
Lecture Notes in Electrical Engineering 350

Vinod Pangracious
Zied Marrakchi
Habib Mehrez

Three-Dimensional
Design Methodologies
for Tree-based FPGA
Architecture

Lecture Notes in Electrical Engineering

Volume 350

Board of Series editors

Leopoldo Angrisani, Napoli, Italy
Marco Arteaga, Coyoacán, México
Samarjit Chakraborty, München, Germany
Jiming Chen, Hangzhou, P.R. China
Tan Kay Chen, Singapore, Singapore
Rüdiger Dillmann, Karlsruhe, Germany
Haibin Duan, Beijing, China
Gianluigi Ferrari, Parma, Italy
Manuel Ferre, Madrid, Spain
Sandra Hirche, München, Germany
Faryar Jabbari, Irvine, USA
Janusz Kacprzyk, Warsaw, Poland
Alaa Khamis, New Cairo City, Egypt
Torsten Kroeger, Stanford, USA
Tan Cher Ming, Singapore, Singapore
Wolfgang Minker, Ulm, Germany
Pradeep Misra, Dayton, USA
Sebastian Möller, Berlin, Germany
Subhas Mukhopadyay, Palmerston, New Zealand
Cun-Zheng Ning, Tempe, USA
Toyoaki Nishida, Sakyo-ku, Japan
Bijaya Ketan Panigrahi, New Delhi, India
Federica Pascucci, Roma, Italy
Tariq Samad, Minneapolis, USA
Gan Woon Seng, Nanyang Avenue, Singapore
Germano Veiga, Porto, Portugal
Haitao Wu, Beijing, China
Junjie James Zhang, Charlotte, USA

About this Series

“Lecture Notes in Electrical Engineering (LNEE)” is a book series which reports
the latest research and developments in Electrical Engineering, namely:

• Communication, Networks, and Information Theory
• Computer Engineering
• Signal, Image, Speech and Information Processing
• Circuits and Systems
• Bioengineering

LNEE publishes authored monographs and contributed volumes which present
cutting edge research information as well as new perspectives on classical fields,
while maintaining Springer’s high standards of academic excellence. Also
considered for publication are lecture materials, proceedings, and other related
materials of exceptionally high quality and interest. The subject matter should be
original and timely, reporting the latest research and developments in all areas of
electrical engineering.

The audience for the books in LNEE consists of advanced level students,
researchers, and industry professionals working at the forefront of their fields. Much
like Springer’s other Lecture Notes series, LNEE will be distributed through
Springer’s print and electronic publishing channels.

More information about this series at http://www.springer.com/series/7818

http://www.springer.com/series/7818

Vinod Pangracious • Zied Marrakchi
Habib Mehrez

Three-Dimensional
Design Methodologies
for Tree-based
FPGA Architecture

123

Vinod Pangracious
Electrical and Computer Engineering
Department, School of Engineering

American University in Dubai
Dubai
United Arab Emirates

Zied Marrakchi
Flexras Technologies
Biocitech
Romainville
France

Habib Mehrez
University of Pierre and Marie Curie,
Paris VI

Paris
France

ISSN 1876-1100 ISSN 1876-1119 (electronic)
Lecture Notes in Electrical Engineering
ISBN 978-3-319-19173-7 ISBN 978-3-319-19174-4 (eBook)
DOI 10.1007/978-3-319-19174-4

Library of Congress Control Number: 2015941877

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

To my wife Juliet Vinod, and my kids Liz, Lia
and Yehoshua

Preface

Three-dimensional integrated circuits (3D-ICs) design has become a major driving
force in the modern VLSI design and manufacturing technology. It provides the
best platform for design and manufacturing of high density and high performance
chips and the field is continuing to grow at an amazing pace. The idea to write this
book on 3D FPGAs using 3D technology originated from the research and
experimental work done during my doctoral studies at University of Pierre and
Marie Curie under the guidance of Professor Habib Mehrez. This book was written
as a text that covers the foundations of 3D integrated circuits and high performance
3D reconfigurable FPGA architecture design. It was written for use in a core and
elective course at the graduate level in field of Electrical Engineering, Computer
Engineering, and doctoral research programs. Today, many universities upgrade
their curriculum to include modern VLSI design methodologies and re-configurable
system design. No previous background on 3D integration is required, nevertheless,
fundamental understanding of 2D CMOS VLSI design is required. It is assumed
that the reader has taken the core curriculum in Electrical Engineering or Computer
Engineering, with courses like CMOS VLSI design, Digital System Design and
Microelectronics Circuits being the most important. It is accessible for self-study by
both senior students and professionals alike.

Scope and Coverage

A brief introduction and the concept of 3D integration is presented in Chap. 1. It
begins with brief review of advanced VLSI design and technology scaling; Chap. 1
continues to establish the basic and fundamental needs of introducing three-
dimensional integrated circuits design into the modern VLSI technology. It also
stress the needs for new and augmented 3D CAD tools to support designs such as,
the design for 3D, to manufacture high performance 3D integrated systems and
reconfigurable architecture. Three-dimensional (3D) integration is an emerging
technology that is expected to lead to an industry paradigm shift due to its

vii

http://dx.doi.org/10.1007/978-3-319-19174-4_1
http://dx.doi.org/10.1007/978-3-319-19174-4_1

tremendous advantages over 2D integration in terms of density and performance.
Academic and industrial research institutes around the world currently focus on
technology innovations, simulation and design and product prototypes. Anticipated
applications start with memory, portable device and high-performance computers,
reconfigurable system design and extend to high-density multifunctional hetero-
geneous integration of infotech-nanotech-biotech systems. Chapter 2 focuss on the
fundamentals and in-depth analysis of different 3D integration methodologies and
design. This chapter also talks about potential benefits of 3D integration that can
vary depending on approach; they include multi-functionality, increased perfor-
mance, reduced power, small form factor, reduced packaging, increased yield and
reliability, flexible heterogeneous integration and reduced overall costs.

Today, FPGAs (Field Programmable Gate Arrays) have become important actors
in the computational devices domain that was originally dominated by micropro-
cessors and ASICs. The main challenge in 2D FPGA design is to find a good trade-
off between flexibility and performances. Three factors combine to determine the
characteristics of an FPGA: quality of its architecture, quality of the CAD tools
used to map circuits into the FPGA and its electrical technology design. A first look
at the FPGA hardware is provided in Chap. 3. The chapter provides in-depth
analysis of programmable logic components and interconnection blocks in FPGA
design and how they are interconnected to function as a generic reconfigurable
system. This chapter establishes the basic understanding that FPGAs are semi-
conductor devices and contain programmable logic components connected by a
regular, hierarchical programmable interconnect system. The distinguishing char-
acteristic of FPGAs is their on-field programmability, which allows the logic
functionality of an FPGA to be re-programmed even after the manufacturing pro-
cess. FPGAs are used for rapid prototyping of digital circuits. The design and test of
digital systems are very time-efficient and cost-effective with FPGAs. It also dis-
cusses about the logic components in the FPGA, mostly consists of memory ele-
ments such as registers or even complete blocks of memory that can be configured
to hold any desired state. As we know, FPGAs were used mostly for prototyping
and emulation systems in the design process of digital system design and ASICs.
However, recently, FPGAs have become popular for a variety of mainstream
products in networking, telecommunication, digital signal processing and in con-
sumer electronics. FPGAs can be classified based on the technology using to
program it.

FPGA architectures have been intensely investigated over the past two decades.
A major aspect of FPGA architecture research is the development of Computer
Aided Design (CAD) tools for design and implementation of fast and high density
FPGAs and mapping applications to it. It is well established that the quality of an
FPGA-based implementation is largely determined by the effectiveness of accom-
panying suite of CAD tools. Benefits of an otherwise well-designed, feature-rich
FPGA architecture might be impaired if the CAD tools cannot take advantage of the
features that the modern FPGA design provides. Thus, CAD algorithm research is
essential to the necessary architectural advancement to narrow the performance
gaps between FPGAs and other computational devices like ASICs.

viii Preface

http://dx.doi.org/10.1007/978-3-319-19174-4_2
http://dx.doi.org/10.1007/978-3-319-19174-4_3

Two-dimensional CAD flow of mesh-based and tree-based FPGA architectures are
described and analyzed in Chap. 4. This chapter provides a perfect starting point for
FPGA designs to evaluate and understand the algorithms and data-structures used in
designing the software for FPGA placement and routing.

Chapter 5 provides the study of the existing variants of 2D tree-based FPGA
architecture and the impact of 3D migration on its topology. We have seen
numerous studies showing the characteristics of tree-based interconnect networks,
how they scale in terms of area and performance and empirically how they relate to
particular designs. Nevertheless, we have not had any breakthrough in optimizing
these network topologies to exploit the advantages in area and power consumption
and neither know how to deal with the larger wire-length issues that impede per-
formance of tree-based FPGA architecture. Through the course of this book, we try
to make the readers understand that, it is nearly impossible to optimize the area and
speed, unless we break the very backbone of the tree-based interconnect network
and resurrect again by using 3D technology. The 3D-ICs can alleviate interconnect
delay issues by offering flexibility in system design, placement and routing. A new
set of 3D FPGA architecture exploration tools and technologies developed to
validate the advance in performance and area. Modern FPGAs have become a
viable alternative to cell-based design technology by providing reconfigurable
computing platforms with improved performance and higher density. While the
reconfigurability provides flexibility, two-dimensional FPGAs also lead to area and
performance overhead in comparison to cell-based custom integrated circuits (ICs).
Thus, to combine the advantages of both FPGAs and custom ICs, modern FPGAs
have emerged as an attractive solution for system-on-chip implementations.
Modern FPGAs include design components such as digital signal processors, on
chip memory blocks, multipliers, adders and entire processors. In Chap. 6 our
primary focus is on validation of architecture exploration and optimization meth-
odologies of 3D homogeneous and heterogeneous tree-based and mesh-based
FPGAs.

A 3D-IC system consists of disparate materials with considerably different
thermal properties including semiconductor, metal, dielectric and possibly polymer
layers used for inter-plane bonding. Although the power consumption of these
circuits is expected to decrease due to the considerably shorter interconnects, the
power density increases since there is a greater number of devices per unit volume
compared to a 2D circuit. As the power density increases, the temperature of the
planes non-adjacent to the heat sink of the package can rise, resulting in degraded
performance or thermal gradients that can accelerate wear out mechanisms. Design
methodologies at various stages of the IC design flow, such as synthesis, floor-
planning, placement and routing, which maintain the temperature of a circuit within
specified limits or alleviate thermal gradients among the planes of the 3D circuit,
are therefore necessary. Two key elements are required to establish a successful 3D
thermal management strategy: a 3D thermal model, to characterize the thermal
behaviour of a circuit and design techniques that alleviate thermal gradients among
the physical planes of a 3D-IC system, while maintaining the operating temperature
within acceptable levels. The primary requirements of a thermal model are high

Preface ix

http://dx.doi.org/10.1007/978-3-319-19174-4_4
http://dx.doi.org/10.1007/978-3-319-19174-4_5
http://dx.doi.org/10.1007/978-3-319-19174-4_6

accuracy, low complexity and reasonably fast, while thermal design techniques
should produce high-quality circuits without incurring long computational design
time. To reduce the complexity of the modelling process, standard methods to
analyse heat transfer, such as finite difference, finite element and boundary element
methods, have been adopted to evaluate the temperature of a 3D circuit. Simpler
analytic expressions have also been developed to characterize the temperature
within a 3D system. The discussion culminates in Chap. 7 where design and
implementation three-dimensional thermal model and thermal design techniques to
improve the thermal profile and 3D-IC system and Chap. 7 focus its attention more
on thermal analysis of 3D FPGAs.

Design techniques for three-dimensional (3D) ICs considerably lag the signifi-
cant strides achieved in 3D manufacturing technologies. Advanced design meth-
odologies for two-dimensional (2D) circuits are not sufficient to manage the added
complexity caused by the third dimension. Consequently, design methodologies
that efficiently handle the added complexity and inherent heterogeneity of 3D cir-
cuits are necessary. These 3D design methodologies should support robust and
reliable 3D circuits while considering different forms of vertical integration, such as
system-in-package and 3D-ICs with fine grain vertical interconnections. Global
signalling issues, such as clock and power distribution networks, are further
exacerbated in vertical integration due to the limited number of package pins, the
distance of these pins from other planes within the 3D system and the impedance
characteristics of the through silicon vias (TSVs). In addition to these dedicated
networks, global signalling techniques that incorporate the diverse traits of complex
3D systems are required. One possible approach, potentially significantly reducing
the complexity of interconnect issues in 3D circuits, is by optimizing the number of
vertical interconnects (TSVs). Design methodologies that exploit the diversity of
3D structures to further enhance the performance of multi-plane integrated systems
are necessary. Chapter 8 introduce new 3D physical design methodology and
verification tools developed. This chapter also discuss the development of 3D
physical design methodology and tools using existing 2D CAD tools for the
implementation of 3D tree-based FPGA demonstrator. During the course of design
process, we addressed many specific issues that 3D designers will encounter
dealing with tools that are not specifically designed to meet their needs. In contrast,
the thermal performance is expected to worsen with the use of 3D integration. In
this Chapter, we examined precisely how thermal behaviour scales in 3D integra-
tion and determine how the temperature can be controlled using thermal design
techniques.

A concreted effort has been made to present three-dimensional integration and
high performance tree-based FPGA design using newly developed 3D physical
design tools and VLSI design methodologies. Three-dimensional integration is an
interdisciplinary field that relies on many experts working together at every design
level. Emphasis is placed on illustrating the interaction among the different field.
For example, 3D thermalware physical design described in Chap. 7 is a classic case

x Preface

http://dx.doi.org/10.1007/978-3-319-19174-4_7
http://dx.doi.org/10.1007/978-3-319-19174-4_7
http://dx.doi.org/10.1007/978-3-319-19174-4_8
http://dx.doi.org/10.1007/978-3-319-19174-4_7

of thermal, mechanical and electrical engineers working together to develop high
performance three-dimensional integrated circuits. Few emerging research areas and
possible future lines of research and applications of 3D-IC described in Chap. 9.

Dubai, United Arab Emirates Vinod Pangracious
March 2015

Preface xi

http://dx.doi.org/10.1007/978-3-319-19174-4_9

Acknowledgments

I would like to thank all members of the Electrical and Computer Engineering
Department at American University in Dubai and Laboratoire d’Informatique de
Paris 6 (LIP6) at University of Pierre et Marie Curie Paris VI, for their continued
support in writing this book.

xiii

Contents

1 An Overview of Three-Dimensional Integration and FPGAs. 1
1.1 Introduction . 1

1.1.1 More Moore (MM). 2
1.1.2 More Than Moore (MtM) . 3

1.2 Technological Initiatives and Contribution 5
1.2.1 Modified Tree-Based Interconnect 7
1.2.2 Tree-Based Interconnect Partitioning. 7
1.2.3 3D FPGA Design and Implementation Methodology. . . . 8
1.2.4 Unified Mesh of Tree Architecture 9

1.3 Book Organization . 10
References . 11

2 Three-Dimensional Integration: A More Than Moore
Technology . 13
2.1 Introduction . 13

2.1.1 Opportunities for Three-Dimensional Integration 14
2.2 Historical Evolution of 3D System Integration 16
2.3 Vertical Interconnect Technology Development (TSV) 19
2.4 3D Integration: Manufacturing Methods 21
2.5 Challenges in 3D Physical Design . 24

2.5.1 Complexity of 3D Physical Design Tools
and Their Limitations . 25

2.5.2 TSV and Thermal Management 26
2.5.3 Power and Clock Delivery in 3D-ICs 27
2.5.4 TSV-Induced Design for Manufacturability Issues 28
2.5.5 Floorplanning for 3D Circuits 28
2.5.6 Placement for 3D Circuits . 29
2.5.7 Routing for 3D Circuits . 32

2.6 3D-IC Design Verification . 35
2.7 Summary. 36
References . 37

xv

http://dx.doi.org/10.1007/978-3-319-19174-4_1
http://dx.doi.org/10.1007/978-3-319-19174-4_1
http://dx.doi.org/10.1007/978-3-319-19174-4_1#Sec1
http://dx.doi.org/10.1007/978-3-319-19174-4_1#Sec1
http://dx.doi.org/10.1007/978-3-319-19174-4_1#Sec2
http://dx.doi.org/10.1007/978-3-319-19174-4_1#Sec2
http://dx.doi.org/10.1007/978-3-319-19174-4_1#Sec3
http://dx.doi.org/10.1007/978-3-319-19174-4_1#Sec3
http://dx.doi.org/10.1007/978-3-319-19174-4_1#Sec4
http://dx.doi.org/10.1007/978-3-319-19174-4_1#Sec4
http://dx.doi.org/10.1007/978-3-319-19174-4_1#Sec5
http://dx.doi.org/10.1007/978-3-319-19174-4_1#Sec5
http://dx.doi.org/10.1007/978-3-319-19174-4_1#Sec6
http://dx.doi.org/10.1007/978-3-319-19174-4_1#Sec6
http://dx.doi.org/10.1007/978-3-319-19174-4_1#Sec7
http://dx.doi.org/10.1007/978-3-319-19174-4_1#Sec7
http://dx.doi.org/10.1007/978-3-319-19174-4_1#Sec10
http://dx.doi.org/10.1007/978-3-319-19174-4_1#Sec10
http://dx.doi.org/10.1007/978-3-319-19174-4_1#Sec12
http://dx.doi.org/10.1007/978-3-319-19174-4_1#Sec12
http://dx.doi.org/10.1007/978-3-319-19174-4_1#Bib1
http://dx.doi.org/10.1007/978-3-319-19174-4_2
http://dx.doi.org/10.1007/978-3-319-19174-4_2
http://dx.doi.org/10.1007/978-3-319-19174-4_2
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Sec1
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Sec1
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Sec2
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Sec2
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Sec3
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Sec3
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Sec4
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Sec4
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Sec5
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Sec5
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Sec6
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Sec6
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Sec7
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Sec7
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Sec7
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Sec8
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Sec8
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Sec9
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Sec9
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Sec10
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Sec10
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Sec11
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Sec11
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Sec12
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Sec12
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Sec13
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Sec13
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Sec14
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Sec14
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Sec15
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Sec15
http://dx.doi.org/10.1007/978-3-319-19174-4_2#Bib1

3 Field Programmable Gate Arrays: An Overview 43
3.1 Introduction . 43
3.2 Introduction to FPGA Architectures . 44

3.2.1 Configurable Logic Blocks . 45
3.3 FPGA Interconnect Topologies. 48

3.3.1 Mesh-Based Interconnect Network 48
3.3.2 FPGA Switch Block . 49
3.3.3 FPGA Routing Channels . 51
3.3.4 Multilevel Hierarchical Interconnect 53

3.4 Proposed FPGA Interconnect Architectures 56
3.4.1 Evolution of Tree-Based Interconnect Architecture 56
3.4.2 Wire Growth Model . 58
3.4.3 Switch Growth Model. 58

3.5 Tree-Based Routing Interconnect . 59
3.5.1 Tree-Based FPGA Architecture 61

3.6 Unified Mesh- and Tree-Based Interconnect. 63
3.6.1 Cluster Local Interconnect . 65
3.6.2 Mesh-Based Routing Interconnect 66
3.6.3 Input and Output Pads Connection 68

3.7 Summary. 69
References . 69

4 Two Dimensional FPGAs: Configuration and CAD Flow 73
4.1 Introduction . 73
4.2 Circuit Synthesis . 74
4.3 Technology Mapping . 74
4.4 Clustering . 75

4.4.1 Bottom-Up Approaches. 77
4.4.2 Top-Down Approaches . 78

4.5 Placement . 82
4.5.1 Simulated Annealing Based Approach 83
4.5.2 Partitioning Based Approach . 84

4.6 Routing . 85
4.7 Two-Dimensional CAD for Tree-Based Architecture 87

4.7.1 Synthesis and Mapping . 88
4.7.2 Clustering and Partitioning . 88

4.8 Timing Analysis . 92
4.9 Summary. 93
References . 93

5 Three-Dimensional FPGAs: Configuration
and CAD Development . 95
5.1 Introduction . 95

xvi Contents

http://dx.doi.org/10.1007/978-3-319-19174-4_3
http://dx.doi.org/10.1007/978-3-319-19174-4_3
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec1
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec1
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec2
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec2
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec3
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec3
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec4
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec4
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec5
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec5
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec6
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec6
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec7
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec7
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec8
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec8
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec9
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec9
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec10
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec10
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec11
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec11
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec12
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec12
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec13
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec13
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec14
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec14
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec15
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec15
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec16
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec16
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec17
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec17
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec18
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec18
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec19
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Sec19
http://dx.doi.org/10.1007/978-3-319-19174-4_3#Bib1
http://dx.doi.org/10.1007/978-3-319-19174-4_4
http://dx.doi.org/10.1007/978-3-319-19174-4_4
http://dx.doi.org/10.1007/978-3-319-19174-4_4#Sec1
http://dx.doi.org/10.1007/978-3-319-19174-4_4#Sec1
http://dx.doi.org/10.1007/978-3-319-19174-4_4#Sec2
http://dx.doi.org/10.1007/978-3-319-19174-4_4#Sec2
http://dx.doi.org/10.1007/978-3-319-19174-4_4#Sec3
http://dx.doi.org/10.1007/978-3-319-19174-4_4#Sec3
http://dx.doi.org/10.1007/978-3-319-19174-4_4#Sec4
http://dx.doi.org/10.1007/978-3-319-19174-4_4#Sec4
http://dx.doi.org/10.1007/978-3-319-19174-4_4#Sec5
http://dx.doi.org/10.1007/978-3-319-19174-4_4#Sec5
http://dx.doi.org/10.1007/978-3-319-19174-4_4#Sec6
http://dx.doi.org/10.1007/978-3-319-19174-4_4#Sec6
http://dx.doi.org/10.1007/978-3-319-19174-4_4#Sec9
http://dx.doi.org/10.1007/978-3-319-19174-4_4#Sec9
http://dx.doi.org/10.1007/978-3-319-19174-4_4#Sec10
http://dx.doi.org/10.1007/978-3-319-19174-4_4#Sec10
http://dx.doi.org/10.1007/978-3-319-19174-4_4#Sec11
http://dx.doi.org/10.1007/978-3-319-19174-4_4#Sec11
http://dx.doi.org/10.1007/978-3-319-19174-4_4#Sec12
http://dx.doi.org/10.1007/978-3-319-19174-4_4#Sec12
http://dx.doi.org/10.1007/978-3-319-19174-4_4#Sec13
http://dx.doi.org/10.1007/978-3-319-19174-4_4#Sec13
http://dx.doi.org/10.1007/978-3-319-19174-4_4#Sec14
http://dx.doi.org/10.1007/978-3-319-19174-4_4#Sec14
http://dx.doi.org/10.1007/978-3-319-19174-4_4#Sec15
http://dx.doi.org/10.1007/978-3-319-19174-4_4#Sec15
http://dx.doi.org/10.1007/978-3-319-19174-4_4#Sec16
http://dx.doi.org/10.1007/978-3-319-19174-4_4#Sec16
http://dx.doi.org/10.1007/978-3-319-19174-4_4#Sec17
http://dx.doi.org/10.1007/978-3-319-19174-4_4#Sec17
http://dx.doi.org/10.1007/978-3-319-19174-4_4#Bib1
http://dx.doi.org/10.1007/978-3-319-19174-4_5
http://dx.doi.org/10.1007/978-3-319-19174-4_5
http://dx.doi.org/10.1007/978-3-319-19174-4_5
http://dx.doi.org/10.1007/978-3-319-19174-4_5#Sec1
http://dx.doi.org/10.1007/978-3-319-19174-4_5#Sec1

5.2 3D FPGA Architectures: An Overview 96
5.2.1 FPGA Die Stacking . 96
5.2.2 Monolithic FPGA Implementation 98

5.3 State-of-the-Art: 3D FPGA Implementation 99
5.4 3D FPGA Interconnect Switch . 104
5.5 2.5D Integration: High Density Multi-FPGAs. 107

5.5.1 Industrial 2.5D Virtex-7 Interposer-Based FPGAs. 109
5.6 Development of 3D Tree-Based FPGA CAD Tools 111

5.6.1 3D FPGA Physical Design Tools 111
5.6.2 3D FPGA Architecture Exploration and Optimization . . . 113

5.7 Summary. 114
References . 114

6 Three-Dimensional Tree-Based FPGA: Architecture
Exploration Tools and Technologies . 117
6.1 Introduction . 117
6.2 Tree-Based FPGA Interconnect Architecture 118

6.2.1 2D Tree-Based Interconnect: A Comparison
with 2D Mesh-Based Interconnect 119

6.3 Tree-Based Interconnect Partitioning . 121
6.3.1 Vertical Partitioning . 122
6.3.2 Horizontal Partitioning . 123
6.3.3 Through Silicon via (TSV) Modeling 124

6.4 3D Tree-Based Interconnect Optimization Methodology 125
6.5 Interconnect Optimization: Homogeneous Tree. 126

6.5.1 The Downward Programmable Network Model 127
6.5.2 The Upward Programmable Network Model 127

6.6 Heterogeneous Tree-Based FPGA Architecture. 132
6.6.1 Interconnect Optimization: Heterogeneous Tree 134

6.7 Critical Path Delay Analysis . 136
6.7.1 Delay Analysis: Homogeneous Tree 136
6.7.2 Delay Analysis: Heterogeneous Tree. 138

6.8 LUT and Cluster Size Effect on Performance 140
6.9 Power Optimization . 143
6.10 Summary. 145
References . 145

7 Three-Dimensional Thermal Modeling:
Tools and Methodologies . 147
7.1 Introduction: Thermal Fundamentals and Challenges 147

7.1.1 Heat Generation . 148
7.1.2 Heat Transfer. 148
7.1.3 State of the Art: Thermal Modeling 151

Contents xvii

http://dx.doi.org/10.1007/978-3-319-19174-4_5#Sec2
http://dx.doi.org/10.1007/978-3-319-19174-4_5#Sec2
http://dx.doi.org/10.1007/978-3-319-19174-4_5#Sec3
http://dx.doi.org/10.1007/978-3-319-19174-4_5#Sec3
http://dx.doi.org/10.1007/978-3-319-19174-4_5#Sec4
http://dx.doi.org/10.1007/978-3-319-19174-4_5#Sec4
http://dx.doi.org/10.1007/978-3-319-19174-4_5#Sec5
http://dx.doi.org/10.1007/978-3-319-19174-4_5#Sec5
http://dx.doi.org/10.1007/978-3-319-19174-4_5#Sec6
http://dx.doi.org/10.1007/978-3-319-19174-4_5#Sec6
http://dx.doi.org/10.1007/978-3-319-19174-4_5#Sec7
http://dx.doi.org/10.1007/978-3-319-19174-4_5#Sec7
http://dx.doi.org/10.1007/978-3-319-19174-4_5#Sec8
http://dx.doi.org/10.1007/978-3-319-19174-4_5#Sec8
http://dx.doi.org/10.1007/978-3-319-19174-4_5#Sec9
http://dx.doi.org/10.1007/978-3-319-19174-4_5#Sec9
http://dx.doi.org/10.1007/978-3-319-19174-4_5#Sec10
http://dx.doi.org/10.1007/978-3-319-19174-4_5#Sec10
http://dx.doi.org/10.1007/978-3-319-19174-4_5#Sec11
http://dx.doi.org/10.1007/978-3-319-19174-4_5#Sec11
http://dx.doi.org/10.1007/978-3-319-19174-4_5#Sec12
http://dx.doi.org/10.1007/978-3-319-19174-4_5#Sec12
http://dx.doi.org/10.1007/978-3-319-19174-4_5#Bib1
http://dx.doi.org/10.1007/978-3-319-19174-4_6
http://dx.doi.org/10.1007/978-3-319-19174-4_6
http://dx.doi.org/10.1007/978-3-319-19174-4_6
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec1
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec1
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec2
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec2
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec3
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec3
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec3
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec4
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec4
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec5
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec5
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec6
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec6
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec7
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec7
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec8
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec8
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec9
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec9
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec10
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec10
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec11
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec11
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec12
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec12
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec13
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec13
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec14
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec14
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec15
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec15
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec16
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec16
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec17
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec17
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec18
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec18
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec19
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Sec19
http://dx.doi.org/10.1007/978-3-319-19174-4_6#Bib1
http://dx.doi.org/10.1007/978-3-319-19174-4_7
http://dx.doi.org/10.1007/978-3-319-19174-4_7
http://dx.doi.org/10.1007/978-3-319-19174-4_7
http://dx.doi.org/10.1007/978-3-319-19174-4_7#Sec1
http://dx.doi.org/10.1007/978-3-319-19174-4_7#Sec1
http://dx.doi.org/10.1007/978-3-319-19174-4_7#Sec2
http://dx.doi.org/10.1007/978-3-319-19174-4_7#Sec2
http://dx.doi.org/10.1007/978-3-319-19174-4_7#Sec3
http://dx.doi.org/10.1007/978-3-319-19174-4_7#Sec3
http://dx.doi.org/10.1007/978-3-319-19174-4_7#Sec4
http://dx.doi.org/10.1007/978-3-319-19174-4_7#Sec4

7.2 3D Thermal Modeling. 151
7.3 Heat Transfer in 3D-ICs . 154
7.4 3D Tree-Based FPGA Thermal Analysis Model 156

7.4.1 3D Thermal Aware Design Techniques 157
7.4.2 TSV Aware Thermal Control . 159

7.5 3D FPGA Thermal Modeling: Capabilities. 161
7.6 3D FPGA Thermal Modeling: Simulation Results. 162
7.7 Summary. 166
References . 167

8 Physical Design and Implementation of 3D Tree-Based FPGAs . . . 169
8.1 Introduction . 169
8.2 3D Tree-Based FPGA Design Requirements 170

8.2.1 Why Tree-Based Interconnect and Not Mesh 170
8.2.2 3D Tree-Based Interconnect: A Requirement

for High Logic Density . 173
8.3 2D Physical Design of Tree-Based FPGA 174

8.3.1 Method 1: Coalesce Scalable Tree-Based
2D Layout Design . 175

8.3.2 Method 2: Level-Wise 2D Tree Layout Design 176
8.4 Sub-path Timing Characterization . 178
8.5 3D Design Methodologies . 181

8.5.1 Vertical Partitioning . 183
8.5.2 Horizontal Partitioning . 184
8.5.3 Through Silicon via (TSV) Modeling 186

8.6 3D Tree-Based FPGA Physical Design Flow 187
8.6.1 3D Stacking Methodologies . 189
8.6.2 3D FPGA Placement and Route 191
8.6.3 3D Design Sign Off Analysis 194

8.7 3D Timing Analysis . 196
8.8 Summary. 198
References . 198

9 Three-Dimensional FPGAs: Future Lines of Research 201
9.1 Introduction: 3D FPGA Research . 201
9.2 Tree-Based Interconnect Partitioning . 202

9.2.1 Vertical Partitioning . 202
9.2.2 Horizontal Partitioning . 203

9.3 3D Physical Design Methodology and CAD Support 203
9.3.1 Interconnect Optimization Model 204
9.3.2 3D FPGA Architecture Exploration Tools

and Technologies . 204

xviii Contents

http://dx.doi.org/10.1007/978-3-319-19174-4_7#Sec5
http://dx.doi.org/10.1007/978-3-319-19174-4_7#Sec5
http://dx.doi.org/10.1007/978-3-319-19174-4_7#Sec6
http://dx.doi.org/10.1007/978-3-319-19174-4_7#Sec6
http://dx.doi.org/10.1007/978-3-319-19174-4_7#Sec7
http://dx.doi.org/10.1007/978-3-319-19174-4_7#Sec7
http://dx.doi.org/10.1007/978-3-319-19174-4_7#Sec8
http://dx.doi.org/10.1007/978-3-319-19174-4_7#Sec8
http://dx.doi.org/10.1007/978-3-319-19174-4_7#Sec9
http://dx.doi.org/10.1007/978-3-319-19174-4_7#Sec9
http://dx.doi.org/10.1007/978-3-319-19174-4_7#Sec10
http://dx.doi.org/10.1007/978-3-319-19174-4_7#Sec10
http://dx.doi.org/10.1007/978-3-319-19174-4_7#Sec11
http://dx.doi.org/10.1007/978-3-319-19174-4_7#Sec11
http://dx.doi.org/10.1007/978-3-319-19174-4_7#Sec12
http://dx.doi.org/10.1007/978-3-319-19174-4_7#Sec12
http://dx.doi.org/10.1007/978-3-319-19174-4_7#Bib1
http://dx.doi.org/10.1007/978-3-319-19174-4_8
http://dx.doi.org/10.1007/978-3-319-19174-4_8
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec1
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec1
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec2
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec2
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec3
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec3
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec4
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec4
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec4
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec5
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec5
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec6
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec6
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec6
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec7
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec7
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec8
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec8
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec9
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec9
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec10
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec10
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec11
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec11
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec12
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec12
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec13
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec13
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec14
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec14
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec15
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec15
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec16
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec16
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec17
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec17
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec18
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Sec18
http://dx.doi.org/10.1007/978-3-319-19174-4_8#Bib1
http://dx.doi.org/10.1007/978-3-319-19174-4_9
http://dx.doi.org/10.1007/978-3-319-19174-4_9
http://dx.doi.org/10.1007/978-3-319-19174-4_9#Sec1
http://dx.doi.org/10.1007/978-3-319-19174-4_9#Sec1
http://dx.doi.org/10.1007/978-3-319-19174-4_9#Sec2
http://dx.doi.org/10.1007/978-3-319-19174-4_9#Sec2
http://dx.doi.org/10.1007/978-3-319-19174-4_9#Sec3
http://dx.doi.org/10.1007/978-3-319-19174-4_9#Sec3
http://dx.doi.org/10.1007/978-3-319-19174-4_9#Sec4
http://dx.doi.org/10.1007/978-3-319-19174-4_9#Sec4
http://dx.doi.org/10.1007/978-3-319-19174-4_9#Sec5
http://dx.doi.org/10.1007/978-3-319-19174-4_9#Sec5
http://dx.doi.org/10.1007/978-3-319-19174-4_9#Sec6
http://dx.doi.org/10.1007/978-3-319-19174-4_9#Sec6
http://dx.doi.org/10.1007/978-3-319-19174-4_9#Sec7
http://dx.doi.org/10.1007/978-3-319-19174-4_9#Sec7
http://dx.doi.org/10.1007/978-3-319-19174-4_9#Sec7

9.4 Directions for Future Work . 205
9.4.1 Technology Research . 206
9.4.2 Alternative Memory Technology 206
9.4.3 Monolithic 3D-FPGA . 207
9.4.4 3D Hybrid FPGA (3D-HFPGA):

CNT Based FPGA Interconnect 207
9.4.5 Mesh-of-Tree-based Embedded FPGA 208
9.4.6 3D FPGA CAD Tools . 208

References . 208

Appendix A: FPGA CAD Tool: 3D Homogeneous Tree-Based
FPGA Architecture and Design Space Exploration 211

Appendix B: FPGA CAD Tool: 3D Heterogeneous
Tree-Based FPGA Exploration . 215

Appendix C: FPGA CAD Tool: 3D MoT-Based FPGA Exploration . . . 221

Appendix D: 3D Tree-Based FPGA Thermal Modeling 223

Contents xix

http://dx.doi.org/10.1007/978-3-319-19174-4_9#Sec8
http://dx.doi.org/10.1007/978-3-319-19174-4_9#Sec8
http://dx.doi.org/10.1007/978-3-319-19174-4_9#Sec9
http://dx.doi.org/10.1007/978-3-319-19174-4_9#Sec9
http://dx.doi.org/10.1007/978-3-319-19174-4_9#Sec10
http://dx.doi.org/10.1007/978-3-319-19174-4_9#Sec10
http://dx.doi.org/10.1007/978-3-319-19174-4_9#Sec11
http://dx.doi.org/10.1007/978-3-319-19174-4_9#Sec11
http://dx.doi.org/10.1007/978-3-319-19174-4_9#Sec12
http://dx.doi.org/10.1007/978-3-319-19174-4_9#Sec12
http://dx.doi.org/10.1007/978-3-319-19174-4_9#Sec12
http://dx.doi.org/10.1007/978-3-319-19174-4_9#Sec13
http://dx.doi.org/10.1007/978-3-319-19174-4_9#Sec13
http://dx.doi.org/10.1007/978-3-319-19174-4_9#Sec14
http://dx.doi.org/10.1007/978-3-319-19174-4_9#Sec14
http://dx.doi.org/10.1007/978-3-319-19174-4_9#Bib1

Acronyms

3DIC Three-Dimensional Integrated Circuits
ASIC Application Specific Integrated Circuit
BFT Butterfly-Fat-Tree
CMOS Complementry Metal Oxide Semiconductor Field Effect Transistor
DRC Design Rule Check
EDA Electronic Design Automation
FPGA Field Programmable Gate Array
GaAs Gallium Arsenide
HFPGA Hirarchical Field Programmable Gate Array
ITRS International Technology Roadmap for Semiconductors
KGD Known Good Dies
LVS Layout Versus Schematic
MCNC Microelectronics Center of North Carolina
MM More Moore
MOSFET Metal Oxide Semiconductor Field Effect Transistor
MtM More-than-Moore
NRE Non-Recurring Engineering
RF Radio Frequency
SiP System in Package
SiGe Silicon-Germanium
SIA Semiconductor Industries Association
SoC System on Chip
SOI Silicon on Insulator
SSI Silicon–Silicon Interconnect
TSV Through Silicon Via
VHDL Very High Speed Hardware Description Language
VLSI Very Large Scale Integration

xxi

Chapter 1
An Overview of Three-Dimensional
Integration and FPGAs

Abstract The capabilities of many digital electronic devices are strongly linked to
Moore’s law: processing speed,memory and functional capacity and even the number
and size of pixels in digital cameras.All of these are improving at roughly exponential
rates as well. This exponential improvement has dramatically enhanced the impact
of digital electronics in nearly every segment of the semiconductor industry, and is
a driving force of technological and social change in the late 20th and early 21st
centuries. This chapter discusses the historical evolution of semiconductor industry
from 2D CMOS based technologies to today’s three-dimensional (3D) integrated
circuits using 3D vertical interconnects. Our main focus in this book is to explain
the need and the development of tools and technologies that supports the utilization
this emerging technology to improve the performance and manufacturability of high
density Field Programmable Gate Arrays (FPGAs).

1.1 Introduction

The capabilities of many digital electronic devices are strongly linked to Moore’s
law: processing speed, memory and functional capacity and even the number and size
of pixels in digital cameras. All of these are improving at roughly exponential rates as
well. This exponential improvement has dramatically enhanced the impact of digital
electronics in nearly every segment of the semiconductor industry, and is a driving
force of technological and social change in the late 20th and early 21st centuries.
Moore’s Law is named after Intel co-founder Gordon E. Moore, who described
the trend in his 1965 paper [1]. In it, Moore noted that the number of transistors
in integrated circuits had doubled every year from the invention of the integrated
circuit in 1958 until 1965 and predicted that the trend would continue for at least 10
years. Moore’s prediction has proven to be uncannily accurate, in part because the
law is now used in the semiconductor industry to guide long-term planning and to
set targets for research and development. Historically, CMOS scaling has provided
the means to realize higher performance with every technology node, as predicted
by Moore’s law. Ever since the 90nm node, the gate length of MOSFETs (Metal-
Oxide-Semiconductor-Field-Effect-Transistors) has entered the nano regime. The

© Springer International Publishing Switzerland 2015
V. Pangracious et al., Three-Dimensional Design Methodologies
for Tree-based FPGA Architecture, Lecture Notes
in Electrical Engineering 350, DOI 10.1007/978-3-319-19174-4_1

1

2 1 An Overview of Three-Dimensional Integration and FPGAs

45nm technology has become the mainstream since 2008, and 22nm technology
with Tri-gate (FinFET) transistors in 2012 and 14 and 10nm with similar transistor
technology expected in 2015 and 2016 respectively.

In 1998, the SIA (Semiconductor Industries Association) was joined by corre-
sponding industry associations in Europe, Japan, Korea, and Taiwan to participate
in a 1998 update of the Roadmap and to begin work toward the first International
Technology Roadmap for Semiconductors (ITRS), published in 1999. The overall
objective of the ITRS is to present industry-wide consensus on the best current esti-
mate of the industry’s research and development needs out to a 15-year horizon. For
more than half a century these scaling trends continued, and expected it to continue
until at least 2020. However, the 2010 update to the ITRS has growth slowing at the
end of 2015, after which time transistor counts and densities are to double only every
3 years. Accordingly, since 2007 the ITRS has addressed the concept of functional
diversification under the title More than Moore (MtM). This concept addresses an
emerging category of devices that incorporate functionalities that do not necessarily
scale according to Moore’s Law, but provide additional value to the end customer in
different ways. TheMtM approach typically allows for the non-digital functionalities
e.g., RF communication, power control, passive components, sensors, actuators to
migrate from the system board-level into a particular package-level SiP or chip-level
SoC system solution. It is also hoped that by the end of this decade, it will be possible
to augment the technology of constructing integrated circuits (CMOS) by introduc-
ing new devices that will realize some beyond CMOS capabilities. However, since
these new devices may not totally replace CMOS functionality, it is anticipated that
either chip-level or package-level integration with CMOS may be implemented.

1.1.1 More Moore (MM)

The International Technology Roadmap for Semiconductors has emphasized in its
early editions theminiaturization and its associated benefits in terms of performances
and the traditional parameters inMoores Law. This trend for increased performances
will continue, while performance can always be traded against power depending
on the individual application, sustained by the incorporation into devices of new
materials, and the application of new transistor concepts. This direction for further
progress is labeled More Moore or MM. The multitude of new integration technolo-
gies opens many new possibilities for building an integrated electronic systems in
a confined space and with high efficiency in terms of power dissipation and perfor-
mance. In particular, the use of the third dimension in the backend/package allows
combining products from different semiconductor as well as MEMS technologies.
Thus, these advanced integration technologies link the requirements for high per-
formance (More-Moore technologies or MM) with the demand for functional and
technological diversity (More-than-Moore technologies or MtM). As we look at the
years 2020–2025, we can see that the physical dimensions of CMOSmanufacture are
expected to be crossing below the 10nm threshold. It is expected that asCMOSdevice

1.1 Introduction 3

dimensions approach the 5–7nm range it will be difficult to operate any transistor
structure that is utilizing the metal-oxide semiconductor (MOS) physics as the basic
principle of operation. Of course, we expect that new devices, like the very promising
semiconductor tunnel transistors, will allow a smooth transition from traditional
CMOS to this new class of devices to reach these new levels of high performance
ultra scale device integration. However, it is becoming clear that fundamental geo-
metrical limits will be reached in the above timeframe. By fully utilizing the vertical
dimension, it will be possible to stack layers of transistors on top of each other, and
this 3-Dimensional (3D) approach will continue to increase the number of compo-
nents per square millimeter even when horizontal physical dimensions will no longer
be amenable to any further reduction. It seems important, then, that we ask ourselves
a fundamental question: How will we be able to increase the computation and mem-
ory capacity when the device physical limits will be reached? It becomes necessary
to re-examine how we can get more information in a finite amount of space.

1.1.2 More Than Moore (MtM)

During the blazing progress propelled by Moore’s Law of semiconductor logic
and memory products, many complementary technologies have progressed as well,
although not necessarily scaling to Moore’s Law. Heterogeneous integration of mul-
tiple technologies has generated added value to devices with multiple applications,
beyond the traditional semiconductor logic and memory products that had lead the
semiconductor industry from the mid 60s to the 90s. A variety of wireless devices
contain typical examples of this confluence of technologies, e.g. logic and mem-
ory devices, display technology, micro-electrico-mechanical systems (MEMS), RF
and Analog/Mixed-signal technologies (RF/AMS), etc. It should be emphasized that
More-than-Moore or MtM technologies do not constitute an alternative or even a
competitor to the digital trend as described by Moores Law. In fact, it is the hetero-
geneous integration of digital and non-digital functionalities into compact systems
that will be the key driver for a wide variety of application fields. Whereas MMmay
be viewed as the brain of an intelligent compact system,MtM refers to its capabilities
to interact with the outside world and the users as illustrated in Fig. 1.1.

In recent years, however, several bottlenecks have appeared as we have continued
to scale down to sub-nm technology nodes and the question is, if the traditional
technology scaling method alone will be able to overcome the performance and
cost issues of the future IC manufacturing caused by interconnect delay and latency
issues. The ITRS roadmap predicts 3D integration as a key technology to solve
this so-called wiring crisis [2]. Several semiconductor industries and research insti-
tutes have demonstrated 3D integration process [3, 4]. Even though there are still
no commercial true 3D-IC application in the market, it has become apparent that
there is a strong demand for such future application such as memories, processors
and logic devices. In addition to enabling of the further improvement of transistor
integration densities (More-Moore), 3D integration is a well accepted platform for

4 1 An Overview of Three-Dimensional Integration and FPGAs

nm

nm

nm

nm

nm

nm

nm

nm

Fig. 1.1 The need for integrating digital and non-digital functionalities in an integrated system is
translated as a dual trend in the International Technology Roadmap for Semiconductors: miniatur-
ization of the digital functions (More Moore) and functional diversification (More-than-Moore),
3D integration represent a convergence of SoC and SiP disciplines [2]

More than Moore applications with their essential need for integration of heteroge-
neous technologies. Three-dimensional integration technology increases the number
of active layers and optimizes the interconnect network vertically. The main advan-
tage of 3D-IC technology is that it significantly enhances interconnect resources and
increases logic density. If used correctly, 3D-ICs provides improved bandwidth and
throughput, as well as reduced wire length. For Nlayers stacking, in the best scenario,
if the inter-layer vias are ignored, average wire length would be expected to drop
by a factor of (Nlayers)

1/2. Both wire resistance and wire (RC) delay would drop
by a factor of (Nlayers). It also allow integration of dissimilar materials, process
technologies, and functions onto one platform.

Ourmain focus in this book is to explain the development of tools and technologies
that supports the utilization this emerging technology to improve the performance
and manufacturability of high density Field Programmable Gate Arrays (FPGAs).
FPGAchips offer an attractive solution for improving the design productivity through
re-use of the same silicon implementation for a wide rage of applications. FPGA is
programmable and can be reconfigured for yield improvement and defect tolerance.
These features become absolutely necessary when CMOS technology scales down to
nanometer scale, because the yield of the fabrication of semiconductor components
hardly ever reach 100%. FPGA consist of configurable logic blocks and I/O blocks
that are interconnected by a configurable routing network. FPGA is configured to

1.1 Introduction 5

implement circuits by writing into the configuration memory that are embedded
throughout the FPGA and defines the logical function of each block and connections
within the configurable routing resources. Reconfigurability of FPGAs is fundamen-
tally different from traditional general-purpose microprocessors. Microprocessors
are attractive for their flexibility. An Application Specific Integrated Circuit (ASIC)
is a device that is customized to a specific application. Since the exact nature of the
application is known beforehand, ASIC hardware resources are designed to provide
the highest performance implementation for the application. The price paid byASICs
because of their superlative performance characteristics is flexibility. Once an ASIC
has been manufactured, it is impossible to modify it to implement another applica-
tion, different from the one it was intended for. Further, since the Non-Recurring
Engineering (NRE) costs involved in designing and manufacturing an ASIC are
comparatively high, it is generally not feasible to design and fabricate ASICs in
low volumes. Since their introduction in the mid eighties, FPGAs evolved from a
simple, low-capacity gate array technology to devices [5, 6] that provide a mix of
coarse-grained data path units, microprocessor cores, on chip A/D conversion, and
gate counts by millions. Today, FPGAs become important actors in the computa-
tional devices domain that was originally dominated by microprocessors and ASICs.
Just like microprocessors, FPGA-based systems can be reprogrammed on a per-
application basis. At the same time, FPGAs offer significant performance benefits
over microprocessor implementations for a number of applications. Although these
benefits are still generally an order of magnitude less than equivalent ASIC imple-
mentations, the low NRE costs, fast time-to-market, and flexibility of FPGAs make
them an attractive choice for low-to-medium volume applications.

1.2 Technological Initiatives and Contribution

FPGAs are consistently improving in capacity and performance, and are now among
the most popular devices in the market. With their regular structure, they also scale
easily to future technologies. However, FPGAs are still facing serious challenges in
terms of delay, power consumption, and logic density compared to ASICs. FPGA is
estimated to be over ten times less efficient in logic density, over three times worse in
delay, and over three times higher in power consumption compared to a functionally
equivalent ASIC [7–11]. Despite of their design cost advantage, FPGAs impose
large area overhead when compared custom integrated silicon alternatives (ASICs).
To illustrate the magnitude of this problem, we refer to the work presented in [11]
where authors measure the gap between FPGAs and ASICs in terms of logic density,
circuit speed and power consumption. The major performance and power bottleneck
of the FPGA is the programmable interconnects and routing elements inside FPGA,
which have been found to account for up to 80% [9] of the total delay and up to 85%
[12] of the total power consumption and consume almost 90% [13] of total silicon
area, when both local and global interconnects are considered.

6 1 An Overview of Three-Dimensional Integration and FPGAs

There is considerable demand for high performance FPGAs with low power con-
sumption and area. One promising way to improve FPGA performance, logic density
and power consumption is to incorporate three-dimensional (3D) integration, which
increases the number of active layers and optimizes the interconnect network delay
using vertical interconnects. There are few research initiatives for the design and
implementation of 3D Mesh-based FPGAs [14–16]. For Mesh-based 3D FPGA,
every layer in a 3D chip implements a normal 2D FPGA and this type of stack-
ing reduces the average Manhattan distance between logic blocks, which leads to
shorter interconnect resources. Consequently, 3D integration method is an attractive
technology to improve the performance and density of FPGAs. Other gains, such as
reduced design footprint and the ability to integrate different technologies, further
favor 3DFPGAs.Used correctly, 3D integrated circuits provides improvedbandwidth
and throughput by reducing interconnect wire-length. However Mesh-based FPGA
has a planer island style architecture which suites very well for a two-dimensional
(2D) FPGA implementation. The major gains reported from the research and exper-
imental demonstrations of 3D Mesh-based FPGA are not yet reached the scale of
advantages and improvements expected according to ITRS roadmap [2], since the
overall FPGA area and power consumption increases in 3D architecture, nevertheless
the delay is reported to have reduced by 38% [16]. Figure1.2 presents the complex-
ities involved in design and manufacturing of high density 3D chips. The true 3D
implementation should bring holistic improvement in all areas of chip development
starting from design to manufacturing. Many of the early designs and demonstrators
of 3D FPGAs did not show much improvement in area and power consumption. In
this book we try to revisit the traditional Tree-based FPGA architecture and main

Power consumption

Cost

Performance

Area

−Power management techniques: Sleep transistor/clock Gating

−Low leakage Technologies Multiple Vdd

−Architecture
−Verification

−Physical design

−Validation
−Process steps

−Manufacturability
−Prototype

−Interconnect Flexibility

−Granularity

−Buffer/Pass Transistor

−Channel width

−Wire length

−Fanout

−Threshold voltage

−Network break−point

−Power consumption

−Switches area/Logic area

−3ed Dimension

−Hotspot/3D thermal optimization−3D break−point
−TSV count/area/keepout zone

−3D integration

−Full Custom

−Transistor Sizing

4x

4x

SRAM

bit bit

bit

4x

bit

10x

Fig. 1.2 FPGA Design and implementation challenges: The future is in the 3rd dimension

1.2 Technological Initiatives and Contribution 7

stream industrial FPGA architectures to conduct a feasibility study using 3D technol-
ogy to improve logic density, area, speed and power consumption. The Tree-based
multilevel interconnect architecture is one of traditional routing architecture of FPGA
andmultiprocessor system on chip (MPSoC) based systems. However it is not imple-
mented in any of the industrial FPGA orMPSoC systems due to the large wire delays
associated with the interconnect impede the performance of the system.

1.2.1 Modified Tree-Based Interconnect

The aim of this book is to revisit the traditional and industrial FPGA architectures
to propose a suitable interconnect architecture model to design and manufacture 3D
FPGAs with improved logic density and speed. An efficient butterfly-fat-tree inter-
connection network structure is proposed in [17–20] to design and implement high
density FPGAs. A detailed analysis of area and switch requirements of Mesh- and
Tree-based FPGA architectures presented in [19, 20]. The reported results shows
that the 2D Tree-based architecture improve total area by 56% and reduce the total
switch requirement by 59% compared to 2DMesh-based FPGA architecture. Never-
theless the wire delay increases logarithmically as the Tree grows to higher level and
this makes the 2D physical design implementation of Tree-based FPGA architecture
a daunting task. The complexities associated with the development 2D Tree-based
architecture layout is presented in [18]. In this book, we propose new design solutions
and exploration methods using 3D technology to improve logic density, area, and
power consumption of 3D FPGAs using Tree-based multilevel interconnect archi-
tecture. The main sections of 3D FPGA design presented in this book as follows.

1.2.2 Tree-Based Interconnect Partitioning

Interconnect network partitioning is the bestway to reduce the length of interconnects
and theirby improveing speed and power consumption. Two independent network
partitioning methodologies are proposed to design and implement 3D Tree-based
FPGA.

• Vertical partitioning: the programmable interconnect network is partitioned verti-
cally by placing the break-point at the highest level �v of the Tree-based program-
mable interconnect network to balance the silicon area and power consumption
across multiple tiers of the 3D chip

• Horizontal partitioning: the main objective is to optimize the critical path delay
and improve logic density. The horizontal break-point is placed at a particular tree
level �h based on the design andmanufacturing constraints to achieve interconnect
delay optimization using TSVs.

8 1 An Overview of Three-Dimensional Integration and FPGAs

The location of the level �v is always fixed at highest tree level, however the location
of level �h is decided based on the architecture and wire delay requirements.

1.2.3 3D FPGA Design and Implementation Methodology

To design and implement 3D multi-tier Tree-based FPGA, we developed a set of 3D
physical design methodology and tools using Global Foundries 130nm technology
node modified to use Tezzaron’s TSV technology [21, 22]. The design flow covers
all areas of 3D design, including the design partitioning, merging multiple tiers (gds
files) and design sign-off analysis. In addition, we also address the specific issues that
3D designers will encounter dealing with tools that are not specifically developed
to meet their needs. We developed additional design support programs to enable the
designer to perform3DDRC/LVS andTSV implementation using sixmetal back-end
offline (BEOL) technology.

1.2.3.1 3D FPGA Physical Design Tools

This book describe the development of an automated 3D physical design method-
ology including a VHDL code generator based on Tree-based FPGA architecture
description and design constraints. The VHDL code generator is based on a hierar-
chical design approach that partitions the design into smaller sections, which imple-
ment clusters separately and assemble them together at the final design phase. The
physical design is performed using Global Foundries 130nm technology node (Tez-
zaron 3D Design platform). A timing evaluation system based on Mentor’s circuit
simulator Eldo is attached to design module to accurately estate the networks delays.

1.2.3.2 3D FPGA Architecture Exploration Tools and Methodologies

Our goal through the development of this book is to develop an efficient placement
and detailed routing tool for 3D Tree-based FPGAs. Using this tool, we investigate
the impact of 3D integration on delay, area and power consumption, in addition to
wire-length reduction because wire-length alone cannot be relied on as a metric for
3D integration benefits. The main features of the architecture exploration tool is
mentioned below.

• Feasibility study of different network partitioning methods to find suitable inter-
connect architecture for 3D staking.

• 3D Tree-based FPGA architecture optimization tool: This tool is developed as an
add-on facility to 3D place and rout tool to find minimum interconnect and TSV
requirements for the implementation of 3D FPGA. A Rent’s Rule [23, 24] based
wire-length distribution model is used to design the architecture optimization tool.

1.2 Technological Initiatives and Contribution 9

• FPGAs are not really FPGAs any more instead, they are arrays of programmable
gates plusDSP slices, ALUs and transceivers etc. The 3DTree-based exploration is
augmented to study 3D Heterogeneous Tree-based FPGAs as well. The tools have
capabilities to analyze the the placement and location of hard-blocks to optimize
the speed and area of the 3D FPGA chip.

1.2.4 Unified Mesh of Tree Architecture

Recently we have witnessed 2.5D and 3D FPGA product demonstrations from lead-
ing FPGA research institutions and manufacturing industries. These new FPGA
architecture also introduces many opportunities and challenges to meet with the
expectations of increasing functionality of modern FPGA chip designs. In this book
we propose a variant of Tree-based FPGA architecture with qualities of both Mesh
and Tree-based interconnect architectures. Our previous studies [19, 20] shows Tree-
based FPGA has better logic density and area advantage compared to Mesh-based
FPGAs. In this study, we examine the possibility of unifying the advantages of mod-
ified Tree- and Mesh-based interconnect architecture into one platform to improve
density, area, and speed of 3D FPGAs.

1.2.4.1 Architecture Improvement, Tools and Methodologies

In this book we propose a 3D interconnect network implementation based on amodi-
fiedMesh-of-Trees (MoT) topology for FPGA architecture design as an extension of
Tree-based FPGA architrecture. We further optimized the MoT-based interconnect
architecture using long wire segments with adjustable span to transform it into a
viable architecture for the design and implementation of high density 2.5D multi-
FPGA and 3D stacked multi-tier FPGA based systems. Exploration and physical
design tool flows developed to demonstrate the performance improvement and area
advantage of 2.5D and 3DMoT-based FPGA architecture. The two possible variants
of MoT-based FPGA architecture implemented are as follows.

• 2.5D Multi-FPGA using Mesh of Tree Architecture: We developed exploration
and validation tools to explore the impact of % of wires cut and no of cuts on per-
formance and area of 2.5Dmulti-FPGA based systems.based ofMoT-based FPGA
architecture. Using the 2.5D tools flow, we can demonstrate the improvement in
area and performance of 2.5D multi-FPGA with 1–3 cuts and different variants of
interposer-based inter-FPGA connections.

• 3D Multi-tier FPGA using Mesh of Tree Architecture: A 3D architecture explo-
ration tool (place and route) developed to estimate the area and delay reduction in
3D stacked MoT-based FPGA architecture. We also implemented an MoT-based
architecture optimization tool using Rent’s Rule to find the optimal architecture
to estimate the impact of % of long wires on channel width W of the 3D MoT-

10 1 An Overview of Three-Dimensional Integration and FPGAs

based FPGA architecture. Unlike the other 3D Mesh-based FPGA architectures,
in 3D MoT-based FPGA architecture, we have a direct relation between vertical
interconnects and channel width. This relationship is established to optimize the
horizontal and verticals routing resource requirements. This book will not dis-
cuss the deatils of the MoT-Based FPGAs, since the focus of this book is on 3D
implementation of Tree-based FPGA architectures.

1.3 Book Organization

A brief overview of the contents of the book as follows. This Chapter provides a
brief introduction about the main fcous theme, thrust area and contributions made
to it for the development of high density 3D FPGAs. Chapter 2 starts with brief
introduction to 3D integration and discusses the main challenges and opportunities
of 3D technology in areas like process integration and CAD tools development. This
chapter also discusses few new practical solutions to solve technological and CAD
level issues in 3D physical designs process. The main purpose of this work is evalu-
ate the interconnect architecture of traditional and mainstream FPGA architectures
and to propose an alternative 3D interconnect architecture or suggest the required
modification to design and manufacture high density FPGAs using 3D Technology.
Chapter 3 discusses the pros and cons of different FPGA architectures and propose
new architectural changes to the existing FPGA architectures. An interesting state of
the art of CAD tools for the exploration of 2DMesh- and Tree-based FPGA architec-
tures presented in Chap. 4. This chapter also report the importance of research and
development of CAD algorithms for high density FPGA development. Chapter 5
presents the state of the art 3D FPGA. Many new ideas and implementations regard-
ing 3D-ICs and FPGAs shows positive developments across the world to migrate
the present day technology to the third dimension. This chapter also present the 3D
design and architecture exploration methodology developed for the implementation
of 3D Tree-based FPGAs.

The Chap.6 provides a detailed analysis of the improvement in speed, area and
optimization of 3D Tree-based FPGA architecture. Once an architecture is verified
for its performance, its also curious to know how this architecture is going to behave
when the few architectural parameters changes. This chapter also provides answers
to those questions about the impact of LUT size and cluster size on performance of
3D FPGA chip. FPGAs have evolved dramatically over the past 10 years, as they
have taken advantages of new process technologies and architectural innovations.
One particular issues has arisen due to the lack of a robust architectural exploration
tool that can model heterogeneous hard-blocks such us memories and multipliers.
Chapter 6 describes a detailed description of validation exploration tools developed
of 3D Tree-based heterogeneous FPGA architectures and also provides the result
analysis of critical path delay and architecture optimization.

The power consumption of 3D-ICs is expected to decrease due to the interconnect
length reduction. However the power density increases since the distance between

http://dx.doi.org/10.1007/978-3-319-19174-4_2
http://dx.doi.org/10.1007/978-3-319-19174-4_3
http://dx.doi.org/10.1007/978-3-319-19174-4_4
http://dx.doi.org/10.1007/978-3-319-19174-4_5
http://dx.doi.org/10.1007/978-3-319-19174-4_6
http://dx.doi.org/10.1007/978-3-319-19174-4_6

1.3 Book Organization 11

the devices decreases per unit volume as compared to a 2D layout. Consequently,
the temperature also rises. Thermal aware design or hardware design techniques
should be implements at various stages of the 3D-IC design flow, such as synthesis,
floorplanning, placement and routing to maintain the temperature of the chip with
acceptable limits. The Chap.7 provides detailed description and analysis of different
thermal aware design techniques and hardware-based methods developed to improve
thermal profile of 3D Tree-based FPGAs. The development of 2D physical design
for Tree-based FPGA interconnect is a daunting task. Chapter 8 sheds light into those
issues designers face and also describe how to resolve themusing 3D technology. This
chapter provides two interesting network partitioning methodologies for Tree-based
interconnect to mitigate the traditional long wire-length issues associated Tree-based
interconnect architectures. Three-dimensional design and technology is famous for it
ability to improve speed, power consumption and silicon footprint of semiconductor
chips. This chapter introduce new3Ddesign and varification tools andmethodologies
of 3D FPGA design and implementation. The Chap. 9 narrates the summary of the
thesis and provides future lines of research work.

References

1. G. Moore, Cramming more components onto integrated circuits. Proc. IEEE 86(2), 82–85
(1998)

2. SIA: Semiconductor Industries Association, The International Technology Roadmap for Semi-
conductor (SEMATECH, Austin, TX, 2009)

3. P. Garrou, C. Bower, P. Ramm, Handbook of 3D Integration (Wiley-VCH, 2008). ISBN: 978-
3-527-32034-9

4. V.F. Pavlidis, E.G Friedman, Three-Dimensional Integrated Circuit Design (Morgen Kauf-
mann, 2009). ISBN: 978-0-12-374343-5

5. Altera, Stratix V device overview (2013), www.altera.com
6. Xilinx Inc, Two flows for partial reconfiguration: module based or difference based (2004),

http://www.xilinx.com/bvdocs/appnotes/xapp290.pdf
7. J. Rose, R. Francis, D. Lewis, P. Chow, Architecture of field-programmable gate arrays: the

effect of logic functionality on area efficiency. IEEE JSSC 25(5), 1217–1225 (1990)
8. V. Betz, J. Rose, Howmuch logic should go in an FPGA logic block?. IEEE Des. Test Comput.

15(1), 10–15 (1998)
9. E. Ahmed, J. Rose, The Effect of LUT and cluster size on deep-submicron FPGA performance

and density. IEEE Trans. Very Large Scale Integr. VLSI Syst. 22(3), 288–298 (2004)
10. M. Lin, A.E. Gamal, Y.-C. Lu, S. Wong, Performance benefits of monolithically stacked 3D

FPGA, in Proceedings of the 2006 ACM/SIGDA 14th International Symposium on Field Pro-
grammable Gate Arrays, Monterey, California, USA, 22–24 Feb 2006, pp. 113–122

11. I. Kuon, J. Rose, Measuring the gap between FPGAs and ASICs. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 26(2), 203–215 (2007), http://dx.doi.org/10.1109/TCAD.
2006.884574 (IEEE Council on Electronic Design Automation)

12. F. Li, D. Chen, L. He, J. Cong, Architecture evaluation for power-efficient FPGAs, in Proceed-
ings of the ACM/SIGDA International Symposium on Field Programmable Gate Array, Nov
2003, pp. 175–184

13. A. DeHon, Reconfigurable Architectures for General-Purpose Computing, Ph.D. dissertation,
Department of Elect Engg and Computer Science,Massachusetts Institute of Technology, 1996

http://dx.doi.org/10.1007/978-3-319-19174-4_7
http://dx.doi.org/10.1007/978-3-319-19174-4_8
http://dx.doi.org/10.1007/978-3-319-19174-4_9
www.altera.com
http://www.xilinx.com/bvdocs/appnotes/xapp290.pdf
http://dx.doi.org/10.1109/TCAD.2006.884574
http://dx.doi.org/10.1109/TCAD.2006.884574

12 1 An Overview of Three-Dimensional Integration and FPGAs

14. C. Ababei P. Maidee and K. Bazargan, Exploring potential benefits of 3D FPGA integration,
in Field Programmable Logic and Application, vol. 3203 (Springer, Berlin, Germany, 2004),
pp. 874–880

15. K.Siozios,A.Bartzas,D. Soudris.Architecture level exploration of alternative schmes targeting
3D FPGAs: a software supported methodology. Int. J. Reconfig. Comput. 2008 (2008)

16. K. Siozios, V.F. Pavlidis, D. Soudris, A Novel framework for exploring 3-D FPGAs with
heterogeneous interconnect fabric. ACM Trans. Reconfig. Technol. Syst. 5(1) (2012)

17. A.DeHon,Unifyingmesh- and tree-based programmable interconnect. IEEETrans.VeryLarge
Scale Integr. VLSI Syst. 12(10), 1051–1065 (2004)

18. A. DeHon, R. Rubin, Design of FPGA interconnect for multilevel metallization. IEEE Trans.
Very Large Scale Integr. VLSI Syst. 12(10), 1038–1050 (2004)

19. Z. Marrakchi, H. Mrabet, C. Masson, H. Mehrez, Mesh of tree: unifying mesh and MFPGA
for better device performances, in NOCS-2007, pp. 243–252 (2007)

20. Z. Marrakchi, H. Mrabet, U. Farooq, H. Mehrez, FPGA interconnect topologies exploration.
Int. J. Reconfig. Comput. 2009 (2009)

21. S. Gupta, M. Hilbert, S. Hong, R. Patti, Techniques for Producing 3D ICs with High-Density
Interconnect (Tezzaron Semiconductor, Naperville, IL, 2005)

22. R. Patti, Advances in 3D memory and logic devices, in IMAPS International Conference on
Device Packaging (TAI3, Scottsdale, AZ, March 2010)

23. B. Landman, R. Russo, On a pin versus block relationship for partitions of logic graphs. IEEE
Trans. Comput. 20(12), 1469–1479 (1971)

24. J. Pistorius, M. Hutton, Placement rent exponent calculation methods, temporal behaviour and
FPGA architecture evaluation, in Proceedings of the International Workshop on System Level
Interconnect Prediction (Monterey, Calif, USA, April 2003), pp. 31–38

Chapter 2
Three-Dimensional Integration:
A More Than Moore Technology

Abstract Three-dimensional integrated circuits (3D-ICs), which contain multiple
layers of active devices, have the potential to dramatically enhance chip performance,
functionality, and device packing density. They also provide for microchip archi-
tecture and may facilitate the integration of heterogeneous materials, devices, and
signals and offer a promising solution for reducing both silicon footprint and inter-
connect length without shrinking the transistors. However, before these advantages
can be realized, key technology and CAD challenges of 3D-ICs must be addressed.
More specifically, the process required to build circuits with multiple layers of active
devices and CAD tools used for design and validation of such circuits. Several such
methodologies and CAD tools associated with the design fabrication of 3-D ICs are
discussed in this chapter. Few successful 3D-IC design methods and CAD tools and
benefits of applying 3D design to the future reconfigurable systems are also discussed
in this chapter.

2.1 Introduction

The ongoing demand for greater functionality resulting in multiple IC products,
longer off-chip interconnects ravage the performance of microelectronic systems.
The advent of System-on-Chip (SoC) in the mid 1990s primarily addressed the
increasing delay of the off-chip interconnects. Integrating all of the components on a
monolithic substrate enhances the overall speed of the system, while decreasing the
power consumption. To assimilate disparate technologies, however several difficul-
tiesmust be surmounted to achieve high yield for the entire system.Additional system
requirements for the radio frequency (RF) circuitry, passive elements, and discrete
components, such us decoupling capacitors, which are not easily integrated due to
performance degradation or size limitations. While Moore’s law [1] and the pursuit
of ever increasing transistor counts is well known in IC design andmanufacturing cir-
cles, what is seldom brought to light for others, are the escalating cost and technology
challenges associated with this pursuit. Smaller transistors and larger dies have been
reasonable answer to this quest in the past. Stacked dies using wire bond connections
and flip-chips have even been employed to create system-in-package (SiP) solutions

© Springer International Publishing Switzerland 2015
V. Pangracious et al., Three-Dimensional Design Methodologies
for Tree-based FPGA Architecture, Lecture Notes
in Electrical Engineering 350, DOI 10.1007/978-3-319-19174-4_2

13

14 2 Three-Dimensional Integration: A More Than Moore Technology

Solder balls

3D Interconnect (TSV)

Handle wafer

Fig. 2.1 Interconnects bond wires in typical System-in-package (SiP) and 3D-IC

that meet the needs of some. Looking for alternative solutions for next generation
designs, that meet the performance, integration, form-factor, manufacturability, and
cost requirements, may have begun to look at going up rather than out. With this
trend, the Three-dimensional (3D) integration using through-silicon via (TSV) tech-
nology has gained much attention. Once the domain of specialist applications, more
mainstream users, such as memories, microprocessors ans specialized logic designs
are now being considered as TSV candidates. The advantages of 3D-IC integration
are better electrical performance, low power consumption, lower area and weight
and high performance (Fig. 2.1).

2.1.1 Opportunities for Three-Dimensional Integration

Performance requirements such as increased bandwidth, reduced latency, and lower
power consumption are driving the adoptions of 3D-IC designs. A complete 3D-IC
implementation is usually envisioned as a stack of active chips using TSVs to connect
through each chip down to a package substrate. TSV designs represent a convergence
of SoC and SiP disciplines, providing designers the means to significantly increases
the bandwidth between the logic chip and the memory especially with wide memory
interfaces that cannot be achieved with bond wires, as well as the ability to mix and
match dies that not only use different process node, but also different manufacturing
technologies such as SiGe, SOI, CMOS low voltage, CMOS high voltage, Biploar,
GaAs, etc. The ability to combine different dies in a single stack enable to acquire
needed functionality to provide high-quality, proven die. What is new in 3D-ICs is
the ability to place vertical interconnections (TSVs) in a dense array, without the
strict perimeter constraints imposed by an equivalent wire-bonded design. Utilizing

2.1 Introduction 15

stacked chips, particularly in memory-intensive designs, allows designers to stay at
today’s reasonable process nodes for each die and derive the benefit or proven volume
manufacturing processes.

Three-dimensional (3D) die stacks and high-bandwidth silicon packaging tech-
nology using emerging through silicon vias (TSVs), thinned silicon, and fine-pitch
silicon-silicon interconnections (SSIs) make use of a wide variety of technology
structures, materials, and processes. Universities, consortia, and industry have driven
research and early demonstrations for a decade. TSV and SSI interconnection den-
sity can scale in excess of six orders of magnitude, making the technology widely
applicable from simple to very complex applications. At academic research institutes
and semiconductor industries, new 3D test-vehicle (i.e., demonstrator) designs fol-
lowed by manufacturing, assembly, and characterization studies continue to provide
technologists with an understanding of structure and process-integration capabil-
ities and limitations. Results from these technology studies provide guidance on
3D design rules, structures, processes, tests, and reliability, which can support the
manufacturing of 3Dproducts and provide data thatwemay use to determine technol-
ogy directions. Practical technology fabrication and integration approaches need to
consider targeted TSV and SSI interconnection density, silicon thickness, and power
densities. In addition, decisions with respect to options such as TSV conductor mate-
rial, SSI integration material, and use of die-on-die, die-on-wafer, or wafer-to wafer
process approaches need to be made with regard to interconnection redundancy, die
size, yield, cost, and test methodology.

The inherent advantage of 3D integration is the drastic decrease in interconnect
length, particularly the long global interconnects, which directly results in increased
speed [2–6]. We can understand this by simple geometry analysis for 3D-ICs. A
given squre area A has maximum Manhattan wirelength id 2

√
A. The same area is

split into two tiers reduces the wirelength to
√
2
√

A + lv where lv is the length of
via between tiers. In general, n layers gives a maximum Manhattan wirelength of

2
√

A
n + (n − 1)lv. Figure2.2 illustrate the graphical representation of wire-length

reduction which the original 2D chip implemented using 3D technology with n tiers.
The interconnect power is also reduced as the capacitance of the wires decreases

Fig. 2.2 Illustration of wire-length reduction where the original 2D chip implemented using 3D
technology

16 2 Three-Dimensional Integration: A More Than Moore Technology

[7, 8]. Additionally, the total power dissipated by an interconnect system is further
decreased as the number of repeaters inserted along the interconnect is reduced [9].
Finally, coupling among intraplane adjacent interconnects is lower due to decreased
length, improving signal integrity. The 3D-IC based systems provides the capability
to include disparate technologies [10], greatly extending the capabilities of modern
systems-on-chip (SoC). This defining feature of 3D-ICs offers unique opportunities
for highly heterogeneous and sophisticated systems [11, 12]. A vast pool of appli-
cations such as medical, wireless communications, military, and low-cost consumer
products, exists for vertical integration, as the proximity of the system components
caused by the third dimension is suitable for either the high performance or lowpower
ends of the SoC application space [13]. This heterogeneity, however, greatly compli-
cates the interconnect design process within a multi-tier system, as potential design
methodologies need to manage the diverse interconnect impedance characteristics
and process variations caused by the different fabrication processes and technologies
employed in the different physical tiers.

Three-dimensional circuits can be conceptualized as the bonding of multiple
wafers or bare dice. The distinctive difference between an SiP and a 3D IC is the
granularity of the vertical interconnects. Different bonding styles between the planes
within a 3D system are also possible Face-to-Face (F2F), Face-to-Back (F2B), and
Back-to-Back (B2B) [14, 15]. Examples of SiP structures and various bonding styles
for 3D circuits are illustrated in Fig. 2.1. Each of these bonding styles is likely to
include through silicon vias (or interplane vias) with different physical dimensions.
Consequently, the density of the vertical interconnects can vary not only among
different 3D circuits but also among the physical planes within a 3D circuit.

2.2 Historical Evolution of 3D System Integration

The proposal of doubling the number of transistors on an IC chip every 24months
by Gordon Moore in 1965 (Moores law) [1] has been the most powerful driver
for the development of the microelectronics industry in the past 45years. This law
emphasizes lithography scaling and 2D integration of all functions on a single chip,
perhaps through system-on-chip (SoC) as schematically shown in the left-hand side
of Fig. 2.3. On the other hand, the integration all these functions can be achieved
through 3D-IC integration [13, 16–18] as illustrated in Fig. 2.4.

Through Silicon Via (TSV) is the heart 3D-IC integration [19]. Though the 1956
Nobel Laureate in Physics, William Shockley invented TSVs more than 50years ago
in U.S. Patent #3,044,909, filed in 1958 and issued in 1962, but it was not intended
for 3D-IC integration and it took half a century for the production technology to
reach the level of expertise that would actually permit making TSVs. From a die
with hundreds of transistors in the 1960s to dies approaching billions of circuits
in 2014, on-chip integration has continued to require lithographic advancements
for circuit and increase in wire density has led to increasing the number of wiring
levels on the chip. Over decades of semiconductor scaling, on-chip integration has far

2.2 Historical Evolution of 3D System Integration 17

Opto

Memory

Display

DSP
MEMS

ASIC

PROCESSOR

B

A

Fig. 2.3 Typical 2D System-on-Chip (SoC) integration

Opto

Memory

Display

DSP
MEMS

ASIC

PROCESSOR

B

A

PROCESSOR

ASIC

DSP

MEMS

OptoD
is

pl
ay

M
em

or
y

B

A

2D SoC
3D SoC

Fig. 2.4 The difference in wire length between 2D Soc and 3D SoC, the wire length between blocks
A and C in 2D SoC and 3D SoC

out-stripped off-chip 3D integration and growth in I/O interconnections. For off-chip
interconnections over the last five decades, I/O interconnections grew from tens of
I/O interconnections to about several thousands of I/O interconnections for the most
complex die manufactured today [20–22]. Figure2.5 shows the evolution of 3D-IC
technology alongwith the resulting relative I/O interconnection density for 3Ddesign
and implementation. The emerging 3D integration approaches can be implemented
different packaging form factors to combine TSVs, thinned silicon and interposer
technology as required to achieve higher interconnection density. High bandwidths
may be achieved using 3D chip integration, 3D die stacking, or 3D silicon packaging
in which each form factor offers high interconnection density (104/cm2 to 108/cm2).
Therefore, trade-offs between best system form factors will be dependent on factors
such as system architecture, manufacturing costs, and test and assembly integration
yields.

Looking toward the future, industry and academic researchers are developing
wafer-to-wafer and die-to wafer stacking techniques for the fabrication of devices
that leverage the z-direction but eliminate the need for multiple packages [23].
Additionally, these techniques reduce interconnect delays, form factors, and power
consumption while allowing integration of numerous heterogeneous devices. In the
wafer-to-wafer approach, circuitry is divided into sections that are built onto separate

18 2 Three-Dimensional Integration: A More Than Moore Technology

3D
2.5D substrate

28nm FPGA 28nm FPGA 28nm FPGA

Chip1 Chip1 Chip2 Chip3

3D Package
Signle Chip
Multi Chip
(MCM)

I/O 150µm pitch

10
3

I/0/cm

Wiring pitch 18−150µm

2020 2025201420001995

I/O 200µm pitch Wiring pitch 50−200µm

2.5D and 3D−IC
Integration

Monolithic 3D
Integration

TrueMin pitch on−chip interconnects=48nm

Substrate thinkness=6 to 10µm

BEOL thinkness=6 to 10µm

TSV standards

Diameter=10 to 1.2µm

Depth=6 to 10µm

2 to 3X reduction in power consumption

3 to 5X reduction in silicon area

10 to 12X reduction in silicon footprint

Diameter=50 to 70nm

Via standards

Via density = 2B/cm 2

Fig. 2.5 Evolution of 3D integration and vertical interconnect technology

wafers using standard processing methods. The wafers are then post-processed for
through-silicon interconnections (TSVs), creating the vertical connectors. Thewafers
are aligned, bonded, thinned, and diced into individual devices. In October 2006, sev-
eral equipmentmanufacturers, led byAlcatel, EVGroup, Semitool, andXSil, formed
a consortium, dubbed EMC-3D, to address the technical and cost issues associated
with the creation of TSV interconnect technology for die stacking andwafer-to-wafer
attach. In the die-to-wafer variation, a known good die (KGD) is bonded to a wafer.
This approach is preferred in configurations that require three or more dies in a stack.
Privately held Ziptronix Inc, a spin-out business of the Research Triangle Institute,
advanced the state of the art in the die-to-wafer methodology when it introduced, late
in 2005, a direct bond interconnect technology (a covalent room-temperature bond)
that replaces through-die vias (TSVs), increases electrical connection density, and
reduces interconnect delays.

Research investigations have explored a wide variety of structures, processes, and
bonding approaches. Researchers recognize the importance of

• developing fine-pitch vertical interconnections using TSVs,
• developing thinning technology for silicon and interconnection technology that
joins thinned silicon dies into die stacks and that joins dies to silicon packages,

• developing wafer-to-wafer bonding technologies.

In addition to power delivery and signal interconnections, investigators have also
included approaches for thermal cooling and modeling of heat removal from thinned
silicon structures and fine-pitch interconnections. Vertical interconnect (TSV) tech-
nology is a key focus area and an enabler for the evolution of 3D-IC design and

2.2 Historical Evolution of 3D System Integration 19

packaging. As already indicated, TSV technology is one of the key interconnect
solutions enabling a vertical method of electrical connectivity for various 3D-IC
configurations such as stacked die and wafer-level packaging. In TSV investigations,
technical reports have included studies in which researchers sought submicron TSV
diameters for compatibility with wafer front-end-of-line (FEOL) and back-end-of-
line (BEOL) wafer fabrication or alternatively for silicon-based package solutions.
TSV diameters and pitches have ranged from large sizes, such as about 10–100µm
via diameter and silicon thickness of about 50–300µm, down to via diameters of
less than 1–10µmwith corresponding silicon thicknesses ranging from about 50µm
down to about 6µm silicon thicknesses. Reported TSV conductors have included
tungsten, copper, composite, paste, doped polysilicon, as well as other electrical
conductors. For example, [24] gave a TSV technical presentation on 10µm copper
conductors utilizing TSVs for electrical interconnection ata 20µm pitch.

Fine-pitch interconnection, also at a 20µm pitch for silicon-on-silicon connec-
tions with TSVs, has also been reported by [25] and also variety of bonding and
electrical interconnection approaches between silicon die in thinned silicon die, die
stacks, or packages using silicon reported in [26, 27]. In these interconnection exam-
ples, anisotropic conductive polymers were used to bond 25µm thinned dies with
50µmpitchAuSn bumps. Technical publications have also reported fine-pitch solder
connections to copper as a means either to stack thinned silicon chips to other silicon
dies or to join dies to silicon packages [25–28]. An application that leverages TSVs
and fine-pitch interconnectionswith demonstration of functioningmemory die stacks
has also been presented [29]. The main future challenge for TSV technology relates
to its ability to maintain performance parameters, such as signal integrity or heat
management, as data rates climb. However, a number of companies have been able
to demonstrate efficient TSV electrical interconnect solutions that meet data rates
on the order of 10Gb/s. Many technology suppliers as ZyCube, Intel, Samsung and
IBM are currently optimizing the manufacturability and reliability of their 3D-IC
fabrication process. Tezzaron’s Super-Via technology, initially a post backend-off-
line process with Cu–Cu bonding [16] was abandoned due to failures of the used
copper TSVs (5µm diameter). In consequence they changed their process now to
tungsten filled Super-Contacts with 1.2µm diameter [30, 31].

2.3 Vertical Interconnect Technology Development (TSV)

Through Silicon Via or TSVs are a critical enabler for both wafer-to-wafer and die-
to-die stacking for which low-inductance, high bandwidth vertical interconnects are
needed in silicon. Applications may require only a few, thousands, or millions of
vertical interconnections, a number that is very product dependent and is affected by
architecture, desired product specifications, silicon thickness, materials, structures,
and processes. the range in size includes diameters from less than 1.2–90µm. The
silicon thickness ranges from less than 6µm to a full wafer thickness of 730µm,with

20 2 Three-Dimensional Integration: A More Than Moore Technology

TSV Array

50 µm
to
6 µm

Top bump

SiO insulator2TSV

Wiring layer
Bump

Al wiring

Fig. 2.6 Representation of Through Silicon Via (TSV)

most studies having been performed with 150µm thicknesses or less. Material eval-
uations have included copper, tungsten, and composite materials. Figure2.6 shows
examples of TSV cross-sections.

As illustrated in Fig. 2.6, a through-silicon via (TSV) is a vertical via that com-
pletely passes through a silicon die. Its main purpose is to establish electrical con-
nectivity between devices in two different dies in a 3D-IC stack. There is presently
no consensus on the most efficient bonding technique which largely depends on the
application requirements [30, 32, 33]. There are various bonding techniques [34]
which range from direct oxide bonding, metal to metal (Cu–Cu) bonding, with
different variants and adhesives. Still, the most prevalent technique to stack TSV
based dies is a micro-ball based bonding. Micro-balls or micro-bumps are the most
appropriate for present 3D applications since the density of TSVs is not very high
(IK–10K/chip), their locations are predetermined and micro-bump based stacking is
presently more reliable that alternative techniques. Depending on when the TSVs
are fabricated, two major types of TSV exist: via-first and via-last, as illustrated in
Fig. 2.7.

Via−first TSV via−middle TSV via−last TSV

devivc

M
et
al

 la
ye
rs

Fig. 2.7 An illustration of Via-first, via-mid and via-last TSV technology process

2.3 Vertical Interconnect Technology Development (TSV) 21

• Via-first: TSV’s are fabricated before CMOS or Si frontend (FEOL, Front-End-
Of-Line) device fabrication processing.

• Via-middle: TSV’s are fabricated after the Si frontend (FEOL) device fabrication
processingbut before the backend (BEOL-back-end-of-line), interconnect process.

• Via-last: TSVs, are fabricated after or in the middle of the Si Backend (BEOL) or
bonding, essentially when the wafer is finished.

The dimensions of via-first TSVs are typically smaller (1–10µm diameter), with
aspect ratios (=height:diameter) of 3:1–10:1. A key benefit to the via first approach
is that companies using it don’t need to worry about spoiling expensive wafers at
the R&D stage because they can use bare Si or SOI wafers. For Si interposer wafer
development related to heterogeneous stacking, via-first is still being developed and
used. In this case of via-last TSVs, the processing can be done at the foundry or
packaging house and there is the possibility to start TSV processing from the top
surface of the wafer (Front-side processing) where the active transistor layouts are
placed. The via-last TSV diameter is wider (10–50µm), with aspect ratios of 3:1–
15:1. There are two main technologies for drilling TSVs: dry etching or Bosch
etching, and laser drilling. Polysilicon, copper, and tungsten are the most popular
materials for TSV fill. Silicon dioxide is a popular material for the liner that sits
between the TSV and silicon substrate for insulation purpose. From the perspective
of physical design, via-first TSVs are less intrusive because they interfere only with
the device, M1, and top layers, whereas via-last TSVs interfere with all layers in the
die as illustrated in Fig. 2.7. Via-first TSVs have their landing pads on M1 and the
top metal layers, whereas via-last TSVs have their landing pads only on the top metal
layers. These landing pads include keep-out-zone uniformly located around them to
reduce coupling effects. The connection between via-first TSVs are made using local
interconnect and vias in between adjacent dies, whereas via-last TSVs are stacked
on top of each other as illustrated in Fig. 2.7. Therefore, via-first TSVs are usually
used for signal and clock delivery, whereas power delivery network utilize via-last
TSVs in general.

2.4 3D Integration: Manufacturing Methods

Various 3D integration technologies currently pursued by semiconductor industry
and research institutions. There are many different integration and manufactur-
ing schemes for 3D interconnects. One way to categorize the different integra-
tion schemes is by the orientation of the individual dies to each other. Figure2.8
shows face-to-back (F2B) and face-to-face (F2F) integration. F2F integration does
not require TSVs in general, however TSV can be used for I/O connections, whereas
TSVs are required for F2B integration. For two-layer chip stacks, both integration
schemes have some advantages and disadvantages. F2B configuration uses stan-
dard process for test, assembly and packaging, however F2F do not have a standard
process. For multi-layer stacks, F2B has the advantage that after each bonding step

22 2 Three-Dimensional Integration: A More Than Moore Technology

Metal Layer

Device Layer

Substrate

Substrate

Device Layer

Metal Layer

Substrate

Device Layer

Metal Layer

Device Layer

Metal Layer

TIM (Thermal Interface)
M6

M1

M6
M6

Direct Bond Interface

I/O Pads

Inter−tier TSV connections

Face−to−Face 3D stackFace−to−Back 3D Stack

Fig. 2.8 3D stacking methods: F2F and F2B stacking configuration

the top device layer is face up so that the stacking unit process can be repeated
multiple times. However, for F2B integration, the die/wafer has to have the final
thickness already during stacking, as subsequent thinning is not possible. In F2F
stacking configuration wafer thinning is not a requirement.

Another more popular way to categorize 3D integration schemes is based on the
point at which the TSV is created during the manufacturing process. In the past,
the only distinction was whether the via was manufactured before or after wafer
thinning: via-first or via-last. Today, it is common to further distinguish whether
the via was created prior to front-end processing, i.e., via first, or after front-end
processing (but before wafer thinning), i.e., via-middle. Figure2.9 shows a typical
process flow for via-middle manufacturing. Another important distinction within
the various integration schemes is based on wafer or die level processing: chip-
to-chip (C2C), chip-to-wafer (C2W) and wafer-to-wafer (W2W). C2C has mainly
been used for high performance, high margin devices. For lower margin devices
like consumer electronics, C2C is not very suitable due to single die processing.
Of course, W2W integration allows wafer-level processing after stacking. W2W
integration gives the highest throughput and the highest alignment accuracy. But
W2Wintegration requires that the dies have the exact same size, and it has the inherent
risk that a defective die is bonded to a good die, thereby destroying the whole stack.
C2W is a hybrid process and combines the single die placement with the feasibility
of wafer-level processing after die placement. With C2W integration, it is possible to
stack dies of different sizes. With a modular design and chip architecture, it must be
assumed that dies typically will have different sizes. For heterogeneous integration
in particular, C2W is the method of choice as currently only silicon devices are
manufactured on 300mm wafers, while all other semiconductor materials are being
manufactured on smaller wafer sizes. In addition C2W enables testing of every die
prior to stacking, which allows true known good die manufacturing. Figure2.10
shows the difference between C2W andW2W integration. A fourth stacking method

2.4 3D Integration: Manufacturing Methods 23

Front Side Processing

Lithography

DIRE Etch/Cleaning

Insulator/Barrier/seed Dep−

Cu Plating

CMP/Cleaning

Back Side Processing

Carrier Bonding

Thinning

Insulator/Barrier/Seed Dep−

Lithography

Cu RDL/Solder
PR Removel/UBM Etch

Dicing

Chip to wafer

Pick & place/stacking

Dicing

De−bonding

CMOS
Processing

Fig. 2.9 A typical 3D Via-mid stacking process integration: Front-side and Back-side processing
methods

Wafer to Wafer Stacking Chip to Wafer Stacking

Stacking

Singulation

Fig. 2.10 3D Integration methods: Wafer-to-Chip and Wafer-to-Wafer stacking

and well advanced in today’s FPGA industry is silicon interposer-based integration
(called horizontal or 2.5D integration), vertical die to die stacking (also called 3D
stacking), and a range of mixed configurations. An interposer-based stacking gained
popularity last year because of several attractive applications [35] as well as its
technological feasibility. It might not be sufficiently effective for other applications,
however, such as the memory on logic [36] or the logic splitting application, where
the logic is split between two or more dies that are then put on top of each other
for shorter interconnections. Also memory can be split in such a way that read-write

24 2 Three-Dimensional Integration: A More Than Moore Technology

logic is on one chip while the cells are on the other. A true 3D stacking is needed for
maximum performance in those applications.

2.5 Challenges in 3D Physical Design

The introduction of the third dimension has significantly increased the complexity
of the integrated circuit design process. The 3D design and integration faces enor-
mous challenges in both manufacturing technology and physical design. The major
challenge is to define the characteristics of the verticals interconnects and the con-
straints that this type of interconnects poses on physical design process and other
typical problems are reuse of existing 2D-IP blocks, testability, CAD tools and ther-
mal issues. While thermal integrity is a critical issue in all high performance chip
design, since the system reliability is strongly dependent on the temperature and
this problem is even more significant for 3D designs due to the high power density
in the stacked arrangement. Increasing the number of tiers that can be integrated
into a single 3D system is a primary objective of 3D integration. A 3D system with
high-density vertical interconnects is therefore indispensable. Vertical interconnects
implemented as TSVs produce the highest interconnect bandwidth within a 3D sys-
tem, as compared to wire bonding, peripheral vertical interconnects, and solder-ball
arrays. Alternatively, the density of this type of interconnect dictates the granularity
of the interconnected layers of the system, directly affecting the inter-tier commu-
nication bandwidth. Other important criteria should also be satisfied by the TSV
fabrication process. A fabrication process for vertical interconnects should produce
reliable and inexpensive TSVs. A high TSV aspect ratio, the ratio of the diameter
of the top edge to the length of the via, may also be required for certain types of
3D circuits. The effect of forming the TSVs on the performance and reliability of
neighboring active devices should also be negligible.

The electrical characteristics of the TSVs are of primary importance in 3D-ICs
and are considerably different from the horizontal interconnect segments [37], as
described by recent electrical models [38]. This situation is due to the structure of
these interconnects and the diverse technologies, such as CMOS and SOI, that can
exist in a 3Dsystem. Producing low resistance and capacitanceTSVs is a fundamental
objective of manufacturing technologies. Finally, not properly characterizing the
contribution of the TSVs to the delay of the critical inter-tier interconnect can result
in significant inaccuracy in the performance of a 3D system [39]. Consequently, these
structures must be carefully considered during the 3D physical design process. The
thermal traits of the TSVs are also significant, as these vias can affect the thermal
behavior of a 3D-IC. TSVs can be used to provide high thermal conductivity paths
to facilitate the flow of heat from the upper tiers to the tiers attached to the heat sink,
maintaining the temperature of a 3D circuit within acceptable levels. Materials with
low thermal resistance, such as copper, are therefore preferred.

2.5 Challenges in 3D Physical Design 25

2.5.1 Complexity of 3D Physical Design Tools and Their
Limitations

The solution space for classical physical designmethodologies increases significantly
in 3D systems, as the physical distance of two circuit cells is reduced not only by
placing these cells near each other on the same tier but also by placing the cells
in vertically adjacent locations. This situation results in a formidable increase in
the number of solutions that can be explored, resulting in an exponential growth in
the computational time. The increase in the number of metal layers yields similar
computational issues for the routing task [40]. Computationally efficient heuristic
algorithms are the primary tool to manage the dramatic increase in the solution space
for 3D circuits. Methods such as simulated annealing (SA) and genetic algorithms
complete the mosaic of the 3D physical design process [35, 41]. The main challenge
is 3D physical design is dealing with tools that are not specifically designed to meet
their needs. There are several works presented in the literature that describe various
3D system design options and physical design algorithms for 3D-ICs, but very few
in the area of 3D design demonstration and methodology.

One quick solution to the lack of physical design tools for 3D-ICs is to build
so-called pseudo 3D tools, which are based on straightforward extension of existing
tools for 2D-ICs [30]. These pseudo 3D tools are able to handle simple 3D designs,
wherein existing 2D designs are simply stacked and connected without any major
design change. A good example of this is 3D stacking of processor and memory
dice, where the only change required is to add TSVs in the layouts to deliver signal,
power, and clock in vertical directions. This can be done by adding TSVs in the lay-
out whitepace or by slightly modifying the layout to leave space for TSVs and wires.
These TSVs are then treated as pseudo IO pads in the layout. In addition, traditional
objectives, such as wire length and area, are insufficient for 3D circuits, particularly
heterogeneous multi-tier integrated systems. Since these systems can combine dis-
parate technologies, such as radio frequency (RF), analog, and digital circuits, other
objectives, such as noise and signal integrity, need to be simultaneously considered
in addition to conventional objectives. These objectives require the synergistic devel-
opment of design methodologies, which previously were individually developed for
each type of circuit. However, future trends in 3D-IC design calls for finer-grained
3D optimizations, such as 3D module floorplanning or 3D gate placement across the
tiers for performance and power consumption improvement. In addition the number
of tiers in the stack is expected to increase in order to meet the demand for higher-
level system integration. These trend requires more powerful native 3D physical
design tools that are built from ground up and are capable of handling many tiers
and many TSVs simultaneously while addressing the current and emerging issues
like cost, reliability, and manufacturability. In addition TSV and thermal-aware 3D
design, verification, and analysis tools including 3D DRC/LVS, timing, power, sig-
nal integrity, power integrity and clock integrity analysis tools need to be seamlessly
integrated and efficiently managed.

26 2 Three-Dimensional Integration: A More Than Moore Technology

Fig. 2.11 TSV placement styles for 3D Stacked chips: Regular and non-regular placement for
improving design quality and thermal profile of the chip

2.5.2 TSV and Thermal Management

TSVmanagement is at the heart of physical design for 3D-ICs. Especially, the count
and location of TSVs have significant impact on the quality and reliability of 3D-IC
layouts. A recent study [42] shows that the overall wire length-up to a certain point
reduces as more TSVs are used in the 3D layout. The number of TSVs used in 3D-IC
layout entirely depends on how the design is partitioned into multiple dies. Research
is needed to determine the optimal partitioning styles for given applications. Possible
solutions include tradeoff studies among core-level, block-level, and gate-level par-
titioning across the dies in the 3D stack. Research is also required to investigate the
impact of TSV location on 3D-IC design quality and reliability [43]. Possible solu-
tions include trade-off studies between regular and non-regular TSV placement [43]
with respect to thesemetrics, as illustrated in Fig. 2.11. TSV cost is another important
factor that needs to be addressed during physical design. The cost of TSV depends
on geometry-related data such as the pitch, diameter, and aspect ratio as well as the
materials used for the TSV fill and liner. Moreover, the total number of TSVs used in
the layout significantly affects the overall cost of the 3D-ICs. It is important to model
and balance the trade-offs between the cost and other metrics such as performance,
power, reliability, and manufacturability during physical design with TSVs.

A 3D system consists of disparate materials with considerably different thermal
properties including semiconductor, metal, dielectric, and possibly polymer layers
used for plane bonding.Although the power consumption of these circuits is expected
to decrease due to the considerably shorter interconnects, the power density increases
since there is a greater number of devices per unit volume as compared to a 2D cir-
cuit. As the power density increases, the temperature of the planes nonadjacent to
the heat sink of the package can rise, resulting in degraded performance or thermal
gradients that can accelerate wear outmechanisms [44, 45]. Designmethodologies at
various stages of the IC design flow, such as synthesis, floorplanning, and placement
and routing, which maintain the temperature of a circuit within specified limits or
alleviate thermal gradients among the tiers of the 3D circuit, are therefore necessary.
Two key elements are required to establish a successful thermal management strat-
egy: a thermal model, to characterize the thermal behavior of a circuit, and design
techniques that alleviate thermal gradients among the physical layers of a 3D stack
while maintaining the operating temperature within acceptable levels. The primary

2.5 Challenges in 3D Physical Design 27

requirements of a thermal model are high accuracy and low complexity [46–48],
while thermal design techniques should produce high-quality circuits without incur-
ring long computational design time [49]. To reduce the complexity of the modeling
process, standard methods to analyze heat transfer, such as finite difference, finite
element, and boundary element methods, have been adopted to evaluate the tem-
perature of a 3D circuit. Simpler analytic expressions have also been developed to
characterize the temperature within a 3D system.

Thermal design techniques can be classified into two categories: thermal strate-
gies that improve the thermal profile of a 3D circuit without requiring any redundant
interconnect resources for thermal management and those methodologies that are an
integral part of a more aggressive thermal policy that utilize thermal TSVs, sacrific-
ing other design objective(s). The thermal aware design techniques uses the location
and spatial distribution of TSV to accurately estimate the temperature profile of the
3D chip. As discussed earlier, TSVs aremade of copper or tungsten and they are good
thermal conductors. By carefully arranging the TSVs, it is possible to transfer the heat
efficiently from the tiers far from heatsink towards the tiers placed near to heatsink.
To do this, we need to include 3D thermal analysis tool to the physical design flows
to create thermal aware design tools. As described in Fig. 2.11, depending of the type
of design, a uniform or a non-uniform TSV distribution can be used to effectively
transfer heat from one layer to another. There are also more aggressive thermal man-
agement methods using redundant interconnect resources. These TSVs are typically
called thermal or dummy vias [10] to emphasize the objective of conveying heat
rather than providing signal communication for circuits located on different physical
layers. Thermal wires can also be employed to transfer heat [50]. Thermal wires
correspond to those horizontal wires that connect regions with different thermal via
densities through thermal inter-tier vias.

2.5.3 Power and Clock Delivery in 3D-ICs

On-chip power delivery is a major challenge in 3D-IC design. In 3D ICs, the on-
chip power-ground (P/G) networks in several tiers are vertically connected with P/G
TSVs, leading to much higher current demand per TSV. The number of TSVs used in
the 3D P/G network is also limited so as to prevent placement and routing congestion.
In addition, signal routing must be done carefully to prevent coupling noise between
P/G TSVs and signal wires. This complex optimization problem usually results in
larger area, more power consumption, and more noise, which leads to less perfor-
mance and diminishing benefit of TSV-based 3D-IC technology. Research needed
on P/G network synthesis, optimization, and analysis to addresses these issues while
minimizing on-chip resource usage such as P/G wires, P/G TSVs. The sequential
elements in 3D ICs (i.e., flip-flops and latches) are potentially located in all of the
dies in the 3D stack. This poses a major challenge in delivering clock signal to all of
them while reducing power consumption, skew, slew, and jitters. A recent study [51]
shows that more clock TSV usage up to a certain point translates to more wire length

28 2 Three-Dimensional Integration: A More Than Moore Technology

reduction and thus power saving. However, clock TSVs, as in the case with signal
and P/G (Power and Ground) TSVs, occupy layout space and causes coupling. Thus,
clock TSV management becomes an important issue in 3D clock tree synthesis.
In addition, the high thermal variations in 3D ICs induce a substantial amount of
skew variation in the clock tree, which has adverse implications for the performance
and reliability of 3D-ICs. The 3D clock tree itself is the longest wire in the circuit
and contains many buffers to control skew and slew. Since the delay characteristics
of clock wires, buffers, and TSVs are significantly affected by the temperature, care
must be taken to ensure that the skew is kept minimum based on a given non-uniform
thermal profile.

2.5.4 TSV-Induced Design for Manufacturability Issues

Primarily due to their large size compared with other layout objects, TSVs in 3D-IC
layouts cause significantly non-uniform layout density distributions on the active,
poly, and M1 layers. This density variation issue is expected to cause trouble during
chemical-mechanical polishing (CMP) steps in the BEOL processing of the individ-
ual die, and requires new TSV-aware solutions. In addition, the printability of the
devices and wires nearby TSVs will be affected in a non-negligible way. The CTE
(coefficient of thermal expansion) mismatch between TSV copper and silicon causes
significant stress to the devices nearby during manufacturing and operation of the 3D
ICs. This in turn affects the timing characteristics of the devices and thus the overall
circuit performance. The reliability of substrate and devices nearby TSVs is also
affected because the thermal hotspots created in the regions cause repeated thermal
expansion and contraction during 3D IC operation. This transient thermal behavior,
together with the residual stress from TSV fabrication, may cause cracking and other
physical damage in the substrate and devices. Research efforts required to address
these issues during physical design. Possible solutions include TSV-aware CMP fill
synthesis for the top and bottom metal layers, TSV stress-aware timing analysis and
physical design [52], and TSV-aware substrate and device reliability modeling and
optimization. TSVs are significantly larger than devices and local interconnects
and thus complicates physical design and optimization for 3D layouts. Accurate elec-
trical, mechanical, and thermal modeling of TSVs is essential in successful physical
design of TSV-based 3D-ICs. In addition, full-chip layout construction and analysis
for 3D-ICs should consider the impact of TSVs on performance, power, reliability,
manufacturability, and cost.

2.5.5 Floorplanning for 3D Circuits

The predominant design objective for floorplanning a circuit has traditionally been
to achieve the minimum area or, alternatively, the maximum packing density while

2.5 Challenges in 3D Physical Design 29

interconnecting these blocks with minimum length wires. Most floorplanning algo-
rithms can be classified as either slicing [53] or nonslicing [54, 55]. Floorplan-
ning techniques belonging to both of these categories have been proposed for 3-D
circuits [56–59]. An efficient floorplanning technique for 3-D circuits should ade-
quately handle two important issues: representation of the third dimension and the
related increase in the solution space. Conventional floorplanning assumes a single
2D layer on which several modules must be arranged. A wide verity of different
algorithmic approaches have been used in order to solve the floorplanning problem.
3D floorplanning includes new 3D-specific characteristics that must be represented
in the underlying data structures. For example, high output power modules need
comprehensive consideration, such as thermal-driven floorplanning [60] and vertical
dependencies arise in addition to horizontal ones.

There are two ways to represent the vertical dependencies. The first possibility is
the multiple usage of classical data structures, so-called 2.5D methods. Here, addi-
tional mechanisms have to be implemented to consider vertical relations between
module placed in different tiers, such as vertical alignments as well as overlapping
and non-overlapping constraints. The representations include a discrete z-direction,
such as the combined bucket and 2D array approach (CBA) in [61]. Vertical depen-
denciesmust incorporated directly into the data structure to prevents invalid solutions
without time-consuming evaluations as well as to minimize the solution space. More
recent data structures for floorplanning represent multilayer modules in the three
dimensions. An example of such a data structure is 3D Slicing Tree described in [53,
62]. As illustrated in Fig. 2.12, different operations, such as module rotation and
swapping, can be carried out efficiently to modify the given tree. A concatenation
of these operations allows obtaining any possible slicing tree from any given slicing
tree. However solutions from a 3D-Slicing Tree are limited to slicing floorplans.

2.5.6 Placement for 3D Circuits

Placement algorithms have traditionally targeted minimizing the area of a circuit
and the interconnect length among the cells, while reserving space for routing the
interconnect. In vertical 3D-IC integration, a placement dilemma arises in deciding
whether two circuit cells sharing a large number of interconnects can bemore closely
placed within the same tier or placed on adjacent physical tiers, decreasing the inter-
connection length. Placing the circuit blocks on adjacent tiers can often produce a
line with the shortest wire-length to connect these blocks. An exception is the case
of small blocks within an SiP where the length of the inter-tier vias is greater than
100µm [63, 64]. Placement methodologies have also been discussed where other
objectives, such as thermal gradients among the physical tiers and the temperature
of the tiers [65], are considered. Several approaches have been adopted for placing
circuit cells within a volume [66–70]. Different types of circuit cells for various 3D
technologies have been investigated in [36]. Layout algorithms for these cells have
also been devised, demonstrating the benefits of 3D integration. Since TSVs consume

30 2 Three-Dimensional Integration: A More Than Moore Technology

Z

Z

X

Y

a

b c

d
e

D

E

Rotation

Exchange

Z

Z

X

X

a

b c
d e

Z

Y Z

X

d e a

b c

Z
Y

X

E

Fig. 2.12 Illustration of 3D Slicing Tree operation to permute a given 3F floorplan: A rotation
alters an inner node (representing a cut through the normal plain) resulting in a physical rotation
of modules contained in the sub-trees of that node. An exchange swaps two sub-trees resulting in
a physical exchange of modules contained in these sub-trees

silicon area, possibly increasing the length of some interconnects, an upper bound on
this type of interconnect resource is necessary. Alternatively, sparse utilization of the
vertical interconnects can result in insignificant savings in wire length. To consider
the effect of the vertical interconnects, a weighting factor has been used to increase
the distance in the vertical direction, controlling the decision as to where to insert the
inter-tier vias [69]. This weight essentially behaves as a controlling parameter that
favors the placement of highly interconnected cells within the same or adjacent phys-
ical tiers. Alternatively, TSVs are treated as circuit cells since these interconnects
occupy silicon area [71] and are included in the individual cell placement process
within each tier. Since this approach can result in two different locations for placing
a TSV, as illustrated in Fig. 2.13, a weighted average distance between these two
locations can be utilized to place a TSV [71]. Although these approaches consider
the location of the TSV, the fundamental objective is to decrease the interconnect
length. The maximum achievable reduction in the interconnect length for the longest
on-chip interconnect is proportional to

√
n, where n is the number of tiers constitut-

ing a 3D circuit [8]. Any further improvement in the performance of the inter-tier
interconnects can be obtained by considering the electrical characteristics of the TSV.

Multi-objective placement techniques for 3D circuits are necessary to generate
efficient 3D floorplans. Additional objectives that affect both the cell placement and
wire length are simultaneously considered. The force directed method is a well-
known technique used for cell placement [72], where repulsive or attractive forces
are placed on the cells as if these cells are connected through a system of springs.
The force directed method has been extended to incorporate the thermal objective

2.5 Challenges in 3D Physical Design 31

TSV

Circuit blocks

Fig. 2.13 Treating the TSVs as circuit cells on different planes can result in two different locations
for placing a TSV. These locations define a region inwhich the TSV can be placed to satisfy different
design objectives

during the placement process [73]. In this approach, repulsive forces are applied to
those blocks that exhibit high temperatures (i.e., hot blocks) to ensure that the high-
temperature blocks are placed at a greater distance from each other. The efficiency
of this force directed placement technique has been evaluated on the MCNC [74]
and IBM-PLACE benchmarks [75], demonstrating a 1.3% decrease in the average
temperature, a 12% reduction in the maximum temperature, and a 17% reduction
in the average thermal gradient. The total wire length, however, increases by 5.5%.
As demonstrated by these results, this technique primarily achieves a uniform tem-
perature distribution across each plane, resulting in a significant decrease in thermal
gradients as well as the maximum temperature. The average temperature through-
out a 3D-IC, however, is only slightly decreased. As a more practical example that
demonstrates the need to include the thermal objective in 3D physical design tech-
niques, consider an Intel Pentium 4 processor, which has been redesigned in two
planes [76]. The increased power density due to stacking can increase the peak tem-
peraturewithin the 3D processor by approximately 26 ◦C, as compared to the original
2D system if thermal issues are ignored [76]. This increase can significantly degrade
the performance and reliability of the processor. If the thermal objective is incor-
porated during the placement process, a negligible 2 ◦C increase is observed [76].
Alternatively, additional TSVs that do not function as a signal path can be utilized
to further enhance the heat transfer process. The design objective is to identify those
regions where thermal vias are most needed (hot-spots) and place thermal vias within
those regions at the appropriate density. Such an assignment, however, is mainly
restricted by two factors; the routing blockage caused by these vias and the size of the

32 2 Three-Dimensional Integration: A More Than Moore Technology

unoccupied regions or white space that exist within each tier. Although thermal via
insertion can be applied as a post-placement step, integrated techniques produce
a more efficient distribution of the thermal TSVs for the same temperature con-
straint [77, 78]. One advantage of this approach is the large granularity with which
the thermal analysis method could work. The thermal conductivity of each region
can be treated as a design variable that is only subsequently translated into a precise
number of thermal vias placed inside this region. The integrated technique requires
16% fewer thermal vias for the same temperature constraint, with a 21% increase
in computational time and an almost 3% reduction in total area.

2.5.7 Routing for 3D Circuits

Routing is the most complex and least developed of the physical design techniques
used in 3D circuits. During the routing stage, all terminals of the nets in the circuits
netlist must be properly connected while respecting the constraints, such as design
rules, routing resources capacities and optimizing routing objectives like minimize
total wire-length, maximum timing slack etc. The multiple metal layers available for
routing on each physical layers exacerbate the difficulty in routing a net connecting
several circuit cells located on different layers. As these interconnects also compete
with the transistors for silicon area, routing is a formidable task for 3D circuits. An
early paper on routing 3D circuits demonstrated several issues related to this physical
design task [79]. Consequently, several heuristics have been developed that address
routing in the third dimension [80, 81]. The main difference between the 2D and 3D
routing is caused by themulti-tier position of the net terminals that lead to net topolo-
gies which span more than one tier as illustrated in Fig. 2.14. This requires expensive
inter-tier vias to be used in addition to regular signal vias which connect metal layers
within the same tier. An effective approach for routing 3D circuits is to convert the
routing inter-tier interconnect problem into a 2D channel routing task, as the 2D
channel routing problem has been efficiently solved [82, 83]. A number of methods
can be applied to transform the problem of routing the inter-tier vias into a 2D routing
task, which requires utilizing a portion of the available routing resources for inter-tier
routing (usually the top metal layers). Inter-tier interconnect routing can be imple-
mented in five major stages including inter-tier channel definition, pseudoterminal
allocation, inter-tier channel creation (channel alignment), detailed routing, and final
channel alignment [80]. Additional stages route the 2D channels, both the inter-tier
and intra-tier vias, and perform channel ordering to determine the wire routing order
for the 2D channels.

Alternatively, multilevel algorithmic techniques [84] have been applied to route
3D circuits. The advantages of multilevel routing are the lower computational time
and higher completion rates as compared to flat and hierarchical routers. Multilevel
routing can be treated as a three stage process: a coarsening phase, an initial solution
generation at the coarsest level (level p) of the grid, and a subsequent refinement
process until the finest level of the grid is reached. Before the coarsening phase

2.5 Challenges in 3D Physical Design 33

TSV

Inter−tier Via

Intra−tier via

Fig. 2.14 Example route for a net in a three-tier 3D design

is initiated, the routing resources in each unit block of the grid are determined by a
weighted area summodel. The routing resources are allocated during each coarsening
step. The resources for the local nets within a block are transferred at each coarsening
step. At the coarsest level, an initial routing tree is generated. This initial routing task
commences with a minimum spanning tree for each multi-terminal net. A Steiner
tree heuristic and a maze searching algorithm generate a 3D Steiner tree for each
of these interconnects. Additionally, the TSVs are estimated for each block. During
the last phase, the initial routing tree is refined until the finest level is reached. In
this refinement phase, the signal (and thermal) TSVs are successively assigned and
distributed within each block. The routing of the wires follows the refinement of the
TSVs. At the finest level, a detailed router completes the routing of the circuit [84].

Multilevel routing for 3D-ICs has been extended to include the thermal objec-
tive [85, 86]. A thermal-driven 3D router using a multilevel routing approach com-
posed of a recursive coarsening, an initial routing, and recursive refinement process
presented in [85]. The major milestone of this model is the thermal-driven via plan-
ning algorithm. Based on this global view and capabilities of a multilevel planning
scheme, the via planing step effectively optimize the temperature distribution and
wire-length using direct planning of the inter-tier vias instead of indirect planning
through a routing path search. This approach allows to control the chip tempera-
ture effectively. It also should be noted that any inter-tier via is also considered as a

34 2 Three-Dimensional Integration: A More Than Moore Technology

Fig. 2.15 An illustration of 3D thermal net designed to transfer heat vertically and horizontally
from one location to the other

thermal via. The approach provides flexibility to add dummy inter-tier vias when the
signal inter-tier vias number is not sufficient to bring down the chip temperature to
an acceptable level. An initial routing solution is built using a 3Dminimum spanning
tree (MST) for eachmulti-pin net. Obstacles, such as thermal via regions, are avoided
by using a simplemaze routing algorithm. Then, the number of dummy inter-tier vias
to be inserted is estimated using binary search. The upper bound of dummy inter-tier
via numbers that can be inserted into each device layer is estimated by the amount of
whitespace between the blocks. During each refinement stage, the inter-tier vias are
refined first to minimize wire-length and temperature. This via-refinement process
includes two steps, inter-tier via number distribution and signal inter-tier via assign-
ment. These steps try to optimize temperature and wire-length, respectively. After
inter-tier via refinement, wires are also adjusted according to the updated via posi-
tions Another approach is presented in [50]. It tackles the temperature-aware 3D
routing problem not only by using thermal vias but also by introducing the concept
of thermal wires. Thermal wires are objects with the function of spreading thermal
energy in the lateral direction. Thermal vias perform the bulk of the conduction to
the heat sink, while thermal wires help distributing the heat paths among multiple
thermal vias. This strategy not only limits the temperature impact on the delay of
signal nets, but also reduces congestion in hot regions. This is beneficial since more
thermal vias may be inserted later into these regions to reduce the chip temperature.
Figure2.15 illustrate a model thermal net that is used in modern 3D chip design
to transfer heat vertically and horizontally. The thermal nets are constructed using
TTSVs and horizontal metal wires specially designed for heat transfer. The width
and length of horizontal thermal wires can be bigger than horizontal signal wires.

2.6 3D-IC Design Verification 35

2.6 3D-IC Design Verification

Many of the capabilities required for successful TSV design verification exist today
in some EDA tools that are commercially available. There are, however a num-
ber of significant omissions and obstacles to avoid in standard physical verification
methodologies. Some re-factoring of the tired and true design methodologies that
are in place today is needed to accommodate TSV design structures as part of the
verification landscape. The progress that take place EDA industry are evolutionary,
rather than a revolutionary, approach in developing the 3D IC design tools. This
appears to be a good decision because the technology, the rules and the standards
are still evolving. The main EDA challenges are expected in the design space explo-
ration [87], automatic across-die design partitioning, placement and routing, thermal
and stress management, and 3D stack testing.

In the design space today, the location of each TSV is carefully orchestrated
and tracked. A precise connection is made to each specific micro-bump on another
die designed for the match, or other commodity chip with pre-defined locations. A
commodity chip might be a memory, for example that is available from multiple
sources, with same TSV pin-out and compatible characteristics. In such scenarios,
TSV locations are deliberate and precise, acting more like an embedded connector
than a traditional via. Regardless of the design complexities and the perceived need
for new design methodologies for TSV design, there is still a fundamental need for a
separate physical verification flow. An increase in complexity is the design domain
does not necessarily have to follow into verification complexity increase of the same
magnitude. Regardless of design style and methodology, physical verification is a
necessary step to accurately verify design rule compliance, 3D stack LVS checking
across the die parasitic extraction and simulation. Existing verification flows include
the use of DRC, LVS and extraction to verify the connectivity of multiple stacked
dies [88]. 3D-IC designs that utilize TSVs are essentially a double sided die. The
TSV connects the regular front metal stack and back metal stack as illustrated in
Fig. 2.16. The back metal stack provides for routing flexibility and consists of one
or two layers. TSVs typically connect the first metals in the front (M1) and back
metal (M6 or higher) stacks are manufactured using via-first process sequence and
the TSVs go through the entire metal stacks are manufactured using via-last process
sequence and result in smaller TSV densities since they require significant area to
pass through themetal stacks. Various TSVmodels have been proposed ranging from
piratically ignoring the TSVs altogether in verification (i.e. modeling them as single
small resistance), to the complex models based of fitting S-parameter measurements
with the parameter of TSV model [32]. Electrical characteristics of the TSV depend
on its physical dimensions, size and thickness of its liner as well as on the material
characteristics of silicon substrate. At the present stage of technology development
and 3D-IC applications, it is assumed that there are no interactions between the
TSVs, and a model for a single TSV is provided by the foundries. For verification
purposes, TSVs are treated as an LVS device (GDS based flow) or as a Via (LEF/DEF
based flow), and the provided spice TSVmodel of arbitrary complexity to be used for

36 2 Three-Dimensional Integration: A More Than Moore Technology

F2B stack

Dielectric(SiO2/SiN)
Gate Ploy

Cu (M6, top metal
Al (M1−M5)
W (Tungsten via fill)

STI (Shallow trench isolation)

Super Contact (TSV)

Die2/Wafer 2

Die1/Wafer 1

Tier 0

Tier 1

Two−tier Face−2−Back Stack

Pad Out Pad Out

Via Fist

Via Last TSV

Via Fist
Via Last TSV

Fig. 2.16 Via first and via last with front and back metal stack

downstream simulation. This assumption, however, may not hold true as the technol-
ogy advances and the TSV densities and frequencies become high, requiring accurate
modeling and extraction of the interactions. Significant research effort has been put
into this area recently [89–92] and it is expected to intensify in the coming years.
This new methodology would require more accurate process description, accurate
frequency dependent modeling and appropriate flow development to take advantage
of the modeling accuracy.

2.7 Summary

Developing a design flow for 3D-ICs is a complicated task with many ramifications.
Design methodologies at the frontend and mature manufacturing processes at the
backend are required to effectively provide large scale 3D systems. Physical design

2.7 Summary 37

techniques at different stages of a developmental design flow for 3D circuits have
been discussed in this chapter, emphasizing the effect of the 3D nature on each design
stage. A variety of floorplanning, placement, and routing techniques and algorithms
for 3D circuits have been described that consider the unique characteristics of 3D
circuits. In these techniques, the discrete nature of the third dimension is exploited to
decrease the number of candidate solutions and, consequently, the computational time
required to design a 3Dcircuit. Due to increased power densities and greater distances
between the circuits on the upper planes and the heat sink, physical design techniques
that embody a thermal objective can be a useful mechanism tomanage thermal issues
in 3D-ICs. Design techniques can reduce thermal gradients and temperatures in 3D
circuits by redistributing the blocks among and within the planes of a 3D circuit.
Alternatively, thermal vias can be utilized in 3D circuits to transfer heat to the heat
sink. Thermal wires in the horizontal direction are similar in function to thermal vias
and can also be utilized to lower thermal gradients within 3D circuits.

Another requirement for maximizing the speed of 3D circuits is to reliably distrib-
ute the clock signal within these circuits. A 3D clock distribution network, however,
cannot be directly extended from a 2D circuit due to the asymmetry of a multi-tier
3D circuit and the effect of the inter-tier via impedance. Several clock distribution
networks have been developed to investigate synchronization issues in 3D systems.
In addition to higher performance, 3D integration offers significant opportunities for
designing highly diverse and complex systems. Research on the design of 3D-ICs
has only recently begun to emerge. Many challenges remain unsolved and signif-
icant effort is required to provide effective solutions to the problems encountered
in the design of 3D-ICs. Furthermore, distributing power to the tiers of the stack
located far from the power/ground pads is another fundamental issue in 3D-ICs. As
the power/ground pads are typically located along the edges of the plane, providing
sufficient current while satisfying target voltage levels for every transistor within
a 3D-IC requires innovative power distribution networks. Addressing these impor-
tant design issues will considerably accelerate the development of commercial 3D
integrated systems.

References

1. G. Moore, Cramming more components onto integrated circuits. Proc. IEEE 86(2), 82–85
(1998)

2. A. Rahman, A. Fan, J. Chung, R. Reif,Wire-length distribution of three-dimensional integrated
circuits, in Proceedings of the IEEE International Interconnect Technology Conference, pp.
233–235, May 1999

3. A. Rahman, R. Reif, System level performance evaluation of three-dimensional integrated
circuits. IEEE Trans. Very Large Scale (VLSI) Syst. 8, 671–678 (2000)

4. D. Stroobandt, J. Van Campenhout, Accurate interconnection lengths in three-dimensional
computer systems. IEICE Trans. Inform. Syst. Spec. Issue Phys. Des. Deep Sub-micron 10(1),
99–105 (2000)

5. J.W. Joyner, Impact of three-dimensional architectures on interconnects in gigascale integra-
tion. IEEE Trans. Very Large Scale (VLSI) Syst. 9, 922–928 (2001)

38 2 Three-Dimensional Integration: A More Than Moore Technology

6. J.W. Joyner, P. Zarkesh-Ha, J.D. Meindl, A Stochastic global net-length distribution for a
three-dimensional system-on-a-chip (3D-SoC), in Proceedings IEEE International ASIC/SOC
Conference, pp. 147–151, Sep 2001

7. R. Zhang, K. Roy, C.-K. Koh, D.B. Janes, Stochastic interconnect modeling, power trends, and
performance characterization of 3-D circuits. IEEE Trans. Elect. Devices 48, 638–652 (2001)

8. J.W. Joyner, J.D.Meindl, Opportunities for reduced power distribution using three-dimensional
integration, in Proceedings of the IEEE International Interconnect Technology Conference, pp.
148–150, June 2002

9. B.S. Cherkauer, E.G. Friedman, A unified design methodology for CMOS tapered buffers.
IEEE Trans. Very Large Scale (VLSI) Syst. 3, 99–111 (1995)

10. K. Banerjee, S.K. Souri, P. Kapour, K.C. Saraswat, 3D-ICs: A novel chip design paradigm for
improving deep-submicrometer interconnect performance and systems-on-chip integration.
Proc. IEEE 89, 602–633 (2001)

11. M. Koyanagi et al., Future system-on-silicon LSI chips. IEEE Micro 18, 17–22 (1998)
12. V.K. Jain, S. Bhanja, G.H. Chapman, L. Doddannagari, A highly reconfigurable computing

array: DSP plane of a 3D heterogeneous SoC, in Proceedings of the IEEE International System
on Chip Conference, pp. 243–246, Sep 2005

13. V.F. Pavlidis, E.G. Friedman, Three-Dimensional Integrated Circuit Design Morgen Kaufmann
(2009). ISBN: 978-0-12-374343-5

14. R.J. Gutmann et al., Three-dimensional (3D) ICs: a technology platform for integrated sys-
tems and opportunities for new polymeric adhesives, in Proceedings of IEEE International
Conference on Polymers Adhesives Microelectron. Photon, pp. 173–180, Oct 2001

15. M. Healy et al., Multiobjective microarchitectural floorplanning for 2-D and 3-D ICs. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 26, 38–52 (2007)

16. P. Garrou, C. Bower, P. Ramm, Handbook of 3D Integration (Wiley-VCH, New York, 2008).
ISBN: 978-3-527-32034-9

17. R. Tummula, M. Swaminathan, System-On-Package: Miniaturization of the Entire System
(McGraw-Hill, New York, 2008)

18. J.H. Lau, Critical issues of 3D IC integration, IMAPS transactions. J. Microelectron. Electron.
Packag. (First Quarter Issue), 35–43 (2010)

19. J.H. Lau, Heart and Soul of 3D IC Integration, posted at 3D InCites on June 29 (2010), http://
www.semineedle.com/posting/34277. Accessed 29 June 2010

20. K.W. Guarini, A.T. Topol, M. Ieong, R. Yu, L. Shi, M.R. Newport, D.J. Frank, Electrical
integrity of state-of-the-art 0.13µm SOI CMOS devices and circuits transferred for Three-
dimensional (3D) Integrated Circuit (IC) fabrication, in IEDM Technical Digest, pp. 943–945,
2002

21. R. Berridge, R.M. Averill III, A.E. Barish, M.A. Bowen, P.J. Camporese, J. DiLullo, P.E.
Dudley, IBM POWER6 microprocessor physical design and design methodology. IBM J. Res.
Dev. 51(6), 685–714 (2007)

22. Y. Orii, T. Nishio, Ultra-thin POP technologies using 50µmpitch flip chip C4 interconnections,
in Presented at the Electronic Components and Technology Conference (ECTC) (Reno, NV,
2007)

23. J.J.Q. Lu, R. Gutmann, T. Matthias, P. Lindner, Aligned wafer bonding for 3-D interconnect,
http://www.reed-electronics.com/semiconductor/article/CA630263. Accessed Aug 2005

24. K. Takahaski, Y. Taguchi, M. Tomisaka, H. Yonemara, M. Hoshino, M. Ueno, Y. Egawa,
Process integration of 3D chip stack with vertical interconnection, in Proceedings of the 54th
Electronic Components and Technology Conference, pp. 601–609, 1–4 June 2004

25. M. Umemoto, K. Tanida, Y. Nemoto, M. Hoshino, K. Kojima, Y. Shirai, K. Takahashi, High
performance vertical interconnection for high-density 3D chip stacking package. in Proceed-
ings of the 54th Electronic Components and Technology Conference, pp. 616–623, 1–4 June
2004

26. M. Feil, C. Adler, D. Hemmetzberger, M. Konig, K. Bock, The challenge of ultra thin chip
assembly, in Proceedings of the 54th Electronic Components and Technology Conference, pp.
35–40, 1–4 June 2004

http://www.semineedle.com/posting/34277
http://www.semineedle.com/posting/34277
http://www.reed-electronics.com/semiconductor/article/CA630263

References 39

27. M. Hutter, F. Hohnke, H. Oppermann, M. Klein, and G. Engelmann, Assembly and reliability
of flip chip solder joints usingminiaturizedAu/Sn bumps, inProceedings of the 54th Electronic
Components and Technology Conference, pp. 49–57 (2004)

28. V. Kripeshm, S. Yoon, S.W. Yoon, V.P. Ganesh, N. Khan, M.D. Rotaru, W. Fang, M.K. Iyer,
Three-dimensional system-in-package using stacked silicon platform technology. IEEE Trans.
Adv. Packag. 28(3), 377–386 (2005)

29. H. Ikeda, M. Kawano, T. Mitsuhashi, Stacked memory chip technology development, in SEMI
Technology Symposium (STS) 2005 Proceedings, Session 9, pp. 37–42 (2005)

30. S. Gupta, M. Hilbert, S. Hong, R. Patti, Techniques for Producing 3D ICs with High-Density
Interconnect (Tezzaron Semiconductor Naperville, IL, 2005)

31. R. Patti, Advances in 3D memory and logic devices, in IMAPS International Conference on
Device Packaging, TAI3 (Scottsdale, AZ, 2010)

32. D. Min Jang, C. Ryu, K. Yong Lee, B. Hoon Cho, J. Kim, T. Sung Oh, W. Jong Lee, J. Yu,
Development and evaluation of 3-D SiP with vertically interconnected Through Silicon Vias
(TSV), in Proceedings 57th Electronic Components and Technology Conference, ECTC-07,
Reno, NV, pp. 847–852 (2007)

33. M. Sadaka, I. Radu, L. di Cioccio, 3D Integration: advantages, enabling technologies and appli-
cations, in IEEE International Conference on IC Design and Technology (ICICDT), Grenoble,
France, pp. 106–109 (2010)

34. S.J. Koester et al., Wafer level 3D integration technology. IBM J. Res. Technol. IBM Res. Dev.
52(6), 585–597 (2008)

35. D.E. Goldberg et al., Genetic Algorithms in Search, Optimization, and Machine Learning
(Addison-Wesley, Reading, 1989)

36. A. Harter et al., Three-Dimensional Integrated Circuit Layout (Cambridge University Press,
Cambridge, 1991)

37. C.Ryu et al., High frequency electrical circuitmodel of chip-to-chip vertical via interconnection
for 3-D chip stacking package, inProceedings of IEEE Topical Meeting Electrical Performance
of Electronic Packaging, pp. 151–154, Oct 2005

38. D.M. Jang et al., Development and evaluation of 3-D SiP with Vertically Interconnected
Through Silicon Vias (TSV), in Proceedings of the IEEE International Electronic Compo-
nents Technology Conference, pp. 847–850, June 2007

39. V.F. Pavlidis, E.G. Friedman, Interconnect delayminimization through interlayer via placement
in 3-D ICs, in Proceedings of the ACM Great Lakes Symposium on VLSI, pp. 20–25, Apr 2005

40. S. Tayu, S. Ueno, On the complexity of three-dimensional channel routing, in Proceedings of
the IEEE International Symposium on Circuits Systems, pp. 3399–3402, May 2007

41. C. Addo-Quaye, Thermal-aware mapping and placement for 3-D NoC designs, in Proceedings
of the IEEE International SOC Conference, pp. 25–28, Sep 2005

42. D. Hyun Kim, S. Mukhopadhyay, S. Kyu Lim, Through-silicon-via aware interconnect pre-
diction and optimization for 3D stacked ICs, in ACM/IEEE International Workshop on System
Level Interconnect Prediction (2009)

43. J.U. Knickerbocker et al., Three-dimensional silicon integration. IBM J. Res. Dev. 52(6) (2008)
44. T.-Y. Chiang, S.J. Souri, C.O. Chui, K.C. Saraswat, Thermal analysis of heterogeneous 3D-

ICs with various integration scenarios, in Proceedings of IEEE International Electron Devices
Meeting, pp. 681–684, Dec 2001

45. C.C. Liu, J. Zhang, A.K. Datta, S. Tiwari, Heating effects of clock drivers in bulk, SOI, and
3D CMOS. IEEE Trans. Elect. Device Lett. 23(12), 716–728 (2002)

46. G. Digele, S. Lindenkreuz, E. Kasper, Fully coupled dynamic electro-thermal simulation, IEEE
Trans. Very Large Scale (VLSI) Syst. 5, 250–257 (1997)

47. Z. Tan, M. Furmanczyk, M. Turowski, A. Przekwas, CFD-micromesh: a fast geometrical mod-
eling and mesh generation tool for 3D microsystem simulations, in Proceedings of the Inter-
national Conference on Modeling Simulation Microsystems, pp. 712–715, March 2000

48. P. Wilkerson, M. Furmanczyk, M. Turowski, Compact thermal model analysis for 3-D inte-
grated circuits, in Proceedings of the International Conference on Mixed Design Integration
of Circuits Systems, pp. 277–282, June 2004

40 2 Three-Dimensional Integration: A More Than Moore Technology

49. M.B. Kleiner, S.A. Kahn, P. Ramn,W.Weber, Thermal analysis of vertically integrated circuits,
in Proceedings of IEEE International Electron Devices Meeting, pp. 487–490, Dec 1995

50. T. Zhang, Y. Zhang, S. Sapatnekar, Temperature-aware routing in 3D-ICs, in Proceedings of
the IEEE Asia South Pacific Design Automation Conference, pp. 309–314, Jan 2006

51. X. Zhao, D. Lewis, H.H.S. Lee, S. Kyu Lim, Pre-bond testable low-power clock tree design
for 3D stacked ICs, in IEEE International Conference on Computer-Aided Design (2009)

52. J. Yang, K. Athikulwongse, Y.J. Lee, S. Kyu Lim, D. Pan, TSV stress aware timing analysis
with applications to 3D-IC layout optimization, inACM Design Automation Conference (2010)

53. R.H.J.M. Otten et al., Automatic floorplan design, in Proceedings of IEEE/ACM Design
Automation Conference, pp. 261–267, June 1982

54. X. Hong et al., Corner block list: an effective and efficient topological representation of non-
slicing floorplan, in Proceedings IEEE/ACM International Conference on Computer-Aided
Design, pp. 8–11, Nov 2000

55. E.F.Y. Yong, C.C.N. Chu, C.S. Zion, Twin binary sequences: a non-redundant representation
for general non-slicing floorplan. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22,
457–469 (2003)

56. H. Yamazaki, K. Sakanushi, S. Nakatake, Y. Kajitani, The 3D-packing by meta data structure
and packing heuristics. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E83-A(4),
639–645 (2000)

57. Y. Deng, W.P. Maly, Interconnect characteristics of 2.5-D system integration scheme, in Pro-
ceedings of the IEEE International Symposium Physical Design, pp. 341–345, Apr 2001

58. L. Cheng, L. Deng, D.F. Wong, Floorplanning for 3-D VLSI design, in Proceedings of the
IEEE International Asia South Pacific Design Automation Conference, pp. 405–411, Jan 2005

59. Z. Li et al., Hierarchical 3D floorplanning algorithm for wire length optimization. IEEE Trans.
Circuits Syst. I Regul. Pap. 53(12), 2637–2646 (2006)

60. P. Zhou, Y. Ma, Z. Li, R. Dick, L. Shang, H. Zhou, X. Hong, Q. Zhou, 3D-STAF: scalable
temperature and leakage aware floorplanning for three-dimensional integrated circuits, in Pro-
ceedings of the ICCAD, pp. 590–597 (2007)

61. J. Cong, J.Wie, Y. Zhang,A thermal-driven floorplanning algorithm for 3D-ICs, inProceedings
of ICCAD, pp. 306–313 (2004)

62. L. Cheng, L. Deng, M.D.F. Wong, Floorplanning for 3D-VLSI design, in IEEE International
Asia South Pacific Design Automation Conference (ASPDAC), pp. 405–411 (2005)

63. M.W. Newman et al., Fabrication and electrical characterization of 3D vertical interconnects,
in Proceedings of the IEEE International Electronic Components Technology Conference, pp.
394–398, June 2006

64. W.-C. Lo et al., An innovative chip-to-wafer and wafer-to-wafer stacking, in Proceedings of the
IEEE International Electronic Components Technology Conference, pp. 409–414, June 2006

65. B.Goplen, S. Sapatnekar, Placement of thermal vias in 3D-ICs using various thermal objectives.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25, 692–709 (2006)

66. M. Ohmura et al., An initial placement algorithm for 3D VLSI, in Proceedings of IEEE Inter-
national Symposium on Circuits Systems, vol. IV, pp. 195–198, May 1998

67. T. Tanprasert et al., An analytical 3D placement that preserves routing space, in Proceedings
of the IEEE International Symposium on Circuits Systems, vol. III, pp. 69–72, May 2000

68. Y. Deng, W.P. Maly, Interconnect characteristics of 2.5D system integration scheme, in Pro-
ceedings of the ACM International Symposium on Physical Design, pp. 171–175, Apr 2001

69. I. Kaya,M. Olbrich, E. Barke, 3D Placement considering vertical interconnects, inProceedings
of the IEEE International SOC Conference, pp. 257–258, Sep 2003

70. S.T.Obenaus, T.H. Szymanski,Gravity: fast placement for 3-DVLSI.ACMTrans.Des.Autom.
Electron. Syst. 8(3), 298–315 (2003)

71. W.R. Davis et al., Demystifying 3D-ICs: the pros and cons of going vertical. IEEE Des. Test
Comput. 22 (2005)

72. H. Eisenmann, F.M. Johannnes, Generic global placement and floorplanning, in Proceedings
of IEEE/ACM Design Automation Conference, pp. 269–274, June 1998

References 41

73. B. Goplen, S. Sapatnekar, Efficient thermal placement of standard cells in 3D-ICs using a force
directed approach, in Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design, pp. 86–89, Nov 2003

74. MCNC Benchmarks, http://er.cs.ucla.edu/benchmarks/ibm-place
75. IBM-PLACE Benchmarks, http://www.cbl.ncsu.edu/pub/Benchmark_dirs/LayoutSynth92
76. B. Black et al., Die stacking (3D) microarchitecture, Proceedings of IEEE/ACM International

Symponsium on Micro-architecture, pp. 469–479, Dec 2006
77. B. Goplen, S. Sapatnekar, Thermal via placement in 3D-ICs, in ISPD, pp. 167–174 (2005)
78. Z. Li et al., Efficient thermal via planning approach and its application in 3D floorplanning.

IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 26, 645–658 (2007)
79. R.J. Enbody, G. Lynn, K.H. Tan, Routing the 3D chip, in Proceedings of IEEE/ACM Design

Automation Conference, pp. 132–137, June 1991
80. C.C. Tong, C. Wu, Routing in a three-dimensional chip. IEEE Trans. Comput. 44(1), 106–117

(1995)
81. J. Minz, S.K. Lim, Block-level 3D global routing with an application to 3D packaging. IEEE

Trans. Comput. Aided Des. Integr. Circuits Syst. 25, 2248–2257 (2006)
82. A. Hashimoto, J. Stevens, Wire routing by optimizing channel assignment within large aper-

tures, in Proceedings of IEEE/ACM Design Automation Conference, pp. 155–169, June 1971
83. T. Ohtsuki, E. HorbstT, Advances in CAD for VLSI: Logic Design and Simulation (The Uni-

versity of Michigan, North-Holland, 1986). ISBN: 444878920, 9780444878922
84. J. Cong, M. Xie, Y. Zhang, An enhanced multilevel routing system, in Proceedings of the

IEEE/ACM International Conference on Computer-Aided Design, pp. 51–58, Nov 2002
85. J. Cong, Y. Zhang, Thermal driven multilevel routing for 3D-ICs, in Proceedings of the IEEE

Asia and South Pacific Design Automation Conference, pp. 121–126, June 2005
86. J. Cong, Y. Zhang, Thermal via planning for 3D-ICs, in Proceedings of the IEEE/ACM Inter-

national Conference on Computer-Aided Design, pp. 744–751, Nov 2005
87. D.Milojevic, R. Radojcic, R. Carpenter, P.Marchal, Pathfinding: a designmethodology for fast

exploration and optimisation of 3D-stacked integrated circuits, in International Symposium on
System-on-Chip, 2009. SOC 2009, pp. 118–123 (2009)

88. M. Hogan, D. Petranovic, Robust verification of 3D-ICs: Pros, Cons and Recommendations,
in IEEE International Conference on 3D System Integration, 2009. 3DIC, pp. 1–6, 28–30 Sept
2009

89. J.H. Wu, Through-substrate Interconnects for 3-D Integration and RF systems. Ph.D. disserta-
tion, MIT, Cambridge, MA, Oct 2006

90. I. Savidis, E.G. Friedman, Electrical modeling and characterization of 3-D vias, in Proceedings
of the IEEE International Symposium on Circuits Systems, pp. 784–787, May 2008

91. I. Savidis, E.G. Friedman, Closed-form expressions of 3-D via resistance, inductance,and
capacitance. IEEE Trans. Electron Devices 56(9), 1873–1881 (2009)

92. D. Hyun Kim, K. Athikulwongse, S. Kyu Lim, A study of through-silicon-via impact on the
3D stacked IC layout, in IEEE International Conference on Computer-Aided Design (2009)

http://er.cs.ucla.edu/benchmarks/ibm-place
http://www.cbl.ncsu.edu/pub/Benchmark_dirs/LayoutSynth92

Chapter 3
Field Programmable Gate Arrays:
An Overview

Abstract Field Programmable Gate Arrays (FPGAs) are semiconductor devices
that contain logic components connected by a regular, hierarchical programmable
interconnect system. The distinguishing characteristic of FPGAs is their on-filed pro-
grammability which allows the logic functionality of an FPGA to be re-programmed
even after the manufacturing process. FPGAs are used for rapid prototyping of digital
circuits. The design and test of digital systems are time efficient and cost-effective
with FPGAs. The logic components in the FPGA mostly consists of memory ele-
ments such as registers or even complete blocks of memory that can be configured
to hold any desired state. The hierarchical interconnect system is also programmable
which allows the logic components to be connected in a variety of network configura-
tions. Therefore the re-programmability of FPGAs is achieved by a fixed underlying
architecture, which does not cater to any particular logic circuit. This lets FPGAs
have a lower non-recurring cost, shorter design cycle and enables them to be re-
programmed in the field to circumvent manufacturing defects. This chapter discuses
about the FPGA building blocks and how they are interconnected to form a flexible
digital prototyping and design platform.

3.1 Introduction

Field Programmable Gate Arrays (FPGAs) [1–6] are semiconductor devices that
contain logic components connected by a regular, hierarchical programmable inter-
connect system. The distinguishing characteristic of FPGAs is their on-filed program-
mability which allows the logic functionality of an FPGA to be re-programmed even
after the manufacturing process. FPGAs are used for rapid prototyping of digital cir-
cuits. The design and test of digital systems are very time-efficient and cost-effective
with FPGAs. The logic components in the FPGA mostly consists of memory elements
such as registers or even complete blocks of memory that can be configured to hold
any desired state. The hierarchical interconnect system is also programmable which
allows the logic components to be connected in a variety of network configurations.
Therefore the re-programmability of FPGAs is achieved by a fixed underlying archi-
tecture, which does not cater to any particular logic circuit. This lets FPGAs have a

© Springer International Publishing Switzerland 2015
V. Pangracious et al., Three-Dimensional Design Methodologies
for Tree-based FPGA Architecture, Lecture Notes
in Electrical Engineering 350, DOI 10.1007/978-3-319-19174-4_3

43

44 3 Field Programmable Gate Arrays: An Overview

lower non-recurring cost, shorter design cycle and enables them to be re-programmed
in the field to circumvent manufacturing defects. FPGS were used mostly for proto-
typing and emulation systems in the design process for ASICs. However, recently,
FPGAs have become popular for a variety of mainstream products in networking,
telecommunication, digital signal processing and in consumer electronics. FPGAs
can be classified based on the technology using to program it.

• Antifuse FPGAs—The devices are configured by burning a set of fuses. Once the
chip is configured, it cannot be reprogrammed any more.

• Flash FPGAs—These devices can be reprogrammed several thousands of times
and retain their configuration even when the power is switched off. However, these
devices take several seconds for reconfiguration.

• SRAM based FPGAs—These devices are most popular kind of devices as they
offer unlimited re-programming using Static Random Access Memory (SRAM)
cells to hold the circuit configuration that is loaded into the FPGA. They offer
very fast reconfiguration, with some devices such as the Xilinx [7] allowing even
partial reconfiguration.

3.2 Introduction to FPGA Architectures

FPGAs consists of an array of configurable logic blocks (LBs) that are connected
by a 2D grid of metal channels, as illustrated in Fig. 3.1. Each LBs contains a small
amount of digital logic to form a Look-Up-Table (LUT) which implement the boolean
logic functions using SRAM bit cells. A n bit SRAM can be used to implement any
one of the 22n boolean functions that have n inputs and a single output. The output
of the LUTs are also connected to registers whose outs can be chosen instead of the
direct LUT output. Thus a LB can be programmed by a small amount of memory to
implement sequential logic as well as combinational logic. The mesh-based channels
connecting these LBs together contains switch boxes (SBs) at the grid-points, which
can connect the intersecting channels to each other using programmable switches.
The programmable memory in the LBs as well as the memory controlling switches
in the SBs, together form the configuration memory of FPGA. FPGA is a prefab-
ricated silicon device that can be re-configured to implement various applications.
Re-configurability is derived from re-programmable SRAMs. By programming the
SRAM cells, the functionality of FPGA logic blocks can be tailored to implement
a particular logic circuit. LBs and interconnects are established by programming
SRAM cells to connect prefabricated routing resources. Thus, any given logic cir-
cuits can be mapped into the FPGA by programming functionality and connectivity
of logic blocks based on the specific characteristics of the application. Therefore any
logic circuit is functionally equivalent to a particular state of the configuration mem-
ory of the FPGA. For this particular state of the configuration memory, The FPGA
behaves exactly like the mapped circuit for all possible inputs of the circuit. The
major challenge in FPGA design is to provide the maximum placement and routing

3.2 Introduction to FPGA Architectures 45

C C

CLB

S

CLB CLBC

C

C CC

S S S

S S S S

CLB CLB CLBC C C C

S S S S

S S S S

CLB CLB CLB

C

C C C

C C

C C C C

C C C

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O I/O I/O I/O I/O I/O

I/O I/O I/O I/O I/O I/O

Fig. 3.1 A Mesh-based homogeneous FPGA architecture

flexibility with minimum area cost. FPGA designers propose different architecture
and interconnection topologies to achieve this trade-off.

3.2.1 Configurable Logic Blocks

The Configurable Logic Block (CLB) as shown in Fig. 3.2 is a basic component
of FPGA, contains the boolean logic that are the equivalent of gates in an ASIC
circuit. A CLB comprise of a single basic logic element (BLE), or a cluster of locally
interconnected BLEs. The BLE consists of Look-Up-Table (LUT) and Flip-Flop as
illustrated in Fig. 3.3. A LUT with k inputs (LUT-k) contains 2k configuration bits,
capable of implementing any k-input boolean function. Figure 3.3 shows the BLE
comprising of a four input Look-Up-Table (LUT-4) and D-type Flip-Flop. The LUT-
4 uses 16-bit SRAM accesses by a 4-to-1 MUX tree to implement any four-inputs
boolean function. The output of BLE is also connected to a Flip-Flop and a 2-to-1
multiplexer is used to choose between the direct BLE output and the latched output.

46 3 Field Programmable Gate Arrays: An Overview

BLE BLE BLE BLE

CLB inputs

BLE_out

Fig. 3.2 Illustration of typical Configurable Logic Block of FPGA architecture

i3

clk

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

4 Input Look−Up
Table (LUT−4)

SRAM

LUT inputs

i2 i1 i0

D−type Flip−Flop

Multiplexer

Latched_out

LUT_out
D

Fig. 3.3 An illustration of typical FPGA Look-up-Table (LUT) architecture

3.2 Introduction to FPGA Architectures 47

The latched output is used to implement sequential circuits in the FPGA. A BLE with
more number of number of inputs reduces the total number of BLEs required to map
a hardware circuit. This eventually reduces the intercommunication between BLEs
and thus the speed of the hardware circuit improves. However the area increases
exponentially as the number of inputs increases [8].

A CLB can contain a cluster of BLEs connected through the logically equivalent
local routing network. Figure 3.2 shows a cluster of four BLEs and each BLE contains
a LUT-4 and a Flip-Flop. The BLE also has internal routing between the logic block
outputs and the inputs, which allows the BLE outputs to be mixed along with inputs.
This feature is later exploited in the packing stage, where a chain of LUTs in a
boolean network can be packed together into a logic block. This internal routing
circuitry allows such BLEs to aviod routing through switch boxes, reducing the
delay between BLEs. The number of outputs pins of a cluster are equal to the total
number of BLEs in a cluster, whereas the number of inputs pins of a cluster can be
less than or equal to the sum of input pins required by all the BLEs in the cluster.
Modern FPGAs contain typically 4 to 10 BLEs in a single cluster. A cluster of
BLEs is an alternative way to improve the granularity of an FPGA logic block. This
approach is now commonly used in most industrial FPGAs. Here, several BLEs
are grouped into cluster size N. By increasing the CLB granularity in this manner
as opposed to growing it by making the BLE size larger, the size of the logic and
internal routing to supply the complete crossbar connectivity within the cluster only
grows quadratically versus exponential growth in area as BLE size increases [8]. In
general, there are fewer inputs to the cluster from the external inter-cluster routing
than the total number of inputs to the BLEs inside the cluster. This reduction is
possible because the cluster input signals are often used as inputs to multiple BLEs
in cluster with sufficient number of BLEs. This observation is first captured in an
equation for clusters of N 4-input LUTs by [5] I, the number of pins needed to fully
occupy a cluster of N 4-input LUTs is 2N + 2, as opposed to the total number of
inputs pins on all basic logic elements, 4N. This relationship is generalized in [8]
for N-sized clusters of k-inputs LUTs is shown in Eq. 3.1, which is significantly less
than the maximum of KN

I = K

2
(N + 1) (3.1)

Typically, intra-cluster routing in contemporary BLE-based FPGAs does not
exhibit full crossbar connectivity. The FPGA optimization study presented in [9]
concluded that at least half of the connections between cluster inputs and logic ele-
ments inputs can be removed and between 50 and 75 % of the feedback connections
from logic elements inputs can be removed with no impact on critical path delay
or the number of logic clusters required. This switch and interconnect depopulation
results in about a 10 % area reduction of FPGAs with cluster size similar to com-
mercial FPGAs. The reduction in intra-cluster routing flexibility requires an FPGA
router to extend the search for wiring paths into logic clusters. This extended search
can increase routing time by up to factor of four [9].

48 3 Field Programmable Gate Arrays: An Overview

3.3 FPGA Interconnect Topologies

In the design and development of FPGAs, we have studied Mesh-based [1–6], Tree-
based [10–14] and unified Mesh of Tree interconnection network [15–17]. We have
seen numerous research and studies showing the characteristics of these networks,
how they scale, and empirically how they relate on particular designs [10, 12, 18].
We decided to revisit all tree-based architectures and interconnect network to study
and understand their capabilities, which will help us to determine the changes and
modifications required to make them suitable for sub-nanometer designs.

3.3.1 Mesh-Based Interconnect Network

The CLBs of an island styled Mesh-based FPGA are arranged in a two dimensional
mesh with routing resources evenly distributed throughout the mesh as illustrated in
Fig. 3.4. A planar global routing architecture typically has routing channels on all
four sides of the CLBs. The number of wires contained in the channel, W, is pre-set
during fabrication, and is one of the key choices made by the FPGA architect. The
Mesh-based routing resources generally use wire segments of different lengths in
each channel in an attempt to provide the most appropriate length for each given
connection. Currently most commercial SRAM-based FPGA architectures [7] use
Mesh-based FPGA architectures. The routing architecture of Mesh-based FPGA

C C

CLB

S

CLB CLBC

C

C CC

S S S

S S S S

CLB CLB CLBC C C C

S S S S

S S S S

CLB CLB CLB

C

C C C

C C

C C C C

C C C

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O I/O I/O I/O I/O I/O

I/O I/O I/O I/O I/O I/O

0 1 2 3

0

1

2

3

0

1

2

3

0 1 2 3

Wire Segments

Configurable Logic Block (CLB)

Switch Block Detail

Connection Block

Fig. 3.4 An illustration of typical Mesh-based FPGA architecture and switch block (SB)

3.3 FPGA Interconnect Topologies 49

SRAM SRAM

SRAM

Pass Transistor

Tri−state
Buffer

Logic Block

Length1
wire wire

Length 4 wireLength 2 wire

Length 8 CLB CLB CLB CLB CLB CLB CLB CLB

Fig. 3.5 Two types of programmable switches used in SRAM-based FPGAs

defines the logical structure of programmable interconnection between wire segments
in routing channels and between logic block I/O and routing channel wire segments
organized in rows and columns. The set of switches used to connect a logic block
to an adjacent routing channel is called a connection block C . Similarly, the set
of switches used to connect intersecting routing channels is called a switch block
S. Each routing channel contains W parallel wires tracks, where W is called the
channel width. The same width is used for all channels. Figure 3.5 illustrates these
various routing structures. The structure of these individual routing components can
be parameterized by routing channel width, segment distribution, connection block
topology, and switch block topology. Segment distribution describes the lengths of
the wire segments in the routing channels. Longer wire segments span multiple blocks
and require fewer switches, thereby reducing routing area and delay. However, they
also decrease routing flexibility, which reduces the probability that a user circuit can
be routed successfully.

3.3.2 FPGA Switch Block

Modern FPGAs commonly use a combination of long and short wires in order to
balance the routing area and delay tradeoff. Connection and switch block topologies
describe the interconnection pattern within these blocks. In terms of routability,
fully populated blocks as illustrated in Fig. 3.4 (that is, blocks for which any incident
pin can be connected to any other incident pin) would be optimal. However, in
terms of area, the cost would be prohibitive. Previous work [9, 19] has shown that
connection and switch blocks still provide good routability even when only sparsely
populated. Connection block population is defined by Fcin and Fcout parameters,
where Fcin is routing channel to cluster input switch density and Fcout is cluster output
to the routing channel density. The regular grid of routing channels is connect at the

50 3 Field Programmable Gate Arrays: An Overview

0

1

2

3

0 1 2 3

0

1

2

3

2 310

0 1 2 3

0

1

2

3

0

1

2

3

0 1 2 3

X0 X1

Y1

X0

Y0 Y0

Y1

X1

Universal SboxSubset or Disjoint Sbox

Fig. 3.6 Disjoint and universal 2D switch boxes, X0, X1, Y0, Y1 mark their sides

grid-points by a collection of switches know as a switch matrix or switch block (SB).
A switch block is a set of programmable switches between the metal channels that
can be configured to create any desired routing pattern. A switch block from the
Mesh-based FPGA grid connect four metal channels, an X0 channel that connects
from the left of the switch box, an X1 channel that connects from the right, a Y 0
channel that connects from above and a Y 1 channel that connect to the bottom of the
switch block as illustrated in Fig. 3.6. Each of these channels usually has the same
number of tracks W , which is know as channel width of the FPGA. Therefore each
side of the switch block has W pins that have to be connected to each other is some
routing pattern. The switch f lexibili t y Fs of a pin on some side of a switch block
is the number its connections to pins on the remaining sides of the switch block.
Figure 3.6 shows two different switch routing pattern with Fs = 3.

A popular switch block architecture is the dis joint switch architecture which is
shown in Fig. 3.6. In Fig. 3.6, it can be seen that when the pins of any side of the
switch block are numbered from 1 to 4, since in this example the W is set to 4,
in general a pin numbered i on one side of the switch block connect only to pins
number i on the other three sides of the switch block. Hence the constraint on the
routing pattern is that no pin i on one side can connect to a pin j on another side
for i �= j. Another example of a switch block architecture is the universal switch
block where every set of nets satisfying the dimensional constraint, which is the
maximum number of W tracks in each channel, is simultaneously routable through
the switch block. The choice of the switch block architecture can have a significant
impact on the routability of the FPGA and consequently the performance of the
FPGA. the connections between the pins of the switch blocks can be made through a
pair of tristate buffers or through a bidirectional pass transistor as shown in Fig. 3.5.
Programmable SRAM-based switches within connection blocks and switch blocks
can be implemented using either pass-transistors or tri-state buffers, as illustrated

3.3 FPGA Interconnect Topologies 51

in Fig. 3.5. Pass-transistor switches require less area and dissipate less power than
tri-state buffer switches. However, tri-state buffer switches are faster for connections
that span many segments. It is well known by VLSI designers that propagation
delay through one pass transistor is smaller than corresponding delay through one
buffer [20]. However, it is also known that placing many pass transistors in series
is much slower than a similar chain of buffers because delay grows quadratically
with the former, but linearly with the latter. Routing architectures commonly use
a combination of tri-state buffer and pass-transistor switches to reduce area and
delay. Global networks, such as clock and reset networks, are implemented with
dedicated routing tracks which are separated from the configurable routing. Like
other integrated circuits, FPGA clock distribution networks are designed to minimize
skew in order to maximize system performance.

Any pin in the switch block can be driven by at most one out of the 3 switches
that connect to it. The parasitic capacitance seen by this driving switch depends
on the type of the switches that connect to this pin. When the connects are made
through tristate buffers, the contribution made by each bidirectional connection to
the capacitance seen by the driving pin is the sum of the input capacitance Cin and
output capacitance Cout of the tristate buffer. Therefor capacitance encountered by
a net driver at a switch block pin due the bidirectional switches alone, is given by
Eq. 3.2.

C pin = 3 × (Cin + Cout) (3.2)

The capacitance values is seen by the driving switch regardless of whether the other
tristate buffer connections are open or closed. When pass transistor are used to make
the connections, the state of the other connections, either open or closed, determines
the capacitance seen be the driving switch. In other words, in the case of pass transistor
connection, the fanout at a pin determines the parasitic capacitance seen by the switch
driving the pin. The contribution of an open pass transistor switch is only the overlap
capacitance value of the transistor. On the other hand, a closed transistor switch, apart
from the closed transistor capacitance, exposes the entire capacitance tree behind this
switch, up to the points where buffers are encountered.

3.3.3 FPGA Routing Channels

The metal channels that form the interconnect of the Mesh-based 2D FPGA consist
of two type of channels, namely the X and Y channels. Each channels contains wire
tracks that can be individually driven by a source. The wire in each track is broken
up into a multiple wire segments that the same characteristics. It is found to be more
beneficial to use segments of different lengths rather than a single uniform length
through the FPGA [6]. This allows the router connecting two LBs in the FPGA, to
choose the type of segment depending on the physical distance between the two LBs.
Long wire segments that can span multiple switch blocks, bypassing intermediates

52 3 Field Programmable Gate Arrays: An Overview

the switch blocks, are ideal for connecting LBs that are far apart in the FPGA. On the
other hand, to connect LBs that are very close to each other, long wire segments with
higher wire capacitance, result in greater delay compared to shorter wire segments.
A wire segment is characterized by the following properties.

1. Length—The wirelength of the segment is measured in unites of the distance
between two adjacent switch blocks. For example a wire segment of span 2
connects two switch blocks that are separated by a single switch block. A segment
of span 4, connects two switch blocks in a row or column, separated by three switch
blocks.

2. LB population—When a wire segments span across M switch blocks and is
connected to the corresponding LBs in only M out of the N switch blocks, the
LB population is given by M

N .
3. Switch population—For a wire segment span across N switch blocks and connects

through the switches to only M out of them, the switch population is given by M
N .

The different types of wire segments used in the Mesh-based 2D FPGA are sum-
marized in Table 3.1. Thus a metal channel can be summarized by the following
properties

1. Channel width W , which is the number of wire tracks within the channel.
2. Segment types—The different types of metal wire segments that form the channel.
3. Segment distribution—The proportion of each of these segments types in the

channel and how these segments are interleaved.
4. Segment staggering—The optimal orientation of the start point of each of these

segments types for maximum routability.

FPGA vendors do not offer FPGAs with different amounts of interconnects, for
a given logic capacity. This is surprising since interconnect consumes nearly 90 %
of the chip area. Some reasons for not offering a variety of interconnect sizes are
inventory control, the impact of marketing and sales of inferior or unroutable devices,
and the large amount of engineering effort required to develop a single device. The
LUT size, the number of LBs in each cluster and the number of inputs per cluster
vary with each vendor. For all experiments performed in this work, those parameters
are chosen to be consistent with previous work [8]. Note that the channel width of the
FPGA is left as a variable. The CAD tools developed for this work attempt to find the

Table 3.1 Mesh-based 2D FPGA segments types

Length Number of
spanned SBs

LB population Number of
connected
LBs

SB population Number of
connected SBs

1 2 1.0 2 1.0 2

2 3 1.0 3 0.66 2

4 5 0.6 3 0.4 2

3.3 FPGA Interconnect Topologies 53

minimum possible channel width required to route a specific circuit. The interconnect
requirement is tailored for the circuit to be implemented. This technique allows us to
compare different interconnect topologies in terms of routability targeting different
applications domains.

3.3.4 Multilevel Hierarchical Interconnect

Majority of the logic designs exhibit locality of connections implying a hierarchy in
placement and routing of connections between logic blocks. The Hierarchical FPGA
architecture attempts to exploit this feature to provide smaller routing delays and
more predictable timing behavior. The speed of a net is determined by the number of
routing switches it has to pass through. In a Mesh structure, the number of segments
in series increases linearly with manhattan distance d, between the logic blocks to be
connected. However in the case of Tree connectivity is that the number of switches in
series in a route connecting two logic blocks increases as a logarithmic function of the
manhattan distance. This is illustrated in Fig. 3.7. Multilevel hierarchical Intercon-
nect regroups the interconnect architectures with more than 2 levels of hierarchy and
Tree-based ones. For example VPR and APEX architectures are not included in this
category since they have only 2 levels of hierarchy. Multilevel hierarchical architec-
ture is created by connecting logic blocks into clusters. These clusters are recursively
connected to form a hierarchical structure. In the hierarchical FPGA called HFPGA,
LBs are grouped into clusters. Clusters are then grouped recursively together as

SB

SB SB SB SB

SB SB SB SB SB SB SB SBBS BS BS BS BS BS BS

SB SBSBSB

SB

Logic Blocks

Level 3

Level 1

Level 2

Level 0

Level 4

SB SBblocks

To level 4 and above

SB SB

SB SB SB SB SB SB SB

dMesh−based structure

Tree−based structureLogic Blocks d

switch

blocks
switch

Interconnect path
= d

Fig. 3.7 Mesh vs Tree interconnect structure, number of series switched in Tree-based and Mesh-
based interconnect

54 3 Field Programmable Gate Arrays: An Overview

SBOX

SBOX SBOX SBOX

cluster0_level_i− cluster0_level_i− cluster0_level_i−

level_i+1

Fig. 3.8 Hierarchical FPGA topology

illustrated in Fig. 3.8. The clustered VPR mesh architecture has a Hierarchical topol-
ogy with only two levels. Here we consider multilevel hierarchical architectures with
more than 2 levels. In [10, 12] various hierarchical structures were discussed. The
HFPGA routability depends on switch boxes topologies. HFPGAs comprising fully
populated switch boxes ensure 100 % routability but are very penalizing in terms of
area. In [12] authors explored the HFPGA architecture, investigating how the switch
pattern can be partly depopulated while maintaining a good routability.

A well-known academic hierarchical FPGA is the Hierarchical Synchronous
Reconfigurable Array (HSRA) [13]. HSRA has a strictly hierarchical Tree-based
interconnect structure. Consequently, HSRA’s logic and interconnect structures are
not as closely coupled as the logic and interconnect structures of island-style FPGAs.
In HSRA, the only wire-segments that directly connect to the logic units are located
at the leaves of the interconnect tree. All other wire-segments are decoupled from
the logic structure. A HSRA logic unit consists of a single 4-LUT/D-FF pair. The
input-pin connectivity is based on a choose-k strategy [13], and the output pins are
fully connected. The richness of HSRA interconnect structure is defined by its base
channel width and interconnect growth rate. The base channel width c is the number
of tracks at the leaves of the interconnect Tree as illustrated in Fig. 3.9 with c = 3.
Growth rate p is the rate at which the interconnect grows towards the root (in Fig. 3.9,
p = 0.5). The growth rate is realized using the following types of switch-blocks:

• Non-compressing (2:1) switch blocks—The number of root-going tracks is equal
to the sum of the number of root-going tracks of the two children.

• Compressing (1:1) switch blocks—The number of root-going tracks is equal to
the number of root-going tracks of either child.

A repeating combination of non-compressing and compressing switch blocks can
be used to realize any value of p less than one. For example, a repeating pattern of
(2:1 1:1) switch blocks realizes p = 0.5, while the pattern (2:1 2:1 1:1) realizes p =
0.67. A HSRA that has only 2:1 switch blocks provides maximum interconnection
bandwidth (i.e. a value of p = 1). AP E X architecture is a commercial product from
Altera Corporation which includes 3 levels of interconnect hierarchy. Figure 3.10

3.3 FPGA Interconnect Topologies 55

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

Fig. 3.9 HSRA interconnect structure

Fig. 3.10 The APEX programmable logic devices [21]

56 3 Field Programmable Gate Arrays: An Overview

shows a diagram of the APEX 20K400 programmable logic device. The basic logic-
element (LE) is a 4-input LUT and DFF pair. Groups of 10 LEs are grouped into a
logic-array-block or LAB. Interconnect within a LAB is complete, meaning that a
connection from the output of any LE to the input of another LE in its LAB always
exists, and any signal entering the input region can reach every LAB. Groups of
16 LABs form a MegaLAB. Interconnect within a MegaLAB requires an LE to
drive a global horizontal line or G H (MegaLAB global H) line, which switches into
the input region of any other LAB in the same MegaLAB. Adjacent LABs have the
ability to interleave their input regions, so any LE in L ABi can usually drive L ABi+1
without using a GH line. A 20K400 MegaLAB contains 279 G H lines. The top-level
architecture is a 4 by 26 array of MegaLABs. Communication between MegaLABs
is accomplished by global H (horizontal) and V (vertical) wires, that switch at their
intersection points. The H and V lines are segmented by a bidirectional segmentation
buffer at the horizontal and vertical centers of the chip. In Fig. 3.10, We denote the
use of a single (half-chip) H or V line as H or V and a double or full-chip line
through the segmentation buffer as H H or V V . The 20K400 contains 100 H lines
per MegaLAB row, and 80 V lines per LAB-column.

3.4 Proposed FPGA Interconnect Architectures

Design of large devices implies fundamental and efficient innovation in architecture
to improve speed, density and software mapping time. Relying on industry expe-
rience with standard ASICs, we believe that partitioning and hierarchy becomes
unavoidable for hardware and software developments. In fact most logic designs
exhibit local connections, which implies a hierarchy in placement and routing of
connections between logic blocks. The Tree-based interconnect architecture which
takes advantage of this feature to provide smaller routing areas and more predictable
timing behavior. Routability and interconnect area depend on switch boxes topol-
ogy and signals bandwidth (in/out signals per cluster). In Tree-based interconnect
topology, we use full cross bar switch boxes and we aim to exploit the flexibility to
reduce signals bandwidth based on suitable partitioning approaches. In this section
we describe a Tree-based interconnect model to improve logic density and speed of
FPGAs.

3.4.1 Evolution of Tree-Based Interconnect Architecture

As illustrated in Fig. 3.11, in Tree-based interconnect architecture, Logic blocks and
routing resources are partitioned into a multilevel clustered structure. Each clus-
ter contains sub-clusters and a switch box allowing to connect external signals
to sub-clusters. The previous studies regarding hierarchical topology described in
Sect. 3.3.4, we consider the problem with different stand point. All Tree based net-
works presented in the Sect. 3.3.4 use bidirectional switches and wire tracks. This

3.4 Proposed FPGA Interconnect Architectures 57

introduces considerable complication in both hardware network design and increases
the load on routing tools [22, 23]. In Tree-based FPGA architecture we use only
single-driver unidirectional wires. As proposed in [24], we build a fully hierarchical
interconnect with inter-level signaling bandwidth, growing according to Rent’s Rule.
We consider only unidirectional signal wires. Logic Blocks represent the Tree leaves.
Let N the number of LBs in the architecture. Gates are recursively partitioned into
k equally sized sets at each level of the hierarchy. The principal interconnect occurs
at each node of convergence in the hierarchy as presented in Fig. 3.11. At level � in
the hierarchy, each node has a fan-in from the lower level equal to k ∗ nout�−1 signals
and a fan-in from the upper level equal to nin�

. Similarly, it has a fan-out of k ∗nin�−1

toward the leaves and nout� towards the root. At each level �, we have nL B�
LBs,

nin�
external inputs and nout� external outputs. We are interested to evaluate wiring

and switching growth. According to the architecture hierarchy and the Rent’s rule
growth we have:

NL B�
= n�

nin�
= cin .k�.p

nout� = cout .k
�.p (3.3)

where cin and cout represent the number of leaf inputs and outputs and p is the Rent’s
growth factor.

Fig. 3.11 TFPGA: Tree
based FPGA interconnect

noutl
ninl

ninl − 1

noutl − 1

ninl − 1

noutl − 1

level0level0

level1

level2

level3

LB LB

58 3 Field Programmable Gate Arrays: An Overview

3.4.2 Wire Growth Model

First we consider how wiring resources grow in this structure. At each level � of
the hierarchy, each switching node has nin�

inputs and nout� outputs. This makes the
bisection width equal to (cin + cout)k�.p. Since ∀� ∈ {1, . . . , logk(N)} k�.p ≤ N ,
the bisection width is O(N p). For a 2-dimensional network layout this bisection
width must cross out of the subarray through the perimeter. Thus the perimeter of
each subarray is O(N p). The area of the subarrays will be proportional to the square
of its perimeter, making: Asubarray ∝ N 2p. The area required for each Logic block
(LB) based on wiring constraints, then goes as:

Awiring(L B) ∝ N 2p−1

3.4.3 Switch Growth Model

We have k + 1 distinct output directions from each node of convergence in the
interconnect: k for the k leaves, plus one for the root. Allowing full connectivity within
each Tree node, each of the k leaves picks its nin inputs from the (k−1)∗nout outputs
from its siblings and from the nin inputs from the parent node. The nout outputs of
this node are selected from the k ∗ nout outputs from all k subtrees converging at this
point. Each of the logical switching units is a fully-populated crossbar. At each level
�, the total switch number is:

Nswitch(�) = [k ∗ ((k − 1)nout�−1 + nin�
) ∗ nin�−1] + [(k ∗ nout�−1) ∗ nout�)] (3.4)

= [k p(cin + cout) + (k − 1)cout]kcink2p(l−1) (3.5)

Looking across the number of LBs supported at level �, we can count the number of
switches per LB at each level:

Nswitch(�) = [k p(cin + cout) + (k − 1)cout]kcink2p(�−1)

k�

Summing across all levels we obtain:

Nswitch(L B) = [k p(cin + cout) + (k − 1)cout] × cin

logk (N)∑

�=1

k(2p−1)(�−1) (3.6)

Nswitch(L B) =
⎧
⎨
⎩

O (1) if p < 0.5
O

(
logk(N)

)
ifp = 0.5

O
(
N 2p−1

)
ifp > 0.5

(3.7)

3.4 Proposed FPGA Interconnect Architectures 59

From Eq. 3.7 we have switching area per LB grows as O(1), for p < 0.5, and
O

(
N 2p−1

)
for p > 0.5. The large area of switches relative to wires is one of the

reasons that we will care about the number of switches required by the network. To
reduce switches requirement we aim to reduce the interconnect Rent’s parameter p.
The architecture Rent’s parameter is the minimum possible Rent’s parameter of the
architecture allowing all routability achievement of a given netlist. In the proposed
architecture, we use fully populated switch boxes (crossbar). There is exactly one
switch associated with each possible input to output connection, so routing is trivial
and guaranteed. The architecture Rent’s parameter corresponds exactly to the par-
titioned netlist Rent’s parameter. In [25], authors showed that the resulting Rent’s
parameter is subject to the algorithm which generates the partitioning Tree. Thus in a
Tree-based architecture switches requirement depends on the partitioning methodol-
ogy. To determine the Rent’s parameter of a netlist design we developed a multilevel
partitioning methodology. In each hierarchical level, we determine the maximum
number of inputs and outputs in all parts. Numbers of inputs and outputs of a cluster
located at level � of the Tree architecture are given by:

Nin(�) = max
part∈P(�)

Nin(part)

Nout (�) = max
part∈P(�)

Nout (part)

P(�) is the set of parts in level �.

3.5 Tree-Based Routing Interconnect

The Tree-based interconnect architecture uses Butterfly Fat-Tree (BFT) interconnect
topology, where LBs (Logic Blocks) are grouped into clusters. Each cluster contains
a switch block to connect local LBs. A switch block is divided into MSBs (Mini-
switch Blocks). As illustrated in Fig. 3.12 The Tree-based interconnect architecture
unifies two unidirectional programmable interconnect networks.

1. Downward Interconnect Network—The downward network is inspired from
SPIN [26]. It is based on the Butterfly Fat-Tree (BFT) style interconnect [27]
with linear populated and unidirectional switch boxes. Tree leaves correspond to
logic blocks.

2. Upward Interconnect Network—The upward network connects the logic blocks
outputs and the input Pads to the different levels of the Tree using hierarchy.

Each logic block contains one Look-Up-Table (with cin inputs and cout = 1 output),
followed by a bypass Flip-Flop. The Logic Blocks (LBs) are grouped into k sized
clusters and interconnect are organized into levels. Let nb� denote the number of
levels of a given architecture (nb� = logk(N)). In each level � we have N

k� clusters;
C is the set of clusters in all levels. A cluster with index c belonging to level �

60 3 Field Programmable Gate Arrays: An Overview

Fig. 3.12 Typical
Tree-based interconnect
architecture

S S S S

Logic Blocks

S

is noted by cluster(�, c). A cluster switch block is divided into separated Mini
Switch Boxes (MSBs). Each MSB corresponds to a full crossbar. Each cluster(�, c)
where � ≥ 1 contains a set of inputs Nin(�), a set of outputs Nout (�), a set of
MSBs and k sub-clusters. Sub-clusters of cluster(�, c) are cluster(� − 1, k.c + i)
where i ∈ {0, 1, 2, .., k −1}. k is called cluster(�, c) arity. Let nbM SB(�) the MSB
number in a cluster in level �. MSB with index m belonging to cluster(�, c) is denoted
M SB(�, c, m). Each MSB contains k inputs driven by the upper level and 1 feedback
coming from a leaf output pin. Each cluster in level 0 is denoted cluster(0, c) or
lea f cluster(c) and corresponds to the Logic Block (LB) and contains cin inputs,
1 output, no MSBs and no sub-cluster. Each cluster(�, c) where � < nb� − 1 has
an owner in level �′ where �′ > � denoted cluster(�′, c ÷ k(�′−�)). We define for
each cluster(�, c) a position inside its owner in level � + 1 (direct owner) by the
following function:

pos : C −→ {0, 1, 2, .., k − 1}
cluster(�, c) �−→ c mod k

2 clusters belonging to level � and with the same owner at level �+1 have 2 different
positions. To get the cluster owner in level �′ of cluster(�, c) (� < �′ ≤ nb� − 1)

we define the function:

owner : C × IN −→ C

(cluster(�, c), �′) �−→ cluster(�′, c ÷ k�′−�)

3.5 Tree-Based Routing Interconnect 61

3.5.1 Tree-Based FPGA Architecture

As described in Sect. 3.5, in a Tree-based FPGA architecture [16, 17], the LBs are
grouped into clusters and each cluster contains a switch block to connect local LBs.
A switch block is divided into Mini switch Blocks (MSBs). The Tree-based FPGA
architecture unifies two unidirectional upward and downward interconnection net-
works by using a Butterfly-Fat-Tree (BFT) topology to connect the Downward MSBs
(DMSBs) and the Upward MSBs (UMSBs) to LBs inputs and outputs. As illustrated
in Fig. 3.13, the UMSBs are used to allow LBs outputs to reach a large number of
DMSBs and to reduce fanout on feedback lines. The UMSBs are organized in a way
allowing LBs belonging to the same owner-cluster to reach exactly the same set of
DMSBs at each level. Thus positions, inside the same cluster, are equivalent, and
LBs can negotiate with their siblings about the use of a larger number of DMSBs
depending on their fanout sizes. For example in Fig. 3.13, an LB ouput can reach all
4 DMSBs of its owner cluster at level 1 and all the 16 DMSBs of its owner cluster
at level 2. Therefore the external I/O pads, clusters or logic-block positions inside
the direct owner cluster become equivalent and there is no need to re-arrange them
anymore. The input and output pads are grouped into specific clusters and are con-
nected to UMSBs and DMSBs, respectively as presented in Fig. 3.13. Thus, all input
and output pads can reach any LBs of the architecture. As presented in Fig. 3.13,
the programmable interconnects of a Tree-based FPGA architecture are arranged in
a multilevel network with the switch blocks placed at different tree levels using a
Butterfly-Fat-Tree network topology.

Using UMSBs and DMSBs greatly enhances routability of the Tree-based FPGA
architecture, but it increases the total number of switch requirements. However
this increase can be compensated by depopulating in/out signals bandwidth of
clusters at every level. In fact, netlists implemented on FPGA architecture often

LB LB LB LB LB LB LB LB LB LB LB LB LB LB LB LB

UMSB

UMSB

DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB OUT

UMSB UMSB UMSB

DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB

UMSB UMSB UMSB

IN Pads

To Level 2 2 leveL oT2 leveL oT2 leveL oT

Cluster Level 1

Cluster Level 0
OUT Pads

Fig. 3.13 An illustration of two-level Tree-based FPGA interconnect structure using two unidirec-
tional upward and downward interconnects

62 3 Field Programmable Gate Arrays: An Overview

communicate locally (intra-clusters) and this fact can be exploited to reduce the
bandwidth of signals with inter-clusters communication. A good estimation of netlists
communication locality is given by Rent’s Rule [28]. Based on this estimation authors
in [29] showed that most netlist Rent’s parameters range between 0.5 and 0.65. As
shown in Fig. 3.13, the number of DMSBs of a cluster located at level � is equal
to the number of inputs of a cluster located at level � − 1. The UMSBs (Upward
MSBs) allow LBs outputs to reach a large number of DMSBs and to reduce fanout
on feedback lines. The number of UMSBs of a cluster located at level � is equal
to the number of outputs of a cluster located at level � − 1. The Table 3.2 shows
the switch growth of Tree-based interconnect architecture with seven tree levels. It

Table 3.2 Switch growth model of Tree-based interconnect

Tree
Levels = 7

Arity = 4, Cluster size = 4 Arch = 4 × 4 × 4 × 4 × 4 × 4 × 4

Levels LUT3 LUT4 LUT5 LUT6 LUT7 LUT8

0 4 5 6 7 8 9

1 16 20 24 28 32 36

2 64 80 96 112 128 144

3 256 320 384 448 512 576

4 1024 1280 1536 1792 2048 2304

5 4096 5120 6144 7168 8192 9216

6 16,384 20,480 24,576 28,672 32,768 36,864

Tree
Levels = 7

Arity = 4, Cluster size = 5 Arch = 5 × 5 × 5 × 5 × 5 × 5 × 5

Levels LUT3 LUT4 LUT5 LUT6 LUT7 LUT8

0 4 5 6 7 8 9

1 20 25 30 35 40 45

2 100 125 150 175 200 225

3 500 625 750 875 1000 1125

4 2500 3125 3750 4375 5000 5625

5 12,500 15,625 18,750 21,875 25,000 28,125

6 62,500 78,125 93,750 109,375 125,000 140,625

Tree
Levels = 7

Arity = 4, Cluster size = 6 Arch = 6 × 6 × 6 × 6 × 6 × 6 × 6

Levels LUT3 LUT4 LUT5 LUT6 LUT7 LUT8

0 4 5 6 7 8 9

1 24 30 36 42 48 54

2 144 180 216 252 288 324

3 864 900 1296 1512 1728 1944

4 5184 5400 7776 9072 10,368 11,664

5 31,104 32,400 46,656 54,432 62,208 69,984

6 186,624 194,400 279,936 326,592 373,248 419,904

3.5 Tree-Based Routing Interconnect 63

also shows, the switch growth rate is slower in the initial levels of Tree, however it
increases exponentially as the Tree grows to higher levels and this trend is also same
for the wire length at higher levels.

The Table 3.2 the impact of LUT and cluster size on total number of switch
requirements. The UMSBs are organized in a way allowing LBs belonging to the
same owner cluster to reach exactly the same set of DMSBs at each level. Thus
positions, inside the same cluster, are equivalent, and LBs can negotiate with their
siblings the use of a larger number of DMSBs depending on their fanout. As shown in
Fig. 3.13, input and output pads are grouped into specific clusters and are connected
to UMSBs and DMSBs, respectively. Thus, input pads can reach all LBs of the
architecture, and can also be reached by different paths. The cluster size and the
level where it is connected can be modified to obtain the best design fit. Similarly
the output pads are connected to all DMSBs of the upper level and they can be reached
from all LBs through different paths. The main focus of this book is to describe the
development of tools and technologies for the implementation 3D Tree-based FPGA
architectures. Nevertheless this book also provide details about the other varients of
Tree-based FPGA architectures. One such varient is described next section.

3.6 Unified Mesh- and Tree-Based Interconnect

The Tree-based architecture is better optimized in terms of switches number than the
island-style Mesh-based architecture. Nevertheless the Butterfly Fat-Tree topology,
in stand alone mode, is very penalizing in terms of physical layout generation. As
illustrated in Fig. 3.14, it does not support scalability and does not fit with a planar
chip structure especially for large circuits unless some dramatic changes happen in
the interconnect layout, which is the aim of this work. In the lower levels of the

interconnect
level 1

wire level 3 interconnect
level 2

Tree−based interconnect layout

LB

Mesh−based interconnect layout

interconnectLB tile

Fig. 3.14 Node of Mesh of Tree architecture

64 3 Field Programmable Gate Arrays: An Overview

Tree-based interconnect, clusters are small and close by, but as we get higher into
the tree (connecting large clusters), wiring distances increase. Interconnect in the
higher part of the tree may need to be subdivided. Our idea is to use Tree topology
as an intra-cluster interconnect and to use Mesh topology to achieve inter-clusters
interconnection. In this way we can control the tree size and generate a layout with
any size by tiles abutment.

The Mesh-of-Tree interconnect topology (MoT) is built as a matrix of abutted
nodes presented in Fig. 3.15. Each node has a Tree-based intra-cluster interconnect.
The resulting network corresponds to a Mesh of clusters (each one encapsulating
the intra-cluster interconnect and the LBs). Clusters surrounded by Mesh intercon-
nect are called Mesh clusters and clusters included in the different levels of the tree
are called tree clusters. This topology is proposed as an alternative to the common
cluster-based Mesh architectures. As shown in Fig. 3.15, there exist different ways
to connect signals to the LUT input muxes. In Xilinx Virtex architectures [30], the
routing tracks are connected directly to the input muxes. In the VPR architecture [6]
and the Altera Stratix architecture [31], the routing tracks are connected to the input
muxes via an intermediate level of muxes called connection block. The VPR-style
interconnect has a sparsely populated connection block and a fully populated intra-
cluster crossbar. The fully populated intra-cluster crossbar is simple but takes no
advantage of the logical equivalence of LUT inputs and induces a significant ineffi-
ciency. An improved Mesh-based island style interconnect presented in [22]. They
proposed an approach to generate highly routable sparse connection block. Further-
more, they showed that the intra-cluster full crossbar can be depopulated to achieve

IdIbIa Ic

I0 O I1 O I2 O I3 O

s1 s2
s3
s4

s5 s6
s7
s8

s9
s11
s12

s10

s1 s3 s4 s6 s7 s8

SB_b SB_c SB_d

s5s2 s9 s10 s11 s12

Cluster Cluster ClusterCluster
a b c d

0 1 2 3

DMSB DMSB DMSB DMSB UMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB

DMSB DMSB DMSB DMSB DMSBDMSBDMSB DMSB DMSB DMSBDMSBDMSB

UMSB

OdOc

SB_c SB_d

Oa Ob

SB_a SB_b

(SB_d)SBox

SB_a

 Same SBox

UMSB

Fig. 3.15 Mesh of Tree SBOX architecture

3.6 Unified Mesh- and Tree-Based Interconnect 65

significant area reduction without performance degradation. A practical example is
Stratix, which depopulates this crossbar by 50 % [31]. All studies considered the
connection block interconnect level and the intra-cluster crossbar separately. In [32],
authors investigate joint optimization of both crossbars and proposed a new class of
efficient topology. Nevertheless in the intra-cluster crossbar they optimized only the
part connecting external signals to LBs inputs. Using a full crossbar to connect feed-
backs (LBs outputs) to LBs inputs is very penalizing and imposes a very low bound
on the cluster LBs number. For example we assume we have a cluster with 256 LBs
and we use a full crossbar to connect feedbacks to 4-Lut inputs. This means we need
262 × 103 switches to route clusters internal signals only, which is very expensive.
In the proposed Mesh of Tree architecture, our first contribution corresponds to a
joint optimization of connection blocks and inta-cluster interconnect topologies. We
optimize both crossbars: (1) connecting external signals to LBs inputs (2) connecting
feedbacks to LBs inputs. Our second contribution consists in using only single-driver
interconnect based on unidirectional wires. As illustrated in [23, 33], single-driver
interconnect has a good impact on density improvement.

3.6.1 Cluster Local Interconnect

Mesh clusters are composed of Logic Blocks (LBs) which communicate within a
programmable local interconnect. The intra-cluster interconnect is organized as a
Tree and has the topology similar to Tree-based FPGA. Mesh Clusters input and
output pins are connected to LBs as MFPGA input and output pads. Figures 3.15
and 3.16 illustrates Mesh cluster Tree-based local networks and its interface with
the Mesh-based interconnect. As illustrated in Figs. 3.15 and 3.17, each cluster is
connected to the 4 adjacent channel tracks. The cluster input and output connectors
are equally distributed on the 4 sides. In all sides we have the same number of inputs
and outputs. As shown in Fig. 3.17, input and output signals are grouped into clusters
situated at level � of the Tree:

• Each cluster of input signals contains 4 inputs connected to the 4 adjacent channels.
As shown in Fig. 3.17, each input is connected to all UMSBs located at level �+ 1
of the Tree. In this way the 4 inputs are logically equivalent and can reach all Tree
LBs.

• Each cluster of output signals contains 4 outputs connected to the 4 adjacent switch
boxes. As shown in Fig. 3.17, each output is connected to all DMSBs placed at
level � + 1 of the Tree. In this way the 4 outputs are logically equivalent and can
be reached from all the Tree LBs.

This distribution has an important impact on routability and eliminates constraints
in the placement of Logic Blocks inside clusters. All four Mesh cluster sides have
the same number of inputs and outputs. Side inputs and outputs numbers depend on
the number of Tree leaves and on the level of UMSBs and DMSBs where they are
connected.

66 3 Field Programmable Gate Arrays: An Overview

LB0 LB1 LB2 LB3 LB4 LB5 LB6 LB7

DMSB0 DMSB1 DMSB2 DMSB3

UMSB0

MUX0 MUX1 MUX2 MUX3

Cluster inputsCluster outputs

DMSB/UMSB

Fig. 3.16 Mesh of Tree FPGA cluster architecture

Nbin = N

k�in+1 (3.8)

Nbout = N

k�out +1 (3.9)

k is Tree clusters arity. N is the number of Tree leaves. �in and �out are respectively
levels where input and output signals are connected

3.6.2 Mesh-Based Routing Interconnect

In the Mesh interconnect we use only single-driver unidirectional wires, in fact
in [23], authors show that single-driver based interconnect leads to a 25 % improve-
ment in area density. Each Mesh cluster is surrounded by 4 channels which are
connected by Switch Boxes (SB). We do not use connection blocks in the Mesh to
connect channel tracks to cluster inputs and outputs. In fact, as presented in [32],

3.6 Unified Mesh- and Tree-Based Interconnect 67

Sbox

I0
O0 I3

O3

I1

O1

I0

O0 I3

O3

I1

O1

I0
O0

I1

O0

I3

O3

I0
I3

O0

O3

I1

O1

O2I2
O2

2I

O2I2
O2I2

SB SB

O
I0

0

O3

I3

I1

O1

O2I2

O0I0 I3

O3

O2I2I1

O1

I
O00

O1

I1
O2I2

O3

I3 O0I0

O1 O3

I3

O 2I2
I1

O0I0

O3

I3

O1

I1 O2 I2

SB_a

SB_b Sbox Sbox

SB

Sbox

Corner SBs with
1 Cluster

a

b

cd

Cluster

Cluster

Cluster

Cluster

Cluster Cluster

Cluster

Cluster

f

e

g

Cluster

h

i

SB_f

SB_c

SB SB_d SB_i

SB_h

SB_g

Peripheral SBs with 2 Clusters

Fig. 3.17 Island style representation of Mesh-of-Tree (MoT)-based FPGA architecture

interconnect is better optimized when the connection block is combined with the
cluster local interconnect. As described in Fig. 3.17, Mesh cluster input signals are
connected to the 4 adjacent channels tracks. Thus, channel width W is given by:

W = Nbin

4
= N

k�in+1 (3.10)

Consequently, the channel width depends on the cluster inputs number and it is
very expensive to modify it in terms of routing resources. In fact modifying the
channel width induces modification of the cluster interface and consequently the
Tree interconnect structure. A Mesh Switch Box (SB) allows to connect horizontal

68 3 Field Programmable Gate Arrays: An Overview

and vertical channel tracks together and also to clusters outputs. SB inputs come from
the 4 channel tracks and the 4 adjacent clusters outputs. Since we use a single-driver
based interconnect, each SB output is driven by a multiplexer. SB has a disjoint
topology. The input track j of channel i is connected to output track j of channel h
with h �= i . Switch block allows also to connect Mesh cluster outputs to channels
tracks. As illustrated in Fig. 3.17 each cluster output is connected to all switch box
outputs located at the 4 sides.

3.6.3 Input and Output Pads Connection

The input and output pads of MoT-based FPGA are grouped into blocks, and are
arranged at the periphery of the architecture. They are connected to the adjacent
Switch blocks located at the periphery of the chip as illustrated in Fig. 3.18. From the
Fig. 3.17, it is clear that the switch blocks at periphery either connects to one cluster
or two based on where they are located at the periphery. For example, the switch
blocks which are placed at the periphery are connected to 2 adjacent clusters and
switch blocks placed at corners of FPGA connects only to one cluster. Figure 3.18
shows connections between pad and the adjacent switch block. Each input pad of an
I/O block is connected to all UMSBs of the adjacent switch block, and thus can reach
the adjacent clusters and can be connected to adjacent routing channels. The output
pads of an I/O block are grouped into specific cluster and connected to all DMSBs
of level �1 of the adjacent switch block.

DMSB

DMSB DMSB DMSB DMSB

s1 s2
s3
s4

UMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB

a
IN

I0 I2 I3 O

s1 s3 s4 s6 s7 s8s5s2 s9 s10 s11 s12

3

DMSB DMSB DMSB DMSB DMSBDMSBDMSB DMSB DMSB DMSBDMSB

DMSB

.............

2O

s5 s6
s7
s8

UMSB

s9 s10
s11
s12

UMSB

OUT

I1

b
IN Cluster Cluster

c d

Fig. 3.18 Peripheral Switch block of MoT-based FPGA architecture: connection of Peripheral
Switch block with In/Out Pads

3.7 Summary 69

3.7 Summary

The interconnect structure of a Mesh-based FPGA is generally designed to maximize
logic utilization. Hierarchical FPGAs belong to the class of FPGA architectures thats
are designed to increase the interconnect utilization at the expense of logic utiliza-
tion. The philosophy behind hierarchical architectures is increased silicon utilization
through efficient use of the interconnect structure (which may account for 80–90 %
of the total area of Mesh-based FPGAs). However we proposed two different FPGA
architectures with modified interconnect architecture in this chapter. The Tree-based
FPGA architecture uses two unidirectional interconnect network to connect the inputs
and outputs of LBs to SBs. Using the Tree-based FPGA architecture, we achieved
56 % reduction in number of switched used compared to Mesh-based FPGA archi-
tectures. The main issues with Tree-based interconnect structure is the path delay
increases exponentially as Tree grows to higher levels. We discuses the solutions to
reduce interconnect delay using 3D Technology in Chap. 6. Another FPGA architec-
ture proposed in this chapter is MoT-based FPGA. MoT-based FPGA has an unified
Mesh and Tree architecture to combine the advantages of both in one platform. MoT-
based FPGA is an interesting architecture in terms of it flexibility. We can used this
architecture to design and implement 2.5D multi-FPGAs and 3D multi-tier FPGAs,
however the focus of this book is on design methodologies of 3D Tree-based FPGAs.

References

1. W.S. Carter, K. Duong, R.H. Freeman, H.C. Hsieh, J.Y. Ja, E. Mahoney, L.T. Ngo, S.L. Sze,
A user programmable reconfigurable logic array, in Proceedings of IEEE, Custom Integrated
Circuits Conference, May 1986, pp. 233-235

2. J. Rose, S. Brown, Flexibility of interconnect structures for field programmable gate arrays.
IEEE J. Solid State Circuits 26, 277–282 (1991)

3. S.D. Brown, R.J. Francis, J. Rose, Z.G. Vranesic, Field Programmable Gate Arrays (Kulwer,
Norwell, 1992)

4. S. Trimberger et al., A re-programmable gate array and applications. Proc. IEEE 81, 1030–1041
(1993)

5. V. Betz, J. Rose, How much logic should go in an FPGA Logic Block?. IEEE Des. Test Comput.
15(1), 10–15 (1998)

6. V. Betz J. Rose, A. Marquardt, Architecture and CAD for Deep Sub-micron FPGAs (Kluwer,
Norwell, 1999)

7. Xilinx Inc., Two flows for partial reconfiguration: module based or difference based, 2004.
http://www.xilinx.com/bvdocs/appnotes/xapp290.pdf

8. E. Ahmed, J. Rose, The effect of LUT and cluster size on deep-sub-micron FPGA performance
and density. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22(3), 288–298 (2004)

9. G. Lemieux, D. Lewis, Analytical framework for switch block design, in International Con-
ference on Field Programmable Logic (FPL), pp. 122–131, 2002

10. A.A. Aggarwal, D.M. Lewis, Routing architectures for hierarchical field programmable gate
arrays, in Proceedings of the 1994 IEEE International Conference on Computer Design: VLSI
in Computer & Processors, 10–12 Oct 1994, pp. 475–478

http://dx.doi.org/10.1007/978-3-319-19174-4_6
http://www.xilinx.com/bvdocs/appnotes/xapp290.pdf

70 3 Field Programmable Gate Arrays: An Overview

11. V.C. Chan, D.M. Lewis, Area-speed tradeoffs for hierarchical field-programmable gate arrays,
in Proceedings of the 1996 ACM Fourth International Symposium on Field-Programmable
Gate Arrays, 11–13 Feb 1996, Monterey, California, USA, pp. 51–57

12. Yen-Tai Lai, Ping-Tsung Wang, Hierarchical interconnection structures for field programmable
gate arrays. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 5(2), 186–196 (1997)

13. A. DeHon, Balancing interconnect and computation in a reconfigurable computing array (or,
why you don’t really want 100% LUT utilization), in Proceedings of the 1999 ACM/SIGDA
Seventh International Symposium on Field Programmable Gate Arrays, 21–23 Feb 1999, Mon-
terey, California, USA, pp. 69–78

14. W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker, T. Tung, O. Rowhani, V. George, J.
Wawrzynek, A. DeHon, HSRA: high-speed, hierarchical synchronous reconfigurable array,
in Proceedings of the 1999 ACM/SIGDA Seventh International Symposium on Field Program-
mable Gate Arrays, 21–23 Feb 1999, Monterey, California, USA, pp. 125–134

15. Andre DeHon, Unifying mesh- and tree-based programmable interconnect. IEEE Trans. Very
Large Scale Integr. (VLSI) Syst. 12(10), 1051–1065 (2004)

16. Z. Marrakchi, H. Mrabet, C. Masson, H. Mehrez, Mesh of tree: unifying Mesh and MFPGA
for better device performances, in NOCS 2007, pp. 243–252, 2007

17. Z. Marrakchi, H. Mrabet, U. Farooq, H. Mehrez, FPGA interconnect topologies exploration.
Int. J. Reconfig. Comput. 2009 (2009)

18. Andre DeHon, Raphael Rubin, Design of FPGA interconnect for multilevel metallization. IEEE
Trans. Very Large Scale Integr. (VLSI) Syst. 12(10), 1038–1050 (2004)

19. J. Rose, R. Francis, D. Lewis, P. Chow, Architecture of field-programmable gate arrays: the
effect of logic functionality on area efficiency. IEEE J. Solid State Circuits 25, 1217–1225
(1990)

20. V. Adler, E.G. Firedman, Repeater insertion to reduce delay and power in RC tree structures,
in Conference on Signals, Systems and Computers, pp. 749–752, 1997

21. M. Hutton, K. Adibasamii, A. Leaver, Timing driven placement for hierarchical programmable
logic devices, in International Symposium on Field Programmable Gate Arrays, pp. 3–11, 2001

22. G. Lemieux, D. Lewis, Design of Interconnection Networks for Programmable Logic (Springer,
formerly Kluwer Academic Publishers, Norwell, 2004). ISBN: 1-4020-7700-9

23. G. Lemieux, E.Lee, M.Tom, A.Yu, Directional and single-driver wires in FPGA interconnect,
in IEEE International Conference on Field-Programmable Technology, FPT-2004, pp. 41–48,
2004

24. A. DeHon, Reconfigurable architectures for general-purpose computing. Ph.D. dissertation,
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Tech-
nology, 1996

25. L. Hagen, A.B. Kahng, F.J. Kurdahi, C. Ramachandran, On the intrinsic rent parameter and
spectra-based partitioning methodologies. IEEE Trans. Comput. Aided Des. 13(1), 27–37
(1994)

26. P. Guerrier, A. Greiner, A generic architecture for on chip packet-switched interconnections,
in Proceedings of the Design Automated and Test in Europe Conference (DATE), Paris, France
pp. 250–256, 2000

27. C. Leiserson et al., Fat-trees: universal networks for hardware efficient supercomputing. IEEE
Trans. Comput. C-34(10), 892–901 (1985)

28. B. Landman, R. Russo, On a pin versus block relationship for partitions of logic graphs. IEEE
Trans. Comput. 20(12), 1469–1479 (1971)

29. J. Pistorius, M. Hutton, Placement rent exponent calculation methods, temporal behaviour and
FPGA architecture evaluation, in Proceedings of the International Workshop on System Level
Interconnect Prediction, Apr 2003, Monterey, Calif, USA, pp. 31–38

30. Vertex-5, Xilinx Inc., Vertex-5: multi-platform FPGA. http://www.xilinx.com/products/
silicon_solutions/fpga/vertex/vertex5/

31. D.Lewis et al., The stratix logic and routing architecture, in International Symposium on Field
Programmable Gate Arrays, FPGA-2003, Feb 2003, pp. 12–20

http://www.xilinx.com/products/silicon_solutions/fpga/vertex/vertex5/
http://www.xilinx.com/products/silicon_solutions/fpga/vertex/vertex5/

References 71

32. W. Feng, S. Kaptanoglu, Designing efficient input interconnect blocks for LUT clusters using
counting and entropy, in International Symposium on Field Programmble Gate Array, (FPGA-
2007), pp. 23–32, 2007

33. G. Lemieux, D. Lewis, Using sparse crossbars with LUT clusters, in Proceedings of
ACM/SIGDA International Symposium on FPGAs, Feb 2001, pp. 59–68

Chapter 4
Two Dimensional FPGAs: Configuration
and CAD Flow

Abstract FPGA architectures have been intensely investigated over the past two
decades. A major aspect of FPGA architecture research is the development of Com-
puter Aided Design (CAD) tools for design and implementation of fast and high
density FPGAs and mapping applications to it. It is well established that the qual-
ity of an FPGA based implementation is largely determined by the effectiveness of
accompanying suite of CAD tools. Benefits of an otherwise well designed, feature
rich FPGA architecture might be impaired if the CAD tools cannot take advantage of
the features that the modern FPGA design provides. Thus, CAD algorithm research is
essential to the necessary architectural advancement to narrow down the performance
gaps between FPGAs and other computational devices like ASICs. This chapter dis-
cuss different algorithms and methodologies used to create 2D FPGA placement,
routing, mapping application etc.

4.1 Introduction

FPGA architectures have been intensely investigated over the past two decades. A
major aspect of FPGA architecture research is the development of Computer Aided
Design (CAD) tools for design and implementation of fast and high density FPGAs
and mapping applications to it. It is well established that the quality of an FPGA-
based implementation is largely determined by the effectiveness of accompanying
suite of CAD tools. Benefits of an otherwise well designed, feature rich FPGA
architecture might be impaired if the CAD tools cannot take advantage of the features
that the modern FPGA design provides. Thus, CAD algorithm research is essential
to the necessary architectural advancement to narrow the performance gaps between
FPGAs and other computational devices like ASICs. The process of converting a
circuit description into a format that can be loaded into an FPGA can be roughly
divided into five distinct steps, namely synthesis, technology mapping, clustering,
placement, and routing. The final output of FPGA CAD tools is a bitstream that
configures the state of memory bits in FPGA. The contents of configuration memory
determines the logical function implemented. Figure 4.1 presented the CAD flow
developed for the design and architecture exploration of 3D Tree-based FPGA.

© Springer International Publishing Switzerland 2015
V. Pangracious et al., Three-Dimensional Design Methodologies
for Tree-based FPGA Architecture, Lecture Notes
in Electrical Engineering 350, DOI 10.1007/978-3-319-19174-4_4

73

74 4 Two Dimensional FPGAs: Configuration and CAD Flow

Circuit
Description Synthesis Technology Clustering

PlacementRoutingBitstream

Mapping

Fig. 4.1 3D Tree-based FPGA place and route

4.2 Circuit Synthesis

Synthesis involves translating a circuit description, traditionally written in a hardware
description language (HDL) (e.g. VHDL or Verilog), into a gate-level representa-
tion. The gate-level representation is a network consisting of Boolean logic gates and
flipflops. A logic optimization process is used to remove the redundant logic from
the netlist and simplify the logic whenever possible. There are no FPGA-specific
optimizations performed during synthesis since this is normally a technology inde-
pendent step. As presented in Fig. 4.1, the operation is independent of the architecture.
In our flow we use SIS [1] synthesis tool. SIS requires architecture parameters like
k, the LUT input number. As presented in Fig. 4.1, this tool depends only on LUT
size and can target any interconnect topology.

4.3 Technology Mapping

The output from synthesis tools is a circuit description of Boolean logic gates, flip-
flops and wiring connections between these elements. The circuit can also be rep-
resented by a Directed Acyclic Graph (D AG). Each node in the graph represents a
gate, flip-flop, primary input or primary output. Each edge in the graph represents
a connection between two circuit elements. Figure 4.2 shows an example of a DAG
representation of a circuit. Given a library of cells, the technology mapping problem
can be expressed as finding a network of cells that implements the Boolean network.
In the FPGA technology mapping problem, the library of cells is composed of k-input
LUTs and flip-flops. Therefore, FPGA technology mapping involves transforming
the Boolean network into k-bounded cells. Each cell can then be implemented as an
independent k-LUT. Figure 4.3 shows an example of transforming a Boolean net-
work into k-bounded cells. Technology mapping algorithms can optimize a design
for a set of objectives including depth, area or power. The FlowMap algorithm [2] is
the most widely used academic tool for FPGA technology mapping. FlowMap is a
breakthrough in FPGA technology mapping because it is able to find a depth-optimal
solution in polynomial time. FlowMap guarantees depth optimality at the expense of
logic duplication. Since the introduction of FlowMap, numerous technology mappers

4.3 Technology Mapping 75

An equivalent directedA Boolean network
acyclic graph (DAG)

Fig. 4.2 Directed acyclic graph representation of a circuit

0 0 0 0 0

1 1 1 1

11

2

S

1 1

0 0 0 0 0

1

S

4−LUT

Fig. 4.3 Example of technology mapping

have been designed that optimize for area and run-time while still maintaining the
depth-optimality of the circuit [3–5]. The result of the technology mapping step
generates a network of k-bounded LUTs and flip-flops.

4.4 Clustering

The logic elements in a Mesh-based FPGA are typically arranged in two levels
of hierarchy. The first level consists of logic blocks (LBs) which are k-input LUT
and flip-flop pairs. The second level hierarchy groups k LBs together to form logic

76 4 Two Dimensional FPGAs: Configuration and CAD Flow

blocks clusters. The clustering phase of the FPGA CAD flow is the process of forming
groups of k LBs. These clusters can then be mapped directly to a logic element on an
FPGA. Figure 4.4 shows an example of the clustering process. Clustering algorithms
can be broadly categorized into three general approaches, namely top-down [6, 7],
depth-optimal [8, 9] and bottom-up [10–12]. Top-down approaches partition the LBs
into clusters by successively subdividing the network or by iteratively moving LBs
between parts. Depth-optimal solutions attempt to minimize delay at the expense
of logic duplication. Bottom-up approaches are generally preferred for FPGA CAD
tools due to their fast run times and reasonable timing delays. They only consider
local connectivity information and can easily satisfy clusters pin constraints. Top-
down approaches offer the best solutions; however, their computational complexity
can be prohibitive.

Algorithm 1: Pseudo code of the V-Pack Algorithm
Data: Pseudo code of the V-Pack Algorithm [13]
Result: packed LBs
UnclusteredLBs = Pattern-Match-To-LBs(LUTs,Registers);
LogicClusters = NULL;
while UnclusteredLBs != NULL do

C = GetLBwithMostUsedInputs(UnclusteredLBs);
while | C |< k do

/*cluster is not full*/
BestLB = MaxAttractionLegalLB(C,UnclusteredLBs);
if BestLB == NULL then

/*No LB can be added to this cluster*/
break;

end
Unclustered L Bs = Unclustered L B − Best L B;
C = C ∪ Best L B;

end
if | C |< k then

/*Cluster is not full – try hill climbing*/
while | C |< k do

BestLB = MinClusterInputIncreaseLB(C,UnclusteredLBs);
C = C ∪ Best L B;
Unclustered L Bs = Unclustered L B − Best L B;

end
if ClusterIsIllegal(C) then

RestoreToLastLegalState(C,UnclusteredLBs);
end

end
LogicClusters = LogicClusters ∪ C ;

end

4.4 Clustering 77

BLE
1

BLE
2

BLE
3

BLE
4

BLE
5

BLE
1

BLE
2

BLE
4

BLE
3

BLE
5

Clusters

Fig. 4.4 Example of clustering

4.4.1 Bottom-Up Approaches

Bottom-up approaches build clusters sequentially one at a time. The process starts
by choosing an LB which acts as a cluster seed. LBs are then greedily selected and
added to the cluster, applying various attraction functions. The VPack [10] attraction
function is based on the number of shared nets between a candidate LB and the LBs
that are already in the cluster. For each cluster, the attraction function is used to
select a seed LB from the set of all LBs that have not already been packed. After
packing a seed LB into the new cluster, a second attraction function selects new LBs
to pack into the cluster. LBs are packed into the cluster until the cluster reaches full
capacity or all cluster inputs have been used. If all cluster inputs become occupied
before this cluster reaches full capacity, a hill-climbing technique is applied, search-
ing for LBs that do not increase the number of inputs used by the cluster. The VPack
pseudo-code is outlined in Algorithm 1. T-VPack [13] is a timing driven version of
VPack which gives added weight to grouping LBs on the critical path together. The
algorithm is identical to VPack, however, the attraction functions which select the
LBs to be packed into the clusters are different. The VPack seed function chooses
LBs with the most used inputs, whereas the T-VPack seed function chooses LBs
that are on the most critical path. VPack’s second attraction function chooses LBs
with the largest number of connections with the LBs already packed into the cluster.
T-VPack’s second attraction function has two components for a LB B being consid-
ered for cluster C :

Attraction(B, C) = α.Crit (B) + (1 − α)
| Nets(B) ∩ Nets(C) |

G
(4.1)

where Crit (B) is a measure of how close LB B is to being on the critical path,
Nets(B) is the set of nets connected to LB B, Nets(C) is the set of nets connected

78 4 Two Dimensional FPGAs: Configuration and CAD Flow

to the LBs already selected for cluster C , α is a user-defined constant which deter-
mines the relative importance of the attraction components, and G is a normalizing
factor. The first component of T-VPack’s second attraction function chooses critical-
path LBs, and the second chooses LBs that share many connections with the LBs
already packed into the cluster. By initializing and then packing clusters with critical-
path LBs, the algorithm is able to absorb long sequences of critical-path LBs into
clusters. This minimizes circuit delay since the local interconnect within the cluster
is significantly faster than the global interconnect of the FPGA. RPack [12] improves
routability of a circuit by introducing a new set of routability metrics. RPack signifi-
cantly reduced the required channel widths required by circuits compared to VPack.
T-RPack [12] is a timing driven version of RPack which is similar to T-VPack by
giving added weight to grouping LBs on the critical path. iRAC [11] improves the
routability of circuits even further by using an attraction function that attempts to
encapsulate as many low fanout nets as possible within a cluster. If a net can be
completely encapsulated within a cluster, there is no need to route that net in the
external routing network. By encapsulating as many nets as possible within clusters,
routability is improved because there are less external nets to route in total.

4.4.2 Top-Down Approaches

The K-way partitioning problem seeks to minimize a given cost function of such an
assignment. A standard cost function is net cut, which is the number of hyperedges
that span more than one partition, or more generally, the sum of weights of such
edges. Constraints are typically imposed on the solution, and make the problem
difficult. For example some vertices can be fixed in their parts or the total vertex
weight in each part partition must be limited (balance constraint and FPGA clusters
size). With balance constraints, the problem of partitioning optimally a hypergraph
is known to be NP-hard [14, 15]. However, since partitioning is critical in several
practical applications, heuristic algorithms were developed with near-linear runtime.
Such move-based heuristics for k-way hypergraph partitioning appear in [16–18].

4.4.2.1 Fiduccia-Mattheyses Algorithm

The Fiduccia-Mattheyses (FM) heuristics works by prioritizing moves by gain. A
move changes to which partition a particular vertex belongs, and the gain is the
corresponding change of the cost function. After each vertex is moved, gains for
connected modules are updated.

4.4 Clustering 79

Algorithm 2: Pseudo-code for FM heurisctic [19]
partitioning = initial_solution;
while solution quality improves do

Initialize gain_container from partitioning;
solution_cost = partitioning.get_cost();
while not all vertices locked do

move = choose_move();
solution_cost += gain_container.get_gain(move);
gain_container.lock_vertex(move.vertex());
gain_update(move);
partitioning.apply(move);

end
roll back partitioning to best seen solution;
gain_container.unlock_all();

end

The Fiduccia-Mattheyses or (FM) heuristic for partitioning hypergraphs [17] is
an iterative improvement algorithm. FM starts with a possibly random solution and
changes the solution by a sequence of moves which are organized as passes. At the
beginning of a pass, all vertices are free to move (unlocked), and each possible move
is labeled with the immediate change to the cost it would cause; this is called the gain
of the move (positive gains reduce solution cost, while negative gains increase it).
Iteratively, a move with highest gain is selected and executed, and the moving vertex
is locked, i.e., is not allowed to move again during that pass. Since moving a vertex
can change gains of adjacent vertices, after a move is executed all affected gains are
updated. Selection and execution of a best-gain move, followed by gain update, are
repeated until every vertex is locked. Then, the best solution seen during the pass is
adopted as the starting solution of the next pass. The algorithm terminates when a
pass fails to improve solution quality. Pseudo-code for the FM heuristic is given in
Algorithm 2. The FM algorithm has 3 main components (1) computation of initial
gain values at the beginning of a pass; (2) the retrieval of the best-gain (feasible)
move; and (3) the update of all affected gain values after a move is made. One
contribution of Fiduccia and Mattheyses lies in observing that circuit hypergraphs
are sparse, and any move’s gain is bounded between plus and minus the maximal
vertex (Gmax)degree in the hypergraph (times the maximal hyperedge weight, if
weights are used). This allows prioritizing moves by their gains. All affected gains
can be updated in amortized-constant time, giving overall linear complexity per
pass [17]. In [17] all moves with the same gain are stored in a linked list representing

80 4 Two Dimensional FPGAs: Configuration and CAD Flow

1 2 i j c

part B

part A

cells

+GmaxA gains list

gains list

−GmaxA

−GmaxB

+GmaxB

Fig. 4.5 The gain bucket structure as illustrated in [17]

a gain bucket. Figure 4.5 presents the gain bucket list structure. It is important to note
that some gains G may be negative, and as such, FM performs hill-climbing and is
not strictly greedy.

4.4.2.2 Multilevel Partitioning

The multilevel hypergraph partitioning framework was successfully verified in 1997
by [20, 21] and leads to the best known partitioning results ever since. The main
advantage of Multilevel partitioning over flat partitioners is its ability to search the
solution space more effectively by spending comparatively more effort on smaller
coarsened hypergraphs. Good coarsening algorithms allow for high correlation
between good partitioning for coarsened hypergraphs and good partitioning for the
initial hypergraph. Therefore, a thorough search at the top of the multilevel hierarchy
is worthwhile because it is relatively inexpensive when compared to flat partitioning
of the original hypergraph, but can still preserve most of the possible improvement.
The result is an algorithmic framework with both improved runtime and solution
quality over a completely flat approach. Pseudo-code for an implementation of the
multilevel partitioning framework is given in Algorithm 3.

4.4 Clustering 81

Algorithm 3: Pseudo-code for the Multilevel Partitioning algorithm [19]
level = 0;
hierarchy[level] = hypergraph;
while hierarchy[level].vertex_count() less than 200 do

next_level = cluster(hierarchy[level]);
level = level + 1;
hierarchy[level] = next_level;

end
partitioning[level] = a random initial solution for top-level hypergraph;
FM(hierarchy[level], partitioning[level]);
while level > 0 do

level = level – 1;
partitioning[level] = project(partitioning[level + 1], hierarchy[level]);
FM(hierarchy[level], partitioning[level]);

end

As illustrated in Fig. 4.6, multilevel partitioning consists of 3 main components:
clustering, top-level partitioning and refinement or uncoarsening. During clustering,
hypergraph vertices are combined into clusters based on connectivity, leading to a
smaller, clustered hypergraph. This step is repeated until obtaining only several hun-
dred clusters and a hierarchy of clustered hypergraphs. We describe this hierarchy
with the smaller hypergraphs being higher and the larger hypergraphs being lower.
The smallest (top-level) hypergraph is partitioned with a very fast initial solution

initial Partitioning Phase

U
ncoarsening and R

efinem
ent Phase

Hypergrph

refined partition

projected partition

C
oa

rs
en

in
g
Ph

as
e

Fig. 4.6 Multilevel hypergraph bisection

82 4 Two Dimensional FPGAs: Configuration and CAD Flow

generator and improved iteratively, for example, using the FM algorithm. The result-
ing partitioning is then interpreted as a solution for the next hypergraph in the hier-
archy. During the refinement stage, solutions are projected from one level to the next
and improved iteratively. Additionally, the hMETIS partitioning program [21] intro-
duced several new heuristics that are incorporated into their multilevel partitioning
implementation and are reportedly performance critical.

Algorithm 4: Generic simulated annealing-based placer [13]
S = RandomPlacement();
T = InitialTemperature();
Rlimit = I ni tial Rlimit ;
while ExitCriterion() == false do

while InnerLoopCriterion() == false do
Snew = GenerateV iaMove(S, Rlimit);
ΔC = Cost (Snew) − Cost (S);
r = random(0,1);
if r < e− ΔC

T then
S = Snew;

end
end
T = UpdateTemp();
Rlimit = U pdateRlimit ();

end

4.5 Placement

Placement algorithms determine which logic block within an FPGA should imple-
ment the corresponding logic block (instance) required by the circuit. The optimiza-
tion goals consist in placing connected logic blocks close together to minimize the
required wiring (wire length-driven placement), and sometimes to place blocks to
balance the wiring density across the FPGA (routability-driven placement) or to
maximize circuit speed (timing-driven placement). The 3 major classes of placers in
use today are min-cut (Partitioning-based) [22, 23], analytic [24, 25] which are often
followed by local iterative improvement, and simulated annealing based placers [26,
27]. To investigate architectures fairly we must make sure that our CAD tools are
attempting to use every FPGA’s feature. This means that the optimization approach
and goals of the placer may change from architecture to architecture. Partitioning
and simulated annealing approaches are the most common and used in FPGA CAD
tools. Thus we focus on both techniques in the sequel.

4.5 Placement 83

4.5.1 Simulated Annealing Based Approach

Simulated annealing mimics the annealing process used to cool gradually molten
metal to produce high-quality metal objects [26]. Pseudo-code for a generic simulated
annealing-based placer is shown in Algorithm 4. A cost function is used to evaluate
the quality of a given placement of logic blocks. For example, a common cost function
in wirelength-driven placement is the sum over all nets of the half perimeter of
their bounding boxes. An initial placement is created by assigning logic blocks
randomly to the available locations in the FPGA. A large number of move, or local
improvements are then made to gradually improve the placement. A logic block is
selected at random, and a new location for it is also selected randomly. The change
in cost function that results from moving the selected logic block to the proposed
new location is computed. If the cost decreases, the move is always accepted and
the block is moved. If the cost increases, there is still a chance to accept the move,
even though it makes the placement worse. This probability of acceptance is given

by e− ΔC
T , where ΔC is the change in cost function, and T is a parameter called

temperature that controls probability of accepting moves that worsen the placement.
Initially, T is high enough so almost all moves are accepted; it is gradually decreased
as the placement improves, in such a way that eventually the probability of accepting
a worsening move is very low. This ability to accept hill-climbing moves that make
a placement worse allows simulated annealing to escape local minima of the cost
function.

The Rlimit parameter in Algorithm 4 controls how close are together blocks must
be to be considered for swapping. Initially, Rlimit is fairly large, and swaps of blocks
far apart on a chip are more likely. Throughout the annealing process, Rlimit is
adjusted to try to keep the fraction of accepted moves at any temperature close to
0.44. If the fraction of moves accepted, α, is less than 0.44, Rlimit is reduced, while
if α is greater than 0.44 Rlimit is increased. In [13], the objective cost function is
a function of the total wirelength of the current placement. The wirelength is an
estimate of the routing resources needed to completely route all nets in the netlist.
Reductions in wirelength mean fewer routing wires and switches are required to
route nets. This point is important because routing resources in an FPGA are limited.
Fewer routing wires and switches typically are translated also into reductions of
the delay incurred in routing nets between logic blocks. The total wirelength of a
placement is estimated using a semi-perimeter metric, and is given by Eq. 4.2. N is
the total number of nets in the netlist, bbx(i) is the horizontal span of net i, bby(i) is
its vertical span, and q(i) is a correction factor. Figure 4.7 illustrates the calculation
of the horizontal and vertical spans of a hypothetical net that has 6 terminals.

WireCost =
N∑

i=1

q(i) × (bbx (i) + bby(i)) (4.2)

The temperature decrease rate, the exit criterion for terminating the anneal, the num-
ber of moves attempted at each temperature (InnerLoopCriterion), and the method

84 4 Two Dimensional FPGAs: Configuration and CAD Flow

bby

bbx

Fig. 4.7 Bounding box of a hypothetical 6-terminals net [13]

by which potential moves are generated are defined by the annealing schedule. An
efficient annealing schedule is crucial to obtain good results in a reasonable amount
of CPU time. Many proposed annealing schedules are fixed schedules with no abil-
ity to adapt to different problems. Such schedules can work well within the norrow
application range for which they are developed, but their lack of adaptability means
they are not very general. In [28] authors propose an adaptive annealing schedule
based on statistics computed during the anneal itself. Adaptive schedules are widely
used to solve large scale optimization problems with many variables.

4.5.2 Partitioning Based Approach

Partitioning-based placement methods, also referred to as min-cut methods, are
based on graph partitioning algorithms such as the Fiduccia-Mattheyses (FM) Algo-
rithm [17], and Kernighan Lin (KL) algorithm [22]. Partitioning-based placement are
suitable to tree-based FPGA architectures. The partitioner is applied recursively to
each hierarchical level to distribute netlist cells between clusters. The aim is to reduce
external communications and to collect highly connected cells into the same clus-
ter.The partitioning-based placement is also used in the case of Mesh-based FPGA.
The device is divided into two parts, and a circuit partitioning algorithm is applied to
determine the adequate part where a given logic block must be placed to minimize the
number of cuts in the nets that connect the blocks between partitions, while leaving

4.5 Placement 85

highly-connected blocks in one partition. A divide-and-conquer strategy is used in
these heuristics. By partitioning the problem into sub-parts, a drastic reduction in
search space can be achieved. On the whole, these algorithms perform in the top-
down manner, placing blocks in the general regions which they should belong to.
In the Mesh FPGA case, partitioning-based placement algorithms are good from a
global perspective, but they do not actually attempt to minimize wirelength. There-
fore, the solutions obtained are sub-optimal in terms of wirelength. However, these
classes of algorithms run very fast. They are normally used in conjunction with other
search techniques for further quality improvement. Some algorithms [29] and [30]
combine multi-level clustering and hierarchical simulated annealing to obtain ultra-
fast placement with good quality. In our project, the partitioning-based placement
approach is used for the placement of Tree-based FPGA architectures.

4.6 Routing

The FPGA routing problem consists in assigning nets to routing resources such that no
routing resource is shared by more than one net. Pathfinder [31] is the current, state-of-
the-art FPGA routing algorithm. Pathfinder operates on a directed graph abstraction
(G(V, E)) of the routing resources in an FPGA. The set of vertices V in the graph
represents the IO terminals of logic units and the routing wires in the interconnect
structure. An edge between two vertices represents a potential connection between
these two vertices. Figure 4.8 presents a part of a routing graph in a Mesh-based
interconnect. Given this graph abstraction, the routing problem for a given net is to
find a directed tree embedded in G that connects the source terminal of the net to each
of its sink terminals. Since the number of routing resources in an FPGA is limited, the
goal of finding unique, non-intersecting trees for all the nets in a netlist is a difficult
problem. Path f inder uses an iterative, negotiation-based approach to successfully
route all the nets in a netlist. During the first routing iteration, nets are freely routed

out(logic block pin)

wire 4

wire 2

in 2

sink

source

in 1

wire 3

wire 1in 1 in 2

out

wire 3 wire 4

wire 1

wire 2

2−LUT

Fig. 4.8 Modelling FPGA routing architecture as a directed graph [13]

86 4 Two Dimensional FPGAs: Configuration and CAD Flow

without paying attention to resource sharing. Individual nets are routed using Dijkstra
s shortest path algorithm [32]. At the end of the first iteration, resources may be
congested because multiple nets have used them. During subsequent iterations, the
cost of using a resource is increased, based on the number of nets that share the
resource, and the history of congestion on that resource. Thus, nets are made to
negotiate for routing resources. If a resource is highly congested, nets which can use
lower congestion alternatives are forced to do so. On the other hand, if the alternatives
are more congested than the resource, then a net may still use that resource. The cost
of using a routing resource n during a routing iteration is given by Eq. 4.3.

cn = (bn + hn) × pn (4.3)

where bn is the base cost of using the resource n, hn is related to the history of
congestion during previous iterations, and pn is proportional to the number of nets
sharing the resource in the current iteration. The pn term represents the cost of using
a shared resource n, and the hn term represents the cost of using a resource that
has been shared during earlier routing iterations. The latter term is based on the
intuition that a historically congested node should appear expensive, even if it is
slightly shared currently. The Pseudo-code of the Path f inder routing algorithm is
presented in Algorithm 5.

Algorithm 5: Pseudo-code of the Pathfinder routing algorithm [31]
Let: RTi be the set of nodes in the current routing of net i
while shared resources exist do

/*Illegal routing*/
foreach net, i do

rip-up routing tree RTi ;
RT (i) = si foreach sink ti j do

Initialize priority queue PQ to RTi at cost 0;
while sink ti j not found do

Remove lowest cost node m from PQ;
foreach fanout node n of node m do

Add n to PQ at PathCost(n) = cn + PathCost(m);
end

end
foreach node n in path ti j to si do

/*backtrace*/
Update cn ;
Add n to RTi ;

end
end

end
update hn for all n;

end

4.6 Routing 87

An important measure of routing quality produced by an FPGA routing algorithm
is the critical path delay. The critical path delay of a routed netlist is the maximum
delay of any combinational path in the netlist. The maximum frequency at which
a netlist can be clocked has an inverse relationship with critical path delay. Thus,
larger critical path delays slow down the operation of netlist. Delay information is
incorporated into Pathfinder by redefining the cost of using a resource n (Eq. 4.4).

cn = Ai j × dn + (1 − Ai j) × (bn + hn) × pn (4.4)

The cn term is from Eq. 4.3, dn is the delay incurred in using the resource, and Ai j

is the criticality given by Eq. 4.5.

Ai j = Di j

Dmax
(4.5)

Di j is the maximum delay of any combinational path going through the source and
sink terminals of the net being routed, and Dmax is the critical path delay of the
netlist. Equation 4.4 is formulated as a sum of two cost terms. The first term in
the equation represents the delay cost of using resource n, while the second term
represents the congestion cost. When a net is routed, the value of Ai j determines
whether the delay or the congestion cost of a resource dominates. If a net is near
critical (i.e. its Ai j is close to 1), then congestion is largely ignored and the cost of
using a resource is primarily determined by the delay term. If the criticality of a net is
low, the congestion term in Eq. 4.4 dominates, and the route found for the net avoids
congestion while potentially incurring delay. Pathfinder has proved to be one of
the most powerful FPGA routing algorithms to date. Pathfinder’s negotiation-based
framework that trades off delay for congestion is an extremely effective technique
for routing signals on FPGAs. More importantly, Pathfinder is a truly architecture-
adaptive routing algorithm. The algorithm operates on a directed graph abstraction
of an FPGA’s routing structure, and can thus be used to route netlists on any FPGA
that can be represented as a directed routing graph.

4.7 Two-Dimensional CAD for Tree-Based Architecture

In this thesis we are exploring different FPGA architecture topologies, we developed
CAD tools as generic as possible to deal with different types of FPGA architectures.
We propose a set of generic tools requiring a minimum effort to be adapted to a
specific architecture topology. In Fig. 4.9 we present the dependency between each
phase in the CAD flow and the target architecture.

88 4 Two Dimensional FPGAs: Configuration and CAD Flow

Technology
Mapping

Synthesis
Partitioning
Clustering /

Routing Placement

Circuit
Description

Cluster size

& size
Objective

Timing
Analysis

Lut size

Timing
characteristics

Interconnect
organizationModels

Area

Architecture
Description

Performances Area
EstimationEstimation

Fig. 4.9 Architectures exploration platform

4.7.1 Synthesis and Mapping

Synthesis consists in translating a circuit description into a gate-level representa-
tion. As illustrated on Fig. 4.9 this operation is architecture independent. In our flow
we use SIS [1] synthesis tool. It can be replaced by any other commercial synthe-
sis tool. As explained in Sect. 4.2, mapping consists in translating the description
based on a boolean logic gates into a description with k-input LUTs and flip-flops.
The only required architecture parameter is k, the LUT inputs number. In our flow
we use FlowMap algorithm [2], which is included in SIS package. As presented in
Fig. 4.9, this tool depends only on LUTs size and can target any interconnect topol-
ogy. It can be driven by different objectives like timing (depth optimization) and
area (LUTs number). Notice that today FPGA commercial mapping tools can target
specific architectures interconnects. Thus in this early stage they can alleviate routing
congestion and improve performance.

4.7.2 Clustering and Partitioning

In general, FPGA architectures, the programmable interconnect is organized in mul-
tiple hierarchical levels. Hierarchy becomes an interesting feature to improve density,
to reduce run time effort (divide and conquer) and to consider local communication.
For example in the case of Mesh-based industrial FPGA architecture, interconnect is
organized in two-levels of hierarchy: (1) Mesh level where clusters are surrounded by
depopulated interconnect organized in row and columns and (2) cluster level where
LBs are connected using a full cross bar. Stratix architecture has also the same num-
ber of hierarchical levels but with a more optimized interconnect topology [33]. In the

4.7 Two-Dimensional CAD for Tree-Based Architecture 89

case of a Tree-based interconnect we get multiple hierarchical levels. Level numbers
depends on the total number of LBs and clusters size (arity). Basically when two
signals are within the same hierarchy level, it does not really matter where within
that hierarchy they are. Similarly, geometrically close cells incur greater delay to
get to other locations outside their hierarchical boundary than to distant cells within
their hierarchical boundary. Thus, unlike flat or island style Mesh-based FPGA, a
hierarchical architecture uses a natural placement algorithm based on recursive par-
titioning. The netlist instance are partitioned between architecture clusters in the best
possible way using the newly developed CAD Flow with the careful consideration of
multilevel hierarchical organization of Tree-based interconnect to reduce the desired
partitioning objectives. For this purpose we implemented 3 different partitioning
objectives:

1. CUT:- Corresponds to the total number of nets crossing parts boundaries.
2. SOED:- Sum Of External Degree: External part degree corresponds to the number

nets crossing the part boundary.
3. MED:- Maximum External Degree: Corresponds to the maximum degree over

all parts.

These objectives can be combined or considered separately. The Fig. 4.10 illustrate
an example of partitioning and evaluation of the 3 different partitioning objectives.
For Tree-based FPGA architecture we developed two main partitioning approaches:
bottom up (clustering) and top-down. The choice between both approaches depends
on levels number, clusters size, clusters number in each level and problem constraints.
For example t-vpack [10] a bottom-up clustering tool is used to construct clusters
in the case of Mesh-based FPGA architecture. We replaced t-vpack with hMetis
[20, 34] a top-down partitioner. By using top-down partitioner [35], we observed
improvements in the reduction of external nets at the cost of increasing run time.
In fact top-down approaches based on FM refinement heuristics are efficient when
we target a small number of clusters (parts) with an important size (balance con-
straint) [17]. Conversely in the case of Mesh-based architecture clusters size is
small (between 4 and 16) and clusters number is in general important. To investigate

Part2 Degree = 7
6

5

3
2

Part0 Degree = 8
Part1 Degree = 5

SOED = 20
CUT = 10
MED = 8

Part 1

Part 2
Part 0

Fig. 4.10 Illustration and evaluation of different partitioning objectives

90 4 Two Dimensional FPGAs: Configuration and CAD Flow

partitioning approaches we used a Multilevel hypergraph structure called Mangrove.
Mangrove provides a development framework for efficient modeling of hypergraph
nested partitions. It offers a compact C++ data structure and high level API and this
structure is organized as follows [35]:

• ClusteringHierarchy: holds a vector of nested partitions called Clustering
Level, and refers to a unique enclosing cluster T opLevelCluster ,

• ClusteringLevel: corresponds to the set of clusters at the partitioning at a given
level. A clusteringLevel corresponds to a Hypergraph where nodes are clusters
situated at this level.

• Cluster : Aggregates sub-clusters belonging to a lower ClusteringLevel (unless
leaf one). A Cluster may cross multiple levels and has U pper Level and Lower
Level identifiers,

• Net : presents a tree of branches,
• Branch: represents the net (signal) crossing point of a cluster boundary. Branch

bifurcates within a cluster if the net crosses at least 2 sub-clusters.

Since in Mangrove a clusteringLevel can be added at any level, this structure can be
used in different partitioning approaches: Bottom-up and top-down. The combination
of both approaches leads to an efficient multilevel partitioner where first multilevel
bottom-up coarsening is run and then top-down multilevel refinement is applied.
In Fig. 4.11 we show the different steps of recursive netlist partitioning based on a
multilevel approach. The netlist is first partitioned into 2 parts (first level) and then
instances inside each part are partitioned into 2 fractions. In each partitioning phase

Initial hypergraph to partition
Leaves at level 0

Coarsened hypergraph

Part 0 Part 1

cluster 1

TopLevelCluster

cluster 0 cluster 1 cluster 0 cluster 1 cluster 0

Part 0 Part 1

bi−partitioned hypergraph

cluster 0 cluster 1 cluster 1

Part 1Part 0

cluster 0

Part 0Part 0 Part 1 Part 1

cluster 0

cluster 0 cluster 1 cluster 2 cluster 3

cluster 1

Restricted coarsening in cluster 1 bi−partitioning in sub−hypergraph (cluster 1) Clustering according to partitioning

bi−partitioning in sub−hypergraph (cluster 0)Restricted coarsening in cluster 0Clustering according to partitioning

TopLevelCluster TopLevelCluster

TopLevelCluster TopLevelCluster TopLevelCluster

TopLevelCluster TopLevelCluster TopLevelCluster

Fig. 4.11 2 levels recursive bi-partitioning steps

4.7 Two-Dimensional CAD for Tree-Based Architecture 91

Level 1

Level 0

FM refinement

FM refinement

clustering

 & clustering
constraints enforcing

clustered netlistoriginal cells netlist

Fig. 4.12 Multilevel clustering and refinement

we apply a multilevel coarsening followed by a multilevel refinement as illustrated
in Fig. 4.12. After completing the clustering phase (with Pins-limit strategy), we
obtain a tree of clusters each one containing k sub-clusters. During the refinement
phase, cells will be moved between clusters (parts) to optimize an objective function
without violating the constraints imposed by the cluster size. In a level �, cells are
not allowed to move between all clusters, because this can decrease the quality of
the solution obtained in the higher level. To prevent such unwanted effect, cells can
only move between neighboring clusters. We call neighboring clusters, all clusters in
a level belonging to the same supercluster. Thus in every level, neighboring clusters
will be isolated and form a subgraph. In Fig. 4.12 those subgraphs are represented
by the continuous lines and partition by the dashed ones. A cell is allowed only to
move across dashed lines. The objective function is specific to each subgraph and
corresponds to the Maximum External Degree (MED) of all parts belonging to the
same subgraph. An FM algorithm [17] is applied to a subgraph to optimize the local
objective function. The complexity of our k-way refinement is reduced since we
apply it successively for each subgraph (in each subgraph there are small number
of parts: Arity of the architecture) and only for the highest levels (where pins-limit
strategy fails). Finally, we obtain the partitioning result corresponding to each level.
The final result describes how instances are distributed between clusters of the Tree-
based topology. Recursive partitioning is also interesting to reduce run time since it
allows to avoid applying FM heuristics directly on a large number of parts, which
can dramatically increase the partitioning run time.

92 4 Two Dimensional FPGAs: Configuration and CAD Flow

4.8 Timing Analysis

Timing analysis evaluates performances of a circuit implemented on a FPGA in terms
of functional speed. Thus, once an application is completely placed and routed we
estimate the minimum feasible clock to run it. To achieve timing analysis we need 2
different graphs:

• Routed graph: Describes the way netlist instances are routed using architecture
resources. This graph allows to evaluate routing delays between netlist instances
connections. A path connecting two instances crosses several wires and switches.
The connection delay is equal to the sum of resources delays.

• Timing graph: It is a direct acyclic graph generated from the netlist hypergraph.
Nodes correspond to instances pins and edges to connections. Based on the result-
ing routed graph, each edge is labeled with the corresponding routed connection
delay. The minimum required clock period is determined via a breadth-first tra-
versal applied on this graph.

Only the routed graph is architecture dependent. Timing graph generation and critical
path extraction depend only on netlist to implement. First the circuit under consider-
ation is presented as a directed graph. Nodes in the graph represent input and output
pins of circuit elements such as LUTs, registers, and I/O pads. Connections between
these nodes are modeled with edges in the graph. Edges are added between the inputs
of combinational logic Blocks (LUTs) and their outputs. These edges are annotated
with a delay corresponding to the physical delay between the nodes. Register input
pins are not joined to register output pins. To determine the delay of the circuit, a
breadth first traversal is performed on the graph starting at sources (input pads, and
register outputs). Then the arrival time, Tarrival , at all nodes in the circuit is computed
with the following equation

Tarrival(i) = max j∈ f anin(i){Tarrival(j) + delay(j, i)}
where node i is the node currently being computed, and delay(j, i) is the delay
value of the edge joining node j to node i . The delay of the circuit is then the
maximum arrival time, Dmax , of all nodes in the circuit. To guide a placement or
routing algorithm, it is useful to know how much delay may be added to a connection
before the path that the connection is on becomes critical. The amount of delay that
may be added to a connection before it becomes critical is called the slack of that
connection. To compute the slack of a connection, one must compute the required
arrival time, Trequired , at every node in the circuit. We first set the Trequired at all
sinks (output pads and register inputs) to be Dmax . Required arrival time is then
propagated backwards starting from the sinks with the following equation:

Trequired(i) = min j∈ f anout (i){Trequired(j) − delay(j, i)}
Finally, the slack of a connection (i,j) driving node, j, is defined as:

Slack(i, j) = Trequired(j) − Tarrival(i) − delay(i, j)

4.9 Summary 93

4.9 Summary

The most important architectural feature of an FPGA is the interconnect structure.
During architectures exploration, the effectiveness of an FPGA interconnect structure
is evaluated using placement and routing tools. Fortunately, some classes of the used
algorithms are architecture-adaptive and can be used to evaluate different structures.
In the next chapter we will present an exploration tools platform that can be adapted
to test different target architecture topologies for the implementation 3D Tree-based
FPGA.

References

1. E.M. Sentovich, K.J. Singh, L. Lavango, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. Stephan,
R.K. Brayton, A. Sangiovanni-Vincentelli, SIS: A System for Sequential Circuit Synthesis,
Technical Report No. UCB/ERL, M92/41. (University of California Berkeley, 1992)

2. J. Cong, Y. Ding, FlowMap: An optimal technology mapping algorithm for delay optimization
in look-up-table based fpga designs. IEEE Trans. Comput. Aided Des, 1–12 (1994)

3. J. Cong, Y. Ding, On area/depth trade-off in LUT-based FPGA technology mapping. IEEE
Trans. VLSI Syst. 2(2), 137–148 (1994)

4. J. Cong, Y. Hwang, Simultaneous depth and area minimization in LUT-based FPGA mapping,
in ACM/SIGDA International Symposim on FPGAs, pp. 68–74 (1995)

5. J. Cong, Y. Ding, Structural gate decomposition for depth-optimal technology in LUT-based
FPGA designs. ACM Trans. Des. Autom. Electr. Syst. 5(3) (2000)

6. D. Huang, A. Kahng, When clusters meet partitions: new density based methods for circuit
decomposition, in IEEE European Design and Test Conference, pp. 60–64 (1995)

7. L. Hagen, A. Kahng, Combining problem reduction and adaptive multi-start: a new technique
for superior iterative partitioning, in IEEE Transactions on Computer-Aided Design, pp. 92–98
(1997)

8. R. Murgai, R. Brayton, A. Sangiovanni-Vincentelli, On clustering for minimum delay/area, in
IEEE International Conference on Computer Aided Design, pp. 6–9 (1991)

9. M. Dehkordi, S. Brown, The effect of cluster packing and node duplication control in delay
driven clustering, in IEEE International Conference on Field Programmable Technology, pp.
227–233 (2002)

10. A. Marquart, V. Betz, J. Rose, Using cluster-based logic block and timing-driven packing to
improve fpga speed and density, in ACM International Symposium on FPGA, Monterey, pp.
37–46 (1999)

11. A. Singh, M. Marek-Sadowska, Efficient circuit clustering for area and power reduction in
FPGAs, in International Symposium on Field Programmable Gate Arrays, pp. 59–66 (2002)

12. E. Bozorgzadeh et al., Routability-driven packing: Metrics and algorithms for cluster-based
FPGAs. IEEE J. Circuits Syst. Comput. 13(1), 77–100 (2004)

13. V. Betz, J. Rose, A, Marquardt Architecture and CAD for Deep Sub-micron FPGAs. (Kluwer,
Norwell, MA, 1999)

14. M.R. Garey, D.S. Johnson, L. Stockmeyer, Some simplified NP complete problems, in Sixth
Annual ACM Symposium on Theory of Computing, pp. 47–63 (1974)

15. M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, an Francisco (Freeman, CA, 1979)

16. B. Kernighan, S. Lin, An efficient heuristic procedure for partitioning graph. Bell Syst. Technol.
J. 49, 299–307 (1970)

94 4 Two Dimensional FPGAs: Configuration and CAD Flow

17. C.M. Fiduccia, R.M. Mattheyeses, A liner-time heuristic for improving network partitions, in
Design Automation Conference, vol. 7, pp. 175–181 (1982)

18. T. Bui, S. Chaudhuri, T. Leighton, M. Sipser, Graph bisection algorithms with good average
behavior. Combinatorica (1987)

19. D.A. Papa, I.L. Markov, Hypergraph Partitioning and Clustering, Technical Report. (University
of Michigan, EECS Department, 2007)

20. G. Karypis, R. Aggarwal, V. Kumar, S. Shekhar, Multilevel hypergraph partitioning: application
in VLSI design, in ACM, Design Automation Conference, pp. 526–529 (1997)

21. G. Karypis, V. Kumar, Multilevel k-way hypergraph partitioning, in Proceedings of the 36th
annual ACM/IEEE Design Automation Conference, pp. 343–348 (1999)

22. A. Dunlop, B. Kernighan, A procedure for placement of standard-cell VLSI circuits. IEEE
Trans. CAD, 92–98 (1985)

23. D. Huang, A. Kahng, Partitioning-based standard-cell global placement with an exact objective,
in ACM Symposium on Physical Design, pp. 18–25 (1997)

24. G. Sigl, K. Doll, F. Johannes, Analytical placement: a linear or a quadratic objective function?,
in ACM Design Automation Conference, pp. 427–432 (1991)

25. C. Alpert, T. Chan D. Huang A. Kahng I. Markov P. Mulet, K. Yan, Faster Minimization of
linear wire-length for global placement, in ACM Symposium on Physical Design, pp. 4–11
(1997)

26. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science 220,
671–680 (1983)

27. C. Sechen, A. Sangiovanni-Vincentelli, The Timberwolf Placement and Routing Package.
(JSSC, 1985) pp. 510–522

28. M. Huang, F. Romeo, A. Sangiovanni-Vincentelli, An efficient general cooling schedule for
simulated annealing, in Proceedings of ICCAD, pp. 381–384 (1986)

29. Y. Sanker, J. Rose, Trading Quality for Compile Time: Ultra-Fast Placement for FPGAs. ACM
International Symposium on FPGAs, FPGA (1999)

30. P. Du, G. W. Grewal, S. Areibi, D.K. Banerji, A fast hierarchical approach to FPGA placement,
in ESA/VLSI, pp. 497–503 (2004)

31. L. McMurchie, C. Ebeling, PathFinder: a negotiation based performance driven router for
FPGAs, in Conference of Field Programmable Gate Arrays FPGA, vol. 12, no 2, pp. 291–301
(1995)

32. T. Cormen, C. Leiserson, R. Rivest, Introduction to Algorithms. (MIT Press, Cambridge, 1990)
33. D. Lewis et al., The stratix logic and routing architecture, in International Symposium on Field

Programmable Gate Arrays, FPGA-2003, pp. 12–20, Feb 2003
34. N. Selvakkumaran, G. Karypis, Multi-objective hypergraph-partitioning algorithm for cut and

maximum subdomain-degree minimization. IEEE Trans. Comput. Aided Des. Integr. Circuits
25(3), 504–517 (2006)

35. Z. Marrakchi, H. Mrabet, H. Mehrez, Hierarchical FPGA clustering to improve routability, in
Ph.D. Research Conference in Microelectronics, PRIME (2005)

Chapter 5
Three-Dimensional FPGAs: Configuration
and CAD Development

Abstract The primary focus of this chapter is to demonstrate a 3D integration
scheme to partition and optimize the multilevel programmable interconnect network
of Tree-based FPGA based on Butterfly-Fat-Tree network topology, where TSVs are
incorporated in active layers of the 3D chip. This chapter describes the details of
the architecture of 3D FPGAs and state-of-the-art 3D technology for Mesh-based
FPGAs. To take advantage of 3D integrated circuits, it should be investigated how
FPGA should be physically partitioned into different active layers. Proper physical
partitioning has a great impact on the performance improvement of the system. This
chapter discuss different partitioning schemes and design techniques and associated
3D CAD tools of 3D FPGAs.

5.1 Introduction

Modern Field Programmable Gate Arrays (FPGAs) have become a viable alternative
to cell based design technology by providing re-configurable computing platforms
with improved performance and density. With the onset of sub-100 nm CMOS tech-
nologies, the design and prototyping cost of the cell-based custom integrated circuit
implementation have become exorbitant for most ASICs, making FPGAs increas-
ingly popular. With their regular structure, they also scale easily with sub-100 nm
technologies. Current FPGAs, however cannot meet the area and speed require-
ments of many ASICs due to their high programming overhead. Recent studies
shows that in Mesh-based industrial FPGAs, 80 % of overall design delay and 90 %
of the chip area are attributed to programmable routing resources [1–3]. It has also
reported that in Mesh-based FPGA, programmable interconnects contributes as much
as 60 % of the total dynamic power consumption [4]. Considering the area, delay
and power consumption, the programmable interconnects are the key elements in
FPGA design [3, 5].

© Springer International Publishing Switzerland 2015
V. Pangracious et al., Three-Dimensional Design Methodologies
for Tree-based FPGA Architecture, Lecture Notes
in Electrical Engineering 350, DOI 10.1007/978-3-319-19174-4_5

95

96 5 Three-Dimensional FPGAs: Configuration and CAD Development

The 3D integrated circuit (IC) technology has emerged as one of the most
promising solutions for overcoming the challenges in interconnection and integration
complexity in modern circuit designs [6]. The 3D integration technology can effec-
tively reduce global interconnect length and increase circuit performance without
increasing the power consumption. Through Silicon Vias (TSVs) are the key enabling
technology element for 3D integration, which is currently being actively evaluated as
a potential solution to reduce the interconnect delay and increase the logic density in
FPGA. Recently, multiple technology and product demonstrations of TSV in silicon
interposer have been reported for high performance FPGA applications [7–9]. Based
on the design and manufacturing specifications and maturity of enabling technolo-
gies, a pattern in technology adoption is beginning to emerge. Three-dimensional
integration where TSVs are incorporated in active device layers, is considered to
be the Holy-Grail of vertical die stacking. However the recent product demonstra-
tions from major FPGA manufactures revels the adoption of silicon interposer based
3D integration scheme, where TSVs are incorporated in passive silicon interposer
[8, 9]. The primary focus of this chapter is to demonstrate a 3D integration scheme
to partition and optimize the multilevel programmable interconnect network of Tree-
based FPGA based on BFT network topology, where TSVs are incorporated in active
layers of the 3D chip. This chapter describes the details of the architecture of 3D
FPGAs and state-of-the-art 3D technology for Mesh-based FPGAs.

5.2 3D FPGA Architectures: An Overview

To take advantage of 3D integrated circuits, it should be investigated how FPGA
should be physically partitioned into different active layers. Proper physical parti-
tioning has a great impact on the performance improvement of the system. As in
any FPGA, the 3D FPGA consists of programmable LBs that are connected by an
interconnect, which are both programmed by the configuration memory. The 3D
interconnect methodology is quite different compared to the 2D interconnect sys-
tem. Figure 5.1 illustrates the possible architecture for 3D Mesh-based FPGA. In this
architecture different active layers have the same structure, all layers have config-
urable logic blocks (LBs) and switch blocks (SBs). The connection between blocks
is similar in all active layers. The advantage is that LBs that were far away in a 2D
FPGA are now much closer at the upper or lower layers and provides more degrees
of freedom during the routing since the third dimension can be employed [10].

5.2.1 FPGA Die Stacking

In FPGAs, the configuration memory blocks provides predefined constant voltages
to the functional circuit. These constant voltages or memory values are not subject
of any timing requirement and can be placed in separate layer with no overhead.

5.2 3D FPGA Architectures: An Overview 97

CLB CLB

CLB CLB

TSV

TSV
Sbox Sbox

Sbox Sbox Sbox

Sbox

CB

CB

CB

CB

CB

CB

CB

Connection Box

Sbox

CB

CB CB CB

CBSbox Sbox

xobSxobS Sbox

Sbox

Fig. 5.1 A typical mesh-based 3D FPGA architecture with 3D SBs using vertical interconnections
(TSVs)

The second possibility of implementing 3D FPGA architecture is based on placing
the FPGA configuration memory on a different layer as illustrated in Fig. 5.2. In
this architecture, one active layer is specially devoted to configuration memory cells
and another active layers is devoted to programmable LBs and SBs. This approach
provides more flexibility to increase logic density of FPGA as well as to reduce the
area of the tile by a factor of two and the length of interconnect would reduce by
square root of two. The delay and power dissipation of interconnect would also reduce
because of the shorter capacitance on interconnect. However, current technology
requires a large inter-tier via (TSV) for 3D interconnection to other tiers. The size
of the via depends on the technology and accuracy of aligning two dies during
the bonding process. A tile may have few thousands configuration cells and if all
configuration cells are placed in another tier, the area overhead of 3D connections
will be too high. Depending on the technology, the area overhead of 3D interconnect
may even exceed the original area of the die and the size of an inter-tier via scales
with the accuracy of the die alignment.

98 5 Three-Dimensional FPGAs: Configuration and CAD Development

Configuration Layer

LUT configuration memory blockblock

SB configuration

CLB CLB

Sbox Sbox

Sbox

Sbox Sbox

Sbox
CB

CB

CB

CB

TSV

TSV

Fig. 5.2 A typical mesh-based 3D FPGA architecture

5.2.2 Monolithic FPGA Implementation

A more promising 3D-IC approach for implementing such a 3D FPGA is monolithic
stacking, whereby the active devices are lithographically built in between metal
layers [11, 12]. The main advantage of such approach is that, in principle, it can
achieve comparable vertical via density and scale at the same rate as the base CMOS
technology. Although this approach is yet to be developed for FPGA application,
there is much evidence that forming transistors on a dielectric with low thermal
budget is quit feasible [13–15]. The process technology for the added layers can be
much simpler than a full CMOS process. Specifically, the switch layer only needs
one type of MOS transistors, while the memory layer can be implemented using
two-transistor flash technology [16] or a programmable solid-electrolyte switch [17],
both of which promise to achieve higher densities than static random-access memory
(SRAM) with much simpler processes. The monolithic 3D FPGA process enables
much higher vertical interconnect density than 3D stacked FPGAs. This requires a
radically new 3D architecture than simple stacking of 2D FPGAs. For example, the
simple 3D stacking methodology can be used to build high density FPGAs with fully
3D switch boxes [18], which were shown to achieve over 50 % reduction in channel
width, interconnect delay, and power consumption over a baseline 2D FPGA. The
3D monolithic FPGA architecture however requires a significantly more complex
3D technology than 3D stacked FPGAs.

5.3 State-of-the-Art: 3D FPGA Implementation 99

5.3 State-of-the-Art: 3D FPGA Implementation

To provide the required reconfigurable functionality, FPGAs provide a large amount
of programmable interconnect resources in the form of wire segments, switches, and
signal repeaters. Typically, the delay of FPGAs is dominated by these interconnects.
Reducing the lengths of interconnects can lead to significant improvements in the
performance of FPGAs. Moreover, these programmable interconnect resources typi-
cally consume a large portion of the FPGA silicon die area. Since die area is one of the
main factors that determine manufacturing costs, reducing the silicon footprint can
lead to significant improvements in the manufacturing costs of FPGAs. The advan-
tages of 3D FPGAs have evoked significant interest, and several studies have looked
at them in the past. A 3D FPGA that used package-level integration to stack multiple
2D Mesh-based FPGAs interconnected using solder bumps is presented in [19]. The
minimum pitch of these vertical interconnection is ≈100µm. An opto-electronic 3D
FPGA is proposed in [20], in which the inter-tier communication is realized using
optical links. The main advantage of using optical links is to improve performance
by provide a large vertical channel density.

The Rothko 3D FPGA [21] is a 3D extension of the Triptysch sea-of-gate archi-
tecture [22]. Rothko is 3D design platform allows designers to stack 2D CMOS
VLSI circuits to build 3D VLSI structures. This design platform provides flexibility
is placing TSVs anywhere in the chip. For Rothko 3D FPGA, the 3D integration is
done at wafer level and inter-tier communication is established using TSVs (metal
vias). To stack tow active layers of the FPGA chip, Rothko used CMOS based bulk
technology and Silicon-on-Insulator (SOI) technology. For a two-tier circuit, the first
tier is processed using CMOS bulk technology and the second tier is processed using
SOI technology. The problem associated with such a process is, it needs two dif-
ferent wafers and technology, which lead to increase in the cost of manufacturing.
A dynamically reconfigurable 3D Mesh-based FPGA is presented in [23], which
consisted of three physical layers: local routing and logic block layer, main routing
layer, and memory layer. Such designs improve the flexibility and performance of
FPGA at the cost of a large number of TSVs.

A conceptually appealing approach to closing the performance gap between
FPGAs and custom cell-based ASICs is to stack the programming overhead of an
FPGA on top of the LBs and implement the interconnect layers using monolithic
state-of-the-art CMOS technology. The implementation and performance analysis
of a monolithically integrated 3D FPGA presented in [12, 24]. Monolithic 3D inte-
gration provides very fine and high density vertical vias (2B/cm2), which allows the
integration technology to stack FPGA in three tiers, in which all SRAM cells were
moved to a separate layer and monolithical stacking is used so that there is no over-
head on inter-tier connections as illustrated in Fig. 5.3. In monolithical stacking, elec-
tronic components and their connections (wiring) are lithographically built in layers
on a single wafer, hence no TSV is needed. In this case, the area overhead on TSVs is
eliminated and the logic density is greatly improved due to stacking. Researches are
also looked at theoretical models for 3D FPGAs. An analytical model for predicting

100 5 Three-Dimensional FPGAs: Configuration and CAD Development

C C

CLB

S

CLB CLBC

C

C CC

S S S

S S S S

CLB CLB CLBC C C C

S S S S

S S S S

CLB CLB CLB

C

C C C

C C

C C C C

C C C

S S

S S

C

C

C

C

CLB CLB CLB CLB

CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB

CLB

Memory Layer

Switch blocks & Connection blocks layer

Logic layer

2D Mesh−based FPGA

3D Mesh−based FPGA

Fig. 5.3 A typical mesh-based 3D monolithic FPGA architecture

Circuit
Description Synthesis Technology Clustering

PlacementRoutingBitstream

Mapping

Fig. 5.4 Typical FPGA CAD flow

interconnect requirements in 3D FPGA presented in [18] to examined opportunities
for 3D implementation of FPGAs. In their exploration, 3D (6-way) switching blocks
were used and all the components in the FPGA were evenly distributed between
layers in fine granularity. Experimental results on 0:25µm technology showed that
in FPGAs with 70 K logic cells, the improvement in LUT density can be 25–60 %
in 3D implementation with two to four tiers. The interconnect delay is significantly
reduced (50 %), and the clock frequency as 2D FPGA, the reduction in power dissi-
pation is 35–55 %, when compared to 2D Mesh-based FPGAs. Recently this model
extended to incorporate clustered logic blocks [25] similar to Vertex-2 [26].

To facilitate the design and evaluation using 3D FPGAs, new CAD tools for 3D
FPGA integration are needed. A CAD tool for an FPGA accepts an RTL description
of a circuit and an architectural description of the FPGA for generating a configura-
tion bitstream that can be loaded into the FPGA. This complex problems of mapping
a circuit to an FPGA is broken down into a sequence of sub-problems or stages
as illustrated in Fig. 5.4. Each of these problems can be reduced to some classical
theoretical problems that have been extensively researched. Each stages has its own
optimization goal which is related to the ultimate goal of satisfying area and perfor-
mance requirements for the circuit when mapped to the FPGA. Several CAD tools
have been proposed earlier for both 2D FPGAs and more recently most of them are
extended for 3D FPGAs and all of them have almost similar tool flow which will be
detailed in this section.

A graph-based 3D FPGA placement and routing algorithm presented in [19]. A
fast partitioning based placement tool for 3D FPGAs called TPR (Three dimensional

5.3 State-of-the-Art: 3D FPGA Implementation 101

Partitioning, assignment to layers

Constraint driven Placement
top−to−bottom layers

Architecture

Benchmark (.blif)T−VPack

netlist(.net)
Tech mapped

3D Detailed Routing

Placement and Routing info

Fig. 5.5 TPR: Three-dimensional place and route tool for 3D FPGA, illustration of the 3FD FPGA
CAD flow

Place and Route) is presented in [11, 27, 28]. The tool effectively investigate the
impact of 3D integration on path delay of FPGAs in addition to interconnect wire-
length. The philosophy of the tool closely follow that of its 2D counterpart VPR
(versatile place and route) [29]. The flow of the TPR placement and routing CAD
flow is shown in Fig. 5.5. Nevertheless the TPR router is not timing driven as well
as all SBs are assumed to be 3D-SBs and they also assumed that the number of
inter-tier vias (TSVs) is the same as the horizontal channel width. In today’s tech-
nology, especially if we stack more than two active layers, the vias are much thicker
than the horizontal wires (for example, 1–0.1µm), which makes such assumption
impractical.

A fully-fledged 3D FPGA design framework, called 3D-MEANDER for the
design and exploration of 3D Mesh-based FPGAs presented in [10, 30]. This method-
ology provides the capability to analyze the impact of different deployment strat-
egy for 3D-SBs in multi-tier Mesh-based FPGAs. This design methodology is a
3D extended version VPR, in which new CAD tools for partitioning, placement

102 5 Three-Dimensional FPGAs: Configuration and CAD Development

Technology Mapping

2D or 3D
Architecture

3DPart

3DPRO

3D Power

3D Architecture
Library

EX−VPR

Power model
Library

2D Architecture

Synthesis

Application description in HDL

Bitstream Generation

D3D2

Fig. 5.6 The MEANDER 3D FPGA design framework [10, 30]

and routing and power estimation were included as illustrated in Fig. 5.6. It sup-
port the evaluation of alternative interconnect architectures and proposes a family of
3D Mesh-based FPGA interconnect architectures in which 2D-SBs and 3D-SBs are
intermittently used in certain regular spatial patterns as illustrated in Fig. 5.7. The
combination of 2D and 3D SBs may result in design and manufacturing issues. The
3D SBs are lager in size compared to 2D SBs due to increased number of vertical
channels and support devices. A major drawback this methodology is that the number
of available TSVs within 3D-SBs is assumed to be fixed and the design methodol-
ogy does not the ability to investigate the impact of different numbers of TSVs in a
3D-SB.

Although several researchers have proposed 3D FPGAs, the detailed routing archi-
tecture of a 3D FPGA remains largely unexplored. In an FPGA the routing tracks
and programmable switches constitute the routing channel. Channel width refers
to the number of tracks in the channel. The LBs connect the channel through the
connection boxes. The routing wires connect among themselves through the switch
boxes. Switch-box topology refers to the connectivity provided by the switch box.
Researches have explored several typologies [31, 32]. The subset (also called dis-
joint) topology, used in Xlinx XC4000 FPGAs, connect all tracks and net uses the
same track number for its route as illustrated in Fig. 5.8. A universal 2D switch block
is designed and presented in [33], which used track count as the sole metric of quality.
Universal topology provides more flexibility than disjoint as illustrated in Fig. 5.8. It
facilitates connectivity for all possible global routes of two-terminal nets.

5.3 State-of-the-Art: 3D FPGA Implementation 103

Fig. 5.7 The MEANDER 3D FPGA 2D and 3D SBs interconnect architecture [10, 30]

0

1

2

3

0 1 2 3

0

1

2

3

0 1 32

0 1 2 3

0

1

2

3

0

1

2

3

0 1 2 3

X0 X1

Y1

X0

Y0 Y0

Y1

X1

Universal SboxSubset or Disjoint Sbox

Fig. 5.8 Disjoint and universal 2D switch boxes, X0,X1,Y0,Y1 mark their sides

104 5 Three-Dimensional FPGAs: Configuration and CAD Development

5.4 3D FPGA Interconnect Switch

The flexibility factor Fs of a switch box refers to the number of wires to which each
incoming wire can connect. Previous studies have shown that for a 2D FPGA, an Fs

of 3 provides good routability [34]. In such SBs, a track connects to one track on each
of the other sides of SB. Disjoint and Universal topologies are examples of such SBs
as illustrated in Fig. 5.8. In the case of island style Mesh-based FPGA, the 2D SBs
are extended to 3D by adding two more faces, which contain terminal for vertical
interconnection (Z direction), one for the layer above and another for the layer below
as illustrated in Fig. 5.9. The channels in X and Y direction contain same number
of tracks, however the channels in the Z direction differs from X and Y direction in
its width, which is influenced by the via density provided by the 3D manufacturing
technology. The length of channels in the Z direction depends on the wafer thickness
as we discussed in Chap. 2, the wafer used in 3D integration will undergo thinning
process and due to this the length of via can be much smaller than the average 2D
wirelength, for example the wafer thickness of Tezzaron 3D manufacturing process
is 12µm, which includes 6µm device layer (FEOL) and another 6µm metal layer
(BEOL) [35]. In effect, since the vertical vias will be fewer than horizontal wires,
the two vertical faces will contain fewer terminal than the other four sides.

3D Switch Box

Channel Y

Channel Z

Channel Z

Channel Y

Channel X

Channel X

Channel X

(TSV)

Fig. 5.9 3D Switch box with channel in X, Y ans Z direction

http://dx.doi.org/10.1007/978-3-319-19174-4_2

5.4 3D FPGA Interconnect Switch 105

0
1
2
3

01
23

0
1

0
1

0
1
2
3

0123

0
1
2
3

012
3

0

2
3

1

0123
0

1

0
1

X0

Y0

X1 X0

Z0

Z1

Y1

Y0

Y1

X1

Z0

Z1

Z0,0

Z0,1

Z1,1

X0,0

X0,1

X0,0

X0,1

Y0,1

Y0,0

Y0,0

Y0,1

X1,1

X1,0

X1,0

X1,1

Y1,0

Y1,1

Y1,0

Y1,1

Z1,0

Z1,1

Z0,0

Z0,1

Z1,0Z1,0

Z0,1

Z0,0

Z1,1

X0,0

X0,1

Y0,0

Y0,1

X1,0

X1,1

Y1,0 Z1,0

Z1,1

X0,3

X0,2

Y0,3

Y0,2

X1,3

X1,2 Y1,2

Y1,3

Y1,1

Z0,0

Z0,1

3D Disjoint−split Switch Box3D Disjoint Switch Box

Fig. 5.10 3D Disjoint and disjoint-split switch box with channel in X=Y=4 an Z=2

The 3D SBs can be represented as a cube , where each face of the cube represent
one of the direction. Nevertheless for ease of illustration, the 3D SB is represented
as hexagon, where each side represent a direction: North (Y0), South (Y1), East (X1),
West (X0), top (Z1), and bottom (Z0). To understand how the vertical connections
are placed, we only show the connections to the vertical faces Z0 and Z1. For all SBs,
the horizontal wires in X and Y direction uses either disjoint or universal connections
among themselves. These connections are illustrated in Fig. 5.8. Figure 5.10 shows
the 3D SB with disjoint topology. For clear understand of vertical connections, we
do not shows the horizontal connections. The first SB in Fig. 5.10 is an extension of
2D disjoint SB. This SB connects the same track numbers to all sides. Consequently,
the entire fabric gets divided into disjoint subsets, and a net uses the same track
number for its entire route. The disjoint SB used in this study has two connections
in its vertical faces and 4 connections in the horizontal direction, but only first two
of horizontal wires connect to the vertical vias. While these wires have a flexibility
of 5, in which 3 connections to the other horizontal directions and two to the vertical
vias, which make the flexibility in horizontal direction 3. Apart from decreasing
routing flexibility, this arrangement also results in a difference in capacitive load of
the horizontal wires: larger capacitive load for the wires which share horizontal and
vertical via connections and small for those wires with connections only in horizontal
direction. The disjoint-split is modified version of disjoint SB to evenly distribute the
capacitive load on the horizontal tracks. The difference is, we use the first 2 horizontal
tracks to connect to via going above and the other two horizontal tracks connects the
vias going below. This implies that now there are twice as many horizontal wires
that connect to vertical vias. Therefor, if nets do not fan-out at the SB, then this
style of connections provides greater flexibility to vertical directions. However, the

106 5 Three-Dimensional FPGAs: Configuration and CAD Development

0
1
2
3

01
23

0
1

0
1

0
1
2
3

0123

0
1
2
3

012
3

0

2
3

1

0123
0

1

0
1

X0

Y0

X1 X0

Z0

Z1

Y1

Y0

Y1

X1

Z0

Z1

Z1,0

Z0,1

Z0,0

Z1,1

Y0,0

Y0,1

X1,0

X1,1

Z1,0

Z1,1

Y0,3

Y0,2

X1,3

X1,2

Z0,0

Z0,1

Z0,0

Z0,1

Z1,0

Z1,1

X0,0

X0,1

X0,3

X0,2

Y0,0

Y0,1

Y0,2

Y0,3

X1,0

X1,1

X1,3

X1,2

Y1,0

Y1,1

Y1,3

Z1,0

Z1,1

Z0,0

Z0,1

X0,3

X0,2

X0,0

X0,1

Y0,3

Y0,2

Y0,0

Y0,1

X1,3

X1,2

X1,0

X1,1

Y1,0

Y1,1

X0,1

X0,0

Y1,1

Y1,0

Y1,2

Y1,3

X0,2

X0,3

3D Disjoint−more Switch Box 3D Disjoint−twist Switch Box

Y1,2

Y1,3

Y1,2

Fig. 5.11 3D Disjoint-more and disjoint-twist switch box with channel in X=Y=4 an Z=2

disadvantage of this SB is, if a net needs to fan-out to top as well as bottom vias,
then it needs to use two horizontal tracks compared to one 3D disjoint SB.

The disjoint-split SB, although more flexible than disjoint SB, suffers from the
disjoint property of the disjoint SB: the entire routing fabric is divided into disjoint
subsets and a net can only use one of those subsets. In order to improve upon this issue,
the disjoint-split modified the connections to vertical faces as shown in Fig. 5.11. With
this change, the terminal Z0,0 connects to track 1 one the side X0, but track 0 on side
X1. This allows the net to switch tracks at the SBs. This type of connection topology
is called disjoint-twist SB. The main objective of the disjoint-twist SB is to improve
the flexibility in the vertical direction. Another way to achieve this is by adding more
switches to the vertical direction and this approach is called disjoint-more SB as
illustrated in Fig. 5.11. The extra switches have twofold effect. On the one hand, they
improve the flexibility in the vertical direction, and on the other hand, they increase
the area of SB and the capacitive loads on the wires.

The 3D SBs presented in Fig. 5.12 use universal connections among the horizontal
wires. The vertical connections in the Universal-twist SB are identical to the disjoint-
twist SB as illustrated in Figs. 5.11 and 5.12. However, due to universal connections
among the horizontal wires, it provides greater flexibility. The Universal-more further
increase the flexibility by adding more switches to the vertical faces. These extra
switches improve the flexibility in the vertical direction, but also increase the area of
the SB and the capacitive load on the wires [36].

5.5 2.5D Integration: High Density Multi-FPGAs 107

0
1
2
3

01
23

0
1

0
1

0
1
2
3

0123

0
1
2
3

012
3

0

2
3

1

0123
0

1

0
1

X0

Y0

X1 X0

Z0

Z1

Y1

Y0

Y1

X1

Z0

Z1

Z1,0

Z0,1

Z0,0

Z1,1

Y0,0

Y0,1

X1,0

X1,1

Z1,0

Z1,1

Y0,3

Y0,2

X1,3

X1,2

Z0,0

Z0,1

Z0,0

Z0,1

Z1,0

Z1,1

X0,0

X0,1

Y0,0

Y0,1

Y0,2

Y0,3

X1,0

X1,1

X1,3

X1,2

Y1,0

Y1,1

Z1,0

Z1,1

Z0,0

Z0,1

X0,3

X0,2

X0,0

X0,1

Y1,0

Y1,1

X0,1

X0,0

Y1,1

Y1,0

Y1,2

Y1,3

X0,2

X0,3

Y1,3

Y1,2

X0,2

X0,3

Y1,2

Y1,3

Y0,3

Y0,2

Y0,1

Y0,0

X1,2

X1,3

X1,1

X1,0

3DUniversal−twistSwitchBox3DUniversal−moreSwitchBox

Fig. 5.12 3D Universal-more and universal-twist switch box with channel in X=Y=4 an Z=2

5.5 2.5D Integration: High Density Multi-FPGAs

Interposer-based silicon die integration is called 2.5D integration. An interposer-
based stacking gained popularity last year because of several attractive applications
as well as its technological feasibility. It might not be sufficiently effective for other
applications, however, such as the memory on logic or the logic splitting application,
where the logic is split between two or more dies that are then put on top of each
other for shorter interconnections. Also memory can be split in such a way that
read-write logic is on one chip while the cells are on the other. A true 3D stacking
is needed for maximum performance in those applications. Interposer-based multi-
FPGA systems are composed of multiple FPGA dice, which are connected through
a silicon interposer as illustrated in Fig. 5.13. The interposer is fabricated with an
older technology than that used for the dies, and links between dice include both a
micro-bump on each FPGA die and a metal wire on the interposer [37]. This results
in a reduced connectivity between dice and increased delay for connections between
dice, as compared to the total routing connectivity and the delay one can achieve
within a single die. The silicon interposer FPGA technology is interesting because
it enables the creation of large FPGAs composed of small dies and also of very
large FPGAs, with higher logic capacity than one cannot achieve with a single die.
Such FPGA systems are sometimes called 2.5D FPGAs, since they make use of
vertical stacking of dies on an interposer to enable higher integration levels. Being
able to make large FPGAs with multiple smaller dies is particularly interesting at the
beginning of a new manufacturing process, when defect densities are high. In such a
case, good-die yield drops dramatically as the die size increases, and this drastically
impacts the availability of large FPGAs early in the process lifetime. Effectively the
interposer-based FPGAs allow the creation of chips larger than a single die, making

108 5 Three-Dimensional FPGAs: Configuration and CAD Development

FPGA1 FPGA2 FPGA3 FPGA4

BGA ball

Flipchip bump

TSVs

Silicon Interposer

Micro bump

Package Substrate

Fig. 5.13 The structure of an interposer-based 3D FPGA. The structure has a silicon interposer
between FPGA dies and package

a More than Moore improvement on the size and number of logic elements possible,
and with chips combined far more tightly and with more connectivity than if they
were on separate boards connected through conventional means.

Xilinx’s approch to interposer-based 2.5D FPGA is presented in [9]. They describe
the physical characteristics of their implementation, including the bump pitch and
estimates of the amount of die-to-die connectivity and the die-to-die delay. The
improvement in the number of logic elements of 2.5D FPGAs over conventional ones
is very significant. Xilinxs largest interposer-based FPGA, the Virtex-7 XC7V2000T,
has 4 dies (which Xilinx calls Super Logic Regions) and 1.954 million logic ele-
ments [38], while the largest non-interposer Virtex-7 die (the XC7VX980T), has
979 K logic elements and Alteras largest FPGA, the Stratix V 5SGXBB, has 952 k
logic elements [39]. Even though all these FPGAs use a 28 nm process, silicon inter-
poser technology allows the creation of FPGAs with twice the resources possible
on even an extremely large single die. Another major advantage of interposer-based
FPGAs comes at the beginning of a new manufacturing process, when the defect
density is high [37]. Bigger dice suffer a much reduced yield compared to smaller
dice, and this greatly affects the supply and cost of top-of-the-line FPGAs to early
adopters. To illustrate this impact, consider a new process in which the defect density
is 1/cm2, which is a reasonable value early in the process life-cycle, and the die area
is 6 cm2, which roughly matches the size of the largest member of a high-end FPGA
family such as Virtex 7. Using the Poisson Yield Model [6], the yield is only 0.25 %
of die. If instead the chip is composed of four 1.5 cm2 dies, the yield is 22 %. This
means that a 12 in. silicon wafer with 730 cm2 of area would produce on average 0.3
working 6 cm2 dies, while the same wafer would produce on average 107 working
1.5 cm2 dies. Therefore, as a 6 cm2 chip would be composed of four 1.5 cm2 dies,
the wafer would yield 26.75 systems on average, as the assembly yield of placing
these four die on an interposer is very high [9]. Hence the number of interposer-based
FPGAs created from the same silicon wafer would be almost 100X greater than a
monolithic FPGA of the same size.

When the process matures and the defect density decreases this advantage drops
significantly. Consider a mature process with defect density of 0.1/cm2. The yield

5.5 2.5D Integration: High Density Multi-FPGAs 109

for a 6 cm2 die is 55 % and the yield for a 1.5 cm2 die is 86 %. Hence the number
of single die FPGAs created from a 730 cm2 silicon wafer would be 66.9 and the
number of interposer-based FPGAs created would be 104.6. While the interposer-
based FPGA still has a yield advantage it might not lead to a major cost advantage,
particularly when the cost of the interposer and assembling the die to it are included.
For the large, state-of-the-art FPGAs that are built early in a process cycle and heavily
used for prototyping, however, there is clearly a compelling cost advantage to an
interposer-based solution. However the main difference between 2.5D interposer-
based technology and 3D integration is that 2.5D technology uses a passive silicon
interposer, while true 3D technology uses active silicon interposer. Second point is,
interposer-based technology can be manufactured in Front-end (FEOL) or Back-end
(BEOL). The Front-end interposer technology may increase the cost. But for true
3D integration Front-end manufacturing is preferred. Last point is the 2.5D and 3D
technology are currently evolving and the are to be considered as evolutionary parallel
technology, but 2.5D technology does not necessarily evolve to 3D Technology.

5.5.1 Industrial 2.5D Virtex-7 Interposer-Based FPGAs

The Xilinx 2.5D FPGAs from the Virtex-7 family are currently the only commer-
cially available silicon interposer-based FPGAs. The lateral view of interposer-
based FPGA [8, 9, 40] presented in Fig. 5.14. Inside the 2.5D package, a hetero-

Fig. 5.14 Lateral view of an interposer-based FPGA [9, 40]. The FPGA dice are at the top, and
are connected to the silicon interposer through microbumps. The interposer is then connected to the
substrate through C4 bumps

110 5 Three-Dimensional FPGAs: Configuration and CAD Development

geneous IC stack delivers up to 2.78 Tb/s transceiver bandwidth. The resulting band-
width is approximately 3 times achievable in a monolithic FPGA chip. The 2.5D
FPGA is mounted on passive interposer with TSVs, the heterogeneous IC stack
comprises FPGA dies with 13.1 Gb/s transceivers and dedicated analog ICs with
28 Gb/s transceivers. The XC7V H580T [8] is the first commercial FPGA built with
heterogeneous interposer-based interconnect. The device consists of a passive sili-
con interposer and three active die: an 8×28 Gb/s transceiver IC and 2 FPGA ICs.
Three additional products are derived from these building blocks: The XC7V H290T
with one FPGA die and XC7V H870T consisted of 3 FPGA dies, one 16×28 Gb/s
transceivers and 72×13.1 Gb/s transceivers which allow the delivery of 2.78 Tb/s.
The XC7V2000T is composed of four identical dice arranged such that the vertical
routing crosses between the dice. Each horizontal edge of each die has 280 groups
of 48 length-12 wires crossing the interposer, which sums to a total of 13,440 wires
between dice. There are also 40 clock wires crossing the interposer. The average num-
ber of wires per vertical channel of this FPGA is 210 and there are approximately
280 vertical channels on the FPGA, resulting in approximately 58,800 vertical wires
crossing a horizontal cut-line within a die. Hence the number of wires which cross
the interposer is about 23 % of the total number of within-die vertical wires. The
TSV interposer wafers are manufactured by etching vias through silicon wafers and
filling the vias withe a conductive metal, typically copper. The TSVs in an interposer
in manufactured using via-first/via-middle flow since it offers the greatest benefit of
interconnect density. The TSVs are typically 10–20µm in diameter and 50–100µm
deep. The walls of the TSVs are lined with Si O2 dielectric. Then a diffusion bar-
rier and a copper seed layer are formed. The via hole is filled with copper through
electrochemical deposition. The local interconnect wires M1-Mx (Type I and Type
II signals) are formed on top of the interposer using standard backend (BOEL) fab
process. Interposer top side is coated with passivation and micro-bump pads are
formed. The interposer wafer in thin down to TSVs to expose the TSV from the
bottom side.

The 28 nm dies are connected to the 65 nm silicon interposer through microbumps
with a 45µm pitch. Hence the area occupied by microbumps at one edge of one die is
13, 440(45µm)2 = 27 mm2. If we assume each die is 7 12 mm, as presented in [9],
the bumps have to be spread out near the edge and need to go as far as 2.25 mm away
from the edge of the die. This greater distance from the border increaes the length of
the inter-die connections, and along with the presence of the micro-bumps and their
capacitance, leads to an increased delay for these crossing wires vs. that of a typical
on-die routing wire. The latency to cross the interposer is approximately 1 nS as
stated in [9]. For comparison, a typical medium length 28 nm FPGA routing wire (e.g.
spanning four logic blocks) has a delay of approximately 125 pS, while a longer wire
(e.g. spanning 12 logic blocks) has a delay of approximately 250 pS. Overall, these
interposer-based FPGAs have increased delay and reduced connectivity between
dies, with approximately 23 % of the usual number of vertical wires crossing between
dies and approximately 1 nS of increased delay to cross the interposer.

5.6 Development of 3D Tree-Based FPGA CAD Tools 111

5.6 Development of 3D Tree-Based FPGA CAD Tools

Three-dimensional FPGA architectures have been widely investigated over last few
years [10, 11, 18, 30, 36]. A major aspect of 3D-FPGA architecture research is
the development of CAD tools for mapping application to FPGA and to design and
manufacture 3D FPGA based systems. It is well established fact that the quality
of a high density multi-tier or multi-chip FPGA based implementation is largely
determined by the effectiveness of accompanying CAD tools [11, 30, 41]. Benefits
of an otherwise will designed, high density and faster FPGA architecture might be
impaired if the CAD tools cannot take the advantage of new features and character-
istics of the new FPGA architecture. Thus the design and development 3D FPGA
CAD algorithm research and exploration is essential to bring the high logic density
and fast 3D FPGAs into today’s semiconductor market. We developed 3D FPGA
CAD flow to specifically design and implement 3D Tree-based and Mesh of Tree-
based FPGA architectures. The 3D CAD flow for physical design and architecture
exploration and optimization are developed in three different stages as illustrated
in Fig. 5.15. The first section is the 3D physical design flow for Tree-based FPGA
architecture where we combined many industry standard design tools and additional
home grown tools to support 3D stacking and design verification. The Tree-based
FPGA architecture exploration and optimization methodologies are developed with
same flexibility and capability to implement netlists with equivalent congestion like
the Mesh-based FPGA architectures. Thus architecture evaluation and optimization
must be based on benchmark circuits implementation.

5.6.1 3D FPGA Physical Design Tools

The physical design process begins with the RTL description of Tree-based FPGA
generated using VHDL code generator as illustrated in Fig. 5.15. We then used
cadence design compiler to compile VHDL into structural Verilog for each die. The
compiled Verilog is then input into Cadence Encounter to perform semi-automated
physical design steps. We used a divide and stack design methodology to implement
multi-tier 3D Tree-based FPGA. Based on the design and speed requirements, we
partitioned the design into two or more tiers and later merged them to conduct the
(DRC/LVS) 3D design verification process. The design tool augmented to test differ-
ent 3D stacking methodologies. We used both Face-to-Face (F2F) and Face-2-Back
(F2B) stacking methodology provided by Tezzaron’s 3D design platform using via
first TSV process. The Tezzaron’s 3D stacking kit support two types of TSV struc-
tures: Supper-Contact and Super-Via. In our design we used Supper-Contact, using
tungsten via fill. The place and route for multi-tier 3D Tree-based FPGA is performed
using Cadence Encounter. A well advanced 3D thermal model also integrated along
with the 3D physical design flow to check the thermal profile of the 3D chip. A
detailed 3D thermal analysis of Tree-based FPGA is presented in Chap. 7. After

http://dx.doi.org/10.1007/978-3-319-19174-4_7

112 5 Three-Dimensional FPGAs: Configuration and CAD Development

Application Circuit
Synthesis (MCNC)

Interconnect Optimization Module

Initialization, For all level l, p(l)=1
Select horizontal break−point

3D Router based
TSV Count optimizer

Select random(l) levels above and
below the break point

Interconnect optimization

YES
?

Feasible
gnituoR Adjust Rent p

NO YESRouting
Feasible

?

Optimized Tree−based FPGA Architecture Speed, Area and Power estimation
Bitstream Generation

TSV count

NO

Rent p
Adjust

3D Router based

Horizontal Break−point interconnected using TSV

3D Tree−based FPGA Router (Minimize TSV usage)

2. VHDL Generation/Tree−based BFT network

Automated VHDL Generator

1. Tree−based FPGA archticture description

3. Horizontal design partitioning

Tree−based Architecture

Level=l, Arity=4, LUT size

Partition,

placement &

routing module

Performance Evaluation Module

D
es

ig
n

O
pt

im
iz
at

io
n

Timing Characterstics

3D Partitioning and Placement Tool

Horizontal Partitioning methodlogy

Application circuit partitioned and placed

3D Design Process

Tezzaron GF 130nm
3D Design platform

LUTs, loal−
interconnects

Higher level

3D Sign−off analysis

1. Merge GDSII (gdsmerge.c)
−Design1 (tier0.gds)+Design2(tier1.gds)

−tier01.gds, timing analysis

2. 3D thermal analysis,

3. Final LVS/DRC

−TSV based 3D FPGA thermal model

 −top level netlist
−Virtuoso, calibre −Post route timing/ GDSII Design1 &2

−TSVs, vias, landing pads, clock/timing

5. Power planing (−Vdd/Vss/Global network)

6. Placement (−F2F/F2B stacking methods)

7. Routing (Encounter)

interconnect & I/Os

Design 2 (Tier 1) Design 1 (Tier 0)

Fig. 5.15 Design and exploration software flow: 3D physical design and architecture optimization
flow for design and implementation of horizontally partitioned 3D Tree-based FPGA

completing DRC/LVS individual designs, we used the GDS merger tool to integrate
the different tiers of the 3D FPGA chip. We then used Calibre-LVS compares this
merged GDS file with top level schematic. A detailed design analysis and experi-
mentation of two-tier 3D Tree-based FPGA presented in Chap. 8.

http://dx.doi.org/10.1007/978-3-319-19174-4_8

5.6 Development of 3D Tree-Based FPGA CAD Tools 113

5.6.2 3D FPGA Architecture Exploration and Optimization

The first part of the architecture exploration flow deals with synthesis and conversion
of application netlist to .net format, while remaining sections deals with architec-
ture exploration. The method used for synthesis and conversion of application is
presented in Chap. 4, Sect. 4.7.1. We use a top-down recursive partitioning and clus-
tering approach. The LBs, HBs and IOs are partitioned into different clusters. The
aim is to reduce external communications and to collect highly connected cells into
the same cluster. First, we construct the top level clusters, then each cluster is par-
titioned into sub-clusters, until the bottom level of the architecture is reached. Then
during the placement phase, each cluster is assigned to a random position inside its
owner cluster. The partitioning in each level consists of three phases. First we run a
multilevel coarsening phase where the size of hypergraph is successively decreased
using the first choice algorithm [42]. Then k-way partitioning of the smaller hyper-
graph in computed such that the balancing constraint is satisfied. After that we run
the un-coarsening phase where the partitioning is successively refined using using
FM algorithm [43], as it is projected in the larger hypergraphs. The objective of the
refinement is to minimize the hyperedge-cut, which is the total number of hyper-
edges that span multiple partitions. During the refinement, a block with highest gain
is moved from one partitioned to another and then its locked and it is not allowed to
move during the remaining refinement phase. After the block is moved, the gain of
all associated blocks are recomputed and this process continues until all the blocks
are locked. At the end, total cost is compared to that of the previous solution and the
algorithm is terminated when it fails to improve during refinement. Since the struc-
ture of Tree is maintained in our fully connected two-tier 3D FPGA, the 3D design
break-point will not play any role in application partitioning and placement process.
However it is used during architecture optimization process. Figure 5.15 presents the
block level representation of Tree-based FPGA architecture exploration platform.

The design netlist to be mapped are obtained in .NET format. The LUTs, I/Os
and Hard-blocks (HBs) are first partitioned into different clusters in such a way the
inter-cluster communication is minimized while considering the horizontal or ver-
tical partition of programmable BFT networks. After completing the partition, the
placement file is generated. It contains positions of different blocks in the architec-
ture. This placement file along with netlist file and Tree-based FPGA architecture
files are then passed to 3D router, which is responsible for routing the application
netlist. Router is based on PathFinder [44–46] routing algorithm that uses an iterative,
negotiation-based approach to successfully route all nets in an application netlist. In
order to rout all all nets of the netlist, routing resources of the multi-tier interconnect
structure are first assigned to the respective blocks of the netlist that are placed on
the architecture. These routing resources are modeled as directed graph abstraction
G(V,E). In this graph the set of vertices V represent the in/out pins of different blocks
and routing wires in the interconnect structure and an edge E between two vertices,
represents a potential connection between to vertices. The edges interconnect break-
point nets are considered as 3D nets which uses TSV to interconnect between vertices

http://dx.doi.org/10.1007/978-3-319-19174-4_4
http://dx.doi.org/10.1007/978-3-319-19174-4_4

114 5 Three-Dimensional FPGAs: Configuration and CAD Development

on tier 0 and 1. The 3D timing analyzer generates direct acyclic timing graph of the
routed circuit of the multi-tier 3D chip to evaluate the critical path delay. Based on
routing result, the different sub-paths are identified and each edge is annotated with
delay of corresponding sub-path. The edges interconnect vertices from tier 1 to 0
of the 3D Tree-based heterogeneous FPGA annotate corresponding TSV delay. The
timing graph specifies edges interconnect tier 0 and 1 as 3D nets. To optimize the
TSV count and routing resources, a Rent-based wire length distribution model imple-
mented using 3D router is used. After completing the TSV count and architecture
optimization, the router estimates the critical path delay, TSV count, area and power
consumption of the optimized 2 tier 3D stacked heterogeneous Tree-based FPGA.

5.7 Summary

Many researchers and industrial partners demonstrated that 3D FPGA can provide
significant advantages over 2D by reducing the interconnect area and the total area-
delay product. The five-tier 3D Mesh-based FPGA presented in [36] shows area-
delay product improved by 36 % compared to 2D FPGA of identical logic density.
We also reviewed several types of 2D and 3D SBs used to design 3D FPGAs. The
result analysis shows the area-delay product depend heavily on the SB topology.
The 3D experimental analysis shows the universal switch box is a better choice for
process technology scaling and 3D implementation as it can accommodate more
number of vertical vias. A 3D design framework for 3D Mesh-based FPGAs using
asymmetrical interconnect fabric is presented in [30]. The 3D FPGA design shows
26 % reduction in total wire-length and 38 % reduction in path delay. Nevertheless
the design methods reported in [30] are not practical because it requires complete
custom design due the heterogeneous nature of 2D and 3D SB distribution inside 3D
FPGA array. 3D Mesh-based FPGA implementation using 3D monolithic technology
presented in [12, 24]. The results analysis shows the 3D monolithic FPGA improve
the logic density by 3.2 times and 1.7 times lower critical path delay and power
consumption compared to 2D monolithic FPGA. The results are encouraging for 3D
monolithic FPGA, however the process integration seems not going to be ready in
near future for such designs.

References

1. S.M. Trimberger, Field Programmable Gate Array Technology, Norwell (Kulwer, MA, 1994)
2. A. DeHon, Reconfigurable Architectures for General-Purpose Computing. Ph.D. dissertation,

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Tech-
nology, 1996

3. I. Kuon, J. Rose, Measuring the gap between FPGAs and ASICs. IEEE Trans. Comput. Aided
Des. Integr. Circ. Syst. 26(2), 203–215 (2007), http://dx.doi.org/10.1109/TCAD.2006.884574
(IEEE Council on Electronic Design Automation)

http://dx.doi.org/10.1109/TCAD.2006.884574

References 115

4. L. Shang, A.S. Kaaviani, K. Bathala, Dynamic power consumption in vertex-II FPGA family,
in Proceeding of ACM/SIGDA International Conference on FPGAs, pp. 157–164 (2002)

5. E. Ahmed, J. Rose, The effect of LUT and cluster size on deep-submicron FPGA performance
and density. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 12(3), 288–298 (2004)

6. A. Rahman, R. Reif, System level performance evaluation of three-dimensional integrated
circuits. IEEE Trans. Very Large Scale (VLSI) Syst. 8, 671–678 (2000)

7. A. Rahman, H. Shi, Z. Li, D. Ibbotson, S. Ramaswami, in Design and Manufacturing Enable-
ment for Three-Dimensional (3D) Integrated Circuits (ICs). CICC, pp. 1–8 (2012)

8. L. Madden, E. Wu, N. Kim, B. Banijamali, K. Abugharbieh, S. Ramalingam, X. Wu, Advancing
high performance heterogeneous integration through die stacking, in ESSCIRC, pp. 18–24
(2012)

9. R. Chaware, K. Nagarajan, S. Ramalingam, Assembly and reliability challenges in 3D integra-
tion of 28nm FPGA die on a large high density 65nm passive interposer, in IEEE International
Conference on ECTC, pp. 279–283 (2012)

10. K. Siozios, A. Bartzas, D. Soudris. Architecture level exploration of alternative schmes targeting
3D FPGAs: a software supported methodology. Int. J. Reconfig. Comput. 2008, 2008

11. C. Ababei, P. Maidee, K. Bazargan, Exploring potential benefits of 3D FPGA integration,
in Field Programmable Logic and Application, vol. 3203 (Springer, Berlin, Germany, 2004),
pp. 874–880

12. M. Lin, A. El Gamal, Y.-C. Lu, S. Wong, Performance benefits of monolithically stacked
3D FPGA, in Proceedings of the 2006 ACM/SIGDA 14th International Symposium on Field
Programmable Gate Arrays, Monterey, California, USA, pp. 113–122, 22–24 Feb 2006

13. S. Wong, A. El-Gamal, P. Griffin, Y. Nishi, F. Pease, J. Plummer, Monolithic 3D integrated
circuits, in International Symposium on VLSI Technology, Systems and Applications, 2007.
VLSI-TSA 2007

14. P. Batude, M. Vinet, A. Pouydebasque, C. Le Royer, B. Previtali, C. Tabone, J.-M. Hartmann,
L. Sanchez, L. Baud, V. Carron, A. Toffoli, F. Allain, V. Mazzocchi, D. Lafond, O. Thomas, O.
Cueto, N. Bouzaida, D. Fleury, A. Amara, S. Deleonibus, O. Faynot, Advances in 3D CMOS
sequential integration, in IEEE International Electron Devices Meeting (IEDM), Baltimore,
MD, Dec 2009

15. C. Liu, S.K. Lim, A Design tradeoff study with monolithic 3D integration, in IEEE ISQED,
pp. 529–536 (2012)

16. M. Cao, T. Zhao, K.C. Swraswat, J.D. Plummer, A simpler EEPROM cell using polysilicon
thin file transistors. IEEE Electron Device Lett. 15(8), 304–306 (1994)

17. S. Kaeriyama, T. Sakamoto, H. Sunamura, M. Mizuno, H. Kawaura, T. Hasegawa, K. Terabe, T.
Nakayama, M. Aono, A nonvolatile programmable solid-electrolyte nanometer switch. IEEE
J. solid state circ. 40(1), 168–176 (2005)

18. A. Rahman, S. Das, A. Chandrakasan, R. Reif, Wiring requirements and three-Dimensional
integration of field programmable gate arrays, in SLIP ACM, March 2001

19. M.J. Alexander, P.J. Cohoon, J.L. Colflesh, J. Karro, G. Robins, Three-dimensional field-
programmable gate arrays, in Proceedings of the Eighth Annual IEEE International ASIC
Conference and Exhibit, Austin TX, pp. 253–256, Sept 1995

20. J.V. Campenhout, H.V. Marck, J. Depreitere, J. Dambre, Optoelectronic FPGAs. IEEE J. Sel.
Top. Quantum Electron 5(2), 306–315 (1999)

21. Miriam Leeser, Waleed M. Meleis, Mankuan M. Vai, Silviu Chiricescu, Xu Weidong, Paul M.
Zavracky, Rothko: a three-dimensional FPGA. IEEE Des. Test 15(1), 16–23 (1998)

22. Gaetano Borriello, Carl Ebeling, Scott A. Hauck, Steven Burns, The triptych FPGA architec-
ture. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 3(4), 491–501 (1995)

23. S. Chiricescu, M. Leeser, M. Michael Vai, Design and analysis of a dynamically reconfigurable
three-dimensional FPGA. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 9(1), 186–197
2001

24. O. Turkyilmaz, G. Cibrario, O. Rozeau, P. Batude, F. Clermidy, 3D FPGA using high-density
interconnect monolithic integration, in IEEE Design, Automation and Test in Europe Confer-
ence and Exhibition (DATE), March 2014

116 5 Three-Dimensional FPGAs: Configuration and CAD Development

25. Y.-S. Kwon, P. Lajevardi, A.P. Chandrakasan, F. Honore, D.E. Troxel, A 3-D FPGA wire
resource prediction model validated using a 3-D placement and routing tool, in Proceedings
of the 2005 International Workshop on System Level Interconnect Prediction, San Francisco,
California, USA, 02–03 April 2005

26. Vertex-5, Xilinx Inc., Vertex-5: Multi-platform FPGA, http://www.xilinx.com/products/
silicon_solutions/fpga/vertex/vertex5/

27. C. Ababei, Y. Feng, B. Goplen, H. Mogal, T. Zhang, K. Bazargan, S. Sapatnekar, Placement
and routing for 3D integrated circuits. IEEE Des. Test, 22(6), 520–531 2005

28. C. Ababei, H. Mogal, K. Bazargan, Three-dimensional place and route for FPGAs. IEEE Trans.
Comput. Aided Des. Integr. Circ. Syst. 25(6), 1132–1140 (2006)

29. V. Betz, J. Rose, VPR: a new packing placement and routing tool for FPGA research. Int. Conf.
Field Program. Logic Appl. 1997, 213–222 (1997)

30. K. Siozios, Vasilis F. Pavlidis, D. Soudris. A novel framework for exploring 3-D FPGAs with
heterogeneous interconnect fabric. ACM Trans. Reconfig. Technol. Syst. 5(1), March 2012

31. S. Joseph, E. Wilton, J. Rose, Z. Vranesic, Architectures and Algorithms for Field-
Programmable Gate Arrays with Embedded Memory. Ph.D. dissertation, Depatrment of Elec-
trical and Computer Engineering, University of Toronto, Toronto, Ont., Canada, 1997

32. M.I. Masud, S. Joseph, E. Wilton, A New switch block for segmented FPGAs, in Proceedings of
the 9th International Workshop on Field-Programmable Logic and Applications, pp. 274–281,
30 August–01 September 1999

33. G.M. Wu, M. Shyu, Y.W. Chang, Universal switch block from three-dimensional FPGA design,
in Proceeding of ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
(1999)

34. J. Rose, S. Brown, Flexibility of interconnect structures for field programmable gate arrays.
IEEE J. Solid State Circ. 26, 277–282 (1991)

35. S. Gupta, M. Hilbert, S. Hong, R. Patti, Techniques for Producing 3D ICs with High-Density
Interconnect (Tezzaron Semiconductor Naperville, IL, 2005)

36. A. Gayasen, V. Narayanan, M. Kandemir, A. Rahman, Designing a 3-D FPGA: switch box
architecture and thermal issues. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 16(7),
882–893 (2008)

37. K. Namhoon, D. Wu, D. Kim, A. Rahman, P. Wu, Interposer design optimization for high
frequency signal transmission in passive and active interposer using through silicon via (TSV),
in IEEE Electronic Components and Technology Conference (ECTC), pp. 1160–1167 (2011)

38. Xilinx-7. 7 series FPGA overview (2013), www.xilinx.com
39. Altera. stratix V device overview (2013), www.altera.com
40. Xilinx stacked silicon interconnect technology delivers breakthrough FPGa capacity, band-

width, and power efficiency (2012), www.xilinx.com
41. A.H. Pereira, V. Betz, CAD and routing for interposer based multi-FPGA systems, in Interna-

tional Symposium on FPGAs, CA, USA, 2014
42. N. Selvakkumaran, G. Karypis, Multi-objective hypergraph-partitioning algorithm for cut and

maximum subdomain-degree minimization. IEEE Trans. Comput. Aided Des. Integr. Circ.
25(3), 504–517 (2006)

43. C.M. Fiduccia, R.M. Mattheyeses, A liner-time heuristic for improving network partitions.
ACM, Des. Autom. Conf. 7, 175–181 (1982)

44. L. McMurchie, C. Ebeling, PathFinder: a negotiation based performance driven router for
FPGAs. Int. Conf. Field Program. Gate Arrays FPGA 12(2), 291–301 (1995)

45. Z. Marrakchi, H. Mrabet, H. Mehrez, Hierarchical FPGA clustering to improve routability, in
Ph.D. Research Conference in Microelectronics, PRIME, 2005

46. Z. Marrakchi, H. Mrabet, U. Farooq, H. Mehrez, FPGA Interconnect topologies exploration.
Int. J. Reconfig. Comput. 2009, (2009)

http://www.xilinx.com/products/silicon_solutions/fpga/vertex/vertex5/
http://www.xilinx.com/products/silicon_solutions/fpga/vertex/vertex5/
www.xilinx.com
www.altera.com
www.xilinx.com

Chapter 6
Three-Dimensional Tree-Based FPGA:
Architecture Exploration Tools
and Technologies

Abstract Modern FPGAs have become a viable alternative to cell-based design
technology by providing re-configurable computing platforms with improved
performance and higher density using 3D integration technology. While the
re-configurability provides flexibility, FPGAs also lead to area and performance over-
head in comparison to cell-based custom integrated circuits (ICs). Thus to combine
the advantages of both FPGAs and custom ICs, modern 3D heterogeneous FPGAs
emerged as an attractive solution for system-on-chip implementations. The modern
FPGAs include design components such as digital signal processors, on chip memory
blocks, multipliers, adders, and entire processors. In this chapter our primary focus is
on teaching the development of 3D FPGA tools and technologies and the validation
of architecture exploration tools and optimization methodologies by using custom
designed 3D homogeneous and heterogeneous Tree-based FPGAs.

6.1 Introduction

According to the experimental and simulation results from the existing 3D FPGA
CAD tools such as TPR and 3D MEANDER [1, 2] the SBs has been the most
area consuming unit compared to other design elements in 2D FPGAs and this
situation is becoming even worse in 3D FPGAs because the TSVs are located on
3D-SBs. Although the design and manufacturing engineers are trying to reduce TSV
dimensions, the minimum feature size on the die is also shrinking. Therefore, the
TSVs are expected to remain larger than wire dimensions in metal layers within the
die [3]. Moreover it has been reported in [1, 2, 4] that the TSV utilization is actually
quite low if the 3D-SBs are with full vertical connectivity in use. Many other recent
research results also point out that the utilization of TSVs is actually very low in 3D
Mesh-based FPGAs [2, 4, 5] with full vertical connectivity, which motivated us to
explore Tree-based interconnect network, that can be optimized to achieve higher
speed, reduced power consumption, area and increased logic density. As described in
Chaps. 3 and 5, we explore a 3D Tree-based programmable interconnect to implement
a fast and high density 3D FPGA. This chapter deals with validation and exploration
of 3D homogeneous and heterogeneous Tree-based FPGA architecture and validation

© Springer International Publishing Switzerland 2015
V. Pangracious et al., Three-Dimensional Design Methodologies
for Tree-based FPGA Architecture, Lecture Notes
in Electrical Engineering 350, DOI 10.1007/978-3-319-19174-4_6

117

http://dx.doi.org/10.1007/978-3-319-19174-4_3
http://dx.doi.org/10.1007/978-3-319-19174-4_5

118 6 Three-Dimensional Tree-Based FPGA: Architecture Exploration Tools …

of CAD tools such as 3D placement and routing. In order to validate the architecture
optimization models and performance of 3D Tree-based FPGA architecture, we
used a two-tier 3D Tree-based interconnect model with seven Tree levels and arity
four for each benchmarks circuits. The average improvement in speed measured
for horizontally partitioned stacking methodology is 65.13 and 43.52 % for vertical
partitioning method. The horizontally partitioned 3D stack methodology performed
1.7 times faster compared to 3D Mesh-based Industrial FPGA with identical logic
resources [5]. The 3D Mesh-based FPGA reported in [5] with intermittent 2D and
3D switch blocks distribution estimated an average speed improvement of 38.3 %
for identical logic density and array size.

6.2 Tree-Based FPGA Interconnect Architecture

The Tree-based FPGA architecture unifies two unidirectional networks using But-
terfly Fat-Tree or (BFT) based network topology. Figure 6.1 shows the two-level
Tree-based FPGA architecture with two unidirectional interconnect network. The
downward network allows to connect switch blocks to LBs (leaves) inputs. The
upward network uses a BFT based Tree to connect LBs outputs to Switch Blocks.
The UMSBs in upward interconnect network allow LBs outputs to reach a larger
number of Downward MSBs (DMSBs) and to reduce fanout on a feedback lines.
The UMSBs are organized in a way that allows logic blocks (LBs) belonging to the
same owner cluster (at level 1 or above) to reach exactly the same set of DMSBs at
each level. Therefore, I/O pads, clusters or logic blocks positions inside the direct
owner cluster become equivalent and we need no more to re-arrange them. For exam-
ple in Fig. 6.1, an LB ouput can reach all 4 DMSBs of its owner cluster at level 1
and all the 16 DMSBs of its owner cluster at level two. As shown in Fig. 6.1, inputs
and output pads are grouped together in specific clusters. The cluster size and the

LB LB LB LB LB LB LB LB LB LB LB LB LB LB LB LB

UMSB

UMSB

DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB OUT

UMSB UMSB UMSB

DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB

UMSB UMSB UMSB

IN Pads

To Level 2 2 leveL oT2 leveL oT2 leveL oT

Cluster Level 1

Cluster Level 0
OUT Pads

Fig. 6.1 Tree-based interconnect: upward and downward networks

6.2 Tree-Based FPGA Interconnect Architecture 119

level where it is located can be modified to obtain the best design fit. Each input
pad is connected to all UMSBs of the upper level. In this way each input pad can
reach all LBs of the architecture through different paths. Similarly, output pads are
connected to all DMSBs of the upper level and this will allow it to reach all LBs
through different paths. The I/O pads have flexible interconnection compared to LBs.

The Tree-based FPGA architecture with two BFT based unidirectional intercon-
nection network may improve the flexibility and routability, but it has many issues in
terms of physical implementation and performance. The Rent’s growth rate (p = 1)
is very penalizing in terms of wiring requirement. Interconnect wiring takes more
area and dominates the array size. The wiring topology should be chosen to balance
interconnect bandwidth with array size and expected design interconnect require-
ment. Thus we must control clusters signals bandwidth based on Rent’s Rule [6].
Secondly the downward and upward interconnect switch network, and the LB output
fanout depends on the number of levels. Thus in a large Tree-based FPGA archi-
tecture with high number of levels, performance may be penalized in term of larger
wire and switch delays. As we know from 2D physical design experiments, the wire
delay increases exponentially as the Fat-Tree grows to higher levels. To improve the
interconnect area overhead and reduce wire delay, we proposed two different net-
work partitioning methods, namely Horizontal and Vertical and 3D implementation
discussed in Chap. 8 and also illustrated in Fig. 8.12. The main objective of network
partitioning and 3D implementation is to optimize the network delay and routing
resources of the 3D Tree-based FPGAs.

6.2.1 2D Tree-Based Interconnect: A Comparison with 2D
Mesh-Based Interconnect

We have seen numerous studies [1, 2, 5, 7, 8] shows that the switch blocks (SBs)
is the most area-consuming unit compared to other design elements in 2D Mesh-
based FPGAs and this situation is becoming even worse in 3D Mesh-based FPGAs
because the TSVs are located on 3D-SBs. Although the design and manufactur-
ing engineers are trying to reduce TSV dimensions, the minimum feature size on
the die is also shrinking. Therefore, the TSVs are expected to remain larger than
wire dimensions in metal layers within the die [3, 9]. Moreover it has been reported
in [4] that the TSV utilization is actually quite low if the 3D-SBs are with full vertical
connectivity in use. The experimental and simulation results presented in recent pub-
lications point out that the utilization of TSVs is actually very low in 3D Mesh-based
FPGAs [4] with full vertical connectivity due to sub-optimal Mesh-based FPGA
designs, which motivates us to explore new interconnect topology and architecture
with better optimization flexibility to achieve higher speed, low power consumption,
reduced silicon footprint and increased logic density to minimize the performance
gap between FPGAs and ASICs. Hence we selected Tree-based FPGA architecture
with BFT based interconnect topology for the 3D design and implementation of high

http://dx.doi.org/10.1007/978-3-319-19174-4_8
http://dx.doi.org/10.1007/978-3-319-19174-4_8

120 6 Three-Dimensional Tree-Based FPGA: Architecture Exploration Tools …

density FPGAs. Previous works [10–12], also confirms the multilevel BFT based
2D interconnect topology is able to reduce 59 % of the total number of switches and
save 56 % of the total FPGA area compared to Mesh-based FPGA with identical
logic density and array size [10]. Considering the challenges associated with 2D
physical design of Tree-based FPGA [13, 14], we proposed two different network
partitioning methodology to design and implement high density 3D FPGAs based
on Tree-based interconnect network. The main focus of this chapter is on the dis-
cussion of the complete set of tools and technologies needed to conduct 3D design
feasibility study and interconnect network characterization methodologies to build
high performance 3D re-configurable systems based on Tree-based interconnect and
a comparison procedure has been put in place and the end to validate the advantages
of 3D Tree-based FPGA over 3D Mesh-based FPGA architectures.

The Tree-based FPGA architecture unifies two unidirectional interconnect net-
work as illustrated in Fig. 6.1. The downward interconnection network is based on
a butterfly-fat-tree style interconnect topology with a linearly populated downward
mini switch boxes (DMSBs) and unidirectional wires. Similarly the upward inter-
connect network uses upward mini switch boxes (UMSBs) to connect logic block
outputs to all DMSBs and further to higher levels of the Tree. The number of DMSBs
of a cluster located at level � is equal to the number of inputs of a cluster located at
level � − 1. The upward network also uses BFT topology to connects LBs outputs
to the DMSBs at each level. As shown in Fig. 6.1, we use UMSBs (Upward MSBs)
to allow LBs outputs to reach a large number of DMSBs and to reduce fanout on
feedback lines. The number of UMSBs of a cluster located at level � is equal to the
number of outputs of a cluster located at level � − 1. UMSBs are organized in a way
allowing LBs belonging to the same owner cluster to reach exactly the same set of
DMSBs at each level. Thus positions, inside the same cluster, are equivalent, and LBs
can negotiate with their siblings the use of a larger number of DMSBs depending on
their fanout.

As illustrated in Fig. 6.1, input and output pads are grouped into specific clus-
ters and are connected to UMSBs and DMSBs, respectively. Thus, input pads can
reach all LBs of the architecture, and output pads can also be reached by all the
from different paths. Using UMSBs and DMSBs greatly enhances routability, but
it increases the interconnect switches number. However this increase in number
switches is compensated by reducing in/out signals bandwidth of clusters at every
level using Rent’s Rule [6] based interconnection optimization tool. In fact, netlists
implemented on FPGA architecture often communicate locally (intra-clusters) and
this fact can be exploited to reduce the bandwidth of signals with inter-clusters com-
munication. A good estimation of netlists communication locality is given by Rent’s
Rule [6].

Based on this estimation authors in [15] showed that most netlist Rent’s parameters
range between 0.5 and 0.65. If most of the connections are routed locally and only
a few of them communicate to the exterior of a local region, p will be expected to
be small. In Tree-based architecture, both the upward and downward interconnects
populations depend on this parameter. As shown in Fig. 6.2, we can depopulate the
routing interconnect by reducing the number of inputs of each cluster of level 1

6.2 Tree-Based FPGA Interconnect Architecture 121

LB LB LB LB LB LB LB LB LB LB LB LB LB LB LB LB

UMSB

DMSB DMSB DMSBDMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB

DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB

UMSB UMSB UMSB

UMSBUMSBUMSB

Level 1

3 outputs

Cluster with
12 inputs and

Level 2

Fig. 6.2 An illustration of Tree-based interconnect optimization using Rent rule (Level � with p =
0.73), based on Rent optimization, certain number inputs and outputs can be removed independently
at each Tree levels

from 16 to 10 and outputs from 4 to 3 (p = 0.734). In this case, if we consider an
architecture with 2 levels of hierarchy, we get a reduction in interconnect switches
number from 521 to 368 (28 %). However, a reduction in the value of p reduces
the routability of the architecture too. Thus we must find the best tradeoff between
interconnect population and logic blocks occupancy. As shown in [16], the best way
to improve circuit density is to balance logic blocks and interconnect utilization. In
the case of Tree-based FPGA architecture, interconnect occupancy is controlled by
p and logic occupancy factor is controlled by N , where N is the total number of LBs
in the Tree.

6.3 Tree-Based Interconnect Partitioning

Tree-based FPGA is an interconnect dominated device. Network partitioning is used
to reduce the wire length and vertical interconnects in a 3D design. In this section,
two types of network partitioning methodologies are defined for the design and
implementation 3D Tree-based FPGA as illustrated in Fig. 6.3: (1) vertical parti-
tioning: the programmable interconnect network is partitioned vertically by placing
the break-point at the highest level �v of the Tree-based programmable interconnect
network to balance the silicon area and power consumption across multiple tiers of
the 3D chip and (2) horizontal partitioning: the main objective is to optimize the
critical path delay and improve logic density. The horizontal break-point is placed
at a particular tree level �h based on the design and manufacturing constraints to
achieve interconnect delay optimization using TSVs. The location of the level �v

is always fixed at highest tree level, however the location of level �h is decided
based on the architecture and wire delay requirements. Figure 8.12 illustrate both
vertical and hori zontal break-points in homogeneous Tree-based FPGA. As dis-
cussed already the main goal of horizontal partitioning is to limit the exponential

http://dx.doi.org/10.1007/978-3-319-19174-4_8

122 6 Three-Dimensional Tree-Based FPGA: Architecture Exploration Tools …

SB

SB SB SB SB

SB

SB SBSB

SB

SB SBSB SB

Level 0

Level 1

Level 2

Level 3

Level 4

SB

SB

SB SB SB SBSB

Logic Blocks

To level 4 and above

Horizontal Break point

UMSB
feedback

UMSB feedback
UMSB feedback

DMSB signals

DMSB signals DMSB signals

Vertical Break point

Fig. 6.3 Representation of programmable interconnect network partitioning (break point) of a
four-level Tree-based homogeneous FPGA. Horizontal break-point: blue dotted line, Vertical break-
point: red dotted line

increase in network delay as we increase the number of levels in the fat-Tree. In a
horizontally-partitioned design the LBs and local programmable interconnects along
with configuration memory is place in one layer and rest of the programmable inter-
connects and I/Os above the break-point along with configuration memory is placed
in another layer. The advantage of such partitioning is that it provides flexibility
in increasing logic density and optimizing network delay. However the horizontal
partitioning methodology is not balanced in terms of area and power consumption.
Previous work [11, 17] confirmed, that placing Hard-blocks like DSP slice and mem-
ory units at the higher level of Tree is more beneficial to optimize area and speed
of heterogeneous FPGA. Figure 6.4 shows the heterogeneous version of Tree-based
FPGA with the placement of hard-blocks and partitioning methods. In this case
we utilized the white space left in active layer two to places hard-blocks to design
heterogeneous Tree-based FPGA.

6.3.1 Vertical Partitioning

The main focus of vertical partitioning method is to balance the total silicon area
and power consumption of the two-tier 3D homo/heterogeneous Tree-based FPGA
equally between the active layers of the 3D stacked chip. The total number of LBs
plus HBs and SBs are equally partitioned into multiple stacked tiers. The break-point
is set at the highest level of the Tree and interconnected using TSVs as illustrated in
Figs. 6.3 and 6.4. Since the break-point is set at highest Tree level, the total number of
TSVs required for a vertically partitioned 3D test chip with seven-Tree levels and 16K
LUTs is 40,960 for a fully connected (Rent = 1) two-tier Tree-based FPGA. However
we used Rent’s Rule [6] based interconnect optimization model to find optimum

6.3 Tree-Based Interconnect Partitioning 123

Logic Blocks

Hard Blocks

switch blocks switch blocks

To level 4 and above

Level 2

Level 1

Level 0

Level 3
Vertical Break Point

Horizontal Break point

SB SB SB SB SB SB SB SB

SB SB SB SB SB SBSB SB

SBSB

SB

Hard Blocks

Fig. 6.4 Representation of programmable interconnect network partitioning (break point) of a four-
level Tree-based heterogeneous FPGA. Horizontal break-point: blue dotted line, Vertical break-
point: red dotted line, only downward network shown

number of TSVs and routing resources required for the design. The interconnect
delay increases exponentially as the Tree grows to higher levels, the longest wire
in 3D Tree-based FPGA located at highest Tree level is replaced by TSV and a
limited wire length optimization is possible at other levels due the hierarchical nature
of upward interconnection network. In a vertically partitioned Tree, the downward
interconnection network is more localized inside the partitioned layout, however
BFT-based upward hierarchical interconnect network connects feedback to all cluster
inputs. In a vertically partitioned Tree-based interconnect, only 50 % of the upward
interconnects are realized using TSVs and other 50 % uses local interconnects. This
makes the vertically partitioned 3D FPGA ≈ 3.3 times slower in speed compared
to horizontally partitioned 3D Tree-based FPGA. Nevertheless, the advantages of
vertical partitioning method compared to horizontal includes reduced chip area by
50 %, balanced power consumption across the tiers, reduced number of TSVs, and
design complexity is minimized.

6.3.2 Horizontal Partitioning

In hori zontal partitioning methodology, the location of the break-point is decided
based on the estimated interconnect network delay. The interconnect delay of Tree-
based architecture increases exponentially [10, 14, 18] as the Tree grows to higher
levels. Horizontal partitioning methodology is introduced optimize the exponential
rise in Tree network delay as the Tree grows to higher levels. In horizontal partition-
ing methodology, the LBs and local interconnect levels below the break-point are

124 6 Three-Dimensional Tree-Based FPGA: Architecture Exploration Tools …

placed in the bottom tier and programmable interconnect resources at levels above the
break-point and I/O pads are placed in the top tier of the 3D stacked chip as illustrated
in Figs. 6.3 and 6.4. The location of break point is decided based the delay measure-
ments of tree levels starting from level 0 to the highest level of the tree interconnect.
The delay measurements show the path delay of the programmable routing resources
placed at the top tier of the partitioned layout reduces 3 times and an overall path
delay reduces 3.3 times compared to 2D layout as discussed in Sect. 8.7 of Chap. 8.
The interconnect path delay optimization is achieved by exploiting the design flex-
ibility introduced by the segregation LBs and programmable routing resources into
multiple tiers of the 3D design. Effectively almost 80 % of programmable routing
network is placed on top of logic blocks is strongest point of horizontal partitioning
methodology. The 3D test chip contains 16K LBs placed in tier 1 (bottom tier) with
65,536 vertical input pins and 16,384 vertical output (feedback) pins. For a fully
connected 3D test chip requires 81,920 TSV communication between top (tier 0)
and bottom tier (tier1).

6.3.3 Through Silicon via (TSV) Modeling

The 3D physical design section used six metal 130 nm technology node pro-
vided by Global Foundries (GF-130 nm) with the modified technology libraries to
include TSVs according to the specification of T ezzaron Semiconductor. The GF-
130 nm/Tezzaron process has one polysiliocn layer and 6 metal layers, however
the last metal layer is reserved for wafer-to-wafer or TSV connections. Therefore,
only five metal layers are available for design and all of them are thin metal layers
intended for digital routing. Tezzaron’s via-first 3D manufacturing process produces
very small TSVs that are approximately 1.2µm wide with 2.5µm minimum pitch
and 6µm height [3]. The liner thickness is 100 nm and we used Si O2 for liner depo-
sition. The estimated values provided by Tezzaron for TSV resistance RT SV and
capacitance CT SV are ≈600 m� and 15f F respectively. The wire delay estimation
of tree levels for the 3D stacked Tree-based FPGA is extracted from the two-tier lay-
out developed using Tezzaron Process and validated using Mentor’s spice accurate
circuit simulator Eldo. The break-point TSV delay is measured using the TSV model
presented in [2, 19] and illustrated in Fig. 6.5. The TSV delay estimated using eldo
is ≈28–32 pS. The wire delay estimation of tree levels for the 3D stacked Tree-based
FPGA is extracted from the two-tier layout developed using Tezzaron Process and
validated using Mentor’s spice accurate circuit simulator Eldo. The break-point TSV
delay is validated using eldo is ≈28–32 pS for Tezzaron TSVs. In tier 0, the spatial
distribution of TSVs, SBs and HBs are rearranged in order to optimize the wire delay
and temperature distribution at higher levels.

http://dx.doi.org/10.1007/978-3-319-19174-4_8

6.4 3D Tree-Based Interconnect Optimization Methodology 125

Fig. 6.5 Vertical interconnect (TSV) characterization model

6.4 3D Tree-Based Interconnect Optimization Methodology

In this section we discuss the interconnect optimization methodology and simulation
results of a two-tier Tree-based FPGA architecture partitioned and stacked using
Horizontal and Vertical network partitioning methodology. The main objective is to
optimize TSV count and programmable routing resources in 3D Tree-based FPGA.
Experiments are performed individually for each netlist using the optimization flow
presented in Fig. 6.6. The architecture optimizer designed as an add-on utility of
the main CAD flow presented in Chap. 5. The optimization program uses the router
program implemented using the pathfinder algorithm [10, 18, 20], which uses an
iterative, negotiation-based approach to successfully route all nets in an application
netlist. The router program in association with a binary search algorithm, consid-
ers the same architecture with different p values at each levels of the two-tier 3D
Tree-based FPGA to determine the smallest number of input and output signals at
each Tree levels by allowing to route the benchmark circuits. At first, the optimiza-
tion program considers architecture break-point level with different Rent (p) values.
The purpose is to find, for all benchmark circuits, the architecture with the fewest
necessary TSVs between the break-point levels while keeping the programmable
interconnect resources placed in tier 0 and 1 intact. The solution provides the spa-
tial distribution and minimum number of vertical interconnects required to route
each benchmark in the two-tier Tree-based FPGA. From this solution we extract the

http://dx.doi.org/10.1007/978-3-319-19174-4_5

126 6 Three-Dimensional Tree-Based FPGA: Architecture Exploration Tools …

TSV Count Optimization

Routing
Feasible

Rent p

YES

Select random(l) levels above and

Interconnect Optimization

Routing
Feasible

Yes
Rent p

Optimized TSV
count

NO

No

Architecture description
Tree−based FPGA

Timing Analysis Bitstream generation
Area & Power Estimation

Circuit Netlist Synthesis

3D Tree−based FPGAG eneralized Routing Solution

3D Router3D Router

Initialization, For all level l, p(l)=1

Optimized FPGA
Architecture

? ?

Decrease

Decrease

Select Break Point Level l(bp) below the break point l=l(bp)

Fig. 6.6 TSV count and interconnect optimization flow

minimum possible number and location of TSVs that can removed from the architec-
ture without compromising the performance of the 3D chip. The decision to remove
TSVs is taken based on the spatial distribution and p values of all benchmark used
in the optimization process. The highest p value obtained from all benchmarks at
each levels will be set as the architecture Rent. To make 3D Tree-based FPGA more
efficient in terms of design and manufacturing, it is essential to minimize the TSV
count because TSV consumes more silicon area than horizontal interconnects [21].
After completing the break-point optimization, we use the Rent’s parameter [6, 15]
to optimize the programmable routing resources that are placed in tier 0 and 1 using
random approach, in which the interconnect levels are selected randomly and mod-
ifly its inputs and outputs signals depending on the previous result obtained at the
same level.

6.5 Interconnect Optimization: Homogeneous Tree

The Rent’s parameter p defined for a Tree-based architecture is illustrated in Eq. 6.1.
The Tree level is represented as � and k is the cluster arity, c is the number of in/out
pins of an LB and IO is the number of in/out pins of a cluster located at level �. The
optimization of upward and downward networks based on Rent’s parameter is done

6.5 Interconnect Optimization: Homogeneous Tree 127

as follows.

I O(�) = c.k�.p (6.1)

6.5.1 The Downward Programmable Network Model

As described in Fig. 3.13, the Tree-based FPGA architecture unifies two unidirec-
tional upward and downward interconnection networks using a BFT based network
topology to connect Downward MSBs (DMSBs) and Upward MSBs (UMSBs) to
LBs inputs and outputs. A cluster stationed at level � contains Nin(� − 1) DMSBs,
where Nin(�) is the number of inputs of cluster located at level � with k out-
puts and Nin(�) + k Nout (�−1)

Nin(�−1)
inputs, whereas k is also the cluster arity size. Since

DMSBs are full crossbar devices, the total number of switches at level � cluster is
k(Nin(�) + k Nout (� − 1)). At each level �, N

k� clusters, whereas N is total number
Logic Blocks and the total number of switches in the downward network is

logk (N)∑

�=1

k × N × Nin(�) + k Nout (� − 1)

k�
(6.2)

Following Eq. 6.1, we can simplify the number of outputs of a Logic Block is
Nout (0) = cout and the number of inputs equal Nin(�) = cin .k�.p and Nin(� − 1) =
cout .k(�−1)p and so on. The total switches used at each level � can be calculated by
Eq. 6.3.

Ninterconnects(down) = N × (k pcin + kcout) ×
logk (N)∑

�=1

k(p−1)(�−1) (6.3)

6.5.2 The Upward Programmable Network Model

Similar to the downward interconnect network. The upward interconnect network
also built using a Butterfly-Fat-Tree network topology. In level � every cluster contains
Nout (�−1) UMSBs with k inputs and outputs. UMBSs are also full crossbar devices
with k2 × Nout (�−1) switches at a level � cluster. There are N

k� clusters at each level
�, and the total number of upward interconnection block is

logk (N)∑

�=1

k2 × N

k�
× Nout (� − 1) (6.4)

http://dx.doi.org/10.1007/978-3-319-19174-4_3

128 6 Three-Dimensional Tree-Based FPGA: Architecture Exploration Tools …

Nout (0) = cout is the outputs of Logic Block and using Eq. 6.1, Nout (� − 1) =
cout .k(�−1)p. The total number of interconnect required for the upward interconnect
network is calculated using Eq. 6.5

Ninterconnects(up) = N × k × cout ×
logk (N)∑

�=1

k(p−1)(�−1) (6.5)

The total number of Tree-based interconnect switches in Tree-based FPGA architec-
ture is

Nswi tch(T ree) = Nswi tch(down) + Nswi tch(up)

Nswi tch(T ree) = N .(k pcin + 2kcout)

logk (N)∑

�=1

k(p−1)(�−1) (6.6)

The number of switches per Logic Block is

Nswi tch(L B) = (k pcin + 2kcout) ×
logk (N)∑

�=1

k(p−1)(�−1) (6.7)

Nswi tch(L B) =
{

(k pcin + 2kcout) × 1−N p−1

1−K p−1 if p �= 1
(k pcin + 2kcout) × logk(N) if p = 1

}

Nswi tch(L B)T ree =
{

O(1) if p �= 1
O(logk(N)) if p < 1

}
(6.8)

To compare the total number of switches in Mesh-based FPGA architecture we used
the analytical model presented in [16]. The switch growth rate for Mesh-based FPGA
architecture is represented in Eq. 6.9.

Nswi tch(L B)Mesh = O(N (p−0.5) (6.9)

Equations 6.8 and 6.9 shows that in Tree-based FPGA architecture, the switch
requirement grow more slowly compared to Mesh-based architecture. These results
are encouraging to improve the manufacturability of high density FPGAs, especially
when p is less than 1. However the routability factor is different for Tree-based
architecture compared to Mesh-based FPGA.

The total number of interconnects at different levels of the Tree is calculated by
substituting p = 1 in the Eq. 6.6, where N is the total number of logic blocks, cin and
cout are the number of inputs and outputs of logic blocks, k is the arity, and p and � are
the Rent’s parameter and tree interconnect level. However in normal cases the value
of p ranges from 0.3 to 0.8. At first, the optimization program considers architecture

6.5 Interconnect Optimization: Homogeneous Tree 129

break point level with different Rent’s parameter (p) values. The purpose is to find,
for all benchmark circuits, the architecture with the fewest necessary TSVs between
the break-point levels. As described in [10], in a Tree-based FPGA the reduction
in number of interconnects at level � impacts the number of interconnects at level
� + 1, since the number of DMSBs/UMSBs at level � + 1 is equal to the number
of inputs/outputs of a cluster at level �. Using Eqs. 6.1 and 6.6, the Rent’s parameter
p value and optimized TSV count and interconnect requirements are calculated for
each iteration to optimize the number of signals at the break-point levels. Once the
break-point optimization is completed, the optimizer randomly chooses other tree
levels above or below the break-point to optimize the available routing resources.
The highest p value obtained from all benchmarks at each levels will be set as the
architecture Rent to allow all benchmarks to rout without compromising critical path
delay. In this way we define an optimized architecture with rent set for each levels
as shown in Eq. 6.10 that can implement all sets of benchmark circuits used in this
experimentation.

Parch(�) = Max

⎛
⎝ P(�)︸︷︷︸

circuits

⎞
⎠ (6.10)

Table 6.1 presents the TSV count optimization results of two-tier Tree-based
FPGA using horizontal partitioning method. A minimum possible reduction of 45
and 42 % TSVs observed for horizontal and vertical partitioning methodology. The
reduction of TSVs and routing resources from other Tree levels can reduce routabil-
ity and diminish the performance of the two-tier FPGA chip. The optimization tool
accepts constraints regarding the critical path delay, since FPGA architecture opti-
mization is trade-off between speed and area. The estimated speed degradation for
horizontal and vertical partitioning methods are 4.44 and 3.2 % respectively from
the fully connected FPGA architecture with Rent p = 1. A similar experiment with
3D Mesh-based FPGA architecture with identical logic density [2, 5] with 40 %
reduction of TSV resulted in speed degradation of 11.5 % as illustrated in Table 6.1,
which indicates the impact of TSV and routing resources optimization on speed is
minimized in Tree-based FPGA compared to Mash-based FPGA.

Table 6.2 presents the results from TSV and architecture optimization experiments
on each interconnect level of the Tree-based 3D FPGA. A minimum reduction of 45
and 42 % TSVs are recorded for horizontal and vertical break-point. An average speed
degradation of 4.44 and 3.2 % is recorded in horizontal and vertical break-point. The
optimized interconnect and TSV area for individual interconnect levels are reported in
Table 6.2. Using our optimization flow, overall interconnect area of the 3D Tree-based
FPGA is reduced by 40 %, which improves the manufacturability of 3D stacked Tree-
based FPGA and also a cost effective solution to design and build high density 3D
FPGAs. The test chip we designed using 3D design process has seven Tree levels with
arity set to 4. It includes 16K LUTs and the horizontal break-point placed between
levels 3 and 4 of the BFT based horizontally partitioned interconnect network. We
have 65,536 3D nets named as cluster inputs pins and 16,384 feedback networks

130 6 Three-Dimensional Tree-Based FPGA: Architecture Exploration Tools …

Table 6.1 Two-tier Tree-based FPGA: TSV count optimization results

Tree levels = 7, Arity = 4, Arch = 4 × 4 × 4 × 4 × 4 × 4 × 4

Tree-based FPGA Tree Mesh

Circuits MCNC Optimized
Rent’s “p”

3DTSV
gain (%)

35 % TSV reduction
speed degradation (%)

40 % TSV reduction
speed degrade (%)

alu4 0.47 53 4.3 2.34

apex2 0.51 49 5.8 11

apex4 0.54 46 1.1 10

bigkey 0.49 51 2.8 4.1

clma 0.55 45 4.8 25

des 0.48 52 4.1 8

diffeq 0.48 52 4.5 −14

dsip 0.54 46 4.1 4

elliptic 0.52 48 3.4 34

ex1010 0.55 45 3.5 5

ex5p 0.53 47 5.1 12

frisc 0.52 48 5.4 28

misex3 0.54 46 5.2 −8

pdc 0.54 46 3.8 10

s298 0.53 47 5.8 19

s38417 0.53 47 5.1 8

s38584 0.52 48 4.5 9

seq 0.51 49 5.5 8

spla 0.51 49 5.2 6

tseng 0.53 47 4.8 7

ava 0.53 47 5.3 8.8

Max 0.55 53 5.8 28

Average 4.44 11.5

Maximum interconnect requirement, p = 0.55

Minimum possible TSV reduction = 45 %

pins. For a fully connected (Rent = 1) horizontally partitioned 3D homogeneous
FPGA expected to have 81,920 3D nets required TSV communication excluding I/O
pads. The vertically partitioned 3D test chip with 7 Tree levels and 16K LUTs require
40,960 TSVs for a fully connected (Rent = 1) two-tier test chip. The seven levels
Rent = 1 homogeneous Tree-based FPGA architecture is defined using Eq. 6.11.

Parch(�)1 = �(0)1 × �(1)1 × �(2)1 × �(3)1 (6.11)

(break − point)�(4)1 × �(5)1 × �(6)1

6.5 Interconnect Optimization: Homogeneous Tree 131

Table 6.2 Architecture optimization results

Tree levels = 7 Arity = 4, Arch = 4 × 4 × 4 × 4 × 4 × 4 × 4

Tree-based
architecture levels

3D chip active layer Optimized Rent ‘p’ Optimized area (µm2)

Logic blocks Layer 1 – 93,635,273

Switch level 0 Layer 1 0.65 2412

Switch level 1 Layer 1 0.54 10,800

Switch level 2 Layer 1 0.66 37,496

BreakpointHori zontal Horizontal break point level 3,

Switch level 3 pH = 0.55 pV = 0.58

Area = 232,128

Level 3–4 TSV area = 540,672µm2

Switch-level 4 Layer 2 0.63 6,072,770

Switch level 5 Layer 2 0.64 45,553,499

Break PointV ertical Vertical break point level 6

Switch level 6 pV = 0.58, pH = 0.65

Area = 42,139,683

Level 6 TSV area = 28,508µm2

Speed degradation Vertical = 3.2 %, horizontal = 4.4 %

The optimized Tree-based FPGA architecture for horizontal partitioning methodol-
ogy is defined using Eq. 6.12.

Parch(�H)optimal = �(0)0.65 × �(1)0.54 × �(2)0.66 × �(3)0.55 (6.12)

(b − p)�(4)0.63 × �(5)0.64 × �(6)0.65

And the optimized Tree-based FPGA architecture for vertical partitioning method-
ology is defined using Eq. 6.13.

Parch(�V)optimal = �(0)0.65 × �(1)0.54 × �(2)0.66 × �(3)0.58 (6.13)

(b − p)�(4)0.63 × �(5)0.64 × �(6)0.58

The Eq. 6.13 shows the optimized Rent set for each levels in the FPGA architecture.
With help of TSV and interconnect optimization, we removed 17,203 TSVs from
vertically and 36,864 TSVs from horizontally partitioned two-tier 3D test chips with
minimal impact on speed. We compared our simulation results with multi-stack 3D
Mesh-based FPGA using the methodology reported in [2, 5] and observed a speed
degradation of 11.5 for 40 % reduction in TSV count with identical array size and
logical resources.

132 6 Three-Dimensional Tree-Based FPGA: Architecture Exploration Tools …

6.6 Heterogeneous Tree-Based FPGA Architecture

The architecture of 3D heterogeneous Tree-based FPGA is significantly more com-
plex with multilevel BFT based routing resources and LBs with additional features
such as adders and multipliers. Since the benchmark circuits plays a major role in the
heterogeneous FPGA exploration, three sets of benchmarks [11, 22–25] were chosen
based on trends of communication between different types of hard-blocks. Generally
in academia and industry, the quality of an FPGA architecture is measured by map-
ping a certain set of benchmarks on it. Thus the selection of benchmarks plays a very
important role in the exploration of heterogeneous FPGAs. This work puts special
emphasis on the selection of benchmark circuits, as different circuits can give differ-
ent results for different architecture techniques. This work categorizes the benchmark
circuits by the trend of communication between different blocks of the benchmark.
So, three sets of benchmarks are assembled having distinct trend of inter-block com-
munication. These benchmarks are shown in Tables 6.3, 6.4 and 6.5. Benchmarks
shown in Table 6.3 are developed at [22], the benchmarks shown in Table 6.4 are
obtained from [24] and the benchmarks shown in Table 6.5 are obtained from [23].
The communication between different blocks of a benchmark can be mainly divided
into the following four categories:

1. CLB-CLB: CLBs communicate with CLBs.
2. CLB-HB: CLBs communicate with HBs and vice versa.
3. HB-HB: HBs communicate with HBs.
4. IO-LB/HB: I/O blocks communicate with CLBs and HBs.

In SET I benchmarks, the major percentage of total communication is between HBs
(i.e. HB-HB) and only a small part of total communication is covered by the commu-
nication CLB-CLB or CLB-HB. On average, in SET I, the HB-HB communication

Table 6.3 DSP Benchmarks SET I

Circuit
name

Inputs Outputs LUTs
(LUT-
4)

Mult
(8 × 8)

Slansky
(16 +
16)

Sff (8) Sub
(8 − 8)

Smux
(32:16)

Function

ADAC 18 16 47 – – 2 – 1 –

DCU 35 16 34 1 1 4 2 2 Discrete
cosine
trans-
form

FIR 9 16 32 4 3 4 – – Finite
impulse
response

FFT 48 64 94 4 3 – 6 – Fast
fourier
trans-
form

6.6 Heterogeneous Tree-Based FPGA Architecture 133

Table 6.4 Open Core Benchmarks Set II

Circuit name No of
Inputs

No of
outputs

No of
LUTs
(LUT-4)

No of
multipliers
(16 × 16)

No of
adders
(20 + 20)

Function

cf_fir_3_8_8_open 42 18 159 4 3 Finite impulse
response (8 bit)

cf_fir_7_16_16 146 35 638 8 14 Finite impulse
response (16 bit)

cfft16x8 20 40 1511 – 26 –

cordic_p2r 18 32 803 – 43 Polar to
rectangular

cordic_r2p 34 40 1328 – 52 Rectangular to
polar

fm 9 12 1308 1 19 –

fm_receiver 10 12 910 1 20 –

lms 18 16 940 10 11 –

reed_solomon 138 128 537 16 16 –

Table 6.5 Open Core Benchmarks Set III

Circuit name No of
inputs

No of
outputs

No of
LUTs
(LUT-4)

No of
multipliers
(18 × 18)

Function

cf_fir_3_8_8_ut 42 22 214 4 Finite impulse
response (8 bit)

diffeq_f_systemC 66 99 1532 4 –

diffeq_paj_convert 12 101 738 5 –

fir_scu 10 27 1366 17 –

iir1 33 30 632 5 Infinite impulse
response (16 bit)

iir 28 15 392 5 Infinite impulse
response (8 bit)

rs_decoder_1 13 20 1553 13 Decoder

rs_decoder_2 21 20 2960 9 Decoder

takes up to 80 % of the total communication between different instances of the bench-
marks (netlists). Similarly, in SET II the major percentage of total communication
is HB-CLB and in SET III, major percentage of total communication is covered by
CLB-CLB. Normally the percentage of IO-CLB/HB is a very small part of the total
communication for all the three sets of benchmarks.

134 6 Three-Dimensional Tree-Based FPGA: Architecture Exploration Tools …

6.6.1 Interconnect Optimization: Heterogeneous Tree

The TSV and architecture optimization are performed based on Rent’s parameter [6,
15] p defined for a Tree-based heterogeneous architecture as shown in Eq. 6.14. The
Tree level is represented as � and k is the cluster arity, c is the number of in/out pins
of an LBs, ax is the number of in/out pins of a HBs of type x, �x is the level at which
the HBs are located, bx is the number of HBs at that level, z is the number of HBs
supported by the architecture and IO is the number of in/out pins of a cluster located at
level �. Since there are more than one type of HBs, their contribution is accumulated
and then added to the LB(p) of Eq. 6.14 to calculate p. The value of p determines the
total number of interconnects at each level of the Tree-based architecture and it is
averaged across all the levels to determine the p for the architecture.

I O =

⎛
⎜⎜⎜⎜⎜⎝

c.k�︸︷︷︸
L B(p)

+
z∑

x=1

ax .bx .k
(�−�x)

︸ ︷︷ ︸
H B(p)

⎞
⎟⎟⎟⎟⎟⎠

p

(6.14)

H B(p) =
{

0 if (� − �x < 0)
ax .bx .k(�−�x) if(� − �x ≥ 0)

}
(6.15)

As described in in Chap. 3 [12, 18], in a Tree-based FPGA the reduction in number
of inputs/outputs of the clusters at level � impacts the number of routing resources at
level �+1, since the number of DMSBs/UMSBs at level �+1 is equal to the number
of inputs/outputs at level �. At first, the optimization program considers architec-
ture break-point level with different Rent (p) values. The purpose is to find, for all
benchmark circuits, the architecture with the fewest necessary TSVs between the
break-point levels while keeping the programmable interconnect resources placed
in tier 0 and 1 intact. The solution provides the spatial distribution and minimum
number of vertical interconnects required to route each benchmark in the two-tier
heterogeneous Tree-based FPGA. From this solution we extract the minimum pos-
sible number and location of TSVs that can be removed from the two-tier architec-
ture without compromising the performance of the 3D chip in terms of speed and
routability. The decision to remove TSVs is taken based on the spatial distribution
and p values of all benchmark used in the optimization process.

The Table 6.6 presents the highest rent set for each level in our two-tier Tree-
based heterogeneous FPGA architecture. The test chip we designed using 3D design
process has seven Tree levels with arity set to 4. It includes 16K LUTs and the
horizontal break-point placed between Tree levels 3 and 4 of the BFT based hori-
zontally partitioned interconnect network. We have 65,536 3D nets named as cluster
inputs pins and 16,384 feedback networks pins. For a fully connected (Rent = 1)
horizontally partitioned 3D heterogeneous FPGA expected to have 81,920 3D nets
required TSV communication excluding I/O pads. The vertically partitioned 3D test

http://dx.doi.org/10.1007/978-3-319-19174-4_3

6.6 Heterogeneous Tree-Based FPGA Architecture 135

Table 6.6 Architecture optimization results

Tree levels = 7 Arity = 4, Arch = 4 × 4 × 4 × 4 × 4 × 4 × 4

Architecture levels 3D chip layer Optimized Rent ‘p’ Optimized area (µm2)

Logic blocks Layer 1 – 93,635,273

Switch level 0 Layer 1 0.67 2412

Switch level 1 Layer 1 0.58 10,800

Switch level 2 Layer 1 0.68 37,496

BreakpointHori Horizontal break point

Switch level 3 Level 3 pHorizontal = 0.59, pV ertical = 0.61

Area = 232,128

Level 3–4 TSV area = 4423.68 µm2

Switch level 4 + HBs Layer 2 0.67 6,072,770

Switch level 5 + HBs Layer 2 0.66 45,553,499

BreakpointV erti Vertical break point

Switch level 6 + HBs Level 6 pHorizontal = 0.65, pV ertical = 0.57

Area = 42,139,683

Level 6 TSV area = 19169.28 µm2

chip with 7 Tree levels and 16K LUTs require 40,960 TSVs for a fully connected
(Rent = 1) two-tier test chip. Table 6.6 presents the TSV and interconnect opti-
mization results. The minimum possible reduction of TSVs recorded for horizontal
and vertical break-points are 41 and 43 % respectively. The seven levels Rent = 1
heterogeneous Tree-based FPGA architecture is defined using Eq. 6.16.

Parch(�)1 = �(0)1 × �(1)1 × �(2)1 × �(3)1 (6.16)

(break − point)�(4)1 × �(5)1 × �(6)1

The optimized FPGA architecture for horizontal partitioning is defined using Eq. 6.17.

Parch(�H)optimal = �(0)0.67 × �(1)0.58 × �(2)0.68 × �(3)0.59 (6.17)

(b − p)�(4)0.67 × �(5)0.66 × �(6)0.65

The optimized FPGA architecture for vertical partitioning is defined using Eq. 6.18.

Parch(�V)optimal = �(0)0.67 × �(1)0.58 × �(2)0.68 × �(3)0.61 (6.18)

(b − p)�(4)0.67 × �(5)0.66 × �(6)0.57

The Eqs. 6.17 and 6.18 presents the optimized Rent set for each levels in the het-
erogeneous Tree-based FPGA architecture. An average speed degradation using all
four set of benchmarks are 1.7 and 0.8 % respectively for horizontal and vertical
break-points. With help of TSV and interconnect optimization, we removed 17,612

136 6 Three-Dimensional Tree-Based FPGA: Architecture Exploration Tools …

TSVs from vertically and 33,587 TSVs from horizontally partitioned two-tier 3D test
chips with minimal impact on speed. Using our optimization flow, total interconnect
area of 3D Tree-based heterogeneous FPGA reduced by 35 % compared to the 2D
Tree-based FPGA architecture.

6.7 Critical Path Delay Analysis

The critical path delay evaluation of vertical and horizontal partitioning methodology
of 3D homogeneous and heterogeneous Tree-based FPGA architecture is performed
using the experimental flow illustrated in Fig. 5.15.

6.7.1 Delay Analysis: Homogeneous Tree

To evaluate the performance of the proposed 3D Tree-based FPGA architecture, we
place and route the largest set of MCNC benchmark circuits [26], and compare this
with the 3D Mesh-based FPGA architecture [2, 5]. We used the optimal two-tier
Tree-based FPGA architecture partitioned using horizontal and vertical partitioning
methodology illustrated in Eqs. 6.12 and 6.13 to analyze the reduction in critical
path delay. The two-tier Tree-based FPGA architecture has 7 (0–6) levels. The hori-
zontal break-point is placed between level 3 and 4 and vertical break-point is placed
at the last level 6. To evaluate the critical path delay, we run the place and route
program for each benchmark circuits. The delay analysis of vertical and horizon-
tal break point two-tier Tree-based FPGA is presented in Table 6.7. The respective
average reduction in delay measured for horizontally and vertically partitioned stack-
ing methodology are 65.13 and 43.52 %. The horizontally partitioned 3D stacking
methodology provides 1.5 times speed improvement compared to vertical partition-
ing method. The speed improvement in horizontal partitioning method is due to
design optimization and minimization of interconnect wire length at the higher lev-
els tree networks that are placed in tier 0 of the 3D stacked two-tier FPGA chip
as described in Chap. 8. In tier 0 we have additional design flexibility to re-order
programmable routing resources to optimize wire length. However in the vertical
break-point method, the interconnects at the highest tree level is optimized using
TSVs and the rest of tree levels only limited optimization possible due to hierar-
chical nature of upward and downward-interconnect network. The reduction critical
path delay for 3D Tree-based FPGA compared to Mesh-based FPGA is presented
in Table 6.7. The multi-layer 3D Tree-based FPGA interconnect using TSVs shows
an average of 65.13 % speed improvement compared to the 2D counterpart. The 3D
Mesh-based FPGA reported in [2, 5] with heterogeneous interconnect fabric using
intermittent 2D and 3D switch blocks distribution with the same layout area mea-
sured an average speed improvement of 38.3 %. To conclude the comparison results
presented in Table 6.7, the horizontally partitioned 3D Tree-based FPGA is 1.5 times

http://dx.doi.org/10.1007/978-3-319-19174-4_5
http://dx.doi.org/10.1007/978-3-319-19174-4_8

6.7 Critical Path Delay Analysis 137

Table 6.7 Two-tier 3D Tree-based FPGA critical path delay analysis

Parch = �(0)0.65 × �(1)0.54 × �(2)0.66 × �(3)0.55(B P)�(4)0.63 × �(5)0.64 × �(6)0.65

Critical path performance (nS) Performance gain (%)

Name
MCNC

Tree-based
2D (nS)

Vertical 3D
(nS)

Horizontal
3D (nS)

2D Versus
3D verti (%)

2D Versus
3D hori (%)

2D Versus
3D mesh (%)

alu4 59.91 41.73 25.81 30.33 56.91 44.23

apex2 80.41 45.18 30.92 43.81 65.54 55.41

apex4 76.42 46.61 31.83 38.99 58.34 51.74

bigkey 79.1 27.60 20.19 65.11 74.48 50.97

clma 198.6 90.33 59.48 54.38 69.96 50.98

des 90.8 40.36 28.83 55.55 68.25 38.07

diffeq 62.6 48.46 26.66 22.59 57.41 5.25

dsip 61.9 28.55 19.78 53.88 68.05 46.05

elliptic 107.1 83.73 42.76 21.75 60.02 28.49

ex1010 143.1 74.85 45.42 47.69 68.26 25.32

ex5p 168.2 64.71 41.43 61.53 75.37 61.75

frisc 129.6 82.28 42.82 36.51 66.96 17.11

misex3 67.4 41.38 24.94 38.61 63.00 48.95

pdc 143.9 69.04 45.86 52.02 68.13 55.71

s298 130.81 81.54 45.81 37.67 64.98 61.23

s38417 75.46 43.38 30.69 42.78 59.33 21.64

s38584 118 69.54 40.51 41.07 65.67 52.35

seq 64.58 42.91 24.59 33.56 61.92 44.00

spla 109.54 58.57 38.29 46.26 65.04 57.03

tseng 131.1 70.47 45.51 46.25 65.07 27.78

ava 211.5 161.63 111.21 23.58 47.42 0.0

Average 104.88 57.37 35.47 43.52 65.13 38.30

faster than 3D Mesh-based FPGA with identical array and logic density. The design
and manufacturing solution presented in [5] by using same silicon area for both 2D
and 3D-SBs is not piratical for high density FPGAs. This design style will increase
silicon footprint of high density FPGAs, but the 3D multi-tier Tree-based FPGA with
horizontal or vertical partitioning is more efficient as well as economical design and
manufacturing methodology because in our 3D design we use uniform style switch
blocks, which further reduces design complexity.

138 6 Three-Dimensional Tree-Based FPGA: Architecture Exploration Tools …

6.7.2 Delay Analysis: Heterogeneous Tree

In order to have a detailed path delay analysis and architecture optimization, we used
the optimal vertical and horizontal Tree-based FPGA architecture obtained from
architecture optimization methodologies presented in Eqs. 6.17 and 6.18. The break-
points for horizontal partitioning method �h is set between Tree level 3 and 4, while for
vertical partitioning, the break-point �v is set at the highest level of the Tree-based
interconnect network. Tables 6.8, 6.9 and 6.10 presents the estimated critical path
delay for 2D and 3D heterogeneous Tree-based FPGA. In all experiments, the cluster
size and LB size set to 4. For horizontal partitioning method, the speed gain measured
for SET I, II and III benchmarks are 51.7, 55.8 and 50.2 % respectively. There is
a slight advantage for SET II benchmark, because the hori zontally partitioned
architecture is optimized for HBs to LBs communication. Nonetheless all 3 SETs

Table 6.8 Set I, Benchmark, heterogeneous FPGA experimental results

Digital signal processing (DSP) Benchmark Set I

Break point Vertical partitioning Horizontal partitioning

Circuit name Hard blocks add/multi 2D versus 3D gain (%) 2D versus 3D gain (%)

ADAC −/1 11.2 56.1

DCU 1/2 9.8 54.7

FIR 4/− 9.3 48.3

FFT 4/6 8.5 47.6

Maximum 6 11.2 56.1

Average – 9.7 51.7

Table 6.9 Set II Benchmark, heterogeneous FPGA experimental results

Break point Vertical partitioning Horizontal partitioning

Circuit name Hard blocks add/multi 2D versus 3D gain (%) 2D versus 3D gain (%)

Open Core Benchmark Set II

cf_fir_3_8_8 4/3 7.8 31.3

cf_fir_7_16_16 8/14 14.2 54.6

cfft16x8 −/26 18.9 65.4

cordic_p2r −/43 13.8 54.5

cordic_r2p −/52 21.3 66.1

FM 1/19 17.8 69.3

FM receiver 1/20 17.6 65.3

LMS 10/11 18.6 35.1

Reed_Solomon 16/16 16.8 61.1

Maximum 16/52 21.3 69.3

Average – 16.3 55.8

6.7 Critical Path Delay Analysis 139

Table 6.10 Set III Benchmark, heterogeneous FPGA experimental results

Break point Vertical partitioning Horizontal partitioning

Circuit name Hard blocks add/multi 2D Versus 3D gain (%) 2D Versus 3D gain (%)

Open Core Toronto VTR Benchmark Set III

cf_fir_24_16_16 8 9.6 45.8

cf_fir_3_8_8 4 8.2 38.2

diffeq_f_systemC 4 19.7 67.5

diffeq_paj_convert 5 6.4 29.9

fir_scu 17 21.3 67.9

IIR1 5 9.8 35.5

IIR 5 11.3 36.2

RS_Decoder_1 13 18.6 65.7

RS_Decoder_1 9 23.6 72.8

oc54_cpu 27 13.3 44.8

sv_chip1_hierarchy_
no_mem

152 12.8 48.6

stereovision0 66 15.5 66.8

stereovision1 50 14.8 64.5

stereovision2 231 19.3 58.5

Maximum 231 23.6 72.8

Average 14.1 50.2

performs well due the delay optimization performed in tier 0 and 1 of the 3D stacked
chip. A Rent’s Rule based statistical model for 3D heterogeneous Mesh-based FPGA
presented in [27] shows 58 % performance improvement. However the paper lacks the
hardware infrastructure to experiment and validate the achievement presented in it.
The improvement in speed for horizontal partitioning arise from the design flexibility
that has been introduced in tier 0, in which the programmable routing resources
and HBs are placed. As explained in [4, 9, 27] the programmable interconnect
overhead is main design element to increase the FPGA system performance. The
main advantage of horizontally partitioned 3D heterogeneous Tree-based FPGA, is
that, it offers design flexibility to optimize the wire length of higher levels of the Tree
interconnects. For vertical partitioning method, the respective speed gains measured
for SET I, II and III benchmarks are 9.7, 16.3 and 14.1 %. As described in Sect. 6.3.1,
the vertically partitioned 3D heterogeneous FPGA is optimized to balance silicon
area and power consumption requirements of the 3D design. However the delay
reduction in vertical partitioning method is due the optimization performed on
feedback networks.

140 6 Three-Dimensional Tree-Based FPGA: Architecture Exploration Tools …

6.8 LUT and Cluster Size Effect on Performance

The Tree-based FPGA is more area efficient in comparison to Mesh-based FPGA.
The impact of cluster size and LUT (Look-Up-Table) size on area is been presented
in [10, 18]. The experimental data analysis shows Tree-based FPGA architecture with
cluster arity equals 4 and LUT size equal 4 is the best in terms area and speed [10,
18]. Figure 6.7 shows the how the switch block size is affected when we increase
the cluster size of a Tree-based FPGA architecture. The 2D comparison between
Tree-based FPGA and Mesh-based shows, around 59 % reduction in total number
of switch requirement for Tree-based FPGA architecture, when we use cluster arity
equals 4. In this section we evaluate the impact of LUT and cluster size on critical
path delay of two-tier 3D Tree-based FPGA. A cluster is group of basic logic blocks
(LBs) that are fully connected using a multiplexer-based crossbar as illustrated in
Fig. 6.7 [28]. In Fig. 3.13 a cluster has four LBs and stated as arity-4, however in
Fig. 6.7 shows the difference in size of SBs when we increase the cluster size from
4 to 8. Several studies in the past have examined the impact of LUT and cluster size
on area and performance of 2D Mesh-based FPGAs. The work presented in [29]
shows the LUT size of 4–6 and cluster size of between 3 and 10 provides the best
area delay product for 2D Mesh-based FPGAs. Increasing LUT size or cluster size
generally increase the functionality of the Logic blocks, which has many advantages:
it decreases the total number of LBs needed to implement a given function and also
decreases the number of such blocks in the critical path, whereby improving the
FPGA system performance. The impact of LUT and cluster size on 2D Tree-based
FPGA presented in [10]. The experimental results presented in [10] concludes that
the LUT and cluster size of 4 provides the best area-delay product for a 2D Tree-
based FPGA architecture. To evaluate the impact of LUT and cluster size on critical
path delay of 3D two-tier Tree-based FPGA architecture, we fixed the cluster size
to 4 while analyzing the impact of speed on LUT size variation and vice versa for
cluster size experiment.

LB LB LBLB LB LB LB LB

LB LB LB LB LB LB LB LB

8 LBs grouped in the same cluster (arity 8)

Multiplexors 10:1 / 484 switches / 80 wires
8 LBs grouped in 2 clusters (Arity 4)

Multiplexors 5:1 / 296 switches / 108 wires

Fig. 6.7 Tree-based FPGA architecture with different cluster size

http://dx.doi.org/10.1007/978-3-319-19174-4_3

6.8 LUT and Cluster Size Effect on Performance 141

Vertical Break Point

Horizontal Break Point

Cluster Size Fixed to 4

LUT3 LUT4 LUT5 LUT6 LUT7C
ri

tic
al

 P
at
h

D
el

ay
 G

ai
n

(%
)

 30

 40

 50

 60

 70

 80

 3 4 5 6 7

Vertical Break−point

Horizontal Break_Point

Fig. 6.8 Effect of LUT size on performance with cluster size fixed to 4

Figure 6.8 presents the impact of increasing LUT size from 3 to 7 with cluster size
fixed to 4 on critical path delay of 3D Tree-based FPGA architecture using horizontal
and vertical network partitioning methodology. As the LUT size increases, the area
of chip and switch delay increases. The critical path delay analysis experiments
consider the impact of increased switch delay, number of interconnects and TSVs
as LUT size increases. The results shows that, LUT size = 4 has the best area-delay
product as illustrated in Fig. 6.8. The conclusion we derive from these experiments is
that, an increase in LUT size has an exponential effect on size of LBs [29]. As LUT
size increase, the switch box size and interconnects requirement increases and also
number TSV increases. This causes the LB and switch delay to increase and thus
total delay and area increases. We also observed as the LUT size increase, the number
of components in critical path reduces due to localization of routing resources, the
delay of associated with LBs and crossbars increase and the speed improvement is
diminished.

142 6 Three-Dimensional Tree-Based FPGA: Architecture Exploration Tools …

4 5 6 7
Cluster Size

Sp
ee

d
G

ai
n(

%
) Effect of Cluster Size

on Performance

3D gain(%)

D
el

ay
 (
nS

)

2D Delay (nS)
 20

 30

 40

 50

 60

 70

 3.5 4 4.5 5 5.5 6 6.5 7 7.5

2D Speed Improvement

 20

 30

 40

 50

 60

 70

 3.5 4 4.5 5 5.5 6 6.5 7 7.5

 20

 30

 40

 50

 60

 70

 3.5 4 4.5 5 5.5 6 6.5 7 7.5

3D Performance Gain

Fig. 6.9 Impact of cluster size on performance with LUT size fixed to 4

Figure 6.9 presents the effect of increasing cluster size from 4 to 7 with LUT size
fixed to 4. As cluster size increases the buffers must be sized larger to withstand the
larger loading from internal muxes, which result in an increase in the basic LB delay
and also the size of each logic tile increases and therefore, the length of wires being
driven by each buffer increases and this process increases the capacitive loading of
each wire. To compensate this, we need to use larger channel width transistors in
our buffer design. As cluster size increase the logic density increase and this forces
the mapped application to use more local routing resources in the tree levels close
to logic blocks than routing resources at higher tree levels in a timing driven routing
procedure. One other fact is we use high cost factor for level = 3 TSV interconnects.
This makes the critical delay shorter as cluster size increases. By varying the break-
point location, the critical path delay of 3D Tree-based FPGA can be optimized for
the horizontal partitioning method, however this process makes the architecture more
application-specific. Our area and critical path delay analysis against various LUT
and cluster size analysis reveals cluster and LUT size equal to 4 is better in terms
of speed, power and silicon area to design and manufacture a genera-purpose high
density and high speed 3D Tree-based FPGA systems.

6.9 Power Optimization 143

6.9 Power Optimization

Power consumption is a major concern of designing CMOS integrated circuits in deep
sub-micron technologies. As we move into deep-sub-micron geometries, increases
in functionality per square millimeter come at the cost of higher static power con-
sumption due to higher transistor leakage. This is especially the case of 3D FPGAs,
because they are significantly less power efficient than custom integrated circuits
(ASICs). Recent studies have shown that FPGAs are around 3 times less power effi-
cient than ASICs [17, 30]. This power inefficiency is caused by the large program-
ming overhead of FPGAs, including the pass-transistor switches, muxes, buffers, and
configuration memory used in the programmable routing resource, which occupies
80 % of the silicon area [30–32]. Especially in the case of Tree-based FPGA, the wire
length increases exponentially as the Tree grows to higher levels and the causes the
programming overhead power to increase. From this discussion, it is clear that reduc-
ing wasteful interconnect power consumption in a Tree-based FPGA must involve
reducing routed net lengths and/or programming overhead. These power reduction
techniques cover BFT based interconnect network partitioning methodologies (hori-
zontal or vertical), programmable interconnect layout design and optimization meth-
ods.

The power optimization of two-tier 3D stacked Tree-based FPGA is achieved
through the minimization of TSV count and programmable routing resources. The
optimized routing resources and TSV count presented in Fig. 6.10. In Mesh-based
industrial 3D FPGA, the same power is used for individual blocks in multiple tiers

L0 L1 L2 L3 L4 L5 L6

Break Point
(TSV Interconnect)

Interconnect Levels

Power consumption analysis

Optimised 3D power

2D Power

 P
ow

er
 C

on
su

m
pt

io
n

(m
W

)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1 2 3 4 5 6

Power with Rent=1
Power with Rent=p

Fig. 6.10 Power consumption analysis of 3D Tree-based programmable interconnect network

144 6 Three-Dimensional Tree-Based FPGA: Architecture Exploration Tools …

L0 L2 L3 L4 L5 L6L1
Interconnect Levels

LUT size 4 to 7

Cluster Size

LUT 4

LUT 7
cluster size=4

4 to 7

Cluster 4

Lut size=4
 P

ow
er

 C
on

su
m

pt
io

n
(m

W
)

LUT & Cluster SizePower Analysis

 0

 500

 1000

 1500

 2000

 2500

 0 1 2 3 4 5 6

LUT 4
LUT 5
LUT 6
LUT 7

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 1 2 3 4 5 6

Cluster 4
Cluster 5
Cluster 6
Cluster 7

Fig. 6.11 Impact of cluster and LUT size on power consumption

of 3D chip. This doubles the total FPGA power for two-tier Mesh-based FPGA and
this leads to pessimistic prediction of inter-layer temperature. While for Tree-based
3D FPGA, the power consumption of the dies in each tier is balanced through the
optimization process of routing resources and TSV count. Figure 6.10 shows the
interconnect power at different levels of the 3D Tree-based FPGA. The Rent’s para-
meter based architecture optimization model shows 35.13 % reduction in total power
consumption of 7 level Tree-based 3D interconnect network. This is very promis-
ing for FPGA architecture in terms of silicon area, since FPGA is an interconnect-
dominated architecture and it is impossible to manufacture it with huge number
of TSV and switches. Figure 6.11 presents the effect of LUT and cluster size on
estimation of power consumption. The power consumption increased exponentially
as LUT and cluster size increase due to exponential growth of switch size as the
tree grows to higher levels. Considering the power consumption and performance
results, LUT and cluster size equal 4 and 5 is the best architecture for manufacturing
3D FPGA. Nonetheless higher LUT and cluster size can be used where performance
is considered to be the major design criterion.

6.10 Summary 145

6.10 Summary

Tree-based FPGA architecture is an old concept and due to numerous issues regard-
ing speed and 2D physical design, the Tree-based architecture took the back seat
compared to industry dominance of Mesh-based FPGA architectures. Due to advent
3D technology, many traditional design methods have been revisited to study those
issues which hinters its march towards manufacturing and production. This chapter
provides insights about how to resolve such issues and advantages compared to
industrial Mesh-based FPGA architecture. A completed set of 3D CAD tools are
developed to design and validate 3D Tree-based FPGA. The horizontal and verti-
cal partitioning methodology based on design specification is a defining feature. An
innovative multilevel network architecture and the issues associated with vertical and
horizontal partitioning, TSV count optimization and its impact on design and manu-
facturing of 3D FPGAs are studied and presented. The study reveals the challenges
in optimizing the physical design of 3D Tree-based FPGA and TSV management
in a 3D stacked chip. The architecture level interconnect optimization model based
on Rent’s parameter shows minimal degradation in interconnect delay. Therefore
the design and architecture optimization results presented in this chapter can serve
as a robust foundation for the design and manufacturing of even more practical 3D
re-configurable systems based on Tree-based FPGA architectures.

References

1. C. Ababei, P. Maidee, K. Bazargan, Exploring Potential Benefits of 3D FPGA Integration, Field
Programmable Logic and Application, vol. 3203 (Springer, Berlin, 2004), pp. 874–880

2. K. Siozios, A. Bartzas, D. Soudris, Architecture level exploration of alternative schmes targeting
3D FPGAs: a software supported methodology. Int. J. Reconfigurable Comput. Article ID
764942, 18 (2008)

3. S. Gupta, M. Hilbert, S. Hong, R. Patti, Techniques for Producing 3D ICs with High-Density
Interconnect (Tezzaron Semiconductor, Naperville, 2005)

4. C-I Chen, B-C Lee, J-D Huang, Architectural exploration of 3D FPGAs towards a better
balance between area and delay, in Design, Automation and Test in Europe Conference and
Exhibition(DATE), IEEE, Grenoble, France, 2001

5. K. Siozios, Vasilis F. Pavlidis, D. Soudris, A novel framework for exploring 3-D FPGAs with
Heterogeneous interconnect fabric. ACM Trans. Reconfigurable Technol. Syst. 5, 1–5 (2012)

6. B. Landman, R. Russo, On a pin versus block relationship for partitions of logic graphs. IEEE
Trans. Comput. 20(12), 1469–1479 (1971)

7. C. Ababei, H. Mogal, K. Bazargan, Three-dimensional place and route for FPGAs. IEEE Trans.
Comput-Aided Des. Int. Circuits Syst. 25(6), 1132–1140 (2006)

8. C. Ababei, Y. Feng, B. Goplen, H. Mogal, T. Zhang, K. Bazargan, S. Sapatnekar, Placement
and routing for 3D integrated circuits, IEEE Des. Test 22(6), 520–531 (2005)

9. A. Gayasen, V. Narayanan, M. Kandemir, A. Rahman, Designing a 3-D FPGA: switch box
architecture and thermal issues. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 16(7),
882–893 (2008)

10. Z. Marrakchi, H. Mrabet, U. Farooq, H. Mehrez, FPGA interconnect topologies exploration.
Int. J. Reconfigurable Comput. 37, 13 (2009)

146 6 Three-Dimensional Tree-Based FPGA: Architecture Exploration Tools …

11. U. Farooq, H. Parvez, Z. Marrakchi, H. Mehrez, A new heterogeneous Tree-based application
specific FPGA and its comparison with mesh-based application specific FPGA. Elsevier Micro-
process. Microsyst. J. Appl. Reconfigurable Comput. Special Issue 36(8), 588–605 (2012)

12. V. Pangracious, Z. Marrakchi, E. Amouri, H. Meherez, Performance analysis and optimization
of high density Tree-based 3D Multilevel FPGA, in ARC11-2013, Reconfigurable Computing:
Architectures, Tools and Applications Lecture Notes in Computer Science (7806) (Springer,
LA, 2013), pp. 197–209

13. A. DeHon, Unifying mesh- and tree-based programmable interconnect. IEEE Trans. Very Large
Scale Integr. (VLSI) Syst. 12(10), 1051–1065 (2004)

14. A. DeHon, R. Rubin, Design of FPGA interconnect for multilevel metallization. IEEE Trans.
Very Large Scale Integr. (VLSI) Syst. 12(10), 1038–1050 (2004)

15. J. Pistorius, M. Hutton, Placement rent exponent calculation methods, temporal behaviour and
FPGA architecture evaluation, in Proceedings of the International Workshop on System Level
Interconnect Prediction (Monterey, California, 2003), pp. 31–38

16. A. DeHon, Balancing interconnect and computation in a reconfigurable computing array (or,
why you don’t really want 100% LUT utilization), in Proceedings of the 1999 ACM/SIGDA
seventh international symposium on Field programmable gate arrays (FPGAs) (Monterey,
California, 1999), pp. 69–78

17. I. Koun, J. Rose, Measuring the gap between FPGAs and ASICs, in Proceedings of the
ACM/SIGDA International Symposium on Field programmable gate arrays FPGA’06 (Mon-
terey, California, USA, 2006)

18. Z. Marrakchi, H. Mrabet, C. Masson, H. Mehrez, Mesh of tree: unifying mesh and MFPGA
for better device performances. in NOCS 2007 (2007), pp. 243–252

19. V. Pavlidis, E.G. Friedman, Interconnect-based design methodologies for three-dimensional
integrated circuits, in Proceedings of the IEEE, pp 123–140, Jan 2009

20. L. McMurchie, C. Ebeling, PathFinder: a negotiation based performance driven router for
FPGAs. in ACM/SIGDA International Symposium on of Field Programmable Gate Arrays
FPGA, vol. 12, issue no 2, pp. 291–301, June 1995

21. M. Pathak, Y. Joon Lee, T. Moon, S. Kyu Lim, Through-silicon-via management during 3D
physical design: when to add and how many?, in IEEE-ICCAD, 2010, pp 387–394 (2010)

22. Lip6 DSP Benchmarks SETI (2007), http://www-asim.lip6.fr/. 2007
23. Heterogeneous Benchmark Set II 2010. University of Toronto FPGA Research Group (2010),

http://www.eecg.utoronto.ca/vpr/. 2010
24. Open Cores SET II 2010. Open Cores Benchmark set (2010). http://www.opencores.org/
25. U. Farooq, H. Parvez, Z. Marrakchi, H. Mehrez, Exploration of heterogeneous FPGA archi-

tectures. Int. J. Reconfigurable Comput. Special issue ReCoSoC 2010–2011, issue 2 (2011)
26. S. Yang, Logic Synthesis and Optimization Benchmarks, Version 6.0. (MCNC: Microelectronic

Centre of North Carolina Research Triangle Park, North Carolina, 1991)
27. R. Le, S. Reda, R. Iris Bahar, High-performance, cost-effective heterogeneous 3D FPGA archi-

tectures. IEEE/ACM Int. GLSVLSI 2, 218–229 (2011)
28. A. Marquart, V. Betz, J. Rose, Using cluster-based logic block and timing-driven packing to

improve FPGA speed and density, in Proceedings of the 1999 ACM/SIGDA Seventh Interna-
tional Symposium on Field Programmable Gate Arrays (FPGAs) (Monterey, 1999), pp. 37–46

29. E. Ahmed, J. Rose, The effect of LUT and cluster size on deep-submicron FPGA performance
and density. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 12(3), 288–298 (2004)

30. M. Lin, A.E. Gamal, Y.-C. Lu, S. Wong, Performance benefits of monolithically stacked 3D
FPGA, in Proceedings of the 2006 ACM/SIGDA 14th International Symposium on Field pro-
grammable Gate Arrays (Monterey, California, 2006), pp. 113–122, 22–24 Feb 2006

31. S. Simon Wong, A. El-Gamal, The prospect of 3D-IC, in IEEE Custom Integrated Circuit
Conference (CICC), IEEE (San Jose, CA, 2009), pp. 445–448

32. F. Li, D. Chen, L. He, J. Cong, Architecture evaluation for power-efficient FPGAs, in Pro-
ceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Array,
pp. 175–184, Nov 2003

http://www-asim.lip6.fr/
http://www.eecg.utoronto.ca/vpr/
http://www.opencores.org/

Chapter 7
Three-Dimensional Thermal Modeling:
Tools and Methodologies

Abstract A3D-IC systemconsists of disparatematerialswith considerably different
thermal properties including semiconductor, metal, dielectric, and possibly polymer
layers used for inter-plane bonding.Although the power consumptionof these circuits
is expected to decrease due to the considerably shorter interconnects, the power
density increases since there is a greater number of devices per unit volume as
compared to a 2D circuit. Heat transfer analysis in 3D-ICs is complicated by the
presence of multiple heat sources and the introduction of new thermal resistances
posed by inter-die materials including interface resistances whose values are not
readily available. In this chapter we present a fast and accurate 3D thermal model
developed for an n-tier 3D stacked Tree-based FPGA chip using 3DR-Cmesh-based
model. The design and implementation of 3D thermal analysis model depends on
the characteristics materials and layers used to manufacture VLSI chips.

7.1 Introduction: Thermal Fundamentals and Challenges

Semiconductor analysts suggest that increasing power density due the exorbitant
number of transistors and resulting difficulty in controlling on-chip temperature are
someof themost critical challengewe face today to continue scalingofVLSI systems.
Beforewemove into the details and challenges in 3D thermalmodeling, some reviews
and revisit of the two fundamental physical mechanism, heat generation and heat
transfer, is needed in order to fully understand the topic of this chapter. Let us
start with definition of temperature. Temperature can be defined in many ways. In a
macroscopic standpoint the temperature can be defined as the property shared by two
systems, initially at different states, after they have been placed in thermal contact and
allowed to come to thermal equilibrium [18]. However in a microscopic standpoint:
Temperature is directly proportional to the square of the mean molecular speed. As
temperature increases, the molecules moves faster. From these definitions we can
state that temperature is a state variable reflecting the level of the internal energy
posses by a system.

© Springer International Publishing Switzerland 2015
V. Pangracious et al., Three-Dimensional Design Methodologies
for Tree-based FPGA Architecture, Lecture Notes
in Electrical Engineering 350, DOI 10.1007/978-3-319-19174-4_7

147

148 7 Three-Dimensional Thermal Modeling: Tools and Methodologies

7.1.1 Heat Generation

The basic functional unit of CMOS integrated circuits is a MOS transistor. Each
transistor can be turned on or off like a switch depending on the voltage difference
between the gate and the source terminal. At a higher abstraction level, a number
of MOS transistors are connected together in a particular topology to form a logic
function, for example a logic block of FPGA and has its own input signals and output
signals. Computation is the process to get the correct output voltage level for a given
binary combination of the input signals. From basic circuit theory, we know that
the total energy drawn from the power supply for this voltage transition is CL V 2

dd ,
in which CL is the load capacitance and Vdd is power supply voltage. However the
actual energy stored in the circuit is only 1

2CL V 2
dd and the other half is dissipated in

the form of Joule heat in the inherent resistance of the circuit itself. Therefore every
switching event as a result of computation draws some amount of energy from the
power supply and this energy is eventually transformed into the heat dissipation.

7.1.2 Heat Transfer

All the generated heat in the integrated circuits must be removed or transferred to
the ambient environment. Otherwise, the operating temperature will accumulate and
cause malfunction and eventually the destruction of the system. Heat transfer is the
transport of thermal energy from one region to another. In order for the heat transfer
to occur, there must be a temperature difference between the two regions [4]. From
the first law of thermodynamics, i.e. the conservation of energy, states that the heat
given by the hot region has to be equal to the heat absorbed by the cold region.
In addition, the second law of thermodynamics states that heat must be transferred
from hot region to cold region. That means heat flows in the direction of decreasing
temperature. There are three modes of heat transfer: conduction, convection and
radiation [4]. Since we deal with semiconductor chips, conduction is major heat
transfer mode considered in our model. The governing equation of heat conduction
is the Fourier ′s Law:

q = −k
dT

dx
(7.1)

The Eq.7.1 is the one dimensional form of the Fourier ′s Law, where q is the heat
flux (in W/m2), k is the thermal conductivity of the material (in W/(mK)). The heat
flux q (is the flow of heat per unite area per unit time), at a point in a medium is
directly proportional to the temperature gradient at that point. Theminus sign indicate
that heat flows in the direction of decreasing temperature. If we substitute q = Q/A,
where Q is the heat transfer rate, A is the heat conducting area, and assume L is the
length of the conductor the Eq.7.1 becomes

7.1 Introduction: Thermal Fundamentals and Challenges 149

Q = −k A
ΔT

L
(7.2)

and if we define thermal conductance gth = Q/ΔT , the heat transfer rate divided
by temperature drop, we get

gth = Q/ΔT = k A

L
(7.3)

and the Eq.7.3 resembles the well known Ohm’s Law in the electrical circuit theory:

σ = I/ΔV = A

ρL
(7.4)

Therefore, we have the following interesting duality between electrical and thermal
phenomena, thermal conductance k versus electrical conductance 1/ρ; temperature
difference ΔT versus voltage difference ΔV ; heat transfer rate Q versus electrical
current I and thermal resistance Rth = 1/gth versus electrical resistance R = 1/σ .
Heat conduction is also a transient process, a more general equation which also
considers time in the heat diffusion equation:

ρcp
∂T (x, y, z, t)

∂t
= ∇.[k(x, y, z, t)∇T (x, y, z, t)] + g(x, y, z, t) (7.5)

whereρ is the density of thematerial (kg/m3), not the electrical resistivity, and g is the
volume power density of the heat source(s) (W/m3), cp is the specific heat (J/(kg ◦C)).
While thermal conductivity k actually is a function of location and temperature, we
can assume it is isotropic and temperature independent, as this is mostly true for the
materials and the temperature range that we are interested in. For the steady-state
case, the ∂T/∂t term in Eq.7.5 becomes zero. We can verify that at steady state, the
one-dimensional form of the heat diffusion equation can be reduced to the Fouriers
Law Eq.7.1. If we assume both g and k are constant, Eq. 7.5 can be rearranged to
the following from if we write it in one-dimensional form and integrate both sides
by the integral variable x from 0 to L (the length of the material), and notice that
g.L = Q/A = q, the heat flux, we get

(ρcp AL)
dT (t)

dt
= k A

ΔT (t)

L
+ Q (7.6)

The first term of the right-hand side of Eq. 7.6 is the teat transfered through the
thermal resistance Rth , similar to that in Eq.7.3. Note that ΔT = T1 − T2, and move
this term to the other side of the equation, we get

Cth
dT (t)

dt
+ T1 − T2

Rth
= Q (7.7)

150 7 Three-Dimensional Thermal Modeling: Tools and Methodologies

Table 7.1 Duality between thermal and electrical properties

Thermal quantity Unit Electrical quantity Unit

Q Heat transfer rate, power W I , Current A

T , Temperature difference K V , Voltage difference V

Rth , Thermal resistance K/W R, Electrical resistance �

Cth , Thermal capacitance J/K C , Electrical capacitance F

where Cth = ρcp AL = cpρV is defined as thermal capacitance or thermal mass,
V is the volume of the material. From the electrical circuit theories, we know that
C dV (t)

dt = ic(t), meaning the current flow through an electrical capacitor equals the
product of its capacitance and the first derivative of the voltage difference across
it. This exactly resembles the first term on the left-hand side of Eq.7.7. This is
the reason we define Cth as thermal capacitance. Thermal capacitance describes
the heat absorbing capability of a material, while electrical capacitance describes the
ability of accumulating electrical charges of a material. Equation7.7 states that the
total heat flowing through the material is equal to the sum of the heat flowing through
the thermal capacitance (the AC component) and the heat flowing through the ther-
mal resistance (the DC component). Table7.1 summarizes the duality between ther-
mal and electrical phenomena. We use this duality to derive the compact thermal
resistance and capacitance network to formulate the thermal model parameters for
3D FPGAs. The heat conduction equation derived above are only applicable to the
macroscopic world and will not provide accurate temperature estimation, if the min-
imum feature size scales below 300nm, because when the dimension scales in the
sub-nano regime, quantum effects needs to be considered since the mean free path
for phonon-phonon scattering is ≈300nm for silicon. In this case it is better to
consider Boltzmann Transport Equation (BTE) to accurately model thermal effects
at nanoscale transistor level. In this section, we will be using block level thermal
simulations for 3D FPGAs.

The operating temperature is related to power and power density according to
Eq.7.3. However temperature is not simply proportional to the power consumption,
neither the power density. there are other factors that significantly impact tempera-
ture distribution in space and time that are also needed to be taken care of. These
factors include heat spreading and temporal and spatial temperature filtering effects.
Equation7.3 does not account these effects and therefore temperature must be mod-
eled directly in order to perform accurate thermal analysis during the design process.
Heat spreading happens when heat transferred from a small surface area to a large
one. Temperature filtering happens in the time domain where the long thermal time
constant of the silicon and package tends ti filter out fast changes (high frequency
component) in power and power density. Temperature filtering can also happen spa-
tially where the power and power density change over a small dimension (high spatial
frequency). All these effects can be modeled by solving the heat diffusion Eq.7.5.
But directly solving the 3D partial differential equation presented in Eq.7.5 is a

7.1 Introduction: Thermal Fundamentals and Challenges 151

daunting task, if not impossible, without simplifications and numerical techniques.
The thermal modeling methodology developed for Tree-based FPGAs provides an
efficient and accurate way to construct compact thermal R-C networks to simplify
the heat diffusion equation.

7.1.3 State of the Art: Thermal Modeling

The increase in internal temperature is a growing concern in modern FPGA designs.
Recent articles on thermal management from leading FPGA manufactures [13, 19]
clearly indicate the growing importance of thermal issues in FPGA designs. The
logic density improved more than 3 times [20] and frequency of operation of all
latest FPGAdesigns due to improvement inmanufacturing technology, circuit design,
architecture and tool development. However this may also lead to increase in power
and power densities, which manifests itself in the form on high temperatures. Many
design level techniques has been adopted to remove and balance heat generated by
the design. Thermal-aware floorplanning methods tries to reduce the hotspots on the
die by distributing the temperature uniformly [15, 16]. A thermal aware placement
method based on partition-driven algorithm proposed in [9] for standard cell place-
ment. Several researchers have developed thermal modeling tools to estimate the
die temperature. Among them HotSpot [10] is an micro-architectural level thermal
simulator, which can perform transient as well as steady state temperature estima-
tion. HotSpot provides flexibility to set several package and die parameters, such as
the heat spreader thickness, package-to-air thermal resistance and substrate thick-
ness. From above discussion, we see that it is very important to be able to estimate
temperature at different granularities and at different design stages, especially early
in the design flow. The estimated temperature can then be used to perform power,
performance, and reliability analysis, together with placement, packaging design,
etc. As a result, all the decisions use temperature as a guideline and the design is
intrinsically thermally optimized and free from thermal limitations.

7.2 3D Thermal Modeling

The traditional 2D chip design and fabrication technology facing challenges in inte-
grating the exponentially growing number of transistors in a single chip. The wire
delay and power consumption are increasing dramatically and achieving interconnect
design closure in modern design is becoming a major challenge. The 3D technology
results in smaller footprint in each layer and shorter vertical wires that are imple-
mented using Through Silicon Vias (TSVs) across the layers. Despite the advantages
of 3D-ICs over 2D-ICs, thermal effects are expected to be significantly exacerbated
in 3D-ICs due to higher power density and greater thermal resistance of the insulat-
ing dielectric, which leads to higher junction temperatures. A 3D system consists of

152 7 Three-Dimensional Thermal Modeling: Tools and Methodologies

disparate materials with considerably different thermal properties including semi-
conductor, metal, dielectric, and polymer layers used for plane bonding. Although
the power consumption of these circuits is expected to decrease due to the shorter
interconnects (TSVs), the power density increases since there is a greater number of
devices per unite volume as compared to 2D design [5, 7]. These issues make the
modern sub-nano technology designs more complex and calls for the integration of
efficient heat removal mechanism at various stages of modern circuits designs flow,
such as synthesis, floorplanning, placement and routing to maintain the temperature
of circuit designs within the specified limits. The power consumption of 3D-ICs is
expected to decrease due to the interconnect length reduction. However the power
density increases since the distance between the devices decreases per unit volume
as compared to a 2D layout. Consequently, the temperature rises among the layers
placed far from the heat sink of the package, resulting in performance and reliabil-
ity degradation. Thermal analysis of modern FPGA architectures is essential, as the
power dissipation and leakage can be expected to increase as we scale down design
and manufacturing technology below sub-nanometer regime. The absence of effec-
tive heat removal solutions may lead to performance and reliability degradation in
3D-ICs. It is essential to develop design and hardware techniques to allow effective
thermal conduction among tiers of 3D system to maintain the performance of the
multi-tier 3D FPGAs. The die temperature must be control rise in internal temper-
ature, because it has huge impact on circuit timing, leakage power, package design
and also lifetime of the device. A high internal temperature dramatically impact the
performance of the system.

The increase in internal temperature can impede device performance and reliabil-
ity of 3D-ICs. Thus it essential to develop 3D-specific design tools which includes
thermal design techniques. This will enable the designers to address thermal issues
and generate reliable and high performance 3D designs. Two key elements are
required to establish a successful thermal management strategy; a thermal model,
to characterize the thermal behavior of a circuit, and design techniques that allevi-
ate thermal gradients among the physical tiers of a 3D stack while maintaining the
operating temperature within acceptable levels. Thermal design techniques can be
classified into two categories: heat removal strategies that improve the thermal profile
of the 3D chip without requiring any redundant interconnect resources for thermal
management, such as using the signal, power and ground TSVs for heat transfer
and those methodologies that are an integral part of a more aggressive thermal poli-
cies such as that utilizing vertical thermal TSVs and wires and other more expensive
liquid coolingmethods [6, 28], sacrificing some of the design objectives. These TSVs
are typically called thermal or dummy TSVs [2, 28] to emphasize the objective of
transferring heat rather than providing signal communication for circuit located at
different tiers of the 3D chip. Thermal wires corresponds to those horizontal wires
that connect regions with different thermal via densities through thermal TSVs. This
is done to remove or balance heat uniformly inside the 3D stack.

Recently, some researchers also proposed solutions and methods for evaluation
of thermal issues in 3D-ICs. Numerical thermal simulations have been carried out
to convert power dissipation distribution into a temperature distribution in a 3D-ICs.

7.2 3D Thermal Modeling 153

The development of a fundamental analytical model for heat transport in 3D inte-
grated circuits is highly desirable to provide a framework in which to analyze the
general problem of heat dissipation in 3D ICs and will offer simple thermal design
guidelines. A thermal-driven floorplanning tool for 3D-ICs proposed in [14] and a
thermal-driven for 3D standard cells dedicated to ASICs proposed in [8]. Another
work [24] propose analytical and finite-element model of heat transfer in 3D elec-
tronic circuits and use this model to analyze the impact of various geometric parame-
ters and thermophysical properties like through silicon vias, inter-die bonding layers
etc. on thermal performance of 3D-ICs. As discussed inChap. 5, TSV is a key compo-
nent of 3D integration technology. A 3D-IC thermal inter-tier thermal control using
TSV based nano-structure is proposed in [27] to effectively optimize the thermal
profile of 3D-ICs. A recent FPGA thermal analysis study proposed alternative orga-
nization for a 2-dimensional FPGA to reduce the intra-die thermal variations [21, 25]
and demonstrated a peak temperature reduction 6 ◦C using a fully utilized V ertex—
4F X100. The thermal organization indeed has a greater impact, since the thermal
variation in 3D FPGA is larger. A compact 3D thermal model for liquid cooling
for fast thermal simulation of 3D-ICs with inter-tier micro-channel cooling called
3D-ICE is proposed in [28]. A 3D FPGA thermal simulator based on 3D-ICE model
is implemented to model and validate different heat transfer methods developed of
3D Tree-based FPGAs.

Epoxy (glue)

Active layer

Si

3D Thermal Analysis model

 SiO 2

Fig. 7.1 Illustration of how 3D-ICs are structured into thermal units for 3D thermal analysis

http://dx.doi.org/10.1007/978-3-319-19174-4_5

154 7 Three-Dimensional Thermal Modeling: Tools and Methodologies

7.3 Heat Transfer in 3D-ICs

Heat transfer analysis in 3D-ICs is complicated by the presence of multiple heat
sources and the introduction of new thermal resistances posed by inter-die materials
including interface resistances whose values are not readily available. In this section
we present a 3D thermal model developed for a n-tier 3D stack FPGA chip using 3D
R −C mesh-based model from 3D-ICE. The design and implementation of accurate
and fast thermal analysis model depends on the characteristics materials and layers
used to manufacture VLSI chips. There are several heat fluxes associated with each
active layer: (1) in-plane heat transfer due to thermal conductivity of silicon; (2)
vertical heat transfer between layers through adhesive layers, BEOL (back-end-of-
line) metal dielectric layer and TSV material and location. The heat transfer in an
adhesive layer is considered to be perpendicular to the device plane and no heat flux
occurs along the adhesive layer due to its low thermal conductivity. The heat transfer
in TSVs is considered as one dimensional and perpendicular to the device plane.
Heat fluxes for top and bottom layers are also defined by heat transfer through a
heat sink and packaging. The heat flow inside the 3D stack is diffusive in nature and
hence it can be modeled by its equivalence to an electronic RC circuit [10, 12, 24]
as established in Sect. 7.1.2. This is done by first dividing the entire chip structure
into small cubical thermal cells as illustrated in Fig. 7.1. Each cell is then modeled
as a node containing six resistance that represent the conduction of heat in all the six
directions (top, bottom, north, south, east and west), and a capacitance that represent
the heat storage inside the cell as shown in Fig. 7.2. The conductance of each resistor
and capacitance of the thermal cell are calculated as follows.

gtop/bottom = kth × l × w

(h/2)
(7.8)

Silicon Layer
Si

Si

SiO2 Layer SiO2

Top
N

E

S Bottom

l

w

h

W

Epoxy Layer

(a) (b)

Fig. 7.2 a The unitary thermal calls of the 3D stack. b Equivalent RC circuit of single cells

7.3 Heat Transfer in 3D-ICs 155

gnorth/south = kth × l × h

(w/2)
(7.9)

geast/west = kth × w × h

(l/2)
(7.10)

Ctop = SCth × (l × w × h) (7.11)

Here the subscripts top, east, south north etc., indicate the direction of conduction,
kth and SCth are the thermal conductivity and specific heat capacity per volume unite
of thematerial, respectively. The entire circuit is grounded to the ambient temperature
at the top and the side boundaries of the 3D stack through resistance, which represent
the thermal resistance from the chip to the air ambient. The behaviour of the resulting
RC circuit can be described using a set of first-order differential equations via nodel
analysis [1] as follows.

B.U (t) = G.X (t) + C.X (t) (7.12)

where X (t) is the vector of cell temperature of the circuit at time t , G and C are the
conductance and capacitance matrices of the circuit, U(t) is the vector of the input
heat sources (in this case power sources) for example a logic block or a switch block
in an FPGA and B is a selection matrix G and C present a sparse block-tridiagonal
and diagonal structure, respectively, due to the characteristics and definition of the
thermal problem. In addition, G andU (t) are functions of the cell temperatures X (t),
making the behavior of the circuit non-linear. This is because of the temperature-
dependent thermal conductivity of silicon and the temperature-dependent electrical
resistance of the metal interconnects used in BOEL process respectively. In our
thermal model, a first-order dependence of these parameters on temperatures around
300K is assumed. Some of these parameters are presented in Table7.2 [22].

Table 7.2 Thermal properties of materials

Thermal properties of materials Values

Silicon thermal conductivity 295–0.491× TW/mK

Silicon specific heat 1.659 ×106 J/m3 K

Si O2 thermal conductivity 1.38W/mK

Si O2 Specfic heat 4.180×106 J/m3 K

Aluminum electrical resistivity 2.82 ×10−8(1 + 0.0039ΔT)�m

ΔT = T − 293.15K

Copper (Cu) thermal conductivity 386.01W/(mK)

Tungsten (W) thermal conductivity 162.714W/(mK)

Heat sink heat transfer 2.0W/kK

Package heat transfer 0.2W/kK

156 7 Three-Dimensional Thermal Modeling: Tools and Methodologies

The DC solution for the circuit can be found be solving the corresponding steady
state Eq.7.13.

G X = BU (7.13)

The above set of equations are solved by the inversion of thematrixG using the sparse
LU decomposition method [3]. Because of the non-linearity of the circuit and the
input power sources, these equations were solved repeatedly, by updating the matri-
ces after each iteration of solving, until convergence is reached. Many researchers
and industrial partners proposed fabrication based solutions for the thermal man-
agement in 3D integrated circuits. Thermal through silicon vias (TTSVs) have a
prominent place among these solutions. It is important to reduce the temperature
gradient between various parts of the chip because variations in operating tempera-
ture affects the performance of the chip, leading to timing errors and chip failures.
Moreover thermal gradients have been observed as a determinant negative factor on
system reliability.

7.4 3D Tree-Based FPGA Thermal Analysis Model

Thermal issues in 2D and 3D FPGAs are relatively unexplored. In our 3D thermal
experiments, we considered all FPGA blocks such as LBs, HBs and SBs of the
Tree-based interconnect levels range from 0 to 6. To analyze the thermal variation
in 2D and 3D FPGA, we used a two-tier 3D Tree-based FPGA design. The tier
1 consists of LBs and local SB interconnects up to level 3 and tier 0 consists of
HBs and SBs of higher level interconnection network of the Tree architecture. The
structure of two-tier experimental 3D stack is presented in Fig. 7.3. In general the F2F
(face-to-face) 3D stacking configuration is used for two-tier 3D structure with help
of solder bumps. However this limits the number of stacked tires to two [29] or to
multiple stacks of F2F structure. In this work, we use a F2B (face-to-back) stacking
configuration, since we expect to design and build multiple tier high density 3D
Tree-based FPGAs, as the Tree grows to higher levels. For Mesh-based 3D FPGA,
the researchers assumed the same power for individual blocks that was stacked in
a face-to-back manner [26]. This doubles the total power consumption of two-tier
Mesh-based FPGA compared to monolithic 2D FPGA and also leads to pessimistic
temperature estimation, because the total power consumption is expected to be lower
for 3D FPGAs, as the wire length of the interconnect network reduces, while we
stack multiple tiers. For 3D Tree-based FPGA the total power consumption is re-
distributed across the blocks that are assigned in tiers 0 and 1 and this model provides
an accurate estimation of inter-tier temperature of the two-tier Tree-based FPGA
structure. Figure7.3 shows the organization of LBs and local interconnects in tier
1 and the higher level interconnect network of the Tree in tier 0. To distribute the
heat generated in 3D Tree-based FPGA, we developed two different heat transfer
methodologies. (1) based the thermal-aware design techniques and (2) based onmore

7.4 3D Tree-Based FPGA Thermal Analysis Model 157

Section 1 Section 3

Level 5
Level 6

Thermal

Thermal
Interface

Material

interconnects

TSVs

Hotspot
Location

Signal

TSVs

Section 2

Level 4
Interconnects

Interconnect

Tier 0

Tier 1

of tier 0
of tier 0 of tier 0

Fig. 7.3 2 layer 3D tree-based FPGA experimental structure used for thermal analysis

aggressive heat transfer policy using hardware based techniques using additional
TSVs and metal wires.

7.4.1 3D Thermal Aware Design Techniques

The goal is optimize the temperature generated inside the chip by distributing the
power sources equally across the active layer of the 3DFPGAdesign.Aswediscussed
in Chap.8, the multilevel Butterfly-Fat-Tree (BFT)-based programmable intercon-
nect network is partitioned at a particular level called the break-point level and
interconnected using TSVs. The 2D Tree-based FPGA design is partitioned based
on design specification (hori zontal or vertical) to form a two-tier 3D Tree-based
FPGA. For vertical partitioning methodology, the design is divided into two equal
section in terms of area and power consumption. In this case the placement of power
sources on both layers of the 3Dchip are balanced.However in the case of hori zontal
partitioning methodology, the interconnect network is partitioned at a certain level
called the break-point based on the network delay optimization and this partitioning
method gives only little room for thermal optimization. To understand the thermal
distribution of this design, we used the thermal-aware floorplane tool [16] along
integrated in our physical design flow. The thermal-driven floorplanning tool is con-
figured with Global Foundries 130nm technology node. This tool is configured to
estimate temperature of the blocks floorplan of the two-tier Tree-based FPGA chip
based on its power consumption and connectivity ratio among them. The floorplan

http://dx.doi.org/10.1007/978-3-319-19174-4_8

158 7 Three-Dimensional Thermal Modeling: Tools and Methodologies

Fig. 7.4 Thermal network
using TSVs and horizontal
wires to transfer heat from
hotspot to coldspot

tool takes a list of functional blocks, areas, aspect ratios, connectivity ratio between
the blocks and power consumption of each functional blocks as inputs. For example,
in the case of horizontal partitioning, we have have two floorplans: the first floorplan
consists of LBs, and local interconnections up to level 3 of the Tree-based FPGA
and the second floor plan consists of programmable interconnect levels levels 4, 5,
6, hard-blocks (HBs) and I/Os.

The floorplan tool generates thermal estimations of local and global metal layer.
For this study the communication is realized with Through Silicon Via (TSV) using
TSV Tezzarion TSV technology [17] and electrical characterization of TSV is per-
formed using the approach presented in [23]. One important aspect of thermal-aware
floorplanner is the trade-off between temperature and performance. We used the
wire delay model associated with floorplanner to optimize the wire length. However
the floorplan solution is always a trade-off between temperature and wire delay of
the blocks used in simulation. To manage this trade-off, we have taken steps during
design phase tomake sure the placement of high power blocks do not lead to hotspots

CTSV = 15f F

TSV

W=1.2µm and D=6µm

L=1.2µm

Depth=6µm

R =TSV 600mohm

W

h

w

Hotspot Zone

H

dl

TSV with liner
dl=liner width

(a) (b)
Tezzaron Process Produce small TSVs

Fig. 7.5 a Top view of hotspot zone with TTSV placement, b TTSV with liner dl

7.4 3D Tree-Based FPGA Thermal Analysis Model 159

without compromising on design performance. The floorplan tool is augmented with
flexibility to create horizontal or vertical break-points in the BFT based interconnect
network according to the 3D Tree-based FPGA design specifications. However by
stacking multiple active tires and increasing logic density, it becomemore difficult to
remove the inter-tier heat. Hotspot power dissipation results in significantly higher
temperatures in 3D stacked chips compared to the same power dissipation in single
2D chips. Our study shows that there is a significant temperature gradient across
the stacked dies for the two-tier Tree-based FPGA structures. The reason for the
increase in temperature is due to the reduced thermal spreading in the thinned dies
on the one hand, and to the use of low thermal conductivity adhesives on the other
hand. Therefor a detailed thermal analysis at the design stage is required.

ke f f = kcu .(T SVArea) + Kth .(LevelB P Area − T SVArea) (7.14)

The floorplan tool uses 3D resistance mesh-based thermal model presented in
Sect. 7.3 to extract the thermal profile of the floorplans of the two-tier 3D Tree-
based FPGA. The 3D Thermal resistance mesh based multi-tier thermal model for
Tree-based FPGA consider the spatial distribution of signal TSVs and PDNnetworks
(power delivery) to control the heat transfer among different module in the multi-
tier chip. In a 3D circuit, thousands of TSVs may co-exist to deliver the power and
signal. These TSVs are normally filled with metal such as copper (Cu) or Tungsten
which has a higher thermal conductivity than silicon and they can have a significant
influence on the steady state temperature of 3D-ICs. Such influence is due to the
change of thermal conductivity in the heat transfer path when a TSV is inserted and
is highly dependent on the TSVs size and position. The thermal model also consider
the impact of TSVs material (Cu,Tungsten or doped Poly-silicon) while estimat-
ing the temperature profile. The effective thermal conductivity of active and passive
layers in 3D stacked chip is calculated by Eq.7.14. The kcu and Kth are the thermal
conductivity of copper and silicon active layer. The heat transfer take place on those
locations where Cu TSVs are placed. Using this module, the inter-layer heat transfer
and thermal profile of 3D FPGA is modeled and analyzed.

7.4.2 TSV Aware Thermal Control

Themajor challenge in thermalmanagement and development of 3D thermal analysis
tools is the complexity of heterogeneous structure of different dies and poorly under-
stood thermal behavior of TSVs and adhesive layers. In the previous Sect. 7.4 we
discussed how to address the variations in the heat transfer characteristic of adhesive
materials used for manufacture 3D-ICs to accurately estimate the internal hotspot
temperature. In this section we study the impact of the distribution and total number
of TSV on thermal performance using two-tier 3D Tree-based FPGA. In addition to
this, we also implemented special zones inside the die to monitor the evolution of
hotspot temperature. The special zone are located and placed based on initial thermal

160 7 Three-Dimensional Thermal Modeling: Tools and Methodologies

profile of the 3D chip. The aim is to implement a 3D thermal net using TSVs and
horizontal wires to transfer the heat across the chip. To achieve this we use thermal-
TSVs (TTSVs) and horizontal metal wires to form a 3D heat transfer network as
illustrated in Fig. 7.4. The placement of additional thermal-TSVs for vertical heat
transfer is a limited design technique to transfer inter-tier heat, because on one hand
it increases the area and cost of the chip and on the other hand it also increase design
complexity. However we found the 3D thermal net is an effective heat transfer tech-
nique based on TSVs. In this section we discuss the implementation of a fast and
accurate steady state thermal simulator using TSV-based thermal control for 3D-ICs.
Thermal conductance between adjacent cells are then calculated by considering the
effect of TSVs. At steady state, the thermal balance equation holds for every grid
cell as follows. ∑

(Ti − Ti,ad j) × gi,adg = Pi (7.15)

where Ti and Ti,ad j denote the temperatures of the ith grid cell and its adjacent grid
cell, respectively. gi,ad j represents the thermal conductance between the two cells,
and Pi is the heat generated by the ith grid cell. From Eq.7.15, it is obvious that an
increasing Pi , in order to maintain Ti in an acceptable level, the thermal conductance
has to be increased and this require a more advanced and expensive materials and
in some case we may not have many choices than introducing addition device with
high thermal conductance such as TTSVs. This is definitely a big concern in term
of cost increase of the entire design. The matrix equation of thermal equilibrium
can be solved by the sparse solver LU [3] with the extracted power consumption
from two-tier FPGA design. In this work we used Tezzaron TSV technology, which
produce very small squarish TSVs as illustrated in Fig. 7.5. The thermal conductance
between two hotspot zones without TSVs is represented in Eq.7.16.

gi j = k A

dx
(7.16)

where k represent thermal conductivity, A is the cross-sectional area through which
the heat flux passes and dx is the length of heat transfer path.When a TTSV is placed
as shown in Fig. 7.5, the equivalent thermal conductance x , y, and z direction can be
computed using the Eqs. 7.17, 7.18 and 7.19.

gx =
(
1 + atsv(β − 1)

AH Z (1 + (1 − atsv/hW)(β − 1))

)
× gx0 (7.17)

gy =
(
1 + atsv(β − 1)

AH Z (1 + (1 − atsv/wH)(β − 1))

)
× gy0 (7.18)

gz =
(
1 + atsv(β − 1)

W H

)
× gz0 (7.19)

7.4 3D Tree-Based FPGA Thermal Analysis Model 161

where atsv = wh is the TTSV area, AH Z = W H is the hotspot zone area, gx0 =
kH Z ×H L

W , gy0 = kH Z ×W L
H and gz0 = kH Z ×W H

L are the thermal conductance of the
Hotspot zonewithoutTTSV in x , y, and z direction. L is the depth of theHotspot zone.
β = ktsv/kH Z is the ratio of thermal conductance between TTSV and Hotspot zone.
In the case of multiple TTSVs placed inside Hotpsot zone, we employ superposition
principle. In 3D TSV technology implementation, TSVs are normally surrounded by
a thin layer of less thermally conductive dielectrical liner for insulation purpose, as
illustrated in Fig. 7.5. To address the thermal isolation of dielectrics, the equivalent
thermal conductivity of TSV with liner is defined as follows.

ktsv,xy =
(
1 + d2

m(γ − 1)

(dm + 2dlγ)

)
× kliner (7.20)

ktsv,z =
(
1 + d2

m(γ − 1)

(dm + 2dl)2

)
× kliner (7.21)

whre dm is the side length of the TSV metal core, dl is the liner thickness and
γ = kmetal/kliner is the ratio of thermal conductivity between metal and liner. To
calculate the thermal conductances between all the solid zones with TSV effects,
thermal conductances without TSV are first obtained according to (7.15). The sizes
and positions of TTSVs are then imported to determine their overlaps with all hotspot
and non-Hotspot zones. Based on the equivalent thermal conductivity of every TTSV
and TSV, their contributions to thermal conductance are then added up to the over-
lapped floorplan according to Eqs. 7.17, 7.18 and 7.19. The Hotspot zones with
additional TTSVs gives flexibility to place TTSVs without compromising design
requirements. The TTSVs are normally used to control the inter-layer temperature
of the 3D chip [27]. Though it is not a cost-effective solution in terms of design and
manufacturing, used in certain cases to transfer the inter-layer heat efficiently from a
3D chip. To experiment the impact of signal-TSVs and TTSVs we designed special
Hotspot zones in the tier 0 based on the initial steady state thermal analysis presented
in Fig. 7.9.

7.5 3D FPGA Thermal Modeling: Capabilities

The main features of the 3D thermal model implemented for thermal analysis of 3D
Tree-based FPGA are as follows

• Accurate and efficient:

1. Non-linear or impact on reliability and other design characteristics.
2. Speed necessary for efficient 3D design exploration.

• Continuous heat flow analysis.

162 7 Three-Dimensional Thermal Modeling: Tools and Methodologies

1. Capture geometrical characteristics of the devices from layout.
2. Possibility to explore complex 3D package structure.

• Model interface:

1. Input: Power model of tier devices, geometrical properties and placement.
2. Output: Temperature of tier devices at run-time.

• 3D Thermal Circuit:

1. Heat Flow → Electrical current; Temperature → Voltage
2. Metal and Silicon layers composed of elementary thermal blocks

• Simulation capabilities:

1. Extensible set of tiers in 3D stack
2. Simulate up to 20 tiers and heat spreader
3. Pre-defined active and passive layers: Silicon, copper, glue overmould, inter-

poser with and without TSVs, microbumps.
4. Configurable number of cells and iterations per tiers using grid model.
5. CaptureTSVcharacteristics and location.Effective thermal conductivitymethod

is adopted.
6. Special heat transfer zones can be setup and number of TTSVs can be specified.

The 3D thermal model tool is design to run 2D and 3D thermal simulations
separately. To run 3D simulation, the user needs to specify layer information file,
which contains information about each tier in the 3D FPGA chip such as specific heat
capacity in J/(m3 K), resistivity in (m-K)/W, thickness in µm, heat transfer direction
and floorplan files.

7.6 3D FPGA Thermal Modeling: Simulation Results

As discussed in Sect. 7.4, in our 3D thermal analysis experiments, we considered
all FPGA blocks such as LBs, HBs and interconnect level SBs range from 0 to 6 of
the tree-based interconnect structure. To analyze the thermal variation in 2D and 3D
Tree-based FPGA, we use the physical design parameters of two-tier 3D Tree-based
FPGA design as shown in Fig. 7.3 to generate the thermal analysis floorplan. The tier
1 design consists of LBs and local interconnects up to level 3 and tier 0 consists of I/O,
HBs and higher level interconnection network (SBs) of the Tree architecture. The
thermal analysis structure is configured using face-to-back 3D integration method.
The area and power consumption of each blocks used in simulation are presented
in Table7.3. The floorplan used for simulation is presented in Fig. 7.6. The Fig. 7.6
presents the thermal profile of tier 1 of 3D Tree-based FPGA generated using 3D
thermal model without using thermal design technique described in Sect. 7.4.1. The
estimated peak temperature increased from 82 ◦C (2D temperature) to 111 ◦C for the
two-tier 3DFPGAand average temperature is 105 ◦C.However by using the effective

7.6 3D FPGA Thermal Modeling: Simulation Results 163

Table 7.3 7 Level tree FPGA layout with 16k CLBs

Tree Levels = 7, Arity = 4, Arch = 4 × 4 × 4 × 4 × 4 × 4 × 4

Tree-based FPGA 3D chip Rent = “p” Block Power

block type # layer Avg (21 MCNC) Area (µm2) (mW)

CLB unit 1 93,635,273 0.15

Switch box Level 0 1 0.65 2412 0.25

Switch box Level 1 1 0.54 10,800 0.83

Switch box Level 2 1 0.66 37,496 2.70

Switch box Level 3 1 0.55 232,128 13.13

Break-point Horizontal partitioning: TSV count = 45,056 Area = 540,672µm2

Switch box Level 4 2 0.63 6,072,770 47.46

Switch box Level 5 2 0.64 41,553,499 214.05

Switch box Level 6 2 0.65 42,139,683 838.97

thermal conduction model, we were able to estimate the accurate value of hotspot
peak and average temperature. Figure7.7 shows the thermal profile of tier 1 using
thermal design and effective thermal conductance method. In F2B type 3D design
the TSVs pass from the metal 6 (M6) of tier 1 to metal 1 (M1) of the tier 0 of the 3D
chip. In this case all TSVs will pass through the substrate of tier 0 which is thin down
to TSVs. In our design it is only 6µm. The estimated peak and average temperature
reduced to 99 and 95 ◦C respectively. The estimated temperature values of using
thermal design technique shows the need to consider the effect conductivity of all
materials used in the chip design and manufactures. This increases the complexity of
3D thermal model. The temperature analysis of the two layer 3D Tree-based FPGA
is presented in Fig. 7.8. The hotspot temperature estimated is still much higher than
the acceptable level. Next section provides experimental analysis of hardware-based
heat transfer in 3D designs.

The 3D thermal model has been improved with capabilities such as implemen-
tation special zones based on the initial thermal profile. Based on hotspot location
and temperature a special hotspot zone can be designed and place additional Ther-
mal TSVs to transfer heat as described in Sect. 7.4.2. With inclusion of TTSV-based
zones, the thermal model considers the impact of spatial distribution of signal-TSV
and Hotspot zones including TTSvs to compute the thermal profile of the 3D Tree-
based FPGA chip. Figure7.9 shows the new thermal zones generated in our floor-
plan to transfer heat from hotspot to other coldspots inside the chip. As illustrated in
Fig. 7.9, the zones 2, 3, 4 and 5 are specificallymeant for the placement of TTSVs and
other zones were used to place horizontal metal wires to transfer heat generated at the
hotspot. The area and size of hotspot special zone and TTSV count can be decided
based on the thermal profile and design requirements. The thermal-TSV based heat
transfer method increases the total area of the chip. To minimize the impact on area
and design performance, we need to optimize the hotspot area and TTSV count.
Figure7.10 presents the two-tier floorplan and TSV distribution styles used in the

164 7 Three-Dimensional Thermal Modeling: Tools and Methodologies

Fig. 7.6 Thermal profile of 3D Tree-based FPGA, tier 0 without using effective thermal conduc-
tivity

design and simulation 3D Tree-based FPGA. The floorplan (a) shows tier 1 design
with clusters placed along with local interconnects. The thermal profile presented in
Fig. 7.10 shows, with the help 3D thermal net using TTSVs and horizontal wires, the
heat generated due the activity of tree level 3 and 6 interconnects switches has been
transferred to other coldspots and to the heat spreader. The TSV distribution used
to interconnect tier 0 and 1 are also shown in Fig. 7.10. The high temperature spots
shown in Fig. 7.10 is relative. The heat transfer take place through metal wires and
TTSVs placed between tier 0 and 1.

Fig. 7.7 Thermal profile of 3D Tree-based FPGA, tier 0 with effective thermal conductivity

7.6 3D FPGA Thermal Modeling: Simulation Results 165

T
em

pe
ra

tu
re

 (
K

)

Tree−based FPGA, blocks

Fig. 7.8 Temperature values of functional units with and without effective thermal conductivity

TIM Layer

Thermal
TSV Zones

Thermal
TSV
Placement

TIM Layer

Thermal
TSV Zones

Thermal
TSV
Placement

Fig. 7.9 Thermal Interface layer (TIM) with thermal TSV placement zones

The estimated values of inter-layer temperature is optimized by considering area
and spatial distribution of TSVs and Hotspot zones. The TSVs located at theHotspot
zones are effectively used as a 3D thermal netwith help of local vias in themetal layers
to transfer heat from tier 0 to tier 1 layer and also within the layer. The 3D thermal
model considers the impact of via fill material based the type of technology used to

166 7 Three-Dimensional Thermal Modeling: Tools and Methodologies

(a) (b)

Fig. 7.10 Two-tier floorplan with thermal profile of 3D Tree-based FPGA along TSV distribution

T
em

pe
ra

tu
re

 (
K

)

Tree−based FPGA blocks sections

Fig. 7.11 Measured inter-layer temperature results from 2 tier 3D Tree-based FPGA

manufacture TSVs, like via-first, via-middle or via-last process. The via-first process
use tungsten, while via-middle process use doped poly-silicon and via-last process
use copper for via fill and Si O2 for isolation. Figure7.11 shows the temperature at
different Tree levels in 2-tier 3D Tree-based FPGA. The measured peak temperature
of 2D Tree-based FPGA is 73 ◦C and average temperature is 70 ◦C.

7.7 Summary

The main contribution of this work is the development of dedicated 3D thermal
model for 3D Tree-based FPGA architectures. The model takes into account of
in-homogeneous localized heating, heating exchange with the layer, heat transfer

7.7 Summary 167

through external surface of the device, inter-tier heat transfer, dedicated hotspot zones
assisted with help of thermal-TSVs and thermal design techniques. We have devel-
oped a 3D thermal CAD tools for the 3D FPGAmodel which is tested using two-tier
3D stacked Tree-based FPGAwith variable TSV distribution, density, and materials.
The 3D thermal model has been embedded into the thermal aware 3D-IC physical
design tools to optimize thermal management at early stage of 3D FPGA design. The
physical design and thermal simulation results demonstrated an accurate estimation
of different temperature fields in each tier of the 3D FPGA chip. Furthermore the
simulation results have shown the importance of using thermal design techniques
and hardware based heat transfer in mitigating the heat produced within the 3D chip.
Thermal design techniques are effective only when the number of devices in the
3D design are limited such as 3D ASIC, SoC, FPGA etc. However hardware based
techniques are very effective when we have high number of high power devices such
processors and memories integrated in 3D chip, for example MPSoC. In our work,
we have integrated 3D thermal analysis tool to 3D physical design flow. This provides
accurate estimation of temperature profile of each tier in a 3D stack.

References

1. J. Vlach, K. Singhal, in Computer Methods for Circuit Analysis and Design (Springer, 1983)
2. M.B. Kleiner, S.A. Kahn, P. Ramn,W.Weber, Thermal analysis of vertically integrated circuits,

in Proceedings of the IEEE International Electron Devices Meeting, pp. 487–490 (1995)
3. T.A. Davis, I.S. Duff, An unsymmetric pattern multifunctional method for sparse LU factor-

ization. SIAM J Matrix Anal. Appl. 18(1), 140–158 (1997)
4. K.D. Hagen, Heat Transfer with Applications. (Prentice-Hall Inc, Upper Saddle River, 1999)
5. T.-Y. Chiang, S.J. Souri, C.O. Chui, K.C. Saraswat, Thermal analysis of heterogeneous 3D-ICs

with various integration scenarios, in Proceedings of the IEEE International Electron Devices
Meeting, pp. 681–684, Dec (2001)

6. K. Banerjee, S.K. Souri, P. Kapour, K.C. Saraswat, 3D-ICs: A novel chip design paradigm for
improving deep-submicrometer interconnect performance and systems-on-chip integration,
Proc. IEEE 89, 602–633 (2001)

7. C.C. Liu, J. Zhang, A.K. Datta, S. Tiwari, Heating effects of clock drivers in bulk, SOI, and
3D CMOS. IEEE Trans. Electron Device Lett. 23(12), 716–728 (2002)

8. B. Goplen, S. Sapatnekar, Efficient thermal placement of standard cells in 3D-ICs using a force
directed approach, in Proceedings of the IEEE/ACM International Conference onComputer-
Aided Design, Nov 2003, pp. 86–89

9. G. Chen, S. Sapatnekar, Partition-driven standard cell thermal placement, in International
Symposium on Physical Design, CA, 2003

10. K. Skadron et al., Temperature aware microachitecture, in International Symposium on Com-
puter Architecture (ISCA), CA, 2003

11. S. Heo, K. Barr, K Asanovic, Reducing power density through activity migration, in Proceed-
ings of the ISPD, pp. 217–222 (2003)

12. H. Su, F. Liu, A. Devga, E. Acar, S. Nassif, Full chip leakage estimation considering power
supply and temperature variation, in Proceeding of ISPD, pp. 78–83, 2003

13. Altera Corporation, Thermal management for 90 nm FPGAs, Application Note. 358, San Jose
CA, 2004

14. J. Cong, J.Wie, Y. Zhang, A thermal-driven floorplanning algorithm for 3D-ICs, in proceedings
of the ICCAD, pp. 306–313, 2004

168 7 Three-Dimensional Thermal Modeling: Tools and Methodologies

15. Y. Han, I Koren, A. A. Moritz, Temperature aware floorplanning, in 2nd workshop on Temper-
ature aware Computing systems (TACS-2), June 2005

16. K. Sankaranarayanan, S. Velusamy, M. Stan, K. Skadron, A case for thermal-aware floorplan-
ning at the microarchitectural level. J. Instr.-Level Parallelism 7 (2005)

17. S. Gupta, M. Hilbert, S. Hong, R. Patti, Techniques for producing 3D ICs with high-density
interconnect (Tezzaron Semiconductor, Naperville, IL, 2005)

18. S.R. Turns. Thermodynamics: concepts and applications, Cambridge University Press, New
York (2006)

19. A. Telikepalli, Designing for power budgets and effective thermalmanagement. Xcell J. 56(56),
24–27 (2006)

20. M. Lin, A.E. Gamal, Y.-C. Lu, S. Wong, Performance benefits of monolithically stacked 3D
FPGA, in Proceedings of the 2006 ACM/SIGDA 14th International Symposium on Field Pro-
grammable Gate Arrays (Monterey, CA, USA, 2006), Feb 22–24, pp. 113–122

21. P. Sundararajan, A. Gayasen, N. Vijaykrishnan, T. Tuan, Thermal characterization and opti-
mization in platformFPGAs, in International Conference on Computer-Aided Design (ICCAD-
2006), pp. 443–447, 2006

22. F.P. Incropera,D.P.Dewitt, T.L. Bergman,A.S. Lavine, Fundamentals of heat andmass transfer,
Wiley, New York, 2007

23. D.M. Jang, C. Ryu, K.Y. Lee, B.H. Cho, J. Kim, T.S. Oh, W.J. Lee, J. Yu, Development and
evaluation of 3-D SiPwith vertically interconnected through silicon vias (TSV), inProceedings
57th Electronic Components and Technology Conference, ECTC-07, Reno, NV, pp 847–852,
2007

24. A. Jain, R. Jones, R. Chatterjee, S. Pozder, Z. Huang, Thermal modeling and design of 3D
integrated circuits, in Inter-society Conference on Thermal and Thermomechanical Phenomena
in Electronic Systems, pp. 1139–1145, 2008

25. A. Gayasen, V. Narayanan, M. Kandemir, A. Rahman, Designing a 3-D FPGA: switch box
architecture and thermal issues. IEEE Trans. Very Large Scale Integr. VLSI Syst. 16(7), 882–
893 (2008)

26. K. Siozios,A.Bartzas,D. Soudris,Architecture level exploration of alternative schmes targeting
3D FPGAs: A software supported methodology. Int. J. Reconfig. Comput. (2008)

27. J.L. Ayala, A. Sridhar, V. Pangracious, D. Atienza, Y. Leblebici, Through silicon via-based
grid for thermal control in 3D chips, NanoNet, pp. 90–98 (2009)

28. A. Sridhar, A. Vincenzi, M. Ruggiero, T. Brunschwiler, D. Atienza 3D-ICE: Fast compact
transient thermalmodeling for 3D ICswith inter-tier liquid cooling, in IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 463–470, 2010

29. J.-S. Yang, K. Athikulwongse, Y.-J. Lee, S.K. Lim, D. Pan, TSV stress aware timing analysis
with applications to 3D-IC layout optimization, inACM Design Automation Conference (2010)

Chapter 8
Physical Design and Implementation of 3D
Tree-Based FPGAs

Abstract The semiconductor industries current enthusiasm for 3D-ICs is wide-
spread and well warranted, but designing those 3D devices presents a challenge.
Normal 2D design tools are thoroughly honed and refined over many years, nonethe-
less fail to address some of the critical issues of 3D-IC design. A new 3D-IC design
process is evolving gradually from the 2D heritage. Today there are tools to handle
a complete back-end flow and strides are being made to enable true 3D design and
implementation using TSVs. In this chapter we discuss the design algorithms and
techniques to develop 3D physical design tools and use of these tools to design
and fabricate 3D stacked Tree-based FPGAs. This chapter starts with development
of VHDL code generator and continue to the development 3D layouts of Tree-based
FPGA using the 3D physical design tools developed for 3D FPGA design. A new
CAD tool set for 3D physical design and verification based on Global Foundries
130 nm technology node modified to use Tezzaron’s TSV technology is also devel-
oped and presented in this chapter. Through this chapter we addressed few spe-
cific issues 3D designers often encounter dealing with tools that are not specifically
designed to meet their needs. We also presented few additional 3D design support
tools such as 3D LVS/DRC to verify the LVS of the partitioned and merged 3D
designs.

8.1 Introduction

The semiconductor industries’s current enthusiasm for 3D-ICs is widespread and
well warranted, but designing those 3D devices presents a challenge. Normal 2D
design tools are thoroughly honed and refined over many years, nonetheless fail to
address some of the critical issues of 3D-IC design. A new 3D-IC design process is
evolving gradually from the 2D heritage. Tezzaron designed its first 3D integrated
circuits in 2003, the designers used standard 2D CAD tools and cobbled together a
3D DRC/LVS flow based on scripts. Today there are tools to handle a complete back-
end flow and strides are being made to enable true 3D design and implementation
using TSVs. The major performance and power bottleneck of the FPGA design and
manufacturing industry is the programmable interconnects and routing resources of

© Springer International Publishing Switzerland 2015
V. Pangracious et al., Three-Dimensional Design Methodologies
for Tree-based FPGA Architecture, Lecture Notes
in Electrical Engineering 350, DOI 10.1007/978-3-319-19174-4_8

169

170 8 Physical Design and Implementation of 3D Tree-Based FPGAs

FPGA, which have been found to account for up to 80 % of the total delay [1], up
to 85 % of the total power consumption [2] and 90 % of the chip area when both
local and global interconnects are considered [3, 4]. The 3D-IC physical design and
manufacturing technology has emerged as one of the most promising solutions for
overcoming the challenges faced by the interconnects and integration complexity
in modern circuit designs [5], while the planar CMOS technology scaling is facing
the eventual physical limits. TSVs as the key enabling technology element for 3D
integration is currently being actively evaluated as a potential solution to reduce the
interconnect delay and increase the logic density of FPGAs.

8.2 3D Tree-Based FPGA Design Requirements

Considering the area, delay and power consumption overhead, the programmable
routing resources are the key design element in FPGA design. We selected Tree-based
FPGA architecture using a Butterfly-Fat-Tree (BFT) based interconnect network for
the target FPGA architecture due to two reasons: (1) feasibility of increasing logic
density and (2) 56 % reduction of the total area compared to Mesh-based FPGA
architecture [6]. The complexity and challenges associated with the 2D physical
design and implementation of Tree-based FPGA architectures presented in [7, 8].
By selecting to work with Tree-based FPGA architecture and 3D technology, we
strive for the feasibility of optimizing the interconnect area requirement and power
consumption of 3D Tree-based FPGA designs by properly tailoring the structure and
development strategy of partition and implementation of the Tree-based multilevel
programmable interconnect using BFT based network topology. The 3D Tree-based
interconnect design platform is an enabler for manufacturing fast and high density
FPGA to meet the needs of modern circuit designs and prototyping.

8.2.1 Why Tree-Based Interconnect and Not Mesh

We have seen numerous studies [9–13] shows that the switch blocks (SBs) is the
most area-consuming unit compared to other design elements in 2D Mesh-based
FPGAs and this situation is becoming even more worse in 3D Mesh-based FPGAs
because the TSVs are located on 3D-SBs. Although the design and manufacturing
engineers are trying to reduce TSV dimensions, the minimum feature size on the
die is also shrinking. Therefore, the TSVs are expected to remain larger than wire
dimensions in metal layers within the die [14, 15]. Moreover it has been reported in
[16] that the TSV utilization is actually quite low if the 3D-SBs are with full verti-
cal connectivity in use. The experimental and simulation results presented in recent
publications point out that the utilization of TSVs is actually very low in 3D Mesh-
based FPGAs [16] with full vertical connectivity, which motivates us to explore new
interconnect topology and architecture with better optimization flexibility to achieve

8.2 3D Tree-Based FPGA Design Requirements 171

BLBLBLBLBLBLBLBLBLBLBLBLBLBLBLBL

UMSB

UMSB

DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB OUT

BSMUBSMUBSMU

DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB

BSMUBSMUBSMU

IN Pads

To Level 2 2leveLoT2leveLoT2leveLoT

Cluster Level 1

Cluster Level 0
OUT Pads

Fig. 8.1 An illustration of two-level Tree-based FPGA interconnect structure

higher speed, low power consumption, reduced silicon footprint and increased logic
density to which the gap between FPGAs and ASICs can be minimized. Hence we
selected Tree-based FPGA architecture with BFT based interconnect topology for
3D design and implementation. Our previous works [6, 17, 18], also confirms the
multilevel BFT based 2D interconnect topology is able to reduce 59 % of the total
switches and save 56 % of the total FPGA area compared to Mesh-based FPGA with
identical logic density and array size [6]. Considering the challenges associated with
2D physical design of Tree-based FPGA [7, 8], we proposed two different network
partitioning methodology to design and implement high density 3D FPGAs based on
Tree-based interconnect network. We developed complete set of tools and technolo-
gies to conduct 3D design feasibility study and interconnect network characterization
methodologies to build high performance 3D re-configurable systems based on Tree-
based interconnect and a comparison procedure has been put in place to validate the
advantages of 3D Tree-based FPGA over 3D Mesh-based FPGA architectures.

In a Tree-based FPGA architecture [6, 18], the programmable interconnects are
arranged in a multilevel network with the switch blocks (SBs) placed at different tree
levels and the Logic Blocks (LBs) are grouped into clusters as illustrated in Fig. 8.1.
The modified Tree-based FPGA architecture unifies two unidirectional interconnect
network. The downward interconnection network is based on a butterfly-fat-tree
style interconnect topology with a linearly populated downward mini switch boxes
(DMSBs) and unidirectional wires. Similarly the upward interconnect network uses
upward mini switch boxes (UMSBs) to connect logic block outputs to all DMSBs
and further to higher levels of the Tree. The number of DMSBs of a cluster located
at level � is equal to the number of inputs of a cluster located at level � − 1. The
upward network also uses BFT topology to connects LBs outputs to the DMSBs
at each level. As shown in Fig. 8.1, we use UMSBs (Upward MSBs) to allow LBs
outputs to reach a large number of DMSBs and to reduce fanout on feedback lines.
The number of UMSBs of a cluster located at level � is equal to the number of
outputs of a cluster located at level � − 1. UMSBs are organized in a way allowing

172 8 Physical Design and Implementation of 3D Tree-Based FPGAs

LBs belonging to the same owner cluster to reach exactly the same set of DMSBs
at each level. Thus positions, inside the same cluster, are equivalent, and LBs can
negotiate with their siblings the use of a larger number of DMSBs depending on
their fanout. As illustrated in Fig. 8.1, input and output pads are grouped into specific
clusters and are connected to UMSBs and DMSBs, respectively. Thus, input pads
can reach all LBs of the architecture, and output pads can also be reached by all
the from different paths. Using UMSBs and DMSBs greatly enhances routability,
but it increases the interconnect switches number. However this increase in number
switches is compensated by reducing in/out signals bandwidth of clusters at every
level using Rent’s Rule [19] based wire-length optimization tool. In fact, netlists
implemented on FPGA architecture often communicate locally (intra-clusters) and
this fact can be exploited to reduce the bandwidth of signals with inter-clusters
communication. A good estimation of netlists communication locality is given by
Rent’s Rule [19]. Based on this estimation authors in [20] showed that most netlist
Rent’s parameters range between 0.5 and 0.65.

I O = c.m�.p (8.1)

The Rent’s parameter [19] p defined for a Tree-based architecture shown in Eq. 8.1.
The Tree level is represented as � and m is the cluster arity, c is the number of in/out
pins of an LB and IO is the number of in/out pins of a cluster located at level �.
Intuitively, p represents the locality in interconnect requirements. If most of the
connections are routed locally and only a few of them communicate to the exterior
of a local region, p will be small. In Tree-based architecture, both the upward and
downward interconnects populations depend on this parameter. As shown in Fig. 8.2,
we can depopulate the routing interconnect by reducing the number of inputs of each
cluster of level 1 from 16 to 10 and outputs from 4 to 3 (p = 0.73). In this case, if we
consider an architecture with 2 levels of hierarchy, we get a reduction in interconnect

LB LB LB LB LB LB LB LB LB LB LB LB LB LB LB LB

UMSB

DMSB DMSB DMSB BSMDBSMDBSMDBSMDBSMDBSMDBSMDBSMDBSMDBSMDBSMDBSMDBSMD

DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB DMSB

BSMUBSMUBSMU

UMSBUMSBUMSB

Level 1

3 outputs

Cluster with
12 inputs and

Level 2

Fig. 8.2 An illustration of Tree-based interconnect optimization using Rent rule (Level � with p =
0.73), based on Rent optimization, certain number inputs and outputs can be removed independently
at each Tree levels

8.2 3D Tree-Based FPGA Design Requirements 173

switches number from 521 to 368 (28 %). However, a reduction in the value of p
reduces the routability of the architecture too. Thus we must find the best tradeoff
between interconnect population and logic blocks occupancy. As shown in [21],
the best way to improve circuit density is to balance logic blocks and interconnect
utilization. In the case of Tree-based FPGA architecture, interconnect occupancy is
controlled by p and logic occupancy factor is controlled by N , where N is the total
number of LBs in the Tree.

8.2.2 3D Tree-Based Interconnect: A Requirement for High
Logic Density

With the advent of sub-100 nm CMOS technologies, the design and prototyping
cost of cell-based implementation have become exorbitant for most ASICs, making
FPGAs increasingly popular. Current FPGAs, however, cannot meet the performance
and power requirements of many ASICs due to their high programming overhead.
As discussed in [1, 3, 4, 6] as much as 90 % of the FPGA area is occupied by the
programmable routing resources. In addition to consuming most of the die area,
the programmable interconnect also contributes significantly to total path delay in
FPGAs [2, 22]. Furthermore programmable interconnect also contributes to the high
power consumption of FPGAs, which has become a significant bottleneck to their
adoption in many applications. As a result the FPGA performance is significantly
worse in terms of logic density, delay, and power consumption than custom cell-
based ASIC implementations. Studies [1, 2, 8] have estimated FPGA to be more than
ten times less efficient in logic density, three times larger in delay, and three times
higher in total power consumption that ASIC implementations. Although CMOS
Technology scaling has greatly improved the overall performance of FPGAs, the
performance gap between them and ASIC [2] has remained very wide mainly because
the FPGA programming overhead and huge interconnect requirements. In [23] it
is argued that the performance gap between FPGA and ASIC is becoming even
greater in sub-100 nm technologies due to increase in parasitic elements of long wire
routing segments. While the rate of increase in FPGA logic density has tracked that of
ASIC implementations, the system frequency has scaled at a lower pace, and power
consumption has risen to unacceptable levels.

A conceptually appealing approach to reducing the performance gap between
FPGA and ASIC is to use true 3-Dimensional (3D) integration [9, 11, 24, 25],
which increases the number of active silicon layers and optimizes the interconnect
network vertically. Used correctly, 3D integration provides improved bandwidth and
reduced wire length. In the best scenario, if we ignore inter-layer vias, the average
wire length is expected to drop by a factor of (Nlayers)

1/2 [26]. The wire resistance
and capacitance would drop proportionately; that is power would drop by a factor
of (Nlayers)

1/2 and wire (RC) delay would drop by a factor of (Nlayers). Hence
for interconnect dominated architectures such as FPGAs, we expect a significant

174 8 Physical Design and Implementation of 3D Tree-Based FPGAs

reduction in chip delay and power consumption. We know from our previous works
[6, 8], Tree-based FPGA architecture achieves asymptotically fewer switch than the
Mesh-based FPGA. Our previous works [6, 17, 18], confirms the multilevel BFT
based 2D interconnect topology is able to reduce 59 % of the switches number and
save 56 % of the total FPGA area [6] compared to Mesh-based FPGA with iden-
tical logic density and array size. However the 2D layout experiments shows the
wire-length increases logarithmically as the Tree grows to higher levels [8]. It is
difficult task to construct the layout of Tree-based FPGA architecture, specifically to
be efficient for VLSI technology. The wiring structure of Tree-based architecture is
sufficiently regular to permit a layout in Θ(N) area, which includes the wire connec-
tion nodes at different levels and corresponding switches using O(log(N)) wiring
layers. Nonetheless this assumption of fixed number of wiring layers independent
of device capacity is not in line the advance CMOS technology. Moreover we know
the wirelength increases logarithmically as the Tree grows to higher levels. This will
dictate the wire width growth in 2D VLSI model to be O(log2(N)) and the overall 2D
layout area to grow as O(Nlog2(N)). Our approach to limit this wire growth and to
generate realistic physical design model to be compatible to the modern VLSI tech-
nology. We proposed two different way to partitioned the Tree-based interconnect
architecture to design and implement multi-tier 3D Tree-based FPGAs. However,
before we move to the network design partitioning, we will explain the challenges
and issues associated with the development of physical design for 2D Tree-based
FPGA architecture.

8.3 2D Physical Design of Tree-Based FPGA

Designing the Tree-based interconnect routing resources is a major challenge for
Tree-based FPGA. In order to maintain the hierarchy of Tree-based FPGA, a spe-
cial layout methodology is used. We propose two ways to organize the layouts of
Tree-based FPGA. The proposed methodology for physical design of Tree-based
FPGA architecture include complete set of tools starting from VHDL to generation
of layout (GDSII). The HDL generator is designed to generate VHDL code based
on a hierarchical design approach that partitions the design into smaller sections,
implement them separately and assemble them together at the final design phase.
The physical design experiments are performed based on the layout generated using
Global Foundries (GF-130 nm) 130 nm technology node provided by Tezzaron [27]
modified to use Tezzaron’s 3D TSV technology. Mentor’s circuit simulator Eldo is
used to estimate the wire delay switches and interconnection networks at different
Tree levels. In this section we describe the challenges faced by the physical design
of 2D Tree-based FPGA interconnect by using two different 2D physical design
implementation methodes.

8.3 2D Physical Design of Tree-Based FPGA 175

8.3.1 Method 1: Coalesce Scalable Tree-Based 2D Layout
Design

The coalesce scalable 2D physical design methodology is developed in order to
preserve the hierarchy of Tree-based FPGA. The Logic Blocks (LBs) are placed reg-
ularly along with interconnect switches according to the predefined tree parameters,
such as network topology, dimension of the network nodes and floorplan specifica-
tion. Thus, the layout method is scalable and capture different design and architecture
constraints. Figure 8.3 illustrates the 2D floorplan of 4 × 4 (2 levels with cluster size
4) Tree-based FPGA. In order to spread the congestion and wire density over the
FPGA surface, the different interconnect Tree levels were inter-waved to build the 2D
floorplan, which is topologically equivalent to Tree-based FPGA. The 2D floorplan
was designed with regular structure based on tiles, similar to Mesh-based FPGA.
Each tile contains one logic block (LB) and a set of switches of different levels of
the Tree. In this way, the layout obtained is scalable. The IOs of a cluster can be
varied by increasing the switch size of a tile. However this layout is not comparable
to industrial Mesh-based FPGA in terms of speed and performance due to larger
wire lengths at higher levels. The physical design experiments revealed the wiring

Upward Nwt

Downward Nwt

LBBLBL LB

LB LB BLBL

BLBLBL LB

BLBL LB LB

Typical Tile

Typical Tile
Tile

Tile

Tile

Tile Tile Tile

Tile

Tile Tile
Tile

Tile

Tile

Tile Tile

Tile

Fig. 8.3 2D optimized 4 × 4 Tree-based FPGA floorplan

176 8 Physical Design and Implementation of 3D Tree-Based FPGAs

Fig. 8.4 Wire length extracted from Tree-based FPGA Layout

length increases exponentially as the Tree grows to higher levels. This is one of
the major disadvantages of Tree-based FPGA architecture compared to Mesh-based
FPGA, where the largest wiring distance is fixed. The wire length extracted from 2D
Tree-based FPGA layout is illustrated in Fig. 8.4, which shows the exponential rela-
tionship of interconnect network of different Tree levels and wire length. The length
of the local and global interconnect wires starting from level 0 to 6 inµm, configured
to Global Foundries (GF-130 nm) 130 nm technology, is presented in Fig. 8.4.

8.3.2 Method 2: Level-Wise 2D Tree Layout Design

To study and mitigate the long wire length issue of 2D layout at higher levels, a
level-wise 2D Tree layout with 3D adaptability is designed. The 3D adaptability
means the design can be partitioned horizontally or vertically based of the require-
ments to implement multi-tier 3D FPGAs. The disadvantage of level wise physical
design is that, it is not scalable. The interconnect organization of the level-wise lay-
out is arranged in such a way to bring together every cluster and its corresponding
interconnect in order to form a hierarchical layout section with different tree level
orientation to enable the feasibility study of multi-tier 3D Tree-based FPGA design.
Figure 8.5 shows the floorplan of arity 4 Tree architecture with level 0 and 1. The
LBs and interconnects are arranged in order to segregate the logic blocks and pro-
grammable interconnect of the Tree architecture into different tree level sections.
Figure 8.6 illustrates the VLSI layout of level 0 to 3 section of the Tree-based FPGA.
This layout design offers the flexibility to partition the Tree interconnect at a cer-
tain level called the break-point based on optimization wire delay and transform the
2D layout into multi-tier stacked 3D FPGA chip. This will enable us to divide the

8.3 2D Physical Design of Tree-Based FPGA 177

LB LB LB LB

LB LB LB LB

LB LB LB LB

LB LB LB LB

Level 0
Interconnect

Level 1 InterconnectsLevel 0
Interconnects

Fig. 8.5 Floorplan of Tree-based FPGA levels 0 and 1

Level 1 interconnect

Level 3 Interconnect LBs

Level 2 interconnect Level 0 interconnect

Fig. 8.6 Arity 4 Tree-based FPGA: VLSI layout of Tree levels upto 3

programming interconnects and place the major portion of SBs, I/0s and configu-
ration memory above the break-point into a second active layer and to place logic
blocks (LBs) and associated local programmable interconnects along with configu-
ration memory into first active layer to implement two-tier 3D stacked Tree-based
FPGA. Such an organization of FPGA primitives in a multi-tier chip design with
LBs on one layer and SBs and I/Os belong to break-point and above on second layer
will provide flexibility to improve the logic density and performance of Tree-based
FPGA. However this is not possible with 2D tree-based layout illustrated Fig. 8.3,
due to the tiled and rearranged Tree interconnection format. The long wire length
and delay estimation of the Tree-architecture is done using the spice accurate circuit
simulator Eldo, integrated along with 3D physical design flow.

178 8 Physical Design and Implementation of 3D Tree-Based FPGAs

8.4 Sub-path Timing Characterization

The subpath timing characterization is performed on 2D layouts generated using
Global Foundries 130 nm Technology node. Wire lengths at different levels were
evaluated from the layout and used Mentor’s spice accurate circuit simulator Eldo
to investigate interconnect delay. An accurate 130 nm transistor level technology
models are used to investigate switch, interconnect delay and power estimation of
Tree interconnect levels separately. The Tree-based FPGA architecture model used
for timing characterization is illustrated in Fig. 8.7. The experimental model shown
in Fig. 8.7 has only three levels, however we used a seven level Tree-based FPGA
architecture for delay and power estimation. The experimental timing characteri-
zation model for tree interconnection network consists of two unidirectional the
upward and downward interconnection timing path including an I/O interconnec-
tion is highlighted in Fig. 8.7. A sub-path connects a source to a sink and crosses
several MSBs (Mini Switch Blocks). The number of sub-paths in the architecture
is limited and depends on the number of levels. Consequently, given an architec-
ture with n levels, we can isolate the n different sub-paths (symmetric structure). In
Fig. 8.7 we show the 4 isolated sub-paths of an architecture containing 3 levels. Each
architecture is composed of combinational sub-paths that either start from a logic
block (Combinational/Sequential) or from an input pad pi and end on a logic block
(Combinational/Sequential) or an output pad po. To ensure proper circuit operation,
we also must take register setup-times tset and sequential propagation delays dseq

into account (Sometimes denoted as Clock-to-Q delays). Classification of sub-paths
and resulting delays is given below:

1. Combinational logic block → Combinational logic block
d(p) = d(swi tches)
2. Combinational logic block → Output-pad
d(p) = d(swi tches) + d(po)

3. Input-pad → Combinational logic block
d(p) = d(pi) + d(swi tches)

MX1 MX2 MX3 MX4MX1 MX2 MX3 MX4MX4MX3MX2MX1

BSMDBSMD DMSB

UMSB

MX1 MX2 MX3 MX4 UMSB MX1 MX2 MX3 MX4 UMSB

LB LB LB LB

LUT

FF

LUT

FF

LUT

FF FF
LUT

Level 0Level 0Level 0

DMSB Level 1 DMSB Level 1

Input Pads

IO Nets
IO Nets

Upward Network

Upward Network

Downward Network

Downward Network

Downward Network

Sub−path indentification

Upward Network

Feedback Network

Output Pads

Sub−path indentification

Level 2

Level 1

Level 0

Fig. 8.7 Sub-path timing characterization setup shows two levels and IOs of Tree-based FPGA

8.4 Sub-path Timing Characterization 179

4. Sequential logic block → Sequential logic block
d(p) = dseq + d(swi tches) + tset

5. Sequential logic block → Combinational logic block
d(p) = dseq + d(swi tches)
6. Sequential logic block → Output-pad
d(p) = dseq + d(swi tches) + d(po)

7. Input-pad → Sequential logic block
d(p) = d(pi) + d(swi tches) + tset

8. Combinational logic block → Sequential logic block
d(p) = d(swi tches) + tset

Delays on sub-paths depend on the length of wires connecting MSB and logic
blocks. These lengths are extracted from the routed MFPGA layout. Figure 8.4 shows
the wirelength extracted from a symmetric layout of a 7-levels Tree-based FPGA
architecture (16K LBs). The basic tiles of the structure are:

• The LB that contains one multiplexer 16:1, one Flip-Flop and a bypass 2:1 Mul-
tiplexer,

• The MSB that contains 4 buffered multiplexers,
• The configuration Memory blocks composed of 16 SRAM cells,
• The decoder for configuration memory addressing.

These basic tiles are duplicated at each level to construct the hierarchy recursively.
We abut those tiles using a symmetric H planning technique. Figure 8.8 shows the

Fig. 8.8 Delay estimated using 2 Tree levels, combinational circuits without flip-flops

180 8 Physical Design and Implementation of 3D Tree-Based FPGAs

Fig. 8.9 Delay estimated using 5 tree Levels, Sequential circuits with flip-flops

eldo waveform for a 2 level Tree structure path including wire connections and
switches. This shows an example of a sub-path which begins from an I/O pad and
end at the out of a logic table. Figure 8.9 shows the delay extracted for 5 level
Tree-based FPGA layout illustrated in Fig. 8.6. The sub-path used in this experiment
begins from the output of multiplexers used inside logic blocks (LBs) which passes
through the Flip-Flop and ends of the input of another logic block. All sub-path
delay analysis is performed based on the sub-path classification mentioned above.
The delay includes inter level wire connections, switches, buffers, SRAMs and logic
blocks as mentioned above. Figure 8.10 shows the combined delay of wires and
switches of upward programmable interconnection network at different levels of
7-level Tree-based FPGA. The sub-path delay analysis shows the logarithmic
increase in path delay of Tree-based interconnect network. Figure 8.11 shows the
network delay of feedback network at different tree levels. The feedback networks
takes the output from the logic blocks and connected to next level of DMSBs or to
the level as so by using UMSB network using BFT based network topology.

8.5 3D Design Methodologies 181

Level 2

Level 3

Level 4

Level 5

Level 6

Upward Interconnection
Network

Delay Estimation for

LUTs count

N
et

w
o

rk
 D

el
ay

 (
n

S
)

Break Point

 0

 2

 4

 6

 8

 10

 12

 14

 100 1000 10000 100000

upward_interconnect

Fig. 8.10 Upward interconnect network delay estimation of 7 level Tree-based FPGA architecture

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 100 1000 10000 100000

M
ax

 D
el

ay
 a

t e
ac

h
Le

ve
l i

n
’n

s’

Tree Levels, LUTs Count

Level 2
Level 3

Level 4

Level 5

Level 6

Delay Estmation of Feedback Interconnection Nwt

Feedback Nwt

Fig. 8.11 Feedback network delay estimation of 7 level Tree-based FPGA architecture

8.5 3D Design Methodologies

We defined two types of network partitioning methodologies for the design and
implementation 3D Tree-based FPGA: (1) vertical partitioning: the programmable
interconnect network is partitioned vertically by placing the break-point at the highest

182 8 Physical Design and Implementation of 3D Tree-Based FPGAs

SB

SB SB SB SB

SB

SB SBSB

SB

SB SBSB SB

Level 0

Level 1

Level 2

Level 3

Level 4

SB

SB

BSBSBSBS SB

Logic Blocks

To level 4 and above

Horizontal Break point

UMSB
feedback

UMSB feedback
UMSB feedback

DMSB signals

slangisBSMDslangisBSMD

Vertical Break point

Fig. 8.12 Representation of programmable interconnect network partitioning (break point) of a
four-level Tree-based homogeneous FPGA. Horizontal break-point: blue dotted line, Vertical break-
point: red dotted line

level �v of the Tree-based programmable interconnect network to balance the silicon
area and power consumption across multiple tiers of the 3D chip and (2) horizontal
partitioning: the main objective is to optimize the critical path delay and improve
logic density. The horizontal break-point is placed at a particular tree level �h based
on the design and manufacturing constraints to achieve interconnect delay optimiza-
tion using TSVs. The location of the level �v is always fixed at highest tree level,
however the location of level �h is decided based on the architecture and wire delay
requirements. Figure 8.12 illustrate both vertical and hori zontal break-points in
homogeneous Tree-based FPGA. As discussed already the main goal of horizontal
partitioning is to limit the exponential increase in network delay as we increase the
number of levels in the fat-Tree. In a horizontally-partitioned design the LBs and
local programmable interconnects along with configuration memory is place in one
layer and rest of the programmable interconnects and I/Os above the break-point
along with configuration memory is placed in another layer. The advantage of such
partitioning is that it provides flexibility in increasing logic density and optimizing
network delay. However the horizontal partitioning methodology is not balanced in
terms of area and power consumption. Previous work [3, 17] confirmed, that placing
Hard-blocks like DSP slice and memory units at the higher level of Tree is more
beneficial to optimize area and speed of heterogeneous FPGA. Figure 8.13 shows
the heterogeneous version of Tree-based FPGA with the placement of hard-blocks
and partitioning methods. In this case we utilized the white space left in active layer
two to places hard-blocks to design heterogeneous Tree-based FPGA.

8.5 3D Design Methodologies 183

Logic Blocks

Hard Blocks

switch blocks switch blocks

To level 4 and above

Level 2

Level 1

Level 0

Level 3
Vertical Break Point

Horizontal Break point

SB SB SB SB SB SB SB SB

SB SB SB SB SB SBSB SB

SBSB

SB

Hard Blocks

Fig. 8.13 Representation of programmable interconnect network partitioning (break point) of a
four-level Tree-based heterogeneous FPGA. Horizontal break-point: blue dotted line, Vertical break-
point: red dotted line

8.5.1 Vertical Partitioning

The main focus of vertical partitioning method is to balance the total silicon area
and power consumption of the two-tier 3D homo/heterogeneous Tree-based FPGA
equally between the active layers of the 3D stacked chip. The total number of LBs plus
HBs and SBs are equally partitioned into multiple stacked tiers. Figure 8.14 shows
the layout formation of two-tier homogeneous Tree-based FPGA. The break-point
is set at the highest level of the Tree and interconnected using TSVs as illustrated in
Fig. 8.14. Since the break-point is set at highest Tree level, the total number of TSVs
required for a vertically partitioned 3D test chip with seven-Tree levels and 16K
LUTs is 40,960 for a fully connected (Rent = 1) two-tier Tree-based FPGA. How-
ever we used Rent’s Rule [19] based wire-length optimization model to find optimum
number of TSVs and routing resources required for the design. Using Rent’s Rule
based wire-length optimization model we removed 17,203 TSVs from vertically par-
titioned Tree and 36,864 TSVs from horizontally partitioned two-tier 3D test chips
with minimal impact on speed. The interconnect delay increases exponentially as
the Tree grows to higher levels, the longest wire in 3D Tree-based FPGA located at
highest Tree level is replaced by TSV and limited wire length optimization is possi-
ble at other levels due the hierarchical nature of upward interconnection network. In
a vertically partitioned Tree, the downward interconnection network is more local-
ized inside the owner cluster, however BFT based upward hierarchical interconnect
network connects feedback to all cluster inputs. In a vertically partitioned Tree-based
interconnect, only 50 % of the upward interconnects are realized using TSVs. This
makes the vertically partitioned 3D FPGA ≈3.3 times slower in speed compared

184 8 Physical Design and Implementation of 3D Tree-Based FPGAs

Vertical break point

Level
0 to 3

Tree level 5

Tree level 5

Tree level 5

Tree level 5

TSV interconnection
Split Level 6

Tree Level 4

I/O pads I/O pads I/O pads I/O pads

I/O padsI/O pads I/O pads

Fig. 8.14 Vertically partitioned two-tier homogeneous Tree-based FPGA with break point set at
level 6. The red dotted line represent the break-point. HBs can be placed at any level of the Tree

to horizontally partitioned 3D Tree-based FPGA. Nevertheless, the advantages of
vertical partitioning method compared to horizontal includes reduced chip area by
50 %, balanced power consumption across the tiers, reduced number of TSVs, and
design complexity is minimized. Figure 8.15 shows the how the hard-blocks are con-
nect to higher levels of the Tree and the impact of partitioning. Previous work shows
[3, 17], it is better to stack hard-blocks higher level of Tree to optimize the area-delay
product. In the case vertical partitioning, the hard-blocks are equally distributed on
both tiers to balance the power consumption and area of the two-tier chip.

8.5.2 Horizontal Partitioning

In hori zontal partitioning methodology, the location of the break-point is decided
based on the estimated interconnect network delay. The interconnect delay of Tree-
based architecture increases exponentially [6, 8, 28] as the Tree grows to higher
levels. Horizontal partitioning methodology is introduced optimize the exponential
increase Tree network delay. In horizontal partitioning methodology, the LBs and
local interconnect levels below the break-point are placed in the bottom tier and pro-
grammable interconnect resources at levels above the break point and I/O pads are
placed in the top tier of the 3D stacked chip as illustrated in Fig. 8.16. The Fig. 8.16

8.5 3D Design Methodologies 185

Vertical break point

Level
0 to 3

Tree level 5

Tree level 5

Tree level 5

Tree level 5
Adder

Adder

Multi_36

Multi_36

Multi_36

Multi_36

Adder

Adder

Multi_18

Multi_18
reddAreddA

Multi_18

Multi_18

A
dd

er
M

ul
ti_

36
A

dd
er

M
ul

ti_
36

A
dd

e
r

M
ul

ti_
36

A
dd

er
M

ul
ti_

36
A

dd
er

M
ul

ti_
36

A
dd

er
M

ul
ti_

36

TSV interconnection
Split Level 6

Tree Level 4

I/O pads I/O pads I/O pads I/O pads

I/O padsI/O pads I/O pads

Fig. 8.15 Vertically partitioned 3D stacked heterogeneous Tree-based FPGA with break point set
at level 6. The red dotted line represent the break-point. HBs can be placed at any level of the Tree

is an illustration of a two-level Tree architecture, in which the partition divides the
LBs from the programmable routing resources. Figure 8.16 shows the 3D layout
representation of two-tier homogeneous Tree-based FPGA, in which the I/Os are
connected to Tree levels 4, 5 and 6 to reduce number of TSV used in the chip. The
hori zontal break-point (red dotted line) is set between level 3 and 4. The location
of break point is decided based the delay measurements of tree levels discussed in
Sect. 8.7. The delay measurements show the path delay of the programmable rout-
ing resources placed at the top tier is reduced 3 times and an overall path delay
reduced 3.3 times compared to 2D layout. The interconnect path delay optimization
is achieved by exploiting the design flexibility introduced by the segregation LBs
and programmable routing resources into multiple tiers. Effectively almost 80 % of
programmable routing network is placed on top of logic blocks is strongest point of
horizontal partitioning methodology. The 3D test chip contains 16K LBs placed in
tier 1 (bottom tier) with 65,536 vertical input pins and 16,384 vertical output (feed-
back) pins. For a fully connected 3D test chip requires 81,920 TSV communication
between top (tier 0) and bottom tiers. Using Rent’s Rule based wire-length opti-
mization model, we removed 36,864 TSVs from horizontally partitioned two-tier
3D test chips with minimal impact on speed. We have approximately 20 % white
space in tier 0 of horizontally partitioned 3D homogeneous Tree-based FPGA due
to unbalanced hardware partition. As illustrated in Fig. 8.16, the partition is done in
such a way to stack the programmable routing resource on top of logic-blocks and
this method provides flexibility in increasing logic density and lowering critical path
delay [25]. While designing 3D heterogeneous Tree-based FPGA, we used the white

186 8 Physical Design and Implementation of 3D Tree-Based FPGAs

TSV
TSVThermal interface

TSV

TSVTSV Break point Level

Higher level interconnects

I/O pads in Layer 0
I/

O
 p
ad

s
in

 L
ay

er
 0

I/O pads in Layer 0

Higher level interconnects
H

ig
he
r

le
ve

l i
nt

er
co
nn

ec
ts

Tier 0

Tier 0

Tier 1

4

5

5

4

6
6

Horizontal Break Point

Floorplan Tier 1

LUTs, Clusters

Local Interconnects upto Level 3

Tree Level 0 to 3

Fig. 8.16 Horizontal partitioning: break point between level 3 and 4 of the 3D heterogeneous Tree-
based FPGA. The red dotted line represent break-point. I/Os and HBs are placed in tier 0 along
with high level interconnects

space available at tier 0 layer to stack HBs at multiple levels of Tree-based intercon-
nect network as illustrated in Fig. 8.17. This is consistent with previous experiments
conducted in [17] which leads to the conclusion that, placing HBs at higher levels
of the Tree-based interconnect network leads to a better trade-off between area and
speed of 3D heterogeneous Tree-based FPGAs.

8.5.3 Through Silicon via (TSV) Modeling

We used six metal 130 nm technology node provided by Global Foundries (GF-
130 nm) that is modified to include TSVs according to the specification of T ezzaron
Semiconductor. The GF-130 nm/Tezzaron process has one polysiliocn layer and 6

8.5 3D Design Methodologies 187

Floorplan

Horizontal Break Point

LUTs, Clusters

Tier 1

Tier 0

Tier 1

Hard Blocks

adder

multiplier

Higher level interconnects

I/O pads in Layer 2

Level 4
Level 5

Level 6

I/
O

 p
ad

s
in

 L
ay

er
 2

TSV

Fig. 8.17 Horizontal partitioning: break point between level 3 and 4 of the 3D heterogeneous Tree-
based FPGA. The red dotted line represent break-point. I/Os and HBs are placed in tier 0 along
with high level interconnects

metal layers, however the last metal layer is reserved for wafer-to-wafer or TSV
connections. Therefore, only five metal layers are available for design and all of
them are thin metal layers intended for digital routing. Tezzaron’s via-first 3D man-
ufacturing process produces very small TSVs that are approximately 1.2µm wide
with 2.5µm minimum pitch and 6µm height [14]. The liner thickness is 100 nm and
we used Si O2 for liner deposition. The estimated values provided by Tezzaron for
TSV resistance RT SV and capacitance CT SV are ≈600 mΩ and 15f F respectively.
The wire delay estimation of tree levels for the 3D stacked Tree-based heterogeneous
FPGA is extracted from the two-tier layout developed using Tezzaron Process and
validated using Mentor’s spice accurate circuit simulator Eldo. The break-point TSV
delay is measured using the TSV model presented in [12, 29]. The TSV delay esti-
mated using eldo is ≈28–32 pS. The wire delay estimation of tree levels for the 3D
stacked Tree-based heterogeneous FPGA is extracted from the two-tier layout devel-
oped using Tezzaron Process and validated using Mentor’s spice accurate circuit
simulator Eldo. The break-point TSV delay is validated using eldo is ≈28–32 pS
for Tezzaron TSVs. In tier 0, the spatial distribution of TSVs, SBs and HBs are
rearranged in order to optimize the wire delay and temperature distribution at higher
levels.

8.6 3D Tree-Based FPGA Physical Design Flow

Modern 3D designs, in which the active devices are placed in multiple layers using
3D integration technologies, are helping to extend the validity of technology scal-
ing in today’s nano era. However the progress in commercial 3D-ICs has been slow

188 8 Physical Design and Implementation of 3D Tree-Based FPGAs

due to multiple reasons. One of them is the lack of appropriate physical design
tools that takes into account the new constraints arise from the third dimension. In
this section we present a 3D physical design tools flow for the design and imple-
mentation of Tree-based FPGAs. The 3D-IC design with TSVs do not require a
revolutionary new 3D design system, however they do require new capabilities that
need to be added to the existing toolsets for digital design, analog/custom design,
and IC/package co-design. These capabilities should support the three key silicon
realization goals:-unified design intent, abstraction, and convergence. The end goal is
to optimize system cost with the shortest possible turnaround time. If 3D-ICs cannot
be both cost and time effective, they will not enjoy widespread adoption. Above all,
a comprehensive solution is needed. Many 3D stacks will combine digital and ana-
log/RF circuitry, requiring a strong analog/mixed-signal capability. Because of the
unique packaging requirements of stacked die, an IC/package co-design capability
is a must. Additionally, fitting 3D-ICs on a board is challenging, requiring a capable
PCB layout system with appropriate analysis tools. Thus, anyone who presents a
complete solution must provide expertise in digital, analog, IC, package, and PCB
design. 3D-IC design is a shared effort. The package designer knows where to put
pins, but knows little about the design of the IC. The IC designer can place TSVs
inside the die, but has limited knowledge of the package. The PCB designer will have
to integrate the 3D IC package with other components on the board. Thus the design
and development of 3D-ICs will require close collaboration and co-design among
groups that have historically worked separately.

To design and develop 3D multi-tier Tree-based FPGA, we used Global Foundries
130 nm technology node modified to use Tezzaron’s TSV technology [14, 27].
Figure 8.18 shows the overall 3D FPGA physical design flow to design and imple-
ment multi-tier 3D Tree-based FPGA. The design flow covers all areas of 3D design,
including the design partitioning, merging multiple tiers (gds files) and design sign-
off analysis. In addition, we also address few specific issues that 3D designers will
encounter dealing with tools that are not specifically developed to meet their needs.
The physical design process starts with the RTL description of Tree-based FPGA
generated using VHDL code generator, which is developed to generate VHDL code
based on a hierarchical design approach that partitions the design into smaller sec-
tions, which implement clusters separately and assemble them together at the final
design phase. The physical design studies are performed using the layout generated
with help of Global Foundries 130 nm technology node (Tezzaron 3D Design plat-
form). Mentor’s circuit simulator Eldo is used to characterize the wire delay and
power consumption of switches and interconnection networks at different tree levels
of 2D layouts. For the horizontally partitioned design, tier 1 contains LUTs and local
programmable interconnects from Tree levels 0 to 3 (design2) and tier 0 contains
programmable SBs and interconnects above the break-point along with IOs and HBs
(design1) as illustrated in Figs. 8.16 and 8.17. We then used cadence design com-
piler to compile VHDL into structural Verilog for each die. The compiled Verilog is
then input into Cadence Encounter to perform semi-automated physical design steps.
This design tool augmented to test different 3D stacking methodologies. We used
both Face-to-Face (F2F) and Face-2-Back (F2B) stacking methodology provided by

8.6 3D Tree-Based FPGA Physical Design Flow 189

Design 1(Tier 0) Design 2 (Tier 1)
−−LUTs, Interconnects
(below break−point) (above break point)

−−VDD/VSS
−−Global network

−−F2F and F2B stacking
−−Vias and landing pads
−−TSVs for I/O pads, address pads

8. Routing(Encounter)
−−Post rout Timing
−− GDSII Design 1, GDSII Design 2

7. CTS timing

5. Power Planing

−− Pre CTS timing
−−Clock Tree routing (Encounter)
−−Post CTS timing

3D Sign−off analysis

1. Merge GDSII (Virtuoso)

−−Design1 (Tier0.gds)

−−Design2 (Tier1.gds)

2. Timing Analysis
−−modelsim

3. Power Analysis
−−modelsim, encounter

4. Thermal Analysis
−−3D FPGA thermal model

5. LVS and DRC
−−Virtuoso, calibre

1. Architecture description
−− Tree−based FPGA

−− LUT size, cluster size, levels

2. VHDL Code generation
3. Design Partitioning

−−Interconnects, IOs

−−Horizontal partition

6. Placement (Floorplaning)

Fig. 8.18 3D FPGA physical design flow for design and analysis of horizontal and vertically
partitioned 3D Tree-based FPGA using 2D design tools with additional add-on tools

Tezzaron’s 3D design platform using via first TSV process. The Tezzaron’s 3D stack-
ing kit support two types of TSV structures: Super-Contact and Super-Via [14]. In
our design we used Super-Contact, using tungsten via fill.

8.6.1 3D Stacking Methodologies

To experiment both F2F and F2B stacking methodologies, we conducted two exper-
imental designs using two-tier stacked design, since we have only two layers in our
3D FPGA test chip. As illustrated in Fig. 8.19 in F2F stacking, the second wafer/die is
flipped from left-to-right and bonded via copper thermal bonding using 3.4µm Metal
6 pads with 5µm pitch of the first wafer/die. After bonding the second wafer/die is

190 8 Physical Design and Implementation of 3D Tree-Based FPGAs

F2F stack

Super Contact (TSV)

Super Contact (TSV)

Dielectric(SiO2/SiN)

Gate Ploy

Cu (M6, top metal

Al (M1−M5)
W (Tungsten via fill)

STI (Shallow trench isolation)

12µm

6µm

6µm

Die1/Wafer 1

Die2/Wafer 2

Pad Out
Two−tier Face−2−Face stack

Fig. 8.19 Face-2-Face 3D stack representation of Tier 1 (design 2) and Tier 0 (design 1) of horizontal
partitioned 3D Tree-based FPGA

thinned down to the TSV, that is 6µm. After thinning, the second wafer/die is about
12µm thick, with ≈6µm metal and wiring plus 6µm of bulk silicon with TSVs,
where the original thickness of substrate is more 700µm. The insulation material
between TSV and silicon is oxide with 1000 Å thickness. The I/O signals are routed
through TSVs to the back surface of tier 0 and from there, they will be fanned out past
the edge of the device to connect to I/O pads on the surface of the 3D FPGA chip.
In the case F2B stacking the second wafer/die or the tier 0 is thin down to TSV first
and after thinning the tier 0 die is about 12µm thick with ≈6µm metal and wiring
plus 6µm of bulk silicon with TSVs. After this step the first wafer/die or tier 1 with
logic density is flipped and stacked on top of the second wafer/die or tier 0 using
the exposed TSVs and copper thermal bonding pads as illustrated in Fig. 8.20. After
stacking the two-tier F2B test chip is flipped again to make I/O, power and ground
connections on tier 1 die. The via-first TSVs between tier 0 and 1 have their landing
pads on Metal 1 and Metal 6 as illustrated in Fig. 8.21. The connection between
via-first TSVs are made using local interconnection and vias in between adjacent
dies as illustrated in Fig. 8.20. In general, for F2B stacking, the TSV depth and wafer
thickness may vary according to the 3D manufacturing process specifications. The

8.6 3D Tree-Based FPGA Physical Design Flow 191

F2B stack

Dielectric(SiO2/SiN)
Gate Ploy

Cu (M6, top metal
Al (M1−M5)
W (Tungsten via fill)

STI (Shallow trench isolation)

Super Contact (TSV)

Pad Out

Die2/Wafer 2

Die1/Wafer 1

Tier 0

Tier 1

Two−tier Face−2−Back Stack

6µm

12µm

Fig. 8.20 Face-2-Back 3D representation of Tier 1 (design 2) and Tier 0 (design 1) of horizontal
partitioned 3D Tree-based FPGA

copper signal and thermal landing pads includes keep-out-zones uniformly located
around them to reduce coupling effects and CTE stress on active devices located
around the TSVs, which is essential to maintain the 3D system performance.

8.6.2 3D FPGA Placement and Route

The place and route for two-tier 3D heterogeneous Tree-based FPGA is performed
using Cadence Encounter. Figure 8.21 illustrates the pictorial representation of the
logic units and interconnection switch blocks along with TSVs are arranged in a hor-
izontally partitioned two-tier 3D stacked FPGA using F2B stacking configuration.
The aim is to design and implement high density multi-tier 3D FPGA. To build such
a multi-tier chip, we need to develop both F2F and F2B type of stacking as illus-
trated in Figs. 8.19 and 8.20. For the 3D FPGA demonstrator, we used a seven-level

192 8 Physical Design and Implementation of 3D Tree-Based FPGAs

Thermal TSV

Power Delivery
Network(TSV)

Higher Level Programmable
Interconnects

Tier 1

Signal
 TSVs

Tier 0/ HBs/I/Os

Design 1

Design 2
LBs

Fig. 8.21 3D representation of Tier 1 (design 2) and Tier 0 (design 1) of horizontal partitioned 3D
Tree-based FPGA

Design 1

Tier 0Tier 1

Design 2

Power delivery networks

Power delivery networks

TSV interconnctions (Cluster inputs, LUTs feedback)

I/Os

DMSB outputs

Address, data(8 bits), clock network, Reset, UMSB outputs

LUT inputs

DMSB outputs

Fig. 8.22 TSV assignment on Tier 1 (design 2) and Tier 0 (design 1) of the 3D stacked Tree-based
FPGA for F2B stacking configuration

homogeneous and heterogeneous Tree-based FPGA architectures with horizontal
break-point �h placed between levels 3 and 4. In this experiment, we designed a two-
tier F2B and F2F 3D Tree-based FPGA. Figure 8.22 shows the placement of vertical
interconnection (TSVs) between tier 0 and 1, that is used to connect switch-block
(DMSB outputs) from tier 0 to cluster inputs (LUT inputs) at tier 1 using butterfly-
fat-tree network topology. Communication between LBs in tier 1 and higher level
routing resources in tier 0 are established using TSVs for F2B configuration and for
F2F stack we used copper thermal boning pads. Any net that connects to F2F/F2B
via and thus interconnecting circuitry from tier 1 to tier 0, is defined as 3D net. The

8.6 3D Tree-Based FPGA Physical Design Flow 193

Design 1
Tier0

Design 2
Tier1

Design 1
Tier0

Design 2
Tier1

TSV Connection for IO Pads

Direct Bond Interface Pads

Fig. 8.23 TSV assignment on Tier 1 (design 2) shows the keep-out zone

individual designs for each die (tier 1 and tier 0) therefore must contain pins for all
nets that cross the vertical interconnection boundary of the two-tier test chip with 7
Tree levels and 16K LBs and horizontal break-point placed between levels 3 and 4.
The tier 1 (design2) contains only LBs and their communications to tier 0 (design 1).
The interconnecting vias from tier 0 and 1 were manually placed on both dies for
F2F using copper thermal bonding and TSVs are used only for off-chip I/O and
power/ground connections.

One exclusive requirement that the Tezzaron TSV process imposes is on manda-
tory minimum TSV pitch of 250µm throughout the entire wafer. This requirement
forces us to include at least one TSV inside every 250µm window in our design.
According the Tezzaron 3D process, this is used for planarity of the wafer during
Chemical and Mechanical Polishing (CMP) process. In F2F stacking, the die is
thinned down to TSV after bonding without handling the wafer or die. Figure 8.23
shows the placement of TSV using metal 6 layers with keep-out zone in place. In
certain locations, we manually inserted dummy TSVs before placement to meet this
requirement. Figure 8.22 presents the TSV assignment of tier 0 and 1 dies of a clus-
ter in the 3D stacked Tree-based FPGA test chip. In our horizontally partitioned 3D
FPGA test chip, we have 7 Tree levels with arity set to 4 (cluster with 4 LUTs).
In a fully connect Rent = 1 test chip contains 81,920 signal TSVs connections
between tier 0 and 1 for fully connected FPGA chip. However we used intercon-
nect optimization method using Rent’s Rule to minimize the TSV count. The power
and ground distribution networks (PDNs) are mainly generated using the strip and
ring generation commands provided in cadence Encounter. Figure 8.24 shows the

194 8 Physical Design and Implementation of 3D Tree-Based FPGAs

Tier 1
Design 2

Design 1
Tier 0

Horizontal
Partition

Tree−based FPGA

7 Level

Fig. 8.24 Tier 1 (design 2) and Tier 0 (design 1) of the horizontally partitioned 7 level Tree-based
FPGA with 16K LUTs

final singed-off two-tier layout design of horizontally partitioned seven-levels 3D
heterogeneous Tree-based FPGA with 16K LUTs and 384 HBs connected at level 4
(�H B).

8.6.3 3D Design Sign Off Analysis

The verification of 3D-IC using TSVs requires a design flow for the design rule check
(DRC) and Layout-Versus-Schematic (LVS), which is different from conventional
planer CMOS process. In the case of DRC, it is not significant change, because in
our 3D design flow, the two-tier 3D designs are treated as two independent planar
dies, and each planar die could be checked separately using conventional design rule
except for the TSV related design rule. The design rules for TSVs are provided by
Tezzaron and they are fully compatible with conventional CAD tools such as Calibre
DRC. At the present stage of technology development and 3D-IC applications, it is
assumed that there are no interactions between the TSVs, and a model for a single
TSV is provided by the foundries. For verification purposes, TSVs are treated as an
LVS device (GDS based flow) or as a Via (LEF/DEF based flow), and the provided
TSV model is used for downstream simulation. This assumption, however, may
not hold true as the technology advances and the TSV densities and frequencies
become high, accurate modeling and extraction of the interactions required. This
new simulation model would require more accurate process description, accurate
frequency dependent modeling and appropriate flow development to take advantage
of the modeling accuracy. The DRC module used LEF/DEF based flow, in which
the TSV is treated as via. The calibration with TSV profile, generate a simple R-C

8.6 3D Tree-Based FPGA Physical Design Flow 195

model for TSV and this model is used in simulation, if high frequency is not required.
However the tools used for DRC did not have high frequency models. In normal case
the high frequency model should be used in place of the R-C model generated.

Unlike DRC, LVS cannot be performed with an individual layer-based method.
Since all tiers are electrically connected together, the schematic of the whole system
should be compared across all layers of the system at the same time. However, the
conventional CAD tools are unable to support 3D LVS, we developed pseudo 3D LVS
method using conventional CAD tools, such as Calibre LVS. The most intuitive way
is to add labels on the vertical connections. In the Tezzaron 3D-IC design process,
every die has a pattern of uniformly distributed micro metal points (Supercontact)
on both sides of the top and bottom tiers for wafer bonding. When two layers are
stacked, all the metal points on one tier are connected to the matching metal points
on the other layer. All vertical connection are made through this metal points and
TSVs should be positioned on the metal points. By adding labels on all metal points
of one tier and adding same labels on all metal points of the other tier, 3D LVS can be
performed on side-by-side layouts, since Calibre-LVS recognizes the two nets having
same net name as one connected net in the layout. To speedup this method, we used
C programs to merge multiple streams of GDSII files into one integrated GDSII file
and compare with the top level schematic as illustrated in Fig. 8.25. After completing
DRC/LVS for both design1 and design2, we used the flow proposed in Fig. 8.25 to
integrate the design1(tier0) and design2 (tier1). When Calibre-LVS compares this
merged GDS file (tier01.gds) with top level schematic, it requires the same number
of rule deck files as tiers. The rule deck file for the tier 0 is original rule deck file of
conventional planar process and it has information on electrical connections inside
tier 0 and other rule deck files are modified versions based on the original rule deck
file. They have the information on connections inside their corresponding layers as
well as electrical connections to adjacent layers. This methodology can be extended
to check LVS of multi-tier 3D ICs. For more than two GDSII files we also have to
modify the merger program to perform hierarchical integration of multiple (GDSII)
layers.

Tier_0_1.gds Calibre LVS Top_Level.cdl

Tier_0.gds

Tier_1.gdsTier_1.gds

Tier_0.gds

Layout files
Top leve schmatic files

Rule deck files

rule_deck0.cal

rule_deck1.cal

gd
sm

er
ge

.c

3D LVS flow

Fig. 8.25 Proposed LVS flow for 3D Tree-based FPGA

196 8 Physical Design and Implementation of 3D Tree-Based FPGAs

8.7 3D Timing Analysis

The timing analysis for hori zontal and vertical partitioning is performed using the
two-tier 3D Tree-based FPGA layout generated using Tezzaron 3D design platform.
Figure 8.26 shows the timing analysis of seven level Tree-based FPGA architecture
extrated from the 2D layout. As expected the interconnect delay increases expo-
nentially as the tree grows to higher levels. Figures 8.27 and 8.28 shows the delay
extracted from the 3D layout of the horizontally and vertically partitioned two-tier
Tree-based FPGA respectively. We used Eldo to validate the delay values obtained
from the layout experiments. The layout extraction for tier 0 and 1 provides the R
and C values of inter-level interconnects and switches. Figure 8.27 shows the net-
work delay of 3D horizontally partitioned layouts. The timing analysis horizontally
partitioned layout shows the network delay reduced by 3.3 times compared to 2D
layout as illustrated in Fig. 8.26. The break-point �h is placed between level 3 and
4. The delay between levels 3 and 4 is too small to be represented in Fig. 8.27,
since TSV delay is ≈28 pS. Figure 8.28 shows the path delay estimated for vertically
partitioned layouts. In this case the break-point �v is placed at level 6 and the other
levels delay reduction almost negligible and due to this reason vertically partitioned
Tree-based FPGA 3 times slower compared to hori zontally partitioned Tree-based
FPGA. The exploration setup shows horizontal and vertical partitioning methodol-
ogy for two-tier 3D Tree-based FPGA performs 64 and 42 % better compared to 2D

M
ea

su
re

d
de

la
y

in
 n

S

LUT

L6

L5

L4
L3

L2
 0

 2

 4

 6

 8

 10

 12

 14

 10 100 1000 10000 100000

"time_2D_3D1.tex" using 1:2

Fig. 8.26 Interconnect delay estimation of 7 level Tree-based FPGA architecture. The program-
mable interconnect is not pratitioned according to horizontal or vertical break-point 3D design

8.7 3D Timing Analysis 197

LUTs at levels

M
ea

su
re

 D
el
ay

 in
 n

S

L6
L5

L4
L3

Break−point(TSV)

 0

 2

 4

 6

 8

 10

 12

 14

 10 100 1000 10000 100000

"time_2D_3D1.tex" using 1:3

Fig. 8.27 Horizontal break-point interconnect delay estimation of 7 level Tree-based FPGA archi-
tecture. The programmable interconnect network is pratitioned horizontally between levels 3 and 4

M
ea

su
re

d
de

la
y

in
 n

S

Vertical Partitioning
3D delay

L5

L4

L3

L6

TSV
Break Point
Vertical

No of LUTs

 0

 2

 4

 6

 8

 10

 12

 14

 10 100 1000 10000 100000

"time_2D_3D_vertical.tex" using 1:3

Fig. 8.28 Vertical break-point interconnect delay estimation of 7 level Tree-based FPGA architec-
ture. The programmable interconnect network is pratitioned vertically and placed the break-point
at the highest level of the tree

counterpart with identical logic density and size. As described in previous sections,
the horizontally partitioned 3D Tree-based FPGA is design to optimize interconnect
delay and the vertically partitioned 3D Tree-based FPGA is design to optimize area.

198 8 Physical Design and Implementation of 3D Tree-Based FPGAs

8.8 Summary

A 3D physical design and validation methodology for Tree-based FPGA architecture
studied, implemented and presented in this chapter. Two different design partitioning
methods namely hori zontal and vertical also presented to support 3D design and
implementation. The network partitioning is developed to optimize the area, power
consumption and speed. A CAD tool set for 3D physical design and verification
based on Global Foundries 130 nm technology node modified to use Tezzaron’s
TSV technology is also developed and presented. Through this chapter we addressed
few specific issues 3D designers often encounter dealing with tools that are not
specifically designed to meet their needs. We also presented few additional 3D design
support tools such as 3D LVS/DRC, GDSmerge to verify the LVS of the partitioned
and merged designs.

References

1. E. Ahmed, J. Rose, The effect of LUT and cluster size on deep-submicron FPGA performance
and density. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22(3), 288–298 (2004)

2. F. Li, D. Chen, L. He, J. Cong, Architecture evaluation for power-efficient FPGAs, in Proceed-
ings of the ACM/SIGDA International Symposium on Field Programmable Gate Array, Nov
2003, pp. 175–184

3. I. Koun, J. Rose, Measuring the gap between FPGAs and ASICs, in FPGA’06, Monterey,
California, USA, 2006

4. S. Simon Wong, A. El-Gamal, The prospect of 3D-IC, in IEEE Custom Integrated Circuit
Conference (CICC) (IEEE, San Jose, CA, 2009), pp. 445–448

5. A. Rahman, R. Reif, System level performance evaluation of three-dimensional integrated
circuits. IEEE Trans. Very Large Scale (VLSI) Syst. 8, 671–678 (2000)

6. Z. Marrakchi, H. Mrabet, U. Farooq, H. Mehrez, FPGA interconnect topologies exploration.
Int. J. Reconfig. Comput. 2009 (2009)

7. A. DeHon, Unifying mesh- and tree-based programmable interconnect. IEEE Trans. Very Large
Scale Integr. (VLSI) Syst. 12(10), 1051–1065 (2004)

8. A. DeHon, R. Rubin, Design of FPGA interconnect for multilevel metallization. IEEE Trans.
Very Large Scale Integr. (VLSI) Syst. 12(10), 1038–1050 (2004)

9. C. Ababei, P. Maidee, K. Bazargan, Exploring potential benefits of 3D FPGA integration, in
Field Programmable Logic and Application, vol. 3203 (Springer, Berlin, 2004), pp. 874–880

10. C. Ababei Y. Feng, B. Goplen, H. Mogal, T. Zhang, K. Bazargan, S. Sapatnekar, Placement
and routing for 3D integrated circuits. IEEE Des. Test 22(6), 520–531 (2005)

11. C. Ababei, H. Mogal, K. Bazargan, Three-dimensional place and route for FPGAs. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 25(6), 1132–1140 (2006)

12. K. Siozios, A. Bartzas, D. Soudris, Architecture level exploration of alternative schmes targeting
3D FPGAs: a software supported methodology. Int. J. Reconfig. Comput. 2008 (2008)

13. K. Siozios, V.F. Pavlidis, D. Soudris, A novel framework for exploring 3-D FPGAs with het-
erogeneous interconnect fabric. ACM Trans. Reconfig. Technol. Syst. 5(1) (2012)

14. S. Gupta, M. Hilbert, S. Hong, R. Patti, Techniques for Producing 3D ICs with High-Density
Interconnect (Tezzaron Semiconductor, Naperville, 2005)

15. A. Gayasen, V. Narayanan, M. Kandemir, A. Rahman, Designing a 3-D FPGA: switch box
architecture and thermal issues. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 16(7),
882–893 (2008)

References 199

16. C.-I. Chen, B.-C. Lee, J.-D. Huang, Architectural exploration of 3D FPGAs towards a better
balance between area and delay, in Design, Automation and Test in Europe Conference and
Exhibition (DATE) (IEEE, Grenoble, France, 2011)

17. U. Farooq, H. Parvez, Z. Marrakchi, H. Mehrez, A new heterogeneous tree-based applica-
tion specific FPGA and its comparison with mesh-based application specific FPGA. Elsevier
Microprocess. Microsyst. J. Appl. Reconfig. Comput. Spec. Issue 36(8), 588–605 (2012)

18. V. Pangracious, Z. Marrakchi, E. Amouri, H. Meherez, Performance analysis and optimization
of high density tree-based 3D multilevel FPGA, in ARC11-2013, Reconfigurable Computing:
Architectures, Tools and Applications Lecture Notes in Computer Science, vol. 7806 (Springer,
LA, USA, 2013), pp. 197–209

19. B. Landman, R. Russo, On a pin versus block relationship for partitions of logic graphs. IEEE
Trans. Comput. 20(12), 1469–1479 (1971)

20. J. Pistorius, M. Hutton, Placement rent exponent calculation methods, temporal behaviour and
FPGA architecture evaluation, in Proceedings of the International Workshop on System Level
Interconnect Prediction, Apr 2003, Monterey, California, USA, pp. 31–38

21. A. DeHon, Balancing interconnect and computation in a reconfigurable computing array (or,
why you don’t really want 100% LUT utilization), in Proceedings of the 1999 ACM/SIGDA
Seventh International Symposium on Field Programmable Gate Arrays, 21–23 Feb 1999, Mon-
terey, California, USA, pp. 69–78

22. D. Lewis et al., The stratix logic and routing architecture, in International Symposium on Field
Programmable Gate Arrays, FPGA-2003, Feb 2003, pp. 12–20

23. P.S. Zuchowski, C.B. Reynolds, R.J. Grupp, S.G. Davis, B. Cremen, B. Troxel, A hybrid ASIC
and FPGA architecture, in Proceedings of IEEE/ACM International Conference on Computer
Aided Design, May 2002, pp. 187–194

24. K. Banerjee, S.K. Souri, P. Kapour, K.C. Saraswat, 3D-ICs: a novel chip design paradigm for
improving deep-submicrometer interconnect performance and systems-on-chip integration.
Proc. IEEE 89, 602–633 (2001)

25. M. Lin, A. El Gamal, Y.-C. Lu, S. Wong, Performance benefits of monolithically stacked
3D FPGA, in Proceedings of the 2006 ACM/SIGDA 14th International Symposium on Field
Programmable Gate Arrays, 22–24 Feb 2006, Monterey, California, USA, pp. 113–122

26. W.R. Davis et al., Demystifying 3D-ICs: the pros and cons of going vertical. IEEE Des. Test
Comput. 22 (2005)

27. R. Patti, Advances in 3D memory and logic devices, in IMAPS International Conference on
Device Packaging, TAI3, Scottsdale, AZ, March 2010

28. Z. Marrakchi, H. Mrabet, C. Masson, H. Mehrez, Mesh of tree: unifying mesh and MFPGA
for better device performances, in NOCS, pp. 243–252, 2007

29. V. Pavlidis, E.G. Friedman, Interconnect-based design methodologies for three-dimensional
integrated circuits, in Proceedings of the IEEE, Jan 2009, pp. 123–140

Chapter 9
Three-Dimensional FPGAs:
Future Lines of Research

Abstract In this book, a collection of 3D FPGA architecture exploration, phys-
ical design, implementation methodologies and CAD tools for Tree-based FPGA
architecture has been described and evaluated. We developed new and practical 3D
Tree-based interconnect topologies and architecture to improve the performance,
area and logic density for modern FPGA designs. While the research work presented
in this book is an important step in the development of 3D FPGAs and CAD tools
that can support the design and implementation of modern FPGA architectures, there
is much work that remains. Here we give few new research directions to improve
the 3D FPGA technology described in this book to cover the gap between FPGA
and ASIC and to make FPGA technology competent enough to reduce the exorbitant
cost of design and manufacturing.

9.1 Introduction: 3D FPGA Research

In this book, a collection of 3D FPGA architecture exploration, physical design,
implementation methodologies and CAD tools for Tree-based FPGA architecture
has been described and evaluated. We developed new and practical 3D Tree-based
interconnect topologies and architecture to improve the performance, area and logic
density for modern FPGA designs. Mesh-based island style FPGA architecture is the
most studied and researched architecture in academia and semiconductor industry and
used their innovation and research efforts to improve the architecture performance
in terms of area, speed and power consumption. Modern Mesh-based FPGA archi-
tectures have optimized interconnect topology, different segment lengths and well
adapted algorithms to optimize circuit implementation. However, Tree-based FPGA
architecture using a fat-tree network topology is a very old idea, which resembles a
complete binary Tree, in whichmore than one interconnect exists between a node and
its parent, resulting in a high efficient FPGA interconnect network. Despite its good
properties in optimizing area and efficient utilization routing resources, Tree-based
FPGA architectures are not been overlooked till now. Many research reports over
time has provided evidence to suggest that Tree-based FPGA architecture requires
less number of switches in circuit implementation due to its hierarchical interconnect

© Springer International Publishing Switzerland 2015
V. Pangracious et al., Three-Dimensional Design Methodologies
for Tree-based FPGA Architecture, Lecture Notes
in Electrical Engineering 350, DOI 10.1007/978-3-319-19174-4_9

201

202 9 Three-Dimensional FPGAs: Future Lines of Research

network topology compared to island style Mesh-based industrial FPGA architec-
ture. In our work, the comparison between Tree- and Mesh-based FPGA shows,
Tree-based architecture saves 59% of the total number switches and 56% of the
total area. High logic density is another advantage of Tree-based FPGA architecture.
As logic density increase the number of levels in fat-tree also increase and this leads
fewmajor issues in maintaining the speed and area of chip. Previous research reports
demonstrated the complexity of developing 2D physical design for N-node fat-tree
based FPGA architecture. It was shown that a N-node fat-tree based FPGA architec-
ture can be laid out in Θ(N) area using Θ(log(N)) wiring layers. However this fact
was established under the assumption of fixed number of wiring layers independent
of device capacity and this does not match with the technology advances in modern
VLSI technology. The second issue we faced with Tree-based FPGA architecture
is the exorbitant interconnect delay, which increases exponentially as the size of
the Tree increase because the inter-level wire-length increase as the tree grows to
higher levels. Nevertheless this dissertation presents practical solution to those issues
and provides precise and undisputed solutions to improve performance, logic den-
sity, area, power consumption and to reduce complexity in design, implementation
and manufacturing of high performance FPGAs using 3D Tree-based interconnect
network.

In this book we have studied the main advantages of three-dimensional (3D)
integration technology, in which multiple tiers of active devices are stacked and
interconnected using through silicon via (TSVs), such as short interconnects, high
performance, high integration capacity and low power consumption. Our main issue
with Tree-based interconnect is long wire-length at higher levels and to resolve this
issue, we have proposed two main interconnect partitioning methods to design 3D
Butterfly-fat-tree interconnect network, in which the long tree-based interconnect in
partitioned into multiple tiers and stacked using 3D integration technology, in which
the tiers are interconnected using TSVs. Though 3D VLSI technology is not very
well advanced like 2D VLSI, a lot of research and demonstration from academia
and semiconductor industry have been reported. The Chap.2 discuss the current
state-of-the art of 3D semiconductor technology and its capabilities.

9.2 Tree-Based Interconnect Partitioning

We propose two types of network partitioning methodologies to design and imple-
ment 3D Tree-based interconnect network topology.

9.2.1 Vertical Partitioning

The programmable interconnect network is partitioned vertically by placing the
break-point at the highest level �v of the Tree-based programmable interconnect
network to balance the silicon area and power consumption across multiple tiers of

http://dx.doi.org/10.1007/978-3-319-19174-4_2

9.2 Tree-Based Interconnect Partitioning 203

the 3D chip. The location of the level �v is always fixed at highest tree level since
the tree is partitioned vertically. The vertical partitioning methodology is designed to
balance the total silicon area and power consumption of the chip across the multiple
tiers of 3D Tree-based FPGA. Another advantage of vertical partitioning is the num-
ber is TSV required is 50% less compared to Horizontal partitioning method. The
3D FPGA demonstrator chip has 7 Tree levels and 16K LUTs require 40,960 TSVs
for a fully connected case (Rent = 1) implemented using two-tier F2B 3D stacking
methodology. We developed interconnect optimization models using Rent’s Rule
to find minimum numbers of TSVs and interconnects required and achieved 42%
reduction in total TSV count.

9.2.2 Horizontal Partitioning

The main objective is to optimize the critical path delay and improve logic den-
sity. The horizontal break-point is placed at a particular tree level �h based on the
design and manufacturing constraints to achieve interconnect delay optimization
using TSVs. The location of level �h is decided based on the architecture and wire
delay requirements. In hori zontal partitioning methodology, the location of the
break point is decided based on the estimated interconnect network delay. The inter-
connect delay of Tree-based architecture increases exponentially as the Tree grows to
higher levels. Horizontal partitioning methodology is introduced optimize the expo-
nential increase Tree network delay.We set the break-point between level 3 and 4 and
the network delay between level 4, 5, and 6 were minimized due to design flexibility
introduced by partitioning the tree into two separate tiers of the 3D chip. The 3D
test FPGA demonstrator chip has 7 Tree levels and 16K LUTs require 65,536 3D
nets named as cluster inputs pins and 16,384 feedback networks pins. For a fully
connected (Rent = 1) horizontally partitioned 3D homogeneous FPGA expected to
have 81,920 3D nets required TSV communication excluding I/O pads. We devel-
oped interconnect optimization models using Rent’s Rule to find minimum numbers
of TSVs and interconnects required and achieved 45% reduction in total TSV count.

9.3 3D Physical Design Methodology and CAD Support

As demands accelerate for increasing density, higher bandwidths, and lower power
consumption, current semiconductor industries are looking up to 3D-ICs with TSVs
as a possible solution to integrate a great deal of functionality into small form factors
to improve performance and reduce cost. While there is great interest in this emerg-
ing technology, the 3D CAD tools development is still in its early phase. There
are no common standard definitions available, 3D design, verification and test is
still a challenge. From the 3D design and verification standpoint, the good news
is that, we developed a 3D physical design methodology using Global Foundries

204 9 Three-Dimensional FPGAs: Future Lines of Research

130nm technology node modified to use Tezzaron’s TSV technology. The design
flow includes 2D design tools plus additional support programs to covers all areas
of 3D design, including the design partitioning, merging multiple tiers (gds files)
and design sign-off analysis. Our 3D physical design and verification methodology
is automated by using a hierarchical RTL description code generator based on Tree-
based FPGA architecture description and design constraints. A timing evaluation
system based on Mentor’s circuit simulator Eldo is attached to design module to
accurately estimate the networks delays and TSV modeling. In addition, we also
addressed the specific issues that 3D designers will encounter dealing with tools that
are not specifically developed to meet their needs.

We designed and implemented a two-tier 3D Tree-based FPGA demonstrator
with seven tree levels and 16K LBs using our new 3D physical design tool flow. A
fast and accurate 3D thermal models which takes into account of the primitives and
its characteristics to balance the heat produced across the die. Two different heat
removal methods such as thermal design techniques and hardware-based techniques
are implemented to improve the performance and reliability of the 3D FPGA chip.
The 3D thermal model is embedded along with 3D physical design flow the evaluate
the temperature profile of the chip. The 3D thermal ware design tool provides flex-
ibility in using either design techniques or hardware based technique based of the
design requirements as heat removal mechanism.

9.3.1 Interconnect Optimization Model

For an efficient FPGA design standpoint interconnect optimization model is essen-
tial, since FPGA is an interconnect dominated device. We developed Rent’s Rule
based interconnect optimization model based on 3D Tree-based FPGA router pro-
gram implemented by clubbing a binary search algorithm in association pathfinder
algorithm. The advantage of this model is that, it can optimize each level of the
Tree-based interconnect separately as described in Chap.6. The interconnect opti-
mization model determine the TSV and routing resource requirements based on
certain constraints, since the routing resource depopulation is a trade-off between
speed and routability. The demonstrator test chip design and simulation shows that,
using interconnect optimization model we removed 17,203 TSVs from vertically
and 36,864 TSVs from horizontally partitioned two-tier 3D test chips with minimal
impact on speed.

9.3.2 3D FPGA Architecture Exploration Tools
and Technologies

In this book, we developed a complete architectural design and exploration CAD
tool for 3D Tree based homogeneous and heterogeneous FPGA. Some of them are

http://dx.doi.org/10.1007/978-3-319-19174-4_6

9.3 3D Physical Design Methodology and CAD Support 205

extended from 2D tools developed for previous work [1, 2]. The 3D design and inter-
connect network partitioning took advantage of the availability local communication
to route signals and thereby reduce path delay of the circuits implemented. The hor-
izontal partitioning of the interconnect network place all LBs and local hierarchical
communication is tier 1 of the 3D design to focus on routing more signals using
local communication and thereby discourage the router to use TSVs between tier 0
and tier 1. The performance efficiency of two-tier 3D Tree-based homogeneous and
heterogeneous FPGA evaluated using the exploration tools developed for this work.
The 3D Tree-based FPGA performed 1.5 times better compared to 3D Mesh-based
FPGAwith identical array size and logic density.We also analyzed the impact cluster
arity and LUT size variation. Most of the modern FPGA has different cluster and
LUT size. For 3D Tree-based FPGA, we found LUT size 4–5 and cluster size 4–5
provides the best speed and area efficiency.

The idea of of using 3-dimension to design FPGAs is not new. Many researches
and industrial start-ups demonstrated the creation of 3D-FPGAs by stacking 2D
FPGAs and connecting them either with solder bumps or TSVs. The latest entry
into FPGA market is the Xlinx’s silicon interposer-based multi-FPGA technology is
interesting, because it enables the creation of large FPGAs composed of small dies
and very large FPGAs,with higher logic density than one can achievewith a single die
using monolithic semiconductor technology. TheMesh-of-Tree (MoT)-based FPGA
architecture described in Chap. 3 is an economical and efficient architecture to design
and manufacture true 3D and 2.5D interposer-based multi-FPGAs. By unifying the
good qualities of Tree- and Mesh-based FPGA architectures, we can design a true
3D FPGAwith two or more tires and 2.5D interposer-basedmulti-FPGA usingMoT-
based FPGA dies by adjusting the long wire span and cut line position. Though not
discussed in this book, we developed full set CAD tools for design and exploration
for MoT-based FPGAs. The design validation and delay estimation were performed
using a collection of large benchmarks selected from different sources. The 3D two-
tier MoT-based FPGA improve area by 41% and reduce delay by 54.26%, which
is very promising for high performance 3D FPGAs. The data from Xlinx’s 2.5D
interposer-based multi-FPGA shows 77% of inter-FPGA wires are cut and various
design version have different numbers of cut .We verified the delay variation ofMoT-
based 2.5D multi-FPGA with inter-FPGA wires removed in the range from 20–80%
and the we shows the delay increased by 3–4nS. Our interposer-based multi-FPGA
has 3 cuts and to improve the routability, we increase the W by 48%. However in
Mesh-based 2.5D architecture, it was increased to 125% for same number of cuts.

9.4 Directions for Future Work

While the research work presented in this book is an important step in the develop-
ment of 3D FPGAs and CAD tools that can support the design and implementation
of modern FPGA architectures, there is much work that remains. FPGA technology
began in the mid-1980s as an alternative to the popular ASIC technology of that time

http://dx.doi.org/10.1007/978-3-319-19174-4_3

206 9 Three-Dimensional FPGAs: Future Lines of Research

it was Gate Array (GA). During the 1990s, the Gate Array ASIC technology lost
its appeal as more sophisticated ASIC technologies came to the fore, and the 20B$
Gate Array market shrunk dramatically until it effectively ceased to exist. Analysts
expected that this would have a dramatic positive impact on the FPGAmarket, which
did grow to some extent, but far less than everyone’s expectations.We believe that the
stagnation of FPGA growth is mostly due to the inefficiency of FPGA technology.
Most FPGAs use SRAM as the programming or switch technology. Interconnects
are the dominating resource in modern designs. Within an SRAM-based FPGA, the
programming of interconnects is implemented by an SRAM cell that controls a pass-
transistor driver. The research results from academia and semiconductor industry
indicate that the cell area overhead for the SRAM-based programmable interconnect
is over 30 times when compared to a via; and this does not include the additional cir-
cuit overhead area needed to programand control the SRAM-based routing resources.
We found that with all the improvements in area and speed using 3D technology for
circuits implemented purely using the LUTbased logic elements, an FPGA is still has
a much larger form factor and between 3–4 times slower on average than a standard-
cell implementation. This high programmability overhead suggests that many of the
current ASIC designs cannot be replaced by their FPGA equivalents and its impera-
tive the FPGA architecture and design needs an overhaul change. Here we give few
new research directions to improve the 3D FPGA technology described in this book
to cover the gap between FPGA and ASIC and to make FPGA technology competent
enough to reduce the exorbitant cost of design and manufacturing.

9.4.1 Technology Research

It is critical for both performance of the current architectures and invention of new
ones, that a high-density interconnect be available. Specifically,we proposed fewnew
high-density 3D Tree-based interconnect architectures to improve the performance
and logic density of FPGA based systems. The main issues engineers trying to fix is
the interconnect pitch must be within the order of magnitude of the minimum feature
size. We also propose few technology level improvements as follows.

9.4.2 Alternative Memory Technology

As described in previous section, an alternative memory technology like CBRAM
(Conductive Bridging Random Access Memories) [3] or RRAM (Resistive Random
Access Memories) [4] instead of Six transistor SRAM would be better choice to
reduce programmable interconnect overhead. There are few research reports acad-
emia shows significant improvement in the total area. Recently few FPGA manu-
factures decides to use 22-nm Tri-Gate CMOS process to design and implement
high density FPGAs. It would be interesting to do a performance evaluation of 3D

9.4 Directions for Future Work 207

Tree-based andMoT-based FPGAs using those alternative memory technologies and
new 22 nm Tri-Gate CMOS process [5].

9.4.3 Monolithic 3D-FPGA

Recent results from many research institutes and 3D start-ups shows interesting data
from 3D monolithic integration [6], which is considered as the only available option
for applications requiring connections at the transistor scale. We plan to extend this
work to also examine the impact of speed, power consumption and area improvement
by using 3D monolithic stacking technology or native 3D integration methodology.
This approach will further reduce the wire length and thereby improve performance
of the FPGA based systems. Since the two-tier design is done in such a way to
stack almost 80% of the the programming overhead (tier 0) of Tree-based FPGA on
top of logic blocks (tier 1) and interconnected using TSVs based multi-layer stack-
ing technology. In the case of monolithic stacking the interconnect layers between
programming overhead and logic blocks will be implemented in a state-of-the-art
CMOS technology. This design and implementationmethodology provide additional
flexibility to improve logic density, speed and reduce power consumption and silicon
area and thereby high density FPGAs can be designed and manufactured to meet the
needs and requirements of high volume circuit design and prototyping. However the
main challenge in this approach is to balance the density of TSVs to that of the via
density in the CMOS technology used to implement logic and interconnect layers.

9.4.4 3D Hybrid FPGA (3D-HFPGA): CNT Based FPGA
Interconnect

Themajor performance and power bottleneck of the FPGA is the programmable inter-
connects and routing elements inside the FPGA, which have been found to account
for up to 80% of the total delay and up to 85% of the total power consumption when
both local and global interconnects are considered. The integration of 3D FPGA
with nano-materials and devices to establish high performance FPGA architecture
may sheds new light on designing future programmable device. Carbon nanotubes
(CNTs), nanowires, and othermolecular electronic devices have demonstrated strong
characteristics on improving speed, density and power consumption of semiconduc-
tor circuits. The combination of these two leading technologies shows a great poten-
tial for innovation and technology breakthroughs [7]. The Tree-based FPGA and
MoT-based FPGA has tremendous potential to improve its performance, area and
power consumption by using a combination of 3D integration and nanoelectronic
devices. We believe it is an interesting idea to develop design and implementation
technologies to demonstrate the performance of 3D hybrid FPGA (3D-hFPGA).

208 9 Three-Dimensional FPGAs: Future Lines of Research

9.4.5 Mesh-of-Tree-based Embedded FPGA

Mesh-of-Tree-based FPGA architecture presented in this book is efficient scalable
architecture suitable for the design and implementation 3DFPGAs in terms of smaller
form factor and higher performance. FPGAs have been used in many applications to
achieve orders-of-magnitude improvement in absolute performance and energy effi-
ciency relative to conventional microprocessors. Even there are questions like What
if 10% of a GPP/CPU Cache Area were FPGA?. However recent research reports
about the current Mesh-based FPGA architecture shows lack of essential abstraction
that one comes to expect in a general purpose computer. MoT-based FPGA archi-
tecture presented in this dissertation is an efficient planar architecture suitable for
the design and implementation embedded FPGAs. It would be an interesting idea to
develop a design and exploration setup forMoT-based FPGA to study the advantages
of MoT being an embedded FPGA in computing systems.

9.4.6 3D FPGA CAD Tools

Developing a design and implementation flow for 3D-FPGAs is a complicated task
with many ramifications [8]. Designmethodologies at the front-end andmature man-
ufacturing technologies at the back-end are required to effectively facilitate large
scale manufacturing of 3D systems. Several second-order digital optimization prob-
lems in 3D integration have yet to be solved. Optimizations in the space of 3D
detailed routing likely exist that are not covered thermal performance during routing
is a potential opportunity. There aremany interesting questions for 3D and 2.5DTree-
based FPGA architectures still remains to be answered. Introducing an interconnect
partitioning tool would figure number one item in our agenda for 3D FPGA CAD
tool development. This methodology will help us to understand the wire-length opti-
mization and placement of break-point before the development of physical design.
Since the Tree-based FPGA layout is not scalable, it is important to have a prede-
fined delay optimization process built in to determine the location of the break-point.
Another additional feature for the CAD flow of 2.5D interposer-based MoTs need
to be improved to check the routability automatically based on number of cuts and
% of inter-FPGA wires cut. This will help the designer to set the W required for any
given design specification.

References

1. Z. Marrakchi, H. Mrabet, C. Masson, H. Mehrez, Mesh of tree: unifying mesh and MFPGA for
better device performances, in NOCS-07, pp. 243–252, 2007

2. Z. Marrakchi, H. Mrabet, U. Farooq, H. Mehrez, FPGA Interconnect topologies exploration.
Int. J. Reconfig. Comput. 1–13 (2009)

References 209

3. S. Onkaraiah, O. Turkyilmaz, M. Reyboz, F. Clermidy, A hybrid CBRAM/CMOS look-up-
table structure for improving performance efficiency of field-programmable-gate-array, in IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 2440–2443, May 2013

4. Y.-C. Chen, W.Wang, H. Li, W. Zhang, Non-volatile 3D Stacking RRAM-based FPGA, in 22nd
International Conference on Field Programmable Logic and Applications (FPL), pp. 367–372,
Aug 2012

5. Altera White Papers, The breakthrough advantage for FPGAs with tri-gate technology,
http://www.altera.com/literature/wp/wp-01201-fpga-tri-gate-technology.pdf (Altera Corpora-
tion USA, June 2013)

6. T. Naito, T. Ishida, T. Onoduka, M. Nishigoori, T. Nakayama, Y. Ueno, Y. Ishimoto, A. Suzuki,
W. Chung, R.Madurawe, S.Wu, S. Ikeda, H. Oyamatsu,World’s first monolithic 3D-FPGAwith
TFT SRAM over 90 nm 9 layer Cu CMOS, in IEEE Symposium on VLSI Technology (VLSIT),
pp. 219–220, June 2010

7. S. Eachempati, A. Nieuwoudt, A. Gayasen, N. Vijaykrishnan, Y. Massoud, Assessing carbon
nanotube bundle interconnect for future FPGA architectures, in Proceedings of the Conference
on Design, Automation and Test in Europe, DATE’07, pp. 307–312, 2007

8. N. Miyamoto, Y. Matsumoto, H. Koike, T. Matsumura, K. Osada, Y. Nakagawa, T. Ohmi,
Development of a CAD tool for 3D-FPGAs, in IEEE International 3D Systems Integration
Conference (3DIC), pp. 1–6, Nov 2010

http://www.altera.com/literature/wp/wp-01201-fpga-tri-gate-technology.pdf

Appendix A
FPGA CAD Tool: 3D Homogeneous
Tree-Based FPGA Architecture and Design
Space Exploration

A.1 Architecture Description of Homogeneous Tree-Based
Architecture

This section describe the prepration of input files to run the 3D homogeneous Tree-
based FPGA architecture and design space exploration tool. This tool helps us the
understand the partitioning, placment and routing of the multi-tier 3D FPGAs. The
architecture specification of homogeneous 3D Tree-based FPGA architecture defin-
ition is presented in TableA.1. The variable nb_levels defined the number of levels
in the Tree and break_point defines the break point for horizontal and vertical net-
work partitioning methods. In this example the break_point is set for horizontal
partitioning.

The tools allows to run placement and routing using command line options. The
routing tool take the architecture definition, netlist file, placement file and timing file
as inputs and compute the routability, area and speed of FPGA based on the type
of benchmark used. The routing tools also computes the total number of switches,
multiplexers and SRAM required for each benchmark application. A typical example
shows below.

nb_levels = 8
timing_info levels 8
Parsing file : bench=pdc, cluster4, lut4,
arch=4 × 4 × 4 × 4 × 4 × 4_rent4 × 4 × 4 × 4 × 4.desc
build Tree-based FPGA ...
arch_param description ...
nb_levels 7
→ level 0 nb_slaves 4 nb_inputs 16 nb_outputs 4
→ level 1 nb_slaves 4 nb_inputs 64 nb_outputs 16
→ level 2 nb_slaves 4 nb_inputs 256 nb_outputs 64
→ level 3 nb_slaves 4 nb_inputs 1024 nb_outputs 256
→ level 4 nb_slaves 4 nb_inputs 4096 nb_outputs 1024

© Springer International Publishing Switzerland 2015
V. Pangracious et al., Three-Dimensional Design Methodologies
for Tree-based FPGA Architecture, Lecture Notes
in Electrical Engineering 350, DOI 10.1007/978-3-319-19174-4

211

212 Appendix A: FPGA CAD Tool: 3D Homogeneous Tree-Based FPGA Architecture …

Table A.1 Architecture description file parameters of tree-based homogeneous architecture

nb_levels 7

.level 0 nb_slaves 4 nb_inputs 16 nb_outputs 4

.level 1 nb_slaves 4 nb_inputs 64 nb_outputs 16

.level 2 nb_slaves 4 nb_inputs 256 nb_outputs 64

.level 3 nb_slaves 4 nb_inputs 1024 nb_outputs 256

.break_Point Level_opti TSV_count

.level 4 nb_slaves 4 nb_inputs 4096 nb_outputs 1024

.level 5 nb_slaves 4 nb_inputs 16384 nb_outputs 4096

.level 6 nb_slaves 4 nb_inputs 0 nb_outputs 0

.basic ble nb_inputs 4 nb_outputs 1

.basic in_iobs level 1 number 1

.basic out_iobs level 1 number 1

.word_width 8

→ level 5 nb_slaves 4 nb_inputs 16384 nb_outputs 4096
→ level 6 nb_slaves 4 nb_inputs 0 nb_outputs 0
→ basic nb_in_iobs 1 nb_out_iobs 1 nb_inputs 4
In level 0 4096 UMSBs 4 : 4 → 16384 Mux 4
In level 1 4096 UMSBs 5 : 4 → 16384 Mux 5
In level 2 4096 UMSBs 4 : 4 → 16384 Mux 4
In level 3 4096 UMSBs 4 : 4 → 16384 Mux 4
In level 4 4096 UMSBs 4 : 4 → 16384 Mux 4
In level 5 4096 UMSBs 4 : 4 → 16384 Mux 4
In level 6 4096 UMSBs 4 : 4 → 16384 Mux 4
totalWiresDMSBs = 20 = 4 + 16
In level 0 16384 DMSBs 5 : 4 → 65536 Mux 5
totalWiresDMSBs = 80 = 16 + 64
In level 1 16384 DMSBs 5 : 5 → 81920 Mux 5
totalWiresDMSBs = 320 = 64 + 256
In level 2 16384 DMSBs 5 : 4 → 65536 Mux 5
totalWiresDMSBs = 1280 = 256 + 1024
In level 3 16384 DMSBs 5 : 4 → 65536 Mux 5
totalWiresDMSBs = 5120 = 1024 + 4096
In level 4 16384 DMSBs 5 : 4 → 65536 Mux 5
totalWiresDMSBs = 20480 = 4096 + 16384
In level 5 16384 DMSBs 5 : 4 → 65536 Mux 5
totalWiresDMSBs = 16384 = 16384 + 0
In level 6 16384 DMSBs 1 : 4 → 65536 Mux 1
Out IOBs clusters 1024 MSB 16:1 → 1024 MUX 16:1

Appendix A: FPGA CAD Tool: 3D Homogeneous Tree-Based FPGA Architecture … 213

LUT area = 66000 lambda 2
number of LUTs = 16384(mux 16:1) (mux 2:1) Flip-Flop
total Logic Gates = 6.35904e + 06
Logic area 1.07155e + 06 x 1000 λ2

Upward network area 1177500 x 1000 λ2

Downward network area 5567250 x 1000 λ2

total_mux2_number = 2014208
total switches number = 2605056
total sram number = 1757184
total buffers number = 590848
total area = 7.83055e + 06 × 1000 λ2

The exploration tool output data presented is useful to compute the total area and
power consumption of the FPGA chip. For 3Dmulti-tier test chip analysis the break-
point for the interconnect network partitioning should also be specified to optimize
the number of I/O pins required.

Appendix B
FPGA CAD Tool: 3D Heterogeneous
Tree-Based FPGA Exploration

B.1 Architecture Description of Heterogeneous
Tree-Based Architecture

Different architecture parameters of the heterogeneous tree-based FPGA architec-
ture are defined using an architecture description file. Some of these parameters are
shown in TableB.1. The parameter Nb_Levels defines the total number of levels of
the architecture. Nb_Block_Types parameter defines the total number of types that
are supported by the architecture. By default, a tree-based architecture supports two
types of blocks which are logic blocks (CLBs or soft blocks) and I/Os. For het-
erogeneous architectures, however, the types of blocks may vary depending on the
netlist requirements that are being implemented on the architecture. The architecture
is quite flexible in this sense and it can support any number of block types that can
be placed at different levels of hierarchy in order to have a best design fit. In our
description mechanism, the architecture description starts with the specification of
I/O blocks and once it is done, the rest of the architecture is defined repeatedly using
the parameters of lines 5 to 10 of TableB.1. These parameters include level number
being defined, number of sub-cluster types supported by each cluster, number of
sub-clusters contained in each cluster and number of inputs/outputs of the cluster.
Definition of clusters starts from bottom level of the architecture and it goes to top
until all the levels of the architecture are specified. Once cluster definition is over,
binary search parameter is either set to be true or false. If binary search parameter
is false, no architecture optimization is performed and the netlist is routed using
the given cluster bandwidth. However if this parameter is true, then an architecture
optimization is performed using the specified optimization approach which can be
bottom_up, top_down or random.

Once cluster definition of all the levels is over, different types of blocks that are
supported by the architecture can be defined usingDefine_Block parameter. Different
parameters that are used for the definition of a block are shown in TableB.2. In a
tree-based architecture, definition of a block starts with the name of the block. The

© Springer International Publishing Switzerland 2015
V. Pangracious et al., Three-Dimensional Design Methodologies
for Tree-based FPGA Architecture, Lecture Notes
in Electrical Engineering 350, DOI 10.1007/978-3-319-19174-4

215

216 Appendix B: FPGA CAD Tool: 3D Heterogeneous Tree-Based …

Table B.1 Architecture description file parameters of tree-based architecture

Name Description

1. Nb_Levels Total number of levels in the architecture

2. Nb_Block_Types Number of block types that are supported by the
architecture

3. In_Blocks The level of the cluster and the number of inputs per
cluster of the input block

4. Out_Blocks The level of the cluster and the number of outputs per
cluster of the output block

5. Level The level � of the architecture

6. Nb_Cluster_Type Number of sub-cluster types supported by a cluster of
level �

7. Arity Number of sub-clusters of each type supported by a
cluster of level �

8. Nb_Inputs_Per_Cluster Number of inputs per cluster of each type

9. Nb_Outputs_Per_Cluster Number of outputs per cluster type

10. End_Level Completes the definition of level �

11. Optimization Binary search flag set either true or false

12. Optimization_approach Specified as either bottom_up, top_down or random

13. Define_Block blk Block definition (See TableB.2)

Table B.2 Block definition in tree-based architecture

Definition Description

Define_Block

Block_Name Name of the block

Area Area of the block

Nb_Inputs Number of inputs of the block

Nb_Outputs Number of outputs of the block

Level_Number Level number where the block is located

Arity Number of blocks per cluster

Pin_Input Name and the class number of input pins of the block

Pin_Output Name and the class number of output pins of the block

End_Define_Block

parameter Area gives the area of the block which is later used for the area calculation
of the architecture. Other parameters include the number of input/output pins, the
level where the block is located, the arity (i.e. no of blocks per cluster) of the block
and the definition of its input and output pins. While defining I/O pins of a particular
block (logic-block or a hard-block), unique class number are assigned to each block
pin to ensure the appropriate routing of the netlist that is mapped on the architecture.
The 3D heterogeneous Tree-based FPGA architecture is defined as follows.

Appendix B: FPGA CAD Tool: 3D Heterogeneous Tree-Based … 217

B.1.1 Architecture Definition of Heterogeneous Tree-Based
Architecture

nx 20
ny 16
hardware_portions false
horizontal_portions 2
vertical_portions 1
fpga true
t-driven Yes/No
optimized Yes/No
explore Yes/No
optimization_algo bottom_up: architecture optimization program selection nb_
levels: 7 Tree level
nb_block_types 3
in_iobs level 1 number 5
out_iobs level 1 number 5
end_device

architecture_description:
.level: 0
Arity: 4
nb_cluster_type: 1
new_cluster_type:
nb_inputs_per_cluster: 16
nb_outputs_per_cluster: 4
end_cluster_type:
end_level: 0 First Level

.level: 1
Arity: 4
nb_cluster_type: 2
new_cluster_type:
nb_inputs_per_cluster: 64
nb_outputs_per_cluster: 16
end_cluster_type:
new_cluster_type:
nb_inputs_per_cluster: 0
nb_outputs_per_cluster: 0
end_cluster_type:
end_level: 1

.level: 2
Arity: 4

218 Appendix B: FPGA CAD Tool: 3D Heterogeneous Tree-Based …

nb_cluster_type: 2
new_cluster_type:
nb_inputs_per_cluster: 256
nb_outputs_per_cluster: 64
end_cluster_type:
new_cluster_type:
nb_inputs_per_cluster: 0
nb_outputs_per_cluster: 0
end_cluster_type:
end_level: 2

.level: 3
Arity: 4
nb_cluster_type: 1
new_cluster_type:
nb_inputs_per_cluster: 1024
nb_outputs_per_cluster: 256
end_cluster_type:
end_level: 3

.level: Break_Point TSV_Count

.level: 4
Arity: 4
nb_cluster_type: 1
new_cluster_type: nb_inputs_per_cluster: 4096
nb_outputs_per_cluster: 1024
end_cluster_type:
new_cluster_type:
nb_inputs_per_cluster: 36
nb_outputs_per_cluster: 37
end_cluster_type:
end_level: 4

.level: 5
Arity: 4
nb_cluster_type: 1
new_cluster_type:
nb_inputs_per_cluster: 16384
nb_outputs_per_cluster: 4096
end_cluster_type:
end_level: 5

Appendix B: FPGA CAD Tool: 3D Heterogeneous Tree-Based … 219

.level: 6
Arity: 4
nb_cluster_type: 1
new_cluster_type:
nb_inputs_per_cluster: 0
nb_outputs_per_cluster: 0
end_cluster_type:
end_level: 6
end_architecture_description:

block ble
area 66000
nb_inputs 4
nb_outputs 1
level 0
number 4
total_blocks 256
x_slots 1
y_slots 1
pin_input i0 0
pin_input i1 1
pin_input i2 2
pin_input i3 3
pin_output q0 4
end_block

block mult_36
area 2516000
nb_inputs 36
nb_outputs 37
total_inputs 36
total_outputs 37
level 4
number 1
total_blocks 4
x_slots 4
y_slots 4
pin_input a0 0, pin_input a1 1, pin_input a2 2, pin_input a3 3
pin_input a4 4, pin_input a5 5, pin_input a6 6, pin_input a7 7
pin_input a8 8, pin_input a9 9
pin_input a10 10, pin_input a11 11, pin_input a12 12, pin_input a13 13
pin_input a14 14, pin_input a15 15, pin_input a16 16, pin_input a17 17
pin_input b0 18, pin_input b1 19, pin_input b2 20, pin_input b3 21
pin_input b4 22, pin_input b5 23, pin_input b6 24, pin_input b7 25

220 Appendix B: FPGA CAD Tool: 3D Heterogeneous Tree-Based …

pin_input b8 26, pin_input b9 27
pin_input b10 28, pin_input b11 29, pin_input b12 30, pin_input b13 31
pin_input b14 32, pin_input b15 33, pin_input b16 34, pin_input b17 35
pin_output q0 36, pin_output q1 37, pin_output q2 38, pin_output q3 39
pin_output q4 40, pin_output q5 41, pin_output q6 42, pin_output q7 43
pin_output q8 44, pin_output q9 45, pin_output q10 46, pin_output q11 47
pin_output q12 48, pin_output q13 49, pin_output q14 50, pin_output q15 51
pin_output q16 52, pin_output q17 53, pin_output q18 54, pin_output q19 55
pin_output q20 56, pin_output q21 57
pin_output q22 58, pin_output q23 59
pin_output q24 60, pin_output q25 61
pin_output q26 62, pin_output q27 63
pin_output q28 64, pin_output q29 65
pin_output q30 66, pin_output q31 67
pin_output q32 68, pin_output q33 69
pin_output q34 70, pin_output q35 71
pin_output q36 72
end_block

Appendix C
FPGA CAD Tool: 3D MoT-Based FPGA
Exploration

C.1 Architecture Description of Mesh-of-Tree FPGA
Architecture

nx = 36
ny = 36
in_rate = 8
out_rate = 8
lut size = 4
network width = 38 # cutline horizontal or vertical: The cutline can be place in hor-
izontal or vertical direction based on the FPGA architecture and design
constrained_channels horz
In this example we used horizontal cutline, for which the specification at the com-
mand line constrained_channels horz
constrained_X 16
constrained_channels = horz, constrained_Y the FPGA is cut at location X=16
constrained_Y 16
constrained_width_x 8
constrained_width_y 8
As we discussed in Chap.3, for 2.5D FPGAwe have the flexibility to remove inter-
dire FPGA channels wires along the cutline. The number provided at command line
constrained_width_x and constrained_width_y will be kept and rest of the wires will
be removed.
archCluster size = 8
#arch cluster
archCluster inputs = 24
#archClusterOutputsNB : 1 parametrable, 0 non parametrable
archClusterOutputsNBparam 1
archCluster outputs = 8
#netlist clb

© Springer International Publishing Switzerland 2015
V. Pangracious et al., Three-Dimensional Design Methodologies
for Tree-based FPGA Architecture, Lecture Notes
in Electrical Engineering 350, DOI 10.1007/978-3-319-19174-4

221

http://dx.doi.org/10.1007/978-3-319-19174-4_3

222 Appendix C: FPGA CAD Tool: 3D MoT-Based FPGA Exploration

netClb inputs = 12
longWire horizontal 2 continue true ratio 0.4
longWire vertical 2 continue true ratio 0.4
long wire segments: In this example the value of a is set to 0.4, which means we
have 40% of additional long wire with a span of 2 is set in addition to 38 horizontal
channels. Here the value of W = 38 and a = 0.4. So the number of long wire segments
equal to a×W , which means = 0.4×38, which is≈ 16 channels. So the total number
of channels for any switch block is equal to 38 + 16 = 54. The architecture file can be
expanded to include multiple cutline and apply channel constraints independently.

Appendix D
3D Tree-Based FPGA Thermal Modeling

D.1 3D Thermal Model: Description of Multi-tier FPGA Dies

The 3D thermal model is designed to work along with the physical design tools and
has the capability to read the layout parameters like block level geometrical features
and power values. As described in Chap.9, we have coded additional capabilities to
include special hotspot zones for heat transfer. The TableD.1 shows the format of
special hotspot zones. The effective thermal conductivity is calculated based the area
occupied by the TSVs, type of materials used (copper or tungsten), liner material.

D.1.1 3D File Format

File Format:
Layer Number This variable specify this particular occupy which position inside
the 3D stack
Transverse heat flow Y/N ?
Lateral heat flow Y/N ?: The direction of heat flow can laos mentioned based on the
type of components in the active layer. For example, The heat transfer in an adhesive
layer is considered to be perpendicular to the device plane and no heat flux occurs
along the adhesive layer due to its low thermal conductivity. The heat transfer in
TSVs is considered as one dimensional and perpendicular to the device plane. The
heat flow inside the 3D stack is diffusive in nature.
Power Dissipation Y/N?: The power sources are provided using another input file
along with the command line option. This variable takes the inputs from the power
source file.
Specific heat capacity in J/(m3K), this variable provide the specific heat capacity
of active layer.
Resistivity in (m K)/W

© Springer International Publishing Switzerland 2015
V. Pangracious et al., Three-Dimensional Design Methodologies
for Tree-based FPGA Architecture, Lecture Notes
in Electrical Engineering 350, DOI 10.1007/978-3-319-19174-4

223

http://dx.doi.org/10.1007/978-3-319-19174-4_9

224 Appendix D: 3D Tree-Based FPGA Thermal Modeling

Table D.1 Tier 0, special hotspot zone definition

Unit-name 3D Layer Width Height Left-X_dir Bottom-
Y_dir

TTSV count

Zone0 Layer_2 0.000750 0.002000 0.000000 0.000000 3

Zone1 Layer_1 0.000500 0.002000 0.000750 0.000000 8

Zone2 Layer_2 0.000750 0.002000 0.001250 0.000000 2

Table D.2 Tier 1, layout description of tree-based homogeneous architecture: part I

Unit-name Width Height Left-X_dir Bottom-Y_dir

b0 0.000250 0.000250 0.000000 0.000000

l0a 0.000250 0.000350 0.000000 0.000250

b1 0.000250 0.000250 0.000000 0.000600

l1a 0.000250 0.000850 0.000250 0.000000

b2 0.000250 0.000250 0.000500 0.000000

l0b 0.000250 0.000350 0.000500 0.000250

b3 0.000250 0.000250 0.000500 0.000600

l3a 0.000500 0.002000 0.000750 0.000000

b4 0.000250 0.000250 0.001250 0.000000

l0c 0.000250 0.000350 0.001250 0.000250

b5 0.000250 0.000250 0.001250 0.000600

l1b 0.000250 0.000850 0.001500 0.000000

b6 0.000250 0.000250 0.001750 0.000000

l0d 0.000250 0.000350 0.001750 0.000250

b7 0.000250 0.000250 0.001750 0.000600

l2a 0.000750 0.000300 0.000000 0.000850

l2b 0.000750 0.000300 0.001250 0.000850

b8 0.000250 0.000250 0.000000 0.001150

l0e 0.000250 0.000350 0.000000 0.001400

b9 0.000250 0.000250 0.000000 0.001750

l1c 0.000250 0.000850 0.000250 0.001150

b10 0.000250 0.000250 0.000500 0.001150

l0f 0.000250 0.000350 0.000500 0.001400

b11 0.000250 0.000250 0.000500 0.001750

Thickness in µ m or mm or in meters The exact unites of length and width is
depend of the geometrical output from the layout editor. The simulator has the capa-
bility to set the unites based on the unit of the block dimensions.
Floorplan file: The floorplan file provides information about the placements of dif-
ferent blocks and an example shown in TablesD.2 and D.3

Appendix D: 3D Tree-Based FPGA Thermal Modeling 225

Table D.3 Tier 1, layout description of tree-based homogeneous architecture: part II

Unit-name Width Height Left-X_dir Bottom-Y_dir

b12 0.000250 0.000250 0.001250 0.001150

l0g 0.000250 0.000350 0.001250 0.001400

b13 0.000250 0.000250 0.001250 0.001750

l1d 0.000250 0.000850 0.001500 0.001150

b14 0.000250 0.000250 0.001750 0.001150

l0h 0.000250 0.000350 0.001750 0.001400

b15 0.000250 0.000250 0.001750 0.001750

D.1.1.1 Output File from 3D Thermal Model

The 3D thermalmodel provides 2Dand 3D thermal profile of the chip. The simulation
mode (2D or 3D) can be changed using command line input. The thermal model is
embedded along with physical design tools to evaluate the thermal profile of 2D and
3D designs and the temperature profile can be used to decide the changes required in
floorplan to optimize thermal profile of the designs. The TablesD.4 and D.5 shows
the layer wise temperature profile of each blocks in the designs. The design model
we used is a hierarchical and the design is divided into many blocks and combined
together during the design phase. The block level thermal analysis is very useful for
such designs.

Table D.4 3D thermal simulator output file format: 3D thermal profile of the chip part I

Active layer/Unite name Temperature (K) Active layer/Unite name Temperature (K)

layer_0_b0 364.20 layer_0_l0a 364.69

layer_0_b1 364.62 layer_0_l1a 365.45

layer_0_b2 366.57 layer_0_l0b 366.43

layer_0_b3 367.04 layer_0_l3a 370.46

layer_0_b4 367.16 layer_0_l0c 367.55

layer_0_b5 367.39 layer_0_l1b 366.04

layer_0_b6 364.58 layer_0_l0d 365.03

layer_0_b7 364.76 layer_0_l2a 365.80

layer_0_l2b 365.79 layer_0_b8 364.82

layer_0_l0e 365.16 layer_0_b9 364.58

layer_0_l1c 365.96 layer_0_b10 367.43

layer_0_l0f 367.61 layer_0_b11 367.23

layer_0_b12 367.65 layer_0_l0g 367.98

layer_0_b13 367.51 layer_0_l1d 366.35

layer_0_b14 364.91 layer_0_l0h 365.33

layer_0_b15 364.86

226 Appendix D: 3D Tree-Based FPGA Thermal Modeling

Table D.5 3D thermal simulator output file format: 3D thermal profile of the chip part II

Active layer/Unite name Temperature (K) Active layer/Unite name Temperature (K)

layer_2_level4_Z1 362.60 layer_2_Level5_Z1 366.81

layer_2_Level6_Z1 362.61 layer_2_Level5 351.93

layer_2_Level4 354.64 layer_2_Level6 351.99

layer_2_Level4_BlockSB1 345.92 layer_2_Level5_BlockSB2 348.14

layer_2_Level4_BlockSB3 345.97

layer_2_Unit1_Int 325.91 layer_2_Unit2_Int 326.48

layer_2_Unit3_Int 325.92

Probe_node_0 320.30 Probe_node_1 320.30

Probe_node_2 320.31 Probe_node_3 320.31

Probe_node_4 320.28 Probe_node_5 320.28

Probe_node_6 320.28 Probe_node_7 320.28

Probe_node_8 319.75 Probe_node_9 319.75

Probe_node_10 319.76 Probe_node_11 319.76

hsink_Unit1 320.97 hsink_Unit2 321.04

hsink_Unit3 320.97

The layer 1 of the 3D Tree-based FPGA contains SBs, HBs and programmable
interconnects. To transfer heat, we also used special heat transfer zones as presented
in TableD.5. The temperature estimated at different points inside the layer 2 of the
3D Tree-based FPGA chip is presented in TableD.5. One additional item we have
in 3D thermal model is place probe point to monitor the temperature. This provision
is introduced to monitor the temperature growth rate of certain devices placed in 3D
chip dynamically. The TableD.5 shows few of those probe points and temperature
values.

	Preface
	Acknowledgments
	Contents
	Acronyms
	1 An Overview of Three-Dimensional Integration and FPGAs
	1.1 Introduction
	1.1.1 More Moore (MM)
	1.1.2 More Than Moore (MtM)

	1.2 Technological Initiatives and Contribution
	1.2.1 Modified Tree-Based Interconnect
	1.2.2 Tree-Based Interconnect Partitioning
	1.2.3 3D FPGA Design and Implementation Methodology
	1.2.4 Unified Mesh of Tree Architecture

	1.3 Book Organization
	References

	2 Three-Dimensional Integration: A More Than Moore Technology
	2.1 Introduction
	2.1.1 Opportunities for Three-Dimensional Integration

	2.2 Historical Evolution of 3D System Integration
	2.3 Vertical Interconnect Technology Development (TSV)
	2.4 3D Integration: Manufacturing Methods
	2.5 Challenges in 3D Physical Design
	2.5.1 Complexity of 3D Physical Design Tools and Their Limitations
	2.5.2 TSV and Thermal Management
	2.5.3 Power and Clock Delivery in 3D-ICs
	2.5.4 TSV-Induced Design for Manufacturability Issues
	2.5.5 Floorplanning for 3D Circuits
	2.5.6 Placement for 3D Circuits
	2.5.7 Routing for 3D Circuits

	2.6 3D-IC Design Verification
	2.7 Summary
	References

	3 Field Programmable Gate Arrays: An Overview
	3.1 Introduction
	3.2 Introduction to FPGA Architectures
	3.2.1 Configurable Logic Blocks

	3.3 FPGA Interconnect Topologies
	3.3.1 Mesh-Based Interconnect Network
	3.3.2 FPGA Switch Block
	3.3.3 FPGA Routing Channels
	3.3.4 Multilevel Hierarchical Interconnect

	3.4 Proposed FPGA Interconnect Architectures
	3.4.1 Evolution of Tree-Based Interconnect Architecture
	3.4.2 Wire Growth Model
	3.4.3 Switch Growth Model

	3.5 Tree-Based Routing Interconnect
	3.5.1 Tree-Based FPGA Architecture

	3.6 Unified Mesh- and Tree-Based Interconnect
	3.6.1 Cluster Local Interconnect
	3.6.2 Mesh-Based Routing Interconnect
	3.6.3 Input and Output Pads Connection

	3.7 Summary
	References

	4 Two Dimensional FPGAs: Configuration and CAD Flow
	4.1 Introduction
	4.2 Circuit Synthesis
	4.3 Technology Mapping
	4.4 Clustering
	4.4.1 Bottom-Up Approaches
	4.4.2 Top-Down Approaches

	4.5 Placement
	4.5.1 Simulated Annealing Based Approach
	4.5.2 Partitioning Based Approach

	4.6 Routing
	4.7 Two-Dimensional CAD for Tree-Based Architecture
	4.7.1 Synthesis and Mapping
	4.7.2 Clustering and Partitioning

	4.8 Timing Analysis
	4.9 Summary
	References

	5 Three-Dimensional FPGAs: Configuration and CAD Development
	5.1 Introduction
	5.2 3D FPGA Architectures: An Overview
	5.2.1 FPGA Die Stacking
	5.2.2 Monolithic FPGA Implementation

	5.3 State-of-the-Art: 3D FPGA Implementation
	5.4 3D FPGA Interconnect Switch
	5.5 2.5D Integration: High Density Multi-FPGAs
	5.5.1 Industrial 2.5D Virtex-7 Interposer-Based FPGAs

	5.6 Development of 3D Tree-Based FPGA CAD Tools
	5.6.1 3D FPGA Physical Design Tools
	5.6.2 3D FPGA Architecture Exploration and Optimization

	5.7 Summary
	References

	6 Three-Dimensional Tree-Based FPGA: Architecture Exploration Tools and Technologies
	6.1 Introduction
	6.2 Tree-Based FPGA Interconnect Architecture
	6.2.1 2D Tree-Based Interconnect: A Comparison with 2D Mesh-Based Interconnect

	6.3 Tree-Based Interconnect Partitioning
	6.3.1 Vertical Partitioning
	6.3.2 Horizontal Partitioning
	6.3.3 Through Silicon via (TSV) Modeling

	6.4 3D Tree-Based Interconnect Optimization Methodology
	6.5 Interconnect Optimization: Homogeneous Tree
	6.5.1 The Downward Programmable Network Model
	6.5.2 The Upward Programmable Network Model

	6.6 Heterogeneous Tree-Based FPGA Architecture
	6.6.1 Interconnect Optimization: Heterogeneous Tree

	6.7 Critical Path Delay Analysis
	6.7.1 Delay Analysis: Homogeneous Tree
	6.7.2 Delay Analysis: Heterogeneous Tree

	6.8 LUT and Cluster Size Effect on Performance
	6.9 Power Optimization
	6.10 Summary
	References

	7 Three-Dimensional Thermal Modeling: Tools and Methodologies
	7.1 Introduction: Thermal Fundamentals and Challenges
	7.1.1 Heat Generation
	7.1.2 Heat Transfer
	7.1.3 State of the Art: Thermal Modeling

	7.2 3D Thermal Modeling
	7.3 Heat Transfer in 3D-ICs
	7.4 3D Tree-Based FPGA Thermal Analysis Model
	7.4.1 3D Thermal Aware Design Techniques
	7.4.2 TSV Aware Thermal Control

	7.5 3D FPGA Thermal Modeling: Capabilities
	7.6 3D FPGA Thermal Modeling: Simulation Results
	7.7 Summary
	References

	8 Physical Design and Implementation of 3D Tree-Based FPGAs
	8.1 Introduction
	8.2 3D Tree-Based FPGA Design Requirements
	8.2.1 Why Tree-Based Interconnect and Not Mesh
	8.2.2 3D Tree-Based Interconnect: A Requirement for High Logic Density

	8.3 2D Physical Design of Tree-Based FPGA
	8.3.1 Method 1: Coalesce Scalable Tree-Based 2D Layout Design
	8.3.2 Method 2: Level-Wise 2D Tree Layout Design

	8.4 Sub-path Timing Characterization
	8.5 3D Design Methodologies
	8.5.1 Vertical Partitioning
	8.5.2 Horizontal Partitioning
	8.5.3 Through Silicon via (TSV) Modeling

	8.6 3D Tree-Based FPGA Physical Design Flow
	8.6.1 3D Stacking Methodologies
	8.6.2 3D FPGA Placement and Route
	8.6.3 3D Design Sign Off Analysis

	8.7 3D Timing Analysis
	8.8 Summary
	References

	9 Three-Dimensional FPGAs: Future Lines of Research
	9.1 Introduction: 3D FPGA Research
	9.2 Tree-Based Interconnect Partitioning
	9.2.1 Vertical Partitioning
	9.2.2 Horizontal Partitioning

	9.3 3D Physical Design Methodology and CAD Support
	9.3.1 Interconnect Optimization Model
	9.3.2 3D FPGA Architecture Exploration Tools and Technologies

	9.4 Directions for Future Work
	9.4.1 Technology Research
	9.4.2 Alternative Memory Technology
	9.4.3 Monolithic 3D-FPGA
	9.4.4 3D Hybrid FPGA (3D-HFPGA): CNT Based FPGA Interconnect
	9.4.5 Mesh-of-Tree-based Embedded FPGA
	9.4.6 3D FPGA CAD Tools

	References

	Appendix AFPGA CAD Tool: 3D HomogeneousTree-Based FPGA Architecture and DesignSpace Exploration
	Appendix BFPGA CAD Tool: 3D HeterogeneousTree-Based FPGA Exploration
	Appendix CFPGA CAD Tool: 3D MoT-Based FPGAExploration
	Appendix D3D Tree-Based FPGA Thermal Modeling

