB = - ∫ ζ dx = - ∫ P th dT (84)

The thermal voltage may be also produced across a sample of semiconductor whose two ends are 
kept at different temperatures, as shown in Figure 38. It should be noted that the thermoelectric power 
is negative for metals and n-type semiconductors and positive for p-type semiconductor. In fact, the 
silicon emerged as a promising material for thermoelectric devices due to its high thermoelectric power. 
Besides its larger Seebeck coefficient than any metal, its thermoelectric properties can be adjusted by 
altering its impurity concentration.

The Seebeck coefficient represents the entropy per charge carrier in the solid state and can be ex-
ploited to distinguish different materials. The thermoelectric figure of merit of a material is defined as 
follows (Rowe, 1995):

ZT = (Pth)2σT / (k1
th + kn

th)  (85)

Figure 38. Schematic illustration of the Seebeck thermoelectric in a semiconductor
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where Pth is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute temperature, and k1
th 

and kn
th are the lattice (phonons) and electronic components of thermal conductivity, respectively. The ZT 

of a material has to be as high as possible in order to be used efficiently in thermoelectric applications. 
The Figure 39 depicts thermoelectric figure of merit (ZT) of different semiconductors.

9.2 Peltier Effect

The French physicist Peltier (Peltier, 1883) is a thermoelectric effect opposite to the Seebeck effect. The 
Peltier effect refers to the absorption of heat at the junction between two different materials, when a current 
passes between them while the temperature is maintained constant. The Peltier coefficient of a junction 
between two elements (say A and B) is defined as the ratio of absorbed heat flux to the passing current:

πAB = Q /(e J) = T. Pth (86)

where Pth = Pth
A - Pth

B is the thermoelectric power of the junction and T is the junction temperature. 
Note that the Peltier coefficient has the dimension of Volts, as shown in Figure 40. The above relation 
is sometimes called the Kelvin first law (Kittle & Kroemer, 1980). The so-called Peltier heat pumps are 
p-n junction cooling cells, which are implemented using different semiconductor materials (e.g., PbTe, 
InSb, PbSn or Au-doped Ge or Si). Figure 40 depicts the Peltier heat pump. Such a cell can be used 
for cooling down from –100°C to –200°C, depending on the type of used material and geometry. For 
obtaining more cooling power, several cells can be stacked together as shown in figure.

9.3 Thomson Effect

In 1857, Thomson discovered that heat is either absorbed or released in a conductor when a current 
passes from a material at one temperature to the same material at different temperature. The Thomson 
effect also refers to the absorption of heat at the junction of two different materials, when a current 
passes while a temperature gradient exists across them. Thus, the Thomson effect takes place in a ther-
moelectric circuit whether the current in the circuit is applied externally or developed internally due to 

Figure 39. Thermoelectric figure of merit of different semiconductors
After Rowe (1995).
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the Seebeck effect. The Thomson coefficient τAB is defined as the absorbed heat flux per unit current 
per unit temperature gradient:

τAB = Qn /(e Jn∇T) = T . (d Pth /dT) (87a)

The above relation can be also put in the following form:

τAB = (Pth
A - Pth

B) / ln (T1/T2) (87b)

The Thomson coefficient is also referred as the specific heat of electricity because of its analogy 
with the thermodynamic specific heat. The thermo-dynamic specific heat represents the amount of heat 
transfer per unit temperature difference per unit mass; and the Thomson coefficient represents amount 
of heat absorbed per unit temperature difference per unit current.

Figure 40. (a). The Peltier effect as a function of temperature, in both n-type and p-type silicon. The 
doping concentration is 1014cm-3. (b) Peltier element and Peltier heat pump
After Vapaille (1970).

Figure 41. Schematic illustration of the Thomson thermoelectric effect
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9.4 Joule Effect

The Joule effect is an irreversible thermoelectric effect that causes internal heating of a current carrying 
conductor. Unlike the Thomson effect, heat due to the Joule effect is always absorbed in a conductor 
irrespective of the direction of the current and the presence of temperature gradient. The magnitude of 
Joule heating depends on the current and the resistivity of the conductor. The rate of the internal heat 
generation in a conductor due to the Joule effect is given as: Qj = I2R where I is the current passing 
through the conductor and R is the resistance of the conductor

10. EFFECT OF MAGNETIC FIELDS ON CHARGE CARRIER TRANSPORT

When electrons are drifted in a magnetic field B, they are subjected to a Lorenz force, which is given by:

Fn = - evnx B (88)

When a charge carrier has a component of velocity perpendicular to a strong magnetic field B, it 
circles the field at the cyclotron frequency

ωc = e B/m*  (89)

Figure 42 shows the circular (cyclotron) motion of electrons, under the effect of magnetic field. For 
semiconductors with laboratory magnetic fields, the cyclotron frequency is typically in the terahertz 
(THz) range. For example, in n-type GaAs, the cyclotron frequency varies about 0.42 THz per Tesla.

In the Drudé classical description of the cyclotron resonance, one can show that, if the semiconductor 
material is cubic and a static magnetic field B is directed along the material z-azis, then the conductivity 
tensor is given by:

Figure 42. Schematic illustration of the circular (cyclotron) motion of electrons, under the effect of 
strong magnetic field
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Here, ωc = e B/m* is the cyclotron resonance angular frequency and the applied electric field is a 
varying electric field ζ(t) = ζo exp (-jω t).

10.1 Hall Effect

The Hall Effect was discovered by Edwin Hall in 1879, during the preparation of his doctoral thesis in 
Physics (Ioffe, 1957). The phenomena can be summarized as follows. It is well known that a charged 
particle moving in a magnetic field feels a Lorentz force perpendicular to its direction of current (J) 
and the magnetic field (B). As a direct consequence of this force, charge carriers will accumulate to 
one side of the material in a perpendicular direction to both electric current and magnetic field. This 
effect is shown in Figure 43; it is called the Hall Effect. The Hall coefficient is given by the following 
expression (at low magnetic fields):
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where the total Hall field ζH is the sum of individual field components due to deflection of electrons and 
holes (ζH = ζHp- ζHn). Evidently, the above relation reduces to RH = –1/en for n-type materials when n>>p 
and reduces to RH =1/ep for p-type materials when p>>n. The voltage drop at right angles to the current 
is called the Hall voltage (VH). Also, the current divided by Hall voltage is called the Hall conductance.

In the above calculations of RH, the electron collisions are not considered. A more elaborate formula 
for the Hall coefficient can be obtained by solving the equation of motion of charge carriers, while con-
sidering an energy-dependent carrier relaxation time (which is closely related to the mean free time of 
the Drudé model). This results in a similar expression of RH,

R r
p n

e p n
H

p n

p n

  =
−

+
.

( )

µ µ

µ µ

2 2

2
 (92b)

where r is called the Hall scattering parameter. It can be obtained by averaging the relaxation time be-
tween dominant collisions (r = <τ2>/<τ>2). In Si at 300K, r=1.18 for electron-phonon scattering and 
r=1.93 for electron-impurity scattering (at low and moderate magnetic fields).

10.2 Magnetoresistance

Magnetoresistance is a phenomenon where the application of a static magnetic field changes the resis-
tance of a material. The phenomenon has been known for many years in ordinary metals, and is due to 
the conduction electrons being forced to move in helical trajectories about an applied magnetic field. 
The effect becomes evident only when the magnetic field is strong enough to curve the electron trajec-
tory within a length equal to its mean free path. The magnetoresistance coefficient (M) is defined as the 
relative change of resistivity in presence of a strong magnetic field.

M = (ρ - ρo) / ρo = Δρ / ρo (93)

Figure 43. Schematic illustration of the Hall Effect in a semiconductor
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where ρo is semiconductor resistivity at zero magnetic field. M is dependent on the energy band structure 
and crystal orientation of the semiconductor material.

For n-type isotropic materials (n>>p), if the magnetic field B is directed normal to current flow 
(along z-axis), we have:

M (n-type) = Δρ / ρo ≈ μn
2 Bz

2 (94a)

Similarly, for p-type isotropic materials (p >> n), we have:

M (p-type) ≈ μp
2 Bz

2.  (94b)

The magnetoresistance effect occurs in metals only at very high magnetic fields and low temperatures. 
For example, in pure copper at 4K a field of 10 T produces a factor of 10x change in the resistance.

10.3 Other Magnetic Field Effects

In addition to the Hall Effect and magnetoresistance, there exist so many other magnetic field effects in 
semiconductors and nanostructures. For instance, the giant magnetoresistance (GMR) is a large change 
in resistance that is observed in ferromagnetic/ paramagnetic multilayer structures. Also, the quantum 
Hall effect (QHE) is a manifestation of collective behavior of electrons in 2-dimensions under the effect 
of magnetic field. In this effect, the Hall resistivity exhibits plateaus for integer values of h/e2 (Ezawa, 
2008). The Figure 44 depicts the so-called integer quantum Hall effect. This effect can be understood as 
follows. After applying a magnetic field, the energy states of electrons in the solid contract into separate 
levels, called Landau levels. As shown in Figure 44, the Hall resistivity is quantized at certain integer 
filling factors, which are equal to the number of filled Landau levels. This phenomenon is only observ-

Figure 44. Illustration of the quantum Hall Effect. The ratio Rk = h/e2 =25.812807 kΩ.
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able on two-dimensional electron gas (2DEG) systems like the hetero-junctions or the inversion layer 
of MOSFET devices (Yoshioka, 2002).

Of course there exist other magnetic effects in semiconductors and nanostructures, which may be 
combined with thermal or optical excitations. For instance, the Nernst Effect, Ettinghausen Effect and 
Righi-Leduc Effect are well-known thermomagnetic effects, which happen when the semiconductor is 
subjected to temperature gradients and magnetic fields (Koviskii, 1962). Also, the Faraday orientation, 
Voigt orientation, Helicon waves and magetoplasma resonance are all magneto-optical effects (Elliot & 
Gibson, 1982). Some of these effects may be described, within the framework of semiclassical theory 
and others need a quantum mechanical explanation. Therefore, we review such effects, within the cor-
responding transport theories, in the next chapters. However, for the matter of completeness, we mention 
here the effect of magnetic field on the energy band structure, due to which many quantum effects have 
their origin. In a certain direction of the k-space, say kz, the E-k relation becomes as follows:

E E  
k

mn
z

z

= = + + +  E         (n )  
c * c

1
2

�
�

2 2

2
ω  (95)

where ωc = eBz/mz* is the cyclotron frequency, Bz is the component of magnetic field along the z-axis of 
the lattice, mz* is the component of effective mass in the z-direction and Ec is a constant (energy refer-
ence). We note here an additional quantized term, in comparison with the simple parabolic E-k relation 
E=Ec + ℏ2k2/2m*, with no applied magnetic field. We note also that the additional term (½ ℏωc) is only 
significant for strong magnetic fields, where ωc is in range of microwave frequencies or higher. Therefore, 
the simple parabolic E-k relation of the quasi-free electrons is transformed into a family of quantized 
parabolas (sub-bands), in the presence of a strong magnetic field. The quantized energy levels described 
by (95) are called Landau levels.

Figure 45. Illustration of the Landau levels and effect of magnetic field on density of states
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11. ONSAGER RELATIONS

So far we reviewed the effects of electric and magnetic fields on carrier transport. Now, we summarize 
the semiconductor parameters, under the simultaneous presence of electric and magnetic fields as well 
as temperature gradients. We assume the case where the semiconductor is homogeneous but anisotropic 
so that its transport coefficients are tensors. In this case the charge carrier current densityJ and energy 
flux S are given by the following relation (in the ith direction):

J T x
i ij j ij i j
= ∂ ∂+σ ζ M /  (96a)

S T x
i j j ij i j
= + ∂ ∂N Lζ /  (96b)

where the indices i,j = [x,y,z] in the Cartesian coordinates and the coefficients σ, M N L,   and  are 
generally tensors. The above relations may be also written in the following form (Vapail, 1970):

ζj = ρji Ji + Pji ∂Tj/∂xi (96c)

Sj = πji Ji + κji ∂Tk/∂xi (96d)

where ρ is the semiconductor resistivity, π is the Peltier coefficient, Pth is the Seebeck coefficient and 
kth is its thermal conductivity. The thermodynamic irreversibility, implies the following conditions upon 
these coefficients:

ρji(B) = ρji(-B), σji (B) = σji(-B) (97)

Ti.Pji(B) = πji(B),  (98)

κji(B) = κji(-B),  (99)

The above relations (96) are called the Onsager relations (Onsager,1931). They tell us that the trans-
port coefficients are symmetric tensors in absence of magnetic fields. When the magnetic field is not 
null, the diagonal elements of these tensorial coefficients are even functions of B.



54

Introduction to Information-Carriers and Transport Models
 

12. OPTICAL EFFECTS

Semiconductor materials exhibit interesting characteristics that can be exploited for optoelectronic ap-
plications, such as luminescence and light absorption. The study of the optical properties of matter is 
a huge field and we will only be able to summarize the most basic effects, such as luminescence and 
absorption. More details about optical properties of matter are discussed in Chapter 8 of this book.

12.1 Photo-Luminescence

The luminescence property of some materials means their ability to emit optical radiation (ultraviolet, 
visible light or infrared) in response to an electronic excitation. In other terms, luminescence is the abil-
ity to convert electron energy to light, evidently in an efficient manner.

Luminescence is different from incandescence, which is purely due to heating (temperature) of the 
material. The efficiency of luminescence may be measured by the ratio of radiative to non-radiative 
transition (or recombination) rates. Therefore, direct-gap semiconductors, in which radiative recombina-
tion occurs with a high probability, are expected to be more efficient than indirect-gap semiconductors, 
in terms of luminescence.

The wavelength of emitted light from a semiconductor, due to direct transitions from conduction band 
to valence band, is related to the energy gap of the semiconductor by the relation:

λ µ( )
.
( )

m
E eV

g

≤
1 24  (100)

The human eye is sensitive to wavelengths between 0.7μm (red light) and 0.45μm (violet light), and 
has a maximum sensitivity for wavelengths around 0.55μm (green light). Thus, semiconductors having 
Eg >1.8 eV, like GaP, CdS, AlGaAs, InGaAsP, β-SiC and GaN are typical candidates for luminescence 
devices, such as light emitting diodes (LEDs). Figure 46 illustrates the photoluminescence phenomenon 

Figure 46. Illustration of the photoluminescence phenomenon in a semiconductor
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in a semiconductor and Figure 47 depicts the Spectrum of visible light and the corresponding energy 
gap heights.

12.2 Photo Absorption

If a semiconductor is excited by a flux of light quanta (photons) whose energy Eph is greater than the 
energy gap Eg of the semiconductor, then the energy of incident photons is absorbed by valence electrons 
and helps them to break the valence bond and make transitions to the conduction band. In this case we 
have Eph =hc/λ > Eg, where λ is the light wavelength, such that λ(μm)< 1.24/Eg(eV). This phenomenon 
is known as the photo-generation or photo-absorption process. It is exploited in optical devices, like 
visible light and infrared detectors. When a semiconductor is subjected to a light flux, the light intensity 
Iph (the number of incident photons per cm2 per second) decays with distance x, according to the Beer-
Lambert law (Beer, 1852), as follows:

Iph (x) = Io exp (-αop x) (101)

where αop is the light absorption coefficient (cm-1) in the semiconductor and Io is the net intensity of light 
at the edge of semiconductor. Note that the ratio Iph/Io is equal to 1/e at x = 1/αop, so this distance is called 
the penetration depth. The penetration depths (1/αop) for water: 32 cm, glass: 29 cm, and graphite: 0.6 
μm. Generally speaking, the light absorption coefficient αop is a function of the incident light wavelength 
λ or the energy of incident photons. Figure 48 depicts the dependence of light absorption coefficient of 
some semiconductors on the wavelength of incident light.

Note 4: Direct and Indirect Gap Semiconductors

One of the most important observations on the energy-band diagram E(k) of semiconductors is that 
the valence band maximum may be found at a different value of k than the principal conduction band. 
For instance, the silicon material has its top of valence bands at k =0, while the bottom of principle 
conduction band lies at k =0.85(2π/a) in directions [100]. Such semiconductors are called indirect-gap 

Figure 47. Spectrum of visible light and corresponding energy gap heights. Some semiconductors of 
corresponding energy gap heights are shown in the insert.
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semiconductors. The electron transitions from the minimum point in the conduction band to the maxi-
mum point of the valence band in indirect-gap semiconductors require some change in k. Therefore, the 
conservation of crystal momentum (or wave vector) requires a phonon emission (or absorption) during 
the band-to-band transitions in indirect-gap semiconductors.

In direct-gap semiconductors, the excited electron momentum is conserved during the photo-excitation 
process. Then, the change in electron momentum Δk =kei–kef =kph=0, where kph is the incident photon 
wave vector. Also, the energy conservation implies: E(kei)-E(kef)=Eph. Hence, the absorption coefficient 
is given by:

αop = A1 √ Eph – Eg (102)

For GaAs, the constant A1 =11700 cm-1eV-1/2. In indirect-gap semiconductors, like Si, the conservation 
of momentum requires a phonon emission during the photo-excitation process. In silicon, both direct and 
indirect processes can take place simultaneously and the absorption coefficient is given by:

Figure 49. Direct and indirect gap semiconductors 

Figure 48. Light absorption in a semiconductor
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αop(Si) =1.29x106√ (Eph -3.2) + 6x103(Eph-1.1)2 +8x104(Eph -2.5)2 (103)

The wavelength at which the absorption coefficient is zero is called the cutoff wavelength and termed 
αc. As shown in Figure 50, αc =1.12 μm for Si and 0.86 μm for GaAs.

13. GENERATION-RECOMBINATION MECHANISMS IN SEMICONDUCTORS

When the thermal equilibrium state is disturbed in a semiconductor, by the influence of external force 
(e.g. via an optical excitation), the charge carrier densities (n, p) change from equilibrium values (no, 
po) so that

n = no + Δ n , p = po + Δ p (104)

where the quantities Δn and Δp are called the excess carrier concentrations. Hence at non-equilibrium:

n.p ≠ ni
2 (105)

Both Δn and Δp may be positive (due carrier injection into the semiconductor) or negative (due to 
carrier extraction from the semiconductor). When there is an excess carrier concentration, the semi-
conductor will try to restore its equilibrium state by endeavoring carrier generation or recombination 
processes. At the thermal equilibrium state, the thermal generation rate (of electron-hole pairs), gth, is 

Figure 50. Absorption coefficient of some semiconductors vs. light wavelength
Source: Elliot & Gibson (1982).
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compensated by a default recombination rate (of electron-hole pairs), Ro, such that the net recombination 
rate U = Ro - gth is null (zero) and there exists no excess carriers.

When Δn and Δp are negative, meaning that np < ni
2, then the thermal generation mechanism gth 

(which takes place regardless of the presence of excess carriers) will dominate the default recombina-
tion Ro to restore the equilibrium state. On the other hand, when Δn and Δp are positive, meaning that 
np > ni

2, then the recombination mechanism will dominate the thermal generation. Therefore, the net 
recombination rate of electrons and holes is given by:

U R g
n

U R g
p

n n th
n

p p th
p

= − = = − =
∆ ∆
τ τ
,  (106)

where τn and τp are called the electron and hole lifetimes, respectively.
As shown in Figure 51, the recombination of charge carriers, may be direct (radiative) or indirect 

(non-radiative), via a trapping center. In the former case, the recombination is associated with emission 
of a photon with equivalent energy of the energy gap (Eg). In the latter case, the recombination, releases 
smaller energy which is transmitted to the crystal lattice vibrations. The quanta of the resultant lattice 
vibrations are called phonons.

13.1 Carrier Recombination Mechanisms in Semiconductors

The charge carrier recombination may happen in the bulk or on the surface of a semiconductor. Also, 
the mechanism of recombination may be direct band-to-band or via-trap levels, as shown in Figure 51. 
When a semiconductor is doped with impurities that produce profound energy levels in the energy gap 
(like gold, Au), these levels will act as trapping centers for carries. Therefore, carriers will prefer to transit 
for a while at these trapping levels during their transitions between conduction and valence bands. This 
indirect recombination process is sometimes called trap-assisted recombination or Shockley-Read-Hall 
(SRH) recombination.

Figure 51. Generation and recombination mechanisms in a semiconductor
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Band-to-Band Recombination

Direct band-to-band recombination (also called radiative recombination) is important in direct-gap 
semiconductors like GaAs. During radiative recombination, a form of spontaneous emission, a photon 
is emitted with the wavelength corresponding to the energy released. This effect is the basis of light 
emitting diodes (LEDs).

The rate of band-to-band recombination is proportional to the electron and hole concentrations and 
given by:

U (radiative) = R - gth = αr (n p - ni
2) (107a)

where αr is called the bimolecular recombination rate. For GaAs, we have αr = 1.5x 10-10 cm-3/s. In n-type 
semiconductors at low-level injection, where n >> Δn and n ≅ no, we have:

U (radiative) = Δp /τpr = (p - po) /τpr (107b)

where τpr is the radiative carriers (holes) lifetime, which is given by:

τpr = 1/(αr no) (107c)

Shockley-Read-Hall (SRH) Recombination

The steady-state rate of indirect recombination in the bulk of a non-degenerate semiconductor is given 
by the Shockley-Read-Hall (1952) formula:

U
np n

p p n nSRH
i

po no

=
−

+ + +

2

1 1
τ τ( ) ( )

 (108)

where τno and τpo are constants (minority carrier lifetimes in a heavily-doped semiconductor).
The minority carrier lifetimes can be defined in terms of the density of traps Nt [cm-3] and the capture 

rates of electrons and holes Cn, Cp [cm3/s] as follows:

τ τ
no

t no
po

t po
N C N C

= =
1 1

,    (109)

The electrons and holes capture rates are related to the trap capture cross sections σcn, σcp [cm2] and 
the thermal velocity vth of carriers as follows:

Cn = σcn vth,,Cp = σcn vth (110)

Also n1 and p1 are defined in terms of the traps energy level Et
10:
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The parameters n1 and p1 are called the trap equivalent concentration, in conduction band and valence 
band, respectively. When the trap energy level Et is midway between the conduction band and the valance 
band edges, such that Et = Ei, then n1 = p1 = ni.

Auger Recombination

In addition to the above basic processes, there exist other recombination mechanisms, such as the Auger 
recombination mechanism. Excess carriers decay by these recombination processes, and the energy of 
carriers is dissipated during this process by several ways, such as emission of a photon, heat generation 
in the lattice in the form of phonons, or the transmission of energy to a third particle. At the bulk of a 
semiconductor the following relation depicts the Auger recombination rate:

UAuger = Γn . n (n p –ni
2) + Γp . p (n p –ni

2) (112)

where Γn and Γp are Auger recombination coefficients for electrons and holes, respectively. For Si, Γn 
=2.8x10-31 cm6/s and Γp =9.9 x10-32 cm6/s.

The Auger lifetime is defined as follows:

τp(AU) = Δp / UAuger, τn(AU) = Δn / UAuger (113)

Under low-level injection conditions (when Δp<< no in n-type or Δn << po in p-type), the Auger 
lifetime is given by:

τp(AU)≈1/(Γp po
2)=1/(Γp Na

2), τn(AU)≈1/(Γn no
2)=1/(ΓpNd

2) (114)

At high injection levels (where Δp ≈ no in n-type or Δn ≈ po in p-type), the Auger lifetime is given by:

τp(AU) ≈1/[(Γp +Γn).Δp2], τn(AU) ≈1/[(Γp +Γn).Δn2] (115)

In fact, the measurement of the Auger lifetime, in heavily excited Si by laser pulses (where Δn=Δp), 
indicates that: τn,p(AU) ≈1/[3.4x10-31).Δp2].

Surface Recombination

The rupture of crystal periodicity at the surface of a semiconductor creates some trapping centers (or 
surface states) inside the energy gap. The surface recombination rate of electrons and holes in steady 
state is given by the Shockley-Read-Hall formula:
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where ns and ps are the concentrations of electrons and holes at the semi-conductor surface, respectively. 
Also sn and sp are the electron and hole surface recombination velocities [cm/s], respectively. They are 
given by:

sn = σnvthNts, sp = σpvthNts (117)

where σn and σp [cm2] are the trapping cross sections of electrons and holes, respectively, and Nts [cm-2] 
is the density of surface traps or surface states11. Bare Si surface has surface states density of about 1012 
cm-2 while SiO2 surface has 107–1010 cm-2. In n-type semiconductors, where ns >> ps, the rate of surface 
recombination of holes reduces to the following simple form:

Sp = sp (ps – pso) (118a)

Similarly the rate of surface recombination of electrons in p-type semi-conductors, where p >> n, 
can be reduced to the following simple form:

Sn = sn (ns – nso) (118b)

where nso and pso are the surface concentrations of electrons and holes in thermal equilibrium (such that 
pso.nso = ni

2 at the surface).

Carrier Lifetime

The carrier lifetime (recombination lifetime) is defined as the average time it takes an excess minority 
carrier to recombine. The overall lifetime of carriers due to: Shockley-Read-Hall, Auger, band-to-band 
and surface recombination mechanisms may be expressed as:

1 1 1 1 1
τ τ τ τ τ

pe p p AU pr ps

= + + +
( )

 (119)

where τps is the surface lifetime, which is given by: τps = 1/β2Dp, with Dp is the holes diffusion constant 
at the surface, and β can be obtained by solving the equation: tan(½β t) = sp/β Dp, where t is the semi-
conductor thickness. When the surface recombination velocity sp is very small, then τps → (t/2sp). Also, 
when sp is very high, then τps → (t2/π2Dp). Figure 52 depicts the reduction of effective lifetime of electrons 
in p-type silicon, as a function of the doping concentration, according to (Schroder, 1990).
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13.2 Carrier Generation Mechanisms in Semiconductors

The generation of charge carriers (electrons and holes) in a semiconductor is accomplished by the aid of 
different mechanisms, e.g., by the thermal and optical excitation as well as the impact ionization process.

Thermal Generation

The thermal generation is the default generation mechanism in semi-conductors. It is well known that 
the recombination rate is proportional to the product of electrons and holes densities (n.p). The thermal 

Figure 52. Minority carrier lifetime (holes in n-type) in Si, at 300K
After Schroder (1980).

Figure 53. Types of carrier generation mechanisms in semiconductors
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generation rate at thermal equilibrium is also proportional to the np product (nopo = ni
2) such that: gth = 

ar ni
2 where ar is constant.

Optical Generation

When a semiconductor is subjected to a flux of light quanta (photons), the energy of incident photons can 
excite some valence electrons. When the photon energy is greater than the energy gap of the semiconduc-
tor (Eph = hν = hc/λ>Eg), a number of valence bonds are broken and electron-hole pairs are produced. 
The optical generation rate Gop (electron-hole pair/cm3 sec) is proportional to the gradient of the light 
flux Iph (photon/cm2 sec) such that:

Gop = αopIph (119)

where αop is the light absorption coefficient (cm-1) in the semiconductor.
Actually, the light absorption coefficient αop is a function of the incident light wavelength λ (or the 

energy) of incident photons Eph.

Generation by Impact Ionization

When a semiconductor is subjected to a high electric field such that the energy acquired by carrier from 
field goes beyond a threshold value (about 3/2 Eg, the energy gap width), then electron-hole pairs are 
produced by impact ionization. The electron-hole pair generation rate by impact ionization Gii is given by:

Gii =αn n vn + αp p vp = αn | Jn/e| + αp |Jp/e| (120)

where αn, αp are the impact ionization (or Townsend’s) coefficients of electrons and holes. These coef-
ficients express the number of generated carriers by impact ionization per unit length (cm-1) and are 
naturally functions of the electron and hole energies. However, the impact ionization coefficients usually 
expressed as functions of the local electric field intensity, as follows:

αn =αno exp(-ζcn / |ζ|), αp =αpo exp(-ζcp / | ζ|) (121)

where αno and αpo are the impact ionization saturation values (at very high electric fields). Also ζcn and 
ζcp are the critical fields for electron and hole ionization. The impact ionization parameters change with 
temperature and depend on the crystal orientation.

14. CONTINUITY EQUATIONS IN SEMICONDUCTORS

When the thermal equilibrium state in a semiconductor is disturbed, the net recombination rate of car-
riers is non-zero. Therefore, the density of carriers will continue to change with time because of the 
generation-recombination processes as well as the divergence of carrier flux (current density). The 
continuity equations for electrons and holes in a semiconductor read:
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where, Jn and Jp, are the electron and hole current densities, respectively.
The continuity equations are fundamental tenet about electromagnetism and can be derived from 

the Maxwell’s equations. Generally speaking, the continuity equations are statement of conservation of 
physical quantities such as the number or charge of carriers, carrier momentum or carrier energy.

The electron and hole current densities, (Jn and Jp), in the continuity equations may be expressed by 
the drift-diffusion equations (71a) and (71b), or any other suitable model. The resultant system of par-
tial differential equations (PDEs) was first presented by Van Roosbroeck (1950) as the first full model 
to describe the transport of electrons and holes in semiconductors. This model has been known as the 
drift-diffusion model (DDM).

Figure 54. Impact ionization coefficients of electrons and holes (αn and αp) in Si at 300K, measured as 
a function of electric field ζ. The straight lines depicts the exponential dependence of αn(ζ) and αp(ζ).
According to van Overstraeten and de Man (1970) and Monte Carlo simulation (Karlowatz et al., 2006).
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15. SUMMARY

The information carriers in nanodevices are the particles (or particle characteristics) that carry and 
transport information objects or signals within a device. The most famous example of an information 
carrier is the mobile electronic charges in conventional semiconductor devices (electrons and holes). The 
electric ccurrent is the rate at which charge carriers flow. The process by which these charged particles 
move is called transport.

As semiconductor devices have been continuously downscaled, the size of new devices became in 
the order of a few nanometers. Solid understanding of carrier transport mechanisms in such nanoscale 
devices is critical to accelerate device design and approach new horizons of speed and scales of integration.

Modern TCAD tools should have physically-based transport models to address challenges of the 
emerging nanodevices and systems. Such models must be prepared to adequately describe the quantum 
mechanical phenomena which determine transport in such devices.

In this chapter we reviewed the fundamental properties of semiconductors, and explained the transport 
phenomena within the framework of the classical Drudé model. The Drudé classical model is frequently 
introduced to describe the electrical conductivity in solids. This model is still very relevant because free 
particle picture can still be used as far as we can assume parabolic energy bands, near equilibrium, with 

Figure 55. Illustration of the continuity equation in semiconductors
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suitable effective mass. In fact, the Drudé model succeeded to explain (to some extent) the electrical 
conductivity, the thermal conductivity, the Hall Effect, as well as the dielectric function and the optical 
response of solids. Therefore, we can describe the flow of electrons and holes in a semiconductor, under 
the effect of external forces, such as electric and magnetic fields. The two basic transport mechanisms 
in a semiconductor crystal are:

• Drift: The Movement of the charge due to electric fields.
• Diffusion: The flow of charges due to density gradients.

Everything we explain so far in this chapter about semiconductor properties and carrier transport is 
correct to the zero order approximation. In order to get into detailed transport in semiconductor systems 
we need to solve a master transport equation. Actually, there exist two theoretical approaches, for study-
ing the charge carrier transport in semiconductors, according to the physical dimension of the problem 
in hand (i.e. the semiconductor device dimensions):

• The semiclassical transport theory, for macroscopic devices
• The quantum transport theory, for the microscopic devices.
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8  This law can be derived from the mass action law and the Fermi-Dirac statistics.
9  The Drude model was actually introduced to explain the empirical Wiedermann-Franz law (1853). 

This law states that at a given temperature the ratio of the thermal to the electrical conductivity is 
the same for all metals

10  The trap density is frequently assumed to decay exponentially from the band edge into the band 
gap. We consider here indirect recombination via a single trap level. Multi trapping is also possible 
but rare in conventional (inorganic) semiconductors.

11  The surface states may differ in nature and number according to the state of the semiconductor 
surface.
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1. OVERVIEW AND CHAPTER OBJECTIVES

The semiclassical approach is suitable for semiconductor devices whose feature dimensions are much 
greater than the mean free path between collisions (L >> λe). In silicon devices, where the electron mean 
free path λe ~100Ǻ, this approach can be safely used for devices having feature size L>0.1 μm. It helps us 
to calculate the main transport parameters (such as the charge carrier mobility, conductivity, etc.) and so 
to determine the electrical, thermal, magnetic and optical characteristics of a given semiconductor device.

In classical statistical mechanics, the state of a particle is completely defined at a certain time t as a 
point in a space of six coordinates, called the phase-space (sometimes called the μ-space). The six coordi-
nates of the phase-space are the position and momentum coordinates (x, y, z, px, py, pz) as shown in Figure 
2. Physically, it is not possible to do so in large systems, where the number of particles is in the order of 
1022 particle per cm. Then one has to use the concept of probability or the distribution function of the 
system under certain conditions, like the condition of thermal equilibrium1. Therefore, we usually speak 
about the so-called distribution function, which expresses the average number of particles at a certain 
position in the phase-space. The distribution function is often written in either of the following forms:

f(x,p, t) or f(x,v, t) or f(x,k, t) 

where:

p = 

p p p

x y z

T
, ,  (1a)

Semiclassical Transport Theory 
of Charge Carriers, Part I:

Microscopic Approaches
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υ = 

v v v

x y z

T
, ,  (1b)

k = 

k k k

x y z

T
, ,  (1c)

Evidently the momentum p and velocity v of a classical particle are interrelated by: p = m v. Also, 
the momentum of a semiclassical particle is related to the wave vector k by the De Broglie relation: p 
= h/λ = ħk. Note that, we may indifferently use v, k or p, as second argument of the carrier distribution 
function, in this book.

The semiclassical transport theory is based on the ensemble concept and the Boltzmann transport 
equation (BTE), which describes the evolution of the distribution function f(x, k, t) of a gas of particles 
under nonequilibrium conditions. The ensemble concept shows that a macroscopic observation is consis-
tent with a very large number of microscopic configurations (particles), which are represented by points 
in the phase space. The ensemble therefore is basically represented by a normalized density distribution 
function f(x, k, t) in the phase-space.

The density distribution function f(x,k, t) is employed to characterize the evolutions of a thermodynamic 
system of particles (e.g., electrons in a semiconductor material) in the phase space. If f is high at some 
point of space, this means there are many particles around this point, flying with the same momentum 
(or wave vector k). The physical meaning is that f(x,k,t).Δx.Δk is the number of particles at a certain 
point x with wavevector k in the phase-space incremental volume Δx.Δk. When integrated over all wave 
vectors in the k-space, we get the particle density in physical space, and when further integrated over 
the x-space, we get the total number of particles.

Figure 1. Semiclassical approaches for charge carrier transport
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The term ensemble was coined by Gibbs (1902). In the ensemble concept, it is not important to 
know what each particle does, but rather try to know what the ensemble of particles do on the average, 
and thus a statistical treatment is needed2. In order to describe the evolution of a system, one considers 
the evolution of this density function, rather than the evolution of a single point (particle). The most 
important tool to investigate the evolution of such a density function is the Liouville theorem (1838).

Upon completion of this Chapter, the reader will be able to

• Explain the advantages and disadvantages of the semiclassical transport theory of charge carriers 
in semiconductors.

• Understand the scattering mechanisms in semiconductors and how to calculate their probabilities, 
starting from the Fermi golden rule.

• Understand the Boltzmann transport equation (BTE) and how to solve it under the effect of exter-
nal electric, magnetic or electromagnetic fields.

• Describe the electrical, thermal, magnetic and optical properties of semiconductors, on the basis 
of the BTE.

• Understand the linear transport theory and the microscopic relaxation time approximation of the 
BTE

• Understand the treatment of carrier transport with Monte Carlo method.

2. BOLTZMANN TRANSPORT EQUATION (BTE)

The Boltzmann transport equation (BTE) depicts the statistical evolution of a thermodynamic system 
under non-equilibrium conditions (Boltzmann, 1896, 1898). The BTE can be derived from Liouville’s 
theorem (1838), which is a generalized form of the continuity equation3. The Liouville theorem states 
that the total change (total derivative) of the particle distribution function in the phase space is null, so 
that the volume of any region in phase-space is invariant under Hamiltonian evolution.

Figure 2. Schematic illustration of a fiction distribution functions in the phase-space (x=x,y,z, and 
p=px,py,pz) at a certain moment t = to
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d f (x,k, t) / dt = 0 (2a)

where x is the particle location: x = [x, y, z]T and k is the particle wave vector: k = [kx, ky, kz]T. Note 
that in the semiclassical treatment, we utilize the wavevector, k, rather than the particle momentum p 
and make use of the de Broglie relation (p=h/λ=ħk). By developing the total derivative of the particle 
distribution function in the phase space (x and k), one can obtain:

d f / dt = ∂ f/∂t + (dx/dt).∇f + (dk/dt).∇k f =0 (2b)

or

∂ f/∂t +ug.∇f + (1/ħ) (dp/dt).∇k f = 0 (2c)

where ug = dx/dt is the particle group velocity. We also have the rate of momentum change dp/dt is equal 
to the total applied force, such that:

dp/dt =Ftotal = F(external) +Fc(collisions) (3a)

Unfortunately, it is difficult to express analytically the friction force Fc, which arises from collisions 
between gas particles and the surrounding boundaries. However, one can substitute:

(1/ħ)Fc .∇k f ➔ - [∂f/∂t]col (3b)

where [∂f/∂t]col represents the rate of change of the distribution function, due to collisions. Hence, we have:

∂ f/∂t +ug.∇f + (F/ħ).∇k f = [∂f/∂t]col. (4a)

The above equation is called the semiclassical BTE. In one dimensional space, the BTE reads:

∂ f/∂t +ugx ∂f/∂x + (Fx/ħ) ∂f/∂kx = [∂f/∂t]col. (4b)

2.1 Original Classical BTE

The original formulation of the Boltzmann equation (Boltzmann, 1872), for a gas of particles, gives a 
deterministic description for the distribution function of gas particles both in real and velocity space. It 
is obtained by equating the total time differential for the density distribution function f(x,v,t) with the 
local production and loss rates, i.e.

∂(f(x,v,t))/∂t +v..∇r(f(x,v,t))+F/M.∇v(f(x,v,t))=qIon(x,v,t) - lRec(x,v,t)+C(x,v,t) (5)

where F contains all external forces on the particle with mass M, i.e. electric, magnetic and gravitational 
forces. Also, qIon, lRec and C are the local production and loss rates due to ionization, recombination and 
collisions. When (qIon - lRec + C) = 0, the above equation is called the Vaslov equation.
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2.2 The H- Theorem

Boltzmann showed in his lectures on gas theory (1896, 1898) that no matter how the velocities of the 
particles in a gaseous system are initially distributed, the velocity distribution would evolve via successive 
collisions to the stationary, Maxwellian distribution. Therefore, when the BTE is valid, the following 
H-function could only decrease in time.

H(t) = ∫ f.log(f)d3v d3x (6)

This way Boltzmann established a kind of macroscopic irreversibility for a gas of particles. In fact 
the function H is mathematically equivalent to the formulations of the entropy of a gas of particles4.

2.3 Boltzmann Transport Equation in Semiconductors

In the bulk of a semiconductor, the semiclassical Boltzmann transport equation (BTE) for a specific gas 
of charge carriers (4) may be written in the following form:

∂

∂
+ ⋅∇ + ⋅∇ =

∂

∂















f

t
u f

F
f

f

t
v

v v k v
v

col
�

.

 (7)

where fv = fv (kv, x, t) is the charge carrier distribution function in the phase space (v stands for n, for 
electrons or stands for p, for holes) and kv is the charge carrier wave vector. Also uv is the group velocity 
of charge carriers and F is the applied external force.

In presence of external electric field intensity ζ and magnetic field intensity B, we have F = -e(ζ + 
uv x B) for electrons and F =+e(ζ + uv x B) for holes, with e is the elementary charge of electrons. The 
subscript ‘col.’ means the rate of change of the distribution function due to collisions of charge carri-

Figure 3. Schematic of the particle velocity space
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ers with the crystal lattice and other crystal defects. As we’ll explain later on, the collision term can be 
evaluated using statistical analysis, within a quantum framework.

Once, the BTE is solved and the carrier distribution function fv(kv, x, t) is known, the density of car-
riers can be determined.

n x t g k f k x t d k
n

k space

( , ) ( ). ( , , )=
−
∫ 3  (8)

where the integration is taken over the entire k-space and g(k) =1/(2π)3 is the density of states in the k-
space (should be multiplied by 2, the number of carriers that each energy level can allocate5). The mean 
value of any observable physical quantity Q(k, x, t), like the electron energy, can be obtained as follows:

Q x t Q x k t

g k f k x t Q k x t d k

g k f

v
k space

v

( , ) ( , , )

( ). ( , , ) ( , , )

( ).
=< >= −

∫ 3

(( , , )k x t d k
k space

3

−
∫

 (9a)

Note that the de-nominator of the above equation is equal to the carrier density. For instance, the 
electron mean velocity is given by:

v x t u x k t

g k f k x t u k x t d k

nn n

v n
k space( , ) ( , , )

( ). ( , , ) ( , , )

=< >= −
∫ 3

 (9b)

Evidently, the electron current density is then given by:

J x t env e g k f k x t u k x t d k
n n v n

k space

( , ) ( ) ( , , ) ( , , )= − = − ⋅
−
∫ 3  (9c)

2.4 Collision Term in the BTE

The collision term in the BTE can be expressed as the sum of all contributions of the acting scattering 
mechanisms. It can be expressed using the statistical laws as follows:

∂

∂














= − − −

f

t
S k k f k f k S k k f kv

col

v v v
( , '). ( ).( ( ')) ( ', ). ( '1 )).( ( )) . ( ). '1 3−





−
∫ f k G k d k

v
k space

 (10a)

where S(k, k’) is the total collision rate (probability density of collision per unit time) from initial car-
rier state k to final state k’ in the k-space and G(k)=V/(2π)3 is the density of states in the k-space and 
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V is the volume of crystal lattice (Note that g(k)=G(k)/V). The Pauli Exclusion Principle is taken into 
account via the (1-fv) terms. In non-degenerate semiconductors, we can neglect the (1-fv) terms so that:

[∂fv/∂t]col. ≈ - V/(2π)3 ∫ [S(k, k’) fv(k) - S(k’,k) fv (k’)] d3k’ 

= - λ(k) fv (k) - V/(2π)3 ∫ S(k’,k) fv(k’) d3k’ (10b)

where λ(k) = V/(2π)3.∫S(k, k’)d3k’ is the out collision rate (of carriers at the k-state). The second term in 
the above equation represents the in-collision rate. According to Ferry (2000), the above definition of 
λ(k) is incomplete, since part or all of it may be absorbed in the second term of (10b).

The total collision rate operator S(k, k’), may be also given by the sum of individual rates Sj(k,k’):

S(k, k’) = ∑ Sj(k, k’) (10c)

Evidently, the calculation of the collision integral needs some information about each collision 
mechanism, and its dependence on the carrier wave vector k and/or energy E(k). However, when the 
carrier initial state k and final state k’ are not exactly situated on the symmetry points in the k-space 
(like X, L), where the E(k) relation is well known, the determination of the collision rate Sj(k’,k) of a 
collision mechanism becomes difficult. Also, the coupling potential, which is needed to calculate the 
carrier-phonon collision rate, is not well known at high electric fields. Therefore, one has to adopt some 
simplifying assumptions. For instance, collisions are assumed to be point-like and instantaneous in the 
conventional semiclassical picture. Therefore, we make use of the so-called first Born approximation 
of diluted gases, which is also known as the Fermi golden rule, to calculate the collision rates.

Physical Note 1: Elastic and Inelastic Collisions

An elastic collision is a collision where total momentum and total kinetic energy are both conserved. 
An inelastic collision is a collision in which total momentum is conserved but total kinetic energy is not 
conserved; the kinetic energy is transformed into other kinds of energy. Therefore, the total momentum 
of the colliding particles before inelastic collisions is the same as after the collision. But the total kinetic 
energy before and after the inelastic collision is different.

When an electron is scattered by lattice vibrations (phonons), the following relations depicts energy 
and momentum, when the collision is elastic.

Energy conservation dictates E(k’) = E(k)± ħω(q)

Figure 4. Phonon absorption and emission
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Momentum conservation dictates k’ = k±q ➔ k’2 = k2+q2± 2kq.cosθ where θ is the angle between 
k and k’. In the above relations, we assume a Normal scattering process, where electrons are scattered 
in the same Brillouin zone (both k, k’ ∈ BZ).

If the electron is scattered outside the first Brillouin zone (in the so-called Umklap process), then the 
momentum is not conserved and the above relation should be corrected by the reciprocal lattice vector 
(k= k’± q+G).

In equilibrium the distribution function is known and the left hand side of the Boltzmann equation 
is equal to zero. Therefore,

f k f k S k k f k f k S k k
0 0 0 0

1 1( ')( ( )) ( ', ) ( )( ( ')) ( , ')− = −  (11a)

Using the explicit form of the Fermi-Dirac distribution function, we get:
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This equation relates the forward and backward probabilities of collisions and known as the principle 
of detailed balance. For elastic collisions we have E(k) = E(k’), and hence:

S k k S k k( ', ) ( , ')=  (11c)

2.5 Collision Matrix

We know that the dynamic perturbation theory in quantum mechanics is concerned with determining 
the energy eigenvalues of a particle in perturbed non-equilibrium state (Bardeen & Shockley, 1950). By 
applying this theory, we can obtain the energy eigenvalues of a perturbed crystal by solving the 
Schrödinger equation with the perturbed Hamiltonian Ĥ :

Ĥ (r) = H o + eζ.x+ H def (12)

where H o is the unperturbed Hamiltonian of the crystal system (electrons and ions), ζ is the external 
field and H def is the Hamiltonian perturbation component due to system defects (e.g., lattice vibrations 
or impurities). We also know that according to the Born approximation (Born & Oppenheimer, 1927), 
the charge-carrier collisions may be considered as instantaneous, for weak interactions where colli-
sional broadening is negligible. In this case, the probability of transition per unit time of charge carriers 
(from state k to state k’), due to a scattering mechanism may be approximated by the Fermi golden rule 
(Shockley, 1950):

Sj(k, k’) = (2π/ħ) . | A(k, k’)|2 δ (E - E’) (13)
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where E=E(k,q) and E’=E(k’,q’) represent the initial (unperturbed) and final (perturbed) energy states, 
respectively. The Kronecker delta function in the above expression describes the conservation of crystal 
energy6. Also, A(k,k’) is called the transition matrix element of the Hamiltonian perturbation operator H def.

A(k, k’) = <k,q | H def |k’, q’> (14a)

The symbols q and q’ represent here the crystal lattice wave vectors before and after perturbation7. 
Taking the adiabatic approximation into consideration, the transition matrix element can be further 
reduced as:

A(k, k’) = < q | H def | q’ > .ξ. I(k, k’) (14b)

where Ι(k, k’) is the overlap factor, and ξ is the polarization tensor. In summary, the scattering rate per 
unit time from state E=E(k,q) to state E’=E(k’,q’) for a given scattering mechanism, is given by:

Sj(k,k’) = (2π/ħ) .|<q| H def | q’>|2.ξ .Ι(k,k’).δ (E - E’) (15)

The overlap factor, Ι(k,k’), depends on the band structure of the semi-conductor, and the type of 
involved electron transition:

Ι(k, k’) = | N. ∫ u*k’ (r) uk(r) exp (jG.r) d3r |2 (16)

where N is the number of unit cells in the crystal, uk(r) and u*k’(r) are the electron Bloch functions, before 
and after scattering and G is the reciprocal lattice (k-space) translational vector. When the scattering 
process is normal (N-process), then G=0, and when the scattering process is umklapp (U-processes) 
then G≠0. In normal processes and when the involved electrons have exact plane waves, the overlapping 
integral is usually set to unity. However, for some transitions between warped bands Ι(k,k’)→Ι(θ), where 
θ is the angle between k and k’, and Ι(θ) may be different from unity.

Considering the electron collisions with lattice vibrations (phonons), the initial and final energy 
states may be expressed as follows:

E = E(k) + Nq ħω, E’= E(k’) + (Nq±1)ħω (17)

Here ħω is the amount of exchanged energy between electron and the lattice vibrations (phonons), 
Nq is the initial number of phonons and Nq±1 is their final number after a collision. The ± sign depends 
if the collision involve emission or absorption of a phonon.

It should be noted that the scattering probability S(k,k’), as defined by the Fermi golden rule, is 
not a measurable quantity since the measured probability should be a sum over all k’ states. To find a 
measurable probability, we need to sum the probability over all final states. The integrated scattering 
probability of a certain collision mechanism of charge carriers per unit time Γj(k) is defined as sum over 
all possible values of k’ in the k-space:

Γj(k) = ∫Sj(k, k’) Gv(k’) dk’ (18)
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Again, Gv(k )=V/(2π)3 is the density of states in the k-space. Note the similarity between the defini-
tions of λ(k) and Γj(k). However, the subscript ‘j’ means a particular collision mechanism.

The mean (scattering) time between collisions, τj(k), of a certain collision mechanism of charge 
carriers, is defined as the inverse of the integrated scattering probability per unit time Γj(k). Therefore:

τj(k) = 1 / Γj(k) (19)

In summary, to calculate the scattering rate of a certain collision mechanism and the mean free time 
between collisions, we proceed as follows:

1.  Consider the system Hamiltonian as: H = Ho+eζ+H1, where Ho is the unperturbed Hamiltonian, 
ζ is the applied field and H1 is the perturbation due to a crystal defect. Ho may be given by the ef-
fective mass Hamiltonian, which lumps the interatomic forces in the effective mass of carriers.

2.  Find out the Bloch functions of the system (by solving the Schrödinger equation, with Hamiltonian 
Ho). In bulk semiconductors, Ho is simply the crystal potential, which upon solution yields the band 
structure E(k) of the material. You can then calculate the density of states.

3.  Now we revert our attention to the crystal defect and its perturbation potential H1. Use a suitable 
model to express this potential. On the basis of the quantum perturbation theory, use the Fermi 
golden rule to express the scattering probability (or transition rate) from k to k’, using (16).

4.  Calculate the integrated scattering probability Γj for the scattering mechanism by summing over 
all available final state, using (18)

5.  Calculate the mean free time between collisions (momentum relaxation time) for each collision 
mechanism τj. = 1/Γj

6.  If you want to calculate the drift mobility (due to this scattering type), average the momentum 
scattering rate (over the carrier distribution function) τm = <τj>. This needs the knowledge of the 
carrier distribution function, which may be obtained by solving the BTE (or assuming a priori any 
suitable distribution function!). Then use the relation μ = e τm /m*

3. SCATTERING MECHANISMS IN SEMICONDUCTORS

The lattice atom vibrations (phonons) hinder the motion of electrons in the crystal lattice and collide 
with them. As electrons travel through the material, they bounce off these vibrating atoms, giving rise to 
electrical resistance of the material. There exist many collision mechanisms, which may occur between 
the charge carriers (electrons or holes) and phonons as well as other quasi-particles and among the charge 
carriers themselves. Among the important collision mechanisms in solids, one can cite:

1.  Carrier - Phonons (quanta of lattice atom vibrations) collisions,
2.  Carrier - Impurity atoms collisions,
3.  Carrier - Polarons (lattice-distortion polarization field) collisions,
4.  Carrier - Magnons (quanta of spin coupling) collisions,
5.  Carrier - Carrier (electron-electron) collisions,
6.  Carrier - Plasmons (quanta of many electrons oscillations) collisions,
7.  Carrier - Excitons (excited electron-hole pair) collisions and
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8.  Carrier - Covalent bond (impact ionization) collisions.

The electron–phonon collisions are the most common collision mechanism in semiconductors. Pho-
nons may be acoustic or optical, according to the amount of exchanged energy during collision.

A polaron is a quasiparticle used to understand the interactions between a charge carrier (electron 
or hole) with a distortion of the surrounding charges of atoms in a dielectric or a polar semiconductor.

An exciton is a bound state of an electron and a hole which are attracted to each other by the elec-
trostatic Coulomb force. Excitons are often the lowest energy excitation created by light absorption in 
semiconductors. The so-called biexcitons and trions are complex forms of multiple excitons.

Also, a magnon is a collective excitation of the electron spin in a crystal lattice. This is analog to 
phonons, which are collective excitation of the lattice vibrations.

3.1 Intra-Valley and Inter-Valley Phonon Collisions

There exist two basic types of carrier-phonon collisions, namely:

1.  Intra-valley collisions (within the same energy valley),
2.  Inter-valley collisions (between different energy valleys).

The intra-valley collisions involve transitions within the same energy valley in the E-k diagram. This 
type of collision is often elastic and involves the emission or absorption of acoustic phonons of small 
energy.

The inter-valley collisions involve transitions between different energy valleys (and sometimes dif-
ferent energy bands) in the E-k diagram. This type of collision is often inelastic and involves the emis-
sion or absorption of optical phonons. Figure 6 depicts the carrier-phonon mechanisms of collision. As 
shown in figure, the phonon scattering may be polar or involve some specific transitions, according to 
the semiconductor material.

Figure 6 depicts the basic mechanisms of collision in Si, according to the type of transition. The 
so-called f-type collisions involve transitions of electrons between two neighboring perpendicular val-
leys in the k-space, like the (100) and the (010) valleys of the Si main conduction band. Also the g-type 
collisions involve transition of electrons between two valleys in opposite directions in the k-space. For 
instance, transitions between the (100) and the (-100) valleys of the Si conduction band.

Figure 5. Schematic illustration of lattice vibrations (phonons), polarons and excitons in a crystalline 
semiconductor
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Figure 6. Carrier-phonon scattering mechanisms

Figure 7. Fundamental scattering mechanisms in silicon

Figure 8. Schematic illustration of intravalley and intervalley transitions in silicon
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There exist three f-type mechanisms (denoted f1, f2 and f3) and three g-type mechanism (denoted 
g1, g2 and g3).). Similarly, holes may scatter within the same valence band or between different bands. 
When holes scatter within the same valence band, the scattering is called intraband. When holes scatter 
between different bands, the scattering is interband.

3.2 Selection Rules

The intravalley and intervalley transitions are not always permitted in any direction in the k-space. Some 
transitions are not permitted and the corresponding matrix element is zero. In fact, there exist some 
rules, called selection rules, which define the permitted types of transitions. In physics, selection rules 
define the transition probability from a quantum state to another. Selection rules may be divided into 
electronic selection rules, vibrational selection rules, and rotational selection rules. We are interested 
here about the selection rules of electronic transitions, during the carrier-phonon scattering process. For 
instance, we know that the main conduction band in Si, has 6 equivalent valleys along the directions 
<100>, which is usually termed as Δ. For a g-type intervalley transition in silicon, from the valley (ko, 
0, 0) to the valley (-ko, 0, 0), where ko = 0.85(π/ao), the transition rules dictates:

Δ1(ko) ¤ Δ1(-ko) = Δ1(2ko) (20)

where Δ1 is the required symmetry of the associated electron wave function and ¤ represents the group 
convolution operator. Thus, in silicon, the required phonon must have a wave vector q=2ko = 1.7x(π/ao) 
along the <100> direction (the Δ direction). However, such a vector is located outside the first Brillouin 
zone, beyond the X point, and the symmetry Δ1 passes over into the symmetry Δ2’ in the second Brillouin 
zone. On the other hand, it’s well known from the phonon spectrum in Si, that there are only LO phonons 
of such symmetry. Such a g-type intervalley transition is only permitted with LO phonons. For phonon-
assisted transitions in Si, the selection rules allow acoustic intravalley scattering, f-type scattering with 
LA (longitudinal acoustic) and TO (transverse optical) phonons, and g-type scattering with LO phonons.

Table 1 depicts the selection rules for optical-phonons assisted transitions in both Si, and GaAs. For 
other III-V semiconductor compounds, same rules apply, except for the LO mode is changed to LA mode 
if the mass of the III-group atom is greater than that of the V-group atom. As shown in the table, the 
selection rules forbid intravalley transitions with optical phonons in Si. However, when the final state of 
a transition is not exactly situated on certain symmetric points in the k-space (like X and L), where the 
E(k) relation is well known, the selection rules are less restrictive.

Table 1. Selection rules in Si and GaAs for optical mode transitions

Material Si GaAs

Intravalley Forbidden Γ (LO)

Intervalley f-type: Σ1 (LA, TO) Γ → L: L (LO)

g-type: Δ2’ (LO) Γ → X: X (LO)

L → L: X (LO)

From Semiconductors, Ferry, 2000.
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It worth notice that there are several experimental indications showing other intervalley scattering 
mechanisms in silicon. The contradiction of such mechanisms with the selection rules may be due to the 
fact that these rules are evaluated for electron transitions between points which are exactly situated on 
the symmetric points and along symmetric directions of the first Brillouin zone (Ferry, 2000). Actually, 
electrons may undergo transitions between points, which are far from these symmetry axes.

3.3 Collision Rates in Cubic Semiconductors

The detailed studies of the charge transport and collision rates in Si and other semiconductors have been 
started about 60 years ago. However, many scattering mechanisms in Si were not completely understood 
until recently (Cartier Fischetti, Ecklund, & McFeely, 1993). Figure 7 depicts the intravalley acoustic 
phonon and intervalley scattering rates in silicon, as a function of the electron energy. Also, Figure 8 
depicts some reported results for the scattering rates in undoped (pure) Si, as a function of the electron 
energy.

As shown in Figure 9, so many research groups disagree on the magnitude of the electron-phonon 
scattering rates, particularly at high energies. Also, the published impact ionization rates vary over 3 
orders of magnitude. In the following subsections, we present the expressions of the transition probabil-
ity of the well-known collision mechanisms in silicon and other semiconductors, according to Jacoboni 
and Reggiani (1983), Fischetti and Lux (1993), and Seeger (1997). More recent treatment of scattering 
mechanisms in quantum structures and nanodevices, such as 2DEG systems, can be found in Davies’ 
(1998) book (Physics of low-dimensional semiconductors). However, we present here the surface acoustic 
phonons and roughness scattering mechanisms, which are 2-dimensional scattering types. Other scatter-
ing mechanisms in low-dimensional semiconductors will be presented the in chapters 5, 6 of this book.

Intravalley Scattering (Case of Acoustic Phonons)

The intravalley acoustic phonon scattering is dominant at low energy and its calculation is carried out 
by the deformation potential. In the deformation potential interaction, the scattering between electrons 

Figure 9. The electron collision rates in Si at 300K
After Jacoboni and Reggiani (1983).
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and phonons occurs when the electrons scatter off phonons (lattice vibrations). Such elastic waves are 
of the type u(r,t)=uo.exp(jωt-q.r),where u(r,t) is the atomic displacement from the equilibrium position 
at a given point r of the lattice, ω and q are the frequency and wavevector of the lattice waves. Accord-
ing to Bardeen and Shockley (1950), the interaction potential H def due to small energy lattice vibrations 
(acoustic phonons) in the crystal is given by:

H def (r) = EI ∇u(r) (21)

where the atomic displacement u(r) is generally a sum on all possible lattice vibration modes. Also EI 
is the deformation potential constant (eV). The deformation potential is generally a tensor, i.e. a quan-

Figure 10. (a) Electron-phonon collision rates in Si at 300K, according to several research groups; (b) 
electron impact ionization rate. in Si at 300K, according to several research groups
After Fischetti, (1998).
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tity which depends on the direction. However, when collisions are isotropic, E1 may be considered as a 
scalar quantity.

In intravalley transitions, the exchanged energy of phonons is so small compared to the carrier energy 
(ħω ≈ ħqvs, where vs is the velocity of sound and q=k-k’ is the phonon wave-vector). Therefore, the in-
travalley collisions with acoustic phonons are often considered elastic and isotropic. Also, for spherical 
energy surfaces, we can assume that the deformation potential a scalar constant. This allows calculating 
the matrix element of the intravalley acoustic scattering mechanism, as follows:

|A(k, k’)|2 = ½ E1.kBT /(V.ρ vs
2) (22a)

wher ρ and V are the density and volume of the crystal lattice, vs is the velocity of sound. Using the 
Fermi golden rule, as indicated by (16), we can calculate the probability of collision of such a scatter-
ing mechanism. Therefore, the probability of collision of electrons with elastic phonons per unit time in 
intravalley transitions is given by the following relation:

Sj(k, k’) = (π q E1
2 /V ρ vs).Nq .δ(E(k) - E(k’) - ħ ω) (22b)

for the absorption of phonons, and

Sj(k, k’) = (π q E1
2 /V ρ vs).(Nq+1).δ(E(k) - E(k’) +ħ ω) (22c)

for the emission of phonons. Here, Nq is the phonon distribution function, which is assumed in equilib-
rium (Bose-Einstein distribution) and given by:

Nq = 1 / [ exp(E(q)/kBT –1 ] (23a)

Here, E(q)= ħω ≈ħ q.vs is the acoustic phonon energy and Nq may be approximated by a truncated 
Laurent expansion as follows:

Nq = 1/x – 1/12 x – 1/720 x3 – ½ for ( x< 3.5), Nq = 0 elsewhere  (23b)

with x = ħq.vs/kBT. As x is normally much smaller than unity (except at very low temperatures), Nq is 
sometimes approximated as (kBT/ħq vs - ½). We can finally write the acoustic phonons scattering rate 
as follows:
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The ± sign depends if the collision involve emission (upper term) or absorption (lower term) of a 
phonon. The integrated scattering probability of acoustic phonons per unit time can be approximated by 
the following relation for both absorption and emission (Jacoboni & Reggiani, 1983):
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where mn* is the electron effective mass and T is the lattice temperature.
In the above relation, we assumed a parabolic semiconductor, with spherical energy surfaces and 

constant effective mass. For non-spherical energy surfaces (where E-k is non-parabolic), we can take 
into account the non-parabolicity of the E-k relation by choosing a suitable non-parabolicity factor8 (α) 
and we replace mn* by the density-of-states effective mass mnd* (mnd* = (mt

2 ml)1/3) to obtain:
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We dully note that the deformation potential is generally a tensor. Here, we neglect anisotropy and 
E1 is the average of the longitudinal (dilatation) and transverse (shear) components which are usually 
denoted by Ed and Eu. In addition, the sound velocity, vs, is averaged over longitudinal and transverse 
valleys such that vs= ⅓(vl+2vt). Also, the total intravalley scattering rate should be calculated separately 
for the LA and TA phonons, as a function of the initial electron energy. In addition, the overlap factor is 
typically set to unity (I(k,k’)=1) in intravalley scattering. Note also that the above expression is derived 
for bulk semiconductors. Similar expressions can be derived for the case of 2-D and 1-D semiconductor 
structures.

Note 2: Intravalley Deformation Potential

The intravalley deformation potentials have a general angular dependence, which can be written as fol-
lows (Herring & Vogt, 1956):

ELA(θ) =Ed + Eu cos2θ, 

ETA(θ) = Eu sin θ cosθ, 

where θ is the angle between the phonon wave vector and the longitudinal axis of the conduction-band 
valley. Detailed calculations show that the influence of the angular dependence on the electron transport 
is relatively small. Hence, the intravalley deformation potentials can be averaged over the angle θ. The 
isotropic averaged deformation potentials are then:

ELA = √(π/2)(Ed
2 + Ed Eu + ⅜Eu

2), 

ETA = ¼ √π Eu 

Therefore, EI in (25a) and (25b) should be replaced by the appropriate deformation potential (ELA or 
ETA) for intravalley LA and TA phonons.
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Intravalley Scattering (Case of Optical Phonons)

According Harrison (1956) and Lawaetz (1969) the crystal deformation potential Hdef due to high energy 
phonons (optical phonons) is proportional to the atoms displacement (δu = un+1 - un), not to its divergence.

H def = Dt δu (26)

where Dt is the optical phonons coupling constant [eV/cm]. The final formula of acoustic scattering rate 
may be then used, with replacing the deformation potential by the phonon coupling constant Dt, such that:

(Acoustic phonons Expression)→ (Optical phonons Expression) 

Eu q → Dt (27a)
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Here ωop is the optical phonon angular frequency and Nop is the number of optical phonons (which is 
q-independent) and maybe approximated by the Boson-Einstein equilibrium statistics:

Nop = 1/[ exp(ħωop/kBT) – 1 ] (27c)

Also, the integrated probability of transitions due to scattering with such deformation potential opti-
cal phonons is given by:
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where the upper positive sign (with Nop +1) stand for absorption, while the lower negative sign (with Nop) 
stand for the emission rate. Again, the above relation assumes a parabolic semiconductor, with spherical 
energy surfaces and constant effective mass. In nonspherical energy surfaces, we can take into account 
the non-parabolicity of the E-k relation via a non-parabolicity factor (α). Thus, we replace the electron 
effective mass mn* by the density-of-states effective mass mnd* such that:
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where E’=E(k) ± ħωop.
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Intervalley Scattering

In intervalley transitions, the integrated probability of transition of carriers per unit time is given by:
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where Dm is the coupling coefficient between the two involved valleys, Δ m is the energy shift between 
them (Δm=0 for equivalent valleys) and ħω m is the associated phonon energy. The ± sign refers to the 
case of phonon emission or absorption. Note that Np is the number of emitted phonons and Np+1 is the 
number of absorbed phonons. Also Nm is the number of possible destination valleys, where transition 
can end. In Si we have Nm = 4 for f-type transitions and 1 for g-type transitions. We dully note that the 
above relation assumes a parabolic semiconductor, with spherical energy surfaces and constant effective 
mass. In nonspherical energy surfaces, we can take the non-parabolicity of the E-k relation into account 
via a non-parabolicity factor (α), such that:
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where E’=E k
m

( )± ±∆ �ω
m

. Intervalley scattering can also include an overlap factor, but its value is 
typically merged into Δm. The coupling coefficient between different valleys (Dm) of a given semicon-
ductor can be evaluated from the phonon spectrum9. For instance, the coupling coefficient between the 
X and L valleys of Si conduction bands amounts to 3x108 eV/cm. Table 2 illustrates the deformation 
potential, and the coupling coefficients of some known collision mechanisms in Si and GaAs.

Collisions with Ionized Impurities

Impurity scattering is very important for low energy carriers in highly-doped regions, like the source and 
drain regions in MOSFET devices. The carrier collision with ionized impurities (donors and acceptors) 
is often intravalley elastic Coulomb scattering. The most popular models for ionized impurity scattering 
are Conwell and Weisskopf (CW) model (1950) and the Brooks and Herring (BH) model (1951). Figure 
11 illustrates the impurity scattering process according to these models. Conwell and Weiskopf suggested 
truncating the Coulombic potential, V(r)= Z(e2/4π εs r) where Z denotes the number of charges of the 
impurity, at a value which corresponds to half the distance between two impurities. This approach is 
adopted because the deflection from a straight path is governed by the closer impurities. When the dop-
ing is homogeneous, the average distance between two impurities is just the cube root of the impurity 
density (N1/3). Therefore, the integrated transition probability, due to impurities, may be given by the 
following relation (for parabolic bands):

Γj(k) = π (2 / m*)1/2 N 1/3 E1/2 (30)
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where N is the impurity concentration and E and m* are the carrier energy and effective mass, respectively.
The other model, which is based on the screening potential, was developed by Brooks and Herring. 

According to the screened potential theory, the perturbation (deformation) potential due to ionized 
impurities is given by:

H def (r) = Z(e2/4π εs r).exp(- r / λD) (31a)

Here λD is the screening length (or the Debye length), due to the Coulomb scattering:

λ D=√(εs kBTL/e
2no) for TL >>0 and λ D=√(2εs EF/3e2no) for TL→0 (31b)

where no is the equilibrium electron density, EF is the Fermi energy level and εs is the dielectric constant 
of the semiconductor. Therefore, we can express the impurity scattering rate as follows:
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where qD = 1/λD = √(e2no/ε kBT) is the inverse Debye length, V is the crystal volume and q=|k-k’|. In 
this case, the integrated transition probability due to impurity scattering may be given by the Brooks-
Herring relation:
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where gc(E) is the corresponding density of states (e.g., in the conduction band for donor impurities). 
However, Mahan (2000) showed that the electron wavefunction at large impurity densities is spread 
almost uniformly and without piling up around donor impurities (or away from acceptors). In this case 
the screening length (1/qD) becomes comparable to the distance between impurities (about 1-3 nm in Si 
at 1018 to 1019 cm-3). Hence, it is better to go to the Conwell-Weisskopf model, which assumed that the 

Figure 11. Illustration of the scattering of a point charge in a Coulomb potential. Here, Ze is the impurity 
ion charge, b is the screening length, and θ is the scattering angle.
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Coulomb potential is unscreened. The so-called Ridley model has attempted to find a model reconciling 
the BH and CW approaches, as follows:

ΓR = (vg/d) [1-exp (dΓΒΗ /vg)] (32)

where d = 1/(2πNd)
3 is average distance between impurity atoms and vg is electron group velocity.

A more accurate model, which is also based on the screening potential theory, expresses the integrated 
transition probability due to impurity scattering as follows:

Γj(k) = (e4 z2 N /4π ħ4εs*) E1/2. I(k,θ) (33a)

where θ is the angle between k and k’ such that q2 =2k2(1-cosθ) and I(k,θ) is given by the following 
integral over all possible values of θ:
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with ξ = ħq/(8m*kB TL)
1/2, μ = EF/(kBTL) and F(ξ,μ) is given by:
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where x=ħk/(2m*kB TL)
1/2. For nonparabolic bands the term E1/2 has to be replaced by (1+αE)1/2(1+2αE)

E1/2, where α is the non-parabolicty factor. Also we replace m* by the density-of-states effective mass.

Collisions with Neutral Impurities

The collision with neutral impurities (as oxygen) has a small contribution to the carrier mobility, only 
at very low temperatures and high concentration.

Intraband Hole Scattering

The intraband holes interaction with acoustic-phonons may be considered similar to the intravalley 
electron interaction with acoustic-phonons (16). However, due to warping and degeneracy of valence 
bands in covalent semiconductors, an overlap factor appears in the scattering rate. Thus, the intraband 
scattering rate of holes with acoustic phonons is given by:
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where Ι(θ) is the overlapping factor, with θ is the angle between k and k’ and E2 is the average deformation 
potential constant of the valence band. For Si, E2 = 5.0 eV. Thus, Ι(θ) depends on the nature of valence 
band structure, and hence on the semiconductor material. For instance, for parabolic warped valence 
bands, one can use the following expression for the overlap factor of light and heavy holes (Wiley, 1971):

Ι(θ) = ¼ (1+3 cos θ) (34b)

Similarly, the intraband scattering rate of holes with optical phonons is given by:
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where Do is the optical deformation potential and ao is the lattice constant. For Si, we have Do = 26.6 
eV and ao = 5.43 Å.

Interband Hole Scattering

The interband scattering is only important when we use a two-band model for the valence band (for 
heavy and light holes). The expression of interband collision rate is quite complex, and may be found 
in the specialized literatures, for instance in Wiley (1971).

Impact Ionization Collisions

Impact ionization or pair production is a high field scattering mechanism. It consists of an energetic 
conduction electron hitting an electron in the valence band, exciting this electron across the band-gap, 
thus generating an electron-hole pair and returning to a lower energy state. The impact ionization phe-
nomena influence so many important characteristics of all semiconductor devices, like the breakdown 
voltage and the gate leakage current in MOSFET devices.

The impact ionization collisions may be considered as a sort of interband transitions. The microscopic 
rate of this type of collisions may be given by the Keldysh formula (1965):

Γii(k) = (P/τii) [ (E(k) / Ev
th) – 1]n (36a)

where Ev
th is the carrier threshold energy for impact ionization, P is a coupling constant (usually P>100), 

n is a constant (2 for cubic semiconductors with parabolic bands) and τii(k)=1/Γii(k) is the total phonon 
collision rate at the threshold energy (at onset of ionization). In Si, Ev

th amounts to 3/2Eg for both elec-
trons and holes (about 1.8eV in unstrained Si) and τii is in the order of 10-14 sec. The Keldysh model has 
been improved by Thomas et al (1991), and reformulated as follows, for Si:

Γii(k) = 8.75x1012 (E(k) – 1.128)3 for 1.128 eV <E <1.75 eV (36b)

= 6.6461013 (E(k) – 1.128)3 for E >1.75 eV 
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Another Keldysh-like formula was derived by Cartier et al. (1993) by fitting Monte Carlo results to 
experimental data. The impact ionization rate for silicon is then given by:
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where Ej
th =1.2, 1.8 and 3.45eV, Pj =6.25x1010, 3 x1012 and 6.8x1014 s-1, for j=1, 2, and 3, respectively, 

and U is the Heaviside unit step function. This multi-component Keldysh-type model is further general-
ized by (2005), as follows:
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The fitting parameters are obtained from MC simulation. For n=3, the fitting parameters for electron 
ionization rate are Ej

th =1.13, 1.6 and 2.6eV, Pj =2x1012, 2.3x1014, and 1.8 x1016 6.8x1014 s-1, aj =2.981, 
2.978 and 2.49, for j=1,2,3, respectively. For the case of hole impact ionization rate in Si, we may take 
n=1, with Ej

th =1.33, Pj =6.58x1013 and aj =4.172.
Once the microscopic ionization rate Γii(k) and the carriers distribution function are known, the 

macroscopic impact ionization rate can be evaluated. Therefore, the macroscopic impact ionization rate 
for electron is given by:

an(x, t) = (1/n vn) ∫ g(k) fn(x, k, t) Γii(k) dk (36e)

where n and vn are the electron density and average drift velocity at a given point of the physical space, 
respectively .

Figure 12. Impact ionization rates (of electrons and holes). in Si at 300K, according to several research 
groups
After Seeger (1997).
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3.4 Additional Collision Rates in Polar Semiconductors

Beside the charge carrier scattering via deformation potential and impurity atoms, the scattering by polar 
optical phonons may be dominant in compound semiconductors (like GaAs). This scattering mechanism 
is not present in elemental semiconductors (like Si or Ge), since a sub-lattice structure is necessary for 
optical modes of vibrations. The following figure shows an example of a polar semiconductor material, 
with sub-lattice structure. In fact, phonons scatter charge carriers by two mechanisms in polar semicon-
ductor materials:

1.  Polar mode scattering mechanism, which is due to the polarization of atoms within the unit cell. 
This may be polar (optical phonon) scattering or piezoelectric (acoustic phonons) scattering.

2.  Deformation potential scattering mechanisms. The scattering rate of this mechanism is similar to 
that of acoustic phonons. Deformation potential scattering mechanism. Here, the deformation of 
the lattice by phonons perturbs the dipole moment between atoms, and this results in an electric 
field that scatters charge carriers. The scattering rate of this mechanism is similar to that of acoustic 
phonons.

Polar Optical Phonon Scattering

The scattering rate of polar optical phonons is related to the dielectric constant of the material as follows:
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where phonon wave-vector q=k-k’, ωop is the angular frequency of (emitted or absorbed) optical phonon, 
Also, εs and ε∞ are the dielectric constant of the polar material at low and optical frequencies, respectively. 
Note that the polar coupling constant is given by the Frohlich formula

Figure 13. Zincblende lattice of GaAs and its sub-lattice structure
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Dp = ¼ħωop (1/ε∞ + 1/εs) (37b)

Piezoelectric Acoustic Phonon Scattering

Some polar semiconductors, (like GaAs, ZnO, GaN, InN, and ZnS) have non-central symmetry and 
exhibit the piezoelectric effect (charge accumulation under strain). In these materials, the polar scat-
tering due to acoustic phonons is termed as piezoelectric scattering. In such piezoelectric crystals, the 
polarization vector is given by:
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where eijk is the piezoelectric tensor and u(r) is the displacement of atoms associated with lattice vibra-
tions (phonons). The Zincblende semi-conductors, like GaAs, are cubic and there is only one independent 
piezoelectric constant e123=e132=e213=e231=e312=e321 = ez. This polarization corresponds to a piezoelectric 
field ζ=-P/ε0. After calculating the interaction potential we can reach to the scattering probability for 
piezoelectric phonons for both absorption and emission, as follows:
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where qD = 1/lD is the inverse screening (Debye) length. The integrated scattering probability is obtained 
by Integration over the possible final states to get:
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3.5 Other Collision Mechanisms in Semiconductors

Beside the above mentioned scattering mechanisms, there exist other mechanisms, which may be dominant 
in a given semiconductor under certain conditions of doping, or near the surface of the semiconductor.

Electron-Electron Binary Collisions

This type of collisions is only important at high doping concentrations. Electron-electron scattering is 
the most complicated mechanism to treat, because it makes the BTE nonlinear. In the short range, the 
electron gas may be considered as a collection of particles that interact weakly by means of screened 
Coulomb force. Hence, electron-electron scattering rate may be calculated by the Brooks-Herring for-
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mula (24b) for ionized impurity scattering, with z=1 and replacing N with the local electron density (n). 
Therefore, the collision rate of short-range electron-electron (binary) scattering is given by (Fischetti 
& Higman, 1991):
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where qD =1/λD = √(e2n/ ε kBT) is the inverse Debye length, k’ is the momentum if the second electron 
and f(k’) is the electron distribution function. There are several approaches to treat with the distribution 
function term, f(k’), that appear in this formula, due to Lugli and Ferry (1983), the rejection algorithm 
(Lawson, 1988) and real-space molecular dynamics approach (Jacoboni, 2010). Note that the e-e scatter-
ing is an elastic process and both momentum and energy are conserved. Therefore, momenta of electrons 
are interchanged and homogenized triggering the distribution function to a drifted/heated Maxwellian 
form (Jacoboni & Reggiani, 1983).

Electron-Plasmon Collisions

In semiconductors with high electron density an additional type of electron-plasmon scattering is possible 
for large distances (larger than the Debye length). The source of this scattering is the electron plasma 
oscillations. A plasmon is a quantum of plasma oscillation, just as phonons are quanta of lattice vibra-
tions. Plasmon scattering of electrons represents the collective long-range part of the electron-electron 
interaction. For a non-parabolic band structure, the electron-plasmon scattering rate is given by the fol-
lowing expression (Jacoboni and Lugli, 2012):

Figure 14. Electron scattering rats in GaAs as function of electron energy, at 300K
After Jacoboni and Reggiani (1983).
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The final electron energy Ef =Ei ±ħωpl, and the plasma frequency is given by
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Here the sum is assumed over all possible valleys, and nv is the v- valley contribution to the electron 
density. For instance, the plasmon energy (ħωpl,) in GaAs with concentration of 5x1017 cm-3 is about 30 
meV. The cut-off wave vector qc is defined as follows:

qc = min (qmax, λD
-1) (42)

Also, qmin and qmax stand for the limits of the momentum transfer:

qmin = |k - kf| , qmax, = |k+ kf| (43)

Note that kf is the final wave vector and N(ωpl) is the average number of the plasmon excitations 
defined by the equilibrium Bose-Einstein statistics:

Nop (ωpl) = 1/[ exp(ħωpl /kBT) – 1 ] (43)

Collisions with Surface Acoustic Phonons

We have presented so far the rate of collision of electrons with acoustic phonons in the bulk of silicon and 
other cubic semiconductors (18). However, near the surface of a semiconductor, this rate is affected by 
surface scattering and quantum confinement of electrons near the surface. The scattering rate of surface 
acoustic phonons may be written as follows:
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where EIs is the deformation potential of surface acoustic phonon and the charge density ρ is replaced 
with the surface charges density ρs (per unit surface). Integrating this matrix element over one subband 
(of the surface potential well) yields the following relaxation time:
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where we assumed ρs = xav ρ and xav is the average thickness of the surface inversion layer. According 
to Lombardi and Schwartz (1999), who considered the average thickness of inversion layer is inversely 
proportional to ζ┴, the relaxation time due to surface acoustic phonons is given by:
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where d is a constant (about 2.9 in Si). The second term in the above equation reflects the quantum effect 
of triangular potential well at the surface of semiconductor.

Surface Roughness Collisions

Surface roughness is due to surface irregularities at the interface of a semiconductor. The charge-carrier 
collision with surface roughness is an important mechanism in field effect devices, like MOSFET (Metal-
Oxide-Semiconductor Field-Effect Transistor). It is also important in low-dimensional semiconductor 
structures and nanodevices, where the ratio of device surface to volume is important. The surface rough-
ness collision rate may be described by the following relation (Esseni, 2004):
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where ns is the surface carrier concentration, Nds is the charge per unit area (usually beneath the surface 
area), Δ is the roughness average displacement (about 30Å in Si), L is the roughness correlation length 
(about 20Å in Si) and Io is the Bessel function of zero order. The surface charge (ns +Nds) may be replaced 
by (εsζ┴/e) where ζ┴ is the effective normal electric field:
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This expression is very useful in the case of MOSFET devices. We note that surface roughness scat-
tering has a much stronger dependence on the transverse effective field compared to surface phonon 
scattering. For the case of nanodevices involving 2-dimensional electron gas (2DEG), interface roughness 
scattering becomes severe at high carrier densities.

Alloy Scattering in Compound Semiconductors

The alloy scattering is an important mechanism in compound semi-conductors (e.g., Si1-xGex, Ga1-xAlxAs) 
and heterojunction devices. In such alloy semiconductors, one of the constituent atoms (e.g., As) oc-
cupies the sites of one of the two interpenetrating FCC lattices of the zincblende crystal. The other 
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constituent atoms of the alloy (e.g., Ga, Al) are distributed on the sites of the second FCC lattice. This 
leads to a certain disorder (perturbation) of the crystal potential, which induces an additional scattering 
of charge carriers. The alloy scattering rate may be described by the following relation, for parabolic 
band structure (Harrison, 1976):
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where x is mole fraction of the semiconductor alloy, ao is the lattice constant and Ualloy is the alloy potential 
fluctuation, due to alloy disorder. Ualloy may be taken as the conduction band offset. For instance, Ualloy 
= 0.8V for electrons in SiGe alloys. For nonparabolic bands, the square root of E is replaced with the 
square root of E(1+αE) multiplied by (1+2αE), where α is the nonparabolicity factor. Figure 15 shows 
the electron and hole collision rates of some semiconductors, as function of the carrier energy at 300K.

4. BTE IN MULTIVALLEY AND COMPOUND SEMICONDUCTORS

At high fields, charge carriers can possess high energy and may scatter between different valleys of the 
semiconductor. Therefore, it is often very important to consider the real band structure of the semicon-
ductor, including all the valleys which are close to the main conduction band. For, instances, GaAs has 
two valleys in the conduction band (called the upper satellite valley and the lower central valley), which 
are separated by 0.3eV. The Si itself has 4 conductions bands, with several valleys, which are not far 
from the reach of the main conduction band electrons at high fields.

In multi-valley semiconductors, with Nv valleys, the semiclassical BTE can be written as follows in 
the ith valley:

Figure 15. The electron-phonon and hole-phonon collision rates in different semiconductors as function 
of electron kinetic energy, at 300K
After Fischetti (1993).
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where i and j stand for the ith and the jth valleys, respectively. The intravalley collision term of the ith 
valley is given by:

[∂fi/∂t]intra= V/(2π)3.∫ [Sii(ki,ki’) f i(ki) - Sii(ki’,ki) f i(k’i)] d3ki’ (49)

where we dropped the Pauli-exclusion terms (1-f), for the sake of simplicity. This approximation is ac-
ceptable at high energy, where f is much smaller than unity.

The intervalley collision terms of the ith valley is given by:

[∂fi/∂t]i, inter = ∫ Sji(kj,ki’) f j(kj) d
3kj’ (50a)

[∂fi/∂t]j, inter = ∫ Sij(ki,kj’) f i(ki) d
3ki’ (50b)

The following table depicts the deformation potential and coupling coefficients in silicon and other 
materials. The other parameters of Si, which appear in the scattering rate relations, are given in Table 
2(c).The data are taken from the manual of Damocles simulator, from IBM Corp.

5. BTE SOLUTION METHODS

The analytical solution of the Boltzmann transport equation is only possible under very restrictive ap-
proximations. On the other hand, the direct numerical methods for device simulation have been limited 
by the complexity of the BTE. Thus, the fundamental methods which have been used for solving the 
BTE and finding the carrier distribution function can be summarized into the following basic categories:

Figure 16. Intervalley scattering between central and satellite valleys in GaAs
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Table 2a. Conduction band deformation potentials in eV (acoustic) and 108eV/cm (optical) in Si, Ge 
and other semiconductors

Mechanism Si Ge AlAs AlP GaAs GaP GaSb InAs InP InSb In0.53Ga0.47As

Acoustic 
intra-band1

1.2 1.5 7.0 7.0 5.0 5.0 5.0 3.4 5.0 5.0 5.4

Acoustic 
interband

1.5 1.0 7.0 7.0 3.5 5.0 5.0 2.4 5.0 5.0 6.0

Optical 
intra-band

1.75 2.0 2.0 3.0 2.1 1.0 3.0 1.1 2.0 2.0 2.0

Optical 
interband

1.9 1.5 2.0 3.0 1.5 1.0 3.0 1.1 2.0 2.0 2.5

Table 2b. Valence band deformation Potentials (acoustic and optical) in Si, Ge and other semiconductors

Mechanism Si Ge GaAs InAs In0.53Ga0.47As

Acoustic (eV) 4.6 4.6 6.3 6.3 6.3

Optical (108 eV/cm) 6.6 9.0 11.3 11.3 11.3

Table 2c. Coupling coefficients in Si

Mechanism Coupling Coefficient 
Dm [eV/cm]

Phonon Temperature 
Tp [K] = ħω / kB

Intervalley Phonons

Intervalley f1 1.5 x107 210 TA

Intervalley f2 3.4 x108 500 LA

Intervalley f3 4 x108 600 TO

Intervalley g1 5 x107 140 TA

Intervalley g2 8 x107 210 LA

Intervalley g3 3.0 x108 700 LO

According to Jacoboni and Reggiani (1983).

Table 2d. Other parameters of silicon

Parameter Symbol Value Reference

Lattice constant ao 5.431 À Agrain & Balkanski, 1961

Density ρ 2.329 g/cm3 Jacoboni & Reggiani, 1979

Sound velocity vs

Longitudinal: vl 9.0 x105 cm/s Jacoboni & Reggiani, 1979

Transverse: vt 5.4 x105 cm/s Jacoboni & Reggiani, 1979

Dielectric constant εs 11.7 Jacoboni & Reggiani, 1979
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• Assuming a priori analytical form of the distribution function,
• Approximate linearized methods or drift-diffusion model (DDM),
• Moment or hydrodynamic methods (HDM),
• Direct Methods
• Stochastic solution methods (Monte Carlo Methods)

The direct solution of the BTE can be performed by means of several approaches, such as expansion 
into spherical harmonics (SHE), and the iterative methods. The so-called weighted essentially non-
oscillatory (WENO) Boltzmann schemes are also a sort of direct solution methods of the BTE. Direct 
methods consist in discretizing the BTE in phase space and solving the resulting difference equations, 
over a mesh of discrete points, by appropriate numerical methods (Banoo & Lundstrom, 2000). Some 
semiconductor solvers are also based on the stochastic solution methods, which involve the simulation 
of particle trajectories rather than the direct solution of differential equations (Jacoboni & Reggiani, 
2000). These statistical methods are referred to as particle simulation by Monte Carlo method (MCM).

5.1 A Priori Solutions of the BTE

There are many approximations, which are sometimes used to guess the non-equilibrium distribution 
functions of charge carriers. Among them, one can cite:

• The Fermi-Dirac distribution function
• The heated Maxwellian distribution,
• The displaced Maxwellian distribution,

Evidently, the Fermi-Dirac distribution is only valid at thermal equilibrium. Therefore it may be used 
to calculate transport near to the equilibrium state.

Heated Maxwellian Distribution

The heated Maxwellian distribution (at electronic temperature) is given by:

fM(En) = C.[n/(kBTn)
3/2].exp (-En/kBTn) (51)

where n and Tn are the electron average density and temperature. Also, En = ½mn*un
2 is the electron 

energy, un is the electron group velocity, mn* is the electron effective mass and C is a constant. This 
distribution is only valid if the collisions are totally randomized such that the average electron velocity 
is negligible. However, this assumption is not acceptable in practical devices.

Displaced Maxwellian Distribution

According to Stratton (1962), the electronic temperature has no physical meaning, unless the distribution 
function is a displaced Maxwellian. The displaced Maxwellian distribution at the electronic temperature 
is given by:
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fDM (k) = C’.[n/(kBTn)
3/2].exp (- ½ mn*(un(k)-vn)

2/kBTn) (52)

where vn=<un(k)> is the electron drift velocity and C’ is a constant.
The drifted (displaced) Maxwellian distribution can be expanded into symmetric and asymmetric 

parts, as shown in the following figure. However, the exact numerical solution of the BTE has shown 
that the energy distribution is not Maxwellian at high electron energy. Figure 17 shows the drifted Max-
wellian velocity distribution. Figure 18 depicts the electron energy distribution inside an n-MOSFET as 
obtained by MC simulation.

The distribution is calculated at 10nm of the drain junction by Higman et al. (1989). The displaced 
Maxwellian, which best fits the MC simulation (at 500K) is also illustrated. As shown in figure, the 
tail of energy distribution function cannot be approximated by a Maxwellian distribution. This result 

Figure 17. The heated and drifted Maxwellian velocity distribution functions

Figure 18. The drifted Maxwellian velocity distribution function, its symmetric and asymmetric components
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has been later confirmed, by experiment, using the so-called photon energy distribution (PED) method 
(Lanzoni et al., 1991).

Non-Maxwellian Distributions

The distribution function fn(E) is sometimes assumed with a non-Maxwellian factor γ, such that:

fn(En) = (1+γ.En/kBTn). fm (En) (53)

Here, fm(E) is the heated Maxwellian distribution function at an elevated temperature Tn. This non-
Maxwellian distribution function is frequently used in the so-called energy transport model (ETM),

Other a priori distribution functions, which assimilate the tail of the real distribution function at high 
carrier energy, have been proposed in the literature. These distribution functions will be presented in the 
context of impact ionization models, in Chapter3. For the matter of completeness, we mention here the 
two-component distribution, which was proposed to account for both cold and hot carriers populations 
in nanoscale devices:

fn (En) = C1 { exp [ -(En / Eref)
b] + C2 exp[-(En/kBT2)] } (54)

Here, C1, C2, Eref and b are adjustable parameters, for tuning the hot carrier component, and the cold 
carrier (Maxwellian) component. Of course all these analytical distributions are not physical at all. 
However, they are sometimes used for fitting the simulation results of high-field phenomena in semi-
conductors solution methods (e.g., MCM) with real measurements.

Figure 19. Electron energy distribution function jn a MOSFET by Monte Carlo method
After Higman et al. (1989).
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5.2 Linear Transport Theory (Relaxation-Time Approximation)

The solution of the BTE can be greatly simplified by expressing the collision term in terms of a micro-
scopic relaxation time as follows:

[∂fv/∂t]col. = - (fv – fo) /τDv (55)

Here, τDv is called the carrier microscopic relaxation time and fo is the carrier distribution function at 
thermal equilibrium. Therefore, the BTE becomes linear in f. The carrier distribution function at ther-
mal equilibrium may be expressed by the Fermi-Dirac distribution function or the Maxwell-Boltzmann 
distribution (at lattice temperature). Thus, for electrons we have:

fo= n (mn*/ 2π kBTL)
3/2. exp[-En / kB TL] (56)

where En is the microscopic electron energy (measured from the conduction band edge Ec), TL is lattice 
temperature. This approximation is valid at low fields where the carrier velocity and current density are 
linear with field. Generally speaking, τDv lumps all the acting collision mechanisms of charge carriers. 
It may be given by the following expression (for electrons):

τ Dn (En) = τo (kB TL / En) 
r (57)

where kB is the Boltzmann constant. The two scattering parameters r and τo are dependent on the lattice 
temperature TL as well as the dominant collision mechanism.

The above approximation10 involves a linearization of the distribution function in two terms, such 
that fn = fo + f1, where fo is symmetric and f1 is non-symmetric in the k-space. The linearized BTE can 
be written as follows (for electrons, under the effect of external electric field ζ):

∂ fn/∂t +un .∇fn - (eζ/ħ) .∇k fn = - (fn – fo) /τDn (58)

where un(k)=(1/ħ)∇E(k) is the electron group velocity. If we only consider the time scales which are 
longer than the collision time τDn, (in the order of 0.1ps in Si), therefore, we can neglect the ∂fn/∂t term, 
with respect to f1/τDn. Then, the solution of the linearized BTE can be expressed as follows:

fn = fo - τDnun .∇fn + e τDn (ζ/ħ) .∇k fn (59a)

Putting∇kfn = (∂fn/∂En).(dEn/dk), ∂fn/∂En ≈ ∂fo/∂En, and then substituting un= (1/ħ) dEn/dk yields:

fn ≈ fo - τDnun .∇fn + e τDnun.ζ(∂fo/∂En) (59b)

For homogeneously-doped semiconductors (∇fn=0), we can write:

fn = fo (1- e τDnunζ/ kB TL) (60)
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Here, we substituted (∂fo/∂En) = - (fo/kB TL). This solution is only valid for small perturbations (for 
elastic scattering events, near equilibrium) where the electric field satisfies the condition:

e τDnun . ζ<< kB TL (61)

Thus, if we admit that the mean free path of electrons (λn = τDn un) to be in the order of 200Ǻ, then 
the above condition is only verified when the electric field ζ is much smaller than 104 V/cm.

Physical Note 2: What’s the Relation between the Microscopic 
Relaxation Time and the Collision Rate?

We have seen that the calculation of the BTE collision term we sum equation (10) over all possible states 
k’. For small fields witch change the distribution function f only little from its equilibrium, we have f = f0 
+ f1. We have also S(k’,k)f0(k’)=S(k,k’)f0(k), from the detailed balance principle. Therefore we can write,
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∂
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where τD(k) is microscopic relaxation time; this is NOT the same as the mean free time between colli-
sions (used in the definition of the drift mobility μ =eτ/m*). If the scattering process is assumed elastic, 
it does not change the energy but only the direction of the particles. Therefore, the derivative of f0 with 
respect to energy is the same for k and k’; consequently it cancels out of the ratio. In addition we may 
use a parabolic relationship between energy and wavevector near equilibrium (E=ħ2k2/2m*). Next, we 
choose a coordinate system where the initial wavevector (k) is along the z direction and the electric field 
(ζ) is contained in the yz plane.

Reporting all these assumptioins into the above integral, leads to f1(k’) / f1(k) = ζ.k/ζ.k’=cos(θ), where 
θ is the scattering angle between k and k’. Then, the square brackets in the above integral reduce to [1-cos 
θ]. This is detailed in (Tritt, 2005, pp.47-48).Theb, the relation between microscopic relaxation time τD 
and the microscopic scattering rate 1/τ(k) =Γ(k)=∫S(k,k’)d3k’ is the average of this bracket <1-cos(θ)> 
in the k-space.

Current Density and Energy Flux

For a semiconductor with arbitrary doping profile, the current equations can be deduced from the linear-
ized BTE (40) as follows:

Jn = - e ∫ un fn(En) gc(En) dEn (62)

where gc(En) = C.En
1/2 is the density of states for electrons in the conduction band and C is a normaliza-

tion constant. The normalization constant can be calculated using the relation:

n = ∫ fn(En) gc(En) dEn (63)
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Substituting fn(En) ≈ fo(En), we can easily find that C = 2π(2/mn)
3/2. Note that En is measured from 

the conduction band edge and hence the integration is carried out for En = 0→ ∞. Also, equation (40b), 
which describes the linearized distribution function, may be further simplified as:

fn ≈ fo - λn (e ζ fo / kB TL +∇ fo) (64)

where we substituted λn = τDn un. Now, substituting fn from (40a) and gc(En)=2π(2/mn)
3/2.En

1/2 into (41a) 
and integrating yields:

Jn =− ⋅ − +∇
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Note that we also substituted un=√(2En/mn*). Now, assuming that both the effective mass mn* and 
the mean free path λn are energy-independent (or slow functions of energy) and substituting fo from 
(35), we get:
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 (65b)

Figure 20. Scattering coordinate system
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Note also that the integration over the first symmetric term, fo, in (64) is null. Similarly, we can cal-
culate the electrons energy flux Sn as follows:

Sn = ∫ un En fn(En) gc(En) dEn 

= 
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 (66a)

Therefore, the energy flux can be written as the sum of convective and conduction parts, as follows:

Sn = -2 (kBTL/e).Jn - 8 n λn (kBTL/2π mn*)1/2.∇(kBTL)] (66b)

When there is just one type of charge carriers, the above relation may be put in the form (Sn= Qn+ 
EF.Jn), where EF is the Fermi energy (chemical potential). Therefore, if energies are measured with respect 
to the Fermi energy level (chemical potential), energy current (Sn) becomes a conduction heat current 
(Qn). In this case, the heat current maybe defined as follows:

Qn = ∫un (En –EF).fn(En) gc(En) dEn (67)

Transport Parameters

We finally investigate the well-known drift-diffusion current relation for electrons and the transport 
parameters as follows. Consider first the carrier current density in homogenous semiconductor, when 
there is no carrier nor temperature gradients:

Jn(∇n=0,∇TL=0) = σnζ =2λn(2kBTL/π mn*)1/2(e2nζ/kBTL) (68a)

Thus, the electron conductivity σn is given by:

σn = e n μn = e2n [4λn/(2π mn*kBTL)
1/2 ].  (68b)

Hence the electron drift mobility μn is given by:

μn = 4eλn/(2π mn* kB TL)
1/2 (68c)

Also, the carrier diffusion coefficient Dn can be found as follows:
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Jn(ζ=0,∇T=0) = eDn∇n =2eλn (2kBTL/π mn*)1/2∇n. (69a)

Consequently, the carrier diffusion coefficient Dn is given by:

Dn = 4λn [kBTL /(2π mn*)1/2 ] = μn (kBTL/e)  (69b)

This equation satisfies the Einstein relation (Dn/μn=kBTL/e). Also, the lattice thermal kn
th (due to 

electrons) can be calculated at zero current density, as follows:

Sn (Jn=0) = - kn
th ∇TL = -8λ n(kBTL/π mn*)1/2 n∇(kBTL) (70a)

Therefore, kn
th is given by:

kn
th =8 λn (kBTL /2π mn*)1/2 n kB = 2(kB/e)2σn.TL (70b)

The above equation satisfies the well-known Weidman-Franz law, which been already introduced in 
Chapter 1, as follows:

kth/σ = L.TL = γ (kB/e)2TL (70c)

Here kth is the thermal conductivity of the semiconductor material and L = γ (kB/e)2 is the Lorentz 
number and γ is the Lorentz coefficient. Note that the thermal conductivity due to charge carriers (kn

th and 
kp

th) is just a part of the total thermal conductivity kth of a semiconductor (kth = kn
th + kp

th + kph
th + mixed 

terms). We implicitly assume here that the electron temperature is equal to the lattice temperature and the 
thermal conductivity of the lattice is mainly due to the electron contribution, which is the case in metals.

Actually, the Weidman-Franz law is experimentally verified in metals. However, in semiconductors, 
phonons play a significant role in the heat conduction process. Thus, the Weidman-Franz law may be 
considered as a phenomenological relation in the case of semiconductors.

Now, by substituting the transport coefficients (drift mobility and diffusion constants) in the current 
equation (38) we obtain:

Jn = e n μnζ+ e Dn∇ n + e Dn
th ∇TL (71a)

where Dn
th=n(Dn/2TL) is the thermal diffusion coefficient.

In a more elaborate derivation, we consider the variations of the Fermi-level with position such that 
∇EF ≠ 0 in the expression of ∇fo and we integrate equation (38) starting from the edge of the conduc-
tion band Ec. Then the current equation may be put in the following form:

Jn = e n μnζ+ e Dn∇ n - n μn Pn
th ∇TL (71b)

where Pn
th = - (kB/e)[5/2 – r + (Ec -EF)/kB TL] is the thermoelectric power of electrons. This relation is 

one of the Onsager relations that we presented in Chapter 1, and maybe derived, from the first principles 
(Drude’s model).
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More Accurate Derivation of Jn and Sn

In the above derivations we assumed that both the effective mass and mean free path λn =τDn un are in-
dependent of energy. This means that we assumed r=½ in the relaxation time expression τDn =τo(kBTL/
En)

r, because un=√(2En/mn*). As the mean free path is not constant and r ≠ ½ in general, we should 
better use the relaxation time expression and derive Jn and Sn as well as all other parameters, in terms 
of r. Starting with the linearized distributed function: fn ≈ fo - τDnun(eζfo/kBTL +∇fo), then substituting 
τDn and integrating yields:

Jn = - e ∫ un fn(En) gc(En) dEn = n
m
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Sn = ∫unEn fn(En)gc(En)dEn = -(5/2 -r).(kBTL/e)Jn -(5/2 -r)(kB/e)2.σnTL∇TL (73)

where α =4Γ(5/2-r)/√π. This expression is similar to (38), except for the numerical coefficient. Here, 
the mobility μn = α.(eτo/mn*) instead of 4eλn/(2πmn*kBTL)

1/2 = (4/π).(eτo/mn*). Note also that the Lorentz 
number γ =(5/2-r), which is a well-known result in the bulk of semiconductors.

Drift-Diffusion Model (DDM)

In isothermal conditions, where the semiconductor crystal is maintained at a constant temperature such 
that∇TL = 0, then equation (38) reduces to the conventional drift-diffusion current equation (for electrons):

Jn = e n μnζ+ e Dn∇n (74a)

A similar relation can be deduced for holes.

Jp = e p μpζ- e Dp∇p (74b)

These relations are exactly equivalent to equations (71) from Chapter 1 within the framework of the 
drift-diffusion model (DDM).

Semiconductor Equations

In order to make use of the drift diffusion model, we substitute the current equations (65) into the cor-
responding continuity equations of electrons and holes to get the semiconductor equations. The resultant 
differential equations should be coupled with the Poisson equation, and solved together to get the main 
transport variables (the electric potential ϕ, the electron density, n, and the hole density, p). We write 
this system, below, for the matter of completeness:
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These equations describe the transport of charge carriers inside homo-geneous semiconductors. This 
set can be modified to account for heterogeneous devices, which consist of different semiconductors. 
However, these equations are based on the DDM, which is only valid at low electric fields.

The model parameters, such as the carrier mobility and diffusion coefficient are generally dependent 
on the main variables (ϕ, n, p) or their derivatives. Therefore, the above system is actually a nonlinear 
2nd order system of differential equations. Though, the device dimensions are currently in the nanometer 
regime and the nonlocal quantum effects are dominant, the DDM is still used (occasionally, with some 
quantum corrections) to estimate the performance of many semiconductor devices. The quantum cor-
rections have been extensively discussed in the literature, e.g., in (Jerome, 2009) and will be presented 
in Chapter 4 of this book,

Modeling of Physical Parameters

The modeling approaches of physical parameters in semiconductor materials can be divided into three 
categories:

1.  Physically-Based Models: These expressions capture the physical model into a closed form solution 
in which the parameter dependencies are obtained from fundamental calculations, with simplifying 
assumptions.

2.  Semi-Empirical Models: This approach arises because in practice it is seldom the case that the 
physically-based models conform to the experiment. In order to reconcile the model with experi-
mental data, the coefficients in the physically-based model are allowed to vary from their original 
values.

3.  Empirical Models: The empirical models are those in which all parameters are allowed to vary. 
They generally tend to obscure the important physics behind the phenomena.

For instance, the drift mobility of charge carriers is defined as the ratio of the magnitude of carrier 
drift velocity over the magnitude of electric field (vn= μn ζ). We have also seen in the development of 
the classical transport theory that the expression of the carrier drift mobility may be given by:
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μn = e τ / mn* (77a)

where τ is the mean time between collisions, averaged over all collision mechanisms of electrons in the 
semiconductor material.

τ τ− −
= ( )∑1

1

ji
 (77b)

Here τ
j
 is obtained by averaging the mean free time (or relaxation time11) due to a certain collision 

mechanism, weighted by the carrier energy (E), over the distribution function, as follows (Elliot & Gib-
son, 1980):
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As the distribution function is not generally known, it is usually replaced by the Maxwell-Boltzmann 
distribution function, in equilibrium fn ≈ fo,. Also, the band structure is usually assumed parabolic. There-
fore, the average scattering time is calculated near equilibrium (at low electric fields).

The calculations details for each scattering mechanism may be found in many textbooks, such as 
Vapaille (1970), Tavernie and Calcki (1970), Kittle (1980) and Blatt (1992). We remind the reader that 
τj(E) of a certain collision mechanism, may be also defined as the inverse of the integrated scattering 
probability per unit time Γj(E), as indicated by (12d). In a previous section, we have illustrated the ex-
pression of Γj(k) of almost all collision mechanisms of interest in semiconductors. Note that we assume 
that these mechanisms are statistically independent in (49b). Substituting (49b) into (49a) results in the 
Mathiessen rule: 

μ -1 = Σ μj 
-1 (78)

Applying the above integration results in some analytical models of charge carrier mobility (Tavernie 
& Calcki, 1970), as shown in Table 3.

Note that, at low electric fields, the ionized impurity scattering and phonon scattering predominate 
in semiconductors and should be considered, within the DDM simulation framework. However, the 
overall mobility models, which are usually employed in device simulation, are generally semi-empirical, 
and involve many fitting parameters (Del Alamo, 1985). The following figure depicts the experimental 
and theoretical (semi-empirical) electron and hole mobility in Si at 300K, according to several authors.

5.3 Direct Solution Methods

Recently, some researchers have used powerful computational platforms to attack the iterative numerical 
solutions of the BTE, by several techniques, such as the spherical harmonic expansion of the distribu-
tion function.
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Direct Solution by Iterative Methods

The iterative methods for solving the BTE are based on the following integration formula for the distri-
bution function (in a homogenous material.)

f k t dt K y dy f k t t
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∞
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where λ(k) = (V/2π)3∫S(k,k’)dk’ is the out-collision rate, as defined by (10b). This integral form is 
sometimes called the Chamber path integral (Chambers, 1952) or the Chamber integral form of the BTE 
(Budd, 1966). The iterative method consists of substituting an initial distribution function fo(k,t) into the 
right-hand side of the above equation and evaluating f(k,t), as demonstrated by Rees (1968, 1972). The 
new distribution function is again substituted into the right-hand side of this equation and this procedure 
is repeated until f(k,t) converges to its solution with a given accuracy, A review of iterative methods for 
the solution of the BTE, can be found in Hammer (1977).

Figure 21. Experimental and theoretical (semi-empirical) electron and hole mobility in Si at 300K, ac-
cording to several authors
Data from (Saso et al., 2009).

Table 3. Models of the charge carrier mobility, due different scattering mechanisms. Here μvo is a con-
stant (different for each mechanism), mv* is the carrier effective mass, mo is the electron rest mass and 
TL is the lattice temperature.

Scattering Mechanism Mobility Model

Scattering over acoustic phonons μv = μvo (mv*/mo)
−5/2 .(T/TL)

−3/2

Scattering over ionized impurities μv = μvo (mv*/mo)
−1/2 .(T/TL) 

3/2

Scattering over optical phonons μv = μvo (mv*/mo)
−3/2 .(T/TL) 

1/2
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Direct Solution by Spherical Harmonic Expansion (SHE)

The spherical harmonic expansion (SHE) of the BTE has been widely used in the literature to calculate 
the electron distribution function, particularly at high energy. The SHE method is based on the develop-
ment of the distribution function by the Legender polynomials, Pl,m(θ,ϕ), in the k-space, as follows (in 
steady state):

fn(r,k) = fn(r, k, θ, ϕ) = f r E P
m n l m

m l

l

l

( , ) (cos , sin )
,

⋅
=−=

∞

∑∑ θ φ
0

 (80)

where En=En (k) is the electron energy and k is the magnitude of the wave vector. The zero-order term 
fo(En), where P0,0=1, is the spherically symmetric term of f(r,k) in thermal equilibrium. The other expansion 
terms, which depend on polar angles θ and ϕ, represent the anisotropic components of the distribution 
function in presence of external fields. In one-dimensional physical space the angle θ represents the angle 
between the carrier wave vector k and the physical space axis x. Here, we omit the spacial coordinate 
(r or x) for simplicity. After substituting the SHE into the BTE we get an infinite series of differential 
equations. For instance, the first-order term of the BTE expansion in steady state reads:

[un.∇r – (eζ/ћ).∇k] fo + 2/5 [un.∇r -(eζ/ћ).∇k] f2 = (∂f1/∂t)col (81)

where (∂f1/∂t)col is the collision term which is associated with P1,0(cosθ). After substituting the collision 
terms (using appropriate approximations), the solution of the set of differential equations (truncated to 
a certain order) results in the carrier distribution function fn(k).

Figure 22 shows the velocity distribution of an N-i-N structure, as calculated with MCM and SHE 
simulations. Considering just one Legendre polynomial (LP,1), the SHE result is different from the MC 
simulation, whereas for LP> 9, both simulations are in good agreement. Therefore, the SHE simulation 
with enough polynomials is a good alternative to the MCM. However, the biggest disadvantage of this 
method is the high memory requirement if a 2D or 3D real space is considered. It is interesting to note 
that taking just the first Legendre polynomial of the SHE, in a homogeneous system at low-field, is 
equivalent to the drift-diffusion model.

There exists a variety of device simulators, which are based on the solution of the BTE by the SHE. 
For instance, ViennaSHE is a multi-dimensional (1D, 2D and 3D) semiconductor device simulator on 
the basis of the SHE method. This simulator is an open source with its C++ code. The major challenge 
of the SHE method is the huge memory requirements when simulating electronic devices in two or three 
physical dimensions

Mathematical Note 3: Spherical Harmonics

The conventional spherical harmonics, Yl,m(θ,ϕ) are defined as follows:
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which is valid for m ≥ 0, while the eigenfunctions corresponding to negative values of m are obtained from:

Yl,-m = (-1)m Y*lm 

The functions Pl,m are the associated Legendre polynomials, which are defined by:

P u
l m
l m

l u
l

d
du

u
lm

l m
m i m l

( ) ( )
( )!

( )!
.
( )

!. !

/

= −
+
−

−
−( )+

− −

1
2

1
2 2

2  

where we put u = cosθ and (1-u2)1/2 = sinθ. The above relation is valid for m ≥0, and the values for nega-
tive m are given by:
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The carrier distribution function can be then expanded in the phase space as follows:

Figure 22. Velocity profile of an N-I-N structure calculated with a device MC simulation and with a SHE 
simulator taking 1, 5, 9, and 15 Legendre polynomials (LP) into account
Hong, Pham & Jungemann, 2011.
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where Yl,m are the orthonormal, real-valued spherical harmonics on the unit sphere and the coefficients 
flm(r, k) are given by:
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5.4 Monte Carlo Method

The Monte Carlo method (MCM) is a stochastic method, which can be used to solve integro-differential 
equations like the BTE and can offer great advantages over traditional approaches. The MC method was 
introduced in solid-state physics by several researchers and scientists. For instance, it was employed by 
Kurosawa (1966) to study nonlinear electron transport in semiconductors. The utilization of the MC 
method permits the calculation of the statistical mean values of all transport quantities, such as the mean 
electron velocity (vn = <ug(k)>) and the carrier mean energy (ωn= <E(k)>). The MC method can be used 
either for modeling of physical parameters (like drift mobility and impact ionization) or as simulation 
tool for whole semiconductor devices.

Since no a priori assumption is needed on the form of the carrier distribution (in real space and k-
space), the Monte Carlo simulation is a reliable tool for the investigation of physical phenomena that 
critically depend on the shape of the distribution function, or on the details of its tail at high energies. 
Therefore, the Monte Carlo technique allows us to focus on certain physical mechanisms that might be 
of importance on the device performance, like the carrier generation by impact ionization or the hot 
carrier injection phenomena in MOSFET devices.

When the purpose of the analysis is the investigation of a steady-state, phenomenon in homogeneous 
bulk of a semiconductor (without electron–electron collision), it is sufficient to simulate the motion 
of one single carrier. The one-particle Monte Carlo (OPMC) simulation can be performed on a given 
fixed potential. However, when the transport is time or space dependent, which is generally the case in 
semiconductor devices, it is necessary to simulate a large number of carriers and follow their dynami-
cal histories. The alternative technique is called Ensemble Monte Carlo or EMC (Lebwhol and Price, 
1971). However, the stability requirements for EMC are more severe than the OPMC method (Kosina, 
Nedjalkov and Selberherr, 2000).

The Ensemble Monte Carlo (EMC) and the Full-band Monte Carlo (FBMC) methods have been 
widely used to study the proprieties of semiconductor devices. In FBMC, the band structure of the ma-
terial is evaluated, usually with a pseudo-potential method, in a grid over the k-space grid, and stored 
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as a look-up table. During MC simulation, the band structure, E(k), and the density of states are called 
from the look-up tables when needed (e.g., for the calculation of the scattering rates). The Monte Carlo 
methods are usually coupled with the Poisson equation (in linearized form) via the carrier density. Once 
the basic physics involved in the transport of a device are known, the MC simulation results can be used 
to determine the device characteristics.

According to our knowledge, Hockney and coworkers applied the first self-consistent MC simula-
tion to a whole semiconductor device (Hockney & Eastwood, 1988). For large class of devices, which 
are characterized by substantial areas of low electric field and retarding barriers, the direct simulation 
in such regions is time consuming. In contrast, the traditional simulators, based on the drift-diffusion 
model (DDM) can be applied to such situations. Therefore, a hybrid (MC-DDM) has been proposed, 
by relying on the fast DDM simulators for low field areas, and on the MC simulation where potential 
gradients heat-up carriers (Bandyopadhyay et al., 1987). Although excellent in principle, the hybrid 
MC-DDM technique requires accurate handling of boundary conditions at the interface regions (Hig-
man, Hess & Dutton, 1989).

In the called cellular automaton Monte Carlo (CA/MCM), the entire Brillouin zone is discretized 
using a non-uniform mesh, and a transition table is generated between all initial and final states on the 
mesh, which greatly simplifies the final state selection of the conventional Monte Carlo method (Saraniti 
& Goodnick, 2000). However, this speed-up is obtained at the cost of large memory requirements to 
store the entire scattering tables.

Monte Carlo Algorithm for Device Simulation

The basic idea of the MC method is to simulate the motion of one or many carriers in the phase space, 
according to a specific equation of motion (like the BTE in semiclassical transport). The motion consists 
of a drift by an electric field, which is followed by a collision. The drift and the collision rate as well 
as the final states are controlled by the laws of probability. The basic steps of MC simulation can be 
summarized as follows:

1.  Initialization: The physical space is divided into mesh of discrete points (grid). The choice of the 
grid (ΔX) size and time step (ΔT) depends on the Debye length (λD) and the plasma frequency (ωp). 
The numerical discretization is usually carried out by the finite difference method (FDM).

2.  Charge Assignment: In charge-carrier transport, the charge of each carrier is assigned to a par-
ticular mesh point. Since it is not possible to simulate all carriers in a real device, each simulated 
carrier represents a cloud of carriers in order to estimate current and field.

3.  Calculate Potential Distribution: The Poisson equation is solved to determine the electrostatic 
potential at the mesh points. The solution can be obtained in several ways; the most efficient one 
is the Fourier analysis cyclic reduction (FACR) and the direct matrix inversion. The electrostatic 
field distribution and acting forces are then obtained from the potential.

4.  Simulate Carrier Flight and Scattering: Each simulated carrier is treated as an individual particle, 
and undergoes a sequence of free flights and scattering, while it is subject to the local field. The MC 
sequence stops at fixed times, when the field is adjusted. The scattering probability S(k, k’) that an 
electron undergoes a transition from an initial state k to a final state k’ is usually calculated within 
first order perturbation theory, using the Born approximation and the Fermi golden rule. Several 
scattering mechanisms can be included in the MC simulator, among which acoustic, optical inter-
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valley and inter-band phonons, ionized and neutral impurities, surface roughness, alloy fluctuations 
and collision with other carriers. Also, impact ionization, Auger, and generation-recombination, 
processes can be taken into account. The time of flight (Δt) and the length of a free flight (Δx=ugΔt) 
and the k-space trajectory of each particle can be calculated.

5.  Calculate Carrier Trajectory: The carrier distribution function is calculated from the carrier 
trajectory in both the physical and k-space at different times.

During the charge-carrier free flight, it is accelerated by the electric field as a semi-classical particle 
such that:

F= Δp/ Δt = -eζ, (for electrons), Δp= ħ Δk= ħ(k-k’) (82)

where the electric field ζ, can be calculated from the charge carrier distribution, using Poisson’s equa-
tion. Thus, from (82) we can write:

k=k’ – e (ζ,/ħ) Δt (83)

The flight time Δt is related to the probability of not-being-scattered rs, which is selected randomly 
(0 < rs < 1), according to the relation:

rs = 1 - exp (-Δt ΓT) (84)

where ΓT(k)= Σ Γj(k)= V/(2π)3∫ S(k,k’)d3k’ is the integrated total scattering rate. Since k=k(t), the above 
relation is usually written as follows:
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As rs and (1-rs) have identical distributions, then, the flight time Δt may be calculated from the fol-
lowing integral

− = −∫ln( ) ( ( ')) 'r k t dt
s T

t

Γ
∆

0

 (86)

The above integral is not trivial and cannot be performed analytically, unless ΓT is constant. In addi-
tion, we must use the above formula after every collision and for any particle. As the choice of random 
flights is performed so many times in MC simulation, several methods have been introduced to facilitate 
the solution of (86). Among these methods one can cite the self-scattering method (Rees, 1968), where a 
virtual scattering process is added such that the total ΓT is constant. When the self-scattering mechanism 
is selected, the energy and wave vector of the electron are not changed. Therefore, we can choose the 
free flight duration Δt according to the rule
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ln  (87)

Thus, every electron has a proper time Δt which is generated after every collision using the random 
number rs. Therefore, the particle trajectory in the k-space (k =[kx,ky, kz]

T) can be calculated using (83). 
In the same manner, the particle trajectory in the physical space (x =[x,y,z]T) can be calculated using 
the following relation:

x=x’ +ug(k). Δt (88)

where ug(k) = (1/ħ) dE(k)/dk is the particle group velocity and E(k) is energy dispersion, which may be 
approximated by a parabolic relation. However, it is possible to use a full band structure, which can be 
calculated, for instance, by the pseudo-potential method (Al-Said & Walter, 2008).

Calculate Averages (Mean Velocity and Energy): The mean carrier velocity can be written as

vd = <ug> = (1/e.ζ.T).Σ(Ef - Ei) 

where T =ΣΔT is the total simulation time and Ei and Ef are the initial and final carrier energy at the 
start and end of the electron flights. Also, the mean carrier energy can be calculated as

ω = <E> = ½ (Ef - Ei). 

A flowchart of a generic EMC device simulation is shown in Figure 23.
The Figure 24 depicts the electron energy distribution function in GaAs, at 300K, as obtained by the 

MC method, under different values of electric field, according to Fawcett, Boardman and Swain (1970).

Monte Carlo Simulation Programs

Together with the measurement techniques, the MC gives a microscopic description of several param-
eters in semiconductor devices. Today there is a variety of 1D, 2D and 3D Monte Carlo simulators like 
DAMOCLES from IBM, and MOCASIM from Silvaco and VMC from the Institute for Microlelectronics 
(Technische Universität Wien). Such Monte Carlo simulators can solve the BTE in bulk materials with 
full band structure.

Figure 25 depicts the electron energy distribution function at different electric fields in Si, as obtained 
by Damocles FBMC simulator (Fischetti, 2004). The Figure 26 depicts the electron mean velocity and 
mean energy, as calculated by Monte Carlo method.

Advantages and Disadvantages of MCM

The following figure shows a comparison between Monte Carlo and SHE simulation methods, in the 
bulk of Si, according to Bina and Rupp (2015). The figure shows the effect of electron-electron scat-
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tering, which renders the BTE nonlinear and harder to solve by direct methods. In spite of the accuracy 
advantages of the MCM, it is expensive, in terms of computer resources, especially in three spatial 
dimensions. In addition, a closer look on numerical accuracy can easily identify some problems that are 
hard to solve with a MC algorithm. For instance, the calculation of the linear response near equilibrium 
for a MOSFET in weak or strong inversion is not trivial. This is an easy task for DDM-based simulators 
if the usual techniques are employed. However, for MC algorithm the situation is completely different. 
For a self-consistent multi particle solution of BTE and Poisson’s Equation with the MC algorithm, the 

Figure 23. (a) Flow chart of Monte Carlo Method; (b) time discretization in EMC algorithm
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following equation holds for the CPU-time (TCPU) necessary to reach a relative error (r) for the DC 
drain current (ID) with a probability of 95%

TCPU = 8α (Vth/VD.ID).(Qt/r
2) (89)

where Vth is the thermal voltage, Qt is the total charge in the device, VD is the drain voltage and α is the 
ratio of the CPU time and the simulated time divided by the number of simulated particles. For 1GHz 
CPU, α ≈ 2.5x 1010.

This formula shows clearly that r ∼ 1/√TCPU, for all MC simulations. Moreover, it is clear that TCPU 
can vary depending on the drain current and the required accuracy r which is not the case for DDM-
based simulations.

6. LIMITS OF THE BTE

We have seen so far the Boltzmann transport equation is a powerful tool to study the transport phenom-
ena in semiconductor devices. However, the BTE is only valid as long as the following assumptions are 
acceptable:

• Collisions are localized in space, so that the mean free path of charge carriers is much greater than 
the de-Broglie wavelength (λ >>λDB = h/p),

Figure 24. Electron energy distribution function in GaAs at 300K, under different values of electric 
field, as obtained by the MC simulation; The Maxwellian distribution corresponds to the equilibrium 
state (at ζ=0).
Fawcett et al, 1970.
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• Collisions are instantaneous in time such that the collision time τcc is much smaller than the time 
between subsequent collisions (τcc<<τ),

• The external electric field force does not vary greatly over small distances in the order of wave 
packet length λDB,

• The carriers are weakly correlated and the many-body effects are negligible. This is called the 
Bogoliubov assumption (Bogoliubov, 1946). For strongly ionized gasses, and degenerate semi-
conductors, where carrier- carrier collisions are not negligible, the Boltzmann transport equation 
should be replaced by another more suitable model, like the so-called Fokker-Planck equation 
(Tome, 2006).

Figure 25. (a) Electron energy distribution function in Si, as obtained by the full-band MC method, under 
different values of electric field, by Damocles; (b) electron mean energy in bulk Si, by MCM according 
to several authors
Fischetti, 2004.
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Mathematically speaking, the BTE is valid as long as the following inequality is realized (Ferry, 
Barker & Jacobini, 2012):

e q

m cc

ς τ
τ

� �

2

2
*
≤  (90)

where ζ is the applied electric field, τcc is collision time and τ is mean free time between collisions and 
q = k–k’ is the wave vector of involved phonons (emitted or absorbed) during the collision. The above 

Figure 26. Electron drift velocity in Si, by MCM, according to several authors

Figure 27. Comparison between Monte Carlo and SHE simulation methods
After Bina & Rupp (2015).
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condition is sometimes called the Barker equation. The right-hand side of this condition (2ℏ/τcc) is 
sometimes called the collision bandwidth and is termed by Γ.

When collisions are not instantaneous (τcc ≠0) then the collision bandwidth Γ=2ℏ/τcc is finite, and the 
delta function in the Fermi golden rule (of scattering rate) should be replaced by a Lorentzian as follows:
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In this case, the quantum transport formulation should be used in order to overcome the above-indicated 
shortcomings and limitations of the BTE.

7. CASE STUDY 1: BTE SIMULATION IN A MOSFET (BY SHE)

In the early work on long channel MOSFET modeling, the analytical methods have been utilized to de-
rive its I-V characteristics, assuming uniform doping profile. However, the MOSFET analytical models 
couldn’t interpret the two-dimensional effects and the realistic MOS characteristics. To get rid of the 
problems of analytical models, the researchers have applied the numerical techniques. The numerical 
solution of semiconductor transport equations has been widely utilized with the rapid improvements of the 
computer performances in the last two decades. Using the numerical methods, an accurate solution can 
be achieved for the assumed transport model and physical parameters. Yet, there exist some challenges 
in the simulation of nanostructures and some bulk devices. For instance, the simulation of avalanche 
breakdown during the transient regime of power devices is not a trivial job. Our case study depicts the 
simulation of a lateral double-diffused MOSFET (LDMOSFET). This is the preferred control device 

Figure 28. Illustration of the effect of collision bandwidth broadening
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in smart power ICs. The results are taken from (Liang, Goldsman & Mayergoyz, 1998) and (Hong & 
Jungermann, 2009).

Simulation is performed by directly solving the BTE for electrons, and the Hole continuity equa-
tion together with the Poisson equation, self consistently. The method relies on the spherical harmonics 
expansion (SHE) of the distribution function f(x, k, t) in the form:
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This expression describes the temporal evolution of electrons with wave vector k in the physical 
space x. Note that φ is an angle, while ϕ dentoes the electrostatic potential, which is the solution of the 
Poisson equation. As for any system of partial differential equations, the BTE needs to be equipped with 
boundary conditions in order to be completely specified. In noncontact boundary regions, homogeneous 
Neumann boundary conditions with respect to the spatial coordinate are imposed. At the device contacts, 
Dirichlet boundary conditions are imposed by enforcing a Maxwell equilibrium distribution of carriers 
at room temperature. This leads to a sharp boundary layer of the distribution function near the contact 
(Schroeder et al, 1992). At the gate area, the boundary conditions yield a transverse electric field effect 
due to the gate bias. The two-dimensional boundary conditions for the region linking the oxide and 
semiconductor yield a Robin-type condition:
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where ζ is the electric field, ñ is the normal unit-vector to the interface between the oxide and the semi-
conductor layers. Also, Vg is the electrostatic potential at the gate contact; εox and δ are the oxide permit-
tivity and thickness, respectively. In the remainder of boundary regions, we impose elastic boundary 
refection, such that f(x,k) = f(x, k’) with k’=k-2k..ñ.

The BTE solver reads the device mesh from an input file. The initial guess solution is obtained us-
ing the drift-diffusion model (DDM). As soon as the simulation is completed, results can be written to 

Figure 29. The structure of an LDMOSFET
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an output file. The solution provides the electron distribution function, electrostatic potential, and the 
concentrations of electrons and holes of the MOSFET in physical space. The maximum voltages for 
this device are Vg = −25V and Vd = −50V with the other terminals grounded. Figures 31 and 32 depict 
the distribution function of electrons, the electric field distribution and the electron concentration at 
equilibrium and at maximum bias conditions.

8. SUMMARY

In this chapter we cover the essential aspects of charge carrier transport through solid materials, within 
the semiclassical transport theory. We start with a review of the semiclassical approaches that leads to 
the concepts of drift velocity, drift mobility, electrical conductivity and thermal conductivity of charge 
carriers in metals and semiconductors.

Figure 30. Flowchart of the BTE-Poisson solver in a MOSFET
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In Classical Mechanics, the complete state of a particle can be given by its physical coordinates 
(x,y,z) and momenta (px, py, pz). The semiclassical transport theory is based on the Boltzmann transport 
equation (BTE). The Boltzmann transport equation can be derived from the Lowville equation, which 
describes the evolution of the distribution function changes in time. There are various approximations 
and phenomenological approaches which make the equation useful and solvable for semiconductor 
devices. The equation can describe macroscopic phenomena such as the electrical conductivity, Hall 
Effect, and diffusion process.

According to the BTE, the time evolution of the distribution function of localized particles is given by:

Figure 31. The electron distribution function inside the LDMOSFET at maximum bias conditions (Vd=-
50V, Vg=-25V), as obtained by the solution of the BTE, with Poisson’s equation
Source: Liang, Goldsman & Mayergoys, 1998.

Figure 32. Electric field and electron concentration in the LDMOSFET
Source: Hong & Jungermann, 2009.
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∂ f/∂t + ug.∇f + (F/ℏ).∇k f = [∂f/∂t]col. 

The distribution function f = f(x,k,t) describes the probability to find an electron in the infinitesimal 
space element d3k around k. The collision term depends on the sum of the different scattering mecha-
nisms. The value of f(k) is increased by scattering of electrons from some state k’ into k or decreased by 
scattering from k into some state k’.
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The function S(k’,k) describes the probability of a scattering event taking place in unit time. For the 
calculation of the collision term we must sum over all possible initial states k’, weighted by its occupancy, 
and we must take into account the availability of the final state. According to the Fermi Golden Rule, 
the scattering rates S(k’,k) are given by:
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where V is the perturbation potential and k and k’ refer to the particle wavevector states. The scattering 
mechanisms include acoustic intravalley scattering, intervalley scattering via three f and three g pho-
nons, ionized impurity scattering, surface-roughness scattering at SiO2/Si interface. For SiGe and other 
compound semiconductors, we should include the alloy scattering into account. The following figure 
depicts the basic types of carrier scattering mechanisms in semiconductors.

The BTE is valid under assumptions of semi-classical transport: effective mass approximation (which 
incorporates the quantum effects due to crystal periodicity); Born approximation for the collisions, in the 
limit of small perturbation for the electron-phonon interaction and instantaneous collisions; no memory 
effects. The phonons are typically treated as in equilibrium, although the condition of non-equilibrium 
phonons may be included through an additional transport equation.

The essential assumption of this theory is the Markovian behavior of the scattering process, that is, 
each scattering process is fully completed and independent of any other process. Mathematically speak-
ing, the BTE is valid as long as the following inequality is realized:
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where ħq is the momentum exchanged in the scattering process (q= k’-k) and 1/τcc is phonon collision rate.
Analytical solutions of the Boltzmann equation are possible only under very restrictive assumptions. 

Direct numerical methods for device simulation have been limited by the complexity of the equation. Most 
semiconductor simulations have been based on stochastic solution methods (like Monte Carlo method 
MCM), which involve the simulation of particle trajectories rather than the direct solution of partial 
differential equations. The MCM has been applied to the simulation of many semiconductor devices.
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The BTE may be simplified by using the relaxation time approximation.

∂
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which is based on the assumption that for small changes in f carriers return to equilibrium in a character-
istic time τ, dependent on the dominant scattering mechanisms. Using the relaxation time approximation, 
one can obtain the diffusion drift transport equations:
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ENDNOTES

1  A closed thermodynamic system is in thermal equilibrium forever unless it is acted upon by external 
forces. The state of thermal equilibrium is the most probable state of a thermodynamic system

2  Actually, there exist three ensembles types, namely; Microcanonical, Canonical and Grand canoni-
cal ensembles. The most common ensemble, namely the Canonical ensemble, is used when the 
system of interest is put in contact with a thermal bath. The canonical ensemble is able to exchange 
any energy with the surrounding heat reservoir.

3  The Liouville theorem, named after the French mathematician Joseph Liouville, is a basic theorem 
in classical statistical and Hamiltonian mechanics

4  The entropy S of a thermodynamic system is a logarithmic measure of the number of accessible 
energy states (microstates) of a system in a small interval of energy. the entropy, S, may be thought 
of as a measure of disorder or lack of knowledge of a system.

5  Sometimes the factor of 2 is included in the definition of the density of states, such that g(k) =2/
(2π)3

6  When, we have many possible final states (e.g., bands) the Kronecker delta is usually replaced 
with the final density of states in the expression of transition probability.

7  Many references utilize the symbol ‘c’ instead of ‘q’ to denote the lattice wavevector.
8  The non-parabolicity factor α = (1-mnd/mo)/Eg is 0.5eV-1 for Si and 0.7 eV-1 for GaAs.
9  The ω-q relation or the dispersion relation
10  This approximation is sometimes called the diffusion approximation because it results in a transport 

equation, which resembles the diffusion equation in mathematics. However, we’ll note the presence 
of both diffusion and drift terms in this model.

11  The correlation between the relaxation time and the mean free time is illustrated in Note 1.

http://dx.doi.org/10.1103/PhysRevB.4.2485
http://dx.doi.org/10.1017/CBO9781139644075
http://dx.doi.org/10.1017/CBO9781139644075
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APPENDIX

Note About Reference Material

The Boltzmann papers on the statistical interpretation of thermo-dynamics, the H-theorem, transport 
theory, thermal equilibrium, the equation of state of gases, and other subjects, occupy about 2,000 pages 
in the proceedings of the Vienna Academy in 1896.

Boltzmann, L. (1896, 1898). Lectures on Gas Theory. Trans. S.G. Brush. Berkeley: University of 
California Press, 1964. Reprinted by Dover Publication, in 2011. 
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1. OVERVIEW AND CHAPTER OBJECTIVES

During the last two decades, a considerable interest has been devoted for the study of high-field transport 
because of the scaled-down dimensions of devices. The scaled-down dimensions imply the existence 
of high electric fields. With high electric field, the velocity-field characteristics become non-linear and 
the velocity eventually saturates at high applied fields. The nonlinear response of the carrier velocity to 
a high electric field has been extensively explored, both theoretically and experimentally. As we have 
pointed out earlier, the high-field transport of charge carriers can be described within the framework of 
Boltzmann transport equation (BTE). However, for large perturbations due to high fields, the collision 
term, in the BTE, cannot be linearized using a simple microscopic relaxation time. Also, the carrier 
effective mass concept does not hold valid as long as the inter-valley and interband transitions are con-
cerned, which are common at high fields. Therefore, several other methods have been explored to solve 
the BTE, by the first order Chapmanp-Enskog (C-E) expansion or the spherical harmonic expansion 
(SHE) or the Monte Carlo (MC) method or the hydrodynamic (moment) method.

Upon completion of this Chapter, the readers and students will be able to:

• Be acquainted with the treatment of non-linear transport with hydrodynamic moments of the BTE,
• Understand the hydrodynamic model (HDM) of semiconductors and its ability to address the non-

local transport effects
• Understand the energy-dependent transport parameters and their underlying physics and where 

and how they are used in TCAD simulation programs.

Semiclassical Transport Theory 
of Charge Carriers, Part II:

Macroscopic Approaches
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2. HYDRODYNAMIC MODEL (HDM)

The hydrodynamic moment method was proposed by Grad (1949) as an alternative approach to solve 
the Boltzmann transport equation (BTE) in the study of aero-dynamic flow. The hydrodynamic model 
(HDM), which is based on the moment method, was suggested by Bløtekjaer (1970) to study the hot 
electron transport in semiconductor devices. Unfortunately, Blotekjaer’s formulation, upon which most 
hydrodynamic models are based, made use of the heated Maxwellian distribution to calculate the col-
lision terms. This assumption is not valid at high electric fields (in hot carrier nonlinear regime). Since 
then, several contributions have been introduced to improve the hot carrier transport models in semi-
conductors. For instance, Shur and Eastman (1979) could describe the velocity overshoot of hot carriers 
by simple conservation equation.

The so-called energy-transport model (ETM), which is a reduced version of the HDM with no con-
vection terms, was introduced by Cook and Frey (1982). The ETM is actually based on the early work 
of Stratton (1962,1972), about transport of hot and cold carriers. The Stratton model and variant ETM’s 
usually make use of a priori distribution functions to calculate the collision terms and transport parameters.

A simple hydrodynamic model for studying the velocity overshoot in semiconductor structures was 
carried out by Baccarani and Wordmann (1985). The non-parabolicity of energy bands has been included 
for the first time by Thoma et al (1991). All these models were concentrating on the electron transport in 
field-effect transistors (FET). A generalized HDM for bipolar devices was introduced by El-Saba, Morel 
and Chante (1991) to investigate the impact ionization phenomenon in semiconductor devices. Also, 
Tang, Ramaswmy and Nam (1993) introduced an improved HDM. Another HDM, with six moments, 
was suggested by Grasser et al. (2001), to investigate the sub-100nm MOSFET devices. Unfortunately, 
almost all the added improvements to the HDM were associated with additional physical parameters, 
whose carrier energy dependence is generally unknown. Several attempts to derive simple models for 
the HDM parameters, mostly on the basis of Monte Carlo simulation in the bulk, have been carried out. 
In particular, several attempts have been carried out to derive an energy-dependent impact ionization 
model, e.g., Quade and Schol (1994). Also, Gonzaliz et al. (1999) proposed an HDM-based model for 
the impact ionization rate in semiconductor devices. Other formulation of a non-parabolic HDM was 
developed by Anile et al. (2000) and Romano (2001), on the basis of the maximum entropy principle. 
A survey about the HDM and the decisive role of different parameters was compiled by several authors, 
e.g., Jerome (2000) and Grasser et al. (2003). Yet other hydro-dynamic models, with a few correlated 
transport parameters were proposed to get rid of the pitfalls of previous models (e.g., El-Saba, 2012).

The hydrodynamic (HD) description of the gas of particles consists in the study of the evolution 
of certain macroscopic quantities (or moments), which have significant physical meaning and can be 
eventually measured. The hydrodynamic model (HDM) in semiconductors is constructed by multiplying 
the semiclassical BTE with weight functions (ψi) and integrating the whole equation over the k- space, 
so that a set of differential equations in physical space and time is obtained, as follows:

∂
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where fv = fv(x,k, t) is the carrier distribution function, uv is the carrier group velocity and F is the ap-
plied force. The resulting set of macroscopic equations will look like the following equation (El-Saba 
et al, 1991):
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where <ψj > denotes the macroscopic average of the weight functions (ϕj) over the k-space, n = ∫ z fv.dk3 
is the average carrier density and z=2/(2π)3 is the density of states in the k-space (multiplied by 2 to 
account for Pauli exclusion principle).

n<ψj > = ∫z.ψj fv.dk3).  (1c)

The weight functions (ψj) are usually chosen as powers of increasing order of the carrier vector kv, 
or carrier group velocity uv, or even the momentum pv. The powers of these microscopic parameters 
are usually formatted using some appropriate scaling factors to get physically meaningful quantities. 
For instance, if we adopt the powers of the carrier group velocity as weight functions (e.g., ψ = 1, uv 
and uv

2), then we may use the carrier energy Ev=½m*uv
2, instead of uv

2 as the second-order multiplier.
The zero order moment (ψ0 =1) gives the carrier density balance equation (which is the same as carrier 

continuity equation), the first moment (ψ1 =uv) gives the carrier momentum balance equation (almost 
similar to drift-diffusion current equation) and second order moment (ψ2 =½m*uv

2) gives the carrier 
energy balance equation. This method is an averaging process that leads to the loss of some microscopic 
information within the distribution function. However, in many practical cases the resultant average (or 
macroscopic) parameters retained by the equations in the physical space are sufficient to capture the 
essential features of the carrier transport phenomena.

Note 1: Proof of The General Moment Equation Form

Consider the distribution function f x k t, ,( ) , which obeys the BTE. Consider A(k) a microscopic quan-
tity, which is a function of the wave vector k. A(k) may be one of system physical quantities like electron 
group velocity ug(k) or electron energy E k( ) . Now, let’s multiply the BTE by A(k) and integrate the 
two sides of the equation over the entire k-space. Then one obtains the following result:

A
f
t
d k A f d k

A
fd k A

f
t

d k
g x k

c

∂
∂

+ ⋅∇ ⋅ + ⋅∇ =
∂
∂









∫ ∫∫∫ 3 3 3 3υ

�
 

We have also, the mean value of A k( ) , which we note by 〈 〉A  is given by:

〈 〉 = =∫
∫

∫
A

A k f k r t d k

f k r t d k

A k f k r t d k

n

( ) ( , , )

( , , )

( ) ( , , )3

3

3

 



141

Semiclassical Transport Theory of Charge Carriers
 

So, the 1st term of the L.H.S of equation (J-1a) becomes:
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Also, the 2nd term of the L.H.S of equation (1) becomes:
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Also, the 3rd term of the L.H.S of equation (J-1) becomes:
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where we effectuated an integration by parts on the k-variable. The index j of the force component Fj 
appears for any orthonormal basis (e.g. for Cartesian coordinates, j= x,y, z). The totally integrated term 
in equation disappears because Lim f k x t A k F

k j→±∞ ( ) ( ) =, , 0 . This means that all the moments of the 
BTE are finite. On the other hand, the second term may be written as follows:
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where we put ∇ ⋅ =
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F 0 , which is true if F is independent of k or when F is normal to k. Fortunately, 
this is the case for electric field force (F e=− ζ ) and Lorentz’s force (F e xB
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=− υ ).

Now regrouping all the L.H.S components we get:
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By replacing A(k) by 1, υ
g

k( )  and E k
n ( )  we obtain the 3 moment equations of the BTE. Table 1 

summarizes the first moments of the conservation law of a physical quantity A(k), according to El-Saba 
(1993).

2.1 Generalized Hydrodynamic Model

We now proceed to develop a generalized set of conservation equations of carrier concentration, momen-
tum1 and energy. This set can be obtained by multiplying the BTE by some weighting functions (1, uv and 
Ev), and then integrating the two sides of the resulting equations over the whole k-space. For the sake of 
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simplicity and brevity we write here only the electron equations in a single-valley semiconductor. Similar 
equations for holes can also be deduced. The electron density-, momentum- and energy-conservation 
equations, in a semiconductor, can be put in the following form (El-Saba, 2012):

∂n/∂t + ∇.(nvn) = [∂n/∂t]col. (2a)

∂(nvn)∂t+∇.(mn
-1Pn) +∇.(nvn⊗vn) = n mn

-1.F+ [∂(nvn)∂t]col (2b)

∂(n ωn)/∂t + ∇.Sn = nvn . F+ [∂ (nωn)/ ∂t]col. (2c)

where n, vn, Pn and ωn are the electron concentration, mean velocity, pressure tensor and mean energy, 
respectively.

At the bottom of conduction band the average mass will be denoted by mno and its value in Si, accord-
ing to optical measurements, is about 0.275 mo. The subscript ‘col’ in the above equations means the rate 
of change of the quantity between brackets due to electron gas collisions with the semiconductor lattice 
vibrations and other defects. Also, Sn is the electron energy flow and mn

-1 is the mean inverse mass of 
electrons. Note the presence of the same mass term in both the LHS and the RHS of (2b), with the same 
definition. We dully note that we do not adopt the effective mass approximation.

The mean inverse mass of carriers is generally a tensor whose components are functions of the mean 
carrier energy:

mn
-1

(i,j) = (1/ħ2) <∂2En/∂ki∂kj> (3)

When the energy band structure of the semiconductor material is assumed parabolic, mn
-1 is a con-

stant and equal to the conventional electron inverse effective masse (mn*)-1 at the bottom of conduction 
band. This assumption, though adopted in many hydrodynamic models in the literature, is only valid 
near equilibrium. In our analysis we consider mn as a scalar quantity equal to the average conductivity 
mass (averaged over all the semiconductor valleys) such that mn

-1 = ⅓Σ mn
-1

(i,j) .

Table 1. Moments of the BTE
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The sign ⊗ stands for the tensorial product of two terms such that:

∇.(nvn⊗vn) =vn∇.(nvn) + (nvn .∇)vn.  (4a)

The electro-kinetic pressure tensor of the electron gas, Pn, is defined here as follows:

mn
-1 Pn = n <(un-vn) ⊗ (un -vn)> (4b)

The carrier energy flow (or energy flux) is given by the following expression, for electrons:

Sn = n<Enun> =Qn + (nωn + Pn).vn (5)

where Qn is called the electron heat flux. This expression can be easily derived by expanding the defini-
tion of Sn= n<Enun> and using the definition of the electron gas pressure (4b). The vector Qn is defined 
as the third central moment of the electron distribution function fn, as follows:

Qn = n<½ mn*(un-vn).|un-vn|
2)> = ∫½ mn*|un –vn |

2(un –vn)fn d
3k (6)

Therefore, the heat flux component Qn(i) is the flux of random thermal energy across a surface with 
its normal oriented in the ith direction. As the electron distribution function is not known we don’t make 
use of this equation in our model.

In absence of magnetic field, the external applied force on electrons is given by F = -e.ζ, where the 
electric field ζ is equal to the negative gradient of the electrostatic potential ϕ. In heterogeneous devices, 
the applied force on electrons is given by F= -∇Ec, where Ec =(Eco – eϕ) and Eco is the edge of the 
conduction band. Similarly, the applied force on holes is F=∇Ev, where Ev=(Evo + eϕ) and Evo being 
the edge of the valence band.

The electrostatic potential distribution can be found by solving the Poisson equation:

∇. (-ε ∇ϕ +P)= e (p – n + Dop +Nt) (7)

where p is the hole concentration, ε is the dielectric constant, P is the material polarization vector, Nt is 
the density of traps and Dop = |Nd

+-Na
-| is the net ionized concentration in the semiconductor.

2.2 Closing the System of Hydrodynamic Equations

In order to close the system of conservation equations for charge carrier density, average momentum 
and average energy, we usually adopt some assumptions to approximate the terms which depend on the 
knowledge of the distribution function. The main assumptions are usually concerned with the following 
items:

• Definition of the carrier gas pressure and temperature,
• Approximation of collision terms,
• Modeling the heat flux term (3rd cental moment of fv), and
• Modeling any higher moment terms, if moments aew greater than 3.
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Definition of the Carrier Gas Pressure

The formal definition of the gas pressure tensor Pn(ij) is the flux of the ith component of the momentum 
across a surface element moving with the mean velocity oriented with its normal in the jth direction 
(Landau & Lifshitz, 1997):

Pn(i,j) ≡ < ρn(i,j) (uni -vni)(unj -vnj)> (8)

where ρn is the gas mass density. In ideal gas theory, the gas mass density is a macroscopic quantity and 
ρn is taken outside the averaging brackets.

Pn = ρn < (un-vn) ⊗ (un -vn)> (9a)

In classical transport models, the electron gas mass density is usually related to the electron effective 
mass by the relation ρn = n.mn*. This is only correct when the band structure is parabolic and mn* is 
energy independent. In order to rectify this, we define the gas mass density as follows:

ρn = n mn, (9b)

where mn is the mean mass of electrons, as defined by (3). In this sense, our definition of the gas pressure, 
Pn, in (4b) is equivalent to the above formal definition. However, this encompasses some approximation, 
because our definition of the gas pressure, Pn, becomes different from the classic definition of electron 
gas pressure tensor, Pn, with ρn = n.mn*

Pn = n < mn*(un-vn) ⊗ (un -vn)> (10)

However, the electrokinetic pressure tensor Pn may be related to the classic definition of Pn via a 
correction factor, gn, such that:

gn = Pn . Pn
-1= [mn <(un-vn)⊗ (un -vn)>] .[<mn* (un -vn) ⊗ (un -vn)>]-1 (11)

We call this the HDM g-factor. This factor can be calculated from MC simulation in a semiconductor 
with arbitrary band structure. Obviously, our formal definition of the carrier gas pressure is equivalent 
to the classic definition in the case of parabolic band structure, and then gn =1

Definition of the Carrier Temperature

In this section we compare the different approaches for modeling the carrier temperature. Formally, 
temperature is a property which governs the transfer of thermal energy, or heat, between one system 
and another. The electronic temperature concept was initially introduced in 1947 by Fröhlich, and since 
then it has been exploited by several authors to model the high-field transport in semiconductors. In 
the isothermal drift-diffusion model (DDM), the carriers temperature is assumed equal to the lattice 
temperature TL. However, the so-called static electron temperature Tn may be roughly estimated from the 
electric field distribution in several ways. For instance, the static temperature may be defined as follows:
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Tn (static) = TL (μno /μn(ζ)) = TL [ 1+ (μno ζ // / vn
sat)2 ]½ (12)

where μn is the electron drift mobility, vn
sat is the electron saturation velocity and μno is the low-field 

drift mobility.
Also, ζ// is the parallel component of the electric field to the electron current density such that ζ // = 

ζ .Jn/|Jn|. The above equation is based on the assumption that the parallel component of the diffusion 
coefficient is almost constant and independt of the electric field. Such static forms of the carrier tempera-
ture exclude the lag effect between the driving electric field and the carrier temperature response, and 
hence the velocity overshoot phenomenon will not be observed. However, the definition of the carrier 
temperature in the Monte Carlo simulation is given by:

3/2 kB Tn = <En(k)> (13)

Also, the carrier temperature in the conventional hydrodynamic models, where the effective mass 
approximation is assumed and the anisotropy of the distribution function is ignored, is defined by:

3/2 kB Tn = ½ mn*<|un-vn|
2> (14a)

It is well known, that the above two definitions result in different temperatures. In fact, the above 
hydrodynamic definition (14a) is implicitly based on the displaced Maxwellian distribution at the elec-
tronic temperature.

fm (k) = A.[n/(kBTn)
3/2].exp (- ½ mn*(un(k)-vn)

2/kBTn) (14b)

where A is a constant. According to Stratton (1970), the electronic temperature has no physical meaning, 
unless the distribution function is a displaced Maxwellian as described by equation (14). However, the 
Maxwellian distribution is only valid near equilibrium, and in highly doped regions, where carrier-carrier 
collisions are dominant. In fact, it has been confirmed by several authors that the energy distribution 
function is not Maxwellian at high electron energies (Higman & Hess, 1986).

In the so-called improved energy transport model (Chen et al., 1992), the nonparabolicity of the 
band structure is taken into account and the distribution function fn(E) is appended by a non-Maxwellian 
factor γ, such that:

fn(En) =(1+γ.En/kBTn). fm (En) (15)

with fm(E) is the heated Maxellian distribution function at an elevated temperature Tn. Then, a modified 
(or equivalent) carrier temperature Tm is defined as follows:

Tm = Tn (1+γ) (16)

However, referring to our system of HDE’s, we make use of the formal definition for the electron 
temperature tensor, such that:

Pn = n kB Tn = n mn < (un-vn)⊗ (un-vn)> (17)
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where we assumed a perfect gas law (Pn = n kB Tn). When the carrier temperature tensor is reduced to a 
scalar quantity (such that Tn = Tn I where I is the unity tensor), then the above definition may be written 
as follows:

3/2 kB Tn = ½ mn < |un-vn|
2> ≈ ½ gn < mn* |un-vn|

2 > (18)

In this case the g-factor may be calculated from the following relation:

gn = Pn . Pn
-1 = [ mn<|un - vn |2>]/[<mn*|un- vn |2>] (19)

Figure 1 depicts the variation of Tn according to MC (with a non-parabolicity factor 0.5 eV-1) and the 
classic hydrodynamic model (14a) and to the definition (18). Note that assuming gn ≈1 brings an error 
less than 3% in Tn, for electric fields up to 300 kV/cm. This error is less drastic than the error encountered 
when neglecting the convective part in the calculation of the electron energy.

In fact, most of the commercial simulators neglect totally the convection part of the average carrier 
energy. In this case the utilized formulation is called energy transport model (ETM). In conclusion, the 
scalar temperature definition in our HDM reads:

3/2 kB Tn = ½ mn <|un-vn|
2> (20)

Figure 1. Electron temperature Tn as a function of electric field in homogeneous silicon, according to 
full-band Monte Carlo (FBMC), classic HDM with constant effective mass (HDM) and according to 
EL-SABA HDM model
El-Saba, 1993, 2012.
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This definition means that we assume the kinetic pressure tensor Pn = nkBTn, and may be considered 
as a closure condition for the set of HDEs. If later full-band MC (FBMC) showed a significant devia-
tion of the g-factor from unity at very high fields, it could be easily retained in the proposed HDM to 
get more accurate results.

Average Carrier Energy

By definition, we have the electron average energy ωn = <En>. Therefore, we can write (within the 
semi-classical approach):

ωn = <En> =<½ mn* un
2> = <½ mn*vn

2> + < ½ mn*(un-vn)
2 > (21)

Substituting the carrier gas pressure, we get:

< ½ mn*(un-vn)
2 > = n-1Pn = ½ gn n

-1Pn (22)

Using the relations of the perfect gas law with pressure, we can easily prove that the mean electron 
energy ωn is related to the scalar electron temperature Tn and scalar average mass mn as follows:

ωn = <En> = ½ mn vn
2 + 3 /2 gn kB Tn (23)

where we substituted the average mass tensor mn = <mn
*-1>. Note that the factor of 3 comes from reduc-

ing the tensor temperature to a scalar quantity by the trace operator, while the tensorial average mass 
is reduced to an average scalar mass (e.g. the conductivity mass), which is already a sort of sum of the 
carrier mass components2.

Note 2: Temperature Tensor

When the anisotropy of the semiconductor is not negligible, we may admit a temperature tensor, which 
is related to the pressure tensor by the perfect gas low

Pn = nkB Tn. 

By appropriate selection of coordinates, Tn may be expressed as a diagonal matrix.

T

T

T

T
n

xx

yy

zz

=





















0 0

0 0

0 0

 

Nevertheless, when the anisotropy of the material is negligible, the tensorial temperature Tn can be 
reduced to a scalar temperature Tn. This is done by taking the trace of the tensor temperature tensor, as 
follows:
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Tn = trace (Tn) = 1/3 (Txx+ Tyy+ Tzz) 

Macroscopic Relaxation-Time Approximation

As for the collision terms, we typically make use of the macroscopic or ensemble relaxation time ap-
proximation (E-RTA). Mathematically speaking, this approximation has not been verified yet (Brugger, 
Schenj & Fichtner, 2006). However, some studies showed that the E-RTA, with average energy depen-
dence, is reasonably accurate for non-equilibrium transport in semiconductors (Hess, 2012, p.247). In 
this approximation, the collision term in the momentum conservation equation is expressed in terms of 
a macroscopic momentum relaxation time τmn, as follows:

[∂nvn /∂t]col. = - nvn /τmn +vn [∂n/∂t]col. (24)

Also, the collision term in the energy conservation equation can be expressed in terms of a macro-
scopic energy relaxation time τwn, as follows:

[∂nωn /∂t]col. = -n (ωn -ωo) /τwn + ωn [∂n/∂t]col (25)

where ωo=3/2 kBTL is the electron energy at thermal equilibrium and TL is the lattice temperature. Note 
that the collision term in the above two equations is decomposed into two terms (and two relaxation 
times, however3). The momentum and energy relaxation times (τmn and τω), include the effect of collisions 
over phonons and other defects while the effect of impact ionization collisions is included in the [∂n/∂t]
col. This approach is exact if the relaxation times are considered as a function of all the BTE moments 
(n, vn, ωn, etc.). However, one can obtain these relaxation times, as functions of the mean carrier energy 
by Monte Carlo simulation in the bulk of semiconductor, as a second order approximation (El-Saba, 
1993). A discussion about the validity of the macroscopic relaxation time can be also found in (Stettler, 
Alam & Lundstrom, 1993) as well as (Lundstrom, 2000). The collision term [∂n/∂t]col., which appears 
explicitly in the carrier density conservation equation, can be expressed as follows:

[∂n/∂t]col.= - (n-no)/τn = - U (26)

where (U=R-G) is the net recombination-generation rate in the semiconductor. We dully note that the 
recombination rate, R, regroups the relevant recombination mechanisms in the semiconductor device 
(e.g., direct radiative, Shockley-Reed-Hall and Auger recombination mechanisms). Also, the generation 
rate, G, regroups the applicable generation mechanisms in the semiconductor device (e.g., thermal and 
optical generation as well as the generation by impact ionization mechanism).

Heat Flux Approximation

As shown in our previous discussion, the carrier energy flow (energy flux) can be put in the following 
form, for electrons and holes:

Sn =Qn - (ωn + kB Tn).(Jn / e) (27a)
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Sp =Qp + (ωp + kB Tp).(Jp / e) (27b)

As indicated by (45b), the carrier heat flux terms Qn,p are defined as the third central moment of the 
carrier distribution function. As the carrier distribution function is unknown, the carrier-heat flux is 
usually modeled by the following Fourier relation:

Qn = - kn ∇Tn (28a)

where kn is the electron thermal conductivity. The carrier thermal conductivity is usually modeled by 
the Wiedemann-Franz law at the electronic temperature:

kn = γn (kB /e)2 Tn σn (28b)

where σn is the electrical conductivity and γn is the Lorenz coefficient (for electrons). In the original 
Wiedemann-Franz formulation (using the microscopic relaxation time approximation) γn is given by:

γn = 5/2 + r (28c)

where r is an exponent in the microscopic relaxation time τDn expression in terms of the electron energy 
(En) and lattice temperature (TL):

τDn = (En / kBTL)
r (28d)

A more rigorous approach for modeling the carrier heat flux term (Qn) consists in taking the third 
moment of the BTE into account. This procedure increases the number of differential equations to be 
solved and the number of parameters of the HDM. However, we show in section 5.2, how to derive 
a more accurate model of the carrier heat flux term and the Lorentz number, on the basis of the third 
moment of the BTE, without increasing the number of differential equations to be solved in the HDM.

3. SET OF HYDRODYNAMIC EQUATIONS (HDEs)

Using the relaxation-time approximation and our definition of the carrier temperature, the set of hydro-
dynamic equations (HDE’s) can be formulated as follows for a single valley semiconductor:

e ∂ n/∂ t -∇.Jn = e(G-R) (29a)

Jn - n μn mn d[vn]/dt = e n μn.ζ+ kB μn mn∇.(n mn
–1.Tn) (29b)

∂(n ωn)/∂t + ∇.Sn =ζ.Jn + ωn (G - R) - n(ωn-ωo) /τwn (29c)

The electron drift mobility μn is defined as follows:



150

Semiclassical Transport Theory of Charge Carriers
 

μn = eτmn mn
-1 (30)

Similar equations can be written for holes. We dully note that the average electron energy ωn is 
measured above the conduction band edge Ec, while the average hole energy ωp is measured under the 
valence band edge Ev.

In steady state (up to the terahertz frequency range in Si and several semiconductors), the carrier 
momentum conservation equations can be further simplified by suppressing the partial time-derivatives 
so that:

Jn - n μn.mn (vn .∇)(vn) = e n μn.ζ+ kB μn.mn∇.(n mn
–1. Tn) (31a)

Jp + p μp.mp (vp .∇)(vp) = e p μp.ζ- kB μp.mp∇.(p mp
–1. Tp) (31b)

The above conservation equations are similar to the current equations of the isothermal DDM, except 
for the acceleration and thermal diffusion terms. Also the carrier energy flow (or energy flux) can be 
put in the following forms, for electrons and holes:

Sn =Qn - (ωn + kB Tn).(Jn / e) (32a)

Sp =Qp + (ωp + kB Tp).(Jp / e) (32b)

4. MOMENT EQUATIONS IN A MULTIVALLEY SEMICONDUCTORS

As we know, some semiconductors (like GaAs) have more than one valley that may significantly intervene 
in the transport process, at relatively high electron energies. The moment equations in multivalley semi-
conductors can be obtained in much the same manner we utilized so far for one-valley semiconductors. 
However, in addition to the intrinsic relaxation times in each valley (which substitute the intra-valley 
collision terms) we make use of additional relaxation times to model the inter-valley collision terms. 
Therefore, the moment equations in multivalley semiconductors may be described by the following rela-
tions (after substituting the collision terms with the appropriate relaxation times):

∂ni/∂t + ∇.(nivi) = (Gi – Ri)+ ∑ (nj/τji,– ni/τij,) (33a)

∂(nivi)/∂t+∇.(mi
-1Pi) +∇.(nivi ⊗vi)=ni m i

-1F-nivi/τmii-∑ nivi/τmij (33b)

∂(ni ωi)/ ∂t + ∇.Si = nivi.F-ni(ωi-ωo)/τwij+∑(njωij/τwiji–niωi/τwiij) (33c)

where ni, vi, and ωi denotes respectively the average electron density, velocity and energy, in the ith val-
ley. The 1/τij and 1/τji are the charge carrier (electron) transition rates from valley i to the valley j and 
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vice versa. The τmji and τmij are the intervalley momentum relaxation times, due to carrier scattering-in 
and scattering-out the ith valley from the jth valley and vice versa. Also, τωiij andτωiji are the intervalley 
energy relaxation times, due to carrier scattering-in and scattering-out the ith valley from the jth valley 
and vice versa.

5. HIGHER MOMENT EQUATIONS

The set of hydrodynamic equations can be extended to any number of moments of the BTE. Although, 
the first three moments are widely used, because of their clear physical meaning (conservation of 
number, momentum and energy of charge carriers), additional moments are theoretically helpful4. The 
following set depicts the first six moments of the BTE for the case of nearly parabolic bands. The six 
moment equations (ϕ0 through ϕ5) represent the conservation equations of carrier density, momentum, 
energy, energy flux, kurtosis, and kurtosis flux, respectively. Note that the energy distribution function 
in equilibrium is symmetric. As the even weight functions (ϕ0, ϕ2, ϕ4) are symmetric (in k and v) and 
the odd weight functions (ϕ1, ϕ3, ϕ5) are anti-symmetric (in k and v), therefore, the odd moments will 
vanish and only the even moments of the equilibrium distribution function will exist.
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where q is the carrier charge (q=-e for electrons and q=+e for holes) and m is the carrier effective mass, 
which is assumed constant (independent of carrier energy),

Note that we utilized the macroscopic relaxation time approximation in these moment equations. 
Here, τm, τe, τs, τe2, τs2 are the relaxation times for momentum, energy, energy flux, kurtosis, and kur-
tosis flux, respectively. Also the time partial derivatives of the odd moments are dropped, assuming 
that their relaxation times are much smaller than the times of interest. These relaxation times may be 
obtained from Monte Carlo simulation or modeled using a priori distribution functions (e.g., displaced 
Maxwellian). However, the Maxwellian distribution is not acceptable at hot carrier nonlinear regime, 
except at special cases of high carrier concentrations where carrier-carrier scarpering dominates and 
homogenizes the carrier distribution.

Figures 2-4 show the variation of the relaxation times, as obtained by Monte Carlo simulation (Grasser 
et al, 2001). The relaxation times of the odd moments (τm, τs and τs2) are replaced with the corresponding 

Figure 2. Electron energy and kurtosis relaxation times in Si, by MCM
Grasser et al, 2001.

Figure 3. Electron mobility, and energy flux mobility, in Si, by MCM
Grasser et al, 2001.
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mobility (μn = eτm/m, μs = eτs/m and μs2 = eτs2/m). Of course, the above six-moments of hydrodynamic 
equations can be extended to include the effects of real band structure, but the resulting expression will 
be very complicated.

6. ENERGY-DEPENDENT PHYSICAL PARAMETERS

The transport properties of hot carriers under high-field conditions are of great interest for high-speed 
devices in general and nanodevices in particular. Therefore, the accurate modeling of transport parameters 
at high fields is vital in any transport model. In the DDM, the transport parameters are usually expressed 
as functions of the local electric field. Nevertheless, some parameters such as the high-field mobility and 
impact ionization rate involve energy exchange mechanisms that should better be expressed as functions 
of the carrier energy, rather than the local electric field. Fortunately, the solution of the HDM produces 
such information about the carrier energy and permits to express these parameters in a physical manner, 
along the semiconductor device.

6.1 Energy-Dependent Carrier Drift Mobility (μn,p)

In the drift-diffusion model, the high-field drift mobility is usually expressed by the Caughey-Thomas 
relation (1967):

μn(ζ) = μno / [1 + (μno ζ / vn
sat)] (35a)

where μno is the low-field mobility of electrons and vn
sat is their saturation velocity. This direct algebraic 

relation doesn’t account for the nonlocal phenomena, such as the carrier velocity overshoot (El-Saba, 

Figure 4. Electron kurtosis flux mobility in Si, by MCM
Grasser et al, 2001.
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1998) in hot carrier nonlinear regime. However, in the hydrodynamic model where the carrier average 
energy can be calculated, the high-field mobility can be expressed in terms of the carrier mean energy 
ωn,p. The energy-dependent drift mobility relation may be written in the following form:

µ µ
µ ω ω
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n no

no

n
sat

n o

ne v

− −= +





−























1 1

2
1 



 (35b)

This nonlocal model resembles the model of Hänsch and Mattausch (1986), but here the energy 
relaxation time is energy dependent and there is no a priori assumption about the distribution function 
(El-Saba, 1993). Figure 5 shows the variation of electron mobility as a function of electron energy, ac-
cording to the above model and according to the model of Hänsch-Mattausch. In order to compare this 
model with the field-dependent phenomenological relations, one can substitute equation (20a) into the 
set of HDE’s in the steady state homogeneous case (where the electric field ζ is constant) to obtain:

(μno /μn) = (μn /μno) (μno ζ / vn
sat)2 +1  (36)

The solution of the above quadratic equation (in μn) is given by the following relation:
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Obviously, this result resembles the phenomenological relation of Caughey-Thomas. As shown in 
Figure 6, our model coincides with the conventional field-dependent mobility models of Caughey-
Thomas (1967) as well as the measured drift mobility, according to Canali et al (1975). It should be 
noted that when the electric field is very high, the Einstein relation is not correct because we cannot 
assume quasi-equilibrium anymore. Based on Monte-Carlo (MC) simulations, the Einstein relation may 
be corrected as follows:
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where μn = μno(Tn) is carrier-temperature-dependent mobility.

Note 3: Derivation of the Energy-Dependent Drift Mobility Model

The above presented model of drift mobility is derived from the general set of hydrodynamic equations 
without making use of the carrier-momentum relaxation-time approximation (El-Saba, 1993). The elec-
tron momentum- and energy-conservation equations in homogeneous semiconductor read
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Figure 5. Electron drift mobility in Si at 300K

Figure 6. Electron drift mobility in bulk Si at 300K, according to several authors
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∂(nvn)/ ∂t = n mn
–1ζ+ [ ∂ (nvn)/ ∂ t]col 

∂(n ωn)/ ∂t = nvn .ζ+ [ ∂ (n ωn)/ ∂ t] col 

Multiplying the momentum conservation in steady state by vn (dot product) and starting from the 
basic definition of the carrier drift mobility (vn= μn ζ), we get:
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Obviously, this definition coincides with the classic definition μn =eτmn mn
–1 when adopting the mo-

mentum relaxation time approximation [∂vn /∂t]col = - vn/τmn where τmn is the momentum relaxation time. 
Instead, we can derive an expression for the carrier mobility by searching a relation between the two 
collision terms in the carrier momentum- and energy-conservation equations. The momentum-collision 
term can be expressed in terms of the energy collision term, by eliminating the electric field ζ rom the 
above two conservation equations in steady state. Therefore, we get:

mn vn.(∂vn/∂t)]col. = (∂ωn/∂t)]col. 

The energy collision term can be expressed in terms of an energy relaxation time τω such that (∂ωn/∂t) 
col. = - (ωn –ωo)/τω. This approach is exact if τω, is considered as a function of all moments (n, vn, ωn, etc.). 
Substituting, the last relation into the definition of the carrier mobility results in the following expression:
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This simple analytic relation expresses the carrier drift mobility in terms of the carrier mean velocity 
and mean energy. However, the use of this analytic relation is not accurate at small fields. In fact, the 
relaxation time approximation, where τω, is expressed as a function of only the carrier mean energy, is 
not accurate at small energies (Canali, 1975). Therefore, we postulate that the carrier drift mobility can 
be expressed as follows:

1/μn = 1/μno + 1/μn∞ 

where μno is the low-field mobility and μn∞ has the same expression given by but with replacing the car-
rier mean velocity by the saturation velocity vn

sat.
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Finally, the carrier drift mobility can be expressed as follows:
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6.2 Energy-Dependent Impact Ionization Coefficient (αn,p)

As we pointed out earlier (in Chapter 1), the impact ionization phenomenon happens when colliding 
electrons have enough energy to ionize valence band electrons. The impact ionization mechanism was 
identified, about 60 years ago, by McKay (1954). In fact, the electron-hole pair generation by impact 
ionization, Gii, influences so many characteristics of semiconductor devices such as the breakdown voltage 
and hot carrier injection currents. The simulation of such high field phenomena is still a challenge for the 
existing device simulators. This is not only attributed to the numerical difficulties, but more importantly, 
to the lack of accurate physically-based models of the impact ionization mechanism.

Indeed, the generation-recombination term in the carrier continuity equations should include the 
effect of generation by impact ionization.

The macroscopic impact ionization rate (per unit volume per unit time) for electrons is given by:

Gii = ∫ g(k) fn(k, r, t) Γii(k) d3k (39a)

where g(k) = 2/(2π)3 is the density of states in the k-space and Γii is the microscopic rate of impact ion-
ization, which may be expressed by the Keldish formula (1965)5. The macroscopic impact ionization 
rate Gii is usually expressed in terms of the impact ionization coefficients (Townsend’s coefficients) of 
electrons and holes, αn,p

Gii = αn | Jn/e| + αp |Jp/e| (39b)

Since the carrier distribution function is not generally known in the drift-diffusion and hydrodynamic 
models, we usually search for a suitable model for the impact ionization rates in terms of known variables 
such as the local electric field or the carrier average energy.

In the DDM, the impact ionization coefficients (αn,p) are usually expressed as functions of the local 
electric field (ζ). For instance, Wolff (1954) used the first two terms of the Legendre expansion of the 
distribution function, and derived the following electron impact ionization coefficients:

αn (ζ) = αno exp [ - C / ζ2 ] (40)
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where αno and C are constants.
According to Baraff (1962), this procedure is only justifiable at very high electric fields where 

electron-phonon collisions are frequent and the distribution function is isotropic. Also, Keldysh (1965) 
solved analytically the BTE at high energy (assuming parabolic band structure) and calculated the impact 
ionization rate using the symmetric part of the distribution function. The Keldysh solution is interest-
ing, because it tends to the Wolff relation (exp[-C /ζ2]) at high fields and tends to a simple exponential 
(exp[-C’/|ζ|]) at moderate fields, which coincides with the experiment. In fact, the measurements of 
Chynoweth (1958), Lee et al (1964) and Van Overstraten and De Man (1970) showed that the impact 
ionization rate at moderate fields follow a simple exponential function. According to Grant’s model 
(1973), the electron impact ionization coefficient follows the following exponential relation:

αn (ζ) = αno exp [ - ζcn /|ζ| ] (41a)

where the pre-exponential term is a constant and the critical field ζcn is related to the threshold energy 
for ionization of electrons, En

th, and the mean free path between successive collisions, λn, by the relation:

ζcn =En
th/e.λn (41b)

The numerical values for αno and ζcn according to the accurate measurement of these parameters for 
electrons and holes in silicon and other semiconductors can be found in the literature e.g., (Maes et al., 
1990).

Shockley (1961) tried to find out an explanation of the exponential relation of the ionization coef-
ficients in P-N junctions. According to Shockley, the impact ionization mechanism is mainly due to 
“lucky electrons”, which can escape from collisions and the ionization coefficient of such electrons can 
be expressed in the following exponential form:

αn (ζ) = αno exp [ - d /λn ] (42)

where d = (En
th/eζ) is the minimum path an electron should travel to gain the threshold energy and λn is 

the mean free path between collisions with optical phonons.
In order to find out a more accurate solution of the BTE at high energy, and find out a suitable 

physical model of the impact ionization phenomenon which interprets the measurements, Baraff solved 
numerically the BTE, assuming parabolic energy bands (Baraf, 1964). Baraff plotted universal curves 
of αn in the following form (1962):

αn = F(ζ/ζcn, En
th/eζλn, Eph/En

th) (43)

where Eph is the average optical phonon energy. The above field-dependent exponential relations describ-
ing the impact ionization rates have been used in DDM-based simulation for long time.

The Lucky electron model (LEM) has been utilized to describe the breakdown phenomenon as well 
as the hot carrier injection and leakage currents in MOSFET devices in DDM-based simulation for long 
time. Unfortunately, the parameters of the lucky-electron exponential model are dispersed among the dif-
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ferent measurements of different authors, as shown in Figure 7. For instance, we can find different values 
for λn from 50Å to 100Å in Si in the literature. In fact, the impact ionization phenomenon happens when 
colliding electrons have enough energy to ionize the valence electrons. Therefore, it is more physical to 
express impact ionization rates in terms of the carrier energy, rather than the local electric field value.

Schöll-Quade Impact Ionization Model

The model of Schöll and Quade (1987) for impact ionization rate is based on the heated Maxwellian 
approximation for the symmetric part of the distribution function. According to this model, the impact 
ionization coefficient of electrons is given by:
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where ϖn=kBTn/En
th, En

th is the electron ionization threshold energy,τo is a constant (τo=εo
2 ħ3π3/3e4mn* 

≈0.0126 fs) and erfc(x) is the complementary error function. Note that this model considers a parabolic 
energy band (constant effective mass mn*). It was previously shown in literature that the analytical model 
of Scholl and Quad for the impact ionization rate under-estimates the generation rate at high fields. In 
order to get adequate results at moderate fields, both En

th and τo are usually considered as adjustable 
parameters, with values which are extremely far from their physical meaning. For example, Souissi et 
al. (1993) considered En

th≈4eV and τo≈0.14fs, in order to fit this model with experiment.

Figure 7. Impact ionization coefficients of electrons (αn) in Si at 300K, measured as a function of electric 
field ζ, according to several authors



160

Semiclassical Transport Theory of Charge Carriers
 

Baccarani and Stork Impact Ionization Model

The model of Baccarani and Stork (1990) belongs to the category of semi-empirical models, which 
are based on the Shockley lucky-electron model. According to Baccarani and Stork, the rate of impact 
ionization is given by:
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where c, λω, λop and En
th are constants. According to Baccarani and Stork, the ionization threshold energy 

En
th =1.1eV, the energy relaxation length λω=(5/3)vn

satτωno=500Å, the mean free path between optical-
phonon collisions λop=65Å and the adjustable parameter c is equal to 2x1012 cm-2. It was also reported 
that the semi-empirical model of Baccarani and Stork underestimates the impact ionization rate at high 
fields, when it is employed in a self-consistent manner in the hydrodynamic simulation (Crabbe et al, 
1990). However, Souissi et al (1993) used the model of Baccarani and Stork in their investigation about 
impact ionization in bipolar Si transistors and found that the best fit with measured values implies 
En

th=5.077eV, which is excessively high (typically 1.8eV). It has been shown in the latter work that 
both the Schöll-Quade and Baccarani-Stork models may be used to predict the multiplication factor (M 
=∫αn dx) across the base-collector zone with reasonable error, only over a limited range of applied bias.

Non-Maxwellian Distribution–Based Impact Ionization Models

In order to get rid of the disadvantages of the above mentioned models, some authors tried to calculate 
the impact ionization rate as a function of carrier energy, starting from its microscopic definition, on the 
basis of non-Maxwellian distribution functions. For instance, Matsuzawa, Komahara and Wada (1991) 
suggested the following form for the hot carrier tail of the electrons distribution function:

fn (En) = C1 exp [ - ½ (En / kBTn)
3/2 ] (46)

where C1 is a constant. Also, Sonoda et al. (1996) and later Grasser et al (2001) assumed the following 
two-components distribution, to account for both cold and hot carriers populations in nanoscale MOS-
FET devices:

fn (En) = C1 { exp [ -(En / Eref)
b] + C2 exp[-(En/kBT2)] } (47)

Here, C1, C2, Eref and b are adjustable parameters, which are used to tune the hot carrier distribution 
component, and the cold carrier (Maxwellian) component, in order to obtain reasonable results over a 
wide range of carrier energies. Therefore, when C1=0, the distribution function becomes a heated Max-
wellian and when C2=0 it tends to the tail distribution function. Using this four-parameter distribution 
function and assuming parabolic energy bands, Morris, Pass and Abebe (2004) introduced a simple 
formulation for the impact ionization rate on the basis of Gauss-Laguerre approximation. It should be 
noted that several efforts have been devoted for the development a nonlocal impact ionization model 
on the basis of the hot-electron subpopulation. For instance, Tang and Nam (1998) have introduced a 
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simplified form of such hot-carrier subpopulation models. The impact ionization coefficient is then fit-
ted to homogeneous MC simulation in the bulk of silicon.

Advanced Impact Ionization Model

Unfortunately, the success of the above mentioned energy-dependent models of impact ionization is 
limited to specific cases of small and moderate fields. In addition, these models make use of a number 
of adjustable parameters, whose fitting values have sometimes irrelevant physical meaning. Indeed, one 
source of errors is their lake to a link with the realistic band structure of the semiconductor material. 
The following model (El-Saba, 1999) accounts for the energy band structure and can be used, with no 
need to fitting of its physical parameters.

Gii = (n / τin) + (p / τip) (48)

where 1/τin and 1/τip are the electron and hole average ionization rates (per unit time). Starting from the 
Chynoweth experimental law (1958) in its scaled form, according to the Thornber scaling theory (1981):

αn (ζ)=(1/vnτin)= (eζ///En
th) exp[ -ζcn/ {ζ// (1+ζ// /ζp)+ζT} ] (49)

where ζcn = En
th/eλn is the critical field at the onset of impact ionization, ζT and ζp are the critical fields 

at which the electrons surmount acoustic and optical phonons scattering thresholds. Assuming that the 
ionization rate can be fully described by the kinetic moments (like, vn and ωn), one can write the electron 
energy conservation equation in the following form in static field conditions:

enζ.vn = -(∂nωn/∂t)col ≈ n(ωn -ωo)/τin -ωn(n-no)/τn + n(ωn-ωo)/τωn (50)

The first term in the above equation represents the generation by impact ionization, the second term 
represents the loss of electron energy due to recombination (τn being the electrons lifetime and no is 
the equilibrium density) and the third term represents the loss of electron energy due to collisions with 
phonons. The second term may be dropped from the above equation as τωn<<τn. Also the first and third 
terms may be combined, with an effective energy relaxation time, which includes the effect of impact 
ionization at high energies. According to Schöll and Quade (1987), this effect is not significant. Substi-
tuting the product eζ.vn from (30) into (29b), we get:

α ω
τ

ω ω

τ

η

ω ω
ω ω

η

n n
in n

n o

wn n n
th

n n
th

n o

n o
v v E

E
( ) exp= =

−( )
⋅ −

−( ) +
−( )

1

1
nn ph

n acE
E
















+












η

  (51)

where ηn =(vnτwn/λn), Eph and Eac are the mean optical and acoustical phonon energy. Note that λn is the 
electron mean free path between collisions (of all scattering modes). Therefore, λn is related to the mean 
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free path between ionizing collisions (λi) and the mean free path between collisions with acoustical and 
optical phonons, (λac, λop) as follows:

λn
-1 = λop

-1 + λi
-1 + λac

-1 (52)

We do not presume values for these parameters, but rather we consider λn as a continuous function 
of the mean carrier energy in the bulk of semiconductor. Near the surface of semiconductor, additional 
reduction of λn, due to surface acoustic phonons and surface roughness scattering mechanisms, should 
be considered. Actually, the measurements of impact ionization in MOSFET’s and CCD’s showed that 
the impact ionization coefficient near the Si/SiO2 interface is smaller than the bulk case. Slotboom et al 
(1987) attributed this reduction of the impact ionization to the effect of the shorter mean free path near 
the Si/SiO2 interface. However, as we are interested here in the calculation of the impact ionization rate 
in the bulk of semiconductor, we may discard the surface effects on the mean free path.

In the region of very low energies, where (ωn -ωo) ≤ ηnEac, our impact ionization model reduces to:
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where αno =(ωn-ωo)/(En
thτwn vn) and Eac

I = ηnEac= Eac(τwn vn)/λn. In fact, the study of low-voltage impact 
ionization has been recently a subject of debate. As shown in the above relation, the acoustic phonons 
energy, which adds to the carrier energy, may interpret this phenomenon. This means that at low carrier 
energies, carriers may acquire additional energy from the crystal lattice heat bath (by acoustic phonon 
absorption), in addition to the absorbed energy from electric field, and this may increase their energy 
to the threshold of impact ionization. This coincides with the theory of Su, Goto, Sugii and Hu (2002), 
which presumes that thermal activation of carriers may be the origin of the low voltage impact ionization 
in deep sub-micrometer MOSFETs. Actually, Impact ionization was observed in short-channel silicon 
SOI devices at drain-source bias as low as 0.8 V, where it was not expected. From the first sight, such 
very low applied bias is apparently not sufficient to supply electrons with necessary kinetic energy over 
the impact ionization threshold. However, impact ionization at such low voltages was observed in small 
SOI MOSFET devices, through the kink in drain-source current-voltage characteristics.

It should be also noted that the ionization rate at low energies is greatly influenced by both the energy 
relaxation time and the carrier velocity distribution. Thus, in dynamic operation, the velocity overshoot 
is expected to enhance the impact ionization rate in very small MOSFET devices.

At relatively moderate energies, where ηnEac <(ωn-ωo) <ηnEph, our model can be approximated to the 
following simple exponential form:
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where En
I = ηnEn

th= En
th(τwn vn)/λn. At high energies, where ηnEp << (ωn-ωo), this model can be approxi-

mated as follows:
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where αno ≈ ωn/(En
thτwn vn

sat) is the asymptotic value of impact ionization rate and Eph
I = ηnEph. Note that 

we consider τwn=τwn(ωn) and λn=λn(ωn). However, even at low electric fields, the simple exponential 
realation: exp[-En

I /(ωn-ωo)] does not imply a Maxwellian distribution, because En
I is energy dependent.

The energy dependence of the energy relaxation time, which implicitly includes the energy band 
structure effects, can be obtained from MC simulation or by measurement. Unlike classical models, the 
hard threshold energy (En

th) is replaced with a soft (energy-dependent) mean threshold energy (En
I) in 

our model. This coincides with the conclusions of Bude and Hess (1992) about the impact ionization 
soft threshold.

The calculation of the mean free path λn as a function of the electron energy may be carried out by 
MC simulation in the bulk, using the following relation:

λn (ωn) = < un(k) / Γn (k)> (54a)

where Γn(k) is the total carrier scattering rate including impact ionization. The mean free path may be 
also estimated by fitting the so-called lucky-electron exponential model LE-EM, with experimental 
results. However, we can consider the following expression for λn, which includes the effect of acoustic 
and optical phonons as well as ionization collisions:

1/λn(ωn) = 1/λph + 1/λi = λph / [1+ (ωn -ωo)/ En
I] (54b)

where λph = 1/(1/λop + 1/λac) depicts the mean free path due to both acoustical and optical phonons. We 
also make use of the following phenomenological relation to express of λph as a function of carrier energy. 
This relation is based on Cromwell and Sze model (1966) at the electron temperature6:

λph (Τn) = λo tanh (Eph/2kBΤn) (54c)

Here, λo is the mean free path between collisions at very low temperature (when Tn ≈ 0). Figure 29 
depicts the variation of λn and αn in Si, according to the above relations. In our model, we take Eph= 
60meV, λo=4000Å and extrapolate the available MC data of τwn(ωn). For the matter of comparison, we 
plot αn according to Baccarani-Stork and Scholl-Quade models, beside EL-Saba model (1999).

The Scholl-Quad model produces excessively high rates when the real physical value of τo is taken into 
account. So, we set τo equal to 12.6 fs, about 3 orders of magnitude greater than its physical value. Note 
that the value of αn in EL-Saba scaled model is greater than all other models and continues to increase 
at high energies. In fact, the experimental values of αn may exceed 106cm-1. Also, the measurement of 
Kotani and Kawazu (1981) and Takayanagi et al. (1992) of αn(ζ) are actually fitted with αno≥106 cm-1.

It worth noting that the impact ionization rate at high energies (in the saturation region) is greatly 
influenced by the roll-off of the energy relaxation time, while En

th and λn have a relative influence at low 
and medium energies. This explains the failure of the previous models, to properly estimate αn at high 
energies, even with adjusting En

th and pre-exponential factors with non-physical values, while fixing 
both λn and τwn..
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Figure 8. Electron mean free path between optical phonon collisions in Si at 300K, according to the 
LE-EM and the Crowel-Sze model at electronic temperature

Figure 9. Electron impact ionization rate in Si at 300K, as a function of average electron energy, ac-
cording to Baccarani-Stork model (λω=500Å, λop = 65Å), Scholl-Quade model (τo= 14ps) and the model 
of the book author. In all models En

th =1.2 eV.
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As we pointed out in the last section, the mean ionization energy En
I in El-Saba model of impact 

ionization has a soft distribution around En
th. In order to evaluate the broadening of mean ionization 

energy, this model defines impact ionization energy broadening ΔEn
I as follows:

α(ωn) = |En
I (ωn) - En

th | = En
th | 1− vnτwn/λn| (55)

Figure 10 depicts the ionization energy broadening ΔEn
I as a function of mean electron energy. It is 

clear that the energy broadening is mainly due to the variation of the energy relaxation time and the mean 
free path at high energies. Curiously, one may wonder if there is a reason to relate this phenomenon to 
the broadening in energy levels due to finite lifetime of energy states between scattering events at high 
energy. In fact, it has been shown experimentally that there exist a line broadening transition, represent-
ing the transition from phonon scattering dominated to impact ionization dominated transport not only 
in silicon but also in any material with a bandgap (Bude, 1995).

In addition, the effect of collisional broadening on the impact ionization rate was studied in several 
articles. For instance, Madureira et al (2001) showed that the energy broadening leads to a lowering of 
the ionization threshold which is significant for low static fields. The theoretical studies of the impact 
ionization on the basis of quantum transport theory7 showed that a fixed impact-ionization threshold 
does not exist, and the impact-ionization scattering rate is drastically enhanced around the semiclassical 
threshold by the intra-collisional field effect. Of course, the broadening factor may be better evaluated 
by precise MC simulation, with an improved impact ionization model. However, with our simple model 
of λn(ωn) and the exponentially extrapolated τwn(ωn), we found that ΔEn

I in Si is centralized around a 

Figure 10. Average ionization energy in Si at 300K, with En
th=1.12 eV
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minimum (almost zero) at ωn ≈ 1.7eV, which is interestingly equal to about 3/2 En
th. It should be noted 

here that we chose λo such that the distribution of λph(ωn) is as close as possible from the experimental 
LE-EM curve near the ionization threshold. As shown in figure 10, the two curves almost intersect at 
ωn = En

th =1.12eV in Si.
Finally, we note that our model include the effect of phonon–assisted impact ionization rate, through 

the inclusion of energy-dependent mean free path λn(ωn). The phonon–assisted impact ionization causes 
threshold shift and may have more significant effect on the hole impact ionization rate (Takayanagi et. 
al., 1992).

6.3 Carrier-Energy Relaxation Time (τwn,,p)

The choice of the carrier-energy relaxation time is crucial in the HD simulation because it influences 
both the static and dynamic characteristics of the device to be simulated. According to the hydrodynamic 
theory, the exact modeling of the carrier energy relaxation time (and all other relaxation times) should 
be expressed as function of all the carrier moments (average quantities, like n, vn and ωn, etc). However, 
as we usually truncate the series of moments and satisfy ourselves with the few first moments, it is 
believed that much of the information about the energy relaxation time is tightly related to the carrier 
mean energy and density. Therefore, the carrier energy relaxation time is usually modeled as function 
of the carrier mean energy, as well as the lattice temperature and doping concentration.

According to Jacoboni and Reggiani (1999), the energy relaxation time should decrease in a phe-
nomenological way representing the tendency of the isotropic part of the distribution function to decay 
towards its equilibrium value. Thus, they made use of the following formula, to model the carrier energy 
relaxation time for warm electrons:

τwn(ωn) = (ωn -ωno) /e vd ζ (56a)

This formula, which is sometimes called the Seeger formula (1973), is derived from the energy 
continuity at steady state:

∂ωn/∂t = e vd ζ + (∂ωn /∂t)col = e vd ζ - (ωn -ωo)/τwn =0 (56b)

According to the Seeger static formula, the energy relaxation time can be determined by substituting 
the static field relations vd(ζ) and ωn(ζ) from MC simulation. This static relation has been used in the 
literature to evaluate the energy relaxation time from MC data or its fitting parameters. However, when 
the electron distribution function is warm enough and the electron velocity tends to saturate, the energy 
relaxation time can be considered as a constant. This is a good approximation when the band structure 
is parabolic.

For non-parabolic bands, the energy relaxation time continues to decrease when electron energy is 
further increased, as shown in Figure 11. This is due the fact that the intervalley phonons becomes more 
effective in dissipating the electron energy at high energies, which lead to decreasing the electron energy 
relaxation time, at higher energies.

For accurate modeling of the energy relaxation time, I proposed a phenomenological relation (El-
Saba, 2012) between the average electron effective mass mn and energy relaxation time τwn, for energies 
above the equilibrium value (ωn >ωo):
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τwn(ωn) = τwno [ mno / mn(ωn)] (57)

where mno is the density of states effective mass at the bottom of the conduction band. According to this 
relation, we only need the knowledge of the low-field value of the electron energy relaxation time and 
the average mass as a function of electron energy mn(ωn) to obtain τwn(ωn).

The low-field value of the average electron mass, mno, is equal to the conductivity effective mass at the 
conduction band edge, and can be measured using the optically-detected cyclotron resonance (ODCR). 
The ODCR method is more accurate than the classical CR and has been recently used to measure the 
effective mass of several semiconductor compounds. According to the measurements of Riffe (2002) the 
conductivity effective mass at 300K mno = 0.275mo and mno = 0.365mo as shown in Figure 12.

The ultrafast laser based pump-probe techniques have been used to measure the energy relaxation as 
well as the momentum relaxation times in Si (Tsen, 2001). Using this technique, a time constant of 32 
± 5fs associated with momentum relaxation and an electron-phonon energy relaxation time of 260 ± 30 
fs have been extracted from the coherent-transient variations in (001) Si at 300K.

In order to calculate the average electron mass as a function of the average electron energy, we use 
the MC simulation results and compare it with the measured ratio of (mno/mn). The measured values of 
mno/mn are taken according to Rife (2002). As shown in figure, the normalized value of the average in-
verse mass decreases as the electron energy increases. In a next step, we calculate the energy relaxation 
time τwn(ωn), using the above phenomenological relation (above ωo, when electrons start to warm up).

As shown in figure 32, the discrepancy between the energy relaxation time, according to MC and 
the calculated one according to our model is within the measurement error (~10%) for a wide range of 
carrier temperatures (up to 2000K and may be linearly extrapolated to much more higher values). Alter-
natively, El-Saba model (2012) can be used to calculate the energy dependence of the average electron 
mass mn(ωn) from the energy dependence of the electron energy relaxation time τwn(ωn).

Figure 11. Electron average mass and energy relaxation time in Si at 300K
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The energy dependence of τwn of several semiconductors (e.g., AlGaAs/GaAs, AlGaN/AIN/GaN) has 
been measured using the microwave-noise method. This method is based on the measurement of the noise 
temperature, which is equal to the electron temperature Tn in the semiconductor, according to the relation:

τwn = 3/2 kB (Tn -TL) /e vd ζ (58)

Here we neglect the convection part of the average electron energy and consider ωn ≈ 3/2 kB Tn. 
Because of the lake of sufficient experimental data about the energy relaxation time in semiconductors 
(as a function of carrier energy), the above model, which correlates τwn(ωn) with the measured mn(ωn) 
should be very useful.

Figure 13 depicts the experimental values of the energy relaxation time and optical phonons lifetime 
in Si at 293K, according to the recent optical measurement of Matulionis et al (2002). As shown in fig-
ure, the electron mass increases monotonically as its energy increases. On the other hand, the hole mass 
relaxes from an initial peak and then increases monotonically with its energy.

Figure 14 depicts the effect of the energy relaxation time on the hydrodynamic simulation results 
(the I-V characteristics of sub 0.1 μm MOSFET). Note that the solution, which is obtained using the 
HDM with lower τωn tends to the classical DDM solution. This means that for shorter energy relaxation 
times, the electrons are more efficient in dissipating their energy. For the limiting case when τωn tends 
to zero, the electrons will tend to dissipate their gained energy at once and their average energy is equal 
the lattice energy ωo. This is exactly the case of DDM, where we consider the electron temperature equal 
to the lattice temperature (Tn=TL) at all fields.

ωn = ωo + e. τwn vd ζ (59)

Figure 12. Measured electron average mass in Si
After Rife (2002).
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Figure 13. Electron energy relaxation time and optical phonons lifetime in Si at 293K, according to the 
optical measurement of Matulionis et al. (2002)

Figure 14. I-V characteristics of a 0.05μm MOSFET, at VGS=1.5V, showing the effect of energy relax-
ation time, as obtained by classic HDM
After Munteanu et al.
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From the above, we may conclude that the DDM is a hypothetical case of the HDM where we assume 
τωn = 0 and hence ωn = ωo, and this case means a virtual semiconductor whose collisions are so efficient 
that electrons relax to the equilibrium energy in almost no time.

DDM Lim HDM
n

= →τω 0
 (60)

Therefore, the electrons in such a virtual semiconductor (with zero energy relaxation time) will not 
be heated even at high fields and the mean electron energy will be always equal to the equilibrium value.

6.4 Advanced Heat Flux Model

The heat flux term in the majority of previous hydrodynamic models was either neglected or modeled 
by the Fourier relation. The energy transport model (ETM) was reformulated by Chen, Kan and Ravaioli 
(1992), who assumed non-Maxwellian and non-parabolicity correction factors, to solve the contradiction 
involved in evaluating a non-zero heat flux term for a Maxwellian distribution. However, it has been 
shown that the Fourier diffusion model is not accurate for modeling the heat flux across semiconduc-
tor interfaces in general and p-n junctions in particular (EL-Saba, 1996). This has been also discussed 
in the article of Kan et al (1995), where it is indicated that the Wiedmann-Franz law is suspected to be 
responsible for the spurious velocity overshoot.

In order to increase the accuracy of the HDM, I proposed in my article (EL-Saba, 1996) the following 
model, which is based on the third moment of the BTE in steady state:
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 (61a)

where I suppressed the time derivative (∂Sn/∂t) and used the relaxation time approximation (τsn is the 
energy flux relaxation time). The above conservation equation (of energy flux), may be further simpli-
fied by approximating the average terms, as follows:

<(mn*)-1En+un⊗un> ≈ 5/2 αn <un ⊗un>, (61b)

<Enun⊗un> ≈ ½ βn mn (<un ⊗un>)2 (61c)

Here, the correction factor αn encompasses the anisotropy of the distribution function and the correc-
tion factors βn expresses how much the distribution function is deviated from the Maxwellian distribu-
tion. These parameters can be estimated by MC simulation in the bulk of semiconductor. Then we can 
write the energy flux as the sum of a conduction part Qn and a convection part (where Jn is a multiplier):

Sn= Qn + 5/2 (μsn/μn) (kB Tn).Jn (62a)
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Here μsn = (e mn
-1τsn) and the electron heat flux Qn is given by:

Qn = - kn
’ ∇Tn – kn

’’ [∇(nTn) / n)] (62b)

where

kn
’ = 5/2 (kB 2/e) n μsn βn Tn, (63a)

kn
’’ = 5/2 (kB 2/e) n μsn (βn - αn’) Tn (63b)

Note that the convection energy flux is similar to the 3-moments formulation, except for the correc-
tion factor (μsn/μn) and that (ωn+kBTn) is replaced with 5/2(kBTn). However, we just called the 3rd moment 
equation to derive a more accurate formula of the heat flux term, which includes the effect of both carrier 
density and carrier temperature gradients.

6.5 Modified Wiedman-Franz Relation

When the anisotropy of the distribution function is negligible, we may substitute αn’ ≈ 1. Then, the heat 
flux term can be put in the following form (El-Saba, 1996):

Qn = - 5/2(kB 2/e) μsn (2βn-1)∇(nTn) (64a)

Figures 15 and 16 depict the heat flux beta factor and the relative energy flux mobility (μsn/μn) as a 
function of carrier energy for electrons. We can calculate these parameters from MC data in the bulk of 
Si at 300K, with non-parabolicity factor 0.5V-1. When the carrier-concentration gradient is negligible 

Figure 15. Energy flow mobility in Si at 300K and various doping concentrations
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(with respect to the temperature gradient), the above formula may be further reduced to the conventional 
Fourier relation, as follows:

kn = 5/2 (kB 2/e) n μsn (2βn -1) Tn (64b)

The above equation is equivalent to the Wiedeman-Franz relation with the following ‘modified’ 
energy-dependent Lorenz parameter:

γn = 5/2 (μsn /μn) (2βn -1)  (65)

In the case of very low doping and very low electric field, where μsn=μn and βn=1 then γn=5/2 which 
corresponds to (5/2+r) in the classic model.

7. LATTICE HEAT CONSERVATION EQUATION

The lattice heat equation, which depicts the temporal and spatial distribution of lattice temperature 
along the semiconductor, has been already introduced in chapter 1. This equation is not only important 
for power devices but also for silicon-on-insulator (SOI) devices as well as nanodevices. In fact, the 
recent studies of SOI devices by standard HDM, showed certain anomalies due to lack of a heat evacu-
ation mechanism at the insulator interface. In order to fix the heat evacuation problem, some authors 
suggested to consider a tensorial temperature and modifying the closure condition for energy flux term. 
Other authors suggested a more rigorous approach consists in solving the BTE for phonons (Pop, 2004). 

Figure 16. The heat flux beta factor in Si at 300K and various doping concentrations
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In fact it is well known that the longitudinal optical (LO) phonons have small group velocities (~105 
cm/s) and anharmonically decay into faster acoustic phonons which in turn transport the energy out off 
the semiconductor device. Therefore, we can add phonon BTE to the set of transport equations to solve 
this problem. The phonon BTE may be simplified by assuming a three-fluid phonon transport model 
involving a stationary optical reservoir mode and a propagating acoustic mode. The phonon BTE and 
its solution methods are presented in Chapter 7 of this book, in the context of phonon transport theory.

8. CASE STUDY 2: HYDRODYNAMIC SIMULATION OF P-I-N DIODE

Assume the following P-N junction geometry and doping profile, as shown in Figure 17. The p+ region 
has a Gaussian profile with maximum doping of 1019 acceptor/cm3 and the n-region is uniformly-doped 
with 1014 donor/cm3. The buffer n-region, which follows the n-region is also uniformly doped with 1015 
donor/cm3. In order to obtain the electrostatic potential distribution in the device, the Poisson equation 
should be solved. In order to get the distribution of charge carriers (electrons, n, and holes, p) across the 
device and subsequently calculate the current density at its contacts, the continuity equations should be 
solved. In the hydrodynamic transport model, carrier temperatures are allowed to be different from the 
lattice temperature. The basic equations are augmented by energy balance equations which determine 
the carrier temperatures.

Figure 18 shows the distribution of electrons and holes obtained by both the DDM and HDM through 
the axial direction. As shown in Figure 18, there exists an undershoot in the HD simulation of the hole 
distribution along the p-i-n diode which means the presence of a velocity overshoot. However, such 
overshoots are not significant in our case because of the substantial length of the simulated device. Figure 

Figure 17. The doping concentrations in the simulated p-i-n diode
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21 depicts the energy flux of electrons and holes across the P-I-N device under reverse bias. Note that 
the energy fluxes are not symmetric and have different directions.

The simulation results show that the density of electrons in the negative space charge region increases 
(nHDM > nDDM), and the density of holes in the positive space charge region decreases (pHDM < pDDM) be-
cause of the thermal diffusion effects. I attributed the discrepancy in the carrier density distribution in 
the HD simulation to the hot carrier backward diffusion or rebelling effect (EL-Saba, 2006). Figure 19 
shows the normalized electron temperature and electric field distributions under reverse bias conditions.

9. CASE STUDY 3: HYDRODYNAMIC SIMULATION OF NanoMOS

The multi gate MOSFET structures have been receiving great attention because they help making Si 
MOSFETs even smaller (i.e., channel lengths under 20 nm). Such very short channel devices permit 
computers and portable appliances, to be operated at high frequency and powered from low-voltage 
supplies. On the other hand, the HDM has been recognized as more accurate: than the drift-diffusion 
model (DDM) for simulating hot-carrier effects in such small semiconductor devices. However, it has 
been reported in the literature that the HDM, has several drawbacks such as its exaggerated estimation 
of the electron velocity overshoot, when its parameters, such as the carrier energy-relaxation time in 
particular, are not properly modeled. Figure 22 depicts the structure of a double-gate (DG) MOSFET as 
well as its simulated potential distribution.

The simulated DG-MOS, described in figure above, has a gate length L of 24nm. The gate oxide 
tox is 1nm and the Si body thicknesses tSi is 9nm. The doping density is ND = 5×1019 cm−3 in the N+ 
source–drain regions and NA =2×1015 cm−3 in the body.

Figure 18. Electron and hole concentrations, across the p-i-n diode at -75V reverse bias
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10. SUMMARY

The hydrodynamic description of the gas of charge carrier in semiconductors consists in the study of the 
evolution of certain macroscopic quantities, whose physical meaning is significant and whose quantity 
is eventually measurable. The hydrodynamic model (HDM) for semiconductor s plays an important role 
in simulating the behavior of the charge carrier in submicron semiconductor devices. The HDM consists 
of a set of conservation laws for the particle density, current density, and energy density.

The set of hydrodynamic equations (HDEs), which is derived from the first few moments of the 
semiclassical Boltzmann transport equation (BTE), is indeed more accurate than the conventional drift-

Figure 19. Electron and hole temperatures, across the p-i-n diode, at -75V reverse bias

Figure 20. The electron and hole temperature distribution at reverse bias of -75V
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Figure 21. Energy flux of electrons and holes at reverse bias of -75V

Figure 22. Simulated structure and electrostatic potential distribution of the DG-MOSFET
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diffusion model (DDM) and less complex than the direct solution of the BTE, and Monte Carlo Methods. 
The following electron density, momentum- and energy-conservation equations in a semiconductor, can 
be deduced from the first three moments of the BTE:

∂
∂
= ∇ ⋅ + −

n
t e

J R G
n

1
( )  

J n m
dv

dt
e n k nT

n n n
n

n B n n
= + + ∇µ µ ζ µ ( )  

Figure 23. Three-dimensional distributions of electron density and electron temperature

Figure 24. The Drain voltage Id vs. drain voltage Vd at Vg=0.7V, according to MCM, HDM and DDM



178

Semiclassical Transport Theory of Charge Carriers
 

∂
∂

+∇ ⋅ = ⋅ + − −
−( )

( )
( )n

t
S J R G nn

n n n
n o

n

ω
ζ ω

ω ω
τω

 

where n, Tn, vn and ωn are the electron density, temperature, mean velocity and mean energy, respectively. 
Also, τωn is the electron energy relaxation time, μn is the electron drift mobility, kB is the Boltzmann 
constant and R and G are the recombination and generation rates. In addition, Jn = -e n vn is the electron 
current density, ζ is the electric field and Sn is the electron energy flow:
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Qn is the electron heat flux and the electron mean energy ωn is related to the electron temperature Tn 
by the following relation:
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Also, the electron mean energy at thermal equilibrium ωo is related to the lattice temperature TL, 
such that ωo = 3/2 kB TL.

Since the validity of the semiclassical transport approaches for simulating extremely scaled devices 
(sub 0.1 μm) and ultrafast devices (working up to the terahertz range) has been lately a subject of debate, 
we just remind here the main assumptions on which the BTE in semiconductors is based.

• Collisions are localized in space, so that the mean free path of charge carriers is much greater than 
the de-Broglie wavelength,

• Collisions are instantaneous in time such that the collision time is much smaller than the time 
between subsequent collisions,

• External electric field force does not vary greatly over small distances in the order of wave packet 
length,

• Particles are weakly correlated (Bogoliubov assumption) and the many body effect is negligible.

REFERENCES

Agarwal, P., Goossens, M. J., Zieren, V., Aksen, E., & Slotboom, J. W. (2004). Impact ionization in thin 
silicon diodes. IEEE Electron Device Letters, 25(12), 807–809. doi:10.1109/LED.2004.838557

Aluru, N.R., Law, K.H., & Dutton, R.W. (1995). An Analysis of the Hydrodynamic Semiconductor Device 
Model-Boundary Conditions and Simulations. COMPEL - The International Journal for Computation 
and Mathematics in Electrical and Electronic Engineering, 14(2/3), 157 – 185.

http://dx.doi.org/10.1109/LED.2004.838557


179

Semiclassical Transport Theory of Charge Carriers
 

Anantram, M. P., Lundstrom, M.S., & Nikonov, E. (2008). Modeling of Nanoscale Devices. Proceed-
ings of the IEEE Trans., 96(9).

Anile, A. M., Romano, V., & Russo, G. (2000). Extended hydrodynamic model of carrier transport in 
semiconductors. SIAM Journal on Applied Mathematics, 61(1), 74–101. doi:10.1137/S003613999833294X

Ansgar, J., & Matthes, D. (2005). A derivation of the isothermal quantum hydrodynamic equations using 
entropy minimization. Applied Numerical Mathematics.

Baccarani, G. (Ed.). (1993). Process and Device Modeling for Microelectronics. Amsterdam: Elsevier.

Baccarani, G., & Wordmann, M. (1985). An Investigation of the Steady-State Velocity Overshoot in 
Silicon. Solid-State Electronics, 28(4), 407–416. doi:10.1016/0038-1101(85)90100-5

Ballinger, R. A., Major, K. G., & Mallinson, J. R. (1973). Impact ionization thresholds in semiconduc-
tors. Journal of Physics. C. Solid State Physics, 6(16), 2573–2585. doi:10.1088/0022-3719/6/16/011

Baraff, G. A. (1962). Distribution function and ionization rates for hot electrons in semiconductors. 
Physical Review, 128(6), 2507–2517. doi:10.1103/PhysRev.128.2507

Baraff, G. A. (1964). Maximum anisotropy approximation for calculating electron distributions; Ap-
plication to high field transport in semiconductors. Physical Review, 133(1A), A26–A33. doi:10.1103/
PhysRev.133.A26

Bløtekjaer, K. (1970). Transport equations for electrons in two-valley semiconductors. IEEE Trans, ED-
17(1), 38–47. doi:10.1109/T-ED.1970.16921

Bonitz, M., Kremp, D., Scott, D. C., Binder, R., Kraeft, W. D., & Kohler, S. (1996). Numerical analysis of 
non-Markovian effects in charge-carrier scattering: One-time versus two-time kinetic equations. Journal 
of Physics Condensed Matter, 8(33), 6057–6071. doi:10.1088/0953-8984/8/33/012

Brugger, S. C., Schenk, A., & Fichtner, W. (2006). Moments of the Inverse Scattering Operator of the 
Boltzmann Equation: Theory and Applications. SIAM Journal on Applied Mathematics, 66(4), 1209–1226. 
doi:10.1137/050633275

Brunetti, R. A. (1989). New Model of Si for Charge Transport at High Electron Energy. NASECODE 
VI (J. Miller, Ed.). Duplin.

Bude, J., & Hess, K. (1992). Threshold of impact ionization in semiconductors. Journal of Applied 
Physics, 72(8), 3554–3561. doi:10.1063/1.351434

Bude, J. D. (1995). Monte Carlo simulation of impact ionization feedback in sub-micron MOSFET 
technologies. Proceedings of SSDM, 228–230 doi:10.7567/SSDM.1995.B-4-1

Bude, J. D. (1995). Gate current by impact ionization feedback in sub-micron MOSFET technologies. 
Proceedings of Symposium VLSI Tech., 101-102. doi:10.1109/VLSIT.1995.520877

Canali, C., Maijni, G., Minder, R., & Ottaviani, G. (1975). Electron and Hole Drift Velocity Measure-
ments in Silicon and their Empirical Relation to Electric Field and Temperature. IEEE Transactions on 
Electron Devices, ED-22(11), 1045–1047. doi:10.1109/T-ED.1975.18267

http://dx.doi.org/10.1137/S003613999833294X
http://dx.doi.org/10.1016/0038-1101(85)90100-5
http://dx.doi.org/10.1088/0022-3719/6/16/011
http://dx.doi.org/10.1103/PhysRev.128.2507
http://dx.doi.org/10.1103/PhysRev.133.A26
http://dx.doi.org/10.1103/PhysRev.133.A26
http://dx.doi.org/10.1109/T-ED.1970.16921
http://dx.doi.org/10.1088/0953-8984/8/33/012
http://dx.doi.org/10.1137/050633275
http://dx.doi.org/10.1063/1.351434
http://dx.doi.org/10.7567/SSDM.1995.B-4-1
http://dx.doi.org/10.1109/VLSIT.1995.520877
http://dx.doi.org/10.1109/T-ED.1975.18267


180

Semiclassical Transport Theory of Charge Carriers
 

Cassi, D., & Riccò, B. (1990). An analytical model of the energy distribution of hot electrons. IEEE 
Transactions on Electron Devices, 37(6), 1514–1521. doi:10.1109/16.106247

Caughey, D. M., & Thomas, R. E. (1967). Carrier mobilities in silicon empirically related to doping and 
field. Proceedings of the IEEE, 5(12), 2192–2193. doi:10.1109/PROC.1967.6123

Cerciganani, C. (1988). The Boltzmann Equation and its Applications. Springer. doi:10.1007/978-1-
4612-1039-9

Chapman, S. (1916). On the law of distribution of molecular velocities, and on the theory of viscosity 
and thermal conduction, in a non-uniform simple monatomic gas. Philosophical Transactions of the 
Royal Society of London, 216(538-548), 279–348. doi:10.1098/rsta.1916.0006

Chen, D., Kan, E. C., Ravaioli, U., Shu, W.-C., & Dutton, R. W. (1992). An improved energy transport 
model including nonparaboilicty and non-Maxwellian distribution Effects. IEEE Trans. Electron Dev. 
Lett., 13(1), 26–28. doi:10.1109/55.144940

Cheng, M., & Kunhardt, E. E. (1990). A Theory of Nonequilibrium Carrier Transport in Multivalley 
Semiconductors. Journal of Applied Physics, 67(4), 1907–1914. doi:10.1063/1.345620

Chynoweth, A. G. (1958). Ionization rates for electrons and holes in Si. Physical Review, 109(5), 
1537–1540. doi:10.1103/PhysRev.109.1537

Conwell, E. M. (1967). High Field Transport in Semiconductors. Solid-State Physics, (s9).

Cook, R., & Frey, J. (1982). An efficient technique for 2-D simulation of velocity overshoot effects in 
Si & GaAs devices. COMPEL, 1, 65–87. doi:10.1108/eb009966

Costato, M., & Reggiani, L. (1973). Electron energy relaxation time in Si and Ge. Journal of Physics 
and Chemistry of Solids, 34(3), 547–564. doi:10.1016/0022-3697(73)90050-4

Crowell, C., & Sze, S. M. (1966). Temperature dependence of avalanche multiplication in semiconduc-
tors. Applied Physics Letters, 9(6), 242–244. doi:10.1063/1.1754731

Egley, J., Polsky, B., Min, B., Lyumkis, E., Penzin, O., & Foisy, M. (2000). SOI related simulation chal-
lenges with moment-based BTE solvers. Simulation of Semiconductor Processes and Devices, Seattle, 
WA. doi:10.1109/SISPAD.2000.871253

El-Saba, M.H., Morel, H., & Chante, J-P. (1991). Simulation of Bipolar Transport in Semiconductor p-n 
Junctions Using the Generalized Hydrodynamic Equations. COMPEL, 10(4), 289-299.

El-Saba, M.H., Morel, H., & Chante, J-P. (1992). A Novel Discretization Scheme for the Integrated 
HDM/DDM simulation of Semiconductor Devices. In Computing Methods in Applied Science and 
Engineering. New York: Nova Science.

El-Saba, M.H., Morel, H., & Chante, J-P. (1992). Simulation of Band-structure Dependent Transport 
and Impact Ionization in Semiconductor P-N Junctions Using an Improved Multivalley Hydrodynamic 
Model. Proceeding NASCODE 8, 107-108.

http://dx.doi.org/10.1109/16.106247
http://dx.doi.org/10.1109/PROC.1967.6123
http://dx.doi.org/10.1007/978-1-4612-1039-9
http://dx.doi.org/10.1007/978-1-4612-1039-9
http://dx.doi.org/10.1098/rsta.1916.0006
http://dx.doi.org/10.1109/55.144940
http://dx.doi.org/10.1063/1.345620
http://dx.doi.org/10.1103/PhysRev.109.1537
http://dx.doi.org/10.1108/eb009966
http://dx.doi.org/10.1016/0022-3697(73)90050-4
http://dx.doi.org/10.1063/1.1754731
http://dx.doi.org/10.1109/SISPAD.2000.871253


181

Semiclassical Transport Theory of Charge Carriers
 

El-Saba, M.H. (1993). Modélisation et Simulation Hydrodynamique des phénomènes de Transport de 
porteurs chauds et de L’ionisation par Impact dans les Dispositifs à Semiconducteur (Ph.D.). INSA 
Lyon, France, Order No.93 ISAL 0072.

El-Saba, M. H. (1996). Accurate Non-Local Modeling of Hot-Carriers Drift Mobility in Semiconductor 
Devices. Proc. 8th Int. Conf. on Microelectronics-ICM.

El-Saba, M.H. (1996). Problems Related to the Semiconductors Hydrodynamic Model: Modeling the 
Carrier-Heat Flux Term. Academic Press.

El-Saba, M. H. (1998). Accurate Estimation of Electron Velocity Overshoots in Sub-0.1 micron Silicon 
Structures and MOSFET Devices. Proceedings of the 15th Radio Science Conference.

El-Saba, M. H. (1999). Accurate modeling of energy-dependent impact ionization rate for hydrodynamic 
simulators of semiconductor devices. Proceedings of the IEEE Radio Science Conference.

El-Saba, M. H. (2006). Investigation of Hot Carrier Repelling Effect in Semiconductor Devices, Using 
an Analytical Solution of the Hydrodynamic Model. IEEE Transactions on Electron Devices, 53(7), 
1615–1622. doi:10.1109/TED.2006.876040

El-Saba, M. H. (2012). Yet another Hydrodynamic Model for Silicon Devices with Correlated Parameters, 
Scientific & Academic Publishers. Microelectronic Devices and Solid-State Electronics, 1(5), 118–147. 
doi:10.5923/j.msse.20120105.03

Enskog, D. (1917). Kinetische Theorie der Vorgänge in mässig verdünnten Gasen. Uppsala Univertitet.

Ferry, D. K., & Barker, J. R. (1980). Balance equation formulation and memory effects in retarded high-
field semiconductor transport. J. Appl. Phys. Chem. Solids, 3, 106–141.

Fourier, J. (1822). Théorie Analytique de la Chaleur. Gabay.

Fröhlich, H. (1947). On the Theory of Dielectric Breakdown in Solids. Proceedings of the Royal Society 
of London, I88-A(1015), 521–532. doi:10.1098/rspa.1947.0023

Giovanni, M. (2015). A hydrodynamic model for silicon semiconductors including crystal heating. Eu-
ropean Journal of Applied Mathematics, 26(04), 477–496. doi:10.1017/S0956792515000157

Gnudi, A., Ventura, D., Baccarani, G., & Odeh, F. (1993). Two-Dimensional MOSFET Simulation by 
Means of a Multidimensional Spherical Harmonics Expansion of the Boltzmann Transport Equation. 
Solid-State Electronics, 36(4), 575–581. doi:10.1016/0038-1101(93)90269-V

Goldsman, N. Henrickson, L. & Frey, J. (1990). Reconciliation of a Hot-Electron Distribution Function 
with Lucky Electron Exponential Model in Silicon. IEEE Electron Devices Lett., EDL-11(10).

Goldsman, N., Henrickson, L., & Frey, J. (1991). A physics-based analytical/ numerical solution to the 
Boltzmann transport equation for use in device simulation. Solid-State Electronics, 34(4), 389–396. 
doi:10.1016/0038-1101(91)90169-Y

http://dx.doi.org/10.1109/TED.2006.876040
http://dx.doi.org/10.5923/j.msse.20120105.03
http://dx.doi.org/10.1098/rspa.1947.0023
http://dx.doi.org/10.1017/S0956792515000157
http://dx.doi.org/10.1016/0038-1101(93)90269-V
http://dx.doi.org/10.1016/0038-1101(91)90169-Y


182

Semiclassical Transport Theory of Charge Carriers
 

Gonzalez, B., Palankovsk, V., Kosina, H., Hernandez, A., & Selberherr, S. (1999). An analytical Energy 
relaxation time model for device simulation. Solid-State Electronics, 43(9), 1791–1795. doi:10.1016/
S0038-1101(99)00132-X

Grad, H. (1949). On the kinetic theory of rarefied gases. Communications on Pure and Applied Math-
ematics, 2(4), 331–407. doi:10.1002/cpa.3160020403

Grant, W. (1973). Electron and hole ionization rates in epitaxial silicon at high electric fields. Academic 
Press.

Grasser, T., Kosik, R., Jungemann, C., Meinerzhagen, B., Kosina, H., & Selberherr, S. (2004). A Non-
Parabolic Six Moments Model for the Simulation of Sub-100nm Semiconductor Devices. Journal of 
Computational Electronics, 3(3), 183–187. doi:10.1007/s10825-004-7041-1

Grasser, T., Kosina, H., Heitzinger, C., & Selberherr, S. (2002). An impact ionization model including 
an explicit cold carrier population. Modelling and Simulation of Microsystems.

Grasser, T., Kosina, H., & Selberherr, S. (2001). Influence of the distribution function shape and 
the band structure on impact ionization modeling. Journal of Applied Physics, 90(12), 6165–6171. 
doi:10.1063/1.1415366

Grasser, T., Tang, T.-W., Kosina, H., & Selberherr, S. (2003). A Review of Hydrodynamic and Energy-
Transport Models for Semiconductor Device Simulation. Proceedings of the IEEE, 91(2), 251–274. 
doi:10.1109/JPROC.2002.808150

Gritsch, M., Kosina, H., Grasser, T., & Selberherr, S. (2002). Revision of the Standard Hydrodynamic 
Transport Model for SOI Simulation. IEEE Transactions on Electron Devices, ED-49(10), 1814–1820. 
doi:10.1109/TED.2002.803645

Hansch, W., & Miura-Mattausch, M. (1986). The Hot-Electron Problem in Small Semiconductor Devices. 
Journal of Applied Physics, 60(2), 650–656. doi:10.1063/1.337408

Hartnagel, H., Katilius, R., & Matulionis, A. (2001). Microwave Noise in Semiconductor Devices. John 
Wiley & Sons.

Hess, K. (1985). Comment on effect of collisional broadening on Monte Carlo simulation of high-field 
transport in semiconductor devices. IEEE Electron Device Letters, EDL-2, 297–298.

Hess, K. (1989). Comment on effect of collisional broadening on Monte Carlo simulation of high-field 
transportin in semiconductor devices. IEEE Electron Device Letters, EDL-2, 297–298.

Hess, K. (2000). Advanced Theory of Semiconductor Devices. Piscataway, NJ: IEEE Press.

Higman, J., & Hess, K. (1986). Comment on the use of the electron temperature concept for non-
linear transport problems in semiconductor p-n junctions. Solid-State Electronics, 29(9), 915–918. 
doi:10.1016/0038-1101(86)90013-4

http://dx.doi.org/10.1016/S0038-1101(99)00132-X
http://dx.doi.org/10.1016/S0038-1101(99)00132-X
http://dx.doi.org/10.1002/cpa.3160020403
http://dx.doi.org/10.1007/s10825-004-7041-1
http://dx.doi.org/10.1063/1.1415366
http://dx.doi.org/10.1109/JPROC.2002.808150
http://dx.doi.org/10.1109/TED.2002.803645
http://dx.doi.org/10.1063/1.337408
http://dx.doi.org/10.1016/0038-1101(86)90013-4


183

Semiclassical Transport Theory of Charge Carriers
 

Jacoboni, C., & Reggiani, L. (1983). The Monte Carlo method for the solution of charge transport in 
semiconductors with application to covalent materials. Reviews of Modern Physics, 55(3), 645–705. 
doi:10.1103/RevModPhys.55.645

Jerome, J. W. (2000). Analytical and Computational Advances for Hydrodynamic Models of Classical 
and Quantum Charge Transport. Academic Press.

Jungemann, C., Grasser, T., Neinhilus, B. & Meeinerzhagen, B. (2005). Failure of Moments-Based 
Transport Models in Nanoscale Devices Near Equilibrium. IEEE Trans. Electron Devices, ED 52(11).

Kan, E. C., Yu, Z., Datong, R.W., Chen, D., & Ravaioli, U. (1995). Formulation of Macroscopic Transport 
Models for Numerical Simulation of Semiconductor Devices. VLSI Design, 3(2), 211-224.

Katayama, K., & Toyabe, T. (1989). A new hot carrier simulation method based on full 3D hydrodynamic 
equations. Technical Digest International Electron Devices Meeting (IEDM), 135-138.

Keldish, L. V. (1965). Concerning the theory of impact ionization in semiconductors. Soviet Physics, 
JETP, 21, 1135–1144.

Kotani, N., & Kawazu, S. (1981). A Numerical analysis of avalanche breakdown in short-channel MOS-
FETs. Solid-State Electronics, 24(7), 681–687. doi:10.1016/0038-1101(81)90199-4

Landau, L. D., & Lifshitz, E. M. (1997). Fluid Mechanics (2nd Ed.). Butterworth Heinemann.

Lee, C. A., Logan, R. A., Latdorf, R. L., Klimack, J., & Wiegmann, W. (1964). Ionization rates of holes 
and electrons in Si p-n junctions. Physical Review A., 134(3A), 761–773. doi:10.1103/PhysRev.134.A761

Levinstein, M., Rumyantsev, S., & Shur, M. (Eds.). (1996). Handbook Series on Semiconductor Param-
eters (Vol. 1). Singapore: World Scientific.

Lundstrom, M. (2000). Fundamentals of Carrier Transport. Cambridge Uni. Press. doi:10.1017/
CBO9780511618611

Madureira, J. R., Semkat, D., Bonitz, M., & Redmer, R. (2001). Impact ionization rates of semiconductors 
in an electric field: The effect of collisional broadening. Journal of Applied Physics, 90(2), 829–836. 
doi:10.1063/1.1381554

Maes, W., de Meyer, K., & Van Overstraeten, R. (1990). Impact ionization in silicon: A review and 
update. Solid-State Electronics, 33(6), 705–718. doi:10.1016/0038-1101(90)90183-F

Matsuzawa, K., Kamohara, I., & Wada, T. (1991). Device simulation including energy transport with 
improved Physical Models. In J. J. Miller (Ed.), NASECODE VII Trans (pp. 173–174). Academic Press.

Matulionis, A., Liberis, J., Ardaravicius, L., Ramonas, M., Matulioniene, I., & Smart, J. (2002). Hot-
electron energy relaxation time in AlGaN/GaN. Semiconductor Science and Technology, 17(3), L9–L14. 
doi:10.1088/0268-1242/17/3/101

McAndrew, C. C., Heasell, E. L., & Singhal, K. (1987). A Comprehensive Transport Model for Semicon-
ductor Device Simulation. Semiconductor Science and Technology, 2(10), 643–648. doi:10.1088/0268-
1242/2/10/003

http://dx.doi.org/10.1103/RevModPhys.55.645
http://dx.doi.org/10.1016/0038-1101(81)90199-4
http://dx.doi.org/10.1103/PhysRev.134.A761
http://dx.doi.org/10.1017/CBO9780511618611
http://dx.doi.org/10.1017/CBO9780511618611
http://dx.doi.org/10.1063/1.1381554
http://dx.doi.org/10.1016/0038-1101(90)90183-F
http://dx.doi.org/10.1088/0268-1242/17/3/101
http://dx.doi.org/10.1088/0268-1242/2/10/003
http://dx.doi.org/10.1088/0268-1242/2/10/003


184

Semiclassical Transport Theory of Charge Carriers
 

McKay, K. G. (1954). Avalanche breakdown in Si. Physical Review, 94(4), 877–884. doi:10.1103/
PhysRev.94.877

Meinerzhagen, B., & Engl, W. (1988). The Influence of the Thermal Equilibrium Approximation on 
the Accuracy of Classical 2-D Numerical Modeling of Silicon Submicrometer MOS Transistors. IEEE 
Transactions on Electron Devices, ED-35(5), 689–697. doi:10.1109/16.2514

Meinerzhagen, B., & Engl, W. L. (1988). The influence of the thermal equilibrium approximation on the 
accuracy of classical two-dimensional numerical modeling of silicon submicrometer MOS transistors, 
IEEE Trans. Computer Aided Design, 35(5), 689–697.

Morris, H. C., De Pass, M. M., & Abebe, H. (2004). Analytic formulae for the impact ionization rate 
for use in compact models of ultra-short semiconductor devices. Proceedings Nanotechnology Confer-
ence, 2, 140-143.

Nag, B. (1980). Electron Transport in Compound Semiconductors. Springer.

Ning, T. H., Osburn, C. M., & Yu, H. N. (1977). Emission probability of hot electrons from silicon into 
silicon dioxide. Journal of Applied Physics, 48(1), 286–293. doi:10.1063/1.323374

Nougier, J. P., Vaissiere, J. C., Gasquet, D., Zimmermann, J., & Constant, E. (1981). Determination of 
the Transient Regime in Semiconductor Devices using Relaxation Time Approximation,’. Journal of 
Applied Physics, 52, 825–832. doi:10.1063/1.328423

Peifer, H. J., Meinerzhagen, B., Thoma, R., & Engl, W. L. (1991). Evaluation of impact ionization mod-
eling in the framework of hydrodynamic equations. IEDM91 Tech. Washington, DC: Digest.

Pop, E. (2004). Self-Heating and Scaling of Thin Body Transistors (Doctoral Thesis). Stanford University.

Pop, E., Sinha, S., & Goodson, K. E. (2006). Heat Generation and Transport in Nanometer-Scale Tran-
sistors. Proceedings of the IEEE, 94(8), 1587–1601. doi:10.1109/JPROC.2006.879794

Potz, W., & Kocevar, P. (1992). Hot Carriers in Semiconductor Nanostructures: Physics and Applica-
tions (J. Shah, Ed.). Boston: Academic Press.

Quade, W., Scholl, E., Rossi, F., & Jacoboni, C. (1994). Quantum theory of impact ionization in coher-
ent high-field semiconductor transport. Physical Review B: Condensed Matter and Materials Physics, 
50(11), 7398–7412. doi:10.1103/PhysRevB.50.7398 PMID:9974719

Quade, W., Schöll, E., & Rudan, M. (1993). Impact ionization within the hydrodynamic approach to 
semiconductor transport. Solid-State Electronics, 36(10), 1493–1505. doi:10.1016/0038-1101(93)90059-Y

Rees, H. D. (1973). Computer simulation of semiconductor devices. Journal of Physics. C. Solid State 
Physics, 6(2), 266–273. doi:10.1088/0022-3719/6/2/008

Rife, D.M. (2002). Article. J. Optical Soc. America, vol. B, 19, 1092.

Romano, V. (2001). Non‐parabolic band hydrodynamical model of silicon semiconductors and simula-
tion of electron devices. Mathematical Methods in the Applied Sciences, 24(7), 439-471.

http://dx.doi.org/10.1103/PhysRev.94.877
http://dx.doi.org/10.1103/PhysRev.94.877
http://dx.doi.org/10.1109/16.2514
http://dx.doi.org/10.1063/1.323374
http://dx.doi.org/10.1063/1.328423
http://dx.doi.org/10.1109/JPROC.2006.879794
http://dx.doi.org/10.1103/PhysRevB.50.7398
http://www.ncbi.nlm.nih.gov/pubmed/9974719
http://dx.doi.org/10.1016/0038-1101(93)90059-Y
http://dx.doi.org/10.1088/0022-3719/6/2/008


185

Semiclassical Transport Theory of Charge Carriers
 

Sabbah, A. J., & Riffe, D. M. (2002). Femtosecond Pump-Probe Reflectivity Study of Silicon Carrier 
Dynamics. Physical Review B: Condensed Matter and Materials Physics, 66(16), 165217–165228. 
doi:10.1103/PhysRevB.66.165217

Sano, N., Aoki, T., Tomizawa, M., & Yoshii, A. (1990). Electron transport and impact ionization in 
Si. Physical Review B: Condensed Matter and Materials Physics, 41(17), 12122–12128. doi:10.1103/
PhysRevB.41.12122 PMID:9993667

Sano, N., & Yoshii, A. (1992). Impact–ionization theory consistent with a realistic band structure of 
silicon. Physical Review B: Condensed Matter and Materials Physics, 45(8), 4171–4180. doi:10.1103/
PhysRevB.45.4171 PMID:10002029

Schöll, E., & Quade, W. (1987). Effect of Impact Ionisation on Hot-Carrier Energy and Momen-
tum Relaxation in Semiconductors. Journal of Physics. C. Solid State Physics, 20(31), L861–L867. 
doi:10.1088/0022-3719/20/31/002

Scrobhaci, P.G., & Tang, T.-W. (1994). Modeling of the hot electron sub-population and its application 
to impact ionization in submicron silicon devices- PART I: Transport equations. IEEE Trans. Electron 
Devices, 41(7), 1197.

Seeger, K. (1989). Semiconductor Physics, Berlin. New York: Springer-Verlag.

Sermuknis, E., Liberis, J., & Matulionis, A. (2007). Microwave Noise Technique for Measurement of 
Hot-Electron Energy Relaxation Time and Hot-Phonon Lifetime. Lithuanian Journal of Physics, 47(4), 
491–498. doi:10.3952/lithjphys.47423

Shockley, W. (1961). Problems related to p-n junctions in silicon. Solid-State Electronics, 2(1), 35–67. 
doi:10.1016/0038-1101(61)90054-5

Shur, M. S., & Eastman, L. F. (1979). Ballistic transport in semiconductor at low temperatures for low-
power high-speed logic. IEEE Transactions on Electron Devices, ED-26(11), 1677–1683. doi:10.1109/T-
ED.1979.19671

Slotboom, W., Streutker, G., van Dort, M. J., Woerlee, P. H., Pruijmboom, A., & Gravesteijn, D. J. (1991). 
Non-local impact ionization in silicon devices. IEDM91 Tech. Washington, DC: Digest.

Sonoda, K., Dunham, S. T., Yamaji, M., Taniguchi, K., & Hamaguchi, C. (1996). Impact ionization 
model using average energy and average square energy distribution. Japanese Journal of Applied Phys-
ics, 35(2B), 818–825. doi:10.1143/JJAP.35.818

Souissi, K., Odeh, F., Tang, H., Gnudi, A., & Lu, P.-F. (1993). Investigation of the impact ionization in the 
hydrodynamic model. IEEE Transactions on Electron Devices, 40(8), 1501–1507. doi:10.1109/16.223711

Stettler, M., Alam, M., & Lundstrom, M. (1993). A Critical Examination of the Assumptions Underlying 
Macroscopic Transport Equations for Silicon Devices. IEEE Transactions on Electron Devices, 40(4), 
733–740. doi:10.1109/16.202785

Stratton, R. (1962). Diffusion of hot and cold electrons in semiconductor barriers. Physical Review, 
126(6), 2002–2014. doi:10.1103/PhysRev.126.2002

http://dx.doi.org/10.1103/PhysRevB.66.165217
http://dx.doi.org/10.1103/PhysRevB.41.12122
http://dx.doi.org/10.1103/PhysRevB.41.12122
http://www.ncbi.nlm.nih.gov/pubmed/9993667
http://dx.doi.org/10.1103/PhysRevB.45.4171
http://dx.doi.org/10.1103/PhysRevB.45.4171
http://www.ncbi.nlm.nih.gov/pubmed/10002029
http://dx.doi.org/10.1088/0022-3719/20/31/002
http://dx.doi.org/10.3952/lithjphys.47423
http://dx.doi.org/10.1016/0038-1101(61)90054-5
http://dx.doi.org/10.1109/T-ED.1979.19671
http://dx.doi.org/10.1109/T-ED.1979.19671
http://dx.doi.org/10.1143/JJAP.35.818
http://dx.doi.org/10.1109/16.223711
http://dx.doi.org/10.1109/16.202785
http://dx.doi.org/10.1103/PhysRev.126.2002


186

Semiclassical Transport Theory of Charge Carriers
 

Stratton, R. (1972). Semiconductor current-flow equations (diffusion and degeneracy). IEEE Transac-
tions on Electron Devices, 10(12), 1288–1292. doi:10.1109/T-ED.1972.17592

Su, P., Goto, K-I., Sugii, T., & Hu, C. (2002). A thermal activation view of low voltage impact ionization 
in MOSFETs. IEEE Electron Devices Letters, 23(9),550-552.

Takayanagi, I., Matsumoto, K., & Nakamura, J. (1992). Measurement of electron impact ionization 
coefficient in bulk silicon under a low-electric field. Journal of Applied Physics, 72(5), 1989–1992. 
doi:10.1063/1.351625

Tang, J., Shichijo, H., Hess, K., & Iafrate, G. J. (1981). Band-Structure Dependent impact ionization in 
Si and GaAs. Proceedings of the 3rd International Conf. on Hot Carriers in Semiconductors.

Tang, T.-W., & Nam, J. (1998). A simplified impact ionization model on the average energy of hot-
electron subpopulation. IEEE Electron Devices Lett., 19(6).

Tang, T.-W., Ramaswamy, S., & Nam, J. (1993). An Improved Hydrodynamic Transport Model for 
Silicon. IEEE Transactions on Electron Devices, 40(8), 1469–1477. doi:10.1109/16.223707

Thoma, R., Emunds, A., Meinerzhagen, B., Peifer, H.-J., & Engl, W. L. (1991). Hydrodynamic Equa-
tions for Semiconductors with Nonparabolic Band Structure. IEEE Transactions on Electron Devices, 
ED-38(6), 1343–1352. doi:10.1109/16.81625

Thornber, K. K. (1981). Application of scaling to problems in high-field electronic transport. Journal 
of Applied Physics, 52(1), 279–290. doi:10.1063/1.328490

Van Overstaten, R., & De Man, H. (1970). Measurement of the ionization rates in diffused Si p-n junc-
tions. Solid-State Electronics, 13(5), 583–608. doi:10.1016/0038-1101(70)90139-5

Vasicek, M. (2009). Advanced Macroscopic Transport Models (Dissertation). Technische Universität Wien.

Wolff, P. A. (1954). Theory of multiplication in silicon and germanium. Physical Review, 95(6), 1415–
1420. doi:10.1103/PhysRev.95.1415

Wolodkin, G., & Frey, J. (1992). Overshoot effects in the relaxation time approximation. Proceedings 
NASCODE 8, 107-108.

Yamaguchi, K. (1979). Field-Dependent Mobility Model for Two-Dimensional Numerical Analysis of 
MOSFETs. IEEE Transactions on Electron Devices, 26(7), 1068–1074. doi:10.1109/T-ED.1979.19547

Yao, C. S., Ahn, J. G., Park, Y.-J., Min, H.-S., & Dutton, R. W. (1995). Formulation of a tail electron 
hydrodynamic model based on Monte Carlo results. IEEE Electron Device Letters, 16(1), 26–29. 
doi:10.1109/55.363210

Ziman, J. (2001). Electrons and Phonons. Oxford, UK: Oxford University Press. doi:10.1093/acprof:o
so/9780198507796.001.0001

http://dx.doi.org/10.1109/T-ED.1972.17592
http://dx.doi.org/10.1063/1.351625
http://dx.doi.org/10.1109/16.223707
http://dx.doi.org/10.1109/16.81625
http://dx.doi.org/10.1063/1.328490
http://dx.doi.org/10.1016/0038-1101(70)90139-5
http://dx.doi.org/10.1103/PhysRev.95.1415
http://dx.doi.org/10.1109/T-ED.1979.19547
http://dx.doi.org/10.1109/55.363210
http://dx.doi.org/10.1093/acprof:oso/9780198507796.001.0001
http://dx.doi.org/10.1093/acprof:oso/9780198507796.001.0001


187

Semiclassical Transport Theory of Charge Carriers
 

ENDNOTES

1  We may multiply by m*uv in the momentum equation. However, m* is energy-band structure 
dependent and will complicate the integration procedure. In addition, we express the momentum 
as p = ħk, rather than p = m*uv in our semiclassical approach.

2  For this reason, we use a single symbol mn for both the scalar mass and the mass tensor. Being a 
scalar or a tensor is understood from the form of other terms in the equation.

3  This means that the perturbed distribution function will relax exponentially to the equilibrium 
function with two time constants when the perturbing field is removed.

4  Mathematically speaking, the BTE can be expanded into an infinite number of its moments.
5  It should be noted that the Keldysh formula was developed assuming parabolic bands at zero 

electric field. However, the band structure of the material can be parameterized in the constants of 
this model.

6  The original Cromwell and Sze relation, the mean free path is related to the lattice temperature, 
rather than the carrier temperature.

7  The consistent way is solving the Kadanoff–Baym equations (equation of motion of none-quilibrium 
Green’s functions NEGF), which can be used to construct broadened non-Lorentzian spectral func-
tions, instead of the typical chronicle delta function, in the Fermi golden rule. The replacement of 
sharp (delta) spectral functions by broadened Lorentzian shape, have been found to be inadequate, 
as they violate the energy conservation rules (Bonitz et al, 1996).
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1. OVERVIEW AND CHAPTER OBJECTIVES

Although the Schrödinger formalism is the de-facto standard, other possible approaches to quantum 
mechanics are available. The quantum transport theory, which is based on the statistical quantum me-
chanics, is the most rigorous method describing the transport phenomena in solids. The basis of the 
quantum transport theory is as strong as that of the statistical mechanics of systems in equilibrium, so 
that the BTE itself can be deduced from it! Indeed, different but mathematically equivalent formulations 
have eventually been developed, with their respective advantages and disadvantages, among which we 
have the significant works of Wigner, Feynman and Keldysh. Interestingly enough, these approaches 
are not based on the concept of wave-functions, but on rather different mathematical objects such as 
quasi-distribution functions (WDF), path integrals (Feynman), nonequilibrium Green functions (NEGF), 
and still they provide the very same predictions as the Schrödinger equation. In fact, these approaches 
are capable of handling both quantum-coherent propagation and dissipative scattering effects. Actually, 
there exist several approaches in the quantum transport theory, among them one can cite:

• Density matrix formulation,
• Wigner distribution function,
• Madelung transform,
• Feynman path integral,
• Green’s Functions (Kadanoff-Baym & Keldish) approaches.

These quantum approaches may be different in mathematical formalism, but a transform is always 
available to go from formalism to another and vice versa. The hierarchy of quantum transport models, 
for both ballistic and dissipative systems, is shown in Figure 1.

Quantum Transport Theory 
of Charge Carriers
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The Landauer-Büttiker approach describes the conductance of quantum system in the ballistic 
(collision-less) regime, where carriers are not scattered. The non-equilibrium Green’s function (NEGF) 
formalism can handle open quantum systems as well as external contacts. The method can be used in 
both ballistic and a scattering dominated regime. Under ballistic conditions, the NEGF method is math-
ematically equivalent to solving the Schrödinger equation with open boundary conditions. There are 
two basic NEGF formulations, namely; the Kadanoff-Baym (K-B) approach and the Keldysh method. 
The K-B approach (1970) has been extended by Mahan and Hansch (1983). Nowadays this approach is 
sometimes referred to the quantum Boltzmann transport equation (QBTE). The so-called Contact-Block 
Reduction (CBR) method is an approximate method to solve the Schrodinger equation self-consistently 
with Poisson’s equation in open systems (Mamaluy et al., 2005). The CBR may be considered as a vari-
ant of the NEGF for ballistic transport, using an equilibrium distribution function.

The Wigner Boltzmann transport equation (WBTE) can also be used in both ballistic and scattering 
dominated regimes. However, the WBTE is less or more similar to the NEGF method.

The quantum Liouville (or Liouville von Neumann) equation describes the quantum evolution of the 
density matrix and forms the fundamental equation of quantum transport. The so-called Pauli Master 
equation (PME) is derived from the quantum Liouville equation. The Pauli master equation is a fre-
quently used to describe irreversible processes in quantum systems and can be also used in the ballistic 
and scattering-dominated regimes. The Lindblad master equation1 is a generalized form of the Liouville 
equation. It describes the non-unitary evolution of the density matrix of a system.

In addition to the above microscopic quantum transport approaches, one can cite the macroscopic 
quantum approaches, such as the quantum hydrodynamic model (QHDM). All these transport models 
can be solved self-consistently with the Poisson equation, to predict the electrical (and sometimes, the 
thermal and optical) properties of semiconductor and nanodevices. In fact, these quantum approaches 
have many variants, and some of which are not only applicable for charge carriers, but also to phonon 

Figure 1. Hierarchy of quantum transport and band structure models
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and photon transport. Finally, it worth notice that the quantum transport models can be solved using the 
stochastic Monte Carlo methods.

At the end of this Chapter, we also present the major band structure calculation models, such as the 
density functional theory (DFT), the tight binding (TB) model as well as the pseudopotential methods. 
The combination of the NEGF and the DFT in the so-called GW approximation (GWA) is also presented, 
because of its precision in predicting the energy gap of semiconductors.

Upon completion of this Chapter, the readers and students will be able to:

• Understand quantum nonequilibrium dynamics of distribution functions
• Understand the state-of-the-art quantum transport models, such as the Wigner distribution func-

tion (WBF) formalism and the nonequilibrium Green’s function (NEGF), as well as the K-B and 
Keldysh formulations.

• Analyzing the coherent transport phenomena in nanodevices.
• Investigate the multiband transport models, on different size scales of semiconductor devices.
• Review the energy band structure calculation methods in bulk and molecular structures; both ab 

initio (such as H-F and DFT methods) and approximate models (such as TB, pseudopotential and 
GW methods).

• Know and decide when and how to utilize the solution techniques of the quantum transport mod-
els, using conventional numerical techniques and stochastic methods.

2. NEED FOR QUANTUM TRANSPORT

While the classical theory of transport is useful in understanding the motion of electrons and constructing 
Ohm’s law, there are a number of inherent flaws in this theory. For instance, the resistivity of a metal, 
according to the classical theory, gives a value that is about seven times the measured value at 300K. 
There are also some flaws from the statistical perspective as well.

Applying the Boltzmann statistics and the Maxwell distribution of speeds, where electrons are viewed 
as particles will give an average kinetic energy of 3kBT/2. In addition, the molar heat capacity of a metal 
is expected to be constant (Cv=3R), according to Dulong-Petit law and doesn’t change with temperature. 
Nevertheless, this is not observed experimentally, except for the range of ambient temperature. Also, 
the Wiedmann-Franz relation between the electrical and thermal conductivity is only verified in metals, 
because the role of phonons is neglected in the classical theory. Some of these problems were solved 
in the semiclassical transport approach, which is based on the Boltzmann-transport equation (BTE). In 
fact, solving the BTE for both electrons and phonons, and considering the crystal heat path of phonons 
could interpret some heat exchange problems.

However, there exist other problems, which are based on the wave-like nature of electrons, and the 
classical theory makes no mention of such properties. Among those problems, one can cite: the tunneling 
through thin energy barriers and the interaction phenomena between matter and electromagnetic waves, 
such as absorption and emission of light. In addition, there exist two significant transport phenomena 
in nanostructures, namely: ballistic transport and coherence phenomena.
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Ballistic transport of electrons means collision-less motion, where the phase of the electron wave-
function is important. This enables us to observe the conduction interference effects. In fact, quantum 
interference influences so many characteristics of nanodevices. However, the phase of an electron 
wavefuction is destroyed by thermal fluctuations due to electron collisions. Recently, the study of elec-
tron current fluctuations and dephasing became a major topic of research. A great number of coherent 
phenomena have been studied, such as the nonequilibrium dynamics of optically created interband and 
intraband polarizations.

The dephasing time, τϕ, of a given material characterizes how long a quasi-particle maintains its 
phase information. Loss of this phase information, or de-coherence, is caused by inelastic scattering or 
spin-flip events, which randomize the phase of the particle. The dephasing time is important because it 
determines the length on which the electron stays coherent and has the same phase. Actually, the most 
significant obstacle to build a quantum computer is de-coherence.

3. REVIEW ABOUT BASIC QUANTUM CONCEPTS

In order to explain black body radiation, Max Planck suggested (in 1900) that electromagnetic energy of 
radiation could only be emitted in quantized form, i.e. the energy could only be a multiple of elementary 
units (quanta) whose energy is proportional to the frequency of radiation

E hf= = �ω  (1)

where the proportionality factor h is the Planck constant and ℏ = h/2π = 1.054571726x10−34 J.s Accord-
ing to this observation, Planck postulated that the emitted radiation is composed of bunches or packets 
of discrete quanta whose total energy is En = n.hf = n.ħωn

The quantum idea was used by A. Einstein, in 1905, to interpret some experimental observation on 
the photoelectric effect. Historically, the important argument for the necessity of light quanta was given 
by Henri Poincare, in 1911 and 1912.

The idea that atoms are small solar systems was proposed in 1901, by Jean Perrin. In 1913, Niels 
Bohr used this idea, combining it with the Planck’s quantization idea, to formulate his model for the 
hydrogen atom. Using some postulates, Bohr derived expressions for the discrete orbital radii of the 
hydrogen atom rn and their energies En as well as the frequencies of absorbed or emitted light from an 
excited hydrogen atom. However, while the Bohr model was a good step towards understanding the 
quantum theory of atoms, it is not in fact a correct description of the nature of electron orbitals. In ad-
dition, it fails to provide any justification of why certain spectral lines are brighter than others. There is 
no mechanism for the calculation of transition probabilities in this model.

Until 1924, it seemed that matter has a particular nature. Louis de Broglie suggested in his doctoral 
dissertation in 1923, that all forms of matter have wave as well as particle properties, just like light. The 
wavelength, of a particle is related to its momentum, by the same relationship of photons:

λ = h p/  (2)
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where p is the momentum of the particle and λ is the wavelength of the associated wave. It follows form 
this relation that the momentum p of a particle is related to the associated wave vector k = 2π/λ by:

p= ħk (3)

The de-Broglie hypothesis was confirmed experimentally three years later by Davisson and Germer 
in 1927 and later by G. Thomson in 1928.

In 1927, Werner Heisenberg introduced the uncertainty principle which states that: “It is impossible to 
specify precisely and simultaneously the value of both members of particular pairs of physical variables 
that describe the behavior of an atomic system”. According to Heisenberg, we have:

∆ ∆ ∆ ∆p x E t
x
⋅ ≥ ⋅ ≥� �/ , /2 2  (4)

The Heisenberg uncertainly principal (Heisenberg, 1927) became an important issue in all disciplines, 
which involve extremely small dimensions.

Since particles have a wave nature, they can be described by wave functions. Our knowledge of a 
particle wave in a specific region of a system is defined by its eigenfunctions Ψ(r,t). As we‘ll see soon, 
the wave function may be found by solving the Schrödinger equation. Once the boundaries of the sys-
tem are known, then the probability of finding the particle somewhere (between r1, r2) is calculated as 
follows (Born, 1926):

P r r r d r
r

r

2 1
1

2
3< <( ) = ∫ ΨΨ*  (5)

The square root of the probability density is called the probability amplitude:

A = ⋅ =Ψ Ψ Ψ*
1
2 1

22  (6)

The Copenhagen interpretation of quantum mechanics shows that the above modulus of square of 
the wave function gives the probability density function (PDF) of a quantum system.

Note 1: Quantum Operators

Quantum operators are mathematical instructions which replace the classical mechanical variables, 
such as position, momentum and time. For instance, the classical momentum component px =m.vx is 
replaced with the operator jħ ∂/∂x. The momentum vector p= m.v is replaced with ṗ= jħ∇. Also the 
total energy E is replaced with Ề= jħ ∂/∂t. The so-called Hamiltonian operator is the sum of kinetic and 
potential energy of a system: Ĥ = ṗ2/2m+V(r) = - (ħ2/2m).∇2 +V(r). Note the cap ‘^’, which is often 
used to distinguish operators from their classical counterpart variables. Every linear operator Ô can be 
represented as a matrix O. The Hermitian operators in quantum mechanics are physically observable 
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quantities such as Ề and ṗ. An observable quantity is a quality of a particle that can be observed or 
measured in the laboratory.

In quantum mechanics, the most famous differential equation that describes the position probability 
of a particle is known as the Schrödinger equation:

j
t m

V r
�

�∂
∂
= ∇ +












Ψ
Ψ

2
2

2
( )  (7)

where V(r) represents the acting potential energy in which the particle is moving. This is the time-
dependent Schrödinger, which governs the time evolution of the wavefunction ψ on the configuration 
space. This relation can be rewritten in a simple form using the Hamiltonian operator Ĥ as follows:

jħ ∂Ψ /∂t = ĤΨ (8)

where the Hamiltonian differential operator Ĥ represents the total energy of the system. and given by:
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The Schrodinger equation can be also written in the following form:

Ê Ψ = Ĥ Ψ (10)

where Ê is the total energy operator (Ê→jħ.∂/∂t). If the wave function Ψ(r, t) is monochromatic, it may 
be written as follows:

ψ ψ( , ) ( )expr t r j
Et

= −








�

 (11)

Therefore, the Schrödinger equation may be written in the following time- independent form:

�2
2

2
0

m
E V r∇ + −


 =ψ ψ( )  (12)

Here, the potential energy V(r) is assumed to be only space-dependent.
It should be noted that the basic Schrödinger equation is based on certain assumptions, which are 

sometimes drastic. Among these assumptions one can cite:

• The phenomena of particles generation-recombination are neglected.
• The particles are assumed to move with velocities much smaller than the light velocity. The, par-

ticles are described in non-relativistic manner.
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For time-independent Hamiltonians the solution to Schrödinger equation (SE) can be cast as an 
eigenvalue problem. This allows us to solve SE in some cases exactly. Therefore, the solution of the 
time-independent SE for a particular system gives the sets of eigenfunctions (ψn) of the Hamiltonian Ĥ 
and the corresponding eigenvalues En such that:

E H
n n n
Ψ Ψˆ  (13)

The starting point in the solution is to determine the Hamiltonian operator of the system for which 
we seek the wave functions. The potential energy V(r) of the system will specify the physical problem in 
hand. For an electron in an isolated hydrogen atom the potential energy is simple as V(r) = -e2/ (4πεor), 
wherever for a crystal it is a complicated periodic function.

As a matter of fact, only few problems in quantum mechanics can be solved exactly. Analytical solu-
tions are only available in special cases, as for constant or linear potentials and potential steps. Figure 2 
shows the approximate methods to solving the Schrödinger equation (SE). As shown, there exist many 
approximations to solving this equation, among which the adiabatic approximation is the most widely used.

Before going so far, we would like to describe a number of mathematical ideas that are used a lot in 
the literature of quantum & semiclassical physics. In Dirac notations, the eigenfunction ψj is considered 
as a vector and represented by the symbol ket j  whereas its complex conjugate ψj* is called co-vector, 

and represented by the symbol bra j . The inner (scalar) product of two functions ψi andψj is produced 

by taking the product of a bra and a ket to produce a bra(c)ket i j .

ψ ψ ψ ψ ψ ψ
i j i j

position space
i j

momentum space

d x d p i j, * *( ) = = →∫ ∫3 3  (14a)

Figure 2. Different methods for solving the Schrödinger equation
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Therefore, the bracket i j  is equal to the inner (scalar) product of the vector ψi* and the co-vector 

ψj*. The bracket i j  is also a sign equivalent to: the probability amplitude of transition. The expres-
sion in the right of vertical line is always the starting condition (start state i) and the expression in the 
lift of the vertical line in the final condition (final state j). It should be noted that Dirac’s notations are 
valid for both the position-dependent and the momentum-dependent wave functions. Therefore, we 
simply write ψ, rather than ψ(x,t) or ψ(p,t).

According to the Dirac notations, the average (expectation) value of an observable operator Â is 
given by:

ψ ψ ψ ψˆ ( , ˆ ) ˆA A A= =  (14b)

Finally, it should be noted that the wave functions lives in a well-defined space, called the Hilbert 
space, which encompasses the sets of basis vectors. Mathematically speaking, a Hilbert space is a vec-
tor space of functions with a defined inner (scalar) product. Any function f(x) in the Hilbert space can 
be represented as an abstract vector f  which may be expanded as a series of basis functions or com-
ponents as follows:

f c
i i

i

=
=

∞

∑ φ
0

 (15a)

The jth component of this expansion (cj) can be found by operating the bra j  as follows:

c j f f
j j
= = φ  (15b)

4. QUANTUM REPRESENTATION PICTURES

In quantum mechanics there exist three basic representation methods or pictures, namely: Schrödinger 
picture, Heisenberg picture and the interaction (or Dirac) picture

The Heisenberg picture is a formulation of quantum mechanics in which the operators (observables and 
others) evolves in time, but the state vectors are time-independent. It stands in contrast to the Schrödinger 

Table 1. Quantum pictures; the subscripts ‘S’ and ‘H’ mean Schrödinger and Heisenberg pictures, re-
spectively

Schrödinger Picture Heisenberg Picture Interaction (Dirac) Picture

ψS(t) = ψS(0).exp(-jHt) ψH(t) = ψS(0) ψ(t) = ψS(t).exp(-jHt)

State |ψ> evolves in time State |ψ> is fixed State |ψ> evolves in time

Operators are fixed Operators evolve in time Operators evolve in time
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picture in which the operators are fixed, and the states evolve in time. However, Schrödinger operators may 
come in two types; time-independent ones (like ẋ, ṗ) and time-dependent ones (like Hamiltonians with 
time-dependent potentials). For each of those types of operators we can associate a Heisenberg operator.

The Heisenberg picture is the formulation of matrix mechanics in an arbitrary basis, in which the 
Hamiltonian is not necessarily diagonal. It further serves to define a third, hybrid picture, formulated 
by Paul Dirac, called the Interaction picture. A detailed explanation of the three pictures is presented in 
text Books of Quantum Books, like Messiah (1963)

5. CRYSTAL SYSTEM HAMILTONIAN

Now, let’s conclude our review by defining the Hamiltonian for the entire problem of solid state physics. 
It consists of the kinetic energy of all particles in the solid and of their interaction (potential) energies.

Ĥ = Hel + Hion + He-i + Hext (16)

where we omitted the operators cap sign for the sake of simplicity. For a non-perturbed system we have 
Hext = 0. For electrons we have:

Hel = He (K.E.)+ He-e (electron-electron interaction)  (17a)

= +
−

∑ ∑
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r  r
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k o k kk k
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2
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where rk and rk` are the coordinates of the kth and k`th electrons, respectively. Similarly, for ions, we have:

Hion = Hi (K.E.)+ Hi-i(ion-ion interaction)  (17b)

= + −( )∑ ∑
P

M
V  R Ri

ii
i i j

i j

2

2
1
2 ,

 

where Ri and Rj are the coordinates of the ith and jth ions, respectively. Concerning the electron-ion in-
teraction energy, it may be written as:

H V r R
e i e i k i

k i
− −= −( )∑

,

 (18a)
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The ion-ion interaction term Hi-i may be subdivided into two terms; the first accounts to the interac-
tion when the ions are in their equilibrium positions and the other to account for the vibrations of lattice 
ions (phonons).

H H H H H H
i i

o
i i ph e i

o
e i e ph− − − − −= + = +,  (18b)

Unfortunately it is not always possible to rigorously solve the quantum mechanical problem. Ap-
proximations have to be made. In solid state theory, two simplifications are commonly made. In solving 
a given problem individual terms of the Hamiltonian may be neglected or only partially considered or 
handled subsequently as perturbations.

5.1 Adiabatic Approximation

The atoms in a crystalline solid are vibrating around their equilibrium positions, but their motion is so 
slow with respect to the speed of electrons. Therefore, atoms may be regarded as stationary, and de-
coupled from the study of electron transport. On this basis, one can divide the solid state problem into 
two components:

• Movement of electrons (electron gas) in a stationary lattice, and
• Movement of ions in a uniform space-charge of electrons.

This is the basis of the so-called Born-Oppenheimer (adiabatic) approximation, which is often used 
to provide a justification for system decoupling (Born & Oppenheimer, 1927). The Born-Oppenheimer 
approximation takes the wavefunction of an atom or molecule to be the product

Ψ = ψelectrons.ψnuclei (19)

This product consists of independent wavefunctions for the electrons and the nuclei. The electron 
wavefunction ψelectrons obeys an approximate many-electron Schrödinger equation with Hamiltonian Hel, 
as given below.

5.2 Jellium Model

According to the adiabatic approximation, the many-electron Schrödinger equation Hamiltonian Hel can 
be written as follows:

H
m

e

r r
H

el k
k o k kk k

ve= ∇ +
−

+∑ ∑ +�2
2

2

2
1

8πε
`, `

 (20a)

where H+ve includes the effect of the ions positive space charge and the interaction of the electrons with 
this space charge. The electron gas is considered here to be embedded in a positive charge background. 
On the other hand, the movement of ions can be treated in a similar way. This approach is usually called 
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the Jellium model. Many of the properties of solids can be described by mean of this approximation. In 
this way, the Hamiltonian, Hion can be written as:

H  
M

V R R H
ion

i
i

i
i i j

i j

ve= ∇ + −( )+∑ ∑ −�2
2

2
1
2 ,

 (20b)

where H-ve includes the effect of negative space charge of electrons and the interaction of this charge 
with ions. It should be noted that the two terms have H-ve and H+ve exactly cancel each other. As far as 
the motion of electrons is concerned, we can adopt a Schrödinger equation for electrons, like this:

H H E
el e i e
+( ) =− ψ ψ  (21)

Here He-i is considered with fixed coordinates of ions. The remaining coupling between electrons and 
ions vibration is the interaction He-ph. This coupling can be dealt with in most cases by the perturbation 
theory.

5.3 Hartree Equation (One-Electron Approximation)

In the absence of electron-electron interactions, the electron gas problem (Jellium model) could be de-
coupled to one-electron problems, which describe the motion of individual electrons in a given potential 
field. In this case, the Hamiltonian term which accounts for the electron-electron interaction is neglected, 
and we can write the system Hamiltonian as follows:

Ĥ
m

V r H
k

k k k
kk

= − ∇ + ( ) =∑ ∑∑�2
2

2
 (22)

Then, the Schrödinger equation can be reduced, by substituting:

H E
k

k

ψ ψ=∑  (23a)

and

ψ ψ ψ ψr r r r r
N i N N1 1 2 2

.. ...( ) = ( ) ( ) ( )  (23b)

into the following one-electron equations:

H r E r
k k k k k k
ψ ψ( ) = ( )  (24)
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Therefore, the many-body problem (the electron gas which is embedded in a homogenous, positively 
charged medium) could be reduced to one-electron problem, which includes an energy term to account 
for the electron interaction. Such a reduction is achieved by the Hartree (or Hartree-Fock) approximation. 
In this approximation, the Schrödinger equation for a single particle writes (Hartee, 1928; Fock, 1930):

− ∇ +











( ) = ( )�2
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H k k k
( ) ψ ψ  (25a)

where VH is the Hartree potential, which is given by:
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Here r and r` are the positions of the ith and kth electrons, respectively. The above equation is called 
the Hartree equation. It describes the motion of the kth electron at the position r in the potential field 
V(r) of the lattice ions, and in the Coulomb potential of an average distribution of all other electron: 
(j=1, 2, .., N, with j≠k)

It should be noted that the Hartree equation does not account for the Pauli Exclusion Principle (Pauli, 
1925). The spin of electrons is not considered in this equation. If two electrons are interchanged, the 
sign of the total wave function will remain unchanged or

ψ ψ ψ= ( ) ( )1 1
r r

N N
....  (26)

This Hartree product representation may be suitable for Boson particles2. However, electrons belong 
to another type of particles, called Fermions, which have a spin and obey Pauli Exclusion Principle. 
This Principle states that no two electrons can have the same state and if they occupy the same energy 
level, they should have different spins. Therefore, the total wave function ψ must change its sign when 
two electrons are interchanged.

5.4 Hartree-Fock Equation

In order to account for the Pauli-exclusion principle we replace the Hartree product of the total electronic 
wave function ψ by the following Slater determinant (Slater, 1937), which satisfies the Pauli-exclusion 
principle:
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Here, the coordinates qk include the spatial coordinates rk as well as the spin coordinates sk of electrons 
along the quantization direction (typically chosen as the z-axis). The factor in front of the determinant 
is added for normalization purposes. If two electrons are interchanged, two columns of the determinate 
are interchanged, and ψ changes sign. Also if two electrons have the same coordinates, two columns 
will be identical, and ψ will vanish. Now the interaction term accounts for the Pauli exclusion term and 
the Schrödinger equation reads:
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The above form of Schrödinger’s equation is called the Hartree-Fock equation. Also, the following 
potential is called Hartree-Fock potential.
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The Hartree-Fock equation may be written in the following simple form:

− ∇ + ′( )
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The set of Hartee-Fock equations forms a quite complicated nonlinear integro-differential system. 
It can be shown that V`(r) in a crystal lattice is a periodic function of lattice coordinates, V(r)=V(r+R), 
where R is the lattice vector. This feature is exploited in the so-called Bloch functions that facilitate the 
manipulation of the problem. The post Hartee-Fock methods, like the tightly-bound (TB) model and 
the density functional theory (DFT), have been developed in such the way that they either neglect or 
approximate some of the involved integrals in the Hartree-Fock model.
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6. DENSITY MATRIX FORMULATION

The quantum transport theory is based on the concept of the density operator (usually termed by ρ̂ ). 
The density operator is an alternative way of representing quantum states. It is the quantum-mechanical 
analogue to the distribution function in classical statistical mechanics. The need for a statistical descrip-
tion via a density operator (or density matrix) arises because it is not possible to describe a quantum 
system that undergoes several measurements, using exclusively its eigenstates. If this system consists of 
a huge number of interacting atoms in a field, we should solve for a huge system of wavefunctions and 
probability amplitudes, which is beyond the capability of any computing platform.

Unlike the Schrödinger picture, the density matrix does not require a complete wavefunction for a 
system and we can treat a huge number of atoms interacting with a field via statistical means. This makes 
the density matrix appealing in such situations. The density operator for a quantum system having m 
vectors (or kets |ψm>) of independent pure states, is defined as follows:

(̂ )ρ ψ ψt P
m m

m
m

=∑  (31a)

where Pm is the probability of finding the system in one of its pure m states. Note that a state described 
by a state vector |ψm〉 is called a pure state. In general, a system is said to be in a pure state, when the 
state is not reducible to a convex combination of other states. The density matrix is obtained from the 
density operator through the following relationship:

ρ ϕ ρ ϕ
ij i j
= ˆ  (31b)

where ϕij is a complete orthonormal basis set for the vector |ψm> such that

ψ ϕ
m im i

c=∑
i

 (31c)

Here the coefficients cim are the probability amplitudes of the mth state. For the matter of demonstra-
tion, consider a system with a set of orthonormal orbitals |ψm| and occupation numbers Pm (the prob-
abilities to find the system in one of its eigenstates).The density-matrix in the coordinate representation 
is then given by:

ρ ρ ψ ψ( , ') ˆ ' ( ) ( ')*r r r r P r r
m m m

m

= = ⋅∑  (32a)

The elements on the diagonal of the density matrix ρ(r, r) are real numbers which correspond to the 
probability of being in one of the system eigen-states (pure states). That’s to say the probability to find 
a particle at a certain point r, in the physical space of a single-particle system, is given by:
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P r r r r r P r
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 (32b)

The trace of the density matrix (Tr{ρ} which is the sum of the diagonal elements divided by the 
number of particles, should be unity by the normalization criterion.

n = Σi ρii (33)

The off-diagonal elements, on the other hand, are complex numbers whose meaning is related to 
the phase of the wave-function. When external forces are removed, the density matrix is reduced to a 
diagonal matrix with diagonal elements equal the equilibrium distribution functions (e.g., the Fermi-
Dirac distribution) at the system possible states. The thermal equilibrium density matrix in the quantum 
mechanical setting is given by:

ρeq = exp (–H / kBT) (34a)

For instance, the density matrix is given by the following form (for a system of n- pure states: 1,2,..n)

ρ
eq
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 (34b)

It is worth noting that the mean value of any observable A, is given by:

A c A c Te A
ij ij jk

i j

= =∑ *

,

{ }ρ  (35)

Also, the entropy of a quantum system (Von-Neumann entropy), which is a measure of disorder or 
lack of knowledge of a system, is given by:

S= -kB Tr { ρ ln ρ } (36a)

In a diagonal representation of the density matrix, the entropy S reads:

S= -kB Σ pi ln pi (36b)

Therefore, the density matrix ρ is sufficient to describe the state of any quantum system.
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7. QUANTUM LIOUVILLE’S EQUATION

The quantum Liouville equation (which is sometimes called the Liouville-von Neumann or mixed-state 
Schrödinger’s equation) describes the temporal evolution of the density operator. It can be obtained by 
substituting the definition of the density operator, into the Schrödinger equation (EΨ = ĤΨ) or:
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∂
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Therefore, one can immediately obtain the equation of motion of the density matrix:
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In order to simplify the equation, the limit of weak interaction is applied. Coarse-graining in time 
results in a Markovian system. The resulting quantum Liouville equation for reduced density matrix 
describes the quantum evolution of a system (or a subsystem) with losses (collisions).
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where L{ρ} represents the losses (collision) operator. Since the density matrix is defined in position 
space, it is difficult to include scattering events in the above formalism, which is usually described in the 
momentum (p or k) space. It should be noted that the quantum Liouville equation (39) which describes 
the evolution of the density operator, together with (35) which describes the average value of any physi-
cal operator, represent the formal quantum transport theory in its compact form.

Under certain conditions the system which is initially in a non-equilibrium state |α⟩ will go over into 
an equilibrium state after some time, through a relaxation process, such that:
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where we added a collision term describing the interaction with the electrical contacts (reservoir) for 
open systems. The last relaxation term on the RHS of (40) expresses the weak interaction with the sur-
roundings.
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Note 2: Commutators

The commutator of two quantum operators Â and Ḃ is defined as follows: [Â,Ḃ] = Â.Ḃ – Ḃ.Â. Therefore, 
[Â,Ḃ] = - [Ḃ,Â].

When [Â,Ḃ] = 0, such that Â.Ḃ = Ḃ.Â, the two operators are said to be commuted (Born, 1925). If 
the two operators are canonically conjugated (one of them is the Fourier transform of the other, like ẋ, 
ṗ), then they are not commuted and their canonical commutator is given by: [Â,Ḃ] = jħ

The Poisson bracket is the classical version of the commutator in quantum mechanics. The Poisson 
bracket (or Lagrange) of two variables A, B is defined as:

{A, B}= Σi (∂A/∂xi)( ∂B/∂pi) – (∂A/∂pi)( ∂B/∂xi) 

7.1 Resemblance with the BTE

Equation (39) resembles the semiclassical BTE for a system of N particles, by replacing the commutator 
[, ] with the Poisson bracket or Lagrange {, }

∂f/∂t ={ H, f} (41)

where H is the classical Hamiltonian and f is the carrier distribution function. In fact, one can prove that 
f(r,t) is nothing but the diagonal elements of the density matrix (i.e., < r | ρ | r >). Hence, the diagonal 
terms of the density matrix represent the carrier density variation throughout the system, whereas the 
off-diagonal parts represent the spatial correlation’s that exist in the system. For the above reasons, we 
refer to the quantum Liouville (or Liouville-von Neumann) equation as the quantum BTE (QBTE).

7.2 Heterostructure Hamiltonian

The Hamiltonian of a homogeneous system of electrons, with constant effective mass m* and subjected 
to an external electric field ζ(r), is given by:

ˆ
*

H
m

V r= − ∇ + ( )












�2
2

2
 (42a)

where the effective mass m* lumps the internal lattice field and the potential energy V(r) is expressed 
in terms of the electrostatic potential ϕ(r) as:

V(r) = e ∫ζ(r).dr = - eϕ(r) (42b)

We dully note that the effective mass of carriers can be deduced from the energy band structure E(k), 
using the relation (m*= ħ2/d2E(k)/dk2). We also know, that the effective mass approximation reflects the 
expansion of the E(k) relation near extreme points (top of valence band or bottom of conduction band) 
and hence near equilibrium.
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For heterostructures, where the energy band structure, E(k), may have discontinuities in space, ΔE(r), 
and the effective mass is space dependent, m*= m*(r), the Hamiltonian may be written as follows:

ˆ
* ( )

( )H
m r

e r E r
co

= − ∇ ∇









+ ( )+













�2

2
1

ϕ ∆  (42c)

where ΔEco includes the variation of the conduction band edge, due to material inhomogeneity (hetero-
structure), at zero external bias.

7.3 Pauli Master Equation (PME)

The so-called Pauli master equation (PME) describes the evolution of the diagonal elements of the den-
sity matrix in nanodevices. The PME plays a fundamental role in statistical quantum transport theory. 
Consider a device system which is open and in contact with the surrounding environment (e.g. device 
contacts). When the electron dephasing length λϕ in the contacts3 is larger than the device length, the 
electrons are said to be larger than the device. In this case, the contacts inject only diagonal elements 
of the density matrix ρ. According to Van Hove’s (1955), the time needed to build the off-diagonal ele-
ments of the density matrix, in such open system, is much longer than the carrier relaxation and transit 
times. Therefore, the off-diagonal terms of ρ are built up long time after the electron transport across 
the device. The so-called Pauli master equation (PME) describes the evolution of the diagonal elements 
of the density matrix in nanodevices.

Considering only the diagonal matrix elements over the eigenstates |β⟩, of the Hamiltonian of the 
QBTE, and after some mathematical manipulations, we can get the PME (Fischetti, 1998).

d
dt

t t S t Sρ ρ ρββ γγ βγ
γ β

ββ γβ
γ β

( ) ( ) ( )= ⋅ −
≠ ≠
∑ ∑  (43)

where Sβγ represents the transition probability per unit time, for the transitions from state |γ⟩ to state |β⟩, 
and can be expressed using the Fermi golden rule.

Therefore, we can consider the PME as a simplified form of the master equation (Von-Neumann 
Liouville equation or QBTE). In fact, the PME is easier in implementation and its complexity scales 
down to O(N), where N is number of device grid points in numerical solution.

The Pauli Master equation (PME) plays a fundamental role in statistical quantum transport theory. 
Note the resemblance of the PME to the semiclassical Boltzmann transport equation (BTE). This resem-
blance facilitates the manipulation of the PME by the Monte Carlo methods to simulate carrier transport 
in nanodevices (Fischetti, 1999).

8. WIGNER-BOLTZMANN TRANSPORT EQUATION (WBTE)

The Wigner formulation of quantum transport is an attractive approach which allows the comprehension 
and prediction of quantum transport phenomena in terms of quasi-probability distribution functions. 
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The Wigner quasi-probability distribution was introduced by Wigner in 1932 to study quantum correc-
tions to classical statistical mechanics. The goal was to replace the wave-function in the Schrödinger 
equation with a probability distribution in the phase space. The Wigner distribution function W(x; p; 
t), is sometimes referred to as the Wigner function. The Wigner distribution function (WDF) depicts 
the probability distribution function4 of a system of N particles, whose wave eigenfunctions (pure state 
functions) ψ has the coordinates r = r1,…rN and momentum operator p = p1,…pN, such that:

W t r
r

t r
r

t
jp r

D N
( , , ) (

'
, )

'
, exp

.
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*r p =
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− ⋅ −
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2 2π
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−∞

∞

∫ dr  (44a)

This integration is N-times multiple such that dr=dr1…drN and p.r=p1dr1 +…+ pN drN . Also, D is 
the system dimension (1, 2, 3). Note that the above definition of the Wigner distribution resembles the 
Fourier transform of a certain combination of ψψ* (the density operator) to the momentum domain5. 
Therefore, this equation can be written in terms of the density operator function ρ(r,r’,t) as follows:

W t r r t
jp r

dr
DN

( , , ) ( , ', ) exp
'

'r p =
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⋅ −
⋅
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∞

∫
1

π
ρ

� �
 (44b)

Although the Wigner function is a quasi-distribution function it can be used to calculate the average 
(macroscopic) value of any microscopic variable A(r, p,t).

A A r p t A r p t W r p t dp( , ) ( , , ) ( , , ) ( , , )r t = = ⋅
−∞

∞

∫  (45a)

W r p t dp r t( , , ) ( , )
−∞

∞

∫ = ⋅ =ψ ψ ψ* 2
 (45b)

The dynamic behavior of the WDF can be obtained by applying the Wigner-Weyl transformation to 
the Liouville equation.

Note 3: Wigner–Weyl Transform

The Wigner–Weyl transform rule is a basic mathematical mapping tool. This transform is an isomorphism 
from the space of linear operators. For instance, the Weyl map of a given a quantum operator ˆ( ,̂ ˆ)A r p , 
is expressed in the phase space as follows (Weyl, 1927):

A M A r p d Tr A r p j r p
W

( , ) ˆ( ,̂ ˆ) ˆ( ,̂ ˆ) exp ( ˆ ˆ)r p = { } = ⋅ +



∫

�
2π

ξ ξ η



 ⋅ − +



∫ exp ( )j r p dξ η η  
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Using this formalism, the Wigner distribution function is defined as the Weyl transform of the density 
matrix operator times a normalization factor,

W t M t
W

( , , ) ( )r p = { }1
2π

ρ
�

 

The evolution equation of the WDF can be then obtained as follows:

∂
∂

=
W r p t

t
H W r p t

M

( , , )
[ , ( , , )]  

where the subscript ‘M’of the commentator ([H,W] = HW-WH), represents the Moyal formalism (Moyal, 
1949).

Alternatively, the dynamic behavior of the WDF can be evaluated using the Schrödinger equation as 
follows (supposing that the wave-functions ψ(r, t) is a solution of the Schrödinger equation):

∂
∂
+ ⋅∇ = ⋅

W
t m

W W r p
r

p
Θ ( , )  (46a)

with

Θ ⋅ =
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∑  (46b)

The operator Θ is a complicated operator, such that∇r operates on the total potential V(r) and∇p 
operates on W(r,p). The above expression is sometimes called the Moyal expansion. The operator Θ 
may be further simplified as follows:

Θ. sin{ } ( ). ( , )W V r W r p
r p

≈ − ∇ ∇
2 1

2�
�  (46c)

Note that in the limit ħ → 0, the Wigner equation (46a) reduces to the classical Vlasov equation 
(collision-less BTE).

By separating the potential field V(r) in the above equation into a collision field (Vin) and an exter-
nal field (Vex) such that V(r) = Vin+Vex, the right-hand side of (46a) may be further divided into two 
terms as follows:

∂
∂
+ ∇ + =

∂
∂











W
t m

W W
W
tr

C

p
. .θ  (47a)



208

Quantum Transport Theory of Charge Carriers
 

where the operator θ resembles the operator Θ, with V(r) replaced with the external field potential Vex. 
Also, the internal interaction field Vin is included in the term (∂W/∂t)c to account for collisions, which 
are not considered in the one-particle Schrödinger equation. The first order approximation of this term 
may be expressed as follows:

θ. ( ). ( , )W V r W r p
r ex p

≈ −∇ ∇  (47b)

This includes the effect of classical forces (F = -∇Vex), like the semiclassical BTE. Other high order 
terms retains the quantum nonlocal effects. The above equation (46) is called the Wigner-Boltzmann 
transport equation (WBTE).

Once the WBTE is solved, the electron density n and current density Jn can be determined from the 
Wigner distribution, as follows:

n(r, t) = ∫ W(r, p, t) dp  (48a)

Jn(r, t) = -e ∫ (p/m*).W(r, p, t) dp  (48b)

The mean value of any other operator in the phase space, A(r, p, t), can be determined from the 
Wigner distribution function as indicated by (44).

In order to obtain a self-consistent solution of the WBTE, it should be coupled with the Poisson 
equation. The electrostatic potential (f) in Poisson’s equation is related to the external potential energy 
(Vex), which is acting on carriers, and should include the spatial variation of energy band structure:

Vex(r) = ef(r) - e [χ(r) –χ(0)]  (48c)

where χ(r) is the electron affinity along the semiconductor device.
It comes from the above discussion that the WBTE is similar to the semiclassical Boltzmann equa-

tion, except for a nonlocal potential term. Several attempts for solving the WBTE for semiconductor 
devices have been reported e.g., by Frensley (1987), Buot & Jensenand (1990), Shifren & Ferry (2002), 
Gehring (2003) and Kosina, Nedjalkov & Selberherr (2003). The simplest method to include the scat-
tering in the WBTE simulation is to consider the semiclassical collision operator (of the BTE), applied 
to the Wigner distribution function (Querlioz & Dollfus, 2010). Therefore, we can write the WBTE in 
the following form:

∂
∂
+ ∇ ∇ = − −∫

W
t

E k W V r k k t W r k k t dk
k r W

1
�

( ) ( , ', ) ( , ', ). '  (49a)

where VW(r, k, t) is the Wigner potential, which is given by:
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The iteration procedure to solve the WBTE with Poisson’s equation starts from an initial guess, and 
the iteration process continues until a specific convergence criterion is met. The carrier concentration 
is used to update the potential in the device by solving the Poisson equation. The stochastic methods, 
which are based on the association of trajectories of a single or an ensemble of particles, have been 
adapted to solve the BTE (Midjakov and Midov, 2010). In this work, the concept of Wigner paths is 
introduced with an extension of the Wigner MC method to the density functional theory (DFT), as a 
way to simulate many-body quantum problems. A review, which provides a detailed introduction to the 
Wigner-Boltzmann transport theory, along with a quantum Monte Carlo (QMC) simulation method for 
time-dependent quantum systems, is given by Sellier, Nedjalkov & Dimov (2015).

The Figure 3 depicts a flowchart of the QMC method, which is based on the WBTE6. In much the 
same manner as the semiclassical MC method, the two major steps are the calculation of scattering rates 
and the determination of the time of flight of the simulated particles.

The duration of the time of flight τ is determined by random numbers, and the time interval is typi-
cally chosen to be a few femtoseconds. The number of simulated electrons N and the simulation time 
ts are chosen to give reasonable results. Taking N = 10000 and ts = 10ps is usually sufficient to obtain 
good results.

The Wigner MC method gives accurate results for nanoscale semiconductor structures as well as purely 
quantum devices such as resonant tunneling diodes (Gehring, 2003; Kosina, Nedjalkov & Selberherr, 
2003). The typical output of a GaAs resonant tunneling diode is shown in Figure 4.

Figure 3. Flowchart of quantum MC method, based on Wigner-Boltzmann transport equation
Adapted from Ellinghaus (2010)
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9. QUANTUM HYDRODYNAMIC MODEL (QHDM)

The quantum hydrodynamic model (QHDM) can be derived by a variety of methods, such as the first 
few moments of the WBTE or the Madelung transform or the principle of minimum entropy. We start 
here by the WBTE moments method. By multiplying the WBTE by 1, p and ½ p2/mn* and integrating 
the result over the entire phase space, we get the following conservation equations (for electrons):
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Figure 4. Typical IV curve of a resonant tunneling diode, calculated self-consistently (solid line), as 
obtained by WBTE-based Monte Carlo simulation
After Kosina, Nedjalkov & Selberherr (2003).
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where pn= <pn> and ωn are the electron mean momentum and mean energy, respectively. Also mn is 
the mean effective mass of electrons (mn = <mn*>). The electron mean energy ωn is related to the scalar 
electron temperature Tn as follows:

ω
n

n

n

n

n
B n q

p

m

p

m
k T V= = + +

1
2

1
2

3

2

2 2

 (51a)

where Vq is called the quantum potential, and given by:
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Equation (51a) is sometimes arranged in the following manner:

ω
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1
2

3
2

2  (51c)

where Tqn is called the quantum electron temperature. The quantum electron temperature is related to 
the semiclassical electron temperature by the following equation:

T T
V

Kqn n

q

B

= +
2

3
 (52)

10. QUANTUM CORRECTIONS

By comparing (51) with the corresponding semiclassical HDM expression, we note the quantum correc-
tion term Vq. This term is only significant when the electron concentration n varies rapidly over small 
distances in the order of de-Broglie wavelength (h/p). The quantum correction appears also in the current 
equation (which is a reduced form of the momentum conservation equation) in the form of an additional 
current Jq. The following electron current equation depicts this correction term:

J enm k m nT J
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Note that we assumed a single parabolic energy band (with constant effective mass) and neglected 
the acceleration terms in the above current equation. Adding the above mentioned corrections to the 
semiclassical macroscopic models (like DDM) to account for quantum effects, is referred to as the 
density gradient (DG) correction method. Alternatively, one can replace the semiclassical temperature 
in the current relations (and energy conservation relations in HDM) by the quantum temperature, Tq, as 
defined by (52).

11. MADELUNG TRANSFORM

The quantum hydrodynamic equations can be also directly derived from the Schrödinger equation using 
the so-called Madelung transform. In the Madelung transform (Madelung, 1927), the electron wavefunc-
tion can be decomposed into an amplitude n and phase Φ as follows:

ψ =










n j
m

. exp
*

�
Φ  (55a)

The electron density n = |ψ|2 and the electron current density Jn is given by:
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By comparing the above expression of Jn with the conventional definition Jn= -envn, we notice that vn 
is replaced with∇Φ. Thus, Φ may be considered as the velocity field. Note also that Jn is closely related 
to the probability current density, defined by.

J r t
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The following set of quantum hydrodynamic equations can be obtained by substituting ψ, as defined 
by (55), into the Schrödinger equation and separating the real and imaginary parts.
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where we substituted vn =∇Φ such that Jn= -envn . The above conservation equations resemble the semi-
classical hydrodynamic equations, without the collision terms. This is due to the fact that the Schrödinger 
equation doesn’t take collisions into account. In particular, the current equation (58b) looks like the zero 
temperature Euler equation in fluid dynamics (with a corrected potential term). However, this conser-
vation equation lakes the electron pressure (or temperature) term. The combined potential term in this 
equation (due to electric field and quantum correction) is called the Bohm potential.
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2 *
 (58)

Note that the potential energy V(r) is related to the electric field by -eζ =∇V.
A more elaborate derivation of the above conservation equations consists in considering the case of 

a sequence of single states ψk=√nk exp(-jmn*Φ k/ħ) with distributed occupation probability Pk such that 
ΣPk=1. This quantum system will have a total electron density n =Σnk and a total current density Jn= 
ΣJnk, where Jnk = -e(ħ/mn*).Im[ψk*∇ψk]. Again, substituting the eigen-functions ψk into the one-electron 
Schrödinger equation (Ĥkψk = Ekψk) and adding a collision term to each resulting conservation equation, 
we obtain:
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where the pressure tensor Pn= nkBTn and Tn is the electron temperature. Note that the quantum correction 
term in the current equation (59b) is similar to the correction term in (54), when adopting the relaxation 
time approximation (∂Jn/∂t)c = -Jn/τmn and substituting μn=eτmn /mn.

12. QUANTUM THEORY OF PATH INTEGRAL

The theory of path integral of quantum mechanics has been formulated by Richard Feynman in 1948, as 
a description of quantum theory corresponding to the action principle of classical mechanics. It mim-
ics the classical notion of single unique history of a system with a functional integral over an infinite 
number of possible histories to calculate the probability of a quantum process. In this theory, Feynman 
proposed the following postulates:

1.  The probability for any fundamental event is given by the absolute square of complex amplitude.
2.  The amplitude for some event is given by adding together all the histories which include that event.
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3.  The amplitude a certain history contributes is proportional to exp[jI(H)/ħ] where I(H) is the action 
of that history, or time integral of the Lagrangian.

In order to find the overall probability amplitude for a given process, then, one adds up, or integrates, 
the amplitude of postulate 3 over the space of all possible histories of the system between the initial and 
final states, including histories that are absurd by classical standards. In calculating the amplitude for a 
single particle to go from one place to another in a given time, it would be correct to include histories 
in which the particle describes elaborate curlicues, histories in which the particle shoots off into outer 
space and flies back again, and so forth. The path integral includes all these histories. It assigns all of 
them, no matter how bizarre, with amplitudes of equal size.

Note 4: The Least Action Principle

The fact that nature follows a ‘law of least action’ has a long history. The optical laws of reflection and 
refraction can be derived from the principle that light follows a path that minimizes the transit time. In 
the 1700s, the law was reformulated to require the dynamics of mechanical systems to minimize the ac-
tion defined as Energy-Time. In the 1800s, Hamilton stated the general form: A dynamical system will 
follow a path that minimizes the action defined as the time-integral of the Lagrangian (L=T-V), where 
T and V are the kinetic and potential energy of the system. A Legendre transformation of the Lagrangian 
produces the total energy of the system in the form of the Hamiltonian. The Lagrangian and Hamilton 
play central roles in quantum theory. The Schrödinger equation can be derived from the classical Hamil-
tonian by replacing the classical variables with operators. The Feynman path integral provides a beautiful 
formulation of the quantum principle by incorporating the integral over all possible paths of the action.

12.1 Feyneman Path Integral Formulation

Feynman showed that his formulation of quantum mechanics is equivalent to the canonical approach 
to quantum mechanics. Any amplitude computed according to Feynman’s principles will also obey the 
Schrödinger equation for the Hamiltonian corresponding to the given action. For example, consider the 
case of the drift of a single particle. the path integral can be formally thought of as the small-step limit 
of an integral over zigzags: for instance, for one-dimensional motion of a particle from position x0 at 
time 0 to xn-1 at time t, the time interval can be divided up into little segments of duration Δt and the path 
integral can be computed as follows:
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where the integral is n-time multiple, dx = dx0.dx1...dxj...dxn-1 and H is the entire history in which the 
particle zigzags from its initial to its final position linearly between all the values of xj = x(jΔt).
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12.2 Effective Potential Correction

In the contact of Feynman Path Integral Formulation of quantum transport, the quantum correction method 
was developed by Feynman and Hibbs. In this method the effective potential is derived by calculating 
the contribution to the path integral of the fluctuations a quantum particle around its classical path. The 
contribution can be calculated by a variational method and a trial potential to first order. The effective 
classical potential in the average point on each path is then given by:
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where

a2 = ħ2/12m*kBT (61b)

The effective potential approach can be used in particle-based device simulation, like Monte Carlo 
method, to account for quantum phenomena (Vaseliska and Ahmad, 2004). However, according to 
Ferry et al (2002), the use of the effective potential to incorporate quantum effects, can only account 
for limited effects, such as charge set-back and threshold shifts in MOS devices, but tunnelling cannot 
be well handled by this approach, or by any other local potential approach. However, we can resort to 
the approximate methods for solving the quantum tunneling current (e.g., transfer matrix method, see 
Figure 28), in a post processing step.

Generally speaking, there are three important manifestations of quantum mechanical effects in na-
noscale devices, namely:

• Tunneling
• Size quantization
• Quantum interference & coherence effects

In order to incorporate all these effects self consistently in the device simulation, a full quantum 
transport approach, such as the QBTE or WBTE or Green’s functions, is necessary.

13. GREEN’S FUNCTIONS APPROACH

The Green’s function method is a very efficient quantum approach to calculate the carrier densities and 
the terminal currents in nanoscale devices and molecular structures. The concept of Green’s functions 
was first developed as a mathematical tool to solve differential equations, by the George Green in the 
1830’s. Actually, Green’s functions are distributions, not necessarily proper functions.
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13.1 Definition of the Green Functions

The aim of this section is to provide intuitive explanations of the Green function, and how it is related to 
the density matrix. We discuss first the basic definition of the Green functions that are not very familiar 
to most researchers in solid-state physics and electronic device engineers.

Mathematical Definition of Green’s Functions

Mathematically speaking, the Green function is used to solve inhomogeneous differential equations 
subject to initial and boundary conditions. Actually, the Green function is the integral kernel of a linear 
operator which inverts a differential operator L. The Green function solves (weakly) a differential equa-
tion of the form:

L {G(r, t)} = δ(r, t)  (62a)

where δ is the Dirac delta (impulse) function. Therefore, if we’ve a nonlinear non-homogeneous dif-
ferential equation in the form:

L{ y(x) } = f(x) (62b)

where L is any linear differential operator, for instance:

L{y(x)} = ao y(x) + a1 dy(x)/dx + a2 d
2y(x)/dx2+.. (62c)

Then the solution, using Green’s functions is carried out as follows:

1.  Find the Green’s Function, G(x), such that

L {G(x)} = δ(x) (63a)

2.  Integrate G(x) with f(x) over the entire solution domain (x1<x<x2) to find y(x):

y(x) =∫ G(z).f(z)dz for x1< z <x2 (63b)

The concept of Green’s function-based solution relies on the fact that any function f(x) can be repre-
sented as an infinite sum of delta functions at a series of discrete points, whose separation tends to zero:

f(x) =∫.f(z) δ(x-z)dz for -∞ < z < ∞ (63c)

When a delta function, δ(x), is applied to a linear system, it will generate an impulse response, h(x). 
Likewise, the linear operator can be modeled as a linear system such that when it operates on the Green’s 
Function, it will result in a delta function. Hence, we can write:
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y(x) =∫.f(z) h(x-z)dz for -∞ < z < ∞ (63d)

Therefore, the Green’s function is the impulse response which describes how the system will react 
to a single point source. And the following integration (sum) of the Green’s function will produce the 
required solution:

y(x) =∫.f(z) G(x-z)dz for -x1 < z < x2 (63e)

However, the infinite sum is replaced by a bounded integration in (63e). For this reason, the Green’s 
function method produces a weak solution for the given differential equation. For instance, the Green’s 
function of the Helmholtz wave equation is:

G(r) = -(1/4π r).exp(-jk.r) (64a)

Hence the solution of this equation ([∇2+k2]ψ(r) = Q) is given by:

ψ(r) = ∫ G(r-ro).Q(ro)d
3ro (64b)

where Q is the source term. As a particular case of Helmholtz equation, the Schrodinger equation may 
have the following solution:

ψ(r) = ψo(r) - ∫ (1/ro).exp(-jk.ro).[(2m/ħ2).V(ro).ψ(ro)] d3ro (64c)

where we substituted Q = (2m/ħ2).V.ψ and k2 = (2m/ħ2).E.

Physical Definition of Green’s Functions

The Green’s functions are used in many applications in physics such as the quantum field theory and 
statistical field theory. In fact, the Green’s function method has been used since 1950s to describe the 
many-body problems in quantum physics.

In coordinate representation the Green’s function, G(r1,t1;r2,t2), depends on two position arguments 
r1, r2 and two time arguments t1, t2, representing the non-locality in space and time. For instance, the 
Green function G(r1,t1; r2,t2) may be defined as the probability amplitude that a particle created at time 
t2 at place r2 moves to place r1 at time t1. In the Heisenberg representation the Green’s function for the 
particle is given by:

Figure 5. Mathematical representation of the Green’s function
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G r r t t j T r t r t( , , , ) ( ( , ) ( , ))†
1 2 1 2

1
1 1 1 1

= − ⋅−� ψ ψ  (65)

where T is the time-ordering (or contour-ordering) operator and ψ† and ψ are the particle creation and 
annihilation operators, respectively. Note that we use the second quantization language in this definition. 
The time ordering operator T orders operators from right to left in ascending time order and works as 
follows: T(ψ(t1).ψ(t2))= ψ(t1).ψ(t2) when t1>t2 otherwise T(ψ(t1)ψ(t2)) = -ψ(t2).ψ(t1) when t1<t2. At finite 
temperature, the quantum average <.> is taken over the equilibrium density matrix of the system. The 
above definition means that we consider the Green’s functions as expectation values of the Heisenberg 
field operators.

Sometimes, it is preferable to change the independent variables (r1,r2,t1,t2) to the center of mass co-
ordinates: (r,t) ← [½(r1+r2), ½ (t1+t2)] and the relative coordinates: (u,τ) ← [(r1-r2),(t1-t2)]. Therefore, 
the Green’s function with respect to the relative coordinates takes the form G(u,τ,r,t) and its Fourier 
transform G(k,ω,r,t) is defined as:

G k r t G u r t j k u dud( , , , )) ( , , , )exp[ ( )]ω τ ωτ τ= + ⋅
−∞

∞

−∞

∞

∫∫  (66)

The quantum BTE is in fact a kinetic differential equation for the Green’s function G(k,ω,r,t). Under 
steady state conditions, the Green’s functions depend only on time difference. Therefore, we can use 
the Fourier transform to change the time difference coordinate, τ=(t1-t2), to frequency coordinate (ω) 
or energy (E = ħω) such that G(r1,r2;E) = ∫exp(jEτ/ħ).G(r1,r2; τ).(dτ/ħ). In fact, it is more convenient to 
work with Green’s functions in the frequency (or energy) domain. The Green’s function may be then 
defined as the response of a system to a constant perturbation in the Schrödinger equation:

(E – H) G(r1,r2) = δ(r1,r2) (67a)

where the system Hamiltonian H is defined as:

H H H
m r

V r
o

= + = − ∇ ⋅ ∇










 +int ( )

( )
�2

2
1  (67b)

Figure 6. Physical meaning and representation of the Green’s function
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Here H0 is the non-interacting Hamiltonian and Hint contains the interaction and external potential 
terms. The power of the Green’s function formalism lies in its ability to approximate the effects of interac-
tion Hint. The many body interactions are taken into account through the so-called self-energy, which are 
casted into the Hint term. There exist several methods to solve the above equation and find G in presence 
of perturbation. Among these methods, one can cite: Wick’s theorem, and using Feynman diagrams

13.3 Wick’s Theorem

The Wick theorem allows a perturbation expansion of Green’s functions. This expansion allows us to 
evaluate the exact Green’s functions G as a perturbation expansion involving expressions of the free 
(non-interacting) Green’s functions Go and the perturbation potential V(r). This is illustrated in Figure 7.

13.4 Feynman Diagrams

Feynman introduced the idea of representing different contributions obtained from the Wick theorem 
by drawings, called Feynman diagrams. The Feynman diagrams provide an illustrative way to solve the 
many-particle problems and the perturbation expansion of the Green’s functions. A diagram dictionary 
for Fermions (like electrons), and Bosons (like phonons), is shown in Table 2. Note that diagrams for 
electrons are in coordinate-time space, while phonon diagrams are in momentum-energy space.

The Green’s function is interpreted as the creation of a particle at (r’, t’) in space-time, and the propa-
gation of the corresponding perturbation to the point (r, t), where the particle is annihilated. Hence, the 
full Green’s function G is represented by a double line joining these two points. The free Green’s function 
Go is characterized by a single line. Intermediate variables describe events taking place between the two 
space-time arguments of the Green’s function. The factor M refers to the electron-phonon interaction 
matrix elements. The Coulomb potential is represented by a wavy line with two inputs and outputs which 
can be coupled to describe a self-interaction. The Coulomb interaction is assumed instantaneous. Each 
time a Fermion loop appears, the corresponding perturbation expression to its diagram must be multiplied 
by a factor-1. For phonons it is more convenient to work on momentum-energy rather than in space-time

13.5 Dyson’s Equation

By the aid of the Dyson equation, it is possible to obtain a perturbation expansion of the Green functions 
that allows us to evaluate them at times far from the initial equilibrium state (Dyson, 1978). This per-
turbation expansion may be formulated in terms Feynman diagrams. Starting from the Dyson equation, 
the quantum Boltzmann equation can be derived. The Dyson equation can be achieved by classifying 
the various contributions in arbitrary Feynman diagrams.

Using Dyson’s equation we can summarize the Feynman-Dyson perturbation theory in a compact 
form. The exact Green’s function can be written as the non-interacting Green’s function Go plus all the 
connected terms with a non-interacting Green’s function at each end, as shown in the Figure 7.

By introducing the concept of self-energy Σ, the structure in Figure 7 takes the form shown in Figure 8.
The self-energy Σ consists of the energy level shift (Δ=ReΣ) and the energy level broadening or line 

width (Γ=-2ImΣ), due to the interaction with the surrounding system (contacts). The corresponding 
expression of Green’s function is given by:
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Table 2. Feynman Diagrams for electrons (Fermions) and phonons (Bosons)

Figure 7. Green’s functions expanded in terms of Feynman diagrams

Figure 8. Illustration of the Dyson equation with Feynman diagrams
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G(r,t,r’,t’) = Go(r,t,r’,t’) + ∫ ∫ Go(r,t; ℓ1) Σ*(ℓ2) Go(ℓ2;r’,t’)d2.d1 (68)

Here, we use the abbreviation ℓ1=(r1,t1) and ∫d1=∫∫dr1.dt1 and so on. The Dyson equation determines 
the renormalized Green’s function G, starting from its equilibrium (non-interacting) form Go. The self-
energy in this equation describes the renormalization of single-particle states due to the interaction 
with the surrounding many-particle system. Note that the quantum Boltzmann equation (QBTE) can be 
derived, starting from the Dyson equation

14. NON-EQUILIBRIUM GREEN’S FUNCTION (NEGF)

The Non equilibrium Green’s function (NEGF) is a microscopic quantum method that allows us to 
study the time evolution of many-particle dissipative quantum systems. The origin of NEGF method 
was initiated by Schwinger to treat the Brownian motion in quantum oscillators (Schwinger, 1961). The 
NEGF theory has been extended by Kadanoff, and Baym and has been recently applied for modeling 
transport phenomena in semiconductor devices. Actually, the NEGF technique has been widely used to 
study quantum transport of electrons and holes as well as phonons and photons in a variety of materials 
and devices.

The initial motivation for the development of the NEGF formalism in semiconductor devices was the 
calculation of tunneling currents in metal-insulator-metal (MIM), hetero-structures, and resonant tunnel-
ing devices. In 1988, Kim and Arnold were the first to apply the NEGF formalism to such systems. The 
theory was adapted to address quantum optics, high-field transport, nanotube FETs and molecular devices.

There are six types of Green’s functions that can be defined as the non-equilibrium statistical ensemble 
averages of the single carrier correlations. These are the greater, lesser, advanced, retarded, time-ordered 
(causal) and anti-time-ordered Green’s functions. The first four types are more famous than others. They 
are defined as follows (Jacononi, 2010b):

G>(r,t,r’,t’) = - jħ-1 <ψ(r,t) ψ†(r’,t’)> (69a)

G<(r,t,r’,t’) = + jħ-1 <ψ†(r’,t’)ψ (r,t)> (69b)

Gr(r,t,r’,t’) = - jħ-1 θ(t-t’) <{ψ (r,t),ψ†(r’,t’)}> (69c)

Ga(r,t,r’,t’) = + jħ-1θ(t’-t).<{ψ(r,t),ψ†(r’,t’)} > (69d)

We dully note that ψ†(r,t) and ψ(r’,t’) are the carrier creation and destruction operators, which map a 
wavefunction at time t’ to a wavefunction at time t and vice versa. The angular brackets mean the average 
over the equilibrium density matrix ρo. Also, θ(t) is the Heaviside unit step function, which is defined as 
θ(t)=1 if t≥ 0 and 0 otherwise. The so-called time-ordered (causal) or anti-time-ordered Green’s func-
tions are defined as follows:
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Gt(r,t,r’,t’) = θ(t-t’).G>(r,t,r’,t’) + θ(t’-t).G<(r,t,r’,t’) (69e)

Gat(r,t,r’,t’) = θ(t’-t).G<(r,t,r’,t’) + θ(t-t’).G>(r,t,r’,t’) (69f)

NEGF allows the calculation of scattering states (represented by the retarded Green’s function Gr) and 
their non-equilibrium occupation (represented by the lesser Green’s function G<). Note that the Green’s 
functions satisfy the relations: Gr−Ga = G>−G< and Gt +Gat =G<+G>. In fact, G> and G< are related to 
observables and kinetic properties like particle density and current.

The NEGF formalism provides a means to handle open quantum systems. An open system is con-
nected to surrounding reservoirs and has non-zero boundary conditions for the wave functions. The 
Hamiltonian of such open systems can be written as follows:

H C

C H
R
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 (70a)

where H and HR denote the Hamiltonian of the system (device) and the surrounding reservoirs (contacts) 
and C represents a coupling matrix. In real systems, the dimension of HR is usually much larger than the 
dimension of H. Therefore, the corresponding single-particle Green’s function reads:
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 (70b)

where G> and G< refer to the coupling of the system (device) to/from the reservoir (leads), and GR de-
scribes the reservoir itself. Also, the retarded Green function, Gr, which represents the Green’s function 
in the device, becomes:

Gr = (E - H – Σ)-1 (71)

The spatially distributed self-energy Σ describes the scattering events inside the device (for example 
electrons–phonons and/or electrons–impurities scattering mechanisms). The reason for calculating the 
Green’s function is that it is easier than solving the Schrödinger equation directly. Also, the Green’s func-
tion of the device can be calculated separately without calculating the whole system Green’s function. 
In the absence of external fields the NEGF reduces to the equilibrium Green function Go

The so-called spectral function of Green’s function is given by:

A = j (G – G+) (72)

The spectral function gives information about the density of states of the system as well as all the 
solutions of the Schrödinger equation. Note that we sometimes write Gr simply as G and Ga as its con-
jugate (G).
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15. QUANTUM KINETIC EQUATIONS

Here, we introduce the equations of motion for the non-equilibrium Green’s functions (NEGF). Actually, 
there are two different, but equivalent, NEGF formulations, namely:

• The Kadanoff-Baym approach and
• The Keldysh method.

In this section, we treat these two important formulations and derive the so-called quantum Boltzmann 
equation (QBTE). The QBTE has been derived by Kadanoff and Baym (1970) and extended by Mahan 
and Hansch (1983). This equation is valid for weak applied potentials, which are slowly varying in space 
and time. Therefore, the QBTE is particularly useful for linear transport in stationary systems.

15.1 Kadanoff-Baym (K-B) Approach

The Kadanoff-Baym (K-B) quantum theory of transport at non-equilibrium has been developed in the 
1970’s on the basis of the non-equilibrium Green’s function (NEGF). The K-B equations represent the 
equations of motion that determine the time evolution of the Green’s functions. These equations of mo-
tion can be derived from the differential form of the Dyson equation.
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Here, Ho is the single carrier Hamiltonian (energy). The right hand sides of the K-B equations contain 
the collision integrals due to other particles. Collision integrals should describe all scattering and correla-
tion effects of other interacting particles7. The K-B equations do not include any information about the 
system initial values. In order to have a closed set of equations, K-B equations should be supplemented 
with the Dyson equations for Gr and Ga. For instance, the equations satisfying Gr are:
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Similar relations hold for the advanced Green’s functions (Ga).
Under steady state conditions, the Green’s functions are usually written as G(r1,r2;E), or simply 

G(E), and the quantum kinetic equations may be written as follows, in terms of the total energy E and 
total self energy Σ:

E H r G r r E r r E G r r E dr
o

r r r
r

−
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Then, the K-B technique consists in solving the transport equations in non-equilibrium Green’s 
functions, which include the retarded and advanced Green’s functions Gr, Ga as well as the correlation 
Green’s functions G< and G>. Therefore, the quantum transport problem may be described by the fol-
lowing two equations in steady state:

[E - H - Σr]Gr = I (76a)

[E - H - Σr]G< = Σ< Ga (76b)

where Σ is the self-energy matrix and H is the system Hamiltonian matrix. The Hamiltonian (H = Ho +V) 
contains the single electron Hamiltonian Ho and the effect of external potential energy (V= - eϕ). In open 
systems, H is not Hermitian, like closed systems, and it therefore admits complex energy eigenvalues8. 
Note also that the self-energy Σ is related to the scattering rate. Actually, Σr represents out scattering (to 
contacts and other channels) while Σ< represents in-scattering (from contacts and other channels). The 
scattering rate line width (Γ) is given by the imaginary part of the self-energy:

Γr = j (Σ − Σ+) (47)

After solving equations (45), all physical quantities of interest, such as the electron density, current 
density can be obtained from G<. For instance, the electron density can be obtained from the lesser Green 
function G<(En,r,r’) by integration, as follows:
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In equilibrium, the Green functions of charge carriers are related to the Fermi-Dirac distribution fn, 
by the following relation:
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Therefore, the electron density near equilibrium is given by:
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Note the resemblance between Green’s functions and the electron density of states (DOS). In non-
equilibrium (with bias), Green’s function consists of the electron flux across a semiconductor, according 
to the following relation:
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where fnL and fnR are Fermi-Dirac distributions at the device left and right boundaries (in equilibrium). 
Also, the advanced Green function Ga and the scattering rates at left and right leads (ΓL, ΓR) include the 
scattering effect of leads into account. After obtaining the electron density, n(r), by iterations, we can 
determine the electron current density through the device as follows:
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where the transmission probability T(En) is given by:
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Here, the integration is taken over all the system boundaries (left and right). Therefore, the above 
K-B formulation leads to a set of linear equations for the coefficients of the Green’s functions. Figure 
9 illustrates the utilization of Green functions for the simulation of transport across a 1-D nanodevice. 
As shown, the one-dimensional nanodevice is connected to two semi-infinite leads and divided to three 
separate areas. In equilibrium, the Fermi level is constant all over the three areas. In non-equilibrium 
the Fermi levels in the leads differ by the bias voltage. The leads electron density and potential can be 
then solved self-consistently in the central region.

When we want to take the total coupling between the lesser and the retarded Green’s function in a 
more rigorous manner, we should solve four coupled partial differential equations. For the case of the 
electron-phonon interaction, under the effect of electric field, these equations are:
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(E − H0 − eϕ - Σr)Gr = 1, (83a)

Σr = GrDr + GrD< + G<Dr (83b)

G< = Gr Σ< Gr† (83c)

Σ< = G<D< (83d)

where H0 is the single-electron Hamiltonian, Gr represents the retarded Green’s function, Σr denotes 
the self-energy (due to out scattering), D denotes the phonon Green’s function, and ϕ is the applied 
electrostatic potential.

Actually, it is not possible to include all interactions to infinite order and only first-order self-energies 
can be included. Using the Born approximation, the self-energies for the electron–phonon interactions 
may be expressed as follows (Pan, 2015):
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Figure 9. Illustration of the utilization of the Green function method in device simulation
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Γe-ph = j (Σe-ph − Σe-ph
+)  (84b)
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where ħωq,j denotes the phonon energy of the jth branch j at the wavevector q, nq,j is the phonon occupation 
number (Bose-Einstein distribution, assuming equilibrium phonon population), Dq,j is the electron–pho-
non interaction strength, and Γe-ph is the scattering rate line width. Also, Σ>

e-ph and Σ<
e-ph are the energy 

broadening, and Ƥ represents the principal part of the integration (excluding singular point at E=E’). 
The ± sign denotes the phonon emission or absorption processes, respectively. The electron-phonon 
scattering processes may be elastic (energy conserving) or inelastic. The corresponding electron–phonon 
coupling strength may be expressed as follows:

Dq,j (Elastic) = (kBT/2 n mc vj).|Mj|
2,  (85a)

Dq,j (Inelastic) = (ħ/2 n mc ωj).|Mj|
2,  (85b)

where Mj is the matrix element (for elastic or optical phonons), mc is the crystal lattice atomic mass 
and vj is the sound velocity (for elastic phonons). Similarly, the electron-impurity interactions can be 
expressed as follows:
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where, ρ is the density of impurities (Ni/V) and V(q) is the Fourier transform of the Coulomb potential V (r).
In order to illustrate the influence of coupling, Kubis and Vogl (2007) implemented a self-consistent 

NEGF simulation to study the quantum transport in several quantum structures. The Figure 10a depicts 
the simulation in the intrinsic region of an N-I-N structure. As shown in figure, the total length of the 
device is 50nm with 16nm intrinsic region between two n-type regions of 17nm length and doping of 
1018cm-3. In the intrinsic region, there is a 12nm In0.14Ga0.86As quantum well of 150meV height.

At zero bias, the full NEGF correctly yields the equilibrium Fermi-Dirac distribution function 
f(E)=G<(E)/ [Gr(E)−Gr†(E)]. In contrast, the decoupled solution violates the Pauli principle at low 
energies. The state occupation exceeds the physical limit of 1 at energies below the Fermi level that (at 
0eV). Figure 10b shows the I-V curve of a 40nm GaAs/Al.3Ga.7As resonant tunneling diode with two 
3nm wide Al.3Ga.7As barriers and a 4nm quantum well in the center. Around the barriers, there is a 3nm 
intrinsic regions and a 12nm n-doped region with n = 2×1017cm−3,
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15.2 Keldysh Formulation

Instead of working directly with the K-B equations, it may be useful to consider their integral forms. 
Historically, Leonid Keldysh derived his alternative form almost simultaneously with Kadanoff and 
Baym. However, the Keldysh and Kadanoff-Baym formalisms are equivalent.

According to Keldysh, the Green’s functions should satisfy the following integral equation.
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In matrix form, the Keldysh equation may be written as follows:

G< = Gr Σ< Ga (87b)

where G< is the lesser Green’s function and Σ< is the lesser self-energy. This is equivalent to equation 
(49) but so much easier to apply. We dully note that the retarded and advanced Green’s matrices (Gr and 
Ga) can be obtained from the inverted Hamiltonian matrix:

Gr = [E.O - H - Σr]-1 (88)

where H is the Hamiltonian matrix of atoms in the scattering region (H = Ho - eϕ), O is the overlap 
matrix, and Σr is the retarded self-energies. The self–energies can be decoupled and related to the scat-
tering rates line widths (ΓL, ΓR), which describes the coupling between the leads in the left and right 
sides with the device, as follows:

Σ< = Σ<
L + Σ<

R = j.fL
.ΓL + j.fR

.ΓR (89)

Here fL and fR are the equilibrium Fermi-Dirac energy distributions, in the left and right terminals, 
respectively. Once the Green’s functions are determined by the Keldysh NEGF, one can construct the 
nonequilibrium carrier statistics, via the carrier density matrix:
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Also, the Wigner distribution function can be obtained from the energy integral of the Green’s func-
tion, W(k,r,t) = ∫G(k,ω, r, t).dω.

Figure 11 shows the flowchart of the self-consistent solution of NEGF-Poisson method using the 
Keldysh formulation.
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15.3 NEGF Calculation Procedure

The NEGF formalism can be applied to finite structures, to calculate the device characteristics as follows. 
The main calculation of the NEGF consists of a self-consistent computation of the Poisson equation and 
the quantum transport equation.As shown in figure, the domain is divided into left contact, right contact 
and the device. The calculations start with the NEGF transport equation (Kinetic equation). From the 
transport equation, the charge density (ρ) can be obtained and substituted into the Poisson equation. 
The Poisson equation computes the self-consistent potential (Vsc). It is important to note that since we 
have an infinite system, we obtain two types of solutions for the Green’s functions, the retarded (Gr) and 
the advanced (Ga) solutions corresponding to outgoing and incoming waves in contacts. The retarded 
and the advanced Green’s functions (Gr, Ga) describe the dynamics of carriers. Also, The greater and 
lesser Green’s function, (G>, G<) deal with the statistics of carriers (e.g., carrier density) and can be 
derived from Gr, Ga, using the relations: G>= GrΣ>Ga and G<= GrΣ<Ga. The reason for calculating the 
Green’s function is that it is easier than solving the Schrödinger equation. Also, the Green’s function of 

Figure 10. (a) Results of simulation of an N-I-N structure by Green’s functions (at zero bias); (b) I-V 
characteristics of a tunneling diode by NEGF 
After Kubis & Vogl (2007)
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the central device region can be calculated separately without calculating the whole Green’s function 
of the system (device + contacts).

The detailed procedure of the NEGF method to model nanoscale devices is as follows.

1.  The first step is to identify a suitable set of basis functions and the Hamiltonian matrix (H) in the 
isolated device (central) region. This region may be the channel of a MOSFET or a carbon nano-
tube in a CNT-FET. The self-consistent potential (Vsc), is a part of the Hamiltonian matrix. The 
Hamiltonian matrix H describes the system at hand (e.g., MOSFET). It is usually a sparse matrix 
with connectivity only between neighboring mesh nodes, except for nodes at the boundary of the 
device which may have a non-local coupling (non-reflecting boundary condition).

2.  The second step is to compute the self-energy matrices (Σ), which describe how the central device 
region couples to the left/right contacts and to the scattering process.

3.  After identifying the Hamiltonian matrix (H) and the self-energies (Σ), the third step is to compute 
the retarded Green’s function (Gr). Once the retarded Green’s function is known, one can then 
calculate other Green’s functions and determine the physical quantities (e.g., carrier density and 
current).

15.4 Boundary Conditions and Surface Green’s Functions

The treatment of boundary conditions requires a special care in quantum transport problems in general, 
and the NEGF method in particular. The utilization of bulk Green’s functions may be a reasonable ap-
proximation to capture the important characteristics of the contact electrodes. However, surface Green’s 
functions (gx) and the corresponding self-energies (ΣX) are a more proper way to construct the contact 

Figure 11. Flowchart of the self-consistent NEGF-Poisson method by the Keldysh formulation
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electrode Green’s functions. In fact, the contact electrodes constitute a semi-infinite system as compared 
to the infinite crystal assumed in the construction of bulk Green’s function

A common problem in NEGF is to define Ohmic contacts of a given device (Frensley, 1990). In 
NEGF, we may define contacts as Ohmic if the current is controlled by the interior of the device (rather 
than by serial resistances or interface states). According to Kubis & Vogl (2009), this definition has the 
following implications:

• There must be a smooth transition in the density of states between the device and leads.
• The same scattering mechanisms must act within the device and leads.
• The carrier distribution within the leads must be a suitable Fermi-Dirac distribution to ensure the 

current continuity.

These conditions should be then applied to avoid quantum reflections and charge accumulation at 
the device interface regions.

15.5 Advantages and Disadvantages of the NEGF

The non-equilibrium Green’s function (NEGF) approach is a state-of-the-art modeling tool in predicting 
performance and designing emerging nanoscale devices. The NEGF is a microscopic quantum theory for 
quantum transport that may include all particle interactions and scattering mechanisms. For instance, the 
electron-electron interaction can be considered through the Hartree-Fock approximation (correlation & 
exchange integrals). Also, the electron-phonon interaction can be considered through a self-consistent 
solution for the self-energy term in the NEGF formulation. Ballistic transport (coherence) of charge and 
energy carriers can be also considered in this method. However, scattering is typically incorporated in 
a phenomenological way using Büttiker probes. The connection between the self-energy and physical 
scattering mechanisms in this case is not straight forward. In comparison with the WBTE simulation 
methods, the NEGF simulation requires the consideration of eight dimensions (x1,y1,z1, x2,y2,z2, 
t1,t2) while the WBTE requires seven dimensions (x,y,z, px,py,pz, t). The higher dimensionality of the 
NEGF simulations makes it more demanding for computational resources, but allows the description 
of temporal correlations.

The NEGF method is able to deal with explicitly time-dependent as well as with stationary problems. 
The time-dependent calculations requires the knowledge of the four basic types of Green’s functions (Gr, 
Ga, G<, G>), while stationary problems needs 2 types of Green’s functions (Gr, G<).

However, there is no rigorous self-consistent scheme to implement the NEGF, with Poisson’s equation 
in real devices, without adopting a series of approximations. Also, there are no self-consistent forms of 
phonon self-energy without additional approximations (Pal et al, 2012). In comparison with semiclas-
sical calculations, much more effort is required to properly take into account the physics of contacts. 
This is a consequence of the nonlocal nature of quantum mechanics and the nature of scattering in open 
quantum systems. In addition, the charge and current conservation are not satisfied once approximations 
are introduced.

Finally, it should be noted that the computational costs of the full NEGF simulations are prohibitive, 
in terms of CPU time and other computer resources. In fact the computational complexity of the NEGF 
scales as O(N3) where N is the number of elements (atomic orbitals or grid points)9. In addition, when 
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applying NEGF method to transient analysis to calculate current as a function of time, the computational 
cost scales with O(N3) where N, in this case, is the number of time steps (Stokpro, 2008).

The most expensive calculation is computing some of the entries of the retarded Green’s functions 
matrix Gr: Gr = [EI -H –Σ]-1 = A-1 and the less-than matrix G<(E) = GrS<(Gr)+. By the aid of certain 
exotic techniques, the problem of computing density of states and transmission coefficient (and hence 
the carrier density and current) in the NEGF can be reduced to finding certain entries from the inverse 
of a large and sparse matrix, like A. The recently proposed methods, such as FIND algorithm (Li et al, 
2008), together with massive parallel processing capabilities, have enabled the NEGF approach to attack 
real devices in 2D and 3D (Steiger et al., 2015).

16. CASE STUDY 4: QUANTUM SIMULATION OF AN N-I-N, USING NEGF

In this section we show some details of the NEGF quantum simulation of an N-I-N nano structure, 
similar to the one presented so far in Figure 10. This simple example shows the power of the NEGF 
quantum approach. The simulated N-I-N structure is 50nm long and has 12nm InGaAs quantum well 
as intrinsic zone.

The main calculation in the NEGF method consists in computing Green’s function matrices. The 
NEGF method has been above described and more details can be found in the literature, e.g., Datta (2005). 
In brief, we divide the device into three regions (Left contact, Central device, and Right contact). The 
system Hamiltonian can be then written as:
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where HL, HC and HR denote the Hamiltonian matrices of the left, central and right parts, respectively. 
Also, τL and τR are the matrices involving the interaction between the left/right contacts and the central 
region. We assume that there is no direct tunneling between leads. The retarded Green’s function Gr 
corresponding to this Hamiltonian is obtained by inverting the matrix equation (E+.O - H)G r = I, which 
can be written as:
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where OL and OR are the overlap matrices. If the center region is long enough, there will be no overlap 
elements in O or H between the left and the right electrodes. Also, E+=E+jη contains a small infinitesi-
mal imaginary (broadening) energy, η, to facilitate the computations. Once Green’s function matrices 
are computed, the electron density and the current at the device terminals can be obtained.
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The Figure 13 shows the simulated N-I-N structure and the carrier density distribution, along the 
device, with different methods, when the applied voltage is 150 mV. Also, Figure 14 depicts the elec-
tron energy contours, along the device at the same bias. The calculations are carried out with the NEGF 
simulator NEMO, which is a famous NEGF simulator (Klimeck et al., 2016). Here, the calculation of 
charge-carrier density is performed with and without scattering, and compared with self-consistent solu-
tion by the semiclassical Boltzmann equation.

The ballistic NEGF calculation (without collisions) is equivalent to the solution of Schrödinger equa-
tion of an open system (without contacts). This reflects a coherent, energy conserving, ballistic transport. 
In this case, the carrier density within the device is fully determined by the overlap of the lead wave 
functions with the device. Since there are no lead carriers below the GaAs band edge, the quantum well 
states in the intrinsic region remain unoccupied. Thus, the electron density within the quantum well only 
stems from lead electrons, which explains the oscillatory density in the intrinsic region.

17. MULTIBAND QUANTUM MODELS

The quantum microscopic models, that we presented so far, are all concerned with the transport of con-
duction electrons and their associated current. These models may be divided into two basic categories, 
namely:

• Non-statistical (Pure-state) methods, which are Schrödinger equation-based and
• Statistical (Mixed-state) methods, such as density matrix-based and Wigner function-based 

methods

The majority of these quantum models were developed assuming a single parabolic band. The hole 
current has been only included in the macroscopic level (i.e., the QHDM). Therefore, the possible in-
terband currents are not considered in such models. The so-called multiband quantum transport models 
(MBQTM) are concerned with interband transitions (e-g., conduction-to-valence and vice versa) and 
their associated currents. MBQTM models are particularly important for high-speed devices, such as 
resonant-tunneling diodes (RTD’s) and quantum cascade laser (QCL).

Figure 12. The self-consistent procedure of the NEGF, with Poisson’s equation 
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17.1 Multiband Models, Based on the Schrodinger Equation

Most of mathematical models of quantum transport in semiconductor devices make use of the effective-
mass approximation (EMA). This consists in replacing the true Hamiltonian
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where m* is the effective-mass tensor: m*−1 = ∇⊗∇E(k) |k=0. Note that the total potential energy V(r) 
includes both the internal crystal field as well as the external potential Vex(r) due to conduction band 
edge profile that includes band offsets, band shifts due to strain, and the electrostatic potential. In such 

Figure 13. Electron density distribution
After Kubis et al (2009).
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approximation the charge carriers (electrons or holes) belong exclusively to the low energy levels of 
conduction or valence bands. However, at higher energies the coupling between bands becomes relevant, 
and the EMA breaks down. In this case, the inclusion of nearby bands of interest, by any band structure 
calculation method, is necessary.

Ideally the electronic structure can be self-consistently calculated using ab initio methods, such as 
the density functional theory (DFT), or even approximate methods, such as the tight-binding (TB), but 
such methods are time-consuming.

A common compromise is to use the so-called k.p theory (Luttinger & Kohn, 1955) to include band 
coupling within relatively small basis. The k.p method allows the extrapolation of the band structure over 
the entire Brillouin zone from the energy gaps and matrix elements at the zone center. One can improve 
the accuracy of the k.p method by including the strongly coupled bands and treating the influence of 
distant bands as perturbation.

There is a hierarchy of k.p models including 2-band, 4-band, 6-band and 8-band Hamiltonians. The 
simplest one is the Kane 2-bands model (Kane, 1956). It includes one conduction band and one valence 
band and consists of two coupled Schrödinger-like equations, with a coupling term. The Hamiltonian 
of the kane 2-band model consists of a 2×2 matrix as follows:
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Here, k is the matrix element of the gradient operator between the Bloch functions of the two bands 
(uc, uv), such that k=ʃuc(x)∇uv(x)dx, and the integration is taken over the lattice unit cell. Also, Eg is 
the band-gap between the two bands and mo is the electron mass. The next stage in the k.p hierarchy is 
the 4-band Luttinger-Kohn-Hamiltonian, which describes the band-mixing between the heavy and light 
holes. This 4-band model neglects the spin-orbit coupling
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Alternatively, one can use the Kane 8-band Hamiltonian to include the spin-orbit coupling (Kane, 
1966). In this case, we consider an additional term Hso that takes into account the relativistic effect of spin:
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where σ is the vector of the Pauli matrices σ = (σ 1; σ 2; σ 3)
T. For instance, the zincblende semiconductor 

structures have the following spin-orbit interaction Hamiltonian (Hinckley & Singh, 1990):
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where Δso is the spin-orbit split-off energy.
Usually, the k.p method is utilized in combination with the so-called envelope function approxima-

tion. The envelope function ansatz (Ehrhardt & Koprucki 2014) is based on Bloch’s theorem, according 
to which the electron wave function in a crystal with translational symmetry can be separated into an 
oscillating Bloch part over atomic distance and a smooth envelope function which varies on a larger 
mesoscopic scale.

In layered semiconductor heterostructures, the k.p-Schrödinger equation approach for d bands, enables 
us to write the eigenfunctions ψ(r) as

Ψ
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where z denotes the growth direction of the semiconductor layers and the index // indicates in-plane 
vectors, such that in-plane reduced wave vector k// = (kx, ky). Also, un(r) are lattice-periodic Bloch func-
tions and ϕ(z, k//) are the corresponding envelope functions describing the variation of wave-functions 
on a larger meso-scale. Using the perturbation theory, the rapidly oscillating Bloch functions can be 
eliminated from the Hamiltonian, and the resulting electron Hamiltonian only contains the envelope 
functions. Therefore, the envelope functions ϕ = (ϕ1,.. ϕd) fulfill the k.p-Schrödinger equation
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The following figure depicts the subband structure of 8.5nm thick InGaAs quantum well from TB, 
EMA and 4-band k.p assuming infinite potential boundary conditions. The material parameters and 
doping profile of this structure are based on (Pan, 2015).

Recently, other pure-state multiband models have been proposed (Barletti, Demeio & Frosali, 2015), 
on the basis of Luttinger-Kohn L-K (Luttinger & Kohn,1955) and Wannier-Slater W-S (Wannier, 1962) 
envelope functions. The book of Voon and Willatzen (2009) provides an overview on all types of the 
k.p Hamiltonians for bulk and nanostructured semiconductors. 

17.2 Multiband Models, Based on the Wigner Distribution

The kinetic models of quantum transport that make use of the Wigner function are less complex than 
other quantum statistical approaches, such as the density-matrix approach and the Green’s-function 
method. In addition, the inclusion of collisions to the WBTE is less complicated than adding them into 
other statistical models of quantum transport. However, all transport models for semiconductors, which 
are based on the Wigner function, assume a single parabolic conduction-band with EMA. In order to 
tackle with devices in which interband transitions are important, the EMA is not satisfactory and a well-
defend Wigner function should include the populations of all bands involved in the transport process.

The statistical multiband model, which is based on the Wigner formalism, starts from an envelope-
function model, such as the Kane model and then applies the Wigner/ Weyl transformation directly to 
the envelope functions (Borglie et al., 2003). For a 2-band model this yields a 2×2 matrix of Wigner 
functions (Wigner matrix). The basic idea of this model is to evolve the entire Wigner matrix rather than 
just the diagonal elements in the conventional case. The off-diagonal elements of the Wigner matrix 
can handle the multiband (non-adiabatic) transitions. For the case of 2-band model (with 2×2 Wigner 
matrix), this approach yields four coupled WBTE-like equations (Chai et al. 2014):

∂

∂
+ ∇ + = − ∇ −( )− +

W

t m
W

j
W

j k
m

W W
k p
m

W Wcc

o
r cc cc cc

o
r cv vc

o
cv vc

p
. .

.
�

�
θ

2
(( )  (96a)

Figure 14. Electron energy contours in the N-I-N structure
After Kubis et al. (2009)
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where the operator θij is acting on Wigner matrix elements (Wij) as follows:
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with the index i,j = {v, c} denoting the valence and conduction bands and the potential Vij is defined as:
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17.3 Multiband Hydrodynamic Models

The macroscopic hydrodynamic models (HDM or its quantum version QHDM) are less complex than 
the kinetic models (BTE or WBTE) and more accurate than the DDM. The majority of these models 
are either based on single parabolic conduction band or separate parabolic multivalleys or separate 
conduction-valence (bipolar) nonparabolic bands10.

On the basis of the multiband kinetic models, many researchers have attempted to develop a multiband 
QHDM, e.g., Wilson, (1988), Gardner (1994), Barletti, Demeio & Frosali (2007), and Barletti, Brogioli 
& Frosali (2014). In fact, such models have faced many difficulties, such as the absence of the physical 
meaning of the concerned macroscopic quantities and the corresponding moment equations. Are they 
really conservation equation? Of What exactly?

One of the successful approaches to develop a multiband QHDM, is based on the Madelung approach, 
which consists in writing the wavefunctions in terms of amplitude (n) and phase (Φ) quantities11. In the 
case of a two-band model, we have the following envelop functions:
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where a ∈ {c, v}, m is a scaling factor and the corresponding densities are:

nc = | ψc|
2, nv = | ψv|

2, ncv = ψc*ψv, nvc = ψ v*ψ c (100)

The quantities nc and nv correspond to the position probability densities of the valence and conduc-
tion band electrons. The total electron density is then n = nc +nv = | ψc|

2 +| ψv|
2. The complex densities 

ncv and nvc may be written in the following form:

ncv = √nc .√n v.exp [jδ ],nvc = √nc.√n v.exp [−jδ ], (101)

where δ = Φ v - Φ c. The corresponding quantum current densities are:
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Also, the complex currents Jcv and Jvc may be written as follows:
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where uv and uc are some sort of complex velocities, which are given by:

uc = (ħ/α).(∇√nc /√nc) + j∇Φc, uv = (ħ/α).(∇√nv /√nv) + j∇Φv (74)

For the case of 2-band Kane model, this approach yields four coupled continuity-like equations, for 
nc, nv, Jc and Jv (Chai et al. 2015):
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where K is the interband coupling constant. Adding these equations yields:
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Similarly, we can get the following coupled equations for Jc and Jv;
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where the Vc =Ec+V and Vv =Ev+V. In order to close the above system of hydrodynamic equation (97, 
98, we may add the following constituent equation for δ:
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This system can be solved for nc, nv, Jc and Jv. Other variables (ncv, nvc uc, uv, can be expressed in terms 
of these variables and the phase difference δ.

Naturally, this 2-band QHDM can be extended to higher orders, using the same concept.

18. QUANTUM TRANSPORT IN ATOMISTIC AND MOLECULAR DEVICES

Atomistic and molecular devices represent one of the major fields of current development in nanotech-
nology. Development of the electronic devices at the molecular scale involves study of the electronic 
level structure, response and charge transport at atomic scale. These devices can be constructed of 
single molecules, small groups of molecules, carbon nanotubes, nanoscale metallic or semiconductor 
wires. Molecular electronics emerging applications are tremendously exciting; for example, molecules 
can function as transistors, switches, rectifiers, IC inter-connects, photovoltaic, memories and sensors.

The advent of experimental progress in molecular electronics has given rise to new challenges in 
developing theoretical tools to describe the electron transport in molecular devices. In the case of very 
small semiconductor devices, the transverse dimensions are small, and the band structure of large vol-
umes is no longer appropriate. Typical cases of this situation are resonant tunneling diodes, nanowires, 
carbon nanotubes, and molecules stretched between metallic leads. Here, the analytic band structure and 
effective mass approaches, we used previously, are no longer applicable.
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18.1 Quantum Transport Modeling from Atomic First Principles

In order to understand and model nanoscale devices, we need a detailed model of the interaction between 
the electrons and the individual atoms. At the atomic scale such a model must be based on a quantum 
mechanical model. The most fundamental description is through the Schrödinger equation involving all 
the electrons and the ionic cores of the atoms. The main numerical problem with the Schrödinger equa-
tion is that it couples the motion of the electrons and this makes a general solution intractable. A very 
popular strategy for avoiding solving the full Schrödinger equation is using a self-consistent field (SCF) 
model, where each electron is described as an independent particle interacting with the SCF from all the 
other electrons. The most successful SCF approaches are based on either Hartree-Fock (H-F) equation 
or the density functional theory (DFT).

In DFT each electron is influenced by a SCF determined from the total electron density through a 
classical electrostatic contribution (Hartree potential), and an exchange–correlation potential, which 
arises from the quantum mechanical nature of electrons. The exchange–correlation potential can only 
be calculated approximately, and there is a strong effort to develop improved exchange–correlation 
functionals for DFT. The local density approximation (LDA) and the generalized gradient approximation 
(GGA) to DFT, are popular approximations which proved very successful. Practically, the LDA and GGA 
methods are known to underestimate energy gaps in semiconductor materials and their results must be 
analyzed to judge their validity. Recent research seems promising for correcting the deficiencies of the 
DFT-LDA and DFT-GGA. However, if the energy gap or energy barriers are important in your study, 
the so-called GW approximation (Hedin, 1965) is more accurate, as shown in Figure 17.

The Ab initio methods can be also extended to study the transport of charge carriers in molecular 
and atomistic systems. In fact, the electronic transport properties of tiny systems are determined –to 
large extent- by their band structure. For instance, consider the atomistic system in the following figure 
where atoms are arranged in 2D layers. The electron and hole densities in each 2D layer are given by:

Figure 15. Band structure of an InGaAs quantum well by TB, EMA, and k.p, methods
From Pan (2015)
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The influence of free carrier charge redistribution and polarization fields can be included by solving 
the Poisson equation:

d
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D z
d
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d
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V P e p n N N
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= − + −( )+ −ε  (112)

Figure 16. Example of a molecular device, consisting of a molecule stretch between two metal contacts
Values have been extracted from Tran and Blaha (2009).

Figure 17. Experimental and theoretical bandgap energy of different materials
Values have been extracted from Tran and Blaha (2009)
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The Hamiltonian of the system can be then evaluated (H = HC+VH) and from this Hamiltonian, one 
can calculate energy levels, self-consistently, and substitute Eik// in equation (111). In fact, the band 
structure and local strains in nanodevices should be taken into account, and therefore, the atomistic ap-
proaches, such as the DFT are important.

18.2 Energy Band Structure and Transport Calculation Methods

In the transport theory, band structure is first calculated and used as input for the calculation of the car-
rier distribution functions. There have been several methodologies developed to study the energy band 
structure of matter. In addition to the Hartee-Fock (H-F) method that we presented in the beginning of 
this chapter, we have the density function theory (DFT) as well. In addition, some approximate tech-
niques, such as the tight-binding electron (TBE) model may be also used to build the material energy 
band structure.

Generally speaking, there exist two basic categories of computational methods, to develop the energy 
band structure of a matter, namely:

• Ab initio methods,
• Approximate (or empirical) methods.

The ab initio computational methods are based on first-principles quantum physics, to find out the 
energy band structure of a matter. Ab initio electronic structure methods have the advantage that they can 
be made to converge to the exact solution, when all approximations are sufficiently small. In this case, 
when all possible configurations are included, such methods tend to the exact solution of the electronic 
Schrödinger equation (in the Born-Oppenheimer approximation).

The H-F, technique is the simplest ab inito method, in conjunction with the self-consistence field 
methods. The computational load of the H-F method scales as N4 (N being the number of basis wave-
functions). However in practice it can scale closer to N3 as the program can identify and neglect zero 

Figure 18. Flowchart of the Kohen-Sham method
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and small integrals. The Density functional theory (DFT) methods use functionals, which include the 
Hartree–Fock exchange potential (Kohn, Becke & Parr, 1996).

The dark side of ab initio methods is their high computational cost. They often take enormous amounts 
of CPU time and memory. For this reason, many researchers have resorted to the so-called approximate 
or empirical methods to develop the energy band structure of solid materials. In general, there exist two 
basic approximate methods, which are widely used for the calculation of energy bands in solids, namely:

• The quasi-free electron (QFE) model, and
• The tightly bound electron (TBE) model.

These approximate methods use the perturbation theory. But they differ in their zero approximation. 
The quasi-free electron (QFE) method (which represents the physicists approach) takes the free electron 
model as a zero-order approximation and the periodic field of the lattice as a perturbation. When the 
core contribution is replaced by a simplified pseudopotential, it results in the so-called pseudopotential 
methods (Hamann, Schlüter & Chiang, 1979).

Pseudopotential Methods

The pseudopotential methods are based upon the fact that the core electrons do not play a significant role 
in defining the chemical bond or the physical properties, which are mainly described by valence elec-
trons. Therefore, core electrons are removed from the band structure calculation and the ionic potential is 
replaced with a soft pseudopotential. The overall potential function reproduces the true potential outside 
the core region (r>rc), but is smooth inside the core (r<rc), as shown in Figure 19. The pseudopotential 
V(r) can be expressed in terms of the structure factor SG and the form factors VG as follows:

V r V S jG r
G G

G

( ) exp( . )=∑  (112a)

For diamond structures, there are two atoms in the primitive unit cell and the structure factor is given 
by: SG=cos(G.t), where t = (ao/8)(1,1,1). Assuming that the atomic pseudopotentials are spherically 
symmetric, the form factors VG only depend on the absolute value of the reciprocal lattice vector (G). 
Practically, the employed parameters in the empirical pseudopotential calculations consist of three local 
form factors (V3, V8 and V11), two parameters to model the nonlocal correction, and two parameters 
for the spin-orbit interaction term. In general, there are two approaches for calculating pseudopotential 
form factors for a specific material. They can be determined by fitting a small number of experimental 
data, such as the position of peaks in optical reflectivity spectra. This approach is known as the Empirical 
Pseudopotential Method (EPM). The disadvantage of the EPM is that it requires experimental inputs. 
With the availability of high-speed computers, however, it is possible to determine the pseudopotential 
form factors from first principles without any experimental input. The first-principles pseudopotential 
methods are known as self-consistent or ab initio pseudopotential methods.

After determining the pseudopotential, the energy dispersion relation E(k) and the properties of the 
material, under consideration, can be calculated by the following one-electron Schrödinger wave equation:
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where Vps(r) is the pseudo-potential and fk(r) denotes the pseudo wavefunctions, which are good ap-
proximation to the true wavefunctions outside the core region. Since the pseudopotential is a weak 
perturbation on the free-electron band structure, a good initial solution for diagonalzing (112b) is to 
expand fk as a sum of plane waves (similar to those of nearly free electrons).

Tightly-Bound (TB) Model

The tightly-bound (TB) electron method (which represents the chemists approach) takes the electron 
atomic orbitals in isolated atoms as a zero approximation and the periodic potential of the lattice as per-
turbation (Slater and Koster in 1954). This results in the so-called linear combination of atomic orbitals 
(LCAO) methods (Chaney, Lin & Lafon, 1971).

Note 5: Linear Combination of Atomic Orbitals (LCAO)

The LCAO is a variant of the TB approximate method, that was introduced by Lennard-Jones, in 1929. 
In this method, we consider the trial wave-functions as linear combinations of the following functions:

ψ χ( ) ( )r d
n n

n

=∑ r  

Then, we form the basis of the Linear Combination of Atomic Orbitals (LCAO), as introduced by 
Lennard-Jones and others to compute the energies and wavefunctions of atoms and molecules.

The basis functions 𝜒n (which are not generally orthogonal) are chosen to achieve best accuracy with 
minimum computations. For instance, the Slater-type orbitals (STO) are using Hydrogen-like wavefunc-
tions in the form:

Figure 19. Pseudopotential Vpsand its Fourier transform in the reciprocal k-space
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Alternatively, the Gaussian-type orbitals (GTO) may take the form

χ θ φ α( ) ,r = ( ) −Y e
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These are the most widely used forms. In particular, the Gaussian orbitals form the basis of many 
quantum chemistry computer codes.

The so-called Hubbard model is an improvement on the TB model, with two-terms Hamiltonian: a 
kinetic term allowing for tunneling (by hopping) of particles between lattice sites and a potential term 
expressing the Coulomb interaction, between electrons of the same atomic orbital. The Hubbard model 
is able to describe the interaction-driven transition from a metal to an insulator, commonly known as 
the Mott transition. This model is well suited for disordered structures, such as organic and molecular 
semiconductor devices. In particular, the so-called sp3d5s∗ is a semiempirical tight-binding method, 
which is better at the nanometer scale. In this model, we take a number of nearest neighbor orbitals; 
each is twofold degenerate, if spin orbit coupling is considered (Jancu et al, 1998; Luisier et al, 2006).

In addition to the above approximate methods, one can cite the k.p method, which is a widely used 
for modeling the band structure near band edges. By this method we can obtain an analytical expression 
for the band structure near a given point k0 in the k-space, for which the band structure is already known. 
This method has been already described in section 17.1

18.3 Density-Functional Theory (DFT)

The density-functional theory (DFT) is an ab-inito technique to solve the many-body Schrödinger equation, 
in terms of single-particle equations and an effective potential. The first-principles calculations based on 
DFT have become one of the most powerful approaches that allow one not only to calculate the energy 
band structure but also to model and predict the properties of emerging materials and nanodevices. In 
much the same way as the Hartree equation, the DFT provides a way to decouple the electron-electron 
interactions in the material, and solve the one electron equations by a self-consistent method to find out 
the electron wave-functions and the corresponding energies. However, the solution is performed starting 
from the ground-state electron density, like the self-consistent field method. Therefore, the many-electron 
Schrödinger equation is replaced by the so-called Kohn-Sham equation (Kohn & Sham, 1965).
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where N is the number of electrons in the system and the effective potentials, Veff, is defined as follows:

Veff = V(r) + VH + Vxc (113b)

The first term in equation V(r) is the external potential and includes the potential originating from the 
nuclei as well as an external applied electric field if present. The term VH corresponds to the classical 
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Coulomb potential (Hartree potential) for an electron density n(r). This term is obtained by solving the 
Poisson equation for the scalar potential

∇2VH(r) = e.(ρ /ε) = - (e2/ε) n(r) (114)

The exchange-correlation potential Vxc takes into account the many-body quantum effects, and is 
defined as the functional derivative of the exchange energy, EXC with respect to the electron density Vxc 
=∂Exc /∂n. The last term contains the remaining contributions to the potential that we do not know exactly. 
There exist N eigenfunctions ψi for each electron, from which the electron density can be calculated using 
the Thomas-Fermi model (Thomas & Fermi, 1927)12

n f
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i i
i

� � �
r r r( ) = ( ) = ( )∑ ∑ψ ψ

2 2
 (115)

Here, he sum is taken over all the occupied states and fi = f(Ei - EF) is the occupation probability (the 
Fermi-Dirac distribution in equilibrium). Also, the total energy is given by:

ET = Σi Ei . f(Ei - EF) (86)

where the sum is taken over the total number of electrons (N).

18.4 DFT Procedure

The procedure to implement the DFT may be summarized as follows:

1.  We first make use of a suitable set of basis functions to form the system of wavefunctions ψi(r). 
This may be a set of orthogonal plane waves (OPW) or a linear combination of atomic orbitals 
(LCAO). The later choice is one of the best ways to make the iterative procedure for solving the 
K-S equation computationally accessible. Therefore, we consider the wavefunction expansion 
ψi(r) = Σj cij ϕj, where cij is a set of coefficients j=0→L, for a set of L basis functions. Using the 
LCAO ansatz in the K-S equations, enables us to convert the nonlinear optimization problem into 
a linear one, with the expansion coefficients (cij) being the unknown variables. As we mentioned 
so far in Note 5, we try to choose the most accurate and fewest number of basis functions in the 
LCAO expansion. For instance, the basis functions may take the Slater-type orbitals (STO) or the 
Gaussian-type (GTO) form.

Using the LCAO ansatz with the K-S equations (82), we arrive at the following matrix equation:

[FKS ][C] = [S][C][Ei] (117a)

where [C] is the coefficient matrix and [FKS] is the K-S-Fock matrix, which is given by:

[FKS]ij = ʃ ϕi f
KS.ϕj d

3r (117b)
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Also, the overlap matrix [S] is given by:

[S]ij = ʃ ϕi(r) ϕj(r). d3r (117c)

And [Ei] the electron allowed energies (eigenvalues) matrix:

[E]ij = δij.Ei (117d)

3.  The above matrix equation may be prepared in the following form:

F h J V
ij
KS

ij ij ij
XC= + +  (118a)

This includes the following single-electron integrals:

Figure 20. Flowchart of the Kohen-Sham Method
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As well as the Coulomb interaction term:
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Here, r1 and r2 represent the coordinates of electrons and ions and the occupation probabilities Pij 
are given by:

P c c
ij i j

N

=
=
∑ µ µ
µ 1

 (118d)

Finally, the exchange correlation term is given by:

V r V r r d r
ij
XC

i XC j
= ∫ φ φ( ) ( ) ( ) 3  (118e)

4.  After solving the above matrix equation we get the coefficient matrix (cij) elements and the basis 
functions (ϕj). Therefore, we can construct the electron wavefunctions (ψi) and the density matrix 
(or electron density) can be calculated, as follows:

ρ ψ ψ ψ( ) ( ) ( ) ( )r r r P r
i i ij j
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The solutions of the Kohn-Sham (KS) equations in principle give the ground state properties of the 
system. However, the term Exc is not known exactly and some kind of approximation is needed. The 
two types of approximations which are generally used are the local density approximation (LDA) and 
the generalized gradient approximation (GGA). In both LDA and GGA, the exchange-correlation po-
tential Vxc is a local functional of the charge density. They are accurate when the charge density n(r) is 
a smoothly varying function. However, for systems where strong correlation effects are important, i.e., 
where the charge density n(r) changes sharply, these approximations most likely fail. DFT is used only 
for ground–state properties, as there is no practical scheme able to describe excited stated starting from 
the ground–state density. The excited state properties can be obtained from the extension of DFT to the 
time domain: This extension is known as the Time–Dependent DFT (TD-DFT).

δρ(1) = χKS (1, 1′)δvKS(1′) (120)
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where χKS(1, 2) is the response function of the K-S non interacting system, while δvKS(1) is the variation 
of the TDKS potential needed to follow the evolution of the density when an external potential δVext(1) 
is applied. The analogous version to the Hohenberg-Kohn theorem which includes time-dependent po-
tentials is known as the Runge-Gross theorem.

18.5 Local Density Approximation (LDA)

The local density approximation (LDA) was proposed by Kohn and Sham. They showed that it could 
be applied to the limiting case of a slowly varying electron density. Therefore, one considers exchange 
energy EXC to be that of a uniform electron gas of the partial density n(r). In this case, the Kohn-Sham 
equation (90) may be written as follows:
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where VLDA = ∂E/∂n is the local approximation to the Kohn-Sham exchange-correlation potential and V(r) 
is the external potential energy. The Kohn-Sham LDA can be further extended to the spin dependent case 
by replacing the scalar external potential V(r) by a spin dependent potential and replacing the electron 
charge density n(r) by the density matrix. The DFT in the local density approximation (DFT-LDA) has 
been very successful in the analysis of interacting-electron ground states. Many efforts have also been 
devoted to DFT-based schemes for excited states.

18.6 Hybrid DFT Methods

Within the Kohn-Sham formulation, the total energy has the following form:

EKS = V + <hP> + ½ <PJ> + EX + EC (122a)

where, V is the nuclear repulsion energy (Hi-i), <hP> is the one-electron energy (kinetic plus potential) 
and ½<PJ> is the classical Coulomb repulsion of electrons (He-e). Also, Ex is the exchange energy due to 
the quantum (Fermion) nature of electrons and Ec is the correlation energy. The first four terms already 
exist in the Hamiltonian of the Hartee-Fock (H-F) equation (however, the exchange energy Ec in the H-F 
is given by an explicit exchange integral). The latter two terms are expressed as functionals (of carrier 
density or density matrix) in the DFT.

The functionals normally used in DFT are integrals of some function of the density and/or the den-
sity gradient. For instance, the exchange and correlation energy functionals may be written as follows:

EX = ∫ fx(ρα(r), ρβ(r), ∇ρα(r), ∇ρβ(r))dr (122b)

Ec = ∫ fc(ρα(r), ρβ(r), ∇ρα(r), ∇ρβ(r))dr (122c)
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The DFT implementation methods differ in which function f x is used for EX and which (if any) fc is 
used for the correlation functional EC. In fact, the proposed functionals in the literature lead to integrals 
which cannot be evaluated in closed form and are solved by numerical quadrature methods.

In addition to pure DFT methods and the approximation schemes to calculate the exchange and cor-
relation terms (like DFT-LDA and DFT-GGA), the hybrid DFT methods have been introduced to provide 
more accurate results. In the Hybrid DFT methods, the exchange functional is a linear combination of 
the Hartree-Fock exchange and a functional integral of the above form.

The typical names for the pure and hybrid DFT models are usually combining the names for the 
exchange and correlation functionals, or sometimes they are synonyms by their inventors. For instance, 
the DFT method PBE is due to Perdew, Burke and Ernzerhof (1996). Also the hybrid DFT method 
B3LYP denotes the Becke Three Parameter Functionals (1993), with Lee, Yang, and Parr correlation 
functionals (2004).

A*EX
Slater+(1-A)*EX

HF+B*ΔEX
Becke+EC

VWN+C*ΔEC
non-local (122d)

where A, B, and C are the Becke constants (Becke, 1993, 1998).

18.7 NEGF-DFT Atomistic Method

The so-called NEGF-DFT description of electron transport is based on the Kohn–Sham equation and 
Keldysh nonequilibrium Green’s function (NEGF). In the NEGF-DFT, the K-S Hamiltonian is typically 
utilized to derive the Green’s functions, as shown in the following figure. The NEGF-DFT method may 
be initialized using LCAO basis functions.

The NEGF-DFT technique was first developed to allow parameter-free analysis of devices with up 
to 1000 atoms in the active region. It has been successfully applied to quantitatively predict transport 
properties in molecular, metallic, and carbon nanowires, and has led to understanding of electronic levels 
in molecular devices, vibrational excitations in transistors, tunnel junctions, and non-equilibrium charge 
distribution in nanocapacitors.

Here we calculate the electric current flow driven by a bias voltage (in non-equilibrium). Therefore, 
we use the non-equilibrium statistics (such as the NEGF method) in the device scattering regions. An 

Figure 21. Comparison between the DFT and NEGF-DFT methods
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important consideration here is the calculation of the device Hamiltonian H, which determines the energy 
levels of the device. How to fill these levels is given by the non-equilibrium statistics. There exist many 
kinds and flavors of H, with different approaches, such as the TB, the k.p, the DFT, etc. In the end, one 
has to compare the final solution with experimental data to verify the validity of each approach. It should 
be noted that DFT in NEGF-DFT is not the ground state DFT: because density matrix of NEGF-DFT 
is constructed at non-equilibrium.

(̂ ) ˆ ( )ρ
π

E
i

E dE= − <
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∞

∫2
G  (123a)

Note that the above equation is similar to (77). The Lesser Green’s function G< is related to the retarded 
and advanced Green’s functions Gr and Ga and the lesser self-energy Σ< (which are already defined)

ˆ ( ) ( ) ( ) ( )G G G< <=E E E Er aΣ  (123b)

The following table summarizes the steps involved in solving the self-consistent DFT Kohn–Sham 
equations for a two-probe system. For each step we summarize the input and output of the algorithm 
and its computational complexity when implemented using localized basis functions. The complexity 
is given in terms of the number of atoms N and the area of the electrode cell A. This formalism is well 
suited for the simulation of nanodevices and nanowires since the transport problem, including open 
boundaries and external bias can be solved fully self-consistently and since the calculation cost for the 
Hamiltonian operator scales only linearly with the number of atoms involved, making this approach 
ideal for the calculation of nanowires.

In order to simulate even bigger systems of up to one million atoms, we can use the tight binding 
(TB) model (Goedecker & Teter, 1995). In this case, the TB parameters are extracted from NEGF-DFT 
calculation of smaller devices at non-equilibrium. Thereby, they reflect the transport boundary condi-
tion and external fields.

18.8 GW Approximation

We have pointed so far that the DFT-LDA and DFT-CGA are known to underestimate energy gaps in 
semiconductor materials and the GW approximation (GWA) gives more accurate results. In the GWA, 
the Schrödinger equation can be written, within the Green’s function formalism, as follows (Aryasetiawan 
& Gunnarsson, 1998):

− ∇ + +
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where Σ(r,r’) = jG.W is the self-energy, G is the Green’s function of the system and W is a specific func-
tion lumping the screened Coulomb interaction. The W potential can be calculated from the following 
sequence of Hedin’s equations (Hedin, 1965):



253

Quantum Transport Theory of Charge Carriers
 

Σ Γ( , ) ( , ) ( , , ) ( , ) ( )

( , ) ( , ) ( , )

1 2 1 3 3 2 4 4 1 34

1 2 1 2 1 30 0

=

= +

+∫i G W d

G G G

�

ΣΣ

Γ
Σ

( , ) ( , ) ( )

( , , ) ( , ) ( , ) ( , ) ( , )
(

3 4 4 2 34

1 2 3 1 2 1 3 4 6 7 5
1

G d

G G

∫
= +� δ δ

δ ,, )
( , )

( , , ) ( )

( , ) ( , ) ( , ) ( , ,

2
4 5

6 7 3 4567

1 2 1 3 4 1 3 4
δG

d

P i G G

�

� �

Γ

Γ

∫
= − + 22 34

1 2 1 2 1 3 3 4 4 2 34

) ( )

( , ) ( , ) ( , ) ( , ) ( , ) ( )

d

W v v P W d
∫
∫= + �

 (125)

The Figure 22 illustrates the screening potential W, and how it is weaker than the bare Coulomb 
interaction. The Figure 23 shows the outline of the GW approximation, to calculate the energy band 
structure starting from the DFT-LDA. The Figure 22 illustrates how to calculate the self-energy (Σ) in 
the GW approximation, as compared to the Hartee-Fock method.

It comes from the above discussion that the GW approximation is nothing but a screened version 
of the Hartree-Fock model, where W replaces Vsc. The following figure illustrates how the screening 
potential W is weaker than the bare Coulomb interaction Vsc.

18.9 Quantum Transport Simulators

There exist a variety of quantum device simulators, from the Academia and various companies. Among 
other techniques, these tools employ the nonequilibrium Green’s function (NEGF) together with the TB 
and DFT calculations for atomistic modeling of nanodevices. For instance, the Vienna ab initio Simu-
lation Package (VASP) is a program for atomic scale modeling, of electronic structures and molecular 

Figure 22. Outline of the DFT-NEGF method
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dynamics, from first principles (VASP, 2010). Also, Smeagol is an ab initio transport code based on a 
combination of DFT and NEGF (Rocha et al, 2005). In addition, Quantum ESPRESSO is an integrated 
suite of codes for band-structure calculations and materials modeling at the nanoscale. It is also based 
on DFT and pseudopotential method.

There are other software tools to perform DFT simulations, such as SIESTA (Spanish Initiative for 
Electronic Simulations with Thousands of Atoms). SIESTA is a program to perform band structure 
calculations and ab initio molecular dynamics of molecules and solids (Ordejón et al, 1996). This pro-
gram has been extended to compute the conductance via Green’s functions in a new package called: 
TranSIESTA (Brandbyge et al, 2002).

Another open tool, which illustrates the NEGF approach, is called NEMO (Nano-Electronic MOdel-
ing), from Texas Instruments and Raythgeon. The NEMO simulator calculates the atomic structure from 
tight-binding (TB) method. The current version of NEMO (NEMO5) is intended to be a nanoelectronics 
simulation toolbox (Steiger et al, 2012). Also CP2K is a DFT package for studying transport phenomena 
in semiconductors from first-principles. CP2K is usually combined with OMEN, which is a quantum 
simulator for semiconductor structures and nanodevices (Villani et al, 2015). Another interesting open 
code that implements DFT and GWA is called MOLGW (Bruneval et al, 2016). MOLGW implements 
the many-body perturbtation theory to describe the excited electronic states in finite atomic and molecu-

Table 3. Complexity vs. no. of atoms N and electrode area A

Figure 23. Schematic illustration of the screening potential W and how it is weaker than the bare Cou-
lomb interaction Vsc
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lar systems. It implements the GW approximation and the Bethe-Salpeter equation (Ziaei and Bredow, 
2016) for calculating the optical excitations13.

19. CASE STUDY 4: SIMULATION OF TUNNELING FET (TFET)

The following figure depicts the energy band structure of a tunneling FET, in both OFF and ON states. 
At low gate voltages, valence-band electrons in the source are reflected back at the heterojunction due 
to the long tunneling distance between source and drain. At higher gate voltages, instead, tunneling 
between the source valence band and the channel conduction band can occur due to the short tunneling 
distance (Baccarani et al, 2016).

The simulation of TFET has been carried out by several authors, using both ab initio and approximate 
quantum approaches (e.g., Shin, 2009).The following figure depicts the energy band (conduction and 

Figure 24. Outline of the GW approximation, to calculate the energy band structure starting from the 
DFT-LDA. When no iteration is used we get the so-called GoWo

Figure 25 Expression of the self-energy in the GW approximation, compared to the Hartee-Fock method



256

Quantum Transport Theory of Charge Carriers
 

Figure 26. Coupling between the DFT solver (CP2K) and the NEGF simulator (OMEN)

Figure 27. Energy band structure of a tunneling FET, in both OFF and ON states
After Baccarani et al (2016).
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valence band edges) along the TFET, as obtained by the k.p method with Poisson’s equation at different 
gate voltages (Luiser & Klemick, 2009). The analytical solution, according to (Villani et al, 2015) is 
also shown in symbols. The Figure 27 depicts I-V characteristics of TFET in the ON-state, with different 
gate lengths (left) and different widths (right).

According to Baccarani et al (2016), TFETs are still in the early phase of investigation, but the ob-
tained results can indicate their upper performance limit. As for III–V based TFETs, they are should be 
affected by the density of interface traps, the effect of which can hardly be incorporated into quantum 
simulation tools. Besides, subthreshold swing is negatively influenced by trap-assisted tunneling, which 
may become important for heterojunction TFETs in the presence of defects.

20. SUMMARY

For ultra-small devices, whose active layers dimensions (at least one of them) are in the order of De 
Broglie wavelength (10 nm), the BTE should be replaced by one of the quantum transport models. The 
quantum transport theory is based on different approaches, such as the quantum Liouville equation and the 
Wigner-Boltzmann transport equation (WBTE). The quantum Liouville equation describes the temporal 

Figure 28. Electrostatic potential and energy band (conduction and valence) edges along the TFET, as 
obtained by the k.p method with Poisson’s equation at different gate voltages
After Luiser & Klemick,(2009).
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evolution of the density operator. The density matrix operator is the favorite mathematical instrument 
in quantum statistical physics. The density operator ρ is defined as |ψ><ψ|

In the real world, the interaction of any device with the surrounding is unavoidable. The study of real 
devices implies a many bodies problem which is extremely complex within any picture of the quantum 
mechanics. Therefore, there are two basic approaches to attack this problem:

1.  The first approach consists in looking for a similar classical system and to get its associated 
Hamiltonian, then to proceed with the quantization of this phenomenological system.

2.  The other approach makes use of the matrix density approach for the whole system and makes the 
trace over the surrounding variables, the resulting density matrix is called reduced density matrix, 
and its associated evolution equation is called master equation.

The quantum Liouville equation can be obtained by substituting the definition of the density operator, 
into the Schrödinger equation to obtain:

jћ ∂ ρ̂ /∂t = [ Ĥ , ρ̂ ] 

where ρ̂  is the density operator and Ĥ  is the system Hamiltonian.
The Wigner formulation of quantum mechanics allows the description of quantum mechanical systems 

without the need for wave functions. The kinetic equation for the Wigner distribution function including 
scattering effects is called the Wigner-Boltzmann transport function (WBTE). The Wigner Boltzmann 
transport equation (WBTE) may be written in the form:

Figure 29. I-V characteristics of TFET in the ON-state, with different gate lengths (left) and different 
widths (right)
After Luisier & Klimeck (2009).
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where θ is an operator acting on the Wigner distribution function W(r, p, t) as well as the potential en-
ergy of the system. A practically used approximation to incorporate scattering processes into the Wigner 
transport equation is to utilize the Boltzmann scattering operator, or by an even simpler scheme such as 
the relaxation time approximation. With this approximation, some quantum mechanical collisional ef-
fects, such as the collisional energy broadening, are neglected. After solving the WBTE, and calculating 
the Wigner distribution function W(r,p,t), we can calculate the spatial density of carriers n(r,t), as well 
as the average value of any microscopic physical variable.

n(r,t) = ʃ W(r,p,t) d3p 

Based on the WBTE, the quantum corrected Boltzmann equation, the quantum hydrodynamic model 
(QHDM), and the density gradient (DG) approximation can be obtained.

The Wigner distribution function may be also defined as the energy integral of the Green’s function, 
W(k,r,t) = ∫G(k,ω, r, t).dω.

The Green’s function gives the response of a system to a constant perturbation in the Schrödinger 
equation. The non-equilibrium Green’s function (NEGF) formalism is a very powerful technique for 
evaluating properties of many-particle systems both in thermodynamic equilibrium and also in non-
equilibrium situations. In coordinate representation the Green’s function, G(r1, t1; r2, t2), depends on two 
position arguments r1, r2 and two time arguments t1, t2, representing the non-locality in space and time. 
In quantum mechanics the non-equilibrium Green’s function G(r,r’,t,t’) depends on the continuous space 
variables r and r’ through the creation and annihilation operators ψ(r,t) and ψ†(r’,t’).

Under steady state condition the Green’s functions depend only on time differences. One can use 
the Fourier transform to change the time coordinate to energy G(r,r’;E). The equation of motion for the 
Green’s function is given by the integro-differential Dyson equation. Therefore, the retarded Green’s 
function can be found by solving the following equation:

(E - H).G(E) = I 

The NEGF allows for the calculation of scattering states in the quantum transport problem. When we 
take the coupling between the lesser and the retarded Green’s function into account, we should solve a 
system of coupled PDE’s. For the case of the electron-phonon interaction, these equations are:

G = (E.I − H0 - Σ
r) -1, 

Gn = G Σin G† 

Gp = G Σout G† 
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where H0 is the single-electron Hamiltonian, G (or Gr) is called the retarded Green’s function, its Hermitian 
conjugate, G+ (or Ga), is called the advanced Green’s function, and Σin and Σout are the self-energy func-
tion related to electron-phonon and hole-phonon interactions. Also, Gn and Gp are the Green functions 
specifying the electron and hole density spectra. The following figure shows the self-consistence solution 
of the Green’s function with Poisson’s equation to obtain the electron density in a nanodevice. The elec-
tron density spectrum and the terminal current density spectrum can be evaluated, after self-consistent 
solutions are obtained for the correlation functions. In summary, we can underline the following notes.

Quantum corrections can accurately account for the size quantization effects. For modeling the 
nanodevices, which include tunneling and size quantization effects, one has better to utilize the Poisson-
Schrodinger solvers or Quantum Monte Carlo or the NEGF methods. The NEGF is important when 
quantum interference effects are important. However, accurate and reliable multi-dimensional modeling 
of realistic nanoscale devices requires enormous computational efforts, yet the currently available NEGF 
algorithms are prohibitively expensive. For the case of nanodevices, in which the band-structure plays 
a significant role, the atomistic simulation using the ab-initio methods is necessary. The most famous 
ab-initio methods to calculate the band structure are the Hartee-Fock (H-F) theory and the Density-
Functional Theory (DFT). The H-F method (or mean field theory) try to solve the Schrödinger equation, 
assuming that the wavefunction can be approximated by a single Slater determinant made up of one 
spin orbital for each electron. The actual goal of DFT method is the solution of the time-independent 
(non-relativistic) Schrödinger equation.

The DFT theory is very similar to the H-F theory, but its practical implementations depends on sev-
eral approximations for the energy exchange-correlation (Exc) terms. A flagrant problem of the DFT 
approximations (such as DFT-LDA and DFT-GGA) is the systematic error for the energy gaps of semi-
conductors and insulators. Recently, new approximations for the exchange energy term have emerged 
(like the hybrid DFT methods and the GW approximation) to correct this error.

Figure 30. Selt consistent solution of NEGF and Poisson’s equation
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ENDNOTES

1  This is also called the Gorini–Kossakowski–Sudarshan–Lindblad equation (GKSL) equation
2  In quantum mechanics, particles are considered as indistinguishable, because of the uncertainty 

principle. Quantum particles are categorized as Bosons (like photons and phonons) or Fermions 
(like electrons).

3  The dephasing length is approximately given as: λϕ ~ ℏvth∕ΔE, where vth and ΔE are the thermal 
velocity and energy broadening of the electron wave packet.

4  Since we cannot speak about momentum and space location simultaneously, in quantum mechan-
ics, the Wigner distribution is not really a probability function. In fact W(x, p) may have negative 
values. Therefore, it is called quasi-distribution function.

5  This combination is called the Wigner-Weyl transform of the density operator ρ =|Ψ><Ψ|
6 There are many QMC methods, which are based on other quantum transport approaches, such as the 

Liouville von Neumann equation (Jacoboni, 2010), the Pauli Master equation (Tsuchiya, Horino, & 
Miyoshi. 2003), the Feynman path integral (Shumway & Gilbert, 2015) and the stochastic Green 
function algorithm.

7  Generally, the LHS represent an N-particle Green’s functions, which can be expanded in infinite 
chain of equations of motion. This chain is usually truncated to obtain an approximate solution. 
Here we consider, as an example, scattering due to collisions between electrons and holes in an 
interband system. Hence the two-points 1,2 and 3,4 are denoting electrons and holes in conduction 
and valence bands, respectively.

8  For computational reasons, an infinitesimal imaginary term may be added to E, such that E→E’= 
E+jη, and η →0. Also, E’ may be multiplied by an overlapping matrix O, so that E→E’.O. Here, 
we take O=I.

9  Computer scientists talk about the scalability of algorithms in terms of computational complexity: 
Quicksort algorithm is O(n log n) in the size of the array; Big-O bounds describe the worst case 
performance of an algorithm as its inputs become large

10  The semiclassical HDM has been discussed in Ch3 and the QHDM in Section 4-9
11  The Madelung model has been already described in Section 4-11. Note that Φ is not actually a 

phase angle but a velocity field.
12  The Thomas-Fermi model was proposed, long time before Kohen-Sham equation (KSE), to compute 

the electronic properties of atoms with many electrons using the average electron density n(r) as 
the basic variable instead of the many body Schrödinger wavefunction ψ(r1, r2,..rN).

13  The Bethe-Salpeter equation is presented in Chapter 8, in the context of photonic quantum transport
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An English translation of the original De Broglie article: “Ondes et Mouvements” can be found in “Phase 
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The Heisenberg uncertainty paper has been translated into English by John Archibald Wheeler and Hubert 
Zurek, in Quantum Theory and Measurement, Wheeler and Zurek, Editors, Princeton Univ. Press, 1983.
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1. INTRODUCTION

Low-dimensional semiconductors (LDSs) are semiconductor structures in which the carrier transport 
is restricted in 2-dimensions (quantum well) or 1-dimension (quantum wires) or even zero-dimension 
(quantum dots).

A quantum well is a thin layer which can confine particles (typically electrons or holes) in the dimen-
sion perpendicular to the layer surface, whereas the movement in the other dimensions is not restricted. 
Quantum wells are formed in semiconductors by having a material, like GaAs sandwiched between 
two layers of a material with a wider bandgap, like AlAs. These structures can be grown by molecular 
beam epitaxy (MBE) or chemical vapor deposition (CVD) with control of the layer thickness down to 
monolayers. Thin metal films can also support quantum well states. Because of their quasi-two dimen-
sional (Q2D) nature, electrons in quantum wells have a density of states as a function of energy that has 
distinct steps. Additionally, the effective mass of holes in the valence band is more closely matching 
that of electrons in the conduction band. These factors lead to better performance of quantum wells 
in optical devices such as laser diodes. They are also used to make HEMTs (High Electron Mobility 
Transistors), which are used in RF low-noise electronics. Quantum well infrared photodetectors are also 
based on quantum wells, and are used for infrared imaging. By doping either the quantum well, or the 
barrier with donor impurities, a two-dimensional electron gas (2DEG) may be formed. Such a structure 
forms the conducting channel of a HEMT, and has interesting properties at low temperature. Nowadays, 
the layered LDS materials with high carrier mobility are highly desirable in emerging nanoelectronic 
devices. For instance, the monolayers of germanium monosulfide (GeS) and molybdenum disulphide 
(MoS2) are currently considered for the next generation of MOSFET transistors (Tomaneck et al, 2015).

Upon completion of this Chapter, the reader will be able to:

Carrier Transport in 
Low-Dimensional 

Semiconductors (LDSs)
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• Understand the notion of low-dimensional semiconductors (LDS) and define their main types.
• Differentiate between bulk (3-D) and low-dimensional structures (quantum wells Q2D, quantum 

wires Q1D and quantum dots Q0D).
• Explain the quantum band structure and density of states in LDS.
• Explain the charge carrier statistics in LDS.
• Explain the quantum transport mechanisms and models in LDS.
• Explain the concepts of a ballistic quantum transport and Landauer formulae.
• Explain the concepts of a quantum blockade and Kondo Effect.
• Describe the LDS-based devices, their properties and applications.
• Calculate the I-V characteristics of graphene FET transistor

2. INTRODUCTION TO LOW-DIMENSIONAL SEMICONDUCTORS (LDS)

We have learned so far that conduction electrons in the bulk of a semiconductor can move freely, in all 
the three dimensions of the physical space. However, in certain semiconductor devices, free electrons 
are only permitted to move in one or two dimensions. Such semiconductors, are called low-dimensional 
semiconductors (LDS’s). For instance, the electrons filling the thin inversion layer in a conventional 
MOSFET (Metal-Oxide-semiconductor Field Effect Transistor) are only permitted to move freely in 
the 2 dimensions of the inversion layer. The motion of free electrons in the third dimension (which is 
normal to the thin layer plane) is confined and quantized.

The semiconductor structure is considered as a quasi two-dimensional Q2D, when one of its three 
spatial dimensions is getting so small (in the order of de-Broglie wavelength) compared to the other two 
dimensions. The gas of electrons filling such structures is sometimes called two-dimensional electron 
gas (2DEG). Thus, the electrons filling the thin inversion layer in conventional MOSFET devices act as 
quantum potential wells and form a 2DEG. Quantum wells are usual in hetero-junction semiconductor 
devices. On the other hand, the structure is considered as a quasi-one-dimensional Q1D, when two of 
its three spatial dimensions are so small compared to the third dimension. Such structures are some-
times called quantum wires. Many laser devices are built from 1-D structures, including nanotubes. If 
all the three dimensions are so small the structure is called a quasi-zero-dimensional Q0D structure or 
a quantum dot.

The idea behind confinement is all about keeping electrons trapped in a small area. The size we are 
talking about for confinement is in the order of 10 nm. One is probably wondering why confinement 
is so important. For one thing, it leads to new electronic properties that are not present in classical 3-D 
semiconductor devices. Consider the quantum dot. The typical quantum dot is anywhere between 3-60 
nm in diameter. That’s still 30 to 600 times the size of a typical atom. A quantum dot exhibits 0-D con-
finement, meaning that electrons are confined in all three dimensions.

2.1 0D Structures

The 0D structures (quantum dots) are semiconductor crystallite whose size is in the order of Brouglie 
wavelength or smaller than the size of the Bohr radius (1-100 nm for electrons). As we mentioned above, 
the quantum dots, are three-dimensionally constrained nanostructures. Figure 1 shows possible shapes 
of a quasi-zero-dimensional (Q0D) system or quantum dot.
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Quantum dots are usually fabricated from compound semiconductors (e.g., InGaAs), which are used 
in optical and fluorescent applications (e.g., Laser and solar cells). Quantum dots also have other ap-
plications in biological tagging and quantum computing. In fact the quantum dots are 2-D analogies for 
real atoms and suitable for atomic physics experiments, that cannot be done on real atoms. For instance, 
a magnetic flux quantum (fluxoid) in an atom requires a very high magnetic field of 1M Tesla, while 
for a quantum dot it is about 1Tesla, which is accessible. Therefore, quantum dots can be thought of as 
artificial atoms. As shown in Figure 2, the fabrication of quantum dots may be carried out by creating 
different semiconductor layers on top of each other, using one of the modern epitaxial techniques.

The energy levels of quantum dots can be modeled using the particle in a box model in which the 
energy of different states is dependent on the length of the box. The band gap can become larger in the 
strong confinement regime where the size of the quantum dot is smaller than the Bohr radius as the en-
ergy levels split up. The only things in nature that have true 0-D confinement are atoms. So a quantum 
dot can be loosely described as an artificial atom. One can easily deduce the density of states (DOS) 
and the density of electrons in LD’s, from the E(k) diagram. For simplicity, we may assume a parabolic 
E(k) relation for electrons in such structures.

Besides confinement in all the three dimensions (in quantum dots), other quantum confined semi-
conductors include:

Figure 1. Possible structures of quantum dots

Figure 2. Array of quantum dots on top of AlGaAs substrate
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• Quantum Wires: Which confine electrons or holes in two spatial dimensions and allow free 
propagation in the third.

• Quantum Wells: Which confine electrons or holes in one dimension and allow free propagation 
in two dimensions.

2.2 1D Structures

The one-dimensional structures, such as quantum wires, are sometimes called quasi-one-dimensional 
(Q1D) devices or one-dimensional electron gas (1DEG). The motion of electrons in Q1D structures is 
free in one dimension and quantized in the other two dimensions. Therefore, the E-k is transformed to 
a series of sub-bands, as shown in figure 4. In the parabolic band approximation, the density of states 
(per unit length per unit energy) of one-dimensional structures gc1(E) is given by:
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2.3 2D Structures

The two-dimensional structures or quantum wells have thin sandwiched layer which can confine particles 
(electrons or holes) in the dimension perpendicular to the layer surface. In such structures, the density 
of states (per unit area per unit energy) gc2(E) is independent of energy and given by:
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where Θ(E-Ec) is the unit step function. Note that, in Q2D structures, the motion of electrons is free 
in two dimensions and quantized in the third dimension. Therefore, the E-k is transformed to a series of 
sub-bands, as shown in Figure 4.

Figure 3. The density of states in zero-dimensional (quantum dot) semiconductors
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Table 1a summarizes the relations describing the dispersion relations and density of states (DOS) of 
parabolic semiconductors of different dimensions. Note the subband edges (Eci, Ecij and Ecijk) are series 
of quantized values. For instance, the subband edges in Q2D may be expressed as follows:

Eci (2D) = Ekz = (i + ½)ħωi, (3a)

where ħωi represents the transition energy (frequency) between adjacent subbands.
Similarly, the subband edges in Q1D may be expressed as follows:

Eij (1D) = Ek// = (i + ½)ħωi + (j + ½)ħωj (3b)

The E-k relation in certain valleys of some semiconductors cannot be accurately described by a 
simple parabolic relation. In this case, a non-parabolicity factor is usually introduced in the E-k relation 
of the semiconductor:
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Figure 4. The E-k relation and density of states in low-dimensional semiconductors
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where α is the non-parabolicity factor. For the main conduction band of Si, the non-parabolicity factor 
is defined as follows:

α = −
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The nonparabolicity factor α a is 0.5 eV-1 in Si, Ge and 0.7 eV-1 in GaAs.
Table 1b depicts Dispersion relations and density of states (DOS) of non-parabolic semiconductors 

of different dimensions. Here, E is measured from the conduction band (or subband) edge.

Table 1a. Dispersion relations and density of states (DOS) in the conduction band of parabolic semi-
conductors of different dimensions. Θ(x) is the unit step function and δ(x) is the Dirac delta function. 
Also, Ec and Eci denote the conduction band (or subband) edge
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Table 1b. Dispersion relations and density of states (DOS) in the conduction band of non-parabolic 
semiconductors of different dimensions
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2.4 Statistics of Low-Dimensional Carriers

The concentration of free carriers in the conduction band determines the location of the Fermi level. 
The carrier density for the d−dimensional case is

n = ∫ gd(E) f(E).dE (4a)

where gd(E) is the d−dimensional density of states and f(E) is the carrier distribution function. At thermal 
equilibrium, the low-dimensional electrons density is related to the Fermi energy as follows:
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where ξ = -(Ec-EF)/kBT and Fj(ξ) is the Fermi-Dirac integral of the jth order, which is defined as (Antia, 
1993):
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This relation is general for d-dimensional semiconductor. For the three-dimensional case, it reduces 
to the conventional form.
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where Nc is the 3-D effective density of states. Similarly, for the two-dimensional case, we get immediately 
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Therefore, the two-dimensional electrons density in a given sub-band is related to the Fermi energy 
as follows:
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The total density of electrons (in all sub-bands) at equilibrium is given by the following sum:
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where the sum (for i=0 to ∞) is taken on all sub-bands and Eci is the edge of the ith sub-band of the con-
duction band. If the conduction band of the semiconductor has several equivalent valleys, then:
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where the first sum (for i=0 to ∞) is taken on all sub-bands and the outer sum (for j=1 to Mc) is taken on 
all equivalent valleys of the conduction band. Also, Eij is the energy of the ith sub-band in the jth valley.

In the case of silicon, we have six equivalent valleys (Mc = 6). In silicon inversion layers, which are 
usually induced in MOSFET devices1, we’ve j denotes the 4 transverse direction valleys (parallel to 
<100>) and the 2 longitudinal direction valleys (perpendicular to <100>).

Figure 5. The Fermi-integral of order 3/2 and its approximation limits
After Antia (1993).
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where mt* =0.19 mo and ml* =0.916 mo. If the 2DEG potential well is triangular, we can express the 
energy of the ith sub-band, Eci, in terms of the quantum number i by the following relation:
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where ζ is the applied electric field and Ec(0) is the conduction band edge of the 2DEG structure (e.g., 
of the silicon inversion layer). Also m┴* denotes the effective mass in the perpendicular direction. When 
j denotes the transverse direction valleys, then m┴* = ml*, and when j denotes the longitudinal direction 
valleys, then m┴* = mt*.

In the above relations we assume the Fermi-Dirac statistics, which are valid in thermal equilibrium. 
We also assume that the electron motion is bound in the perpendicular directional to the 2-dimensional 
space. A more general relation of the electron density should take the probability of finding an electron 
along the perpendicular direction, so that:
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where ψi(z) is the electron wavefunction in the ith subband and |ψi(z)|2 is the probability of finding an 
electron, of the ith subband, along the z-direction. Note that the effective mass of the ith sub-band, mi*, 
is a function of z, in heterostructures of several 2-D layers of different semiconductors. Therefore, the 
electron wave-functions in each sub-band can be calculated by solving the Schrödinger equation in the 
normal direction.
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where ΔEci is the band discontinuity, in the case of multiple semiconductor layers, along the z-direction. 
Also, the potential energy V(z) can be calculated by solving the Poisson equation.

2.5 Examples of 2D Semiconductors (Quantum Wells)

Semiconductor nanostructures and superlattices, which are based on low-dimensional electron gas 
(2DEG) are expected to form future devices for sensing and information processing. Actually, there exist 
three well-known types of 2DEG systems, namely: Metal-Oxide-Semiconductor Field Effect Transistors 
(MOSFET’s), superlattice and liquid helium surface. Figure 6 shows a heterojunction of a 2D semicon-
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ductor, sandwiched inside another semiconductor with wider energy gap. Note the discrete energy levels 
and the stair case density of states, inside the 2D semiconductor. The surrounding 3D semiconductor 
has a continuum of energy levels (energy bands), as shown in Figure 6.

In superlattices, like consecutive GaAlAs and GaAs layers, if the GaAlAs is n-type, the electrons 
migrate to fill the few holes on the top of the GaAs valence band but most of them will end up in states 
near the bottom of the GaAs conduction band. The transfer of electrons from GaAlAs to GaAs contin-
ues until a dipole layer is formed from the positive donors and the negative inversion layer. This dipole 
layer gives rise to a potential discontinuity which finally makes the Fermi level of the GaAs equal to 
that of the GaAlAs, as shown in the left of Figure 7. The electrical and optical properties of superlattice 
structures have been exploited in so many devices, such as quantum cascade laser (QCL) and terahertz 
(THz) emitters.

One of the important achievements in LDS systems is the concept of modulation doping, which led 
to the fabrication of high mobility semiconductor layers (up to 107 cm2/Vs in GaAs). This very high 
mobility is achieved by selective doping of impurities far from charge carriers and hence reducing the 
carrier-impurity scattering. Many heterojunction devices, such as high-electron mobility transistor 
(HEMT), have been based on this concept.

Figure 6. Example of a 2-dimensional semiconductor structure (quantum well)
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Another type of two-dimensional electron system is formed in MOSFET’s, where an inversion layer is 
formed at the semiconductor/insulator (Si/SiO2) interface. The principle of the electronic inversion layer 
is well-known. Assume an n-channel MOSFET, with p-type substratee, as shown in Figure 7. When a 
positive gate bias (VG) is applied with proper amplitude, an electric field perpendicular to the interface 
attracts electrons from the semiconductor bulk and forms an inversion layer (rich sheet of electrons). 
The electrons can move in the plane sheet, but their perpendicular motion is quantized. The result is a 
2D system of electrons (2DEG).

Another example of 2D systems is the utilization of semiconducting monolayers, such as germanium 
monosulfide (GeS) and Molybdenum disulphide (MoS2) monolayers, as a channel in modern MOSFET 
devices.

3. TRANSPORT IN TWO-DIMENSIONAL ELECTRON GAS (2DEG) SYSTEMS

During the last three decades, an intensive research has been around the transport properties of 2DEG 
structures. The motivation for this trend emerged from the great demand on high speed MOSFETs and 
heterojunction microwave devices. This demand is still driven by the search for new devices and for 
higher integration levels in the electronics industry.

Electrical properties of 2DEG systems may be obtained from the solution of the Schrödinger and 
Poisson equations together with a suitable transport model. Classical transport such as drift diffusion 
model (DDM) or hydrodynamic model (HDM) may be adequate for specific class of devices. For instance, 
DDM is adequate for the electro-absorption modulators but the HDM or the direct solution of the BTE 
may be necessary for the simulation of hot carriers phenomena in sub-micron MOSFETs. However, 
in order to take some quantum transport effects into account, the quantum correction terms should be 
included. Optical properties, on the other hand, can be determined by a multiband quantum transport 
approach, such as the Maxwell-Bloch semiconductor equations (Stahl & Balslev, 1987).

Figure 7. Illustration examples of energy band structure across 2-DEG systems: (a) At GaAs-GaAlAs 
interface, (b) At MOSFET inversion layer (SiO2-Si interface)
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3.1 Vertical and In-Plane Transport in 2-D Structures

The component of the electron momentum normal to narrow heterojunction interfaces (like 2DEG in a 
quantum well) is quantized and can take only discrete values. So, the energy associated with the motion 
along the direction normal to a 2DEG is quantized. This results in energy sub-bands. Hence, the vertical 
motion of charge carriers across a 2DEG is bound, but the in-plane motion is possible. Only electrons 
which have high kinetic energy can escape from the confining potential and behave like normal bulk 
electrons. Therefore, the semiclassical approximation breaks down in treating transport in the normal 
direction in heterojunctions. When transport along the in-plane (transverse) direction is assumed, one 
can still make use of the Boltzmann transport equation, but now in two dimensions, since electrons are 
free to move only on the plane of the heterojunction interface.The discrete energy levels (eigenvalues) at 
the interface of a heterojunction between two non-degenerate parabolic semiconductors can be obtained 
by solving the Schrödinger equation using the so-called Ben Daniel-Duke Hamiltonian:
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where ΔE(z) is the discontinuity in the conduction band.

Schrödinger-Poisson (S-P) Model

The confinement effect appears in MOSFET devices with thin oxide layers where the barrier of potential 
at the interface SiO2/Si is deep. This quantum confinement is well described by solving the single par-
ticle Schrödinger equation, self-consistently with the Poisson equation. This model provides the carrier 
eigenvalues and eigenfunctions along the three directions of the k-space. Considering ml, mt1 and mt2 as 
the longitudinal and transverse effective masses of electrons, respectively, the electron density is given by:
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where x is the position normal to the gate oxide, ψli, ψti, Eli,and Eti are the ith longitudinal and transverse 
eigenvector and eigenvalues, respectively. For holes, a similar expression is obtained for the light and 
heavy holes. For a 2-D MOS device, the S-P equation is usually solved along a set of 1-D parallel slices 
under the gate. At the ends of each slice an infinite potential is set as a boundary condition. Unfortu-
nately, this assumption is not physical at the SiO2/Si interface. Therefore, the S-P model should be better 
designed to include the gate oxide so that the carriers and their eigenvectors could penetrate into the 
insulator layer (SiO2), as shown in Figure 9. Figure 8 depicts the formation of energy sub-bands due to 
the confinement of electrons near the Si-SiO2 interface (left) and the resultant electron density (right). 
Note that the classical carrier density rises towards the semiconductor–oxide interface, while the quantum 
(S-P) solution results in a more correct carrier density, which decreases towards the interface.

Figure 10 depicts the carrier density at SiO2- Si interface of n-MOS and p-MOS structures, as obtained 
by semiclassical (SHE with DG corrections) and a quantum (S-P) solver. Figure 11 depicts the C-V 
characteristics of a MOSFET, according to the semiclassical, quantum and D-G approaches. We note the 
shift of the threshold voltage near 0.5V and the reduction of the quantum capacitance in inversion mode 
(VG > 0.5 V). The difference observed between S-P approach and DG model in strong accumulation is 
explained by the fact the charge is treated in a quantum scheme in the S-P solver whereas a part of the 
charge should be treated semiclassically.

Example 1

The electric field at the surface of a semiconductor in the inversion layer of a MOSFET is ζ = 5×104 V/cm.

Figure 8. Bound states in a triangular quantum well at SiO2- p-type Si interface
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Using a trial wave function ψ∼ z exp(−z/a), estimate the lowest energy of an electron in the triangle 
potential well (V = 0 for z ≤ 0 and V = e.ζ.z for z > 0) formed by the electric field. Take the effective 
mass of the electron is m∗ = 0.063mo.

Solution

The energy of the ground state is a minimum of the function:

E
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=
ψ ψ

ψ ψ
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So, we have to solve the Schrödinger equation for an electron in a triangle potential,
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Figure 10. Carrier density at SiO2- Si interface of n-MOS and p-MOS structures

Figure 9. Formation of energy sub-bands due to well confinement of electron gas near the Si-SiO2 in-
terface (left) and the resultant electron density (right)
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With the trial wave function ψ = Az exp(−z/a) we obtain
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Figure 11. C-V characteristics of an MOS, according to the semiclassical model (dashed line), Schro-
dinger-Poisson model (dotted line) and density gradient method (solid line)
After Mamaluy et al (2005).
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Substituting, we get Emin=61 meV, which is bigger than kBT 300K
Under the effect of external field, charge carriers can drift in-plane. There exists also a possibility of 

conduction across the vertical direction of 2DEG systems, under the influence of high electric fields. 
This vertical conduction may be associated with a negative differential conductivity, as has been shown 
by Esaki and Tsu (2000). In the following subsections we discuss both in-plane and vertical conduction 
mechanisms in 2DEG systems, with emphasis on super-lattices.

In-Plane Conductivity of a 2DEG

We can calculate the in-plane conductivity starting from the semiclassical BTE of electrons in the ith 
sub-band of the 2DEG:
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where k// =[kx, ky]
T is the 2-dimensional wave vector, which characterizes the in-plane motion, fi(k//) 

is the electron distribution function, mi is the effective mass and Ei(k//) = Ei + ħ2k//
2/2mi is the electron 

energy in the ith sub-band of the 2DEG. The scattering rates S(k//,k//
‘) can be calculated by the Fermi 

golden rule, with the proper matrix element and final density of states in two-dimensions. Figure 12 
shows a comparison between scattering rate in the bulk and in 2DEG

The above coupled system of BTE equations (in different sub-bands) can be simplified at low fields, 
by adopting the relaxation time approximation:
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with τi is the microscopic relaxation time in the ith subband of the 2DEG. In so doing, the plane current 
density averaged over all the sub-bands is given by Jn= σn ζ, where σn= Σ σni is the 2DEG conductivity and

σni = e2 n(i)τi / mi (19)

Here, n(i) is the electrons density in the ith subband. At 0K, n(i) is given by:

n(i) = (mi/πħ2)[ EFi - Ei] (20)

where EFi is the Fermi energy level in the ith sub-band. Also, the electron mobility μn of the 2DEG is 
given by the average over mobility terms μni:

μn = Σι n(i) μni / Σι n(i) and μni = eτi / mi (21)

The total mobility is calculated from other mobilities by Matthiessen’s rule

(μ) -1 = (μimp) 
-1 + (μac) 

-1 + (μop) 
-1 + (μpolar) 

-1 +(μalloy) 
-1 (22)

Figure 12. Scattering rate in the bulk and in 2DEG
After Bastard (1990).
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3.2 Vertical Transport

While in-plane motion is free (with plane electronic waves) the motion of carriers in vertical direction is 
quantized. When voltage is applied across a layered structure or a superlattice (SL), electrons will relax 
from higher to lower energy levels emitting either light or LO phonon. Assuming no transitions between 
the different sub-bands of an SL, it can be shown that electrons will have an oscillatory behavior (Bloch 
oscillations) with frequency:

f = e ζ d / 2π ħ (23)

where d is the spacing between repeating layers. For a static field ζ of 10kV/cm and d=100Å, we get f 
=2.5 THz. Such Tera Hertz oscillations have never been reported experimentally. This is due to electron 
scattering events. The vertical transport in SLs is mainly due to hopping of electrons between localized 
states in adjacent quantum wells. Other parameters such as impurity density and interface roughness 
also influence the vertical mobility of an SL (Safa & Asgari, 2015). Figure 14 illustrates the interband 
transitions in a q superlattice structure, called quantum cascade laser QCL. QCL is, a semiconductor 
laser in which an electron passes through a series of quantum wells. In each quantum well, the electron 
emits a photon on an inter-subband transition before tunneling through to the next quantum well.

Figure 13. Illustration of calculated & experimental electron mobility of a GaAs 2DEG with 3.5x1011 
cm-2 sheet doping
After Briner (2011).
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3.3 Tunneling and Resonant Tunneling

The tunneling across potential wells or thin layered structures is another mechanism of vertical transport. 
Tunneling refers to particle transport through a classically forbidden region, where the total energy of a 
particle is less than its potential energy. This is illustrated in figure 15, where a particle of energy E is 
incident on an arbitrary-shaped potential energy barrier of height V>E. In classical mechanics a particle 
is completely reflected. However, the quantum mechanics shows that there exists a probability of tun-
neling, for thin barriers. Here, we present the tunneling across quantum wells and layered semiconduc-
tor structures. Note that, tunneling is different from scattering limited conduction and phonon-assisted 
hopping between quantum wells (Ilatikhemeneh et al, 2015).

In case of vertical transport across a single quantum well (of thickness a) between two barriers (of 
thickness b), the tunneling probability is given by:

T
t t sh k b

b

=
+ + ⋅−

1

1 1
4

1 2 2( ) ( )
 (24)

where t = (mb / mw).(kw / kb) is the ratio of electron masses and wave vectors inside the well and the bar-
rier regions, respectively.

kw = √(2mwε1)/ħ, kb = √2m(Vb - ε)/ħ (25)

where Vb is the barrier height and ε1 ≤ Vb is the energy of first sub-band, which we only consider here.
The tunneling resonance happens when the transmission coefficient is equal to unity (T=1) and the 

transmitted and reflected waves interfere in a constructive manner inside the intermediate quantum well. 
This happens at certain energies, which satisfy the condition:

Figure 14. Schematic of interband transitions in a quantum cascade laser (QCL) superlattice structure
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Cos(kw a) = ½ (r + r t-1) sin (kw a) (26)

That is, an electron with this resonant energy can cross the double barrier without being reflected. 
Figure 16 depicts the resonant tunneling phenomenon. This resonance phenomenon is similar to that 
taking place in the optical Fabry-Perot resonator. This phenomenon is exploited in the resonant tun-
neling devices (RTD’s). The RTD’s possess fast response times and have been employed as solid-state 
oscillators at frequencies approaching 1 THz.

3.4 Case Study 5: Transport across a Resonant Tunneling Diode

A resonant-tunneling diode requires a band-edge discontinuity at the conduction band or valence band 
to form a quantum well and, thus, necessitates heteroepitaxy. The most common combination used 
is GaAs-AlGaAs. The middle quantum-well thickness is typically around 50A, and the barrier layers 
about 30A. Symmetry of the barrier layers is not required so their thickness can be different. A typical 
resonant tunneling diode structure with analytical band edge model as used in simulations is depicted 
in Figure 17. The figure depicts the practical structure of a double-barrier resonant tunneling (DBRT) 
diode, with engineered emitter.

The tunneling problem is usually treated by solving the Schrödinger equation with Ben Daniel-Duke 
Hamiltonian. However, the Wigner distribution function can be also used to provide an adequate quan-
tum mechanical description of the electron transport through tunneling nanostructures. For a resonant 
tunneling device, like the double-barrier resonant tunneling (DBRT) diode shown below, we can write:

∂
∂
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∫W x k T x k k W x k dk
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Figure 15. Example of transport by tunneling across SiO2 dielectric barrier in a metal-oxide-semiconductor 
(MOS) structure, and the associated wavefunction
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Here L is the length of the tunneling structure under consideration. The RHS term in the WBTE is 
due to scattering and may be modeled using the relaxation time approximation. The boundary conditions 
on the Wigner distribution function W(x, k) at the emitter (x=0) and cathode (x=L) can be approximated 

Figure 16. Illustration of the resonant tunneling phenomenon, which has a unity probability at certain 
carrier energy

Figure 17. Structure of a double-barrier resonant tunneling (DBRT) diode, with double barriers of 
thickness b=30 Å and a single quantum well of thickness a=50Å
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to flat-band transport and equilibrium electron-distribution. In order to calculate the potential energy 
V(x) = eϕ(x) -ΔE(x), the WBTE should be coupled with the Poisson equation:
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This equation may be also written as follows:
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3.5 Magneto-Transport in a 2DEG

The effect of magnetic on low-dimensional semiconductor devices such as superlattices and quantum 
cascade (QC) structures has been a fruitful subject during the last two decades.

In a magnetic field B, perpendicular to the 2DEG, the current is no longer in the direction of the 
electric field due to the Lorentz force. Consequently, the conductivity is no longer a scalar but a tensor 
σ, related to the diffusion tensor D by the Einstein relation (Tsui, Stormer & Gossard, 1982):

σ= e2 gc(EF)D (29)

Between scattering events the electrons at the Fermi level execute circular orbits, with cyclotron 
frequency ωc =(eB/m) and cyclotron radius lcyc = (mvF/eB). Taking the 2DEG in the x−y plane, and the 
magnetic field in the positive z-direction, one can write in complex number notation:

v(t) = vx(t) +j vy(t) = vF exp (jϕ +jωct) (30)

The diffusion tensor, D, is obtained from the following relation:
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where Do is the zero-field diffusion constant. One can easily verify that Dyy = Dxx and Dxy =−Dyx. From 
the Einstein relation, we can obtain the conductivity tensor as follows:
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 (32a)

where σo is the zero-field conductivity. The resistivity tensor ρ ≡1/σ- has the form:
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with ρo = σo
−1 = (m/nse

2τ) the zero-field resistivity. The off-diagonal element ρxy ≡ RH is the classical 
Hall resistance of a 2DEG:

R
B

en g g
h

e EH
s s v

c

F

= =
1

2
. .
�ω

 (33)

Note that in a 2D channel geometry there is no distinction between the Hall resistivity and the Hall 
resistance, since the ratio of the Hall voltage VH =W ζx across the channel to the current I = W Jy along 
the channel does not depend on its length and width (provided transport remains in the diffusive regime). 
The diagonal element ρxx is referred to as the longitudinal resistivity. Equation (28) tells us that the mag-
netoresistivity is zero (i.e., ρxx(B) − ρxx(0) = 0), in the classical limit. This counterintuitive result can be 
understood by considering that the force from the Hall voltage cancels the average Lorentz force on the 
electrons. As a general conclusion, the classical effects of magnetic fields are important only if ωcτ ≥ 1. 
In such fields an electron can complete several cyclotron orbits before being scattered out of orbit. In a 
high-mobility 2DEG this criterion is met at weak magnetic fields (note that ωcτ= eμB).

In the application of the Einstein relation we have used the zero-field density of states. Moreover, 
we have assumed that the scattering time τ is B-independent. Both assumptions are justified in weak 
magnetic fields, for which EF/hωc ≥ 1, but not in stronger fields. The deviations from the semiclassical 
result (33) appear when the magnetic field is increased. These deviations take the form of oscillatory 
magnetoresistivity (Shubnikov-De Haas effect) and plateaux in the Hall resistance (quantum Hall effect). 
The origin of these two phenomena is the formation of Landau levels by a magnetic field that leads to 
the B-dependent density of states.

Integer Quantum Hall Effect

The quantum Hall effect was first observed in 1980 by K. Klitzing who was awarded the Nobel Prize in 
physics in 1985. The integer quantum Hall effect (IQHE) was discovered while investigating the con-
ductance of 2DEG structures at high magnetic fields and at very low temperatures. It was found that the 
Hall conductance of such a system, shows quantized plateaus at integer multiples of (e2/h). For a 2DEG 
system, the density of states, in absence of magnetic field, is gc2(E) = (mn/2πℏ2) states per unit energy per 
unit area (cm2). After applying a magnetic field, the energy states contract into separate Landau levels.

Each Landau level is degenerate, including (gc2 .ħωc) = (eB/h) states per unit area (cm2). We may des-
ignate this number of states per unit area for a filled Landau level by nB, such that nB = (gc2 .ħωc)= eB/h.

The filling factor v is defined as the ratio between nB and the electron density of the 2DEG:

v = n2D / nB = n2D / (eB/h) (34)

Therefore, n2D =(eB/hv). From the above equations (34, 33 we can get the Hall resistance (per unit area):
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RH = 1/GH = (h/e2) /v (35)

When we substitute ωcτ →∞ into the classic Hall conductivity tensor expression (32), then we obtain 
ρxy→ en/B = (h/e2v). Nevertheless, the above equation (35) is only correct in certain specific values of n2D.

For the inversion layer of a MOSFET, n2D is proportional to the gate voltage VG. Hence, the Hall 
resistance should be inverse proportional to the gate voltage. Actually, Klitzing and his colleagues dis-
covered the quantized Hall plateaus in the RH(VG) relation of a high-mobility MOSFET. Using a Hall 
voltage method they found that RH =(h/e2)/v to high accuracy. This result does not depend on material 
and has been verified in Si and GaAs. So, the quantum Hall resistance is given by:

Rxy = (VH
+ - VH

-) / I = (h/e2)/n2D = - (h / e2) / ν. (36)

Figure 19. Transverse (Rxy) and longitudinal (Rxx) Hall resistivity of a 2DEG of density n2D = 2.6 x1015 
nm-2 as a function of the magnetic field B
After Yoshioka (2002).

Figure 18. Quantum Hall measurement sample
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Note that the filling factor ν is equal to the number of filled Landau levels (ν = 1, 2, 3, ..). In these 
levels, the motion of electrons is confined in two dimensions. Figure 18 shows the experimental setup. 
The Hall transverse and longitudinal resistance are defined as Rxy =(VH+ -VH-)/I and Rxx =VL /I. As shown 
in figure, the transverse Hall resistance Rxy has plateaus in a certain quantized values between adjacent 
Landau levels, while the longitudinal resistance Rxx almost vanishes at these values. This means that the 
electrons are localized in these regions. In fact the existence of the localized states explains the appear-
ance of plateaus in the IQHE. As the electron density n2D is increased (or B is decreased) the localized 
states fill up gradually, without any change in the Hall resistance. For these densities the Hall resistance 
is on a step and the longitudinal resistance vanishes.

The ratio Rk=h/e2=25.812807 kΩ. is a fundamental unit in quantum Hall effect and has been adopted 
as a standard unit for the resistance measurement. In fact this unit is closely related to the fine structure 
constant α=μo.c.e2/2h =1/137.

Fractional Quantum Hall Effect (FQHE)

In the fractional quantum Hall effect (FQHE), the conductance is quantized in fraction multiples of (e2/h).
The fractional quantum Hall effect was discovered in 1982, by Tsui, Gossard and Stormer, in pure high 
electron mobility samples at very low temperatures. Tsui and Stormer were awarded the Nobel Prize for 
this discovery in 1998. Figure 20 depicts the fractional quantum Hall effect in Si. Tsui and his colleagues 
found that the filling factor of Landau level may take fractional values, such that:

v = n2D / nB = n2D / (gc2 .ħωc) = N/M (37)

with N and M are integers. As shown in figure 20, the plateaus of ρxy correspond to minima in ρxx.with 
filling factor v is indicated, particularly for ν =2/3, 2/5 and 3/5. The interpretation of the fractional 
quantum Hall effect has been developing rapidly. One of the widely accepted theories (formulated by 
Jain, in 1989), attributed this effect to the Coulomb interaction forces between electrons.

According to this theory, when electrons are confined in two dimensions, cooled to very low tem-
peratures and subjected to a strong magnetic field, their kinetic energy is quenched due to Landau level 
quantization. The behavior of electrons under such conditions is governed by the Coulomb repulsion 
alone. Therefore, electrons are arranging themselves in particular configurations (bound states called 
composite Fermions) in order to minimize their energy at certain values of ν. Such composite Fermions 
are supposed to move at an effective magnetic field Beff, which is much smaller than the applied magnetic 
filed, B, and that vanishes at certain ν values.

Beff =B-B½ =B– 2ħ n2D /e (38)

Spin Quantum Hall Effect (SQHE)

The integer and fractional quantum Hall effects were the first topological states to be discovered in the 
1980s, but they exist only in the presence of large magnetic fields. The search for topological states of 
matter that do not require magnetic fields for their observation led to the theoretical prediction in 2006 
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and experimental observation in 2007 of the so-called quantum spin Hall Effect (SQHE) in HgTe quan-
tum wells, a new topological state of quantum matter (Maciejkoet al., 2011).

The quantum spin Hall Effect is the cousin of the integer quantum Hall Effect. It is a state of matter 
which exists in special, two-dimensional, semiconductors that have a quantized spin-Hall conductance. 
As shown in Figure 21, the charge current flows from left to right through a Hall bar made from a con-
ductor such as aluminum. Spin–orbit interactions cause a separation of electron spins — the spin Hall 
Effect. If the charge current is unpolarized (with equal numbers of spin-up and spin-down electrons), the 
spin imbalance does not induce a charge imbalance or transverse voltage at the Hall cross. If electrons, 
which are polarized in the direction of magnetization M, are injected from a ferromagnetic electrode 
while a circuit drives a charge current (I) to the left, a spin imbalance is created. This produces a spin 
current (IS) without a charge current to the right of the electrode. Spin–orbit interactions again separate 
spin-up and spin-down electrons, but now the superiority of one spin type means that a transverse charge 
imbalance and a spin Hall voltage, VSH, is created. As the distance, L, between the electrode and the Hall 
cross increases, the voltage signal decreases, allowing the decay length of spin currents (spin diffusion 
length λsf) to be measured. 

Figure 20. Longitudinal (ρxx) and transverse (ρxy) resistivity of a high mobility 2DEG at 0.15K, showing 
the fractional quantum Hall effect
After Yoshioka (2002).
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Shubnikov - de Hass Effect in a 2DEG

The quantum oscillations of conductivity, in presence of magnetic field, is called the Shubnikov-de 
Haas effect. We have pointed out, so far, that the free energy of electrons orbiting in a magnetic field 
(E- Ec- ħ

2k2/2m*) shows an oscillatory behavior with increasing magnetic field. Figure 22 depicts the 
Shubnikov-de Haas effect in a two-dimensional electron gas, which manifests itself as the oscillation of 
the longitudinal voltage, Vx, at different values of magnetic fields. The main effect of magnetic field is 
on the scattering rate τ−1, which is proportional to the density gc(EF):

τ -1 = (π /ħ) gc(EF) Ai u
2 (39a)

Here gc is the doping concentration per unit area (of impurities), and the impurity potential is modeled 
by a 2-D delta function of strength u. The diagonal element of the resistivity tensor is then:

ρxx = (m / e2ns).τ
−1α gc(EF) (39b)

Oscillations in the density of states at the Fermi level due to the Landau level quantization are there-
fore observable as an oscillatory magneto-resistivity. One expects the resistivity to be minimal when the 
Fermi level lies between two Landau levels, where the density of states is smallest. In view of equation 
(39b), this occurs when the Landau level filling factor ν ≡ (ns/gsgv)(h/eB) equals an integer N = 1, 2, . . 
. The resulting Shubnikov-De Haas oscillations are periodic in 1/B, with spacing Δ(1/B) given by:

∆
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Figure 21. Illustration of the spin quantum Hall effect
After Maciejkoet al. (2011).
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This is a simple, but correct explanation of the Shubnikov-de Haas effect.
As shown in figure 22, the Shubnikov de Haas effect has smooth maxima. The basic pattern of the 

Shubnikov-de Haas oscillations around zero magnetic field repeats itself around each half integer fill-
ing factor (v=1/2, 3/2, 5/2, 7/2, ..etc) and then again around each quarter integer filling factor (v=1/4, 
3/4, 5/4, .. etc). If we interpret this structure as a Landau level structure of a new type of quasi-particles 
(composite Fermions) then such quasi-particles should feel no magnetic field at filling factors of even 
denominator and an effective magnetic field (Beff) less than the external magnetic field (B) away from 
these points.

The symmetrical form of the oscillations around even denominator filling factors implies that the 
effective magnetic field felt by these quasi-particles can be either positive or negative with respect to 
the external magnetic field

Aharonov–Bohm Quantum Effect in LDS’s

A fine oscillation was observed superimposed on peaks of the magneto-resistance of some LDS’s called 
antidots. The antidot lattice is a 2D system modulated by a periodic repulsive potential. The transport 
in this system is ballistic, i.e., electrons are scattered from the antidote potential rather than impurities. 
Figures 21 depicts the Aharonov–Bohm (AB) type oscillation.

The AB effect is an interference effect that arises from the vector-potential dependence of a wave 
function. The period is given by ΔB ≈ Φ0/a

2 where Φ0 = ch/e is the magnetic flux quantum and a is the 
antidote lattice period.

Figure 22. Shubnikov-de Haas and quantum Hall voltages vs. magnetic field
After Singleton (2001).
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3.6 Effect of Magnetic Fields on Quantum Cascade Structures

When a magnetic field is applied parallel to the layers of a superlattice, it shifts the E(k) dispersion curves, 
as shown in Figure 25. The shift in k-states is proportional to the magnetic field density, and given by:

∆k
eB

z= < >
�
.  (41)

When a magnetic field is applied perpendicularly to the layers of a super-lattice, as shown in figure 
24, we can separate the Hamiltonian in perpendicular and in-plane components. The in-plane states are 
further localized in Landau levels. A perpendicular magnetic field offers the possibility of simulating 
a quantum box structure, with a confining potential that depends upon the intensity of magnetic field.

The magnetic size of the quantum box is then given by:

lc =[h / (eB)]1/2 (42)

The above magnetic effects are very important when they are coupled with optical phenomena in su-
perlattices, such as photo absorption and photo luminescence. It has been observed that parallel magnetic 
fields brought a quenching of the intensity of electro-luminescence signals, together with a broadening 
and a blue-shift of the photo-emission in superlattices On the other hand, a perpendicular magnetic field 

Figure 23. Example of observed quantum oscillations superimposed on the fundamental commensura-
bility peak in an antidote lattice
After Weiss et al (2002).
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Figure 25. Effect of magnetic field on the spectra of a quantum cascade LASER, as detected by InSb 
cyclotron resonance detector
After Elliot (1998).

Figure 24. Effect of (a) parallel and (b) perpendicular magnetic fields on the dispersion curves of a 
superlattice
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will allow transitions only between Landau levels and optical phonon emission is strongly decreased. 
Figure 26 shows the effect of magnetic field on the spectra of a quantum cascade LASER, as detected 
by InSb cyclotron resonance detector

3.7 Optical and Excitonic Effects

The energy required to create a free electron-hole pair in a semiconductor is simply equal to the energy 
gap. Hence we expect some optical absorption at photon energies just below the energy gap of the semi-
conductor. Figure 26 shows the absorption spectra for a typical GaAs/AlGaAs quantum well at room 
temperature. As shown in figure, there are many peaks in the spectra. The threshold absorption edge is 
shifted by (Ehh1 + Ee1) compared to the bulk, such that: ħω = Eg + Ehh1 + Ee1. Therefore, the energy (or 
frequency) of absorption is: ħω = Eg + Ehh1 +Ee1, +ħ2kx

2/2mh +ħ2kx
2/2me

In order to understand the absorption peaks, we need to recall the concept of excitons. In fact, the 
optical properties of low-dimensional semiconductor nanostructures originate from excitons and exciton 
complexes such as biexcitons and trions (charged excitons). In this case, some electrons and holes are 
attracted to one another because of their Coulomb attraction. In order to include excitonic effects and their 
transport phenomena we need a specific formalism, which is different from the single particle picture.
We can start with the Schrodinger equation for e-h pair (Wannier equation), which has the following 
form in the bulk of a parabolic semiconductor:

Figure 26. Absorption spectra for a typical GaAs/AlGaAs quantum well. The double peak at each quan-
tum number (n) correspond to heavy and light holes
After Elliot (1998).
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This equation can be split into two parts, for center of mass and relative motion parts, and solved to 
find out the exciton energy. For the case of an LDS, such as 2D quantum wells, we should take the con-
finement energy into account. The eigenvalues (energies) of the Hamiltonian of an exciton in a quantum 
well may be written as follows:
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where Ry=(13.6/ε2).(mr/mo) is the exciton Rydberg binding energy (2-20 meV), mr = memh/(me+mh) is 
the reduced mass of exciton and n is the principal quantum number. Also, M = me+mh and K=ke+kh 
are the exciton mass and wavevector. Note the shift of these energies by the quantum well confinement 
energies of electron and holes (Enz,e and Enz,h). The subband index nz should be chosen equal for electron 
and hole constituents of the exciton, according to the selection rules of optical transitions. Note that the 
excitonic effects are more pronounced in LDS, such as quantum wells, than in bulk semiconductors. 
For instance, the binding energy in 3D bulk is simply equal to Ry, while it is about 4Ry for the lowest 
excitonic state (n=1) in a quantum well. As excitons are e-h pairs, they form electric dipoles which can 
couple to electromagnetic wave, forming new quasi-particles, called exciton-polaritons.

3.8 Optoelectric Effects and Electroabsorption

When electric fields are applied to quantum wells, their optical absorption spectrum near to the band-gap 
energy can be changed substantially. Figure 27 shows the absorption spectra for a quantum well sample 
at room temperature with various electric fields applied in the plane of the quantum well layer. Note 
that the peaks of absorption (excitons) broaden as electric field increases. In fact, the high energy, sup-
plied by electric field, may ionize excitons and cause them to disappear. The broadening of absorption 
peaks is hence due to the shortening of the exciton lifetime, due to electric field ionization effect. This 
is called the electroabsorption effect.

Other consequence of in-plane electric field is the appearance of a weak absorption tail at lower 
photon energies. The appearance of the decreasing tail is referred to as the Franz-Keldysh effect, which 
is explained by the variation of the material refractive index with applied electric field.

When the electric field is perpendicular the exciton absorption peaks are strongly shifted by the field 
(instead of being broadened). In this case, electrons are attracted to the positive bias side and holes are 
attracted to the negative side, but QW walls prevent the exciton separation (ionization) and the electron-
hole pair is still close and bound.

3.9 Case Study 6: Transport across Graphene

We know that graphene is a two-dimensional crystalline form of carbon: a single layer of carbon atoms 
arranged in hexagons. In 2004 physicists, in different institutes, first isolated individual graphene planes 
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by using adhesive tape. A few years later, the researchers simplified the technique and started using dry 
deposition (Li et al, 2009). Since then, exfoliation procedures have been scaled up, and now companies 
sell graphene in large quantities. The graphene material has been subject of intensive research worldwide 
mainly due to its exceptional physical properties and various potential applications in electronics. The 
successful isolation of graphene with reasonable cost led to the current research boom. In fact, graphene 
has very high carrier (electrons and holes) drift mobility even at room temperature. The Graphene un-
usual electronic properties arise from the fact that the carbon atom has four electrons, three of which 
are tied up in bonding with its neighbors. But the unbound fourth electrons are in orbitals extending 
vertically above and below the plane, and the hybridization of these spreads across the whole graphene 
sheet. The hybridized electrons interact with the periodic field of the hexagonal crystal lattice and form 
Dirac Fermions, which are described by cone-like energy bands. Actually, the energy band diagram of 
grapheme is linear near the Fermi point, such that E(k)=ħ vF k. This linear relation means a linear group 
velocity and zero effective mass2.

One interesting consequence of this unique band structure is that the electrons in graphene are almost 
free. Unlike electrons in other solids, the electrons in graphene move almost ballistically (by hopping) 
over great distances, even at room temperature. As a result, the ability of the electrons in graphene to 
conduct electrical current is 10 to 100 times greater than those in a normal semiconductors at room 
temperature. The electron mobility of graphene is about 200,000 cm2/Vs at room temperature, compared 
to about 1,400 cm2/Vs in Si, and 77,000 cm2/Vs in InSb, which is the highest semiconductor mobility 
known. However, the free electrons in graphene, though having such high mobility, are few in number 
compared to other metals. Therefore, the overall conductivity of graphene is limited.

Figure 27. Absorption spectra for a quantum well at room temperature with various electric fields ap-
plied in the plane of the quantum well layers
After Gibson (2002).
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The surface conductivity of an infinite graphene layer can be calculated by means of the Kubo for-
malism. The surface conductivity can be then represented in a local form with the Drude-like intraband 
contribution:
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As well as the interband contribution, which is given by:
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Here τ =10-13s is the relaxation time, T is the temperature, EF is the Fermi level (chemical potential) 
and H(ϖ) is defined as follows:
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Since graphene is a 2-dimensional structure, it can be modeled by a 2nd order conductivity tensor, 
as follows:
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The conductivity depends on the band structure of graphene and other parameters including tempera-
ture and doping, as well as the applied electrical and magnetic fields. When applying an electric field, it 
injects more electrons in graphene and thereby allows the control of both real and imaginary part of the 
electrical conductivity. While graphene is mostly isotropic in the absence of magnetic fields, it shows 
its anisotropy in its conductivity when a magnetic field is applied, as shown in the figure 27. As shown 
in figure, the graphene conductivity is frequency-dependent under AC fields, and can have different 
behavior at RF, μW and THz spectra.

Among the most spectacular phenomena in graphene transport, one can cite the chiral quantum Hall 
effect (CQHEs). Figure 29 shows the CQHEs observed in single-layer graphene. It shows up as an unin-
terrupted ladder of equidistant steps in the Hall conductivity σxy which persists through the Fermi point, 
where charge carriers change from electrons to holes. The sequence is shifted with respect to the standard 
QHE sequence by ½, such that σxy = ±4e2/ħ (N + ½) where N is the Landau level index and the factor 
4 is due to double valley and double spin. The CQHE may be considered ‘half-integer’ fractional QHE 
(FQHE) to reflect the shift. However, the grapheme CQHE is not a new FQHE, nor the standard integer 
QHE (IQHE). The unusual sequence is now understood as arising from the Dirac-like quantization of 
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Figure 28. Copennets of the conductivity tensor of grapheme as function of frequency, at various values 
of magnetic field (from 0T to 7T)
After Alison (2002).

Figure 29. Chiral quantum Hall effect in grapheme
Adapted from Novoselov et al (2005).
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graphene’s electronic bandstructure in the presence of magnetic field. The existence of a quantized level, 
shared by electrons and holes at zero energy, explains the anomalous behavior of CQHE in graphene.

3.10 Case Study 7: 2D Transistors

The so-called 2D transistors are similar to the conventional MOSFET devices, except for the channel 
material, which is formed of 2D semi-conductor monolayers or graphene. Monolayer molybdenum disul-
phide (MoS2) is the second most-studied 2D material after graphene. The monolayers of transition metal 
dichalcogenide (TMD) materials, such as MoS2, WTe2 and GeS are very promising for implementing 2D 
transistors, because they have reasonable energy gap (about 2eV) and high carrier mobility (Wickrama-
ratne, Zahid &, Lake, 2014). In fact, these characteristics are very critical for the implementation of high 
speed FET devices, with high ON-state/Off-state current ratio and threshold current swing.

Graphene Transistor

We know that graphene is a single sheet of graphite (carbon), which has a zero gap and high electron 
mobility (~200,000cm2/Vs at 300K). The structure of a graphene nanoribbon (GNR) FET is shown below 
in figure. The figure depicts the structure of a back-gated graphene FET. The graphene sheet serves as 
the FET channel and sits on top of a stack of dielectric and conducting material. The graphene sheet, 
the dielectric and conducting material form a parallel plate capacitor with the conducting material act-
ing as the gate (G). The graphene sheet is connected to conducting Source-Drain (S-D) contacts at the 
edges. The advantage of having a back-gated device is that the top surface of graphene makes conduction 
modulation via gas exposure possible. As a result, it can be used as a gas sensor.

Unfortunately, the graphene FET suffers from direct tunneling from source to drain. Figure 31 shows 
the energy band structure of a GNR FET, and how the introduction of a barrier (doped strip) in the 
middle of graphene can prevent the tunneling current.

The next figure depicts the drain-to-source current (IDS) as a function of the applied gate voltage (VGS), 
with and without a barrier. In the case of no barrier (only graphene flake), we observe no significant 
variation in IDS(VGS), because the tunneling current is dominant in the OFF state. The ON-OFF current 
ratio is far below what is needed for logic circuits. On the other hand, when a barrier is present (by 

Figure 30. Schematic structure of a GNR FET
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doping a middle strip of graphene with BN or BCN) we observe the switching of drain current, under 
the effect of gate bias. The figure shows the effect of different barrier doping constituents on the I-V 
characteristics of the GNR FET.

Many researchers are working hard to improve the performance of GNR FETs, with different con-
figurations (e.g., Schwierz, 2010). Although the low ON–OFF current ratio in conventional GNR FET 
(without barriers) limits its use in logic circuits, this device may be promising candidate for RF appli-
cations. Also, the introduction of tunneling barriers can get rid of such inconvenience and extends the 
applications of GNR in new horizons.

Figure 31. Schematic structure of a GNR FET

Figure 32. Current-voltage characteristics of GNR FET, with and without a barrier
After Fiori and Iannacone (2013).
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MoS2 Transistor

The so-called molybdenum disulfide (MoS2) transistor has been introduced as an alternative to con-
ventional MOS devices, with down to 1nm physical gate length. The MoS2 transistor utilizes a layered 
MoS2 as a channel and has been shown theoretically to be superior to Si at the sub-5-nm scaling limit 
(Liu, Lu & Guo, 2013). In fact, the modern deposition techniques allow the growth of high-quality 2D 
layers with no dangling bonds. This reduces the semiconductor surface states and enhances the carrier 
mobility in the channel of a 2D FET.

The Figure 34 depicts a comparison between Si MOSFET and MoS2 FET, showing the direct source-
to-drain tunneling leakage current, as a function of channel thickness and channel length. The MoS2 is 
biased with VDS =VDD = 0.43V with VGS=VFB (OFF state).

4. CONDUCTANCE OF A QUASI-ONE-DIMENSIONAL (Q1D) SYSTEM

The properties of electron transport in quasi-one-dimensional (Q1D) systems have attracted consider-
able interest. By inspecting the momentum distribution function around the Fermi surface, Hu and Das 
Sarma have clarified that a clean Q1D electron system in a semiconductor wire shows the Luttinger-
liquid behavior.

Figure 34. Schematic of the MoS2 FET, showing the MoS2 monolayer

Figure 33. Comparison between conventional MOSFET and 2D transistors
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A Luttinger liquid (Luttinger & Kohn, 1955) is a theoretical model describing interacting electrons 
in a one-dimensional conductor (like carbon nanotubes). Such a model is necessary as the commonly 
used Fermi liquid model breaks down for one dimension. Even at zero temperature, the momentum 
distribution function of a Q1D does not display a sharp jump, in contrast to the Fermi liquid, where 
this jump indicates the Fermi surface. However, the existence of impurities in Q1D systems restores the 
Fermi-liquid behavior. The phenomenological theory of Fermi liquids was introduced by Lev Davidovich 
Landau in 1956 to explain why some interacting electron systems behave like non-interacting electrons 
of the Fermi gas. Actually, there exist two basic methods to calculate the two-terminal conductance of a 
quasi one–dimensional (Q1D) device, namely: the Kubo formalism and the Landauer formalism.

4.1 Landauer Formalism of Quantum Conductance

The Landauer formulism (Landauer, 1988) gives an accurate expression for the carrier current (energy 
or particle current) in non-interacting quantum systems, which is coupled to reservoirs at different 
temperatures and chemical potentials. The Landauer theory was generalize to multi-terminal devices in 
magnetic fields by Buttiker (Buttiker, 1988) and is referred to as the Landauer-Buttker (L-B) formalism.

The first step in deriving the Landauer formula is to convert the quantum mechanical problem into a 
scattering matrix problem for carriers, which are incident on a specific device. For an electronic device, 
let’s consider the situation shown in Figure 35 in which two semi-infinite Q1D systems are connected 
by a region of electron gas with arbitrary effective potential V.

The corresponding 2D Schrödinger equation has the form:

[p2/2m* + V(x,y)]Ψ = EΨ (47)

In the left of the electron gas region the wavefunction has the form:

Figure 35. Comparison between Si MOSFET and MoS2 FET, showing the direct source-to-drain tunnel-
ing leakage current as a function of channel thickness and channel length
After Desai et al (2016).
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ΨL(x,y) = Σi exp(jkx x)ϕi
+(y) (bi

+/√Ji) + Σi exp(-jkx x)ϕi
-(y) (bi

-/√Ji) (48a)

In the right of the electron gas region, it has the following form:

ΨR(x,y) = Σi exp(-jkx x)ϕi
+(y) (bi

+/√Ji) + Σi exp(jkx x)ϕi
-(y) (bi

-/√Ji) (48b)

The quantities ϕi
+(y) and ϕi

-(y) are the transverse eigenfunctions in the Q1D systems evaluated at 
energy E. They form a complete basis at any chosen energy E only if all subbands are included. States 
with imaginary ki

x are referred to as `evanescent modes’ in analogy with their counterparts in optics. 
Also, Ji is the current in mode i. The coefficients ai

+, ai
-, bi

+ and bi
- are the current amplitudes for forward 

and reverse going states on the left and right of the connecting region. If we substitute equation (48a) 
and equation (48b) into equation (47) we can solve for the relation between the current amplitudes on 
the left and right of the inserted region. Typically this is done by discretizing (48) to achieve a finite 
transverse basis set and then solving numerically. The result is written in matrix form as
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where a+, a-, b+, b- (written now without subscripts) are vectors containing the amplitudes ai
+, ai

-, bi
+ 

and bi
-. The matrices t+; r+; t-; r- are the transmission and rejection matrices of the arbitrary region. The 

elements t+
i;j, r

+
i;j, t

-
i;j, r

-
i;j are the current transmission and rejection probability amplitudes. The elements 

of the matrix S must be such that the current passing into the system via propagating modes is equal to 
the current passing out of the system via propagating modes. We now connect the quasi-one-dimensional 
leads to perfect Ohmic contacts with, as before, chemical potential μL = μ − eV on the left and chemical 
potential μR = μ on the right.

Figure 36. Open quasi-one-dimensional system connecting a region of electron gas with two semi-infinite 
contacts via arbitrary effective potential V
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On a microscopic level, the currents flowing into each of the sub-bands of the Q1D systems from the 
Ohmic contacts are random due to the discreteness of electronic charge. In a simple transport measure-
ment we detect the time averaged current. The average current flowing to the right in Figure 31(a) in a 
small energy range dE about energy E is given by:

dI+ = Σi <| bi
+|2>time = <b+*b+>time = <a+* t+* t+a+>time = Σi,j (t

+* t+)i,j<ai
+*ai

+>time (50)

The time average <|ai
+*aj

+|2>time simplifies because the amplitudes for i ≠ j for are uncorrelated in 
time so that

<|ai
+*aj

+|2>time = δij <| ai
+|2> time (51a)

The current entering each subband <|ai
+|2>time will be exactly the same as was derived for the perfect 

case above

<| ai
+|2> time = -(e/h) f(E + eV)dE (51b)

Substituting, we get:

dI+ =(-e/h) Trace [t+ǂ t+].f(E).dE (52a)

and

dI- = (-e/h) Trace [t+ǂ t+].f(E).dE (52b)

Therefore the total current will be

I =(- e/h) ∫ Trace [t+ǂ t+]. [f(E+eV) - f(E)].dE (52c)

In the limit of zero temperature the conductance becomes

G = I / V = (e2/ h).Trace [t+ǂ t+] (53a)

This expression is evaluated at the chemical potential. This equation is called the Landauer formula. 
The Landauer formula is sometimes written as:

G = (e2/ h) T (53b)

The above equation gives the conductance for an arbitrary effective potential sandwiched between two 
semi-infinite quasi-one-dimensional systems attached to perfect Ohmic contacts. Note that the Landauer 
formula (53) is similar to the Einstein relation σ = e2gc(EF)D. Both relations relates the conductivity and 
Fermi level properties. In the Einstein relation, the density of states g(E) and the diffusion constant D, are 
both evaluated at EF. The Landauer formula is another relation in terms of the transmission probability 
at the Fermi level rather than in terms of the diffusion constant.



315

Carrier Transport in Low-Dimensional Semiconductors (LDSs)
 

4.2 Simple Derivation of the Landauer Formula

The Landauer formula can be derived simply as follows. Assume low bias is applied such that the dif-
ference between Fermi levels (or chemical potentials) across the conductor μL - μR = eΔV is small. The 
emitted current is then given by:

I = e n vg = e vg (∂n/∂E) ΔE = e vg (∂n/∂E) (μ1-μ2) (54)

Also,

∂n/∂E= (∂n/∂k) ∂k/∂E = (∂n/∂k) / (vg ħ). (55)

In addition, for a Q1D system we have: ∂n/∂k= 1/2π, where n is the electron density per unit length. 
Therefore,

I = (e/ ħ).(μ1-μ2) = (e2/ ħ) ΔV (56)

If an electron has probability T to be transmitted, then the conductance is:

G = I/ΔV = (e2/ ħ)T (57)

The conductance of a quantum wire is determined by the number of occupied transverse modes or 
sub-bands. If we vary the number of occupied sub-bands, the conductance will jump discontinuously in 
values of 2e2/h. In order to vary the number of occupied sub-bands, we should change the Fermi Energy, 
by applying a gate bias, as shown in figure 37. Alternatively, we may change the width of the applied 
potential (W), so that the spacing between energy states (Modes) changes.

4.3 Ballistic Transport by Contact Block Reduction (CBR) Method

The CBR method is a variant of the nonequilibrium Green’s function formalism, for ballistic transport, 
using an equilibrium distribution of the carriers (Mamaluy et al, 2005). By the CBR method, quantum 
transport in the ballistic limit in one, two and three dimensions can be calculated self consistently, with 

Figure 37. Other representation of a quasi-one-dimensional system
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the Poisson equation (Briner, 2011). In fact, the self-consistent solution of the ballistic transport prop-
erties of an open device requires the iterative solution of the Schrödinger and Poisson equations due 
to their coupling through the electrostatic potential and the electron density. The solution convergence 
of the discretized forms of these equations is not easy3, unless a suitable damping scheme is adopted. 
However, this problem can be solved using the so-called predictor-corrector approach. Using the CBR 
method, the energy resolved carrier density for a certain predictor potential

nE
λ(x, E) = gs gv ρ

λ(x, E).fdFD(E, μλ) (58a)

where ρ(x,E) is the local density of states and fdFD is the shifted Fermi-Dirac distribution, with the ap-
propriate dimension (d = 1,2,3). Also, gs = 2 is the spin degeneracy and gv is the valley degeneracy. 
The predictor-corrector approach can be easily be applied by modifying this equation to get the energy 
resolved carrier density for a certain predictor potential ϕ, as follows:

nE
λ(x,E) → gsgvρ

λ(x, E).fdFD(E - eΔϕ, μλ) (58b)

The local carrier density n(x) for each lead (λ) is obtained by integrating over the energy E:

nλ (x)= ʃ nE
λ(x, E)dE (58c)

Consequently, the total electron density, n(x), can be calculated as follows:

n x n x
L

( ) ( )=
=∑ λ
λ 1

 (58d)

Figure 38. Conductance of a biased nanotube
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Therefore, the nonlinear Poisson equation can be solved iteratively, using this predictor density. Once 
the new electrostatic potential for the predictor density has been obtained, the new quantum density, i.e. 
the new local density of states for this potential can be evaluated again and so on. Finally, the ballistic 
current from one lead to another can be calculated using the Landauer-Buttiker formula.

5. CONDUCTANCE OF A QUANTUM DOT (Q0D)

We have seen that a quantum dot (QD) is a small electronic island connected to metallic leads via two 
tunnel barriers. Figure 38 shows a possible structure fabricated from semiconductor materials. This 
structure is called the vertical resonant tunneling diode. The quantum dot forms between the two AlGaAs 
barriers. Conduction occurs vertically via heavily-doped GaAs contact regions above and below the 
quantum dot. The number of electrons trapped in the quantum dot is controlled by metal gate.

The figure 39 depicts the different transport mechanisms across quantum dot structures. As shown 
in figure, when, the QD radius is smaller than the exciton Bohr radius (a), strong confinement occurs. 
For weak confinement, charge carriers can move within the confined space of the quantum dot. In Q0D 
arrays, the electronic coupling between adjacent dots due to the finite overlap of charge carrier wave 
functions, allows for finite conductivity over macroscopic distances (Ulbricht et al, 2011).

The conductance of any mesoscopic system, including a quantum dot, may be calculated using the 
Landauer formalism (for 2-terminal devices) or the generalized Landauer-Büttiker formalism (for multi-
terminal devices). The problem of calculating the conductance of a quantum dot therefore reduces to 
finding its transmission coefficients as a function of external parameters. We investigate here the energy 
dependence of the transmission coefficients of a quantum dot. As shown in figure, the two barriers of 

Figure 39. Structure and energy band diagram of a quantum dot

Figure 40. Different transport mechanisms of charge carriers in quantum dot
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the quantum dot are assumed to be identical. If the two barriers are assumed to have reflection and 
transmission coefficients r and t, then the conservation of particles implies:

| r |2 + | t |2 = 1 (58e)

These coefficients are arbitrary complex numbers, but we will assume that the reflection coefficient 
is real - with zero or π phase change on reflection. When an electron enters the quantum dot it will scat-
ter back and forth between the two barriers so that the total transmission and reflection coefficients are 
composed of the sum of all possible scattering paths through the dot. The total transmission coefficient 
of the quantum dot has the form:

T = t2.exp(½jϕ).{1 +r2.exp(jϕ) + [r2.exp(jϕ)]2+ [r2.exp(jϕ)]3+… } (5-59a) 

The above series expansion sums up to:

T = t2.exp(½jϕ) / [1 - r2.exp(jϕ)] (59b)

The two-terminal conductance (G) of the quantum dot is then given by:

G = (e2/ħ). |T|2 = (e2/ħ). t4 / [1+ r2 -2r2cos(ϕ)] (60)

Figure 41 depicts the conductance variation with the phase change on reflection ϕ. At first, the Figure 
40 depicts |T|2 as a function of ϕ (for t= ½). Note that the resonant peaks in this figure have unity height 
due to the symmetrical two barriers of the quantum dot. Figure 41 shows the conductance G as a func-
tion of both ϕ and t. As shown, the transmission resonances are broad for large values of t and narrow 
for small values of t. Obviously, from equation (60), the condition for a resonant peak of conductance 
is given by:

ϕ = 2 n π (61)

where n is an integer. This condition relates the spectrum of a quantum dot and its transmission coef-
ficient. Therefore, the quantum dot transmits electrons resonantly when an eigen-energy passes the con-
tact chemical potential. Interference in multiple scattering suppresses tunneling far from this condition. 
It should be noted that there are many mechanisms that can reduce the resonance peak height such as 
inelastic scattering, temperature; and asymmetry of barriers heights.

5.1 Classical Coulomb Blockade

Consider a quantum metallic dot in weak electrical contact with two contacts (reservoirs) by two high 
resistance contacts and capacitively coupled to a gate with a DC bias VG, as shown in figure 41. Assume 
that the dot is large that its energy spectrum forms a continuum. The electrostatic potential of confined 
electrons inside the dot is given by:
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ϕ(Q) = Q/ C + ϕext (62)

where Q is the charge on the dot, C is the capacitance between the dot and the rest of the system, and 
ϕext is the external potential due to the external charge of the system so that Qext=Cϕext. This external 
charge is distributed between the surface gate, ionized donors and reservoirs. Integrating equation (62) 
the on the dot is:

U Q q dq
Q

( ) ( )= ∫ ϕ  
0

 (63a)

As the dot is weakly coupled to the system, the total number of electrons on the dot should be integer 
multiples of e or Q = Ne. Therefore, (63a) yields:

U(N) = e2N2/2C - eN.ϕext (63b)

The external charge Qext may be varied continuously by means of the gate VG (in contrast to Q which is 
restricted to integer multiples of e). Rearranging equation (63b) and substituting for ϕext, the electrostatic 
potential U(N) takes the following parabolic form:

U(N) = (eN - Qext)
2/2C - Qext 

2/2C (63c)

Figure 42 shows the electrostatic potential U(N) as depicted by equation (63c) and plotted for a series 
of different values of Qext as a function of N. The values of U(N) for which N is an integer are marked 
with black dots and labeled by the number of electrons trapped in the quantum dot. It can be seen from 
equation (63) for Qext = Ne, and from Figure 39, that when the dot contains N electrons the electrostatic 
potential is zero and ϕ(N)=0. Hence, the electrostatic potential U(N) is a minimum and the correspond-
ing minimum energy to add an extra electron is:

U(N+1) – U(N) = e2 / 2C (64)

Figure 41. Transmission and conductance of a quantum dot
From (Barnes, 2008).
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This energy should be supplied by the surrounding reservoirs (electrode bias) so that electrons can 
hop onto the dot and overcome its resistance. This phenomenon is referred as the Coulomb blockade 
because it is the Coulomb interaction that is preventing electrons from hopping onto the dot. The energy 
difference ΔU = U(N+1)-U(N) = e2/2C is called the Coulomb blockade energy (or minimum addition 
energy).The addition spectrum of the dot is shown in Figure 43. As shown in figure, as more positive 
applied VG, the Coulomb blockade energy decreases. Therefore, Qext increases and aproches zero when:

Qext = e (N + ½) (65)

At this point, it takes as much energy to have N electrons in the dot as it does to have N+1 electrons 
and electrons may hop onto or off the dot without facing any Coulomb blockade. The resistance of the 
dot is then the sum of the resistances of the two contacts and the dot itself (classical resistance value). A 
current will flow through the dot once the DC bias between reservoirs is larger than the minimum addi-
tion energy. Once Qext increases near the value Qext = e(N+1=2) there will be N+1 electrons trapped in 
the dot and again it will be Coulomb blockaded since there will be a gap allowing the N +2nd electron. 
The sequence then repeats itself and the resistance becomes very large until Qext = e(N+1=2), where it 
is again equal to the classical resistance of the dot. Therefore, the conductance of a small metallic dot, 
as a function of an external gate voltage, consists of a series of equally spaced isolated peaks occurring 
when there is no Coulomb blockade. The external potential ϕext has a linear dependence on the surface-
gate potential VG so that for some change in gate voltage ΔVG: Δϕex t= αΔVG, between two peaks in con-
ductance, one extra electron enters the dot and ΔQext = e. Therefore the spacing between conductance 
peaks is given by:

ΔVg = e / α C = e / Cg (66)

where Cg is the capacitance between the gate and the quantum dot.

Figure 42. Schematic of a quantum metal dot, which is weakly coupled to two reservoirs (right and left) 
via tunnel barriers and capacitively coupled to metallic gate (below). Electrons can tunnel only at VG 
for which U(N+1) - U (N) = e2/2C
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5.2 Quantum Coulomb Blockade

We have seen that the Coulomb blockade is originally a classical effect. However this phenomenon still 
appears in quantum dots. In these systems, the potential energy U(N) is a sum of the Coulomb charging 
energy and the energies of discrete levels in the dot as follows:

U N
e N Q
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C
Eext ext

i
i

N

( )
( . )

=
−

− +
=
∑

2 2

12 2
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Here Ei represents the single-particle energy of the ith state measured from the minimum effective 
potential of the quantum dot. Thus, as the dot fills, its effective potential changes and the single-particle 
spectrum changes. The minimum addition energy Emin of a quantum dot containing N electrons is:

Emin = U(N+1) – U(N) = [e2(N + ½) – e Qext]/C + EN+1 (68)

which depends on the single-particle energy of the (N+1)th state (EN+1). In the classical case, the addition 
energies above Emin form a continuum. In the quantum case they form a discrete set of energies Ei

’ = Emin 
+Ei –EN+1. Figure 43 shows the addition spectrum at a series of different Qext. Once the DC bias between 
the electrodes is larger than Emin electrons can tunnel through the dot. As the DC bias is increased and 

Figure 43. Potential energy U(N) of electrons in a quantum dot as a function of N and VG for a series of 
Qext. The figure below shows the addition spectrum of the quantum dot. Upper bands means addition of 
electron, Lower bands means removal of electron
From Quantum Electronics in Semiconductors (Barnes, 2008).
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successive single-particle states pass beneath the chemical potential of any electrode, the conductance 
increases in a series of steps. At zero bias, a peak in the conductance of a quantum dot occurs when its 
addition energy is zero. However, away from resonant peaks, interference due to multiple scattering may 
aid the Coulomb blockade and makes it more resistive than the classical case. Therefore, the external 
charge at a conductance peak is given by:

Qext = e(N + ½) + (C/e).EN+1 (69a)

Therefore, between the Nth and (N +1) th resonant peaks, we have:

e ΔQext = e2 + C.(EN+2 - EN+1) (69b)

The spacing between peaks in gate voltage is given by:

eΔVg = e2/Cg + a-1(EN+2 - EN+1) (70)

The single-particle energies therefore modulate the resonant peak positions confirming that the 
oscillatory structure in the spectra is actually due to the single-particle spectrum of the quantum dot.

5.3 Effect of Magnetic Field on Quantum Dot (Fock-Darwin Model)

Quantum dots (QDs) that are subject to a magnetic field are an interesting research subject since many 
years. A popular approach to study the energy spectrum of such systems is the assumption of a two-
dimensional parabolic confinement potential that is subject to a perpendicularly oriented magnetic field 
which introduces a further parabolic confinement. This approach makes sense for self-assembled quantum 
dots that have a strong confinement in the growth direction and a weak (parabolic) confinement in the 
plane perpendicular to it. We can then solve the single-particle 2D Schrödinger equation in the transverse 
(x-y) plane for a 2D parabolic confinement potential with a uniform magnetic field applied along the 
z-direction. The Hamiltonian which includes the magnetic field effect reads:

H= ½ ħ2 {(∇+jgA).M(x).(∇+jgA)} (71)

where the g-factor g = e.l.h and A is the vector potential. The parabolic confinement is typically chosen 
so that the energy separation between states ħωo is a few meV (without magnetic field) where ωo is the 
oscillator frequency of the parabolic confinement.

Without magnetic field, and neglecting the twofold spin degeneracy, the ground state is not degener-
ate, the second level is twofold degenerate, the third level threefold, and so on.

En,l = (2n+ |l| -1)ħωo (72)

where n = 1, 2, 3… is the radial quantum number and l = 0,±1,±2,.. the angular momentum quantum 
number.

If the magnetic field is present, then the eigenvalues (energies) are
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En,l = (2n+ |l| -1.ħ.[ωo
2 + ¼ ωc

2]½ – ½ l.ħωc (73)

where ωc=eB/m is the cyclotron frequency. Thus the degeneracy of the 2D harmonic oscillator can be 
lifted as seen in the calculated energy spectrum in figure 44. Here the energy levels are plotted as a 
function of the magnetic field magnitude. This relation is called the Darwin-Fock spectrum.

6. KONDO EFFECT

The Kondo effect is one of the most important effects of strongly correlated electrons. The Kondo effect 
appears as a dramatic increase of the conductivity of metals and certain quantum structures, when the 
temperature is decreased below a characteristic temperature, called the Kondo temperature. In particular, 
the Kondo effect has attracted great interest in semiconductor quantum dots. In fact, the simplest Kondo 
system consists of a localized, spin-½ electron coupled to a Fermi sea of electrons and this system can 
be realized with a quantum dot (QD). Below a certain temperature, the so-called Kondo temperature 
(TK), a many-body singlet state is formed between the QD spin and the surrounding conduction elec-
trons. This state adds a resonant level at the Fermi energy of the electrodes enabling the tunneling of 
electrons across the QD. Such a Kondo resonance can overcome the Coulomb blockade and enhance the 
conductance. Generally speaking, if the number of electrons confined in a quantum dot is odd, then the 
measured conductance increases due to the Kondo effect at low temperature. Otherwise, the conductivity 
will continue to decrease as temperature is decreased.

For metals with magnetic impurities the Kondo effect is also seen as an increase in the resistance (not 
conductance) for decreasing temperature. The phenomenon has been first explained by Jun Kondo in 

Figure 44. Calculated the particle energy levels of a 2-D parabolic confinement potential (ħωo=3meV) 
as a function of magnetic field. States labeled by (n; l) refer to radial quantum number n and angular 
momentum quantum number l
After (Harrison &, 2011).
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1964. It was discovered in diluted magnetic alloys as a resisitance minimum in temperature dependence. 
The Kondo effect in both metals and semiconductor quantum dots is illustrated in figure 45. As shown 
in figure, the Kondo effect appears below the so-called Kondo temperature, TK, which corresponds to the 
binding energy of the Kondo singlet state. It can be expressed in terms of the dot parameters as follows 
(Kouwenhoven & Glazman, 2001):

TK = [(h.Γ.Ec)/2kB ].exp [π.Eo(Eo+Ec)/h.Γ.Ec] (74)

where Γ is the tunnel rate to and from the quantum dot, h is Planck’s constant and Eo is the energy level 
on the dot relative to the Fermi energy of the surrounding leads.

The Kondo effect may also arise from the interactions between a single magnetic atom and the 
many electrons in a non-magnetic metal. This leads to a Kondo effect caused by the interaction between 
a localized moment of doping atoms and conduction electrons. In this case, the Kondo effect can be 
understood as a magnetic exchange interaction between a localized impurity spin and free conduction 
electrons. In order to minimize the exchange energy, the conduction electrons tend to screen the spin of 
the magnetic impurity and the ensemble forms a spin singlet. In fact, we have seen so far that a quantum 
dot (with poor/tunneling leads) has Coulomb blockade peaks in the conductance as a function of gate 
voltage every time an energy level of the dot is aligned with the Fermi level of the leads.

In addition to spin-degeneracy, Kondo effect may be also attributed to other degrees of freedom of a 
singlet state. The degeneracy may also arise from degenerate orbitals. If the orbital degree of freedom 
is conserved during tunneling, then the orbital quantum number can behave as a spin, and we call this 
pseudospin. The orbital magnetic moment can be then thought of as a pseudospin, because it behaves 
similar to the electron spin. The orbital pseudospin leads to the so-called orbital Kondo (O-Kondo) ef-
fect, which appears at high magnetic fields.

Actually, there are many types of Kondo effect that arise in the presence of orbital degeneracy, such as:

• Two-level spin Kondo effect (TLS-Kondo),
• Orbital Kondo effect (O-Kondo),
• Singlet-triplet Kondo effect (ST-Kondo) and
• SU(4) Kondo effect.

Figure 45. Illustration of the Kondo effect in metal and quantum dots
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Note that the presence of degeneracy in the ground state is essential to all Kondo effects. The so-
called SU(4) Kondo effect, is due to the combined spin and pseudospin degrees of freedom, which 
manifested as a multiple splitting of the Kondo resonance at magnetic finite fields. The Kondo effect is 
a well-defined quantum phenomenon, so that it has been an attractive testing tool for the new analytical 
models of quantum carrier transport. In addition, the Kondo effect helps us to understand the electronic 
properties of a wide variety of materials where the interactions between electrons are particularly strong. 
Previously, physicists could infer the role of the Kondo effect from the measurement of resistance and 
magnetic susceptibility. Nowadays, the scanning tunneling microscope (STM) has been used to image 
and characterize magnetic impurities on the surface of metals, opening a new avenue of research into 
the Kondo effect.

7. EFFECT OF STRAIN ON LDS

A crystal experiences strain when it undergoes some stress which raises its internal energy. Strain can 
be used to alter and optimize the electronic and optical properties of quantum wells, wires and dots by 
varying the extent of the electronic wave-functions and energy levels. Consequently, the conduction 
and valence band edges change as well. Therefore, an exact knowledge of the strain fields is of great 
importance for the design and development of electronic and optoelectronic devices.

The components of the strain tensor ε, are defend as

εij = ½ (∂ui/∂x+ ∂uj/∂x) = εji (75)

where i, j = 1, 2, 3. The vector u(x) describes the displacement due to lattice deformations. The diagonal 
elements of the strain tensor measure the extensions per unit length along the coordinate axes (positive 
values mean tensile strain, negative values compressive strain), i.e. the lengths of the considered volume 
element change while the angles remain constant. In contrast, the off-diagonal elements measure the 
shear deformations where the angles change and the volume remains constant. As the ε matrix is real 
and symmetric, it can always be diagonalized by an appropriate orthogonal transformation. The resulting 
diagonal matrix must not necessarily coincide with the crystal or simulation coordinate system.

The trace of the strain tensor Tr(ε) is equal to the hydrostatic strain, i.e. the change in volume. The 
strain tensor components are obtained by minimizing the elastic energy E

E = ½ ʃ V Cijkl εij εkl dV (76)

where Cijkl is the forth-ranked stiffness tensor. A derivation of the calculation of the strain tensor for 
arbitrary three-dimensional heterostructures can be found in (Hackenbuchner, 2002). The strain tensor 
components in the plane parallel to the substrate plane are independent of growth direction for cubic 
crystals and are given by the lattice mismatch
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ε// = (asub - alayer) / alayer (77)

where asub and alayer are the lattice constants of the substrate and the strained layer. Figure 46 shows how 
a deposited layer of InAs is strained when deposited on a GaAs substrate.

The strain analysis in nanostructures is usually implemented in quantum transport simulation as a 
pre-processing step. In the strain calculation, we calculate the total energy of the crystal and find the 
atoms position that minimizes the total elastic energy. The figure 46 depicts the effect of strain on band 
structure of heterojunction structure (GaAs-InAs-GaAs quantum well), as obtained by NEMO simula-
tor (Steiger, et al, 2011). Note how the surface passivation got rid of surface states, which appear in the 
band gap (at the left figure).

8. SUMMARY

There is a current growing technological interest in low-dimensional systems (LDS’s), driven mainly 
by the push for new devices and for ever-greater integration in the electronics industry. In LDS, free 
electrons are only permitted to move in one or two dimensions. For instance, the electrons filling the 
thin inversion layer in a conventional MOSFET are only permitted to move freely in the 2 dimensions 
of the inversion layer. The motion of free electrons in the third dimension (normal to the layer plane) 

Figure 46. Schematic illustration showing how different materials with different lattice constants show 
strain

Figure 47. Effect of strain on band structure of heterojunction structure, as obtained by NEMO simula-
tor. Note how the surface passivation got rid of surface state (in the left)
After Steiger, et al, (2011).
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quantized. The same applies to graphene, which is a two-dimensional crystalline form of carbon. Unlike 
electrons in other materials, the electrons in graphene move almost ballistically over great distances, even 
at room temperature. As a result, the ability of the electrons in graphene to conduct electrical current 
is 10 to 100 times greater than those in a normal semiconductors at room temperature. A quantum dot 
may be considered as a 3-D quantum well, with no degrees of freedom at all and with quantized levels 
in three directions.

Table 2 and Figure 49 summarize the dispersion relations E(k) and density of states (DOS) of para-
bolic semiconductors.

In this chapter we investigate the carrier transport phenomena in low dimensional semiconductor 
structures and nanodevices. We describe different structures (quantum wells, quantum wires and quan-
tum dots). We also describe various quantum effects that take place within such nanostructures, such 
as quantum Coulomb blockade, Aharonov–Bohm, Shubnikov-De Haas oscillations and Kondo effects.

The conductance of an LDS system, including a quantum dot, may be calculated using the Landauer 
formalism (for 2-terminal devices) or the generalized Landauer-Büttiker formalism (for multi-terminal 
devices). This formula, was initially developed for electronic transport in 1-D ballistic conductors. Ac-
cording to this formula, the electrical current from node A to node B of a ballistic conductor is given by

Figure 48.  

Table 2. Dispersion relations and density of states of low-dimensional semiconductors
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where e is the electron charge, gs=2 due to spin degeneracy, h=Planck’s constant, EFA and EFB are the 
Fermi levels of node A and node B, M(E) is the number of propagating modes in the channel, f’ is the 
deviation from the equilibrium electron distribution (perturbation), and T(E) is the transmission prob-
ability (T=1 for ballistic transport).

Figure 49. The dispersion relations and density of states (DOS) of low-dimensional semiconductors
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ENDNOTES

1  Metal-Oxide-semiconductor (MOSFET) devices are usually fabricated on <100> silicon wafers.
2  The band structure of graphene will be presented all together with carbon nanotube in the next 

Chapter. However, we discuss the transport across graphene, here, because it is actually a 2D 
structure.

3  In order to accelerate the convergence of such highly nonlinear system, the Newton method is 
usually adopted. But this requires the numerical evaluation of the Jacobian terms, which is too 
expensive, since they cannot be derived analytically.
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1. OVERVIEW AND CHAPTER OBJECTIVES

The interest in carbon nanotubes (CNTs) and their transport models is motivated by their many interesting 
electronic properties. The search for new high-speed devices has moved CNTs into the focus of current 
research. In fact, nanotubes have become at the heart of nanoelectronic devices. In this chapter we study 
the transport of charge carriers (electrons and holes) in nanotube structures. Nanotubes and nanowires 
with dimensions on the nanometer length scale cannot be treated as classical conductors because their 
dimensions are much smaller than the mean free path length (between successive collisions of electrons). 
The length of these structures is also large for the full quantum mechanical treatment as they consist of 
thousands of atoms. For these reasons, nanotubes are sometimes called quasi-one-dimensional (Q1D) 
structures or quantum wires.

As a starting point, we present the notion of carbon nanotubes, which are rolled sheets of graphene. 
We know that graphene is a two-dimensional crystalline form of carbon: a single layer of graphite carbon 
atoms arranged in hexagons. Graphene has unusual electronic properties, which arise from the fact that 
the carbon atom has four electrons, three of which are tied up in bonding with its neighbors (forming 
sp2 ‘σ-bonds’). But the fourth electrons are in orbitals (pZ -orbitals) extending vertically above and be-
low the plane, and the hybridization of these electrons mix together forming delocalized electron states 
(‘π-bonds’). These states are responsible for the electrical conductivity of graphene.

In the following sections, we present the basic properties of nanotubes and nanowires, such as silicon 
nanowires (SiNW) and carbon nanotubes (CNT’s) and describe the physical transport mechanisms of 
charge carriers along them, with ample examples of real devices.

Upon completion of this chapter, students and readers will be able to

• Differentiate between nanotubes and nanowires.

Carrier Transport in 
Nanotubes and Nanowires
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• Understand the notion of carbon nanotubes (CNT’s) and define their main types and basic 
properties.

• Explain the concepts of a quantum wires and their transport mechanisms.
• Describe the nanotubes-based devices, their properties and applications.
• Calculate the I-V characteristics of carbon-nanotube FET transistor.

2. NANOTUBES AND NANOWIRES

Nanotubes are hollow one-dimensional form of carbon or other materials with nanometer diameter. 
Nanowires are solid materials in the form of wire with diameter smaller than 100 nm. Their name is 
derived from their size, since the diameter of a nanowire or nanotube is on the order of a few nanometers. 
Nanowires and nanotubes are the most confining electrical conductors. Nanotubes could be either single 
walled (SWNT) or multi-walled (MWNT) consisting of nested tubes with outer diameters ranging from 
5 to 100 nm. A large percentage of researchers attribute the discovery of hollow, nanometer-size carbon 
tubes (CNT) to the Japanese Sumio Iijima of NEC in 1991. CNT’s can be formed from graphene sheets 
which are rolled up to form tubes.

Currently, nanotubes are synthesized by different techniques. CNT synthesis can be performed near 
the focus of a high-power laser, in between two arcing graphite electrodes, or in a hot furnace full of 
hydrocarbon gas.

However, there are three famous methods for the synthesis of SWNTs: pulsed laser vaporization 
(Laser Ablation), arc discharge growth, or chemical vapor deposition (CVD) on supported or gas phase 
catalysts. The basic prerequisites for the formation of SWCNTs are an active catalyst, a source of car-
bon, and adequate energy. Most of these methods take place in vacuum or with gases. For the matter of 
completeness of this Chapter, we review these techniques and their growth methods.

3. CARBON NANOTUBES

Carbon nanotubes (CNT’s) are long, thin cylinders of carbon or graphite sheets. The mono-atomic layers 
of graphite are sometimes called graphene sheets.

Figure 1. Schematic of the transport of a quasi-free electrons in a graphite sheet
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Nanotubes have different electronic, thermal, and structural properties that change depending on their 
different kinds. Nanotubes may have single cylindrical wall and can also have multiple walls.

The nature of the bonding of a nanotube may described by quantum chemistry, specifically, orbital 
hybridization. The chemical bonding of nanotubes is composed entirely of sp2 bonds, similar to those 
of graphite. This bonding structure, is stronger than the sp3 bonds found in diamonds, and provides 
molecules with a unique strength.

3.1 Single-Wall Nanotubes (SWNTs)

SWNTs are important type of CNTs because they exhibit electric properties that are not shared by other 
nanotube variants. SWNT’s can be conceptualized by wrapping a one-atom-thick layer of graphite 
(graphene) into a seamless cylinder. The way the graphene sheet is wrapped is represented by a pair of 
indices (n, m) called the chiral vector indices. After rolling up a sheet of graphite in a certain direction 
we can determine the parameters characterizing the formed tube. Most SWNTs have a diameter close 
to 1nm, with a tube length millions of times longer. Carbon nanotubes form different types, which can 
be described by a chiral vector R.

R= n.a1 + m.a2 (1)

Figure 2. SEM picture of grown nanotubes
After Levchenko et al., (2013).

Figure 3. Schematic of a carbon nanotube (CNT) and how it may be formed from a rolled graphene 
(graphite sheet)
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where n and m are integer numbers and a1 and a2 are unit vectors of the hexagonal lattice. The integer 
indexes n and m denote the number of unit vectors along two directions in the honeycomb crystal gra-
phene lattice. The unit vector a1 lies along the zigzag line. The other vector ma2 has a different magnitude 
than na1, but its direction is a reflection of a1 over the armchair line. When added together, they equal 
the chiral vector R, as shown in Figure 4

In order to understand the meaning of chirality, imagine that the nanotube is unraveled into a planar 
sheet, and draw two lines along the tube axis. Next, find any point on one of these two lines that intersects 
one of the carbon atoms (point A). Then, draw the armchair line, which travels across each hexagon, 
separating them into two equal halves. Once the armchair line is drawn, we find a point along the other 
tube axis that intersects a carbon atom nearest to the armchair line (point B). Now connect A and B to 
get the chiral vector, R. The wrapping angle ϕ is the angle between R and the armchair. It is given by:

ϕ = 300 - θ,  (2a)

where cos (θ) = R.a1 / |R| a1, or
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If R lies along the Armchair line, then ϕ = 0° (n=m) and the nanotube is an armchair nanotube. If 
ϕ = ±30°,(n=0 or m=0) then the tube is of the zigzag type. Otherwise, if 0° < |ϕ | < 30° then it is a 
chiral tube.

The chirality affects the properties of the nanotube, like its conductance. A SWNT is considered 
metallic if n=m. If the value n-m is divisible by 3, the nanotube is semiconducting, with very small 
bandgap. Otherwise, the nanotube is moderate semiconducting. Thus, two-thirds of fabricated nanotubes 
are expected to be semiconducting, while the other third is metallic. Given a chiral vector (n,m), the 
length of chiral vector is given by:

Figure 4. Miller indices and chirality of single wall nanotubes
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L R a n m nm= = + +| | 2 2  (3)

where a =√3ao and ao = 1.42nm is the distance between neighboring carbon atoms in the flat graphene. 
In addition, the diameter of a carbon nanotube can be determined using the relationship:

d
L a

n m nm= = + +
π π

2 2  (4)

Example 1

Draw a schematic showing the CNTs with R(11,11), R(18,0), R(14,7), and mention their type

Solution

The 1st CNT has n = m =11 (armchair). The length of the chiral vector

L = |R| = a√(n2 + m2 + n.m) = 11√3 a 

The 2nd CNT has n =18 and m =0 (Zigzag). The length of the chiral vector

L = |R| = a√(n2 + m2 + n.m) = n a =18 a 

The 3rd CNT has n =14 and m =7 (Chiral). The length of the chiral vector

L = |R| = a√(n2 + m2 + n.m) = a √(196 + 49 + 98)= 7a √7 

Table 1.  
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In conclusion, the electronic characteristics of a SWNT is essentially independent of length but 
strongly dependent on its transverse physical structure, which is denoted by a pair of integers (n, m). 
Figure 5 depicts the basic types of SWNTs, according to their chirality.

Unfortunately, the specific growth of distinguished semiconducting or metallic carbon nanotubes 
(CNT’s) is a challenge (although some post-synthesis separation methods exist, according to our cur-
rent knowledge). Also, the well-controlled doping of CNTs is not easy. However, the semiconductor 
nanotubes and nanowires (like SiNW) overcome these limitations.

SWNTs are unique materials for several reasons: they are prototypical quasi one-dimensional quantum 
wires composed of a single element (e.g., C or Si) or compound materials (like SiGe), with walls only 
one atom thick and tens of atoms in circumference.

Figure 5. Types of nanotubes, according to their conductivity

Figure 6. Single-wall gold nanotube (SWGNT), with chiral vector (5, 3)
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3.2 Energy Band Structure of Graphene and Carbon Nanotubes

The electronic structure of carbon nanotubes can be derived from the band structure of graphene. The 
band structure of graphene is shown in Figure 7. In graphene, the energy of an electron with wavenumber 
k is given by:

E k
E w k

s w k
p o

o

( )
( )

( )
=

⋅∓

∓

γ

1
 (5a)

Here, γ0 is the energy overlap integral1 between nearest-neighbor carbon atoms, which is typically 
-3 eV < γ0 < -2.5 eV. Also, Ep is the site energy (orbital energy) of the 2pz atomic orbital, and s0 is the 
overlap of the electronic wave function on adjacent sites. The geometrical function w(k) is given by 
(Saito and Kataura, 2001):
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where ao ≈ 1.42 nm is the lattice constant (interatomic distance).
Figure 7 depicts the calculated energy dispersion E(kx, ky) of graphene using the parameters of Saito 

and Kataura (2001), with s0 = 0.129. As shown in figure, the energy gap is zero at the K-point (the 
Fermi point), where the wavenumber k = (4π/3a) and a =√3ao. This point is called the Fermi point and 
makes two thirds of the nanotubes metallic. Otherwise, if the CNT miss the Fermi point, the nanotube 
is semiconductor. Near the Fermi points, the E(k) is conic and the slope of the cones is: aoγo√3/2.

Near the Fermi level, the dispersion relation for electrons and holes is linear. Since the effective masses 
are given by the curvature of the energy bands (m*=ℏ2/∂2E(k)/∂k2), this corresponds to zero effective 
mass. The equation describing the excitations in graphene is formally identical to the Dirac equation 
for massless fermions which travel at a constant speed. Therefore, the connection points of the cones 
(Fermi points) are sometimes called the Dirac points. This gives rise to interesting analogies between 
graphene and nuclear particles.

Figure 7. Energy bands structure of graphene, the upper part refers to the conduction band, the lower 
part to the valence band
According to (Saito & Kataura, 2001)
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Tight Binding Model for Graphene

The graphene plane is a hexagonal lattice with two atoms per unit cell (say A, B) and a basis defined by 
two unit vectors (a1, a2). Applying the condition ai·bj=2δi,j allows us to obtain the reciprocal lattice vec-
tors (b1, b2). Every carbon atom possesses four valence electrons (two 2s and two 2p electrons). When 
the atoms are placed onto the graphene hexagonal lattice the electronic wave functions from different 
atoms overlap. However, the overlap between the pz orbitals and the s or px and py electrons is strictly 
zero by symmetry. Consequently, the pz electrons, which form the π bonds in graphene, can be treated 
independently of other valence electrons. Within this π-band approximation, the A atom (or B atom) is 
uniquely defined by one orbital per atom site pz(r−rA) or pz(r−rB).

To derive the E(k) relation, the corresponding Schrödinger equation has to be solved, and by applying 
the Bloch theorem, the wave functions can be decomposed as follows:

ψ( ) ( ) ( ) ( ) ( )k C r p r C r p r
A kz

A
B kz

B= +  (6a)
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with k is the crystal momentum, l is the cell position index, N is the number of unit cells in the graphene 
sheet and the superscript J = A,B

The E(k) relation is then derived by solving the Schrödinger equation by diagonalizing the following 
2×2 Hamiltonian matrix:

H E H

H H E
AA AB

BA BB

−
−












 (6c)

Neglecting the overlap <A|B>, restricting interactions to nearest neighbors only and setting HAA = 
HBB = 0 as energy reference the dispersion relation are then:

Figure 8. Unit cell in real and reciprocal space of graphene
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where γ0 is the nearest-neighbor hopping energy and ao is the lattice constant. These are the π and the 
π∗ bands in the TB model (Wallace, 1947). One of the above two bands (which represent the valence 
and the conduction bands), is completely filled and the other completely empty. Moreover they inter-
sect only in two points, known as Dirac points, in the BZ. For this reason graphene is a semi–metal 
with a one–dimensional Fermi surface. For the same reason CNTs are predicted to be either metallic 
or semiconducting according to whether or not the Dirac points belong to the set of allowed k–points. 
The predictions of the TB model are partially confirmed by ab–initio calculations even if some differ-
ences appear. The limitations of the TB model of SWCNTs has been discussed in details in (Jamal & 
Mominuzzamanl, 2015)

Note 1: Carbon Bonds

All carbon forms (including graphite) have some sort of tetravalent bonds. Since the 2s and the 2p orbitals 
are very close in energy, one electron from the 2s orbital jumps to the 2pz orbital. The 2s and three 2p 
orbitals mix together and give rise to four new different types of orbitals, called sp, sp2 and sp3 hybrid-
izations. The most basic forms of carbon structures are: graphite, with sp2 bonding, and diamond, with 
sp3 bonding. Note that carbon in graphite sheets (graphene) is different from diamond carbon. Carbon 
in graphite is bonded in such a way that one electron per carbon atom is freed up to move freely, rather 
than stay near its base atom. This is the situation in metals, where some electrons are not bound to their 
atom and can easily be pulled under the influence of an electric field.

Therefore, graphite conducts electricity due to the presence of such delocalized electrons between 
layers. Actually, there are two types of covalent bonds in carbon: sigma (σ) and pi (π) bonds:

• Sigma (σ) Bond: Is a covalent bond, which is linear aligned along the plane containing the atoms. 
Sigma bonds are strong and the electron sharing is maximum.

• pi (π) Bond: Where electron orbitals overlap laterally. The resulting overlap is not maximum. It 
follows that the π-bonds are weak. Example: Graphite has 3 σ-bonds and 1 π-bond.

Energy Band Structure of a Carbon Nanotube

We know that carbon nanotubes are rolled sheets of graphite sheets (graphene), and may be metallic 
or semiconducting according to their geometry and chirality. In fact, the unique energy band structure 
of graphite allows for it to behave as both a metal and a semiconductor. In order to know the electronic 
structure and properties of carbon nanotubes one must apply specific quantization conditions, since 
electrons are bound in the circumferential direction of the tube (Chiral vector R (n,m) direction). When 
the graphene sheet is rolled in this direction to form a CNT, the resulting CNT is metallic. This result 
can be obtained from a variety of considerations, starting from the so-called Zone Folding Approach 
(ZFA), based on knowledge of the electronic properties of the graphene, to the direct study of nanotubes 
using Tight–Binding (TB) or Density functional theory (DFT) approaches.
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Zone Folding Approach (ZFA)

In the ZFA the wave–functions ψn = exp[j(kr.r+kzz)].un(r) of the graphene sheet are used to describe 
electrons in CNTs assuming that the curvature of the sheet has negligible effects. We also assume the 
tube direction is the z-axis. Then the only difference with respect to graphene, is the quantization of the 
angular momentum Lz= R.kr. Accordingly, only the wavefunctions ψn(r) are considered in the ZFA model.

When the boundary conditions are applied, we get specific k–points in the reciprocal space (R.kr=π 
dkr=2π). Therefore, each of the graphene bands (π, π*, σ, σ*) splits into a number of one-dimensional 
subbands (equal to the number of graphene hexagons in the nanotube unit cell or N=(n2+nm+m2)/d). 
The k-points that respect the boundary conditions are represented in Figure 9. The shown energy sur-
face of the valence-π band and conduction−π∗ band of graphene, are cut by the allowed k–points which 
can be used to construct the CNT band structure. As shown, the π-π∗ bands are joint at six points lying 
at the Fermi points. In other directions in k-space, as in the Γ-M direction, the band structure has a 
semiconductor-like band gap.

Although the predictions of the ZFA give a good description of the CNT properties, but some cor-
rections have to be considered. For instance, the tube curvature in SWNTs and the tubes interaction in 
MWNTs should be included. Also, the position of the so-called Dirac points has to be shifted in the Bril-
louin Zone due to curvature effects. In addition, the ZFA results depend on the method used to compute 
the band structure of graphene. The energy surfaces in the above figure have been calculated within the 
TB model, for example. The limitations of the TB model to calculate the dispersion relation of SWNT 
has been discussed in the literature, for instance in Reich et al (2000) and Jamal & Mominuzzaman 
(2015). Within the TB+ZFA scheme, we can show that all (n,n) and (3n,0) CNTs are metallic, with n 
any integer, while all the remaining (n, 0) tubes are semiconducting. The general rule is that a CNT is 
metallic if n−m is a multiple of 3. Figures 10, 11 show the E(k) relation in 2-dimensional k-space and 
the density of states for metallic and semiconducting nanotubes.

The spikes in the density of states are called van Hove singularities (vHSs). They arise from the quasi 
one-dimensional character of electronic motion in systems with very high aspect ratios. Each van Hove 
singularity is labeled with the index of the subband to which it belongs. These singularities are of great 
interest for optical transitions, in a variety of optical phenomena.

Figure 9. Illustration of the the zone-folding approach (ZFA)
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Energy Gap of Carbon Nanotubes

Carbon nanotubes do not all have the same band gap. For each diameter there is a set of allowed valences 
and conduction states. As nanotube diameters increase, more states are allowed. The relation between the 
energy gap (Eg, in eV) and CNT diameter (d, in nm) is approximately given by the following relation:
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where ao = 1.42 nm is the distance between neighbor carbon atoms in a flat graphene sheet and Eo =2.7 
eV is their binding energy. In this way, different-size nanotubes can have bandgaps as low as zero (like 
a metal), as high as the band gap of silicon, and maybe in between.

Figure 10. Energy band diagram in 2-dimensional k-space of metallic and semiconductor nanotubes

Figure 11. Energy-band structure and density of states of metallic nanotubes
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Figure 12a and 12b illustrates the energy gap of a SWNT as a function of its diameter. The figure 
shows the Katuara plots for the same parameter. The Katuara plot is a theoretical graph that was de-
signed by Hiromichi Kataura in 1999 to rationalize some experimental findings. It relates the nanotube 
bandgap energy and its diameter. The oscillating of the of the Kataura plot branches reflects the strong 
dependence of the SWNT properties on the chirality (n, m) index, as well.

3.3 Effect of Magnetic Field on CNT Band Structure

At zero magnetic field, the low energy band structure of carbon nanotubes is doubly degenerate. This 
orbital degeneracy plays a crucial role in the transport properties of carbon nanotubes. In the presence 
of a magnetic field parallel to the CNT axis, Bz, the quantization condition becomes:

Rk i
o

. ( )+ =2 2π
φ
φ

π  (8)

where ϕ = ¼ π.d2Bz is the magnetic flux, ϕo = h/e is the flux quantum and 2πϕ/ϕo is the Aharonov-
Bohm phase acquired by the electrons while travelling around the nanotube circumference. In fact, the 
Aharonov–Bohm effect shows that the energy dispersion (E-k) changes periodically with magnetic flux.

Applying an axial magnetic field Bz will shift the CNT subbands away from the cone vertices, and 
hence opening a bandgap. Therefore, a metallic nanotube can be transformed to a semiconducting nano-
tube by applying a magnetic field, and vice versa.

∆E ev dB g B
g F z B
= ± ±¼ ½ . �µ  (9)

where B isb the total magnetic field, Bz is the magnetic field components in the z-direction, g is the 
electron g-factor, and μB is the Bohr magneton. For metallic CNTs, a finite field Bz doesn’t change the 
subband degeneracy because the two subbands passing through the equivalent k-points (K1, K2) are 
shifted in the same direction. The case of semiconducting nanotubes is different, since the equivalent 
k-points are located on opposite sides of the dispersion relation cones (K2 = -K1). Because Bz shifts both 
subbands in the same direction, one subband gets closer to the K2 point, and its band gap decreases, while 
the other subband shifts away from the K1 point, thereby increasing its band gap. The subband splitting 
can be thought of as an orbital splitting due to electrons with opposite orbital magnetic moments, like 
the Zeeman splitting for electrons with opposite spin magnetic moment.

3.4 Energy Band Structure of Silicon Nanowires

The silicon nanotubes (SiNTs) are some sort of hollow SiNWs, with tube-wall-thickness of several 
nanometers. SiNTs are expected to have more potential applications than SiNWs. Recently, crystalline 
silicon nanotubes (c-SiNTs), have been successfully synthesized. Figure 14 shows the shape of SiNW 
and its unit cell.

Silicon nanowires (SiNWs) are direct bandgap materials with a Brillouin zone half the length of that 
of bulk Si along the Δ line. In the conduction band, valley splitting reduces the averaged mobility mass 
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along the axis of the wire, but quantum confinement increases the transverse mass of the conduction 
band edge. For the wire thickness range up to 3nm, the effective mass at the conduction band edge is at 
least 35% heavier than that of transverse mass of bulk Si.

Quantum confinement has the largest effect on the carrier effective masses in the valence band. The 
effective mass at the valence band edge is at least 6 times heavier than that of the bulk in the [100] di-
rection. The effective mass of the next highest band is even heavier. Small energy splitting occurs at the 
conduction band minimum. Figure 16 depicts the energy bands of a 1.54 nm SiNW. For wires greater than 
1.54 nm thick, the 4 bulk valleys which compose the conduction band minimum are split into 3 energies.

Figure 12. (a) Energy gap of carbon nanotube, as a function of tube diameter; (b) Katwara plots for the 
energy gap of carbon nanotube
After (Antram, 2006) and Saito & Kataura (2007).
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4. ELECTRONIC TRANSPORT IN NANOTUBES AND NANOWIRES

Nanotubes and nanowires with dimensions on the nanometer length scale cannot be treated as classical 
conductors and should be considered as quantum wires. In fact, the cross section dimension of nanotubes 
and nanowires is comparable to the mean free path length (between successive collisions of electrons) λm, 
and the phase coherence length (of electron wavefunction) λϕ,. Indeed, many quantum effects appear in 
nanotubes, especially at low temperatures. In fact, nanotubes are a nearly ideal realization of a Luttinger 
liquid, where the Fermi surface is not abrupt, even at zero temperature. Quantum transport effects in 
nanotubes include the Coulomb blockade of conduction (due to interference effects of coherent waves 

Figure 14. Structure of silicon nanowire (SiNW) and its unit cells

Figure 13. Effect of axial magnetic field on the CNT band structure. The vertical lines represent allowed 
kt values intercepting the dispersion cones at K1 and K2. The subband splitting in a semiconducting 
nanotube is shown in d.
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Figure 15. Schematic of energy bands in 1.54nmx1.54nm SiNW
After Zheng et al., (2005).

Figure 16. Effect of tube thickness (σ) on the energy band structure and energy gap of a uniform c-SiNT 
of diameter D= 1.8 nm
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of carriers), resonant tunneling through energy levels, Kondo effects, and effects of ferromagnetism and 
superconductivity. However, the length scale of nanotubes is typically too large for the full quantum 
mechanical treatment. Therefore they are sometimes called mesoscopic or quasi one-dimensional (Q1D) 
structures (Datta, 1996).

There are several semiclassical and quantum approaches to study the charge carrier transport in carbon 
nanotubes. The semiclassical approaches include the solution of the Boltzmann transport equation (BTE) 
or its hydrodynamic moments for one or two fluids (π and σ electrons). The quantum approaches include 
the solution of the Schrodinger equation for ballistic transport or the utilization of the Landauer–Büt-
tiker (LB) formalism or the nonequilibrium Green’s functions (NEGF) method or the Wigner transport 
equation (Adessi et al, 2009). The atomistic simulation of CNTFET, using NEGF has also been carried 
out by several authors, e.g., Guo & Lundstrom, (2007) and Kordrostami & Sheikhi (2010).

In the following subsections, we examine quantum transport in carbon nanotubes, including the ob-
servation of quantized conductance as well as diffusion transport and scattering mechanisms. We also 
discuss the magnetic field effects and spin-dependent ballistic transport in carbon nanotubes.

4.1 Ballistic Transport of Charge Carriers in SWNT’s

The electron transport in CNT’s has been extensively studied since their discovery in 1990’s. The quantum 
ballistic transport in nanotubes has been demonstrated by several researchers. Actually, the nanotube 
acts sometimes as a ballistic conductor. Some researchers succeeded to make contacts of nanotube fibers 
with mercury surface and the measurement revealed that the nanotube behaved as a ballistic conductor 
with quantized conductance (Frank et al, 1998). The coefficient of the quantum conductance is found to 
have integer quantized values, such as G0. Some researchers (Sanvito, Kwon, Tománek, and Lambert) 
used a scattering technique to interpret the ballistic quantum conductance of nanotubes and found that 
some of the quantum conductance channels were blocked by inter-wall reactions. As shown in Figure 
17, the nanotube conductance jumps by increments of G0 =2e2/h as additional nanotubes are touched to 
the mercury surface2. The value of G0 was found to be 1/12.9kΩ-.

Figure 17. Quantized conductance (multiples of Go=2e2/ℏ) of a multi-wall nanotube, as a function of 
tube thickness
Adapted from Frank et al (1998).
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In order to understand the transport characteristics of carbon nanotubes, we start with the Landauer 
formula, which describes the conductance of a quasi-1D system. Therefore, the two-terminal conductance 
of a SWNT may be given by (Javey et al., 2003):

G N
e
h

T= ( )
2

.  (10)

where N is the number of conduction channels (transverse modes or subbands) and T is contact trans-
mission coefficient.

For a SWNT, the band structure gives rise to two propagating channels and taking into account the 
spin of electrons, there are 4 channels in total. Therefore, N=4 and the conductance is given by:
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This formula gives the quantized conductance in the ballistic transport case. The conductance of a 
nanotube is corresponding to the following two-terminal resistance
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If the contact is perfect (T =1) and the CNT is scattering free, charge carriers can move through the 
nanotube ballistically, we have then
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Figure 18 show a circuit diagram of an SWNT connected, between two metal leads, to an external 
bias voltage. Figure 19, depicts the quantized conductance of a silicon nanowire (SiNW), as a function 
of the width-to-length (W/l) ratio.

4.2 Diffusive and Ballistic Transport in Nanotubes

In a ballistic conductor, the electrons entering the conductor from one side will be transported to the other 
side without any scattering. Therefore, the conductance of a ballistic conductor that has M subbands at 
zero temperature is given by the Landauer formula (10).

In real experiments, ballistic transport can only be achieved if the tube length is much smaller than 
the electron mean free path (between successive collisions and diffusion events). Therefore, transport in 
semiconducting SWNT’s has been previously interpreted as diffusive, with a low mobility (~20 cm2/Vs). 
However electrostatic force microscopy (EFM) and low temperature transport measurements indicate 
that the conduction is limited by a series of large transport barriers.
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In very long semiconducting nanotube, where the resistance is dominated by intrinsic scattering pro-
cesses, and not the contacts, an extremely high mobility is observed (20,000 cm2/Vs at room temperature), 
which is greatly exceeding the carrier drift mobility of known semiconductors. Actually, the nanotube 
acts sometimes as a ballistic conductor. Some researchers succeeded to make contacts of nanotube fibers 
with mercury surface and the measurement revealed that the nanotube behaved as a ballistic conductor 
with quantum behavior.

Researchers could measure the resistivity of ropes of metallic SWNT’s with a four-point probe 
technique and found it in the order of 10-4 Ω.cm at 300K. For this reason, the SWNT’s are currently 
considered for revolutionary applications in nanoelectronics. While metallic SWNT’s have been shown 
to conduct electrons ballistically at room temperature, the picture of electron transport in semiconduct-
ing SWNT’s is less clear.

There are two types of barriers can form at the metal/tube interface and increase the contact resis-
tance. The first is a barrier created by an imperfect interface between the contact metal and the nanotube. 
Its resistance is a function of the cleanliness of the interface and the overlap of the metal–nanotube 
electronic states. Both Au and Pd have proven to make good contacts to nanotubes, with near-perfect 
transmission coefficient.

The Schottky barrier can also form at the interface of a metal and a semiconducting nanotube. This 
contact gives rise to nonlinear resistance, which depends on the Schottky barrier height.

Figure 18. Nanotube as a two terminal conductor

Figure 19. Measurement setup and values of the conductance of a nanowire
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In addition, the scattering of charge carriers along the length of CNTs results in a Drude-like resis-
tance, RD ~ L, where L is the length of the CNT. Thus, the total resistance of a SWNT contacted by metal 
leads on both ends is the sum of these contributions: Rt = Ro + Rc +RD.

Figure 21 depicts the conductance of a carbon nanotube, in the so-called field effect transistor (FET). 
The subsequent figure shows the Nanotube differential conductance at zero DC-bias voltage, as a function 
of applied gate voltage, measured at various temperatures. The nanotube has a length of ~20 microns 
between electrodes, and a diameter of 2.2 nm.

The measurement setup, using atomic force microscope (AFM), is shown in Figures 21 and 22. 

Figure 20. Ballistic transport across a nanotube conductor

Figure 21. Conductance of metallic and semiconducting nanotubes, in a field effect transistor (FET) 
configuration. The measurement setup, using atomic force microscope (AFM), is shown above
Zhou et al., (2005).
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4.3 Effect of Lattice Vibrations (Phonons)

At room temperature, the dominant scattering mechanism in, high-quality metallic SWNTs is well known 
to be electron–phonon scattering. Recent measurements have shown also that phonon scattering limits 
the performance of semiconducting nanotube.

At low effective fields, the carrier mobility is dominated by Coulomb scattering, which is effectively 
screened at higher effective fields. At moderate effective fields, phonon scattering determines the mobility. 
As shown in Figure 23, the drift mobility of 79000 cm2/V·s has been measured from a semiconducting 
CNT. This value exceeds those for all known semiconductors. In theory, metallic nanotubes can carry an 
electrical current density of 4×109 A/cm2 which is more than 1,000 times greater than copper. Actually 
the sp2 hybridized bonds of CNTs are typically delocalized, and this explains the extraordinary carrier 
mobility.

Measurements on many semiconducting CNTs yielded the following approximate expression for 
peak mobility (Perebeinos, Tersoff & Avouris, 2005)
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Nanotubes have shown to exhibit strong electron-phonon resonance, and under certain bias and dop-
ing conditions the electron concentration on the tube oscillate at terahertz frequencies. These resonances 
could potentially be used to make terahertz (THz) sources or detectors.

4.4 Effect of Magnetic Field and Spin-Dependent Transport

We have seen in a previous section that applying an axial magnetic field, along the nanotube axis, changes 
the band structure from a metal to a semiconductor or vice versa. The energy gap of a semiconducting 

Figure 22. Nanotube differential conductance vs. gate voltage, in a FET configuration
Zhou et al, (2005).
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CNT is actually reduced as axial magnetic field increases, due to the formation of 2D Landau levels. 
This effect has important consequences on the quantum transport properties of carbon nanotubes

Magneto-resistance measurements can be carried out on individual MWNTs, which exhibit pro-
nounced resistance oscillations as a function of magnetic flux. The quantum oscillation of conductiv-
ity with magnetic field is called the Shubnikov-de Haas effect. Such quantum oscillations of transport 
coefficients are widely used for investigation of the properties of metals and semiconducting nanotubes.

Spin and orbital magnetic moments lead to four-fold degeneracy in band structure and unusual Kondo 
effect in nanotubes (Jarello et al, 2005). Experiments on multiwall carbon nanotubes with ferromagnetic 
contacts demonstrate the capability of nanotubes to sustain coherent spin transport (Sahoo et al, 2005). 
These effects will be discussed in Chapter 9.

4.5 Hydrodynamic Modeling of Carrier Transport in Nanotubes

We have seen that at very low temperatures (below a few Kelvin), the quantum properties of CNTs 
have a strong influence in their transport behavior. However, due to the large size of complex nanotube 
structures, the full quantum methods, such as NEGF, are of limited use for describing the CNT devices. 
Therefore, the semiclassical modelling by the BTE or its hydrodynamic moments may be more adequate 
to capture the electrical behavior of CNT devices (Salahuddin, Lundstrom, & Datta, 2005).

The two-fluid version of the hydrodynamic model was originally developed by Cazaux to model σ-and 
π-plasmons in graphene (Cazaux, 1970) and has been lately used for modelling of SWNTs (Mowarby, 
2008). However, the last work used the time-dependent density functional theory (TD-DFT) to derive 
a two-fluid two-dimensional hydrodynamic model describing the collective electronic response of a 
multiwall carbon nanotube.

In this model, the four carbon valence electrons are sp2 hybridized, with three electrons per atom 
in planar σ-hybridized orbitals, and one electron per atom in out-of-plane 2pz hybridized π orbitals. 

Figure 23. Electron mobility in semiconducting SWNT’s as function of drive voltage (Vth-Vg), at differ-
ent temperatures
After Dürkop, Brintlinger and Fuhrer (2002).
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Since the Hamiltonian is invariant under reflection in the molecular plane, all single electron quantum 
interactions occur only between electrons in the same sp2 hybridized orbital. Therefore, the electrons 
in σ orbitals mainly interact electrostatically with electrons in π orbitals. This behavior is modelled in 
the two-fluid formalism by two electron fluids, called the σ and π fluids, consisting of ¾ and ¼ of the 
carbon valence electrons, respectively.

In the 2-D hydrodynamic model, we consider a CNT consisting of σ and π fluids superimposed on 
a cylinder of radius R, as shown in Figure 24. We employ the jellium approximation, and assume the 
equilibrium electron density no to be constant along and around the nanotube. We also consider electrons 
to be confined to a thin cylindrical shell, such that the equilibrium charge density per unit volume has 
the form ρo(r) = -noδ(r-R). As SWNTs typically have radii of 7A, whereas the atomic radius of a carbon 
atom is 0.7A. This makes the assumption of 2D equilibrium electron density questionable in CNTs. 
Nevertheless, the model can be extended to 3D, using the so-called Kitagawa model (1988), which takes 
into account the radial electron density no(r) in a nanowire. Other variations of the hydrodynamic model 
for metallic and semiconducting CNTs were also developed during the last few years. For instance, For-
estiere, Maffucci & Miano (2010) formulated a hydrodynamic model to describe the dynamic behavior 
of π-electrons in metallic or semiconducting SWNT, below THz frequencies. Like previous efforts, the 
investigations were dedicated for the study of electromagnetic excitations and propagation in CNTs. 

Assuming that the electric field is uniform in the transverse direction of the CNT, the distribution 
function of the π -electrons in the μ−th= conduction/ valence subband satisfies the following semiclas-
sical Boltzmann equation:
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The simplest hydrodynamic model of CNT’s consists of the first three velocity moments of the BTE 
and yields the following hydrodynamic equations:
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where nu, Vu and Pu are the electron gas density, velocity and pressure, respectively. The electron gas 
pressure can be related to the electron temperature through the ideal gas law: Pu =nukBTu. Also, the relax-
ation time approximation is used to express the collision term, with relaxation frequency νμ for the μ−th 
electron. The macroscopic average values of electron density and velocity are defined as:

n f fµ µ µ= ++ −( ) ( )  (17a)
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V
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Here, the ± signs denote the π-electrons in the μ−th= conduction or valence subbands. In addition, 
the electron mass mμ and temperature Tμ have the following definitions and may be approximated by 
their equilibrium values:

1 1 1 1
m n

v
f

k
v

f

kµ µ
µ

µ
µ

µ= −
∂

∂
−

∂

∂±
+

+
−

−

( )

( )

( )

( )

( )

� �
 (18)

T
m

k n
v V f v V f

B
µ

µ

µ
µ µ µ µ µ µ= −( ) + −( )+ + − −( ) ( ) ( ) ( )

2 2
 (19)

5. AC PARAMETERS AND COMPACT MODELLING OF NANOTUBES

The single-wall nanotube may be modeled as a transmission line due to the distributed nature of capaci-
tance and inductance, as shown in Figure 24. This circuit model is of great significance in determining 
the switching speed of CNT based electronic devices.

The distributed circuit elements of a nanotube are:

1.  Kinetic inductance per unit length:

Figure 24. Schematic of a charge channeling through a carbon nonotube
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2.  Electrostatic capacitance per unit length:
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3.  Quantum capacitance per unit length:
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Substituting all the physical constants (with a rough estimation of the Fermi velocity vF ≈ 108 cm/s) 
gives the order of magnitude for the three parameters: Lk ≈ 10 nH/ μm, CE ≈ 50 mF/μm and CQ ≈ 100 
mF/μm.

The quantization of kinetic energy in the SWNT results in a significant inductance which may be 
exploited in RFICs. The capacitive coupling between CNT and metal plates is actually very small. To 
bring the resonance to GHz frequencies, CNTs of lengths about 100μm are needed. Measurement of the 
nanotube capacitance can directly probe the subband structure (Ilani et al., 2006). On the other hand, the 
deviation of the measured wave velocity of the CNT transmission line from the Fermi velocity directly 
determines the electron-electron interaction in 1-D systems.

6. OPTICAL PROPERTIES OF CARBON NANOTUBES

The band structure of carbon nanotubes is direct, which enables optical emission and the implementation 
photonic and optoelectronic devices. The optical properties of carbon nanotubes include their absorption 
(excitonic) spectra, photoluminescence (fluorescence), and their Raman spectroscopy. For instance, the 
optical selection rules of direct-gap SWNTs allow light polarization parallel to the tube axis to excite opti-
cal transitions between corresponding subbands in the valence and conduction bands. Figure 25 depicts 
the density of states in a semiconducting SWNT and the Van Hove singularities, as well as the possible 
optical transitions. Here, Eii corresponds to the interband transitions. The nearest hopping parameter, γo, 
can be obtained from the relation: γo ≈ ½ d(Eii/ao), where d is the SWNT diameter.

6.1 Absorption Spectra in Semiconducting SWNTs

Each semiconducting nanotube (with specific diameter and chiral vector) shows a set of well-defined 
absorption features. Typically, one of these absorptions lies in the near-infrared, one in the visible, and 
another in the near-UV. As is the case for molecules, rapid internal relaxation suppresses emission ex-
cept from the lowest energy (near-IR) transition, which is labeled E11. The metallic SWNTs also show 
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Figure 25. (a) Schematic illustration of a capacitively contacted CNT. (b) AC equivalent circuit of a CNT

Figure 26. Schematic density of states and possible transitions in semiconducting SWNTs
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intense absorption features associated with transitions between Van Hove singularities in conduction 
and valence bands. However, the lowest energy optical transition in metallic nanotubes lies at shorter 
wavelength than the first two transitions of semiconducting tubes having similar diameter.

6.2 Excitonic Complexes in Semiconducting Nanotubes

CNTs exhibit well-pronounced optical properties. Consisting of a single layer of carbon atoms, the intrinsic 
many-particle screening is relatively weak resulting in strong Coulomb effects. Several theoretical and 
experimntal stuudies showed the formation of bound electron hole-pairs (excitons) in semiconducting 
and metallic nanotubes. While for semiconducting CNTs, we find excitonic binding energies in the range 
of 300-400 meV, metallic tube exhibit smaller energies around 50 meV.

Indeed, the optical properties of low-dimensional semiconductor nanostructures originate from excitons 
and exciton complexes such as trions (triplet charged excitons) and biexcitons (doublet excitons). The 
optical properties of semiconducting carbon nanotubes are also depending on the dynamics of excitons, 
and can be tuned by doping or by means of the quantum confined Stark effect (Maultzsch et al., 2006). 
Trions are generally more stable (has greater binding energy) than biexcitons in strongly confined quasi-
1D structures with small reduced electron-hole masses, while biexcitons are more stable than trions in 
less confined quasi-1D structures with large reduced electron-hole masses. First experimental evidence 
for the trion presence in CNTs was reported by Matsunaga et al. (2000) and Santos et al. (2000) on p-
doped and undoped CNTs. The nonlinear optics experiments were able to prove the presence of both 
trions and biexcitons in the same CNT sample, where the trion binding energy exceeds that of the biex-
citon. In all cases, the trion-to-biexciton binding energy ratio is greater than unity, and decreases as the 
CNT diameter increases. SWNTs have very complicated excitonic structures that comprise a total of 16 
excitonic states, among which only one state is radiative and all others are non-radiative (dark). Figure 
27 shows the excitonic absorption spectra in CNTs, with different chirality (Ando, 2004). The spectrum 
is analyzed in terms of the intensities of absorption peaks.

The configuration space model (Bondarev, 2014) can be used to evaluate biexciton binding energies 
in small diameter CNTs, and to obtain the asymptotic relations for the lowest energy trion and biexciton 
binding energies in quasi-1D semiconductors. The model operates in terms of the under barrier tunneling 
current between the equivalent configurations of the system in the configuration space and, therefore, allows 
for clear theoretical interpretation to uncover generic relative stability features of biexcitons and trions 
in quasi-1D semiconductors. The approach was originally pioneered by Landau, Gorkov and Pitaevski, 
as well as Holstein and Herring in their studies of molecular binding and magnetism (Tománek, 2014).

The problem is initially formulated for two interacting ground-state 1D excitons in a semiconducting 
CNT. Using the cylindrical coordinates with the z -axis along the CNT axis, and separating circumfer-
ential and longitudinal degrees of freedom of each of the excitons by transforming their longitudinal 
motion into their respective center-of-mass coordinates, as shown in Figure 28.

6.3 Measurement of Absorption Spectra in CNTs

There exist so many methods to analyze the optical properties of SWNT (Zhou et al., 2013). The Raman 
spectroscopy was the first optical method used for giving the detailed structural information of nano-
tubes. When the wavelength of the incident Laser is close to an optical absorption feature of a nanotube, 
relatively intense resonance Raman scattering is generated.
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Figure 27. Absorption spectra of semiconducting SWNTs, for (6,4) and (6-5) tubes. The absorption 
spectrum of (6,4) SWNT is shifted upward for comparison. Also, PS peaks correspond to phonon side-
band transitions
After Spataru et al (2004).

Figure 28. Absorption spectra of some metallic and semiconducting CNTs. The solid lines exhibit the 
excitonic absorption, and the dashed lines correspond to renormalized free-particle calculations. The 
arrows illustrate the excitonic binding energy. After Spataru et al (2004)
After Bondarev (2014).
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This Raman spectrum shows a G-band vibration mode, which arises from tangential and longitudinal 
stretching motions, and the radial breathing mode (RBM), which represents totally symmetric expansion 
and contraction of the nanotube cylinder. The RBM frequency varies inversely with nanotube diameter 
and thus provides valuable structural information for SWNTs of either metallic or semiconducting type. 
Although the G-band frequency is not sensitive to nanotube structure, its shape differs significantly for 
metallic and semiconducting species. It has been shown that the absorption, Rayleigh spectra, and Raman 
excitation profiles of the longitudinal and transverse G modes are best fitted by considering the nature 
of the E33 transition as excitonic (Tran et al., 2016).

6.4 Photoluminescence (Fluorescence)

Semiconducting single-walled carbon nanotubes emit near-infrared light upon photoexcitation, described 
interchangeably as fluorescence or photoluminescence (PL). The PL excitation usually occurs as fol-
lows: an electron in a nanotube absorbs excitation light via E22 transition, creating an electron-hole pair 
(exciton). Both electron and hole rapidly recombines from c2 to c1 (in conduction band) and from v2 to 
v1 states (in valence band). Then they recombine through a c1−v1 transition resulting in light emission.

Note that there is no excitonic luminescence in metallic tubes. Their electrons can be excited, thus 
resulting in optical absorption, but the holes are immediately filled by other electrons out of the many 
available in the metal. Therefore, no excitons are produced.

Figure 29. Illustration of the configuration space model showing two ground-state excitons sharing the 
same hole to form a negative trion state. The collinear axes, z1 and z2, represent independent relative 
electron-hole motions in the 1st and 2nd exciton, and their origins are shifted by DZ, the inter-exciton 
center-of-mass distance. After Bondarev (2014)
After Tran et al., (2016).
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7. CASE STUDY 8: SILICON NANOWIRE TRANSISTOR (SiNWT)

The silicon nanowire transistor (SiNWT) is one of the promising nano-devices that attracted broad at-
tention. In fact, Silicon nanowires (SiNWs) are direct bandgap materials with heavier effective mass at 
the conduction band edge than bulk Si. SiNW’s should be distinguished from silicon nanotubes (SiNTs), 
which are some sort of hollow SiNWs, with tube-wall-thickness of several nanometers. Figure 31 depicts 
the structure of a cylindrical SiNWT. Of course the SiWNT may have other cross sectional shapes, such 
as square or triangular structures, as shown in Figure 31.

In order to explore the performance of SNWTs, understanding carrier transport in Si nanowires is 
important. The reader surely heard about the MOSFET and the role of the Si/SiO2 interface. For bulk 

Figure 30. Raman spectra in semiconducting SWNTs. After Tran et al., (2016)

Figure 31. Photoluminescence (PL) from SWNTs and the PL intensity as a function of excitation power
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MOSFETs, electrons are confined at the Si/SiO2 interface by an electrostatic potential well. The gate-
all-around silicon nanowire transistor (SNWT) is a kind of multiple-gate MOS transistor

As shown in Figure 33, this device has a unique structure: the gate material surrounds the channel 
region. Because of the extreme length-to-width ratio, the nanowire channel can be considered as quasi-
one-dimensional (Q1D) structure. Figure 33 depicts the dynamic characteristics (IDS versus VGS) of both 
n-type and p-type SiNWT.

8. CASE STUDY 8: CARBON NANOTUBE FET (CNTFET)

The exploration for new channel materials and device architectures to surmount the Si MOSFET scaling 
limit of about 5nm gate length, has led to the invention of carbon nanotube field-effect transistor (CNTFET). 
In fact, the direct source-to-drain tunneling at such gate lengths drastically affect the Off-state current 
and the whole performance of the device. The CNTFET is a field-effect transistor that utilizes a single 
(or array of) carbon nanotube as the channel material instead of the silicon in conventional MOSFET 
devices. CNTFET was first demonstrated by Dekker et al. (Tans, et al., 1998), by IBM (Martel, et al., 
1998) and in Stanford University (Soh, et al., 1999). Compared to graphene nanoribon transistors, the 
CNTFETs provide better properties for building field-effect transistors (Schroter et al, 2013). As shown 
in Figure 33, there are two basic types of CNTFET devices, namely:

• Top-gated NTFET and

Figure 32. Schematic of Silicon nanotube transistor (SiNT) compared to the double-gate MOSFET

Figure 33. Schematic of gate-all-around silicon nanowire transistor (SNWT)
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• Bottom gated. NTFET

Electrodes contacts may be metallic (Ohmic or Schottky barrier) or semi-conducting materials. Of 
course, the type of the contact determines the dominant mechanism of current transport and device 
output characteristics. For instance, the MOSFET-like CNTFET suffers from band-to-band tunneling 
and this leads to ambipolar current transport. Other common problems in the fabrication of CNTFETs 
include positioning of tubes across electrodes and the presence of metallic nanotubes mixed with semi-
conducting ones. In order to get around these problems, dielectro-phoresis can be used to deposit and 
align tubes, while semiconducting electrodes (such as antimony telluride Sb2Te3 or bismuth telluride 
selenium Bi2Te2Se) can be used to turn off metallic nanotubes.

Figure 34. Simulated IDS-VGS characteristics of an SiNWT with circular cross section, 3nm diameter, 
and 8nm gate length. The channel orientation is [100]. Two drain biases, VDS=0.4V and VDS=0.05V, 
are shown in each type. After Jin, Tang & Fischetti (2008)

Figure 35. Basic structures of a nanotube field-effect transistor (NTFET)
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8.1 NEGF Transport Approach

The NEGF approach for CNTFET can be summarized as follows:

1.  Write down the Hamiltonian matrix H in the isolated channel of the FET and identify a suitable 
basis set (e.g., of pz orbitals). The size of the NxN Hamiltonian matrix is determined by the total 
number of basis functions in the channel region. The self-consistent potential, which appears in 
the Hamiltonian matrix, is included in the diagonal components of H.

2.  Compute the self-energy matrices, ΣS, ΣD, and ΣS, which describe how the channel couples to the 
source contact, the drain contact, and the dissipative processes (e.g., phonon scattering, electron-
photon coupling), respectively. The source and drain self-energies can be computed using a recursive 
relation. At the ballistic limit, ΣS = 0. The dissipative processes can be treated by adding a scattering 
contact, which in steady state takes carriers away from the initial states and put an equal number 
of carriers back to the final states. The carrier statistics of the scattering contact are determined by 
the distribution function of the channel, so that ΣS needs to be iteratively solved with the Green’s 
function using the Born approximation.

3.  Compute the retarded Green’s function, using the equation:

Gr(E)= [ E.I–H– ΣS–ΣD– ΣS]-1 (21)

where E is the electron energy (plus an infinitesimal imaginary part in the order of 10-6), I is the identity 
matrix and H is the Hamiltonian of a subband. As inverting this matrix equation is computationally ex-
pensive, especially for a large number of energy grid points, we usually make use of recursive algorithms.

4.  Determine the physical quantities of interest from the Green’s function matrix. For example, the 
electron density can be computed by integrating the diagonal entries of the following electron cor-
relation function:

Figure 36. Top-gated CNTFET with semiconducting electrodes
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Gn(E)= Gr [ ΓS fS(E) + ΓD fD(E) +ΣS]-1 (22)

where fS, fD are the equilibrium Fermi-Dirac functions at the source and drain contacts, ΓS = j(ΣS 
− ΣS

†) and ΓD = j(ΣD − ΣD
†) are the broadening functions of source and drain contacts. Also, ΣS is the 

in-scattering function of the dissipative processes.

5.  For a self-consistent solution, solve the NEGF transport equation (14) iteratively with Poisson’s 
equation until self-consistency is achieved. The Poisson equation can be written as follows:

∇ (ε∇V) = Qt (23)

The accumulated charge on the CNT can be calculated using the relation:

Q e D f E E D f E E dE
t S FS D FD
= − − + −( ) ( )∫ [ ]  (24)

where EFs and EFD are the Fermi energy in the source and drain, respectively. Also Ds and DD are local 
density of states (LDOS) in the source and drain, respectively. LDOS, in source and drain, can be writ-
ten as follows:

D G G D G G
S

r
S

r
D

r
D

r= =Γ Γ† †,  (25)

The potential V has Dirichlet boundary condition at the Ohmic contacts (VD = VDS -EFD/e, VS = -EFS/e) 
and Neumann boundary condition (∇V.n=0) at the remaining boundaries.

Figure 37. Simulation region of a top-gated CNTFET according to NEFG
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After the self-consistent solution is achieved, calculate the terminal currents. The source current, for 
example, can then be computed as

I
e
h

Tr f A G dE
S S S S S

n= ∫( ) [ ]–
.

4
Σ Γ  (26)

where A = j(Gr −Gr†) is the spectral function, and the factor of 4 comes from a spin and valley de-
generacy in the energy band structure of the CNT

Note that using the NEGF formalism to treat the Schrödinger equation allows the truncation of the 
infinite interaction submatrix of source and drain contacts in the Hamiltonian using self-energies.

The above NEGF approach is limited to a single particle picture and the mean field theory. In order to 
improve this model, it is necessary to include the electron-electron correlations as well as the excitonic 
interactions. In addition, the transient simulation is necessary to obtain the RF parameters

8.2 Ballistic Transport Approach

According to the CNT ballistic transport theory, the drain current caused by the transport of the non-
equilibrium charge across the nanotube can be calculated, as follows:

I
ek T

F U k T F U k T
DS

B
o SF B o DF B

= −( ) ( )



( ) / /

2

π�
 (27)

Here kB is the Boltzmann constant, T is the ambient temperature, and ℏ is Planck’s constant divided 
by 2π, and F0 is the Fermi–Dirac integral of order 0. Also, the potentials USF and UDF are related to a 
self-consistent voltage Vsc, by the relations:

Table 2. Definitions of the MEGF terms, as applied to CNTFET simulation
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USF = EF – e VSC (28)

UDF = EF – e VSC – e VDS (29)

The above equations can be solved as long as the self-consistent voltage VSC is known. This self-
consistent voltage can be calculated from the iterative solution of Poisson’s equation together with the 
quantum transport equation (24), across the nanotube. However the calculation can be achieved, by the 
calculation of the density of states at the source and drain sides, as follows:

C V Q e Ns N N
sc t D oΣ + = +( ) –  (30)

Here, Qt represents the charge stored in CNTFET capacitances, and the total terminal capacitance 
CΣ is the sum of the gate, drain, source, and substrate capacitances. Also, the source and drain density 
of carriers are given by:

N D E f E U dE
S S SF
= −( ) ( )∫½�  (31a)

N D E f E U dE
D D DF
= −( ) ( )∫½�  (31b)

And their equilibrium value is

N D E f E E dE
o F
= −( ) ( )∫½�  (31c)

The density of states at the channel D(E) is given by:

D E D
E

Eo

g( )






























=

−

1
2

2

– �

½

 (32)

with D0 = 4/πℏvF. The factor 4 here comes from the degeneracy of each of the CNT subbands at zero 
magnetic field.

8.3 Simulation of CNTFET Characteristics

CNTFETs conduct electrons when a positive bias is applied to the gate and holes when a negative bias is 
applied, and drain current increases with increasing a magnitude of an applied gate voltage. Like other 
FETs, the drain current increases with an increasing drain bias unless the applied gate voltage is below 
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the threshold voltage. For planar CNTFETs the FET with a shorter channel length produces a higher 
saturation current, and the drain saturation current becomes higher for the tube of smaller diameter.

In terms of RF operation, the CNTFET simulation shows the possibility of obtaining intrinsic cutoff 
frequency (fT = gm/Cg) in the THz frequency range. On the other hand, experimental demonstrations of 
individual CNTFETs have suffered from excessive parasitic effects. In order to mitigate the single tube 
limitations, CNT network-based transistors have been explored, as shown in Figure 38. The Figure 39 
shows the design of a complementary CNTFET logic inverter and its transfer voltage characteristics.

8.4 MoS2 CNTFET

We have already presented the basic structure of the molybdenum disulfide (MoS2) FET, which utilizes 
a layered MoS2 as a channel, as a case study of 2D transport in Chapter 5. We present here a modified 

Figure 38. Output I-V characteristics of a CNTFET, with metallic electrodes at 300K
After Hassaniniat al (2008).

Figure 39. Cutoff frequency of a ballistic CNTFET with Schottky barrier contacts. The R-C parasitics 
are not included here
After Guo & Lundstrom (2007).
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version the MoS2 transistor which employs a single-wall carbon nanotube as the gate electrode (Desai 
et al, 2016). This device exhibits excellent switching characteristics with near ideal subthreshold swing 
of about 65mV per decade and an On/Off current ratio of about 106.

9. SUMMARY

Carbon nanotubes are one of the most interesting materials in nano-technology. Carbon nanotubes 
(CNTs) are rolled sheets of graphene (a single atomic layer of graphite). The nature of the bonding of a 
nanotube gives rise to their unique electrical, thermal and mechanical properties

CNTs are one-dimensional quantum systems and the geometry of a CNT can be described by a chiral 
vector R= n.a1+m.a2, where a1 and a2 are the unit vectors of the hexagonal grapheme lattice.

According to the chirality, CNTs are either Armchair (n=m), or Zigzag (m=0) or generally Chiral 
(n±m).

Theoretical studies have shown that a single-walled CNT (SWNT) can be either metallic or semicon-
ducting depending on its chirality and diameter. Table 3 summarizes the carbon nanotube parameters.

Figure 40. Layout of a CNT array-FET AFET (left) 3-D top view of AFET (middle) and printed AFET 
on a plastic substrate (right)

Figure 41. AFM Image of a complementary CNTFET and its transfer characteristics. Open circles are 
experimental data with V=±2V
After Avouris (2002).
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The (n, m) nanotubes with n = m (armchair) are metallic, for n – m ≠ 3 × integer, the nanotube are 
semiconducting with band gap proportional to 1/d. For n–m =3×integer, the nanotubes is semiconduct-
ing, with a small band gap proportional to 1/d2. The transport properties of nanotubes and nanowires 
are intimately related to their band structure. The energy band structure of nanotubes can be obtained 
by the tight-binding (TB) model of graphene and the zone folding approxim-ation (ZFA) taking into 
account the tube curvature effects and the influence of mixing of in-plane σ and normal π orbitals. The 
E(k) relation of CNT in the k-space can be described by the following equation:

Figure 42. Structure of MoS2 CNTFET
After Desai et al. (2016).

Figure 43. Chirality of a carbon nanotube (CNT)

Figure 44. CNT types according to its geometry (zigzag, armchair and chiral)
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where γ0 is the nearest-neighbor C-to-C transfer energy (3< γ0 < -2.5 eV). Also, Ep is the energy of the 
2pz orbital, and s0 is the overlap of the electron wave function on adjacent sites. The geometrical func-
tion w(k) is given by:
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where ao ≈ 1.42 nm is the lattice constant (interatomic distance).
Nanotubes and nanowires with dimensions on the nanometer length scale cannot be treated as classi-

cal conductors because their diameters are as small as to the mean free path length (between successive 
collisions) lm,. They are sometimes called mesoscopic structures, because their dimensions lie between 
the macroscopic scale and the atomic scale where the full quantum mechanics should be applied. A 
metallic SWNT has two bands crossing the Fermi energy, and may show ballistic behaviors with ideal 
conductance G = 4e2/h, according to the Landauer (collision-less) formula.

Gc = N · e2/h · T, 

where N is the number of conduction channels in parallel and T is contact transmission coefficient. 
Metallic SWNTs are ideal connectors for electronic devices due to their excellent electron transport 
behavior, optical transparency and flexibility. Semiconducting CNTs can have drift mobility as high as 
79000 cm2/V.s and are candidates for next-generation field-effect transistors (FETs). In the literature, 
one can find several modeling meyhods of charge carrier transport in nanotubes, some of them are based 
on quantum approaches and others are based on semiclassical approaches. The quantum transport ap-
proaches are usually based on the solution of Schrodinger equation, with the Poisson equation. On the 
other hand, the semiclassical approaches are based on the solution of the BTE or its moments for π and 
σ electrons, along the nanotube, together with the Poisson equation.

Table 3. Physical parameters of a carbon nanotube

Parameter Symbol Expression

Chiral vector R(m,n) R = na1 + ma2

Length of R L L = a√(n2+m2+nm)

Unit vector length a a = √3.ao = 2.49 A

Unit vectors (UVs) a1, a2 (½ √3, ½).a, (½ √3, -½).a

Reciprocal UVs b1, b2 (1/√3, 1).(2π/a), (1/√3,-1).(2π/a)

Diameter d L / π

Chiral angle θ cosθ = (2n+m)/2√(n2+m2+nm)
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1. OVERVIEW AND CHAPTER OBJECTIVES

The transport of heat energy is an old topic in physics, dated back to Joseph Fourier (1822). Different 
kinds of heat carriers have been proposed to explain this process, namely: molecules, electrons, phonons 
and photons. In this chapter, we concentrate our attention on the heat transport by phonons.

Phonons are quantized vibrations of the crystal lattice atoms. They are like electrons or photons 
(light particles), in that they carry energy. Phonons are actually the main heat carriers in semiconductors 
and insulators. Heat flows from the hot side to the cold side of a system whenever it is not in thermal 
equilibrium and temperature distribution is not uniform. Researchers are trying to answer fundamental 
questions about how phonons transport heat.

The energy transport and exchange between electrons and phonons in a crystalline solid is a vital 
topic in solid state physics. The interest of this topic has been raised by the miniaturization of elec-
tronic devices, where the heat removal imposes many restrictions on the development of semiconductor 
nanodevices. In fact, the heat transport and evacuation is related to the performance and the reliability 
issues, in a wide class of semiconductors devices, including MOSFET’s and lasers. In addition, the 
thermoelectric applications motivate the studies of thermal transport in nanostructures and the emerg-
ing phononic nanodevices.

For long time, the heat transfer by conduction, in solid-state devices has been studied on the basis of 
Fourier’s diffusion model (Q=-kth∇T). Actually, the heat is carried predominantly by phonons in dielec-
trics and semiconductors. The relationship between the phonon mean free path of heat transfer and the 
device length scale determines whether thermal transport follows the classical thermal diffusion model 
or not. It is found that the optical and high frequency acoustic phonons provide the main contributions 
to the specific heat of bulk materials, where the mean free path of phonons is much smaller than the 
device length scale. However, for any length scale there will be some phonons of low enough frequency 
that propagate ballistically (without scattering) rather than diffusively (with scattering).

Phonon Transport 
and Heat Flow
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After a review of the basic physics and thermodynamics of heat and phonons we present the phonon 
transport theory. The phonon transport parameters such as thermal conductivity are introduced from 
the atomic-level properties using semiclassical and quantum approaches. We present the semiclassical 
and quantum schemes as well as phenomenological models, and examine their range of applications. 
In particular, we discuss the validity of different models of thermal conductivity for nanostructures and 
nanodevices. Figure 1 recapitulates the hierarchy of phonon transport approaches, which have been 
presented so far in the literature. Microscopic approaches may be quantum, semiclassical or based on 
molecular dynamics (MD). The microscopic semiclassical models, such as the Peierls-Boltzmann transport 
equation (phonon BTE) and Lattice Monte-Carlo simulation, can capture quasi-ballistic phonon transport.

Upon completion of this Chapter, the readers and students will:

• Review the notions of lattice temperature and heat transfer mechanisms
• Review the basics of lattice vibrations and phonon waves
• Describe the phonon scattering mechanisms and how they affect the heat conductivity of a semi-

conductor or insulator
• Understand the phonon transport mechanisms (diffusive, hydrodynamic and ballistic), and how 

they contribute to the thermal properties of solids
• Understand and know how and when to employ the phonon transport models, with molecular dy-

namics (MD) methods as well as semiclassical (phonon BTE) and quantum approaches (NEGF).
• Understand the phonon transport in low-dimensional structures, such as carbon nanotubes and 

graphene ribbons
• Understand and appreciate the concepts of the emerging phononic devices.

2. CONCEPT OF HEAT AND LATTICE TEMPERATURE

Heat may be defined as energy in transit from a high temperature object to a lower temperature object. 
In kinetic theory of gases, the temperature is considered as average kinetic energy of the chaotic motion 

Figure 1. Hierarchy of phonon and heat transport models
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of molecules. The temperature of a gas of particles is then a quantity proportional to the average energy 
per particle at thermal equilibrium1,

k T E
B i∝  (1)

Similarly, the lattice temperature at thermal equilibrium is equal to the temperature of the gas of 
phonons filling the space between atoms. However, to describe a phonon system as a phonon gas we 
consider phonon as weakly interacting quasi particles, associated with wave packets, the size of which 
is much greater than the wavelength, λ, of concerned phonons.

2.1 Heat Transfer Methods

Heat is transferred to and from matter by the principal energy carriers, namely: phonons (lattice vibra-
tions), electrons, photons and fluid molecules. In thermodynamics, heat transfer is usually classified as 
conduction, convection, and radiation, depending on the medium and the mechanism of heat transport 
across the medium. Conduction usually refers to heat transfer in solids, in which atoms and molecules 
are practically immobile. In such cases, heat is carried by vibration of atoms (phonons) and other mobile 
energy carriers such as electrons and holes. The convection mechanism expresses the heat transfer from 
a solid surface to fluids, mediated by diffusion or advection. When heat is carried by electromagnetic 
waves (photons), the heat transfer is called radiation. Unlike conduction and convection, no medium is 
required for radiation.

2.2 Heat Capacity of a Lattice

According to thermodynamics, when the lattice is held at a non-zero temperature its internal energy 
fluctuates about some mean value. The energy fluctuations are caused by lattice vibrations, which can 
be viewed as a gas of phonons. The temperature of a crystal lattice at thermal equilibrium is thus pro-
portional to the average energy of the gas of phonons2.

The heat capacity of a substance is the amount of heat required to change its temperature by one 
degree, and has units of energy per degree. The heat capacity of a gas of particles may be defined at 

Figure 2. Conventional heat transfer methods
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constant volume (Cv) or at constant pressure (Cp). However, the heat capacity of a solid is usually de-
fined at a constant volume3. It is defined as the rate at which the total energy of the lattice system (U) 
increases as the temperature is raised:

C
U
T

v cons t
v
=
∂
∂










 =, tan  (2a)

Therefore, the heat capacity is the solids ability to absorb and retain heat. The so-called heat capacity 
per unit mole or molar heat capacity is defined as (cv = η -1∂U/∂T). For one mole (η =1), we have Cv = cv.

According to the classical theory of gases cV =3NkB, which is a constant independent of temperature. 
Note that N is the total number of atoms, 3N is the number of crystal vibration (phonon) modes and kB 
is the Boltzmann constant. This is known as the Dulong-Petit law. However, in solids this is only true 
above ambient temperatures. At lower temperatures the specific heat doesn’t follow the Dulong-Petit law. 
Actually, the heat capacity may be due to other energy carriers in addition to phonons. For instance, in 
semiconductors, we should also consider the energy of conduction electrons. Therefore, the heat capac-
ity may be expressed as follows:

Cv = Cv (phonons) + Cv (electrons) (2a)

The experiment shows that Cv(T) decreases as T decreases below ambient temperature according to 
the law:

Cv = a T3 + b T (2b)

The first term is due to phonons and the other is due to the contribution of electrons. Hence, we gave 
to apply the statistics of these quantum particles in order to interpret the correct behavior of Cv with 
temperature.

There exist two famous models which interpret the variation of the heat capacity at low temperature; 
namely: the Debye model (1912) and the Einstein model (1907). Figure 3 depicts the normalized spe-
cific heat, versus normalized temperature (T/TD), according to Debye and Einstein models. The Debye 
temperature (TD) is defined as follows (Vapaille, 1970):

TD = Em / kB = hωm / kB (3)

where Em is known as the Raman (inelastic) phonon energy.

3. LATTICE VIBRATIONS AND PHONON DISPERSION RELATIONS

Heat conduction in crystalline solids (semiconductors and insulates) occurs primarily through lattice 
vibrations4. The crystal lattice of a solid may be viewed as a three dimensional structure of atoms held 
together by atomic bonds. The interatomic bonds act like springs that stretch and compress repeatedly 
about their equilibrium positions under the effect temperature.
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For the matter of illustration, the equations of motion of lattice atoms are presented here for a 
monoatomic chain, but it can be extended to the general case of polyatomic chains. Lattice vibrations 
are usually simplified as harmonic oscillators. The harmonic approximation is expressed as a Taylor 
expansion of the potential energy in terms of atomic displacements u, truncated after the second order 
terms (Ziman, 1972):

U U
U

u u
u u

i j

i j
u vi j

= +
∂

∂ ( )∂ ( )
( ) ( )+∑∑0

21
2 R R

R R
µ ν

µ ν ...
,,

 (4a)

Here Ru…Rv are the ideal atomic positions in the crystal lattice (at 0K!). The second derivatives of 
the potential energy U with respect to displacements ui...uj are called the force or stiffness constants 
(Cij

uv = ∂2U∂ui∂uj)
5. The stiffness matrix relates the acting stress (τ = ΔF/ΔA) and the resultant strain (ε 

=ΔL/L) in a solid as follows: [τ] = [C][ε].
Actually, [C] is a fourth-order stiffness tensor of 81 elements, but due to crystal symmetry the num-

ber of coefficients can be reduced. For instance, the stiffness constant tensor has only 3 constants in 
cubic crystals (e.g., Si), which are termed C11, C12, C44. The stiffness matrix elements can be obtained 
by the linear response or the small displacement methods (Kong, 2011). In these methods the crystal is 
considered in its ground state and the displacements of atoms are introduced, either by the perturbation 
theory or the supercell approach. The corresponding equation of motion of the ith atom in one dimensional 
chain is given by (Zimann, 1972):

Figure 3. Normalized specific heat (cv/3NkB) versus normalized temperature (T/TD)
After Glassenbenner (1964).
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Fi = Σj Cij . uj (4b)

After solving the above set of difference equations, we get the displacements ui of each atom around 
its equilibrium position. The solution may be written in the following form of progressive waves:

ui = A.exp[ j (k n a - ω t) ] (4c)

where j = −1 , ω is the angular frequency of vibrations, A is its amplitude and k is the wave vector. 
One can easily obtain the relation between ω and k by substituting equation (4c) into (4b). The result is 
that atoms vibrate together, and this collective vibration spreads throughout the crystal lattice.

3.1 Concept of Phonons

When an atom is vibrating around its ideal lattice position, the vibrational waves are associated with 
quasi particles called phonons. These phonons carry energy while propagating through the crystal. They 
propagate with certain frequency (ω), wave vector (k) and polarization (P). The quantum of energy con-
tained by a phonon with frequency ω is Ep=ħω and its momentum is p=ħk, where ħ is Planck’s constant 

Figure 4. Illustration of the interatomic forces in a 3-D lattice. The bottom figure illustrates the displace-
ments of a 1-dimensional lattice with a monatomic basis.
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divided by 2π. Therefore, we treat phonons as having wavevector k, although this is not strictly correct. 
Actually ℏk is rather the crystal momentum (Ashcroft and Mermin, 1976). The thermodynamic properties 
of a solid material are closely related to its phonon spectrum. This is illustrated in the following sections.

3.2 Phonon Dispersion Relation

The displacement of atoms from their ideal positions in a crystal gives rise to a set of vibration waves 
propagating through the lattice. Every type of lattice vibration has its own characteristic frequencies of 
vibration, called modes, and the overall collective vibrational motion of the lattice is a superposition of 
many modes.

The (ω-k) relation, which describe the propagation of lattice waves, is called the material disper-
sion relation. The vibration modes are called normal (transversal) when the atomic planes vibrate in a 
direction perpendicular to the wave vector k (the direction of wave propagation). Alternatively, when 
the atomic planes vibrate in a direction parallel to the wave vector k, the modes of vibration are called 
longitudinal. The longitudinal modes are sometimes called compression modes because the vibrating 
atomic planes are stacked (or compressed) and released (decompressed) in the direction of wave vector. 
Also, the transverse modes are sometimes called shear modes because the vibrating atomic planes are 
slipped (as if they were subjected to shear stress) with respect to each other.

The ω(k) relation in real crystals has several branches, as shown in Figure 7. The upper branches are 
called optical modes and the lower branches are called acoustic modes. Some of optical branches are 
longitudinal (LO) and some are transverse (TO). Similarly, some of acoustic branches are longitudinal 
(LA) and some are transverse (TA).Generally speaking, a 3-D crystal with P atoms per unit cell, has 3P 
vibration modes, distributed as follows:

• 3 acoustic modes with the three directions of polarization,
• 3P-3 optical modes, from which P-1 longitudinal & 2P-2 transverse modes.

Figure 5. Dispersion relation (ω -k diagram) of a 1-dimensional monatomic crystal
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For example, a 3-dimensional lattice with one atom per unit cell, such as simple, body-centered, 
only three acoustic modes exist. For a 3-D lattice with two atoms per unit cell such as Ge, Si and GaAs, 
there exist three acoustic modes (one longitudinal acoustic LA, and two transverse acoustic TA) and 
three optical modes (one longitudinal optical LO, and two transverse optical TO). Note that all acoustic 
branches, are almost linear near k=0. In this case, the group velocity (vg= dω/dk) is equal to the phase 
velocity (vp=ω/k) and both of them is equal to the sound velocity in the material (vs).

3.3 Strain Effects

Stress inevitably arises in electronic devices due to mismatch in coefficients of thermal expansion, mis-
match in lattice constants, and growth of different materials. Sometimes, stress is deliberately introduced 
to improve the electrical and optical device properties. For instance, the technology of strained silicon 
devices is utilized to increase the carrier drift mobility. Figure 7 depicts the phonon dispersion relation 
of both relaxed and strained Si, with 1 GPa of applied pressure (force).

The most effective way to induce tensile stress in semiconductors is through hetero-epitaxial growth 
on a substrate material that has larger lattice spacing (like Si on SiGe). As shown in Figure 8, if the Si is 
grown on SiGe below a critical thickness, it becomes strained with lattice symmetry change from cubic 
to tetragonal.

As we pointed out in Chapter 1, the application of strain on a semi-conductor shifts the energy levels 
of the conduction and valence bands and can remove the band degeneracy, when applied in certain direc-
tions. According to the deformation potential theory, which has been extended to strained semiconductors 
by Bir and Pikus (1974), the energy shift of a band extremum is expanded in terms of the components 
of the strain tensor εij

Figure 6. Measured phonon dispersion relation in GaAs & Si at 300K
After Dollong (1963).
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Figure 7. Phonons dispersion curves for stressed Si under a pressure of 8.6 GPa

Figure 8. Epitaxial growth on a substrate with different lattice constant. For Si-on-SiGe, the grown Si 
epilayer deforms (strain) such that a⊥ = ao-2(C11/C12).(as-ao)
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ΔE = Σi,j Ξi,j ε i,j (5)

where Σi,j is the deformation potential tensor of this band.

3.4 Phonon Energy Distribution

As phonons are indistinguishable (like electrons in their clouds), one has to recall quantum statistics 
describe their energy distribution. However, the number of phonons whose energies are equal (in a cer-
tain energy state) is not limited, which is not the case for electrons. Phonons are belonging to the family 
of Bosons, which obeys the statistics of Bose-Einstein at thermal equilibrium. The probability that a 
phonon can possess the energy ħω, at thermal equilibrium is given by (Kittle, 1980):
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where A is a constant. At low temperatures, phonons can behave very differently than electrons and an 
unlimited number of them can condensate into one energy state. When A =1, the occupation for low 
energy phonons is excessively high.

3.5 Phonon Density of States

The density of states (DOS) of phonons is the density of the normal modes of phonons in the frequency 
range ω to ω+dω, divided by volume the crystal V. The phonon DOS is used to determine the total 
number of phonons Np as well as the phonon-related properties. The density of normal modes for three-
dimensional cubic lattices is given by the following relation for both acoustic and optical phonons (Kittle 
& Kroemer):
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Obviously, the DOS is obtained, from the phonon dispersion relation ω(k), as shown in the Figure 
9. The phonon DOS plots of different material can be found in the literature, e.g., Dollog (1999) or 
Brockhouse (2000).

Note that the phonon number depends on temperature and the vibration frequency. In the Debye 
limit (when ω = υ.k), the phonon density-of-states can be written as gph(ω) = a3(ω2/2π2υ3), where a is 
the lattice constant.

In order to understand heat conduction by phonons in crystalline dielectrics and semiconductors, it 
is important to realize that phonons do not carry same amounts of heat due to different polarizations 
(longitudinal or transverse) and their broad frequencies distribution. At high temperatures, most phonon 
modes are excited, but heat is carried mainly by a small fraction of these excited modes (long-wavelength 
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acoustic LA phonons). Acoustic phonons near the edge and the center of the Brillouin zone, and optical 
phonons are inefficient in carrying heat due to their low group velocity or heat capacity.

Note 1: Anharmonic Oscillations of Crystal Lattice

Note that in the above simple analysis, we neglected the higher order terms in the Taylor expansion of 
the lattice potential energy. This approximation results in a linear relation between force and displace-
ments (F = - C.u). and sometimes called the harmonic approximation of lattice vibrations. However, if 
we considered higher order terms of the Taylor expansion of the crystal potential (at least the 3rd order 
term) we’d get nonlinear relations of force with atom displacements (F = - C.u +γ.u2). The inclusion of 
nonlinear terms would reveal the anharmonic oscillations of the crystal lattice. It is amazing that, without 
these anharmonic oscillation terms, one cannot interpret properly some important phenomena, such as 
the thermal expansion of solids. This is because the phonon frequency does not depend on the amplitude 

Figure 9. Phonon dispersion relation and density of states in Si, Ge and GaAs
After Henry & Chen, (2008).
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of the oscillations and hence the pressure of a gas of harmonic phonons is independent of temperature. 
However, by introducing anharmonic terms, the phonon gas acquires a temperature-dependent pressure, 
which gives rise to the thermal expansion phenomena in a solid crystal lattice. However, the pressure 
of the electron gas should be also considered in the case of metals. The anharmonic phonons are also 
important in order to derive a correct expression of the thermal conductivity, with proper temperature 
dependence, especially in perfect crystal insulators. The only way to explain the experimental data is to 
admit that phonons can be scattered by other phonons, and this can only occur by including anharmonic 
phonons.

3.6 Phonon Scattering Mechanisms

In crystals, phonons are scattered by imperfections such as impurities and grain boundaries. The scat-
tering of phonons is a main source of resistance for heat conduction (especially in non-metallic solids). 
The phonon scattering mechanisms include several types, among them one can cite:

• Phonon–phonon (ph–ph),
• Phonon–electron (ph–e),
• Phonon–impurity (ph–i), and
• Phonon–boundary (ph–b).
• Phonon-anharmonicity (three-phonon) scattering

The phonon scattering mechanisms can be also grouped into two categories:

• Normal (N) process and
• Resistive (R) process.

The energy of phonons is always conserved in any scattering process. However, N-process conserves 
phonon momentum while R-process does not. The R-process includes three-phonon Umklapp process 
and phonon-boundary scatterings. The number of phonons is not conserved here, as they can be created 
or annihilated. For instance, in three-phonon scattering two phonons combine into one or one divides 
into two.

Each scattering mechanism can be characterized by a relaxation time (τι) and mean free path (λι), 
between collisions. The total scattering rate may be calculated using the Matissian rule:

Γ (ω) = τ -1 (total) = Σ i τι 
-1 (8)

Phonon scattering rates are crucial to specify the collision term in carrier transport equations.

Phonon-Phonon Scattering

Like electron-phonon scattering, the phonon-phonon mechanism may be effectuated by normal process 
(conserving phonon momentum) or Umklap process (which involves translation to another Brillouin zone 
in the k-space and doesn’t conserve phonon momentum). In the normal processes, the scattering rate (Γι = 
1/τι) vary linearly with fequency (ω) while Umklapp processes vary with ω2, as follows (Gurevich, 1986):
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τι 
-1 (Umklapp) = 2γ2 .ω2 kBT/(μ.ωD.Vo) (9)

where ωD is Debye frequency, γ is Gruneisen anharmonicity parameter, μ is shear modulus and V0 is 
volume per atom. The Grüneisen parameter is deduced from Grüneisen’s law of thermal expansion and 
is a direct measure of anharmonicity of bonds (Grüneisen, 1912). Therefore, the Umklapp (U) scattering 
dominates at high frequency. Note that only Umklapp processes (in which the momentum of interacting 
particles is not conserved) are participating in the heat conduction of a solid crystal at high temperatures.

Phonon-Anharmonicty Scattering

The anharmonic oscillations of crystal lattice (anharmonic phonons) can be found out when we take the 
higher-order terms in the potential energy expansion of crystal lattice. Anharmonicity associated with 
finite temperature causes the normal modes of phonons to interact. In the phonon anharmonic interac-
tions, a phonon decays into other phonons. 

Three-Phonon Scattering

In the three-phonon interaction there are two types of allowed events. In a type I interaction, one pho-
non decays into two others. In a type II interaction, two phonons combine to form a third. In order to 
satisfy conservation of energy, processes in which three phonons are either created or destroyed are not 
allowed. There exist two selection rules for the allowed phonon interactions. First, from the translational 
invariance of the lattice potential energy, the wave vectors of the phonon modes in question must satisfy 
the following conservation rules:

k1 = k2+ k3 + G (type I) (10a)

k1 + k2 = k3 + G (type II) (10b)

where G is either equal to zero (corresponding to a Normal (N) process) or a reciprocal lattice vector 
(corresponding to an Umklapp (U) process. These criteria are valid in both the classical and quantum 
descriptions of the phonon system (Born, 1954).

The second selection rule, which only applies to the quantum system, is based on conservation of 
energy. For the type I and II interactions, conservation of energy then leads to

ħω1 = ħω 2+ ħω 3 (type I) (11a)

ħω1 + ħω 2 = ħω 3 (type II) (11b)

It should be noted that it is the anharmonic frequencies that should be used here. According to Herring 
(1954), the 3-phonons scattering due to longitudinal phonons under momentum conservation conditions 
at low temperatures is given by:
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τι 
-1 (3 phonons) = A.T 3ω2 (12)

where A is a fitting parameter which depends on the Gruneisen an-harmonicity parameter and the phonon 
velocity. Note that, the three-phonon normal process conserves phonon momentum and hence does not 
contribute to thermal resistance.

Phonon-Boundary Scattering

The phonon-boundary scattering is particularly important for low-dimensional semiconductors and 
nanostructures and its relaxation time is given by (Ju & Goodson, 1999):

τι 
-1 (Boundary) = vs(1-b)/L (13)

where vs is the average speed of sound, L is the characteristic length of the system and b is the surface 
roughness parameter. When b=0 we have a very rough surface and the transport is pure diffusive (the 
Casimir limit).

Phonon-Electron Scattering

When the material is lightly doped, the phonon-electron scattering processes is important. The elec-
tron–phonon scattering rates (for both the intravalley acoustic and the intervalley acoustic and optical 
scattering) are already treated in the context of charge-carrier transport in Chapter 2. They can be sum-
marized as follows (Srivastava, 1990):

Γ
i

a s d

s q s
q s q

q

D m

p k
N I q dq= +








∫,

,
,

2

2

2 3

4

1 1
2

1
2π ω�

∓  (14a)

Γ
∆

if

if f

q s
q s df k q s

Z
N g E= +










±( )
π

ρω
ω

2

2
1
2

1
2

,
, ,

∓ �  (14b)

Here, Nq,s = 1/[exp(ħωq,s/kBT) -1] is the equilibrium phonon distribution, which describes the average 
occupation of the phonon mode ω(q,s), with q and s represent the phonon momentum and polarization. 
The upper and lower signs ± correspond to phonon absorption and emission processes, respectively. 
Also, Iq is the overlap integral and gdf is the density of states. The values of intravalley and intervalley 
deformation potentials (Da and Δif) are shown in Table 1. Other parameters have their usual meaning.

Phonon-Impurity Scattering

The phonon or host atom vibrations may be scattered on impurities with different mass. This is called 
mass-difference impurity scattering and given by (Asheghi, et al, 2002):
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τι 
-1 (Impurity) = VoNi ω

2/4πvg
2 (15)

where Ni is a measure of the impurity scattering strength and the group velocity vg = dω/dk, can be 
obtained from the phonon dispersion relation. 

3.7 Phonon Lifetime and Mean Free Path

Normally, the scattering process is quantified by the relaxation time (τ) or the mean-free-path (λ) of 
phonons. The mean-free-path (λ) of phonons, is the average distance phonons propagate without being 
scattered. For instance, the effective phonon mean free path of Si at room temperature is around 300nm. 
The relaxation time and mean-free-path are related by λ= υgτ, where υg is the group velocity of phonons. 
Both the relaxation time and the mean-free-path strongly depend on the frequency of phonon modes.

There are two main mechanisms which control the phonon lifetimes and mean free path (MFP) in a 
crystalline material, namely: the phonon an-harmonic interactions in which a phonon decays into other 
phonons, and the phonon scattering at impurity or defect centers. The mean-free-path of heat-carrying 
acoustic phonons is not constant but spans more than an order of magnitude in most crystals depending 
on phonon frequency.

The energy conservation law of the anharmonic decay requires that the energy of the decay phonon 
be equal to the sum of the energies of the created phonons. In fact, the recent results indicated that the 
classical heat diffusion equation significantly underestimates temperature distribution at nanoscales in 
the presence of external heat sources. Figure 11 depicts the phonon transport and energy exchange cycle, 
in semiconductor devices.

Generally speaking, describing phonon transport by a single MFP (the so-called gray body ap-
proximation) is an oversimplification of the problem. For any length scale there will be phonons of 
low enough frequency that propagate ballistically rather than diffusively. Most thermal energy sits in 
the high-frequency phonon modes with short MFP which can be modeled as a thermal reservoir with 
locally defined temperature and diffusive transport. Low-frequency phonons (with MFP on the order 
of or longer than ~1um in Si at room temperature) may contribute significantly to thermal conductivity 
but their contribution to the specific heat is very little due to their low density of states. The concept of 

Table 1. The effective intravalley and intervalley deformation potentials Da and Δif In Si

After Ju & Goodson (1999).
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separating the phonon spectrum into low- and high-frequency parts goes back to the two-fluid model of 
thermal conductivity of Armstrong (1981). The Figure 11 depicts the experimental frequency dependence 
of the longitudinal phonon lifetime in Si at 300K.

As shown in figure, the phonon relaxation may be fitted to the Akhiezer relaxation model at lower 
frequencies (Kunal & Aluru, 2011). In sub-THz range, there is a transition in phonon-phonon interac-

Figure 10. Phonon transport and energy exchange cycle
After Egley et al (2000).

Figure 11. Frequency dependence of the longitudinal phonon lifetime in Si at 300K. The experimental 
data (symbols) are taken from Asheghi et al (2002) and fitted by the Akhiezer relaxation model. The 
quadratic dependence extrapolation is obtained from first-principles calculations with three-phonon 
scattering (Landau-Rumer) model.
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tion from the Landau-Rumer (3-phonon scattering) to the Akhiezer relaxation mechanism, and the 
frequency dependence of the phonon lifetime strongly deviates from the quadratic one. At frequencies 
below 100 GHz, the phonon lifetime is determined by the Akhiezer mechanism and can be modeled by 
a relaxation-type equation

τ -1 (Akhiezer) = τo(1+ 1/τth
2ω2) (16)

where τth is on the order of the characteristic lifetime of dominant thermal phonons. In silicon at 300K, 
we may take τo = 5ns and τth = 14ps, to fit the experimental data, as shown in figure.

The phonon-lifetime in a certain material can be measured via the Raman spectral linewidth. The 
values of the Raman line widths at the zero slit width may be used to evaluate the phonons lifetime, τ, 
via the energy time uncertainty relation: ΔE = ħ/τ. where ΔE is the Raman linewidth in units of cm-1 
and ħ is Planck’s constant divided by 2π.

4. PHONON TRANSPORT MECHANISMS

Phonon transport theory occupies a critical place in the hierarchy of information carrier transport 
especially at the nanoscale. The transport of phonons is usually considered as a diffusive process and 
described by Fourier’s law of heat conduction. However, ballistic and hydrodynamic phonon transport 
mechanisms are also possible in bulk materials, especially at very low temperatures. Recent studies of 
low-dimensional materials have indicated the importance of ballistic phonon transport in thermoelectric 
materials and electronic devices.

4.1 Diffusive Phonon Transport

For heat conduction in solids, the rate of thermal energy transfer per unit time and unit area is assumed 
proportional to temperature gradient. Therefore, the heat flux term (Q) in the classical transport models 
is usually expressed by the following diffusion equation:

Qn = - kth∇TL (17a)

Figure 12. Basic phonon transport mechanisms
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The above empirical relationship is known as the Fourier’s law of heat conduction. The negative 
sign indicates that heat flows against temperature gradient, from the hot side to the cold side. The unit 
of heat flux is [W/m2] and the unit of the thermal conductivity is [W/m.K]. For instance, Al (metal) has 
kth >200 W/m.K and InAs (semiconductor) has kth =27 W/mK.

The reciprocal of thermal conductivity is called the thermal resistivity. The thermal conductivity 
(kth) is related to the electronic conductivity (σn) by the Wiedemann-Franz law, which was originally 
discovered for metals:

kth = L σ n T (17b)

where L =γ n (kB /e)2 is the Lorenz number (for metals γ n = ⅓) and T is the ambient temperature.
In high thermal conductivity materials, the temperature distribution is almost homogenous since heat 

could be easily transported across the material. On the other hand, low thermal conductivity impedes 
heat transport. As shown in the Figure 14, a temperature jump may happen between dissimilar materi-
als. Kapitza first encountered this phenomenon in 1941 when he submerged a solid in liquid helium 
(Kapitza, 1941). The Fourier diffusion equation has been the governing equation for heat transfer prob-
lems in conventional structures. The underlying assumption is that heat is transferred from one region 
to another subject to sufficient scattering events of phonons in the medium. If the size of the material 
or material constituents is much larger than the mean free path of phonons, many scattering events take 
place so that local thermodynamic equilibrium is restored in the material. However, it has been shown 

Figure 13. Experimental thermal conductivity of different crystalline and amorphous solids, as a func-
tion of temperature
From (Kittel & Kroemer, 1980).
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that the Fourier formula is not accurate for modeling the heat flux across thin semiconductor layers and 
interfaces (e.g., p-n junctions) and within nanodevices in particular.

At small length scales, the classical diffusive model for heat conduction begins to fail. When the 
phonon mean free path is greater than the characteristic size of the material, the heat flow process is 
in the ballistic regime where phonon-phonon scattering processes are rare and thermal conductivity of 
the material is governed by boundary and impurity scattering processes. For instance, SOI devices have 
dimensions smaller than the mean free path of phonons. In such a case, Fourier’s law becomes invalid 
for describing the thermal transport process since the thermal transport is no longer diffusive.

4.2 Hydrodynamic Phonon Transport

The term hydrodynamic (HD) phonon transport came from the macroscopic transport phenomena in 
fluids. Like charge carrier transport, phonons in the HD regime move with an average (macroscopic) drift 
velocity. Therefore, HD phonon transport is different from the diffusive or ballistic phonon transport. 
The HD phonon transport has drawn less attention because it has been observed only at extremely low 
temperatures in bulk materials. However, several researchers have shown that the HD phonon transport 
can occur in certain two-dimensional nanostructures, like graphene at higher temperatures than in bulk 
materials (Lee et al, 2015). As shown in Figure 15, the phonons in the HD regime exhibit a non-uniform 
heat flux profile like the laminar fluid flow in a tube. In the HD regime, the main mechanism for mo-
mentum loss is boundary scattering. Therefore, the flux is small near the boundary. The HD transport 
of phonons has been demonstrated through drift motion, phonon Poiseuille flow and second sound.

Second sound is a quantum mechanical phenomenon in which heat transfer occurs by wave-like 
motion (phonon density wave), rather than by diffusion mechanism. Second sound refers to the propa-
gation of a temperature wave, provoked by a heat pulse, analogous to ordinary sound in a fluid, which 
is pressure wave propagation6. This phenomena is observed in superfluids (like liquid He) and some 
dielectric materials.

Figure 14. Heat conduction through two layers of different materials
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4.3 Ballistic Phonon Transport

Ballistic transport is the transport of carriers in a medium without scattering events. Recent studies of 
thermal transport in nano-materials have demonstrated the existence of ballistic transport (Buot, 2009). 
When the size of semiconductors is smaller than the phonon mean free path, phonons can carry heat 
with no internal scattering. In general, carriers will exhibit ballistic conduction when the device length 
L < λ., the mean free path between scattering events. Recent experiments demonstrate room-temperature 
evidence of ballistic phonon transport in various nano-materials. However, the thermal conductivity data 
for silicon in the length scale of 10-100 nm is still not available due to experimental challenges. It is now 
well known that ballistic phonon transport becomes important in structures with small feature sizes as 
well as in large structures in low temperature and under rapid transient conditions.

The ballistic thermal transport may be expressed by the Landauer-Büttiker formula (Büttiker et al., 
1985), which was initially developed for electronic transport in 1-D ballistic channels. In spite of the big 
difference between electrons and phonons in nature and energy distribution functions, many researchers 
assume an equivalent Landauer formula for phonons. The heat current from node A to node B of a bal-
listic thermal channel may be given by the following relation (Munoz, Lu & Yakobson, 2010):

Jth = ʃ (ω/2π)[ NA (ω,Τ) − NB(ω,Τ) ].ζ(ω).dw (18)

where N is the phonon distribution and ζ(ω) is the phonon transmission probability.

4.4 Coherent Heat Flow

The ballistic conduction is coherent in terms of wave mechanics and hence enables us to exploit the 
quantum mechanical properties of carrier wave functions. Coherent transport of phonons is particularly 
relevant in short-period heterostructures with smooth interfaces and long-wavelength phonons, such as 
two-dimensional superlattices. The thermal conductivity across such structure increases linearly with 

Figure 15. Steady-state heat flux profiles in diffusive and hydrodynamic regimes
After (Lee et al, 2015).
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the repetition of stacked layers. The measured thermal conductivity increased linearly with increasing 
superlattice thickness over a temperature range from 30K to 150K (Ravichandran et al., 2014).

Considerable research effort has been devoted to understanding the fundamental regime transition 
from incoherent to coherent in nanostructures. Recent experiments and atomistic simulations have shown 
that the transition to coherent phonon transport occurs in certain semiconductor nanostructures of 2-5 
nm in thickness.

4.5 Quantized Thermal Conductance

The so-called thermal conductance quantum is a unit of heat conduction, which describes the rate at 
which heat is transported through a single ballistic phonon channel. It is given by:

Go
th = (π kB

2 / 6ħ) T = go T (19)

where the constant go= 9.456 x 10-13 W/K2. The thermal conductance of insulators that exhibits ballistic 
phonon transport is an integer multiple of Go

th. The thermal conductance quantum was measured by 
Schwab and other researchers (Schwab et al, 2000). The measurement employed suspended Si3N4 nano-
structures that exhibited a constant thermal conductance of 16Go

th at 0.6K or below.
In ballistic electrical conductors, the electron contribution to the thermal conductance is also quan-

tized due to the Wiedemann–Franz law (Wiedemann–Franz, 1853). This empirical law depicts the 
relation between the thermal and the electrical conductivities of metals, as: kth/σ = L.T, where L is the 
Lorentz number (Lorentz, 1872) and σ is the electrical conductivity. As conductance and conductivity 
are related by geometry, the Wiedemann–Franz law may be written as kth/σ = Gth/G= L.T, or go/G=L. 
In metals, we have L= ⅓π2kB

2/e2 ≈ 2.44x10-8 WΩ/K2, therefore, we can write the corresponding quanta 
of electrical conductance as:

G = go /L =(π kB
2 / 6ħ) / ⅓π2 kB

2/ e2 = ½ π (e2 /ħ) (20)

Although, we relied on an empirical law, the result is close to the quanta 2e2/h, which is a manifesta-
tion of collective behavior of electrons in 2-D structures at very low temperatures. However, note that 
L is constant because both heat and electrical currents are carried by electrons in metals, especially at 
low temperature. At room temperature, the contribution of phonons to the thermal conductivity cannot 
be neglected in solids, especially in insulators and semiconductors. For semiconductors, the Lorentz 
number (L) depends on the dominant collision mechanism, and other material parameters, as shown in 
Chapter 1 of this Book.

It should be noted that some researchers (Kane & Fisher, 1996) proved experimentally (Hussey et al, 
2011), that the Wiedemann-Franz law could be violated in certain materials when electrons are confined 
in low-dimensional structures.

5. SEMICLASSICAL PHONON TRANSPORT

The lattice heat equation, which depicts the temporal and spatial distribution of lattice temperature 
along the semiconductor, has been already introduced in chapter 1. This equation is not only important 



400

Phonon Transport and Heat Flow
 

for power devices but also for nanodevices, including silicon-on-insulator (SOI) structures. The scale 
down in the size of electronic devices means lesser space for heat dissipation. In fact, the recent studies 
of SOI devices by the standard hydrodynamic model (HDM), showed certain anomalies due to lack of a 
heat evacuation mechanism at the insulator interface (Egley, 2000). Some authors suggested to fix this 
problem by considering a tensorial temperature and modifying the closure condition for energy flux 
term. Other authors suggested a more rigorous approach consists in solving the BTE for phonons (Chen, 
2003). Therefore, we can add the phonon Boltzmann transport equation (BTE) to the set of transport 
equations to solve this problem. In this case, the semiclassical BTE gives the nonequilibrium energy 
distribution of phonons (in a specific system) in terms of its position and momentum coordinates (r, p). 
On the basis of the phonon BTE and its variants (such as the Equation of Phonon Radiative Transport, 
EPRT), researchers have successfully matched their solutions to the measured thermal conductivity data 
for bulk silicon, silicon thin films and silicon nanowires (Chen et al, 2008).

A similar approach to the phonon BTE, called the split-flux form of the phonon BTE (p-SFBTE), 
was proposed by Sinha et al. (2006). Here, the phonon distribution is split into two terms: Nq =Nqo+nq. 
The first population term Nqo(TF) is a near-equilibrium component and has a Bose-Einstein distribution 
at a temperature TF that follows the Fourier heat conduction law. The second population term nq is a 
nonequilibrium component, which dominates the transport near hotspots and is determined by solving 
the phonon BTE, typically in the relaxation-time approximation. The p-SFBTE ensures macroscopic 

Figure 16. Quantized thermal conductance of Si3N4 thin layers of different thicknesses at very low tem-
perature
After Rhyner, (2015).
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energy conservation and can capture the phonon ballistic conduction near hotspots while accounting for 
diffusive conduction far from hotspots.

The so-called McKelvey- Shockley flux method is another simple form of the BTE (McKelvey, 
Longini & Brody, 1961). This approach can provide accurate solutions for steady-state thermal transport 
from the ballistic to diffusive limits, with less computational efforts. The different solution methods of 
the phonon BTE and variant methods are discussed in details in (Chernatynskiy & Phillpot, 2010). A 
complete treatment of thermal transport phenomena in metals, with semiclassical approaches, can be 
found in Ashcroft and Mermin book (1976). We concentrate our attention here on the phonon transport 
models in semiconductor devices and nanostructures.

5.1 Phonon BTE

In equilibrium, phonons follow Bose-Einstein statistics and interact with each other via scattering pro-
cesses. Using the Boltzmann transport equation (BTE), which was originally developed for studying 
the transport of classical particles, we can also study the phonon transport problems. The fundamental 
assumption in deriving the phonon BTE is that there exists a distribution function, Nq,s(r,t), which de-
scribes the average occupation of the phonon mode (q, s) in the neighborhood of a location r at a time t. 
The equation assumes the simultaneous prescription of phonon position and momentum with arbitrary 
precision. As both position and momentum are conjugated in quantum mechanics (cannot be defined 
simultaneously, with precision), the phonon BTE considers phonons as wavepackets. Each phonon wave 
packet has a spread δq in the wavevector space and is localized in physical space within a region of size 
δr such that δqδr ≈ 1.

The evolution (rate of change) of the phonon distribution in non-equilibrium can be described by the 
following phonon BTE (Pop, 2003):

(dNq,s/dt) + vg.∇Nq,s = (dNq,s/dt)col. (21)

where Nq,s is distribution function of an ensemble of phonons with wave vector q and polarization s, vg 
is the phonons group velocity, (dNq,s/dt)col is the rate of change of the phonon distribution function due 
to collisions. Phonon collision mechanisms include phonon–phonon, phonon–electron, phonon–impu-
rity and phonon–boundary scattering mechanisms. The formal expression for the collision term in the 
phonon BTE has been developed by Peierls (1955), as an integral in wave vector space over all allowed 
scattering processes. The phonon BTE has shown promising results in predicting the ballistic-diffusive 
nature of heat transfer and temperature distribution. However, the collision term, which redistributes 
phonon energies in wavevector space, is non-linear and represents the primary source of computational 
difficulties in solving the phonon BTE.

In order to reduce complexity of solving the phonon BTE, scattering interactions are often approxi-
mated by the single mode relaxation time or assuming a3-fluid phonon transport model involving a 
stationary optical reservoir mode and a propagating acoustic mode. The latter approach can consider 
the heat evacuation by optical phonons as well as their anharmonic decay to fast propagating acoustic 
phonons, as shown in Figure 17.

Under the relaxation time approximation, the fundamental quantity associated with phonon scatter-
ing is the phonon mode lifetime. The single-mode relaxation time for a phonon system describes the 
temporal response of the system when that mode is excited and all other modes have their equilibrium 
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populations. The assumption (one mode activated and others at equilibrium) is never realized. This is 
because the natural decay of the energy in a mode occurs in the presence of other modes that are excited 
or diminished. In fact it is well known that the longitudinal optical (LO) phonons have small group ve-
locities (~105 cm/s) and anharmonically decay into faster acoustic phonons which in turn transport the 
energy out of the semiconductor device.

5.2 Peierls -BTE

Peierls extended the Boltzmann transport equation which describes the thermodynamics of gas molecules 
to the study of phonons (Peierls, 1959). The Peierls–Boltzmann transport equation, which describes the 
evolution of the phonon distribution N(x,t), has the same form as the phonon BTE7:

∂N/∂t + vx (∂N/∂x) = (∂N/∂t)col. (22)

where (∂N/∂t)c represents the rate of change of the phonon distribution due to collisions. Using the mo-
ment method, one can obtain the average phonon energy and average momentum conservation along 
the phonon flow direction in the following macroscopic form (Guo &Wang, 2016):
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Figure 17. Energy flow in semiconductors
After Pop et al (2003).
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Here the sum over λ means all phonon polarizations. The right-hand side of equation (23a) is zero 
because energy is always conserved on scatterings. Also, the right-hand side of equation (23b) is also 
zero when we assume weak R-scattering and thus crystal momentum is conserved. The actual phonon 
distribution (N) under weak R-scattering can be approximated as a displaced distribution function (NBEd). 
The displaced distribution can be linearized when the displacement in phonon distribution is very small:

N ≈ NBEd ≈ NBE +(ħ/kBT) NBE (NBE +1)qxux (24)

5.3 McKelvey-Shockley Flux Method

The so-called McKelvey-Shockley flux method has been also used to treat transient phonon transport 
problem (McKelvey, Longini & Brody, 1961).

In comparison with other semiclassical phonon transport models, this approach has the following 
advantages:

1.  It captures ballistic phonon effects, such as temperature jumps at the system boundaries,
2.  It captures finite-velocity heat propagation, and
3.  It can easily support full phonon dispersion relations, ω(k), and energy-dependent mean-free-path 

(MFP) of phonons.

In addition, the obtained results by this approach show good agreement with the phonon BTE, while 
requiring less computational effort. This technique categorizes phonons into two components, those 
that are forward moving (vx > 0) and backward moving (vx < 0). Therefore, the McKelvey-Shockley 
equations describe how the phonon flux (product of phonon density and phonon velocity), vary in space 
and time, as follows:

(v+
x)

-1(dF+/dt) + dF+/dx = - (F+ - F-)/λ (25a)

(v+
x)

-1(dF-/dt) – dF-/dx = (F+ - F-)/λ (25b)

Here, F+ and F−are the forward/backward phonon fluxes, v+
x(Ε) is the average x-projected phonon 

velocity and λ(E) is the mean-free-path for backscattering. The right-hand sides of the above two equa-
tions describe how phonons scatter in/out of each flux type. Therefore, scattering is described by λ, 
which is the average distance traveled along x-axis before forward or backward scattering events.. Once 
these equations are solved under appreciate boundary and initial conditions, the heat current and heat 
flux can be obtained as follows:

IQ (x, t, E) = IQ
+(x, t, E) - IQ

-(x, t, E) (26a)
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Q(x,t, E) = [ IQ
+(x, t, E) + IQ

-(x, t, E)] / vx
+(E) (26b)

where E= ħω is the phonon energy and

IQ
± (x, t, E) = E.F±(x,t,E) (27)

By integrating over energy, and hence all phonons, we obtain the total heat current (IQ
tot) and heat 

density (Qtot):

IQ
tot(x, t) = ʃ0

∞ IQ(x, t, E). dE [W/m2] (28a)

Qtot(x, t) = ʃ0
∞ Q(x, t, E). dE [J/m2] (28b)

In addition to heat current and heat density, it is possible to calculate temperature profiles: 

T(x, t) = ½ [δT+(x,t) + δT-(x,t)] + Tref (29a)

δT±(x, t) = 2 δIQ
±(x, t) / Cv.vx

+ (29b)

where δT± is the correction in temperature relative to Tref for each phonon component (forward and 
backward) and CV is the heat capacity at Tref . The reference temperature is an important issue in the 
temperature-dependent scattering process of phonons and heat transport. The Debye temperature, which 
is the temperature at which all phonon modes are excited, serves as the reference temperature. The Debye 
temperature (TD) of silicon is 640 K.

5.4 Other Semiclassical Approaches

We presented so far the basic semiclassical models to study the phonon transport, which are based on 
the phonon BTE and variant methods. These methods are discussed and compared in (Chernatynskiy 
& Phillpot, 2010).

Due to the numerical implementation complexity and the computational cost, the phonon BTE is 
hard to solve in its generic form. Therefore, we can find other approximate approaches for solving the 
phonon BTE. Most of these approaches are based on the expansion of the phonon distribution function 
and the relaxation time approximations. For example, the so-called gray media (frequency indepen-
dent phonons) is often assumed in the solution of the phonon BTE. Different orders of expansions of 
the phonon distribution function and phonon relaxation approximations give rise to different levels of 
phonons and heat transport equations. For instance, the transport of heat carriers can be described by 
the Chapman–Enskog (C-E) expansion to the phonon Boltzmann equation, with Callaway’s relaxation 
approximation. This route yields the C–V equation (Cattaneo, 1958; Vernotte, 1958) as well as the G–K 
equation (Guyer, Krumhans 1966).
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Chapman–Enskog (C–E) Equation

The Chapman–Enskog (C-E) method is an old solution technique to solve the BTE (Chapman, 1916; 
Enskog, 1917). It consists of the first order expansion of the BTE, around an equilibrium distribution 
(No), such that:

N = No + n1 (30a)

The deviation from equilibrium term (n1) can be expressed as follows:

n1 = – τq,s vq,s [∇T(∂No /∂T)] (30b)

where No is the phonon equilibrium distribution at a given reference temperature. Obviously, the non-
equilibrium components (n1) reflects the Fourier diffusion mechanism. More accurately, n1 can be written 
in terms of the equilibrium phonon distributions due to R and N processes as follows:

n1 =– NNo – τN [∂NRo /∂t + vg(∂NRo /∂x)] (30c)

where τN is the phonon relaxation time due to normal (N-process) scattering. The equilibrium distribution 
NRo takes the shape of Bose-Einstein (B-E) distribution and NNo takes the shapes of the displaced B-E 
distribution, as detailed in the G-K model below. The C–E method for the solution of phonon Boltzmann 
equation includes two derivatives, which express the continuous asymptotic expansion and the discrete 
lattice Boltzmann equation. The first-order Chapman–Enskog expansion can be utilized to develop the 
phonon hydrodynamic model (Jiaung & Ho, 2008). The lattice Boltzmann equation can be also derived 
starting from the Chapman–Enskog expansion and the phonon BTE (Guo & Wang, 2016).

Equation of Phonon Radiative Transport (EPRT)

The equation of phonon radiative transport (EPRT) expresses the evolution of the phonon intensity I(ω). 
The one-dimensional form of the EPRT reads:

(v)-1(∂Iω/∂t) + α(dIω /dx) = - (Iω - Iωo) /ντ (31a)

where α is the direction cosine and ν is the Debye velocity of phonons. The phonon intensity is given 
by following sum:

Iω = Σ gph(ω).N(ωq,s).ν.ħω (31b)

Here gph(ω) is the phonon density of states. Note the resemblance between the EPRT and the McK-
elvey-Shockley flux method. The EPRT reproduces the expected radiative behavior in the acoustic 2D 
(thin film) limit and conforms to the Fourier heat flux law in the 3D (continuum) limit.
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Guyer–Krumhansl (G–K) Equation

Guyer–Krumhansl (G–K) equation is a macroscopic heat transport equation, playing the same role as the 
Navier–Stokes equation in fluid dynamics. It, therefore, corresponds to the hydrodynamic description of 
a phonon system. Actually, the G–K can be derived from phonon Boltzmann equation, with Callaway 
relaxation time expression. As we’ll see in the next section, the Callaway thermal conductivity is based 
on the following relaxation-time approximation of the phonon BTE:

(d Nq/dt)col. = - (Nq - NNo)/τN - (Nq - NRo)/τR (32)

where τN and τR are the phonons relaxation times due to normal (N) and resistive (R) phonon scattering 
processes, respectively. Note the different equilibrium distributions (NNo and NRo) in this expression. 
The first equilibrium distribution functions for N-processes (NNo) is a displaced Bose-Einstein (B-E) 
distribution function and the second equilibrium distribution functions for R processes (NRo) is the true 
B–E distribution8:
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Here, the drift velocity u is a space-time dependent macroscopic velocity and not the same as the 
group velocity vg of phonons. Therefore, the G–K transport equation reads:

τR (∂q/∂t) +q+ kth ∇T = 1/5vg
2 τN .τR [∇2q+2∇(∇.q)] (34)

where kth is the bulk thermal conductivity

5.5 Solution Methods of Phonon BTE and Variant Methods

There exist several programs to solve the Phonon BTE and its variant methods. For instance; PhonTS 
is a lattice dynamics code that calculates thermal conductivity via the solution of the BTE for phonons. 
PhonTS has built in classical potentials (Lennard-Jones, Buckingham, Tersoff, etc.) and can interface 
to other codes to take advantage of other potentials or first principles band structure simulators, like 
VASP, and Quantum Espresso.

5.6 Lattice Monte Carlo (LMC) Method

Due to the implementation complexity and the computational cost, the phonon BTE is hard to solve in 
its generic form, using numerical techniques. Alternatively, one can solve the BTE using Monte Carlo 
(MC) simulation technique which is more convenient and efficient when frequency dependent phonons 
(non-gray media) are considered. Among the available solution methods to solve the Phonon BTE, the 
Lattice Monte Carlo (LMC) simulation is the best choice, although it may be expensive in terms of 
computer resources.
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In LMC simulation, phonons are displaced inside the computational domain under the various 
boundary conditions and scattering effects. The phonons dispersion (frequency-dependent phonons) and 
their polarization effects can be then taken into consideration. The dispersion relationships for lattice 
vibrations ω(k) are available in the literature, for different materials. For instance, the ω(k) relations of 
phonon in Silicon may be taken, according to the measurements of Brockhouse (2000) or Dollog (1999).

When the dispersion relation is known, the phonon density of states (DOS) for a given polarization 
branch, gph(ω), is calculated as follows:

gph(w) = k2/ (2π2 vg(ω)) (35)

where the group velocity of phonon, vg, is given by:

vg(ω)= ∂ω/∂k (36)

Procedure of Lattice MC

The Lattice Monte Carlo (LMC) method for phonon transport can be used to find the phonons distribution 
function and the temperature distribution, in a certain device structure. It consists of the following steps. 
We initialize phonon ensembles, launch and trace them in terms of positions, frequency, temperature, and 
polarization. The temperature distribution varies with the location of these ensembles. Once the propaga-
tion stage is complete, the local temperature distribution can be calculated on the basis of the positions 
of ensembles. A general flowchart of the LMC is shown in Figure 18. The probabilities of scattering for 
the ensembles are calculated based on the scattering properties of phonons at a pseudo-temperature9. 
If an ensemble is scattered, its frequency and polarization are reset based on the equilibrium distribu-
tions. However, the local phonon distribution function after the propagation phase is different from the 
phonon distribution in equilibrium.

Phonon Equation of Motion

The propagation of phonons is governed by the following wave equation (in three-dimensions):

ρ.ω2.ei = Cijml kjkmei (37)

where ρ is the crystal mass density, ω is the angular phonon frequency, e is the polarization vector, k is a 
wave vector and Ci jml is the elasticity tensor. For any given wave vector, k, there exist three eigenvalues for 
ω, and three eigenvectors for e. These correspond to the three different polarization states: Longitudinal 
(L), Fast Transverse (FT) and Slow Transverse (ST).

The actual direction and velocity of propagation of phonons is given by the group velocity vector vg 
= dω/dk.
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Application in Semiconductor Devices

The MC method has been used for phonons in silicon and compound semiconductor devices, For instance, 
Lugli and coworkers (Lugli et al, 1987, 1989) have performed self-consistent electron-phonon simula-
tions in the bulk of GaAs, bulk InP, as well as GaAs/AlxGa1-x/As heterostructures. In this work, only LO 
phonons were simulated. The results showed that the phonon population is driven into nonequilibrium 
during photoexcitation and impedes the relaxation of electrons and holes. Despite the subsequent rich 
applications, using MC in electrothermal device simulation, we still need to further investigations. 
The future simulations should respect the realistic phonon dispersion and address the ballistic phonon 
transport in nanodevices

5.7 Macroscopic Approaches

Although the microscopic approaches such as the phonon BTE and LMC are able to capture the statistical 
behavior of phonons at the nanoscale, we can resort to macroscopic models to provide a faster solution 
with reasonable physical insight into phonon transport. Actually, there are four basic macroscopic models 

Figure 18. Flowchart of LMC
After Wong e al. (2011).
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for nanoscale phonon transport in the literature namely: ballistic-diffusive model, thermon gas model, 
phase-lag model and phonon hydrodynamic model.

The ballistic–diffusive model (BDE) divides the distribution function at any point into ballistic and 
diffusive parts, with a priori description of the phonon distribution function (Chen, 2001). The BDE is 
a mixed macro-scopic method as the heat flux of ballistic phonons is obtained from the kinetic theory.

The thermon gas model (Cao, Guo, 2002) describes heat transport through the classical fluid mechan-
ics. In this model, heat conductions can be treated as thermon gas flows in solid driven by a temperature 
gradient. Thermon is defined as a quasi-particle carrying thermal energy. For solids, the thermon gas is 
the phonon gas of crystal lattice, attached to the electron gas or interacting between them. The phase-lag 
model (Tzou, 1995) suggests a causal response through adding one or two phase lags into Fourier’s law.

Phase Lag Approaches (SPL & DPL)

It is well known that the utilization of the Fourier relation (QL = -kth∇ TL) results in errors in the simu-
lation of nanodevices (Pop, 2003). The single-phase lag (SPL) and dual-phase lag (DPL) approaches 
are mathematical techniques to avoid (actually to replace) the direct utilization of the Fourier diffusion 
relation. The phase lag techniques (which are sometimes called Jeffrey-type models) have been success-
fully employed to simulate SOI & Tri-gate nano MOSFET devices (Nasri et al, 2015).

The basic idea of the SPL model consists in expressing the lattice heat flux as follows (Cattaneo, 1958):

QL (r, t, τL) = -kth∇ TL(r, t) (38)

where τL is a lag constant (roughly equal the phonon relaxation time τϖ).
This allows us to write the heat continuity equation in the SPL model as follows (Cheng et al, 2008):
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Hydrodynamic Phonon Transport Models

The hydrodynamic phonon transport model is another alternative approach to study phonon transport. 
This model is based on the macroscopic balance equations for phonons that can be derived from the 
phonons–BTE (PBTE). The balance equations of phonon energy and momentum are obtained through 
an integration of the PBTE, multiplied by the microscopic energy ħω and crystal momentum ħk:

∂ϖ /∂t + ∇.q= 0 (40a)

∂p/∂t +v−2∇.Q= -p/τR (40b)

where ϖ =<ħω>, p=<ħk>, and the flux of heat flux Q is a symmetric tensor that can be defined from 
balance equation:
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p= < ħk> = (1/2π)3ʃħk.N.d3k (41a)

ϖ = < ħω > = (1/2π)3ʃħω. N.d3k (41b)

q= < ħω.vg > = (1/2π)3ʃħω.vg. N.d3k (41c)

Q= < ħω.vgvg > = (1/2π)3ʃħω.vg.vg. N.d3k (41c)

Here, N denotes the phonon distribution function and (1/2π)3 is the density of states in the momentum 
space. Substitution this definition yields the balance equation for heat flux (heat transport equation):

∂q/∂t + ∇.Q= -q/τR (42a)

or

∂q/∂t + 1/3v2∇ϖ + ∇.Q= -q/ τR (42b)

Lattice Heat Continuity Equation

As a compromise between the above approaches a lattice heat continuity equation can be added to the 
set of charge-carrier transport equations to form the so-called electrothermal transport model in semi-
conductors. The lattice heat continuity can be developed from the energy density form of phonon BTE 
in the relaxation time approximation (Sverdrup, Ju & Goodson, 2001):

∂
∂
+ ⋅∇ = −

−
+

ϖ
ϑ ϖ

ϖ ϖ
τϖt

Ho
s
 (43)

where ϖ is the phonon (excess) energy per unit volume per unit solid angle, υ the phonon velocity and 
τϖ is the phonon energy relaxation time.

ϖ ω ω ω= ⋅ −∫ � ( ) ( )N N g d
q qo ph

 (44)

The so-called phonon lattice Boltzmann equation (LBE) is a discrete form of the above equation.
In order to find out the macroscopic heat transport equation, Chapman–Enskog expansion can be 

applied to express the phonon distribution function. Assuming an isotropic distribution of phonons, the 
above equation may be integrated over the solid angle and written like the lattice energy conservation 
equation (Lai & Majumdar, 1996):



411

Phonon Transport and Heat Flow
 

∂

∂
+∇ ⋅ = −

−
+

W

t
Q

W W
HL

L
L Lo

sτϖ
 (45)

where TL is the lattice temperature, WL = ρL cv TL is the lattice energy density, WLo is the lattice energy 
density at equilibrium and QL = -kth∇ TL is the lattice heat flux. Also, Hs is the heat generation rate 
absorbed from hot electrons which can be extracted from a device simulator (usually, on the basis of 
DDM or HDM). In the bulk, the heat generation rate Hs is mainly due to the Joule heating effect (J.ζ) in 
addition to the net recombination cooling effect. In nanoscale devices, the phonon-boundary scattering 
effect should be added to these effects.

Lattice Boltzmann Equation (LBE)

The LBE is widely applied in classical hydrodynamics and has become a promising solver for phonon 
hydrodynamics in nanoscale phonon transport. The phonon lattice Boltzmann equation is obtained as a 
discrete form of the phonon Boltzmann equation
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where υi (i = 1, 2, 3,...,n) are the discrete lattice velocities, and n is the number of them. The time and 
spatial derivatives of ϖi(x,t) at the left side can be approximated by the finite difference method techniques. 
The phonon relaxation time may be approximated by, e.g., the Debye model, such that the equilibrium 
phonon energy density becomes ϖi = CvT/n.

5.8 Thermal Conductivity Models

We now consider the modeling of thermal conductivity, which is a measurable macroscopic quantity, 
in the context of semiclassical phonon transport in insulators and semiconductors. The behavior of the 
lattice thermal conductivity in solids was qualitatively described by the early work of Debye and Pei-
erls. The Debye and Peierls models described the lattice specific heat and thermal conductivity at very 
low temperatures (where phonons have long mean-free-path) on the basis of different assumptions. For 
instance, Debye assumed non dispersive phonon relation for all phonons (ω=k.vs) and all phonons have 
the same velocity and mean free path (MFP).

Debye Model

Starting from the kinetic theory of gases, thermal conductivity of a gas of phonons is given by:

kth = Σi cvi vgi vgi τi (47a)

where the sum is taken over all phonon modes, cvi, τi and vgi,are the phonon mode specific heat, lifetime 
and group velocity, respectively. Note that the group velocity is equal to the slope of the dispersion rela-
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tion, dω/dk, and represents a very important quantity in heat transport. In fact, the group velocity in the 
optical branches of the dispersion relation is usually negligible, resulting in insignificant heat conduction 
by optical phonons. On the other hand, the acoustic branches of the phonon dispersion relation have large 
group velocities and contribute effectively in the heat transport. At the long wavelength (continuum) limit, 
the acoustic group velocity reaches the speed of sound (vs =√(E/ρ)) in a crystal, where E is the elastic 
stiffness (Young’s modulus) and ρ is the mass density. Assuming a non-dispersive phonon spectrum 
(linear), the above relation can be reduced as follows:

kth = ⅓ cv vs λ (47b)

Here, cv is the average heat capacity per phonon, vs is the average phonon speed and λp is the average 
phonon mean free path.

Indeed, λ depends on the phonon scattering mechanisms and is related to the phonon relaxation time 
τ by the relation (λ= τ.vs). Substituting the heat capacity, we get the Debye relations for heat capacity 
and thermal conductivity
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where TD is the Debye temperature, m is atomic mass, n is the density of phonon modes and x=ħω/kBT. 
Using this model, Debye found the T3 dependence of heat capacity at low temperatures and the Dulong-Petit 
law at high temperature (about room temperature). However, this model leads to a thermal conductivity 
that declines from the experimental data as the temperature increases. In fact, the experimental data of 
thermal conductivity can only be explained by considering phonon-phonon scattering mechanisms, and 
the umklapp phonon scattering in particular. Following the above model, several theoretical models for 
the prediction of phonon thermal conductivity have been presented. Some of these models are based on 
the semiclassical BTE (like Callaway and Holland models) and others are based on ab-initio methods 
(like molecular dynamics MD). Though MD simulations account for anharmonicity, the classical nature 
of the MD makes it difficult to include quantum effects. Nevertheless, quantum correction terms can be 
added to correct the MD calculations.

Callaway Model

In1959, Joseph Callaway developed a solution of the phonon BTE on the basis of relaxation time ap-
proximation, and assumed an isotropic Debye-like phonon spectrum. In this model, there is no distinction 
between longitudinal and transverse phonons and the phonon branches are non-dispersive (linear ω-q 
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relation). Callaway considered only isotope impurity and boundary scattering mechanisms. Using these 
assumptions, Callaway developed a thermal conductivity model which is valid at low temperatures (up 
to 100K).
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where A, B and L are constants of the phonon scattering rates. Note that the Callaway’s model assumes 
a non-dispersive phonon spectrum and there is no distinction between phonon modes. Therefore, this 
model fails to explain the thermal conductivity of many solids like Si at high temperature (Ma, Li, & 
Luo, 2014).

Holland Model

In Holland’s model (1963), the contributions of the transverse and longitudinal phonons are explicitly 
treated. In this model, Holland attempted to capture the thermal conductivity behavior at high-temperature, 
by modifying the expressions of the three-phonon normal and Umklapp processes. The final expression 
of Holland’s model reads:
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where x= ħω/kBT, τT and τL are the total relaxation times for transverse and longitudinal phonons, re-
spectively. Also, θT = ħωT/kB and θL = ħωL/kB are transverse and longitudinal temperature limits. Finally, 
the constants CT and CL are given by: CT = kB

4/2ħ3πivT and CL = kB
4/2ħ3πivL.

A review of other models of thermal conductivity can be found in Ashcroft & Mermin (1976), 
Schroeder (2000) and Rowe (2006).

Empirical Models

The phenomenological models of thermal conductivity concentrated on the capture of the temperature 
dependence over a broader range with doping effect as well as the coherent phonon transport in nano-
structures. The temperature dependence of kth in the bulk of many semiconductors may be simply mod-
eled using the following phenomenological relation:
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kth (TL) = k300 (TL/300) α [W/K cm] for TL > 100K (51)

where α = -1.3 and k300 = 1.45 for Si. The parameter values when this model is applied to other semi-
conductors and insulators are summarized in Table 2.

At the interface, between different materials, the bulk thermal conductivity, kth, should be replaced 
by the Kapitsa thermal conductivity, Gh, to express the temperature jump between dissimilar materials 
(Kapitsa, 1941). This abrupt change is due to the surface roughness at the interface between different 
materials and their different phonon properties (e.g., phonon sound velocity). Khalatnikov (1952) and 
Little (1959) developed the acoustic mismatch model (AMM) to explain the temperature jump by con-
sidering the sound velocity mismatch between different media.

6. QUANTUM THEORY OF PHONON TRANSPORT

When phase coherence effects cannot be ignored, the semiclassical approaches (like Boltzmann-Peierls 
equation) cannot be used to describe heat conduction and heat transfer in semiconductors and dielectrics. 
On the other hand, the molecular dynamics (MD) methods, which are based on classical mechanics, 
provide inaccurate results at low temperatures. This is especially true in nanostructures and nanodevices. 
Also, the concept of ensemble average in semiclassical distributions breaks down when the number of 
particles is small, which is the case in nanosystems (Tsalis, 1988).

Typically, heat in solids is transported incoherently because phonons scatter at interfaces and defects. 
Actually, heat is transported by a spectrum of phonon wave packets whose characteristic length scale, i.e. 
the thermal coherence length, determines the phonon transport regime. If the spatial coherence length of 
the wave packets is smaller than the feature size of the system, thermal transport is incoherent and pho-
nons diffusively scattered at different defects. On the contrary, for wave packets with coherence lengths 
greater than the device length, transport becomes wave-like with coherent phonons. Recent experiments 
and atomistic simulations have shown that the transition to coherent phonon transport occurs in certain 
semiconductor nanostructures of 2-5 nm thickness. Considerable research effort has been devoted to 

Table 2. Parameter values for thermal conductivity model

Material Thermal Conductivity at TL =300K
K300 [W/K cm]

α

Si 1.48 -1.3

Ge 0.60 -1.25

GaAs 0.46 -1.25

AlAs 0.80 -1.37

InAs 0.273 -1.1

InP 0.68 -1.4

GaP 0.77 -1.4

SiO2 0.0138 0.33

Si3N4 0.185 0.33

Source: Handbook Series on Semiconductor Parameters (Levinstein, Rumyantsev & Shur, 1996).
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understanding the fundamental regime transition from incoherent to coherent in nanostructures. Re-
cently, DFT combined with non-equilibrium Green’s functions (NEGF) based on phonon interactions 
was proposed to describe thermal transport in microscopic systems.

6.1 Phonon Hamiltonian

Now we formulate the dynamic equations in a universal form to prepare them to quantum mechanical 
description. Let’s first review the quantum-mechanical problem of a system of harmonic oscillators 
using creation/ annihilation operators. This system resembles the system of phonons in the harmonic 
approximation.

The Hamiltonian of such a phonon system is given as follows:
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Notice the existence of the force constant tensor Cij in the potential energy term. The solution of this 
can be carried out by several methods and leads to the dispersion relation, ωα(k). The quantum mechani-
cal Hamiltonian can be obtained from the classical Hamilton function by replacing classical momenta 
by operators. The corresponding quantized form of the solution may be written in terms of phonon 
annihilation and creation operators. These operators act directly upon the phonon occupation numbers. 
The phonon annihilation operator is given by
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where N is the number of normal modes divided by α. Also, sα is the unit vector of mode α. Similarly, 
the phonon creation operator is defined as the adjoint of the phonon annihilation operator:
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Therefore, the displacement u(x) and momentum p(x) can be expressed in terms of these operators 
bk,α and bk,α, as follows:
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Finally, the phonon Hamiltonian expressed in terms of these variables (the momentum and potential 
energies) becomes
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Note that applying the product b†b to the wave function yields the phonon number N. This Hamiltonian 
corresponds to the solution of a system of harmonic oscillators in equilibrium, with quantized energies

En = ħωn(n+ ½) (56)

Therefore, the normal vibrations behave as particles with the energy ħω and quasi-momentum ħk. 
The quasiparticles are called phonons.

6.2 Phonon Green’s Functions

The phonon transmission and thermal conductance can be obtained from the nonequilibrium Green’s 
functions. The NEGF model for thermal transport is analogous to that for electron transport, which we 
described so far in Chapter 4. The Green’s function is here the solution that results from the addition 
of a perturbation to the heat transport problem. This approach has been detailed in the literature, e.g., 
Zhang et al (2007) and Koswatta, et al. (2007).

Equilibrium Green’s Functions for a Harminic Oscillator

At first, let’s define the Green’s functions (or correlation functions), for a single harmonic oscillator. We 
can define the Green’s functions by the creation/annihilation quantum operators, for phonon systems. 
Better than this, we can use the vibrational displacement operators (Yamamoto, & Watanabe, 2006). 
Therefore, we define the greater Green’s function as the position-position (r to r’) correlation function 
in time (t to t’) as follows:

g t t
i

u t u t> ′( ) = − ′, ( ) ( )
�

 (57a)

Here uj(t) is the Heisenberg operator for the vibrational displacement where the time-dependence is 
according the Heisenberg evolution picture, and the angular bracket means the average (or trace) over 
the equilibrium density matrix ρ. Similarly, we define the lesser Green’s function, as follows:
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g t t
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 (57b)

Also, the time-ordered (causal) Green’s function is defined as:

g t t
i

Tu t u t t t g t t t t g t tt , ( ) ( ) , ,′( ) = − ′ = − ′( ) ′( )+ ′ −( ) ′( )> <

�
θ θ  (57c)

The Heaviside step function is defined as θ(t) =1 if t ≥ 0 and 0 otherwise. In addition, the anti-time-
ordered Green’s function is given by

g t t
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It is useful to introduce also the retarded and the advanced Green’s function
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The retarded Green’s function appears in linear response theory, and it has the same meaning as that 
of Green’s function in classical physics. In practical calculation, it is more convenient to work in the 
frequency domain. We thus define the Fourier transform of the Green’s functions

g g t e dtr r i tω ω
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and its inverse
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The Fourier transform of the retarded Green’s function for a single oscillator is
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Nonequilibrium Green’s Functions for a Phonon System

Now, we generalize the definitions of the single harmonic oscillator and consider a general system with 
vibrational displacement uj, where the index j runs over all degrees of freedom of the system. We define 
the greater Green’s function G> as a matrix, whose elements are as follows:

G t t
i
Tr t u t u t

jk j k
> ′( ) = − ( ) ( ) ′( )



,

�
ρ

0
 (59a)

where uj(t) is the Heisenberg operator for the displacement and the trace is taken over a complete set of 
states. Note that the lesser and the greater Green’s function are interrelated as follows:

G t t G t t
jk kj
< >′( ) = ′( ), ,  (59b)

Also, the retarded Green’s function is defined by:
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Similarly, the advanced and retarded Green’s functions can be obtained by swapping time arguments:

G t t G t t
jk
a

kj
r, ,′( ) = ′( )  (59d)

Nonequilibrium Phonon Density and Heat Current

In order to solve real systems, we need to incorporate real materials to the system and its contacts to the 
external world. We can do this through the incorporation of the retarded and advanced Green’s func-
tions Gr/a

Gr/a = [ ω2M – K – ΣL
r/a – ΣR

r/a ]-1 (60)

where K is a coupling matrix, which can be constructed from the force constants between atoms. Also, 
M is a diagonal matrix of the mass of atoms of the involved material (e.g., Si or C atoms). The above 
matrix form of Green’s functions includes self-energy matrices (ΣL, ΣR) that involve unperturbed Green’s 
functions of contacts (boundaries) in a real system. These self-energies, as well as the coupling matrix 
elements, can be initially obtained from the atomistic analysis of contacts.

The equation of motion of such a system

∂ ′( )+ ′( ) = − ′( )2G KG Iτ τ τ τ δ τ τ, , ,  (61)
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where I is the identity matrix and the coupling matrix K is given by:
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Note that VLR=VRL=0 as we assume that the contacts do not interact. The symmetric K matrix can be 
decomposed as (K=D+ν) where:
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with their corresponding equations of motion:

G g d g G
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, ,  (64b)

The heat current (heat flux in W) can be calculated, using the following Landauer-like formula (Das 
& Dhar, 2012):

Figure 19. Real systems of phonons between two contacts
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where the phonon distribution difference ΔN(ω) =NL(ω) - NR(ω) may be calculated as follows
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Note that several authors contributed in the development of an expression of the thermal energy 
current in the form of a Landauer-like formula. For instance, Wu & Segal (2011) developed a Born-
Oppenheimer-type formalism for the thermal energy current in the form of a generalized Landauer 
formula, which reduces to the standard Landauer form for heat transfer in the harmonic limit. Also, the 
phonon-energy transmission probabilityζ(ω) through the scattering region (from left to right) can be 
calculated as follows:

ζ(ω) = Tr [ ΓL(ω).Gr(ω). ΓR(ω).Ga(ω)] (67)

Here, Gr/a are the non-equilibrium Green’s function in the scattering region, as given by (59). Also, ΓL/R 
= Im[Σr

L/R(ω) - Σa
L/R(ω)] are the coupling constants. In the ideal ballistic limit without any scatterings, the 

transmission ζ(ω) is equal to the number of phonon subbands10. The heat current can be then written as:
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Also, the thermal conductance (from left to right) is given by:
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7. THERMAL TRANSPORT IN NANOSTRUCTURES

There are two information carrier types that can contribute to thermal conductivity in solids - electrons 
and phonons. In nanostructures phonons usually dominate and the phonon properties become of a par-
ticular importance for thermal conductivity. Over the past decade, researchers advanced the understand-
ing of heat conduction in nanostructures through systematic measurements of the thermal conductivity 
of nanostructures. Our evolving understanding on nanoscale heat transport will facilitate the design of 
more efficient nanodevices and thermoelectric materials with reduced thermal conductivity.
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The behavior of phonons in low-dimensional structures and their interaction with charge carriers have 
been extensively studied in the literature, for example, Yu & Cardona (2001). In this section, we show 
some theoretical and experimental studies on heat conduction by phonons in nanostructures, including 
thin films, and nanowires are briefly and selectively review.

Nano silicon wires and nano-composite dots have been shown experimentally to have tremendous 
potential as future thermoelectric materials (Li et al, 2003; Chen et al, 2008). This is due to their high 
electrical conductivity and low thermal conductivity which, when combined, yields a high figure-of-merit 
of thermo-electric power, and consequently, very high energy conversion efficiency. Also, the so-called 
phase-change memory (PCM), utilizes self-heating effects to switch nanostructured chalcogenide alloys 
(like GST and GeTe) between their crystalline and amorphous states (Malladi, 2013).

7.1 Phonon Transport in Thin Films

Thermal transport properties affect the performance and reliability of the thin films in transistors, lasers, 
sensors and nanoelectromechanical systems (NEMS). These devices often contain thin films of metals, 
silicon, oxides, nitrides and polysilicon. For instance, the silicon-on-insulator (SOI) devices contain a 
thin-layer of silicon (of 0.05 µm to 10 µm) above a buried silicon dioxide. Also, some types of laser 
devices contain superlattices of stacked thin-films such as GaAs/AlGaAs in lasers. The effective thermal 
conductivity of such thin films is reduced (50% in SOI) as compared to bulk materials, due to phonon-
interface scattering and other defects.

In fact, the thermal conductivity of nanofilms is size dependent due to the contribution of ballistic 
transport of phonons. The ballistic transport has different effects on heat transport in the in-plane or 
cross-plane directions, which causes the anisotropy of thermal conductivity of nano-films.

In MOSFET devices, the gate electrodes are often made of polycrystalline silicon. When the polysilicon 
grain sizes are small, the heat conductivity is reduced due the internal scattering from grain boundaries. 
A simple approach to modeling the phonon scattering at grain boundaries of polycrystalline thin films 
is to include the following phonon scattering rate into account (Maiti et al, 1997):

τ-1 (Grain boundaries) = B.(d/dG) (70)

Here, dG is the characteristic grain size, v is the average phonon velocity in the material and B is a 
dimensionless constant which is correlated with the phonon reflection coefficient at grain boundaries.

7.2 Phonon Transport in Superlattices

A super lattice is typically consisting of a repeating sequence of two different thin films (film1, film2). 
The problem of heat conduction across heterojunctions of superlattices is more complex and less under-
stood than the case of homogeneous thin films. A simple estimate of heat conduction of a superlattice 
is given by (Zhang et al, 2007):
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where C1 and C2 are the corresponding heat capacity of film1 and film2, respectively, v1 and v2 are the 
acoustic propagation velocities in film1 and film2, and d1 and d2 are the thicknesses of film1 and film2. 
This model neglects scattering in layers and assumes fully diffuse, inelastic scattering.

7.3 Coherent Heat Flow in Superlattices

Coherent transport is pertinent in short-period heterostructures with smooth interfaces and long-wave-
length phonons, such as two-dimensional superlattices of graphene and semiconductor compounds. 
Considerable research effort has been devoted to understanding the transition from incoherent to coher-
ent regime in order to control thermal conductivity in superlattices. Recent experiments and atomistic 
simulations have shown that the incoherent heat conduction shift to coherent phonon transport occurs 
for small periods of 2-5 nm in semiconductor and epitaxial oxide superlattices with atomically–smooth 
interfaces (Aaron et al, 2013).

It has been shown by Luckyanova et al. (2012) that thermal conductivity through sandwiched struc-
ture of GaAs and AlAs superlattices increases linearly with the number of superlattice repeats. This was 
attributed to the coherent transport of phonons in such nanostrustures. If the spatial coherence length of 
the wave packets is smaller than the period thickness of the superlattice, thermal transport is incoherent 
and phonons are scattered on different defects. On the contrary, for wave packets with coherence lengths 
greater than the superlattice period thickness, transport becomes wave-like with coherent phonons. 
Therefore, thermal conductivity is only limited by the total length of the superlattice.

Another example of short-period heterostructures with smooth interfaces and long-wavelength pho-
nons, is shown in Figure 22. It depicts a short-period 2-D superlattice of graphene with boron nitride, 
that supports coherent phonon transport (da Silva et al, 2015).

Figure 20. Thermal conductivity of Si nano-films
After Dong, Cao & Guo (2015).
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7.4 Phonon Transport in Nanowires

Due to the size confinement effects, the thermal properties of nanowires and nanotubes are different 
from the bulk. The first measurements of thermal conductivity in silicon nanowires were published in 
2003 by Majumdar & Yang and Li et al. It was found that the thermal conductivities are much lower 
than that of the bulk and, decreases with wire diameter. In addition, the thermal conductivity decrease as 
the wire diameter is reduced, due to phonon boundary scattering rather than phonon–phonon Umklapp 
scattering processes. The observed thermal conductivity of single-crystalline silicon nanowires (c-SiNW) 
is less than 10 W/m.K for 20nm wire, which is two orders of magnitude smaller than the bulk value. 
This strong size-dependent thermal conductivity in these wires can be ascribed to the dominant role 
of boundary phonon (lattice vibration) scattering. The reduced thermal conductivity in semiconductor 
nanowires is greatly desired in thermoelectric generation and thermoelectric cooling, but is not prefer-
able in conventional electronics and photonics devices.

At low temperatures, it was found that the thermal conductivity changes as T3 for wide nanowires 
(about 100nm), or as T2 for nanowires lengths widths about 50nm or as T for narrow nanowires (about 
20nm), as shown in the Figure 22. For large diameter nanowires, theoretical models have been able to 
closely match the experimental results, assuming the nanowire diameters are comparable to the mean free 
path and that the mean free path is independent of phonon frequency. However, for very thin nanowires 
whose dimensions are comparable to the dominant phonon wavelength, a new model is required

Figure 21. Cross-plane thermal conductivity of twinning superlattices in single Si NWs
After Aaron et al. (2013).



424

Phonon Transport and Heat Flow
 

Figure 22. Atomic structures of graphene layers wuth boron nitride (BN) in zigzag, and armchair in-
terface and their superlattice cells

Figure 23. Thermal conductivity of SiNW with different diameters
After Majumdar & Yang, (Appl. Phys. Lett. 83, 3186, 2003).
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For large diameter nanowires the phonon-boundary scattering is frequency dependent. The mean 
free path is then given by:
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The parameter h is length scale associated with the disordered region, d is the nanowire diameter, 
N(ω) is number of modes at frequency ω, and B is a constant related to the disorder region. Thermal 
conductance is then calculated using Landauer-like formula:
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where d is the diameter, L is the length, λ is the frequency dependent mean free path, N1 is the number 
of modes with the mean free path λ, and N2 is the number of modes with the mean free path limited to 
d, This formulism was developed by Chen et al. (2008) and has been successfully used to capture the 
thermal conductivity data of silicon nanowires.

7.5 Phonon Transport in Carbon Nanotubes

Thermal transport of carbon nanotube (CNT) and graphene become very important in their nano-electronic 
devices. The universal quantization of low-temperature thermal conductance in carbon nanotubes can be 
observed even in the presence of local structural defects such as vacancies and boundary defects, since 
the long wavelength acoustic phonons are not scattered by local defects. At room temperature, however, 
thermal conductance is critically affected by defect scattering since incident phonons are scattered by 
localized phonons around the defects. The low-temperature specific heat and thermal conductivity show 
direct evidence of 1-D quantization of the phonon band structure.

Modeling of the low-temperature specific heat allows determination of the on-tube phonon veloc-
ity, the splitting of phonon subbands on a single tube, and the interaction between neighboring tubes 
in a bundle. Measurements show a single-wall carbon nanotubes (SWNTs) room-temperature thermal 
conductivity about 3500 W/m·K. Thermal conductivity in CNT is mainly due to phonons rather than 

Figure 24. Schematic artist of the heat transport across an MWNT
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electrons so the Wiedemann–Franz law is not directly applicable. The diagonal elements of the thermal 
conductivity tensor, may be expressed as:

k Cv
zz z
=∑ 2τ  (74)

where Cv is the specific heat, vz is the group velocity and τ is th relaxation time of a given phonon. This 
definition is valid as long as the phonon wavelength is much smaller than the diameter of the SWNT.

At low temperatures (far less than Debye temperature), the relaxation time is determined by impurity 
scattering, sample boundaries, etc. and is roughly constant. Therefore, in ordinary materials, the low-
temperature thermal conductivity has the same temperature dependence as the specific heat. However, 
in anisotropic materials, this relationship is not true. Because the contribution of each state is weighted 
by the scattering time and the square of the velocity, the thermal conductivity preferentially samples 
states with large velocity and scattering time. For instance, in graphite, the thermal conductivity parallel 
to the basal planes is only weakly dependent on the interlayer phonons. In SWNT bundles, it is likely 
that kh(T) depends only on the on-tube phonons, rather than the intertube modes. At high temperatures, 
three-phonon Umklapp scattering begins to limit the phonon relaxation time. Therefore the phonon 
thermal conductivity displays a peak and decreases with increasing temperature.

According to Berber et al. (2000), the phonon thermal conductivity of isolated nanotubes has a 
peak value of 37,000 W/m·K at about 100K, and decreases with increasing temperature. This value is 
comparable to the highest value ever measured (41,000 W/m·K for pure diamond at 104K). At room 
temperature, the thermal conductivity was also quite high (6600 W/m·K), twice the reported value of 
thermal conductivity of pure diamond at room temperature, as shown in Figure 26. The high thermal 
conductivity of nanotubes may be useful for a number of thermal management applications, such as 
heat sinking.

Figure 25. Calculated and measured thermal conductivity of isolated SWNT
After Berber et al (2006).
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8. MOLECULAR DYNAMICS (MD) SIMULATION

For systems which are small enough, of the order of a micron or smaller, molecular dynamics (MD) can 
be used to simulate thermal transport. Molecular dynamics is a simulation technique where the time 
evolution of a set of interacting mass points (atoms) is followed by integrating their classical equations 
of motion. In MD we follow the Newton laws of mechanics. The forces between the mass points are 
defined as linear functions (difference equations) of the point displacements. Each atom is then treated 
as a point particle which interacts with other particles through an interaction potential. The Figure 26 
depicts the flowchart of the MD simulationusing either empirical or quantum-based lattice potentials.

The required inputs to the MD simulation are initial conditions (atomic positions and velocities) 
and interatomic forces. The required forces between atoms may be obtained from interatomic potential 
energies. In order to find the interaction potential, empirical models (like Lennard-Jones potential model 
between two atoms) are used which are generally devised to fit experimental data in the bulk. However, 
force constants based on quantum ab-initio methods (like density functional theory DFT) or quantum 
approximate (like tight binding TB), are often used.

The position and velocity trajectory of every atom is calculated in the MD simulation for a set of 
discrete time steps. After obtaining the set of equations the next step is to integrate them. As atomistic 
vibrations occur at terahertz frequencies a time step on the order of 1fs is typically used. For bulk simu-
lations, periodic boundary conditions (PBC) are usually applied to overcome the large scale problems. 
For simulating a nanostructure (e.g., a thin film or wire), free boundary conditions are applied in some 
directions. The resulting data can be analyzed and transport parameters such as thermal conductivity 
are extracted at the end of simulation.

In contrast to other anharmonic approaches, MD simulations include the full anharmonicity of the 
atomic interactions and all orders of phonon-phonon interactions. However, the vibrational modes in a 
MD simulation follow the classical Boltzmann statistics, which is the high-temperature limit of Bose-
Einstein statistics.

8.1 MD Simulation Methods

There are three main types of MD simulation related to thermal transport: equilibrium, steady-state, and 
unsteady (Haile, 2001). In an equilibrium simulation, there are no spatial or temporal gradients in local 
temperature, allowing for averaging over space and time. In a steady-state, non-equilibrium simulation, 
spatial temperature variations may exist, but the system is steady in time, allowing for time averaging. 
Such simulations allow for direct observations of transport. In an unsteady simulation, spatial and tem-
poral temperature variations may exist, allowing for observation of processes such as the propagation of 
a phonon wave packet. In all cases, the output of the MD simulation is the time histories of the positions 
and velocities of the constituent atoms. This output can be used to calculate forces, potential energy, 
kinetic energy, temperature, pressure, mechanical properties, and the thermal transport properties.
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8.2 MD-Based Thermal Conductivity Models

We have already described the most famous models of thermal conductivity, which are based on the 
semiclassical approaches. Now we divert our attention to other models which are based on ab-initio (first 
principles) approaches, like the MD simulation. The models of thermal conductivity, which are based 
on molecular dynamics (MD) method, can be divided into two basic categories, namely:

• Equilibrium molecular dynamics (EMD) and
• Non-equilibrium molecular dynamics (NEMD).

In EMD, the system is initialized in a state which is non-equilibrium and is allowed to relax down to 
equilibrium. The rate of this relaxation is related to the thermal conductivity. In contrast, NEMD imposes 
a heat flux Q and calculates a temperature gradient ΔT/Δx and the thermal conductivity is computed as 
the ratio of the two Q/(ΔT/Δx).

Figure 26. Flowchart of the MD simulation, for heat and phonon transport analysis
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The so-called Green-Kubo method, uses equilibrium molecular dynamics (EMD) simulation. On the 
other hand, the so-called direct method, uses steady-state non-equilibrium molecular dynamics (NEMD) 
simulations. Table 3 shows a quick comparison between these methods

Green-Kubo Method

The Green-Kubo (G-K) method relates the equilibrium fluctuations of the heat flux, Q, to the thermal 
conductivity tensor via the fluctuation-dissipation theorem. According to the G-K model, the thermal 
conductivity tensor components are given by following auto-correlation functions:
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Depending on the material system, the auto-correlation and averaging over symmetrical crystallographic 
directions may be possible. However, the Green-Kubo thermal conductivity shows a weak dependence 
on system size, and hence can capture the size effect in nano-structures and thin films.

Direct Method

In the direct method, a heat flow is applied across a simulation cell that is long in one direction and the 
resulting temperature gradient is used with the Fourier law, to predict the thermal conductivity in that 
direction.

8.3 Macroscopic, Atomistic, Ab initio Dynamics (MAAD)

The so-called macroscopic, atomistic, ab initio dynamics (MAAD) is a multi-scale approach that incor-
porates the molecular dynamics (MD) and the tight binding (TB) or density functional theory (DFT), 
to model nanostructures and nanodevices. In this method, a finite element method (FEM) is utilized 
to discretize the system domain until we approach the atomic spacing; then, the MD method is entered 

Table 3. Comparison between MD-based thermal conductivity models
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until we arrive in the concerned physical phenomenon. At this point, the TB or DFT quantum approach 
is utilized to calculate the band structure and coupling coefficients.

In MAAD, we have two overlapping regions, namely: FEM/MD and MD/TB/DFT. Such overlap-
ping areas are termed handshake regions, where the contribution of each model to the total Hamiltonian 
is taken as the average of two separate Hamiltonians. The Lagrange multipliers are used to ensure the 
compatibility between the two models in the handshake regions.

Like other multiscale methods, the MAAD may be hierarchical or concurrent (or sometimes semi-
concurrent), depending on the nature of the system and the phenomena to be simulated. In the hierar-
chical methods, the TB/DFT and MD models are executed consequently and the strain-stress relation is 
calculated first and used as a constitutive relation for the MD simulation. Alternatively, the two models 
are executed simultaneously in the concurrent methods. In the latter case, the quantum model (TB or 
DFT) is embedded in the MD algorithm and executed as frequently as needed in the fine-structure scale. 
The hierarchical methods are more efficient but the concurrent methods are sometimes preferable for 
nonlinear systems (Fish, 2010).

9. MEASUREMENT OF THERMAL TRANSPORT PARAMETERS

There are several ways to evaluate the thermal conductivity of a semi-conductor, including steady-state 
longitudinal heat flow, modified Angstrom’s method, optical pump-probe, Laser flash, third-harmonic 
electrical method, and scanning thermal microscopy (SThM). Most of these approaches require either a 
destructive contacts and/or thick samples (>100μm), and do not have high spatial resolution

For measurements of heat conduction on submicron or nanometer length scales, temperature pro-
file has to be monitored within the similar length scales (∼1 μm). Also, the temperature decay profile 
should be monitored in nanosecond time scales, as well. Unfortunately, the conventional approaches to 
measure the thermal conductivity are incapable to reach such small length and time scales, and thus are 
not suitable for measurements of the thermal conductivity of nanostructures.

An important technique for measurements of heat conduction on nanometer scale is the time-domain 
thermoreflectance (TDTR). In addition, the cross-plane thermal conductivity of thin films can be mea-
sured by the so-called differential 3ω method.

9.1 Scanning Thermal Microscopy (SThM)

The Scanning thermal microscopy (SThM) mainly consists of a V-shaped probe, incorporated at the 
end of a flexible cantilever. The probe is made of a resistive element (Pt/10% Rh wire), with radius 
of curvature 1m. The probe tip is positioned using an atomic force microscopy (AFM) arrangement 
(Laser, mirrors, and detector), as shown in figure 26. The resistive element forms one leg (Rprobe) of 
a Wheatstone bridge. The bridge voltage should be controlled to keep the bridge balanced and thus to 
maintain a constant probe temperature. The SThM tip is operated at a preset value 405°C above the 
specimen temperature.
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9.2 Time-Domain Thermoreflectance (TDTR)

The TDTR measurements should be performed using a two-tint configuration, as shown in Figure 29. 
Before TDTR measurements, the samples are usually coated with a thin layer (∼80 nm) of metal with 
high thermo-reflectance (e.g., Al) by magnetron sputtering or thermal evaporation. The metal film serves 
as a transducer to absorb the heating pump beam and to convert the temperature excursions at the surface 
into changes in the intensity of the reflected probe beam. Usually, Al is used as the metal transducer due 
to the high thermo-reflectance.

In TDTR measurements, the output of a mode-locked Ti:sapphire laser oscillator is split into a pump 
beam and a probe beam, with the relative delay time between the pump and probe pulses being adjusted 
via a mechanical stage. Samples are heated by the pump beam, which is modulated by an electro-optic 
modulator at frequency f, 0.1 < f < 10 MHz.

Cooling of the surface after being heated by pump pulses is then monitored through changes in the 
intensity of the reflected probe beam using a Si photodiode and a radio-frequency (RF) lock-in amplifier.

Figure 27. Illustration of the scanning thermal microscope (SthM) method

Figure 28. Illustration of the scanning thermal microscope (SthM) method
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9.3 The 3-Omega Method

The 3-Omega technique is used to measure the thermal properties of materials very accurately. It is most 
commonly used to measure the through-plane thermal conductivity, but it can also measure the thermal 
diffusivity. As shown in Figure 30, an electrical current of angular frequency ω is driven through a metal 
heater line, causing Joule heating at a frequency 2ω. The periodic heating creates a thermal wave that 
penetrates the surrounding environment. The temperature oscillation then causes the resistance of the 
heater to oscillate at 2ω. Because the current is driven at a frequency ω and the resistance changes at a 
frequency 2ω, an RMS voltage at 3ω results. he 3ω voltage amplitude is directly measurable and provides 
information on the thermal properties of the desired material.

Figure 29. TDTR measurement apparatus

Figure 30. Standard heater line geometry for a thin film measurement
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In particular, the cross-plane thermal conductivity of thin films can be measured by the differential 
3ω method. A reference sample without the thin film of interest is prepared simultaneously with the 
sample containing the film of interest such that the metal line patterned on both samples has the same 
thickness and width. Both the thin film sample and the reference are measured using similar heating 
power and the same range of heater frequencies. The temperature drop across the thin film ΔTf can then 
be derived from the difference in the amplitude of the temperature oscillation of the sample and the 
reference. Assuming one-dimensional (1D) heat conduction, the cross-plane thermal conductivity of 
the thin film is derived from ΔTf. If the thin film is semiconducting, a thin dielectrics layer is required 
to electrically insulate the metal lines from the thin films. Figure 31 depicts the thermal conductivity of 
thin films of Si3N4 layers at room temperature. The measured thermal conductivity of Si3N4 thin films 
are smaller than that of the bulk materials found in literature, due to the scaling effects, and also strongly 
dependent on film thickness.

10. CASE STUDY 10: HEAT GENERATION AND TRANSPORT IN SOI MOSFETs

Phonons transport is very important in many thermal energy conversion applications, and heart evacua-
tion from nanodevices and lasers. Heat conduction from transistors and interconnects has started to be a 
very critical design issue for the 22nm and lower technology nodes. In this example we look at the heat 
generation and transport mechanisms in silicon-on-insulator (SOI) MOSFET devices. In fact, the low 
thermal conductivity of buried oxide influences the heat transport and directly affects the performance of 
SOI and DG MOSFET devices. Whether the internal heat of a device is destructive depends on the rate 
at which heat is transferred away to its surroundings. The energy transport simulation of SOI devices, 
without taking proper physical models of heat transport presents several anomalies (Gritsch, 2002). In 
addition, the floating potential region in SOI devices, always presents a time consuming problem due to 
the slow convergence of the semiconductor equations with heat continuity equation. Therefore, a semi-

Figure 31. Measured heat capacity of a thin film of SiN
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classical approach (BTE or complete HDM, with proper energy relaxation) should be adopted to find the 
electrical behavior and the Joule heating. A useful comparison of different phonon transport models for 
predicting heat conduction in SOI transistors can be found in (Sreekant et al, 2005) and (Nasri et al, 2015)

During the device operation, electrons are transferring their excess energy gained from the electric 
field to the phonon population by scattering. This results in heat generation throughout hot spots. The 
electron system cools in the drain end of the transistor through phonon emission. The phonon population 
then proceeds to evolve in a manner to bring its population back toward equilibrium. This evolution of 
the phonon distribution can be described by a phonon BTE, and solved by the methods we presented in 
previous sections of this Chapter, such as Monte Carlo method. Here, we present the simulation results 
with Monte Carlo method, which was developed by Pop et al. (2003) and later modified by Rowlette 
et al. (2008).

Figure 32. Energy flow mobility in Si at 300K
After Pop, Sinha & Goodson (2006).

Figure 33. Temperature distribution in Si MOSFET, simulated with the phonon BTE (PBTE) and the 
conventional Fourier diffusive law
After Rowlette & Goodson (2008).
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11. CASE STUDY 11: PHONON TRANSPORT ACROSS GRAPHENE

Single layer graphene (SLG) and multi-layer graphene (MLG) are promising semiconductor materials 
for nano-electronic devices due to their high carrier mobility, high thermal conductivity, and adjustable 
energy gap.

Experimental measurements of thermal properties of graphene encouraged researchers for more in-
depth study of the heat conduction in graphene nanoribbons (GNR). Recently, a number of theoretical 
investigations about phonon transport and heat conduction were carried out in GNR with various lengths, 
widths and defect concentrations.

For instance, Evans, Hu & Keblinsky (2010) and Savin, Kivshar & Hu (2010), as well as Munoz, 
Lu & Yakobson (2010) used molecular dynamics (MD) simulations. Also, Zhai & Jin (2011) as well as 
Jinag & Wang (2011) used nonequilibrium Green’s function (NEGF) method. In addition, Aksamija & 
Knezevic (2011) and Hu et al. (2011) made use of the phonon BTE approaches.

Keblinsky and co-workers (2010) found from the MD study that the thermal conductivity of a square 
graphene sheet is kth ≈8000 - 10000 W/mK at 300K. This value was size independent for length L>5 
nm . For the ribbons with fixed L=10 nm and width W varying from 1 to 10 nm, kth increased from 
~1000 W/mK to 7000 W/mK. The thermal conductivity in GNR with rough edges is reduced by orders 
of magnitude with respect to that in GNR with perfect edges (Savin, Kivshar & Hu, 2010). The isotopic 
defects also decrease the thermal conductivity (Jinag &Wang, 2011). The uniaxial stretching in the lon-
gitudinal direction enhances the low-temperature thermal conductance for armchair and zigzag GNR 
(Zhai & Jin, 2011).

Figure 34. Heat transport across graphene
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Aksamija and Knezevic (2011) calculated the dependence of the thermal conductivity of GNR, with 
5nm width and 1nm edge roughness, on temperature. The thermal conductivity was calculated taking 
into account the three-phonon Umklapp and rough edge scatterings. The authors obtained thermal con-
ductivity K ~5500 W/mK at T=300K for the graphene nanoribbon, as shown in Figure 35.

The study of the nonlinear thermal transport in rectangular and triangular GNRs under large temperature 
biases was reported by Hu et al. (2011). The authors found that in short rectangular GNRs (L~6nm), the 
negative differential thermal conductance exists in a certain range of the applied temperature difference. 
As the length of the rectangular GNR increases the effect weakens. Also, Ong and Pop (2011) examined 
thermal transport in graphene supported on SiO2 using MD simulations. The approach employed by the 
authors utilized the reactive empirical bond order (REBO) potential to model the atomic interaction 
between the C atoms, Munetoh potential to model the atomic interactions between the Si and O atoms 
and Lennard-Jones potential to model the van der Waals type C-Si and C-O couplings.

Qiu and Ruan (2011) addressed the problem of relative contributions of ZA phonons to thermal 
transport in the framework of the equilibrium MD simulations. Their conclusion was that in suspended 
SLG out-of-plane ZA phonons are coupled with in-plane phonons due to the 3rd-order and higher-order 
anharmonic interactions, which results in about 25 – 30% contribution of ZA phonons to the thermal 
conductivity of graphene. Qiu and Ruan stated that the in-plane TA and LA phonons are the dominant 
heat carriers in supported SLG and make major contribution in suspended SLG.

12. PHONONIC NANODEVICES

The conventional thermoelectric devices are solid-state devices that convert heat into electricity on 
the basis of Seebeck effect or refrigerate objects by supplying an electrical current on the basis of the 
Peltier effect.

Figure 35. Thermal conductivity of GNRs of width W=5 nm and edge roughness
Δ=1 nm, showing contributions from phonon branches TA, LA, ZA (flexural acoustic) and ZO (flexural optical).
After Aksamija & Knezevic (2011).
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The so-called phononic nanodevices, such as nanoscale heat valves, thermal diodes and thermal tran-
sistors are potential candidates for controlling heat at the nanoscale level. They may be used for thermal 
insulation, as well as thermal storage and control in future microprocessors and computers. Therefore, 
we shouldn’t think of heat as a waste by-product of conduction and switching processes. Instead, heat 
can be stored and maybe utilized again, resulting in better energy efficiency.

Several phononic devices such as diode, transistor and logic devices have been proposed in the lit-
erature. For instance, Chang et al. (2006) demonstrated the idea of solid-state thermal diode, which is 
formed by a non-uniform mass distribution of nanotubes. The resulting nanoscale device yields asym-
metric axial thermal conductance with greater heat flow in the direction of decreasing mass density, and 
hence works as a heat rectifier. Also, Tian et al (2012) proposed a solid-state thermal rectifier based on 
reduced graphene oxide (rGO). Such thermal rectifiers have substantial implications for diverse thermal 
management issues, ranging from nanoscale calorimeters to macroscopic refrigerators

The phonon properties of some materials provide opportunities to thermally insulate buildings, reduce 
environmental noise, transform waste heat into electricity and develop earthquake protection (Goldsmid, 
2010). Figure 38 illustrates the idea of the so-called phononic crystals, and their utilization in sound and 
heat isolation, by proper engineering of their phononic energy gaps.

Figure 36. Schematic of a phononic device

Figure 37. Schematic of a thermal rectifier, using reduced graphene oxide (rGO) paper
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13. CHAPTER SUMMARY

The phonon is the quasi particle representing the mechanical vibrations of atoms and is responsible for 
the transmission of sound and heat. In semiconductors and dielectrics, energy transport occurs primarily 
through phonons. Phonon transport theory occupies a critical place in the hierarchy of information carrier 
transport. The heat conduction in solids is an extremely important physical process. It reveals the nature 
of lattice dynamics as well as the phonon scattering and transport mechanisms. Thermal conductivity 
of solids influences many technological issues, including thermal isolation and control of heat storage 
and conversion processes. In this chapter, we investigate phonon transport and thermal conductivity in 
semiconductor devices and nanostructures. Phonon transport modeling in semiconductor devices is still 
in the process of development, as compared to the mature state-of-the-art of electron transport modeling.

The recent experiments demonstrated room-temperature evidence of ballistic phonon transport in 
various nanomaterials. In particular, phonon transport properties in low-dimensional materials, such as 
carbon nanotubes (CNTs), have attracted much attention in the fields of nanodevices. The high thermal 
conductance opens the way to reduce the heating problems in nanometer-scale electron devices, while 
low thermal conductance leads to high efficiency of thermoelectric devices. In order to exploit the 
benefits of nano materials for energy applications, we must understand the physics of charge dynamics 
and heat transfer at the nanoscale.

Traditionally, heat transport has been described by Fourier’s law with the heat equation, but an 
unphysical implication of this approach is that phonons can travel at infinite speed. The heat equation 
resolves this issue by adding a term to the heat equation that ensures a finite propagation velocity.

Microscopic approaches such as the Peierls-Boltzmann transport equation (phonon BTE) and Lattice 
Monte-Carlo (LMC) simulation can capture quasi-ballistic phonon transport. However, the phonon BTE 
is typically solved in the relaxation-time approximation. The phonon relaxation time, τ, as originally 

Figure 38. Schematic of phononic crystals and their potential in sound and heat isolation
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formulated in the BTE models of Callaway and Holland, gives an indication of how long it will take a 
system to return to equilibrium when one phonon mode has been perturbed. One can also think of the 
relaxation time as a temporal form of the phonon mean free path if the phonon-particle description is 
valid (i.e., τ =λ/v), or as an indication of how long energy stays coherent in a given vibrational mode. 
Another approach, called the split-flux form of the phonon BTE (p-SFBTE), was proposed by Sinha et al 
to describe the phonon transport. Here, the phonon distribution is split into two terms. The first popula-
tion term is a near-equilibrium component and has a Bose-Einstein distribution. The second population 
term is a nonequilibrium component, which dominates the transport near hotspots and is determined by 
solving the phonon BTE, typically in the relaxation-time approximation. The solution of the phonon BTE, 
particularly in the relaxation time approximation, is relatively faster than other microscopic approaches, 
such as lattice Monte Carlo (LMC) or the molecular dynamics (MD) methods. These approaches are 
valid only when heat transport is diffusive and the characteristic length scales are much larger than the 
phonon mean free path.

When phase coherence effects cannot be ignored, these semiclassical approaches fail and result is 
erroneous results. In fact, the recent results indicated that the heat diffusion equation significantly un-
derestimates temperature distribution at nanoscales in the presence of an external heat source. The topic 
of ballistic (non-diffusive) phonon transport in nano structures has been subject of extensive theoretical 
work. However, the thermal conductivity data for Si and many semiconductors in the length scale of 
10−100 nm is still rare due to the experimental challenges. For this reason, the researchers often recourse 
to modeling and simulation techniques. The simulations should respect the realistic phonon dispersion 
and address the quantum confinement and size effects in nanodevices. While first principles models 
and simulation techniques have contributed to our understanding of the phonon transport phenomena, 
there remains a need for simplified thermal transport approaches that capture the essential physics and 
that are computationally tractable.

Figure 39. Phonon transport models versus temperature and device scale size
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ENDNOTES

1  This is true in ordinary systems where the kinetic energy of a gas dominates the energy of spin 
and the total average energy U is approximately equal to the average kinetic energy E.

2  Unlike particles of ordinary gas, phonons can be created or destroyed by energy fluctuations. In 
the statistical mechanics this means that the chemical potential for adding a phonon is zero.

3  Materials generally change their size when subjected to a temperature change while the pressure 
is held constant. In solid materials, the pressure does not appreciably affect the size of matter

4  In metals, the transfer of heat is strongly affected by electrons transport.
5  For simplicity, we’ll write the tonsorial elements of force constant as Cij. Actually, the i and j sum 

over all atoms in the system, and the u and v sum over the x, y, and z directions in 3-D crystals.
6  Normal sound waves are fluctuations in the density of atoms or molecules in a substance.
7  Actually, many authors name the Peierls-BTE as phonon BTE
8  Note that in the R scattering processes, the phonons exchange momentum such that each mode 

tends towards a B-E equilibrium distribution, whereas the N-scattering processes result in collec-
tive drift effects leading to a displaced B-E distribution.

9  Note that the temperature is strictly defined at the state of thermal equilibrium.
10  At small phonon energy, all Q1D structures have 4 acoustic modes, one longitudinal, two flexural, 

and one torsional modes, which do not depend on the structure details. In this case the thermal 
conductivity shows a universal quantization.
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1. OVERVIEW AND CHAPTER OBJECTIVES

Photons are amazing information carriers that travel with the speed of light! The science of photonics is 
large and encompasses the generation, conversion, transport, guiding and detection of photons. Accurate 
modeling of photonic devices is essential for the development of high performance optical components 
required by current and future communication systems. In fact, the light speed and low noise properties 
make photons indispensable for telecommunications and information processing. Therefore, the modeling 
and simulation of photon transport, together with charge-carrier and phonon-heat transport, is of high 
interest for optoelectronic and photonic device design. In addition, the band structure calculation of the 
conveying medium and other quantization effects should be carried out, in order to obtain correct results. 
Figure 1 shows how transport models of charge carriers, phonons and photons should be integrated in 
the simulation process of a laser diode.

The description of photon transport in photonic semiconductor devices in general, and semicon-
ductor lasers in particular, is important to generate improved designs. Laser Light is generated in a 
semiconductor laser by radiative recombination of electrons and holes. In order to generate more light 
by stimulated emission than is lost by absorption, the system has to be inverted. Inversion population 
is carried out electrically or by optical pumping. A laser is, thus, always a high carrier density system 
that entails many-body interactions. The operation of laser, as well as other photonic devices, involves 
an interaction between electrons and light waves (photons) as well as lattice vibrations (phonons). Also, 
the so-called excitons (bound electron-hole pairs) emerge in photo-excited semiconductors and strongly 
influence the carrier transport process. All these interactions cannot be taken into account exactly because 
of the high number of involved carriers and quasi particles. Therefore, the following approximations 
are usually adopted:

1.  Free Carrier Model: In this model, many-particle interactions are neglected approximated phe-
nomenologically. To take the effect of carrier interactions into consideration, a phenomenological 
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scattering time is introduced. Simple models for the gain coefficient are then used to obtain a system 
of laser rate equations, to calculate the time-dependent laser response.

2.  Hartree-Fock Approximation: Here, the semiconductor Bloch equations (SBEs) are employed. 
To describe the carrier interactions, the Hartree–Fock approximation is utilized. In this case, car-
rier–carrier interaction leads to re-normalization terms for carrier energy and electric field. The 
collision terms, i.e., the terms describing carrier–carrier scattering have to be introduced phenom-
enologically using a relaxation time for the polarization field.

3.  Correlation Effects: This microscopic approach takes the collision terms in the SBEs into account 
explicitly. Therefore, the collision terms in the SBEs can be included in the second-Born approxi-
mation. This model yields the correct laser linewidth for any excitation density or temperature. In 
the other models, the relaxation time has to be extracted from experiment.

Figure 2 depicts the different models of photon/exciton transport and electromagnetic field propaga-
tion. The electromagnetic field analysis of photonic devices may be carried out by classical or quantum 
models. The classical models are all about solving the Maxwell equations inside the device active re-
gion. The quantum approaches are based on some sort of dynamic wave equations (Schrodinger-like or 
Heisenberg-like) in the microscopic level or the SBEs in the macroscopic level. The so-called dynamics-
controlled truncation (DCT) formalism is another successful microscopic approach that describes coher-
ent correlations in optically excited semiconductors. On the other hand, the most successful approach to 
study incoherent effects and correlations in highly excited semiconductors is the nonequilibrium Green’s 
functions (NEGF) approach.

Figure 1. Simulation of carriers transport in laser devices
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The purpose of this Chapter is to present the photon transport theory and to show how it is employed to 
simulate and design photonic and opto-electronic devices. In fact, the modeling approaches and techniques 
of photonic devices are not yet well standardized. Surprisingly the quantum theory describing photon 
interactions with nanophotonic structures, such as cavity resonators, has only recently been presented 
(Shen & Fan, 2009). In fact, the electronic and optical properties of semiconductor nanodevices depend 
strongly on the photon dynamics that take place in the femto- and picoseconds range.

Upon completion of this chapter, students and readers will be able to

• Review the semiclassical theory of electromagnetic waves and Maxwell’s equations
• Review the basics of photons and photon waves
• Review the quantum theory of electromagnetic waves and second quantization operators
• Describe photon scattering mechanisms and their emission and absorption probabilities in 

semiconductors
• Understand the concept of excitons and exciton complexes (biexictons, trions) in low-dimensional 

structures.
• Understand the photon transport mechanisms, and how they affect the optical properties of solids
• Know how and when to employ the photon transport equations, in microscopic approaches, such 

as semiclassical (BTE-like) and quantum approaches, such as nonequilibrium Green’s function 
(NEGF).

• Know how and when to employ the photon transport equations, in macroscopic, semiclassical and 
quantum approaches, such as Maxwell-Bloch equations (MBE’s), Semiconductor Bloch equations 
(SBE’s), Maxwell SBE’s (MSBE’s), Semiconductor luminescence equations (SLE’s) and how 
they are coupled to charge carriers.

• Know how and when to employ the phenomenological rate equations in semiconductors and how 
they are coupled to the charge carrier transport in optoelectronic and photonic devices.

• Investigate the excitonic transport, in specific nanostructures such as carbon nanotubes and gra-
phene ribbons

• Investigate the dynamics-controlled truncation (DCT) transport formalism, on different size scales 
of semiconductor devices.

Figure 2. Hierarchy of photonic and excitonic transport
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2. FUNDAMENTALS OF OPTICAL WAVES AND INTERACTION WITH MATTER

To successfully build and optimize photonic devices and systems, you need to understand both the fun-
damentals of optics and electronics. In this section, we summarize and review the basics of the theory 
of light and light-matter interaction. The light -matter interaction is important for a quantum description 
of light gain in a medium and the rate equations, which describe the evolution of electrons and photons 
in optoelectronics. After this introduction, we present the quantum and phenomenological transport ap-
proaches for the description of optical emission and detection processes.

2.1 What Are Light Waves?

Light is electromagnetic wave (EMW). An electromagnetic wave is a traveling wave that has time-varying 
electric and magnetic fields (ζ, B) that are perpendicular to each other and the direction of propagation.

The wave equation can have many solutions besides the traveling waves; depending on the boundary 
conditions. Actually, EMW’s may be planar or spherical or diverted, as shown in the Figure 3. A surface 
over which the phase of a wave is constant is referred to as a wavefront. A wavefront of a plane wave is 
a plane perpendicular to the direction of propagation.

When we describe the interaction of a light wave with a nonconducting medium (with zero conduc-
tivity), we usually make use of the electric field component ζx rather than By. Hence, a monochromatic 
plane wave traveling along the positive z direction may be expressed as follows:

ζx = ζo cos(ωt − kz + ϕο)  (1)

where ζx is the electric field along the x direction, ζo is the amplitude of the wave, k is the propagation 
(k=2π/λ), ω is the angular frequency (ω= 2πf) and ϕο is Phase constant; at t = 0 and z = 0.

The direction of propagation is indicated with a vector k, called the wave vector, whose magnitude 
is the propagation constant, (k = 2π/λ). Hence, k is perpendicular to constant phase planes.

The phase velocity v is defined as follows:

Figure 3. Representation of an electromagnetic wave
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The phase velocity of a plane wave in the medium is given by

v
k

o r o

= =
ω

ε ε µ

1  (2b)

The phase velocity in vacuum is

c
k

o o

= =
ω

ε µ0

1  (3)

The relative permittivity εr measures the ease with which the medium becomes polarized and hence 
it indicates the extent of interaction between the field and the induced dipoles.

When an EM wave is traveling in a medium, the oscillating electric field polarizes the molecules 
of the medium at the frequency of the wave. The stronger is the interaction between the field and the 
dipoles, the slower is the propagation of the wave. In non-magnetic materials, we usually have μr =1, so 
that the refraction index is given by:

n
c
v r

= = ε  (4)

Figure 4. Propagation forms of electromagnetic waves
After Kassab (2001).
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Generally speaking, the refraction index is not constant, but rather is a function of the wavelength, 
such that n = n(λ). When the medium has a finite conductivity σ, then its relative permittivity has an 
imaginary component: εr = ε’ - jε’’ = ε’ - j (σ /εo ω). This result can be obtained from the simple Drudé 
model for free electrons when we treat with sinusoidal fields. Therefore, the refraction index becomes 
a complex parameter, which is given by:

n = (ε’ - j ε’’)1/2 = no + j ko (5)

where no is called the real refraction index and ko is called the extinction coefficient. Obviously, εr is real 
and ko=0 for non-conducting media.

When the induced dipole oscillations in a material become large it is possible for the material to start 
absorbing energy from the applied field. When ε’’ approaches zero, the absorption diminishes and the 
material becomes transparent.

2.2 Light Refraction and Refraction

Reflection, refraction and diffraction are all boundary behaviors of waves associated with the bending of 
the path of a wave. At the border of two materials usually both reflection and refraction appears. When 
light travels from one material to another it usually changes direction. The bending of light that occurs 
at the borderline of two materials is called refraction. If light travels from material with refraction index 
n1 to another material with refraction index n2, the Snell law determines the direction of the refracted 
ray: n1.sin θ1 = n2.sin θ2.

2.3 Light Polarization

Light waves are emitted spherically (omnidirectional), however EM waves may have polarization. Po-
larization of light means that the electric and magnetic fields are built up in a specific way, linear or 
circular. Light of a linear polarization can be produced by sending un-polarized light through a polarizing 

Figure 5. Reflection and refraction of light through a medium
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medium (Polaroid) whose polarizing axis is oriented along the direction of the desired polarization. A 
linear polarizer converts the un-polarized beam into one with a single linear polarization, as shown in 
Figure 6. The vertical components of all waves are transmitted, while the horizontal components are 
absorbed and reflected. The law of Malus (1809) describes the intensity of transmitted light via two linear 
polarizers (polarizer and analyzer), as I(θ)=Io

2cos2θ, where Io is the initial unpolarized light intensity and 
θ is the angle between the axes of the polarizers.

2.4 Light Diffraction

Diffraction is the deviation and spreading of waves when they meet an obstruction. It can occur with any 
type of wave, including sound waves and light. Diffraction will not occur if the wave is not coherent, 
and diffraction effects become weaker as the size of obstruction is large compared to the wavelength. 
Diffraction from multiple slits is similar to what happens when waves are scattered from a periodic 
structure, such as atoms in a crystal lattice. Each atom (scattering center) acts as a point source of spheri-
cal wavefronts. Under certain conditions, the wavefronts undergo a constructive interference to form a 
number of diffracted beams. The direction of these beams is described by Bragg’s law: d sin θ = n λ. 
The so-called Fraunhofer diffraction is the diffraction observed in the plane of an image formed by an 
optical system. The Fraunhofer diffraction pattern is the Fourier transform of the amplitude function of 
the diffracting aperture.

2.5 Light Coherence

Light waves may be coherent or incoherent. Coherence is associated with the wave-like nature of light. 
It manifests itself in interference and/or diffraction effects. Coherence is identified in two concepts; 
temporal coherence and spatial coherence. The temporal coherence is concerned with frequency content 
of a light wave, and whether they are in phase. For instance, a single wave like f(t)=A exp(iω0t) has a 
perfect temporal coherence, because it has a single frequency and continuous in time. In practice the 
duration of a wave packet is finite (Δt), and the wave packet contains some frequency components and 
a bandwidth (Δω=1/Δt). The coherence depends on the bandwidth Δω which in turn depends on the 

Figure 6. Linear polarization of un-polarized light
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energy bandwidth ΔE of the wave packet. We can also observe the coherence of light perpendicular to 
the direction of travel. This is known as lateral coherence or spatial coherence.

Coherence may be characterized using correlation functions. Such correlations are found by tak-
ing time averages of the wave. Therefore, we combine the complex amplitudes arising from both the 
temporal (frequency) and spatial (wavelength) characteristics of the travelling wave. We can also get 
some information about the coherence of the light waves, when we measure interference or diffraction 
patterns of the light. Note that photons can only interfere with themselves. Different photons of different 
light sources never interfere.

2.6 Optical Power and Optical Attenuation

Optical power is the brightness (or intensity) of light. As the EM wave propagates in the direction of the 
wave vector k, there is an energy flow in this direction. The wave brings with it electromagnetic energy. 
The energy densities in the ζx and By fields are the same,

Figure 7. Light diffraction via two slits. The 2 rays interfere constructively when: d sinθ = nλ

Figure 8. Illustration of the light wave coherence
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Note that we use the vectors ζ and B to represent the electric and magnetic fields in the EM wave. 
The total energy density in the wave is therefore εoεrζx

2. If S is the EM power flow per unit area, then S 
= vεoεrζx

2 = v2εoεrζxBy. The EM power flow per unit area can be written as

�
S v xB

r
= 2
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ε ε ζ  (6b)

where 
�
S , called the Poynting vector, represents the energy flow per unit time per unit area in a direction 

of propagation (determined by ζ×B). The magnitude of power flow per unit area is called the irradiance 
(or intensity). The average irradiance is given by:
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o r o o o

=< >= =
� 1

2
1
2

2 2ε ε ζ ε ζ  (6c)

where the refraction index n = v/c and c is the speed of light in free space.
As light travels through a medium, some energy is lost; either absorbed by medium particles and con-

verted to heat; or scattered by microscopic imperfections in the medium. This loss of intensity is called 
attenuation. In many cases, attenuation is an exponential function of the path length through the medium.

Pout = Pin exp(−αL) (7)

where the attenuation coefficient α is defined as the fractional decrease in the optical power per unit dis-
tance. We typically measure optical power in dB (in reference to 1W) or in dBm (in reference to 1mW).

The signal intensity of light is inversely proportional to the distance squared (like sound). Attenua-
tion decreases the intensity of electromagnetic radiation due to absorption or scattering of light quanta 
(photons). Attenuation does not include the decrease in intensity due to inverse-square law geometric 
spreading. Therefore, the total change in intensity involves both the inverse-square law and an estimation 
of attenuation over the path.

2.7 Classical Theory of Light and EM Waves

The classical theory of light is based on Maxwell’s equations. The Maxwell’s equations are second-order 
partial differential equations that describe the propagation of electromagnetic (EM) waves through a 
medium. An EM wave consists of two vector fields, namely, the electric field ζ and the magnetic field B.

∇.B= 0, ∇xζ= - ∂B/∂t, (8a)

∇.D= ρ, ∇xH= ∂D/∂t +J (8b)
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With the constitutive relations

D= εE= εoζ+P= εo (1+χ)ζ, B= μH (8c)

Here, P and χ are the polarization and susceptibility of the medium. These equations are originated 
from a set of equations in electromagnetism, due to Gauss, Faraday, Coulomb and Ampere. Maxwell’s 
contribution was to add the displacement current term, (∂D/∂2) in the last equation, and thus put the 
equations into a consistent form.

Macroscopically, Maxwell’s equations show that in the absence of free charges (ρ=0) and currents 
(J=0), an electromagnetic field interacts with matter via the optical polarization P. Therefore, the wave 
equation for the electric field ζ reads

∇ ⋅∇−
∂
∂











=
∂
∂

1
2

2

2

2

2c t
r t

P r t

to
ζ µ( , )

( , )  (9)

Both electric and magnetic field are time-dependent vector fields that depend on the vector potential 
field A(r,t), as well as a scalar field φ(r, t):

B(r,t) = -∇xA(r,t) (10a)

ζ ϕ( , ) ( , )
( , )

r t r t
A r t

t
= −∇ −

∂
∂

 (10b)

Choosing the Coulomb gauge1, for which ∇⋅A =0, makes A into a transverse field. In a source-free 
region of space with a zero scalar potential, we only need to discuss the vector field, A, propagating 
through space. The direction of the vector potential A is parallel to the direction of the electric field E. 
Therefore we only need to solve the wave equation in the Coulomb gauge

∇ −
∂
∂
=2

2

2

2

1
0A

c

A

t
 (11)

The spatial-temporal solution of this wave equation, with periodic boundary conditions, consists of 
the traveling plane waves of the type:

A(r,t) = Ao.exp[± j(k.r- ωt) ] (12)

The Fourier series expansion of the vector potential, in a finite cubic box of volume V, is then given by:

A r t
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Note that the kth Fourier component of A is a vector perpendicular to the wavevector k and composed 
of a linear combination of two polarization vectors (ek and –ek,) for left-hand and right-hand circularly 
polarized EM waves. Therefore,

ζ
ε

ω
ω ω= −

∂
∂

= + ⋅ − − − ⋅ −
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t
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2.8 Quantum Theory of Light and EM Waves

Quantum theory of light shows us how light is described in terms of quantized photons, and how photons 
interact with matter. This is a field of research that uses both semiclassical and quantum-mechanical 
physics. The particle/wave duality nature of light can be included by quantizing the electromagnetic 
vector potential (A). The quantum theory of the electromagnetic field starts by taking the Fourier expan-
sion of the vector potential A(r,t) and then substituting operators for the amplitude terms. To do that, 
we replace the classical amplitudes (bk, bk*) with the quantum creation and annihilation operators (bk

†, 
bk) to produce the following quantum version of the vector potential. Note that the exponential time 
dependence, exp(±jωt), is embedded into the quantum field operators.

A r t
V

b t jk r b t jk r e
o k

k k k
k

( , ) ( ). exp( . ) ( ). exp( )†= + − ⋅





1
2ε ω
�

 ∑∑  (14)

It is now straight forward to write the quantized versions of ζ=-∂A/∂t and B=∇xA. The creation 
and annihilation operators must satisfy certain commutation relations. We can write the commutation 
relation as follows:

[bi,bj] = [bj
†,bi

†] = 0 (15a)

[bi,bj
†] = -[bj

†,bi] = δij (15b)

This procedure is called the field quantization or second quantization and was first done by Paul Dirac 
in 1927. In order to do so, Dirac took the phases of EM modes (Fourier components of the field) and 
the mode energies as dynamic variables to quantize (i.e., considered them as operators and postulated 
commutation relations between them)2. In this way, Dirac was able to align the photon concept with the 
new theory and hence to describe the interaction of photons with matter (Dirac, 1927).
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2.9 Photon Wave Properties

In physics, a photon is the quantum of light and all other forms of EM radiation. It is also the force 
carrier for the EM force. The effects of this force can be observed at both the microscopic and macro-
scopic level, because the photon has no rest mass. If the photon is not a massless particle, it would not 
move at the speed of light. Because photons have no rest mass, they can interact at long distances. Like 
elementary particles, photons exhibit wave–particle duality. Unlike electrons, photons have no charge 
and belong to the category of Bosons that can condensate into single energy state at low temperature. 
The main features of photons are:

1.  The photon has zero rest mass;
2.  The photon energy is E=hν=ħc|k| (k is wave vector, c is speed of light);
3.  The photon electromagnetic momentum is p=ħk;
4.  The photon polarization s = ±1 is the eigenvalue of the z-component of the photon spin Sz.

Table 1 depicts some of the photon wave properties in 1 & 3-D in free space. The case of 2-D can be 
easily inferred from them. The photon radiation modes are plane waves characterized by a wavevector k, 
a quasi-momentum p=ħk. In 3-D space, photons are characterized by the dispersion relation E(p) = c|p|. 
This relation can be derived from the relativity relation E=(moc

2+c2p2)½, with the rest mass mo=0. One 
can also write E(k)=ħc|k| or ω(k)=c|k|. In a material of refractive index n, we replace the speed of light 
c with v=c/n. In addition to carrying energy and having momentum, photons can possess a mechanical 
force. When an EM wave is absorbed by an object, the wave exerts a pressure (P in N/m2) on the object 
equal to the wave irradiance (I in W/m2) divided by the speed of light (c in m/s): P = I/c.

Photons have an angular momentum oriented mainly along the axis of light propagation. Measure-
ments found that each light photon carries an angular momentum L=ħ. This quantity is called helicity. 
We therefore also speak of the spin of a photon. Photons somehow ‘turn’ in a direction either parallel 
or antiparallel to their direction of motion. The magnitude of the photon helicity, or spin, confirms the 
classical relation L = E/ω between energy and angular momentum

Photons Density of States

The density of states for photons refers to the number of radiation modes per unit frequency interval per 
unit volume of real space. This quantity plays an important role in many optoelectronic devices. The 
density of states of photons can be highly modified in optical cavities because of photon confinement. 
For example, the number of photons in a laser field with intensity I=1W/cm2 and photon energy of 1eV 
in a typical coherence volume V= 1cm3 can be estimated as N = (I/ħω)V/c = 2x108 photons.

Photon Spin

In order to understand the photon spin, you have to bear in mind that the electric and the magnetic com-
ponents are dipoles and have a direction. Photon spin is different from spin of other particles. If we were 
talking about a massive particle with spin 1, it’d have three possibilities for Sz = (−ℏ,0,ℏ) . The fact that 
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photon is massless, implies some mathematical conditions that rules out the 0 value. Then for photon, 
we don’t talk about Sz, instead we talk about its helicity, which is either −ℏ or ℏ . The two helicity values 
are related to the polarization states by associating one to the right-handed circular polarization and the 
other to the left-handed one.

Photon Polarization

The polarization of photons is carried out by the same orientation of the magnetic and electric component 
of the EM field. Figure 9 depicts the left- and right-handed circular polarization, and their associate 
angular momenta. note that the individual photons have spin either along or against their direction of 
motion, while the electric fields are perpendicular.

Table 1. Photon wave equations. Here V denotes the volume of all photon radiation modes is in real space
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Photonic States

In optics, the polarization, wavelength, and the propagation vector specify the basic states (or modes) of 
the optical waves. The allowed wavelengths (frequencies) and polarization and spin of light characterize 
these modes. The fields have amplitude and phase, but these characteristics concern only the field and 
not the optical mode.

The Fock states, coherent states, and squeezed states represent three types of amplitude states. The 
Fock state represents one of the most fundamental notions of Quantum Electrodynamics (QED).

A Fock state has a definite number of photons in the mode (energy) but completely random phase. 
All Fock states have zero average electric field because of its random phase.

A coherent state has nonzero average electric field and well-defined phase. The laser emission has 
such coherent states. The electric fields for these states can take the form of sine and cosine waves. The 
coherent state actually consists of a linear combination of Fock states. However, coherent and Fock states 
are different. Fock state has an exact number of photons. On the other hand, the number of photons in 
the mode of a coherent state with given amplitude, has a Poisson probability distribution.

A squeezed vacuum state can be produced from the quantum vacuum state by reducing the noise (i.e., 
reducing the variance). Squeezing the vacuum state is equivalent to squeezing the coherent state since 
the vacuum and coherent states have the same type and amount of noise. The next figure is a schematic 
representation of coherent and squeezed state, with various possibilities, in the phase space.

Figure 9. Illustration of left and right handed circular polarization, and their associate angular momenta

Figure 10. Schematic representation of coherent and squeezed states in the phase space
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We can define a Wigner distribution (WD) that has the phase space coordinates (P and Q) as ran-
dom variables. The WD is quantum analog to the classical probability distributions. However, the WD 
may be negative for some types of states (like Fock states). For coherent and squeezed states, the WD 
provides a near-classical picture. The so-called ‘P’ and ‘Q’ quasi-probability distributions can also 
be defined. The P-distribution helps to provide a mathematical representation, which is similar to the 
density operator of carriers.

2.10 Dirac Equation

In order to describe the emission and absorption of light quanta (photons), the basic Schrödinger equation 
has to be a little bit modified. The so-called Dirac’s equation is equivalent to the Schrödinger equation, 
but with taking the special relativity into account. The Dirac equation states (Dirac, 1927):

jħ ∂Ψ /∂t = ΗDirac Ψ (16a)

where the Dirac Hamiltonian ΗDirac is given by:

ΗDirac = β mo c
2 + c ∑ αipi (16b)

Here mo is the particle rest mass, c is the speed of light and p1, p2, and p3 are the momentum compo-
nents. In presence of external magnetic and electric fields, the Dirac Hamiltonian reads (Dirac, 1958):

ΗDirac = β mo c
2+ α. (p- eA)c+ eϕ (16c)

where A is the vector potential and ϕ is the electrical potential. Also, the parameters β and αi are 4x4 
matrices, which are given by:
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These 4×4 matrices and are all Hermitian and their squares are equal to the identity matrix I: αi
2 = β 

2 = I. These parameters mutually anticommute such that: αi αj + αj αi = 0 and αi β + β αi = 0
The signs of the operator β distinguish particles and antiparticles; it has two 1’s and two -1’s to take 

care of the 2 possible spin directions. With this Hamiltonian operator, a wavefunction for a particle has 
vanishing antiparticle components, and vice versa. The Hamilton operator yields the velocity operator 
v in the same relation that is valid in classical physics:

v = dx/dt = β p / (mo
2c4 + c2p2)1/2.  (16e)
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As a consequence of the solution of this equation, spin and antiparticles could be mathematically 
explained. Therefore, the Dirac Hamiltonian describes how charged particles move by electromagnetic 
fields. A similar Hamiltonian (called Maxwell-Hamiltonian) can describe how fields move by charged 
particles (Dirac, 1966). Together, they form what is called quantum electrodynamics (QED).

3. LIGHT-MATTER INTERACTION

Matter and fields can interact by a variety of mechanisms. The material response to electromagnetic 
radiation may fall into three basic phenomena, namely: absorption, spontaneous emission and stimu-
lated emission. Electric dipoles emit and absorb fields and therefore result the refractive index, gain 
and absorption properties. Therefore, both the classical and quantum theories incorporate dipoles at a 
fundamental level of their description of the matter–field interaction.

Microscopically, the optical polarization arises from quantum transitions between different states of 
the material system. For the case of semiconductors, electromagnetic radiation with optical frequencies 
is able to move electrons from the valence to conduction bands. When an electron is excited from the 
valence band, a hole is created. This electron and the corresponding hole create a microscopic polariza-
tion in the form of dipole (exciton) to which an incoming radiation field can couple. The polarization P 
is computed by summing over all microscopic transition dipoles (pcv)

P
V

d p C C
cv cv cv

= ∑ +
1

( . .)  (17a)

where dcv is the dipole matrix element which determines the strength of individual transitions between 
the valence and conduction states (v and c). The term CC denotes the complex conjugate of the first term, 
and Vis the system volume. If Ec and Ev are the energies of the conduction and valence band states, the 
quantum evolution of dipole moments may be written as pcv = po exp [-jt(Ec - Ev)/ħ)] so that
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Therefore, P is given by a summation over the microscopic transition dipoles which all oscillate with 
frequencies ħωcv = (Ec - Ev). Thus, the optical polarization is a coherent quantity which has amplitude 
and phase.

In the classical theory, optical absorption occurs when an incident wave induces a dipole moment 
along the direction of the wave polarization and then the surrounding medium dissipates the energy. 
Emission occurs when an excited dipole synchronously radiates energy with its motion. Maxwell’s 
wave equation incorporates the dipoles in terms of the susceptibility. The Maxwell’s equations and the 
Poynting vector can explain emission, absorption and particle transport in terms of the classical theory 
of the microscopic dipoles. While quite successful, the description does not account for the quantum 
nature of matter and light, and does not explain basic phenomena such as the spontaneous emission of 
light from matter.
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The quantum theory of the matter–field interaction uses the operator form of the dipole moment. 
The study of matter-light interaction usually begins with the time-dependent perturbation theory and the 
Fermi’s golden rule for optical transitions. Fermi’s golden rule relates the transition rate to the optical 
power, frequency and dipole moment The Fermi golden rule and density matrix formalism of quantum 
transport make use of the dipole moment as part of the interaction Hamiltonian.

In the quantum interaction representations, the state can evolve in time when material absorbs or 
emits light. These states are called Fock states, when the number of photons in the state is specified. 
Other types of photonic states have been already defined in §8-2.9 of this Chapter.

3.1 Light-Matter Interaction Hamiltonian

In order to understand the interaction of a particle with the electromagnetic fields we need to know the 
total energy of the system consisting of particle and field. The particles may borrow energy from the 
field (absorption) or it may give energy to it (emission), but the total energy remains conserved. In this 
section, we try to understand the absorption and emission phenomena of optical transitions. Our first 
step is to define the matter-light system Hamiltonian, which expresses the total energy of the system.

Classical Hamiltonian

The following equation depicts the interaction Hamiltonian of a single charged particle with an elec-
tromagnetic field

H = ½ m-1 (p- qA)2 + Vo(r) (18)

where q is the particle charge, m is its mass, Vo is the potential energy and A is the vector potential of 
the electromagnetic field. For a system of many charges, the classical Hamiltonian can be decoupled 
as follows:

H H q m p A Ap q m A
i i i i i i i i

= − ∑ − + ∑− −
0

1 2 1 21 2 1 2/ [ ( . . ) ] / [ | | ]  (19a)

H m p V r
i i i i0

1 2
0

1 2= ∑ +−/ [ ( )]  (19b)

where Ho is the Hamiltonian for a collection of particles in the absence of external field. For weak fields 
we can formulate this in the interaction picture as follows:

H = Ho + V(t) (20a)

V t q m p A Ap
i i i i i

( ) / ( . . )= ∑ +−1 2 1  (20b)
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Quantum Electric Dipole Hamiltonian

Now we are in a position to replace the classical momentum with a quantum operator (ṗ = -jħ∇). Here 
the vector potential remains classical, and only modulates the interaction strength. Therefore, we get

V t j q m A A
i i i i i

( ) / ( . . )= ∑ ∇ + ∇−1 2 1�  (21a)

The first term is zero since we are working in the Coulomb gauge (∇⋅A = 0).
For a single charge particle the interaction Hamiltonian, upon excitation by a sinusoidal EM field 

E(t)=Eo.exp[j(k⋅r - ωt)] is given by:

V t qm Ap qm A j k r t A j k r t e( ) ( . ) ( exp[ ( . )] exp[ ( . )]*= − = − − + − −− −1 1
0 0

ω ω
kk
p.  (21b)

where ek is the polarization unit vector. In general, we can neglect the wave-vector dependence of the 
interaction potential. This is correct if the wavelength of the field is much larger than the molecular dimen-
sion such that (λ →∞ and k →0), then exp(jk ⋅r) ≈1. This is known as the electric dipole approximation

V t q m e p t
i i i k i

( ) ( / ) [ ( . )]. sin( )= − ∑ −ζ ω ω
0

1  (21c)

Substituting the perturbation V(t), we get the electric dipole Hamiltonian .

3.2 Transition Dipole Matrix Elements

We are seeking to use the dipole Hamiltonian to evaluate the transition rates induced by V(t) from the 
first-order perturbation theory expression. For a perturbation V(t)=Vsin(ωt) the rate of transitions in-
duced by field is: 

Γ
kl kl k

V E E=










− −
π

δ ω
2

2
1�
�| | [ ( )] (22a)

Here, Vkl is the matrix elements in the eigenstates of a collection of particles

Vkl = -j ζo (ωkl/ω) dkl (22b)

where dkl is the transition dipole matrix element. This expression allows us to write the interaction po-
tential for a dipole in a field as follows: 

V(t) = -ᵭ.ζ(t) (22c)

where ᵭ is the dipole operator. Then the rate of transitions between quantum states induced by the elec-
tric field is 
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This equation is an expression for the absorption spectrum since the rate of transitions can be related 
to the power absorbed from the field. Generally we can express the absorption spectrum in terms of a 
sum over all initial and final states, the eigenstates of H0:
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3.3 Optical Transitions

The study of matter-light interaction usually begins with the time-dependent perturbation theory and the 
approach of Fermi’s golden rule for optical transitions. The Fermi’s golden rule gives the rate of transition 
from a single initial state to a set of final states, which can be described by a density of state function.

The transition from a state to state may occur as a result of collision of electrons with lattice vibrations 
(phonon absorption or emission) or upon interaction with EM radiation (photon emission or absorption). 
Optical transition rate results from the Hamiltonian term H = qp.A/mo, as shown in equation (8-22). By 
expanding the vector potential into Fourier series, we can arrive to the following expression. The prob-
ability of a transition from an initial state |i> to a final state |j> can be written, according to Fermi’s 
golden rule, as follows (Parker, 2009):

probability i j
d t
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→ =
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2 2 1 2

�
jj
−ω)2

 (24)

where dij is dipole moment element, which is involved in the light-matter interaction process. By mak-
ing a plot of this function, we see that it approaches a Dirac delta function as ω →ωij. Therefore, the 
transition rate is given by:

Figure 11. Schematic illustration of an electromagnetic transition from an initial state i to one of final 
states j or vice versa
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This equation may be expanded as follows:
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Light Absorption Probability

We first consider the case for absorption where ω ≅ ωji. Therefore, the transition probability for absorp-
tion by a field is given by:
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Therefore,
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Light Emission Probability

When atom or molecule of a material is in excited state, it will eventually decay to a lower energy state 
by spontaneous emission. This case happens when ω ≅ −ωji > 0. This gives the transition probability 
for emission:
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Therefore,
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3.4 Understanding Light Absorption and Emission Mechanisms

In order to understand how light is absorbed or emitted (generated) in semiconductor materials; we need 
first to investigate the energy transition phenomena in atoms or molecules. These phenomena include: 
spontaneous emission, stimulated emission/absorption and nonradiative decay.

According to quantum mechanics, the electrons of atoms can take different energy states, say E1, E2, 
E3, such that, E1<E2<E3. Lower energy level is more stable than higher energy levels, so electrons at high 
energy levels tend to decay to low energy levels, the energy difference between the two levels can be 
given out as electromagnetic radiation. This process is called Spontaneous Radiation. The relationship is:

E2 - E1 = hν0 (28)

where E2 is the upper energy level, E1 is the lower energy level, h is Plank’s constant, ν0 is frequency of 
the radiated EM wave. Note also that the energy difference between the two levels can decay in forms 
other than spontaneous radiation, which is called non-radiative decay. This is most likely happening in 
indirect-gap semiconductors. In this case, the energy difference can change into kinetic energy through 
collisions with atoms.

When external EM waves of frequency ν0 are incident on the material whose atoms are initially at 
energy level E2 and ν0 is very near to the transition frequency between E2 and E1, there is a finite prob-
ability that the incident waves will force the atoms to undergo transition E2→E1. Such transition gives 
out a photon, while the incident photon still exists. Then we have two photons. This process is called 
Stimulated Radiation. In a group of such atoms, if the number of atoms in the excited state is given by 
Nj, the rate at which stimulated emission occurs is given by:

Rji = - ∂Nj/∂t = Bji Nj ρ(v) (29a)

Here, Bji is proportionality constant for this particular transition. The constant Bji is usually referred 
to as Einstein B coefficient, and ρ(ν) is the radiation density of photons of frequency ν. The correspond-
ing rate Rij for the total emission of photons of frequency ν and transition from a higher energy Ei to a 
lower energy Ej is

Rij = - ∂Ni/∂t = Aij Ni + Bij Ni ρ(v) (29b)

where Aji is the constant for spontaneous emission of a photon, and Bij is the constant for stimulated 
emission in response to other photons. The rate of spontaneous emission A is also known as the Einstein 
A coefficient.

In thermodynamic equilibrium, the number of atoms in state i and that of atoms in state j must, on 
average, be constant; hence, the rates Rji and Rij must be equal. Also, from the Boltzmann statistics, the 
ratio of Ni and Nj is exp(Ej − Ei) /kBT. From this, it is readily derived that:

Aji = (8π hν3 / c2) B ji (29c)
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On the above thermodynamic basis, Einstein postulated that the probability for spontaneous emission, 
A, is related to the probability of stimulated emission, B, by the relation (Einstein, 1917):

A / B = (8π hν3 / c3) (29d)

Einstein argued that equilibrium would be possible, and the laws of thermodynamics obeyed, only 
if the ratio of the A and B coefficients had the value shown above. In recognition of Einstein’s insight, 
the coefficients are called the Einstein A and B coefficients.

Note that the above Einstein relation does not give the values of the coefficients of spontaneous and 
stimulated emission. However, it is possible to calculate A, from which, the other coefficient can be 
calculated. According to the quantum electro-dynamics theory (QED), the coefficient of spontaneous 
emission, due to transition between two energy levels (say m and n), is given by:
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ε
 (30a)

where ωnm is the frequency of emitting radiation and dnm is the transition matrix element (or dipole-moment 
matrix element). From quantum physics, the dipole moment matrix element is given by:

d e r dV
nm m i n
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2 0 0=










 ⋅∑∫ ψ ψ( )* ( )  (30b)

with ψn,m
(0) are the zero-order solution of the wave functions associated with the m and n states. As indi-

cated in equation (8-30a), the spontaneous emission coefficient is proportional to the cube of frequency 
of emitting radiation, in both the Einstein and quantum field theory. The critical detail of stimulated 
emission is that the emitted photon is identical to the stimulating photon in that it has the same frequency, 
phase, polarization, and direction of propagation. The two photons are totally coherent. It is this property 
that allows optical amplification to take place.

Figure 12. Absorption and emission of radiation
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3.5 Optical Scattering

Photons interact with other particles such as electrons in an atom via several mechanisms. When a photon 
penetrates into a medium composed of particles whose sizes are much smaller than the wavelength of 
the incident photon, the scattering process is elastic and coherent. This means that the scattered photon 
has the same energy (and wavelength) of the incident photon. Otherwise, the photon may lose some of 
its energy and hence its frequency is changed.

Coherent (Rayleigh) Scattering 

Rayleigh scattering, is elastic and coherent. In this scattering process, the energy (and therefore the 
wavelength) of the incident photon is conserved and only its direction is changed. In this case, the scat-
tering intensity is proportional to the fourth power of the reciprocal wavelength of the incident photon. 
The condition of resonance (for Rayleigh scattering) means:

Ei – Ej = ħω – ΔΕ (31)

Raman Scattering

As shown in Figure 13, there exist other types of optical scattering mechanisms, which are not elastic. 
For instance, in the so-called Raman scattering, the scattered photon either gives energy to or takes 
energy from the medium. The Raman scattering means:

Ei – Eb = ħωi ± ħωq - ΔΕ = ħωs - ΔΕ (32)

As we stated above, the photon scattering mechanisms (Raman and Rayleigh) may occur in dielectric 
materials. In this case, the incident photons may scatter over the dipoles of the dielectric atoms or mol-
ecules, and the photon frequency (vi) shifts up or shifts down, by the dipole frequency (v). The Rayleigh 
scattering intensity for a single molecule (or particle) of radius R, is given by:

I= Io (8π4α2/λ4R2) (1+cos2θ) (33)

The polarizability factor, α, is the proportionality factor between the applied field (electromagnetic 
field) and the induced dipole moment.

The so-called Raman spectroscopy employs the Raman scattering for materials analysis. The Ra-
man spectroscopy is used to study vibrational, rotational, and other modes in solid materials and gasses. 
It relies on inelastic (Raman) scattering of monochromatic light, usually from a laser. The laser light 
interacts with phonons or other excitations in the material, resulting in the energy of the laser photons 
being shifted up or down. The shift in energy gives information about the phonon modes in the material.
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Compton (Incoherent) Scattering

The Compton (incoherent) interaction is a major mechanism for photon-produced electron excitation. 
In this case, a gamma-ray photon collides with an atom producing an energetic electron and a scattered 
photon of lower energy. The Compton interactions dominate other photon interactions in high energies 
(200 keV to 20 MeV). 

Photoelectric Interaction (Photo-Ionization.)

Photons can interact with the inner shells of atoms in a solid and eject a photoelectron. Depending on 
the involved inner shell, the electrons are called K-, L and M-photoelectrons. Their energy is equal to 
the energy of the incoming photon less the binding energy of the inner shell. The K-shell photoelectric 
interaction varies with atomic number and photon energy and is dominant below 200 keV.

3.6 Nonlinear Optical Effects

It is well known that photons do not interact directly with themselves. However, photons can interact 
through their interactions with matter.

In a linear material the amount of charge displacement (which constitutes a dipole moment) is pro-
portional to the instantaneous magnitude of the perturbing electromagnetic field or light. The charges 
oscillate at the same frequency as the frequency of the incident light. The oscillating charges may radiate 
light at the field frequency or the energy is transferred into nonradiative modes or other energy transfer 

Figure 13. Spectra and details of basic types of optical scattering mechanisms



474

Photon Transport
 

mechanisms. Generally, the radiated light travels in the same direction as the incident light beam: The 
light is effectively bound to the material; the light excites charges that reradiate light that excites charges; 
and so on. As a result, the light travels through the material at a lower speed than it does in vacuum. If 
the motion of charges within the material decays without giving off light, some of the incident light is 
lost from the beam by scattering and absorption. The absorbance is defined as the ratio of light exiting 
a material to the light incident into the material divided by the material thickness. Both the absorbance 
and refractive index (ratio of speed of light in vacuum to the speed of light in the material) are linear 
optical properties of a material for low-intensity incident light.

In a nonlinear optical material, the displacement of charge from its equilibrium value is a nonlinear 
function of the electric field. All materials when exposed to a high enough light intensity (electromagnetic 
fields) show a nonlinear response such that the dielectric function becomes dependent on the electric 
field. Nonlinearity in optics occurs when the electromagnetic wave is large enough such that the me-
dium responds not only at the fundamental driving frequency but also at higher harmonics. For small 
forces, the displacement of the charge is small and is approximated by a harmonic potential. When the 
displacement away from equilibrium is large, the harmonic approximation breaks down and the force is 
no longer a linear function of the displacement.

Nonlinear optical behavior is not observed when light travels in free space. The nonlinearity is a 
characteristic of the medium through which the light travels, rather than in the light itself. The response 
of a molecule is nonlinear if the charges are bound to the molecule by a non-harmonic potential. In this 
case, the dipole moment of the molecule is a nonlinear function of applied electric field. More gener-
ally, if a nonlinear molecule is exposed to light, the induced dipole moment is a nonlinear function of 
the time-dependent electric field. Therefore, when the intensity of the incident light to a material system 
increases to a large value the response of medium is no longer linear. Nonlinear optical phenomena can 
be described in terms of higher order susceptibilities. It is sometimes convenient to express the nonlinear 
effects in terms of the polarization density per unit volume P such that:

P= P1 + P2 + P3 +…. = x1ζ+ x2ζζ + x3ζζζ +…. (34)

where P1 is the linear (first order) polarization tensor, P2 is the second order non-linear polarization, 
and so on. Also, x1 is the linear susceptibility tensor, x2 is the second order non-linear susceptibility, x3 
is the third order susceptibility and so on. Typically nonlinear optical phenomena happen at high fields. 
The high optical fields are generated by lasers: The coherence of laser light makes it possible to observe 
many nonlinear phenomena; when the molecules in the material respond coherently to the Laser,

EM Waves of different frequencies may exchange energy with one another via the nonlinear prop-
erty of the medium, but their total energy is conserved. This class of nonlinear phenomena is known 
as parametric interactions. However, there are several nonlinear phenomena which are not parametric 
interactions. Examples of nonparametric nonlinear interactions include: laser interaction, multi-photon 
absorption, and nonlinear inelastic scattering (such as Raman and Brillouin scattering of light).

The second-order nonlinear polarization (P2 = x2.ζ(ωi).ζ(ωj)) gives rise to three-wave mixing processes, 
optical rectification and linear electro-optic effect. When ωi = ωj, we arrive at ω =2ωo, which corresponds 
to second harmonic generation. The third-order nonlinear polarization term (P3=x3ζ(ωi).ζ(ωj).ζ(ωk)) is 
responsible for four-wave mixing (FWM), stimulated Raman scattering, two-photon absorption, and 
Kerr-effect phenomena, including self-phase modulation (SPM). When ωi=ωj=ωk, we arrive at ω=3ωo, 
which corresponds to 3nd harmonic generation. All the above nonlinear phenomena have so many practi-
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cal applications. In particular, the access to an optical non-linearity enables the processing of quantum 
information stored in light and generation of exotic states of light.

3.7 Coherent Optical Effects in Semiconductors

Recently, there have been several successful demonstrations of coherent light propagation effects in 
various semiconductor systems, including planar photonic crystals. The interaction of matter with elec-
tromagnetic fields is able to generate a coherent superposition of excited quantum states in the material. 
Coherent denotes the fact that the material excitations have a phase relation with the phase of the incident 
electromagnetic wave.

Macroscopically, the superposition state of the material results in an optical polarization; a rapidly 
oscillating dipole density. The optical polarization is a non-equilibrium quantity that decays to zero 
when the excited system relaxes to the equilibrium state after the electromagnetic excitation is switched 
off. Due to this decay or dephasing, coherent effects are observable only for a certain temporal duration 
after photoexcitation.

The field of nonlinear optics offers a host of fascinating phenomena, many of which are eminently 
useful. For instance, the nonlinear optical spectroscopy (using ultrafast laser pulses with durations of 
10-100fs) reveals and interprets many coherent effects. We review here the phenomena of quantum beats 
and photon echo of excitons.

Quantum Beats

Quantum beats can be observed in systems in which the total optical polarization is due to a finite 
number of discrete and coupled transition frequencies. Assuming that all transitions have the same di-
pole matrix element, the optical polarization P(t) of the system evolves as Σiexp(-Δωit) after excitation 
with a short laser pulse. A finite number of frequencies results in temporal modulations of the squared 
modulus of the polarization |P(t)|2 and thus of the intensity of the emitted electromagnetic field |E(t)|2 
with time periods 2π/(Δω1 - Δω2). For the case of two frequencies, the square modulus of polarization 
is proportional to [1+cos(Δω1 - Δω2)t], i.e., due to the interference of two waves of same amplitude and 
different frequencies. Then the polarization varies between a maximum and zero. In semiconductors and 
semiconductor nanostructures, such as quantum wells, nonlinear optical quantum-beat spectroscopy has 
been widely used to investigate the temporal dynamics of excitonic resonance.

In particular, the consequences of coupling between different excitonic resonances via bi-excitons 
and Coulomb correlations, has been explored in many pump-probe and four-wave-mixing measure-
ments. The theoretical analysis of such experiments in semiconductors requires a treatment on the basis 
of quantum mechanical many-body theory as is provided by the SBEs with many-body correlations 
incorporated on an adequate level.

Photon Echo

Recently, scientists have demonstrated the existence of magnetic-field-induced long-lived stimulated 
photon echoes. This coherent optical phenomenon results from resonant excitation of a medium by short 
optical pulses, which results in a delayed coherent optical flash response. This effect can be exploited to 
store optical information. In fact, it is possible to reverse the destructive interference of so-called inho-
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mogeneously broadened systems which contain a distribution of uncoupled subsystems with different 
resonance frequencies.

For example, consider a four-wave-mixing experiment in which the first short laser pulse excites 
all transitions at t =0. As a result of the destructive interference between the different frequencies the 
overall polarization decays to zero. A second pulse arriving at t=τ >0 is able to conjugate the phases of 
the microscopic polarizations of the inhomogeneously broadened system. The subsequent unperturbed 
dynamical evolution of polarizations leads to rephasing and all polarizations are in phase at t=2τ and 
results in a measurable macroscopic signal. This photon echo occurs when all polarizations add up 
constructively at t=2τ.

When photon echo experiments are performed in semiconductors with exciton resonances, it is essential 
to include many-body quantum effects in the analysis. For example, the solutions of the Semiconductor 
Bloch Equations (SBEs) have demonstrated that the reduction of the band gap due to the Coulomb in-
teraction among the photo-excited electrons and holes is able to generate a photon echo even for a single 
discrete exciton with a pulse of sufficient intensity. Also, the spatial fluctuations of the energy can lead 
to a decay of the photon echo amplitude with increasing time delay. In order to consistently treat such 
dephasing phenomenon, we need to solve the SBEs, including biexciton correlations.

Figure 14. Quantum beat in attosecond transient absorption
After (Chini et al, 2014).

Figure 15. Schematic of the photon echo experiment
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Note 1: Excitons, Bi-Excitons and Trions

An exciton is a bound state of an electron and hole, which are attracted to each other by the electrostatic 
Coulomb force, in a semiconductor (or insulator). The exciton has slightly less energy than the quasi-free 
electron and hole. The wave-function of the bound state is hydrogenic. However, the binding energy is 
much smaller and the size is much bigger than a hydrogen atom, just like electrons in the donor level. 
Technically speaking, excitons can be divided into two types, depending on the material properties. In 
semiconductors, the dielectric constant is large, and the Coulomb screening tends to reduce the interac-
tion between excited electrons and holes. The result is weekly-bound electron-hole pair called a Mott-
Wannier exciton, with a radius larger than the lattice spacing.

On the other hand, the excitations in materials with a small dielectric constant, the Coulomb interac-
tion between an electron and a hole may be strong and the excitons tend to be small, of the same order 
as the size of the unit cell. This is called Frenkel exciton. Frenkel excitons have typical binding energy 
of 0.1 to 1eV. They are typically found in organic molecular crystals and alkali halides.

The existence of exciton states may be inferred from the absorption of light associated with their 
excitation. Excitons can be treated as Bosonic quasi particles. Excitons are quite stable and can have a 
relatively long lifetime (ps to ns). In addition, excitons are the main cause of light emission in semicon-
ductors at low T (where kBT is less than the exciton binding energy EB). However, excitons can dissociate 
into electron-hole (e-h) pairs.

An exciton can bind with other excitons to form a biexciton, like a hydrogen molecule. It should be 
noted that the optical properties of low-dimensional semiconductors and nanostructures originate from 
excitons and exciton complexes such as bi-excitons and tritons (charged triplet excitons). As shown in 
Figure 17, a trion is a localized excitation which consists of three charge carriers (electrons and holes). 
A positive trion consists of two holes and one electron and a negative trion consists of two electrons and 
one hole. Trions are long-lived and their transport is slower than singlet excitons. Trions were observed 
experimentally in optically excited low-dimensional semiconductors, such as quantum wells and quantum 
dots (Ganchevu et al., 2015), as well as nanotubes (Matsunaga et al, 2011).

Many optoelectronic devices are based on the exciton dynamics, including organic solar cells and 
light-emitting diodes. Therefore, an intensive research has been focused on the control of exciton trans-
port in semiconductor devices and nanostructures.

Figure 16. Schematic illustration of the exciton (e-h) pair formation



478

Photon Transport
 

4. QUANTUM TRANSPORT MODELS FOR OPTOELECTRONIC DEVICES

A quick review of the published transport models in the domain of photonics, gives the impression that 
there is no standard framework, which encompasses all these models in a hierarchical manner. However, 
the wide family of the optoelectronic and photonic devices can be divided into two main classes: first 
one grouping semiconductor devices characterized by a quantum-mechanical behavior of their electronic 
subsystem and a second one which comprises low-dimensional nanostructures whose optoelectronic 
response in steady-state conditions may be safely treated within the semiclassical models. Based on 
this subdivision, it is possible to identify two distinct transport regimes, depending on the interaction 
conditions between photons and charge carriers. More specifically, we deal with two transport regimes, 
semiclassical and quantum, as summarized in Table 2.

Optical absorption in semiconductor nanostructures can be predicted from the classical theory of 
electromagnetism. This follows from the fact that the absorbing material size is much smaller than the 
wavelength of light. A semiclassical theory that treats light classically but treats atoms/molecules quantum 
mechanically can relate these phenomenological parameters to the atomic/molecular properties. Hence 
it seems not necessary to consider quantum theory of radiation to study absorption. For example the 
solutions to the classical Maxwell equations together with the Boltzmann transport equation may be an 
ideal tool to provide the spectral absorption and scattering rates in optoelectronic devices.

However, there is a general belief that classical physics cannot explain spontaneous emission3. This 
is sometimes true but it needs to be explained. In classical electromagnetism spontaneous emission is 

Figure 17. Schematic of excitons, biexcitons and trions

Table 2. General classification scheme of the various approaches employed for the study of photonic 
semiconductor devices

Model Semiclassical Quantum

Macroscopic 
(Phenomenological)

Maxwell’s Equations 
Semiconductor Rate Equations

MBEs 
SBEs 
SLEs

Microscopic BTE-like (Photons) 
RTE 
Photon MCM

Heisenberg Equation, 
SBEs (density matrix) 
NEGF, Bethe-Salpeter Equation
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shown as coming from accelerated charge carriers through radiation reaction of self-electromagnetic 
fields. For slowly varying (in space) optical excitations and confinement-potential profiles, it is possible 
to simulate the behavior of optical field using a distribution function (like the WDF). In this case, the 
distribution function can be described by semiclassical transport models. In contrast, in the presence 
of ultra-short spatial confinement and/or strongly inhomogeneous optical excitations, the utilization 
of a quantum Master equation (like the Heisenberg equation of motion) is necessary. In particular, the 
density-matrix formalism of the Maxwell-Bloch equations (MBEs) and the semiconductor luminescence 
equations (SLEs) are very useful in this concern. The NEGF approach has been also utilized to investigate 
the matter-field interactions in both linear and linear regimes.

4.1 Optical Bloch Equations (MBE’s)

The optical Bloch equations, which are also called the Maxwell-Bloch equations, (MBE’s) describe the 
dynamics of a two-state quantum system interacting with the electromagnetic field of an optical system. 
They are analogous to (but not at all equivalent to) the Bloch equations (1946), which describe the mo-
tion of spin systems in an electromagnetic field. These equations can be derived either semi-classically 
or with fully quantized field when certain approximations are made.

In order to describe phase-sensitive transport induced by optical excitation field Uab, between two 
states or levels (a and b), we need to involve the inter-level polarization (P). Combining the equations 
of motion of the level occupations fa and fb as well as of the inter-level polarization P, results:
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dP/dt = (Eb - Ea)P/jħ + (Uba / jħ) (fa - fb) (35c)

Ιn case of continuous optical excitation, which is resonant with the two-level system, we have: Uab(t) 
= Uo.exp(jωot), with ħωo = Eb- Ea. The above treatment of light–matter interaction is based on an isolated 
two-level system and neglects the incoherence (phase-breaking) phenomena due to energy-dissipation 
by the host material. The incoherent phenomena may be incorporated within the two-level system by 
the following optical-Bloch-equations (Rossi, 2011):
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Here, the incoherent phenomena are taken into account through the relaxation-times T1 and T2. After 
longtime, the populations fa and fb tend to their thermal-equilibrium values fao and fbo via the relaxation 
time T1, while the inter-level polarization P decays with the relaxation time T2. This formulation is known 
as T1/T2 model. The derivation of the semiclassical optical Bloch equations is nearly identical to solving 
a system of two quantum states. Usually one casts these equations into a density matrix form. Therefore, 
the system can be described by the wave function:

ψ = cb ψb + ca ψa , |ca|
2 + |cb|

2 = 1 (37)

The density matrix formulation of the above equations may take the following matrix form:

ρ
ρ ρ
ρ ρ
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b b
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 (38)

This is the so-called density matrix for a two-level system. Recalling that the coefficients ca = <a|ψ> 
and cb = <b|ψ>, the density matrix may also be regarded as a projection operator ρ = |ψ><ψ|.

One can now solve the Heisenberg equation of motion, or translate the results from solving the 
Schrödinger equation into density matrix form. One arrives at the following equations, including spon-
taneous emission:

dρaa/dt = - γ ρaa + ½j(Ωρba− Ω*ρab) (39b)

dρbb/dt = γ ρaa − ½j(Ωρba− Ω*ρab) (39a)

dρba/dt = - (½γ + jδ) ρba + ½jΩ*(ρaa− ρbb) (39c)

dρab/dt = - (½γ − jδ) ρab − ½Ω*(ρaa− ρbb) (39d)
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In the derivation of these formulae, it was assumed that spontaneous emission follows an exponential 
decay of the coefficient ρab with decay constant ½γ . Also, the (generalized) Rabi frequency, Ω, is given by:

�Ω = = +2
0

2 2U h d
ba

| |χ  (40)

where δ =ω -ωo is the detuning which measures how far the light frequency, ω, is from the resonance 
transition frequency, ωo. Also, Do=ε.Eo is the amplitude of displacement vector (of electric field) includ-
ing the polarization, χba= pba.Do/ħ and pba is the transition dipole moment for the transition b→a. The 
presence of spatial boundaries will modify the semi-conductor Bloch equations, whose open-system 
form may be written as:
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Here, the last term describes the effect on the spatial boundaries on the time evolution of the density 
matrix ραα.

4.2 Semiconductor Bloch Equations (SBE’s)

For a correct description of optical processes in solid materials, it is necessary to go beyond the simple 
model of optical Bloch equations and to treat many-body interactions between material and optical 
excitations. For semiconductors the resulting system of equations is known as the semiconductor Bloch 
equations (SBE). The SBEs are most frequently used in situations where the optical properties are 
prominent, typically for excitations near the band gap, and for describing the dynamics of excitons and 
semiconductor lasers.

The SBEs are a set of integro-differential equations for the quantum dynamics of microscopic polar-
ization and charge-carrier distributions. They describe the optical response of a semiconductor material, 
when it is excited by a coherent light source, such as laser. They also address the many-body quantum 
interactions among charge carriers and between carriers and phonons. Indeed, the SBEs form an excellent 
approach to describe optical properties of semiconductor, without phenomenological parameters. They 
describe the evolution of polarization, electron, and hole distributions as follows (Lindberg & Koch, 1988):
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where fk
e and fk

h are the distribution functions (densities) of electrons and holes and Pk is the microscopic 
polarization. Actually, Pk describes the transition amplitude for moving an electron from valence to con-
duction bands or vice versa (Pk*). Also, Εk is the energy of electron-hole pair, including the interaction 
corrections (due to Hartee-Fock):

Êk = Ek - Σk≠k’ V k-k’[1- fk’
e - fk’

h ] (43a)

Note that the particle energies in the Hartree-Fock approximation include a part of carrier-carrier 
interactions. The role of the carrier-carrier interactions are given by the Coulombic potential Vk-k. Other 
interaction terms are included in the collision terms. Also, Ωk is the renormalized Rabi energy, which 
describes the interband dipole coupling to the radiation field:

Ωk = Ek dcv +Σk≠k’ Vk-k’ Pk’ (43b)

where dcv is the dipole matrix element between the conduction and valence band and Ek = Ee(k) + Eh(k) 
is the energy of electron-hole pair. Remember that the Rabi frequency is a semiclassical concept repre-
senting the frequency of population oscillation between the levels of a resonantly illuminated two-level 
system. When the system is illuminated it will cyclically absorb photons and reemit them by stimulated 
emission. The Rabi frequency Ωk is a measure of the coupling strength between the electronic system 
and the radiation field. The electron-hole system reacts to the combination of the applied field and the 
polarization field of the generated electron-hole pairs. Absorption of radiation and generation of electrons 
and holes are described by the factor -2 Im[Ωk Pk*].

We dully note that the SBEs are particularly useful when solving the light transport in a semiconduc-
tor structure. In this case, we need to solve the SBEs with Maxwell’s equations, driven by an optical 
polarization. The resulting set is called the Maxwell–SBE (MSBE) and they are often applied to simulate 
photonic devices (Haug & Koch, 2009). 

For the simple case of a two-band model of a semiconductor, the SBEs can be written as follows 
(Kira &Koch, 2011):
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Here, Pk is the microscopic polarization and nk
c and nk

v are the electron occupations in the conduction 
and valence bands (with superscripts c and v superscripts), respectively. As a result of the many-body 
Coulomb interaction and other scattering processes, the transition energy ΔΕ and the Rabi energy Ωk 
depend on the state of the excited system. Therefore, they are expressed in terms of the polarizations Pk 
and the carrier occupations nk

c and nk
v, at any wavevector k’.

The original two-level SBE assume a scalar field and don’t take the carrier spin or transverse excit-
ing fields into account. Actually, the spin and the presence of transverse fields are interrelated. Optical 
excitation with circular polarization generates spin-polarized carrier populations (optical spin alignment) 
and can be used to investigate spin dynamics. Research on spin-dependent phenomena in semiconductors 
is rapidly progressing in many different directions, nowadays, and will be treated in Chapter 9.

The SBE’s have many extensions in several directions. For instance, when the light field is quantized, 
one can treat several effects, such as photo-luminescence, in a quantum manner. The SBE’s have been 
successfully utilized to study the impact ionization phenomena in coherent high-field semiconductor 
transport (Quade et al., 1994). Extension of the SBE formalism to treat holes including spin and polariza-
tion can be found in (Rössler, 2003). In this case, a six band model is used for the heavy hole, light hole, 
and split-off band, each with two spin degrees of freedom. Also, we can find specific SBE formulations 
for low-dimensional structures, such as quantum wells (Kira et al., 1999), carbon nanotubes (Hirtschulz 
et al., 2008) as well as quantum dots (Feldtmann, 2009).

4.3 Semiconductor Luminescence Equations (SLE’s)

Luminescence is emission of light by a cold-body (not resulting from heat). It may happen due to chemical 
reaction of release of electrical energy or mechanical stresses in a crystalline solid. The semiconductor 
luminescence equations (SLEs) describe the spontaneous emission of radiation of semiconductors due 
to recombination of electrons and holes, which results in the luminescence phenomenon. These equa-
tions form a corner stone in semiconductor quantum optics as they include the quantized light–matter 
interaction as well as electronic excitations within a semiconductor. The SLEs are suited for modeling 
of semiconductor emission ranging from luminescence to laser effect.

Luminescence is related to the carrier and photon creation and annihilation operators (bw, bw
+). In 

optical transport the average intensity or photon number operator (bw
+bw), is a very important quantity. 

The total change in photon and carrier numbers are related as follows:

∂ ∑

∂
= −∑

[ ]†

,ω ωb

t
f

k k
e h  (45)

where fe
k and fh

k are the electron and hole occupation probabilities (distribution functions) in the semi-
conductor. The above relation means that when an electron and a hole recombine, a photon is emitted. 
When the photon coherence, described here by the expectation value <bw>, vanishes and the system 
becomes quasi-stationary, semiconductors emit incoherent light spontaneously, commonly referred to 
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as luminescence (L). The luminescence flux L is proportional to the temporal change in photon number 
<b†

w.bw> as follows:

L
b b

t
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k k
( ) Re[ ( ]

†
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,

ω ω ω

ω ω=
∂

∂
= ∑2 Π  (46a)

Here Πk,ω describes a correlated emission of a photon of frequency ω when an electron with wave 
vector k recombines with a hole

Πk,ω =Δ(<bω
† Pκ>) (46b)

Note that the operator Δ means Δ(a.b) = <a.b> - <a>.<b>. In general, the SLEs include all such 
single-particle and two-particle correlations, which can be used to calculate the luminescence spectrum.

SLEs are actually photon-number-like correlations and can be put in the following form (Kira et al., 
1999):
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The diagonal form of this equation leads to the luminescence formula (8-46a). Also, the dynamics 
of photon-assisted correlations can be deduced from the following relation:
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The first contribution, Êk, contains the Coulomb-renormalized single-particle energy that is determined 
by the band structure of the solid. The Coulomb renormalization are identical to those that appear in 
the semiconductor Bloch equations (SBEs), showing that all photon-assisted polarizations are coupled 
with each other via the Coulomb-interaction Vk. The three-particle correlations that appear are indicated 
by the T[Π] term – they introduce excitation-induced dephasing, screening of Coulomb interaction, 
and highly correlated contributions such as phonon-sideband emission. Also, Ωk.ω

spon and Ωω
stim are the 

spontaneous-emission source and the stimulated emission contribution, simultaneously.

Ωk,ω
sp =j Fω (fe

k f
h
k + Σk’ Cx

k,k’) (49a)

Ωω
st = j Σω Fω’(Δ<bω

†bω>) (49b)

where Cx denotes the exciton correlation. The electron and hole occupation probabilities, fe
k and fh

k modify 
the emission correlation, Πk,ω, through the Coulomb renormalizations and the Pauli- factor, (1-fe

k –fh
k). 

The occupation probabilities change with spontaneous recombination of electrons and holes, such that:
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∂fe
k /∂t |L = ∂fh

k /∂t |L = -2 Re[Σω (Fω*Πk,ω) ] (50)

Under stationary optical pumping the analysis could become even simpler since the lost electron-
hole pairs in recombination are replaced by a pump, keeping carrier occupations constant. But coherent 
pumping introduces additional correlation terms leading to a coupling of different modes.

In order to complete the set of SLEs, we should add the following equation to describes the quantum 
dynamics of exciton correlations (Jahnke, 2012)
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(51)

The first term in the RHS contains the Coulomb-renormalized energy of electron–hole pairs. The 
summation terms define the main Coulomb sums that correlate electron–hole pairs into excitons. The 
last line contains one-, two- and three-particle correlations Sx

k,k’, DX
k,k’ and TX

k,k,’ of singlet, doublet and 
triplet states, respectively.

4.4 Wannier Equation

The optical excitations and light emission in semiconductors can be described by the semiconductor Bloch 
equations (SBE) or the semiconductor luminescence equations (SLE). The so-called Wannier equation 
(WE) is a simplified version of these equations, which describes the optical excitations of electron-hole 
pairs (Wannier excitons). As shown in Chapter 5 of this Book, the WE resembles the Schrödinger equation 
for the hydrogen atom. Note that Wannier exciton are characterized by a radius that extends over several 
unit cells, in contrast to the Frenkel excitons whose size is about the unit cell. The generalized Wannier 
equation (GWE) includes the effect of many electrons and holes on the binding energy of excitons. It is 
equivalent to the homogeneous parts of SBEs or SLEs at low-density (Kira, 2011):
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where, ϕλ is the e-h pair (exciton) wavefunction and Êk is the renormalized kinetic energy:
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Here fk
e and fk

h, are the electron and hole occupations, respectively. Also, the effective Coulomb 
interaction (Veff

k-k’) is given by:

Ṽk-k’ = (1- fk
e - fk

h) Vk-k’ (52c)
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The term (1- fk
e - fk

h) reduces the Coulomb interaction by the so-called phase-space filling factor 
(Haug & Koch, 2009). Due to the phase-space filling factor, the Coulomb attraction becomes repulsive 
for excitations levels where fk

e + fk
h >1. Therefore, the GWE results only in a solution for unbound car-

riers, which follow the excitonic Mott transitions from bound to ionized electron–hole pairs. Figure 18 
depicts the domain of applications of the excitonic transport models.

Note 2: Singlet, Doublet and Triplet (Spin) States

According to Pauli Exclusion Principle, the unexcited electrons are paired in their orbitals with opposite 
spins. However, after excitation, electrons will have different orbitals and their spin may be parallel or 
paired (with opposite spins). The spin angular momentum (S) of an electron (due to spin) is a quantized 
vector, which should precess around a certain axis, according to the uncertainty principle (ΔS.Δϕ > 
ħ/2). While precessing around the magnetic field axis, electrons are either spin-up or spin-down (with 
respect to the z-axis). In addition, electrons may precess in-phase or out of phase, according to their 
pointing direction in the x-y plane. In a two-spin system, this gives four possible vectors for the spin (1 
vector for total spin S=0 and three vectors for total spin S=1). For S=0, the spin vector corresponds to 
magnetic momentum number 0 and it is called singlet state. For S=1, the three vectors correspond to 
magnetic momentum numbers (-1,0,+1) and they are called triplet states.

The above mentioned states of a 2-spin system (1 singlet and 3 triplets) may be visualized as spin 
(up-up), (up-down), (down-up) and (down-down).

The triplet states are more stable than singlet states due to the so-called exchange energy, which 
minimizes the binding energy between them. Therefore, A pair of spinning particles can be combined 
to form singlet of spin vector S=0 or one of three triplet states of total spin vector S=1. Note also, that 
upon rotation of a single electron with spin ½ (spin value = - ½ or ½), its state transforms as a doublet 
state. Almost all molecules in nature exist in a singlet state, except for molecular oxygen O2, which exists 
in a triplet state at room temperature. Finally, it should be noted that singlet, doublet and triplet (spin) 
states may be attributed to some quasi particles such as excitons and polarons.

Figure 18. Domain of application of excitonic transport models (Maxwell SBEs & SLEs). Note that the 
emission correlation Π also describes photon assisted polarization and Ω is a measure of the coupling 
strength between the electronic system and the radiation field
After Haug & Koch (2011).
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4.5 Heisenberg Equation of Motion (HEM)

We have seen, in Chapter 4, that in the Schrödinger picture the state vector evolve in time, |ψs>=|ψs(t)>, 
whereas the dynamic variables of the system are fixed during the time of undisturbed motion, Ôs≠Ôs(t). 
In the Heisenberg picture, we restrict the dynamic evolution to operators. This picture represents a sce-
nario in which the state of the system has a fixed vector |ψH>≠|ψH (t)> and the dynamic variables are 
represented by moving linear operators ÔH=ÔH(t). The transformation rule for a general observable Os to 
OH is obtained from the requirement that the expectation value should remain invariant. We then deduced 
the transformation relation: OH = T†OsT where T is any unitary transformation matrix. The Heisenberg 
operators satisfy the following differential equation (Chow, Koch & Sargent, 1994):
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 (52a)

When the operator Os has no explicit time dependence, the last term vanishes and the resultant equa-
tion is called the Heisenberg equation of motion (HEM)

jħ dOH/dt = [OH, HH] (52b)

The expectation value of the operator OH(t) in the Heisenberg picture is related to the density matrix 
(in the initial state of Schrodinger picture) as:

<OH(t)> = Tr [ρso OH(t)] (52c)

4.6 Heisenberg-Langevin Equation (HLE)

The so-called Heisenberg-Langevin equation (HLE) is a variant formula-tion of the Heisenberg equa-
tion of motion, for open quantum systems (like nano-electronic devices, with external electrodes). The 
Heisenberg equation of motion and its variants can be employed to observe the evolution of any average 

Figure 19. Singlets, doublets and triplets
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operator, such as the macroscopic polarization, of an optical system. The equation of motion for the ef-
fective dipole moment can be obtained by substituting the effective Hamiltonian for optical interactions 
in a semi-conductor as follows:

H=Σk{[Eg+(ħ2k2/2me*)]ak
†ak+[Eg+(ħ2k2/2mh*)]bk

†bk -[gkak
†bk a+gk*a†akbk]}  (53a)

The equation of motion for the effective dipole operator (bkak) is given by:

∂

∂
= − + + + − +

b a

t
g jE b a jg a a b b Fk k

k k k k k k k k k k
( ) ( )† † 1  (53b)

where γ is the damping, Ek =Eg+(ħ2k2/2mec*)+(ħ2k2/2mhv*) and Fk is the noise operator. Also, the equa-
tion of motion for the average number of photons may be written as follow (Scully & Zubairy, 1997)

da a

dt
a a F F dk k

k k

†
† †( ), ( )= − + ∫γ τ τ0  (54)

where γ is the quantum Langevin drift coefficient and the noise force F is assumed stationary. This is a 
form of the famous fluctuation-dissipation theorem. It is actually a specific case of the quantum version 
of Langevin’s equation (Langevin, 1923), which is useful for studying the time evolution of the current 
in presence of noise and fluctuation forces.

4.7 NEGF Modeling of Optoelectronic Devices

When we need to simulate real photonic devices, where the semiconductor active region has open bound-
aries to exchange charge carriers with the external environment, we can resort to the nonequilibrium 
Green’s functions (NEGF) approach. The conventional Wigner-function quantum transport formalism to 
this problem leads to unphysical results, such as injection of coherent states from the contacts (Zaccaria & 
Rossi, 2003). The SBEs and their variants, on the other hand, have no special concern with carrier injec-
tion with open boundaries. Therefore, the NEGF is a useful tool to simulate nanoscale photonic devices, 
which involve both coherent transport (in the active region) and incoherent processes (in contact regions).

In the real space, the conduction band Green’s functions (Gr, G<) have four-parameters of positions 
z, z’, energy E, and in-plane momentum value k. The retarded Green’s function is the solution of the 
Dyson equation:

(E.I – H –Σr) Gr(E, k) = I (55)

where the self-energy term Σr includes scatterings and couplings to the leads.
The valence part of the retarded Green’s function is given by (Kolek, 2015):
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= − +−( ) [ ]† †1  (56b)

Also, the differential Hamiltonian operator Hcυ is defined as follows:

(ħ2/2m*γ½) d/dz → Hcv (57)

and Ev = Eg(z) - Ec(z).
The lesser Green’s functions can be obtained from the Keldysh equation:
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where Σ< is the conduction band lesser self-energy. These equations should be iterated together with 
the Poisson equation. In this iteration, the Green functions valence components, Gυc

R and Gυ
<, should be 

included as they contribute to the density of electrons:

n(E, k, z) = - (j/2πa) . [G< + Gv
< ] (59)

Once a self-consistent solution is achieved, the density of carriers and the optical absorption can be 
evaluated (Wacker, 2002). This model is particularly useful for a quantum cascade laser (QCL) devices. 
QCL laser operates on laser transitions not between different electronic bands, but instead on inter-
subband transitions in semiconductor structures. The NEGF can treat quantum tunnelling and different 
scattering events, which are necessary for this type of devices. Figure 20 depicts the NEGF simulation 
of a quantum cascade laser (QCL) device. The population inversion of carriers at low k, is also shown 
in the right of the same figure.

Figure 20. Results of NEGF simulation of a QCL device. Note the population inversion of carriers at 
low k, in the right figure.
After Faist (2013).
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4.8 Bethe-Salpeter Equation (BSE) and Optical Excitations

The Bethe–Salpeter equation (BSE) is an equation of motion of bound states of a two-particle quantum 
system (Bethe & Salpeter, 1951). It is used to describe the coupled propagation of two-particle quantum 
systems, in a relativistic manner. For instance, the bound state of an electron–positron pair (positronium) 
and the bound state of excited electron–hole pairs (excitons). As the BSE can be derived by identifying 
bound-states of two particles, it can be related to the quantum description of scattering processes and 
Green’s functions. Figure 21 depicts the coupled propagation of bound e-h pair (exciton) system. In this 
case the BSE may be written in the following form (4-point Bethe-Salpeter equation):

L L L K L= +
0 0

. .  (60a)

where L is denotes the electron-hole correlation function and, Lo is the free electron-hole pairs correlation, 
with the no interaction kernel (K=0). The set of variables (12,34, 56,78) comprises position, spin, and 
time coordinates: (1)=(r1, σ1, t1), (2)=(r2, σ2, t2) and so on. Actually, L depends on four time variables, 
related to two creation and two annihilation processes of electron and hole. The zero-interaction cor-
relation may be written as follows:

Lo (12,34)= G(1,4).G(2,3) (60b)

In optical excitations, we restrict ourselves to simultaneous creation and simultaneous annihilation, 
so only two of the four time variables are independent. In the absence of external fields we consider only 
the difference of the two time variables (of creation and annihilation) and the above equation is used to 
carry out a one-dimensional time-energy Fourier transform into L(12,34,ω) where the coordinates 12, 
34 contains only position and spin of the creation and annihilation of an e-h pair. The BSE can be also 
written in the following irreducible form:

Figure 21. Schematic illustration of the coupled propagation of bound e-h pair (exciton)
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where Σ and G are self-energy and Green’s function of the system. The self-energy can be calculated 
using Hartee-Fock Coulomb potential (Σ = jG.Vsc) or the GWA using the screened Coulomb potential 
W (Σ = jGW). The standard Bethe-Salpeter equation makes use of the time-dependent screened Hartree-
Fock potential.

The solution if the BSE is difficult. However, if one of the particles is significantly more massive 
than the other, the problem is considerably simplified as one solves the Dirac equation for the lighter 
particle under the external potential of the heavier particle (Salpeter, 2008).

5. SEMICLASSICAL APPROACHES FOR PHOTON TRANSPORT

Semiclassical approaches help us to correlate optical material properties, such as absorption coefficient, 
to atomic properties. Light is treated classically (not quantized) but the transport medium is handled 
quantum mechanically. We have already presented the Boltzmann transport equation (BTE), as the basis 
of the semiclassical transport theory. The BTE accounts for changes of a carrier distribution function (or 
number density) in the phase space. We consider here photons as information carriers, and make use of 
a BTE-like equation to trace their evolution in the phase space.

5.1 Photon BTE (Radiative Transfer Equation)

Photon transport in scattering media can be modeled with BTE-like equations, such as the radiative 
transfer equation (RTE). The RTE can model the transfer of energy as photons move in a medium. The 
flow of radiation energy via a small area element is characterized by radiance or luminance. Luminance, 
L, is a measure of brightness of a radiating surface. It is defined as energy flux per unit time per unit 
normal area per unit solid angle (in W/m2.sterdian) as follows:

L(r, s,t) = dΦ / dΩ (60a)

Here, Φ is the luminous flux (or photon fluence rate in W/m2) and Ω is the solid angle. Also, r is 
position, s is unit direction vector and t is time.

The Photon fluence rate is defined as follows:

Φ(r , t) = ∫4π L(r , s,t) dΩ (60b)

Photon current density (or energy flux) is defined as follows:

J(r , t) = ∫4πsL(r , s,t) dΩ (60c)
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This is the vector counterpart of fluence rate pointing in the prevalent direction of energy flow.
The RTE is a differential equation describing radiance L(r,s,t). It can be derived via conservation 

of energy. Briefly, the RTE states that a beam of light loses energy through divergence and extinction 
(including both absorption and scattering away from the beam) and gains energy from light sources in 
the medium and scattering directed towards the beam. Coherence, polarization and non-linearity are 
neglected.

Optical properties such as refractive index n, absorption coefficient μa, scattering coefficient μs, and 
scattering anisotropy g are taken as time-invariant but may vary spatially. Scattering is assumed to be 
elastic. The RTE (Boltzmann equation) is thus written as

c-1∂L(r,s,t)/∂t +s.∇L(r,s,t) + μt L(r,s,t) = μs ∫4π L(r,s,t)P(s’,s)dΩ +S(r,s,t) (61)

Here, c is the speed of light in the medium, as determined by the refractive index, S(r,s,t) describes the 
light source., μt =μa+μs is the total attenuation coefficient and P(s,s’) is the phase function, representing 
the probability of scattering of light with propagation direction s’ into solid angle dΩ around s. In most 
cases, the phase function depends only on the angle between the scattered s’ and incident s directions 
(θ). The scattering anisotropy can be expressed as follows:

g = ∫4π P(s’,s)(s’.s)dΩ (62)

The RTE is difficult to solve without introducing some approximations. By making appropriate as-
sumptions about the behavior of photons in a scattering medium, the number of independent variables 
can be reduced. These assumptions lead to the so-called diffusion theory for photon transport. In this 
case, the radiance is expanded in spherical harmonics Yn, m. Then, radiance is considered isotropic, so 
that only the isotropic and first-order anisotropic terms are used:

Figure 22. Schematic of energy flow through a differential area element dA at position r within a dif-
ferential solid angle element dΩ
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where Ln,m are the expansion coefficients. Radiance is expressed with 4 terms; one for n=0 (the isotropic 
term) and 3 terms for n=1 (the anisotropic terms). Hence we can approximate radiance as follows:
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Substituting the above expression for radiance, the RTE can be rewritten in scalar and vector forms 
as follows:

c-1∂Φ(r,t)/∂t + μaΦ(r,t) + ∇.J(r,t) = S(r.t) (64a)

c-1∂J(r,t)/∂t + μtJ(r,t) + ⅓∇Φ(r,t) = 0 (64b)

Here we assume that the fractional change in current density J over one mean free path is negligible. 
The second equation reduces to Fick’s law,

J r t
r t

a s

( , )
( , )

( )'
= −

∇
+
Φ

3 µ µ
 (65)

which defines current density in terms of the gradient of fluence rate. Substituting Fick’s law into the 
scalar representation of the RTE gives the diffusion equation:

c
r t
t

r t D r t S r t
a

− ∂
∂

+ −∇ =1 Φ Φ Φ
( , )

( , ) .[ ( , )] ( , )µ  (66a)

where μ’s = (1−g)μs is the reduced scattering coefficient and the diffusion coefficient D is

D
a s

= −
+
1

3( )'µ µ
 (66b)

For the simple case of a short-pulsed point source

S(r,t,r’,t’) = δ(r-r’) δ(t-t’) (66c)

In infinite homogeneous material, the solution to the diffusion equation is
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The term exp[ -μac(t-t’)] represents the exponential decay in fluence rate due to absorption in ac-
cordance with Beer’s law. The other terms represent broadening due to scattering

5.2 Monte Carlo Method for Photon Transport

Monte Carlo method (MCM) is a stochastic technique that can be used to solve many physical problems. 
MCM can be used to keep track of the transport of multiple photons, in a scattering medium. The Monte 
Carlo photon simulation is equivalent to modeling photon transport by the radiative transfer equation 
(RTE), which describes the evolution of photons in a certain medium. Optical properties such as refrac-
tive index, absorption, scattering, and scattering anisotropy can be taken into account.

The first step of MC simulation, after initialization of all variables of interest, is to assign a step for 
the carrier motion in physical space. The step size, s, which is the distance the photon packet travels 
between interaction sites, may be expressed as s = lnξ/μt. where ξ is a random number and μt is the total 
direction cosine. Once a step size is selected, the photon packet is launched and propagated by a distance 
s in a direction defined by the direction cosines. We already know the Beer’s Law, which describes the 
light intensity decay in an absorbing medium:

Relative intensity = I(d)/I(0) = exp(-αa d) (68)

Figure 23. Diffuse reflectance vs. radius from an incident pencil beam as determined by Monte Carlo 
simulation and photon diffusion equation
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where αa is the absorption coefficient [cm-1] and d is the pathlength of photon travel [cm]. In a scattering 
medium, the photon path is not a straight line, but Beer’s law still holds. Regardless of how curvy the path, 
the pathlength is given by d = vc.t, where vc is the speed of light in the medium (vc = co/n) and t is time.

At any time point, one can calculate the probability of photon survival by exp(-aad) = exp(-aact). 
Therefore

P(t) = exp(- aa d) = exp(- aa vc.t). (69)

A portion of the photon weight is absorbed at each interaction site. The fraction of the weight is 
determined as ΔW = μa/μt. The weight of the photon packet must then be updated as W-ΔW→W.

Following absorption, the photon packet is scattered. The weighted average of the cosine of the photon 
scattering angle is known as scattering anisotropy (g), which has a value between -1 and 1. If the optical 
anisotropy is 0, this generally indicates that the scattering is isotropic. If g approaches a value of 1 this 
indicates that the scattering is primarily in the forward direction.

In order to determine the new direction of the photon packet (and hence the photon direction cosines), 
we need to know the scattering phase function. Often the Henyey-Greenstein phase function is used to 
determine the scattering angle, θ, as follows:

Cos(θ) = [1+g2 - (1-g2)/(1-g+2g ξ)] if g ≠ 0 

= 2ξ −1 if g = 0 (70)

The azimuthal angle φ is generally assumed to be uniformly distributed between 0 and 2π. Based on 
this assumption, we can set: φ πζ= 2 . Using these angles and the original direction cosines, we can 
find a new set of direction cosines. If a photon packet has experienced many interactions, for most ap-
plications the weight left in the packet is of little consequence. As a result it is necessary to determine 
a means for terminating photon packets of sufficiently small weight. A simple method is to use a thresh-
old, and if the weight of the photon packet is below the threshold, the packet is considered dead. How-
ever, in time-resolved Monte Carlo photon simulation, we record the time-resolved spatial distribution 
of photons expressed as either an energy concentration (C in [J/cm3]) or as fluence rate (ϕ= vc.C in [W/
cm2]). Both photon energy concentration and fluence rate are usually expressed relative to the light 
impulse energy of the source at time zero (Uo in [J]). If one wishes to express C as photons/cm3 or ϕ as 
photons/cm.s, then one simply multiplies the Monte Carlo result by Uo expressed in Joules divided by 
(hc/λ). For instance, a one joule beam at wavelength of 532nm is equivalent to (1J)/(6.626x10-34Js)
(2.998x108 m/s) / (532x10-9 m)= 2.7x1018 photons.

Taking the absorption probability into account, the final expression of photon fluence rate is given by:

ϕ (r,t) = vc.Co.exp(-aa vc.t). (71)

where Co reflects the spatial distribution, without absorption.
Monte Carlo method has been used to model electron/photon coupled transport, laser interactions, 

fluorescence and many other optical phenomena in radiation physics. Some of the MC simulators in-
clude the light polarization, before and after scattering events. A flow-chart that includes standard and 
polarized Monte Carlo is shown in the figure (Jessica et al, 2005). Beside well-established Monte Carlo 
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Figure 24. Effect of the g-factor on angular distribution of lighjt scattering

Figure 25. Flow chart of photon Monte Carlo method. Both standard and polarized methods (shaded 
blocks) are shown
After (Jessica et al., 2005).
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simulators, like EGS4, ITS and GEANT, one can find other programs in the literature, which are tailored 
for specific applications. For instance, the PENELOPE algorithm (Salvat, 2009) is specifically tailored 
for radiation therapy treatment.

6. PHENOMENOLOGICAL OPTICAL TRANSPORT MODELS

The dynamics of the optical field can be analyzed either by working with a space dependent dynamic 
equation for the complex field amplitude or using phenomenological rate equation for the scalar field 
energy together with a quasi-stationary wave equation to describe the evolution of the shape of the elec-
tromagnetic wave intensity distribution (Grondin, EL-Ghazaly and Goodnick, 1999). The main benefit 
of the latter approach is that it leads to simple results that are easier to interpret. However, the validity 
of approximating the shape of the instantaneous field distribution with that obtained from the quasi-
stationary wave equation has not been yet proved (Vasileska, Goodnick & Klimeck, 2011).

6.1 Optoelectronic Modeling Using the Field Simulation

The electromagnetic field analysis of photonic devices may be carried out by either classical or full 
quantum models. The classical approaches are all about solving the Maxwell equations inside the device 
active region, while the quantum approaches are concerned with solving a sort of dynamic (Schrodinger-
like or Heisenberg-like) wave equation. The classical electromagnetic approach may be represented by 
the Helmholtz equation:

∇ ∇
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x xH
c

H
1

2

ε
ω with the constraint: ∇.H= 0 (72)

where H is the optical magnetic field vector and ε is the dielectric permittivity function of the material. 
The above equation can be obtained from the Maxwell equations in a transparent, time-invariant, source-
free, and non-magnetic medium. This equation is sometimes called the Master Equation, and represents 
the basis of a Hermitian eigenvalue problem, which is not applicable if the wave equation were derived 
in terms of the electric field. If the eigen-operator in the LHS of the above equation is periodic (e.g., in 
a photonic crystal), then Bloch-Floquet theorem applies. The Bloch-Floquet theorem states that, due to 
the infinite periodicity in a photonic structure, the magnetic field will take the form:

H(r) = exp(jk.r).hk(r). (73)

where h(r) = h(r+R) for all combinations of lattice vectors R. Thus, we end up with the master equation 
in operator form:

(∇ + jk){ε-1∇ + jk}hk = (ω2/c2) hk (74)

This is the fundamental equation, which needs to be solved. Different approaches can be explored to 
solve the final discretized problem, which may be put in the following matrix form:
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[A]h = ω2[B]h (75)

The result of solving the discrete problem is the dispersion relationship ω(k) between the frequencies 
of the modes and wave vector k, usually plotted in the form of a band diagram.

6.2 Traveling Wave Model (TWM)

The traveling-wave model is based on the differential wave equations for counter-propagating optical 
fields in a laser cavity. These method was developed first by Homar and later by Serrat & Masoller 
(1999). The main component of the eclectic field of the fundamental transverse mode in a laser can be 
written as a superposition of forward and backward traveling waves: 

ζ(r,t) =A(r).[ψ+.exp(jπ.z/Λ) + ψ-.exp(jπ.z/Λ)].exp(jωoτ) (76)

where Λ is the corrugation period of the laser waveguide and ωo is an optical reference frequency, close 
to which the laser emits. The transverse field profile A(r) of the waveguide can be normalized such 
that |ψ+(z,t)|2 and |ψ-(z,t)|2 are the powers guided by the forward and backward waves, respectively. The 
amplitudes are governed by the traveling wave equations

∂ψ(z,t)/∂ t = jH(z,t).ψ (z,t) (77a)

with

ψ = [ψ+, ψ-] Τ (77b)

where H(z, t) is a Hamiltonian operator matrix, which is given by:
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The field energy can be expressed as

E = (1/vg). ∫0
L|ψ|2. dz (79a)

with

|ψ|2 = |ψ+|2 + |ψ-|2 (79b)

Using the above equation, one can find easily the conservation relation

dE / dt = Pgen - Pout (80)
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where Pgen and Pout are the net power generated in the laser and the output power emitted from the two 
facets,

Pgen = 2 ∫0
L Im(β).|ψ|2. dz (81)

Pout = (1- |ro| 
2).|ψ−(0)|2 + (1- |rL| 

2).|ψ+(L)|2 (82)

All terms in the energy balance equation (8-64) correspond clearly to those of the conventional 
photon rate equation (PRE)

6.3 Rate Equations in Semiconductors

The rate equations provide the most fundamental description of optical devices, such as lasers. Numeri-
cal analysis of a semiconductor laser indeed benefit from the set of rate equations, which are capable 
of describing the deterministic dynamics of the lasing modes as well as their mutual interactions The 
set of rate equations is a system of ordinary differential equations that relates the number or density of 
photons and charge carriers (electrons) in the device to the injection current and to device and material 
parameters such as the carrier lifetime, photon lifetime, and the optical gain. Such description is suited 
for analysis by existing simulation tools.

We can find at least three different sets of rate equations with three corresponding sets of variables. 
The first set of equations uses the variables describing the density of photons S (the number of photons 
per cm3), the density of electrons n (carriers/cm3) and the pump-current density J (carriers/s/cm3). A 
second set of equations uses variables describing the optical power P(W) and current I(A). The first set 
using S and J must be equivalent to the second set with P and I since the number of photons correspond 
to the optical power. The phase does not enter into these equations since the optical power does not 
depend on phase. The third set involves the electric field ζ (amplitude and phase), and carrier density n.

Let us consider the rate of change of a number of carrier pairs in the active region of a semiconductor-
based device. We assume an intrinsic active region so that the density of electrons is equal to the number 
of holes per unit volume (n=p). For now, we assume that the semiconductor material comprising the 
laser as having two energy levels. These two levels correspond to the conduction and valence band 
edges obtained from the effective density of states. We want to know what physical phenomena can 
change the number of electrons in the conduction and valence bands. These changes must be related to 
the number of photons produced (for a direct bandgap semiconductor). We assume that the electrons 
and holes remained confined to the active region with volume V. The rate of change of the total number 
of electrons (or holes) N = nV is due to electron–hole generation and recombination. The rate equation 
has the basic form:

dN/dt = Generation Rate – Recombination Rate = G - R (83)

Generation processes such as pumping and absorption increase the total number of electron–hole 
pairs (i.e., increases the number of electrons in the conduction band). Recombination processes such as 
stimulated and spontaneous emission reduce the total number of electrons in the conduction band. These 
facts can be taken into the basic rate equation:
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G = Pump + (Stimulated Absorption –Stimulated Emission) 

R = Nonradiative Recombination + Spontaneous Recombination (84)

This equation calculates the change in the number of carriers N=nV in the active region. Absorp-
tion and pumping increase the number while emission and recombination. Many of the processes that 
decrease the total number of carriers N must also increase the total number of photons SV in the modal 
volume V. We can therefore write a photon rate equation as

dS/dt = +Stimulated Emission + Fraction of Spontaneous Emission 

- Stimulaed Absorption - Optical Loss (85)

The optical loss term accounts for the optical energy lost from the cavity. Some of the light scatters 
out of the cavity sidewalls and some passes through the mirrors. The light passing through the mirrors, 
although considered to be an optical loss, comprises a useful signal. Notice that the pump-current number 
density J does not appear in the photon equation since it does not directly change the cavity photon number.

The rate equations provide relations between the photon density, carrier density and the pump cur-
rent density.

6.4 Single-Mode Rate Equations

In the resonant cavity of a laser, we get several standing wave patterns of electric field, correspond-
ing to several axial modes (wavelengths).We may only consider one mode of field propagation, whose 
photon energy is closest to the gain peak. The intensity of this mode will grow faster than all others and 
eventually dominate. This simplification avoids the problem of finding the parameters and coefficients 
for other trivial modes.

The first rate equation (of electrons or excited atoms/molecules4) describes the change of excited 
photons as a function of time. The only gain term is the pumping term (P=J/ed), which increases the 
number of excited atoms by some external pumping sources. The two loss terms in this equation are 
due to stimulated and spontaneous emission/recombine-ation. Spontaneous emission/ recombination is 
a loss term (-nf = -n/τsp) since this is unguided process that doesn’t produce a net increase of photons in 
the cavity5. The stimulated emission/recombination part of this rate equation is represented by (-n.S.Go= 
-n.S/τph), where Go is the gain coefficient.

dn
dt

P f n G n n S
J
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n n n S
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= − ⋅ − − = − −
−

( )
( )

τ τ
 (86)

where Go=1/τph is the gain coefficient, f=1/τsp is the decay rate due to spontaneous emission/recombina-
tion, and P=J/e.d is the pump strength (e.g. due to pump current in a laser diode).

The second rate equation of photons describes the changing of laser photons as a function of time. 
The first term (Go.S = S/τph) is the stimulated emission part of the equation. It is proportion to n and S 
since more excited atoms/cavity photons would obviously increase the rate of stimulated emission. The 
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second term (-A.S) combines the photon loss term through the cavity by transmission (absorption S/τab) 
and scattering or recombination (Rsp).

dS
dt

G S A S
S S
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ph ab
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= − ⋅ = − −








τ τ
 (87)

where A is photon decay rate due to transmission/scattering, τph is the photon lifetime and τab is the photon 
absorption lifetime. Note that we substituted the gain coefficient Go= 1/τph . It can be also expressed in 
terms of the modal g(n), as follows:

Go = vgΓ. g(n) (88)

Here, vg is the group velocity of photons and Γ is the confinement factor (for GaAs quantum well 
laser Γ= 0.02). If we assume that the gain is linear with the carrier density, n, then we can write the gain 
coefficient per unit length (the modal gain) as follows:

g(n) = ℓ (n – no) (89)

where ℓ is the differential gain coefficient and no is the transparency electron density. As for the spon-
taneous emission/recombination term (Rsp), it may be expressed as follows:

Rsp = β b n2 (90)

where b is the bimolecular recombination constant, β is a spontaneous emission coeffiucient. One can 
also add Auger recombination (c.n3) to Rsp.

The rate equations may be solved by numerical integration to obtain a time-domain solution, or used 
to derive a set of steady state equations. Under steady state conditions, all parameters can be calculated 
from the carrier density (n) in a straight forward way. In this case, the rate equation for the photon density 
can be solved yielding:
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 (91)

The output optical power is given by the number of photons, which leave the semiconductor per unit 
time, multiplied by the photon energy:

Pout = hv (S / τph) A = hv.(S W) ln (1/√R1) vg (92)

where A is the active area of the device, and R is the reflectivity at the cavity interface edges.

R = [(n1 - n2)/(n1 + n2)]
2 (93)
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where n1 and n2 are the refraction indices at the interface (not to be confused with the electron density 
n). For GaAs/Air interface, we have n1=3.6, n2=1 and R = 0.32. Finally one can find the current through 
the Laser device from the relation:

I e A
n

bn n v S
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g g
= + + +











.
τ

γ2 3 Γ  (94)

where τnr (or τab) is the non-radiative recombination time, b is the bimolecular recombination constant 
and γ is the Auger recombination constant. The power-current (P-I) curve of the Laser can be obtained, 
simply by plotting the values of the output power as a function of the Laser current. Note that laser ac-
tion is induced above a certain threshold current density. Table 3 shows the typical values of the Laser 
diode parameters of a GaAs/AlGaAs edge-emitting single-quantum-well laser.

Table 3. Typical values of laser diode parameters (of a typical GaAs/AlGaAs edge-emitting single-
quantum-well laser)

Laser and Material Parameters Symbol Typical Values

Cavity length d 300 μm

Non-radiative recombination time τnr 100 ns

Photon lifetime τph 2.58 ps

Bimolecular recombination constant b 5 x 8-5 cm2/s

Auger recombination constant γ 6.25 x 8-18 cm4/s

Group velocity vg 9 x 109 cm/s

Confinement factor Γ 0.02

Differential gain coefficient 1.23 x 8-9 cm

Transparency carrier density no 1.23 x 1012 cm-2

Spontaneous emission factor β 8-5

Mirror #1 reflectivity R1 0.3

Mirror #2 reflectivity R1 0.3

Photon energy hν 1.49 eV

Lasing wavelength λ 830 nm

Waveguide losses α 3 cm-1

Threshold carrier (electron) density n0 2.99 x 1012 cm-2

Threshold current Ith 0.68 mA

Modal gain at threshold g(n0) 43 cm-1

Gain slope g0 3x106 cm-1/s

Gain saturation parameter ε 3.4x1017 cm3

Differential efficiency η 0.47 mW/mA

According to (Parker, 2005).
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6.5 Other Formulation for Large-Signal Single-Mode Laser

As just mentioned, the rate equations provide a primary description of light emission and absorption 
from a collection of atoms. We use them to describe the output optical power versus input current, the 
modulation response to a sinusoidal bias current, and the operating characteristics for laser amplifiers. 
The large signal rate equations in their modified form, due to Tucker (1999), read:

dS/dt = Γgo[ n-no].S/(1+α S) - S/τsp + βΓn/τsp (95a)

dn/dt = J/ed − go[ n-no]S / (1+δ S) - n/τsp (95b)

dΦ/dt = ½ α {Γgo[ n-no] - 1/τph} (95c)

Here n is the electron density, no is the electron density at the case of transparency, β is the fraction 
of spontaneous emission noise coupled into the lasing mode, go is the differential gain coefficient, ε is 
the gain saturation parameter,τph is the photon lifetime,τsp is the carrier lifetime and α is the line width 
enhancement factor. Note that the term (1+ε.S) is added in the denominator of the gain equation to 
account for gain saturation due to the high power densities in semiconductor lasers. Also, the output 
power is given by:

P(t) = ½ η.V.(ħω).S(t) /Γ.τp (96)

where η is the differential quantum efficiency, ω is the optical frequency and V is the volume of the 
active region,

6.6 Coupled Simulation of Electron/Photon Transport

During electron and photon transport in a medium (semiconductor or any other material) each particle 
produces the other. The rate equations can model the electrical and optical performance of optical 
semiconductor devices such a laser diode or a light-emitting diode (LED). Numerical analysis of a 
semiconductor laser indeed benefit from the set of rate equations, which are capable of describing the 
dynamics of the lasing modes as well as their mutual interactions. Such description in terms of first-
order ordinary differential equations (ODEs) is well suited for an efficient analysis by existing simulation 
tools. In fact, the inclusion of spontaneous-emission noise in the modes and recombination noise in such 
frame is straightforward. Actually, in a multi-mode semiconductor diode laser several phenomena have 
their origin in the deterministic nonlinear dynamical evolution of the lasing modes. Starting from the 
solution of the Helmholtz equation:

∇2ζ + [ εω(ω2/c2) - β 2] ζ = 0 (97)

were ζ is the electromagnetic field and β is its propagation constant. We then solve the following con-
tinuity equation for each mode:
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dSm/dt = Gm(Sm+1) – Sm/τph (98)

Here Sm is the photon density (occupation number) for the m-th mode and Gm is the mode gain. Also, 
τph is the photon lifetime.

Poisson equation: 

∇. (-ε ∇ϕ + P)= e (p – n + Dop +Nt) (100a)

Electron Continuity:

e∂n/∂t -∇.Jn =-e(R – G)= -e(Urad + USRH) (100b)

Hole Continuity: 

e∂p/∂t +∇.Jp =-e(R – G)= -e(Urad + USRH) (100c)

∂(n ωn)/∂t + ∇.Sn -ζn.Jn- n(ωn-ωo) /τwn =-ωn (Urad + USRH) (101a)

∂(n ωn)/∂t + ∇.Sp -ζp.Jp+ - p(ωp-ωo) /τwp =-ωp (Urad + USRH) (101b)

were Sn, Sp are the carrier (electron and hole) energy fluxes and the carrier (electron and hole) current 
densities Jn, Jp are given by the expressions:

Jn = n μn.mn (vn .∇)(vn) - e n μn.ζ- kB μn.mn∇.(n mn
–1. Tn) (102a)

Jp = p μp.mp (vp.∇)(vp) - e p μp.ζ+ kB μp.mp∇.(p mp
–1. Tp) (102b)

And the carrier (electron and hole) energy fluxes Sn, Sp are given by the expressions:

Sn = -kn∇ Tn - (ωn + kB Tn).(Jn / e) (103a)

Sp = -k p∇ T p + (ωp + kB Tp).(Jp / e) (103b)

The conduction and valence band edges can be calculated from the electrostatic potential, as follows: 
Ec = - eϕ – x, Ev = Ec - Eg where x is the electron affinity.

The net radiative recombination rate Urad in the carrier continuity is given by:

Urad ≈ Σm Bm |E|2gm {Sm[f(Ec
m) - f(Ev

m)]+f(Ec
m)[1-f(Ev

m)]} (104)
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Here Bm is the Einstein coefficient of optical transitions for mode m. gm is the equivalent density of 
states (DOS) for optical transitions between two levels (EC

m in conduction band and EV
m in valence band). 

Also, Rcf is the free carrier absorption rate.
In addition to the above system of six differential equations, we can add the heat flow equation:

-∇.kth∇T + ∇.H +ħω.(Urad - Rfc) = 0 (105a)

where kth is the lattice thermal conductivity and the heat flux Hs may be calculated from the following 
phenomenological expression:

Hs = (αnkBT +Ec)Jn + (αpkBT - Ev)Jp (105b)

αn = 2 Ƒ1 (ηn) / Ƒ0(ηn) , αp = 2 Ƒ1 (ηp) / Ƒ0(ηp), (105c)

ηn = (EFn -Ec)/kBT, ηp = (Ev - EFp)/kBT (8-105d) 

where Ƒ m is the Fermi integral of order m and the quasi Fermi levels EFn, EFp are related to the density 
of carriers (near equilibrium), as follows:

n = Nc Ƒ½(ηn) , p =Nv Ƒ½(ηp) (106)

7. NONLINEAR OPTICAL TRANSPORT IN SEMICONDUCTORS

Many optoelectronic and photonic devices are working near thermal equilibrium. The optical behavior 
of such devices can be modeled, by simple approaches, like the Kubo formula (Haug & Koch, 2012). 
However, the experiments demonstrate that some optical media exhibit nonlinear behavior, especially at 
high field excitations. For instance, when an intense laser beam passes through a material, the electric 
field can induce a change in the material refractive index that is proportional to the intensity of light. In 
addition, the high field may lead to electron tunneling from atoms.

7.1 Nonlinear Microscopic Approaches

In the presence of a time-dependent radiation field, the electrons will oscillate. When the radiation field 
is weak, there is mainly one oscillation frequency, that of the field. In a strong radiation field, the oscil-
latory motion becomes distorted and the dipole moment now includes a series of higher-order harmonics 
frequencies. In order to describe the response of the atom to strong laser fields, some models make use of 
the single-active-electron approximation, assuming that the interaction with the field involves essentially 
one active electron. Many methods have been proposed to solve the harmonic generation problems. The 
first approaches utilized the time-dependent Schrödinger equation, as proposed by Kulander (1989).
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The interaction of intense laser pulse with matter may also lead to electron tunneling from atoms or 
molecules to the continuum. Tunneling of a particle through a potential barrier without having enough 
energy is a quantum phenomenon that challenges classical intuition. When the ionization of an atom by 
an electromagnetic field is considered, two different basic situations can happen. In the first one an atom 
absorbs photon with energy greater than the ionization energy of the atom. Hence, the atom is ionized 
and the electron is liberated. In the second situation, when the ionization potential is much greater than 
the photon energy, different ionization mechanisms such as Multi-Photon Ionization (MPI), Tunneling 
Ionization (TI) and Over-The-Barrier Ionization (OTBI), can occur in a non-linear regime. The direct 
numerical solution of the time-dependent Schrodinger equation for laser-induced processes is referred 
to as TDSE. The Ammosov-Delone-Krainov (ADK) theory is another alternative model used to study 
the tunneling ionization of atoms (Ammosov, 1986).

The above models and other variants have been used by several authors to interpret experimental 
results of laser-matter interaction (Barut, 2013).

Nonlinear Quantum Approaches

The optical excitations in semiconductors cannot be described on the level of isolated optical transitions 
but should be treated as an interacting many-body quantum system. Several quantum approaches and 
Master equations (ME) have been developed to study the nonlinear optical response of semiconductors 
(Hughes & Roy, 2012). Non-equilibrium Green’s function (NEGF) and density matrix techniques are 
among the most common.

The semiconductor Bloch equations (SBEs) are able to theoretically describe coherent semiconductor 
optics on the basis of a fully microscopic many-body quantum theory. However, the standard SBEs have 
some drawbacks. For instance, the Coulomb interaction between free electrons and holes require the 
Hartree-Fock method, which readily treats excitons but cannot describe exciton-exciton interactions. In 
addition, the solution of coupled SBEs needs to huge computer resources. The SBEs, which are based 
on the density matrix, are an alternative to the Hartree-Fock treatment of the SBEs mentioned above. 
This is sometimes called the dynamics controlled truncation (DCT) equations.

The DCT equations are a successful microscopic approach that describe coherent effects in optically 
excited semiconductors. However, due to the computational difficulties, its application is limited to low-
order nonlinearities in coherent transport. On the other hand, we know that the NEGF formalism can be 
successfully in examine the incoherent many-body transport, with carrier-carrier scattering and screening 
effects. For these reasons, researcher tried to combine the benefits of the advantages provided by the 
two approaches (NEGF and DCT) in a standard microscopic theory for nonlinear optical transport in 
semiconductors. Therefore, the DCT equations are written within the NEGF formalism (Ko, 2010). The 
Green’s functions for optically-excited nonlinear systems (to third-order χ(3)) take the following form:

Gee(i,t,j,t
’) = - j <T[ae(i,t) ae

†(j,t’)]> (107)

Geh(i,t,j,t
’) = - j <T[ae(i,t) ah(j,t

’)]> (108)

Geehh(i,t,j,t
’,k,t’’,l, t’’’) = -<T [ae(i,t)ae(j,t

’)ah(k,t’’) ah(l,t
’’’)]> 
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- Geh(i,t,l,t
’’’).Geh(j,t

’,k,t’’) + Geh(i,t,k,t’’).Geh(j,t
’,l,t’’’)  (109)

The first two equations describe the Green’s functions of electrons and holes densities, with polariza-
tion type functions. The third equation describes the coherent 4-particle (biexcitonic) functions. In these 
equations, TC denotes the time ordering operator, along a Keldish contour and the angular brackets <.> 
means the average over the initial density operator. Also, ae(i,t) and ae

+(i,t) represent the annihilation 
and creation operators of electrons at the ith orbital (including band and spin) at a certain time t. In order 
to find the solution of this system, one can expand the Green’s functions in diagrammatic series, using 
the Dyson theory.

Nonlinear Semiclassical Approaches

The semiclassical models provide us with a satisfactory degree of understanding of the physical interac-
tion between atoms and laser fields. For instance, The Keldysh semiclassical strong field approximation 
(Keldish, 1967) was applied by Lewenstein (1999) to explain high-order-harmonic generation. Also, Van 
der Linden, Van der Heuvell, and Muller proposed a semiclassical model in the context of photoionization 
in 1999. This model was extended by Corkum and others to multiple ionization and high-order harmonic 
generation (Klingshirn, 2006). According to this model, the electron tunnels through the Coulomb en-
ergy barrier modified by the electric field of the laser, as illustrated in figure 8-21. It then undergoes 
(classical) oscillations in the field, during which the influence of the Coulomb force from the nucleus is 
negligible. If the electron comes back to the vicinity of the nucleus, it may be scattered or kicking out an 
electron. It may also recombine back to the ground state, thus producing a photon with energy, equal to 
the ionization potential plus the kinetic energy acquired from the field. We can investigate the harmonic 
generation properties from the classical calculations of the electron motion outside the binding potential. 
Assume that the electron to have zero velocity just after it has tunneled through the potential barrier at 
time t = t0. Assume also that the laser field is given by E = E0 sin(ωt), then we get:

v(t) = - vo cos(ωt) + vo cos(ωto) (8-110a) 

x(t) = - (vo /ω)sin(ωt) + vo (t-to).cos(ωto) (110b)

where v0 = eE0/mω. As shown in Figure 22, the electron follows different trajectories depending on the 
time at which it was released into the medium (t0). In the second half cycle, when the laser field changes 
its sign, electrons come back towards the core (at x=0) with a certain kinetic energy. This energy de-
termines the emitted harmonic order. Except for the trajectory starting at 0.3T, which give the highest 
return energy (Up), there are two main trajectories leading the same kinetic energy. This is illustrated 
in Figure 22, which shows the kinetic energy when the electron returns to the core, as well as the time 
spent in the medium, as a function of release time.

As shown in the figure, for each energy, and hence for each harmonic order, there are mainly two 
dipole strength intensity. Figure 23 shows for example the 35th harmonic generated in neon, calculated 
within the strong field approximation. The influence of the electron dynamics inherent to the harmonic-
generation process is clearly visible on the intensity dependence of the harmonic components of the 
dipole moment.
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Figure 26. Semiclassical model of nonlinear optical transport

Figure 27. (a) Electron trajectories in the continuum at different release times. T is the laser period; (b) 
kinetic energy and time in continuum as a function of the release time.

Figure 28. Single atom response within the strong field approximation. Intensity and phase of the 35-th 
harmonic in neon as a function of the laser intensity.
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7.2 Nonlinear Macroscopic Approaches

We now turn to the macroscopic or measurable response of a medium to intense optical excitation. In 
a simple semiclassical model of a nonlinear medium consisting of non-interacting molecules, we can 
describe the interaction of light with molecules (atoms or ions) as follows:

P = Np , p = αζ (111a)

where p is the dipole moment of a molecule and E is the optical electric field strength N is the density 
of active molecules and α is the polarizability of molecules. The energy of a molecule in optical field 
is given by:

U = -p.ζ= -α(R) ζ 2 (111b)

Thus, the light-induced force driving molecular vibrations is given by

F = - ∂U/∂R = (∂α/∂R) ζ 2 (112)

where R is the generalized normal coordinate, which may be defined as the distance between the nuclei 
in a molecule. The force acting on a molecule in optical field may result in a resonant excitation. The 
propagation of light waves in a nonlinear medium is governed by the wave equation:

Δζ– (n/c)2∂2ζ/∂t2 = (4π/c2). ∂2Pnl /∂t2 (113)

where n is the refractive index, c is the speed of light, and Pnl is the nonlinear polarization of the medium.

7.3 Applications of Nonlinear Optical Transport

The so-called electro-optic effects are due to the change of the optical properties of matter in response 
to external electric field that varies slowly compared with the frequency of light. These effects include 
the Kerr and Pockels effects, which are very important in optical communications. The Pockels effect is 
a change in refractive index or birefringence that depends linearly in the field. Only certain crystalline 
solids (such as LiNi and GaAs) show the Pockels effect, as it requires inversion asymmetry. The Kerr 
effect is a change in index or birefringence that is quadratic in the field. We mean by birefringence, 
the double refraction, or the division of an incident ray of light into two rays (the ordinary ray and the 
extraordinary ray) when it passes through certain anisotropic materials, such as the cellophane paper. 
In both cases, the refractive index changes with applied field, according to the following expansion

n’ = n + a1 ζ + a2 ζ
2 + … 

Δn = n’ – n = λ K’ ζ + λ K” ζ2 + … (114)

where a1, a2, .. and K’, K”,… etc. are constants.
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Scintillation is another property of material luminescence, when excited by strong ionizing radiation. 
Luminescent materials, when struck by an ionizing particle, absorb its energy and scintillate, i.e. reemit 
the absorbed energy in the form of light, typically in the visible range. We mean by ionization particle 
radiation either charged particulate radiation (such as electrons and charged particles), or to uncharged 
radiation (like photons and neutrons), provided that they have enough energy to induce ionization. The 
first use of a scintillator dates back to an experiment in 1903 where Sir William Crookes observed a 
ZnS screen struck by α-particles. If the reemission occurs promptly, i.e. within the ~10ns required for 
an atomic transition, the process is called fluorescence. Sometimes, the excited state is metastable, so 
the relaxation back out of the excited state is delayed (from μsec to hours, depending on the material). 
The luminescence process then corresponds to either fluorescence or phosphorescence, depending on 
the type of transition and hence the wavelength of the emitted photon.If the energy levels are stacked, as 
shown in Figure 29, then the light emitted by fluorescence is of longer wavelength than the incident light.

8. THZ RADIATION FROM SEMICONDUCTORS

Terahertz (THz) waves are electromagnetic radiation in the frequency range from 0.1 to 10THz, between 
the range of electronic and photonic devices. THz radiation has several distinct advantages over other 
forms of spectroscopy: many materials are transparent to THz, THz radiation is safe for biological tissues 
because it is non-ionizing (unlike for example X-rays). THz emission can be obtained from quantum 
cascade laser (QCL), resonant tunneling diode (RTD) or down-converting a laser frequency, from the 
photonics side. In this section, I discuss the terahertz (THz) oscillations in semiconductor devices, upon 
the exposure to femto-second laser pulses. Optically-pumped THz laser (OPTL) is based on the switch-
ing of semiconductor structures, which are subjected to high electric field, or reverse-biased devices 
(usually P-I-N diodes) to femto-second laser pulses The interpretation of such THz radiation has been 
a subject of large debate (e.g., Xu et al, 1991; Tsen, 2004). In 2006, I published an article (El-Saba, 
2006), which discussed the terahertz (THz) radiation from semiconductors at room temperature, upon 
the exposure to femtosecond laser pulses. In this work I studied the transient transport of hot carriers, in 
collision-limited regime, where coherence is completely destroyed. Starting from an analytical solution 
of the set of hydrodynamic equations in a reverse-biased P-I-N diode, I developed a formula to describe 
the evolution of hot carriers upon the exposure to femtosecond pulses:

Figure 29. Schematic illustration of the fluorescence emission process
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Here, τwn is the optical phonons relaxation time, τn is the carrier lifetime and vn is the average veloc-
ity of carriers. Also, the pre-exponential factor, No, is proportional to the density of photogenerated e-h 
pairs. It should be noted that Femtosecond laser pulses create dense, excited carrier plasma in an intrinsic 
semiconductor within a time shorter than the typical oscillation cycle of the bare LO phonon and plasmon 
resonance frequency. Phonon collisions and screened Coulomb interactions must therefore be consid-
ered. It is well known that the LO phonons have small group velocities (~105 cm/s) and anharmonically 
decay into faster acoustic phonons which in turn transport the energy out of the semiconductor device. 
Therefore, some phonons become hot and obtain much higher temperatures than the less active phonons. 
Consequences of having hot phonons are a substantially prolonged carrier cooling time (larger energy 
relaxation time). After cooling and return to equilibration of carrier and lattice temperatures, a final 
condensation process of e-h pair recombination completes the photoexcitation cycle. As the photoexcited 
carriers start to cool, the free electron-hole pairs begin to condensate into excitons. Both excitions and 
free electron-hole pairs have long lifetimes. Recombination can happen within a free electron-hole pair 
or via exciton recombination.

In 2011 Suzuki & Shimano have investigated the exciton Mott transition in Si at 30K, using opti-
cal pump and THz probe measurements and obtained very interesting information. They evaluated the 
time-dependent fraction of free carriers and excitons. The waveforms of the THz pulse transmitted after 
the sample with and without the optical pump were recorded by electro-optic sampling. The complex 
transmittance change was then obtained by Fourier transformation, thereby yielding a photo induced 
change in the complex dielectric function. To estimate the free e-h pair density at each delay time, the 
data were fitted with the free-carrier based Drude model (for lattice and electronic permittivity) in the 
low photon energy region (2.0–7.8 meV):

ε (Lattice) = ε∞ (ω2 - ωLO
2)/(ω2 - ωTO

2), εe (Electronic) = εo -ωp
2/ω2 (116)

Figure 30. Schematic representation of possible THz pulse generators. The femtosecond laser pulses are 
directed towards the space-charge region of the p-i-n diode.’
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where, ωLO and ωTO are the longitudinal optical and transverse optical phonon frequencies and ωp = 
ne2/m*ε∞ is the plasma frequency. The Drudé electronic component decreases with delay time, and an 
exciton component emerges as a peak at about 10-12 meV, which corresponds to the 1s-2p transition of 
excitons in Si. The formation of excitons dynamics is thus revealed through the observation of the 1s-2p 
transition at about 3THz. This information is indeed important when we study THz radiation from Si 
structures at low temperature. For instance, when the laser pulse excitation is just above the energy gap 
threshold, we need to calculate the ratio of free e-h pairs to the total number of incident photons. This 
may be calculated by the aid of the Saha equation in the bulk (Kaindl et al., 2009, Suzuki):

Neh = ½ Nex
½ (2mukBTn/ħπ)3/4exp(-Eo/2kBTn) (117)

where Neh and Nex are the density of e-h pairs and excitons that result in the semiconductor upon the 
exposure to the laser pulse and Tn is the carrier (electrons) temperature. Also, mμ and E0 are the exciton 
reduced mass and binding energy, respectively. For a given total e-h pair density N=Neh+ Nex, The Saha 
equation gives the equilibrium ratio between the density of excitons Nex and free carriers Neh (when the 
two populations are reciprocally heated) in the Boltzmann approximation.

However, at room temperature, the dynamics of photon transport and photgenerated e-h plasma is 
quite different, especially at hot-carrier regime.

In our study, we considered THz radiation in a real device (P-I-N diode), where carrier heating is 
effectuated by the applied electric field. We attributed the THz in hot carrier regime to completely other 
reasons. The so called hot-carrier rebelling effect was introduced (EL-SABA, 2006)6. In this effect, we 
pointed out the role of back thermal diffusion of hot carriers, from hot to cold regions, which counteracts 
the sweep of cold carriers, which are mainly generated by femtosecond laser pulse, under the effect of 
electric field. This happens when the reverse bias voltage is properly tuned and the laser pulse is de-
liberately focused near the space charge region. Theretofore, the width of the phonon-collision-limited 
region (around which back and forth diffusion happen) becomes in the order of xp:

xp ~ vno τωn (118)

which is the product of energy relaxation time and the saturation velocity of carriers (electrons in the 
p-side), as shown in Figure 32. Because holes have heavier mass (and slower response) compared to 
conduction electrons, we concentrated here on the electronic plasmon oscillation. Our simulation showed 

Figure 31. Schematic representation of the transient behavior of photogenerated electrons, upon the 
exposure to laser pulses
After EL-Saba (2006).
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that this phenomenon can happen at room temperature, and far from breakdown region, where impact 
ionization is dominant (EL-SABA, 2012). Therefore, it may be used to generate low-noise high-power 
THz radiation at room temperature in low cost Si devices.

9. TIME-RESOLVED LASER SPECTROSCOPY OF SEMICONDUCTORS

The time-resolved laser spectroscopy is the study of dynamic processes in materials by means of laser 
spectroscopic techniques. Different methods are used to examine dynamics of charge carriers, span-
ning different time scales and photon energy ranges. We present in this section a short summary of this 
method, with emphasis on semiconductors and femtosecond laser excitation. In fact, the electronic and 
optical properties of semiconductors depend strongly on the electron dynamic that takes place in the 
femto- and picoseconds range.

When a semiconductor is subjected to ultrafast laser pulse, the absorbed photons create photoexcited 
hot carriers. The non-equilibrium dynamics of these hot carriers can be studied by ultrafast pump-probe 
spectroscopy. In this method, an ultrashort laser pulse creates a nonequilibrium distribution of free 
electrons-hole (e-h) pairs. The optically excited carriers then relax, eventually reaching thermal equi-
librium with the crystal lattice.

Short pulses and short time delays between pump and probe provide a direct insight into carrier 
relaxation and hot phonon generation phenomena. On longer timescales the pump beam can give rise 
to luminescence from recombining excitons or electron-hole pairs. Output is gathered by either the re-
flected or the transmitted probe signal, as shown in the figure 24. The time-resolved laser spectroscopy 
is described in details in (Shah, 1999). Recent advances in this method can be found in (Brudevoll et 
al., 2011). The analysis of results of this method is usually carried out using the SBEs, probably with 
extensions to include spin and polarization.

10: CASE STUDY 12: SIMULATION OF A SiGe PHOTODETECTOR

The Photodetector converts an optical signal into an electrical signal. Optical detection is critical for 
defense and telecommunication applications, which requires near-infrared (NIR) detection in the 1300-
1550nm wavelength range. In this example, we study the performance of vertical SiGe photodetector 
with FDTD optical simulator (like FDTD Solutions) and a device electrical simulator (like DEVICE). 
For the optical simulation, we model the guiding of light into the active area of the device, absorption 
of the optical signal and resulting generation of electrical charge.

Figure 32. Femtosecond pump-probe technique
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As a first approach, the interaction between optical and electrical effects can be modeled through the 
recombination-generation term. For instance, in a vertical photo diode, the supplied photons generate 
free charge carriers generating the photo current. We model this effect by adding - to the Shockley-
Read-Hall term - the generation rate Gop(x) of free carriers at depth x, caused by the optical irradiation 
power P-I-N with frequency ω:

Gop = αab.I.η.(1-r).(Wop /hω).αab exp(αab x) (119a)

Here, the physical parameters are the quantum efficiency η, which expresses the number of generated 
electron-hole pairs by one photon. (in Si, η ≈1), the reflectivity r of the irradiated surface with area A, 
and the optical absorption coefficient αab. The optical generation rate Gop can be also calculated from 
the incident power density. Note that the optical power density, Wop (J/cm3s), can be calculated from the 
light intensity field, which is equal to the time average of the Poynting vector, Sop = ½ Re(ExH),

Wop = - ∇.Sop = ½ σ |E|2 (119b)

Here E and H are the electrical and magnetic field intensities of the light electromagnetic wave and 
σ is the conductivity of the absorbing medium. Both E and H can be calculated from the solution of the 
Maxwell equations (or the separated Helmholtz equations). To calculate the absorption as a function of 
space and frequency, we only need to know the electric field intensity and the imaginary part of the per-
mittivity. Both quantities are easy to measure in an FDTD simulation. The number of absorbed photons 
per unit volume can then be calculated by dividing this value by the energy per photon (g = Pabs / ħω)

The absorbed photons will generate electron hole pairs which will be separated out of the depletion 
region by the electric field and produce a flow of current. The photodetector is set up as a 3D simula-
tion in FDTD with a length of 50um. Perfectly matching layer (PML) boundary conditions are used in 
all directions. To model the input light, we use a mode source with wavelength of 1.55um. The cathode 
and anode contacts set to simulate bias range of -5V to 0.5V. Once the sweep task is done, we can get a 
plot of current versus voltages and temperatures. The workflow starts with optical simulations in FDTD. 
Finite-Difference Time-Domain (FDTD) is one of the time-domain analysis tools that enable the simula-
tion of passive and non-linear photonic components. The FDFT algorithm divides space and time into 

Figure 33. The photodetector simulation workflow
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discrete grids. The time-dependent Maxwell’s equations (in partial differential form) are discretized 
using central-difference approximations to the space and time partial derivatives.

The electric field vector components in a volume of space are solved at a given instant in time; then 
the magnetic field vector components in the same spatial volume are solved at the next instant in time; 
and the process is repeated. This results in the basic FDTD time-stepping relation that, at any point in 
space, the updated value of the E-field in time is dependent on the curl of the local distribution of the 
H-field in space and vice versa
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And the explicit time-stepping is expressed as follows:
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For stability, space and time resolutions are proportional. This scheme is known as Yee lattice, and 
has proven to be very robust, and forms the core of current FDTD software (Yee, 1967). The basic FDTD 

Figure 34. The structure of the simulated photodetector
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algorithm for photonic device simulation must be modified at the boundaries of the simulation region, 
to account for external contacts (electrical and magnetic conductors) and artificial boundaries, where 
suitable absorbing boundary conditions should be applied. Perfect Electrical Conductor (PEC) and Per-
fect Magnetic Conductor (PMC) boundary conditions are symmetric walls for the symmetric structure 
with symmetric wave propagation. PMC can be seen as the special case for Bloch’s boundary condition 
(periodic boundary condition PBC) where the k-vector is set to zero in the corresponding direction. 
The PEC is the complement of PMC. There are many choices for absorbing boundary conditions. The 
Perfectly Matched Layer (PML) boundary conditions have the best performance. A perfectly matched 
layer (PML) is an artificial absorbing layer for wave equations, commonly used to truncate computation 
regions to simulate problems with open boundaries, especially in the FDTD methods.

The generation rate is calculated from the optical absorption and used as a source in the subsequent 
electrical simulation to calculate current. The electrical simulation allows one to extract key parameters 
such as dark current, responsivity and bandwidth.

11. CASE STUDY 13: PHOTON TRANSPORT IN GRAPHENE-FET

Recently, graphene, which is a single sheet of graphite, has attracted a great attention in field of pho-
tonics and nanoelectronics. The dispersion relation of the honeycomb lattice of graphene is linear in 
the vicinity of the Fermi energy. The quasiparticle nature of electrons in graphene can be described by 
a two-dimensional Dirac equation, whose speed of light is replaced by the Fermi velocity (vf =c/300, 
where c is the speed of light). We present here an example describing the electromagnetics transport in 
a graphene device, namely graphene nanoribbon (GNR) FET.

The example shows the nonlinear optical response and quantum transport in graphene. It also high-
lights the role of time transients of hot carrier, upon the exposure to femtosecond laser. The GNR FET 

Figure 35. Different types of boundary conditions around a photonic device
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is shown in Figure 39. As shown, the device consists of two semiconducting GNRs connecting the 
source and drain of a FET device. A potential difference of 0.1 V is applied between drain and source; 
the source is assumed at 0 V, equipotential with the lateral gate (G). The nanoribbons are about 2.2 nm 
wide and the area of the square window delimited by the electrodes is 20x20 nm2. For graphene, in the 
presence of an EM field, the Dirac equation reads (Ang, 2014):

j
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j
e p eA c�
�

∂
∂
+











= −+ −φ ψ σ ψ.( ) .  (121a)

Figure 36. Photodiode I-V characteristics (dark and photo-current)
After Berrouth (2005).

Figure 37. Responsivity of the photodetector at wavelength of 1,552 nm
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where A and ϕ are vector and scalar potentials, directly related to the EM field through the appropriate 
gauge and q is the electron charge. Also, σ is the Pauli matrices and p is the canonical momentum. The 
solution of the Dirac equation is the four component spinor complex wavefunction ψ(r,t):

ψ(r,t)= [ψ1 ψ2 ψ3 ψ4]
T =[ ψ+ ψ-]T (122)

The Pauli matrices σ and the canonical momentum p are related to the kinematic momentum k, which 
includes the EM field contribution, as:

p= -jħ∇,k=p- eA (123)

Figure 39 depicts the flowchart of the method: The computational scheme develops as follows.
At first, the EM field is discretized by the Transmission Line Matrix method. The Quantum phenomena 

are then introduced in a subregion of the 2D-domain, of graphene/nanoribbon region, described by the 
Dirac equation. At each time step, the Dirac equation is solved by accounting for the quantum device 
boundary conditions, initial conditions (e.g., injected charge), and additional source terms constituted by 
the EM field, sampled in the domain of the quantum devices. From the wavefunction (charge) solution of 
the Dirac equation, we derive the quantum mechanical current (J) over the device domain. This current 
is a distribution of local sources for the EM field that is injected into the TLM nodes, located only on 

Figure 38. Schematic of a GNR FET
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the grid points of the Dirac equation domain. At the next time step t+1, the TLM method provides a new 
updated distribution of field values that are, again, sampled over the device domain, and so on, iteratively.

Figure 40 shows the self-consistent potential distribution for different distances of the two coupled 
GNR. 

12. OPTOELECTRONIC SOFTWARE PACKAGES

There exist various simulation tools as well as custom-made simulation software for simulating the 
behavior of optoelectronic devices. We give a summary of high-end simulation tools (such as APSYS, 

Figure 39. Flowchart of Maxwell-Dirac method
After Pierantoni & Mencarelli, (2012).

Figure 40. Self-consistent potential for different distances of the two coupled GNR channels: a) d=2.4 
nm, b) d=0.15 nm
After, Pierantoni & Mencarelli (2012).
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LASTIP, PICS3D, Lumerica, Liouminous2D). These software packages combine electrical, thermal, 
optical, and quantum models in 1- or 2- or 3-dimensions. They can be applied to a large variety of optical 
devices such as laser diodes (LD), light-emitting diodes (LED), photodetectors, and photonic amplifiers.

• LASTIP: 2D simulation of laser diodes. Considers competition of optical laser modes. Includes 
optical gain function for quantum well or bulk material with different models of spectral broad-
ening, Coulomb interaction, and inter-band optical transitions integrated over k·p nonparabolic 
subbands. Physical models of various laser effects and material data base for many semiconductor 
compounds are available.

• APSYS: 2D/3D simulation of non-lasing devices. Features include: hot carrier transport, quantum 
mechanical tunneling, multi-quantum well structures, k·p band structure calculation, self-consis-
tent Poisson and Schrodinger equations solving, wave guiding in media with arbitrary complex 
refractive index distribution, transient models, small ac-signal analysis, interface and bulk charge 
trapping, piezoelectric effect, impact ionization, optical absorption and emission with exciton, and 
other many-body phenomena, LED ray tracing model to optimize device structure and packaging 
for light extraction efficiency, photon recycling effect, different relaxation models. Broad range of 
semiconductor devices, including resonant tunneling diodes, bipolar and field effect transistors, 
LEDs, solar cells, detectors, semiconductor optical amplifiers, optical modulators.

• PICS3D: 3D simulation of edge-emitting lasers and vertical-cavity laser diodes (VCSELs). It can 
be used for waveguide photo detectors, semiconductor optical amplifiers, and coupling to external 
passive optical components. It can calculate longitudinal distribution of carrier density, gain, opti-
cal field, and surface emission modes. In addition to steady I-V characteristics, it can be used for 
AC, and transient analysis of laser diodes, mode emission power, and spectrum analysis. It may 
include 3D current flow, vector waves, Poisson and Schrodinger Equations self-consistent solu-
tion, and quantum-mechanical tunneling.

• tiberCAD: Is a software tool for numerical simulation of electronic and optoelectronic devices. 
It allows to model and design nanostructured devices, such as III/V LEDs, nanowire FETs, Dye 
Solar Cells (DSCs). With tiberCAD, quantum and classical descriptions can be used in different 
regions of a device/nanostructure within the same simulation.

• DEVICE: Is semiconductor TCAD device simulation software for the design, analysis and optimi-
zation of semiconductor-based optoelectronic components. DEVICE employs the drift-diffusion 
equations to model steady state and transient behavior of charge carriers in semiconductors. Using 
advanced finite-element mesh generation algorithms, DEVICE is capable of handling arbitrary 
geometries, enabling accurate modeling of integrated optoelectronic designs. DEVICE provides 
users with a complete set of tools to design and evaluate semiconductors, including integrated 
process simulation, comprehensive physical material models and robust numerical algorithms for 
device simulation. When combined with MODE simulator and Lumerical design environment, 
DEVICE provides a powerful tool for the design and analysis of optical components such as high 
speed optoelectronic modulators. Along with FDTD Solutions and MODE Solutions, DEVICE is 
a part of Lumerical’s photonic design and analysis tools. All of Lumerical solvers provide support 
for data import/export and integration into EDA tools, for complete product design flows from 
component architecture to large scale device and system design.

• OptiFDTD: Provides comprehensive design, simulation, and post-analysis tools for photonic 
crystal (PhC) and photonic band gap (PBG) analysis:
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 ◦ Layout designer provides the tools to define the lattice relation, atom properties, defects, 
wave path, and observation projects

 ◦ Band solver is an independent simulation engine that gives the band-diagram for the defined 
lattice structure

 ◦ Simulator can perform the plane wave simulation based on the periodic cell with a periodic 
boundary condition

 ◦ Analyzer can view the field pattern and extract the transmittance / reflection coefficients
• OptiSPICE: Is the first circuit design software for analysis of integrated circuits including in-

teractions of optical and electronic components. It allows for the design and simulation of opto-
electronic circuits at the transistor level, from laser drivers to transimpedance amplifiers, optical 
interconnects and electronic equalizers.

• tMCimg: Uses a Monte Carlo algorithm to model the transport of photons through 3D highly 
volumes with spatially varying optical properties and arbitrary boundary conditions.

• MOLGW: Is another interesting open code that implements DFT and GWA to describe the excit-
ed electronic states in finite atomic and molecular systems. It implements the GW approximation 
and the Bethe-Salpeter equation for the study of optical excitations (Ziaei and Bredow, 2016).

13. CHAPTER SUMMARY

Photons are the force carriers of the electromagnetic waves (e.g., light), with no charge and zero mass. 
The study of light-matter interactions and photon transport is a fundamental topic in quantum photonic 
devices and optical spectroscopy.

Accurate modeling of photonic transport is essential for the development of optical devices in fields 
like communications, sensing, biomedical instrumentation, consumer electronics and defense. The spe-
cific challenge of optoelectronic device simulation lies in the combination of photonics and electronics, 
including the sophisticated interaction of photons and electrons. The vast spectrum of optoelectronic 
device concepts and applications leads to a large diversity of modeling approaches. This is a field of 
research that uses semiclassical and quantum-mechanical physics to investigate phenomena involving 
light and its interactions with matter. In this Chapter, we review the predominant modeling techniques 
for photonic transport.

Quantum theory of light shows us how light is described in terms of quantized photons, and how the 
interaction of photons with matter is understood. Quantum transport models include Maxwell-Bloch 
equations (MBE’s), semiconductor Bloch equations (SBE’s) and semiconductor luminescence equations 
(SLE’s), as well as nonequilibrium Green’s functions (NEGF) techniques.

Semiclassical models for photon transport include BTE-like transport equations, the radiative transport 
equation (RTE), the Monte Carlo method (MCM) and other phenomenological or semi-empirical models,

The macroscopic radiation transport equation (RTE) is governed by an integro-differential equation, 
which is extremely difficult to obtain exact solutions. Macroscopic photonic transport analysis requires 
the consideration of seven independent variables: three spatial directions, two angular directions, fre-
quency and time. 
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In order to study the carrier energy-relaxation processes, there are two different classes of experiments 
that have been employed: photoluminescence (PL) and pump-probe (PP) measurements. In addition, 
there are other techniques which rely completely on the phase coherence in the carrier system. The most 
popular technique which provides direct information on the carrier coherence in the semiconductor is 
four-wave-mixing (FWM) spectroscopy.

REFERENCES

Alsunaidi, M.A., Imtiaz, S.S., & E1-Ghazaly, S.M. (1996). Electromagnetic wave effects on microwave 
transistors using a full-wave time-domain model. IEEE.

Ammosov, M. V., Delone, N. B., & Krainov, V. P. (1986). Tunnel ionization of complex atoms and ions 
in alternating EM field. Soviet Physics, JETP, 64, 1191.

Ang, Y. S. (2014). Nonlinear Optical Response and Transport properties in Graphene (PhD Thesis). 
University of Wollongong. Retrieved from http//ro.uow.edu.au/theses/4117

Bandelow, U., Gajewski, H., & Hunlich, R. (2005). Fabry-Perot lasers: thermo-dynamic based model-
ing. In J. Piprek (Ed.), Optoelectronic Devices. Advanced Simulation and Analysis (pp. 63–85). Berlin: 
Springer. doi:10.1007/0-387-27256-9_3

Bandelow, U., Schatz, R. & Wunsche, H.J. (1996). A Correct-Single-Mode Photon Rate Equation for 
Multi section Lasers. IEEE Photonics Tech. Letters, 8(5).

Barut, A. (2013). Foundations of Radiation Theory and Quantum Electro-dynamics. Springer Science.

Bastard, G. (1990). Wave Mechanics Applied to Semiconductor Hetero-structures. Les Ulis, France: 
Les Editions de Physique.

Becerra, F. E., Fan, J., & Migdall, A. (2014). Photon number resolution enables quantum receiver for 
realistic coherent optical communications. Nature Photonics, 9.

Bethe, H., & Salpeter, E. (1951). A Relativistic Equation for Bound-State Problems. Physical Review, 
84(6), 1232–1242. doi:10.1103/PhysRev.84.1232

Blanchard, F., Sharma, G., Razzari, L., Ropagnol, X., Bandulet, H. C., Vidal, F., & Hegmann, F. et al. 
(2011). Generation of Intense Terahertz Radiation via Optical Methods. IEEE Journal of Selected Topics 
in Quantum Electronics, 17(1), 5–16. doi:10.1109/JSTQE.2010.2047715

Blasse, G., & Grabmaier, B. C. (1994). Luminescent materials. Springer Berlin. doi:10.1007/978-3-
642-79017-1

Bloch, F. (1929). Űber die Quantenmechanik der Elektronen in Kristallgittern. Zeitschrift fur Physik, 
52(7-8), 555–600. doi:10.1007/BF01339455

Born, M., & Wolf, E. (1993). Principles of Optics (6th ed.). Pergamon Press.

http://http//ro.uow.edu.au/theses/4117
http://dx.doi.org/10.1007/0-387-27256-9_3
http://dx.doi.org/10.1103/PhysRev.84.1232
http://dx.doi.org/10.1109/JSTQE.2010.2047715
http://dx.doi.org/10.1007/978-3-642-79017-1
http://dx.doi.org/10.1007/978-3-642-79017-1
http://dx.doi.org/10.1007/BF01339455


523

Photon Transport
 

Born, M., & Wolf, E. (1999). Principles of Optics (7th ed.). Cambridge University Press. doi:10.1017/
CBO9781139644181

Boyd, R. W. (2003). Nonlinear Optics (2nd ed.). San Diego, CA: Academic.

Brillouin, L. (1922). Diffusion de la Lumière et des Rayonnes X par un Corps Transparent Homogéne; 
Influence de l’Agitation Thermique [Diffusion of light and X-rays by a homogenous transparent body: 
Influence of thermal agitation]. Annales de Physique, 17, 88.

Brudevoll, T., Storebo, A. K., Skaaring, O., Kirkemo, C. N., Norum, O. C., Olsen, O., & Breivik, 
M. (2011). Time-Resolved Laser Spectroscopy of Semiconductors - Physical Processes and Methods 
of Analysis, Femtosecond-Scale Optics. InTech. Available from: http://www.intechopen.com/books/
femtosecond-scale-optics/time-resolved-laser-spectroscopy-ofsemiconductors-physical-processes-and-
methods-of-analysis

Brunk M. & Jungel, A. (2007). Numerical Simulation of Thermal Effects in Coupled Optoelectronic 
Device-circuit Systems. Academic Press.

Brunk M. & J¨ungel, A. (2007). Simulation of thermal effects in optoelectronic devices using energy-
transport equations. Unpublished.

Carrol, J. E. (1990). Rate Equations in Semiconductor Electronics. New York: Cambridge University Press.

Carrol, J. E. (1990). Rate Equations in Semiconductor Electronics. New York: Camridge University Press.

Chang, E., Bussi, G., Ruini, A., & Molinari, E. (2004). Excitons in Carbon Nanotubes: An Ab Initio 
Symmetry-Based Approach. Physical Review Letters, 92(19), 196401. doi:10.1103/PhysRevLett.92.196401 
PMID:15169423

Chen, L., Tang, Y., Bowers, J. E., & Theogarajan, L. (2012). CMOS enabled silicon photonics for data center 
packet switching. IEEE Microwave Symposium Digest (MTT), 17-22. doi:10.1109/MWSYM.2012.6259474

Chini, M., Chen, Y., & Chang, Z. (2014). Probing electronic wavepackets with attosecond transient 
absorption, IOP Science. Journal of Physics. B, Atomic, Molecular, and Optical Physics, 10.

Chow, W., & Koch, S. W. (2011). Semiconductor-Laser fundamentals. Springer.

Chow, W., Koch, S. W., & Sargent, M. (1994). Semiconductor-Laser Physics. Springer. doi:10.1007/978-
3-642-61225-1

Chrostowski, L., & Hochberg, M. (2015). Silicon Photonics Design. Cambridge. doi:10.1017/
CBO9781316084168

Chrostowski, L., & Hochberg, M. (2015). Silicon Photonics Design. Cambridge. doi:10.1017/
CBO9781316084168

Corkum, P. B., & Krausz, F. (2007). Attosecond science. Nature Physics, 3(6), 381–387. doi:10.1038/
nphys620

Csele, M. S. (2014). Laser Modeling: A Numerical Approach with Algebra and Calculus. CRC Press. 
doi:10.1201/b16770

http://dx.doi.org/10.1017/CBO9781139644181
http://dx.doi.org/10.1017/CBO9781139644181
http://www.intechopen.com/books/femtosecond-scale-optics/time-resolved-laser-spectroscopy-ofsemiconductors-physical-processes-and-methods-of-analysis
http://www.intechopen.com/books/femtosecond-scale-optics/time-resolved-laser-spectroscopy-ofsemiconductors-physical-processes-and-methods-of-analysis
http://www.intechopen.com/books/femtosecond-scale-optics/time-resolved-laser-spectroscopy-ofsemiconductors-physical-processes-and-methods-of-analysis
http://dx.doi.org/10.1103/PhysRevLett.92.196401
http://www.ncbi.nlm.nih.gov/pubmed/15169423
http://dx.doi.org/10.1109/MWSYM.2012.6259474
http://dx.doi.org/10.1007/978-3-642-61225-1
http://dx.doi.org/10.1007/978-3-642-61225-1
http://dx.doi.org/10.1017/CBO9781316084168
http://dx.doi.org/10.1017/CBO9781316084168
http://dx.doi.org/10.1017/CBO9781316084168
http://dx.doi.org/10.1017/CBO9781316084168
http://dx.doi.org/10.1038/nphys620
http://dx.doi.org/10.1038/nphys620
http://dx.doi.org/10.1201/b16770


524

Photon Transport
 

Deng, J., Shur, M. S., Fjeldly, T. A., & Baier, S. (2000). CAD Tools And Optical Device Models For 
Mixed Electronic/Photonic VLSI, Numerical Methods in Electromagnetics, North Holland. International 
Journal of High Speed Electronics and Systems, 10(01), 299–308. doi:10.1142/S0129156400000325

Dirac, P. (1958). Principles of Quantum Mechanics. International Series of Monographs on Physics. 
Oxford University Press.

Dirac, P. (1966). Article. Lectures on Quantum Field Theory.

Dirac, P. A. M. (1927). The Quantum Theory of the Emission and Absorption of Radiation. Proceedings 
of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 
114(767), 243–265. doi:10.1098/rspa.1927.0039

Drummond, P. D., & Hillery, M. (2014). The Quantum Theory of Nonlinear Optics. Cambridge Univer-
sity Press. doi:10.1017/CBO9780511783616

Einstein, A. (1916). Strahlungs-Emission und -Absorption nach der Quantentheorie. Verhandlungen der 
Deutschen Physikalischen Gesellschaft, 18, 318–323.

El-Saba, M. H. (2006). Investigation of Hot Carrier Repelling Effect in Semiconductor Devices, Using 
an Analytical Solution of The Hydrodynamic Model. IEEE Transactions on Electron Devices, 53(7), 
1615–1622. doi:10.1109/TED.2006.876040

Faist, J. (2013). Quantum Cascade Lasers. Oxford, UK: Oxford University Press. doi:10.1093/acprof:
oso/9780198528241.001.0001

Feldtmann, T. (2009). Influence of Phonons on Semiconductor Quantum Emission (Disserta-
tion). Available at http://deposit.ddb.de/cgibin/ dokserv?idn= 999828991&dok_var=d1&dok_
ext=pdf&filename=999828991.pdf

Feldtmann, T., Schneebeli, L., Kira, M., & Koch, S. W. (2006). Quantum theory of light emission from 
a semiconductor quantum dot. Physical Review B: Condensed Matter and Materials Physics, 73(15), 
155319. doi:10.1103/PhysRevB.73.155319

Ganchev, B., Drummond, N., Aleiner, I., & Falko, V. (2015). Three-Particle Complexes in Two-Dimen-
sional Semiconductors. Physical Review Letters, 114(10), 107401. doi:10.1103/PhysRevLett.114.107401 
PMID:25815964

Geim, A. K. (2009). Graphene: Status and Prospects. Science, 324(5934), 1530–1534. doi:10.1126/
science.1158877 PMID:19541989

Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191. 
doi:10.1038/nmat1849 PMID:17330084

Griffiths, D. J. (2004). Introduction to Quantum Mechanics. Prentice Hall.

Grondin, R. O., El-Ghazaly, S. M., & Goodnick, S. (1999). A Review of Global Modeling of Charge 
Transport in Semiconductors and Full-Wave Electromagnetics. IEEE Transactions on Microwave Theory 
and Techniques, 47(6), 817–829. doi:10.1109/22.769315

http://dx.doi.org/10.1142/S0129156400000325
http://dx.doi.org/10.1098/rspa.1927.0039
http://dx.doi.org/10.1017/CBO9780511783616
http://dx.doi.org/10.1109/TED.2006.876040
http://dx.doi.org/10.1093/acprof:oso/9780198528241.001.0001
http://dx.doi.org/10.1093/acprof:oso/9780198528241.001.0001
http://deposit.ddb.de/cgibin/dokserv?idn=999828991&dok_var=d1&dok_ext=pdf&filename=999828991.pdf
http://deposit.ddb.de/cgibin/dokserv?idn=999828991&dok_var=d1&dok_ext=pdf&filename=999828991.pdf
http://dx.doi.org/10.1103/PhysRevB.73.155319
http://dx.doi.org/10.1103/PhysRevLett.114.107401
http://www.ncbi.nlm.nih.gov/pubmed/25815964
http://dx.doi.org/10.1126/science.1158877
http://dx.doi.org/10.1126/science.1158877
http://www.ncbi.nlm.nih.gov/pubmed/19541989
http://dx.doi.org/10.1038/nmat1849
http://www.ncbi.nlm.nih.gov/pubmed/17330084
http://dx.doi.org/10.1109/22.769315


525

Photon Transport
 

Guo, S., & Albin, S. (2003). Simple plane wave implementation for photonic crystal calculations. Optics 
Express, 11(2), 167–175. doi:10.1364/OE.11.000167 PMID:19461720

Hafezi, M., Chang, D., Gritsev, V., Demler, E. A., & Lukin, M. D. (2011). Photonic quantum transport 
in a nonlinear optical fiber. Europhysics Letters, 94(5), 54006. doi:10.1209/0295-5075/94/54006

Haken, H. (1983). Quantum Field Theory of Solids: An Introduction. Elsevier Science Publishing Company.

Haug, H., & Jauho, A. P. (1996). Quantum Kinetics in Transport and Optics of Semiconductors. Berlin: 
Springer.

Haug, H., & Koch, S. (2009). Quantum Theory of the Optical and Electronic Properties of Semiconduc-
tors (5th ed.). World Science. doi:10.1142/7184

Haug, H., & Koch, S. W. (2009). Quantum Theory of the Optical and Electronic Properties of Semicon-
ductors (5th ed.). World Scientific. doi:10.1142/7184

Heuvell, L., & Muller, H. G. (1993). Article. Laser Physics, 3, 694.

Hirtschulz, M., Milde, F., Malić, E., Butscher, S., Thomsen, C., Reich, S., & Knorr, A. (2008). Carbon 
nanotube Bloch equations: A many-body approach to nonlinear and ultrafast optical properties. Physical 
Review B: Condensed Matter and Materials Physics, 77(3), 035403. doi:10.1103/PhysRevB.77.035403

Hughes, S., & Roy, C. (2012). Nonlinear photon transport in a semiconductor waveguide-cavity system 
containing a single quantum dot: Anharmonic cavity-QED regime. Physical Review B: Condensed Mat-
ter and Materials Physics, 85(3), 035315. doi:10.1103/PhysRevB.85.035315

Jackson, J. D. (1998). Classical Electrodynamics (3rd ed.). Wiley.

Jahnke, F. (2012). Quantum Optics with Semiconductor Nanostructuresm Woodhead Publishing Ltd. 
Springer.

Jam, S. A., & Kan, S. M. (1995). Transforming Tuckers Linearized Laser Rate Equations to a Form that 
has a Single Solution Regime. Journal of Light Wave Technoloy, 13(9), 1899–1904. doi:10.1109/50.464741

Johnston, M. B., Whittaker, D. M., Corchia, A., Davies, A. G., & Linfield, E. H. (2003). Simulation of 
terahertz generation at semiconductor surfaces. Physical Review B: Condensed Matter, 65(16), 165301. 
doi:10.1103/PhysRevB.65.165301

Jutzi, M., Berroth, M., Wohl, G., Oehme, M., & Kasper, E. (2005). Ge-on-Si vertical incidence photo-
diodes with 39-GHz bandwidth. IEEE Photonics Technology Letters, 17(7), 1510–1512. doi:10.1109/
LPT.2005.848546

Kaindl, R. A.; Hagele, D., Carnahan, M.A., & Chemla, D.S. (2009). Transient terahertz spectroscopy of 
excitons and unbound carriers in quasi-two-dimensional electronhole gases. Phys. Rev. B, 79(4), 0453.

Kalt, H., & Hetterich, M. (2004). Optics of Semiconductors and their Nano-structures. Springer. 
doi:10.1007/978-3-662-09115-9

Kasap, S. O. (2001). Optoelectronics and Photonics, Principles and Practices. Prentice Hall.

http://dx.doi.org/10.1364/OE.11.000167
http://www.ncbi.nlm.nih.gov/pubmed/19461720
http://dx.doi.org/10.1209/0295-5075/94/54006
http://dx.doi.org/10.1142/7184
http://dx.doi.org/10.1142/7184
http://dx.doi.org/10.1103/PhysRevB.77.035403
http://dx.doi.org/10.1103/PhysRevB.85.035315
http://dx.doi.org/10.1109/50.464741
http://dx.doi.org/10.1103/PhysRevB.65.165301
http://dx.doi.org/10.1109/LPT.2005.848546
http://dx.doi.org/10.1109/LPT.2005.848546
http://dx.doi.org/10.1007/978-3-662-09115-9


526

Photon Transport
 

Keldysh, L. V. (1965). Ionization in the field of a strong electromagnetic wave. Soviet Physics, JETP, 
20, 1307–1314.

Kira, M.; Jahnke, F.; Hoyer, W. & Koch, S.W. (1999). Quantum theory of spontaneous emission and 
coherent effects in semiconductor microstructures. Progress in Quantum Electronics, 23, 189.

Kira, M., & Koch, S. W. (2011). Maxwell-semiconductor Bloch equations. In Semiconductor Quantum 
Optics (pp. 521-549). Cambridge University Press.

Klingshirn, C. F. (2006). Semiconductor Optics. Springer.

Knox, R. S. (1963). Theory of excitons, Solid state physics Edited by Seitz and Turnbul. Academic.

Kolek, A. (2015). Nonequilibrium Greens function formulation of intersubband absorption for nonparabolic 
single-band effective mass Hamiltonian. Applied Physics Letters, 106(18), 181102. doi:10.1063/1.4919762

Kolek, A. (2016). Modeling of optoelectronic devices with one-band effective mass equation: Non-
equilibrium Greens function approach. Optical and Quantum Electronics, 48(2), 118. doi:10.1007/
s11082-016-0384-6

Korkin, A., & Rosei, F. (2008). Nanoelectronics and Photonics: From Atoms to Materials. Devices, 
Springer Science. doi:10.1007/978-0-387-76499-3

Kubis, T., Yeh, C., Vogl, P., Benz, A., Fasching, G., & Deutsch, C. (2009). Theory of nonequilibrium 
quantum transport and energy dissipation in terahertz quantum cascade lasers. Physical Review B: Con-
densed Matter and Materials Physics, 79(19), 195323. doi:10.1103/PhysRevB.79.195323

Kwong, N. H., & Binder, R. (2000). Greens function approach to the dynamics-controlled truncation 
formalism: Derivation of the χ(3) equations of motion. Physical Review B: Condensed Matter and Ma-
terials Physics, 61(12), 8341–8358. doi:10.1103/PhysRevB.61.8341

Langevin, P. (1908). Sur la théorie du mouvement brownien [On the Theory of Brownian Motion]. C. 
R. Acad. Sci. (Paris), 146, 530–533.

Lavrinenko, A. V., Lægsgaard, J., Gregersen, N., Schmidt, F., & Søndergaard, T. (2014). Numerical 
Methods in Photonics. CRC Press.

Lavrinenko, A. V., Lægsgaard, J., Gregersen, N., Schmidt, F., & Søndergaard, T. (2014). Numerical 
Methods in Photonics. CRC Press.

Leonhardt, U. (1997). Measuring the quantum state of light. Cambridge, UK: Cambridge University Press.

Lewis, G. N. (1926). The conservation of photons. Nature, 118(2981), 874–875. doi:10.1038/118874a0

Li, X. (2009). Optoelectronic Devices: Design. Cambridge, UK: Modeling, and Simulation. doi:10.1017/
CBO9780511581144

Lindberg, M., & Koch, S. W. (1988). Effective Bloch equations for semiconductors. Physical Review 
B: Condensed Matter and Materials Physics, 38(5), 3342–3350. doi:10.1103/PhysRevB.38.3342 
PMID:9946675

http://dx.doi.org/10.1063/1.4919762
http://dx.doi.org/10.1007/s11082-016-0384-6
http://dx.doi.org/10.1007/s11082-016-0384-6
http://dx.doi.org/10.1007/978-0-387-76499-3
http://dx.doi.org/10.1103/PhysRevB.79.195323
http://dx.doi.org/10.1103/PhysRevB.61.8341
http://dx.doi.org/10.1038/118874a0
http://dx.doi.org/10.1017/CBO9780511581144
http://dx.doi.org/10.1017/CBO9780511581144
http://dx.doi.org/10.1103/PhysRevB.38.3342
http://www.ncbi.nlm.nih.gov/pubmed/9946675


527

Photon Transport
 

Mandel, L., & Wolf, E. (1995). Optical Coherence and Quantum Optics. Cambridge University Press. 
doi:10.1017/CBO9781139644105

Matsunaga, R., Matsuda, K., & Kanemitsu, Y. (2011). Observation of Charged Excitons in Hole-doped 
Carbon Nanotubes Using Photoluminescence and Absorption Spectroscopy. Physical Review Letters, 
106(1), 037404. doi:10.1103/PhysRevLett.106.037404 PMID:21405298

Meier, T., Thomas, P., & Koch, S. W. (2007). Coherent Semiconductor Optics: From Basic Concepts to 
Na nostructure Applications. Springer. doi:10.1007/978-3-540-32555-0

Mukamel, S. (1995). Principles of Nonlinear Optical Spectroscopy. Oxford, UK: Oxford University Press.

Nakanishi, N. (1969). A general survey of the theory of the Bethe–Salpeter equation. Progress of Theo-
retical Physics, 43(Supplement. 43), 1–81. doi:10.1143/PTPS.43.1

Ning, C. Z., Indik, R. A., & Moloney, J. V. (1997). Effective Bloch equations for semiconductor lasers 
and amplifiers. IEEE Journal of Quantum Electronics, 33(9), 1543–1550. doi:10.1109/3.622635

Obayya, S. (2010). Computational Photonics. Wiley. doi:10.1002/9780470667064

Parker, M. (2005). Physics of Optoelectronics. CRC Tylor & Francis. doi:10.1201/9781420027716

Parker, M. P. (2009). Solid State and Quantum Theory for Optoelectronics. Springer Science. 
doi:10.1201/9781420019452

PENELOPE2014. (2014). A Code System for Monte-Carlo Simulation of Electron and Photon Trans-
port. NEA.

Phillips, R. T. (1993). Coherent Optical interactions in Semiconductors. Springer.

Pierantoni, L. & Mencarelli, D. (2012). Numerical Techniques for the Analysis of Charge Transport and 
Electrodynamics in Graphene Nanoribbons. Academic Press.

Piprek, J. (Ed.). (2005). Optoelectronic Devices: Advanced Simulation and Analysis. Springer. doi:10.1007/
b138826

Quade, W., Scholl, E., Rossi, F. & Jacoboni, C. (1994). Quantum theory of impact ionization in coherent 
high-field semiconductor transport. The American Physical Society.

Ramella-Roman, J. C., Prahl, S. A., & Jacques, S. L. (2005). Three Monte Carlo programs of polarized 
light transport into scattering media. OSA, 13(12), 4420. PMID:19495358

Rossi, F. (2011). Ultrashort Space- and Time-Scales:Need for a Quantum Description. In Theory 
of Semiconductor Quantum Devices Microscopic Modelling and Simulation Strategies. Springer. 
doi:10.1007/978-3-642-10556-2_2

Rössler, U., Tejedor, C., & Vina, L. (2003). Semiconductor Bloch Equations including Spin and Po-
larization Degrees of Freedom. Institute of Physics Conference Series 171 (A. R. Long & J. H. Davies, 
Eds.). Bristol, UK: IOP Publishing.

Saleh, E. A., & Teich, M. C. (1991). Fundamentals of Photonics. New York: John Wiley & Sons, Inc. 
doi:10.1002/0471213748

http://dx.doi.org/10.1017/CBO9781139644105
http://dx.doi.org/10.1103/PhysRevLett.106.037404
http://www.ncbi.nlm.nih.gov/pubmed/21405298
http://dx.doi.org/10.1007/978-3-540-32555-0
http://dx.doi.org/10.1143/PTPS.43.1
http://dx.doi.org/10.1109/3.622635
http://dx.doi.org/10.1002/9780470667064
http://dx.doi.org/10.1201/9781420027716
http://dx.doi.org/10.1201/9781420019452
http://dx.doi.org/10.1007/b138826
http://dx.doi.org/10.1007/b138826
http://www.ncbi.nlm.nih.gov/pubmed/19495358
http://dx.doi.org/10.1007/978-3-642-10556-2_2
http://dx.doi.org/10.1002/0471213748


528

Photon Transport
 

Salpeter, E. (2008). Bethe–Salpeter equation (origins). Scholarpedia., 3(11), 7483. doi:10.4249/schol-
arpedia.7483

Salvat, F., & Fernandez-Varea, J. M. (2009). Overview of physical interaction models for photon and electron 
transport used in Monte Carlo codes, IOP Science. Metrologia, 46(2), S112–S138. doi:10.1088/0026-
1394/46/2/S08

Schäfer, W., & Wegener, M. (2002). Semiconductor Optics and Transport Phenomena. Springer. 
doi:10.1007/978-3-662-04663-0

Schäfer, W., & Wegener, M. (2013). Semiconductor Optics and Transport Phenomena. -. Science.

Schleich, W. P., Mayr, E., & Kraehmer, D. (1999). Quantum Optics in Phase Space. Weinheim: Wiley.

Scully, M. O., & Zubairy, S. M. (1997). Quantum Optics. Cambridge. doi:10.1017/CBO9780511813993

Shah, J. (1999). Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures. Springer. 
doi:10.1007/978-3-662-03770-6

Shen, J., & Fan, S. (2009). Theory of single-photon transport in a single-mode waveguide. I. Coupling 
to a cavity containing two-level atom. Physical Review A., 79, 1–11.

Sujecki, S. (2014). Photonics Modelling and Design. CRC Press.

Sultan, S., Ang, Y. S., & Zhang, C. (2012). Room-temperature strong Terahertz photon mixing in Gra-
phene. Journal of the Optical Society of America. B, Optical Physics, 29(3), 247–249.

Suzuki, T., & Shimano, R. (2011). Cooling Dynamics of photoexcited Carriers in Si studied using opti-
cal Pump and THz Probe Spectroscopy. Physical Review B: Condensed Matter and Materials Physics, 
83(8), 085207. doi:10.1103/PhysRevB.83.085207

Tai, C. (1993). Dyadic Green functions in electromagnetic theory. IEEE.

Tamai, Y., Ohkita, H., Benten, H., & Ito, S. (2015). Exciton Diffusion in Conjugated Polymers: From 
Fundamental Understanding to Improvement in Photovoltaic Conversion Efficiency. The Journal of 
Physical Chemistry Letters, 6(17), 3417–3428. doi:10.1021/acs.jpclett.5b01147 PMID:26269208

Tamayama, Y., Nakanishi, T., Sugiyama, K., & Kitano, M. (2008). An Invisible Medium for Circularly 
Polarized Electromagnetic Waves. Optics Express, 16(25), 20869–22087. doi:10.1364/OE.16.020869 
PMID:19065225

Tromborg, B., Lassen, H. E., & Olesen, H. (1994). Traveling wave analysis of semiconductor lasers: 
Modulation responses, mode stability and quantum mechanical treatment of noise spectra. IEEE Journal 
of Quantum Electronics, 30(4), 939–956. doi:10.1109/3.291365

Tsen, K. T. (2004). Ultrafast Dynamical Processes in Semiconductors. Topics in Applied Physics, 92, 
1–59. doi:10.1007/b13749

Vasileska, D., Goodnick, S. M., & Klimeck, G. (2011). Computational Electronics. CRC Press.

Wacker, A. (2002). Gain in quantum cascade lasers and superlattices: A quantum transport theory. Physical 
Review B: Condensed Matter and Materials Physics, 66(8), 085326. doi:10.1103/PhysRevB.66.085326

http://dx.doi.org/10.4249/scholarpedia.7483
http://dx.doi.org/10.4249/scholarpedia.7483
http://dx.doi.org/10.1088/0026-1394/46/2/S08
http://dx.doi.org/10.1088/0026-1394/46/2/S08
http://dx.doi.org/10.1007/978-3-662-04663-0
http://dx.doi.org/10.1017/CBO9780511813993
http://dx.doi.org/10.1007/978-3-662-03770-6
http://dx.doi.org/10.1103/PhysRevB.83.085207
http://dx.doi.org/10.1021/acs.jpclett.5b01147
http://www.ncbi.nlm.nih.gov/pubmed/26269208
http://dx.doi.org/10.1364/OE.16.020869
http://www.ncbi.nlm.nih.gov/pubmed/19065225
http://dx.doi.org/10.1109/3.291365
http://dx.doi.org/10.1007/b13749
http://dx.doi.org/10.1103/PhysRevB.66.085326


529

Photon Transport
 

Wang, L.-H., & Wu, H.-I. (2007). Biomedical Optics: Principles & Imaging. Wiley.

Wang, S. A., Marks, D. B., & Menyuk, C. (2013). Comparison of numerical methods for modeling laser 
mode locking with saturable gain. Journal of the Optical Society of America. B, Optical Physics, 30(11), 
3064–3074. doi:10.1364/JOSAB.30.003064

Wannier, G. H. (1937). The structure of electronic excitation levels in insulating crystals. Physical Re-
view, 52(3), 191–197. doi:10.1103/PhysRev.52.191

Wartak, M. S. (2013). Computational Photonics. Cambridge.

Wartak, S.M. (2013). Computational Photonics, An Introduction with MATLAB. Academic Press.

Wiedemann, E. (1888). Über Fluorescenz und Phosphorescenz, I. Abhandlung (On fluorescence and 
phosphorescence). Annalen der Physik, 34, 446–463. doi:10.1002/andp.18882700703

Won, R. (2010). Integrating silicon photonics. Nature Photonics, 5, 498–499.

Wu, L. A., Kimble, H. J., Hall, J. L., & Wu, H. (1986). Generation of squeezed states by parametric down 
conversion. Physical Review Letters, 57(20), 691. doi:10.1103/PhysRevLett.57.2520 PMID:10033788

Xu, L., Zhang, X.-C., Auston, D. H., & Jalali, B. (1991). Terahertz radiation from large aperture Silicon 
p-i-n diodes. Applied Physics Letters, 59(26), 23. doi:10.1063/1.105725

Yee, K.S. (1966). Numerical solution of initial boundary value problems involving Maxwell’s equations 
in isotropic media. IEEE Trans. Antennas and Prop., 302-307.

Ziaei, V., & Bredow, T. (2016). GW-BSE approach on S1 vertical transition energy of large charge 
transfer compounds: A performance assessment. The Journal of Chemical Physics, 145(17), 174305. 
doi:10.1063/1.4966920 PMID:27825209

ENDNOTES

1  Actually, there exist a number of different Gauge transformations, among which the Coulomb 
and Lorentz gauges are the most famous ones. We typically use the Coulomb gauge to develop the 
Poisson equation for a scalar electrostatic potential. This also admits the vector potential to become 
a transverse field and to quantize the electromagnetic fields. We avoid the use of Lorentz gauge 
that manifests the Lorentz invariance because it makes the electromagnetic fields more difficult to 
quantize.

2  In modern books of quantum physics, it is more common to quantize the Fourier components of 
the vector potential

3  The Einstein coefficients relate spontaneous and stimulated emission coefficients, on the basis of 
thermodynamics. However, the Einstein relation does not give their values.

4  In other types of laser, we may talk about the transition of atoms/molecules rather than electrons.
5  Sometimes this term is referred to as the non-radiative recombination rate and written as (–n/τnr).
6  As far as I know, this Effect has been cited only once, through the last 10 years!, I’d prefer to 

rename it as ElSab3 Effect.

http://dx.doi.org/10.1364/JOSAB.30.003064
http://dx.doi.org/10.1103/PhysRev.52.191
http://dx.doi.org/10.1002/andp.18882700703
http://dx.doi.org/10.1103/PhysRevLett.57.2520
http://www.ncbi.nlm.nih.gov/pubmed/10033788
http://dx.doi.org/10.1063/1.105725
http://dx.doi.org/10.1063/1.4966920
http://www.ncbi.nlm.nih.gov/pubmed/27825209


530

Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  9

DOI: 10.4018/978-1-5225-2312-3.ch009

1. OVERVIEW AND CHAPTER OBJECTIVES

As well as mass and charge, an electron has another intrinsic property, called spin. The spin property of 
the electron was demonstrated experimentally by Stern and Gerlach (1922). The word ‘spin’ was coined 
by Wolfgang Pauli (1926) to explain the fine-structure of atomic spectra, following the proposal of the 
two students Uhlenbeck and Goudsmith (1926). They proposed that the spin angular momentum, obeys 
the same quantization rules as those governing orbital angular momentum of atomic electrons. It had 
been shown later by Paul Dirac (1928) that electron spin arises naturally in the relativistic treatment of 
quantum mechanics.

Unlike position and momentum, which have classical analogs, spin does not. But if we think of spin in 
classical terms, we can think of a spinning charged particle as a loop of current. Thus, if a particle spins 
about the z-axis, then the spin vector S points along the z-axis. Since the spinning charge is negative, 
the left-hand rule can be applied. When the fingers of the left hand rotate (curl) in the direction of spin, 
the thumb will point in the direction of spin. Therefore, a spinning charge carrier produces a magnetic 
field similar to that of a tiny bar magnet. In this case, the spin vector S points to the south pole of the 
bar magnet. If the spinning particle is placed in a magnetic field, it tends to align the spin vector in the 
opposite direction to the magnetic field lines, as shown in the above figure.

Therefore, electrons have intrinsic angular momentum, which is composed of two components, namely 
angular orbital and spin angular momentum:

J = L + S (1a)

Quantization of angular momentum had already known for orbital angular momentum, and if the 
electron spin behaves the same way, an angular momentum quantum number s = ±½ is required to give 
just two states. The spin angular momentum S has the following magnitude:

Electronic Spin Transport
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Therefore, this intrinsic electron property gives an additional z-component for the angular momentum:

Sz = s ħ, with s = ∓ ½ (1c)

Spin electronics (or Spintronics) refers to the study of the role played by electron spin in solid state 
physics and devices. Spintronics utilizes the electron spin degree of freedom for information storage and 
transmission. The spintronic devices use the electron spin to carry and switch information, rather than 
the electron charge transport. The application of spintronics in information processing is a relatively new 
endeavor and is motivated by the belief that spintronics may offer a more power-efficient route compared 
to the traditional transistors. In fact, spin transport and spintronics have seen interesting developments 
in the past decade and have continued to attract attention.

In the past decades, the research on spin transport and magnetism has led to the discovery of giant 
magnetoresistance (GMR). The GMR prototype device is the read head of hard disks and the memory-
storage cell, which consists of alternating ferromagnetic and nonmagnetic metal layers. Depending 
on the relative orientation of the magnetizations in the magnetic layers, the device resistance changes 
from small (parallel magnetizations) to large (antiparallel magnetizations). This change in resistance is 
used to sense changes in magnetic fields. The first use of spin-valve sensors in hard disk drive was in 
the IBM Deskstar, which was released in late 1994 with 16.8 GB of storage1. Recent efforts in GMR 
technology involves magnetic tunnel junction (MTJ) devices where the tunneling current depends on 
the spin orientation

Figure 1. Classical representation of the spin action of electrons. The electromagnetic field emanating 
from an electron can be considered to emanate from an idealized tiny bar magnet with north and south 
poles (dipole).
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Spintronic information transport can be achieved in three different ways, namely: (a) classical infor-
mation transport by all-spin monolithic circuits, (b) classical information transport by hybrid (charge & 
spin) circuits and (c) quantum information transport by spin qubits

In order to boost spintronic research, a solid understanding of spin transport properties is essential. 
Current efforts in designing and manufacturing spintronic devices involve two different approaches. 
The first approach is concerned with finding novel ways of generation and detection of spin-polarized 
currents. The second approach is improving the existing giant-magnetoresistive (GMR)-based technol-
ogy. Other Spintronic topics include the spin Seebeck effect, spin pumping in ferromagnet/normal metal 
heterostructures, magnon condensation, and phonon (heat) transport in magnetic insulators.

This chapter reviews the mainstream knowledge of semiconductor Spintronics, with emphasis on spin 
transport. The relevant theory of electron spin injection and detection is introduced in the beginning. 
Then we discuss the semiclassical and quantum spin transport theory in ferromagnet/semiconductor 
heterostructures.

The spin-polarized transport theory keeps track of the spin distribution, in addition to the charge 
distribution of electronic systems. In much the same way as charge transport, it is possible to describe 
transport of spin polarization by BTE-like equations. This can be also done within the density matrix 
formulation, or Wigner functions or the NEGF quantum approaches. The microscopic transport ap-
proaches (semiclassical or quantum) can be also reduced to simple macroscopic models, such as the 
spin drift-diffusion model (SDDM).

Upon completion of this Chapter, the readers and students will be able to:

• Review and understand the spin-induced phenomena.
• Identify quantum mechanics behind spin motion.
• Explore the characteristic of nanostructures made from diluted magnetic semiconductor (DMS).

Figure 2. Spin transport and spintronic devices and their overlapping with applications of other infor-
mation carriers
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• Understand the semiclassical and quantum models of spin transport
• Describe the spin-dependant electron transport in magnetic devices and their microscopic and 

macroscopic models.
• Describe the phenomenon of spin-dependent tunneling, and magnetic tunnel junctions and their 

quantum models.
• Identify the Spin Magnetization Quantum Distribution Function (SMQDF), its equation of motion 

and its macroscopic moments.
• Know how and when to use the different spin-transport models.
• Analyze the operation of existing spin-based devices and spintronics.

2. CONCEPTS OF SPIN POLARIZATION, SPIN 
COHERENCE AND SPIN CURRENT

Although spin was originally thought of as particles spinning around their own axis, it had been shown 
by Paul Dirac (1928) that electron spin arises naturally within relativistic quantum mechanics2. The spin 
quanta that are associated with spin waves are called magnons. The term magnon was initially introduced 
by Felix Bloch in 1930 to explain the spontaneous magnetization in a ferromagnet.

The magnetic properties of matter are closely related to the spin motion of electrons. In fact, magne-
tism, at its root, arises from two sources, namely: electric current and internal magnetic moments due 
to spin motion of electrons. In magnetic materials, the most important sources of magnetization are, 
more specifically, the electrons’ orbital angular motion around the nucleus, and the electrons’ intrinsic 
magnetic moment. The component of electron spin measured along any direction is quantized and can 
only take on the values, S = ħsz, sz = ±½ . The intrinsic magnetic dipole moment associated with a spin 
of electron is very close to the Bohr magneton μB = eħ/2m =57.9 μeV/T or the free electron magnetic 
moment,

As we pointed out earlier, the electrons total angular momentum has two contributions, orbital and 
spin angular momentum (J=L+S). The corresponding magnetic dipole moment of an electron in solids 
is given by:

μ = − (gLL+ gsS) μB (2a)

where the spin g-factor gs ≈2 to a good approximation3, and the orbital g-factor gL=1 for free electrons 
but changes with the electron effective mass in solids. In fact, the conduction electron in solids can have 
a g-factor, which is very different from the free electron case (Dyson, 1956). In metals the deviation is 
trivial (< 1%), but in semiconductors its value may be greater (g ≈-50 in InSb) or smaller (g≈-0.44 in 
GaAs). Actually, the g-factors of conduction electrons are affected by the spin-orbit interaction (SOI).

The so-called effective gyromagnetic ratio, γ, is defined as:

μ = ½ γ μB (2b)

The magnetism originating from the nuclei is usually neglected, as the magnetic moment of protons 
and neutrons is 2000 times smaller than μB. If an external magnetic field B is applied, it will exert a 
torque on the magnetic dipole such that the magnetic potential energy is given by the Zeeman term:
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V = μσ.B (2c)

where σ is the Dirac spinor, which appears in the Dirac equation.
For most materials, ferromagnetism arises from an unbalanced occupation of the d-bands (transition 

elements) or the f -bands (rare earth elements). In metallic ferromagnets, such as the transition metals, 
Ni, Fe, Co, the conducting electrons are spin polarized, and a current of electrons drags a current of 
magnetization (Holstein, 1940)

Note 1: Origin of Ferromagnetism

The study of ferromagnetism has been carried out by several authors. In 1935 Mott predicted that the 
conductivity in the transition metal ferromagnets Fe, Ni and Co is different for electrons whose magnetic 
moment is aligned with the magnetization (majority electrons) and for electrons with anti-parallel magnetic 
moments (minority electrons). Thirty years later, the experimental evidence of this spin-polarized electron 
conduction in transition metal ferromagnets was found. As argued by Mott, the reason for this effect 
lies in the shifted band structure of majority and minority electrons, respectively, as shown in Figure 3.

In Fe, Ni and Co ferromagnets, the narrow 3d band features a large exchange splitting and moreover 
crosses the Fermi energy only for the minority electrons; it is thus responsible for the ferromagnetic 
character. On the other hand, the transport in these materials is dominated by the delocalized electrons 
in the much wider 4s-band, which has a small exchange splitting and crosses the Fermi energy for both 
spin-up and spin-down electrons. Nevertheless, the conductivity is spin-polarized, because the main 
transition induced by scattering is 4s- band to 3d- band.

As minority electrons have a density of states (DOS) of 3d-electrons which is much larger than 
DOS of majority electrons near the Fermi energy, the 4s-to-3d transition is more probable for minority 
electrons. This is because the probability of transition is proportional to the final DOS, according to 
Fermi golden rule.

2.1 Spin Polarization

In equilibrium state of conventional (nonmagnetic) materials, the spin of electrons is homogemeously 
distributed and equally populated for both spin-up and spin-down electrons. However, in ferromagnetic 
materials (such as Co, Fe, Ni, and some alloys), electron spins are aligned spontaneously, resulting in 
unequal density of spin-up and -down electrons. In such ferromagnetic materials, spin-resolved electronic 

Figure 3. Energy band structure E(k) and DOS of Cu (nonmagnetic metal) and Co (ferromagnetic metal)
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structures show a band difference between spin-up and spin-down electrons, as shown in Figure 4. The 
figure depicts the spin polarization of spin-up and spin-down electrons, as well as their total polariza-
tion (P) in different types of magnetic materials. The asymmetry in density of states (DOS) at Fermi 
energy gives rise to many spin related transport phenomena. As shown, the net magnetic polarization in 
paramagnetic materials is zero (in absence of external magnetic field). The so-called half-metal (HM) is 
a special class of metals that can produce 100% spin polarization (P=1).The polarization (P) is usually 
expressed in terms of the number (or density of states) of spin-up (N↑) and spin-down (N↓) electrons, 
resulting in a spin polarization

P= (N
↑

 - N
↓

) / (N
↑

 + N
↓

) (3)

2.2 Spin Waves and Magnons

Magnons are the quanta of spin waves of excited spin states in magnetic materials. They arise when 
neighbor spins interact strongly in a magnetic material, making it favorable to excite the collectivity of 
spins, rather than flipping a single spin. Figure 5 shows some possible cases of spin polarization dis-
tributions of a ferromagnet. In the ground state of the ferromagnet (in equilibrium) almost all spins are 
aligned. In excited state of the ferromagnet (in non-equilibrium) some spins may be flipped. At lower 
energy of excitation, the spins are rotating (precessing) around their equilibrium, forming a spin wave 
(magnon). Magnons open up the possibility to transmit and manipulate information in a new class of 
materials. The magnons carry a spin current; a flux of angular momentum, that can be used to encode 
and transmit information. The field of magnon spintronics (or magnonics) studies magnon spin currents 
and aims to integrate this technology with conventional electronic devices

Figure 4. Spin polarization of up and down electrons in magnetic materials. All states up to the Fermi-
level are occupied. In presence of external magnetic field, an excess of spins aligned parallel to the 
magnetic field will appear.
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Note 2: What’s Spin Precession?

Like a top, a rapidly spinning particle will precess in a direction determined by the torque exerted by 
its mass (weight). The precession angular velocity is inversely proportional to the spin angular velocity, 
so that the precession is faster as the particle slows down. The direction of the precession is visualized 
in Figure 6.

Figure 5. Possible states of spin distributions in a ferromagnet and spin waves

Figure 6. Spin precession
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2.3 Spin Injection and Spin Currents

The design and implementation of spintronic devices requires an efficient source of spin-polarized carriers. 
In addition, injecting an excess magnetization in a non-magnetic conductor allows us to study properties 
of the spin dynamic properties, such as spin lifetime in this conductor. Spin injection and transport can 
be carried out in a variety of materials including metals, semiconductors, and carbon-based materials. In 
fact the recent experimental studies showed that the spin polarization can be maintained and controlled 
in certain semiconductor structures. For instance, the spin polarization of coherent injected electrons 
could be maintained in GaAs quantum wells, for up to nanoseconds and up to 100μm in homogeneous 
materials at room temperature (Ohno et al, 1999).

Spin Injection

A spin polarized current can be injected into a non-magnetic conductor or semiconductor by driving 
a current from a ferromagnetic metal. This creates an imbalance in the spin population if injection is 
faster than relaxation.

The basic idea of spin injection in a paramagnetic semiconductor is as follows. In a paramagnet, at 
equilibrium, the spin magnetic moments of charge carriers (electrons in the conduction band and holes 
in the valence band) point along random directions in space. Therefore the ensemble average of spin 
moment at any location inside the material is null and the spin polarization of electrons is zero. Under 
an applied voltage bias, we can inject a stream of spin-polarized electrons from a ferromagnet into the 
paramagnetic semiconductor. In fact, it has been proven theoretically and experimentally that spin-
polarized electrons can be injected into a semiconductor from a metal ferromagnetic contact through a 
Schottky barrier (Albrecht & Smith, 2003).

Spin Currents

The spin polarization is transported by a spin-polarized current. There are two well-known types if spin 
currents, namely (Schmidt et al, 2000):

Figure 7. Injection of spin in a semiconductor, from a metal ferromagnet
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• Pure spin currents,
• Spin-polarized currents.

Pure spin currents carry only spins (spin angular momenta) unlike conventional spin-polarized cur-
rents which carry both charges and spins. One of well-known methods to generate the pure spin current 
is non-local spin injection. When the spin-polarized current is injected from a ferromagnet (FM) into 
a non-magnet (NM), spins are accumulated in the vicinity of the FM/NM interface. The accumulated 
spins diffuse in the NM, and thus the spin accumulation is formed in the place where no charge current 
is present.

2.4 Spin Detection and Extraction

In electrical spin injection we drive spin-polarized electrons from a ferromagnet into a nonmagnetic 
conductor. As a result, non-equilibrium spin accumulates in the nonmagnetic conductor. The opposite 
is also true: If a spin accumulation is generated in a nonmagnetic conductor that is in proximity of a 
ferromagnet, a current flows in a closed circuit, or an electromotive force (EMF) appears in an open 
circuit. This effect is called the Silsbee-Johnson spin-charge coupling4. The presence of the electron spin 
can then be detected electrically.

Other ways of detecting spin include the spin-valve effect, in which the injected spin-polarized elec-
trons enter a detecting ferromagnetic electrode with an efficiency given by the relative orientation of 
the injecting and detecting electrodes, or optical detection in which spin-polarized electrons recombine 
with un-polarized holes and emit circularly polarized light.

A standard method to extract spin relaxation time in a paramagnetic material is to perform a spin-
valve experiment, as shown in Figure 9.

A spin-valve is a tri-layered construct, in which the paramagnetic material of interest is sandwiched 
between two ferromagnetic electrodes of different coercivities. Unlike giant magnetoresistive (GMR) 
devices, the ferro-magnets are not magnetically coupled with each other. As a result, their magnetizations 
can be controlled independently by magnetic field. One of these ferromagnets acts as spin injector i.e. 

Figure 8. Schematics of spin injection at Ferromagnet-Non-magnet interface
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under an applied electrical bias it injects spins into the paramagnet. The second ferromagnet provides 
unequal spin-up and spin-down at the Fermi level and transmits spins of one particular orientation. 
Recent experiments allowed determining the spin dephasing time from all-electrical high frequency 
measurements. The inferred time is of the order of 1ns.

2.5 Spin Coherence and Spin-Orbit Interaction (SOI)

Coherence and phase interference phenomenon of electron spin waves are attractive quantum effects that 
are exploited in spintronic devices. The spin of electrons is affected by momentum scattering and other 
mechanisms, which leads to spin dephasing. The interaction mechanisms may be, for instance, due to:

• Dipole-dipole (Magnetic) interaction, between magnetic dipoles,
• Spin-orbit interaction (SOI), due to induced magnetic field,
• Exchange interaction due Coulombic fields, and
• Hyperfine magnetic field (between nuclei and electrons)

The spin–orbit interaction (SOI) is an interaction of electron spin with its electromagnetic motion 
in a crystal (Thomas, 1926). Although the spin–orbit interaction is a small perturbation to the crystal 
potential in solids (hundreds of milli eV), it may play an important role in the band structure. The SOI 
interaction for example splits bands which would be otherwise degenerate. The narrow-bandgap semi-
conductors (like InSb and InAs), and the semimetals (like Bi) have substantial spin-orbit interaction. 

The SOI interaction energy (Hamiltonian) is proportional to the L.S product

HSO = λ (L.S) (4a)

where λ is spin-orbital coupling (SOC) constant and the product may be calculated from angular mo-
mentum numbers (orbital & spin), as follows:

Figure 9. Spin valve experiment
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<L.S>= ½ (J2 - L2 -S2) = ½ ħ2 [(j(j+1) –l(l+1) –s(s+1)] (4b)

The SOI tends to preserve spin coherence at lower temperatures and with an applied perpendicular 
magnetic field

3. SPIN RELAXATION IN SEMICONDUCTORS

During the electron transport, the spin polarization is gradually lost by spin flip and spin dephasing 
(spin decoherence) events. This loss typically follows an exponential decay that is characterized by a 
spin-diffusion length λs, such that P=Po.exp (-x/λs). In fact, the spin of electrons is affected by scatter-
ing events, which leads to spin dephasing and flip. Spin relaxation refers to the processes that bring an 
unbalanced population of spin states into equilibrium. Inside a metal (ferromagnetic or not), a polarized 
spin loses its original orientation due to scattering after a spin relaxation time τs.

There are several mechanisms in solids that are responsible for spin relaxation of conduction electrons. 
In case of semiconductors and metals, the most dominant mechanisms are

1.  Elliott-Yafet (EY),
2.  Dyakonov-Perel (DP),
3.  Bir-Aronov-Pikus (BAP) and
4.  Hyperfine interaction with nuclei (HF).

3.1 Elliott–Yafet Mechanism

The Elliott–Yafet (EY) mechanism is based on the fact that in real crystals Bloch states are not spin ei-
genstates. Elliott noticed that an ordinary interaction with impurities, boundaries, interfaces, and phonons 
can connect ‘up’ and ‘down’ electrons, leading to spin relaxation.

When the EY is the dominant scattering mechanism, a direct proportionality between the momentum 
scattering time and the spin relaxation time can be found. In the case of single-valley direct-gap semi-
conductors (like GaAs), the spin scattering time τs due to the EY mechanism is given by:

Figure 10. Illustration of the spin-orbit interaction (SOI) and the effective magnetic field, which is con-
trollable by electric field
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τs(E) ~ [Δso/(Eg+ Δso)]
2. (E/Eg)

2. τ(E) (5)

where τ(Ek) is the momentum relaxation time. This may be important in narrow-gap semiconductors 
with large spin-orbit splitting Δso (like InSb).

3.2 Dyakonov and Perel Mechanism

Dyakonov and Perel showed that the lifting of the spin degeneracy by induced magnetic fields leads to 
spin relaxation (Dyakonov & Perel, 1972). The induced field arises in crystals that lack inversion sym-
metry, such as zincblende semiconductors (like GaAs, ZnSe), and lifts the spin degeneracy. Therefore, 
spin-up and spin-down electrons have different energies even when they are in the same momentum state. 
The interaction Hamiltonian, which accounts for the DP relaxation in the bulk, can be written as follows:

HDP (k) = -μ.Biσ (6a)

where μ = eħ/2m and Bi(k) is called the effective (induced) magnetic field in the crystal and σ is the 
Dirac spinor (or Pauli vector). This spin-orbit interaction can be also written as follows

HDP (k) = α [ σ x kx (ky
2 – kz

2) +σ y ky (kz
2 – kx

2) +σ z kz (kx
2 – ky

2)] (6b)

where α is a coupling constant. The DP mechanism is a precessional spin relaxation because it describes 
how spins precess between the momentum scattering events. The Elliott-Yafet EY and the DP mecha-
nisms can be distinguished from each other by the opposite dependences of their spin relaxation rates 
on mobility. In the former mechanism, the spin relaxation rate is inversely proportional to the mobility 
and in the latter mechanism; it is proportional to the mobility.

3.3 Bir, Aronov, and Pikus Mechanism

Another source of spin relaxation for conduction electrons was found by Bir, Aronov, and Pikus in the 
electron-hole exchange interaction. This interaction depends on the spins of interacting electrons and 
holes and appears in p-type semiconductors. It may be expressed as follows:

HBAP = A.S.Jδ(r) (7)

where S is the electron spin operator and J is the total angular momentum operator of holes. This 
mechanism is effective for the spin relaxation of electrons in p-type semiconductors, where overlapping 
of hole wave-functions is significant.

3.4 Hyperfine Interaction

The spin hyperfine interaction, happens for electrons bound on impurity sites or confined in a quantum dot.
The quantity λs = √(Ds.τs) is usually employed to define the characteristic length scale over which 

the spin relaxes. In a ferromagnet, this is typically 5–50 nm. For a non-magnetic metal, it is of the order 
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of hundreds of nm. However, one may ask if the electron diffusion constant Dn is the same as the spin 
diffusion constant Ds which one would use to define the spin relaxation length.

Spin relaxation in semiconductors is a complex process, because there are two types of charge car-
riers to consider (electrons and holes) and both have spin and can carry spin-polarized currents. Also, 
some features in the polarization luminescence spectra imply to take excitons (bound electron-hole 
pairs) into account, because they can be also polarized. Furthermore, the spin relaxation is sensitive to 
temperature, doping and impurity content, dimensionality, strain, magnetic and electric fields as well 
as the material band structure. The variation of the relaxation lifetime with doping and temperature is 
illustrated in Figure 11, as obtained by the time-resolved Faraday rotation (TRFR) measurement (Kik-
kawa & Awschalom, 1998).

4. MAGNETIC SEMICONDUCTORS

Magnetic semiconductors are semiconductor materials (e.g. GaAs) which are converted into ferromag-
netic material by adding magnetic dopants (e.g. manganese). The realization of materials that combine 
semiconducting behavior with robust magnetism has long been a dream of material physics. The fol-
lowing criteria should be met in such materials:

• Ferromagnetic transition temperature (Tc) must exceed room temperature
• Mobile charge carriers should respond strongly to changes in the ordered magnetic state, and
• The material should retain fundamental semiconductor properties, such as sensitivity to doping 

and light.

Figure 11. Spin relaxation mechanisms
After Fabian et al (2007).
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One strategy for creating such materials that are simultaneously semiconducting and magnetic, is to 
introduce local moments. The result is a new class of materials now known as diluted magnetic semi-
conductors (DMS). In such materials one of the semiconductor atoms is replaced by a magnetic atom. 
For instance, the GaAs, which is heavily doped with Mn acceptors shows a magnetic moment.

4.1 Dilute Magnetic Semiconductors (DMS)

The dilute magnetic semiconductors (DMS) are a class of semiconductor materials, which allow for 
a high spin polarization. The DMS materials, like (Zn,Mn)Se or other Mn doped semiconductors, are 
paramagnetic (non-magnetic) when no external magnetic field is applied. Such paramagnetic materials 
exhibit a giant spin splitting at low temperatures in the presence of magnetic field, which can be as large 
as 20meV in the conduction band. At a temperature of 4K the material conductivity is strongly affected 
by the magnetic polarization due to spin asymmetry.

In addition to the high spin polarization of the carriers in equilibrium, the Mn atoms in the material 
play another important role. They cause a strong spin scattering, which guarantees that non-equilibrium 
carriers that enter the material (when a current is flowing). Therefore, DMS materials are ideal candidates 
for perfect spin aligning devices. The most widely studied DMS in the past was the Mn ions embedded 
in the CdTe, which has the zincblende structure.

4.2 Magnetic Impurities in Semiconductors

It has been established that several semiconductors become ferromagnetic when they are heavily 
doped with ferromagnetic atoms, like Ti, Cr, Mn, Fe, Co, and Ni. For instance, some (III,V) compound 

Figure 12. Measured spin lifetime, in GaAs, against temperature at different values of magnetic field 
(left), and against excitation density (right). The predictions of D-P and E-Y are also reproduced in the 
left figure.
After (Kikkawa & Awschalom, 1998).
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semiconductors become ferromagnetic when heavily doped with Mn, and the ferromagnetic transition 
temperatures may be well above 100K. In semiconductors like GaAs and InAs, Mn has been shown to 
act both as an acceptor and as a source of local magnetic moments.

The incorporation of Mn impurities in DMS causes a strong spin scattering and makes DMS materials 
ideal candidates for spin devices. For instance, the transport properties of GaAs, which is heavily doped 
with Mn acceptors reveal a phase transition at a critical temperature (50K) from a paramagnetic to a 
ferromagnetic material. This phase transition is due to the interaction between the Mn-hole complexes. 
The elements in the (Ga,Mn)As alloy have an atomic structure [Ar] 3d104s2p1. The sub-stitutional MnGa, 
and the interstitial MnI, positions are shown in Figure 13.

The local moments model of Mn(d5), which describes the behavior of Mn-doped IV-VI DMS in terms 
of momentum exchange to itinerant sp-band carriers, provides a good description. As shown n figure 
14, the itinerant holes (solid small circles) couple antiferro-magnetically to the local Mn moments via 
the exchange interaction due to the overlap of the hole wave function with the d-orbitals of the local Mn 
electrons. For high hole densities a long range ferromagnetic order is established. The two ovals illustrate 
the flipping of a local Mn-moment through the kinetic exchange interaction with a passing-by hole.

Figure 15 depicts the band structure of (Ga,Mn)AS and shows the position of the 3d level for low 
Curie temperature TC, as well as the positions of the majority-spin 3d bands, which lead to high TC. Using 
conventional growth processes, the incorporation of magnetic Mn ions into III-As semiconductor crystals 
has been limited to 0.1%. In order to circumvent the solubility problems, a low-temperature molecular-
beam-epitaxy (LT MBE) process is usually applied to grow (In,Mn)As and (Ga,Mn)As DMS ternary 
alloys with more than 1% Mn ions. The problems related to the critical temperature limits in (III,Mn)
V DMS materials have been investigated in the literature. In 1998 the Tohoku University researchers 
announced a jump of Tc in p-type (Ga,Mn)As to 110K and pointed out that indirect coupling between 
Mn d-shell moments is mediated by induced spin polarization in a free-hole itinerant-carrier system. 
The main difference between (III,Mn)V materials like (Ga,Mn)As and IV-VI and II-VI compounds is 
that Mn substituting for the trivalent cation (Ga) is simultaneously an acceptor and a source of magnetic 
moments (Jungwirth et al., 2006).

The theoretical calculations of critical-temperature, which are based on the kinetic-exchange model, 
predict room-temperature ferromagnetism in (Ga,Mn)As with 10% Mn content. In spite of these predic-

Figure 13. Crystalline structure and 3d orbitals of (Ga,Mn)AS
After Jungwirthet al (2006).
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tions, the 110K milestne in (Ga,Mn)As was harsh for many years. However, with the advent of molecular 
beam epitaxy (MBE), it was possible to, push Tc in (Ga,Mn)As up to 173 K. The room temperature DMS 
started to appear in 2001, by the aid of the metal organic chemical vapor deposition (MOCVD).

On the basis of many experimental studies, the (III,Mn)Sb materials were predicted to follow the same 
route as (Ga,Mn)As and (In,Mn)As ferromagnetic semiconductors. It was also predicted that moving in 
the opposite direction of the periodic table toward (III,Mn)P and (III,Mn)N would lead to FMS materi-
als with high critical temperature. Experimental samples of p-type and n-type ferromagnetic layers of 
(Ga,Mn)N, with high Tc (about1000K), are also developed (Zhou & Schmidt, 2010).

Figure 14. Schematic of the itinerant holes, which couple antiferro-magnetically to local Mn moments 
via the exchange interaction

Figure 15. Band structure of (Ga,Mn)AS, showing the position of the 3d level for low Curie temperature 
TC. (a) and the positions of the minority (b) or majority-spin (c) 3d bands, which lead to high TC.
After (Zhou & Schmidt, 2010).
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4.3 Ferromagnetic Semiconductors (FMS)

The so called ferromagnetic semiconductors (FMS) are displaying both semiconducting and ferromagnetic 
properties. We have seen that DMS materials yield high spin injection efficiency, but they require an 
external magnetic field and are thus not ideal for device applications. The ferromagnetic semiconductors 
are a promising alternative. The (III,Mn)V materials, such as (Ga,Mn)As, are examples of ferromagnetic 
semiconductors. Magnetism in such ferromagnets originates from Mn local moments. Note that the term 
ferromagnetic is reserved for magnetic materials in which ferromagnetism is due to coupling between 
magnetic moments that is mediated by conduction electrons or valence-band holes.

Experimentally, ferromagnetism in (Ga,Mn)As is observed when Mn doping reaches approximately 
1% and the system is near the Mott insulator-to-metal transition, This happens when the average distance 
between Mn impurities (rc = (3∕4πNMn)

1∕3) is equal to the impurity effective Bohr radius (a*= εh∕m*e2). 
At larger Mn concentrations, the localization length of impurity-band states is extended to a degree that 
allows them to mediate ferromagnetic exchange interaction between Mn moments. At even higher Mn 
concentrations, the impurity band gradually merges with the valence band and impurity states become 
delocalized. However, most of FMS, like (Ga,Mn)As, are p-type and ferromagnetic appears at very low 
temperatures. Also, the short spin diffusion length of holes in semiconductors limits the spin injection 
efficiency from an FMS to nonmagnetic semiconductors. In 2004, Van Dorpe and others succeeded to 
generate a spin polarization from p-type ferromagnetic (Ga,Mn)As with high efficiency (80%) using an 
optimized tunnel (ESAKI) diode. In this device the spin polarized holes tunnel from the valence band 
of the FMS into the conduction band of the highly n-doped nonmagnetic semiconductor. FMS materials 
possess all properties that can be exploited in spintronics. For instance, the (In, Mn)As has been used to 
build field-effect transistors. It has been demonstrated that changes in the carrier density and distribu-
tion in thin-film FMS systems due to an applied bias voltage can reversibly induce the ferromagnetic/ 
paramagnetic transition. Figure 16 depicts the reversible hysteresis curve of ZnO-Mn. As the energy 
levels of a magnetic ion split in the magnetic field, the magnetic susceptibility of the material can be 
measured, according to the relation:

χ =
∂
∂→

lim
H

M
H0

 (8)

4.4 Spin Transport in Ferromagnetic Semiconductors

A ferromagnetic semiconductor exhibits strong magneto-transport effects, namely negative magnetore-
sistance (MR) and anomalous Hall Effect (AHE), and provide the possibility to control the spin by an 
external electric field. For ferromagnetic GaMnAs, usually the AHE is taken as a measure of its mag-
netization. The observation of AHE is considered as an important criteria for FMS materials. The MR 
and AHE have been reported in the Ge:Mn systems (which are prepared by LT-MBE or ion implantation 
at elevated temperatures). However, the correlation between magnetization, MR, and AHE, which is a 
hallmark of III-Mn-V and ZnMnTe FMS, has not been proven for Ge:Mn so far.

The anomalous Hall effect (AHE) shown in Figure 17, which completely dominates the low-field 
Hall response in (Ga,Mn)As and some other III-V DMSs, has become one of the key tools used to 
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detect the paramagnetic/ ferromagnetic transition. The large value of Hall resistance is due to the spin-
polarization of holes and provides strong evidence for the participation of mobile charge carriers in the 
ordered magnetic state of such DMS.

The electric field control of ferromagnetism in DMS materials, has been investigated using (In,Mn)
As-based field-effect transistors. It has been demonstrated that changes in the carrier density and distri-
bution in thin-film DMS systems due to an applied bias voltage can reversibly induce the ferromagnetic/

Figure 16. Magnetization characteristics of ZnO: Sn, with 3% Mn
After (y, 2000).

Figure 17. Hall resistance vs. external magnetic field for Ga0.94Mn0.06As at different temperatures
After Edmonds et al. (2002).
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paramagnetic transition. Another remarkable effect observed in this magnetic transistor is electric-field-
assisted magnetization reversal. This has been attributed to the dependence of the hysteresis loop width 
on bias voltage. Experiments in which ferromagnetism in a (III,Mn)V DMS system is turned on and off 
optically add to the list of functionalities that result from the realization of carrier-induced ferromagne-
tism in a semiconductor host material.

The Hamiltonian of the magnetic ion in the semiconductor can be written as follows:

H = λ (L.S) + Hion + Hc + (L + 2S) μBB (9)

where the first term in the RHS terms is the spin–orbit (L.S) coupling, λ being the spin-orbit coupling 
(SOC) constant. The second term (Hion) is the free ion term, and the third term (Hc) is the crystal field 
term. The last term accounts for the interaction with external magnetic field, where μB is the Bohr mag-
neton. However, the crystal field splitting energy is typically larger than the spin orbital coupling energy.

5. SPIN TRANSPORT MODELS

As the spin is a degree of freedom of charge carriers, it has been suggested to incorporate spin and spin-
dependent interactions into the electron transport equations (quantum and semiclassical). However, the 
spin properties of information carriers have their own features, which turn the spin transport modeling 
more complex. For example, it has been proved that the direction of the electron spin is not conserved 
after a scattering. This fact has to be included in a model of spin transport in solids. Due to spin non-
conservation the definition of the spin current has some phenomenological parameters. These parameters 
are typically used to express the spin relaxation time in the semiclassical transport equations.

The so-called two-component spin-drift-diffusion model (SDDM) is a simple semiclassical and 
straight-forward method for spin transport modeling. The semiclassical spin-transport approaches include 
the spin Boltzmann equation (spinor-BTE), the Bloch equations, and Monte Carlo methods (MCM). 
Some semiclassical models, (e.g., SDDM) are derived from quantum approaches, using the so-called 
semiclassical limit (EL Hajj, 2008). On the other hand, some semiclassical approaches are extended to 
include quantum transport features. For instance, the classical Bloch equations of spin magnetization 
transport have been utilized by Buot, Loberternos & Villarin (2012) to develop a transport equation for 
the nonequilibrium spin magnetization quantum distribution function (SMQDF). By taking the macro-
scopic moments of the equation of motion of the SMQDF, we can get a density-matrix based version of 
the SDDM. However, there exist some quantum models of spin-transport, which include the full quantum 
description, using the kinetic transport equation of density matrix as well as the NEGF.

One approach that is totally free of phenomenological parameters is density-functional theory (DFT), 
as well as its spin-density-functional (SDF) generalization. Like DFT, the SDF is based on Kohn-Sham 
theory (1965) and the many-body quantum effects are buried in an exchange-energy functional. Al-
though DFT & SDF theories are theoretically exact, their application requires some approximation of 
the exchange energy. Approximate forms for this functional can be partially phenomenological and are 
normally based on microscopic calculations of correlation effects in the electron-gas model system. 
This is the case for the local-(spin-) density approximation (LSDA). In practice LSDA theory may be 
considered as a mean-field theory in which the exchange energy increases with the self-consistently 
determined local spin density.
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It should be noted that both semiclassical (phenomenological) and full quantum approaches can be 
used to study ferromagnetism in magnetic semiconductors, and (III,Mn)V compounds in particular. For 
instance, LDA+U scheme (Anisimov et al. 1991) and self-interaction-corrected LSDA schemes have been 
used to obtain energy spectra and to understand the microscopic origin of ferromagnetism in (III,Mn)
V alloys. There are also theoretical research on (III,Mn)V DMS materials based on simpler models in 
which holes are assumed to hop between Mn acceptor sites, where they interact with Mn moments via 
phenomenological exchange interactions. The so-called model Hamiltonian theories are also important 
because they sometimes provide more physical insight of ferromagnetism and enable predictions of trans-
port properties that are sometimes beyond the reach of full quantum methods. The model Hamiltonian 
theories will be discussed in the following section, in addition to the semiclassical methods.

5.1 Quantum Description of Spin Transport

In general, the electron wavefunction has a spin-up and spin-down components, called spinors:

ψ(x) = [ψ↑(x), ψ↓(x) ]T (10a)

Note that the spinor components should be normalized such that:

ʃ (|ψ↑(x)|2, |ψ↓(x)|2)dx= 1 (10b)

A quantum state of an electron with spin can be described by the density matrix operator, ρ, which 
is related to the wavefunction components (or spinors ψ↑ and ψ↓) as follows:

ρ
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The relative phase of the spinor components determines the spin direction, according to <S> = ½ 
ħ <ψ(x)| σ |ψ(x)>, where the vector σ is called the Dirac spinor, which has three components, called 
Pauli matrices:
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Note 2: Pauli Matrices and Dirac Spinor

The Pauli matrices are a set of three 2×2 matrices usually indicated by the letter sigma (σ). They are 
given by:
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Pauli matrices must satisfy the following conditions: σi σi = I, σi σj = - σj σi,
In quantum mechanics, Pauli matrices occur in the Pauli equation which takes into account the in-

teraction of the spin of a particle with an external electromagnetic field. The Pauli matrices obey the 
following commutation relations:

σ σ ε σ
a c abc c

i,

 = 2 and ant-commutation relations: σ σ δ

a b ab
I,


 = 2 . 

Spinors are elements of a complex vector space that can be associated with Euclidean space. Like 
vectors and tensors, spinors transform linearly when the Euclidean space is subjected to a small rotation. 
The most famous type of spinor, is the Dirac spinor. The Dirac spinor is sometimes called the Pauli spin 
vector or shortly spin vector. It is defined as: σ = (σ x, σ y, σ z)

The interaction of the spin with the local magnetic field can be calculated by the Zeeman relation 
(2c), as follows:

HZ = μσ.B = ½ħ gs μBσ.B (13)

where μB is the Bohr magneton, gs is the spin g-factor and σ = (σ x, σ y, σ z) is the Dirac spinor whose 
components are the Pauli matrices. A second interaction arises as relativistic correction to the motion 
of the electron in an electric field. This is the spin-orbit interaction, which has the general form:

H
m c

Vxp
so

o

= ∇( )⋅�2

2 24
σ  (14)

where m0 is the free electron mass, c is the speed of light at vacuum, V is the electric potential, p rep-
resents the canonical momentum and σ = (σx, σy, σz) is the Pauli spin vector. In presence of an external 
magnetic field B (where B=∇xA and A is the magnetic vector potential), the momentum p should be 
replaced by the kinetic momentum p + e.A.

In the case of atoms in a specific solid, the spin orbit interaction refers to the interaction of the electron 
spin with the average Coulomb field of the nuclei and other electrons. In addition to the SOI resulting 
from the lattice-periodic crystal potential there is a SOI corresponding to external and built-in electric 
fields that may be present in the system. The SOI resulting from external or built in electric fields is 
usually referred to as the Bychkov-Rashba spin-orbit interaction. In what follows, we assume that the 
SOI due to the crystal potential has been incorporated into the band structure (by replacing mo with the 
effective mass m*) and we focus on the effect of external and built in electric fields on the spins of the 
conduction electrons.
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Spin Hamiltonian

Most of spintronic devices which are utilizing spin-orbit interaction, make use of low-dimensional struc-
tures. In this case, the motion of electrons is typically confined by an effective potential in the direction 
orthogonal to the active magnetic material interface. We consider here a two-dimensional gas (2DEG) of 
non-interacting electrons with effective mass m*. The effective mass Hamiltonian for an in-plane electron 
motion in the one subband approximation can be written as follows (in the presence of magnetic field):

H
m

p eA V r B= +( ) + +
1

2

2

*
( ) . ,µ σ  (15a)

where (p+ eA) is the kinetic momentum and the electron spin is described by the Pauli spinor σ. Also 
μ = ½γ.μB is the magnetic moment and γ is the effective gyromagnetic ratio. The electrostatic potential 
V(r) defines the system confinement. This Hamiltonian may be also written as:

H
m

V H
SO

= + +
p

r
2

2 *
( )  (15b)

where HSO is the spin-orbit interaction (SOI) Hamiltonian, which arise in Dirac’s equation and is given 
by equation (14)

The potential, V(r), corresponds to the interaction with in-plane electric fields. The spin-orbit inter-
action term, HSO, can be written in a general dyadic form, which is linear in electron momentum. This 
term is assumed small in comparison with other terms in the Hamiltonian. However, Hso may contain 
terms like the Elliott-Yafet, D’yakonov-Perel or Rashba spin-orbit coupling mechanisms.

For motion in a two-dimensional electron gas (2DEG) of electrons, the effect of quantum well asym-
metry (Rashba term) may be incorporated as follows:

HR = α (kxσx - keψ) (16a)

where α is a coupling constant. This effect is isotropic with respect to crystallographic axes. The effect 
of crystal inversion asymmetry (Dresselhaus term) may be also added as follows:

HD = β (kyσx - kxσy) (16b)

This effect is anisotropic with respect to crystallographic axes. The constants α and β are generally 
electric field dependent.

Equation of Motion for Spin Density Matrix

We have seen so far that a quantum state of an electron with spin can be described by the density matrix 
operator, ρ, which can be related to the wavefunction components (or spinors ψ↑ and ψ↓) by equation 
(11). Alternatively, the density matrix operator, ρ, can be related to the electron spin polarization vector 
P, as follows (Ivchenco et al., 1990):
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The equation of motion for spin density matrix is given by:
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Note that the density matrix ρ = ρ(r,r′, s,s′,t) is dependent on two coordinate variables and two 
spin variables. After the transformation to new spatial variables, R= ½ (r+r’) and ΔR= ½ (r++r’), we 
get the above equation.

The effect of spin-orbit interaction is introduced by the last two terms. The square and curly brackets 
[σ,…] and {σ,…} are commutator, and anti-commutator with the Pauli spin matrixes, respectively

Spin Magnetization Quantum Distribution Function (SMQDF)

The spin magnetization quantum distribution function (SMQDF) should have a spinor correlation func-
tion which separates into charge and spin magnetization distributions as follows (Saikin, Pershin & 
Privman, 2005):

W = ½ (Wn I +Wσα.σα) (19a)

where the velocity

vj = ½ (vn 
jI +vj

σα.σα) (19b)

The spin Wigner distribution function can be obtained by the following Wiley transformation of 
density matrix to the Wigner function:

Wss’(R, k, t) = ʃ ρ(R, Δr, s, s’, t).exp(-jk.Δr).d2Δr. (20)

SMQDF Transport Equation

Assuming that the potential, V(r), varies slowly and smoothly with the position r, we obtain the transport 
equation for a single electron with spin
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The initial terms in the left-hand side of the above equation consist of the Boltzmann transport equation 
(BTE) with spin-orbit coupling in a magnetic field, in addition to the spin-dependent scattering effects.

At the right hand side of the above equation, we see the scattering term, (∂W∂/t)col, which is respon-
sible for interactions of an electron with phonons and non-magnetic impurities.

(∂W∂/t)col = ʃ S(k,k’).[W(R,k’,t) - W(R,k,t)]d2k’ (22)

where S(k,k′) is the scattering rate for electrons without spin. 

5.2 Spin Hydrodynamic Model (SHDM)

In order to get the macroscopic spin transport equations we take the moments of the SMQDF transport 
equation. Then we get relations for the particle density, spin density, particle current density, and spin 
current density (Saikin, 2004).

n W d k
n n
= ∫ 2  (23a)

n W d kσ αα
σ= ∫ 2 (23 b) 
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j= +∫ ( )σ σα α

2  (24a)

J v W v W d kj
n
j j

nσ σ σα α α
= +∫ ( ) 2  (24b)

The particle and spin conservation equations are obtained by multiplying by the powers of V or k 
and integrating over the electron wave vector
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With the following constitutive equations
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Note that the collision term is expressed using the relaxation time approximation. After solving these 
equations, we obtain the particle current density and spin current density

6. SEMICLASSICAL SPIN TRANSPORT MODELS

The semiclassical approaches for modeling the spin transport have been detailed in the literature, e.g., 
Pershin, Saiken and Privman (2008), Ben Abdalla & EL-Hajj (2009), EL-Hajj (2014), as well as Ansgar 
Jungel, Shpartko & Zamponi (2016). These semiclassical approaches are almost all based on the so-
called spinor-BTE or the Bloch equations for spin transport and sometimes the Landau-Lifshitz equation 
(Landau & Lifshitz, 1935).

6.1 Spinor-BTE

The spinor-BTE is semiclassical equation (like the BTE) with special collision operators, to model the 
spin-polarized, electron transport in ferromagnetic structures. The collision operator is usually expressed 
as a 2x2 matrix that accounts for spin-up and spin-down scattering rates (Possanner & Negulescu, 2011).

6.2 Bloch Equations

The classical Bloch equations for spin transport are the analogue of the classical BTE for charge-carrier 
transport. They were originally invented (by Felix Bloch in 1946) as a spin and magnetization transport 
model, in the context of nuclear magnetic resonance (NMR). The Bloch equations are actually a set of 
phenomenological equations that are used to calculate the nuclear magnetization M(t) in the presence of an 
applied magnetic field B(t). Sometimes, they are called the equations of motion of nuclear magnetization.

The classical Bloch equations for spin systems are usually expressed in the diffusive regime as fol-
lows (Buot, 2009):
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where M(t) =(Mx,My,Mz) is the nuclear magnetization, γ is the gyromagnetic ratio and B(t)=(Bx,By,B0z+ΔBz) 
is the magnetic field experienced by the nuclei. Also, T1 and T2 are relaxation times. Actually, T1 is called 
spin longitudinal relaxation time and T2 is called spin decoherence (or dephasing) transverse relaxation 
time.

The T1 relaxation occurs when a spin exchanges energy with lattice (spin-lattice interaction). Quan-
titatively, the decay of Mz is given by the Bloch equation (25c). Integrating this equation with Mz(0) = 
-M0 gives:

Mz(t) = M0 [1 - 2 exp (- t/T1) ] (27d)

The T2 relaxation is a spin-spin relaxation mechanism. It is the process by which the transverse com-
ponents of magnetization (Mxy) decay or dephase. As originally described by Felix Bloch, T2 relaxation 
follows a simple exponential decay with time constant T2. Thus T2 is the time required for the transverse 
magnetization to fall to about 37% (1/e) of its initial value. Figure 18 illustrates the spin relaxation times 
on the Bloch sphere5

Note that in solids T2<<T1. The z component of the magnetic field B is sometimes composed of two 
terms:

• A constant in time term, B0z,
• A time dependent, term ΔBz(t).

Figure 18. Spin relaxation times on the Bloch sphere
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The later term is present in magnetic resonance imaging (MRI) and helps in spatial decoding of the 
nuclear magnetic resonance (NMR) signals. Also, M×B is the cross product of the two vectors. M0 is 
the steady state nuclear magnetization (when t → ∞); and it is usually in the z direction.

6.3 Spin Drift-Diffusion Model (SDDM)

The drift-diffusion approximation is the simplest and straightforward method for spin transport mod-
eling. Like the drift-diffusion model (DDM), the spin transport is composed of the carrier continuity 
equations, but with two-components to account for spin-up and spin-down6. According to Shafir, Shen 
& Saikin (2004), the model can be formulated as follows:

e ∂n
↑

 /∂t =∇.Jn↑ + ½ e (n
↑

 - n
↓

)/τsp + eS
↑

 (28a)

e ∂n
↓

 /∂t =∇.Jn
↓

 + ½ e (n
↓

- n
↑

)/τsp + eS
↓

 (28b)

with the following current constituent equations:

Jn = Jn↓ + Jn↑ (28c)

Jn↑= e n
↑

 μnζ + e Dn ∇n
↑

 (28d)

Jn↓= e n
↓

 μnζ + e Dn ∇n
↓

 (28e)

Here, n
↑

 and n
↓

 are the spin-up and spin-down electron densities, Jn↑ and Jn↓ are the corresponding 
electron current densities and τsp is the spin-relaxation time. Also S

↑
 and S

↓
 are the spin-up and spin-

down polarization sources (spin net generation rates) and other terms have their conventional meaning. 
We assumed here that the mobility and diffusion coefficient as well as the spin-relaxation time of spin-up 
and spin-down electrons. The above equations should be coupled with the Poisson equation:

ε∇.ζ = e (Dop – n) (29)

where n = n
↑

 + n
↓

 is the total electron density and Dop is the net doping concentration. This model is 
valid when the spin-dephasing time is shorter than studied times. An alternative approach for modeling 
the spin transport is to add the following polarization equation to the conventional drift-diffusion model.

∂P’/∂t =D∇2P’ + (eD /kBT)∇.(ζ.P’) + (S
↑

 - S
↓

) – P’/τsp (30)

where the spin polarization density P’= n
↑

 -n
↓

 can be added or subtracted from the total electron density, 
n = n

↑
 + n

↓
, to obtain the density of spin-up and spin-down electrons.

In the literature, there have been extensive studies on the spin lifetime and spin diffusion length in 
both n- and p-type semiconductors under a wide range of doping concentrations, temperatures, with 
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different ferromagnets and barriers. For instance, the spin relaxation time, τsp is temperature dependent 
(τsp ∝ Τ1/2), as shown in Figure 19. Elliott has shown that the electron spin relaxation time τsf in semi-
conductors is related to the momentum relaxation time τ, as indicated in equation (5), for Elliott–Yafet 
spin relaxation mechanism.where En is the electron energy and Δso is the spin-orbit energy gap. Thus, τsp 
is important for small-gap semiconductor with large spin-orbit splitting (e.g. InSb). The spin relaxation 
time also depends on the magnetic field, according to the following relation:

τsp(B) =τsp(0).[1 + (ωcτmn)
2] (31)

where ωc =(e B/mn*) is the cyclotron resonance frequency.

6.4 Spin-Monte Carlo Approach

The spin transport can be incorporated into Monte Carlo simulation of charge carriers as spin polariza-
tion vector or spin density matrix for each simulated carrier (Saikin et al., 2003). This is illustrated in 
the figure 18.

In the latter case, the spin density matrix of the ith particle evolves coherently, during the free flight, 
as follows:

ρi(t+δt) = exp [-jHs/ħ] . ρi (t). exp [+jHs/ħ] (32)

Figure 19. Spin relaxation time in Si as a function of temperature
After Fabian et al.
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where δts = −ln r/Γ, and r is a random number between 0 and 1, while Γ is the total scattering rate in-
cluding the self-scattering rate. Also, HS is the (spin-dependent) Hamiltonian, which is assumed constant 
for short time steps, and it changes, instantaneously, during spin scattering events. Therefore, the spin 
dynamics of a single electron spin is coherent during the free flight. However, stochastic momentum 
fluctuations due to electron scattering events produce the distribution of spin states, thus causing effec-
tive dephasing at times t > 0.

The Monte Carlo simulation approach has been successfully applied for investigation of the spin 
polarized transport properties in 1D and 2D semiconductor structures in the presence of electric field. 
The flowchart of the Monte Carlo simulation including spin transport is illustrated in figure 19. Also, 
figure 20 depicts the spin relaxation process, upon the application of spin injection, with applied electric 
field of 1kV/cm at 77K.

7. SPINTRONIC DEVICES

Traditional electronic devices use the electronic charges for amplification and switching. An alternative 
way for information coding is to use the electron spin. The category of electronic devices which make 

Figure 20. (a) Flowchart of Monte Carlo simulation including spin transport; (b) Monte Carlo simula-
tion of spin polarization injection and relaxation via a Schottky contact
After Shen et al (2004).
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use of spin properties is called spintronic devices. Spintronics devices usually incorporate magnetic 
materials, as they possess more electrons with one spin direction than the other. The spintronic devices 
allow the control of functionality by spin-orbit and magnetic interaction. Different designs of transistors 
and spin-filtering devices utilizing control for the spin polarization in semiconductor structures have 
been proposed.

The first generation of spintronics, utilized giant magnetoresistance (GMR) and tunneling magne-
toresistance (TMR) in ferromagnetic-metal structures such as GMR heads with high magnetic storage 
density. The 2nd generation of spintronic devices integrates magnetic materials with semiconductors to 
extend the benefits of spin to the wide electronic industry. One of the major challenges in developing 
the 2nd generation of spintronic devices was the synthesis of high quality spintronic materials with Curie 
temperatures above room temperature and similar electrical conductivity like semiconductors. In com-
parison with magneto-electronic devices utilizing GMR and TMR, semiconductor spintronic devices 
promise to be more universal in application due to the ability to adjust a potential variation and spin 
polarization in an active region of spin devices by external voltages and doping profiles. We present 
here a quick review of some demonstrated and actual spintronic devices.

7.1 Giant Magnetoresistance (GMR)

The giant magnetoresistance (GMR) is a large change in resistance that is observed in ferromagnetic/
paramagnetic multilayer structures. GMR effect was first discovered in 1988 by the groups of Peter 
Grunberg and Albert Fert7. In the simplest case, GMR utilizes thin non-magnetic metal (typically Cu), 
sandwiched between two ferromagnetic metal layers (typically Co or NiFe). However, the ferromagnetic 
layers may be replaced with the so-called ferromagnetic semiconductors, such as Mn-doped GaAs. Ini-
tially, the GMR phenomenon has been interpreted in terms of spin-dependent scattering. A more accurate 
explanation is based on the density of states in ferromagnets, in which the density of states is different 
for spin-up and spin-down electrons (Parkin, 2004).

The GMR phenomenon is exploited in read heads of some hard disk drives, as shown in Figure 21. 
It should be noted that when a current is injected perpendicular to the planes of a ferromagnet metal 
multilayer system (spin valve), it produce dynamical magnetic states in the thin magnetic layers. De-
pending on the magnitude of the injected current, precession or complete reversal of the magnetization 
is observed. The underlying effect is called spin-transfer-torque (STT).

Figure 21. Illustration of the GMR effect and its use in read heads of hard disk drives
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7.2 Magnetic Tunnel Junctions (MTJ)

The magnetic tunnel junction (MTJ) is based on the so-called tunneling magnetoresistance (TMR) ef-
fect. This is a quantum mechanical tunneling of spin-polarized electrons through a very thin dielectric 
(Binasch, 1989). The MTJ consists of a thin insulating layer (tunnel barrier) sandwiched between two 
ferromagnetic electrodes (FM1, FM2) and exhibits tunnel magneto-resistance (TMR). The MTJ is an 
important building block in many spintronic devices and usually exploited to study the fundamental 
physics of spin dependent tunneling. Since the 1995 discovery of room-temperature TMR, the MTJs with 
an amorphous Al2O3 tunnel barrier have been studied extensively. Such MTJs exhibit magnetoresistance 
(MR) ratios up to about 70% at room temperature. The figure 22 depicts TMR effect in an MTJ.

Note that. D1↑ and D1↓ are the density of states at the Fermi level (EF) for the majority-spin and 
minority-spin bands in the first electrode (FM1), and D2↑ and D2↓ are the density of states at EF for the 
majority-spin and minority-spin bands in the second electrode (FM2). Therefore, the polarizations in 
the two electrodes are P1= (D1↑ - D1↓) / (D1↑ + D1↓) and P2 = (D2↑ - D2↓) / (D2↑ + D2↓). 
The TMR ratio is then defined as:

TMR = (RP - RAP)/RP ≈ 2P1P2 / (1 - P1P2) (33)

where RP and RAP denote the parallel and anti-parallel polarization resistances, respectively. Recently, 
ferromagnetic CoFe alloys which are made amorphous by the addition of boron have gained special 
interest because MTJs incorporating them show high TMR values at room temperature. However, the 
thickness of layers in an MTJ are on the order of 1–2nm, which requires very precise characterization 
tools for their proper implementation. Nowadays, MTJ are used in read-heads of hard disk drives as well 
as magnetic sensors and magneto-resistive RAM (MRAM) devices.

Figure 22. Illustration of the TMR effect: (a) magnetizations in the two electrodes are aligned parallel 
(P-state); (b) magnetizations are aligned antiparallel (AP-state)
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7.3 Magnetic RAM (MRAM)

Magnetic random access memory (MRAM) is a sort of nonvolatile memories, which stores information 
bits by the magnetization of small ferromagnets. MRAM typically employs magnetic tunnel junctions 
(MTJs) as storage elements (Akerman, 2005). Figure 23 depicts the structure of a typical MRAM. As 
shown, the MRAM is physically similar to the DRAM, although it does not require a transistor for the 
write operation. MRAM cells are designed to have two stable states that correspond to high or low 
resistance values and retain those values without external power. The current sent through the MRAM 
cell creates a magnetic fields and a corresponding torque; called the spin transfer torque (STT). If this 
torque is strong enough it can rotate the magnetization. In fact, the coupling between the magnetic and 
spin is achieved in the magnetic tunnel junction (MTJ) at the quantum level.The figure 24 shows the 
hysteresis loop in the magnetoresistance (R) of the MRAM cell, as the magnetic field (H) changes. The 
MRAM cells are read by sensing the resistance to determine if the state is high or low, while the writ-
ing is carried out by the magnetic field generated from the current flow in the bit and word lines. The 
above described memory is usualy called spin transfer torque MRAM or STT-MRAM. The STT-MRAM 
devices retain the state of the memory cell when power is turned off, in contrast to the volatile memory 
in standard DRAM devices. Also, MRAM should consume a negligible amount of power, in contrast to 
the steady drain of semiconductor DRAM.

7.4 Spin FET

The spin Field Effect Transistor (spin-FET) is a three terminal non-conventional charge spin-based, de-
vice which is similar to the semi-conductor MOSFET. Although the device structures are similar, their 
operating principles are quite different. The main feature of a spin-FET is its current drivability by the 

Figure 23. Magnetic RAM (MRAM) cell and array structure (below) and circuit diagram (right)
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magnetization of the ferromagnetic electrodes. The spin-FET has passed many phases of development 
since its invention (Datta & Das, 1990).

Figure 25 depicts the basic structure of spin-FET. The source and drain are ferromagnetic and the 
transport channel is a two-dimensional electron gas (2DEG). When the source and drain magnetizations 
are parallel and gate voltage VG=0, the channel resistance is low and the transistor is conducting (ON 
state). Applying a gate voltage VG, rotates the spin via Rashba and Dresselhaus spin-orbit interactions. 
At a particular gate voltage, the spins are rotated by 180o resulting in high resistance and the transistor 
is not conducting (OFF state).

The spin drift-diffusion model (SDDM) can be applied to model the spin relaxation rate in non-
ballistic spin-FET. During the operation of this device, the spinning electrons will suffer from the Rashba 
interactions in the channel, that is formed beneath the gate. Transport of spin density along the channel 
in this case can be described by the exponential decay

P(x) = Po.exp [- x / λs ] (34a)

where the spin coherence length in the channel can be approximated by the following relation (Shafer,Shen 
& Saikin, 2004):
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Figure 24. Hysteresis loop of the MRAM cell, with TMR effect
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where ζ is the applied electric field, D is the diffusion constant of electrons and m* is their effective 
mass. Also, α and β are the coupling coefficients of the spin-orbit interactions, due to Rashba and Dres-
selhaus, respectively. If these coefficients are not equal, then electron spin polarization will decrease with 
distance, along the channel. This can be controlled by the gate voltage, because the spin-orbit coupling 
coefficients depend on the perpendicular electric field in the channel. At the drain side, which is usu-
ally made of ferromagnetic material, the current will change according to the spin polarization value.

In addition to its utilization in electronic systems, the Spin-FET has been utilized as an analysis tool 
to study spin relaxation mechanisms and other phenomena in low-dimensional semiconductors. For 
instance, Parmanik, Bandyopadhyay & Cahay (2005) have studied the D’yakonov–Perel spin relaxation 
mechanism in the channel of a spin-FET and showed that it can be completely eliminated if the channel 
is a quantum wire and transport is strictly in a single mode.

Figure 25. Schematic illustration of the spin-FET operation

Figure 26. Structure and operation of the heterojunction spin-FET
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7.5 Spin Bipolar Transistor

Bipolar spintronic devices refer to semiconductor devices, which are based on the spin-polarized transport 
of both electrons and holes. The general theory of magnetic bipolar devices was developed by Fabian, 
Zutic, & Das Sarma (2002), Lebedeva & Kuivalainen, (2003) and Flatte et al., (2003) as well as Fabian 
and Zutec (2005). The spin bipolar transistor is a three-layer, three-terminal, device similar to some extent 
to the semiconductor bipolar junction transistor (BJT). The emitter and collector layers of the spin bipolar 
transistor are ferromagnetic films with magnetization M whose direction can be externally manipulated. 
The base layer is a nonmagnetic metal, such as gold (Au), copper (Cu) or silver (Ag). Figure 27 shows 
a schematic of the structure of the spin bipolar transistor and its energy band diagram in active mode.

As shown in figure, we first consider the active mode of operation, where a forward current flow across 
the emitter-base (E-B) junction. Part of the emitter current is returned, from the base layer, and another 
major part is injected to the collector side. The band structure of the ferromagnetic emitter is such that 
the emitter current is carried primarily by electrons of one spin subband. Thus, the electric current is a 
spin polarized current. There is an associated current of magnetization IM = μB.(le/e). You can think of the 
emitter as a reservoir of electrons that carry charge and spin. According to the law of detailed balance, 
the emitter can exchange particles with the nonmagnetic base layer only if those electrons are of specific 
spin (e.g., spin-up). Thus, the electric current carried into the base is also spin polarized. Also, current 
conservation requires that electrons be drawn out from the base at the same rate that other electrons 
are added at the E-B junction. Near this junction, there is a surplus of spin-up electrons. Therefore, the 
conduction electrons move diffusively, to the collector side, where they attracted by the base-collector 
bias. The ratio of injected spin density in the collector is much smaller than the density of the source 
spin in the emitter side, due to collisions and recombination in the base. However, the change in spin 
polarization at the collector may be significant, according to the following relation:

ΔPc = Pob. γbe . γbc . (noB/NC) . exp[Vbe / VT] (35a)

Figure 27. Structure of the spin-bipolar transistor and its band diagram



565

Electronic Spin Transport
 

where VT = kBT/e is the thermal voltage, Pob is the equilibrium polarization at the base and γbe and γbc are 
constants expressing the diffusion constants of the excess spin within the emitter (γbe~WE /λse) and at the 
edge of collector (γbc~λsc / WB). Also noB is the equilibrium electron density in the base:

noB = (ni
2/NB)/√(1−Pob

2),  (35b)

Now, it is possible to prove that the magnetoamplification is proportional to √(1−Poe)/(1−Pob
2), and 

the current gain is given by (Lebedeva and Kuivalainen, 2003):

β = IC/IB = βo.√(1−Pob) /(1−Poe
2) (35c)

where βo ≈ (NE/NB).(λsc/λse). The transistor current gain can be then controlled by the equilibrium mag-
netizations in the emitter or the collector.

It should be noted that there exist a variety of spin bipolar transistors. For instance, the Figure 28 
depicts the structure of the magnetic tunnel transistor, which uses spin filtering in a spin-valve base 
layer to produce changes in collector current depending on the NiFe and CoFe base moments. Note the 
presence of an Al2O3 layer, which provides a potential barrier between the metal ferromagnet and the 
semiconductor. This layer solves the impedance mismatch problems, which prevent spin injection from 
a metal to a semiconductor.

The so-called magnetic bipolar transistor or MBT is entirely made of semiconductors, while the 
active (base) region is a magnetic semiconductor (Fabian, Zutic, & Das Sarma, 2004). In such spin 
bipolar transistors, the source of a nonequilibrium spin may be from electrical spin injection or optical 
spin orientation, and the magnetic control of magneto-amplification is typically achieved through the 
equilibrium spin. However, new effects may appear from the interaction of the equilibrium and non-
equilibrium spins, when they are in an electrical contact. This interaction, gives rise to the spin-voltaic 

Figure 28. Band structure of the magnetic tunnel transistor
After Parkin (2004).
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effect and the giant-magneto-amplification (GMA), which is controlled by the relative orientation of 
equilibrium to nonequilibrium spins (Fabian & Zutic, 2004).

7.6 Spin Photonic Devices

The prospects for new devices, based on DMS materials in which the spin and other ferromagnetic 
properties can be controlled by light have motivated research in the so-called spin-photonic devices. For 
instance, the spin injection and extraction can be exploited in such spin photonic devices. The Figure 29 
depicts the structure of spin solar cell and spin photodiode. The spin solar cell generates electric cur-
rent, when exposed to light radiation, by the spin tunneling effect, from an n-type semiconductor to a 
semiconductor ferromagnet. In the case of photodiode, the photocurrent is driven by spin injection from 
a ferromagnet. The Figure 30 depicts the structure and operation of the spin LED. Note that recombina-
tion of singlet8 excitons (e-h pairs) results in radiative emission of photons (light).

In addition to the above mentioned spin-photonic devices, the magneto-optic coupling effects have 
helped a lot in studying DMS materials and their optical properties. For example, the absorption in 
(Ga,Mn)As occurs in the visible range and the position of its edge on the frequency axis depends on the 
circular polarization of incident light. Analysis of this magneto-optical effect provided information on 
the p-d exchange-induced band splitting and on doping in DMS materials (Dietl, 2002).

7.7 Plastic Spintronics

Organic (or plastic) electronics uses conducting organic materials in electronics applications. The ma-
terials we call plastics are organic materials, which consist mostly of carbon and hydrogen. Most of the 
studies in spintronic devices have been performed on metallic systems (GMR, metallic spin valves), 
tunneling insulators (MTJ) and inorganic semiconductors (e.g. Si and GaAs). Organic semiconductors 
are relatively new entrants in the domain of spintronics. During the last decade, a great effort has been 
exerted to understand the mechanism of spin injection and transport in organics. Organic semiconduc-
tors are believed to be very interesting candidates for Spintronics applications because of the predicted 
long spin lifetimes and low implementation cost.

Figure 29. Schematic diagram showing the operation of spin solar cell and spin photodiode
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Note 3: History of Plastic Spintronics

In the late 1970’s, it was shown by Alan Heeger, Kideki Shirakawa and Alan Macdiarmid that certain 
plastics or organic materials can conduct electricity. This discovery was rewarded with the Nobel Prize 
in Chemistry in 2000, and was the start of the huge research field of organic electronics.

A great boost came in 1987 when the first organic light emitting diode (OLED) was demonstrated, 
showing that organic materials can be used for producing light. Organic solar cells are another promising 
application. Although their efficiency is still much lower than that of their inorganic counterparts they 
are much cheaper and allow production in large volumes. As both organic electronics and spintronics 
offer many advantages and possibilities, the combination of the two fields seems to be a logical step. On 
the one hand, by using spins in organic electronics, new functionalities can be added to existing organic 
devices. On the other hand, organic materials can be employed in spintronics applications, benefitting 
from their low cost, as well as ease of processing. The first report on electrical spin injection and trans-
port in organic semiconductor thin films appeared in 2002 and since then these materials have attracted 
significant interest

One of the main questions regarding spin transport in organic materials is about the origin of the 
processes that determine the spin relaxation time and spin diffusion length. Are they caused by the 
spin–orbit interactions or do other processes dominate. Recent experiments confirmed the dominant 
role of hyperfine fields in determining the spin-diffusion length in organic materials (Wu et al, 2007). 
The Figure 31 depicts the spin of a polaron (S) on a pentacene molecule and how it interacts with the 
hyperfine fields from H2 nuclei. As shown, the polaron spin precesses around the hyperfine fields from 
surrounding H2nuclei and the external magnetic field (B).

According to Geng (2016), the research on organic spintronic phenomena during the last few years 
has been concentrated on three axes, namely:

• Magnetic field effect in organic light emitting diodes (OLED), where spin mixing between singlet 
and triplet polarons can be influenced by an external magnetic field leading to organic magneto-
resistive effect

• Magnetoresistance in organic spin valve, where spin injection, transport, and detection can be 
demonstrated, and

• Magnetoelectroluminescence or spin-OLED. Here, the spin polarized electrons and holes are in-
jected into the organic semiconductor layer, leading to the dependence of electroluminescence 
intensity on relative magnetization of the ferromagnetic electrodes.

Figure 30. Structure and operation of the spin LED
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Figure 32 shows the structure and operation of an OLED. The OLED displays have already been 
launched in the market as displays for TV’s and smart phones. An OLED is basically a p-n junction 
where the p- and n-layers are made of organic semiconductors. Under forward bias, the electrons injected 
from the n-layer and the holes injected from the p-layer form a cloud of excitons around the junction. We 
remember that excitons may be singlet (spin) or triplet (spin). The singlet excitons decay rapidly, emit-
ting photons (light) but triplet excitons decay slowly, emitting phonons (heat). Therefore, the population 
ratio of singlet to triplet excitons determines the quantum efficiency of the OLED. Beside the exciton 
formation efficiency (ηr), there exist other factors that determine the external quantum efficiency (ηext) 
of an OLED, namely:

1.  Ratio of electron and hole injection, transport, and recombination (ν),
2.  Internal electroluminescence quantum yield (φp), and
3.  light out-coupling efficiency (ηp)

These parameters ae illustrated in Figure 32, as explained in (Adachi & Nakanotani, 2009).
The spin effects can be exploited to boost the internal quantum efficiency of the OLED. This is done, 

if spin polarized electrons and holes are injected in the OLED from a ferromagnetic electrode; and that 
is the spin-OLED. The spin polarized electrons and holes are injected into the energy levels of an or-
ganic emissive layer, causing electroluminescence (EL). The spin OLED are inexpensive with respect 
to conventional LEDs, and can be produced on flexible substrates. Figure 33 depicts the structure and 
operation of a spin OLED.

Note 4: Polaron-Pair (PP) Model

There are several polaron-pair (PP) models which are used to explain the evolution of singlet and triplet 
excitons in organic materials. For instance, the PP model of Ehrenfreund et al. (2012) is based on the 
evolution of PP spin subenergy levels, in presence of magnetic field. It is assumed that the PP excita-
tions are immobile, hence PP diffusion is ignored, but the overall rate of PP decay (through exciton 
recombination and/or dissociation into free polarons that contribute to the device current) is taken into 
account. The steady state singlet fraction of the PP population is then calculated from the coherent 
time evolution of PP wavefunctions subject to the above interactions. The spin Hamiltonian includes 

Figure 31. Illustration of the spin of a polaron on a pentacene molecule
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exchange interaction, hyperfine field and Zeeman terms. The calculated magneto electroluminescence 
(MEL) response is then expressed as a weighted average of the singlet and triplet PP. This may be carried 
out by Monte Carlo Simulation, as indicated in section 6.4. The relevant time evolution of the singlet-
triplet inter-mixing that determines the steady state PP population is obtained in the model via the time 
dependent density matrix, ρ(t).

Figure 32. Structure and operation of OLED under bias. White dots are holes and dark blue dots are 
electrons. The arrows represent the light that penetrates the indium tin oxide (ITO)–glass substrate 
to air. Alq3 is tris (8-hydroxyquinoline) aluminum; TPD is N,N´-diphenyl-N,N´-bis (3-methylphenyl)- 
(1,1´-biphenyl)- 4,4´-diamine

Figure 33. Structure and operation of the spin OLED



570

Electronic Spin Transport
 

7.8 Carbon-Based Spintronics

We know that carbon exists in many allotropes, among which graphene (graphite sheets) and carbon 
nanotubes CNTs (rolled sheets of graphene) are the most famous examples. These forms combine low-
dimensionality (e.g., CNT is Q1D) and can be produced with high purity, allowing access to several 
exotic quantum phenomena.

From the point of view of Spintronics, both CNTs and graphene offer long spin coherence times, 
meaning that spin-encoded information can be easily retrieved after processing. The current diffusion 
length in graphene is in the order of 4 microns at 300K. Due to its long spin coherence length at room 
temperature, graphene is an ideal candidate for nanodevices. The possibility of spin transport at room 
temperature and to tuning the transport properties of graphene by electrostatic gates makes it an attrac-
tive material for spintronic applications (Geim, 2009).

In addition to the unusual electronic and optical properties of graphene, the low-energy electrons have 
two distinct spin states, namely: valley and pseudospin. This arises from the energy band structure of 
low-energy electrons in graphene, which is featured by two equivalent valleys (at the two equivalent K 
points). The emerging domains of Valleytronics and Pseudospintronics will offer unprecedented capabili-
ties to exploit and manipulate spin transport in graphene nanostructures and nanodevices (Ang, 2014).

The electronic transport properties of graphene can be controlled by the application of external electric 
or magnetic fields, or via the setup of specific graphene topology. Figure 35 is a schematic illustration of 
a graphene spin FET transistor. The device consists of ferromagnetic metals as source and drain which 
are connected to the graphene channel. The ferromagnetic source and drain are for spin polarized injec-
tion and detection, respectively. However, the spin rotation in the graphene channel is dependent on the 
electron exchange interaction with the ferromagnetic dielectric (FMD) layer which is placed between 
the gate electrode and the channel in place of the Bychkov-Rashba effect, which is strongly dependent 
on spin-orbit coupling. This exchange interaction can be treated as an effective magnetic field. If an 
external electric field is applied normal to the graphene sheet via the gate, the exchange interaction can 
be adjusted, which in turn will influence the spin rotation angle thus, the drain current

Figure 34. Schematic of spin transport in graphene, deposited on a magnetic substrate of yttrium iron 
garnet (YIG), as a thermal spin pumping material. The spin pumping rate (S) versus temperature of YIG 
and a ferromagnet are shown in the right side. After Barker and Bauer (2016)
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The discovery of magnetism in carbon structures containing zigzag edges has stimulated new directions 
in the development and design of spintronic devices (Dutta & Pati, 2010). Zigzag edges in sp2 carbon 
have demonstrated spin ordered properties in many structures as graphene nanoribbons, open nanotubes 
and nanorings. It has been demonstrated by simulation, that the spin ordering on the zigzag of such 
nanostructures, can be changed by external magnetic fields or even static electric field (Yazyev, 2010).

One popular family of structures in the field of carbon spintronics is that of the triangular zigzag 
graphene nanoflake (TZGNF, or triangulene). Unfortunately, many of the proposed structures suffer 
from a phenomenon known as topological frustration, which leads to localized non-bonding states and 
instability. One of the proposed solutions to this problem is mixing between TZGNF with it mirror, as 
shown in Figure 36 (Bullard et al, 2016).

7.9 Spin Transport in Topological Insulators

Topological insulators are a new class of material that have gained attention in spintronics. These mate-
rials (like Bi2Te3) are electrically insulating in the bulk but have a conic linear dispersion at the surface. 
The surface states are excited by massless fermions. The spin of such fermions (or Kramers partners) 

Figure 35. Schematic illustration of graphene spin FET transistor

Figure 36. Some carbon-based zigzag structures: (a) Kekule structure of a triangular zigzag graphene 
nanoflake (TZGNF); (b) Bow-tie graphene nanoflake (Clar’s goblet); (c) TZGNF with its mirror
After Bullard et al. (2016).
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is locked at a right angle to their momenta due to spin-orbit coupling, making them protected against 
non-magnetic impurity scattering and localization effects, and leading to non-dissipative transport. This 
makes this class of materials appealing for spintronic applications, where spins can be manipulated 
without the use of ferromagnetic contacts.

Topological insulators can be found in a subclass of narrow-gap semi-conductors and heterostruc-
tures where the band gaps are smaller than the relativistic corrections to the band structure. In fact, the 
heterostructures of some compound semiconductors such as Bi1-x Sbx and Pb1-xSnxTe exhibit a strong 
topological phase. In Bi1-xSbx, with increasing x the gap at the L point decreases and the L+ and L- bands 
cross at x = 0:04. After further increase in the mole fraction x, the gap reopens with inverted band. Some 
2D topological insulators, such as HgTe quantum wells, exhibit the quantum spin Hall Effect (SQHE). 
In the interface of the quantum well of such 2D topological insulatorss, the spin changes sign, thereby 
creating a pair of gapless helical edge states inside the bulk energy gap.

7.10 Spin-Caloritronics

Thermoelectric effects like the Seebeck and Peltier effects have been subject to extensive research for 
already more than fifty years. Renewed interest in this topic, driven by the progress in nanoscale Spin-
tronics, has led to a new research field called spin Caloritronics. In this field the focus lies on how the 
spin degree of freedom may alter normal thermoelectric effects. The research in this area focusses on 
the thermal effects in non local spin valve Caloritronics devices at the nanoscale

8. MEASUREMENT OF SPIN TRANSPORT

Spin injection and transport is usually electrically characterized by nonlocal spin valve and Hanle preces-
sion measurements, from which the spin lifetime and spin diffusion length can be extracted. Similarly, 

Figure 37. Band inversion of a topological insulator
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optical detection and visualization of the spin injection has also been reported in several structures, such 
as the spin-LED, by detecting the emitted polarized light (Crooker et al, 2007). 

8.1 Nonlocal Spin Valve Measurement

In the nonlocal spin valve measurement, a spin-polarized current is injected from a ferromagnetic con-
tact (injector) to create a spin accumulation in the semiconductor channel, while another ferromagnetic 
contact (detector), outside the charge current loop, probes the spin-dependent l potential of one spin (up 
or down) in relation to the reference contact.

There are two types of measurements which are typically made: spin valve in a magnetic field parallel 
to the plane of magnetization, and spin precession (Hanle experiment) in a magnetic field perpendicular 
to the plane of magnetization. Let’s first consider the case of nonlocal spin-valve (NLSV) in a magnetic 
field parallel to the plane of magnetization. When the magnetization is swept from a negative field to 
a positive field one FM switches its magnetization before the other. Therefore, the direction of the spin 
injector and the detector switches from the parallel state to the anti-parallel state, and a bipolar nonlocal 
voltage VH is sensed, such that VP > 0 and VAP < 0. Figure 40 shows an example of typical nonlocal spin 
valve signals measured from Si at 150K. In this measurement, the spin potential (voltage) sense loop is 
separated from the current loop and the nonlocal resistance is considered as an evidence of successful 
spin injection.

8.2 Hanle Experiment

In the presence of a uniform magnetic field, the magnetization precesses at constant rate while, at the 
same time, relaxing at the rate τs

−1. The magnetic time scale τB = 2πħ /g.μB.|B| is the time for a complete 
precession of 2π. The magnetic length scale associated is λB = √DτB. Spin precession is also called Hanle 
Effect. In a Hanle experiment, the manipulation of spins during transport is carried out with a perpen-

Figure 38. Concept of thermal spin injection
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dicularly applied magnetic field. In this case, the polarization is electrically detected at a fixed length 
d while changing the magnitude of the perpendicularly applied magnetic field. In such measurements, 
the signal is proportional to the polarization at the detecting electrode. The Figure 41 shows the spin 
polarization p as a function of field B at different thicknesses d. Note that Bo is the standard deviation 
of hyperfine field. As shown in figure, with θ = 0○ (open symbols), an λs increase with field. For θ = 
90○, at small d, p slowly decays and no negative values are observed. With increasing d, p decays more 
quickly and a negative dip is visible.

8.3 Photoemission Spectroscopy

The two-photon Photoemission (TPPE) spectroscopy is one of the most popular and versatile methods 
for studying solid surfaces. In a typical photoemission process electrons are photoexcited from below 
the Fermi level to the vacuum level. The extracted photoemission spectrum contains energy distribu-
tion of the photoelectrons which provides quantitative information about the initial density of states. In 

Figure 39. Schematic of the nonlocal spins valve and Hanle measurements

Figure 40. Typical nonlocal spin valve signals measured in n-Sie at 150K
Data from, (Appelbaum, 2011).
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particular, two-photon photoemission (TPPE) has attracted special attention as it allows simultaneous 
detection of occupied and unoccupied excited electronic states in a single measurement. It is a second 
order process where the photon energy has to be less than the work function of the material under study.

The two photons (pump and probe photons) may have same or different energies. The pump photon 
excites an electron from an occupied level below the Fermi level to an unoccupied intermediate level in 
between Fermi level and vacuum. From this level electron is photo emitted after absorbing the second 
photon (probe photon). This method is used to measure spin injection efficiency and spin diffusion 
length. The spin polarized electrons lying above the lowest unoccupied orbital of a certain material are 
excited by the probe laser which gives rise to photoemission spectra. Information about the spin injection 
efficiency can be then extracted from these spectra.

8.4 Case Study 14: Spin Measurements in Graphene

We have shown that the interest in graphene spintronics is motivated by its weak spin-orbit interaction, 
which gives rise to a long spin relaxation time. Also, the fact that 99% of carbon isotopes do not have 
nuclear spins, leads to excellent spin transport properties. The spin injection and transport in single layer 
graphene can be investigated using nonlocal magnetoresistance (MR) measurements. Spin injection is 
performed using either transparent contacts (Co/SLG) or tunneling contacts (Co/MgO/SLG).

Typically, there are two geometries for electrical spin transport measurements (local and nonlocal). 
The conventional spin transport geometry, known as the local measurement, measures the resistance 
across two ferromagnetic electrodes. Spin polarized electrons are injected from one electrode, transported 
across the graphene, and detected by the second

Figure 41. Spin polarization as a function of B at different positions d, with θ = 0○ (open symbols) and 
θ = 90○ (solid symbols)
Data from (Huang, 2008).
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The second geometry is the nonlocal measurement which uses four electrodes is shown in Figure 
41. Here, a current source is connected across Co electrodes E1 and E2 to inject spins at E2. For spin 
detection, a voltage is measured across Co electrodes E3 and E4, and the signal is due to the transport 
of spins from E2 to E3. This measurement is called nonlocal because the voltage probes lie outside of 
the current loop.

9. CHAPTER SUMMARY

The electron spin (spin-up and spin-down) is an intrinsic property of electrons. Conventional electronics 
devices use the electron charge to carry information. In contrast, the field of Spintronics relies on the 
electron spin. In spin-based electronics, information is encoded by the spin state of electron bunches. 
Spintronics, or spin based electronics, attempts to manipulate the spin degree of freedom, instead of or 
in addition to the charge of electrons to create new functionality. The advantages of spintronic devices 
include reducing the power consumption and overcoming the velocity limit of electric charge.

Transport in spintronic devices can be characterized by the creation of a non-equilibrium spin po-
larization in the device (spin injection), measurement of the final spin state (spin detection), external 
control of spin dynamics by the electric (gate modulation) or magnetic field. Figure 43 shows some 
building blocks of a spin polarization system comprising both magnetic and non-magnetic materials.

Figure 42. Schematic of 4-terminal graphene spin-valve in non-local measurement. Current I is injected 
from contact 3 via the MgO barrier into graphene and extracted at contact 4. The voltage is measured 
between contacts 1 and 2. The non-local resistance is given by: R=(V+-V-) /I.
After Tombros et al (2007).
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Applications of spintronics make use of one or combination of several phenomena:

• Giant magnetoresistance (GMR) (Hard disk drive),
• Magnetoresistive random-access memory (MRAM),
• Spin FET,
• Spin quantum computing.

The study of electron-spin transport through non-magnetic materials is an extremely active field, 
because of the rich physics involved and the important applications in the area of magnetic sensors. If 
the spin diffusion length is larger than or comparable to the distance between the electrodes, the current 
through such structures depends strongly on the mutual orientation of the magnetization directions of the 
electrodes, which is called the spin-valve effect, leading to Giant Magnetoresistance (GMR). Tradition-
ally, non-magnetic metals are used as the spacer-layer material between electrodes in these structures. 
Spintronic devices utilizing spin injection and transport through a semiconducting spacer layer offer ad-
ditional functionalities, such as spin transistors and the possibility to realize quantum computation logic.

Spin current has been found to play a central role in causing spintronics phenomena to occur not 
only in traditional magnetic metals but also in various materials including metals, semiconductors and 
oxides. Pure spin currents carry only spins (spin angular momenta) unlike conventional spin-polarized 
currents which carry both charges and spins. The so-called magnetic semiconductors are new promising 
materials, which are currently used to develop such devices. In such materials one of the semiconductor 
atoms is replaced by a magnetic atom. For instance, the GaAs, which is heavily doped with Mn accep-
tors shows a magnetic moment.

Topics in spintronics include magnetization reversal by spin torque, spin relaxation, spin injection in 
semiconductors and spintronic devices.

The spin relaxation mechanisms may be summarized as follows:

• Elliot-Yafet mechanism,
• D‘yakonov-Perel mechanism,
• Bir-Aronov-Pikus mechanism,
• Hyperfine interaction.

Figure 43.  
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In this chapter, we present a full quantum and a semiclassical description of spin transport, which 
explains how the motion of carriers gives rise to a spin current. The general drift-diffusion approach for 
the spin-polarized transport is based on the two, spin-up and spin-down, states model, originally devel-
oped for ferromagnetic metals. The phenomenological model for non-collinear spin transport including 
effects of spin-orbit coupling has been described for the regime where spin dynamics is significantly 
faster than a momentum scattering rate.

The semiclassical models can be useful for investigation of a broad class of transport problems in 
semiconductors, but they do not include effects of a spin phase memory. The quantum approach of spin 
density matrix with spin polarization vector of a spin state is more appropriate for this case.

The classical Bloch equations for spin transport are the analogue of the classical BTE for particle 
transport. They can be extended to time-dependent non-equilibrium quantum transport equations, using 
a suitable non-equilibrium quantum distribution function, like the Wigner distribution function (WDF).
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Storage Technologies. In 2012 Hitachi sold the division to Western Digital who rebranded it as 
HGST

2  The Dirac equation combines relativity and quantum mechanics to explain the half-integer spin 
particles. This equation shows that relativistic quantum mechanics implies spin. However, there 
is no explanation of how electrons can have an angular (rotational) momentum, or why electron 
spin should have two values. In fact, spin cannot be a rotational property, since this requires that 
electron would need to spin (rotate) faster than the speed of light to give the observed magnetic 
moment (Mecklenburg & Regan, 2011).
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3  The electron g-factor g = 2(1+α/2π +..) = 2.0023. The value of 2 comes from the Dirac equation, 
while the rest is called the anomalous contribution, proportional to the fine structure constant, α 
= e2/4πħεoc

4 arising from quantum corrections
4  According to Johnson-Silsbee (1985): EMF appears in the proximity of a ferromagnetic metal and 

spin- polarized nonmagnetic metal (inverse of spin injection).
5  The state of the electron spin can be geometrically represented by any point on the Bloch sphere. 

The electron spin can have only two opposing projections on a fixed axis, and hence only two 
measurable states. These two states are spin up|↑⟩ and spin down |↓⟩

6  This model is sometimes referred to as “two-component drift-diffusion model”.
7  Some references refer to to Baibich, as the discoverer of GMR. See Baibich et al, (1988).
8  We have already defined the singlet, doublet and triplet (spin) states in Chapter 8 (see Note 2 from 

Chapter 8).
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Chapter  10
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1. OVERVIEW AND CHAPTER OBJECTIVES

In the previous Chapters, we presented and discussed the transport models of charge carriers, phonons, 
photons and spin. In this Chapter we turn our attention to other composite quasi particles, such as: 
polarons, excitons and polaritons. Table 1 summarizes the quantum quasit particles, which are used to 
describe interactions in solids.

We have already defined the physical meaning of simple (or elementary) quantum particles and quasi 
particles, in previous Chapters. As for the composite quasi particles, we summarize their definitions as 
follows.

• Polaron: Is a quasiparticle which represents the interactions between electrons and atoms vi-
bration in solids. The polaron concept was first proposed by Lev Landau in 1933 to describe an 
electron moving in a dielectric crystal where the atoms vibrate around their equilibrium positions 
to effectively screen the electron charge, by a phonon cloud. This lowers the electron mobility 
and increases the electron’s effective mass. Therefore, electron mobility in semiconductors can be 
greatly decreased by the formation of polarons. In particular, polarons are important in organic 
semiconductors. Polaronic effects appear in many guises and forms and can have a dramatic influ-
ence on the transport properties information carriers.

• Exciton: Is a bound state of an electron and an electron hole which are attracted to each other by 
the electrostatic Coulomb force. As we have seen in Chapter 8 of this Book, an exciton can form 
when a photon is absorbed by a semiconductor.

• Magnon: Is a quasiparticle, a collective excitation of the electrons’ spin structure in a crystal 
lattice. The concept of a magnon was introduced in 1930 by Felix Bloch in order to explain the 
reduction of the spontaneous magnetization in a ferromagnet. As we have seen in Chapter 9 of 

Plasmons, Polarons, and 
Polaritons Transport
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this Book, magnons carry a fixed amount of energy and lattice momentum, as well as a spin of -1, 
indicating they have boson behavior.

• Plasmon: Is a quantum of plasma oscillation. As the light consists of photons, the plasma oscilla-
tion consists of plasmons. The plasmon can be considered a quasiparticle since it arises from the 
quantization of plasma oscillations, just like phonons are quantizations of mechanical vibrations. 
Thus, plasmons are collective (a discrete number) oscillations of the free electron gas density, for 
example, at optical frequencies. Plasmons can couple with a photon to create another quasiparticle 
called a plasma polariton

The above quasiparticles are particularly important in metals, dielectrics and semiconductors nanostruc-
tures. In fact, the electromagnetic properties of metal/dielectric interfaces undergo a steadily increasing 
interest in science and technology. In order to understand the dynamics of the above quasiparticles and 
their transport properties in these materials, we start studying the dielectric function of a semiconductor, 
since they are more or less coupled to their dielectric properties. Actually, the electrical permittivity is 
a measure of how an electric field interacts with a dielectric medium.

Upon completion of this Chapter the student will be able to understand the following interactions 
and the transport of their associated quasi particles

• Dielectric function,
• Electron-electron interactions (Screening & Plasma Oscillations),
• Electron plasma oscillation – (Plasmons),
• Electron-lattice interaction (Polarons),
• Photon-phonon interaction (Phonon-polaritons),
• Photon-exciton interactions (Excitonic polaritons),
• Insulators & Mott metal-insulator transition.

Table 1. Quasi particles in semiconductors and nanodevices

Quasi Particle Description Notes

Simple (or Collectivity of Same Type) Quasi Particles

Holes Missing electrons in valence band In semiconductors

Phonons Quanta of crystal lattice vibrations large momentum little energy

Photons Light quanta

Magnons Spins (Spin wave quanta) Crystal magnetic moments

Plasmons Electron collective In nanocrystals

Composite Quasi Particles

Cooper pairs 2 electrons coupled by phonons Responsible for superconductivity

Polarons e- + phonon Important in organic semiconductors

Excitons Bound electron-hole pair Produce light in LEDs

Polaritons Photon + phonon (Phononic Polariton)

Photon + exciton (Excitonic Polariton)

Photon + electron(s) (Plasmon Polariton)
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2. DIELECTRIC FUNCTION

When a dielectric is subjected to an alternating electric field, a displacement current will flow across 
the material. For a lossy material there will be a component of this current in the direction of applied 
field (resistive component) such that the permittivity ε becomes complex as follows:

ε = ε1 – j ε2 (1)

The dielectric function of a material describes the electrical and optical properties versus frequency, 
wavelength, or energy. It describes the polarization and absorption properties of the material. The di-
electric function is actually the electric permittivity, ε, which consists of two parts1 (ε = ε1 - j ε2). The 
dielectric function is also related to the refractive index of the material by the equation: ε/ε0 = εr = n2, 
where ε0 is the absolute value of permittivity in free space and εr is the relative permittivity (or dielectric 
constant). As the quantities ε1 and ε2 vary with the frequency of applied electric field, they are usually 
written as functional form: ε1(ω) and ε2(ω). Actually, the real part ε1 represents how much a material 
becomes polarized when an electric field is applied due to creation of electric dipoles. When the applied 
field is oscillating, the sign of ε1 may be positive or negative according to whether the induced dipoles 
are oscillating in phase or out of phase with the applied field. When the oscillations of induced dipoles 
in a material reach a certain frequency, it is possible for the material to start absorbing energy from the 
applied field. When absorption happens the term ε2 becomes significant, whereas it is zero when the 
material is transparent. Thus, the imaginary part ε2 represents absorption (or losses due to absorption) 
in a material.

We now present some particular models for the frequency dependence of the dielectric function of 
a solid, such as the Drudé model. Though very simple, this model is widely used to provide easy ex-
planation of the physical origin behind dielectric and optical properties of matter. We also discuss the 
relaxation models of the dielectric function.

2.1 Drudé Model

One major contribution to the dielectric function is through the free carriers. Such free carrier contribu-
tions are very important in semiconductors and metals, and can be understood in terms of the simple 
classical conductivity model, due to Drudé. The Drudé model is based on the classical equation of 
motion of free charge carriers (gas of free electrons), under the effect of an external force F (electric or 
magnetic fields or both):

m*(dv/dt) + m*v/τ =F (2a)

Here, the external force F= -eζ is assumed sinusoidal or ζ = ζoexp(-jωt). Also, the middle term (m*v/τ) 
represents the friction or damping force. Assuming a constant damping2 factor (1/τ), the solution of the 
above equation is: v(t) =vo.exp(-jωt). Substituting this solution into (2a) yields:

v(1 – j ωτ) = - eτ.ζ/m (2b)

The charge carrier current density is given, by definition, as follows:
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J = - e nv= e2 n τ .ζ / [m(1- jωτ)] or J=σ.ζ (2c)

where the electrical conductivity σ =σo/(1-jωτ) with σo = e2 n (τ / m). The dielectric function of the 
material is then expressed using Maxwell’s equation:

εr (ω) = D/εo ζ = 1 + P/ εo ζ (2d)

where the polarization density P = -enx = en.v/ω =− eτ.ζ /[mω (1– jωτ)] 

ε = εo - j σo / [ ω (1- j ω τ) ] (2e)

ε r = ε /εo = 1 - j σo /[εo.ω (1- j ω τ) ] (2f)

A more elegant derivation of the Drudé expression can be obtained starting from the Boltzmann 
transport equation (BTE), under the effect of electromagnetic field, as we did in Chapter 2. The Drudé 
model is accurate for the dielectric function of most metals in the optical and IR spectrum.

2.2 Lorentz Model

The Lorentz model of the dielectric function is based on the damped harmonic oscillator approximation 
in quantum mechanics. It describes the electronic interband transitions by assuming that electrons are 
bound to the positive ions of the material and oscillate about them. The Drudé-Lorentz model is suit-
able for modeling dispersive materials with multiple resonant frequencies. In this case, the dielectric 
function is given by:

ε ω
ω

ω ω ωγ
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− +











k

k p
k

k k
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where the subscript k changes from 1 to the total number of oscillators with frequency ωk and strength 
gk. Also, γk is the damping constant of the kth harmonic oscillator and ωp is called the plasma frequency.

2.3 Drudé-Lorentz Model

The Drudé-Lorentz model of the dielectric function combines the features of Drudé and Lorentz models. 
It takes into account both free electrons and bound electrons to the positive ions of the material. Accord-
ing to this model, the dielectric function due to a single resonator is given by:

m(dv/dt) + m (v/τ) + C.x = - eζ(t) (4a)

where m is charge mass x is the deviation from its equilibrium position and the driving force -eζ(t) 
oscillates with a characteristic frequency ω. Note that the harmonic oscillator force term (spring force 
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-Cx) is not present in the original Drudé model for free carriers. Taking the Fourier transform of this 
equation yields:

m[- ω2 - j (ω /τ) + C/m ]. x(ω) = - e.ζ(ω) (4b)

The solution is then:

x(ω) = - (e.ζ /m)/[- ω2 - j (γ ω) +Ω2] (4c)

where γ = 1/τ is the damping factor and Ω = (C/m)½ is the harmonic oscillator frequency. The dielectric 
function of the material is then expressed as follows:

ε (ω) = D/ ζ(ω) = εo + P/ ζ(ω) (4d)

ε (ω) = εo + (e2n / m).[ - ω2 – j ω γ + Ω 2 ] (4e)

Such that the relative permittivity εr is given by:

εr(ω) = ε(ω)/εo = 1 + (e2n / εom).[ - ω2 – j ω γ + Ω 2 ] (4f)

where P = - e.n.x is the polarization density and D =ε ζ is the electric displacement. Expressing ε = 
ε1 - j ε2, we can calculate ε1(ω) and ε2(ω).

3. DIELECTRIC RELAXATION MODELS

Physically speaking, a material cannot polarize instantaneously in response to an applied field. Dielectric 
relaxation is the delay in the dielectric response of a material to a changing electric field. This relaxation 
is often described in terms of permittivity as a function of frequency.

3.1 Debye Relaxation

Debye relaxation is the dielectric relaxation response of an ideal, non-interacting population of dipoles 
to an alternating external electric field. According to Peter Debye, the variation of the out-of–phase 
component (ε1) and the in-phase component (ε2) of the complex dielectric constant with frequency, is 
given by (Debye, 1913):

ε ω ε
ε ε
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where τ is called the dielectric relaxation time and εs and ε∞ are the static (low) and infinite (high) fre-
quency values of the dielectric permittivity. The above equations are sometimes called Debye equations.

Figure 1 depicts the frequency response of a dielectric, as described by (5). As shown in figure, the 
real part of ε relaxes at high frequency to a smaller value εoo. Also imaginary part ε2 has a peak value 
at ωτ =1.

As we pointed out above, equations (5) describe the relaxation of the real and imaginary parts of the 
complex permittivity of medium as a function of the field frequency ω. However, the Debye model is 
usually expressed in the complex permittivity of a dielectric material, as follows:

ε (ω) = ε∞ + (εs – ε∞) / (1+jω τ) (6)

This is exactly equivalent to equations (5).

3.2 Havriliak–Negami Relaxation Model

The Havriliak–Negami model is an empirical modification of the Debye relaxation model, account-
ing for the asymmetry and broadness of the dielectric dispersion relation. The model was first used to 
describe the dielectric relaxation of some polymers, by adding two exponent parameters to the Debye 
equation, such that:

ε (ω) = ε∞ + (εs – ε∞) / [(1+(jω τ)α]β (7)

Figure 1. The dielectric relaxation of a polarization process near resonance
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where the exponents α and β describe the asymmetry and broadness of the corresponding spectra. For 
β=1 the Havriliak-Negami equation reduces to the Cole-Cole equation. When α=1 we get the Cole-
Davidson equation.

3.3 Cole-Cole Equation

The Cole-Cole equation is a dielectric relaxation model that constitutes a special case of Havriliak-Negami 
relaxation when the symmetry parameter β is equal to 1 - that is, when the relaxation peaks are symmetric:

ε (ω) = ε∞ + (εs – ε∞) / [(1+(jω τ)1−α] (8)

The parameter α, which takes a value between 0 and 1, is an experimentally determined correction 
factor. When α = 0, the Cole-Cole model reduces to the Debye model. Most polymers show dielectric 
relaxation patterns that can be accurately modeled by this equation.

3.4 General Frequency Response of Matter

Actually there is no a single resonant frequency at which the dielectric losses are maximum (ωτ =1) and 
the frequency response shows many peaks. This is because most dielectric materials polarize in differ-
ent ways in different ranges of frequency. For instance, at very high frequency, the ionic and electronic 
polarization may appear together. Figure 2 shows a part of the real permittivity characteristics ε1(ω) 
over a wide scale of frequencies.

Figure 2. Characteristics of the real part of ε(ω) over a wide scale of frequencies
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3.5 Kramers-Kronig Relations

According to Kramers and Kronig, the real and imaginary parts of the relative permittivity of a dielectric 
material are directly correlated to each other by the following equations (Froehlich, 1958):
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where Ƥ denotes the principal value of the integral. To avoid explicit use of the principal value of a 
function, we can subtract out the singularity at a specific frequency (ωo =1/τ), as follows:
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These relations show the mathematical causality and linearity of the dielectric function. Causality 
means that there is no output before an input; linearity means that twice the input produces twice the 
output.

4. PLASMA FREQUENCY

It can be shown from the above models that at very low frequencies the optical properties of semiconduc-
tors exhibit a metal-like behavior, while at very high frequencies their optical properties are like those 
of insulators. The frequency at which the material changes from a metallic to a dielectric response is 
called the plasma frequency ωp, This is the frequency at which the real part of the dielectric function 
vanishes such that ε1(ωp) = 0.

In order to relate the plasma frequency to other material properties, let’s start from the Drudé model:

ε ε ε ε= − = −
−1 2 0

2

1
j

jne r
mw jwt( )

 (11)

We can then write the real and imaginary parts as:
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Since the damping factor (1/τ) is usually small compared with ωp, we can neglect this term3 and 
identify the plasma frequency as follows:
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Note that the plasma frequency is a direct measure of the square root of the density of valence electrons 
in a solid. In fact, the contribution of holes in a semiconductor has the same sign as electrons. Therefore, 
we can write the contribution from electrons and holes as
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It should be also noted that the dielectric function is negative below the plasma frequency (when ω 
<ωp) and the field cannot transmit through the material. Alternatively, the light with frequency below 
the plasma frequency is entirely reflected.

5. SCREENING POTENTIAL AND PLASMA OSCILLATIONS

We have seen so far that the electron-electron interactions in a solid may be categorized into two basic 
types, namely:

1.  Short range binary interactions (between individual electrons),
2.  Long range interaction between collectivity of electrons (plasmons).

These interaction mechanisms were shortly illustrated, in the context of electron-electron scattering 
in Chapter 2 of this book. We review here their physical origins and impacts in semiconductors and 
nanostructures.

5.1 Screening Potential and Short-Range Electron-Electron Interaction

The binary electron-electron interactions appear in short range, for distances in the order of Debye length 
(λD). According to the screening potential theory (Thomas-Fermi, 1927), the Debye length (or screening 
length) due to the Coulomb potential, is given by:
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where no is the equilibrium electron density, εs is the dielectric constant of the material and EF is the 
Fermi energy level.
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The Fermi energy level (EF) is related to the electrochemical potential (μ):
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The screening potential ϕ(x) follows the following distribution:

φ
πε λ

( ) expr n
e

r
r

s D

=










−













2

4
 (16c)

Therefore, the density of electrons can be enhanced due to screening potential, as shown in Figure 
4. In fact, the experiments showed that the electron mean free path (the distance an electron can move 
before being scattered) in pure metals is about 10000 A at 300K and reaches 10 cm at 1 K! This is why 
e-e interaction can usually be ignored in metals, where average e-e separation is about 2A. In semi-
conductors, e-e interaction can be also neglected except for highly-doped materials.

5.2 Long-Range Electron-Electron and Interaction Plasmons

The other type of electron-electron interactions occurs at long range with collectivity of electrons or 
plasma oscillation. Plasma oscillations of free electron density with respect to the fixed positive ions can 

Figure 3. The dielectric relaxation process
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happen in metals and semiconductors. The quantum of plasma oscillation is called plasmon. Plasmons 
play a large role in the optical properties of metals.

Light of frequencies below the plasma frequency is reflected, because the electrons in the metal 
screen the electric field of the light. Light of frequencies above the plasma frequency is transmitted, 
because the electrons cannot respond fast enough to screen it. In most metals, the plasma frequency is 
in the ultraviolet, making them shiny (reflective) in the visible range. Some metals, such as copper and 
gold, have electronic interband transitions in the visible range, whereby specific light energies (colors) 
are absorbed, yielding their distinct color.

In semiconductors, the valence electron plasma frequency is usually in the deep ultraviolet, which is 
why they are reflective. Plasmons can be measured with EELS (Electron Energy Loss Spectroscopy). 
In EELS, the material is ecposed to a beam of electrons with known kinetic energy. Some of incident 
electrons are scattered inelastic, and lose energy. The amount of energy loss is measured by a spectrom-
eter and interpreted in terms of what caused the energy loss.

Surface plasmons are confined to surfaces and interact strongly with light resulting in a polariton. 
They occur at the interface of a vacuum and material with a small positive imaginary and large nega-
tive real dielectric constant (usually a metal or doped dielectric). Recently, metallic carbon nanotubes 
and graphene have also shown to accommodate surface plasmons (Moradi, 2010). These plasmons are 
observed by near field infrared optical microscopy techniques and infrared spectroscopy. Potential ap-
plications of graphene plasmonics mainly addressed the terahertz to mid-infrared frequencies, such as 
optical modulators, photodetectors, biosensors. Plasmons can also couple with a photon to create another 
quasiparticle called a plasma polariton.

Figure 4. The dielectric relaxation process
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16. POLARONS AND ELECTRON-LATTICE INTERACTION

The composite object of an electron in deformed lattice (phonon cloud) is called polaron. Here, the 
vibrating ions drag and slow down moving electrons. For instance, a conduction electron in an ionic 
crystal or a polar semiconductor forms a polaron. Polarons are Fermions and have larger effect in polar 
crystals (like NaCl), and smaller effect in covalent crystals (like GaAs).

The basic theory of polarons was initiated by Landau (1933, 1948) and Pekar (1951). The polaron 
model for semiconductors was developed by Yamashita et al.(1958). Later, it was extended to organic 
semiconductors.by Holstein (1959).

Figure 5. Plasma oscillations in Al

Figure 6. Schematic illustration of surface plasma oscillations in Al
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6.1 Polaron Self-Energy and Effective Mass

A polaron is characterized by its self-energy ΔE, and effective mass mpol as well as its characteristic re-
sponse to external electric and magnetic fields. When the electron-phonon cloud coupling is weak, the 
self-energy of the polaron can be approximated as:

∆E
�ω

α α≈ − − 0 015919622 2. ,  (17)

where α is the coupling constant. In this case, the polaron mass m pol, which can be measured by cyclo-
tron resonance, is larger than the band mass m* of the charge carrier without self-induced polarization:

Polaron effective mass mpol ≈ m* (1+ α /6 + 0.0236 α2) (18)

When the coupling is strong (α large), the Landau and Pekar theory (1963) shows that the self-energy 
is proportional to α2 and the polaron mass scales as α4

For the 2D structures, polaron system consists of an electron confined to a plane, interacting via the 
Fröhlich interaction with the LO phonons of a 3D surrounding medium. The self-energy and the mass 
of such a 2D polaron are no longer described by the 3D expressions (13). Rather, the self-energy for 
weak coupling can be approximated as follows in 2D:

∆E
�ω

π
α α≈ − −

2
0 06397 2.  (19)

Figure 7. Schematic view of a polaron showing how an electron couple with lattice vibrations (phonons) 
field
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Polaronic effects appear in many guises and forms and can have a dramatic influence on the physi-
cal properties of materials (Jørgensen et al, 2016). Generally speaking, when a particle (electron, hole, 
exciton, etc.) interacts with bosons from its environment (phonons, magnons, electron-hole pairs, etc) 
it becomes surrounded by a cloud of such excitations; the resulting composite object may be called a 
polaron. In other words, the term of polaron describes a quantum particle interacting with a bosonic 
environment. Extensions of the polaron concept include: acoustic polaron, piezoelectric polaron, spin 
polaron, Jahn-Teller polaron and bipolarons. The so-called bipolaron is a bound state of two polarons, 
mediated by exchange of bosons between their excitation clouds.

6.2 Polaron Transport and Modelling Approaches

The polaron properties are dependent on both the particle-environment coupling strength and polaron 
momentum. The Hamiltonian of a lattice polaron (electron+lattice distortion) is given by the following 
Holstein model (1959):

H t c c c c b b g n b b
i j j i i i i i i

iii i

= − +( )+ ++ + + +

⋅
∑∑∑ σ σ σ σ

σ

Ω
,

 (21a)

where t is the hopping operator, c†
iσ (ciσ) is the creation (annihilation) operator of an electron at the ith 

site, and b†
i (bi) is phonon creation (annihilation) operator. The first term is the electron tight-binding 

kinetic energy. The second term describes the lattice degrees of freedom considered as a set of inde-
pendent oscillators at each site, with frequency ω0. The third term describes how the electrons couple 
through the density niσ = (c†

iσ ciσ) to the local lattice displacement xi ~ (b†
I +bi) with strength g. The above 

Hamiltonian can be also written in the momentum space as follows:

Table 2. Fröhlich coupling constants

Material α Material α

InSb 0.023 KI 2.5

InAs 0.052 TlBr 2.55

GaAs 0.068 KBr 3.05

GaP 0.20 RbI 3.16

CdTe 0.29 Bi12SiO20 3.18

ZnSe 0.43 CdF2 3.2

CdS 0.53 KCl 3.44

AgCl 1.84 SrTiO3 3.77

α-Al2O3 2.40 RbCl 3.81
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The Holstein model is characterized by two relative parameters, the dimensionless coupling constant 
α= g2/ztω0 and the adiabaticity ratio ω0/zt. where z is the dimensionality of the problem

The eigenvalue problem of a polaron can be then written as follows:

H k E k
k

1 1
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, ,

α αα=  (22)

The subscript 1 means one particle, with momentum k, and a denotes any other quantum numbers.

6.3 Green’s Functions Approach

The Green’s function technique is appropriate for describing interactions with continuum states, such as 
the polaron problem. The Green’s function or propagator of lattice polaron is defined as follows:
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where Z is the quasiparticle weight which measures how similar is the true wavefunction to a non-
interacting (free electron, no bosons) wavefunction.
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Also, the spectral weight may be defined as:
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Figure 8. One-dimensional representation of a phonon polaron in ionic crystals
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6.4 Monte Carlo Simulation of Polarons

Polaron transport can be simulated by quantum Monte Carlo (MC) method (Tempere et al, 2009). In fact, 
Feynman introduced a variational principle for path integrals to study the polaron (Feynmann, 1955). 
The analysis of 1D-polaron models has been carried out by Monte Carlo simulation and showed the 
accuracy of Feynman’s path-integral approach. According to Mishchenko et al (2000), we can use the 
MC algorithm, with the aid of Feynmann diagrams, to calculate Green’s function as follows:
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In order to determine the polaron energy we need to calculate the behavior of the Green’s function 
at large imaginary time, therefore we need to know G(k,τ) in many τ points. The figure 9 shows the 
quantum Monte Carlo (QMC) simulation of the Green’s functions of a polaron. Here, P(k,τ) denotes the 
sum of all diagrams (Feynmann paths) with length τ.

Note that P(k,τ)→exp(-Eτ) when τ →∞, where E is the polaron energy. The plotted two curves rep-
resent P(k,τ).exp(μτ) and G(k,τ).exp(μτ), where μ is close to the polaron energy, versus imaginary time. 
The extrapolation of G(k,τ) at zero gives the quasiparticle weight Z0(k).

Figure 10 depicts the polaron dispersion relation, according to the Rayleigh-Schrödinger perturbation 
theory (Donsker & Varadhan1,983) and QMC (Temper et al 2009). Note that when the polaron momentum 
is small, the Rayleigh-Schrödinger theory works well. The QMC results show that the polaron energy 
continues to increase towards the threshold value E(0)+ω0, corresponding to the phonon continuum.

Figure 9. Monte Carlo simulation of polaron dynamics
After Temper et al (2009).
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7. POLARITONS

Polaritons are Bosonic quasiparticles resulting from strong coupling of electromagnetic waves (photons) 
with an electric or magnetic dipole-carrying excitation. Therefore, the composite object of photon+ 
phonon is called polariton. At the point where the two dispersion relationships of light and excitation 
are crossing each other they have the same energy and therefore coupling occurs.

Figure 10. Monte Carlo simulation of polaron dynamics
After Svistunov et al (2002).

Figure 11. Phonon Polariton coupling point
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The most common types of polaritons are:

• Phonon-Polaritons: Where, EM waves (photons) are coupled with the optical phonons of a polar 
medium

• Exciton-Polaritons: Where, EM waves (photons) are coupled with excitons (bound electron-hole 
pairs) in a semiconductor

• Plasmon-Polaritons: Where, EM waves (photons) are coupled with plasma waves of a conduct-
ing medium

7.1 Phonon-Polaritons (Photon-Phonon Interaction)

Polariton can be formed with the coupling of photons to polar phonon in ionic solids and semiconduc-
tors. The composite object of photon+TO phonon is called polariton. In fact, resonance can only happen 
between photons and TO phonons. This is the most famous type of polaritons. Note that LO phonons do 
not couple with transverse EM waves, and do not show any dispersion, as illustrated in figure 12. Let’s 
start with the dielectric function of a non-conducting polar material:

ε(ω) = εo [ (ω2- ωLO
2)/(ω 2 − ωTO

2) ] (25)

The dispersion of transverse polaritons can be derived from the dielectric function of the medium, 
with transverse EM wave, and given by:

ω2(ε(ω) /εo) = q2/c2.  (26)

Figure 12. The dielectric function of a polar solid
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Substituting this equation into the dielectric function of a polar material (polar insulator or polar 
semiconductor) gives the following dispersion relation of transverse phonon-polaritons:

ω4- ω2 [ωLO
2+ q2.c2(εo/ε∞)]+ q2.c2ωTO

2(εo/ε∞) = 0 (27)

This dispersion relation is plotted in Figure 13
Phonons polaritons in insulating materials can be well measured with Raman spectrometry. In fact, 

Raman spectroscopy can be used to study vibrational, rotational, and other low‐frequency modes in 
several materials. It relies on inelastic scattering (Raman scattering) of monochromatic light. Typically, 
a sample is illuminated with a laser beam. The light interacts with molecular vibrations or excitation 
modes in the sample. This results in energy shift of the light (up: Anti‐Stokes‐shift or down: Stokes‐shift). 
The shift in energy can be measured and gives information about the material.

Figure 13. The phono-polariton dispersion relation

Figure 14. The dielectric relaxation process
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7.2 Excitonic Polaritons (Photon-Exciton Interaction)

Excitonic polariton constitutes an electric dipole which can efficiently couple to electromagnetic wave, 
forming the new quasi-particle. Being Bosons, exciton-polaritons can form condensates, at low tempera-
ture. The strong coupling of exciton-polaritons is particularly significant in semiconductor microcavities 
(e.g., of a laser) and photonic waveguides. There are several scattering mechanisms which can take away 
energy from the exciton-polaritons; especially via the phonon- exciton coupling. Figure 15 depicts the 
dispersion relation of excitonic polaritons.

The microcavity exciton-polaritons have reminiscent excitonic features. Figure 16 illustrates the 
microcavity structure, where a quantum well is embedded inside the cavity photon field. The strong 
light-matter coupling in the microcavity system exhibits anti-crossing behavior as a split to two polariton 
branches, namely: upper polaritons branch (UPB) and lower polaritons branch (LPB), as shown in figure 
15. The energy difference between two branches is named as vacuum-Rabi splitting energy (Ω). The 
quantity Ω represents a collective dipole coupling strength depending on the exciton oscillator strength 
and the penetration depth of the Bragg mirror.

The so-called polariton laser has been realized in semiconductor micro-cavities (Kavokin, 2012). 
As shown in Figure 17, it consists of multilayer crystal structures in which light confined between two 
parallel mirrors and strongly interacts with excitons in the crystal.

This is actually a vertical-cavity surface-emitting terahertz laser, which is based on the laser polariton 
interaction. The unique properties of polariton laser devices make them suitable for spin switches and 
terahertz generators.

7.3 Plasmon Polaritons (Photon-Plasmon Interaction)

Plasmon Polariton is a coupled state between a plasmon and a photon. Plasmons may be excited in 
the bulk (volume) or at the surface of a metal. The so-called surface plasmon polaritons (SPPs) are 
electro-magnetic modes propagating along metal–dielectric (or metal-air) interfaces. The term surface 

Figure 15. The dispersion relation of exciton-polaritons



607

Plasmons, Polarons, and Polaritons Transport
 

Figure 16. (a) Schematic of a microcavity quantum well structure; (b) Schematic of an electrically pumped 
polariton laser based on a GaN microcavity with embedded InGaN/GaN quantum wells
After Kavokin, (2012).

Figure 17. Volume and surface plasmon polaritons
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plasmon polariton explains that the wave involves both charge motion in the metal (surface plasmon) and 
electro-magnetic waves in the air or dielectric (polariton). Figure 17 illustrates the dielectric function 
of a metal (εm) and the frequency at which the volume and surface plasmons may be excited. The next 
figure depicts the dispersion relation of both volume plasmons and surface plasmon polaritons. SPPs 
are a type of surface wave, guided along the interface in much the same way that light can be guided by 
an optical fiber. SPPs are shorter in wavelength than the incident light (photons). Hence, SPPs can have 
tighter spatial confinement and higher local field intensity.

As SPPs are perpendicular to the interface, they have sub wavelength-scale confinement. An SPP 
will propagate along the interface until its energy is lost either to absorption in the metal or scattering 
into other directions (such as into free space). Therefore, the field modes on both sides are evanescent. 
Application of SPP enables sub-wavelength optics in microscopy and lithography (in IC processing) 
beyond the conventional diffraction limit.

SPPs can be excited by electrons or photons. Excitation by electrons is created by injecting electrons 
into the bulk of a metal. As the electrons scatter, energy is transferred to the electron plasma in the 
bulk. The component of the scattering vector parallel to the surface results in the formation of a surface 
plasmon polariton. For a photon to excite an SPP, both must have the same frequency and momentum. 
This coupling can be achieved using a coupling medium such as a prism or grating to match the photon 
and SPP wave vector, as shown in Figure 19.

Figure 18. Dispersion relations of volume and surface plasmon polaritons

Figure 19. Excitation of surface plasma oscillations on the surface of a metal with different methods: 
Kretschmann configuration (left) and surface grating method (right)
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7.4 Polaritons in Photonic Waveguides

It is strongly believed that the collective behavior of excitons and polaritons at the interface of a metal/
semiconductor and a dielectric, may bridge the gap between electronic and photonic devices. Some re-
searchers observed the strong coupling between quantum well excitons and the guided mode of a planar 
film waveguide. Compared to using distributed Bragg reflectors (DBRs), optical confinement by total 
internal reflection (TIR) in principle provides for smaller losses and also larger Rabi splitting through 
better spatial overlap of optical field and quantum well(s). Waveguides naturally operate at large in-plane 
wavevectors and group velocities so that polaritons should propagate large distances within their lifetime.

In order to couple light in and out of the waveguide, we can employ a grating coupler, which consists 
of a periodic modulation of the cladding layer interface. Figure 20 depicts an indium tin oxide (ITO) 
photonic waveguide, with ITO periodic modulation corrugated structure. Here, an ultrafast laser beam is 
coupled into an ITO waveguide by diffraction. The guided photonic wave travels underneath a metallic 
corrugation, where it is channeled into a surface plasmon polariton (SPP). When the dispersion of the 
electromagnetic mode crosses that of the excitons and the coupling strength is large enough, there is an 
avoided crossing of the modes, which is the signature of the strong coupling regime.

The figure below shows another SPP-based photonic waveguide, which is composed of a quantum 
well and a top grating structure. The right figure shows the angle-resolved photoluminescence (PL) 
spectrum for excitation and detection at the patterned grating area. We observe the anti-crossing and 
the Rabi splitting, which comes from the single quantum well. Here, the polaritons propagate with a 
group velocity of 26µm/ps and a lifetime of 11.4 ps in resonance. The exciton binding energy provides 
a quantitative measure of Coulomb electron–hole interactions. This quantity is equal to the difference 
between the electrical and the optical gaps of the material

8. CASE STUDY 16: SPPD (SURFACE PLASMON POLARITON DIODE)

Figure 22 depicts the basic structure of Surface Plasmon Polariton Diode (SPPD), which was proposed 
by Vinnakota & Genov (2014). This device can be operated as a high-speed optical switch (up to 1THz 

Figure 20. Schematic of ITO photonic waveguide, with a periodic corrugated structure
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modulation ratio). As shown in figure 22, the SPPD is composed of a highly-doped P-N junction, which 
exploits surface plasmon polaritons (SPP’s) at the junction boundaries. The device may be implemented 
in Si or better in GaAs, which has higher mobility and plasma frequency.

Figure 23 depicts the SPP dispersion curve ω(kspp) in GaAs for two doping concentrations. At low 
frequencies the SPP wave vector (kspp) coincides with that in air. However, at frequencies close to the 
surface plasmon frequency ωsp=ωp/(2εb)

½, where εb=12.9 is the bound electrons contribution to the p-
region permittivity, the wave experiences a resonance with kssp >>2π/λ, where λ is the wavelength in free 
space. Consequently, the effective mode wavelength is dramatically reduced below the diffraction limit 
in the semiconductor. The displayed dispersion relation and output characteristics refer to two doping 

Figure 21. The dielectric relaxation process
After Walker et al, (2013).

Figure 22. A schematic of an SPPD
After Vinnakota & Genov (2014).
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configurations: NA = 1019, ND = 5×1019 cm−3 (red line), and NA = 1019, ND = 3×1019 cm−3 (blue line). 
In this simulated device, the p-type layer thickness is d=0.5μm and the active region width is w=2μm. 
Note that for high-doping levels (ND > 1019 cm−3) the depletion region has a few nanometers width, and 
the excitation of weakly bound photonic modes is inhibited. The simulation of the SPPD is carried out 
by the COMSOL Multiphysics solver (2010) in conjunction with device simulator SENTAURUS, from 
Synopsys Inc.

The SPPD operation characteristics are studied here under steady state conditions. At zero applied 
bias (V=0), the electron concentration in the p-type layer is very low, causing this layer to behave as a 
dielectric. Therefore, the SPP propagation establish the ON state of the device. If a forward bias is ap-
plied (V>0), the electrons drift from the n-type layer into the p-type layer, and the minority concentra-
tion near the metallurgic junction increases exponentially with bias. At sufficient forward bias, greater 
than a critical value (V > Vc), the electron concentration in the active region will surpass a critical value 
at which the permittivity of the p-doped layer becomes negative such that εp(ω) <0. Therefore, the p-
layer layer behaves like a metal4 and the SPP could no-longer propagate through the active region, and 
the OFF state of the device is established. For a given operation frequency, the critical voltage (Vc) can 
be obtained from the transparency condition: ω= ωp/(εb)

½ or εp(ω, Vc) = 0, and the carrier continuity 
equations, giving

Vc = (kBT/e).ln [ εb ω
2 / ωpo

2] (28)

where ωpo = (n0e
2/εomn)

1/2 is the plasma frequency of the minority carriers under thermal equilibrium 
and zero external bias, mn is the electron effective mass in the p-type layer, and e is the electron charge. 
For NA = 5×1019 cm−3 and f = 35 THz, the critical voltage becomes Vc = 1.57V. Once the applied bias 
is removed (V→0), the excess electrons in the p-region diffuse out and their concentration falls below 
the critical value in about 5ps. At this point the SPPs can propagate through the device re-establishing 
the ON state.

Figure 23. The SPPD dispersion curves and transfer characteristics in air/p-type/n-type GaAs with two 
doping configurations; NA = 1019, ND = 5×1019 cm−3 (red line), and NA = 1019, ND = 3×1019 cm−3 (blue line)
After Vinnakota & Genov (2014).
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The switching speed can be roughly calculated as

f =1/(tON + tOFF),  (29)

where

tON = lspp
2 /16Dn, tOFF = lspp/vd .  (30)

Here, the SPP field penetration length lspp =1/kz
spp, with kz

spp = √(kspp
2-εp.ko

2) and the electron diffusion 
constant in the p-type region Dn = (kBT/e)μn. Also the drift velocity may be estimated as vd = μn (V-Vbi)/
xp, where xp is the thickness of space-charge-region extension in the P-side and the built-in voltage Vbi 
= VTln (NA/ni). Figure 24 shows the switched output power when the SPPD is switched with a square 
input voltage.

9. SUMMARY

In this Chapter we study the properties of polarons, plamons and polaritons quasiparticles, along with 
their application to quantum nano-photonic and nanoelectronic devices.

In order to understand the dynamics of the above quasiparticles and their transport properties in these 
materials, we reviewed the dielectric function of a semiconductor, since they are more or less coupled to 
their dielectric properties. Consequently, we study the following interactions and the transport of their 
associated quasi particles

• Electron-electron interactions & Plasma Oscillations,
• Electron-lattice interaction (Polarons),
• Photon-phonon interaction (Phonon-polaritons),
• Photon-exciton interactions (Excitonic polaritons).

Figure 24. The SPPD switching characteristics (output power), upon exposure to a square input voltage
After Vinnakota & Genov (2014).
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ENDNOTES

1  Note that ε2 is sometimes considered as a negative quantity, and hence we write ε = ε1 + j ε2
2  Generally speaking, damping and friction forces are due to carrier scattering events. When the 

carrier scattering by impurities is dominant, the damping factor will be frequency dependent.
3  This is correct when there is no collisions (no damping), in an electron gas or plasma
4  Like metals, the optical response of highly doped semiconductors may be described by the Drudé 

model for dielectric function: ε =εb–ωp
2/(ω2+jω/τn), where εb is the bound electrons contribution 

(εb = 12.9 in GaAs). The electronic relaxation time may be taken as the mean free time such that 
τn = mnμn/e, where μn is the electron drift mobility (Bond et, 1963).
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1. OVERVIEW AND CHAPTER OBJECTIVES

In this chapter we focus our attention on the electronic transport Models of organic semiconductors 
and insulator materials, which is an active research topic nowadays. Indeed, it may seem strange to talk 
about charge transport in insulators, and organic semiconductors, which are also inherently insulators. 
However, if one generates charge carriers in such materials, for example by optical excitation, they may 
move with a mobility that is comparable to that of conventional semiconductors or more. Obviously, an 
insulator can be converted into a semiconductor if free charge carriers are generated by either injection, 
or doping, or by optical excitation.

As we pointed out so far, some organic semiconductor crystals, such as polyacenes (anthracene, 
tetracene, and pentacene), and fullerenes (bucky balls), can conduct electricity and have attractive char-
acteristics for electronic and optoelectronic devices. Such organic semiconductors are already used in 
photocopiers. They are also employed in biosensors, light emitting diodes (OLEDs) in flat panel displays, 
and about to enter the solar cell market. In fact, almost all main players in the electronics industry work 
on organic displays, nowadays. Technically speaking, organic semiconductors are relatively low cost 
materials, their fabrication techniques are quite simple (no need for clean-room or high temperature 
processing), and they can be deposited on various types of substrates.

Organic semiconductors (OSCs) can be classified into two main categories: small molecules or 
oligomers and polymers. A polymer is a macromolecule that is composed of many repeating units, the 
monomer units. The properties of OSCs differ from conventional inorganic crystalline semi-conductors 
in many aspects. A central point is the mechanisms related to charge transport. In order to understand 
charge transport in OSCs, we need to elaborate on the electronic structure of organic solids. As shown 
in Figure 1, the organic solids such as polymers, are made of molecular subunits.

Conductive OSCs are hydro-carbon molecules with a backbone of unsaturated carbon atoms (like 
--CH-CH-CH--, each atom is threefold coordinated). These chains may contain other elements, including 
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H, N, and O. Table 1 shows the chemical formulas of conducting polymers commonly used in electronic 
applications. Note that a polymer is a large molecule (macromolecule) composed of repeating structural 
units. The polymer subunits are usually connected by covalent bonds.

In order to understand the conduction mechanisms in organic semiconductors, it is necessary to review 
the concept of energy bands and hybridization of orbitals. The bonds that form the molecular backbone 
arise from sp2 hybridized atomic orbitals of adjacent carbon atoms that overlap yielding a bonding and 
antibonding molecular σ and σ* orbitals. The remaining atomic pz orbitals overlap to a lesser degree, so 
that the resulting molecular π and π* orbitals are less binding or anti-binding, thus forming the frontier 
orbitals of the molecule. Therefore, the molecular orbitals are called 𝜎-orbitalswhen thespatialprobability
density of the electrons is centered on the axis joining two atoms like a cylinder, and π-orbitals, when 
the electrons are most likely to be found above and below the line connecting two atoms. According to 
Hückel theory (1931), the calculations of band structure become much simpler, yet give still reasonably 

Figure 1. Schematic illustration of the two basic families of organic materials

Table 1. Molecular structures of typical conductive polymers
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accurate results, when one treats the π-orbitals separately from the σ-orbitals. This Hückel-approximation 
works for many hydrocarbons with valence electrons in π-orbitals.

In the ground state of the molecule, all bonding orbitals up to the highest occupied molecular or-
bital (HOMO) are filled with two electrons of antiparallel spin while the antibonding orbitals, from the 
lowest unoccupied molecular orbital (LUMO) onwards, are empty. The band gap that is opened by this 
symmetry lowering is in the order of 2.5eV, which is in the range of semiconductors. Figure 2 depicts 
the orbital hybridization and band structure of organic molecules and how it is different from bulk 
semiconductor materials

With a band gap of about 2.5eV (between π -valence band and π*-conduction band) the polymer can-
not conduct electrical current at all. For charge transport in organic solids to take place, there must be a 
charge on the molecular unit. This may either be an additional electron that is donated to an antibonding 
orbital (in π*-conduction band), or one that is removed from a bonding orbital (in π-conduction band). 
The molecule is then no longer in the ground state but rather in a charged (excited) state. Excited states 
can be formed in polymer molecules by variety of methods, like light absorption, where an electron is 
promoted from HOMO to LUMO.

In disordered organic semiconductors charge transport occurs mainly by hopping between nearby 
localized states which are induced by disorder. Disorders may be static, due to impurities and lattice 
imperfections or dynamic due to temperature fluctuations.

Note 1: Van der Waal Forces in Organic Molecular Structures

The concept of the van-der-Waals interaction between two molecules is based on the fact that the mol-
ecules have no static dipole moment, but that they have a charge distribution that is not entirely rigid. A 

Figure 2. Schematic illustrations of the orbital hybridization (above) and the band structure (below) of 
organic molecules and polymers
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temporal fluctuation in the charge distribution in a molecule implies an associated temporary fluctuat-
ing dipole moment. This will induce a corresponding fluctuating dipole in the second molecule. The 
electrostatic interaction between the correlated fluctuating dipoles in the two molecules results in an 
attractive force, the van-der-Waals-attraction. This force depends strongly on the distance r between the 
molecules, and on the ability to induce dipole moments in a charge distribution, that is, the polarizability 
𝛼 of a molecule. Quantitatively, the potential energy associated with a van-der-Waals interaction is given 
by VVdW ∝ 𝛼 2/r6, that is, the force is proportional to r−7.

This has two consequences. First, the dependence on polarizability implies that molecular crystals 
are preferentially formed by molecules that possess a filled outer orbital that is large and delocalized, 
so that many electrons can easily be moved over some distance on the molecule. This is the case for flat 
molecules with π-orbitals, like polyacenes (e.g., benzene, naphthalene). 

In this chapter we present the transport mechanisms and models of both insulators and organic 
semiconductors.

As shown in Figure 3, the transport in insulators and organic semiconductors has been studied on the 
basis of the semiclassical and quantum approaches which are based on the Schrödinger equation, such 
as the NEGF. The combination of NEGF with band structure calculation methods, such as the DFT, has 
been also used for studying charge transport in molecular devices (e.g., by Stokpro, 2008). However, some 
approaches are macroscopic (such as GDM, EMA and MRT) and others are microscopic or molecular 
(such as Marcus theory and NEGF-DFT).

In order to appreciate how tiny is molecular devices and how much important is the accuracy of 
adopted transport model, look at the simple molecular wire device in the next figure. As shown, the 
device consists of a molecule of dithiol phenylene–ethynylene oligomer (popularly called a tour wire) 
coupled with two metal gold electrodes.

We start this Chapter by reviewing the conventional transport mechanisms in insulating materials, and 
thereupon, we continue with the recent transport models, which are dedicated for organic semiconductors. 
This arrangement is logic because, as we already illustrated, organic semi-conductors are insulators and 
become semiconducting by doping or when charges are generated by photoexcitation or injected from 
external electrodes. Most of the material of this Chapter is based on the review articles of Coropceanu 
et al (2007) and Bassler and Kohler (2012). We summarize the most important models and show their 

Figure 3. Transport mechanisms and models in insulators and organic semiconductors
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field of application and finish with practical case studies, showing how these models are applied to real 
organic semiconductor devices.

Upon completion of this Chapter, the reader will be able to

• Understand the different transport mechanisms of insulators and organic semiconductors
• Know how and when to apply the relevant transport models across insulators and organic 

semiconductors.
• Understand the mechanisms of charge carrier transport in organic semiconductors and nanodevices.

2. TRANSPORT MODELS IN INSULATORS AND DISORDERED MATERIALS

According to the energy band theory, conventional insulators and semiconductors have no free electrons 
at 0K. In additions to their classic use as isolators, insulators have other interesting features. The most 
important of these features is the ability of insulators to be polarized under the effect of electric field 
and to create electric dipoles.

The transport of charge carriers in insulators and disordered materials is different from conventional 
semiconductors. In general, it has a stronger field-dependence and may involve the motion of massive 
ions, by hopping, across vacancies and interstitial sites. This is true especially in view of the wide energy 
gap of insulator materials. In thin insulators, electrons may tunnel across the material as well. Hopping 
is important in disordered materials, such as polycrystalline and amorphous semiconductors as well as 
organic semiconductors. In the following subsections we present the physical models of these transport 
mechanisms

2.1 Classification of Insulators

Before discussing the transport and tunneling of charge carriers across insulating materials, it is wise 
to review the important types of insulators and their characteristics. There exist so many categories of 
insulating materials, among which one can distinguish the following types:

• Band Insulator, due to e-lattice interaction
• Mott Insulator, due to insulator-metal quantum transition
• Anderson insulator, due to disorder and localized states
• Topological insulators (TI).

Figure 4. Schematic of a molecular wire, between two gold electrodes
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Figure 6 depicts the chronical evolution of discovery of different types of insulators. We present a 
squeezed definition of each type in the following subsections.

Band (Bloch-Wilson) Insulator s

Band insulators are the conventional insulators which have large energy gap, due to electron-periodic 
lattice field interactions (Wilson, 1931). Band insulators are simple insulators because the band theory 
of solids successfully accounts for their properties.

Mott Insulators

Mott insulators are a special type of insulators, due to insulator-metal quantum transition because of 
electron-electron interactions (Mott, 1937). These many-body interactions lead to an energy gap in the 
excitation spectrum of the materials. The vanadium oxide (V2O3) is a clear example of Mott insulators. 
As we outlined so far, in Chapter 4, the Hubbard model (which an extension to the TB model) is able 
to describe the interaction-driven transition from a metal to an insulator, commonly known as the Mott 
transition.

Figure 5. Schematic illustration of the hopping conduction mechanism in insulators

Figure 6. Basic types of insulators
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Anderson Insulators

Anderson insulators are due to localized states and disorders, such as impurities and lattice imperfections 
that present in certain materials. The phenomenon of a spatially localized wavefunctions in a disordered 
material is known as the Anderson localization (Anderson, 1958). Figure 9 depicts the Anderson insula-
tor transition & Peierls instability of metals (1955).

Figure 7. Band insulators vs. conductors

Figure 8. Mott insulator transition due to e-e interaction at low temperature (left). Vanadium oxide 
structure as an example (right)
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Topological Insulators

The topological insulator (TI) is a state of matter with unusual properties that appears on the surface 
of insulators or at the interface of narrow band gap materials with gapless (metallic) surface/interface 
states. The surface/interface states are excited by massless fermions (called Kramers partners). The spin 
of such fermions is locked at a right angle to their momenta due to spin-orbit coupling, making them 
protected against scattering. This means the larger the spin-orbit coupling, the better is the protection. 
Topological insulators are a subclass of narrow-gap semi-conductors and heterostructures where the 
band gaps are smaller than the relativistic corrections to the band structure. In fact, the heterostructures 
of some compound semiconductors such as Bi1-x Sbx and Pb1-xSnxTe exhibit a strong topological phase. 
For instance, in Bi1-xSbx, with increasing the molar fraction x, the gap at the L point decreases and the 
L+ and L- bands meet at x = 0:04. With further increase in the mole fraction x, the gap reopens with 
inverted band. Some 2D topological insulators, such as HgTe quantum wells, exhibit the quantum spin 
Hall Effect (SQHE). In the interface of the quantum well of such 2D TI’s, the spin changes sign, thereby 
creating a pair of gapless helical edge states inside the energy gap.

2.2 Transport Across Thin Insulator Materials

Now, we review the principal methods used to formulate charge carrier transport across insulators. In fact, 
the transport in nanoscale devices cannot neglect the transport and tunneling of charge carriers across thin 
insulators and dielectric materials that essentially coexist with semiconductor active regions. Actually, 
charge carriers may move or tunnel across insulating materials by different mechanisms. In thin insula-
tors, the most frequent transport mechanisms of charge carriers are Fowler-Nordheim and Poole-Frenkel 
mechanisms. In the following subsections we present the physical models of these transport mechanisms. 
An emphasis is made on the transport across thin oxide insulator, in metal-oxide-semiconductor (MOS) 
field effect transistors.

Figure 9. Anderson insulator transition and Peierls instability of metals
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Poole-Frenkel Mechanism

The Poole-Frenkel model was introduced in 1938 by Frenkel (1938) to explain the increase of conductiv-
ity in insulators when high fields are applied. This mechanism is concerned with the motion of heavy 
impurity ions by hopping across vacancies and interstitial sites in the insulator material. For instance, in 
deposited insulators, impurity ions and defects are abundant and are drifted by this mechanism. In this 
case, the current density is proportional to the electric field inside the insulator material (J = σ. ζ). The 
electrical conductivity in this case is field-dependent according to the following relation:

σ = σo. exp [-√(e.ζ /π εr) / kBT ] (1a)

where εr is the relative permittivity of the insulator (εr =7 for Si3N4) and σo is a constant dependent on 
the temperature. The Poole-Frenkel current density is then given by:
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Fowler-Nordheim Tunneling Mechanism

The Fowler-Nordheim (FN) tunneling is a dominant transport mechanism in metal-oxide-semiconductor 
(MOS) structures, especially for relatively-thick insulating oxides. In fact, the quantum mechanical 
tunneling from a conductor into an adjacent insulator defines the current through the structure. When 
the electrons tunnel into the insulator they are assumed free to move within the conduction band of the 
insulator. The following equation, relates the tunneling current density, JFN, with the tunneling prob-
ability across the insulator:

Figure 10. Band inversion between two end members in Pb1-xSnxTe., and energy spectrum of the inverted 
contact
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J FN = ∫ T(En) gn(En) uq
┴ fn (En) dEn (2)

where, fn is the electron distribution function, gn(En) is the density of states, uq
┴ is the electron normal 

velocity to the semiconductor/insulator interface (where uq
┴ ≈1/4 uq) and. Also, the tunneling probability 

T(En) can be found by solving the Schrödinger equation in the insulator barrier, for instance, using the 
well-known Wentzel-Kramers-Brillouin (WKB) method or by the Gundlach technique (Gundlach et al, 
1997).

The tunneling probability may be expressed by the WKB approximation in terms of the barrier height 
and shape. For a trapezoidal barrier of upper height ϕB and lower height ϕo, the tunneling probability 
T(En) is given by:
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Here, mox is the effective mass of electrons inside the insulator barrier (for SiO2, mox =0.42m0).
Assuming the electron energy distribution function is Maxwellian and the energy bands are parabolic, 

we can derive the following Fowler-Nordheim formula for tunneling current:

JFN = J0 .ζ 2 exp [−ζ 0 / ζ ]  (5a)

where Jo and ζ0 are constants, related to the energy barrier height ϕB between the insulator and the in-
jecting conductor as follows:
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The energy barrier height ϕB can be determined experimentally from the structure J-V characteris-
tics by plotting ln(JFN/ζ2) versus ζ-1. This is shown in Figure 12. For thin layers we may take ζ =VG/d, 
where VG is the applied voltage across the MOS structure and d is the insulator thickness. Note that an 
important condition for Fowler-Nordheim tunneling is that the electric field inside the insulator should be 
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high enough such that ζ.d>ϕB,. Another condition is the possibility for electrons to move freely (without 
frequent collisions or recombination) inside the insulator. This is the case in thermally-grown silicon 
dioxide (SiO2). However, in other insulators, like Si3N4, there exist huge amount of impurities and defects, 
which have deep energy levels within the insulator energy gap and act as trapping centers for electrons.

Other Tunneling Mechanisms

There exist a variety of tunneling processes that can be identified in silicon-dielectric-silicon structures in 
general and MOS devices in particular. When we consider the shape of the energy barrier alone, we can 
distinguish the Fowler-Nordheim (FN) tunneling and the direct tunneling. Other classification differenti-
ates between electrons from the conduction band (ECB), electrons from the valence band (EVB), holes 
from the valence band (HVB), and trap-assisted tunneling (TAT) mechanisms, as shown in Figure 13.

The EVB process is due to electron tunneling from the valence band to the conduction band of two 
semiconductors, across a dielectric material. It thus creates free carriers at both sides of the dielectric, 
which, for MOSFET devices, gives rise to increased substrate current. The TAT process can either be 
elastic, which means that the energy of the carrier is conserved, or inelastic, where the carrier loses 
energy due to the emission of phonons. Furthermore, in dielectrics with a very high defect density, 
hopping conduction via multiple defects may occur. The tunneling current in such structures can be 
modeled by several methods, such as the Tsu-Esaki model. The Tsu-Esaki tunneling formula finds the 

Figure 11. Illustration of the tunneling across oxide insulator barrier in a MOS structure
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Figure 12. Oxide tunneling current to Si, as a function of oxide voltage

Figure 13. Schematic illustration of different tunneling mechanisms across a semiconductor-dielectric-
semiconductor structure
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tunneling current density across MOS structures by integration in the energy domain. In the channel of 
an inverted MOS, we have:

J = 4π (e mo./h
3) ∫ T(E).N(E) dE (6)

The Tsu-Esaki model allows to distinguish between the supply function, N(E), which describes the 
supply of carriers for tunneling, and the transmission propability, T(E), which characterizes the consid-
ered energy barrier.

N(E) = ∫ (f1(E) - f2(E)) dE (7)

The supply function depends on the energy distribution function of carriers in the semiconductor, 
f(E). Actually, it is not easy to calculate the energy distribution function of carrier at non-equilibrium 
(in presence of bias voltage). However, one can model the shape of distribution function by a first-order 
approximation, such as the Fermi-Dirac distribution to get:
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In the above formula, we assume the Fermi-Dirac distribution function at equilibrium, which is a 
very crude approximation. We also assume a parabolic band structure for the semiconductor. In order to 
obtain more realistic results of tunneling currents, some authors assumed a non-Maxwellian distribution 
function and considered the a non-parabolicity of energy bands. As we pointed out in the above section, 
the transmission coefficient, T(E), can be found by the solution of Schrödinger’s equation around the 
considered region. The Wentzel-Kramers-Brillouin (WKB) and the Gundlach methods can be used as 
approximate solutions of the Schrödinger equation. If we adopt the analytical WKB approximation, for 
a triangular barrier we get:

T(E) = 4η /(4+η)2 (9a)
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Here, x1, x2 are the two classical turning points for the potential barrier. If we take the classical limit 
of Planck’s constant, as ħ→0, we see that the transmission coefficient correctly goes to zero. In the case 
of metal-oxide-semiconductor structures, the barrier takes the triangular shape, as shown in Figure 13. 
Hence, the tunneling coefficient is given by (-9). Figure 14 depicts the tunneling coefficient across SiO2 
dielectric in an MOS structure as a function of electron energy. However, for the accurate simulation of 
transport across arbitrary barriers, there exist other advanced models, such as the transfer-matrix method 
(TMM) and the quantum transmitting boundary method (QTBM).
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The TMM provide an important tool for investigating bound and scattering states in quantum structures 
(Grun et al, 1987). They are mainly used to solve the one-dimensional Schrödinger or effective mass equa-
tion, e.g., to obtain the quantized energies in hetero-structures and metal–oxide–semiconductor (MOS) 
structures or the transmission coefficient of potential barriers. We know that analytical expressions for 
the transfer matrices are only available in certain cases, as for constant or linear potentials and potential 
steps. An arbitrary potential can be treated by approximating it for example in terms of piecewise steps 
or linear segments, for which analytical transfer matrices exist. For constant potential steps, the matrices 
contain complex exponentials, while the linear potential approximation yields Airy functions.

3. CONDUCTION IN ORGANIC SEMICONDUCTORS

Organic semiconducting molecules are distinguished from insulating molecules by their large spatial 
extent of the frontier orbitals. In the case of hole transport, the orbital of relevance is the highest occu-
pied molecular orbital (HOMO), whereas, for electron transport, it is the lowest unoccupied molecular 
orbital (LUMO). In insulating molecules, these orbitals are small, localized on just a few atoms. As a 
result, the spatial overlap between frontier orbitals on neighboring molecules is also small and so the 
probability of charge transfer between them is almost null. On the other hand, the frontier orbitals of 
semiconducting molecules are spatially delocalized, covering much of the molecule. This delocalization 
arises from the conjugation (strong interaction) of partially filled orbitals on neighboring atoms (often 

Figure 14. Tunneling coefficient across gate dielectric barrier (of thickness tox) in a metal-oxide-semi-
conductor (MOS) structure as a function of electron energy
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p-orbitals of C, O, S, or N). Because of delocalization, the neighboring orbitals on molecules overlap, 
and the probability of charge transfer is appreciable.

Now, let’s demonstrate some of the limiting cases of charge carrier transport in organic semiconduc-
tors. When applying an electric field to an organic semiconducting device, any injected charge is drifted 
to the opposite electrode, giving a typical V2 behavior of the conduction current. The resulting current 
is called a space-charge limited (SCL) current, because the current is impeded by the presence of the 
space charge in the device. The SCL current regime occurs when the equilibrium carrier concentration 
(before charge injection) is negligible compared to the injected carrier concentration. By solving the 
Poisson equation with the charge drift equation in a trap-free solid, the resulting current relation is called 
the Mott–Gurney law (Mott and Gurney, 1940):

J = (9/8) εμ (V2 / L3) (10a)

where є is the electric permittivity of the material, μ is the charge-carrier mobility (μn for electrons or 
μp for holes) and, L is the sample thickness. For bipolar devices, the injection of opposite charge carri-
ers (electrons and holes) reduces net charge and allows for a much larger current. Moreover, electrons 
and holes can recombine, which reduces the current. For Ohmic contacts the bipolar current is given 
by (Parmenter and Ruppel, 1959):

J = (9/8) ε [2π μn μp(μn + μp)/μr ]½ (V2 / L3) (10b)

Therefore, in a double-carrier device, the typical V2 dependence of the current is also found. However, 
many other conduction mechanisms can occur in organic devices, and we discuss them in the following 
sections.

3.1 Charge Carrier Mobility in Organic Semiconductors

The most important parameter of carrier transport in organic devices is carrier mobility. The charge 
mobility is defined as the ratio of average carrier velocity v and the applied electric field ζ:

μ = v/ζ (11)

The disordered nature of organic semiconductor films makes it difficult to accurately calculate μ 
with theoretical approaches. Instead, it is necessary to simulate the motion of charges through a large 
number of molecules in real chains. Fortunately, this is possible when intermolecular charge transfer 
occurs in the hopping regime, because the motion of a charge is simply a sequence of independent hops 
between neighboring molecules.

The molecular conductance can be measured by the mechanical controllable break junction (MCBJ) 
technique, usually between gold electrodes (Reed et al. 1997). The figure 14 depicts the evolution of 
mobility histograms, as obtained by the MCBJ method with Au point contacts (Yang et al, 2011).

The evolution of organic materials over the years is shown in the graph 15 for polycrystalline and 
crystalline organic FET (OFET). As shown in figure, the mobility of organic semiconductors has im-
proved by five orders of magnitude over the past 20 years. The horizontal lines indicate the comparison 
guides to the main competitors – amorphous (a-Si) and polycrystalline silicon
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Figure 15. Schematic of the mechanical controllable break junction (MCBJ) technique for conductance 
measurement of a molecular system

Figure 16. (a) Carrier mobility of promising organic semiconductors at 300K; (b) comparison of re-
ported motilities of crystalline, polycrystalline and amorphous silicon, with respect to organic materials
After Yang et al (2011).
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The graph reveals that the mobility in polycrystalline OFETs is comparable to that of a-Si whereas 
mobility in rubrene-based OFETs (20–40 cm2/Vs) approaches that of best poly-silicon devices. These 
materials have very poor mobility at room temperature. However, the mobility of these materials is im-
proved at low temperature and may even show superconductivity effects at very low temperatures. For 
instance, the pentacene has electron drift mobility of 100,000 cm2/Vs at low temperature (Scott et al, 2000). 
The advantage of these materials, over metallic and ceramic superconductors, is their simple fabrication 
method at low cost. The performance of organic semiconducting devices has been improving greatly 
since the start of the 1990’s. In 1997, pentacene was used instead of thiophene as organic material. In 
fact, pentacene has the smallest bandgap among all linear polyacenes and the highest mobility in OFETs, 
with μ=0.3-1.5 cm2/Vs. This value is comparable to that of amorphous Si devices, as shown in Figure 
15(c). Here, doping is performed by replacing a fraction of the TMTPD with their salt TMTPD:SbF6.

3.2 Conductivity of Doped Organic Semiconductors

The conventional way to increase the conductivity of a semiconductor is to introduce dopants that can 
act as electron donors or/and acceptors. In fact, significant progress with inorganic semiconductors 
could only be obtained once carrier transport is controlled by doping. Like other semiconductors, or-
ganic semiconductors may be either n-type or p-type, according to their majority carriers are electrons 
or holes. However, the underlying mechanisms of molecular doping in organic semiconductors are only 
little understood compared with their inorganic counterparts. Anyway, the most widely used organic 
semiconductors are p-type. For instance, the π-conjugated polymers are generally p-type materials. 

Figure 17. Conductivity of TMTPD-PC, as a function of doping
After Scott et al (2000).



634

Carrier Transport in Organic Semiconductors and Insulators
 

Nevertheless, some polymers with high electron affinity can be used as n-type semiconductors. The 
reason behind this is mainly because of the stability of p-type organic semiconductors in air. In fact, 
the controlled and doping stability can be accomplished in organic semiconductors but it imposes some 
problems. The problem is related to the level of transport states. P-type doping requires the transfer of 
an electron from the filled HOMO of the host to the LUMO of the dopant at no or only little energy 
expense. Correspondingly, the HOMO of the dopant has to be close to the LUMO of the host in order 
to promote n-type doping. This makes a serious constraint on the mutual energy levels. In most organic 
semiconductors the HOMO is around 5-6 eV below the vacuum level. Assuming an energy gap of 2.5eV, 
a p-type dopant therefore has to act as a very strong electron acceptor. On the other hand, the n-type 
dopants should have a HOMO level near 2.5-3.5eV, which is difficult to achieve. To resolve these dif-
ficulties, molecular doping emerged as a viable alternative, where larger organic molecular acceptors or 
donors were developed as p- or n-dopants (Salzmann et al, 2016). Figure 18 depicts the charge carrier 
mobility in P3HT as a function of the doping concentration. The experimental mobility is calculated 
from the steady state current at a given doping level

4. TRANSPORT MODELING IN ORGANIC SEMICONDUCTORS

The study of charge carrier transport in organic semiconductors has been started long time ago by Ely 
(1948), Akamatsu & Inokuchi (1952), Marcus (1956), Kallmann & Pope (1960) and LeBlanc (1961) 
and so many other scientists. A review of the cornerstones in this field along 60 years of research and 
development can be found in Hush & Ann (2003) and Nawla (2008).

Figure 18. Hierarchy of transport models for organic semiconductors From Rule et a (2011), with behavior
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The electrical and thermal transport of a large class of organic semiconductors has been studied 
on the basis of the semiclassical Boltzmann transport equation (BTE) for wide-gap semiconductors. 
Alternatively, other studies are relying on the quantum approaches which are based on the Schrödinger 
equation, such as the nonequilibrium Green’s functions (NEGF). In order to predict the molecular energy 
band structure (or molecular orbitals) of organic semiconductors, there are many approaches. Among the 
famous ones one can site: the Valence-bond (VB) method, density functional theory (DFT), the LCAO 
and Hückel-theory. In particular, the Hückel approach (1931) is much simpler, yet gives reasonably 
results for many hydrocarbons, when one can treats the π-orbitals separately from the σ-orbitals. The 
combination of NEGF with band structure calculation methods, such as the DFT, is also a promising 
framework for studying transport in molecular devices. For instance, the NEFG-DFT method has been 
applies to predict the I-V characteristics of a single molecule (Stokbro, 2008).

The so-called non-adiabatic molecular dynamic simulations have been applied to study the carrier 
transport of organic materials (Kubar & Marcus, 2013). In non-adiabatic simulations the electronic 
structure and nuclear motions are treated separately. This allows the nuclei to react with the instantaneous 
position of moving charge and vice versa.

On the device scale, one can distinguish between two basic categories of charge transport in disordered 
organic semiconductors, namely:

1.  Macroscopic models, and
2.  Molecular models.

The Macroscopic (such as Gaussian disorder model GDM, Polaronic model and Effective medium 
approach EMA) are making use of fitting parameters, which can be adjusted with experimental results. 
The molecular models, on the other hand, treats with the electronic interactions between small clusters 
of molecules. The molecular approach can be used to calculate the rate of charge transfer between two 
molecules. In fact, in almost all approaches of molecular charge transport, we need an expression of the 
charge transfer rate. This rate may be expressed by the Marcus theory or the Miller-Abraham model. The 
conventional tool to describe the electron transfer in complex molecular systems has been the Marcus 
theory (Marcus, 1956, 1964, 1985) and its extensions (Small, Matyushov & Voth, 2003). This theory 
is presented in the next section.

4.1 Charge Transfer Rate of Molecules in Organic Semiconductors

In order to understand the Marcus theory, consider the following charge transfer reactions, for electrons, 
and holes:

M1
- + M2 = M1 +M2

- (12a)

M1
+ + M2 = M1 +M2

+ (12b)

where M1 and M2 are two semiconducting molecules. If the coupling between M1 and M2 is strong, 
this reaction may occur so fast in both directions so that the charge is essentially delocalized across both 
molecules. It should be noted that charge transfer reactions that involve both holes and electrons are also 
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important, for example in charge generation and recombination in OLEDs. Figure 19 depicts the initial, 
transition, and final states of an electron transfer reaction between identical molecules M1 and M2, where 
the nuclear coordinates of both molecules are described by Qi,Qt,, Qf respectively.

In the initial state, the electron is in the lower unoccupied molecular orbital (LUMO) of M1 and 
consequently, these molecules have longer bond lengths, since the LUMO is an anti-bonding orbital. In 
the final state, the electron has transferred to the LUMO of M2 and the bond lengths have been adjusted 
accordingly. Both molecules have the same bond length in the transition state, and the charge can be 
considered to be on either molecule.

In order to describe the charge transfer process, it is useful to consider the simple case of two non-
interacting (adiabatic) wavefunctions ϕi and ϕf that describe the distribution of electrons before and 
after charge transfer. In each case, the wavefunction describes the distribution of all electrons on both 
molecules for a certain configuration of their nuclei. Both are eigenstates of the electronic Hamiltonian 
He

(0), in which charge transfer is not possible because molecules M1 and M2 aren’t coupled:

He
(0) ϕi = Ei (13a)

He
(0)ϕf = Ef (13b)

where Ei and Ef are the energies of states ϕi and ϕf respectively. In order to consider the charge transfer, 
a more complete and coupled Hamiltonian is necessary, in which ϕi and ϕf are coupled by a transfer 
integral Jif

H E E J
e f f f if i f f i
= 〉〈 + 〉〈 + 〉〈 + 〉〈

1 1 1
[| |] [| |] [| | | |]φ φ φ φ φ φ φ φ  (14)

where He is the electronic Hamiltonian and the transfer integral Jif is given by:

Figure 19. A schematic of electron transfer between molecules M1 and M2 showing initial, transition, 
and final states with nuclear coordinates Qi, Qt and Qf respectively. Charge transfer occurs at the tran-
sition state
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Jif = < ϕi |He | ϕi >  (15)

Figure 20 depicts the potential energy surfaces of the initial and final states as a function of the nuclear 
coordinates (Q). The transition state (at Qt) is defined by the point where the two curves meet, and the 
potential energy required to reach this point from the optimum configuration of the initial state is E*. 
One can define E* in terms of the energy offset ΔE=E f -Ei and the reorganisation energy λ=½K(Qf 
+Qi)

2, where K is the force constant.

E* = (ΔE+λ)2 / 4λ (16)

Both ΔE, Jif as well as λ, can be calculated by quantum self-consistent field (SCF) methods, such as 
the Hartree-Fock or DFT. According to the degree of electron–phonon interaction (the ratio between 
the intermolecular electron coupling Jif, which is also called electron transfer integral, and the molecular 
re-organization energy λ), one can distinguish different charge transport models:

1.  When Jif >> λ for molecules in a crystal, the conventional band theory (with delocalized states) can 
be used to describe the charge carrier mobility. In this regime, the mobility is limited by phonon 
scattering. Some polyacenes single crystals indicate band-like charge transport (Machida et al, 
2010).

2.  When Jif ≈ λ, the charge transfer can be still described in the framework of the adiabatic approximation.

Figure 20. Potential energy surfaces of the initial and final states as a function of position along the 
charge reaction pathway Q
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3.  When Jif <<λ, the electron interacts strongly with intramolecular vibrations which eventually lead 
to self-localization: This is the case of disordered semiconductors where the band description fails 
and hopping model applies.

In fact, it became clear since the early 1990s, that coulomb and exchange interactions between charges 
are so significant in π-conjugated polymers so that they cannot be neglected. Instead, coulomb and ex-
change interactions are central for a correct description of the electronic structure and carrier transport 
of organic semiconductors.

4.2 Semiclassical Marcus Theory

The Marcus theory (1956) is a seminal contribution to the field of charge transfer, and worthy of the 
1992 Nobel Prize in Chemistry. In various forms, Marcus theory has been applied to charge transfer 
in many chemical and biological systems. In the semiclassical formalism, Marcus theory describes the 
rate of charge transfer (Γif) between an initial state So (with wavefunction ϕi) and final state S1 (with 
wavefunction ϕf) as follows:

Γ
if if B

B

J k T
E

k T
=










−
∆ +






−2
4

4
2 1 2

2π
πλ

λ
πλ�

| | ( ) exp
)/






 (17a)

where λ is the re-organization energy and ΔE is the energy difference between the initial state ϕi and 
final state ϕf:

ΔE = < ϕf |He | ϕf > - < ϕi |He | ϕi >  (17b)

When the difference ΔE between Ei and Ef is large, the mixing between ϕi and ϕf is small. In this 
case, ϕ is predominantly composed of the state with the lowest energy, and the charge is localized on a 
single molecule. However, the charge transfer reaction must proceed through the intersection between 
curves in order to conserve energy and satisfy the Franck-Condon principle1 (1926). The Marcus theory 
has got great success due to its prediction that the transfer rate Γif doesn’t increase indefinitely as the 
reaction becomes more exergonic, and is maximum when ΔE=-λ, as shown in figure 19. This result was 
confirmed experimentally in 1984 (Karabunarliev et al., 2000).

4.3 Quantum Transport Modeling in Organic Semiconductors

In order to develop a microscopic quantum description of charge transport in Organic Semiconductors, 
it is important to evaluate the extended charge carrier wavefunction. This can be obtained by solving 
the time-independent Schrödinger equation (SE). Using the Born-Oppenheimer (adiabatic) approxima-
tion, the many-body SE can be reduced to one-electron form with effective (Hartee-Fock) potential, as 
explained in Chapter 4. We can then write the one-electron Hamiltonian for organic semiconductors, 
taking into account the specific effects of disorders and molecular transfer rate. In this Hamiltonian, we 
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assume low carrier density, such that electron correlations and Coulomb interactions can be neglected 
(Atkins, 1983):

H = Ho + H1 + H2 + H3 + H4 (18)

where, Ho is the electronic and vibrational (phonon) term,

Ho = Σn En .(aλ
ϯaλ) + Σλ ħωλ .(bλ

ϯbλ) + ½) (19)

Here, En is the electron energy in a perfectly ordered lattice, an(an
ϯ) is the creation (destruction) opera-

tor of excited electron at the molecular n site, bλ(bλ
ϯ) is the creation (destruction) operator of a phonon 

mode of energy ħωλ,
The electron transfer term H1 is given by:

H1 = Σn,m Jn,m .(an
ϯam) (20)

Here, Jnm is the electronic coupling (transfer integral) between site m and n (n≠m) in perfectly ordered 
lattice. The dynamic diagonal disorder term H2 is given by

H2 = Σ λ Σn g
2
n,λ ħωλ.(an

ϯan) .(bλ
ϯ +bλ) (21)

The dynamic off-diagonal disorder term H3 is given by:

H3= Σn Σ λ f
2
nmλ . ħωλ (an

ϯam) .(bλ
ϯ +bλ) (22)

The static diagonal & off-diagonal disorder terms are lumped in H4 which is given by:

H4= Σn δEn .(an
ϯan) + Σn δJn≠m (an

ϯam) (23)

where δEn and δJnm are the variations of En and δJnm due to static disorder, and gnλ and fnmλ are coupling 
constants for the electron–phonon coupling.

Note that disorders may be static (due to fixed defects or impurities) or dynamic (due to temperature 
fluctuations, which affect the weak van der Waal bonds). Mathematically speaking, one can also classify 
disorder into two categories, namely: diagonal disorder, which reflects the fluctuations in site energies 
(i.e., the energies of the HOMO or LUMO levels of individual molecules); and off-diagonal disorder, 
which is related to fluctuations in the strength of interactions between adjacent molecules, i.e., to modi-
fications of their relative positions and orientations (Coropceanu et al, 2007).

When the Hamiltonian term H1 is small compared to H2 and H3, and H4 is neglected, the transport is 
dominated by the coupling of the electronic excitation to molecular vibrations (phonons). We already 
know that a charge carrier coupled to lattice vibrations (phonons) is called polaron. Therefore, the interac-
tion term H2 causes a reduction of the site energy by the polaron binding energy. This energy should be 
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overcome by thermal activation to enable charge transport. In this case, the charge transfer takes place 
by uncorrelated, phonon-assisted hopping process, which is determined by H3.

4.4 Disorder-Based Transport Models

On the basis of the early work of Anderson on carrier transport in disordered materials (1958), we can 
conclude that charge carriers in organic semi-conductors (OSCs) are localized rather than extended 
throughout the material. Actually, OSCs are either statically disordered (due to crystal imperfections & 
impurities) or dynamically disordered (due to molecular vibrations) near room temperature. When the 
fluctuations in the intermolecular distances and their orientations give rise to a large variation in the site 
energy compared to other terms in the Hamiltonian, the static disorder dominates the charge transport. 
Therefore, charge carriers move by hopping. Of course, a thermal activation is required to overcome the 
energy differences between different sites.

A distinguished problem in disordered materials is their low charge carrier mobility, compared to 
crystalline semiconductors. The theory of electronic wavefunction localization in a disordered material 
was presented by Anderson in 1958. Anderson argued that scattering plays no role on carrier transport 
when the degree of disorder in a solid is greater than a critical point. The low mobility is attributed to 
the hopping distance, which is shorter than the Coulomb radius rc = e2/4πεkBT, where e is the electron 
charge, and ε is the dielectric permittivity. The charge carrier mobility in a disordered organic solid is 
usually modelled by the Gaussian disorder model (GDM). In the GDM, the system is considered as an 
array of structureless point-like hopping sites whose energies feature a Gaussian-type density of uncor-
related energy states (Bassler, 2008). Also, the model for the charge hopping rate follows that of Miller 
and Abrahams (1960):

Γij =Γ0 exp(-γ rij).exp [-(Ej - Ei)/kBT] for Ej > Ei (24a)

Γij =Γ0 exp(-γ rij) for Ej ≤ Ei (24b)

where rij = a is the relative jump distance between site i and site j, a is the lattice constant, γ is the inverse 
localization radius related to the electronic coupling matrix element between adjacent sites, and Γ0 is a 
frequency pre-factor. In an extended version of the hopping model, the positional (off-diagonal) disorder 
is employed, in addition to energetic (diagonal) disorder. 

Figure 21. Schematic illustration of extended wave function in a crystalline material with negligible 
disorder and wavefunction localized by disorder
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The different modes of transport have different temperature dependence of the charge carrier mobil-
ity. There are many approaches to predict the dependence of the charge carrier mobility on temperature 
and electric field. For instance, the effective medium approach (Fishchuk & Kadashchuk), stochastic 
hopping theory and Monte Carlo simulations can be used to fit the following model: 

µ σ ζ µ ζ( , ) exp( / ).exp[ ( ) ] ./= − −∑ ∑ ≥
0

2 2 2 1 24 9 1 5s C s  for  (25a)

µ σ ζ µ ζ( , ) exp( / ).exp[ ( . ) ] ./= − − ∑ ≤
0

2 2 1 24 9 2 25 1 5s C s  for  (25b)

where the energetic disorder parameterσ = kBT, ζ is the electric field, Σ is a positional disorder parameter 
and C is a constant that depends on the site separation. If the lattice constant a = 0.6nm, then C =2.9x104 
cmV½. This equation resembles the Poole-Frenkel field dependence, which is obeyed experimentally 
within a large range of electric fields. The reason is that the energies of the hopping sites are essentially 
determined by the van der Waals interaction between a charged site and its polarizable neighbor sites 
which may carry an additional static dipole moment.

4.5 Polaronic Transport in Organic Semiconductors

Charge transport in organic semiconductors can be described by means of polarons. We have so far in-
troduced the concept of polaron in semi-conductors and dielectric materials (Yamashita et al., 1958). A 
polaron is a quasiparticle composed of an electron plus phonon field. Therefore, a polaron is an electron 
dressed with phonons. The polaron model was extended to molecular crystals and conjugated polymers 
by Holstein (1959) and by Fesser et al. (1983). In organic polymers, polarons result from the deforma-
tion of the conjugated chain under the action of the charge. Holstein proposed a model to determine the 
mobility µ of polarons in the semiconductor, as a function of the lattice constant a, the electron transfer 
energy J, the reduced mass of the molecular site M, the frequency of the harmonic oscillators associated 
to the molecules ω0, the polaron binding energy Eb=A2/(2Mω0

2) and temperature T:

µ
π

=
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/
 (26)

This equation is valid for T>Θ, where kBΘ = ħω0 is the Debye energy. However, upon ionizing a 
molecule or a polymer chain, and hence adding an extra electron, there is a readjustment of bond lengths 
because the electron distribution changes. In optical transitions this effect is revealed by the coupling of 
the excitation to molecular vibrations. It determines the relaxation energy between the initially generated 
vertical Franck Condon transition and relaxed electronic state.

The lack of quantitative knowledge gave rise to a discussion in the literature on whether or not disorder 
effects or polaron effects control the temperature dependence of the charge carrier mobility. Actually, 
the analysis of the temperature and field dependence of the mobility solely in terms of polaronic effects 
requires fitting with unphysical parameters (notably unrealistic electronic overlap). In addition, polaron 
effects cannot explain the observation of dispersive transport at low temperature. Using the effective 
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medium approach (EMA), Fishchuk et al. (2013), considered the effect of disorder and polaron effects. 
In this analytical theory, the charge transfer process is included using the symmetric Marcus rates instead 
of Miller–Abrahams rates. The predicted temperature and field dependence of the mobility is then:

µ µ η η ζ σ ζ η= − −
0

2 1 5 2 28 8 4
.

.exp[ ( / ) ( / ].[( / ) ( / )]. exp[ /E k T s s ea ea
a B

kk T
B

]  (27)

where Ea is half of the polaron binding energy, η = (1-σ2/ 8eakBTp)½ and σ = 8ea(kBTp). This equation 
agrees qualitatively with the empirical expression derived from numerical simulations: 

µ µ ζ σ= − − −
0

2 1 50 31 0 78 1 75
.

.exp[ ( / ) . . exp[ . ( . ) ( / )]E k T s s ea
a B

 (28)

4.6 Strong Coupling and Tunneling Transport

Now, let’s consider the strong electron–phonon interaction limit where the charge is regarded as localized 
in a single molecule. Then, the charge transport consists of successive hopping from molecule to molecule, 
overcoming the trapping caused by electron scatterings with intramolecular vibrations. Concerning, the 
transfer rate, the Marcus theory distinguishes between two limiting cases of weak coupling and strong 
coupling as shown in Figure 22 The weak coupling limit is the case when the potential energy surfaces 
of initial and final state are only weakly displaced so that the surfaces only intersect far away from the 
minimum of the upper state surface. This condition is fulfilled in aromatic hydrocarbons. Strong coupling 
applies when the minima of potential energy curves of initial and final state are strongly displaced so 
that the potential curves intersect near to the potential minimum of the high energy state.

Figure 22. Illustration of the charge carrier coupling in disordered materials
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In order to evaluate the charge mobility within the hopping picture, there are two important rate 
processes at different spatial scales, namely, the electron transfer within molecular dimers and the elec-
tron diffusion in the organic material. The first process is characterized by the intermolecular electron 
transfer rate at the atomistic level, while the latter can be simulated at the molecular level by the random 
walk and Monte Carlo technique. We dully note that when the intermolecular electronic coupling (J) is 
much smaller than the reorganization energy (λ) of the electron transfer, the electron transfer rate falls 
into the hopping regime. For organic materials, we know that the intermolecular interaction is of van 
der Waals type. Therefore, J is smaller than λ, and the Marcus rate is usually adopted to evaluate the 
room-temperature mobility. However, beyond the semiclassical Marcus theory, the quantum nuclear tun-
neling effect should be also considered in the charge transfer process. According to Shuai et al (2014), 
this quantum effect is essential for interpreting the paradoxical experimental results between optical and 
electrical measurements of charge transport in organic semiconductors.

4.7 Charge Carrier Injection in Organic Semiconductors

We have stated earlier that the current conduction, in insulators may be space-charge limited (SCL) or 
injection limited (IL). Injection from the electrodes is the process by which charge carriers are generated 
in many organic devices, such as OLEDs and OFETs. Usually it is limited by an energy barrier between 
the Fermi-level of the electrode and the transport levels of the dielectric.

In conventional inorganic semiconductors, the relevant injection processes are either Richardson 
thermionic emission over Schottky barrier or Fowler–Nordheim (F-N) tunneling. The Richardson–
Schottky (S-R) implies that a thermally excited electron from the Fermi level travels over the barrier of 
the electrostatic potential modified by the coulomb potential of the image charge and the applied electric 

Figure 23. Illustration of the quantum nuclear tunneling effect in the charge transfer
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field without being scattered. It gives rise to an Arrhenius-type2 of temperature dependence (Js = Jso 
exp [- eΦB / kBT]), and a Poole–Frenkel-type of field dependence (μ = μo. exp [-γ √ζ]), where ΦB is the 
effective barrier height, ζ is the applied field and γ is a constant.

In the classic Fowler–Nordheim model (JFN = J0 .ζ
2 exp [−ζ 0 / ζ ]), we ignore the image potential 

and assume that an electron at the Fermi level of the metal tunnels through a triangular potential barrier 
set by the interface energy barrier and the applied potential. For both mechanisms, the crucial condi-
tion is that there is strong electronic coupling among the lattice elements that leads to wide valence 
and conduction bands. This implies that the scattering length of charge carriers is much larger than the 
interatomic separation. In organic solids this condition does not hold valid, because electronic coupling 
between molecules is weak (van der Waals bond). Accordingly, transport is collision-limited and of the 
hopping type. Thus, the Schottky theory condition of collision-free charge injection across the Schottky 
barrier potential does not hold in organic semiconductors.

There are many experimental evidences of the failure of the classic injection models in organic semi-
conductors. For instance, the temperature dependence of the injection current is weaker than expected 
using the estimated energy barriers. This excludes a classic Richardson–Schottky emission process, 
and also eliminates the Fowler–Nordheim tunneling mechanism since these observations extend to low 
fields were tunneling is negligible. In addition, the field dependence of the injection efficiency follows 
a Poole–Frenkel-type law and has a sub-linear temperature dependence with a mean activation energy 
that is significantly lower than one might suspect.

It comes from the above theoretical reasoning that the classical models for charge injection in organic 
semiconductors do not exactly fit the experimental observations. Therefore, more accurate models are 
needed. In order to cope with these problems, Burin and Ratner (2000) presented an injection model 
based on the idea that injection and transport occur through 1D straight paths. Also, the treatment of 
Arkhipov et al. (1999) gives sufficient results at room temperature. Later on, van der Holst et al. (2009) 
developed a 3D quantum model (master equation) that includes the disorder transport. Actually, all these 
models consider that the initial injection event is controlled by the existence of tail states of the energy 
of states (DOS) that is defined by energy versus hopping. The Gaussian distribution function is usually 
chosen to describe DOS in disordered organic semiconductors. Unlike the parabolic DOS found in con-
ventional inorganic semiconductors, the Gaussian DOS does not have a simple band edge, as shown in 
Figure 25. The Figure 26 depicts the dependence of current on the barrier height. Therefore, one of the 

Figure 24. Different injection and transport mechanisms across meta;-insulator barriers
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most determinant factors for carrier transport in organic semiconductor is the DOS within the bandgap 
of the organic material. Usually, the DOS energy dependence is assumed exponential or Gaussian.

Many traditional hopping transport models were developed when organic semiconductors were 
primarily amorphous, and the assumption of strong localization fit the experimental data. However, the 
assumption of strong localization is no longer valid in recently-developed organic semiconductors with 
almost perfect crystalline structure. Nevertheless, one can argue the nature of carrier localization in 
crystalline organic semiconductors as follows. The thermal energy at room temperature (about 25 meV) 
is comparable to the weak van der Waals bond energy, and therefore significant dynamic disorder can 
exist in an organic semiconductor, regardless of its crystalline structure.

The Figure 27depicts the results of different models for current injection from a metal electrode into 
a hopping system featuring a Gaussian DOS as a function of the electric field at different temperatures. 
The simulation parameters are the sample length L, the inter-site separation a and the injection barrier 

Figure 25. Density of states and its tail at the metal-organic semiconductor interface

Figure 26. Simulation results of current-field characteristics in organic semiconductor
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ΦΒ. The simulation results labeled and the 3-D quantum (master equation) have been developed by van 
der Holst et al. (2009). The calculations are based on the models of Burin-Ratner (2000) and Arkhipov 
et al. (2005).

4.8 Kinetic Monte Carlo Method for Organic Semiconductors

Figure 28 depicts the KMC flowchar. It shows a comparison of the field dependent mobility between 
our method (symbols) and numerically solving the corresponding master equation (lines), for different 
values of σ and a relative charge carrier concentration of 10−3. For increasing disorder and decreasing 
field, the charge transport characteristics deteriorate fast because of increasing energy differences between 
hop sites. A good agreement is found between the two different methods.

Figure 27. The comparison of the predictions of various models for current injection from a metal elec-
trode into a hopping system featuring a Gaussian DOS of variance σ=75 meV as a function of electric 
field at different temperatures
After (Bassler et al., 2009).
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4.9 Drift-Diffusion Model for Organic Semiconductors

We have shown in previous sections that both the Richardson-Schottky (R-S) model for thermionic emis-
sion and the Fowler-Nordheim (F-N) tunneling current are not sufficient to simulate the carrier transport 
in disordered organic semiconductors. For instance, the F-N current has no temperature dependence. The 
drift–diffusion model (DDM) can be used to simulate and optimize organic semiconducting devices, if 
we could account for dispersion of carriers in such disordered structures. This may be done through the 
deliberated consideration of field-dependent carrier mobility and diffusion coefficient. The consideration 
of traps in the DOS of the device and their dynamic behavior is also important.

The DDM consists of the carrier continuity equations (for electrons and holes), the carrier current 
constitutive relations and the Poisson equation. This system was already presented in Chapters 1, 2 of 
this book. As we stated above, the drift mobility may be obtained on the basis of the GDM or its variants. 
These models take into account the distribution of localized states and the discrete hopping mechanism.

As for the diffusion coefficient, we can calculate it from the generalized Einstein relation: Dn /μn = 
e.n/[dn(EF)/dEF]. Substituting the carrier density n(EF) results in the relation between the carrier mobil-

Figure 28. (a) Flowchart of the Kinetic Monte Carlo (KMC) method (b) Mobility as obtained by KMC 
method
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ity and diffusion coefficient. In the bulk of non-degenerate semiconductors, we can substitute n=Nc.
exp[-(E-EF)/kBT] to get the conventional Eintein relation3 Dn /μn= kBT/e. However, in 2D OSC layers, 
we rather consider the 2D electron density.

Alternatively, the electric field, temperature and carrier density dependence of mobility can be 
obtained from kinetic Monte Carlo (KMC) simulation in the bulk (Bolognesi et al, 2003) and may be 
also tabulated in look-ahead mobility tables and invoked upon request during simulation (Kordt, 2012).

4.10 Multiscale Simulations of Non-Adiabatic Molecular Dynamics

In non-adiabatic simulation, the electronic structure and nuclear motions are considered simultaneously. 
This allows the nuclei to react to the instantaneous position of the charge and allows the charge carrier to 
respond to the nuclear dynamics. The electronic motion is propagated with the time-dependent Schrödinger 
equation which allows delocalization of the charge carrier wave function, while the nuclear degrees of 
freedom are considered with classic (Newton-like) equations in a mean field. In fact, the nuclear vibra-
tions which are important for modulating the transfer integrals have low-frequency modes. Therefore, 
it is quite straightforward to introduce molecular dynamics (MD) to describe their almost classical dy-
namics. As a first approximation, the quantum mechanical (QM) treatment is restricted to regions which 
are directly involved in the charge transport and describing the remainder of the system classically with 
molecular dynamics (MD) methods leading to a QM/MD multi-scale approach (Stafstrom, S. 2010).

5. PHOTONIC TRANSPORT IN ORGANIC SEMICONDUCTORS

Organic semiconductors may be well-suited to photonic applications, thanks to their ability to trans-
mit, modulate and detect light in low cost, and flexible, structures. The dielectric constant of inorganic 
semiconductors is large (12 in Si) so that coulomb effects between electrons and holes are unimportant 
due to dielectric screening, and light absorption at room temperature creates free electrons and holes. In 
contrast, photogenerated electron–hole pairs in organic semiconductors are bound by coulomb attraction 
in the form of excitons. This is due to the large bandgap (about 2.5eV) and small dielectric constant 
(about 3.5) of organic materials. Therefore, the absorption and emission take place mostly in the range 
of 2–3 eV. Consequently, the electron–hole pair, which is created by optical excitation is bound by a 
coulomb energy of about 0.5–1eV (Sariciftci, 1997).

In order to design and characterize organic semiconductors for optoelectronic applications we first 
measure the absorption and photoluminescence their spectra. The Figure 28(a) shows the absorption 
spectra of radical cations of oligophenylene-vinylenes OPV of different chain lengths in CH2Cl2 solu-
tion. Photonic parameters such as the fluorescence and phosphorescence lifetimes and quantum yields, 
as well as their spectra are usually measured in a film or in solution. Typical organic solvents for liquid 
solution include toluene, xylene chloroform (CHCl3) and many others.

5.1 Excited States in Organic Semiconductors

Figure 30 depicts the energy band diagram of an organic semiconductor, showing charges, singlet excitons 
and triplet excitons. The vertical arrows are optical transitions, whereas wavy arrows are non-radiative 
transitions (vibrational relaxation in black, inter-system crossing in blue, charge generation in red, and 
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charge recombination in green). The absorption of light from the ground state S0 to the first optically ac-
cessible excited state S1 creates bound electron–hole pair (exciton). Adding more energy to the system by 
excitation to a higher state Sn can lead to exciton dissociation, resulting in the formation of free charges. 
These long-lived charges can recombine to reform excitons. In addition, triplet excitons can be formed 
through intersystem, as shown in Figure 28(b). Note that charge absorption overlaps with stimulated 
emission. The vertical arrows in figure are radiative transitions, and the wavy arrows are non-radiative 
transitions, due to vibrational relaxation (black), intersystem crossing (blue), charge generation (red) or 
recombination (green).

As shown in Figure 28(c), we note also that a singlet (or triplet) state are antiparallel (parallel), when 
the spin of electron in the π* orbital and that of the remaining electron in the π-orbital. Therefore, they 
add up to a total system spin of zero or one (0, ħ). Then we number excited states in order, that is, S1, S2, 
or T1, T2, and so on, for the lowest energy or second lowest singlet or triplet excited states.

5.2 Optical Gain and Lasing

Stimulated emission occurs from the S1 level, and lasing condition occurs when amplification is greater 
than loss. Optical amplification depends on the population inversion density and stimulated emission 
cross-section. A reduction in the population inversion density (depopulation of singlets) leads to reduc-
tion in amplification. This results mainly from annihilation processes and exciton dissociation. Losses 
include ground-state self-absorption, scattering in the cavity and absorption from triplet and charge 
excited states, whose absorption overlaps with the stimulated emission and whose long lifetimes al-
low significant population build-up. When optical gain is achieved in conjugated polymers, it can be 

Figure 29. Absorption spectra of radical cations of oligo-phenylenevinylenes OPV of different chain 
lengths in CH2Cl2 solution
After (Deussen,1993).
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optically controlled by re-exciting the material to the Sn level (typically using infrared or near-infrared 
light), causing charge generation. These charges quench the stimulated emission and gain because their 
absorption spectrum overlaps with the stimulated emission band. Recovery of the emission depends on 
the lifetime of the charges, which can be sub-picosecond owing to quantum confinement. This paves the 
way to all-optical logic in plastic media

5.3 Nonlinear Optical Effects

Organic molecules can have large third-order optical nonlinearities, due to their large π-electron delo-
calization in organic semiconductors. In fact, the third-order component of the electric susceptibility of 
conjugated polymers is about 10−8 esu at resonance. This nonlinearity is useful for all-photonic devices 
(like switches and multiplexers) and can be also exploited in the implementation of electro-optic devices 
(modulators) via the Kerr effect.

Figure 30. (a) Energy level diagram of organic semiconductors, showing charges, singlet excitons and 
triplet excitons; (b) idealized spectra of a conjugated polymer
After Clark & Lanzani (2010).
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6. THERMOELECTRIC TRANSPORT IN ORGANIC SEMICONDUCTORS

The interest in thermoelectricity has increased in the last few years since new applications in energy 
conversion had been envisaged. Carrier thermoelectric-transport theory has recently become of growing 
interest and numerous thermoelectric-transport models have been proposed for organic semiconductors. 
It is well known that organic materials have poor conduction of electricity and heat. However, it was 
recently reported that the thermoelectric figure of merit (zT) of PEDOT.Tos (poly-ethylene-dioxy-thio-
phene-tosylate) can be enhanced when the percentage oxidation is altered. This is attributed to change 
from lattice scattering to ionized impurity scattering in PEDOT.Tos.

The purpose of research is to provide a theoretical description of the thermoelectric Seebeck effect in 
organic semiconductors. Special attention is devoted to the effect of carrier concentration, temperature, 
and polarons on the Seebeck effect and its relationship to hopping transport theory. Table 2 summarizes 
the main thermal properties of some organic semiconductors, according to Lu Li Liu (2016)

7. MEASUREMENT OF MOBILITY OF ORGANIC SEMICONDUCTORS

The charge carrier mobility provides the figure of merit for organic Semiconductor devices. The mobil-
ity of charge-carriers in organic semiconductors can be measured by a number of techniques. In such 
measurements, the behavior of charge carrier mobility with temperature and applies field, provide a 
metric to quantify the carrier activation energy and extent of disorder in these materials.

Figure 31. Thermal transport and thermoelectric power in organic semiconductors. After Kim & Pop 
(2012)
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Figure 32. Thermoelectric power (Seebec coefficient) in organic semiconductors, as a function of car-
rier concentration
After Lu Li Liu (2016).

Table 2. Thermal properties of some organic semiconductors
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In addition to the mobility and activation energy, the thermoelectric power (Seebeck coefficient) in 
molecular junctions can be used to provide complementary information distinguish organic materials 
in which disorders play a significant role. In fact, the structural disorders decrease the charge carrier 
mobility and makes the charge carrier mobility frequency dependent. However, many other parameters 
can influence the charge carrier mobility as well, including temperature, pressure, presence of impurities 
and size. However, we present here the most famous techniques to measure the charge carrier mobility 
in OSCs, and their main features.

The classic experiment to measure the mobility of charge carriers in organic semiconductors is called 
the time of flight (ToF) technique (Kepler, Leblanc, 1960). In the ToF method, the carrier drift veloc-
ity is determined by measuring the transit time of carriers through a semiconductor (here an organic 
semiconductor layer) of uniform electric field that extends across a sample of known width. Figure 28 
shows a typical test structure that uses a thin film of organic semiconductor. The sample is sandwiched 
between two contacts (Schottky-Ohmic). The structure is then connected to a high reverse bias, such that 
the electric field is almost homogenous across the sample. The test sample is exposed to a short laser 
pulse of high-energy. The photogenerated electron-hole pairs drift under the effect of electric field. The 
generated holes are collected at the anode contact (Schottky-like contact4) while the electrons drift to the 
cathode (Ohmic-like contact). The electron-hole pairs may be rather generated in the ToF experiment 
by a high energy electron irradiation (1-10 keV).

The drift of electrons induces a current in the external circuit that continues to flow until carriers are 
collected at the contacts. Consequently, the duration of the current pulse is essentially equal to transit 
time of the electrons through the semiconductor region. The current is observed directly on a sampling 
oscilloscope from which the transit time is determined. The output waveform is shown in Figure 30. 
The field dependent transit time is obtained as the half amplitude width of the curve shown. Therefore, 
the electron drift velocity and mobility are given by:

Vd(ζ) = d/τ, µ(ζ) = Vd (ζ) / ζ = d2/(τ VR) (29)

where d is the is the distance between the electrodes, ζ is the electric field, τ is the averaged transient 
time, and VR is the applied voltage.

Typically, one observes an initial spike followed by a plateau that falls off with a more or less pro-
nounced kink. The initial spike reflects charge motion prior to the energetic relaxation in the DOS. The 
generated charges have a high hopping rate to neighbor sites since almost all neighbor sites are at lower 
energy. This high hopping rate translates in a high current. Near thermal equilibrium, the hopping rate 
is slower, and the current is moderate and constant. The ToF signals require that the dielectric relaxation 
time is large compared to the transit time ttr, the thickness of the spread of the charge carriers is small 
compared to the film thickness, the concentration of charges is low enough that the charges do not in-
teract, and there is no deep trapping, 

Another method to measure the charge carrier mobility in OSCs involves the injection of a space-
charge-limited current from an Ohmic contact. In the absence of deep trapping, the current is given by 
Mott–Gurney law (J=KV2). In presence of traps, the J-V curves become more complex. The carrier 
mobility can be also extracted from the electrical characteristics of an organic field-effect transistor 
(OFET), as reviewed by Horowitz (1998). In this technique the charge mobility is extracted from the I-V 
characteristics of the OFET. However, the mobility may be gate-voltage dependent, due to the presence 
of traps and/or impurities as well as carrier. 
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In conjugated polymers, the calculations predict carrier mobility, which is six to nine orders of mag-
nitude larger than the measured values by ToF experiment. This discrepancy is related to the spatial 
scale over which transport is measured. It is reasonable to assume that transport is fast as long as it is 
not affected by scattering and localization. Figure 34 depicts the hole mobility in a film of poly-spiro-
bifluorene-co-benzothiazole (PSF-BT) by ToF, after carrier generation by 130fs laser pulse at different 
applied voltages. The figure shows the mobility as a function of the averaged distance travelled by a 
carrier after a given time. The inset depicts the structure of PSF-BT.

We’ve seen so far that the observed temperature dependence of charge carrier mobility in single crystals 
semiconductors follows the law: ln(μ) α T-n, where n is a constant depending on the dominant scatter-
ing mechanism. In organic semiconductors, the situation is different. The Figure 32 depicts the effect 

Figure 33. Measurement of charge carrier mobility by time of flight (ToF) method

Figure 34. The hole mobility in a film of poly-spiro-bifluorene-co-benzothiazole (PSF-BT) as function 
of drift distance after carrier generation by laser
After Basler (2009).
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of ambient temperature on the charge carrier mobility of both electrons and holes in pure naphthalene. 
Transport measurements on molecular single crystals indicate that the charge mobility can be as high as a 
few hundred cm2/V.s at low temperature (up to300 cm2/V.s for holes in naphthalene at 10K). In addition, 
the mobility of electron and hole may be equally large in organic semiconductors (Coropceanu et, 2007).

8. TRANSPORT IN POLYCETSTALLINE AND AMORPHOUS MATERIALS

The fabrication technologies of organic semiconductor materials, such as vacuum deposition of molecules 
or solution processing of polymers, often lead to disordered amorphous or polycrystalline structures. 
However, in spite of their lower performance, in terms of electronic conduction, organic semiconductors 
are still less expensive than amorphous Si. Figure 36 illustrates the structure of crystalline and amorphous 
materials and their lattice potential (in one dimension)

In pure semiconductors, electrons are delocalized and their wavefunctions are extended over large 
distances. In this case, transport occurs in the bands, and this regime of transport is called band transport. 
The band transport of charge carriers has been discussed in the previous chapters of this Book. On the 
other hand, the transport of charge carriers in disordered materials is mainly by hopping between nearby 
localized pockets. Hopping requires activation to surmount the barriers between localized states. Figure 

Figure 35. Temperature dependence of charge carrier mobility in naphthalene
After Warta, & Karl (1985).
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36 illustrates the nature of transport in crystalline (low-disorder) materials and polycrystalline materials 
and insulators with high degree of disorder.

In spite of the great progress of amorphous and polycrystalline thin film devices, their physical limits 
are not well established yet, since their intrinsic properties are masked by the complicated effects of dis-
order and grain boundaries. However, the transport of charge carriers across amorphous semiconductors 
may be treated in much the same way as insulators. Actually, the DC conductivity of several amorphous 
semiconductors follows the general form:

σ = σo exp (-ΔE/kB T) (30)

where ΔE is the activation energy and the pre-exponential factor σo is the conductivity at high tempera-
ture, due to localized states. The activation energy ΔE is generally between 0.5-1.0 eV and σo is in the 
order of 1000 mho/cm.

Figure 36. Schematic illustration of the structure of crystalline and amorphous materials and their lat-
tice potential (in one dimension)

Figure 37. Schematic illustration of band transport and hopping transport regimes
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8.1 Kubo Formula

The electrical conductivity, due to localized states inside amorphous materials, may be modeled using 
the following Kubo formula5:
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where Mi,k = <ψi|p|ψk> is the matrix element of momentum operator between eigen-states ψi and ψk 
and Ω is the cell volume, and Ei is the energy of the ith state, fi is the Fermi-Dirac distribution function 
evaluated at energy Ei. By inspection of the Kubo formula, it is clear that the localization of the states, 
and their overlap and proximity to each other in energy and to the Fermi level, determine the DC con-
ductivity. Figure 38 depicts the DC conductivity in amorphous semiconductors, with localized states.

8.2 Multiple Trapping and Release Model (MTR)

The multiple trapping and release (MTR) model is a phenomenological model that describes the drift 
mobility in amorphous semiconductors, under the effect of electric field. The MTR model was originally 
proposed by Shur and Hack (1984) to describe the drift mobility in hydrogenated amorphous silicon 
(H:α-Si), and was later extended to organic semiconductors by Horowitz et al. (2000). The MTR model 
assumes that charge transport occurs in extended states, but that most of the carriers injected in the 
semiconductor are trapped in states localized in the forbidden gap. These traps can be deep (trap energy 
level near the middle of the energy gap), or shallow (trap energy level near the conduction or valence 
band). The model shows a dependence of the mobility of the carriers on temperature, the energy level of 
traps, as well as on the carrier density (and therefore on the applied field). For a single trap, the charge 
drift mobility is given by:

Figure 38. The simulated DC conductivity of amorphous Si, as a function of energy computed with the 
Kubo formula
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μ = μo exp (-Etr / kB T) (32)

Using this model, the polycrystalline semiconductor may be described as trap-free grains separated 
by boundaries with high trap density. When the grain size is lower than the Debye length, the distribution 
of the traps can be considered uniform. However, if the grains are much larger than the Debye length, 
charges move through the grain boundaries. At high temperature, this occurs via thermionic emission, 
which makes the drift mobility depend on the temperature. At low temperatures, the charges can tun-
nel through the grain boundaries, and the mobility becomes temperature independent. At intermediate 
temperatures, charge transport is determined by thermally activated tunneling. As we’ll see in the next 
case study, traps can distort the transfer curves of organic semiconductor devices (linear Ids ~ Vg become 
power-law, Ids ~ Vg

n) and make the mobility temperature and bias dependent.

9. CASE STUDY 16: ORGANIC SEMICONDUCTOR TRANSISTORS

Nowadays, the technological interest in molecular crystals arises mostly from the field of organic field 
effect transistors (OFETs). OFETs have seen rapid development in many applications. There are many 
advantages to OFETs, such as the flexibility of the plastic substrate and the low fabrication cost by ink-jet 

Figure 39. (a) Multiple trapping and release in organic semiconductors (b) the distribution of trap states 
in the energy band
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printing. One of the most widely studied organic semiconductor materials used for OFETs is Pentacene. 
Pentacene-based OFETs have a typical field effect mobility of around 1cm2/Vs. This is of comparable 
value to hydrogenated amorphous silicon. Therefore, the organic thin-film transistors (OTFTs) are 
expected to replace hydrogenated amorphous silicon TFT in flat panel displays. In fact OTFTs do not 
require a glass substrate as amorphous silicon does and can be made on a piece of plastic

9.1 Device Structure and Models

The numerical simulation is helpful in understanding OTFT’s basic device operation and the optimization 
of device structures. In order to simulate I-V characteristics of OTFTs, it is important to consider how 
carriers transport in organic semiconductors. In many cases, the space-charge limited current (SCLC) 
model is successful in explaining the conduction current of organic semiconductors. This approach is 
acceptable in organic light-emitting diodes (OLEDs) and OTFTs. In fact, the disorder effect on charge 
carrier motion is diminished in OTFTs because current flow is confined in a thin layer. Therefore, the 
tail states of the DOS distribution are filled and the activation energy for charge carrier hopping is trivial. 
In addition, the SCLC model is suited for use in conjunction with the conventional drift-diffusion model 
(DDM) in device simulators.

The experimental ID-VD curve of a Pentacene OTFT is numerically simulated by ATLAS using the 
SCLC model and a field-dependent mobility model. In the SCLC model, the carriers are self-trapped. 
In addition, one of the most determinant factors for carrier transport characteristics is the energy distri-
butions of density of states (DOS) within the bandgap. In this example, a Pentacene TFT reported by 
Lin, et al. is simulated with ATLAS simulator and then compared to their experimental ID-VD curves. 
The device structure is shown in Figure 40. A staggered inverted structure is adopted. The thickness 
of the grate dielectric layer is 400nm and the Pentacene active layer is 50nm. The channel length and 
width are 20 um and 220 um, respectively. The charge accumulation in the idealized device structure is 
shown in Figure 41.

9.2 Effects of Traps on the Electrical Characteristics of TFTs

Traps are localized electronic states that can capture free carriers. For instance, a trap can capture a 
hole in a reaction and the resulting positive charge becomes immobile and unavailable for conduction. 
It is obvious that traps have a significant effect on the performance of organic devices, be it an OTFT 

Figure 40. Cross section of an organic thin-film transistor (OTFT)
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or an OLED and their consideration is very important. The effects of traps on the electronic properties 
of TFTs can be summarized as follows:

• Reduced mobility (Poole-Frenkel)
• Temperature dependence of mobility
• Non-linearity in I-V curves
• Non linearity in transfer curves; (power-law, Ids ~ Vg

n)
• activation energy of mobility depends on bias (Meyer-Neldel rule)
• Transients; Ids depends on time, often following multi-exponentials, resulting in so-called stretched 

exponential, Ids ~ exp[- (t/τ)β ]

9.3 Simulation Results

In simulation process, the energy band gap of Pentacene is taken from optical bandgap data as 2.8eV. 
Also, the extracted mobility is 0.62 cm2/V.s. The density-of-states in the gap of pentacene can be cal-
culated from the electrical characteristics of thin-film transistors measured at different temperatures 
(Puigdollersa et al., 2010). In the illustrated case, the acceptor tail DOS is expressed by an exponential 
function of energy, as shown in Figure 42.

Figures 43 shows the simulation results (green lines) compared with the experimental data (red lines). 
The gate bias-dependent saturation drain currents appear to agree with the experiment, but the currents 
in transition regions, from linear to saturate, are still different.

Though a constant mobility model is used in the illustrated case, most organic semiconductor materials 
have electric field-dependent carrier drift mobility. The famous mobility model of Pool-Frenkel model 
has a square root dependence of electric field and can be expressed as follows:

μ = μo. exp[-Ea/ kB T] exp [√ζ (β/T- γ)] (33)

Figure 41. Charge accumulation in an idealized (top-gated) OTFT
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Figure 42. Illustration of the density of states in an OTFT

Figure 43. Simulated (green) ID-VD curves using constant mobility model and the experimental (red) curve
After Kymissis, Dimitrakopoulos & Purushothaman (2001).
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where β and γ are fitting parameters. The results in Figure 44 are obtained with this mobility model and 
agree with experimental data. Figure 45 shows the hole density and current flow lines at VD =-100V 
and VG =- 40V

10. CASE STUDY 17: ELECTRON TRANSPORT THROUGH MOLECULAR WIRES

If a long chain of carbon atoms is formed, the van der Waal π-bonds become delocalized along the chain 
and form a one-dimensional molecular system. The electron transport through such molecular wires 
takes place via tunneling and thermally-activated hopping.

Different levels of transport models, starting from semiclassical methods up to the ab initio methods, 
have been already introduced and can be applied in the context of nanowires (e,g, see Hasnip et al, 2014). 
For instance, the first principle methods, such as DFT, and many-electron GW calculations have been 
applied for simulating the band structure of molecular nanowires. The different levels of theory belong to 
two major computational frameworks. The first calculation framework is called the complex band structure 
(CBS) and can estimate the tunneling parameters. The second makes use of the Landauer–Buttiker (L-
B) transport approach to computes the transmission spectra and ballistic current. The so-called contact 
block reduction (CBR) is a ballistic variant of the NEGF quantum approach that considers the effects 
of contact geometry (Ryu & Klimec, 2008). As an example of the CBS approaches, we show here the 
application of the DFT-TB method to study transport through the molecular device shown in Figure 46

Figure 44. Simulated ID-VD (green) curves using field dependent mobility and experimental (red) curves
After Kymissis, Dimitrakopoulos & Purushothaman (2001).
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Figure 45. Hole concentration distribution and Current flow lines in the OFET
After Kymissis, Dimitrakopoulos & Purushothaman (2001).

Figure 46. A molecular device of 5 OPV rings, between 2 gold contacts via 2 sulfur atoms
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The device is composed of a five oligopolyvinylene (OPV) chains anchored to metallic (gold) con-
tacts. The contact between the molecule and the Au electrodes is established by covalent S-Au bonds, 
which is often done experimentally. The electronic transport characteristics of the OPV molecules are 
governed by the available electronic states in the molecular chain. These states can be described by the 
local density of states (LDOS), which represents the equilibrium density of states in the molecular device 
broken down into the contributions of single atoms or ensembles of atoms in the structure. Using an 
appropriate many simulation tool, we can calculate the LDOS of each atom by projecting the density of 
states of the total structure on the molecular orbitals of this atom.

There are so many simulation tools that perform the band structure calculation and conductance 
modeling of molecular devices. Among these tools, one can cite: TURBOMOLE (Ahlrichs et al, 1989), 
SIESTA (Ordejón et al, 1996), NEMO (Klimeck et al, 2008) and NextNano (Hackenbuchner, 2002; 
Andlauer, 2009). SIESTA is based on the DFT method and has been extended to compute the molecu-
lar conductance via Green’s functions in another package called: TranSIESTA (Brandbyge et al, 2002). 
The so-called NEMO simulator can calculate the atomic structure from semi-empirical TB model and 
makes use of the NEGF to calculate the terminal current. Also, Nextnano is a famous quantum simulator 
that analyzes the physical properties of semiconductor nanostructures, for virtually any geometry and 
combination of materials. The combination DFT-NEGF has been utilized by many authors to simulate 
the behavior of molecular wires, (Stokbro, 2008). The advantage of the DFT-NEGF approach is that it 
can include the interaction effects between electrons with phonons and photons, which are important in 
phononic and photonic devices. Figure 47 shows the LDOS for OPVs wires of different lengths, accord-
ing to Schuster et al., (2008). The broadening of the molecular levels (with respect to the sharp peaks 
of isolated molecules) is a result of the covalent bond between the molecular device and the contacts 
or the adjacent sulfur atoms. The charge density and terminal current can be calculated from the local 
density of states (LDOS), by a variety of methods, such as the CBR (Briner, 2011).

Figure 47. Local DOS of four unfunctionalized OPV molecules. The Fermi level (Ef) of the gold contacts 
at equilibrium is shown
After Schuster et al., (2008).



665

Carrier Transport in Organic Semiconductors and Insulators
 

The Figure 48 shows the I–V characteristics of OPV chains with different lengths (OPV5–OPV8). 
All chains display higher currents in the resonance regime as opposed to the tunneling mechanism. The 
threshold voltage does not change (about 1.7V) as the transmission gap of all wires is almost constant. 
However, the current decreases with wire length. The observed shift of the transmission peaks is also 
due linear potential drop on the chain

11. SUMMARY

The term organic semiconductors is used to describe organic materials which possess the ability of 
conducting electric current. In fact, it was shown that certain organic materials (plastics) can conduct 
electricity. Organic materials are well-suited to certain electronics applications due to their low cost, low 
weight, and flexibility, but are less desirable for other applications due to poor conduction of electricity 
and heat. In order for organic semiconductors to be widely spread in electronic devices, the mobility of 
charge carriers should be improved. Compared to inorganic semiconductors (like Si), the carrier mobility 
in organic semiconductors is very low, the highest value on the order of 1 cm2/V⋅s. The improvement 
of the conduction properties requires more advanced models of charge transport in disordered organic 
semiconductors.

Organic semiconductors can be broadly classified into two groups on the basis of their molecular 
weight: conjugated polycyclic compounds of molecular weight less than 1000, and heterocyclic polymers 
with molecular weight greater than 1000. Polymers are useful materials for semiconductors because of 
the ease with which they form thin films with large surface area

In organic semiconductors the molecules are held together by weak van der Waals bonds (π-bonding). 
The properties of organic semiconductors have much in common with amorphous materials. Some 
organic semiconductor crystals, such as polyacenes and fullerenes, have attractive characteristics for 

Figure 48. I-V characteristics of the OPV molecular device
After Schuster et al., (2008).
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electronic and optoelectronic devices. For instance, pentacene has the smallest bandgap among the 
linear polyacenes, and the highest effective mobility in polycrystalline organic thin film FETs, with μ= 
0.3-1.5 cm2/V.s. This value is comparable to that of amorphous Si. The organic semiconductors have, 
therefore, very poor mobility at room temperature. However, the mobility of such materials is improved 
at low temperature and may even show superconductivity.

Charge transport in organic semiconductors occurs through hopping. Charges hop between localized 
sites that are disordered in position and energy. The charges are called polarons and can interact and form 
e–h pairs, excitons and bipolarons. The current in a typical organic device is limited by space charge, 
resulting in typical J(V) characteristics.

The transport modeling of charge carriers across organic semiconductors is sometimes treated in 
much the same way as insulators. The DC conductivity of organic semiconductors has the form:

σ = σo exp (-ΔE/kB T) 

where ΔE is the activation energy and σo is the conductivity at high temperature, due to localized states.
The role of disorder, that is inevitably present in organic semiconductors, is not completely under-

stood. In fact, charge carriers in organic semiconductors are spatially localized due to several reasons. 
Any mechanism that can destroy the periodicity of lattice field V(r) to the level of critical randomness 
over a certain interval can cause Anderson localization. For example, a large concentration of crystal 
imperfections (e.g., impurities, grain boundaries, dangling bonds) destroys the periodicity of a crystal. 
For a localized carrier, external energy is needed to escape the localized state. A theoretical description 
for the charge carrier tunneling process is hopping transport.

Many traditional hopping transport models have been developed when organic semiconductors being 
studied were primarily amorphous, and the assumption of strong localization fit the experimental data. 
However, this assumption of strong localization has failed recently in several organic semiconductors 
with high crystallinity, and the nature of carrier localization in these crystalline organic semiconductors 
is now under academic debate. Nevertheless, one can argue the nature of carrier localization in crystalline 
organic semiconductors as follows. The thermal energy at room temperature is comparable to the weak 
van der Waals bonding energy, and therefore a dynamic disorder can exist in an organic semiconductor, 
regardless of its crystallinity, which causes Anderson localization.

In conclusion, our understanding of the charge transport mechanism of organic materials is at a ru-
dimentary phase, very similar to the phase of “cat’s whisker diode” in semiconductor research. Appar-
ently we have some understanding of the macroscopic transport process of charge carriers in disordered 
organic solids. However, our understanding on the microscopic scale, in particular on very short distance 
and time, is still incomplete.
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ENDNOTES

1  The Franck–Condon principle explains the intensity of vibronic transitions, which are simultaneous 
changes in electronic and vibrational energy levels of a molecule due to the absorption or emis-
sion of a photon. The Franck–Condon principle states that during electronic transitions, a change 
from one vibrational energy level to another is more probable if the two vibrational wavefunctions 
overlap more significantly.

2  The Arrhenius equation is a formula for the temperature dependence of reaction rates. k = A exp(-
Ea/kBT)

3  This relation, which is also known as Einstein–Sutherland-Smoluchowski relation, is actually an 
early example of a fluctuation-dissipation relation.

4  According to Ishi et al, (2004), the band bending used in metal-inorganic semiconductor interfaces 
is still valid for doped organic semiconductors (OSC) although much thicker films are often neces-
sary to achieve bulk Fermi level alignment However, for thin OSC layers the situation is different.

5 1− This formula was originally developed for AC conductivity, where ω is the applied field fre-
quency.
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