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Preface

Time delays are omnipresent in nature. Delays arise in various natural and
man-made systems due to the finite speed of signal propagation, finite response
time, and switching speed. The presence of time delay in a dynamical system makes
it infinite dimensional and if the system is nonlinear it may give rise to many
interesting phenomena, like bifurcation, chaos, and multistability. Many of the
natural phenomena, such as blood production in patients with leukemia (the well
known Mackey–Glass model), optical systems (e.g., the Ikeda system), El Niño or
southern oscillation (ENSO), population dynamics, and neural networks have been
successfully modeled by considering time delay in their dynamics. Although a large
number of time-delayed systems are reported in the literature where delay differ-
ential equations are used for mathematical modeling, only a few practical imple-
mentations of those systems are reported. A systematic wishful design of chaotic
time-delayed system is important from the fundamental interest—these systems can
contribute to improve our understanding of the intricate and subtle dynamical
behaviors of isolated time-delayed systems, subsequently, it also offers an excellent
opportunity for the researchers to explore the collective behaviors of coupled
time-delayed systems under natural experimental setups. Also, from the application
point of view, these studies can be extended to exploit chaotic time-delayed system
in several engineering applications.

Motivated by the above-mentioned reasons, in this book, we describe a sys-
tematic design principle of chaotic time-delayed dynamical systems and discuss
their collective behaviors, such as synchronization and oscillation suppression. We
describe how a proper choice of nonlinearity leads to chaos and hyperchaos even in
a first-order time-delayed system. The occurrence of chaos and the efficacy of the
considered design techniques are supported by rigorous theoretical studies,
numerical characterization, and experimental demonstrations with electronic cir-
cuits. To extend our knowledge of nonlinear time-delayed system, we study the
coupled dynamics of these systems and report some novel collective phenomena
related to synchronization and oscillation suppression. This book actually provides
a bridge between two broad topics, namely the design technique of chaotic
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time-delayed systems and the collective phenomena shown by these systems when
coupled with each other through a proper physical coupling scheme.

Apart from rigorous theory and experiments, for an entry level researcher, we
also provide two brief, yet effective, tutorials on the numerical package XPPAUT
and the experimental technique of data acquisition through LabVIEW.
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Chapter 1
Introduction

For the last few decades, much emphasis has been imposed on exploring the dynam-
ics of systems having intrinsic time delays. Time delays are ubiquitous in nature
and have been considered in various fields including physics, biology, mathematics,
engineering, and ecology [7, 70]. A plethora of natural and man-made systems have
inherent time delay and are mathematically modeled by delay differential equa-
tions (DDEs); examples include blood production in patients with leukemia [79]
(Mackey–Glass model), optical bistable resonator (Ikeda system) [56], population
dynamics [150], physiology [94], El Niño/southern oscillation (ENSO) [22], neural
networks [76], and control systems [101, 114]. An ever-increasing attention toward
the time-delayed dynamical systems can be attributed to the following facts:

(i) Time delay arises inherently in natural and artificial systems due to finite signal
transmission times, limited switching speeds, and memory effects.

(ii) The presence of time delay in a dynamical system makes the system infinite
dimensional and may lead to instability and oscillatory behavior [70]. Further,
time delay in nonlinear dynamical systems may give rise to various complex
phenomena, like bifurcation, chaos and hyperchaos, and multistability.

(iii) Coupled nonlinear time-delayed systems often show novel behaviors like syn-
chronization [96], amplitude death [104], and chimera states [91, 113], under-
standing of which is important both from the fundamental and the applica-
tion point of view. Since in most of the physical systems we are dealing with
the coupled time-delayed oscillators, therefore, collective behavior of coupled
time-delayed systems deserves systematic studies.

(iv) Infinite dimensionality of time-delayed systems offers a great opportunity to
the researchers to harness the richness of hyperchaos. As a simple time-delayed
systemwith suitable nonlinearity can produce a hyperchaotic signal with a large
number of positive Lyapunov exponents, thus they have been identified as good

© The Author(s) 2018
D. Biswas and T. Banerjee, Time-Delayed Chaotic
Dynamical Systems, SpringerBriefs in Nonlinear Circuits,
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2 1 Introduction

candidates for secure communication systems [68, 98]. Apart from communi-
cation systems, chaotic and hyperchaotic circuits have important applications
in chaos-based noise generators [5], improvement of sensors [40] and of motion
capabilities in robotics [25], etc. For these reasons, efforts are on to design sim-
ple and well-characterized time-delayed systems that can produce chaos and
hyperchaos [128, 139, 153].

Although a large number time-delayed systems have been reported in the litera-
ture where DDEs are used to mathematically model the systems, only a few practical
implementations of those systems are reported. This is because of the fact that most
of the systems are not wishfully designed for electronic circuit implementation but
originally they were proposed for mathematically model a particular natural phe-
nomenon. For example, the first and most studied nonlinear time-delayed system,
the Mackey–Glass (MG) system [79], was originally proposed in 1977 to model the
blood production in patients with leukemia; since then, the MG system has become
the test bench for studying the dynamics of nonlinear time-delayed system. How-
ever, the first successful experimental electronic implementation of the MG system
was reported 17 years later, in 1995 [89]. This long waiting time can be attributed
to the fact that the nonlinearity in the MG system has a closed-form mathematical
function that has a specific bimodal (one-humped) form, which is difficult to emulate
in electronic circuit. Similar arguments also apply for one more popular nonlinear
time-delayed system, namely the Ikeda system [56].

Later on, researchers tried to “wishfully” design nonlinear time-delayed systems
that are easy to implement in electronic circuit. In this context, several nonlinear time-
delayed electronic circuits and systems have been reported in the literature [26, 77,
78, 87, 134–136, 145]. However, all the systems and circuits suffer from a common
problem, which is, in all those systems, the piecewise linear (PWL) nonlinearity was
used, which leads to approximate analysis and circuit design of the original system.
Further, an exact analysis of those circuits needs a describing function representation
for the nonlinearity that makes the analysis difficult [26]. Therefore, the search for
a delay dynamical system with a nonlinearity having a closed-form mathematical
function, and at the same time, that can be implemented easilywith electronic circuits
is important and deserves a systematic study.

Apart from the design issue, the next important problem is to study the collective
behavior of nonlinear time-delayed systems. The two most important cooperative
phenomena in the context of coupled oscillators are synchronization [96] and oscil-
lation suppression [63]. Despite a large amount of studies have been reported on
these topics in non-delayed dynamical systems, research on the collective behavior
of time-delayed chaotic systems is relatively less explored. Moreover, the discov-
ery of new collective behaviors, like the chimera state [91, 113] has revitalized the
research on the cooperative phenomena in coupled oscillators in general.



1.1 Time-Delayed Dynamical Systems 3

1.1 Time-Delayed Dynamical Systems

At first we describe a functional differential equation (FDE) [61] as

ẋ(t) = f
(
t, x(t + ŝ)

)
, − τ < ŝ < 0, (1.1)

where
(
f : R × Q[−τ, 0] → Rn

)
. The FDEs are generalization of ordinary differ-

ential equations (ODEs) of the form

ẋ(t) = g
(
t, x(t)

)
, (1.2)

with
(
g : R × Rn → Rn

)
, if at time t the velocity ẋ(t) of a process depends on

both the current state x(t) ∈ Rn and on the pre-history x(t + s), −τ < s < 0. The
delay differential equations (DDEs) are a class of FDEs, whose general form is given
by [73]

ẋ(t) = f
(
t, x(t), x(t − τi ), μ

)
, (1.3)

where τi ∈ R+ are all positive constants, called the delay time andμ ∈ R. This is an
example of a class of the DDE. The right-hand side of the above equation depends on
the history of the system for some range of the past. For the case of finite-dimensional
system, a finite number of initial conditions are required to solve the equation. On
the other hand for the case of DDEs, one requires the initial conditions at each point
of the delay line back to t = −τ from t = 0. Since a straight line, whatever be its
length, may be considered as a collection of infinite number of points, hence, in the
case of DDEs one requires infinite number of initial conditions. Thus, it may be said
that, instead of initial conditions, one requires initial function to solve a DDE. This
initial function actually determines the characteristics of the system prior to t = 0.
For systems with multiple delays, the initial function must cover the range of the
largest delay, i.e., max{τi }.

To have better understanding, we consider the following form of DDE:

ẋ(t) = f
(
x(t), x(t − τ)

)
. (1.4)

Here, the initial function x(t)|ini t≡ ϕx (say)must be defined in the range−τ ≤ t ≤ 0.
If the initial function be like this, then the history of the system for the largest delay
(max{τi }) can be incorporated in the solution [110].

Depending upon the occurrence of delay, there are mainly three types of delay
differential equations, namely

(i) Retarded or Lag delay differential equation,
(ii) Neutral delay differential equation, and
(iii) Future delay differential equation.
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4 1 Introduction

The following are the simplified generic forms:

(i) The retarded or lag delay differential equations:

dx(t)

dt
= f

(
x(t), x(t − τi )

)
, (1.5)

(ii) The neutral delay differential equations:

dx(t − τi )

dt
= f

(
x(t), x(t + τi )

)
, (1.6)

(iii) The future delay differential equations:

dx(t)

dt
= f

(
x(t), x(t + τi )

)
, (1.7)

where i = 1, 2, 3, . . . , n. We shall consider the retarded type of delay differential
equation (Eq. (1.5)) throughout the book.

Depending upon the nature of the delay(s) involved in the DDEs, the DDEs can
be grouped as (i) DDEs having a single discrete delay, (ii) DDEs havingmultiple dis-
crete delays, (iii) DDEs having distributed delays, (iv) DDEs having state-dependent
delays, and (v) DDEs having time-dependent delays. In the following, we give a brief
account of all types of delay differential equations.

1.1.1 Delay Differential Equations with Single Discrete Delay

DDEs having only one delay (also constant in this case) can be given in general as
follows:

ẋ = f
(
t, x(t), x(t − τ)

)
, (1.8)

where the symbols have their usual meaning as stated formerly. This type of sys-
tem arises in many cases including biology [79], optics [56], economics [133], and
ecology [39].

1.1.2 Delay Differential Equations with Multiple Discrete
Delays

DDEs having multiple discrete delays are represented by the following equation:

ẋ = f
(
t, x(t), x(t − τi )

)
, (1.9)

where i = 0, 1, 2, . . . , n are integers.
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In case of discrete-time systems, the equation becomes [129]

x(k + 1) = A0x(t) +
N∑

j=1

A j x(k − τ j ), (1.10)

where 0 < τ1 < τ2 · · · < τN . It is seen from Eqs. (1.9) and (1.10) that the mul-
tiple discrete time-delayed systems possess many delay terms in its representative
equation. The delays play important role in the systems. The appearance of multiple
discrete delays is a common fact in the biological systems [24, 111, 126], control
systems [31, 50, 109, 129], population dynamics [65], economics [6, 58], etc.

1.1.3 Delay Differential Equations with Distributed Delays

There may arise the case where the delay is not a fixed quantity but it has some
functional behavior. This type of delay comes in many systems like physiology,
population dynamics, and engineering [86]. The general form of the systems having
distributed delay (retarded type) is as follows:

ẋ = f

(
t, x(t),

∫ ∞

0
g(τ )x(t − τ)dτ

)
, (1.11)

where g(τ ) is a function of τ .

1.1.4 Delay Differential Equations with State-Dependent
Delay

For the study of some realistic models, it is necessary to take the delay as a function
of the time as well as the state itself [52]. The system is delayed in time with certain
functional relationships upon the state of the system. Reference [75] studied one
such state-dependent delay equation. The equation is given by

dx

dt
= f

(
t, x

(
t − τ

(
t, x(t)

)))
. (1.12)

It may be noted from the above equation that the delay term depends on the state of
the system (i.e., τ is a function of x(t)). The main application of the state-dependent
delay arises in the population growth model [75] and some evidences may be found
in Ref. [80], where the milling process is considered.
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1.1.5 Delay Differential Equations with Time-Dependent
Delay

The general form of the time-dependent (time-varying) delay differential equation
is given by

dx

dt
= f

(
t, μ, x

(
t − τ(t)

))
, (1.13)

where f is a function and p is any parameter. It may be noted that the delay term
depends explicitly on time.

1.2 A Brief Survey on Nonlinear Time-Delayed Systems

In this section, we provide a brief and sketchy review on the research on nonlinear
intrinsic time-delayed systems. Our review is based on the three broad categories,
namely (i) Models with intrinsic time delay, (ii) Time-delayed electronic circuits,
and (iii) Synchronization of time-delayed systems.

1.2.1 Models with Time Delay

Here,wediscuss a few importantmodels (without claiming tobe complete),which are
widely studied in the literature. The modeling of an important physiological control
system was reported byMackey and Glass [79]. In the paper, “Oscillation and chaos
in physiological control system”, the authors considered delay differential equation
with polynomial nonlinearity tomodel two diseases. First, they consider a respiratory
disease, whose dynamics is explained by a DDE. Second, the dynamics of chronic
granulocytic leukemia (CGL), which occurs due to the delay between the initiation of
cellular production in the bone marrow and release of mature cells into the blood; if
this delay increases, the population of mature circulating cells oscillates chaotically
and the case is called “leukemia”. The next milestone in this field is the Ikeda system
[56, 57]. The study of the system revealed that, depending upon the intensity of
incident light, the transmitted light in a ring cavity containing nonlinear dielectric
medium may lose stability and as a result, periodic or non-periodic states emerge.
The nonlinearity involved in the Ikeda system is sin(·) (sinusoidal)-type nonlinearity.
Later, another physiological model is given by Villasana et al. [140], who used DDE
to present a competition model of tumor growth that includes the immune system
response and a cycle-phase-specific term. The oceanographic model is reported by
Boutle et al. [22]. The authors successfully used the delayed-action oscillator to
model the effect of El Niño. They discussed the topics such as the influence of the
annual cycle, global warming, stochastic influences due to weather conditions and
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off-equatorial heat sinks, etc., using this delayed model. Next important work in
this field is due to Yongzhen et al. [150]. In the paper, they considered the delay
model of predator–prey with parasitic infection. The effect of parasitic infection on
prey is modeled through the delay differential equation. This is an eco-epidemic
system. The physiological model of artificial pancreas with time-delayed insulin
secretion effect is considered by Pei et al. [94]. They showed that, depending upon
the insulin secretion delay, the system may show double Hopf bifurcation for a
smaller technological delay. A number of important works on time-delayed neural
model may be found in Refs. [28, 41, 74, 142]. Another important application of the
time-delayed systems is in the control systems. Several works on the control system
with time delay may be found in Refs. [8, 30, 88, 99, 101, 114] and references
therein.

1.2.2 Time-Delayed Electronic Circuits

The first breakthrough in time-delayed chaotic electronic circuit was due to
Namajũnas et al. [89] in 1995. In the paper, entitled “An electronic analog ofMackey-
Glass system”, they implemented the time-delayed system that is topologically equiv-
alent to that of theMackey–Glass system [89]. They implemented the nonlinearity of
the system by coupling two complementary junction field-effect transistors (JFETs).
The delay part was implemented using the LCL filter sections.

Later, Lu and He [77, 78] reported a time-delayed chaotic system with a proper
piecewise linear (PWL) nonlinearity and LCL delay blocks. Tamaševičius et al.
[134] reported a time-delayed system with a PWL nonlinearity. In Ref. [143], Wang
et al. reported a time-delayed chaotic circuit which consists of PWL nonlinearity
and LCL delay blocks. Tamaševičius et al. [135] considered an inverted N-shaped
nonlinearity, which is realized by a circuit with a PWL nonlinearity. Later on in
the same year, Yalçin and Özoguz [145] reported another time-delayed electronic
circuit that is able to show n-scroll chaotic attractors. Kilinç et al. [60] considered
time-delayed system which contains the hysteresis function as the nonlinearity. The
system showed n-scroll chaotic attractor. Voss [141] proposed a time-delayed chaotic
circuit that contains the bucket-brigade device (BBD) digital delay block. This type
of BBD delay was used later in Refs. [4, 102]. Later, Buscarino et al. [27] designed a
time-delayed chaotic circuit with a PWL nonlinearity using a second-order low-pass
Bessel filter as the delay block. Banerjee et al. [13] reported a chaotic time-delayed
system using a closed-formmathematical function as the nonlinearity; this nonlinear
function is also easy to implement in electronic circuit. Further, they used an active
all-pass filter as the delay block, which was used widely later in producing time
delay in electronic circuits [1, 97]. Several other multi-scroll [12, 20] and single-
scroll [21] hyperchaotic time-delayed systems and their circuit implementations have
been reported by the same authors.
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1.2.3 Synchronization of Time-Delayed Systems

Although synchronization of chaos was discovered by Pecora and Carrol [93] in
1990, the first study on chaos synchronization in intrinsic time-delayed systems
was reported much later (1998) by Pyragas [100]. Pyragas considered Mackey–
Glass (MG) systems under the unidirectional coupling scheme and showed that
the coupled systems synchronize under certain coupling conditions. Later, Pyragas
[98] reported secure communication exploiting synchronization of time-delayed sys-
tems. Yalçin et al. [146] reported the synchronization in master–slave configuration
in Lur’e system with time delay. Masoller et al. [82–84] showed the anticipating
synchronization of coupled time-delayed systems. Shahverdiev et al. [123] reported
the lag synchronization in delay-coupled intrinsic time-delayed systems. Multiple
time-delayed system synchronization was also reported by Sahaverdiev [122].

Synchronization in linearly coupled time-delayed system was reported by Chen
et al. [29]. Yu [151] reported the global synchronization of chaotic time-delayed
systems coupled in bidirectional coupling scheme. Han et al. [53] studied the effect
of parameter mismatch on anticipating synchronization of chaotic systems with time
delay in the framework of the master–slave configuration. Senthilkumar et al. [118]
studied the inverse synchronization in coupled time-delayed systems. They showed
the system to experience inverse anticipatory, inverse complete, and inverse lag syn-
chronization. Projective synchronization in multiple time-delayed Rössler system is
reported in [45]. Senthilkumar et al. [119, 120] showed the phase synchronization and
transition from phase synchronization to complete synchronization in time-delayed
systems with nonlinear time delay coupling. Synchronization in time-delayed sys-
tems mediated by a common noise was reported in Ref. [117]. Ghosh et al. [46,
48] reported the generalized synchronization and design of coupling for obtaining
desired synchronization in time-delayed systems. Yao et al. [149] reported the role of
time delay coupling in the time-delayed system coupled through repulsive coupling
scheme. Refs. [131, 132] reported the global phase synchronization in an array of
coupled time-delayed system. Synchronization through environmental coupling in
hyperchaotic time-delayed systems and their experimental observationswas reported
by Banerjee and Biswas [11]. Also, the authors discovered a new synchronization
transition route to amplitude death in chaotic time-delayed systems [10].

1.3 Topics Covered in This Book

In this book, we cover the following two broad issues related with the chaotic time-
delayed systems:

First, we provide a systematic procedure to design time-delayed chaotic oscillators
whose nonlinearity is expressed in terms of a closed-form mathematical function,
and at the same time, that is easy to implement in hardware level using off-the-
shelf electronic circuit elements. Then, we characterize the system analytically and
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numerically. Finally, we describe the detailed experimental implementation of the
system in electronic circuit.

Second, as a natural extension, we discuss the collective behavior of the proposed
chaotic time-delayed systems and circuits. Under collective behaviors, we first dis-
cuss the synchronization phenomena of the coupled time-delayed systems and then
discuss another collective behavior, namely oscillation quenching state and the asso-
ciated transitions. Apart from theoretical and numerical analyses, we verify all the
collective behaviors through electronic circuit level experiments: it is an important
step as it provides a useful mean of understanding collective behaviors of time-
delayed systems in the real-world situation, i.e., in the presence of noise, parameter
mismatch, and fluctuations.
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Chapter 2
First-Order Time-Delayed Chaotic Systems:
Design and Experiment

In this chapter, we discuss the design principle of chaotic time-delayed systems with
(i) a bimodal nonlinearity and (ii) an unimodal nonlinearity. Both the nonlinearities
are represented by closed-form mathematical functions (unlike PWL nonlinearity).
Wecarry out rigorous stability analysis to identify theHopf bifurcation throughwhich
limit cycle oscillations are born. Next, we simulate the system models numerically
to show that with the variation of delay and other system parameters, the systems
show chaos. Complexity of the systems is characterized by Lyapunov exponents and
Kaplan–Yorke dimension. Finally, we discuss in detail how both the systems can be
implemented in experiment using electronic circuits.

2.1 Chaotic Time-Delayed System with Bimodal
Nonlinearity: System Description

We consider the following first-order nonlinear retarded-type delay differential equa-
tion with a single constant scalar delay

ẋ(t) = −ax(t) + b f (xτ ), (2.1)

where a > 0 and b are system parameters. Also, xτ ≡ x(t − τ), where τ ∈ R+
is a constant time delay. Now, we define the following closed-form mathematical
function for the nonlinearity:

f (xτ ) = −nxτ + m tanh(lxτ ), (2.2)

where n, m, and l are all positive system parameters and they are restricted by the
following constraint n < ml to maintain the bimodal nature of the nonlinearity. It
can be seen that the nonlinear function is constituted by the weighted superposition

© The Author(s) 2018
D. Biswas and T. Banerjee, Time-Delayed Chaotic
Dynamical Systems, SpringerBriefs in Nonlinear Circuits,
https://doi.org/10.1007/978-3-319-70993-2_2
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Fig. 2.1 Nonlinearity with
the function
f (xτ ) = −nxτ +m tanh(lxτ )

with “N1”: n = 2.2, m = 1,
l = 10; “N2”: n = 3, m = 1,
l = 8, “N3”: n = 1.5,
m = 1.2, l = 8. Dashed
curve is for n = 4, m = 1,
l = 3, which shows that for
n > ml the nonlinearity does
not show the bimodal nature

of two functions, namely the linear proportionality function and the nonlinear tanh(·)
function. Further, f (xτ ) is an odd-symmetric function, i.e., f (−xτ ) = − f (xτ ).

Figure2.1 shows the nature of the nonlinearity produced by f (xτ ) for different
values of n, m, and l. The nonlinearity shows a hump in the first and the third quad-
rants. The condition n < ml ensures this bimodal nature of the nonlinear function.
Tamaševičius et al. [135] used almost similar form of the nonlinearity with piece-
wise linear (PWL) function; but unlike their system, here Eq. (2.2) has a closed-form
mathematical function that does not show sharp corners in the turning points. The
nonlinear functions of Fig. 2.1 shows that positive slope continuously changes to the
negative slope through a zero slope region. The PWL function is unable to repre-
sent this behavior. Also, in the electronic circuit experiment, it is hard to realize a
sharp transition from positive to negative slope due to the nonideal characteristics of
the practical circuit components (see e.g., [135]). Therefore, the closed-form math-
ematical model of the nonlinearity used here is suitable for the electronic circuit
implementation. Also, Eq. (2.2) provides a large number of choices of n, m, and l
for which the bimodal nature will be preserved. Further, Ref. [135] considered only
positive values of b, but here we consider both positive and negative values of b.

2.2 Stability and Bifurcation Analysis

2.2.1 Positive b

The stability of the system is analyzed by rewriting Eq. (2.1) in the following form:

ẋ = g
(
x(t), xτ

) = −ax(t) + b f (xτ ). (2.3)

The equilibrium condition implies ẋ = 0 and x(t) = xτ = x∗ (say), i.e., g(x∗, x∗) =
−ax∗ + b f (x∗) = 0, which gives

tanh(lx∗) = a + nb

mb
x∗. (2.4)
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Close inspection reveals that Eq. (2.4) has a fixed point x∗ = 0 for l ≤ a+nb
mb , i.e., we

have a single trivial fixed point at x∗ = 0 for

b ≤ a

−n + ml
. (2.5)

For b > a
−n+ml , Eq. (2.4) has three fixed points, namely x∗ = (−p1, 0, p1). Here,

±p1 are the nontrivial fixed points whose values are determined by the system
parameters.

Let us now examine the stability of each fixed point. From Eq. (2.3), one gets

J0 = ∂g(x, xτ )

∂x
= −a, (2.6)

and

Jτ

∣∣
xτ =x∗ = ∂g(x, xτ )

∂xτ

∣∣∣∣
xτ =x∗

= b
[ − n + ml sech2(lx∗)

]
. (2.7)

The characteristic equation of the system is given by J0 + Jτ e−λτ − λ = 0, which
gives

λ = −a + b
[ − n + ml sech2(lx∗)

]
e−λτ . (2.8)

Stability for τ = 0
For the case of τ = 0, the characteristic equation takes the following form:

λ = J0 + Jτ . (2.9)

Taking λ = μ + iν, and comparing real and imaginary parts in both sides of the
above equation, one gets

μ = −a + b
[ − n + ml sech2(lx∗)

]
, and ν = 0. (2.10)

Asymptotic stability will occur when all the roots of the characteristic equation have
negative real parts (i.e., negativeμ); from Eq. (2.10), we get the condition of stability
as

b
[ − n + ml sech2(lx∗)

]
< a. (2.11)

Equation (2.11) imposes the first condition for choosing the system parameters to
achieve asymptotic stability of the system for τ = 0. Let us now examine the case
for x∗ = 0; fromEq. (2.11),we have the condition for stability as b < −n+ml, which
is interestingly identicalwith Eq. (2.5). Thus, one can conclude that, for b < −n+ml,
x∗ = 0 is the only stable fixed point for any τ ≥ 0, but beyond that, x∗ = 0 becomes
unstable through a supercritical pitchfork bifurcation and two nontrivial fixed points
(±p1) emerge. Next, we have to examine the stability of the nontrivial fixed points
(±p1).
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Stability for τ �= 0
Hopf bifurcation will appear if at least one of the eigenvalues crosses the imaginary
axis from left, and enter the right half plane. Thus, if μ varies from left to right, we
can say that μ < 0 represents a stable state, μ > 0 is bifurcated state, and μ = 0 is
the bifurcation point. At the emergence of Hopf bifurcation, we assume μ = 0; thus
using λ = iν, we get

J0 + Jτ e
−iντ − iν = 0,

J0 + Jτ cos(ντ) − i{Jτ sin(ντ) + ν} = 0.
(2.12)

Now equating the real and imaginary parts on both sides of the above equation, we
get

Jτ cos(ντ) = −J0, (2.13)

Jτ sin(ντ) = −ν. (2.14)

Equations (2.13) and (2.14) lead to give ν =
√
J 2
τ − J 2

0 . This is possible only for
|Jτ | ≥ |J0|, i.e., ∣∣b[−n + ml sech2(lx∗)]∣∣ ≥ ∣∣ − a

∣∣. (2.15)

Again from Eq. (2.13), we get

ντ = cos−1
( − J0

Jτ

)
, (2.16)

which leads to

τk1 =

[
cos−1

( − J0
Jτ

) + 2kπ

]

√
Jτ

2 − J02
, for Jτ < 0, (2.17a)

τk2 =

[{
2π − cos−1

( − J0
Jτ

)} + 2kπ

]

√
Jτ

2 − J0
2

, for Jτ > 0, (2.17b)

where k = 0, 1, 2, . . . Now we set ν0 =
√
Jτ

2 − J02. Let λk(τ ) = μk(τ ) + iνk(τ )

be a root of Eq. (2.1) near τ = τk satisfying μk(τk) = 0 and νk(τk) = ν0. We have

λ = J0 + Jτ e
−λτ , (2.18a)

λ = −a + b[−n + ml sech2(lx∗)]e−λτ . (2.18b)
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We put
s = b[−n + ml sech2(lx∗)]. (2.19)

Differentiating both sides of Eq. (2.18b) with respect to τ , we get

dλ

dτ
= se−λτ

(
−λ − τ

dλ

dτ

)
,

dλ

dτ
= −λse−λτ

1 + τ se−λτ
. (2.20)

Again, from equation Eq. (2.19), we have se−λτ = λ + a, we put this in the above
and get

dλ

dτ
= −λ(λ + a)

1 + τ(λ + a)
.

Now, at τ = τk ; λ = iν0, as μk(τk) = 0 there, hence,

dλ

dτ

∣∣∣
∣
τ=τk

= ν0
2 − iν0a

(1 + τa) + iτν0
. (2.21)

Equating the real parts on both sides, we get

μ′(τk) = ν0
2

(1 + τa)2 + τ 2ν2
0

.

Thus,
μ′(τk) > 0. (2.22)

For all values of above-mentioned x∗, Eq. (2.22) is valid. So we conclude that the
stable state lies between τ = 0 and τ01.

Now, let us investigate the stability of the system for the following parameter
set: a = 1, n = 2.2, m = 1, and l = 10 (as we have used in “N1” of Fig. 2.1).
Figure2.2 shows the first six stability curves τki (i = 1, 2) (Using Eq. (2.17)) in the
b − τ parameter space. In the figure, τk1 and τk2 are represented by solid lines and
dotted lines, respectively. Since μ′(τk) > 0 for any k = 0, 1, 2 . . . , thus, stability
zone cannot be situated between two consecutive τki curves. So we conclude that
the stable island lies between τ = 0 and τ01 curves. The shaded region in the figure
represents the stable zone, and τ01 curve represents the Hopf bifurcation curve. Let us
now summarize the stability scenario of the system for b ≥ 0: (i) x∗ = 0: for this fixed
point, the condition of stability reads b < 1

−n+ml for any τ ≥ 0. Beyond this value of
b, for any τ ≥ 0, the trivial fixed point x∗ = 0 becomes unstable through a pitchfork
bifurcation and ±p1 fixed points emerge. (ii) x∗ = ±p1: These two nontrivial fixed
points come into play for b ≥ 1

−n+ml . Since at these fixed points |Jτ | > | − a|, thus
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Fig. 2.2 Stability zone in
the b–τ (b > 0) parameter
space with parameters a = 1,
n = 2.2, m = 1, and l = 10.
Shaded region indicates the
zone of stable fixed point

the system depicts a stable fixed point for the delay τ , in 0 ≤ τ < τ01. Beyond
τ = τ01, Hopf bifurcation occurs and a stable limit cycle appears.

Next, we study the direction of Hopf bifurcation and the stability of the bifurcating
solutions for x∗ = ±p1 at τ = τ01. Using the techniques described by Wei [144],
let us define

D = 1

1 + τ01a − iτ01ν0
. (2.23)

We can obtain the following coefficients:

g20 = D̄bτ01 f
′′(x∗)e−2iτ01ν0 ,

= −2D̄bτ01ml2 sech2(lx∗) tanh(lx∗)e−2iτ01ν0 ,

g11 = D̄bτ01 f
′′(x∗),

= −2D̄bτ01ml2sech2(lx∗) tanh(lx∗),
g02 = D̄bτ01 f

′′(x∗)e2iτ01ν0 ,
= −2D̄bτ01ml2 sech2(lx∗) tanh(lx∗)e2iτ01ν0 , (2.24)

g21 = D̄bτ01

[
f ′′(x∗){e−iτ01ν0W11(−1) + eiτ01ν0W20(−1)} + f ′′′(x∗)e−iτ01ν0

]
,

= −2ml2 D̄bτ01 sech
2(lx∗)

[
{e−iτ01ν0W11(−1) + eiτ01ν0W20(−1)} tanh(lx∗)

− l{2 − 3sech2(lx∗)}e−iτ01ν0

]
,
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where

W20(−1) = − g20
iτ01ν0

e−iτ01ν0 − ḡ02
3iτ01ν0

eiτ01ν0 + E1e
−2iτ01ν0 ,

W11(−1) = g11
iτ01ν0

e−iτ01ν0 − ḡ11
iτ01ν0

eiτ01ν0 + E2,

E1 = b f ′′(x∗)e−2iτ01ν0

2iν0 + a − b f ′(x∗)e−2iτ01ν0
,

= −b{2ml2 sech2(lx∗) tanh(lx∗)}e−2iτ01ν0

2iν0 + a − b
[−n + ml sech2(lx∗)

]
e−2iτ01ν0

,

and

E2 = b f ′′(x∗)
a − b f ′(x∗)

,

= −2bml2 sech2(lx∗) tanh(lx∗)
a − b

[−n + ml sech2(lx∗)
] .

Because each gi j in equation set (2.24) is expressed by the parameters and delay, we
can compute the following quantities:

c1(0) = i

2τ01ν0

(
g11g20 − 2|g11|2 − |g02|2

3

)
+ g21

2
,

μ2 = − Re(c1(0))

Re(λ′(τ01))
, (2.25)

β2 = 2Re(c1(0)),

T2 = − Im(c1(0)) + μ2Im(λ′(τ01))
ν0

.

The parameter μ2 determines the direction of the Hopf bifurcation: if μ2 > 0
(μ2 < 0), then the Hopf bifurcation is supercritical (subcritical) and the bifur-
cating periodic solutions exist for τ > τ01 (τ < τ01). β2 determines the stability of
bifurcating periodic solutions: the bifurcating periodic solutions are orbitally asymp-
totically stable (unstable) if β2 < 0 (β2 > 0). Finally, T2 determines the period of
bifurcating periodic solutions: the period increases (decreases) if T2 > 0 (T2 < 0).

To test the validity of our analysis, let us use the following parameter values:
a = 1, n = 2.2,m = 1, and l = 10. For b = 1, we have p1 = 0.31, J0 = −a = −1,
and Jτ = b[−n + ml sech2(±lp1)] = −2.121. Thus, we see that |Jτ | > |J0| (sat-
isfying Eq. (2.16)). Also, at these parameter values, we have τ01 = 1.102 (from
Eq. (2.17)). Thus, we expect that at b = 1 and τ01 = τH = 1.102, the fixed point
losses its stability through Hopf bifurcation. Further, at these parameter values, we
have g11 = −0.421 + 0.413i , g20 = 0.582 + 0.095i , g02 = −0.11 − 0.58i , g21 =
−11.622 − 3.812i , E1 = −0.217 − 0.082i , E2 = −0.525, W20 = 0.519 − 0.302i ,
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W11 = −0.354, and c1(0) = −5.86−2.172i . Using these set of values in Eq. (2.25),
we have μ2 = 14.524 > 0; that means the resulting bifurcation is a supercritical
Hopf bifurcation. Also, since β2 = −11.72 < 0, thus the bifurcating periodic solu-
tions are orbitally asymptotically stable. Finally, T2 = 11.142 > 0 indicates that the
period of the limit cycle increases with increasing τ .

2.2.2 Negative b

Let us define b = −b1, where b1 > 0. For negative b, we have

ax∗ = −b1 f (x
∗). (2.26)

This gives the following equation: tanh(lx∗) = − a−nb1
mb1

x∗. Again a close observation
reveals that for b1 ≤ a

n , one has only one trivial fixed point, which is x
∗ = 0; beyond

this value of b, there exists three equilibrium points, namely x∗ = q1, 0, and −
q1. Using the similar arguments of the previous subsection, we can show that the
nontrivial fixed points (i.e., ±q1) are unstable for any τ ≥ 0. For the trivial fixed
point (i.e., x∗ = 0), we can derive the following equations:

J0 = −a, and Jτ = −b1[−n + ml]. (2.27)

Now, the characteristic equation is given by

λ = −a − b1[−n + ml]e−λτ . (2.28)

Stability for τ = 0 can be found as a > −b1[−n + ml]. Also, for τ �= 0, from the
condition |Jτ | ≥ |J0|, we have the condition of stability:

∣
∣b1[−n+ml]∣∣ ≥ |−a|. Next,

similar as the previous section, we can have the set of curves from the expressions
of τk1 and τk2 given by Eq. (2.17) with the values of J0 and Jτ given by Eq. (2.27).
These set of curves are shown in Fig. 2.3. We can show that Eq. (2.22) holds good for
negative b also; thus, we conclude that, for negative b, the stability zone lies between
the curves τ = 0 and τ01 in the figure.

To test the validity of our analysis, let us use the following parameter values:
a = 1, n = 2.2, m = 1, and l = 10. For b = −1, we get J0 = −a = −1 and
Jτ = −b1[−n + ml sech2(lx∗)] = −7.8 (x∗ = 0). Thus, we see that |Jτ | > |J0|
(satisfying Eq. (2.11)). Also, at these parameter values, we have τ01 = 0.22 (from
Eq. (2.17)). Thus, we expect that at b = −1 and τ01 = τH = 0.22, the fixed point
losses its stability through Hopf bifurcation. Further, at these parameter values, we
have g11 = g20 = g02 = 0, g21 = −184.934 − 99.586i , E1 = E2 = 0, W20 =
W11 = 0, and c1(0) = −92.467 − 49.793i . Using these set of values in Eq. (2.25),
we have μ2 = 6.761 > 0; that means the resulting bifurcation is a supercritical
Hopf bifurcation. Also, β2 = −184.934 < 0 indicates that the bifurcating periodic
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Fig. 2.3 Stability zone in
the b–τ (b < 0) parameter
space with parameters a = 1,
n = 2.2, m = 1, and l = 10.
Shaded region indicates the
zone of stable fixed point

Fig. 2.4 Full stability
diagram in b − τ space, with
parameters a = 1, n = 2.2,
m = 1, and l = 10. The
shaded region represents the
zone of stable fixed point

solutions are orbitally asymptotically stable. Finally, we have T2 = 28.635 > 0;
thus, the period of the limit cycle increases with increasing τ . To sum up the whole
scenario of the stability, we present the stability diagram in b − τ space in Fig. 2.4.
The shaded region in the figure represents the zone of stable fixed points of the
system.

2.3 Numerical Studies

System Eq. (2.1) is solved numerically using XPPAUT [35] with the fourth-order
Runge–Kutta algorithm with step size h = 0.005. A constant initial function φ(t) =
0.8 for t ∈ [−τ, 0] is used. We also verify that several other initial functions also
give similar results. Care has been taken to allow the system to settle to the steady
state by excluding a large number of transients.
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2.3.1 Varying τ with Constant b

At first, we vary the time-delay τ with constant b. For all the numerical simulations,
we consider the following system parameters: a = 1, n = 2.2,m = 1, and l = 10. As
suggested by the stability diagram Fig. 2.4, in the following, we take two exemplary
values of b: b = 1 and b = −1.

(i) b = 1: For τ ≥ 1.102, the fixed point loses its stability throughHopf bifurcation,
which is in accordance with analysis of the previous section. At τ = 1.65, limit
cycle of period-1 becomes unstable and a period-2 (P2) cycle appears. Further,
period doubling occurs at τ = 1.79 (P2 to P4). Through a period-doubling
sequence, the system enters into the chaotic regime at τ = 1.84. With further
increase of τ , at τ = 2.60, the system shows the emergence of hyperchaos. The
system shows a double scroll at τ ≈ 3.24. Phase-plane representation in the
representative x(t) − x(t − τ) plane for different τ is shown in Fig. 2.5, which
shows the following characteristics: period-1 (τ = 1.40), period-2 (τ = 1.72),
chaos (τ = 1.94), and double-scroll hyperchaos (τ = 3.52).

(ii) b = −1: The fixed point loses its stability through Hopf bifurcation at τ =
0.22 which again agrees with the analysis. Pitchfork bifurcation of the limit
cycle occurs at τ = 1.3. Period-2 and period-4 occurs at τ = 1.84 and 1.99,
respectively. Chaos appears at τ ≈ 2.05. Double scroll occurs at τ ≈ 2.38.
Finally, hyperchaos occurs at τ ≈ 3.39. All the behaviors in phase space are

Fig. 2.5 Phase-plane plot in x(t)–x(t − τ) space for different τ (b = 1): a τ = 1.40 (period-1), b
τ = 1.72 (period-2), c τ = 1.94 (chaos), d τ = 3.52 (double-scroll hyperchaos) (other parameters
are a = 1, n = 2.2, m = 1, and l = 10)
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Fig. 2.6 Phase-plane plot in x–x(t − τ) space for different τ (b = −1): a τ = 0.52 (period-1),
b τ = 1.876 (period-2), c τ = 2.17 (chaos),d τ = 3.5 (double-scroll hyperchaos) (other parameters
are a = 1, n = 2.2, m = 1, and l = 10)

shown in Fig. 2.6. The representative real-time plots of the system for b = 0.96
and b = −0.96 with τ = 4 is shown in Fig. 2.7.

These observations are summarized through a bifurcation diagram with τ as the
control parameter. Bifurcation diagrams are obtained by plotting the local maxima
of x , excluding a large number of transients (∼ 106). Figure2.8A(a) and B(a) shows
the bifurcation diagram of x with τ for b = 1 and b = −1, respectively. Clearly,
they show a period-doubling route to chaos. For quantitative measure of the sys-
tem dynamics, we compute the first eight Lyapunov exponents using the algorithm
proposed in [37]. Figure2.8A(b) and B(b) shows the spectrum of Lyapunov expo-
nents (LEs) in the τ parameter space. They agree well with the bifurcation diagrams.
Figure2.8A(c), B(c) show the corresponding Kaplan–Yorke dimensions (DKY ) with
different τ . The presence of a strange attractor, multiple LEs, and higher values of
DKY (> 3) ensures [72] that hyperchaos occurs for τ ≈ 2.68 (b = 1) and τ ≈ 3.25
(b = −1).

2.3.2 Varying b with Constant τ

Next, we keep the delay fixed at τ = 4 and vary b to explore the system dynamics.

(i) b > 0: Starting from b = 0, if we increase b, at b ≈ 0.128, the trivial fixed point
x = 0 losses stability through pitchfork bifurcation and nontrivial fixed points
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Fig. 2.7 Real-time plot in
x, x(t − τ) − t for b = 0.96
(upper panel) and b = −0.96
(lower panel), τ = 4 (other
parameters are a = 1,
n = 2.2, m = 1, and l = 10)

arise. Nontrivial fixed points become unstable throughHopf bifurcation and limit
cycle appears at b ≈ 0.62 = bH+. At b ≈ 0.75, limit cycle of period-1 becomes
unstable and a period-2 (P2) cycle appears. Further, period doubling occurs at
b ≈ 0.777 (P2 to P4). Through a period-doubling cascade, the system enters
into the chaotic regime at b ≈ 0.786. With further increase in b, at b ≈ 0.9, the
system shows the hyperchaotic behavior. Double scroll appears at b ≈ 0.985.
Finally, the system equation shows diverging behavior for b > 1, indicating
boundary crises.

(ii) b < 0: For b ≤ −0.156, the trivial fixed point losses stability through Hopf
bifurcation and gives birth to a limit cycle. Pitchfork bifurcation of limit cycle
is observed at b ≈ −0.62. Period-2 limit cycle appears at b ≈ −0.77, and
period-4 oscillation occurs at b ≈ −0.795. At b ≈ −0.807, we observe chaotic
behavior. Double scroll hyperchaos is observed at b ≈ −0.98. Phase-plane
representation in the representative x(t)− x(t−τ) plane for different b is shown
in Fig. 2.9, which shows the following characteristics: period-1 (b = 0.70),
period-2 (b = 0.76), chaos (b = 0.82), and double scroll (b = 0.99); period-
1 (b = −0.2), period-2 (b = −0.78), chaos (b = −0.82), and double scroll
hyperchaos (b = −1).

As before, these observations are summarized through a bifurcation diagram with
b as the control parameter. Figure2.10a shows the bifurcation diagram of x with b.
At bH+ = 0.62 and bH− = −0.156, limit cycles emerge through Hopf bifurcation.
Figure2.10b shows the first eight LEs; it can be seen that for b > 0.9 and b < −0.93
we have two positive LEs indicating the occurrence of hyperchaos. This fact is
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(a) (a)

(b) (b)

(c) (c)

Fig. 2.8 (A)b = 1:aBifurcation diagramof x with τ as the control parameter. τH indicates theHopf
bifurcation point. b The first eight Lyapunov exponents (λ) with τ ; First two LEs become positive
for τ ≥ 2.68 indicating hyperchaos. c The corresponding Kaplan–Yorke dimension (DKY ).(B)
b = −1: a Bifurcation diagram of x with τ as the control parameter. b The first eight Lyapunov
exponents (λ) with τ ; First two LEs become positive for τ ≥ 3.25 indicating hyperchaos. c The
corresponding Kaplan–Yorke dimension (DKY ) (other parameters are same as in Fig. 2.5)

supported by Fig. 2.10c, which plots DKY with b. It is noteworthy that to obtain
hyperchaos we do not need to make τ large; a suitable choice of b with a moderate
value of τ is sufficient to observe hyperchaos.

It is interesting to note that the nonlinearity of the system solely depends on
the control parameters n, m, and l (see Fig. 2.1). The variation of these parameters
changes the structure of the nonlinearity but the nature of the nonlinearity is kept
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Fig. 2.9 Phase-plane plot in x(t)–x(t − τ) space for different b (τ = 4): a b = 0.7 (period-1),
b b = 0.76 (period-2), c b = 0.82 (chaos), d b = 0.99 (double scroll hyperchaos), e b = −0.2
(period-1), f b = −0.78 (period-2), g b = −0.82 (chaos), and h b = −1 (double scroll) (other
parameters are a = 1, n = 2.2, m = 1, and l = 10)

(a) (b) (c)

Fig. 2.10 a Bifurcation diagram of x with b as the control parameter. b The first eight Lyapunov
exponents (λ) with b; First two LEs become positive for b ≥ 0.9 and b ≤ −0.92 indicating
hyperchaos. c The corresponding Kaplan–Yorke dimension (DKY ). Parameter values are same as
in Fig. 2.9

unaltered by keeping the condition n < ml to have the double hump in the nonlin-
earity. In Fig. 2.11, we show the resulting forms of nonlinearity under the variation
of each parameter by different shaded colors. The range of parameters is as follows:
n ∈ [1, 2.4] (cyan zone in Fig. 2.11), m ∈ [0.5, 1.5] (yellow zone in Fig. 2.11), and
l ∈ [3, 12] (red zone in Fig. 2.11). Other parameters are n = 2.2, m = 1, and l = 10
if they are not used as control parameters. It is interesting to note that the change in
the form of the nonilearity is also responsible to show the full spectrum of system
dynamics.
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Fig. 2.11 Nonlinear zones
for variable control
parameters. n ∈ [1, 2.4]
(cyan zone), m ∈ [0.5, 1.5]
(yellow zone), and
l ∈ [3, 12] (red zone). Solid
lines are for the parameters
n = 2.2, m = 1, and l = 10

2.4 Experimental Studies

The system given by Eq. (2.1) (with the nonlinearity of Eq. (2.2)) is implemented in
an analog electronic circuit as shown in Fig. 2.12. Here, V (t) represents the voltage
drop across the capacitorC0 of the low-pass filter section R0−C0. Figure2.12 follows
the following circuit equation:

R0C0
dV (t)

dt
= −V (t) + b f

(
V (t − Td)

)
. (2.29)

Here, b = ± R7
R6
. Positive (negative) sign is considered if the junction “P” is connected

to “A” (“B”). A4 is an unity gain inverting amplifier (i.e., R8 = R9). A5 and A6 are
noninverting unity gain amplifiers acting as voltage buffers. f

(
V (t − Td)

) ≡ f (Vτ )

is the nonlinear function representing the output of the nonlinear device (ND) of
Fig. 2.12 in terms of the input voltage Vτ . TD is the time delay produced by a delay
block.

Figure2.12 shows that ND consists of the following parts: The circuit associated
with the A1 op-amp is a simple inverting amplifier of gain R2

R1
. The output is a

linear function of the input for a certain range of input voltage; for a higher input
voltage, the output is saturated to a constant, ±Vsat , which is the saturation voltage
of op-amp. This nature of the op-amp-based amplifier can best be represented by the

following function:−βVsat tanh

(
w R2

R1

Vτ

Vsat

)
.We chose a tanh(·) function to represent

a saturation-type nonlinearity because this particular function is widely considered in
bipolar and CMOS IC design. Here, β and w are the scaling factors needed to fit the
model with the experimental data; these two parameters depend upon the nonideal
nature and asymmetry of the op-amps. In general, for smaller input voltages, β ≈ 1
and w ≈ 1. A2 acts as a weighted adder that adds Vτ and the output voltage of A1.
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Fig. 2.12 Experimental circuit diagram. ND is the nonlinear device. A1–A6 are op-amps (TL074);
low-pass section has R0 ≈ 1k	 and C0 ≈ 0.1 μF. For ND: R1 ≈ 2.50 k	, R2 ≈ 20.23 k	,
R3 ≈ 26.28 k	, R4 ≈ 8.71 k	, R5 ≈ 10 k	. R6 ≈ 1 k	, and variable POT for R7. Other resistors
are R8 = R9 ≈ 10 k	. Delay block contributes a delay of τ (see Fig. 2.13)

Fig. 2.13 Active first-order
all-pass filter. A0 is a TL074
op-amp. R10 = R11 ≈ 2.2
k	, C ≈ 10 nF

Therefore, we can write the following form of the nonlinearity:

f
(
V (t − TD)

) = − R5

R4
V (t − TD) + R5

R3
βVsat tanh

(
w
R2

R1

V (t − TD)

Vsat

)
. (2.30)

The variable delay element is realized by the first-order all-pass filter (APF)
(Fig. 2.13) [115]. Design of an APF needs a single op-amp (A0), an R−C com-
bination, which determines the phase shift between the input and output signals; two
resistors R10 and R11 determine the gain of the APF. Thus, the APF has the following
transfer function:
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T (s) = −a1
s − ω0

s + ω0
, (2.31)

with a flat gain a1 = R11
R10

, and ω0 = 1/CR is the frequency at which the phase shift
is π/2. In the present work, we take R11 = R10, and thus a1 = 1. Since it has a
maximally linear phase response around the frequency ω0, thus one can approximate
that an APF imposes a delay of TD ≈ RC around ω0 [13]. Thus, i blocks produce a
delay of TD ≈ i RC (i = 1, 2, . . . ). By simply changing the resistance R, one can
vary the amount of delay; thus, one can control the resolution of the delay line easily.

Let us define the following dimensionless variables and parameters: t = t
R0C0

,

τ = Td
R0C0

, x = V (t)
Vsat

, xτ = V (t−TD)

Vsat
, R5

R4
= n1, β R5

R3
= m1, and w R2

R1
= l1. Now, the

systemEq. (2.29) can be reduced to the following dimensionless first-order, nonlinear
delay differential equation:

dx

dt
= −x(t) + b f

(
x(t − τ)

)
, (2.32)

where
f
(
x(t − τ)

) ≡ f (xτ ) = −n1xτ + m1 tanh(l1xτ ). (2.33)

It can be seen that Eq. (2.32) (along with Eq. (2.33)) is equivalent to Eq. (2.1) (along
with Eq. (2.2)) with a = 1, and appropriate choice of n1, m1, and l1.

In the hardware experiment, we use IC TL074 (quad JFET op-amp) with ±12
volt power supply. Capacitors (resistors) have 1% (5%) tolerance. For the low-pass
section, we choose R0 ≈ 1 k	 and C0 ≈ 0.1 μF. For the nonlinear device (ND), the
following resistor values are used: R1 ≈ 2.50 k	, R2 ≈ 20.23 k	, R3 ≈ 26.28 k	,
R4 ≈ 8.71 k	, and R5 ≈ 10 k	. Figure2.14 shows the experimentally obtained
nonlinearity produced by the ND. Qualitatively, it is equivalent to the nonlinear
function “N1” of Fig. 2.1. The gain of the noninverting amplifier (A3) that follows the
ND is designedwith R6 ≈ 1 k	 and variable R7; R7 is varied through a potentiometer
to change the parameter b. Other resistors are R8 ≈ 10 k	 and R9 ≈ 10 k	. For
the delay section, the APF is designed with the following parameters: R ≈ 10 k	

Fig. 2.14 Experimentally
obtained nonlinearity
produced by nonlinear
device of Fig. 2.12. Scale:
x-axis: 0.2 v/div and y-axis:
0.5 v/div
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(POT), C ≈ 10 nF, R8 ≈ 2.2 k	, and R9 ≈ 2.2 k	. Each APF contributes a delay
of TD = RC = 0.1 ms; thus, the dimensionless parameter τ = RC

R0C0
= 1, i.e., one

needs i blocks to produce a delay τ = i . In the experiment, we vary R to get variable
delays. Note that one can also change R0 to get a variable delay, but in that case the
power spectral property of the circuit will also be changed [89].

2.4.1 Variable τ, Fixed B

(i) Positive b: The nodes “A” and “P” of Fig. 2.12 are connected. We fix the value
of b with R7 ≈ 1.57 k	 (POT). Now, we vary the delay by varying R. At first
to get a small delay, we use only one APF stage. For R ≥ 9.56 k	 (approx.), a
stable limit cycle appears with frequency 3846 Hz. Next, we use two blocks of
APF; R ≈ 10 k	 is taken for the first block (contributing ≈0.1 ms delay) and
vary R of the second block; at R = 0.35 k	 the limit cycle of period-1 loses its
stability and a period-2 oscillation emerges. At R ≈ 6.43 k	, chaotic oscillation
occurs in the circuit. Next, we use three blocks of APF; R ≈ 10 k	 is taken
for the first two blocks (contributing ≈ 0.2ms delay) and vary R of the third
block; the double-scroll hyperchaotic attractor is observed beyond R ≈ 6.84k	.
All the above-mentioned behaviors are shown in Fig. 2.15 (in V (t)–V (t − TD)

space), which depicts the experimental phase-plane plots recorded in a real-
time oscilloscope (Aplab make, two channel, 60 MHz). It can be seen that the
experimental results qualitatively agree well with the numerical simulations.

(ii) Negative b: The nodes “B” and “P” of Fig. 2.12 are connected. We fix the value
of b with R7 = 1.56 k	 (POT). The following observations are made: period-1
(frequency 7692Hz) is observed for single stage, R ≥ 9 k	. Next, we use three
blocks of APF: R ≈ 10 k	 is taken for the first two blocks (contributing ≈ 0.2
ms delay) and vary R of the third block. The following behaviors are observed:
period-2 (R ≥ 2.77 k	), chaos (R ≥ 4.09 k	), and double scroll (R ≥ 9.54
k	). Oscilloscope traces are shown in Fig. 2.16.

Fig. 2.15 Positive b: The oscilloscope trace of experimentally obtained phase-plane plots in the
V (t)–V (t − TD) space for variable τ : a Period-1 b Period-2 c chaos d double scroll (for the
parameter values see text). a–c V (x-axis): 0.2 v/div, V (t − TD) (y-axis): 0.2 v/div. d x-axis: 0.5
v/div, y-axis: 0.5 v/div
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Fig. 2.16 Negative b: The oscilloscope trace of experimentally obtained phase-plane plots in the
V (t)–V (t − TD) space for variable τ : a Period-1 b Period-2 c chaos d double scroll (for the
parameters see text). a–d x-axis: 0.5 v/div, y-axis: 0.5 v/div

Fig. 2.17 The oscilloscope trace of experimentally obtained phase-plane plots in the V (t)–V (t −
TD) space for variable b: “A”–“P” (of Fig. 2.12) are connected (positive b): a Period-1 at R7 = 1.01
k	 b Period-2 at R7 = 1.12 k	 c chaos at R7 = 1.3 k	 d double scroll at R7 = 1.7 k	. “B”–“P”
(of Fig. 2.12) are connected (negative b): e Period-1 at R7 = 0.75 k	 f Period-2 at R7 = 1.12 k	
g chaos at R7 = 1.30 k	 h double scroll at R7 = 1.45 k	 (for other parameters see text). a–c
x-axis: 0.1 v/div, y-axis: 0.2 v/div. d x-axis: 0.5 v/div, y-axis: 0.5 v/div., and e–g x-axis: 0.1 v/div,
y-axis): 0.2 v/div.; h x-axis: 0.5 v/div, y-axis: 0.5 v/div

2.4.2 Variable B, Fixed τ

(i) Positive b: The nodes “A” and “P” of Fig. 2.12 are connected. We set the time
delay at TD = 0.4 ms (i.e., τ = 4) by using four APF blocks each having
R = 10 k	. To observe the behavior of the system for different b, we vary R7.
For R7 ≈ 1 k	 (i.e., b = 1), the circuit shows a stable limit cycle of frequency
833 Hz. At R7 = 1.07 k	 (approx.) (i.e., b ≈ 1.07), the limit cycle of period-1
loses its stability and a period-2 oscillation emerges. Chaotic oscillation appears
at R7 = 1.17 k	 (approx.) (i.e., b ≈ 1.17). The circuit shows a double scroll
for R7 > 1.61 k	 (i.e., b ≈ 1.61). These behaviors are shown in Fig. 2.17
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(upper row (a)–(d)) which represents the experimental oscilloscope traces in the
V (t) − V (t − TD) space. One can observe the qualitative agreement between
the numerical results and the experimental observations.

(ii) Negative b: The nodes “B” and “P” of Fig. 2.12 are connected. We set the time
delay at TD = 0.4 ms (i.e., τ = 4). Following observations are made: period-
1 (R7 ≥ 0.67 k	, b = 0.67), period-2 (R7 ≥ 1.08 k	, b = 1.08), chaos
(R7 ≥ 1.09 k	, b = 1.09), and double scroll (R7 ≥ 1.43 k	, b = 1.43). All
the above- mentioned behaviors are shown in Fig. 2.17 (lower row (e)–(h)) in
V (t)–V (t − TD) space depicting the real-time oscilloscope traces. Thus, we see
that the experimental results qualitatively agree well with the numerical results.

2.5 Time-Delayed System with Unimodal Nonlinearity:
System Description

Next, we discuss the design principle of a chaotic time-delayed systemwith unimodal
nonlinearity. The following is thefirst-order nonlinear retarded-typedelaydifferential
equation with a single constant delay

ẋ = −ax(t) − b f (xτ ), (2.34)

where a and b are the positive parameters. Also, xτ ≡ x(t − τ), where τ ∈ R+ is
a constant time delay. The nonlinear function of the above equation is given by the
following equation:

f (xτ ) = −0.5n
(|xτ | + xτ

) + m tanh(lxτ ), (2.35)

where n, m, and l are all positive parameters controlling the nonlinearity.
The first term in the right-hand side of Eq. (2.35) represents the input–output char-

acteristic of a half-wave (HW) rectifier. Thus, the nonlinear function is composed of
the weighted superposition of two nonlinear functions, namely “HW” and “tanh(·)”
functions. Figure2.18 shows the nature of the nonlinearity for different values of n,
m, and l. The nonlinearity shows a unimodal nature with single hump in the first
quadrant, but unlike the nonlinearity of the Mackey–Glass (MG) system [79], it does
not vanish asymptotically. There exists a large number of choices of n, m, and l that
produce this particular nature of the nonlinearity.

2.6 Stability Analysis

Toanalyze the stability of the systemgivenbyEq. (2.34),we rewrite it in the following
form:
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Fig. 2.18 Nonlinear function
f (xτ ) = −0.5n(|xτ | + xτ ) +
m tanh(lxτ ): (n1) n = 1.15,
m = 0.97, l = 2.19; (n2)
n = 0.85, m = 1, l = 4; (n3)
n = 0.5, m = 1, and l = 5

ẋ = g
(
x(t), xτ

)
= −ax(t) − b f (xτ ). (2.36)

The equilibrium condition implies ẋ = 0 and x(t) = xτ = x∗ (say), i.e., g(x∗, x∗) =
−ax∗ − b f (x∗) = 0. This gives ax∗ = −b f (x∗). This is a transcendental equation,
which may be solved graphically (or numerically, e.g., Newton–Raphson method).
The intersection of the two curves gives the solution, which is x∗ = 0. Let us now
examine the stability of the fixed point x∗ = 0.

The analysis of stability is same as in Sect. 2.2. The condition of stability for
τ = 0 is given by

b
[

− 0.5n + ml
]

> −a. (2.37)

The stability condition for τ �= 0 gives the calculated values of τ as

τk1 =

[
cos−1

(
− J0

Jτ

)
+ 2kπ

]

√
Jτ

2 − J02
, for Jτ < 0, (2.38a)

τk2 =

[{
2π − cos−1

(
− J0

Jτ

)}
+ 2kπ

]

√
Jτ

2 − J0
2

, for Jτ > 0, (2.38b)

where k = 0, 1, 2, . . . , and J0 and Jτ are the same as Eqs. (2.6) and (2.7).
The condition of stability of the system reads the following form:

∣∣ − b(0.5n − ml)
∣∣ ≥ |−a|. (2.39)

Also, we get the derivative of the real part of the eigenvalue as

μ′(τk) = ν0
2

(1 + τka)2 + τ 2
k ν2

0

. (2.40)
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Thus, μ′(τk) > 0 for any k = 0, 1, 2, . . . . Thus, we conclude that the stable state
lies between τ = 0 and τ01.

Figure2.19 shows the first six stability curves τki (i = 1, 2) (using Eqs. (2.38a)
and (2.38b)) in the b − τ parameter space. We have used the following parameters:
a = 1, n = 1.15, m = 0.97, and l = 2.19 (as we have used in “n1” of Fig. 2.18).
In the figure, τk1 and τk2 are represented by the solid and dotted lines, respectively.
Since μ(τk) > 0 for any k = 0, 1, 2, . . . , thus the stability zone cannot be situated
between two τki curves; so we conclude that the stable island lies between the τ = 0
and the τ01 curve. The shaded region in the figure represents the stable zone, and the
τ01 curve represents the Hopf bifurcation curve.

Further, we analyze the stability of the system using TRACE-DDE package in
which pseudospectral approach is considered [23]. The package is employed for
the calculation of stability zone. In Fig. 2.20a, we show the stability boundary and
in Fig. 2.20b the stability surface. This figure closely resembles our analytically
obtained results as shown in Fig. 2.19.

Fig. 2.19 Stability zone in
the b − τ parameter space
with parameters a = 1,
n = 1.15, m = 0.97, and
l = 2.19. The shaded region
indicates the zone of the
stable fixed point

Fig. 2.20 Stability zone in
b − τ parameter space
obtained by the numerical
package TRACE-DDE:
a Stability boundary and
b Stability surface. The
parameters are same as in
Fig. 2.19

(a) (b)
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From the aforesaid discussion, it is clear that the system undergoes aHopf bifurca-
tion to loose its stability. Now, wewant to find out the type of Hopf bifurcation occur-
ring in the system and also its stability. For this, we consider the stability and direction
of hopf bifurcation as discussed in Sect. 2.2.1. The outcomes of the analysis are as
follows: To test the validity of our analysis, let us use the following parameter values:
a = 1, n = 1.15, m = 0.97, and l = 2.19. For b = 1.7, we get J0 = −a = −1
and Jτ = −b[−0.5n + ml] = −2.634. Thus, we see that |Jτ | ≥ |J0| (satisfying
Eqs. (2.37) and (2.39)). Also, at these parameter values, we have τ01 = 0.805 (from
Eq. (2.38a)). Thus, we expect that at b = 1.7 and τ01 = τH = 0.805, the fixed point
losses its stability through Hopf bifurcation. Further, at these parameter values, we
have g11 = g20 = g02 = 0, g21 = −9.809− 3.632i , E1 = E2 = 0,W20 = W11 = 0,
and c1(0) = −4.904 − 1.816i . Using these set of values in Eq. (2.25), we have
μ2 = 5.864 > 0; that means the resulting bifurcation is a supercritical Hopf bifur-
cation. Also, β2 = −9.809 < 0; thus the bifurcating periodic solutions are orbitally
asymptotically stable. Finally, since T2 = 6.182 > 0, the period of the limit cycle
increases with increasing τ .

2.7 Numerical Studies

The system Eq. (2.34) is integrated numerically using the package XPPAUT [35]
(using the fourth-order Runge–Kutta algorithm with a step size h = 0.005). We use
a constant initial function φ(t) = 1 for t ∈ [−τ, 0].

2.7.1 Varying τ with Constant b

Guided by the analytical results, at first, we vary the time delay τ keeping b constant
at b = 1.7. Also, the other parameters are kept at a = 1, n = 1.15, m = 0.97,
and l = 2.19. We find that for τ ≥ 0.805, the fixed point loses its stability through
Hopf bifurcation, which is in accordance with the analysis of the previous section.
At τ ≈ 2.23, limit cycle of period-1 becomes unstable and a period-2 (P2) cycle
appears. Further, period doubling occurs at τ ≈ 2.91 (P2 to P4) and then at τ ≈ 3.07
(P4 to P8). Through a period-doubling sequence, the system enters into the chaotic
regime at τ = 3.1. With further increase of τ , at τ = 3.60, the system shows the
emergence of hyperchaos.

A phase-plane representation in the representative x(t) − x(t − τ) plane for
different τ is shown in Fig. 2.21, which shows the following characteristics: period-1
(τ = 1.90), period-2 (τ = 2.76), period-4 (τ = 2.93), period-8 (τ = 3.07), chaos
(τ = 3.17), hyperchaos (τ = 4.78), and b = 1.7.

These observations are summarized through a bifurcation diagram (Fig. 2.22)
with τ as the control parameter; clearly, it shows a period-doubling route to chaos.
Figure2.22 (middle panel) shows the spectrum of Lyapunov exponents (LEs) in the
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(a) (b) (c)

(d) (e) (f)

Fig. 2.21 Phase-plane plots in x−x(t−τ) space for different τ : a τ = 1.90 (period-1), b τ = 2.76
(period-2), c τ = 2.93 (period-4), d τ = 3.07 (period-8), e τ = 3.17 (chaos), and f τ = 4.78
(hyperchaos). Other parameters are a = 1, b = 1.7, n = 1.15, m = 0.97, and l = 2.19

Fig. 2.22 Upper row: Bifurcation diagram of x (Left panel) with τ as the control parameter.Middle
panel shows the first nine Lyapunov exponents (λ) with τ . The first two LEs become positive for
τ ≥ 3.60, indicating hyperchaos. Right panel shows the corresponding Kaplan–Yorke dimension
(DKY ), (b = 1.7). Lower row: Bifurcation diagram of x (Left panel) with b as the control parameter.
Middle panel shows the first ten Lyapunov exponents (λ) with b; the first two LEs become positive
for b ≥ 1.9, indicating hyperchaos. Right panel shows the corresponding Kaplan–Yorke dimension
(DKY ), (τ = 3). Other parameters are a = 1, n = 1.15, m = 0.97, and l = 2.19

τ parameter space. The presence of a positive LE along with the observed strange
attractor and bifurcation diagram indicates the occurrence of a chaotic behavior in
the system. Figure2.22 (right panel) shows theKaplan–Yorke dimension (DKY )with
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different τ . The presence of multiple positive LEs and higher values of DKY (> 3)
indicates that hyperchaos occurs for τ ≥ 3.60.

2.7.2 Varying b with Constant τ

Next, we keep the delay fixed at τ = 3 and vary b to explore the system dynamics.
It is observed that with increasing b, for b < 0.834 = bH , the system shows a fixed
point at x = 0. For b ≥ bH = 0.834, the fixed point loses its stability through Hopf
bifurcation, and a stable limit cycle emerges. This is in well agreement with our
analytical results of the previous section. At b = 1.51, the limit cycle of period-1
becomes unstable and a period-2 (P2) cycle appears. Further period doubling occurs
at b = 1.68 (P2 to P4) and at b = 1.73 (P4 to P8). Through period-doubling
bifurcations, the system enters into the chaotic regime at b = 1.73. With further
increase of b, at b = 2.1, the system shows the emergence of hyperchaos. Finally,
the system equation shows diverging behavior beyond b = 2.52, indicating boundary
crises. A phase-plane representation in the representative x(t) − x(t − τ) plane for
different b is shown in Fig. 2.23, which shows the following characteristics: period-1
(b = 1.36), period-2 (b = 1.64), period-4 (b = 1.70), period-8 (b = 1.73), chaos
(b = 1.76), and hyperchaos (b = 2.40).

These observations are summarized through a bifurcation diagram with b as the
control parameter Fig. 2.22 (lower row). The observations are further supported by

(a) (b) (c)

(d) (e) (f)

Fig. 2.23 Phase-plane plots in x−x(t−τ) space for different b: a b = 1.36 (Period-1), b b = 1.64
(Period-2), c b = 1.70 (Period-4), d b = 1.73 (Period-8), e b = 1.76 (chaos), and f b = 2.40
(hyperchaos). Other parameters are a = 1, n = 1.15, m = 0.97, l = 2.19, and τ = 4
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Fig. 2.22 (right panel), which plots DKY with b. It is noteworthy that to obtain hyper-
chaos we do not need to make τ high but a suitable choice of b with a moderate value
of τ is sufficient.

2.8 Experimental Observations

We implement the system described by Eq. (2.34) using analog electronic circuit.
Figure2.24 shows the representative diagram of the experimental circuit. Let V (t)
be the voltage drop across the capacitor C0 of the low-pass filter section R0 − C0;
thus, the following equation represents the time evolution of the circuit

R0C0
dV (t)

dt
= −V (t) − R7

R6
f
(
V (t − TD)

)
, (2.41)

where f
(
V (t − TD)

) = f (Vτ ) is the nonlinear function representing the output of
the nonlinear device (ND) of Fig. 2.24 in terms of the input voltage Vτ . TD is the time
delay produced by the delay block. The different blocks of this figure are illustrated
in detail in Figs. 2.25 and 2.13, respectively. The former shows the “ND” part and

Fig. 2.24 Experimental circuit diagram. R0 = 1 k	,C0 = 100 nF. Buffers are designed with unity
gain noninverting op-amps

Fig. 2.25 Nonlinear device (ND) alongwith the amplifying stage (b). A1–A3 are op-amps (TL074),
D1 is the diode: 1N4148, R1 ≈ 10 k	, R2 ≈ 18.5 k	, R3 ≈ 12.05 k	, R4 ≈ 8.25 k	, and
R5 = R6 ≈ 10 k	
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the latter shows the “Delay” part, respectively. We can write the following form of
the nonlinearity:

f
(
V (t − TD)

) = − R5

R4
0.5

[∣∣V (t − TD)
∣∣ + V (t − TD)

]

+ R5

R3
βVsat tanh

(
ω
R2

R1

V (t − TD)

Vsat

)
.

(2.42)

As before, the variable delay element is realized by the first-order all-pass filter (APF)
(Fig. 2.13, p. 26).

Let us define the following dimensionless variables and parameters: t = t
R0C0

,

τ = TD
R0C0

, x = V (t)
Vsat

, x(t − τ) = V (t−τ)

Vsat
, n1 = R5

R4
, m1 = β R5

R3
, and l1 = ω R2

R1
. Now,

the system Eq. (2.41) can be reduced to the following dimensionless equation:

dx

dt
= −x(t) − b f

(
x(t − τ)

)
, (2.43)

where b = R7
R6

and

f
(
x(t−τ)

) ≡ f (xτ ) = −0.5n1
(|x(t−τ)|+x(t−τ)

)+m1 tanh
(
l1x(t−τ)

)
. (2.44)

It is worth noting that Eq. (2.43) (along with Eq. (2.44)) is equivalent to Eq. (2.34)
(along with Eq. (2.35)) with a = 1, and appropriate choices of n1, m1, and l1.

For the low-pass section, we choose R0 ≈ 1 k	 and C0 ≈ 100 nF. For the
nonlinear device (ND), we use a 1N4148 diode; the following resistor values are
used: R1 ≈ 10 k	, R2 ≈ 18.5 k	, R3 ≈ 12.05 k	, R4 ≈ 8.25 k	, and R5 ≈ 10
k	. Figure2.26 shows the experimentally obtained nonlinearity produced by the
nonlinear device (ND). Qualitatively, it is equivalent to the nonlinear function (n1)
of Fig. 2.18. The gain of the noninverting amplifier (A3) that follows the ND part
is designed with R6 ≈ 10 k	 and variable R7; R7 is varied with a potentiometer to

Fig. 2.26 Experimentally
obtained nonlinearity
produced by the ND part of
Fig. 2.25
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Fig. 2.27 The oscilloscope trace of experimentally obtained phase-plane plots in the V (t)−V (t −
TD) space for variable τ : a period-1 at TD = 0.15 ms, b period-2 at TD = 0.24 ms, c period-4
at TD = 0.3 ms, d chaos at TD = 0.33 ms, e hyperchaos at TD = 0.39 ms, and f hyperchaos at
TD = 0.44 ms (for other parameters, see text). V (x-axis): 0.5 v/div; V (t − TD) (y-axis): 0.5 v/div

change the parameter b. For the delay section, the all-pass filter (APF) is designed
with the following parameters: R ≈ 10 k	, C ≈ 10 nF, and R8 = R9 ≈ 2.2 k	. At
first, we fix the value of b with R7 ≈ 17 k	 (i.e., b ≈ 1.7). Now, we vary the delay
by varying R. At first, to get a small delay, we use only one APF stage. For R < 9
k	, the circuit shows a fixed dc value (equilibrium point of the circuit). For R ≥ 9
k	 (i.e., TD = 0.09 ms) (approx.), a stable limit cycle appears with a frequency
2380 Hz. Next, we use three blocks of APF; R ≈ 10 k	 is taken for the first two
blocks (contributing 0.2 ms delay) and vary R of the third block. At R ≈ 3 k	
(i.e., TD = 0.23 ms) (approx.), the limit cycle of period-1 loses its stability and a
period-2 oscillation emerges. A period-4 behavior is observed at R ≈ 9.5 k	 (i.e.,
TD = 0.295 ms) (approx.). Next, we use four blocks: three blocks have R ≈ 10 k	
(contributing a delay of 0.3 ms) and the fourth has R ≈ 1.5 k	 (i.e., TD = 0.315
ms), which results in a chaotic oscillation in the circuit. The hyperchaotic attractor is
observed beyond R ≈ 7 k	 (i.e., TD = 0.37ms). All the above-mentioned behaviors
are shown in Fig. 2.27 (in V − V (t − TD) space), which depicts the experimental
phase-plane plots recorded in an analog oscilloscope.

Next, we set the time delay at TD = 0.3 ms (i.e., τ = 3) by using three APF
blocks each having R ≈ 10 k	. To observe the behavior of the system for different
b, we vary R7. For R7 ≈ 9 k	, the circuit shows a stable limit cycle of frequency
1000 Hz. At R7 ≈ 16.1 k	, the limit cycle of period-1 loses its stability and a
period-2 oscillation emerges. A period-4 behavior is observed at R7 ≈ 16.71 k	.
Chaotic oscillation appears at R7 ≈ 16.75 k	. Apparently, the circuit enters into
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Fig. 2.28 The oscilloscope trace of experimentally obtained phase-plane plots in the V (t)−V (t −
TD) space for variable b: a period-1 at R7 ≈ 12 k	, b period-2 at R7 ≈ 16.4 k	, c period-4 at
R7 ≈ 16.72 k	, d chaos at R7 ≈ 16.9 k	, e hyperchaos at R7 ≈ 22.5 k	, and f hyperchaos at
R7 ≈ 23.3 k	 (for other parameters see text). a–e V (x-axis): 0.5 v/div; V (t − TD) (y-axis): 0.5
v/div. f V (x-axis): 1 v/div; V (t − TD) (y-axis): 1 v/div

the hyperchaotic region for R7 > 22 k	. With further increase of R7, the circuit
shows a large limit cycle at R7 � 23.5 k	 that indicates the occurrence of boundary
crises. All the above-mentioned behaviors (except the large limit cycle) are shown
in Fig. 2.28 (in V − V (t − TD) space), depicting the real-time oscilloscope traces.

2.9 Summary

In this chapter, we have discussed the theory and experiment of two simple first-order
time-delayed chaotic systems having single constant delay and two different generic
forms of nonlinearities, namely a bimodal and a unimodal nonlinearity. Stability
analysis followed by bifurcation analysis established that the systems show a stable
limit cycle through a supercritical Hopf bifurcation. Detailed numerical simulation
proved that with the variation of time delay the systems show a period-doubling route
to chaos, hyperchaos, and single scroll or double scroll. Also, if we vary other system
parameters keeping the delay constant, the systems show chaotic and hyperchaotic
behaviors. The proposed systems have been implemented in analog electronic cir-
cuit using off-the-shelf electronic circuit elements. Since a proper choice of system
parameters makes the systems hyperchaotic even for a moderate value of time delay,
therefore, they can be used as potential hyperchaotic generator for electronic com-
munication applications and chaos-based noise generator systems [5].



Chapter 3
Chaotic Time-Delayed System with Hard
Nonlinearity: Design and Characterization

In Chap.2, we have discussed two chaotic time-delayed systems. However, in those
circuits (and other time-delayed chaotic circuits in the literature), the time delay
required to obtain limit cycle and chaotic attractor is moderate or large, which affects
the frequency and bandwidth of the oscillation obtained from the circuit (large delay
implies lower frequency). In this chapter, we discuss a simple nonlinear time-delayed
dynamical system having a mathematically closed-form nonlinear function and sub-
sequently, the proposed system is capable of showing limit cycle, chaos, and hyper-
chaos even for lower values of intrinsic time delays.

As far as the nonlinear delay dynamical systems are concerned, the computer-
generated numerical analysis alone is not fully reliable, owing to the fact that the
simulated model may only describe the system under some trivial initial conditions.
Its final state may depend on the choice of history function used, the step size of
integration, and other factors. Also, due to finite precession and successive approx-
imations, the numerical methods may always contain round-off errors leading to a
result far from reality. Since time delay nonlinear systems often show multistability,
thus it is advisable to study them using the time series data generated from a real
experiment. For these reasons, the experimental verification of the system model is
of utmost importance. The dynamical behavior of the system may be obtained best
by realizing the electronic analog of it and investigating the time series it produces
[138]. Another way to understand the behavior of a nonlinear time-delayed system is
to study the harmonic decompositions of the experimental time series of the captured
signal through fast Fourier transform (FFT), which provides power spectrum along
with subharmonics and ultraharmonics, enabling one to characterize the nonlinear
model [107]. In characterizing a nonlinear system, one important measure is the
experimental bifurcation diagram, obtained directly from the experiment. This dia-
gram enables one to understand the complete dynamical behavior of the circuit with
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the variation of a control parameter. In this chapter, we describe an automated tech-
nique of acquiring experimental data, which is controlled through a data acquisition
system (DAQ) under LabVIEW [69] environment. Here, we acquire the real-time
data through the DAQ system and study the time series waveform, spectral behavior
(FFT), phase-plane plots, and the bifurcation diagram.

3.1 System Description

We consider the following first-order nonlinear time-delayed dynamical system:

ẋ = −ax(t) − b f (xτ ), (3.1)

where a and b are positive parameters. xτ ≡ x(t − τ), τ ∈ R+, is the intrinsic time
delay involved in the system. Let us consider the following nonlinear function [20]:

f (xτ ) = −n sign(xτ ) + m tanh(lxτ ), (3.2)

where n, m, and l are the parameters controlling the shape of the nonlinear function.
The signum (sign(·)) function is given by

sign(xτ ) =
⎧
⎨

⎩

1, if xτ > 0
0, if xτ = 0

−1, otherwise
(3.3)

In the present case,we consider a particular choice of the nonlinearity that contains
a weighted linear combination of tanh(·) and sign(·) functions. The motivations of
considering Eq. (3.2) that contains tanh(·) and sign(·) function are twofold: first,
most of the natural systems show saturation-type nonlinearity.With the variation of a
control parameter, saturation may be approached gradually obeying tanh(·) function,
as in the case of magnetization in a para and ferromagnetic system [92], nonideal
op-amp [115], activation function in neural network [85], etc. The second type of
saturation is a hard saturation described by a signum function sign(·), e.g., binary
systems, ideal op-amp characteristics, etc. Thus, it would be of fundamental interest
to study their interplay and how they affect the dynamics of a time-delayed system.
Second, in experimental realization of the system with analog electronic circuit, it is
easy to implement both these nonlinearities and to control them (Fig. 3.1). Further,
usage of tanh(·) function makes the system suitable for implementation in IC design;
in IC design, the first stage, which is a differential amplifier, obeys an input–output
relation of tanh(·) nonlinearity [115].
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Fig. 3.1 Nonlinearity of the
function f (xτ ) = −n sign
(xτ ) + m tanh(lxτ ). (n1)
n = 0.5, m = 1, l = 7; (n2)
n = 0.3, m = 1, l = 10; (n3)
n = 0.7, m = 1, and l = 5

3.2 Stability Analysis

We consider the system Eq. (3.1) in the following form:

g(x, xτ ) ≡ ẋ = −ax(t) − b f (xτ ). (3.4)

The equilibrium condition for the system implies, ẋ = 0 and x(t) = xτ = x∗, i.e.,
ax∗ = −b f (x∗). This is a transcendental equation and graphical method has to be
used in order to find fixed points. By inspection, one notices that there exists three
equilibrium points, namely, x∗ = 0, x∗ = p1, and x∗ = p2. The point x∗ = 0
is a trivial fixed point and p1,2 are nontrivial fixed points. By the symmetry of the
equation, we get |p1| = |p2|. The trajectory of the equilibrium points with the
variation of the parameter b is shown in Fig. 3.2 (Left panel). The points p1 and p2
aremarked in thefigure givenby |p1| = |p2| = 0.046 forb = 0.245,n = 0.5,m = 1,
and l = 7. The following analysis enables us to find the value of τ for which Hopf
bifurcation occurs.1 We define J0 = ∂g(x,xτ )

∂x = −a and Jτ

∣
∣
xτ =x∗ = −bml sech2(lx∗).

Now the characteristic equation is given by J0 + Jτ e−λτ − λ = 0, which reads

λ = −a − bml sech2(lx∗)e−λτ . (3.5)

The roots of Eq. (3.5) are written as λ = μ + iν and we will show that the system is
asymptotically stable for some conditions with τ ∈ [0, τk).

1It is important to note that, unlike ordinary differential equations (ODE), the condition of existence
and uniqueness of limit cycle in delay differential equations is not necessarily determined by the
Lipschitz condition, but it has been discussed in the literature [38, 130] that there exist limit cycles
in a time-delayed system even if the system is discontinuous. In Ref. [130], it has been shown that
the existence of solutions of functional differential equation with discontinuous nonlinearity exists.
Reference [38] proved that the nonlinearity in delay differential equations need not be continuous
or monotone to have existence of limit cycle.
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Fig. 3.2 Stability diagram in
b − τ space. The shaded
region indicates the stable
zone. Other parameters are
n = 0.5, m = 1, and l = 7

Stability for τ = 0

For τ = 0, we analyze the stability of the system following the steps done in
Sect. 2.2.1 (p. 12). The condition of stability reads the following condition:

a > −bml sech2(lx∗). (3.6)

Stability for τ �= 0

In the presence of time delay (i.e., τ �= 0), the system looses its stability and oscil-
latory behavior starts through the occurrence of Hopf bifurcation. The stability con-
dition may be obtained by the method followed in Sect. 2.2.1. We get the equations
of delay as

τk1 =

[

cos−1(− J0
Jτ

) + 2kπ

]

√
Jτ

2 − J02
, for Jτ < 0, (3.7)

and

τk2 =

[(
2π − cos−1(− J0

Jτ
)
)

+ 2kπ

]

√
Jτ

2 − J0
2

, for Jτ > 0, (3.8)

where k = 0, 1, 2, . . . The condition of stability of the system reads in the following
form:

|bmlsech2(lx∗)| > |a|. (3.9)

Also, we get the derivative of the real part of the eigenvalue as

μ′(τk) = ν0
2

(1 + τka)2 + τ 2
k ν2

0

> 0. (3.10)
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For all values of above-mentioned x∗, Eq. (3.10) is valid. So we conclude that the
stable state lies between τ = 0 and τ01.

Next, we investigate the stability for the following set of parameter values: a = 1,
n = 0.5, m = 1, and l = 7, the resulting nonlinearity for this case is shown in curve
“n1” of Fig. 3.1. The stability in the τ − b space is shown in Fig. 3.2. The shaded
region represents the stable steady states.

3.2.1 Stability and Direction of Hopf Bifurcation

From the previous subsection, we see that the Hopf bifurcation occurs at τ = τ01. We
know that, under the hypothesis −b f ′(x∗) < a, all the characteristic values, except
±iν0, have negative real parts, when τ = τ01. In this section, we study the direction
of Hopf bifurcation and the stability of the bifurcating solutions, when τ = τ01, using
the techniques described in [144] and done in Sect. 2.2.1 (p. 12). We refer to Eq.2.25
(p. 12) for different quantities that confirm the following bifurcation conditions. It
has been shown in [144] that μ2 determines the direction of the Hopf bifurcation:
if μ2 > 0 (μ2 < 0), then the Hopf bifurcation is supercritical (subcritical) and the
bifurcating periodic solutions exist for τ > τ01 (τ < τ01). Further, the bifurcating
periodic solutions are orbitally asymptotically stable (unstable) if β2 < 0 (β2 > 0).
Finally, T2 determines the period of bifurcating periodic solutions: the period
increases (decreases) if T2 > 0 (T2 < 0).

To test the validity of our analysis, let us use the following parameter values:
a = 1, n = 0.5, m = 1, and l = 7. For b = 0.5, we have p1 = 0.0578, which
results in J0 = −a = −1 and Jτ = −bml sech2(±lp1) = −2.984. Thus, we see that
|Jτ | ≥ |J0| (satisfying the condition of stability). Also, at these parameter values, we
have τ01 = 0.68 (from Eq. (3.7), p.44). Thus, at b = 0.5 and τ01 = τH = 0.68, the
fixed point losses its stability through Hopf bifurcation. Further, at these parameter
values, we have g11 = 2.828−3.219i , g20 = −0.16+4.282i , g02 = −4.226+0.71i ,
g21 = −26.331 − 4.045i , E1 = 1.59 + 1.378i , E2 = 4.025, W20 = 0.338 − 1.05i ,
W11 = 5.435 − 1.998i , and c1 = −16.467 − 6.538i . Using these set of values
in Eq. (2.25), we have μ2 = 13.499 > 0; that means the resulting bifurcation is
a supercritical Hopf bifurcation. Also, β2 = −32.934 < 0; thus, the bifurcating
periodic solutions are orbitally asymptotically stable. Finally, since T2 = 17.026 >

0, the period of the limit cycle increases with increasing τ .

3.3 Numerical Studies

The system Eq. (3.1) is numerically investigated using the fourth-order Runge–Kutta
algorithm using a step size h = 0.005. A large number of initial transients have been
left out in the investigation to represent the stable dynamics in the numerical results.
The initial condition is kept φ(t) = 0.8 for t ∈ [−τ, 0] throughout the investigation
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(we have chosen other initial conditions also but the steady-state results remain same
for all the cases). In all the cases, we consider the following parameter values: a = 1,
n = 0.5, m = 1, and l = 7.

3.3.1 Varying b with Constant τ

We consider the variation of parameter b, keeping the intrinsic delay to a suitable
constant value τ = 2. The variation of b showed a rich dynamics in the system.
Figure3.3 shows the outcomes of this investigation. The left column in this figure
shows the time series (x(t), x(t−τ)− t) and the right column shows the phase-plane
(x(t)− x(t − τ)) plots. The fixed point loses its stability for b = 0.245 and period-1

Fig. 3.3 The time series (Left column) and phase-plane plots (Right column) in x(t) − x(t − τ)

space for variable b and constant τ . (a1-a2) Period-1 (P1) for b = 0.245, (b1-b2) chaos for b = 0.25,
and (c1-c2) double-scroll hyperchaos for b = 0.4. Other parameters are a = 1, n = 0.5, m = 1,
l = 7, and τ = 2



3.3 Numerical Studies 47

Fig. 3.4 (Left panel) The bifurcation diagram of the system with variable b and constant τ = 2.
(Right panel) First six Lyapunov exponent (LE) spectrums. The inner panel shows the zoomed
portion where the LEs cross zero. Other parameters are a = 1, n = 0.5, m = 1, and l = 7

(P1) limit cycle emerges. The situation is shown in Fig. 3.3(a1–a2). Further, increase
in b makes the system chaotic. The single-scroll chaotic attractor for b = 0.25 is
shown in Fig. 3.3(b1–b2). The system eventually enters the hyperchaotic regime for
b ≥ 0.25. Finally, the system depicts two scroll hyperchaos for b ≥ 0.287. The
situation for b = 0.4 is shown in Fig. 3.3(c1-c2). The corresponding bifurcation
diagram in b space is shown in Fig. 3.4 (Left panel). The bifurcation diagram is
plotted using the local maxima of x , after discarding a large number of transients.
All the observed phenomena have been summarized in the bifurcation diagram. The
occurrence of Hopf bifurcation at b = 0.245 is confirmed in this figure.

For the quantitative measurement of the system dynamics, we calculate the Lya-
punov exponent (LE) spectrum. The process for calculating the LEs is adopted from
the algorithm of Ref. [37]. Figure3.4 (Right panel) shows the first six LEs for the
system, which agrees with the bifurcation diagram. The multiple positive LEs along
with the occurrence of a strange attractor confirms the presence of hyperchaos in
the system [72].

3.3.2 Varying τ with Constant b

The effect of variation of τ with fixed b is considered by fixing b = 0.5 and varying
the intrinsic delay τ in the system. The outcomes of this investigation are shown in
Fig. 3.5. The left column in this figure shows the time series and the right column
shows the phase-plane plots. The system undergoes a supercritical Hopf bifurcation
at τ = 0.68 and the stability of the fixed point is lost resulting a limit cycle oscillation.
The P1 limit cycle for τ = 0.69 is shown in Fig. 3.5(a1). The corresponding phase-
plane plot in x(t)−x(t−τ) is shown in Fig. 3.5(a2). The system eventually enters the
chaotic regime for τ ≥ 0.72. In Fig. 3.5(b1, b2), we show the real-time and phase-
plane plots for τ = 0.8, respectively. The system shows double-scroll hyperchaotic
oscillations for τ ≥ 0.82. The scenario for τ = 2 is shown in Fig. 3.5(c1, c2).
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Fig. 3.5 Time series (Left column) and phase-plane plots (Right column) for variable τ and fixed b.
(a1, a2) P1 oscillation for τ = 0.69, (b1, b2) single-scroll chaos for τ = 0.8, (c1, c2) double-scroll
hyperchaos for τ = 2. Other parameters are a = 1, n = 0.5, m = 1, l = 7, and b = 0.5

Fig. 3.6 (Left panel) Bifurcation diagram for varying τ and constant b, (Right panel) Lyapunov
exponent spectrum. Other parameters are a = 1, n = 0.5, m = 1, l = 7, and b = 0.5
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The dynamics of the system is summarized in the bifurcation diagram of Fig. 3.6
(Left panel). The Lyapunov exponent spectrum is shown in Fig. 3.6 (right panel).
The bifurcation diagram and LE spectrum support the scenario observed above.

3.4 Electronic Circuit Realization

We experimentally implement the system Eq. (3.1) in an electronic circuit. The
experimental circuit diagram is shown in Fig. 3.7. The circuit is built using IC TL074
(quad JFET op-amp), IC AD633 (voltage multiplier chip), and a ±15 volt power
supply. All the resistors (capacitors) used have 5% (1%) tolerance. The LPF section
consists of R0 ≈ 1 kΩ and C0 ≈ 0.1 μF. The ND part consists of the following
parameter values: R1 ≈ 22 kΩ , R2 ≈ 3.75 kΩ , R3 ≈ 10 kΩ , R4 ≈ 97.3 kΩ ,
and R5 ≈ 10 kΩ . Let us consider the voltage drop across the capacitor C0 of the
first-order low-pass filter section R0 −C0 be V (t), then the equation of the circuit is
given by

R0C0
dV (t)

dt
= −V (t) − R7

R6
f
(
V (t − TD)

)
. (3.11)

In Fig. 3.7, the ND part represents the proposed nonlinearity, achieved by the op-
amps A1–A3. The inverting amplifier section obtained by op-amp A4 provides the
required gain in the system. The delay part is obtained through an active all-pass
filter (AFP) blocks. We use buffers wherever they are needed.

Here, f
(
V (t −TD)

) ≡ f (Vτ ) is the nonlinear function of system. TD is the delay
offered by the delay blocks. The nonlinearity is the result of the two terms, namely,
(i) the signum function (sign(·)) is obtained by an op-amp (A2) without any feedback
and (ii) the tanh(·) function obtained by the op-amp (A1) as

Fig. 3.7 Experimental electronic circuit diagram. ND is the nonlinear device and DELAY is the
delay block produced using the active All-Pass filters
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Fig. 3.8 Experimental arrangement showing the interface between the hardware circuit and desktop
computer through NI DAQ (USB-6351) and LabVIEW

Fig. 3.9 (Left panel) The block diagram and (Right panel) front panel of the NI LabVIEW DAQ.
In the figure, we show real-time plot, FFT, phase-plane plot. The circuit is controlled from computer
through NI DAQ and LabVIEW through the variation of b. The signal sampling rate is 100000 dps

−βVsat tanh

(

ω
R2

R1

V (t − TD)

Vsat

)

,

where β and ω are the scaling factors to fit the model with the experimental data.
For smaller voltages, one can approximate β ≈ 1 and ω ≈ 1, (iii) the opamap (A3)
acts as a weighted adder to produce the required nonlinearity of the system.

Hence, the nonlinearity of the system is represented as

f
(
V (t − TD)

) = − R5

R4
sign

(
V (t − TD)

Vsat

)

+ R5

R3
βVsat tanh

(

ω
R2

R1

V (t − TD)

Vsat

)

.

(3.12)

We design the proposed circuit in the hardware in a breadboard and control it with
aNI data acquisition (DAQ) system using the LabVIEW interface. The representative
experimental setup is shown in Fig. 3.8. The block diagram and front panel of the
LabVIEW NI DAQ interface for a set of exemplary circuit parameters is shown in
Fig. 3.9. The block diagram is a set of some instructions in the form of graphical
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Fig. 3.10 Experimental electronic circuit diagram modified for controlling b from computer using
NI DAQ with LabVIEW interface (For resistor and capacitor values, see text)

program elements, and the front panel shows the outcomes of the block diagram.
The variable delay part consists of all-pass filter (APF) [115] with delay TD = i RC
(i = 1, 2, 3, . . . ).

To control the system through a computer interface, we introduce some modifi-
cations in the circuit. Figure3.7 is modified such that we can control the parameter b
[i.e., the gain of A4] by using DAQ system. We use Natinal Instrument (NI) DAQNI
USB–6351 (8 input, 2 output, maximum sampling rate 1.25 MS/s). For this purpose,
we build the circuit as shown in Fig. 3.10; here, the gain (i.e., A4 amplifier of Fig. 3.7)
is replaced by a voltage multiplier chip AD633JN in Fig. 3.10. The output of this
chip is given by

X7 = (X1 − X2)(X3 − X4)

10
+ X6,

where Xi ’s are the voltages at the different terminals of the chip, with i = 1, 2, . . . , 8.
By the inclusion of this chip, one can control the parameter b by simply varying the
voltage level in the output port of the NI DAQ through computer interface. To make
Eq. (3.11) a dimensionless one, we define the following dimensionless quantities:
t = t

R0C0
, τ = TD

R0C0
, x = V (t)

Vsat
, x(t − τ) = V (t−TD)

Vsat
, b = R7

R6
, R5

R4
= n1, β

R5
R3

= m1,

and ω R2
R1

= l1. With these, Eq. (3.11) reads the form

dx(t)

dt
= −x(t) − b f

(
x(t − τ)

)
, (3.13)

with

f
(
x(t − τ)

) ≡ f (xτ ) = −n1sign
(
x(t − τ)

) + m1 tanh
(
l1x(t − τ)

)
. (3.14)
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Equations (3.13) and (3.14) are exactly equivalent to Eqs. (3.1) and (3.2), respec-
tively, with a = 1 and appropriate choices of n1, m1, and l1.

3.5 Experimental Results

We design the proposed circuit in the hardware in a breadboard and control it with
a NI Data Acquisition (DAQ) system using the LabVIEW interface. The parameter
b is controlled by the NI DAQ system through a desktop computer. It is fed to the
multiplier chip in the circuit. The experimental nonlinearity produced by the ND
part of Fig. 3.10 is shown in Fig. 3.11. One can observe the well analogy with that
obtained numerically (Fig. 3.1). The delay portion has R6i = R7i ≈ 2.2 kΩ ,C ≈ 10
nF, and R ≈ 10 kΩ . Thus, each AFP part contributes a delay of TD ≈ RC = 0.1
ms, which, when dimensionalized, gives τ ≈ RC

R0C0
= 1. The effect of variable τ may

be obtained by the variation of R in the APF blocks.

Variable b, Fixed τ

In this part, we vary the parameter b through the NI DAQ via LabVIEW by keep-
ing the intrinsic delay term fixed to τ ≈ 2 by selecting two stages of APFs
with R = 10 kΩ . The variation of b produced the rich dynamics that is shown
in Fig. 3.12. The system loses its stability at b = 0.21 through Hopf bifurca-
tion and period-1 (P1) limit cycle emerges. The situation for b = 0.23 is shown
in Fig. 3.12(a1-a3). Figure3.12(a1) shows the time series plots, and Fig. 3.12(a2)
shows the Fast Fourier Transform (FFT) of the time series. The presence of a
single peak around f = 1150 Hz confirms a period-1 limit cycle oscillation in
the system. Figure3.12(a3) shows the phase-plane plots in x(t) − x(t − τ) space.
Figure3.12(b1-b3) shows the single-scroll chaos in the system for b = 0.26. The con-
tinuous nature of the FFT is confirmatory for the chaotic oscillation. The phase-plane

Fig. 3.11 The experimental nonlinearity produced by theNDpart of Fig. 3.10. For other parameters,
see text. Scale: x-axis=50 mV/div, y-axis=0.2 V/div
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Fig. 3.12 Experimental time series (a1, b1, c1), fast Fourier transform (FFT), (a2, b2, c2) and
phase-plane plots (a3, b3, c3) for variable b and constant τ = 2. (a1-a3) limit cycle oscillation for
b = 0.23, (b1-b3) single-scroll chaos for b = 0.26, and (c1-c3) double-scroll attractor for b = 0.4
(For other parameters, see text)

plots in Fig. 3.12(b3) again confirm the presence of chaos for this parameter value.
Finally, the system emerges double-scroll hyperchaotic oscillations for b ≥ 0.28.
The double-scroll hyperchaos for b = 0.4 is shown in Fig. 3.12(c1-c3). The time
series in Fig. 3.12(c1) shows hyperchaotic nature. The FFT (Fig. 3.12(c2)) confirms
this owing to its continuous nature. The phase-plane plot in Fig. 3.12(c3) confirms
the much complex double-scroll hyperchaos in the system.

To confirm the aforesaid observations, we draw the experimental bifurcation dia-
grams by detecting the local maxima in V (t). For this purpose, we write a program in
LabVIEWwhich automatically varies b in an preassigned step size, detects the local
maxima of V (t), stores the values in two-dimensional array, and plots the experi-
mental bifurcation diagram. The graphical program for the bifurcation diagram is
shown in Fig. 3.13. Much care is taken in leaving the transients in the system. The
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Fig. 3.13 The front panel of the graphical program for the bifurcation diagram to automatically
increase the variable b and store data in a computer and plot them

Fig. 3.14 The experimental bifurcation diagram with variable b. For other parameters, see text

experimental bifurcation diagram is shown in Fig. 3.14. The plot closely resembles
the numerically obtained bifurcation diagram of Fig. 3.4 (p. 47).

Variable τ , Fixed b

Next, we vary the intrinsic time delay τ by fixing the parameter b. For this purpose,
we fix b at b = 0.5 and keep all other resistor and capacitor values the same as the
previous ones. The system looses its stability for τ ≈ 0.7. The situation for τ ≈ 0.75
is shown in Fig. 3.15(a1-a3). This particular value of τ is obtained by using only one
APF stage with R ≈ 7.5 kΩ . Figure3.15(a1) shows the real-time plots, (a2) shows
the FFT of the time series, and (a3) shows the phase plane plot obtained by NI DAQ.
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Fig. 3.15 Experimental time series (a1, b1, c1), fast Fourier transform (FFT) (a2, b2, c2), and
phase-plane plots (a3, b3, c3) for variable τ with constant b = 0.5. (a1-a3) limit cycle oscillation
for τ ≈ 0.75, (b1-b3) Single-scroll chaos for τ ≈ 0.85, and (c1-c3) Double-scroll for τ ≈ 2 (For
other parameters, see text)

The system enters the chaotic regime for τ ≈ 0.78. The situation for τ ≈ 0.85
is shown in Fig. 3.15(b1-b3). Further increase in τ causes the system to enter the
regime of double-scroll hyperchaos at τ ≈ 0.93. The scenario for τ ≈ 2 is shown
in Fig. 3.15(c1-c3). The continuous nature of the FFT along with the time series and
phase-plane plots confirm the double-scroll hyperchaos in the system. Finally, we
also show the double-scroll attractor for b = 0.4, τ = 2, and b = 0.5, τ ≈ 1.6 in
Fig. 3.16, which are obtained by snapshots from an analog CRO.
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Fig. 3.16 Snapshots of double-scroll attractors obtained from an analog CRO. (Left panel) b = 0.4,
τ = 2; and (Right panel) b = 0.5, τ ≈ 1.6. Scale div. x-axis=0.2 V/div, y-axis=0.2 V/div

3.6 Discussions

In this chapter,wehave reported thefirst-order time-delayed chaotic andhyperchaotic
system and characterized its dynamics with experimentally acquired time series data.
The stability and bifurcation of the system are analyzed to show that the system
emerges limit cycle for very low value of time delay. The bifurcation analysis shows
that the system experiences supercriticalHopf bifurcation to give rise to a limit cycle
oscillation beyond a certain time delay. The system is numerically simulated to study
the chaotic and hyperchaotic attractors. The bifurcation diagrams under different
parameter variations are drawn. The system is realized in electronic circuit in the
hardware-level experiment. The signals from the experimental circuit is interfaced
with a NI Data Acquisition system (DAQ) and processed in LabVIEW environment.
The LabVIEW is programmed to acquire the time series waveform, the fast Fourier
transform (FFT), the phase-plane plots, and the experimental bifurcation diagrams
from the experimental time series data.

The following interesting features of the discussed system and the circuit are to
be noticed, which may play important role from the perspective of practical appli-
cations: (i) With the suitable choice of the parameters, the system shows chaotic or
hyperchaotic behavior for a very small value of time delay. Thus, the system can
be used as an efficient chaos or hyperchaos generator for electronic communication
applications, chaos-based noise generator systems, and chaotic cryptography. (ii)
Since the system is capable of producing limit cycle for a small value of time delay,
it may be a good candidate to generate high-frequency oscillations.



Chapter 4
Collective Behavior-I: Synchronization
in Hyperchaotic Time-Delayed Oscillators
Coupled Through a Common Environment

Collective behaviors of coupled dynamical systems are of significant interest in
the field of physical and biological sciences, and engineering [96]. The prominent
collective behaviors that occur in periodic and chaotic systems are synchronization
and phase locking [96], oscillation suppression [10, 15, 16, 47, 63, 112], chimera
states [9, 91, 113], etc. We have already discussed in Chap. 1 that synchronization
of chaos in time-delayed chaotic system was reported much later by Pyragas [100]
(1998) than its discovery in low-dimensional chaotic systems [93] (in 1990). In all
the research works discussed in Chap.1 (Sect. 1.2, p. 5), the coupling schemes were
essentially the direct coupling, i.e., either unidirectional coupling or bidirectional
coupling, where either of the two coupled systems or both the systems directly affect
the dynamics of each other.

In this chapter, we discuss the synchronization scenarios of two hyperchaotic
time-delayed oscillators that are coupled indirectly via a common environment. This
coupling scheme was originally proposed by Resmi et al. [106] in low-dimensional
systems.Later, Banerjee andBiswas [11] extended the study to time-delayed systems.
Here, we show that depending upon the coupling parameters a hyperchaotic time-
delayed system can show in-phase or complete synchronization, and also inverse-
phase or anti-synchronization. We confirm the occurrence of phase synchronization
in the coupled system through the dynamical measures like generalized autocorre-
lation function, correlation of probability of recurrence [81, 108], and the concept
of localized sets [95] computed directly from the experimental time series data. We
also perform a linear stability analysis of the coupled system for the complete and
anti-synchronized cases.
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4.1 Environmentally Coupled Time-Delayed System

Let us consider two first-order identical time-delayed systems coupled indirectly
through a common environment z. The mathematical model of the coupled system,
in general, is given by

ẋ = −ax + b1f (xτ ) + ε1β1z, (4.1a)

ẏ = −ay + b2f (yτ ) + ε1β2z, (4.1b)

ż = −κz − ε2

2
(β1x + β2y), (4.1c)

where a > 0, b1 and b2 are called the feedback rates for the x-system and y-system,
respectively. Also, u ≡ u(t) and uτ ≡ u(t − τ) (u = x, y), where τ ∈ R+ is a
constant time delay. ε1 determines the coupling strength that controls the effect of
environment on the systems. ε2 determines the coupling strength that controls the
effect of individual systems on the environment. β1 and β2 determine the nature of
coupling: for β1 = 1, β2 = −1, the systems are attractively coupled; on the other
hand, repulsive coupling is achieved for β1 = 1 and β2 = 1. Finally, κ (> 0)
determines the nature of the environment; in absence of both the x- and y-systems
(i.e., ε2 = 0), the environment decays toward the zero steady state and remains in
that dormant state. In the following, for Eq. (4.1), we consider the bimodal nonlinear
function discussed in Eq.2.2 (Chap. 2, p. 11) indirect coupling via1),

f (uτ ) = −nuτ + m tanh(luτ ). (4.2)

4.2 Experiment

4.2.1 Electronic Circuit Realization

We implement the coupled system given by Eq. (4.1) in an analog electronic circuit.
Figure4.1 shows the representative diagram of the experimental circuit. The circuit
consists of three distinct parts, namely, the x-system, the y-system, and the z-system
or the environment. The circuit of nonlinear device (ND) of each systems is given
in Fig. 4.2; delay block is realized by using active all-pass filters (APF) shown in
Fig. 2.13 (p. 26). To achieve the indirect coupling via environment, we feed the
outputs from theR0−C0 junctions of the x- and y-systems to the inverting terminal of
the op-ampA5,which acts as an integrator, through buffers (for impedancematching)
and resistors R11x and R11y, which determine the parameter ε2. The voltage from the
R0 − C0 terminal of the y-system can be inverted for the in-phase coupling (i.e.,
β1 = 1, β2 = −1) by the use of an unity gain inverter and connecting the points
“D” and “E”, where for inverse-phase coupling (β1 = 1, β2 = 1), terminals “D”
and “F” will be connected. The output of the integrator A5 is fed into the inverting
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Fig. 4.1 Experimental circuit diagram of the coupled system. R0 = 1 k�, C0 = 0.1 µF, CI = 0.1
µF. Buffers are designed with the unity gain non-inverting operational amplifiers. bx,y are amplifiers
andND represents nonlinear device (see Fig. 4.2). A4x,y op-amps are used as inverting adder andA5
op-amp is used as inverting integrator. All the op-amps are TL074. Rk = 1 k�, R8x,y = R9x,y = 1
k�. In experiment, the following condition is always held: R10x = R10y and R11x = R11y

terminal of it through a buffer and a resistance Rk; Rk will determine the damping
parameter κ . Further, the output of the integrator is passed through an unity gain
inverter and a buffer, and it is distributed in two ways: (i) it is directly added to
the x-system by the use of an inverting adder (A4x) through R10x that determines
the coupling strength ε1, and (ii) it is passed through an inverter (connecting “A”
and “B”, for β1 = 1, β2 = −1) or directly connected (connecting “A” and “C”, for
β1 = 1, β2 = 1) to inverting adder A4y through resistor R10y that also determines
ε1; thus we always kept R10x = R10y and R11x = R11y.

Let V1(t) and V2(t) be the voltage drop across the capacitor C0 of the low-pass
filter section of the x-system and y-system, respectively. Also, let the output of
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Fig. 4.2 Nonlinear device (ND) along with the gain block (bi). A1i-A3i (i = x, y) are op-amps
(TL 074), R1 = 1.26 k�, R2 = 19.29 k�, R3 = 52.81 k�, R4 = 6.73 k�, R5 = 10 k�, R6 = 1
k�. Inset shows the experimental oscilloscope trace of the nonlinearity produced by the ND

the integrator A5 be V3(t), which represents the environment. Thus, the following
equations represent the time evolution of the circuit:

R0C0
dV1(t)

dt
= −V1(t) + R9x

R8x
b1f (V1TD

) + R9x

R10x
β1V3(t), (4.3a)

R0C0
dV2(t)

dt
= −V2(t) + R9y

R8y
b2f (V2TD

) + R9y

R10y
β2V3(t), (4.3b)

CI
dV3(t)

dt
= − 1

Rk
V3(t) − 1

R11x
β1V1(t) − 1

R11y
β2V2(t). (4.3c)

Here, b1, b2 = R7i
R6i

is the gain of the amplifier A3i (i = x, y) (Fig. 4.2), β1 = 1, and

β2 = ∓1, depending upon connection topology. f (VjTD
) ≡ f

(
Vj(t − TD)

) ≡ f (Vjτ ),
(j = 1, 2), is the nonlinear function representing the output of the nonlinear device
(ND) of Fig. 4.2, in terms of the input voltage Vjτ . TD is the time delay produced by
the delay block. Also, we choose R8x,y = R9x,y = 1 k�.

The nonlinearity of nonlinear device (Fig. 4.2) has the following form:

f (VjTD
) = −R5i

R4i
VjTD

+ R5i

R3i
βVsat tanh

(
w

R2i

R1i

VjTD

Vsat

)
. (4.4)

See Eq.2.30 and the corresponding discussions.
Let us define the following dimensionless variables and parameters: t = t

R0C0
,

τ = TD
R0C0

, x = V1(t)
Vsat

, xτ = V1TD
Vsat

, y = V2(t)
Vsat

, yτ = V2TD
Vsat

, z = V3(t)
Vsat

, R5i
R4i

= n1, β
R5i
R3i

= m1,

w R2i
R1i

= l1, b1,2 = R7i
R6i
, ε1 = R9i

R10i
, κ = R0C0

RkCI
, ε2

2 = R0C0
R11iCI

, where i = x, y. To make the
timescale of the x−, y-systems and the z-system equal, we use CI = C0. Now, we
get κ = R0

Rk
, ε2

2 = R0
R11i

. Thus, to make ε1 = ε2, we have to use R11i = 2R10i (since
R0 = R9i = 1 k�).
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Now, the Eqs. (4.3) and (4.4) can be reduced to the following dimensionless,
coupled, first-order, retarded type nonlinear delay differential equations:

dx

dt
= −x(t) + b1f (xτ ) + ε1β1z, (4.5a)

dy

dt
= −y(t) + b2f (yτ ) + ε1β2z, (4.5b)

dz

dt
= −κz − ε2

2

(
β1x + β2y

)
, (4.5c)

where
f (uτ ) = −n1uτ + m1 tanh(l1uτ ), (4.6)

with, u ≡ x, y. It is interesting to note that Eq. (4.5) (along with Eq. (4.6)) are qual-
itatively equivalent to Eq. (4.1) (along with Eq. (4.2)) with a = 1, and appropriate
choices of n1, m1 and l1.

4.2.2 Experimental Results

The coupled system is designed in hardware level using IC TL074 op-amps (JFET
quad op-amps) with ±15 volt power supply. The resistances are R1 = 1.26 k�,
R2 = 19.29 k�, R3 = 52.81 k�, R4 = 6.73 k�, R5 = 10 k�, R6 = 1 k�. For the
low-pass section, we used R0 = 1 k� and C0 = 0.1 μF. Also, for the z-system, we
choose Rk = 1 k� and CI = 0.1 μF. The identical active all-pass filter stages of
delay line (Fig. 2.13 in Chap.2 (p. 26)) have R12 = R13 = 2.2 k�, C = 10 nF, and a
variable resistance R.

4.2.2.1 Real-Time Waveform and Phase-Plane Plots

We fix the feedback delay to the value τ = 3.6 and R7 ≈ 2.1 k� to keep both the
systems in the hyperchaotic regime. In the following cases, we consider the coupling
resistors for which ε1 = ε2.
(i) β1 = 1 and β2 = −1: This condition is satisfied by connecting the points “A”
to “B”, and “D” to “E”, in the Fig. 4.1. Figure4.3 shows three distinct cases: (a)
The x- and y-systems evolve independently in time for large (small) coupling resis-
tance (coupling strength). For example, when we keep R10x = R10y ≈ 9.96 k�,
R11x = R11y = 20 k�, both the systems are unsynchronized. Figure4.3(a1) shows
the time series of the x-system (yellow (lighter)) and the y-system (blue (darker)), and
the red trace in the lower portion of this plot shows the difference [V1(t)− V2(t)] (we
call it the “error signal”) of the two systems captured by a digital storage oscilloscope
(DSO) (Tektronix TDS2002B, 60 MHz, 1 GS/s). It can be noticed that the amplitude
of the error signal is of the same order as the original signals V1(t) and V2(t) indi-
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Fig. 4.3 β1 = 1 and β2 = −1: Experimental time series plot of the x-system V1(t) (yellow
(lighter)) and the y-system V2(t) (blue (darker)) in the hyperchaotic regime, lower trace in red
represents the error signal (V1(t) − V2(t)): a1 unsynchronized state, b1 in-phase synchronization,
c1 complete synchronization. The corresponding phase-plane plots are shown in (a2), (b2), and
(c2), respectively. (For parameter values see text). For (a1), (b1), and (c1): x-axis: 25µs/div, y-axis:
1.25 v/div. For (a2), (b2), and (c2): x-axis: 1 v/div, y-axis: 1 v/div

cating unsynchronized states. Figure4.3(a2) shows the corresponding phase-plane
plot in V1(t) − V2(t) space that confirms the asynchronous condition. (b) If we
decrease the coupling resistors (i.e., increase the coupling strength ε), the coupled
systems show in-phase synchronization. This is shown for R10x = R10y ≈ 1.57 k�,
R11x = R11y ≈ 3.2 k� in Fig. 4.3(b1), (b2); the time series in Fig. 4.3(b1) shows
that the waveforms are in phase but their amplitude levels are still uncorrelated in
timescale. Also, the amplitude of error signal is much reduced here. Figure4.3(b2)
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shows the corresponding phase-plane diagram, where we can see that the sys-
tem dynamics now wanders around the 45◦ diagonal line. These two indicate the
in-phase synchronization of the x- and y-systems. (c) Further reduction in the cou-
pling resistors results in complete synchronization. Figure4.3(c1), (c2) show this
for R10x = R10y ≈ 0.56 k� and R11x = R11y ≈ 1.2 k�. Figure4.3(c1), (c2) shows
the real-time and phase-plane plots of the systems, respectively. The error line in
lower portion of Fig. 4.3(c1) indicates that the two waveforms are equal in phase and
amplitude. The phase-plane plot in Fig. 4.3(c2) showing 45◦ inclination with both
the axes confirms complete synchronization.
(ii) β1 = β2 = 1: This condition is achieved when we connect the points “A” to
“C” and “D” to “F”, in Fig. 4.1. In this case also, we get three distinct situations: (a)
The x- and y- systems evaluate independently in time for larger coupling resistance.
Figure4.4(a1), (a2) show this for R10x = R10y ≈ 9.93 k�, R11x = R11y = 20
k�. Figure4.4(a1) shows the time series of the x- and y-systems, and that in the
lower portion of the plot shows the sum of the two waveforms (V1(t) + V2(t)).
Figure4.4(a2) shows the corresponding phase-plane plot. The sum and the phase-
plane plot confirm that the systems are not synchronized. (b) Lowering of coupling
resistances results in inverse-phase synchronization. This is shown in Fig. 4.4(b1),
(b2) for R10x = R10y = 2 k�, R11x = R11y ≈ 4.1 k�. Figure4.4(b1) shows the
time series and the sum (V1(t) + V2(t)), and Fig. 4.4(b2) shows the corresponding
phase-plane plot. One can see that V1(t) and V2(t) are in the phase-inverted mode
but their amplitudes do not correlate. (c)At further lower coupling resistance values,
the systems show anti-synchronization; Fig. 4.4(c1), (c2) shows the real-time and
phase-plane plots, respectively, for R10x = R10y ≈ 0.3 k�, R11x = R11y ≈ 0.7 k�.
Here one can see that the two systems have π phase shift and also their amplitude
levels are same. The phase-plane plot shows that the system dynamics lives in a
diagonal line making an angle 135◦ with the x- axis. This confirms the occurrence
of anti-synchronization.

4.2.2.2 Generalized Autocorrelation Function (GAF) and Correlation
of Probability of Recurrence (CPR)

It is seen from numerical simulations (Fig. 2.5 in Chap.2 (p. 20)) and experimental
results that the attractor of the system under study is not phase-coherent.1 The detec-
tion of phase in non-phase-coherent system is of utmost difficulty and is an open
problem. Let us go through a discussion of defining phase in a system in general
in tabular form (see Table4.1). For this purpose, we take recourse to Romano et al.
[108] and consider the system has a dominant peak in power spectrum.

However, the situation is not so hopeless. The credit goes to Poincaré, as he
called on the concept of recurrence in dynamical system (H. Poincare, Acta. Math.
1890), and proved that “after a sufficiently long time interval, the trajectory of a

1Phase coherence is the state in which two or more signals maintain a fixed phase relationship
between them or to a reference signal.
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Fig. 4.4 β1 = 1 and β2 = 1: Experimental time series plots of the x-system V1(t) (yellow (lighter))
and the y-system V2(t) (blue (darker)) in the hyperchaotic regime, lower trace in red represents the
error signal (V1(t) + V2(t)): a1 unsynchronized state, b1 in-phase synchronization, c1 complete
synchronization. The correspondingphase-plane plots are shown in (a2), (b2), and (c2), respectively.
(For parameter values see text). For (a1), (b1), and (c1): x-axis: 25µs/div, y-axis: 1.25 v/div. For
(a2), (b2) and (c2): x-axis: 1 v/div, y-axis: 1 v/div

dynamical system will return arbitrarily close to each former point of its route with
probability one”. This is the concept of recurrence. Later on, recurrence plots (RPs)
were introduced to yield a visual representation of recurrences in phase space [33].
The RPs are defined for a given trajectory {xi}N

i=1 with xi ∈ R+ of a dynamical system
as

R(ε)
i,j = Θ

(
ε − ||xi − xj||

)
, i, j = 1, . . . , N, (4.7)

where ε is a predefined threshold and Θ(·) is the Heaviside function.
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Table 4.1 Table discussing the methods of defining phase in dynamical systems and their difficul-
ties.

Method Difficulties

Projecting the trajectory on an appropriate
plane—the smeared limit cycle with
well-defined rotations around center. Then, the
phase is the angle of rotation

The projected trajectory should go around a
center, this is not applicable in
non-phase-coherent oscillators, effect of false
neighbor

Choose a Poincaré surface that is crossed
transversely by each trajectories. The phase is
defined as the linear function of time, which
increases by 2π with each return to the surface

It is difficult to identify surfaces that are
crossed transversely by each trajectory

Based on general idea of curvature Suitable for low-dimensional systems

Thus for complex and high-dimensional system, one can define the phase Φ for
Eq. (4.7). In periodic systems, the phase increases by 2π for the trajectory to complete
one rotation around the center or, equivalently,when ||x(t+T)−x(t)|| = 0,whereT is
the period. In the case of complex system, this analogymay be drawn by assigning an
increment 2π in phase for ||x(t+τ)−x(t)|| ≈ 0 or, equivalently, ||x(t+T)−x(t)|| <

ε. Therefore, one may look for the probability P(ε)(τ ) that the system returns to the
ε-neighborhood of a former point xi of the trajectory after τ time steps and comparing
P(ε)(τ ) for both systems allows to detect and quantify PS properly. This is called
the generalized autocorrelation function (GAF). Thus, as there exists no general
technique of finding phase of a phase-incoherent hyperchaotic attractor, we use two
dynamical measures of phase synchronization (PS) proposed in Refs. [81, 108],
namely, generalized autocorrelation function (P(t), here we write P(t) ≡ P(ε)(τ ))
and correlation of probability of recurrence (CPR). These twomeasures have already
been used in the context of chaotic phase synchronization of directly coupled time-
delayed systems [119]. Here, we compute P(t) and CPR of the coupled system
experimentally using the time series data acquired from the experimental circuit.

The generalized autocorrelation function (P(t)) is defined as [81, 108]

P(t) = 1

N − t

N−t∑

i

Θ (εt − ‖xi − xi+t‖) , (4.8)

where Θ is the Heaviside function, xi is the i-th data point in the x variable, N is the
total number of data points, εt is a preassigned threshold value, and ‖.‖ represents
the Euclidean norm. Let P1(t) represent the generalized autocorrelation function
of the x-system and P2(t) be that of the y-system. We compute P1(t) and P2(t)
from the experimental time series data (N = 2400) acquired using DSO (Tektronix
TDS2002B, 60 MHz, 1 GS/s). For both the cases, we choose the threshold value
εt = 0.01.
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Fig. 4.5 Generalized autocorrelation function (P(t)) computed from the experimental time series.
(Left column) β1 = 1, β2 = −1: GAF (P(t)) of x-system (P1, in red) and y-system (P2, in blue)
in the unsynchronized state (upper panel) and in-phase synchronized state (lower panel). Notice
the matching (difference) of the peaks of P1 and P2 in the in-phase synchronized (unsynchronized)
case. (Right column) β1 = 1, β2 = 1: GAF (P(t)) of x-system (P1, in red) and y-system (P2, in
blue) in the unsynchronized state (upper panel) and inverse-phase synchronized state (lower panel).
Notice the matching (difference) of the peaks of P1 and P2 in the inverse-phase synchronized
(unsynchronized) case (for parameter values see text)

Figure4.5 (Left column) shows P(t)’s for β1 = 1, β2 = −1 (i.e., in-phase cou-
pling case), and Fig. 4.5 (Right column) shows the same for β1 = 1, β2 = 1 (i.e.,
inverse-phase coupling case). Left upper panel of Fig. 4.5 represents the unsynchro-
nized state for β1 = 1, β2 = −1 at R10x,y ≈ 9.96 k�, R11x,y = 20 k� (same
parameter values as of Fig. 4.3(a1)); similarly, Fig. 4.5 (Right upper panel) shows
the same for β1 = 1, β2 = 1 at R10x,y ≈ 9.93 k�, R11x,y = 20 k� (same parameter
values as of Fig. 4.4(a1)). From both the figures (upper row), we can see that peaks
of P1(t) do not match with that of P2(t) in the t-axis, confirming the fact that the
phases of the two oscillators are not synchronized. Lower row of Fig. 4.5 shows the
case for (R10x,y ≈ 1.57 k�, R11x,y ≈ 3.2 k�) and (R10x,y = 2 k�, R11x,y ≈ 4.1 k�),
respectively, which depicts that the dominant peaks of P1(t) and P2(t)match exactly
in the t-axis confirming the phase synchronization of the coupled oscillators. Also,
almost equal amplitude of the peaks in the phase synchronized cases shows the good
quality of PS in the coupled systems.
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A quantitative measure of P(t) is the correlation of probability of recurrence
(CPR) that was defined in Refs. [81, 108] as

CPR =
〈
P̄1(t)P̄2(t)

〉

σ1σ2
, (4.9)

P̄1,2 present that the mean value has been subtracted, and σ1,2 are the standard devia-
tions of the P1(t) and P2(t), respectively. In the phase synchronized case, generally,
CPR≈ 1, and for the unsynchronized case, its value is appreciably smaller than unity.
Using the definition of Eq. (4.9), we compute CPR from experimental time series
data both for the in-phase and inverse-phase cases. For in-phase synchronized case,
we have CPR≈ 0.997 (parameters are same as of left lower panel of Fig. 4.5), and for
inverse-phase synchronized case we have CPR ≈0.985 (parameters are same as of
right lower panel of Fig. 4.5), which confirm the occurrence of phase synchronization
in the coupled system.

4.2.2.3 Concept of Localized Sets

We use another dynamical measure for qualitative confirmation of phase synchro-
nization called the concept of localized sets (CLS) proposed in [95]. It was shown in
Ref. [95] that the CLS technique is extremely useful to detect phase synchronization
even when no proper measure of phase is possible. The idea of CLS in coupled oscil-
lators is based on the fact that if one identifies a certain event in the first oscillator
and then track the second oscillator at that particular event, a set D will be obtained
for the second oscillator; if that set spreads over the whole attractor space of the
second oscillator then one may say that there is no phase correlation between the
two coupled oscillators. On the contrary, if the set D becomes localized to a certain
zone of the attractor space, then one can say that the coupled oscillators are phase
synchronized.

From the experimental circuit, we simultaneously acquire the time series data of
x- and y-systems (with 2400 data points for each). Next, we define the event V1(t) =
−0.5 for the x−system and track the values of V2(t) from the time series whenever
that event is met. The obtained set of data values of V2(t), and the corresponding
V1 and V2 are plotted in V1 − V2 space. Figure4.6 shows the localized sets for
the in-phase and inverse-phase cases at unsynchronized, phase synchronized and
complete (anti-) synchronized cases. It can be seen that for the unsynchronized cases
(Fig. 4.6a for β1 = 1, β2 = −1 and Fig. 4.6d β1 = 1, β2 = 1), the set D (represented
by black points) spreads over the whole attractor space of V2(t) (resistor values are
same as used in Fig. 4.3(a1) (β1 = 1, β2 = −1) and Fig. 4.4(a1) (β1 = 1, β2 = 1),
respectively). With further decrease in R10x,y and R11x,y (that is increase in coupling
strength), the set D becomes localized in V2(t)-space indicating the occurrence of
phase synchronization; Fig. 4.6b and e show this case for in-phase and inverse-phase
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cases, respectively (resistor values are same as used in Fig. 4.3(b1) (β1 = 1, β2 =
−1) and Fig. 4.4(b1) (β1 = 1, β2 = 1), respectively). Here, we can see that the
black points representing the set D are localized to a small zone of V2(t). Another
interesting observation can be made from Fig. 4.6, that is, for in-phase synchronized
state (Fig. 4.6b), the localized setD is situated around V2(t) = −0.5,which is equal to
V1(t) = −0.5, whereas for inverse-phase synchronized state (Fig. 4.6e), the localized
set D is situated around V2(t) = 0.5, which is opposite of V1(t) = −0.5 (indicating
a π phase shift between V1(t) and V2(t)). Finally, with further decrease in coupling
resistance (i.e., increase in coupling strength), we observe that the set D becomes
localized to a very narrow range of V2(t) that indicates complete synchronization
(Fig. 4.6c) and anti-synchronization (Fig. 4.6f).

4.3 Linear Stability Analysis

In this section, we explore the linear stability of synchronized states of the coupled
system of Eq. (4.1). In [106], stability of the synchronized states of the environmen-
tally coupled flows with no delay has been derived with some broad approximations;
it was shown that no exact analysis is possible; nevertheless, the authors arrived at
a condition that predicts the stable complete (anti-) synchronized zone in parameter
space. In the present case, the scenario is more complex owing to the presence of
delay. Let us start by consideringψ , θ and φ be the deviations from the synchronized
states of the system variables in the Eq. (4.1), i.e., we introduce new primed variables
x′ = x − ψ , y′ = y − θ and z′ = z − φ. Then linearizing the system along with these
deviations leads to

ψ̇ = −aψ(t) + b1f ′(xτ )ψτ + ε1β1φ, (4.10a)

θ̇ = −aθ(t) + b2f ′(yτ )θτ + ε1β2φ, (4.10b)

φ̇ = −κφ − ε2

2
(β1ψ + β2θ), (4.10c)

where uτ ≡ u(t − τ), u ≡ ψ, θ .
It is not possible to carry out an exact analysis of Eq. (4.10). To make the analysis

possible, we impose some constraints to it and consider this one as a special case. Let
us consider the complete synchronized state of the systems, i.e., x = y and hence,
xτ = yτ . Also, we define a new variable relating ψ and θ in the following way:

χ = β1ψ + β2θ. (4.11)

With this, Eq. (4.10) can be reduced to the following equations (with b1 = b2 = b):
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Fig. 4.6 Visualization through the concept of localized sets computed from the experimental time
series: Black dots represent the set D for the particular event V1(t) = −0.5, the points are plotted
along with V1(t) and V2(t) in the V1(t) − V2(t) space. β1 = 1, β2 = −1: a unsynchronized
b in-phase synchronized c complete synchronized states. β1 = 1, β2 = 1: d unsynchronized e
inverse-phase synchronized f anti-synchronized states. Note the localization of the set D in the
narrow region in V2(t) axis for the phase synchronized (b, e) and complete (anti-) synchronized
cases (c, f). For parameter values, see text

χ̇ = −aχ + bf ′(xτ )χτ + ε1(β
2
1 + β2

2 )φ, (4.12a)

φ̇ = −κφ − ε2

2
χ. (4.12b)
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Equation (4.12) also cannot be solved in closed form. We can make further approach
by considering f ′(xτ ) = δ′, where δ′ is a constant; this approximation was also used
and justified in [106]. Define δ = bδ′ and β2

1 + β2
2 = 2, from Eq. (4.12), we get

χ̇ = −aχ + δχτ + 2ε1φ, (4.13a)

φ̇ = −κφ − ε2

2
χ. (4.13b)

The characteristic equation of Eq. (4.13) is given by

det

(
λ + a − δe−λτ − 2ε1

ε2
2 λ + κ

)
= 0, (4.14)

which gives on evaluation

λ2 + (a + κ − δe−λτ )λ − δκe−λτ + (aκ + ε1ε2) = 0. (4.15)

The eigenvalue of the characteristic Eq. (4.15) may be real or imaginary. Let us con-
siderλ = μ±iν. The synchronizationwill become just oscillatory if the eigenvalue is
a purely imaginary one. Thus for the limiting case, we consider μ = 0 and λ = ±iν.
Substitution of this in the above and a comparison between the real and the imaginary
parts yield

− bδ′ν sin ντ − bδ′κ cos ντ = ν2 − (aκ + ε1ε2), (4.16)

−bδ′ν cos ντ + bδ′κ sin ντ = −(a + κ)ν. (4.17)

Squaring and adding Eqs. (4.16) and (4.17), we get

ν4 + (a2 + κ2 − 2ε1ε2 − b2δ′2)ν2 + (aκ + ε1ε2)
2 − b2δ′2κ2 = 0. (4.18)

Consider (a2 + κ2 − 2ε1ε2 − b2δ′2) = Θ and (aκ + ε1ε2)
2 − b2δ′2κ2 = Λ. Thus,

Eq. (4.18) reduces to
ν4 + Θν2 + Λ = 0. (4.19)

Equation (4.19) has the following solution:

ν2 = −Θ ± √
Θ2 − 4Λ

2
. (4.20)

From the above equation, it may be stated that ν2 must be real and positive, otherwise
there is no purely imaginary roots of Eq. (4.15), and for this one requires Θ2 > 4Λ
along with ν2 > 0, that results

ε1ε2 < |κ(δ − a)|. (4.21)
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This condition leads to the oscillatory solution of the complete synchronization (CS)
indicating the loss of CS. Thus, the threshold condition of CS is

ε1crε2cr = |κ(δ − a)|. (4.22)

Here, ε1cr and ε2cr are only the lower limits of the coupling strengths, where a stable
complete synchronized state can be achieved. If we increase the coupling strength
beyond the critical values, then the synchronized state will be prevailed. In the next
section, we numerically confirm this result with proper choice of the effective value
of δ. Also, note that Eq. (4.22) is equally valid for the anti-synchronized (AS) state,
because in that case consideration of y(t) = −x(t) and β1 = β2 = 1 does not alter
the form of Eq. (4.10).

4.4 Numerical Simulation

The system Eq. (4.1) is simulated numerically using the fourth-order Runge–Kutta
algorithm with step size h = 0.01. Following initial functions have been used for all
the numerical simulations: for the x-system φx(t) = 1, for the y-system φy(t) = 0.9,
and for the environment, i.e., z-system, z(0) = 0.85. Also, the following system
design parameters are chosen throughout the numerical simulations: a = 1, n = 2.2,
m = 1, l = 10, κ = 1; also we choose b1 = b2 = 1 and τ = 3.6 to ensure that
both the systems are in the hyperchaotic region [12]. Unless otherwise stated, we use
ε1 = ε2 = ε.

4.4.1 Lyapunov Exponent Spectrum

The onset of in-phase (inverse-phase) synchronization and complete (anti-) synchro-
nization can be detected directly from the Lyapunov exponent (LE) spectrum of the
coupled system [96]. We compute the LE spectrum in ε-space (ε1 = ε2 = ε) directly
from Eq. (4.1). Among a large number of LEs, we track the behavior of the first
four LEs that are sufficient to detect the occurrence of phase or complete (anti-)
synchronization with the variation of ε [106]. For β1 = 1, β2 = −1, Fig. 4.7a shows
the first five LEs in ε-space; it can be observed that with increase in ε, the fourth
largest LE (LE4) crosses the zero value to become negative at ε ≈ 1.1 indicating
the transition from unsynchronized state to in-phase synchronized state. With further
increase in ε, we observe that LE3 also becomes negative (from a positive value) at
ε ≈ 1.48, which indicates the transition from in-phase synchronization to complete
synchronization. Similar case is shown in Fig. 4.7b for β1 = 1, β2 = 1; here we can
see that LE4 becomes negative at ε ≈ 1.2 indicating inverse-phase synchronization
and transition of LE3 from a positive value to a negative value at ε ≈ 1.56 indicates
anti-synchronization of the coupled systems.
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Fig. 4.7 Lyapunov exponent spectrum of the environmentally coupled system. a β1 = 1, β2 = −1.
b β1 = 1, β2 = 1. Transitions of LE4 from positive to negative value through zero indicates phase
synchronization, similar transition of LE3 indicates complete (anti-) synchronization

4.4.2 Time Series and Phase-Plane Plots

Guided by the above result, we choose three different coupling strengths, ε (ε1 =
ε2 = ε), and plot the time series and phase-plane plots for the illustrative examples
of unsynchronized, phase synchronized, and complete (anti-) synchronized states.
Figure4.8 (Left column) shows this for β1 = 1, β2 = −1. Upper panel of Fig. 4.8
shows the unsynchronized case at ε = 0.2; corresponding phase-plane plot indicates
no correlation between the x-system and y-system. Middle panel of Fig. 4.8 shows
the in-phase synchronized state at ε = 1.4; we can see from the corresponding
phase-plane plot that although the phases of two systems are synchronized but their
amplitudes still differ. Finally, lower panel of Fig. 4.8 shows the case of complete
synchronization at ε = 1.6; here both the systems become identical to each other.
Figure4.8 (Right column) shows the scenario for β1 = β2 = 1. At ε = 0.2, we can
see the unsynchronized case (upper panel); at ε = 1.4, the system is inverse-phase
synchronized (middle panel), and finally at ε = 1.6, we observe anti-synchronization
(lower panel), where x(t) and y(t) have a π phase shift and their amplitude levels are
similar.

4.4.3 Generalized Autocorrelation Function and CPR

As discussed in Sect. 4.2.2.2 (p. 63), we compute P(t) and CPR from numerical
simulations. We use N = 5000 and plot P1,2(t) for the unsynchronized and phase
synchronized cases. Figure4.9 (upper row) shows this at ε1 = ε2 = 0.2 for (β1 =
1, β2 = −1) and (β1 = β2 = 1), respectively. The unmatched dominant peaks of
P1,2(t) indicate the lack of phase synchronization in the coupled systems at this small
value of coupling strength. We plot the same at ε1 = ε2 = 1.4 (Fig. 4.9 (lower row)).
Here, the perfect matching of dominant peaks of P1,2(t) indicates the occurrence of
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Fig. 4.8 (Left column) β1 = 1 and β2 = −1: Numerically obtained time series of x and y, and
corresponding phase-plane plots in x − y space. (Upper panel): unsynchronized state (ε = 0.2),
(middle panel): in-phase synchronized state (ε = 1.4), (lower panel): complete synchronized state
(ε = 1.6); (Right column) β1 = 1 and β2 = 1: Numerically obtained time series of x and y, and
corresponding phase-plane plots in x − y space. (Upper panel): unsynchronized state (ε = 0.2),
(middle panel): inverse-phase synchronized state (ε = 1.4), (lower panel): anti-synchronized state
(ε = 1.6)

PS; at this point we computed CPR, which is equal to 0.99 for β1 = 1, β2 = −1,
and 0.987 for β1 = β2 = 1 that also confirms the occurrence of PS in the coupled
system.
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Fig. 4.9 (Left column) β1 = 1, β2 = −1: Numerically obtained generalized autocorrelation
function, P(t), of x-system (P1, in solid) and y-system (P2, dotted) in the unsynchronized state
(ε = 0.2) (upper panel) and in-phase synchronized state (ε = 1.4) (lower panel). Notice the
matching (difference) of the peaks of P1 and P2 in the in-phase synchronized (unsynchronized)
case; (Right column) β1 = 1, β2 = 1: Numerically obtained generalized autocorrelation function,
P(t), of x-system (P1, in red) and y-system (P2, in blue) in the unsynchronized state (ε = 0.2)
(upper panel) and inverse-phase synchronized state (ε = 1.4) (lower panel). Notice the matching
(difference) of the peaks of P1 and P2 in the inverse-phase synchronized (unsynchronized) case (for
other parameter values see text)

4.4.4 Concept of Localized Set

Further, we use the technique of concept of localized set to numerically confirm PS in
the coupled system. Here, we define the following event in the y-system: y(t) = −0.2
and y(t − τ) ≤ −0.2; whenever this event occurs in time, we track the values of the
x-system and get a set of values of x(t). Then we plot this set in the x(t) − x(t − τ)

space. The similar process is repeated for the y-system with the following event
in the x-system: x(t) = −0.2 and x(t − τ) ≤ −0.2. Figure4.10 shows this for
β1 = 1, β2 = −1 and Fig. 4.11 represents the case for β1 = β2 = 1 for various
coupling strengths. Figures4.10a, d and 4.11a, d show the spreading of data set over
the whole phase space for ε1 = ε2 = 0.2 indicating phase-incoherent behavior of
the coupled systems. At ε1 = ε2 = 1.4, the data set forms a localized set in the phase
space indicating the occurrence of phase synchronization (Figs. 4.10b, e and 4.11b,
e). Finally, at ε1 = ε2 = 1.6, we can see that Fig. 4.10c, f shows that the localized
set becomes identical with the defined event itself for β1 = 1, β2 = −1, indicating
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Fig. 4.10 β1 = 1 and β2 = −1: Visualization through the concept of localized sets (numerical): a,
b, and c: plot of x(t)− x(t − τ) along with the set D (black dots) obtained by defining the following
event in the y-system: y(t) = −0.2 and y(t − τ) ≤ −0.2 (dark line in (d)). d, e, and f : plot of
y(t) − y(t − τ) along with the set D (black dots) obtained by defining the following event in the
x-system: x(t) = −0.2 and x(t − τ) ≤ −0.2 (dark line in (a)). a and d represents unsynchronized
state with ε = 0.2 (note that the black dots are scattered all around the attractors representing that
the attractors are incoherent). b and e represents phase synchronized states with ε = 1.4. c and f
represent complete synchronized case with ε = 1.6. Note that in the last two cases black dots form
a localized set that lives in a narrow region of the attractor

a complete phase synchronization. Whereas, for β1 = β2 = 1, at ε1 = ε2 = 1.6
Fig. 4.11c, f shows that the localized set is situated in a narrow region that is just
opposite to the defined event, indicating anti-phase synchronization.
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Fig. 4.11 β1 = 1 and β2 = 1: Numerically computed concept of localized sets: a, b, and c: plot
of x(t) − x(t − τ) along with the set D (black dots) obtained by defining the following event in the
y-system: y(t) = −0.2 and y(t−τ) ≤ −0.2 (dark line in (d)). d, e, and f : plot of y(t)−y(t−τ) along
with the setD (black dots) obtained by defining the following event in the x-system: x(t) = −0.2 and
x(t − τ) ≤ −0.2 (dark line in (a)). a and d represent unsynchronized state with ε = 0.2 (note that
the black dots are scattered all around the attractors representing that the attractors are incoherent).
b and e represent phase synchronized states with ε = 1.4. c and f represent anti-synchronized case
with ε = 1.6

4.4.5 Stability of Synchronization in Parameter Space

To support the theoretical result obtained analytically in Eq. (4.22), numerically we
study the synchronization scenario in the ε1 − ε2 space. We use all the
above-mentioned measures to detect the complete synchronization (CS) and anti-
synchronization (AS). The threshold value of ε1 and ε2 for which CS and AS occurs
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Fig. 4.12 Stability curve in ε1 − ε2 parameter space a β1 = 1 and β2 = −1, b β1 = 1 and β2 = 1

are plotted in Fig. 4.12 a and b, respectively. The solid line represents the theoretical
prediction and points represent the numerically obtained threshold values for which
CS or AS just start. In theoretical curve, for CS, we use δ′ = 3.20 (also a = 1,
b=1, and κ = 1); this value of δ′ is obtained for xτ = ±0.0825 (remember that
δ′ = f ′(xτ )). Similarly for AS, we use δ′ = 3.15, that implies xτ ≈ ±0.0832. In both
the cases, the values of xτ , for which theoretical and numerical results match, lie well
within the actual phase space where the system dynamics live. Thus, the stability
analysis agrees with the numerical results with some effective choice of δ′.

4.5 Discussions

In this chapter, we have reported different synchronization scenarios of hyperchaotic
time-delayed systems coupled indirectly through a common environment. The sys-
tem we have chosen is a first-order, nonlinear time-delayed system that possesses a
closed-form mathematical function for the nonlinearity, shows hyperchaos even at a
moderate or small time delay, and is convenient for the electronic circuit design. We
have confirmed the occurrence of phase synchronization and complete (anti-) syn-
chronization in the experimental circuit by using recurrence analysis and the concept
of localized sets computed directly from the experimental time series data. We have
shown that with the proper choice of coupling parameters (i.e., β1 = 1, β2 = −1), an
increase in the coupling strength results in a transition from unsynchronized state to
complete synchronized state via phase synchronized states. Also, for β1 = β2 = 1,
with the increasing coupling strength, we have observed a transition from unsynchro-
nized states to the anti-synchronized state via inverse-phase synchronized states. To
corroborate the experimental results, we have presented a linear stability analysis of
the complete (anti-) synchronized state, and also we perform detailed numerical sim-
ulations. Numerically, we computed the Lyapunov exponent spectrum of the coupled
system from where we have identified the zone of phase synchronization and com-
plete (anti-) synchronization in the parameter space. We have used the recurrence
analysis and the concept of localized set to numerically reconfirm the occurrence
of phase synchronization in the system. Finally, using all the measures, we have
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identified the parameter zone in the two-parameter space for the stable complete and
anti-synchronization, which agree well with the theoretical results.

One of the main features of the environmental coupling scheme is that here the
system dynamics in the synchronized states and unsynchronized states have almost
the same structure in phase space; this particular feature makes this coupling scheme
advantageous over other time delay coupling schemes. From the academic interest,
as the environmental coupling is very much relevant in biological systems where
delay appears inherently, therefore, the present study will be helpful for the under-
standing of synchronization phenomena in the biological systems. Apart from the
academic interest, the present study is important from application point of view
also; for example, since with environmental coupling one can make a transition from
complete synchronization to anti-synchronization by simply changing the sign of β2,
thus this will be useful in implementation of hyperchaotic binary-phase-shift-keying
(BPSK)-based digital communication systems.



Chapter 5
Collective Behavior-II: Amplitude Death
and the Corresponding Transitions
in Coupled Chaotic Time-Delayed Systems

In the previous chapter (Chap.4), we have discussed synchronization scenarios in
time-delayed systems. Another important collective behavior in coupled oscillators
is amplitude death (AD) where oscillations cease and the oscillators arrive at the
common stable steady state. AD is important in the case of control applications
where suppression of unwanted fluctuations is necessary, e.g., in laser [66] and neu-
ronal systems [36]. Lord Rayleigh [103] first observed AD in the acoustic systems.
However, the systematic observation of AD has first been reported by Yamaguchi
et al. [147]; later the same has been studied in detail by Bar-Eli [17], and Shiino and
Frankowicz [127]. For an extensive review on AD, see Ref. [112].

Contrary to the phenomenon of AD in low-dimensional systems (with or without
coupling time delay), amplitude death in systems with intrinsic time delay is a less
explored topic. The first observation of AD in the intrinsic time-delayed oscillators
has been reported by Konishi et al. [62] in which dynamic and delayed couplings
were studied. AD in networks of delay-coupled delay oscillators has been studied
analytically in Ref. [55]. Reference [71] reports AD in intrinsic time-delayed oscil-
lators coupled via multiple delay connections. An important technique of inducing
AD has been proposed in Ref. [48], which employs time delay open-plus-closed-
loop coupling. In all of these works (except the case of dynamic coupling), AD is
mediated by the presence of moderate or very long time delay in the coupling path.
The presence of time delay in coupling path makes the dynamics of the coupled sys-
tems more complex, and at the same time much difficult for analysis and practical
implementation.

In this chapter, we discuss amplitude death and the corresponding synchronization
transitions leading to AD in coupled time-delayed hyperchaotic oscillators interact-
ing through mean-field diffusive coupling. The idea of mean-field coupling is widely
used in physics (e.g., in three-dimensional Ising spin model [92] interaction with
mean-field explains ferromagnetism) and biology [42]. We will discuss a novel syn-
chronization transition scenario that leads to AD, namely the transitions among AD,
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generalized anticipatory synchronization (GAS), complete synchronization (CS),
and generalized lag synchronization (GLS); this transition occurs for the variation
of the difference of intrinsic time delays, τd = (τ2 − τ1) (τ1 and τ2 are the intrinsic
time delays associated with two coupled systems). We show the occurrence of GAS
for τd < 0, CS for τd = 0, and GLS for τd > 0.

By definition [90, 148], in the GAS, CS, and GLS conditions, there exists a
smooth function H such that x2(t) = H(x1(t + τ)), τ ∈ R+; for GAS, τ > 0,
and for GLS, τ < 0; for conventional AS and LS states H is an identity function,
i.e., x2(t) = x1(t + τ), and as usual, for a CS state, x2(t) = x1(t). Earlier, it has
been shown that mismatch in intrinsic time delay in linearly coupled time-delayed
systems gives rise to generalized synchronization (GS) [14, 123]. In non-delayed
systems, to observe GLS and GAS, appropriate controller has to be designed; Refs.
[90, 148] reported two such controller design techniques to induce GLS and GAS in
low-dimensional systems under drive-response coupling. Experimental confirmation
of GLS has been reported in Ref. [154]which considers Rössler systems. Unlike non-
delayed systems, in the present case, no controller is required but only variations of
the intrinsic time delays give rise to GAS and GLS. Further, at present, there exists
no general theory or confirmatory quantitative measures of GAS and GLS. In this
chapter, we try to derive a general stability analysis for the GAS and GLS states
using Krasovskii–Lyapunov theory. Also, we use error function and a modified form
of the similarity function to provide the quantitative support to the occurrence of
GAS and GLS. We further study the effect of coupling parameter for equal intrinsic
time delays. It is shown that depending upon the coupling strength and mean-field
parameters, the coupled systems show a transition from the unsynchronized state to
AD state via in-phase and complete synchronized states.

5.1 Mean-Field Coupling

Weconsider N first-order time-delayeddynamical systems interacting throughmean-
field diffusive coupling; mathematical model of the coupled system is given by [10]

ẋi = h(xi , xiτi ; p) + ε
(
QX − xi

)
, (5.1)

with i = 1 · · · N , X = 1
N

∑N
i=1 xi is the mean-field of the coupled system. xτ ≡

x(t − τ), τ ∈ R+ is the constant time delay, and p represents the m-dimensional
parameter space. The coupling strength is given by ε, and Q is a control parameter
that determines the density of mean-field [43, 124] (0 ≤ Q ≤ 1). Here, the function
h(xi , xiτi ; p) is given by h(xi , x2τi , p) = −axi − bi f (xi τi ), thus the individual units
are represented by the following scalar first-order, retarded type delay differential
equations:

ẋi = −ai xi − bi f (xi τi ), (5.2)
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where ai > 0 and bi are the system parameters, and τi is the intrinsic time delay
associated with the individual systems. Equation (5.2) represents a general class
of first-order, nonlinear, retarded delay differential equations. For example, for the
Mackey–Glass system [79]: f (xi τi ) = − xτi

1+xcτi
; for the Ikeda system [56]: f (xi τi ) =

sin(xiτi ), etc. Thus, Eq. (5.1) representsmean-field diffusive coupling scheme for any
first-order delay dynamical systems. Also, the following theoretical and numerical
results can be extended to any first-order time-delayed systems.

5.2 Stability Analysis

In this section, we analyze the asymptotic stability of the synchronization of the
coupled systems given in Eq. (5.1). Here, we restrict our study to a pair (N = 2) of
time-delayed systems.

5.2.1 Krasovskii–Lyapunov Theory: Complete
Synchronization (τ1 = τ2)

Let us define the error function as Δ = (x1 − x2), and also let τ1 = τ2 = τ . Time
evolution of the error function that describes the error dynamics of Eq. (5.1) is given
by

Δ̇ = −(a + ε)Δ − (b1 − b2) f (x1τ ) − b2 f
′(x1τ )Δτ . (5.3)

This is an inhomogeneous equation and difficult to deal with; to make it homoge-
neous, we impose the following constraint: b1 = b2 = b, which is also the necessary
condition of complete synchronization. Now, Eq. (5.3) becomes

Δ̇ = −(a + ε)Δ − b f ′(x1τ )Δτ . (5.4)

According to the Krasovskii–Lyapunov theory [64], a stable synchronization implies
the stability of the origin of Eq. (5.4). The sufficient condition for the stability of
synchronization requires the definition of a positive definite functional, V (t), given
by

V (t) = 1

2
Δ2 + μ

∫ 0

−τ

Δ2(t + ϕ)dϕ. (5.5)

Here,μ > 0 is an arbitrary positive parameter. The stability of the origin of Eq. (5.4)
requires that the time derivative of V (t) be negative. Now

dV

dt
= −μΔ2Γ (X, μ), (5.6)
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where

Γ (x, μ) = (a + ε − μ)

μ
+ b f ′(x1τ

)

μ
x + x2 (5.7)

and x = Δτ

Δ
. Thus, fromEq. (5.6), it may be noted that dV/dt is negative ifΓmin > 0.

Now, from Eq. (5.7), Γmin is derived as

Γmin = 4μ(a + ε − μ) − b2 f ′2(x1τ
)

4μ2
. (5.8)

Hence, Γmin > 0 implies that

a + ε >
b2 f ′2(x1τ

)

4μ
+ μ = Φ(μ), (5.9)

where Φ(μ) is a function of μ. Now, we find the minimum value Φmin by setting
dΦ
dμ

= 0. That gives μ = |b f ′(x1τ )|
2 . With this value of μ, one gets the minimum value

of Φ as Φmin = |b f ′(x1τ
)|; using this in Eq. (5.9), we get the following sufficient

condition of complete synchronization:

a + ε > |b f ′(x1τ
)|. (5.10)

Note that, Eq. (5.10) represents the sufficient condition of complete synchronization
for any general first-order time-delayed systems of the form given by Eq. (5.2)
coupled via mean-field diffusion.

5.2.2 Generalized (Anticipatory, Lag) Synchronization:
(τ1 �= τ2)

For GAS and GLS, we consider the following error function: Δ = H(x1τ2−τ1
) −

x2, where x1τ2−τ1
= x1

(
t − (τ2 − τ1)

)
. Using this, we can express three different

synchronization phenomena, namely, generalized (anticipatory, lag), and complete
synchronization. GAS is observed for τ1 > τ2; under this condition one has x2(t) =
H

(
x1(t + |τ2 − τ1|)

)
. For τ1 = τ2, we have CS, i.e., x2(t) = x1(t). GLS occurs for

τ1 < τ2; in this case, one has x2(t) = H
(
x1(t − |τ2 − τ1|)

)
.

The time evolution of the error function is given by: Δ̇ = Ḣ(x1τ2−τ1
) − ẋ2. Since

H is an unknown arbitrary function, further analysis is not possible. Considerable
progress can be made if we consider H(u) = Ψ u, where Ψ is an appropriate scaling
factor; this is a valid approximation only in the strong coupling case where the
dynamics become periodic. With this, we have
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Δ̇ = −
(
a + ε

(
1 − Q

2

))
Δ + b

(
f
(
x2(t − τ2)

) − f
(
x2(t − τ1)

))

− b f ′(x2(t − τ1)
)
Δτ1 + εQ

2

(
Ψ x2

(
t − (τ2 − τ1)

) − x1
)
,

(5.11)

where Δτ1 = Δ(t − τ1), and b1 = b2 = b. The synchronization manifold is locally
attracting if the origin of (5.11) is stable. It can be noted that for τ1 = τ2, i.e., complete
synchronization,Ψ = 1, and x2(t−(τ2−τ1))−x1 = −Δ; thus Eq. (5.11) reduces to
Eq. (5.4), and the Krasovskii–Lyapunov theory gives the same result as Eq. (5.10).
For τ1 �= τ2, since Eq. (5.11) is an inhomogeneous equation, it is not tractable
for further analysis; but, in the small intrinsic time delay difference condition (i.e.,
|τ2 − τ1| is small), we can neglect the second term in Eq. (5.11), and also write
(Ψ x2(t − (τ2 − τ1)) − x1) = −Ψ ′Δ, where Ψ ′ is a new scaling factor (note that for
|τ2 − τ1| = 0, Ψ ′ = 1); under this condition, Eq.5.11 reduces to

Δ̇ = −
(
a + ε

(
1 − Q

2
(1 − Ψ ′)

))
Δ − b f ′(x2(t − τ1)

)
Δτ1 . (5.12)

Note that Eq. (5.12) has the same form as Eq. (5.4); using the Krasovskii–Lyapunov
theory and the same arguments of the previous subsections, we arrive at the following
stability condition for the generalized (anticipatory, lag) synchronization:

a + ε

(
1 − Q

2
(1 − Ψ ′)

)
> |b f ′(x2(t − τ1)

)|. (5.13)

5.2.3 Linear Stability Analysis: Amplitude Death

Next, to find out the condition of amplitude death, we analyze the stability of syn-
chronization by considering the deviations from the synchronized state. The same
for the low-dimensional systems (without intrinsic time delay) has been reported in
Refs. [105, 106, 124, 125]. Let us define ψ and φ to be the deviations from the
synchronized states of the system variables x1 and x2 in Eq. (5.1), respectively. Then
the linearization of the system along these deviations gives

ψ̇ = −aψ − b1 f ′(x1τ
)ψτ + ε

(
Q ψ+φ

2 − ψ
)
, (5.14a)

φ̇ = −aφ − b2 f ′(x2τ
)φτ + ε

(
Q ψ+φ

2 − φ
)
. (5.14b)

An exact analysis of Eq. (5.14) is not possible due to the presence of the delay term,
which makes the characteristic equation a quasi-polynomial one. We consider b1 =
b2, and for the complete synchronization, we have x1 = x2 and x1τ = x2τ = xτ . Let
us define g(xτ , ψ,ψτ ) ≡ −aψ − b f ′(xτ )ψτ , and g(xτ , φ, φτ ) ≡ −aφ − b f ′(xτ )φτ .
Now, Eq. (5.14) reduces to
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ψ̇ = g(xτ , ψ,ψτ ) + ε
(
Q ψ+φ

2 − ψ
)
, (5.15a)

φ̇ = g(xτ , φ, φτ ) + ε
(
Q ψ+φ

2 − φ
)
. (5.15b)

The Jacobian matrix of the system is described by

(
δ + ε

( Q
2 − 1

) Qε

2
Qε

2 δ + ε
( Q
2 − 1

)

)

= 0, (5.16)

where we consider that the time-averaged values of g′(xτ , ψ,ψτ ) and g′(xτ , φ, φτ )

are approximately same and are equal to an effective constant δ. This type of approx-
imation has been used in Refs. [105, 106, 124] for the low-dimensional systems
without intrinsic time delay; here we extend the same for the time-delayed systems.

Now, the characteristic equation of the Jacobian matrix (5.16) is

λ2 − 2Λλ + Λ2 −
[
εQ

2

]2

= 0, (5.17)

where Λ = δ + ε
( Q
2 − 1

)
. Thus, we have the following two eigenvalues: λ1 =

δ + ε(Q − 1), λ2 = δ − ε. For amplitude death to occur, λ1,2 should be negative
[124], which gives: Q < 1 − δ

ε
, and ε > δ. Thus, the critical parametric condition

for which amplitude death occurs is given by

Qcr = 1 − δ

εcr
, (5.18)

alongwith εcr > δ; here Qcr and εcr are the critical values of themean-field parameter
and coupling strength, respectively.

5.3 Numerical Simulation

5.3.1 System Description

For numerical verification of the analytical predictions and demonstration of the
collective behaviors, we consider the following first-order nonlinear retarded time-
delayed system proposed in Chap.2

ẋ = −ax − b f (xτ ), (5.19)

where a and b are positive parameters. The nonlinear function f (xτ ) is given by
Eq. (2.35) (p. 30):

http://dx.doi.org/10.1007/978-3-319-70993-2_2
http://dx.doi.org/10.1007/978-3-319-70993-2_2
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Fig. 5.1 a Hyperchaotic attractor for b = 2.4 and τ = 3. b Lyapunov exponent spectrum with b
for τ = 3, the vertical line is for b = 2.4; the inset shows Kaplan–Yorke dimension (DKY ). Other
parameter values are a = 1, n = 1.15, m = 0.97, and l = 2.19

f (xτ ) = −0.5n
(|xτ | + xτ

) + m tanh (lxτ ), (5.20)

where n,m, and l are positive parameters that determine the nature of the nonlinearity.
The detailed chaotic dynamical behaviors have been discussed in Chap.2. The nature
of the hyperchaotic attractor for b = 2.4 and τ = 3 for individual system along LE
spectrum and DKY dimension is shown in Fig. 5.1.

5.3.2 Numerical Results

The system Eq. (5.1) (with Eqs. (5.19) and (5.20)) is simulated numerically using
Runge–Kutta algorithm with step size h = 0.01. Without any loss of generality, the
following initial functions have been used for all the numerical simulations: for the
x1-system: ξx1(t) = 0.95, and for the x2-system: ξx2(t) = 0.85. Also, the following
system design parameters are chosen throughout the numerical simulations: a = 1,
n = 1.19, m = 0.97, l = 2.19, and b1 = b2 = 2.4.

5.3.2.1 Effect of Intrinsic Time Delays: Transitions Among AD, GAS,
CS, and GLS.

At first, we explore the effect of intrinsic time delay on the dynamics of the coupled
system. Figure5.2a depicts the phase diagram showing the zone of unsynchronized,
synchronized, andAD states in ε−τ2 space for a constant τ1.We observe that beyond
a certain coupling strength [e.g., ε = 5, along the solid horizontal line of Fig. 5.2a],
for a fixed τ1, if τ2 is varied from a low to high value, the coupled system shows
transitions fromAD to generalized anticipatory synchronization (GAS) (for τ1 > τ2)
to complete synchronization (for τ1 = τ2) to generalized lag synchronization (GLS)
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(for τ1 < τ2), and again to AD state. Further, for a weaker coupling strength, we
have a transition from GAS to CS to GLS, and no AD occurs. The analytically
obtained critical value of ε, εcr , beyond which synchronization occurs is shown in
Fig. 5.2a with dashed (red) line, which is obtained by using Eq. (5.13) (with, τ1 =
6, Ψ ′ = 1.1, Q = 0.6); it lies well within the numerically obtained synchronized
zone indicating the effectiveness of our stability analysis.

Next, we consider ε = 5 and vary τ2 (i.e., along the dotted (blue) line of Fig. 5.2a).
Figure5.2b shows the first five LEs; with increasing τ2, the largest LE (solid line)
makes a transition from negative values (indicating AD) to zero value [indicating
periodic and synchronized (since all other LEs are negative) states], and again to
negative values (indicating AD state). From the LE spectrum, it is also obvious that
sufficientmismatch in intrinsic time delays enhance the region ofAD in the parameter
space. Further, unlike delay-coupled oscillators, we find no “avoided crossing” [59]
in the LE spectrum confirming that no phase-flip transition occurs for the variation of
intrinsic time delay.We computeΔ from Eq. (5.12) to show the real-time variation of
the error function of GAS and GLS. Figure5.2c, d show this for the GAS (τ2 = 5.8)
and GLS (τ2 = 6.2), respectively, with ε = 1.8 which is greater than the analytically
obtained value of εcr (with, τ1 = 6, Ψ ′ = 1.1, Q = 0.6). It is clear that the error
function attains a zero steady-state value confirming the occurrence of GAS and
GLS.

Next, for τ1 = 6 and ε = 5,weplot the time evolution of x1(t) (solid line) and x2(t)
(dotted line). With the variation of τ2, we can see the transitions (Fig. 5.2e–i) from
AD (τ2 = 4) to GAS (τ2 = 5.2 < τ1), CS (τ2 = 6 = τ1) to GLS (τ2 = 7 > τ1), and
finally again to AD (τ2 = 8). In the transient regions of the AD states in Fig. 5.2e, i,
one can observe that the GAS and GLS behaviors, respectively, lead to AD; we find
no “phase-flip” in the transient behaviors for any intrinsic time delay; this along with
the LE spectrum confirms that variation of intrinsic time delay does not result in
phase-flip transition.

Since at present, there exists no confirmatory quantitative measure of GAS and
GLS, we compute a modified form of the similarity function S defined as [154]

S2(τd) =
〈
[H(

x1(t + τd)
) − x2(t)]2

〉

[〈x21 (t)〉〈x22 (t)〉] 1
2

, (5.21)

where τd is the time delay between x1 and x2 that is equal to τd = |τ2 − τ1|. For the
synchronized states S ≈ 0. For a GAS case (Fig. 5.2f), we find that x2(t) leads x1(t)
by τd ≈|τ1−τ2|, and also using linear regression between x2(t) and x1(t+τd)wefind
that x2(t) = H(x1(t+τd)) ≈ 0.909x1(t+τd).With this relation, fromEq. (5.21), we
find the similarity function, SGAS = 0.039; however, if we consider H as an identity
function (as in the case of conventional AS), we have S = 0.102 that is much larger
than SGAS , which confirms the occurrence of GAS. At this point, it should be noted
that, in general, H is not a linear scaling factor (unlike projective synchronization
[44]), thus a higher order polynomial regression is needed to describe the form of H
more precisely, and that results in a much lower value of SGAS . Similarly, for GLS
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Fig. 5.2 τ1 = 6. a Phase diagram in ε − τ2 parameter space (Q = 0.6). NS: unsynchronized state.
Horizontal dashed line indicates the analytically obtained critical curve for obtaining synchronized
states. b The Lyapunov exponent (LE) spectrum with τ2 for ε = 5, τ1 = 6, and Q = 0.6. c, d Time
evolution of the error function of GAS (τ2 = 5.8) (c), and GLS (τ2 = 6.2) (d); both show that
synchronization error asymptotically goes to zero. e–i time series of x1(t) and x2(t) show transitions
from AD (τ2 = 4) to GAS (τ2 = 5.2) to CS (τ2 = 6) to GLS (τ2 = 7), and finally again to AD
(τ2 = 8)
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Fig. 5.3 a Phase diagram in τ1–τ2 parameter space (ε = 5, and Q = 0.6). Dotted diagonal line
indicates CS for τ1 = τ2. b, c The eigenvalue spectrum of the coupled systems (b) τ2 = 7 (i.e.,
near but before AD) (c) τ2 = 8 (i.e., near but after AD); note that the real part of all the eigenvalues
now become negative

(Fig. 5.2h) we find x2(t) = H(x1(t − τd)) ≈ 1.081x1(t − τd) (τd ≈|τ1 − τ2|) with
a similarity function SGLS = 0.035, which is less than 0.112, computed by taking
H as an identity function (i.e., conventional LS). For τ1 = τ2, we observe complete
synchronization with x2(t) = x1(t), and S = 0.

Next, we take a sufficiently high coupling strength (ε = 5) to ensure the syn-
chronized state and vary τ1 and τ2 (Fig. 5.3a) simultaneously. We observe that two
AD regions are separated by a synchronized state consisting of GAS (τ1 > τ2), CS
[τ1 = τ2, i.e., along the diagonal dotted line], and GLS (τ1 < τ2). Thus, with the
variation of (τ1 − τ2), we can clearly observe the following transitions: AD → GAS
→ CS → GLS → AD. We observe that for higher values of intrinsic time delays,
larger mismatch is required to achieve AD for a fixed coupling strength. In this con-
text, we also noticed that, for equal intrinsic time delays, with increasing intrinsic
time delay, critical value to get AD increases slightly; this fact can be explained from
Eq. (5.18), which shows that for a fixed Q, εcr is proportional to δ that is a function
of intrinsic time delay.

To confirm the occurrence of AD quantitatively, we compute the eigenvalue spec-
trum of the coupled systems using the bifurcation package DDE-BIFTOOL [34]. For
an illustrative example, Figs. 5.3b, c show the eigenvalue spectrum of the coupled
systems for τ2 = 7 (i.e., near but before the occurrence of AD) and τ2 = 8 (i.e.,
near but after the occurrence of AD), respectively (other parameters are ε = 5 and
τ1 = 6). With increasing τ2, the real part of the largest eigenvalue changes from
positive to negative value confirming the occurrence of AD in the coupled system.
Further, we observe that the largest complex conjugate pair of eigenvalues cross the
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Fig. 5.4 Q=0.6: a Lyapunov exponent (LE) spectrum of largest five LEs. Inset shows the same, but
now the range is ε ∈ (0.3, 1.2), and curves are smooth (through averaging) for clarity. bBifurcation
diagram of x1 with ε. AD represents AD region in ε parameter space. c Variation of CPR and CC
with ε (Q=0.6)

imaginary axis �(λ) from right to left confirming that the route to AD is indeed
through a Hopf bifurcation.

5.3.2.2 Effect of Coupling: Transitions Among Unsynchronized, PS,
CS, and AD

We set τ1 = τ2 = 3 (i.e., to ensure the hyperchaos in the uncoupled individual
systems), and vary ε (with Q = 0.6). Figure5.4a shows the first five LEs in the ε

parameter space, ε ∈ (0, 8). Inset of the figure shows the same in ε ∈ (0.3, 1.2),
but with smooth curves. It can be seen that LE4 becomes negative at ε ≈ 0.65
that indicates the onset of phase synchronization (PS) [96]. Further, LE3 makes a
transition from a positive to negative value at ε ≈ 1, indicating the onset of complete
synchronization (CS). With further increase in ε, the largest LE, LE1, becomes zero
at ε ≈ 1.85, indicating that the dynamics of the coupled systems now become
periodic. The transition of LE1 from zero to a negative value is indicative of AD in
the coupled systems.With further increase in ε, LE1monotonically decreases toward
a more negative value ensuring the stability of the AD state. The AD state can best be
observed from the bifurcation diagram of x1 (Fig. 5.4b) with ε. The figure shows the
emergence of AD from hyperchaos through an inverse period doubling sequence.

The transition from the unsynchronized state to complete synchronized state
through in-phase synchronized state is verified using correlation of probability of
recurrence (CPR), and cross-correlation function (CC). The CPR is a quantitative
measure of phase synchronization (PS) introduced in [81, 108]. It is related with the
generalized autocorrelation function (P(t)) defined as,

P(t) = 1

N1 − t

N1−t∑

i

Θ
(
εt − ‖xi − xi+t‖

)
. (5.22)
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See Chap.4 (Sec. 4.2.2.2, p. 63) for a detailed discussion. The CPR is defined as [81,
108]: CPR = 〈P̄1(t)P̄2(t)〉

σ1σ2
; P̄1,2 present that the mean value has been subtracted, and

σ1,2 are the standard deviations of the P1(t) and P2(t), respectively. For PS states,
CPR ≈ 1. Further, the cross-correlation function is defined as

CC =
〈
(x1(t) − 〈x1(t)〉)(x2(t) − 〈x2(t)〉)

〉

√〈
(x1(t) − 〈x1(t)〉)2

〉〈
(x2(t) − 〈x2(t)〉)2

〉 . (5.23)

CC is a measure of complete synchronization (CS) [96]; in the CS state, CC= 1.
Figure5.4c shows the variation of CPR and CCwith ε. Increase of both the measures
froma zero valuewith increase in the coupling strength ε agreeswith theLE spectrum
and bifurcation diagram. For ε > 0.65, CPR attains values nearly equal to unity
indicating the onset of PS, and for ε > 1, CC attains a value of unity indicating the
onset of CS in the coupled systems.

Figure5.5 depicts the time variation of x1(t) and x2(t) (for Q = 0.6); it shows
that with increasing ε, the coupled systemsmake a transition from unsynchronized to
complete synchronized states via in-phase synchronized states. Further, this transition
is associatedwith a simultaneous transition of systemdynamics, namely the transition
from hyperchaotic to periodic states. AD is shown in Fig. 5.5f for ε = 6.2, which
shows that both of the coupled systems attain the zero steady state which is the only
and trivial steady state of the uncoupled systems. Figure5.6 depicts the phase diagram
in the ε −Q space, which shows three distinct regions, namely unsynchronized state
(NS), in-phase or complete synchronized state (PS/CS), and amplitude death (AD)
state. It is noteworthy that the transition from the unsynchronized state (NS) to
synchronized state (PS/CS) does not depend upon the mean-field parameter Q, but
depends only upon the coupling strength, ε, which is in accordancewith the analytical
result of Eq. (5.10).

5.4 Experiment

We set up an experiment using electronic circuit to implement the time-delayed
system Eq. (5.19) (with Eq. (5.20)) under the mean-field diffusive coupling scheme
given by Eq. (5.1). Figure5.7 shows the representative diagram of the experimental
electronic circuit. The proposed circuit consists of three distinct parts, namely, the
x1-system (upper portion), x2-system (lower portion), and the circuit to realize the
mean-field coupling (middle portion). Both the x1 and x2-systems consist of a low-
pass section (R0 − C0), nonlinear device (ND), delay block (DELAY), gain (b1 and
b2), and other circuitry used to realize the proper coupling. The ND block produces
the nonlinearity of both x1 and x2-systems; the circuit to realize the ND block is
shown in Fig. 2.25 in Chap.2 (p. 36). For a given input voltage Vτ (say), this circuit
has a nonlinearity, f (Vτ ), given in Chap.2

http://dx.doi.org/10.1007/978-3-319-70993-2_4
http://dx.doi.org/10.1007/978-3-319-70993-2_4
http://dx.doi.org/10.1007/978-3-319-70993-2_2
http://dx.doi.org/10.1007/978-3-319-70993-2_2
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Fig. 5.5 Q=0.6: variation of system dynamics and synchronization states for variable ε. It shows
that with increasing ε the coupled systems make a transition from the unsynchronized state (hyper-
chaotic) (a) to amplitude death state (f) via hyperchaotic in-phase synchronized state (b) and
hyperchaotic or chaotic and periodic complete synchronized states (c, d, e)

f (Vτ ) = −0.5
R5

R4

(
|Vτ | + Vτ

)
+ R5

R3
βVsat tanh

(
ω
R2

R1

Vτ

Vsat

)
. (5.24)

Here, β and ω are certain scaling factors that depend upon the nonideal and asym-
metric nature of the op-amps, and Vsat is the saturation voltage of the op-amps. The
gain part b1 and b2 (= b) is realized with op-amp A3 as shown in the same figure.
The delay part is implemented using a chain of cascaded active all-pass filters (APF)
[115] (shown in Fig. 2.13, p. 26).

Let V1(t) be the voltage drop across the capacitance C0 of the low-pass section
of x1-system, and that of x2-system be V2(t). Then, the equations that represent the
circuit dynamics are
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Fig. 5.6 Phase diagram in ε–Q parameter space.AD: amplitude death; PS/CS: in-phase or complete
synchronized state; NS: unsynchronized state. Solid line indicates the analytically obtained critical
curve for obtaining AD (with δ = 2.51), dotted vertical line indicates the synchronization transition
curve

Fig. 5.7 Representative diagram of the experimental circuit (see text for a detailed description)
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R0C0
dV1(t)

dt
= −V1(t) − R10

R8

(
R7

R6
f
(
V1TD

)) + R10

R9

(
RQ

R
V (t) − V1(t)

)
, (5.25a)

R0C0
dV2(t)

dt
= −V2(t) − R10

R8

(
R7

R6
f
(
V2TD

)) + R10

R9

(
RQ

R
V (t) − V2(t)

)
. (5.25b)

Here, f (ViTD
) ≡ f (Vi (t−TD)) (i = 1, 2) is given byEq.5.24, andV (t) = V1(t)+V2(t)

2 .
Now, we define the following dimensionless parameters and variables: t = t

R0C0
,

τ = TD
R0C0

, x1 = V1(t)
Vsat

, x1τ
= V1TD

Vsat
, x2 = V2(t)

Vsat
, x2τ

= V2TD
Vsat

, X = V (t)
Vsat

, n1 = R5
R4
,

m1 = β R5
R3
, l1 = ω R2

R1
, b = R7

R6
, γ = R10

R8
= 1, ε = R10

R9
, and Q = RQ

R . With these,
Eq. (5.25) reduces to the following dimensionless form:

dx1
dt

= −x1(t) − b f
(
x1τ

) + ε(QX − x1), (5.26a)

dx2
dt

= −x2(t) − b f
(
x2τ

) + ε(QX − x2), (5.26b)

with
f (vτ ) ≡ −0.5n1(|vτ | + vτ ) + m1 tanh (l1vτ ), (5.27)

where v ≡ x1, x2. Thus, Eq. (5.26) (with (5.27)) is equivalent to Eq. (5.1) (with
(5.19) and (5.20)) with a = 1 and proper choice of n1, m1, and l1.

In the experiment, the following component values are used: R1 = 10 k�, R2 =
18.55 k�, R3 = 18.55 k�, R4 = 5.6 k�, R5 = 10 k�, R6 = 1 k�, R8 = R10 = 1
k�. In the coupling part of Fig. 5.7, R = 10 k�. The low-pass sections have R0 = 1
k� and C0 = 0.1 μF. The APF section of Fig. 2.13 (p. 26) has R11 = R12 = 2.2 k�,
C = 10 nF, and RD = 10 k�. All the op-amps are TL074 IC (quad JFET op-amp)
with ±15 volt power supply. The resistors (capacitors) have 5% (1%) tolerance. R9

and RQ are varied with precession potentiometers (POT). With these values, the
experimental nonlinearity is shown in Fig. 2.26, which is same for both the systems.
To drive the systems into hyperchaotic zone, we use τ1,2 ≥ 3, and b1 = b2 = 2.4 by
setting R7 = 2.4 k�.

5.4.1 Effect of Intrinsic Time Delay

To demonstrate the effect of variation of intrinsic time delay for a fixed coupling
strength, we set R9 = 139 �, RQ = 8.76 k� and τ1 = 6, and vary τ2. Figure5.8
shows the snapshots of the experimental results [using Tektronix TDS2002B, 60
MHz, 1 Gs/s DSO]: It shows a transition from AD (Fig. 5.8a) to GAS (τ2 = 5)
(Fig. 5.8b) to CS (τ2 = 6) (Fig. 5.8c) to GLS (τ2 = 7) (Fig. 5.8d), and again to AD
(Fig. 5.8e). It can be seen from Fig. 5.8b that the x2-system [dark gray(blue) trace]
leads the x1-system [light gray(orange) trace], and at the same time the waveform of
V2 differs from that of V1, both indicate the occurrence of GAS. Figure5.8d shows
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Fig. 5.8 Experimental demonstration of transitions among: a AD (τ2 = 4), b GAS (τ2 = 5), c
CS (τ2 = 6), d GLS (τ2 = 7), e AD (τ2 = 8). R9 = 139 �, RQ = 8.76 k�, and τ1 = 6. V1-
system (light gray(orange) trace), V2-system (dark gray(blue) trace). (Scale div: x-axis: 12 µs/div,
y-axis:1.25 volt/div). The traces of V2(t) in a and e shifted downwards by 1.2 V from that of V1(t)

the case of GLS; here V2 lags behind V1, and waveform of V2 and V1 are different,
which is in accordance with the numerical results (Fig. 5.2). We also observe GAS
and GLS in the hyperchaotic zone keeping proper values of R9 and RQ (not shown
here), which indicates that these phenomena are general.

5.4.2 Effect of Coupling

We set τ1 = τ2 = 3 and vary ε by varying R9 and keep Q fixed by fixing RQ = 7.5
k�. The results of this variation are shown in Fig. 5.9. For R9 = 10.77 k�, the
scenario is shown in the first row a(1–3) of Fig. 5.9; (a1) shows the hyperchaotic
attractor, and (a2) and (a3) show that there is no correlation between the coupled
systems for these parameter values, and both the systems evolve independently. For
R9 = 862 �, one can observe in-phase synchronization (Fig. 5.9b1–b3). The third
row (c(1–3)) shows the complete synchrony for R9 = 120 �. Period-2 (fourth row
d(1–3)) and Period-1 oscillations (fifth row e(1–3)) are shown for R9 = 86 � and
R9 = 30 �, respectively. At very low coupling resistance (i.e., high value of ε),
the coupled systems show amplitude death (AD); Fig. 5.9f2 shows the waveforms
for R9 = 15 � that indicates the occurrence of AD, i.e., now the oscillations in
both the systems die out. P1(t) and P2(t) defined by Eq. (5.22) is computed from the
experimental time series data (acquired usingDSO,TektronixTDS2002B, 60MHz, 1
GS/s) (εt = 0.01, and N1 = 2400). Figure5.10a shows P(t)s for the unsynchronized
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Fig. 5.9 Experimental waveforms and phase-plane plots with fixed Q (RQ = 7.5 k�) and variable
ε. The left column shows the phase-plane plots (V1(t)−V1(t − TD)), the middle column shows the
real-timewaveformsofV1(t)- (yellow) andV2(t)-(blue), and the right column shows the phase-plane
plots in (V1(t) − V2(t)) plane. a(1–3) The unsynchronized state; b(1–3) in-phase synchronization;
c(1–3) complete synchronization; d(1–3) period-2 oscillation; e(1–3) period-1 oscillation, and f(1–
3) show AD; in (f2) the trace of V2(t) (blue) is shifted downward by 1.2 volt from that of V1(t)
(yellow trace). (For the parameter values see text; Scale div: Second column (a2–f2): x-axis: 25
µs/div, y-axis:1.25 volt/div. Other plots: x and y-axes: 0.5 v/div)
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Fig. 5.10 Plots of generalized autocorrelation functions using the experimental time series data
(a) unsynchronized state (parameters are the same as Fig. 5.9a1–a3), b in-phase synchronized state
(parameters are the same as Fig. 5.9b1–b3)

case, which shows that peaks of P1(t) does not match with that of P2(t) in the t-axis,
indicating unsynchronized states. Figure5.10b is for the in-phase synchronization;
here the dominant peaks of P1(t) and P2(t) match exactly in the t-axis.

5.5 Summary

In this chapter, we have explored the phenomena of amplitude death and the related
synchronization transitions leading to amplitude death in intrinsic time delay hyper-
chaotic oscillators coupled through mean-field diffusion. We have identified two
types of synchronization transitions that lead to amplitude death (AD): (i) a novel
transition scenario, namely the transitions among AD, generalized (anticipatory, lag)
(GAS, GLS) and complete synchronization (CS); this transition is mediated by the
variation of the difference of the intrinsic time delays and has no analog in cou-
pled low-dimensional systems (with or without coupling delay). (ii) Transition to
the amplitude death state from an unsynchronized state via in-phase (complete) syn-
chronized states. This transition is mediated by the coupling parameters (with the
coupled systems having equal intrinsic time delays).

We have derived a stability condition for the GAS, GLS, and CS cases using
Krasovskii–Lyapunov theory; also, stability analysis has been carried out to predict
the zone of AD in the parameter space. We have exemplified our results numeri-
cally using a prototype hyperchaotic oscillator with intrinsic time delay. Through
the modified similarity function, LE spectrum, correlation functions, and eigenvalue
spectrum, we have identified the zone of GAS, GLS, CS, and amplitude death in the
parameter space. It has been found that numerical results agree well with the analyti-
cal derivations. The eigenvalue spectrum of the coupled systems revealed that, in the
present system, the route to amplitude death is through Hopf bifurcation. Through
the transient dynamics and the Lyapunov exponent spectrum, it has been shown that,
unlike systems with coupling time delay, the variation of intrinsic time delay does
not induce phase-flip transition, but results in transitions among GAS, CS, and GLS.
Finally, we set an experiment using electronic circuit to demonstrate all the transi-
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tion scenarios and amplitude death. It has been observed that the experimental results
qualitatively agree well with the analytical results and numerical observations. The
present study can be extended to the network of mean-field coupled time-delayed
systems with distributed intrinsic time delays, that may reveal the phenomena of
GAS and GLS in a more general way.
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Chapter 6
Epilogue: Future Directions

Dynamics of nonlinear time-delayed systems is a broad subject. In this brief, we
only covered two specific topics: design of time-delayed chaos generators and their
collective behaviors. In the following, we discuss few topics that are of immense
importance and should govern the future research in nonlinear time-delayed systems.

6.1 Studies on Systems Having Distributed Time Delay

In this brief, we have discussed the scalar time-delayed systems having discrete and
single time delay: this only represents a special class. However, there also exist sys-
tems and processes that possess distributed time delay. Examples include the time lag
phenomenon in thermodynamics, transmission line, ecology, and epidemiology (see
Refs. [49, 54] for details). Unlike discrete delay, exploring the dynamics of distrib-
uted time-delayed systems is a challenging problem for the researchers. Moreover,
implementation of these systems in electronic circuits is itself an open engineering
problem and should be studied in details.

6.2 Collective Behavior: Chimera States

The chimera state is an intriguing and counterintuitive spatiotemporal state that has
been in the center of intensive research over the past decade [91, 113]. In this state,
a network of coupled identical oscillators spontaneously splits into two incongruous
domains: in one domain the neighboring oscillators are synchronized, whereas in
another domain the oscillators are desynchronized. The chimera state was discovered
byKuramoto and Battogtokh [67] in 2002 in phase oscillators. Later, Strogatz and his
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group [2, 3] provided the analytical proof of the occurrence of chimera in identical
phase oscillators. The name “chimera” was coined by Strogatz [3] considering the
fact that in the Greek mythology chimera is a fire-breathing animal that contains the
incongruousparts of a goat, a lion, and a snake.Later on, several chimerapatterns have
been discovered where, in contrast to the chimera state in phase oscillators, not only
phase but also amplitude contributes to the spatiotemporal behavior [9, 121, 152].
Recent experimental observation of chimera states has established their robustness in
natural and man-made systems. The first experimental observation of chimeras was
reported in optical systems [51] and chemical oscillators [137]. A continuous effort
is on to observe new kind of chimeras: for example, the coherence resonance chimera
in excitable systems [116] and imperfect traveling chimera [19] discovered a novel
chimera state. Several chimera patterns have been found inmodels fromecology [32],
neuronal systems [19], SQUID metamaterials, and quantum systems [18] showing
their omnipresence in the macroscopic as well as in the microscopic world. In this
context, however, a systematic observation of chimeras in intrinsic time-delayed
systems and their detailed characterizations are not well explored. Therefore, studies
on chimera in networks of time-delayed systems appear to be a potential research
problem in the coming years.

6.3 Collective Behavior: Symmetry Breaking Oscillation
Quenching States

Oscillation quenching is an emergent and intriguing phenomenon that has been the
topic of extensive research in diverse fields like physics, biology, and engineering
[63, 112]. There exist two distinct types of oscillation quenching processes: ampli-
tude death (AD) and oscillation death (OD). As discussed in Chap. 5, in the case
of AD, the coupled oscillators come to a common stable steady state which was
unstable otherwise and thus forms a stable homogeneous steady state (HSS). On
the other hand, in the case of OD, coupling breaks the symmetry of the system and
oscillators populate different coupling-dependent steady states and thus gives rise
to stable inhomogeneous steady states (IHSS); in the phase space, OD may coex-
ist with limit cycle oscillations. AD is important in the case of control applications
where suppression of unwanted oscillations is necessary, e.g., in laser and neuronal
systems. On the other hand, OD is a much more complex phenomenon because it
induces inhomogeneity in a rather homogeneous system of oscillators that has strong
connections and importance in the field of biology (e.g., synthetic genetic oscillator,
cellular differentiation) and physics (see Ref. [63] and references therein). However,
although the OD phenomenon in intrinsic time-delayed systems is of much impor-
tance, it has been largely ignored in the literature. Therefore, study on symmetry
breaking oscillation quenching states (OD) in time-delayed systems is a potential
problem for researchers.
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Appendix A
A Brief Tutorial on XPPAUT and LabVIEW

A.1 Solving DDE Using XPPAUT

XPPAUT is an open-source numerical tool for simulating, analyzing, and animat-
ing dynamical systems developed by Bard Ermentrout [35]. It contains a number of
integrators in it. The package is much flexible to use and faster than the conventional
commercial software packages. A few lines of code works for integrating dynamical
systems. Another great aspect of XPPAUT is that it provides a very “user-friendly”
interface of the bifurcation package AUTO. The installation of the package in differ-
ent OS environments, like Linux, Windows, MacOS, is supported. The source code
of the package is freely available and may be downloaded from the website “http://
www.math.pitt.edu/~bard/xpp/xpp.html”.Here,we provide a simple example of how
to integrate delay differential equations (DDEs) in XPPAUT.

In the present example, we discuss the integration of the time-delayed system
given in Eqs. (2.1) and (2.2) in Chap.2 (p. 11), which reads the following form

ẋ = −ax(t) + b
[ − nx(t − τ) + m tanh

(
lx(t − τ)

)]
, (A.1)

where a > 0, b, n, m, and l are constants. τ is the positive time delay. All we need
is to write an ODE file. The time-delayed system Eq. (A.1) is implemented in the
delay.ode as follows:
#delay.ode
par a = 1, b = 1, n = 2.2, m = 1, l = 10, tau = 4
f(x) = -n*x + m*tanh(l*x)
x’ = -a*x + bf(delay(x, tau))
aux xt = delay(x, tau)
x(0) = 0.9
@ delay = 20
@ dt = 0.01
@ total = 1000, maxstor = 1000000, trans = 700
done
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Fig. A.1 (Left Panel)The main window of XPPAUT; (Middle Panel) Window to specify phase-
plane plot; (Right Panel) The main window of XPPAUT showing phase-plane plot

The first line starts with the # sign, implies the comment in the ODE file. XPPAUT
does not read the line startingwith #. The second line startingwith par tellsXPPAUT
about the parameters appearing in the system and their respective values (there should
be no space between “=” sign and parameters, because XPPAUT considers space
as delimiter, thus a = 1, not a = 1). The third line is a definition of the func-
tion occurring in the system. The fourth line defines the system equation. Here,
the delay in x is written by the command delay(x,tau). The fifth line tells
XPPAUT to store the variable x(t − τ), i.e., the delayed variable as auxiliary in xt
variable (for phase-plane plotting). The sixth line indicates the history function; here
we consider constant value for it. The sign @ is a directive that sets some options
in XPPAUT. Here at the seventh line, the command @ delay = 20 defines the
maximum delay allowed in the integration. In the eighth line, @ dt = 0.01, sets
the time step of integration to 0.01. The ninth line specifies total time through the
command @ total = 1000, i.e., XPPAUT integrates up to time 1000. In the
same line, the command (@) maxstor = 1000000 is a special command and
a very useful one. Generally, XPPAUT allocates storage to hold 5000 time points.
With the command (@) maxstor = 1000000, we fixed it to store 1000000
time points. The command (@) trans = 700 here indicates XPPAUT to leave
700 times as transients. Finally, the ending command done tells XPPAUT that the
end of programming has occurred. Running the program by the command xppaut
delay.ode and clicking Initialconds, Go (IG) followed by Window,
Fit (WF), we get the following windowwhich shows the time series of the system
from the time left after transients to the maximum time specified in the ODE file and
shown in Fig.A.1 (left panel).

To see the phase space diagram in x − x(t − τ) plane click Viewmap, 2-D
(V2) then a window shown in Fig.A.1 (middle panel) appears. Here, the x-axis
is assigned T and the y-axis as x by default. Replace x-axis: x and y-axis:
xt (which is stored as auxiliary) then click OK. In the main window type, WF and
the phase space of Fig.A.1 (right panel) is obtained. For more advanced and full
references and examples, readers are suggested to consult the book by Bard
Ermentrout [35].
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Fig. A.2 (Upper panel) The main window of LabVIEW, (Lower left panel) Virtual Instruments
(VI) window, (Lower right panel) Front panel of VI

A.2 Data Acquisition Using LabVIEW

LabVIEW or Laboratory Virtual Instrument Engineering Workbench is a visual pro-
gramming language for system design platform and development environment [69]
developed by National Instruments. LabVIEW is mainly used for data acquisition,
control of instruments, and industrial automation. We discuss some basic features of
LabVIEW as data acquisition environment that has been used in this book. We show
an example to collect data from an external signal source or circuit and display the
time series in the computer screen. The required environment is LabVIEW along
with hardware data acquisition system (DAQ).

1. First of all, connect the data acquisition (DAQ) system to computer through a
USB cable and connect the external signal source (maybe signal generator or
any experimental circuit) to DAQ. Then open the LabVIEW software: it will
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Fig. A.3 Block Diagram VI

Fig. A.4 (Left) DAQ Assistant options window, (Right) Front panel window

create a window shown in Fig.A.2 (upper panel). Now select File, New VI.
This will open two windows as shown in Fig.A.2 (lower panels): the block
diagram window (lower left panel) where block diagrams of the user interface
(UI) program elements are arranged and the front panel window (lower right
panel), which displays graphs and other processed outputs.

2. To program in LabVIEW, one should use the block diagramwindow. Right click
in block diagramwindow opens a tray. Here, select Express, Input, DAQ
Assist as shown if Fig.A.3 (left panel). Selection of this creates an icon DAQ
Assist in the block diagram window Fig.A.3 (right panel). Also, it opens a
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Fig. A.5 (Left panel) Block diagram in VI, (Right panel) Front panel of LabVIEW

sub-window to customize the DAQ Assist (Fig.A.3 (right panel)). Select
Acquire Signals, Analog Input, Voltage and select the “Sup-
ported Physical Channels” to ai0 (say) and click Finish. This opens another
window shown in Fig.A.4 (left panel). In this window select Terminal
Configuration to RSE. Select Acquisition Mode to Continuous
Samples. Samples to Read to 10k (say) and Rate(Hz) to 1k (say).
Then click OK. This asks to use a while loop in the block diagram window.
Select Yes. This creates a while loop in the block diagram with a stop icon. The
“stop” button is created in front panel. Resize it as required and drag it to desired
position in the front panel.

3. We want to visualize the signal. This can be achieved in the front panel. To
do this right click in the front panel window and select Graph, Waveform
Graph (see Fig.A.4 (right panel)). This creates a graph in the front panel and
an graph icon in the block diagram. Connect the icon to the DAQ Assist with
spool wire in the block diagram window (see Fig.A.5 (left panel)).

4. Now connect the output from circuit or signal source to the input port ai0
of the DAQ system. In any of the window, click arrow sign on the upper left
side to run the acquisition. The acquisition of experimental time series is shown
in Fig. 3.9 (Chap.3, p. 50), it also shows the phase-plane plot and FFT of the
acquired signal. Also, we can control some of the parameters through controlling
the voltage level from LabVIEW.
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