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v

 Communication systems for most companies throughout the world have already 
gone digital or will certainly do so in the near future. For example, cell phones and 
other types of wireless communication such as television, radio, process controls, 
automotive electronics, consumer electronics, global navigation and military systems, 
to name only a few applications, depend heavily on digital electronics. 

 This book is designed to serve as a  fi rst course in digital automata and digital 
systems, providing students at the sophomore level a transition from the world of 
physics to the world of digital electronics and computation. 

 The book attempts to satisfy two goals: Combine the study of circuits and digital 
electronics into a single, uni fi ed treatment, and establish a strong connection with 
the contemporary worlds of both these types of digital systems. 

 These goals arise from the observation that the conventional approach to intro-
ducing digital electronics through a course in traditional circuit analysis is fast 
becoming obsolete. Our world has gone digital. Even those students who remain in 
core electrical engineering are heavily in fl uenced by the digital domain. 

 Because of this elevated focus on the digital domain, basic electrical engineering 
education must change in two ways: First, the traditional approach to teaching circuits 
and electronics without regard to the digital domain must be replaced by one that 
stresses the foundations that are common to all circuits in both the digital and analog 
domains. Because most of the fundamental concepts in circuits and electronics are 
equally applicable to both the digital and the analog domains, this means that, 
primarily, we must change the way in which we motivate the study of circuits and 
electronics to emphasize their broader impact on digital systems. 

 Second, given the additional demands of computer engineering, many departments 
can ill-afford the luxury of separate courses on circuits and on electronics. Rather, 
they might be combined into one course. 

 The book attempts to form a bridge between the world of logic and the world of 
large digital systems.      

   Preface   
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 Early arti fi cial intelligence theory was concerned with models (automata) used to 
simulate objects and processes. Automata theory helps with the design of digital 
circuits such as parts of computers, telephone systems or control systems. 

 The major advantages for Digital and Microprocessor systems are [1–5]:

   Stability and accuracy of control;  • 
  Flexibility;  • 
  Lower cost per function;  • 
  Greater reliability and equipment life;  • 
  Human factors favouring a Digital Interface.    • 

 The most general and versatile circuit that can be placed on a single Chip is the 
Digital Microprocessor. The Microprocessor is versatile because it can be pro-
grammed to perform an almost unlimited number of computing tasks. 

   Application and Advantages of Digital Systems 

    The device used in a Digital Circuit generally operates in one of the two states, • 
known as ON & OFF, resulting in a very simple operation.  
  There are only a few basic operations in a Digital Circuit and they are very easy • 
to understand.  
  Digital Technique requires Boolean algebra which is very simple and easily to • 
learn.  
  Digital Circuit study requires the basic concept of Electrical Network Analysis, • 
which is also easily learned.  
  A large number of Integrated Circuits (IC) are available for performing various • 
operations. They are highly reliable and accurate, with a very high speed of 
operations.  

   Introduction      



xii Introduction

  Digital Circuits have a wide range of memory capability which makes them • 
highly suitable for Computers, Calculators, and Electronic Watches etc.  
  The display of data and other information is very convenient, accurate and elegant • 
using digital techniques.    

 Many students have, in a wide range of studies, opportunities to learn programming 
of digital computers, hence they have a strong motivation to study the way digital 
hardware works.          
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  Abstract   This chapter discusses different digital representations commonly used 
to represent data. In electronic applications digital representations have certain 
advantages over analog representations. The chapter introduces also to analog and 
digital quantities and to Post–Turing machines.     

     1.1   Analog and Digital Quantities 

 Electronic circuits can be divided into two broad categories, digital and analog. 
Digital electronics involves quantities with discrete values, and analog electronics 
involves quantities with continuous values. 

 A digital quantity is one having a discrete set of values. Most things that can be 
measured quantitatively occur in nature in analog form. For example,  S ( t ) =  f ( t ), 
Fig.  1.1 .  

  Analog and digital quantities  – An analog signal is sampled or tested repeatedly 
over a period of time to determine the characteristic that contains the analog quantity. The 
sampled analog value is converted to the nearest binary value or quantity. The binary 
value is then encoded into a character stream acceptable to the digital equipment that is 
designed to use the data. Standardized binary words called BAMs (binary angular mea-
surement) are used to transmit angular, range, and height values between digital equip-
ment in shipboard combat direction systems. Other coding systems such as Gray code 
or binary-coded decimal (BCD) are also used to transmit converted values. 

 Advantage Digital representation has certain advantages over analog representa-
tion in electronics applications. For one thing, digital data can be processed and 
transmitted more ef fi ciently and reliably than analog data. Also, digital data has a 
great advantage when storage is necessary. For example, music when converted to 
digital form can be stored more compactly and reproduced with greater accuracy and 
clarity than is possible when it is in analog form. Noise (unwanted voltage  fl uctuations) 
does not affect digital data nearly as much as it does analog signals, Fig.  1.2 .  

    Chapter 1   
 Digital and Analog Quantities          
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 Sampled-value representation (quantization) of the analog quantity in Fig.  1.1 . 
Each value represented by a dot can be digitized by representing it as a digital code 
that consists of a series of 1s and 0s:
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  Fig. 1.1    Quantization of the analog quantity       
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 Analog and digital signals are used to transmit information, usually through 
electric signals. In both these technologies, the information, such as any audio or 
video, is transformed into electric signals. The difference between analog and 
digital technologies is that in analog technology, information is translated into 
electric pulses of varying amplitude. In digital technology, translation of information 
is into binary format (0 or 1) where each bit is representative of two distinct amplitudes, 
see Table  1.1   [  4–  6  ] .  

 All digital information possesses common properties that distinguish it from 
analog communications methods  [  1,   4  ] :

    Synchronization : Since digital information is conveyed by the sequence in which 
symbols are ordered, all digital schemes have some method for determining the begin-
ning of a sequence.  

   Language : All digital communications require a language, which in this context 
consists of all the information that the sender and receiver of the digital communica-
tion must both possess, in advance, in order for the communication to be 
successful.  

   Errors : Disturbances (noise) in analog communications invariably introduce some, 
generally small, deviation or error between the intended and actual communica-
tion. Disturbances in a digital communication do not result in errors unless the 
disturbance is so large as to result in a symbol being misinterpreted as another 
symbol or disturb the sequence of symbols. It is therefore generally possible to have 
an entirely error-free digital communication. Further, techniques such as check 
codes may be used to detect errors and guarantee error-free communications 
through redundancy or retransmission. Errors in digital communications can take 
the form of substitution errors in which a symbol is replaced by another symbol, or 
insertion/deletion errors in which an extra incorrect symbol is inserted into or 

   Table 1.1    Analog versus digital quantities   

 Analog signals  Digital signals 

 Technology  Analog technology records 
waveforms as they are. 

 Converts analog waveforms
 into set of numbers and 
records them. The numbers 
are converted into voltage 
stream for representation. 

 Representation analog 
and digital signals 

 Uses continuous range of values 
to represent information. 

 Uses discrete or discontinuous 
values to represent 
information. 

 Uses analog 
and digital signals 

 Can be used in various computing 
platforms and under operating 
systems. 

 Computing and electronics 
technology. 

 Computer  Analog computer uses changeable 
continuous physical phenomena 
such as electrical, mechanical, 
hydraulic quantities so as to 
solve a problem. 

 Digital computers represent 
changing quantities 
incrementally as and when 
their values change. 
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deleted from a digital message. Uncorrected errors in digital communications have 
unpredictable and generally large impact on the information content of the 
communication.  

   Granularity : When a continuously variable analog value is represented in digital 
form there is always a decision as to the number of symbols to be assigned to that 
value. The number of symbols determines the precision or resolution of the result-
ing datum. The difference between the actual analog value and the digital represen-
tation is known as quantization error.  

   Copying : Because of the inevitable presence of noise, making many successive 
copies of an analog communication is infeasible because each generation increases 
the noise. Because digital communications are generally error-free, copies of copies 
can be made inde fi nitely.     

    1.2   Post–turing Machine 

 Although digital signals are generally associated with the binary electronic digital 
systems used in modern electronics and computing, digital systems are actually 
ancient, and need be neither binary nor electronic. 

 A beacon is perhaps the simplest non-electronic digital signal, with just two 
states (on and off). In particular, smoke signals are one of the oldest examples of a 
digital signal, where an analog “carrier” (smoke) is modulated with a blanket to 
generate a digital signal (puffs) that conveys information. 

 More recently invented, a modem modulates an analog “carrier” signal (such as 
sound) to encode binary electrical digital information, as a series of binary digital 
sound pulses. A slightly earlier, surprisingly reliable version of the same concept 
was to bundle a sequence of audio digital “signal” and “no signal” information (i.e. 
“sound” and “silence”) on magnetic cassette tape for use with early home computers. 

 In 1936 Alan Mathison Turing gave his answer to the question “What is a 
computable number?” by constructing his now well-known Turing machines as 
formalizations of the actions of a human computer. Less well-known is the almost 
synchronously published result by Emil Leon Post, in which a quasi-identical 
mechanism was developed for similar purposes. 

 A post-turing machine uses a binary alphabet, an in fi nite sequence of binary storage 
locations, and a primitive programming language with instructions for bi-directional 
movement among the storage locations and alteration of their contents one at a time. 

 The instructions may require the worker to perform the following “basic acts” or 
“operations”:

   Marking the box he is in (assumed empty);  • 
  Erasing the mark in the box he is in (assumed marked);  • 
  Moving to the box on his right;  • 
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  Moving to the box on his left;  • 
  Determining whether the box he is in, is or is not marked.    • 

 In the hypothetical machine E.L. Post, information is represented in a binary 
alphabet  A  = {0,1}. The machine has an informational tape of unlimited length – the 
machine memory. Each cell can hold  0  or  1 . The machine has a “read head” (special 
sensor), which examines the contents of the cell ( j ), Fig.  1.3 .  

 An informational tape can move in both directions, so that each move places the 
head in front of a particular cell. 

 The machine has a control unit, which at any one time is in a particular state  – q . 
Tape is moved discretely so the head would stop in front of the cell. 

 Instruction set of the abstract machine:

    1.    Head to move to the right;  
    2.    Head to move to the left;  
    3.    Record label;  
    4.    To erase the label;  
    5.    To transfer control;  
    6.    Stop.     

 For example, because the program looks for the hypothetical machine E.L. Post:  

 Move the control unit  Command number,  i   Reference number,  u  

 right, 1 step  1  3  run  i  No 3 
 right, 1 step  2  4  run  i  No 4 
 Record label  3  2  run  i  No 2 
 The command transfer control  4  5 
 Stop 

 Each command is executed in one step, after which the command whose number 
is indicated in the     u . 

 The Turing Machine differs from the Post machine in that the alphabet may have 
more than two characters, Fig.  1.4 . 

 Each square of the tape holds exactly one of the symbols, also called input sym-
bols or machine characters. It is assumed that one of the input symbols is a special 
one, the blank, denoted by  B . 

 At any moment of time, the machine, being in one of its states and looking at one 
of the input symbols in some square, may act or halt. The action means that, in the 
next moment of time, the machine erases the old input symbol and writes a new 
input symbol on the same square (it may be the same symbol as before, or a new 
symbol; if the old one was not  B  and the new one is  B , the machine is said to erase 

q j

  Fig. 1.3    Machine E.L. Post       
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the old symbol), changes the state to a new one (again, it is possible that the new 
state will be equal to the old one), and  fi nally moves the head one square to the left, 
or one square to the right, or stays on the same square as before. 

where:

    S  
0
  – an empty cell;  

  S 
j1
  – state (content) of the  fi rst non-empty left cell;  

  S 
jk
  – state of the cell, which was seen at a given time;  

   r  – The number of occupied cells;  
   q  

i
  – state control device,  i  = 0,1,…, m.     

 A Turing machine program can be de fi ned as a table (Table  1.2 ).  
 Assume that the initial con fi guration of the machine has the form: s 

0
  q 

2
  1 * 0 s 

0
 . 

 Then  

 q 
1
  1 → q 

2
  0 Л  s 

0
  0 q 

2
 *0 s 

0
  

 q 
2
  * → q 

1
  * Л  s 

0
  0 * q 

1
  0 s 

0
  

 q 
1
  0 → q 

1
  1 Л  s 

0
  0 * 1 q 

2
  s 

0
  

 q 
2
  s 

0
  → q 

0
  s 

0
  С  s 

0
  0 * 1 q 

0
  s 

0
   The  fi nal con fi guration 

of the machine 

qi
S0 Sj Sj .. Sj .. Sj S0

                    1             2  ..

............

..

......

k ..

........

...... ....

....

r

First Step 
q

   B 1 1     B  

Second Step 
           q

   B 0 1     B  

Third Step q

   B     0 B     B  

Fourth  Step                q

   B     0 B

a

b

  Fig. 1.4    The Turing Machine       

   Table 1.2    Turing machine program   

 A 
 Q 

 0  1  *  s 
0
  

 q 
2
   –  q 

2
  0 L  q 

1
  * L  Q 

0
  S 

 q 
1
   q 

2
  1L  –  –  – 

 q 
0
   Stop 
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 For some pairs of states and input symbols the action is not speci fi ed in the 
description of a Turing machine; thus the machine halts. In this case, symbols 
remaining on the tape form the output, corresponding to the original input, or more 
precisely, to the input string (or sequence) of input symbols. A sequence of actions, 
followed by a halt, is called a computation. A Turing machine accepts some input 
string if it halts on it. The set of all accepted strings over all the input symbols is 
called a language accepted by the Turing machine. Such languages are called recur-
sively enumerable sets. 

 Another automaton is a nondeterministic Turing machine. It differs from an 
ordinary, deterministic Turing machine in that for a given state and input symbol, 
the machine has a  fi nite number of choices for the next move. Each choice means a 
new input symbol, a new state, and a new direction to move its head. 

 A linear bounded automaton is a nondeterministic Turing machine which is 
restricted to the portion of the tape containing the input. The capability of the linear 
bounded automaton is smaller than that of a Turing machine.                
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  Abstract   In this chapter various number systems and conversions between them are 
presented and explained. The number systems concerned here are: the decimal system, 
the binary system, the hexadecimal system and the binary-coded decimal (BCD) code 
(i.e. an encoding for decimal numbers, in which each digit is represented by its own 
binary sequence to allow easier conversion to decimal digits and faster decimal calcula-
tions). The chapter, besides providing examples explaining conversions of whole num-
bers also shows the way of converting binary fractions to decimal ones (and opposite).     

     2.1   Number Systems 

 Convenient as the decimal number system generally is, its usefulness in machine 
computation is limited because of the nature of practical electronic devices. In most 
present digital machines, the numbers are represented, and the arithmetic operations 
performed, in a different number system called the binary number system. This 
chapter will help you more easily understand the structure of the binary number 
system, which is important in computers and digital electronics. 

    2.1.1   The Decimal System 

 In everyday life we use a system based on decimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) 
to represent numbers and refer to the system as the decimal system. Consider what 
the number 62 means. It means six tens plus two:

     ( )62 6·10 2.= +
    

 The number 2678 means two thousands, six hundreds, seven tens, plus eight:

     ( ) ( ) ( )2678 2· 1000 6·100 7·10 8.= + + +
    

    Chapter 2   
 Number Systems, Operations, and Codes          
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 The decimal system is said to have a  base , or  radix , of 10. This means that each 
digit in the number is multiplied by 10 raised to a power corresponding to that dig-
it’s position:

     ( ) ( )1 062 6·10 2·10 ;= +
   

     ( ) ( ) ( ) ( )3 2 1 02678 2·10 6·10 7·10 8·10 .= + + +
    

 Example:  А  = 123,45.

     
2 1 0 1 21·10 2·10 3·10 4·10 5·10 ,- -= + + + +A    

     
3 2 1 0 1 2

101964,52 1·10 9·10 6·10 4·10 5·10 2·10 .- -= = + + + + +A     

 In general, for the decimal representation of     { }2 1 0 1 2 3· - - -= ¼ ¼A d d d d d d   , the 
value of  A  is

     
·10 .= å i

i
i

A d
     

    2.1.2   The Binary System 

 In the decimal system, 10 different digits are used to represent numbers with a base 
of 10. In the binary system, we have only two digits, 1 and 0. Thus, numbers in the 
binary system are represented to the base 2. 

 The binary numeral system, or base-2 number system, represents numeric values 
using two symbols, 0 and 1. Owing to its straightforward implementation in digital 
electronic circuitry using logic gates, the binary system is used internally by all 
modern computers. 

 The digits 1 and 0 in binary notation have the same meaning as in decimal 
notation:

     

2 10

2 10

0 0

1 1

=

=     

 To represent larger numbers, as with decimal notation, each digit in a binary 
number has a value depending on its position:

     ( ) ( )1 0
2 1010 1·2 0·2 2 ;= + =

   

     ( ) ( )1 0
2 1011 1·2 0·2 3 ;= + =

   

     ( ) ( ) ( )2 1 1
2 10100 1·2 0·2 0·2 4 ,= + + =
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and so on. Again, fractional values are represented with negative powers of the radix:

     
3 2 1 0 1 2 3 4

21001,1101 1·2 0·2 0·2 1·2 1·2 1·2 0·2 1·2 .- - - -= + + + + + + +     

 In general, for the binary representation of     { }2 1 0 1 2 3· - - -= ¼ ¼B b b b b b b   , the value of 
 B  is

     
·2 .= å i

i
i

B b
     

    2.1.3   Hexadecimal Notation 

 Because of the inherent binary nature of digital computer components, all forms of 
data within computers are represented by various binary codes. However, no matter 
how convenient the binary system is for computers, it is exceedingly cumbersome for 
human beings. Consequently, most computer professionals who must spend time 
working with the actual raw data in the computer prefer a more compact notation. 

 What notation to use? One possibility is the decimal notation. This is certainly 
more compact than binary notation, but it is awkward because of the tediousness of 
converting between base 2 and base 10. 

 Instead, a notation known as hexadecimal has been adopted. Binary digits are 
grouped into sets of four. Each possible combination of four binary digits is given a 
symbol, as follows (Table     2.1 ):  

 Because 16 symbols are used, the notation is called  hexadecimal , and the 16 
symbols are the hexadecimal digits. 

 A sequence of hexadecimal digits can be thought of as representing an integer in 
base 16. 

 Thus,

     ( ) ( ) ( ) ( )1 0 1 0
16 16 16 10 102 2 ·16 ·16 2 ·16 2 ·16 44.= + = + =C C

    

   Table 2.1    Decimal Binary and Hexadecimal numbers system   

 Decimal  Binary  Hexadecimal  Decimal  Binary  Hexadecimal  Decimal  Binary  Hexadecimal 

 0  0  0  11  1011  B  22  10110  16 
 1  1  1  12  1100  C  23  10111  17 
 2  10  2  13  1101  D  24  11000  18 
 3  11  3  14  1110  E  25  11001  19 
 4  100  4  15  1111  F  26  11010  1A 
 5  101  5  16  10000  10  27  11011  1B 
 6  110  6  17  10001  11  28  11100  1C 
 7  111  7  18  10010  12  29  11101  1D 
 8  1000  8  19  10011  13  30  11110  1E 
 9  1001  9  20  10100  14  31  11111  1F 
 10  1010  A  21  10101  15  32  100000  20 
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 Each hexadecimal digit represents four binary digits (bits). For example, byte 
values can range from 0 to 255 (decimal) but may be more conveniently represented 
as two hexadecimal digits in the range 00 through FF. Hexadecimal is also com-
monly used to represent computer memory addresses. 

 Hexadecimal notation is used not only for representing integers. It is also used as 
a concise notation for representing any sequence of binary digits, whether they 
represent text, numbers, or some other type of data, Table  2.1 . The reasons for using 
hexadecimal notation are:

   It is more compact than binary notation.  • 
  In most computers, binary data occupy some multiple of four bits, and hence • 
some multiple of a single hexadecimal digit.  
  It is extremely easy to convert between binary and hexadecimal (Table  • 2.2 ).      

    2.1.4   Binary-Coded Decimal Code 

 In computing and electronic systems, binary-coded decimal (BCD) or, in its most 
common modern implementation, packed decimal, is an encoding for decimal num-
bers in which each digit is represented by its own binary sequence. Its main virtue 
is that it allows easy conversion to decimal digits for printing or display, and allows 
faster decimal calculations. Its drawbacks are a small increase in the complexity of 
circuits needed to implement mathematical operations. Uncompressed BCD is also 
a relatively inef fi cient encoding -it occupies more space than a purely binary 
representation. 

 In BCD, a digit is usually represented by four bits which, in general, represent 
the decimal digits 0 through 9. Other bit combinations are sometimes used for a 
sign or for other indications (e.g., error or over fl ow). To encode a decimal number 
using the common BCD encoding, each decimal digit is stored in a 4-bit nibble, 
Table  2.3 .  

   Table 2.2    ANCII, Decimal, Binary and Hexadecimal code   

 Symbols 
ANCII 

 Decimal 
code 

 Binary 
code 

 Hexadecimal 
code 

 0  48  0110000  30 
 1  49  0110001  31 
 2  50  0110010  32 
 A  65  1000001  41 
 B  66  1000010  42 
 F  70  1000110  46 
 :  58  0111010  3F 
 (  40  0101000  28 
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 Although uncompressed BCD is not as widely used as it once was, decimal 
 fi xed-point and  fl oating-point are still important and continue to be used in  fi nancial, 
commercial, and industrial computing.   

    2.2   Converting Between Number Systems 

    2.2.1   Converting Between Binary and Decimal 
(Between Decimal and Binary) 

 It is a simple matter to convert a number from binary notation to decimal notation. 
In fact, we showed several examples in the previous subsection. All that is required 
is to multiply each binary digit by the appropriate power of 2 and add the results. 

 To convert from decimal to binary, the integer and fractional parts are handled 
separately.  

    2.2.2   Integers 

 For the integer part, recall that in binary notation, an integer is represented by

     - - ¼ =1 2 2 1 0 0 or 1.m m ib b b b b b     

 Suppose it is required to convert a decimal integer  A  into binary form. If we 
divide A by 2, in the decimal system, and obtain a quotient  A  

1
  and a remainder  R  

0
 , 

we may write

     1 0 02· 0 or 1.= + =A A R R     

   Table 2.3    Examples of binary-coded decimal code   

 Decimal  BCD  Decimal  BCD  Decimal  BCD 

 0  0000  10  0001 0000  20  0010 0000 
 1  0001  11  0001 0001  21  0010 0001 
 2  0010  12  0001 0010  22  0010 0010 
 3  0011  13  0001 0011  33  0011 0011 
 4  0100  14  0001 0100  34  0011 0100 
 5  0101  15  0001 0101  45  0100 0101 
 6  0110  16  0001 0110  56  0101 0110 
 7  0111  17  0001 0111  67  0110 0111 
 8  1000  18  0001 1000  78  0111 1000 
 9  1001  19  0001 1001  89  1000 1001 
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 Next, we divide the quotient  A  
1
  by 2. Assume that the new quotient is  A  

2
  and the 

new remainder  R  
1
 . Then

     1 2 1 12· 0 or 1= + =A A R R    

so that

     
( ) ( ) ( )2 1

2 1 0 2 1 02· 2· ·2 ·2 .= + + = + +A A R R A R R
    

 If next,

     2 3 22· .= +A A R     

 Because     > > >1 2 �A A A   , continuing this sequence will eventually produce a 
quotient     - =1 1mA   (except for the decimal integers 0 and 1, whose binary equivalents 
are 0 and 1, respectively) and a remainder     

-2mR   , which is 0 or 1. Then

     ( ) ( ) ( ) ( )1 2 2 1
2 2 1 01·2 ·2 ·2 ·2- -

-= + + + + +�m m
mA R R R R

   

which is the binary form of  A . Hence, we convert from base 10 to base 2 by repeated 
divisions by 2. The remainders and the  fi nal quotient, 1, give us, in order of increas-
ing signi fi cance, the binary digits of  A . 

  Example.  Example of Converting from Decimal Notation to Binary Notation for 
Integers   

 83
82

2
41
401

1

2
20
20
0

2
10
10
0

2
5
4
1

2
2
2
0

2
1

      

 Thus, we obtain 83 
10

  = 1010011 
2
 .  

    2.2.3   Fractions 

 For the fractional part, recall that in binary notation, a number with a value between 
0 and 1 is represented by

     1 2 3 m i0.b b b b b = 0 1or- - - -…    
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and has the value

     
( ) ( ) ( ) ( )1 2 3 m

1 2 3 m·2 ·2 ·2 ·2b b b b- - - -
- - - -+ + + +…

    

 This can be rewritten as

     
1 1 1 1 1 1

1 2 3 m+1 m2 ·( 2 ·( 2 ·( 2 ·( )2 · ))( )2 · )b b b b b- - - - - -
- - - - -+ + + + + ……     

 This expression suggests a technique for conversion. Suppose we want to convert 
the number  F  (0 <  F  < 1) from decimal to binary notation. We know that  F  can be 
expressed in the form

     
1 1 1 1 1 1

1 2 3 12 ·( 2 ·( 2 ·( 2 ·( 2 ·( ))))2 )- - - - - -
- - - - + -= + + + + +… …m mF b b b b b

    

 We can say that    ( ) 1 12· -= +F b F   , where  0 < F  
1
   < 1  and where

     1 1 1 1 1
1 2 3 m+1 mF 2 ·( 2 ·( 2 ·( 2 ( 2 )))· )b b b b- - - - -

- - - -= + + + +… …     

 To  fi nd  b  
−2

 , we repeat the process. Therefore, the conversion algorithm involves 
repeated multiplication by 2. At each step, the fractional part of the number from 
the previous step is multiplied by 2. The digit to the left of the decimal point in the 
product will be 0 or 1 and contributes to the binary representation, starting with the 
most signi fi cant digit. The fractional part of the product is used as the multiplicand 
in the next step. 

  Example.  Example of converting from decimal notation to binary notation for 
fractions   

 0,3125
         2

0,6250
         2

1,2500
         2

0,5000
         2

1,0000

x

x

x

x

      

 Thus, we obtain 0,3125 
10

  = 0,0101 
2
 . 

 This process is not necessarily exact; that is, a decimal fraction with a  fi nite 
number of digits may require a binary fraction with an in fi nite number of digits. 
In such cases, the conversion algorithm is usually halted after a prespeci fi ed number 
of steps, depending on the desired accuracy. 

  Example.  Convert number 118, 376 
10

  from decimal code in binary code.  
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    2.2.4   Integers 

  118 2
118 59 2

0 58 29 2
1 28 14 2

1  14    7 2

0 6 3    2 
1 2

 1 1

      

 Thus, we obtain 118 
10

  = 1110110 
2
 .  

    2.2.5   Fractions 

  0,  37610 
2

2

2

0,  75210 

1,  50410

1,  00810 

      

 Thus, we obtain 0,376 
10

   »  0,011 
2
 . 

 The  fi nal result 118, 376 
10

   »  1110110,011 
2
 . 

  Example.  Example of converting from binary notation to decimal notation for 
integers

     
5 4 3 2 1 0100111 1·2 0·2 0·2 1·2 1·2 1·2 32 4 2 1 39.= + + + + + = + + + =     

  Example.  Example of converting from binary notation to decimal notation

     

3 2 1 0 1 2 3 4 51011,01101 1·2 0·2 1·2 1·2 0·2 1·2 1·2 0·2 1·2

1 1 1 13
8 2 1 11 .

4 8 32 32

- - - - -= + + + + + + + +

= + + + + + =
    

 The decimal value of any binary number can be found by adding the weights of 
all bits that are 1 and discarding the weights of all bits that are 0. 

  Example.  Convert the binary whole number 10111010 to decimal. 

 In order to represent the 10 decimal digits 0, 1,…, 9, it is necessary to use at least 
4 binary digits. Since there are 16 combinations of 4 binary digits, of which 10 
combinations are used, it is possible to form a very large number of distinct codes. 
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Of particular importance is the class of weighted codes, whose main characteristic 
is that each binary digit is assigned a decimal “weight,” and, for each group of four 
bits, the sum of the weights of those binary digits whose value is 1 is equal to the 
decimal digit which they represent.  

 Binary number:  1  0  1  1  1  0  1  0 
 Weight:  2 7   2 6   2 5   2 4   2 3   2 2   2 1   2 0  
  Result   128  0  32  16  8  0 

 Thus, we obtain 128 + 0 + 32 + 16 + 8 + 0 + 2 + 0 = 186. 

  Result  – 10111010 
2
  = 186 

10
 . 

  Converting between Decimal (Binary) code and hexadecimal code  
(Table  2.4 )  

  Example.  Hexadecimal number 9F2 
16

  converted in Binary code:  

 9  F  2 

                  
 1001  1111  0010 

 Thus, we obtain 9F2 
16

  = 100111110010 
2
 . 

  Example.  Hexadecimal number IFA,C24 
16

  converted in Binary code:  

  I    F    A,    C    2    4  

                                    
  0001    1111    1010,    1100    0010    0100  

 Thus, we obtain IFA,C24 
16

  = 111111010,110000100100 
2
 . 

  Example.  Binary number 10110110001101 
2
  converted in Hexadecimal code:

     = =2 1610110110001101 0010 1101 1000 1101 2D8D .      

   Table 2.4       

 Weight:  1  2  3  4  5  6  7  8  9 

 1  1  2  3  4  5  6  7  8  9 
 10  А  14  1E  28  32  3C  46  50  5A 
 10 2   64  C8  12C  190  1F4  258  2BC  320  384 
 10 3   3E8  7D0  BB8  FA0  1388  1770  1B58  1F40  2328 
 10 4   2710  4E20  7530  9C40  C350  EA60  11170  13880  15F90 
 10 5   186A0  30D40  493E0  61A80  7A120  927C0  AAE60  C3500  DBBA0 

  Example: 1234 = 1000 + 200 + 30 + 4 = (3E8) 
16

  + (C8) 
16

  + (1E) 
16

  + (4) 
16

  = (4D2)  
16
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    2.2.6   Binary to BCD Conversion 

 The basic idea is to shift data serially into a shift register. As each bit is shifted in, 
the accumulated sum is collected. Each shift effectively doubles the value of the 
binary number in the four-bit shift register which is going to hold the converted 
BCD digit. 

 Each time a bit is shifted in, the value in the shift register is doubled. After 4 bits 
have been shifted in, if the original value is 0, 1, 2, 3, or 4, then the result is within 
the 0–9 range of a BCD digit and there is no action required. 

 If the value is 5, 6, 7, 8, or 9, then the doubled result is greater than 10, so a carry 
out (called ModOut in the code) is generated to represent the over fl ow into the tens 
column (i.e. into the next BCD digit). 

  Example.   А  = 49 
10

  = 110001 
2
 .  

  110001  
 (1) Shift  1  10001 
 (2) Shift  1  1  0001 
 (3) Shift  1  1  0  001 
 (4) Shift 

and correction 
 1  1  0  0  01 

 +0110  0  1  1  0 
 Result  1  0  0  1  0  01 
 (5) Shift  1  0  0  1  0  0  1 
 (6) Shift  1  0  0  1  0  0  1 
  Result    0    1    0    0    1    0    0    1  

 The material on number systems is available in almost all elementary texts on 
algebra, switching theory, and digital computers. An extensive discussion of computer 
arithmetic is available in  [  5–  11  ] .                    



19B. Borowik et al., Theory of Digital Automata, Intelligent Systems, Control 
and Automation: Science and Engineering 63, DOI 10.1007/978-94-007-5228-3_3, 
© Springer Science+Business Media Dordrecht 2013

  Abstract   This chapter introduces to the methods for adding and multiplying binary 
numbers. The topic is developed by fi rst considering the binary representation of 
unsigned numbers (which are the easiest to understand), and then binary representa-
tion of signed numbers and fractions (the hardest to understand) are concerned. 
Binary arithmetic is essential in all digital computers and in many other types of 
 digital systems. To understand digital systems, the basics of binary addition, subtrac-
tion, multiplication, and division must be known.      

       3.1   Binary Addition 

 Adding binary numbers is a very simple task, and very similar to the longhand addi-
tion of decimal numbers. As with decimal numbers, you start by adding the bits 
(digits) one column, or place weight, at a time, from right to left.     

  0.0010 (2 
10

 ) 
  + 0.0100  (4 

10
 ) 

  0.0110 (6 
10

 ) 

  1010 (10 
10

 ) 
   +1011  (11 

10
 ) 

  10101 (21 
10

 ) 

  0.100111 (39 
10

 ) 
   ±0.001101  (13 

10
 ) 

  0.110100 (52 
10

 ) 

 (а)  (b)  (c) 

 Notice that the  fi rst three rules result in a single bit and in the fourth rule the addi-
tion of two 1s yields a binary two (10). When binary numbers are added, the last 
condition creates 10 a sum of 0 in a given column and a carry of 1 over to the next 
column to the left, as illustrated in the following example:  

  Decimal code    Binary code  

  Carry bits   166  1 111 
  47  10100110 

 00101111 
  Result   213  11010101 

    Chapter 3   
 Binary Arithmetic             
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    3.2   Binary Subtraction    

 Subtraction is generally simpler than addition since only two numbers are involved 
and the upper value representation is greater than the lower value representation. 
The problem of “borrow” is similar in binary subtraction to that in decimal. We can 
construct a subtraction table that has two parts – the three cases of subtracting with-
out borrow, and the one case of the involvement of a borrow digit, no matter how far 
to the left is the next available binary digit.  

  10101 (21 
10

 ) 
   −1010  (10 

10
 ) 

  1011 (11 
10

 ) 

 1000 (8 
10

 ) 
  −11  (3 

10
 ) 

  101 (5 
10

 ) 
 (а)  (b) 

 When subtracting numbers, you sometimes have to borrow from the next column 
to the left. A borrow is required in binary only when you try to subtract a 1 from a 
0. In this case, when a 1 is borrowed from the next column to the left, a 10 is created 
in the column being subtracted, and the last of the four basic rules just listed must 
be applied, Table  3.1 . 

 For 10 minus 1, 1 is borrowed from the “tens” column for use in the “ones” column, 
leaving the “tens” column with only 2. The following examples show “borrowing” 
in binary subtraction.  

  0.0010 (2 
10

 ) 
 − 0.0001  (1 

10
 ) 

  0.0001 (1 
10

 ) 

  100 (4 
10

 ) 
 − 010  (2 

10
 ) 

  010 (2 
10

 ) 

  0.1010 (10 
10

 ) 
  −0.0110  (6 

10
 ) 

  0.0100 (4 
10

 ) 
 (c)  (d)  (e) 

    3.3   Binary Multiplication 

 Binary multiplication of two bits is the same as multiplication of the decimal 
digits 0 and 1. Multiplication is performed with binary numbers in the same 
manner as with decimal numbers. It involves forming partial products, shifting 

   Тable 3.1    Binary arithmetic   

 The four basic rules for 
adding binary digits (bits) 
are as follows: 

 The four basic rules 
for subtracting bits are 
as follows: 

 The four basic rules for 
multiplying bits are as 
follows: 

 0 + 0 = 0  0 − 0 = 0  0 × 0 = 0 
 1 + 0 = 1  1 − 0 = 1  1 × 0 = 0 
 0 + 1 = 1  1 − 1 = 0  0 × 1 = 0 
 1 + 1 = 10  10 − 1 = 1  1 × 1 = 1 
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each successive partial product left one place, and then adding all the partial 
products.  

   0.0101 (5 
10

 ) 
  ×   0.0011  (3 

10
 ) 

    0101 
 +   0101  
   0.1111 (15 

10
 ) 

     1101 
  ×    1101  
     1101 
  +   0000 
     1101 
    1101  
  10101001  

   1101 
 ×   1101  
   1101 
 +  1101 
       0000 
           1101  
      10101001  

 (a)  (b)  (c) 

    3.4   Binary Division 

 Basically the reverse of the multiply by shift and add. Division in binary code follows 
the same procedure as division in decimal code.  

  A  = 430 
10

  = 110101110 
2
 ; 

  B  = 10 
10

  = 1010;  А / B  = 43 
10

  

  110101110    | 1010  
   −1010 _____ 101011 
    1101 
 
−

        1010  
     1111 
 
−

     1010  
     1010 
 
−

     1010  
      0000 

  A  = 204 
10

  = 11001100 
(2)

 , 
  B  = 12 

10
  = 1100 

(2)
 , 

   / B  = 204 
10

 /12 
10

  = 17 
10

  

    11001100    |  1100  
      1100        | 10001 
    00001 
          −  0  
      11 
       −   0  
       110 
        −  0  
      1100 
       −  1100  
      0000 

 (а)  (b) 

 Detailed study of digital arithmetic is beyond the scope of this book. For a more 
comprehensive discussion of computer arithmetic, the reader may consult  [  4,   5,   10,   11  ] .  

    3.5   BCD Addition 

 The procedures followed in adding BCD are the same as those used in binary. 
For example, let’s consider the addition of the two BCD digits 5 and 3:  
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  + 0101  
(BCD)

  (5 
10

 ) 
     0011   

(BCD)
  (3 

10
 ) 

    1000  
(BCD)

  (8 
10

 ) 

 There is, however, the possibility that addition of BCD values will result in 
invalid totals. The following example shows this:  

 Invalid BCD → 

  + 1001  
(BCD)

  (9 
10

 ) 
      0110   

(BCD)
  (6 

10
 ) 

   1111  (15 
10

 ) 

 The sum 1111 
2
  is the binary equivalent of 15 

10
 ; however, 1111 is not a valid BCD 

number. You cannot exceed 1001 in BCD, so a correction factor must be made. To 
do this, you add 6 

10
  (0110 

BCD
 ) to the sum of the two numbers. The “ add 6 ” correction 

factor is added to any BCD group larger than 1001 
2
 . 

 Remember, there is no 1010 
2
 , 1011 

2
 , 1100 

2
 , 1101 

2
 , 1110 

2
 , or 1111 

2
  in BCD:  

   +  1111 
       0110   

(BCD)
  

 0001 1111 

 ← Invalid BCD 
  Add (6 

10
 ) 

 ← New BCD 

 The sum plus the add 6 correction factor can then be converted back to decimal 
to check the answer. 

 Add two numbers  A  = 279 
10

  = 0010 0111 1001,   В  = 581 
10

  = 0101 1000 0001.  

   0010  0111  1001 
  +0101 1000   0001 
   0111 1111   1010 
      +    0110   0110   Add (6 

10
 ) 

  С  = 1000 ← 0110 ← 0000 

 Result  С  = 100001100000 = 860 
10

 .  

    3.6   Arithmetic Operations with Signed Numbers 

 The one’s and two’s complements of a binary number are operations used by com-
puters, to perform internal mathematical calculations. To complement a binary 
number means to change it to a negative number. 

    3.6.1   1s and 2s Complements Forms 

 This allows the basic arithmetic operations of subtraction, multiplication, and division 
to be performed through successive addition. The intention of this section is to 
introduce the basic concepts of complementing.  
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    3.6.2   1s Complement 

 Let’s assume that we have a 5-bit binary number that we wish to represent as a negative 
number. The number is decimal 19, or binary:

   10011 
2
     

 There are two ways to represent this number as a negative number. The  fi rst method 
is to simply place a minus sign in front of the number, as we do with decimal numbers:

   –(10011) 
2
     

 This method is suitable for us, but it is impossible for computers to interpret, 
since the only symbols they use are binary 1s and 0s. To represent negative num-
bers, then, some digital computing devices use what is known as the one’s comple-
ment method. First, the one’s complement method places an extra bit (sign bit) in 
the most signi fi cant (left-most) position and lets this bit determine whether the num-
ber is positive or negative. The number is positive if the sign bit is 0 and negative if 
the sign bit is 1. Using the one’s complement method, +19 decimal is represented in 
binary as shown here with the sign bit (0) indicated in bold:

    0  10011 
2
     

 The negative representation of binary 10011 is obtained by placing a 1 in the 
most signi fi cant bit position and inverting each bit in the number (changing 1s to 0s 
and 0s to 1s). So, the one’s complement of binary 10011 is:

    1  01100 
2
     

 If a negative number is given in binary, its one’s complement is obtained in the 
same fashion.

   +15 
10

  =  0  1111 
2
   

  –15 
10

  =  1  0000 
2
      

    3.6.3   2s Complement 

 The two’s complement is similar to the one’s complement in the sense that one extra 
digit is used to represent the sign. The two’s complement computation, however, is 
slightly different. In the one’s complement, all bits are inverted; but in the two’s 
complement, each bit, from right to left, is inverted only after the  fi rst 1 is detected. 
Let’s use the number +22 decimal as an example:

   +22 
10

  =  0  10110 
2
     

 Its two’s complement would be:

   –22 
10

  =  1  01010 
2
     

 Note that in the negative representation of the number 22, starting from the right, 
the  fi rst digit is a 0, so it is not inverted; the second digit is a 1, so all digits after this 
one are inverted. 
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    Тable 3.2    4-bit 1s and 2s complements forms   

 Decimal 

 1s and 2s complements forms 

 Decimal 

 1s and 2s complements forms 

 Binary 
 4-bit 1s 
complement 

 4-bit 2s 
complement  Binary 

 4-bit 1s 
complement 

 4-bit 2s 
complement 

 +7  0.111  0.111  0.111  −0  1.000  1.111  0.000 
 +6  0.110  0.110  0.110  −1  1.001  1.110  1.111 
 +5  0.101  0.101  0.101  −2  1.010  1.101  1.110 
 +4  0.100  0.100  0.100  −3  1.011  1.100  1.101 
 +3  0.011  0.011  0.011  −4  1.100  1.011  1.100 
 +2  0.010  0.010  0.010  −5  1.101  1.010  1.011 
 +1  0.001  0.001  0.001  −6  1.110  1.001  1.010 
 +0  0.000  0.000  0.000  −7  1.111  1.000  1.001 

   Тable 3.3    8-bit 1s and 2s complements forms   

 Decimal  Binary  Inverse (1s complement)  2s complement 

  −7   [−7] 
b
  = 1.000111 

2
   [−7] 

i
  = 1.111000 

2
   [−7] 

tc
  = 1.111001 

2
  

 If a negative number is given in two’s complement, its complement (a positive 
number) is found in the same fashion: 

 –14 
10

  =  1  10010 
2
  

 +14 
10

  =  0  01110 
2
  

 Again, all bits from right to left are inverted after the  fi rst 1 is detected. Other 
examples of the 1s and 2s complement are shown here (Tables 3.2 and 3.3):  

    3.6.4   Additional in the 1s Complement System 

 There are several options for adding: 
  Case 1.   А  > 0,  В  > 0,  А  +  В  < 1. [ A  > 0] 

 i 
  + [ B  > 0] 

 i 
  =  A  +  B . 

  Case 2.   А  > 0,  В  < 0,  А  +  В  > 0. [ A  > 0] 
 i 
  + [ B  < 0] 

 i 
  =  A  + 2 +  B  − 2 − n   

  Case 3.   А  > 0,  В  < 0,  А  +  В  < 0. [ A  > 0] 
i
  + [ B  < 0] 

 i 
  =  A  + 2 +  B  − 2 − n   

  Case 4.   А  < 0,  В  < 0, | A  +  B | < 1. [ A  < 0] 
 i 
  + [ B  < 0] 

 i 
  = 2 +  A  − 2 − n   + 2 +  B  − 2 − n   

 Where the [ A ] 
 i 
 , [ B 0] 

 i 
  – representation of numbers in a computer. 

  Examples  

  Case 2.  
  A  = +0,1101     [ A ] 

b
  =0,1101     [ A ] 

i
  = 0,1101 

  В  = −0,0011     [ B ] 
b
  = 1,0011     [ B ] 

 i 
  =1,1100 

      1  ← 0,1001 
                1 

   С  = 0,1010   <= [ C ] 
b
  = 0,1010 <= [ C ] 

i
  = 0,1010 
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   Case 3.     
  А  = −0,1101    [ A ] 

b
  = 1,1101        [ A ] 

i
  = 1,0010 

  В  = +0,0011    [ B ]  
b
  = 0,0011           [  B  ]  

 i 
   = 0,0011  

  С  = −0,1010   <=   [ C ] 
b
  =   1,1010  < =  [ C ] 

i
  = 1,0101 

  Case 4.  
  A  = −0,0101 [ A ] 

b
  =1,0101      [ A ] 

i
  = 1,1010 

  В  = −0,0110 [ B ] 
b
  = 1,0110       [  B  ]  

 i 
   = 1,1001  

  1  ← 1,0011 
      1  

  С  = −0,1011 < =  [ C ] 
b
  =1,1011 < = [ C ] 

i
  =1,0100 

  Example. Case  | A | = | B |,  A  < 0,  B  > 0. 
  А  = −0,0101      [ A ] 

db
  =1,0101    [ A ] 

i
  =1,1010 

  В  = +0,0101       [ B ] 
b
  = 0,0101        [  B  ]  

 i 
   = 0,0101  

  С  = −0,0000  <=    [ C ] 
b
  = 1,0000  <= [ C ] 

i
  = 1,1111 

  Example. Case   A  >  B ,  B  > 0, | A  +  B | = 1. 
  A  = +0,0111   [ A ] 

b
  = 0,0111  [ A ] 

i
  = 0,0111 

  В  = +0,1001   [ B ] 
b
  = 0,1001    [  B  ]  

 i 
   = 0,1001  

  С  = +0,1111 <=    [ C ] 
b
  = 0,1111 <=   [ C ] 

i
  = 1,0000 

  Example. Case   A < 0, B < 0 , | A + B | = 1. 
  A  = −0,0111   [ A ] 

b
  = 1,0111  [ A ] 

i
  = 1,1000 

  В  = −0,1001   [ B ] 
b
  = 1,1001   [  B  ]  

 i 
   = 1,0110  

      1  ← 0,1110 
        1  

  С  = +0,1111 < =  [ C ] 
b
  =0,1111 < = [ C ] 

i
  = 0,1111  

    3.6.5   Additional in the 2s Complement System 

 There are several options for adding: 

  Case 1.  А > 0,  В  > 0,  А  +  В  < 1.     [ 0] [ 0] .> + > = +tc tcA B A B    

  Case 2.   А  > 0,  В  < 0,  А  +  В  > 0.     [ 0] [ 0] 2 .> + < = + +tc tcA B A B    

  Case 3.   А  > 0,  В  < 0,  А  +  В  < 0.     [ 0] [ 0] 2 .> + < = + +tc tcA B A B    

  Case 4.   А  < 0,  В  < 0,| A  +  B | < 1.     [ 0] [ 0] 2 2 .< + < = + + +tc tcA B A B    

 Here the     [ ] [ ], 0 tctc
A B   – representation of numbers in a computer. 

  Examples.  

  Case 3.  
  A  = − 0,1101 [ A ] 

b
  =1,1101 [ A ] 

tc
  = 1,0011 

  В  = + 0,0011 [ B ] 
b
  = 0,0011  [  B  ]  

 tc 
   = 0,0011  

  С  = −0,1010 <=  [ C ] 
b
  =1,1010 <=  [ C ] 

tc
  = 1,0110 
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  Case 4.  
  A  = − 0,0101       [ A ] 

b
  =1,0101    [ A ] 

tc
  =1,1011 

  В  = − 0,0110       [ B ] 
b
  = 1,0110     [  B  ]  

 tc 
   = 1,1010  

  С  = − 0,1011  < =  [ C ] 
b
  =1,1011 < =  [ C ] 

tc
 =  1  1,0101 

  Example. Case  | A | = | B |,  A  < 0,  B  > 0. 
  A  = −0,0101     [ A ] 

b
  =1,0101     [ A ] 

tс  = 1,1011 
  В  = + 0,0101       [ B ] 

b
  = 0,0101      [  B  ]  

 tс 
   = 0,0101  

  С  = +0,0000  < =   [ C ] 
b
  =0,0000  < =  [ C ] 

tc
  = 1  0,0000 

 Figures  3.1 ,  3.2 ,  3.3  show a block diagram of the addition (subtraction) of binary 
numbers in the direct, inverse and complementary codes.      

where ao,b0,co − sign bits;
OV  - value of overflow digit;
f- The type of operation  ( f=0 – Addition, f=1 – Subtraction)

Start

f

00 : bb =

0:=OV

Done 

0

0

0

1

1

1

1
0 

00 : bc =

c0 

BAC +=:

1:=OV

BAC −=:

a0=b0

c0 

00 : ac =

ABC −=:

  Fig. 3.1    The block diagram of the addition (subtraction) of binary numbers in the direct code       
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    3.7   BCD Subtraction 

 Either packed or unpacked BCD numbers can be subtracted. BCD subtraction 
follows the same rules as binary subtraction. However, if the subtraction causes a 

c-1 – transfer from a sign bit;
A′,B′,C ′ -modules of numbers;

Start 

f

00 : bb =

  a0

BB ′=′ :

b0

AA ′=′ :

BAC +=:

c-1

nCC −+= 2:

α

0:=OV 1:=OV

c0

CC ′=′:

Done 

0

0

0

0

0

1

1

1

1

1

1

0

where ao,b0,co − sign bits;

OV  - value of overflow digit;

f- The type of operation  ( f=0 – Addition, f=1 – Subtraction)

  Fig. 3.2    The block diagram of the addition (subtraction) of binary numbers in the inverse code 
(1s complement form)       
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borrow and/or creates an invalid BCD number, an adjustment is required to correct 
the answer. The correction method is to subtract 6 from the difference in any digit 
position that has caused an error. 

  Examples.  
 Represent the number of  A  = −256 

10
  in the inverse code for the BCD:  

 1. 0010 0101 0110 
  +           0110 0110 0110   Add (6 

10
 ) 0110

    1000 1011 1100 
  Result     A  

 i 
  = 1. 0111 0100 0011. 

 Represent the number of  A  = −398 
10

  in the two complement code for the BCD:  

  1. 0011 1001 1000 
  +           0110 0110 0110  

 Add (6 
10

 ) 0110 

  1. 1001 1111 1110 
  0110 0000 0001 

                           +1  
  Result   A  

tc
  = 1.0110 0000 0010 

  A  = 37 
10

  = 0011 0111 
(BCD)

 .  B  = 12 
10

  = 0000 0010 
(BCD)

 . 
 Result  C  =  A  −  B  = 15 

10
  = BCD ?  

* - value of overflow  in an additional code;α
B ′ - module of number; 

Start 

f

1: += B ′B ′

BAC +=:

*: α=OV

Done 

0

1

where ao,b0,co − sign bits;
OV  - value of overflow digit;

f- The type of operation  ( f=0 – Addition,
    f=1 – Subtraction)

  Fig. 3.3    The block diagram 
of the addition (subtraction) 
of binary numbers in the 2s 
complement form       
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      0011   0111 
 +       0000   0010  
       0011    0101 

  Result       C  = 0011   0101  
(BCD)

  = 25 
10

  

  A  = −1000 0010 0101 
(BCD)

  = −825 
10

 ,  B  = 1001 0100 0110 
(BCD)

  = 946 
10

 . 
 Result  C  = − A + B  = (−825 + 946) 

10
  = 121 

10
  = BCD ?  

 1. 0001  0111  0101 
  0. 1001  0100  0110  
 1. 1010  1011  1011 

                    +   0110            0110        0110  (adjustment Add 0110 
(BCD)

 ) 
  Result   C  = 0. ← 0001 ← 0010 ← 0001. 

    3.8   BCD Multiplication and Division 

 Multiplication cannot be performed on packed BCD; the four most signi fi cant bits 
must be zeroed for the adjustment to work. 

 BCD division also cannot be performed on packed numbers. Before dividing an 
unpacked BCD number, the division adjustment is made by converting the BCD 
numbers to binary. 

  Example.   А  = 25 
10

  = 0010 0101 на  В  = 12 
10

  = 0001 0010. Intermediate results of 
multiplication put in  P .  А·В  = 0010 0101 · 0001 0010 = 0011 0000 0000 = 300 

10
 .  

    P  0000  0000  0000 
  +  А       0010  0101  
     P  0000  0010  0101 
  +  А       0010  0101  
    P   0000  0100  1010 
         +  0110  
    P  0000  0101  0000 

    P  0000  0101  0000 
  +  А    0010  0101  0000  
    P  0010  1010  0000 
     +      0110  
    Р  0011  0000  0000 = = 300 

10
  

 0010 − 0001 = 0001 > 0, Repeat  В  +  P  

 0010 − 0001 = 0 

 adjustment 
 shift  B  on the left 4 bits and add to  P  

 0001–0001 = 0 

 adjustment 
  А·В  = 0011 0000 0000 = 300 

10
  

  Example.  
  А  = 48 

10
  = 0100 1000,  В  = 2 

10
  = 0000 0010,  А / В  = 24 

10
  = 0010 0100. In the  C1  – 

form the older BCD tetrad private, and  C2  – the LSB.  
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  А/В  = 0100 1000/0010 
   −  0010  
    0010 > 0 
   −  0010  
     0000 
      0010  

    −  0010 
   ±    0010  
    0000 
    0100 1000 
       − 0010  
       0110 > 0 
           − 0010  
      0100 > 0 
       −0010  
      0010 > 0 
       − 0010  
       0000 

  С 1  = С 1 + 1 = 1 

  С 1 = 1 + 1 = 2 = 0010 

  B shift to 4 digits to the right and perform the same steps:  

  С 2 =  С 2 + 1 = 1 

  С 2 = 1 + 1 = 2 

  С 2 = 2 + 1 = 3 

  С 2 = 3 + 1 = 4 = 0100 

  Result   С 1+  С 2 = 0010 0000 + 0000 0100 = 0010 0100 = 24 
10

  

    3.9   Floating-Point Numbers 

 In computing,  fl oating-point describes a system for representing numbers that would 
be too large or too small to be represented as integers. Numbers (    = · pN m q   ) are in 
general represented approximately to a  fi xed number of signi fi cant digits and scaled 
using an exponent. The base ( q ) for the scaling is normally 2, 10 or 16. The typical 
number that can be represented exactly is of the form, Fig.  3.4 .  

 The term  fl oating point refers to the fact that the radix point (decimal point, or, 
more commonly in computers, binary point) can “ fl oat”; that is, it can be placed 
anywhere relative to the signi fi cant digits of the number. This position is indicated 
separately in the internal representation, and  fl oating-point representation can thus 
be thought of as a computer realization of scienti fi c notation. Over the years, several 
different  fl oating-point representations have been used in computers; however, for 
the last 10 years the most commonly encountered representation is that de fi ned by 
the IEEE 754 Standard. 

 The JVM’s  fl oating-point support adheres to the IEEE-754 1985  fl oating-point stan-
dard. This standard de fi nes the format of 32-bit and 64-bit  fl oating-point num-
bers and de fi nes the operations upon those numbers. In the JVM,  fl oating-point 
arithmetic is performed on 32-bit  fl oats and 64-bit doubles. For each bytecode that 
performs arithmetic on  fl oats, there is a corresponding bytecode that performs the 
same operation on doubles. 

Sign
Bit

p Sign
Bit

m
(23 bit)

m
0    1                                   k  0     1 

  Fig. 3.4    Floating-point 
arithmetic represented as 
integers ( N = m·q p  )       
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 A  fl oating-point number has four parts – a sign, a mantissa, a radix, and an 
exponent. The sign is either a 1 or −1. The mantissa, always a positive number, 
holds the signi fi cant digits of the  fl oating-point number. The exponent indicates 
the positive or negative power of the radix that the mantissa and sign should be 
multiplied by.     = ±127p   .     1 2.£ <m    

    3.9.1   Floating-Point Arithmetic 

 Floating-point arithmetic derives its name from something that happens when you 
use exponential notation. Consider the number  A  = 123: it can be written using expo-
nential notation as:

     
2 1 0 11.23·10 12.3·10 123·10 1230·10 etc.-= = = =A     

 All of these representations of the number 123 are numerically equivalent. They 
differ only in their “normalization”: where the decimal point appears in the  fi rst 
number. In each case, the number before the multiplication operator (“*”) repre-
sents the signi fi cant  fi gures in the number (which distinguish it from other numbers 
with the same normalization and exponent); we will call this number the 
“signi fi cand” (also called the “mantissa” in other texts, which call the exponent the 
“characteristic”). 

 Only two of the representations of the number 123 above are in any kind of 
 standard form. The  fi rst representation,     21.23·10   , is in a form called “scienti fi c notation”, 
and is distinguished by the normalization of the signi fi cand: in scienti fi c notation, 
the signi fi cand is always a number greater than or equal to 1 and less than 10. 

 Standard computer normalization for  fl oating point numbers follows the fourth form 
in the list above: the signi fi cand is greater than or equal to .1, and is always less than 1. 

 Of course, in a binary computer, all numbers are stored in base 2 instead of base 
10; for this reason, the normalization of a binary  fl oating point number simply 
requires that there be no leading zeroes after the binary point (just as the decimal 
point separates the 10 0  place from the 10 −1  place, the binary point separates the 2 0  
place from the 2 −1  place). We will continue to use the decimal number system for our 
numerical examples, but the impact of the computer’s use of the binary number sys-
tem will be felt as we discuss the way those numbers are stored in the computer. Over 
the years,  fl oating point formats in computers have not exactly been standardized. 
While the IEEE (Institute of Electrical and Electronics Engineers) has developed 
standards in this area, they have not been universally adopted. This is due in large 
part to the issue of “backwards compatibility”: when a hardware manufacturer 
designs a new computer chip, they usually design it so that programs which ran on 
their old chips will continue to run in the same way on the new one. Since there was 
no standardization in  fl oating point formats when the  fi rst  fl oating point processing 
chips (often called “coprocessors” or “FPU”s: “Floating Point Units”) were designed, 
there was no rush among computer designers to conform to the IEEE  fl oating point 
standards (although the situation has improved with time). 
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 The following table describes the IEEE standard formats as well as those used in 
common Intel processors, Table  3.4 .  

 Note  fi rst that all of the formats reserve 1 bit to store the sign of the number; this 
is necessary because the signi fi cand is stored as an unsigned fraction in all of these 
formats (often the  fi rst bit of the signi fi cand is not even stored, because it is always 
1 in a properly normalized  fl oating-point number). The rows describing the IEEE 
extended formats specify the minimum number of bits which the exponent and 
signi fi cand must have in order to satisfy the standard. The Intel “internal” format is 
an extended precision format used inside the CPU chip, which allows consecutive 
 fl oating point operations to be performed with greater precision than that which will 
eventually be stored. 

  Examples  
 We will do all of our examples using decimal, but always keep in mind that the 

computer always uses binary code. 
  Example 1.  
 To  fi nd the sum of numbers of  A =  122 

10
  and  B  = 12 

10
 . 

 We  fi rst normalize these numbers as     
30.122·10=A   and     

20.12·10=B   . 
 We can’t simply add two decimal numbers which are multiplied by different 

exponents. That is, the answers –     
30.242·10   or     

20.242·10   are obviously incorrect. 
 To solve this problem, the number with the smaller exponent must be denormal-

ized before the addition can take place –     
20.12·10=B   becomes     

30.012·10=B   . 
 Now we can simply add the decimal numbers, since

     ( )·10 ·10 ·10 ,= + = +x x xC A B A B
   

and we get the answer –     30.134·10 .=C    

  Example 2.  
  А  = 0,315290·10 −2  and    = 0,114082·10 +2 .  

  First variant    Second variant  
  A  = 
  B  = 1140 
      

 0,315280·10 −2  
 0,820000·10 −2  

  A  = 0,000031 
 B = 0,114082 
      

 5280·10 +2  
         ·10 +2  

  C =  1,135280·10 -2    C  = 0,114114          ·10 +2  

  Incorrect result    Correct result  

   Тable 3.4    Floating-point standard for diferent processor   

  Precision  
 Sign 
(# of bits) 

 Exponent 
(# of bits) 

 Signi fi cand 
(# of bits) 

 Total Length 
(in bits) 

 Decimal digits 
of precision 

 IEEE/Intel single  1  8  23  32  >6 
 IEEE single extended  1   ³ 11   ³ 32   ³ 44  >9 
 IEE/Intel double  1  11  52  64  >15 
 IEEE double extended  1   ³ 15   ³ 64   ³ 64  >19 
 Intel internal  1  15  64  80  >19 
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  Example 3.  
  А  = 0,96501·10 +2  and  В  = 0,73004·10 +1 .  

  A  = 
  B  =       

 0,96501·10 +2  
 0,07300·10 +2  

 ← over fl ow mantissas 
 ←  Correct result  

  C = 
  C = 

 1,03801·10 +2  
 1,0380·10 +3  

  Example 4.  
  А  = 0,24512·10 −8  and  В  = −0,24392·10 −8 .  

  A = 
  B = 
      

    0,24512·10 −8  
 − 0,24392·10 −8  

 0,12000·10 −10    C =  0,00120·10 −8  = 

 Exponents are commonly stored in these formats as unsigned integers; however, 
an exponent can be negative as well as positive, and so we must have some tech-
nique for representing negative exponents using unsigned integers. This technique 
is called “biasing”: a positive number is added to the exponent before it is stored in 
to the  fl oating point number. The stored exponent is then called a “biased exponent”. 
If the exponent contains 8 bits, the bias number 127 is added to the exponent before 
it is stored so that, for example, an exponent of 1 is stored as 128. Since the unsigned 
exponent can represent numbers between 0 and 255, it should be theoretically pos-
sible to store exponents whose values range from −127 to +128 (−127 would stored 
as the biased exponent value 0, and +128 would be stored as the biased value 255). 
In practice, the IEEE speci fi cation reserves the values 0 and 255, which means that 
an 8-bit exponent can represent exponent values between −126 and +127. If the 
stored (biased) exponent has the value 0, and the signi fi cand is 0 as well, the value 
of the  fl oating point number is exactly 0. A  fl oating point number with a stored 
exponent of 0 and a nonzero signi fi cand is of course unnormalized. If the stored 
exponent has the value 255 (all ones), the  fl oating point number has one of two 
special meanings:

   if the signi fi cand is 0, the number represents in fi nity, and  • 
  if the signi fi cand is not zero, that number represents a “NaN” (“Not a Number”): • 
the result of a division by zero.  
  In general, in order to perform any  fl oating point arithmetic operation, the com-• 
puter must:  
   fi rst represent each operand as a normalized number within the limits of its precision • 
(which may result in representation error due to truncation of less signi fi cant digits);  
  denormalize the smaller of the numbers if an addition or subtraction is being • 
performed (which may again result in representation error due to the denormali-
zation);  
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  perform the operation (which again may result in representation error due to the • 
 fi nite precision of the  fl oating point processor);  
   fi nally normalize the result.    • 

 An analogical algorithm can be used for the operations of multiplication of 
division for binary numbers, presented in a format with a  fl oating point, Fig.  3.5 .  

Start 

ba ppq −=

1>′q

10 =q 10 =q

bb mm ⋅= −12: aa mm ⋅= −12: 0:=bm 0:=am

1: += bb pp 1: += aa pp bc pp =:

1: −′=′ qq

0=′q

ac pp =:

Algebraic addition / subtraction of the mantissas
as numbers with fixed point

Formed cm  and OV  →

1=mOV

max>cp

mc [1] = 1

cc mm ⋅= −12:

1: += cc pp

cc mm ⋅= 2:

1:=OV 0:=OV 0:=cm

Done 

1: −= cc pp

max|| >cp
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  Fig. 3.5    Algorithm of addition of numbers with  fl oating point       
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 Let

    = · ;Ap
AA m q   

    = · ;Bp
BB m q   

    = · ;Cp
CC m q   

    = · .Dp
DD m q    

 Then

    

( )
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· · · ;

\ \ · .

+

-

= =

= =

A B

A B

p p
A B
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A B

C A B m m q
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  Abstract   This chapter presents error detection and error correction methods that 
are used in digital systems, such as parity methods, cyclic redundancy check (CRC), 
Reed-Solomon block and Hamming code. Additionally some of these methods are 
further explained in few examples enclosed in this chapter.     

     4.1   Parity Method for Error Detection 

 The    movement of digital data from one location to another can result in transmission 
errors, the receiver not receiving the same signal as transmitted by the transmitter as 
a result of electrical noise in the transmission process. Sometimes a noise pulse may 
be large enough to alter the logic level of the signal. For example, the transmitted 
sequence 1001 may be incorrectly received as 1101. In order to detect such errors a 
parity bit is often used. A parity bit is an extra 0 or 1 bit attached to a code group at 
transmission. In the even parity method the value of the bit is chosen so that the total 
number of 1s in the code group, including the parity bit, is an even number. For 
example, in transmitting 1001 the parity bit used would be 0 to give 01001, and thus 
an even number of 1s. In transmitting 1101 the parity bit used would be 1 to give 
11101, and thus an even number of 1s. With odd parity the parity bit is chosen so 
that the total number of 1s, including the parity bit, is odd. Thus if at the receiver the 
number of 1s in a code group does not give the required parity, the receiver will 
know that there is an error and can request that the code group be retransmitted.  

    4.2   Cyclic Redundancy Check (CRC) 

 CRC error detection computes the remainder of a polynomial division of a genera-
tor polynomial into a message. The remainder, which is usually 16 or 32 bits, is then 
appended to the message. When another remainder is computed, a nonzero value 

    Chapter 4   
 Error Correction in Digital Systems          
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indicates an error. However, depending on the generator polynomial’s size, the process 
can fail in several ways. It is very dif fi cult to determine how effective a given CRC 
will be at detecting errors. The probability that a random code word is valid (not 
detectable as an error), is completely a function of the code rate: 1−2 −( n  −  k )  .  Where 
 n  is the number of bits of formed from  k  original bits of data, ( n  −  k ) is the number 
of redundant bits. 

 Use of the CRC technique for error correction normally requires the ability to 
send retransmission requests back to the data source. 

 CRCs are not suitable for protecting against intentional alteration of data. Firstly, 
as there is no authentication, an attacker can edit a message and recalculate the CRC 
without the substitution being detected. Secondly, the linear properties of CRC 
codes allow an attacker even to keep the CRC unchanged while modifying parts of 
the message.  

    4.3   Reed-Solomon Block 

 Reed-Solomon block codes are popular in communications and data-storage appli-
cations. Like  fi re codes, Reed-Solomon-code implementations append symbols to the 
end of a transmission to locate and correct errors during decoding. Reed-Solomon-code 
systems’ effectiveness at high data rates results from operations taking place at the 
code-symbol rate or at a  fi xed number of times per code word. Either way, the num-
ber of operations is much smaller than the number of bits. Chips that implement 
these types of high-speed real-time correctors are commercially available, as are 
DSP-software options. 

 Each RS symbol is actually a group of  M  bits. Just one bit error anywhere in a 
given symbol spoils the whole symbol. To have fewer bit errors, you’d like to con-
centrate them into as few RS symbols as possible. That’s why RS codes are often 
called “burst-error-correcting” codes. Many RS codes in use are “shortened” by 
making the size of the block or the number of used symbols smaller than M (i.e. the 
size of RS symbol) or smaller than the maximum number of symbols (i.e. 2 M −1 ).     

 Since RS can be done on any message length and can add any number of extra 
check symbols, a particular RS code will be expressed as RS ( N,N − R ) code where  N  
is the total number of symbols per code word;  R  is the number of check symbols per 
code word and; therefore,  N − R  is the number of actual information symbols per code 
word. The typical RS decoder can correct up to ( N − R )/2 symbol errors per block. 

 Generally, a Reed-Solomon corrector provides a number of symbol corrections, 
say  Z , in an N-symbol code word.  Z  is independent of the location of the errors 
inside the code word. When you use this method with complex interleaving, this 
approach can easily correct large error bursts. Further algorithm re fi nements allow 
even more correction capability if you know the error location by some other means. 
These “soft-error” indicators can come, for example, from up-stream decoding viola-
tions. It is unable to both locate and correct errors in a block that has more than 
 Z  symbol errors.  
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    4.4   Hamming Code 

 In the late 1940s Claude Shannon was developing information theory and coding as 
a mathematical model for communication. At the same time, Richard Hamming, a 
colleague of Shannon’s at Bell Laboratories, found a need for error correction in his 
work on computers. Parity checking was already being used to detect errors in the 
calculations of the relay-based computers of the day, and Hamming realized that a 
more sophisticated pattern of parity checking allowed the correction of single errors 
along with the detection of double errors. 

 The codes that Hamming devised, the single-error-correcting binary Hamming 
codes and their single-error-correcting, double-error-detecting extended versions 
marked the beginning of coding theory. These codes remain important to this day, 
for theoretical and practical reasons as well as historical. 

 In a Hamming code, multiple extra bits are computed such that each extra bit will 
be affected by the data bits in a distinct way. For example, in a system with four data 
bits, the  fi rst extra bit might be affected by a change in data bits 2 thru 4, but not by 
a change in the  fi rst data bit. The second extra bit would be unaffected by an error 
in the second data bit, and the last extra bit would have no relation to data bit 3. The 
matrix for this Hamming code would look like Fig.  4.1 .  

 When the extra bits are recalculated at the receiving end, any differences will call 
out any single corrupted data bit, or indicate an error if two bits are corrupted. 

 1011 is encoded as 1011 010. If the  fi rst bit is corrupted, 0011 010 will be 
received. Using the  fi rst 4 (data) bits to re-calculate the hamming code returns 001. 
XORing the received extra bits with the calculated extra bits gives us 010 Å 001 = 011 
which is the pattern in the extra bits on the top line of the matrix, indicating an error 
in the  fi rst bit. The XOR of the expected error-checking bits with those actually 
received is called the syndrome of a received code word. 

  Example 1  

 When data is transmitted from one location to another there is always the possibility 
that an error may occur. There are a number of reliable codes that can be used to 
encode data so that the error can be detected and corrected. With this example you 
will explore a simple error detection-correction technique called a Hamming Code. 
A Hamming Code can be used to detect and correct one-bit change in an encoded 
code word. This approach can be useful as a change in a single bit is more probable 
than a change in two or more bits. 

 Consider Fig.  4.2 . Data is represented (stored) in every position (1–15) except 1, 
2, 4 and 8. These positions (which are powers of 2) are used to store parity (error 
correction) bits.  

d1 1 0 0 0 0 1 1
d2 0 1 0 0 1 0 1
d3 0 0 1 0 1 1 0
d4 0 0 0 1 1 1 1

D1 D2 D3 D4 E1 E2 E3  Fig. 4.1              

 



40 4 Error Correction in Digital Systems

 Using the four parity (error correction bits) positions we can represent 15 values 
(1–15). These values and their corresponding binary representation are shown in the 
table below. 

 Using the format given, data is represented by the 11 non-parity bits. For example 
the following data item to be encoded ( 10101101011 ), Fig.  4.3  (Table  4.1 )   :   

 In positions 3, 6, 9, 10, 12, 14 and 15 we have a ‘ 1 ’. Using our previous conver-
sion table we obtain the binary representation for each of these values. We then 
apply the exclusive OR to the resulting values (essentially setting the parity bit to 1 
if an odd # of 1s, else setting it to 0). The results of this activity are shown in 
Table  4.2 :  

 The parity bits are then put in the proper locations in the table providing the 
following end result (Fig.  4.4 ):  

 This is the encoded code word that would be sent. The receiving side would 
re-compute the parity bits and compare them to the ones received. If they were the 
same, no error occurred – if they were different, the location of the  fl ipped bit is 
determined. For example, let’s say that the bit in position 14 was  fl ipped during trans-
mission. The receiving end would see the following encoded sequence (Fig.  4.5 ):  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
error 

correction 
error 

correction 1 error 
correction 2 3 4 error 

correction 5 6 7 8 9 10 11

  Fig. 4.2           

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
error

correction
error

correction 1 error
correction 0 1 0 error

correction 1 1 0 1 0 1 1

  Fig. 4.3           

   Table 4.1         Positions   2 0  = 1  2 1  = 2  2 2  = 4  2 3  = 8 

  1   1    0    0    0  
  2   0    1    0    0  
  3   1    1    0    0  
  4   0    0    1    0  
  5   1    0    1    0  
  6   0    1    1    0  
  7   1    1    1    0  
  8   0    0    0    1  
  9   1    0    0    1  
 10   0    1    0    1  
 11   1    1    0    1  
 12   0    0    1    1  
 13   1    0    1    1  
 14   0    1    1    1  
 15   1    1    1    1  
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 Table  4.3  shows the re-calculation at the receiving end.  
 The re-calculated parity information is then compared to the parity information 

sent/received. If they are both the same the result (again using an XOR – even parity) 
will be all 0s. If a single bit is  fl ipped the resulting number will be the position of 
the errant bit (check back into table). 

 In the methods of error correction of digital systems we often use logic operation 
XOR, Figs.  4.6  and  4.7 . The following is an example of a program that describes the 
operating principle of this logical operation.  

  program Summatot_mod2;  
  {$APPTYPE CONSOLE}  
  Uses SysUtils;  
  CONST MRI=10;  
  VAR A: ARRAY[1..MRI+1] of BYTE;  

   Table 4.2         1    1    0    0   3 

  0    1    1    0    6  

  1    0    0    1    9  

  0    1    0    1    10  

  0    0    1    1    12  

  0    1    1    1    14  

  1    1    1    1    15  

  XOR    1    1    0    1    (11)  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 0 0 1 0 1 1 1 0 1 0 1 1

  Fig. 4.4           

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 0 0 1 0 1 1 1 0 1 0 0 1

  Fig. 4.5           

   Table 4.3         1    1    0    0   3 

  0    1    1    0    6  

  1    0    0    1    9  

  0    1    0    1    10  

  0    0    1    1    12  

  1    1    1    1    15  

  XOR (Fig.    4.5   )    1    1    0    0  
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  I, PZ,X:INTEGER;  
  begin  
  REPEAT  
   WRITELN(‘Enter positions of binary code combination with 1-th for 10-th’, 
MRI);  
  FOR I:=1 TO MRI DO READ(A[I]);  
  PZ:=0;  
  FOR I:=1 TO MRI DO PZ:=PZ+A[I];  
  PZ:=PZ mod 2;  
  IF ODD(PZ)  
  THEN A[MRI+1]:=0  
  ELSE A[MRI+1]:=1;  

a1 a2 a3 a4 a5   .   . am

Z=0

control position= 1 control position= 0

Yes No

Error
correction bit

  Fig. 4.6    Blok diagram of  the error correction          

  Fig. 4.7    Program that describes the operating principle of error correction       
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  WRITELN(‘Register A contains a code:’);  
  FOR I:=1 TO MRI+1 DO WRITE(A[1]:1, ‘’); WRITELN;  
  WRITELN(‘ Enter, M<10 - Completion’);  
  UNTIL MRI<10  
  {TODO -oUser -cConsole Main : Insert code here}  

  end.   
 In information theory, the Hamming distance between two strings of equal length 

is the number of positions at which the corresponding symbols are different. Put 
another way, it measures the minimum number of substitutions required to change 
one string into the other, or the number of errors that transforms one string into the 
other ( d  

 min 
  = 3). For example, 0101 and 0110 has a Hamming distance of two whereas 

“Butter” and “ladder” are four characters apart. 
 The Hamming distance is used in digital telecommunication systems, to count 

the number of  fl ipped bits in a  fi xed-length binary word as an estimate of error, and 
therefore is sometimes called the signal distance. Hamming weight analysis of bits 
is used in several disciplines including information theory, coding theory, and 
cryptography.       
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  Abstract   The chapter introduces to Boolean Algebra. First the three Boolean oper-
ators that are used today are concerned (i.e. AND, OR, NOT). Then the laws of 
Boolean logic are defi ned axiomatically using axioms together with theorems, 
which are presented here in the form of certain equations. The chapter introduces 
also to the disjunctive normal form (DNF) and to conjunctive normal form (CNF), 
which  allow for the standardization (or normalization) of logical formulas.     

  Boolean algebra (or Boolean logic) is a logical calculus of truth values, developed 
by George Boole in the 1840s. 

 Boolean algebra (symbolic logic) remained dormant until the middle of the 
Twentieth century. In the 1950s (Huntington   ) it was used for telephone switching 
units and the new up and coming electronic computers. 

 Symbolic logic is used not only in genuinely logical or mathematical domains 
but also in the natural sciences, and in disciplines such as linguistics, law, and com-
puter technology. 

 Today Boolean algebra is used every day to help people when doing searches on 
the Internet. It is more commonly referred to as a Boolean search. The three Boolean 
operators used today are as follows: AND, OR, NOT. 

 The laws of Boolean algebra can be de fi ned axiomatically as certain equations 
called axioms together with their logical consequences called theorems, or semanti-
cally as those equations that are true for every possible assignment of 0 or 1 to their 
variables. The axiomatic approach is sound and complete in the sense that it proves 
respectively neither more nor fewer laws than the semantic approach. 

 Boolean algebra is the algebra of two values. These are usually taken to be 0 and 
1, as we shall do here, although F and T, false and true, etc. are also in common 
use. For the purpose of understanding Boolean algebra any Boolean domain of two 
values will do. 

    Chapter 5   
 Boolean Algebra          
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    5.1   Laws of Boolean Algebra 

 With values and operations in hand, the next aspect of Boolean algebra is that of 
laws or properties. As with many kinds of algebra, the principal laws take the form 
of equations between terms built up from variables using the operations of the algebra. 
Such an equation is deemed a law or identity only when both sides have the same 
value for all values of the variables, equivalently when the two terms denote the 
same operation. 

 A Boolean algebra can be formally de fi ned as a set  B  of elements  A ,  B ,  C ,  D ,… 
with the following properties:

    1.     B  has two binary operations, ∧ (logical AND) and ∨ (logical OR), which satisfy 
the idempotent laws

     Ù = Ú = ,A A A A A A    (5.1)  

     the commutative laws

     Ù = ÙA B B A    (5.2)  

     Ú = Ú ,A B B A    (5.3)  

     and the associative laws

     ( ) ( )Ù Ù = Ù ÙA C B C B A
   (5.4)  

     ( ) ( ) .Ú Ú = Ú ÚA C B C B A
   (5.5)    

    2.    The operations satisfy the absorption law

     ( ) ( ) .Ù Ú = Ú Ù =A A B A B A A
   (5.6)    

    3.    The operations are mutually distributive

     ( ) ( ) ( )Ù Ú = Ù Ú ÙA B C A B A C
   (5.7)  

     ( ) ( ) ( ) .Ú Ù = Ú Ù ÚA B C A B A C
   (5.8)    

    4.     B  contains universal bounds (the empty set) and (the universal set) which satisfy

     Ù =0 0A    (5.9)  

     Ú =0 A A    (5.10)  

     Ù =1 A A    (5.11)  

     Ú =1 1.A    (5.12)    

    5.     B  has a unary operation     ®A A   of complementation, which obeys the laws
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     Ù = 0A A    (5.13)  

     Ú = 1.A A    (5.14)       

      Huntington (1933) presented the following basis for Boolean algebra: 
 Commutativity:     .Ú = ÚA B B A    

 Associativity:     ( ) ( ) .Ú Ú = Ú ÚA C B C B A    

 Huntington axiom:     ( ) ( )! ! ! ! ! .Ú Ú Ú =A B A B A    
 H. Robbins then conjectured that the Huntington axiom could be replaced with 

the simpler Robbins axiom,

     
( ) ( )( )Ú Ú Ú =! ! ! ! .A B A B A

    

 The next table shows that this theory is suf fi cient to axiomatize all the valid laws 
or identities of two-valued logic, that is, Boolean algebra. It follows that Boolean 
algebra as commonly de fi ned in terms of these axioms coincides with the intuitive 
semantic notion of the valid identities of two-valued logic. 

  The XOR Gate     Ä = +· ·A B A B A B   . 
 Also:

   Table 5.1    Specifi c axioms and theorem of Boolean algebra   

 (1)   A  = 1, if  A   ¹  0   A  = 0, if  A   ¹  1 

 (2)  If  A  = 0, then     = 1A     If  A  = 1, then     = 0A    

 (3)  0 + 0 = 0  0 × 0 = 0 

 (4)  0 + 1 = 1  1 × 0 = 0 

 (5)  1 + 1 = 1  1 × 1 = 1 

 (6)      =0 1         =1 0    

 (7)   A  Ú 0 =  A    A  × 1 =  A ; 

 (8)   A  Ú 1 = 1   A  × 0 = 0; 

 (9)   A  Ú  A  =  A    A × A  =  A ; 

 (10)      1A AÚ =         · 0A A =    

 (11)      + = ·A B A B         = +·A B A B    

  De Morgan’s laws  

 (12)      A B A BÙ = Ú   and     A B A BÚ = Ù    

  Double negation  

 (13)      ( )A A=    

 (14)      Ú =· ·A B A B A         ( )( )·A B A B AÚ Ú =    
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     ( ) ( )

Ä =
Ä Ä =

Ä =

Ä =
Ä =
+ = Å Å

= Å Å +

0;

;

1;

1 ;

0 ;

;

· .

A A

A A A A

A A

A A

A A

A B A B AB

A B A B A B
     

    5.2   Disjunctive Normal Form 

 Soundness follows  fi rstly from the fact that the initial laws or axioms we started 
from were all identities, that is, semantically true laws. Secondly it depends on the 
easily veri fi ed fact that the rules preserve identities. 

 Completeness can be proved by  fi rst deriving a few additional useful laws and 
then showing how to use the axioms and rules to prove that a term with n vari-
ables, ordered alphabetically say, is equal to its  n -ary normal form, namely a 
unique term associated with the  n -ary Boolean operation realized by that term 
with the variables in that order. It then follows that if two terms denote the same 
operation (the same thing as being semantically equal), they are both provably 
equal to the normal form term denoting that operation, and hence by transitivity 
provably equal to each other. There is more than one suitable choice of normal 
form, but complete disjunctive normal form will do. A literal is either a variable 
or a negated variable. A disjunctive normal form (DNF) term is a disjunction of 
conjunctions of literals. (Associativity allows a term such as     ( )Ú ÚA B C   to be 
viewed as the ternary disjunction     Ú ÚA B C   , likewise for longer disjunctions, and 
similarly for conjunction.) A DNF term is complete when every disjunction (con-
junction) contains exactly one occurrence of each variable, independently of 
whether or not the variable is negated. Such a conjunction uniquely represents the 
operation it denotes by virtue of serving as a coding of those valuations at which 
the operation returns 1. Each conjunction codes the valuation setting the posi-
tively occurring variables to 1 and the negated 1s to 0; the value of the conjunc-
tion at that valuation is 1, and hence so is the whole term. At valuations 
corresponding to omitted conjunctions, all conjunctions present in the term evalu-
ate to 0 and hence so does the whole term. 

 In Boolean logic, a disjunctive normal form (DNF) is a standardization (or 
normalization) of a logical formula which is a disjunction of conjunctive clauses. 
A logical formula is considered to be in DNF if and only if it is a disjunction of one 
or more conjunctions of one or more literals. A DNF formula is in full disjunctive 
normal form, if each of its variables appears exactly once in every clause. As in 
conjunctive normal form (CNF), the only propositional operators in DNF are and, 
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or, and not. The not operator can only be used as part of a literal, which means that 
it can only precede a propositional variable. For example, all of the following 
 formulas are in DNF (Table  5.2 ): 

     ( ), , · ·= Úf A B C B C A B
    

 Or in DNF

     

( ) ( ) ( ), , · · · · · ·

· · · · · · .

f A B C B C A B A A B C A B C C

A B C A B C A B C

= Ú = Ú Ú Ú

= Ú Ú     

 Converting a formula to DNF involves using logical equivalences, such as the 
double negative elimination, De Morgan’s laws, and the distributive law. All logical 
formulas can be converted into disjunctive normal form. However, in some cases 
conversion to DNF can lead to an exponential explosion of the formula.       

   Тable 5.2    CNF and DNF for elementary logic functions   

 Elementary logic functions   DNF    CNF  

 0   y       ( ) ( ) ( ) ( )Ú Ú Ú Ú· · ·x y x y x y x y    

     x yÙ         Ùx y         ( ) ( ) (Ú Ú Ú· ·x y x y x y   

     x yÙ         x yÙ         ( ) ( ) (· ·x y x y x yÚ Ú Ú    
  x       Ú· ·x y x y         ( )( )Ú Ú·x y x y    

     x yÙ         Ùx y         ( ) ( ) ( )· ·Ú Ú Úx y x y x y    

  y       ( ) ( )· ·x y x yÚ         ( )( )·x y x yÚ Ú    

     x yÄ         ( ) ( )· ·x y x yÚ         ( )( )·x y x yÚ Ú    

     x yÚ         ( ) ( ) ( )· · ·x y x y x yÚ Ú         x yÚ    

     x y¯          ·x y        ( ) ( ) ( )Ú Ú Ú· ·x y x y x y    
     x yº         ( ) ( )· ·x y x yÚ         ( ) ( )Ú Ú·x y x y    

     y         ( ) ( )· ·x y x yÚ
        ( ) ( )Ú Ú·x y x y

   

     y x®         ( ) ( ) ( )· · ·x y x y x yÚ Ú
        x yÚ    

     x         ( ) ( )· ·x y x yÚ
        ( ) ( )Ú Ú·x y x y

   

     x y®         ( ) ( ) ( )· · ·x y x y x yÚ Ú         x yÚ    

     |x y         ( ) ( ) ( )· · ·x y x y x yÚ Ú         x yÚ    

 1      ( ) ( ) ( ) ( )· · · · .x y x y x y x yÚ Ú Ú      y  
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  Abstract   In this chapter the three fundamental logical operations are reviewed, 
i.e.. the AND, OR, and NOT.  The AND, OR, NOT, NAND, NOR and XOR gates 
are explained together with their functional implementation. Additionally the 
 chapter presents few combinational digital systems, like a full adder and the seven-
segment display and provides examples of designing combinational logic circuits 
and the way of evaluating logic circuit outputs.      

    6.1   Basi   c Logical Functions and Gates 

 Notation of basic logic gates shown in Tables  6.1  and  6.2 .  
 In some countries such as Russia, Ukraine and others use close to the standard 

91–1984 IEEE/ANSI notation of logic elements, see Table  6.2 .  
 While each logical element (Table  6.1 ) or condition must always have a logic 

value of either “0” or “1”, we also need to have ways to combine different logical 
signals or conditions to provide a logical result. 

 These designations we have used in the examples of Chap.   9    . 
 When we deal with logical circuits (as in computers), we not only need to deal with 

logical functions; we also need some special symbols to denote these functions in a logi-
cal diagram. There are three fundamental logical operations, from which all other func-
tions, no matter how complex, can be derived. These functions are named and, or, and 
not. Each of these has a speci fi c symbol and a clearly-de fi ned behavior, as follows: 

    6.1.1   The NOT Gate, or Inverter 

 The inverter is a little different from AND and OR gates in that it always has exactly 
one input as well as one output. Whatever logical state is applied to the input, the 
opposite state will appear at the output. 

    Chapter 6   
 Basic Logical Functions and Gates. Logic Design          

http://dx.doi.org/10.1007/978-94-007-5228-3_9


52 6 Basic Logical Functions and Gates. Logic Design

   Table 6.1          

  91-1984 IEEE/ANSI  
  The traditional notation 
of logic elements    Logical function  

  1 
A y 

      
y A=

A     
 The NOT gate, or inverter 

    y A=    

  
& A

B
y       A 

B 
y     

 The AND gate 
    ·

&

= = Ù =
=
y A B A B

A B

   

  

B

≥1 A

y 
      A 

B 
y     

 The OR gate 
    y A B A B= + = Ú    

  

B

& A

y 
      A 

B 
y 

    
 The NAND gate 

    
·y A B A B= = +

   

  

B

A ≥1 
y 

      A 

B 
y     

 The NOR gate 
    

·y A B A B= + =
   

  
2 

A 
M 

y

B 

      A 

B 
y 

    
 The XOR gate 

    y A B

AB AB

= Ä =

= +

   

 The NOT function is denoted by a horizontal bar over the value to be inverted, 
as shown in the  fi gure in Table  6.1 . In some cases a single quote mark (’) may also 
be used for this purpose:  A = 0  and  A’ = 1  ( 0’ = 1 ) and  1’ = 0 . For greater clarity in 
some logical expressions, we will use the overbar most of the time. 

 In the inverter symbol, the triangle actually denotes only an ampli fi er, which in 
digital terms means that it “cleans up” the signal but does not change its logical 
sense. It is the circle at the output which denotes the logical inversion. The circle 
could have been placed at the input instead, and the logical meaning would still be 
the same.  

    6.1.2   The AND Gate 

 The AND gate implements the AND function. Both inputs must have logic 1 signals 
applied to them in order for the output to be a logic 1. With either input at logic 0, 
the output will be held to logic 0. 

 There is no limit to the number of inputs that may be applied to an AND function, 
so there is no functional limit to the number of inputs an AND gate may have. 
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   Table 6.2       

  Basic logical 
gates    Notation  

  Examples of the operation of gates 
(for AND, NOT, OR)  

 The AND 
gate 

  
& 

X1

X2 X3

      

x1

x2

x3

    

 The NOT 
gate, or 
inverter 

  
1 X1

X2

      

x1

x2

    

 The OR 
gate 

  
1 

X1

X2
X3

      

x1

x2

x3

    

 The NOR 
gate 

  
1 

    

 The NAND 
gate 

  
& 

    

 The XOR 
gate 

  
M2 

    

However, for practical reasons, commercial AND gates are most commonly manufac-
tured with 2, 3, or 4 inputs. 

 ICs were  fi rst developed in the 1960s. They are densely populated miniature 
electronic circuits made up of hundreds and sometimes thousands of microscopically 
small transistors, resistors, diodes and capacitors, all connected together on a single 
chip of silicon. 

 When assembled in a single package, as shown in Fig.  6.1 , we call the device an IC. 
 There are two broad groups of IC: digital ICs and linear ICs. Digital ICs contain 

simple switching-type circuits used for logic control and calculators, linear ICs 
incorporate ampli fi er-type circuits which can respond to audio and radio frequency 
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  Fig. 6.1    IC       

signals. The most versatile linear IC is the operational ampli fi er which has applications 
in electronics, instrumentation and control. 

 The IC is an electronic revolution. ICs are more reliable, cheaper and smaller 
than the same circuit made from discrete or separate transistors, and electronically 
superior. One IC behaves differently than another because of the arrangement of the 
transistors within the IC.  

 Manufacturers’ data sheets describe the characteristics of the different ICs, which 
have a reference number stamped on the top. 

 When building circuits, it is necessary to be able to identify the IC pin connection 
by number. The number 1 pin of any IC is indicated by a dot pressed into the encap-
sulation; it is also the pin to the left of the cutout. Since the packaging of ICs has two 
rows of pins they are called DIL (dual in line) packaged ICs. 

 ICs are sometimes connected into DIL sockets and at other times are soldered 
directly into the circuit. 

 A standard Integrated Circuit (IC) package contains 14 or 16 pins, for practical 
size and handling. A standard 14-pin package can contain four 2-input gates, three 
3-input gates, or two 4-input gates, and still have room for two pins for power supply 
connections, Figs.  6.2  and  6.3 .  

    6.1.3   The OR Gate 

 The OR gate is sort of the reverse of the AND gate. The OR function, like its verbal 
counterpart, allows the output to be true (logic 1) if any one or more of its inputs are 
true. In symbols, the OR function is designated with a plus sign (+). In logical 
diagrams, the symbol to the left designates the OR gate. 
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+5V 14 13 12 11 10 9 8 

1 2 3 4 5 6 7 

GND 

Vcc

  Fig. 6.2    IC 7421       

+5V 
14 13 12 11 10 9 8 

1 2 3 4 5 6 7 

GND 

Vcc

  Fig. 6.3    IC 74LS08       

 As with the AND function, the OR function can have any number of inputs. 
However, practical commercial OR gates are mostly limited to 2, 3, and 4 inputs, as 
with AND gates. 

 While the three basic functions AND, OR, and NOT are suf fi cient to accomplish 
all possible logical functions and operations, some combinations are used so 
commonly that they have been given names and logic symbols of their own. 
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 We will discuss three of these. The  fi rst is called NAND, and consists of an AND 
function followed by a NOT function. The second, as you might expect, is called 
NOR. This is an OR function followed by NOT. The third is a variation of the OR 
function, called the Exclusive-OR, or XOR function. As with the three basic logic 
functions, each of these derived functions has a speci fi c logic symbol and behavior, 
which we can summarize as follows:    

    6.1.4   The NAND Gate 

 The NAND gate implements the NAND function, which is exactly inverted from 
the AND function you already examined. With the gate shown to the left, both 
inputs must have logic 1 signals applied to them in order for the output to be a logic 
0. With either input at logic 0, the output will be held to logic 1. 

 The circle at the output of the NAND gate denotes the logical inversion, just as it 
did at the output of the inverter. Also in the  fi gure (Table  6.1 ), note that the overbar 
is a solid bar over both input values at once. This shows that it is the AND function 
itself that is inverted, rather than each separate input. 

 As with AND, there is no limit to the number of inputs that may be applied to 
a NAND function, so there is no functional limit to the number of inputs a NAND 
gate may have. However, for practical reasons, commercial NAND gates are 
most commonly manufactured with 2, 3, 4 or 8 inputs, to  fi t in a 14-pin or 16-pin 
package, Figs.  6.4  and  6.5 .    

14 13 12 11 10 9 8

1 2 3 4 5 6 7

GND 

Vcc

+5V 

  Fig. 6.4    IC 7430       
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  Fig. 6.5    IC 7400       

    6.1.5   The NOR Gate 

 The NOR gate is an OR gate with the output inverted. Where the OR gate allows the 
output to be true (logic 1) if any one or more of its inputs are true, the NOR gate 
inverts this and forces the output to logic 0 when any input is true. 

 In symbols, the NOR function is designated with a plus sign (+), with an overbar 
over the entire expression to indicate the inversion. In logical diagrams, the symbol 
to the left designates the NOR gate. As expected, this is an OR gate with a circle to 
designate the inversion. 

 The NOR function can have any number of inputs, but practical commercial 
NOR gates are mostly limited to 2, 3, and 4 inputs, as with other gates in this class, 
to  fi t in standard IC packages.  

    6.1.6   The Exclusive-OR, or XOR Gate 

 The Exclusive-OR, or XOR function is an interesting and useful variation on the 
basic OR function. Verbally, it can be stated as, “Either A or B, but not both 
(    y A B AB AB= Ä = +   ).” The XOR gate produces a logic 1 output only if its two 
inputs are different. If the inputs are the same, the output is a logic 0. 

 The XOR symbol is a variation on the standard OR symbol. It consists of a plus 
(+) sign with a circle around it. The logic symbol, as shown here, is a variation on 
the standard OR symbol. 

 Unlike standard OR/NOR and AND/NAND functions, the XOR function always 
has exactly two inputs, and commercially manufactured XOR gates are the same. 
Four XOR gates  fi t in a standard 14-pin IC package.   
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    6.2   Universal Gates 

 Universal gates are the ones which can be used for implementing any gate like 
AND, OR and NOT, or any combination of these basic gates; NAND and NOR 
gates are universal gates. But there are some rules that need to be followed when 
implementing NAND or NOR based gates. 

 To facilitate the conversion to NAND and NOR logic, we have two new graphic 
symbols for these gates (Appendix   D    ). 

  NAND Gate  (Fig   .  6.6 )  
  NOR Gate  (Fig.  6.7 )  
 Any logic function can be implemented using NAND gates. To achieve this,  fi rst 

the logic function has to be written in Sum of Product (SOP) form. Once logic function 
is converted to SOP, then is very easy to implement using NAND gate. In other 
words any logic circuit with AND gates in  fi rst level and OR gates in second level 
can be converted into a NAND-NAND gate circuit (Fig.  6.8 ).  

  Implementing AND using NAND gates  (Fig.  6.9 )  
  Implementing OR using NAND gates  (Fig.  6.10 )  
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  Fig. 6.6           
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  Fig. 6.7           

AAAY =⋅=
A 
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    6.2.1   Realization of Logic Function Using NOR Gates 

 Any logic function can be implemented using NAND gates. To achieve this,  fi rst the 
logic function has to be written in Sum of Product (SOP) form. Once logic function 
is converted to SOP, then is very easy to implement using NAND gate. In other 
words any logic circuit with AND gates in  fi rst level and OR gates in second level 
can be converted into a NAND-NAND gate circuit. 

  Implementing an inverter using NOR gate  (Fig.  6.11 )  
  Implementing AND using NOR gates  (Fig.  6.12 )  
  Implementing OR using NOR gates  (Fig.  6.13 )  
 The next section of this book is devoted to combinational logic and deals with 

various aspects of the analysis and design of combinational switching circuits. The 
particular characteristic of a combinational switching circuit is that its outputs are 
functions of only the present circuit inputs. First, switching algebra is introduced 
as the basic mathematical tool essential for dealing with problems encountered in 
the study of switching circuits. Switching expressions are de fi ned and are found to 
be instrumental in describing the logical properties of switching circuits. Systematic 

Implementing AND using NAND gates 
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  Fig. 6.9           

Implementing OR using NAND gates 

BABA

)BB()AA(Y

+=⋅=

=⋅⋅⋅=A 

B 
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Implementing an inverter using NOR gate 
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  Fig. 6.11           
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simpli fi cation procedures of these expressions are next presented; these lead to more 
economical circuits. Logical design is studied with special attention to conventional 
logic, complementary metaloxide semiconductor (CMOS) circuits, and threshold 
logic.   

    6.3   Combinational Logic Circuits 

 To choose representations, engineers consider types of digital systems. Most digital 
systems divide into “combinational systems” and “sequential systems.” A combina-
tional system always presents the same output when given the same inputs. It is 
basically a representation of a set of logic functions, as already discussed. 

 A sequential system is a combinational system with some of the outputs fed back 
as inputs. This makes the digital machine perform a “sequence” of operations. 
Unlike Sequential Logic Circuits whose outputs are dependant on both their present 
inputs and their previous output state giving them some form of Memory, the outputs 
of Combinational Logic Circuits are only determined by the logical function of their 
current input state, logic “0” or logic “1”, at any given instant in time as they have 
no feedback, and any changes to the signals being applied to their inputs will imme-
diately have an effect at the output. In other words, in a Combinational Logic Circuit, 
the output is dependant at all times on the combination of its inputs and if one of its 
inputs condition changes state so does the output as combinational circuits have 
“no memory”, “timing” or “feedback loops” (Fig.  6.14 ).  

Implementing AND using NOR gates 
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  Fig. 6.12           

Implementing OR using NOR gates 
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 Combination Logic Circuits are made up from basic logic NAND, NOR or NOT 
gates that are “combined” or connected together to produce more complicated 
switching circuits. These logic gates are the building blocks of combinational logic 
circuits. An example of a combinational circuit is a decoder, which converts the 
binary code data present at its input into a number of different output lines, one at a 
time producing an equivalent decimal code at its output. 

 Combinational logic circuits can be very simple or very complicated and any 
combinational circuit can be implemented with only NAND and NOR gates as these 
are classed as “universal” gates. The three main ways of specifying the function of 
a combinational logic circuit are:

   Truth Table: provides a concise list that shows the output values in tabular form 
for each possible combination of input variables.  
  Boolean Algebra: forms an output expression for each input variable that repre-
sents a logic “1”.  
  Logic Diagram: shows the wiring and connections of each individual logic gate 
that implements the circuit.    

 As combination logic circuits are made up from individual logic gates only, they 
can also be considered as “decision making circuits” and combinational logic is about 
combining logic gates together to process two or more signals in order to produce at 
least one output signal according to the logical function of each logic gate. Common 
combinational circuits made up from individual logic gates that carry out a desired 
application include Multiplexers, De-multiplexers, Encoders, Decoders, Full and 
Half Adders etc., Fig.  6.15 .  
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  Fig. 6.14           
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 The principal application of switching theory is in the design of digital circuits. 
The design of such circuits is commonly referred to as logical (or logic) design. 
Most digital systems are constructed from electronic switching circuits. In this sec-
tion, we describe some components that are typical of the basic building blocks used 
in constructing digital systems. Switching algebra will be used to describe the logical 
behavior of networks composed of these building blocks as well as to manipulate 
and simplify switching expressions, thereby reducing the number of components 
used in the design. We shall be concerned with the logic functions that a circuit 
performs rather than with its electronic structure or behavior. These examples will 
introduce us to some practical aspects of logic design in which the speed of operation 
and area limitations require ingenuity in arriving at a proper compromise.  

    6.4   Full Adder 

 A full adder adds binary numbers and accounts for values carried in as well as out. 
A one-bit full adder adds three one-bit numbers, often written as  A ,  B , and  C  

in
 ;  A  and 

 B  are the operands, and C 
in
  is a bit carried in, Fig.  6.16 . 

 The circuit produces a two-bit output sum typically represented by the signals 
 C  

out
  and  S  (Table     6.3 ).  

1-bit full adder

Cin

Cout

 S 

 B 
 A 

  Fig. 6.16           

   Table 6.3       

  Inputs    Outputs  

  А    В    С  
 in 
    S    C  

 out   
 0  0  0  0  0 
 0  0  1  1  0 
 0  1  0  1  0 
 0  1  1  0  1 
 1  0  0  1  0 
 1  0  1  0  1 
 1  1  0  0  1 
 1  1  1  1  1 
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   This truth table translates to the logical relationship  
   Output   S   
      

( ) ( ) ( ) ( )
[ ]

• • • • • • • •

• • •

 

• • • •

.

= + + + =

= + + + = Ä + Ä =

= Ä Ä

in in in in

in in in in in in

in

S A B C A B C A B C A B C

A B C B C A B C B C A B C A B C

A B C

  The carry bit output is given by the relationship  

   Output   C  
 out

 
         

· · · · · · · ·

· ·( ) · ·( ) · ·( )

· · · .

= + + + =

= + + + + + =

= + +

out in in in in

in in in in

in in

C A B C A B C A B C A B C

B C A A A C B B A B C C

B C A C A B

      

 Thus by design, we have the following logic circuit, Fig.  6.17 . Figure  6.18  shows 
an example of the adder circuit in Multisim (Adder circuit in MC8 – Appendix   B    ).    

    6.5   Seven-Segment Display 

 A popular method for displaying decimal digits is by means of the seven-segment 
display shown in Fig.  6.19 . The display consists of a BCD-to-seven-segment decoder 
and seven separate light segments (usually light-emitting diodes or crystals) each 
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  Fig. 6.17           
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of which can be turned on and off independently of the others. The display receives 
its inputs in the form of BCD coded digits and transforms these inputs to obtain the 
pattern of the corresponding decimal digit. Table  6.4  can be viewed as the truth table 
for the output functions of the BCD-to-seven-segment decoder. The seven-segment 
code corresponding to each digit is directly obtained from the pattern. For example, 
to display the decimal digit 2, segments     2 3 5 6 7, , , ,f f f f f   are turned on while segments 
    4f    and     1f    remain off. In a similar manner, the rest of the seven-segment code is 
obtained. The segment excitation functions can now be determined directly from 
the table or by using maps. The expressions for the segment excitation functions are 
thus as follows:

  Fig. 6.18           
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   Table 6.4       

  Decimal digit    x  
 1 
    x  

 2 
    x  

 3 
    x  

 4 
    f  

 1 
    f  

 2 
    f  

 3 
    f  

 4 
    f  

 5 
    f  

 6 
    f  

 7 
  

 1  0  0  0  1  0  0  1  1  0  0  0 
 2  0  0  1  0  0  1  1  0  1  1  1 
 3  0  0  1  1  0  1  1  1  1  0  1 
 4  0  1  0  0  1  0  1  1  0  0  1 
 5  0  1  0  1  1  1  0  1  1  0  1 
 6  0  1  1  0  1  0  0  1  1  1  1 
 7  0  1  1  1  0  1  1  1  0  0  0 
 8  1  0  0  0  1  1  1  1  1  1  1 
 9  1  0  0  1  1  1  1  1  0  0  1 
 0  0  0  0  0  1  1  1  1  1  1  0 

     1 1 2 3 2 4 3 4· · · .f x x x x x x x= Ú Ú Ú    

     2 1 3 4 2 4 2 4· · · .f x x x x x x x= Ú Ú Ú    

      3 2 3 4 3 4· · .f x x x x x= Ú Ú
   

     4 3 2 4 .f x x x= Ú Ú
   

     5 2 4 2 3 3 4 2 3 4· · · · · .f x x x x x x x x x= Ú Ú Ú    

     6 2 4 3 4· · .f x x x x= Ú    

     7 1 2 3 2 3 3 4· · · .f x x x x x x x= Ú Ú Ú    

     For   f  
 1 
  logic circuit, Fig.  6.20  (logic gates: NOT, AND, OR)  

  For   f  
 1 
  logic circuit, Fig.  6.21  (logic gate: NAND)  

 Checking of the  fi nal logic circuit device, Fig.  6.22 .   

    6.6   Design Combinational Logic Circuits 

  Example 1.  
 Necessary to design a logic circuit which receives input signals  A,B,C,D  from 

analog-to-digital converter (ADC), Fig.  6.23 . 
 The resolution of the converter indicates the number of discrete values it can produce 

over the range of analog values. The values are usually stored electronically in binary 
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  Fig. 6.20           

  Fig. 6.21           

form, so the resolution is usually expressed in bits. In consequence, the number of 
discrete values available, or “levels”, is usually a power of 2. Logical function  Z  has 
a high level ( Z  = 1) for the following values ABCD: 0111 

2
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  Fig. 6.22           
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Z   Fig. 6.23           

    Step 1 . We write the truth Table  6.5 .   
   Step 2 . From the truth table choose a value of logic function  Z , at which it takes 
the value 1.    

     

· · · · · · · · · · · · · · ·

· · · · · · · · · · · · .

Z A B C D A B C D A B C D A B C D A B C D

A B C D A B C D A B C D A B C D

= + + + + +

+ + +      
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   Step 3 . Minimization of the logic function    

     

( ) ( )
( ) ( )

( ) ( )

( )

· · · · · · · · ·

· · · · · ·

· · · · · · · · · · ·

· · · · · · ·

· · · · ·

· · · ·

· · · · · .

= + + + + +

+ + + + =

= + + + + =

= + + + + =

= + + =

= + + =

= + = +

z A B C D A B C D D A B C D D

A B C D D A B C D D

A B C D A B C A B C A B C A B C

A B C D A B C C A B C C

A B C D A B A B

A B C D A B B

A B C D A B C D A      

   Step 4.  Checking of the  fi nal logic circuit device, Fig.  6.24 .     

  Example 2.  
 Design logic circuit on the logic gates NAND or NOR.

     ( ) or ( ).= Ú = ÙY Y1,4,6,10,11,12,12,13,14 0,2,3,5,7,8,9,15     

  First variant ( logic circuit on the logic gates NAND )  (Fig.  6.25 ). 

     .= + + +y X X X X X X X X X X X X3 2 1 0 3 2 1 3 2 1 2 0     

  Table 6.5 

№ Inputs Outputs Minterms

A B C D Z

0 0 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 0
4 0 1 0 0 0
5 0 1 0 1 0
6 0 1 1 0 0
7 0 1 1 1 1 · · ·A B C D®
8 1 0 0 0 1 · · ·A B C D®
9 1 0 0 1 1 · · ·A B C D®
10 1 0 1 0 1 · · ·A B C D®
11 1 0 1 1 1 · · ·A B C D®
12 1 1 0 0 1 · · ·A B C D®
13 1 1 0 1 1 · · ·A B C D®
14 1 1 1 0 1 · · ·A B C D®
15 1 1 1 1 1 · · ·A B C D®
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  Since      = + = •X X X X Y    

    

• • •

• • • • • • • • • • • • .

= + + + =

= =

=

y X X X X X X X X X X X X

X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X
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3 2 1 0 3 2 1 3 2 1 2 0
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  Fig. 6.25    Minimization of the function with gates NAND       

  Fig. 6.24           
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 Checking of the  fi nal logic circuit, Fig.  6.26 .  
  Second variant ( logic circuit on the logic gates NOR )  (Fig.  6.27 ). 

     

( )·( )·( )·

( )·( )

.

= + + + + + +

+ + + +

= + + + + + + + + + + + + + +

y X X X X X X X X X

X X X X X X

X X X X X X X X X X X X X X X

3 2 1 3 2 1 3 2 1

3 2 0 2 1 0

3 2 1 3 2 1 3 2 1 3 2 0 2 1 0     

 Checking of the  fi nal logic circuit, Fig.  6.28 . 
  Let 

     2; ; ; .= = = =A X B X C X D X0 1 3       

  Fig. 6.26    Checking of the fi nal logic circuit with gates NAND       
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  Fig. 6.27    Minimization of the function with gates NOR       
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    6.7   Evaluating Logic Circuit Outputs 

 In general, the following rules must always be followed when evaluating a Boolean 
expression:

    1.    First, perform all inversions of single terms; that is, 0 = 1 or 1 = 0.  
    2.    Then perform all operations within parentheses.  
    3.    Perform an AND operation before an OR operation unless parentheses indicate 

otherwise.  
    4.    If an expression has a bar over it, perform the operations of the expression  fi rst 

and then invert the result.     

   Examples  
 Given the following Boolean variables  А = 0, В = 1, С = 1, D = 1.  Find  Y  (Fig.  6.29 ).  

  Solution:  
    · · ·( ) 0·1·1·(0 1) 1·1·1·(0 1) 1·1·1·(1) 1·1·1·(0) 0Y A B C A D= + = + = + = = =    .  

 Give.n the following Boolean variables  А = 0, В = 1, С = 1, D = 1.  Find  Y  (Fig.  6.30 ).  
  Solution: 

     = + + = + + = + + = + = + =· · ( ) 0·1·1 (0 1) 1·1·1 (0 1) 1·1·1 (1) 1·1·1 (0) 1.Y A B C A D     

  Fig. 6.28    Checking of the fi nal logic circuit with gates NOR       

 



72 6 Basic Logical Functions and Gates. Logic Design

)( DACBAY +⋅⋅⋅=DA +

CBA ⋅⋅

DA +

A 

A

B 

A 

C 

D
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  Fig. 6.30           
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  Fig. 6.31           

 Given the following Boolean variables  А = 0, В = 1, С = 1, D = 1, E = 1.  Find  Y  
(Fig.  6.31 ).  

  Solution: 

     

(( )· ) )· (( )· ) )· ( · · ) )· ( ) )·

( ) )· ( )· ( )·  .

= + + = + + = + + = + +

= + = + = = =

Y A B C D E 0 1 1 1 1 0 1 11 1 1 0 1 1 1

1 1 1 0 1 1 1 1 1 0      

 

 

 



736.7 Evaluating Logic Circuit Outputs

 By combination circuits we mean logical circuits which do not contain 
feedback. 

 Existing methods for the synthesis of combination circuits cover only the  fi rst 
part of the problem, the construction and minimization of logical control in Boolean 
operations. 

 The other steps of synthesis which are essential to electronic circuits have not 
been formalised. These include:

    1.    The expression of Boolean equations in a given operator system.  
    2.    Attaining the desired quality for the physical characteristics of the network.  
    3.    The comparison of different versions of the network.     

 The existence of ef fi cient algorithms for these steps simpli fi es the synthesis of 
actual electronic circuits satisfying given reliability criteria with the minimum use of 
equipment. There is also the possibility of the complete automation of the synthesis 
with the help of digital computers.       



75B. Borowik et al., Theory of Digital Automata, Intelligent Systems, Control 
and Automation: Science and Engineering 63, DOI 10.1007/978-94-007-5228-3_7, 
© Springer Science+Business Media Dordrecht 2013

  Abstract   This chapter describes the graphical and algebraic most widely used ways 
to minimize logic functions (in order to reduce the circuit’s complexity), like truth 
tables, Karnaugh Maps that are based on the rule of complementation and the Quine-
Mccluskey method, which is functionally identical to Karnaugh mapping, but its 
tabular form makes it more effi cient for use in computer algorithms. The chapter 
provides many examples of minimization and their hardware implementations.      

    7.1   Background    and Terminology 

 Engineers use many methods to minimize logic functions, in order to reduce the 
circuit’s complexity. When the complexity is less, the circuit also has fewer errors 
and less electronics, and is therefore less expensive. 

 The most widely used simpli fi cation is a minimization algorithm like the Espresso 
heuristic logic minimizer within a CAD system, although historically, binary decision 
diagrams, an automated Quine-McCluskey algorithm, truth tables, Karnaugh Maps, 
and Boolean algebra have been used   . 

 This chapter describes graphical and algebraic ways to minimize Boolean 
functions. 

 All the data path and control structures of a digital device can be represented as 
Boolean functions, which take the general form, Fig.  7.1 .:
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    Chapter 7  
 Minimizing Boolean Functions          
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where  X  
 1 
  , X  

 2 
  , …, X  

 m 
   –  is a set of Boolean variables (variables that may take on only the 

values zero and one). These Boolean functions must be converted into logic networks 
in the most economical way possible. What quali fi es as the “most economical way 
possible” varies, depending on whether the network is built using discrete gates, a 
programmable logic device with a  fi xed complement of gates available, or a fully-
customized integrated circuit. But in all cases, minimization yields a network with as 
small a number of gates as possible, and with each gate as simple as possible.  

 The variables in the expression on the right side of a Boolean equation are the 
input wires to a logic network. The left side of a Boolean equation is the output wire 
of the network. 

 Any Boolean equation or combinational logic network can be completely and 
exactly characterized by a truth table. A truth table lists every possible combination 
of values of the input variables, and the corresponding output value of the function 
for each combination. There are  2   n   rows in the truth table for a function or network 
with n input variables, so it isn’t always practical to write out an entire truth table. 
But for relatively small values of  n , a truth table provides a convenient way to 
describe the function or network’s behavior exactly. 

 Every row of a truth table with a one in the output column is called a minterm. A 
convenient way to represent a truth table is to treat each combination of input 
variables as a binary number and to list the numbers of the rows that are minterms. 

 Representations are crucial to an engineer’s design of digital circuits. Some 
analysis methods only work with particular representations. 

 The classical way to represent a digital circuit is with an equivalent set of logic 
gates. Another way, often with the least electronics, is to construct an equivalent 
system of electronic switches (usually transistors). One of the easiest ways is to 
simply have a memory containing a truth table. The inputs are fed into the address 
of the memory, and the data outputs of the memory become the outputs. 

 For automated analysis, these representations have digital  fi le formats that can be 
processed by computer programs. Most digital engineers are very careful to select 
computer programs (“tools”) with compatible fi le formats [13, 14]. 

 This document uses the function with the following truth table as a running 
example (Table  7.1 ):  

 This truth table can also be represented as the list of minterms,  [  10,  11,  12,  13, 
14, 15,  16,  17,  18  ] . That is, the truth table has a 1 in the  Y  column for the rows where 
the binary number represented by the values of  A  ,   B , and  C  is one of the numbers 
listed inside the square brackets. The other two rows (0, 1, 2 and 6) have a 0 in the 
 Y  column, and thus are not minterms. 

 One standard way to represent any Boolean function is called “sum of products” 
(SOP) or, more formally, disjunctive normal form. In this form, the function is written 
as the logical  OR  (indicated by +) of a set of  AND  terms, one per minterm. 

X1

X2

Xm 

Y1

Y2

Yn

     Fig. 7.1    The structure of 
a digital device          
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 For example, the disjunctive normal form for our sample function would be:

     = + + +( , , ) · · · · · · .Y A B C A B C A B C A B C ABC     

 There is also a conjunctive normal form, which represents an expression as a pro-
duct of sums rather than as a sum of products. The material presented below can be 
extended to deal with conjunctive normal forms rather than disjunctive normal forms. 

 A literal is a variable that is either complemented or not in a product term. 
The minterms in our sample function have a total of six literals:     , , , , ,A A B B C C   . 

 To appreciate the importance of minimization, consider the two networks in 
Figs.  7.2  and  7.3 . Both behave exactly the same way. No matter what pattern of ones 
and zeros you put into a, b, and c in Fig.  7.2 , the value it produces at y will be 
exactly matched if you put the same pattern of values into the corresponding inputs 
in Fig.  7.3 . Yet the network in Fig.  7.3  uses far fewer gates, and the gates it uses are 

  Fig. 7.2    The logic circuit       

   Table 7.1    Truth table   

 № minterm   A    B    C    Y  

 0  0  0  0  0 
 1  0  0  1  0 
 2  0  1  0  0 
 3  0  1  1  1 
 4  1  0  0  1 
 5  1  0  1  1 
 6  1  1  0  0 
 7  1  1  1  1 
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simpler (have smaller fan-ins) than the gates in Fig.  7.2 . Clearly, the minimized 
circuit should be less expensive to build than the unminimized version. Although it 
is not true for Fig.  7.3 , it is often the case that minimized networks will be faster 
(have fewer propagation delays) than unminimized networks. 

 The network in Fig.  7.3  uses only 4 literals because     ,A C   isn’t used. In the dis-
junctive normal form of a function, each product term has one literal for each variable.

     ( , , ) · · · · · ·Y A B C A B C A B C A B C ABC AB BC= + + + = +       

 Figure  7.2  implements our sample function, and demonstrates translating a 
disjunctive normal form function directly into a logic network. 

 There are many rules for manipulating a Boolean expression algebraically, but 
there is just one rule that you need in order to minimize a function once it is in 
disjunctive normal form: the rule of complementation. 

 For example:

     

( , , ) ( · · ) ( · · ) ( · · ) ( · · ) ( · · )

( · · · · ) ( · · · · ) ( · · · · )

· ·( ) · ·( ) · ·( ) · · ·

· ·( ) · .

= = Ú Ú Ú Ú =

= Ú Ú Ú Ú Ú =

= Ú Ú Ú Ú Ú = Ú Ú =

= Ú Ú = Ú

y f A B C A B C A B C A B C A B C A B C

A B C A B C A B C A B C A B C A B C

B C A A A B C C A B C C B C A B A B

B C A B B B C A     

 The rule of complementation says that (    ÚA A  ) is always true (1), so any two 
terms that are in the form     Ú( )·A A B   can be reduced to just  B  without changing its 
meaning. Another way of saying this is that two product terms can be simpli fi ed if 
the only difference between them is the value of exactly one variable, in which case 
that variable can be eliminated from both terms to give an equivalent single term. 

  Fig. 7.3    The logic circuit       
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For example     +· · · ·A B C A B C   is equivalent to     +( )· ·A A B C   , which is the same as the 
single product term,     ·B C   . 

 Consider a few examples (Tables  7.2 ,  7.3 ,  7.4 , and  7.5 ). 

  Example   
 Thus, we obtain     = + + + = + +· · · · .y A B A B A B B C A B C    

   Table 7.3    Minimizing Boolean functions   

  Boolean expression    Clari fi cation  

     ( )·( )= + + + +y A B C A B C    

    =    ( )· · ·+ +A B C A B C   =      · ·x y z x y z+ + =    

        · · · · · · · ·  ·= + + =A A B C A B B C A B C C    

        · ·= A B C         · 0=x x   and     · =x x x    

   Table 7.2    Minimizing Boolean functions   

  Boolean expression    Clari fi cation  

     · · · ·y A B A B A B B C= + + + =    

  =    · · · · ·A B A B A B A B B C+ + + + =         x x xÚ =    

  =     ( )B·A+ B·A+ A·B+ A·B+ B·C =        · ·x y y x=    

  =    ·( ) ·( ) ·B A A A B B B C+ + + + =         ·( ) · ·x y z x y x z+ = +    

  =    ·( ) ·( ) ·B A A A B B B C+ + + + =         x y y x+ = +    

  =    ·1 ·1 ·B A B C+ + =         1x x+ =    

  =    ·B A B C+ + =         ·1x x=    

  =    ·A B B C+ + =         x y y x+ = +    

  =    A B C+ +         ·x x y x y+ = +   or     ·x x y x y+ = +    

   Table 7.4    Minimizing Boolean functions   

  Boolean expression    Clari fi cation  

     ·( · ) · ·  ·( · )y A B D C A B D AC A B D C= + + + + + =    

        
· · · ( · · ) ·  ·( ) · ·A B D A C A B D AC A B D A C= + + + + =

        · ·x y z x y z+ + =    

        · · · ( )( ) ( · · )·( · )  A B D A C A B D A C A B D A C= + + + + + + =         · ·x y z x y z= + +    

        · · · · · · ·

· ( )·( )

A B D A C A C A B B C A D

C D A B D A C

= + + + + +

+ + + + + =

   

        · · · · · · ·

· ( )·( )

A B D A C A C A B B C A D

C D A B D A C

= + + + + +

+ + + + + =

   

        · · · · · · · ·

· · · · ·

A B D A C A C A B B C A D C D

A A B A C B C A D C D

= + + + + + +

+ + + + + + =

   

        · · ·( ) ·( 1) · ·(1 ) ·A B D C A A A B B C A D C D= + + + + + + + + =         1x x+ =    

        · ·A B D C A= + + =         ·x x y x y+ = +   or     ·x x y x y+ = +    
        

·B D C A= + +    
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  Example   
 Thus, we obtain     = + + + + =( )·( ) · ·y A B C A B C A B C    

  Example   
 Thus, we obtain

     = + + + + + = + +·( · ) · · ·( · ) · .y A B D C A B D AC A B D C B D C A     

  Example   
 Thus, we obtain

     = + + + + + + = + + +· · · · · · · ·( ) .y A B D C D A B C A B C D A B C D C A B      

    7.2   Karnaugh Maps 

 A Karnaugh Map is a graphical way of minimizing a Boolean expression based on 
the rule of complementation. It works well if there are 2, 3, or 4 variables, but gets 
messy or impossible to use for expressions with more variables than that. 

 The idea behind a Karnaugh Map (Karnaugh 1953   ) is to draw an expression’s 
truth table as a matrix in such a way that each row and each column of the matrix 
puts minterms that differ in the value of a single variable adjacent to each other. 
Then, by grouping adjacent cells of the matrix, you can identify product terms that 
eliminate all complemented literals, resulting in a minimized version of the expres-
sion [4, 5, 19]. 

 The Karnaugh map (K-map for short), Maurice Karnaugh’s re fi nement of 
Edward Veitch’s (1952) Veitch diagram, is a method to simplify Boolean algebra 
expressions. The Karnaugh map reduces the need for extensive calculations by 
taking advantage of humans’ pattern-recognition capability, permitting the rapid 
identi fi cation and elimination of potential race conditions (Table  7.6 ). 

 Truth table  
 Figure  7.4  shows how the minterms in truth Table  7.4  are placed in a Karnaugh 

Map grid for both 2-variable expressions.  

   Table 7.5    Minimizing Boolean functions   

  Boolean expression    Clari fi cation  

     · · · · · · · ·( )y A B D C D A B C A B C D A B C= + + + + + + =    

        · · · ( )·( ) ·  A B D C D A B C A B C D A B C= + + + + + + + + + =         · ·x y z x y z+ + =    

        · · ·D C D A B B A A= + + + + =    

        D C A B= + + +    



817.2 Karnaugh Maps

  А    В    f(А,В)  

 0  0   f (0,0) 
 0  1   f (0,1) 
 1  0   f (1,0) 
 1  1   f (1,1) 

 Table 7.6    Truth table  

f (0,0)A = 0

B = 0 B = 1

A = 1

f (0,1)

f (1,0) f (1,1)

  Fig. 7.4    Karnaugh Map       

DC)D,C,B,A(f

AB
00 01 11 10 

00 f (0,0,0,0) f (0,0,0,1) f (0,0,1,1) f (0,0,1,0)
01 f (0,1,0,0) f (0,1,0,1) f (0,1,1,1) f (0,1,1,0)
11 f (1,1,0,0) f (1,1,0,1) f (1,1,1,1) f (1,1,1,0)
10 f (1,0,0,0) f (1,0,0,1) f (1,0,1,1) f (1,0,1,0)

  Fig. 7.6    Karnaugh Map       

 Figures  7.5  and  7.6  shows how the minterms in truth tables are placed in a 
Karnaugh Map grid for both 3 and 4-variable expressions.   

 Figures  7.7 ,  7.8 ,  7.9 , and  7.10  shows how the minterms in truth tables are placed 
in a Veitch diagram for both 2, 3, 4 and 5-variable expressions.     

 The input variables can be combined in 16 different ways, so the Karnaugh map 
has 16 positions, and therefore is arranged in a 4 × 4 grid. 

  Fig. 7.5    The minterms in truth tables and Karnaugh Map       

Truth table Karnaugh Map grid for both 3-variable 
expressions 

BC A B C f(A,B,C)
00 01 11 10 

0 0 0 f (0,0,0)

A

f (0,00) f (0,01) f (0,11) f (0,10)f (0,0,1)
f (0,1,0)
f (0,1,1)
f (1,0,0) f (1,00) f (1,01) f (1,11) f (1,10)
f (1,0,1)
f (1,1,0)

0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1 f (1,1,1)
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00 01 11 10

C

B

0

1

A

BA   Fig. 7.8    The Veitch diagram 
for  3 variables       

00 01 11 10
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11 

10 
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A

B

C

BA 
DC 

  Fig. 7.9    The Veitch diagram 
for 4 variables       

0 1

A

B

0

1

  Fig. 7.7    The Veitch diagram 
for 2 variables       

000 001 011 010 110 111 101 100

AA

C 

E 

00 

01 

11 

10 

D 

B 

CBA ED   Fig. 7.10    The Veitch 
diagram for 5 variables       
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 The binary digits in the map represent the function’s output for any given com-
bination of inputs. So 0 is written in the upper leftmost corner of the map because 
 ƒ = 0  when  A = 0  ,   B = 0  ,   C = 0  ,   D = 0 . Similarly we mark the bottom right corner as 
1 because  A = 1  ,   B = 0  ,   C = 1  ,   D = 0  gives  ƒ = 1 . Note that the values are ordered in a 
Gray code, so that precisely one variable changes between any pair of adjacent 
cells. 

 After the Karnaugh map has been constructed the next task is to  fi nd the minimal 
terms to use in the  fi nal expression. These terms are found by encircling groups of 
1’s in the map. The groups must be rectangular and must have an area that is a power 
of two (i.e.     2n 1,2,4,8= ¼  ). The rectangles should be as large as possible without 
containing any 0’s. 

 Figure  7.11  shows example how the minterms in truth tables are placed in a 
Karnaugh Map grid for both 3-variable expressions.

     ( , , ) · · · · · · · · · · · .f A B C A B C A B C A B C A B C A B C A B C= Ú Ú Ú Ú == Ú      

  Example 1 

     .

1
2 3

64 5

7

Y = D·C ·B·A + D·C ·B·A + D·C ·B·A

+D·C·B·A+ D·C·B·A+ D·C·B·A

+D·C ·B·A + D·C ·B·A     

 A Karnaugh Map (Veitch diagram) is used to produce a minimal sum of products 
implementation of an expression by drawing rectangles around groups of adjacent 
minterms in the map; each rectangle will correspond to one product term, and the 
full expression will be constructed as the OR (sum) of all the product terms. The 
goal is to have as few product terms as possible, which implies that each product 
term will account for as many minterms as possible (Fig.     7.12 ).

  Fig. 7.11    Truth tables and 
Karnaugh Map       

Truth table Karnaugh Map grid for both 
3-variable expressions 

BC

A B C f(A,B,C)
00 01 11 10

0

A

1

1 1 1 1

0 1 0 0

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0
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   Here are the rules for drawing the rectangles:  

  Every minterm must be inside at least one rectangle, but there must not be any 
zeros inside any rectangles.  
  Every rectangle has to be as large as possible.  
  Rectangles may wrap around to include cells in both the leftmost and rightmost 
columns, likewise for the top and bottom rows.  
  The number of minterms enclosed in a rectangle must be a power of 2 (1, 2, 4, 8, 
or 16 minterms for 4-variable maps).    

 Some functions have “don’t care” conditions, which are combinations of inputs 
that will never occur, resulting in cases where it doesn’t matter whether the output 
is a 0 or a 1. Where these “don’t care” conditions appear in a Karnaugh Map (usually 
indicated by X’s instead of 1’s or 0’s), they may be included inside rectangles or not 
depending on what will make the rectangles as few and as large as possible. 

     = + +· · · · · .Y D B A D C B C A     

  Example 2  
 Truth table (Table  7.7 )  
 “Don’t cares” in a Karnaugh map, or truth table, may be either 1’s or 0’s, as long 

as we don’t care what the output is for an input condition we never expect to see. We 
plot these cells with an asterisk,  * , among the normal 1’s and 0’s. When forming 
groups of cells, treat the “don’t care” cell as either a 1 or a 0, or ignore the “don’t 
cares”. This is helpful if it allows us to form a larger group than would otherwise be 
possible without the “don’t cares”. There is no requirement to group all or any of the 
“don’t cares”. Only use them in a group if it simpli fi es the logic.

  Fig. 7.12    The Veitch 
diagram for  4 variables       

11 16 15

14 18 13

17 12
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B 

C 

D
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     = + +· · · · · · · · ·Z A B C D A B C D A B C D     

 Figures  7.13  and  7.14  show an example of a Veitch diagram and Karnaugh Map 
for both 4-variable expressions. 

     = + + = + +· · · ( ).Z D A D B D C D A B C     

     = + + = + +( ) · · · .Z D A B C D A D B D C     

*1 *0 0 1 

*1 * * *1

*1 *0 0 1 

1 0 0 0 

BD ⋅

AD ⋅

A 

B 

D

C

CD ⋅

  Fig. 7.13    The Veitch 
diagram for  4 variables       

   Table 7.7    Truth table   

     D         A         B         C         Z    

 0  0  0  0  0   0  
 1  0  0  0  1   1       · · · 1A B C D =    
 2  0  0  1  0   1       · · · 1A B C D =    
 3  0  0  1  1   *  
 4  0  1  0  0   1       · · · 1A B C D =    
 5  0  1  0  1   *  
 6  0  1  1  0   *  
 7  0  1  1  1   *  
 8  1  0  0  0   0  
 9  1  0  0  1   0  
 10  1  0  1  0   0  
 11  1  0  1  1   *  
 12  1  1  0  0   0  
 13  1  1  0  1   *  
 14  1  1  1  0   *  
 15  1  1  1  1   *  
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 The network in Fig.  7.15  uses only 4 literals because     ,A C   isn’t used  
 After optimization of network we will get a next expression, Fig.  7.16 .  
 Figure  7.17  shows the networks collected in Multisim 10.  
 The set of all essential prime implicants must be contained in any irredundant 

sum-of-products expression, while any prime implicant covered by the sum of the 
essential prime implicants must not be contained in an irredundant expression. For 
example, the prime implicant     ·B D   of function    y   of Fig.  7.18  is covered by the sum 

)D()CBA(Z +⋅⋅=

B 

C 

D

A 

  Fig. 7.16    The network after optimization       

0 1 *1 1 

1 *1 *1 *1
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0 0 *0 0 

AD
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01
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DC BD
  Fig. 7.14    The Karnaugh 
Map for 4 variables       
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CBA ++
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D
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Z

  Fig. 7.15    The network       
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  Fig. 7.17    The networks collected in Multisim 10       
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of four essential prime implicants and, therefore, must not be contained in any 
irredundant expression for     y   . We can thus summarize the procedure for obtaining a 
minimal sum-of-products expression for a function     y   .

    1.    Determine all essential prime implicants and include them in the minimal 
expression.  

    2.    Remove from the list of prime implicants all those that are covered by the essential 
prime implicants.  

    3.    If the set derived in step 1 covers all the minterms of f then it is the unique 
minimal expression. Otherwise, select additional prime implicants such that f is 
covered completely and such that the total number and size of the prime implicants 
thus added are minimal.     

 The execution of step 3 is not always straightforward. While in most cases with 
only a small number of variables this execution can be done by inspecting the map, 
in more complicated cases, and when the number of variables is large, a more 
systematic method is needed. The prime implicant chart presented in the next 
section is a possible tool aiding the search for a minimal expression (Fig.  7.19 ).  

     

Result   ( ) ( , , , ) · · · · .

( ) · · · .

( ) ·

a y f A B C D C D A B C D

b y B D B C D

c y B D

- = = Ú

- = Ú

- =      

  Fig. 7.18    The Karnaugh Map for 4 variables       

BA⋅ BA⋅ BA⋅ BA⋅

DC ⋅ 0 0 1 0 

D.CADCA

CBACBAy

⋅⋅+⋅⋅+
⋅⋅+⋅⋅=

DC ⋅ 1 1 1 0 

DC⋅ 0 1 1 1 

DC⋅ 0 1 0 0 

  Fig. 7.19    Examples of 
minimization using Karnaugh 
maps for 4 variables       
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00 
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11 
10 

0
0 1
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0

00  
01
11
10

1
1

0 0

00
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11
10

11 0 0
1 0
1 0 0
1 0 0

0 0 1 0
1 0 0
1 0 0

1 0

1 0 0
0 0 0 0
0 0 0 0
1 0 0 1
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    7.3   On Quine-Mccluskey Method 

 The Quine-McCluskey, or Tabular, method is an algorithmic method that  fi nds 
prime implicants, necessary prime implicants, and minimum sum-of-products 
expressions for digital systems with any number of variables. 

 The Quine-McCluskey algorithm was developed by W.V. Quine and Edward 
J. McCluskey. It is functionally identical to Karnaugh mapping, but the tabular 
form makes it more ef fi cient for use in computer algorithms, and it also gives a 
deterministic way to check that the minimal form of a Boolean function has been 
reached. 

 The method involves two steps: 
 Finding all prime implicants of the function. 
 Use those prime implicants in a prime implicant chart to  fi nd the essential prime 

implicants of the function, as well as other prime implicants that are necessary to 
cover the function.

  Steps in the Tabular method 

   1.    Represent the minterms and the “don’t cares” by the values of the input vari-
ables;   For example, in a 5-variable system minterm 7 would be represented 
by  00111 ;  

    2.    Arrange the minterms and “don’t cares” in groups according to the number of 
1’s:

   Group with no 1’s;  • 
  Group with a single 1;  • 
  Group with two 1’s;     • 

    3.    Compare each member of a group to each member of the adjacent group:

   If two terms differ in a single position, then record the reduced expression and • 
mark the two items as having been used.    

 For example (Table  7.8 )  
 Or (Table  7.9 )  
 This step will identify all groups of two and all minterms/“don’t cares” that are 

not members of a group of 2. 
 Continue this process.  

    4.    As you compare minterms and “don’t cares”, keep the reduced expressions in 
groups.   For example 

 Group from combining no “1”s with a single “1”. 
 Group from combining a single “1” with two “1”s. 
 Group from combining two “1”s with three “1”s. 
 Combine groups of two  
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    5.    Check each group of two expressions against each expression in the adjacent 
group.     

 Comparison is easier at this step and subsequent steps, because simpli fi cation is 
only possible if the groups of two have eliminated the same variable. 

 For example (Tables  7.10 ,  7.11 , and  7.12 )               
 The  fi nal expression is

     ( )= +, , · · .F A B C B C A B
    

   Table 7.10    Truth table   

   Table 7.11    The truth table 
after simplifi cation   

   Table 7.12    The truth table 
after simplifi cation (minterm)   

=>

=>

  A    B    C    F(A,B,C)  

 0  0  1  1 
 1  0  1  1 

 Table 7.8    Truth table  

  A    B    C    F(A,B,C)  

 *  0  1  1 

 Table 7.9    The truth table 
after simplifi cation  

 №   A    B    C    F (A,B,C)  

 0  0  0  0  0 
 1  0  0  1  1 
 2  0  1  0  0 
 3  0  1  1  0 
 4  1  0  0  0 
 5  1  0  1  1 
 6  1  1  0  1 
 7  1  1  1  1 

 №   A    B    C    F (A,B,C)  

 1  0  0  1  1 
 5  1  0  1  1 
 6  1  1  0  1 
 7  1  1  1  1 

 №   A    B    C    F (A,B,C)    Minterm  

 1  *  0  1  1      ·B C    

 6  1  1  *  1      ·A B    
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   Table 7.13    Truth table   

 №   A    B    C    D    S(A,B,C,D)    Minterm   Number of 1’s 

 0  0  0  0  0  0 
 1  0  0  0  1  0 
 2  0  0  1  0  0 
 3  0  0  1  1  0 
 4  0  1  0  0  1   A ¢ BC ¢ D ¢    1 
 5  0  1  0  1  1   A ¢ BC ¢ D   2 
 6  0  1  1  0  0 
 7  0  1  1  1  1   A ¢ BCD   3 
 8  1  0  0  0  1   AB ¢ C ¢ D ¢    1 
 9  1  0  0  1  0 
 10  1  0  1  0  1   AB ¢ CD ¢    2 
 11  1  0  1  1  0 
 12  1  1  0  0  1   ABC ¢ D ¢    2 
 13  1  1  0  1  1   ABC ¢ D   3 
 14  1  1  1  0  0 
 15  1  1  1  1  1   ABCD   4 

   Table 7.14    The truth table after simplifi cation   

 № 
 Line 
number   A    B    C    D  

 Number 
of 1’s 

 1  4  0  1  0  0  1 
 8  1  0  0  0  1 

 2  5  0  1  0  1  2 
 10  1  0  1  0  2 
 12  1  1  0  0  2 

 3  7  0  1  1  1  3 
 13  1  1  0  1  3 

 4  15  1  1  1  1  4 

=>

=>

   Table 7.15    The truth table after simplifi cation   

 Line number   A    B    C    D  
 Number 
of 1’s 

 4,5  0  1  0  *  1 
 4,12  *  1  0  0  1 
 8,10  1  0  *  0  1 
 8,12  1  *  0  0  1 
 5,7  0  1  *  1  2 
 5,13  *  1  0  1  2 
 12,13  1  1  0  *  2 
 7,15  *  1  1  1  3 
 13,15  1  1  *  1  3 

=>
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   Table 7.16    The truth table after simplifi cation   

 Line number   A    B    C    D  
 Number 
of 1’s 

 4,5,12,13  *  1  0  *  1 
 4,12,5,13  *  1  0  *  1 
 8,10  1  0  *  0  1 
 8,12  1  *  0  0  1 
 5,7,13,15  *  1  *  1  2 
 5, 13,7, 15  *  1  *  1  2 

   Table 7.17    The truth table after simplifi cation   

 Line number   A    B    C    D  
 Number 
of 1’s   Minterm  

 4,5,12,13  *  1  0  *  1   B ¢ C  
 8,10  1  0  *  0  1   AB ¢ D ¢   
 8,12  1  *  0  0  1   AC ¢ D ¢   
 5,7,13,15  *  1  *  1  2   BD  

   Table 7.18    The truth table after simplifi cation   

 Line number   A    B    C    D  
 Number 
of 1’s   Minterm  

 4,5,12,13  *  1  0  *  1   B ¢ C  
 8,10  1  0  *  0  1   AB ¢ D ¢   
 5,7,13,15  *  1  *  1  2   BD  

 Continue comparing group to adjacent group and separating the simpler 
expressions that result until no more simpli fi cations can be achieved. This is the set 
of prime implicants. 

 Make a chart of which minterms are in which prime implicants:

   The prime implicants de fi ne the rows;  • 
  The minterms de fi ne the columns;  • 
  The “don’t cares” are excluded at this point.    • 

 Example (Tables  7.13 ,  7.14 ,  7.15 ,  7.16 ,  7.17 , and  7.18 )  

                           S(A,B,C,D) = BC ¢  + AB ¢ D ¢  + BD . 

 Although more practical than Karnaugh mapping when dealing with more than 
four variables, the Quine–McCluskey algorithm also has a limited range of use 
since the problem it solves is NP-hard: the runtime of the Quine-McCluskey 
algorithm grows exponentially with the number of variables. It can be shown 
that for a function of n variables the upper bound on the number of prime implicants 
is 3 n /n. Functions with a large number of variables have to be minimized with 
potentially non-optimal heuristic methods, of which the Espresso heuristic logic 
minimizer is the de-facto standard. 

=>

=>
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  Example  
  Step 1  fi nding prime implicants.  
 Minimizing an arbitrary function:

     

· · · · · · · · · · · ·

· · · · · · · · · · · · .

1 2 3 4

5 6 7 8

Y D C B A D C B A D C B A D C B A

D C B A D C B A D C B A D C B A

= + + +

+ + + +     

 Or

     0011 0100 0110 0111 1010 1011 1100 1110.
1 2 3 4 5 6 7 8

Y = + + + + + + +     

 At this point, one can start combining minterms with other minterms. If two 
terms vary by only a single digit changing, that digit can be replaced with a * indi-
cating that the digit doesn’t matter (Table  7.19 ).  

 For the  fi rst and second groups:

     

01 0;

100;

0100 u 0110 *

0100 u 1100 *

®
®     

 For the second and third groups:

     

0*11;

*011;

011*;

*110;

101*;

1*10;

11* 0;

0011 u 0111

0011 u 1011

0110 u 0111

0110 u 1110

1010 u 1011

1010 u 1110

1100 u 1110

®
®
®
®
®
®
®     

   Table 7.19    The prime implicant table   

  Group number    Kontermy 0-th order    Kontermy 1-th order    Kontermy 2-th order  

 0  – 
 1  0100  01*0   *1*0  

 *100 
 2  0011  0*11 

 0110  *011 
 1010  011* 
 1100  *110 

 101* 
 1*10 
 11*0 

 3  0111 
 1011 
 1110 

 4  – 
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   Table 7.20    The prime implicant table after simplifi cation   

  Group number    Kontermy 0-th order    Kontermy 1-th order    Kontermy 2-th order  

 0  – 
 1  0100  01*0   *1*0  

 *100 
 2  0011  0*11 

 0110  *011 
 1010  011* 
 1100  *110 

 101* 
 1*10 
 11*0 

 3  0111 
 1011 
 1110 

 4  – 

 Perform the bonding kontermy  fi rst and second order (Table  7.20 )

     

01* 0 11* 0 *1* 0;

*100 *110 *1* 0;

u

u

®
®     

     *1* 0 0*11 *011 011* 101* 1*10.Y = + + + + +     

  Step 2: Prime implicant chart.  
 None of the terms can be combined any further than this, so at this point we 

construct an essential prime implicant table. Along the side goes the prime impli-
cants that have just been generated, and along the top go the minterms speci fi ed 
earlier. The “don’t care” terms are not placed on top – they are omitted from this 
section because they are not necessary inputs (Table  7.21 ).  

 Here, each of the essential prime implicants has been starred – the prime impli-
cant *1*0 (    ·C A   ) can be ‘covered’ by the 0100 (    · · ·D C B A   ), 0110 (    · · ·D C B A   ), 1100 
(    · · ·D C B A   ), 1110 (    · · ·D C B A   ). If a prime implicant is essential then, as would be 
expected, it is necessary to include it in the minimized Boolean equation. In some 
cases, the essential prime implicants do not cover all minterms, in which case addi-
tional procedures for chart reduction can be employed. 

 Drawing logical product of logical sums of individual columns implicants

     (B1+C1)·A1·(A1+ D1)·(B1+ D1)·(E1+ F1)·(C1+ E1)·A1·(A1+ F1)     

 Or

     

A1·(B1+C1·D1)·(E1+C1·F1) =

= A1·B1·E1+ A1·B1·C1·F1+ A1·C1·D1·E1+ A1·C1·D1·F1.     



957.3 On Quine-Mccluskey Method

 Instead of A1, B1, E1, we substitute the corresponding implicant – 
  y = *1*0 + 0*11 + 101*  

 The  fi nal expression is

     = + +· · · · · .Y C A D B A D C B     

 Figures  7.20  and  7.21  show an example of a Karnaugh Map for both 4-variable 
expressions –

     + + +1· 1· 1 1· 1· 1· 1 1· 1· 1· 1 1· 1· 1· 1.A B E A B C F A C D E A C D F       

  Example  
 Minimizing an arbitrary function

     ( )·( )·( )·( ).
41 2 3

Y D C B A D C B A D C B A D C B A= + + + + + + + + + + + +      

     ·( )·( )·( )  ·( ).
75 6 8

D C B A D C B A D C B A D C B A+ + + + + + + + + + + +     

00 01 11 10
1 

1 1 1 

1   1 

1 1 

A1B1E1 00 

01 

11 

10 
D 

A 

B

C 

BA 
DC 

E1 

A1 

B1 

  Fig. 7.20    The Veitch diagram       

   Table 7.21    Prime implicant chart   

 Prime 
implicants 

 1  2  3  4  5  6  7  8 

 0011  0100  0110  0111  1010  1011  1100  1110 

  A1 = *1*0    *    *    *    *  
  B1 = 0*11    *    *  
  C1 = *011    *    *  
  D1 = 011*    *    *  
  E1 = 101*    *    *  
  F1 = 1*10    *    *  
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00 01 11 10
1 

1 1 1 

1   1 

1 1 

A1B1C1F1 00 

01 

11 

10 
D 

A

B

C

BA 
DC 

F1 

D1 

C1 

C1 

  Fig. 7.21    The Veitch diagram       

 At this point, one can start combining maxterms with other maxterms. (Use the 
expression     + =( )( · )A X A X A   ).   

 1 and 4 maxterms =     4( )·( ) .D C B A D C B A D B A+ + + + + + = + +     (1) 

 1 and 6 maxterms =     6( )·( ) .D C B A D C B A C B A+ + + + + + = + +     (2) 

 2 and 3 maxterms =     3( )·( ) .D C B A D C B A D C A+ + + + + + = + +     (3) 

 2 and 7 maxterms =     ( )·( ) .
7

D C B A D C B A C B A+ + + + + + = + +     (4) 

 3 and 4 maxterms =     ( )·( ) .
4

D C B A D C B A D C B+ + + + + + = + +     (5) 

 3 and 8 maxterms =     
8( )·( ) .D C B A D C B A C B A+ + + + + + = + +     (6) 

 5 and 6 maxterms =     6( )·( ) .D C B A D C B A D C B+ + + + + + = + +     (7) 

 5 and 8 maxterms =     
8( )·( ) .D C B A D C B A D B A+ + + + + + = + +     (8) 

 7 and 8 maxterms =     8( )·( ) .D C B A D C B A D C A+ + + + + + = + +     (9) 

 Using the expression     =·A A A  , we obtain

     ( )·( )·( )·( )·
41 2 3

Y D C B A D C B A D C B A D C B A= + + + + + + + + + + + +    

     ·( )·( )·( )·( )·
75 6 8

D C B A D C B A D C B A D C B A+ + + + + + + + + + + +    

     

·( )·( )·( )·( )·( )·

·( )·( )·( )·( )

3 51 2 4

96 87

D B A C B A D C A C B A D C B

C B A D C B D B A D C A

+ + + + + + + + + +

+ + + + + + + +     
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 Or, using the expression    + =·( )A A B A   , we obtain

     

3 51 2 6
4

98
7

Y = (D+ B+ A)·(C + B+ A)·(D+C+ A)·(C + B+ A)·(D+C+ B)·(C + B+ A)·

·(D+ C + B)·(D+ B+ A)·(D+C+ A)     

 Using the expression     + + =( )·( )A X A X A   ,  we obtain 

 3 and 9 maxterms  =      ( )·( ) .
3 9

D C A D C A C A+ + + + = +    

 4 and 6 maxterms  =      ( )·( ) .
64

C B A C B A C A+ + + + = +    
 Using the expression     =·A A A   ,  we obtain

     

3 51 2 6
4

98
7

Y = (D+ B+ A)·(C + B+ A)·(D+C+ A)·(C + B+ A)·(D+C+ B)·(C + B+ A)·

·(D+ C + B)·(D+ B+ A)·(D+C+ A)·(C + A).     

 Using the expression    + =·( )A A B A   ,  we obtain

     

51 2 8
7Y = (D+ B+ A)·(C + B+ A)·(D+C+ B)·(D+ C + B)·(D+ B+ A)·(C + A).     

  Apply Step 2: prime implicant chart  (Table  7.22 )  
 Here, each of the essential prime implicants has been starred – the prime impli-

cant     +C A   can be ‘covered’ by the maxterms     + + + ,D C B A       + + + ,D C B A
      + + + ,D C B A       + + +D C B A   . 

 The  fi nal implicant chart (Table  7.23 )  
 The  fi nal expression is

     = + + + + +( )·( )·( ).Y C A D B A D C B     

   Table 7.22    Prime implicant chart   

 Prime 
implicants 

  Maxterms  

     D C

B A

+ +

+ +

        D C

B A

+ +
+ +

        
D C

B A

+ +

+ +

        
D C

B A

+ +

+ +

        
D C

B A

+ +

+ +

        
D C

B A

+ +

+ +

        
D C

B A

+ +
+ +

        
D C

B A

+ +

+ +

   

     C A+      *    *    *    *  

     D B A+ +      *    *  

     C B A+ +      *    *  

     D C B+ +      *    *  

     D C B+ +      *    *  

     D B A+ +      *    *  
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   Table 7.23    The fi nal implicant chart   

 Prime 
implicants 

  Maxterms  

     D C

B A

+ +

+ +
        D C

B A

+ +
+ +

        D C

B A

+ +

+ +
        D C

B A

+ +

+ +
        D C

B A

+ +

+ +
        D C

B A

+ +

+ +
        D C

B A

+ +
+ +

        D C

B A

+ +

+ +
   

     C A+      *    *    *    *  

     D B A+ +      *    *  

     D C B+ +      *    *  

 Or

     

( )·( )·( )

· · · · · .

Y C A D B A D C B

Y C A D B A D C B C A D B A D C B

= + + + + +

= + + + + + + + = + +     

  Example  
 Minimizing an arbitrary function

     

1 2 3 4 5 6

7 8

Y = D·C ·B·A+ D·C ·B·A+ D·C ·B·A+ D·C ·B·A+ D·C ·B·A+ D·C ·B·A+

+D·C ·B·A+ D·C ·B·A.     

 At this point, one can start combining minterms with other minterms. (Use the 
expression     + =· ·A X A X A    ).   

 1 and 4 minterms =     1 4D·C ·B·A+ D·C ·B·A = D·B·A.     (1) 
 1 and 6 minterms =     1 6D·C ·B·A+ D·C ·B·A = C·B·A.     (2) 
 2 and 3 minterms =     2 3D·C ·B·A+ D·C ·B·A = D·C·A.     (3) 
 2 and 7 minterms =     2 7D·C ·B·A+ D·C ·B·A = C·B·A.     (4) 
 3 and 4 minterms =     3 4D·C ·B·A+ D·C ·B·A = D·C·B.     (5) 
 3 and 8 minterms =     3 8D·C ·B·A+ D·C ·B·A = C·B·A.     (6) 
 5 and 6 minterms =     5 6D·C ·B·A+ D·C ·B·A = D·C·B.     (7) 
 5 and 8 minterms =     5 8D·C ·B·A+ D·C ·B·A = D·B·A.     (8) 
 7 and 8 minterms =     7 8D·C ·B·A+ D·C ·B·A = D·C·A.     (9) 

 Using the expression     + =A A A   , we obtain

      

1 2 3 4 5 6

7 8

Y = D·C ·B·A+ D·C ·B·A+ D·C ·B·A+ D·C ·B·A+ D·C ·B·A+ D·C ·B·A+

+D·C ·B·A+ D·C ·B·A+ D·B·A+C·B·A+ D·C·A+C·B·A+ D·C·B+

+C·B·A+ D·C·B+ D·B·A+ D·C·A.     



997.3 On Quine-Mccluskey Method

   Table 7.25    The fi nal implicant chart   

 Prime 
implicants 

  Minterms  

     · ·

·

D C

B A

        · ·

·

D C

B A

        · ·

·

D C

B A

        · ·

·

D C

B A

        · ·

·

D C

B A

        · ·

·

D C

B A

        · ·

·

D C

B A

        · ·

·

D C

B A

   

     ·C A      *    *    *    *  

     · ·D B A      *    *  

     · ·D C B      *    *  

 Using the expression     + =·A A B A   , we obtain

     

4
1 2 3 5

7
6 8 9

Y = D· B·A+C· B·A+ D· C·A+C·B·A+ D· C·B+

+C· B·A+ D·C·B+ D· B·A+ D· C·A.     

 Using the expression     + =· ·A X A X A   , we obtain 
 3 and 9 minterms  =      3 9D· C·A+ D· C·A = C·A.    

 4 and 6 minterms  =      
3 6

C·B·A+ B·C·A = C·A.    
 Using the expression     + =A A A   , we obtain

     

4
1 2 3 5

7 8
6 9

Y = D· B·A+C· B·A+ D· C·A+C·B·A+ D· C·B+

+C· B·A+ D·C·B+ D·B·A+ D· C·A+C·A.     

 Using the expression     + =·A A B A   , we obtain

     
7

1 2 5 8Y = D· B·A+C· B·A+ D· C·B+ D·C·B+ D· B·A+C·A.     

  Apply Step 2: prime implicant chart  (Table  7.24 )  
 Here, each of the essential prime implicants has been starred – the prime implicant 

    ·C A   can be ‘covered’ by the minterms     · · · ,D C B A        · · · ,D C B A        · · · ,D C B A        · · ·D C B A   . 
 The  fi nal implicant chart (Table  7.25 )  

   Table 7.24    Prime implicant chart   

 Prime implicants 

  Minterms  

     · ·

·

D C

B A

        · ·

·

D C

B A

        · ·

·

D C

B A

        · ·

·

D C

B A

        · ·

·

D C

B A

        · ·

·

D C

B A

        · ·

·

D C

B A

        · ·

·

D C

B A

   

     ·C A      *    *    *    *  
     · ·D B A      *    *  
     · ·C B A      *    *  
     · ·D C B      *    *  
     · ·D C B      *    *  
     · ·D B A      *    *  
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 The  fi nal expression is     = + +· · · · · .Y C A D B A D C B    
 Below are options for logical expressions. Perform the minimization of these 

functions using – the laws of Boolean algebra, the Karnaugh Map method and the 
implicant charts (Table  7.26 ).                  

   Table 7.26    Minimization of Boolean expression   

  Variant    Boolean expression  

 1      ·( · ) · · ·( · ).y A B D D A B C D A B D C= + + + + +    

 2      · · · · ·( · ) · · .= + + + + +y A B D A B D A B D C A B C D    

 3      · · ·( · ) · · · · .y A B D A B D C A B D D A B C= + + + + +    

 4      · · ·( · ) · ·( · ).y A B C A B D C D A A B D C= + + + + +    

 5      · ·( · ) · ·( · ) · · · .y D A A B D C A B A B D C D A B C= + + + + + +    

 6      · ·( · ) · ·( · ) · · · .y D A A B D C A B A B D C D A B C= + + + + + +    

 7      · ·( · ) · ·( · ) · · · · .y D A A B D C A B A B D C D A B C A B= + + + + + + +    

 8      · · ·( · ) · · · · · · ·( · ).y A B D A B D C D A B C A B C D A A B D C= + + + + + + +    

 9      ·( · ) · · · · · · .y A B D C D A B C A B C A D C= + + + + +    

 10      · ·( · ) ( · · ) · · .y D A A B D C C A B D D A B C D= + + + + + +    

 11      ·( · ) ·( · · · · ).y A B D C D A B C A B C= + + +    

 12      · ·( ) ·( · ) ·( · · · · ).y D A A B C A B D C D A B C A B C= + + + + + +    

 13      · ·( ) ·( · ) ·( · · · · ) .y D A A B C B A D C D B C A A B C D= + + + + + + +    

 14      · · · · ·( ) ·( · · ) · · · .y A B D C D A A B C A B D C D D A B C= + + + + + +    

 15      ·( · ) ·( · · · · ).y C A D B D A B C A B C= + + +    

 16      · · · · · · · · ·( ).y A B D C D A B C A B C D A A B C= + + + + + +    

 17      ( ) · · · · · · · · ·( ) · · .y C D A C D A B C A B C D D A A B C A C D= + + + + + + + +    

 18      · ·( · ) · · · · · ·( ).y A B C D A B D B C D D A A B C= + + + + +    

 19      · A· · · · · · ·( ).y A B D A B C A B C D A A B C= + + + + + +    

 20      ·( · ) · · · · · · .y A B D C D A B C A B C A D C= + + + + +    

 21      ·( · ) · ·( · ) · · · · .= + + + + + +y A B D C A B A B D D D A B C A B    

 22      · · · · ·( · ) · · .y A B D A B D A B D C A B C D= + + + + +    

 23      ·( · ) ·( · · · · ).y D B D A D A B C A B C= + + +    

 24      ·( · · ) · · ·( · ).y A B D C D A B C D A B D C= + + + + +    

 25      ·( · · ) · · ·( · ).y A B D A D A B C D A B D C= + + + + +    
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  Abstract   The chapter analyzes the fundamentals of sequential logic, like catego-
ries of bistable devices (i.e. the latch and the fl ip-fl op) and more complex circuits 
built from these basic blocks, like the basic RS NAND latch, the clocked RS NAND 
latch, a basic digital counter, a synchronous binary counter, BCD counter, the 
Johnson counter, serial-to-parallel shift register, parallel-to-serial shift register, 
timer, the multiplexer, the demultiplexer, digital comparator and the digital encoder 
and decoder.     

     8.1   Latches 

 This chapter begins a study of the fundamentals of sequential logic. We study two 
categories of bistable devices, the latch and the  fl ip- fl op. Bistable devices have two 
stable states, called SET and RESET; they can retain either of these states inde fi nitely, 
making them useful as storage devices. The basic difference between latches and 
 fl ip- fl ops is the way in which they are changed from one state to the other. The  fl ip-
 fl op is a basic building block for counters, registers, and other sequential control 
logic and is used in certain types of memories. The monostable multivibrator, 
 commonly known as the one-shot, has only one stable state. A one-shot produces a 
single controlled-width pulse when activated or triggered. The astable multivibrator 
has no stable state and is used primarily as an oscillator, which is a self-sustained 
waveform generator. Pulse oscillators are used as the sources for timing waveforms 
in digital systems. 

 In electronics, a  fl ip- fl op is a circuit that has two stable states and can be used to 
store state information. 

 A  fl ip- fl op is usually controlled by control signals that can include a clock signal. 
The outputs usually include the complement as well as the normal output. 

    Chapter 8   
 Latches, Flip-Flops, Counters, Registers, 
Timer, Multiplexer, Decoder, Etc.          
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    8.1.1   The Basic RS NAND Latch 

 In order for a logical circuit to “remember” and retain its logical state even after the 
controlling input signal(s) have been removed, it is necessary for the circuit to 
include some form of feedback. We might start with a pair of inverters, each having 
its input connected to the other’s output. The two outputs will always have opposite 
logic levels. 

 The problem with this is that we don’t have any additional inputs that we can use to 
change the logic states if we want. We can solve this problem by replacing the inverters 
with NAND or NOR gates, and using the extra input lines to control the circuit. 

 The circuit shown below is a basic NAND latch. The inputs are generally desig-
nated “ S ” and “ R ” for “ Set ” and “ Reset ” respectively. Because the NAND inputs 
must normally be logic 1 to avoid affecting the latching action, the inputs are 
 considered to be inverted in this circuit. 

 For the NAND latch circuit, both inputs should normally be at a logic 1 level. 
Changing an input to a logic 0 level will force that output to a logic 1. The same 
logic 1 will also be applied to the second input of the other NAND gate, allowing 
that output to fall to a logic 0 level. This in turn feeds back to the second input of the 
original gate, forcing its output to remain at logic 1. 

 Applying another logic 0 input to the same gate will have no further effect on 
this circuit. However, applying a logic 0 to the other gate will cause the same 
 reaction in the other direction, thus changing the state of the latch circuit the other 
way (   Fig   .  8.1 ).  

 Note that it is forbidden to have both inputs at a logic 0 level at the same time. 
That state will force both outputs to a logic 1, overriding the feedback latching 
action. In this condition, whichever input goes to logic 1  fi rst will lose control, while 
the other input (still at logic 0) controls the resulting state of the latch. If both inputs 
go to logic 1 simultaneously, the result is a “race” condition, and the  fi nal state of 
the latch cannot be determined ahead of time. 

 An active-LOW input S-R latch is formed with two cross-coupled NAND gates, 
as shown in Fig.  8.2 . Notice that the output of each gate is connected to an input of 
the opposite gate. This produces the regenerative feedback that is characteristic of 
all latches and  fl ip- fl ops.  

  Fig. 8.1    RS NAND Latch            
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  Fig. 8.2    An active-LOW input RS latch is formed with two cross-coupled NAND gates       

   Table 8.1    Gated RS NAND 
latch truth table   

Q 

S 

C 

Q 

CLEAR

SET

Q
Q

  Fig. 8.3    Latch output remembers the last input that was activated and will not change states until 
the opposite input is activated       

 Truth table for the basic RS NAND latch (Table     8.1 ).  
 If the     S   and     R   waveforms in Fig   .  8.3  are applied to the inputs of the latch in 

Fig.  8.4 , determine the waveform that will be observed on the  Q  output. Assume 
that  Q  is initially LOW.    

  SET    CLEAR    Quit  

 1  1  No change 
 0  1   Q = 1  
 1  0   Q = 0  
 0  0  Not allowed     ( 1).= =Q Q    
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    8.1.2   The Basic RS NOR Latch 

 While most of our demonstration circuits use NAND gates, the same functions can 
also be performed using NOR gates. A few adjustments must be made to allow for 
the difference in the logic function, but the logic involved is quite similar. 

 The circuit shown below is a basic NOR latch. The inputs are generally designated 
“ S ” and “ R ” for “ Set ” and “ Reset ” respectively. Because the NOR inputs must 
normally be logic 0 to avoid overriding the latching action, the inputs are not inverted 
in this circuit. 

 An active-HIGH input S-R (SET-RESET) latch is formed with two cross- coupled 
NOR gates, as shown in Fig.  8.5 .     

 Truth table for the basic RS NOR latch (Table  8.2 ).  

T1 T2 T3 T4 T5 T6

SET

CLEAR

1

Q 

0

1  Fig. 8.4    The waveforms for 
example basic RS NAND 
latch       

Q

C

S

Q

  Fig. 8.5    RS fl ip-fl op 
composed of two NOR gates       

   Table 8.2    Gated RS NOR 
latch truth table   

  SET    CLEAR    Quit  

 0  0  No change 
 1  0   Q = 1  
 0  1   Q = 0  
 1  1  Not allowed     ( 0).= =Q Q    
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 One problem with the basic  RS NOR  latch is that the input signals actively drive 
their respective outputs to a logic 0, rather than to a logic 1. Thus, the S input signal 
is applied to the gate that produces the     Q   output, while the R input signal is applied 
to the gate that produces the Q output. The circuit works  fi ne, but this reversal of 
inputs can be confusing when you  fi rst try to deal with NOR-based circuits.  

    8.1.3   The Clocked RS NAND Latch 

 By adding a pair of NAND gates to the input circuits of the RS latch, we accomplish 
two goals: normal rather than inverted inputs and a third input common to both 
gates which we can use to synchronize this circuit with others of its kind, Fig.  8.6 .  

 The clocked RS latch circuit is very similar in operation to the basic latch. The S 
and R inputs are normally at logic 0, and must be changed to logic 1 to change the 
state of the latch. However, with the third input, a new factor has been added. This 
input is typically designated C or CLK, because it is typically controlled by a clock 
circuit of some sort, which is used to synchronize several of these latch circuits with 
each other. The output can only change state while the CLK input is a logic 1. When 
CLK is a logic 0, the S and R inputs will have no effect. 

 The same rule about not activating both the S and R inputs simultaneously holds 
true: if both are logic 1 when the clock is also logic 1, the latching action is bypassed 
and both outputs will go to logic 1. The difference in this case is that if the CLK 
input drops to logic 0  fi rst, there is no question or doubt – a true race condition will 
exist, and you cannot tell which way the outputs will come to rest. The example 
circuit on this page re fl ects this uncertainty. 

 For correct operation, the selected R or S input should be brought to logic 1, then 
the CLK input should be made logic 1 and then logic 0 again. Finally, the selected 
input should be returned to logic 0.   

  Fig. 8.6    The Clocked RS NAND latch       
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    8.2   Edge-Triggered Flip-Flops 

 Although the internal circuitry of latches is interesting to watch on an individual 
basis, placing all of those logic symbols in a diagram involving multiple  fl ip- fl ops 
would rapidly generate so much clutter that the overall purpose of the diagram 
would be lost. Now we are using one symbol to represent a cluster of logic gates 
connected to perform a speci fi c function. 

 Flip- fl ops are synchronous bistable devices, also known as bistable multivibrators. In 
this case, the term synchronous means that the output changes state only at a speci fi ed 
point on the triggering input called the clock (CLK), which is designated as a control 
input, C; that is, changes in the output occur in synchronization with the clock. 

    8.2.1   Flip-Flop Symbols 

 An edge-triggered  fl ip- fl op changes state either at the positive edge (rising edge) or 
at the negative edge (falling edge) of the clock pulse and is sensitive to its inputs 
only at this transition of the clock. Three types of edge-triggered  fl ip- fl ops are 
 covered in this section: SR, D, and JK. Although the S-R  fl ip- fl op is not available in 
IC form, it is the basis for the D and J-K  fl ip- fl ops. The logic symbols for all of these 
 fl ip- fl ops are shown in Table  8.3 .  

 As you have no doubt noticed, the symbols above are nearly identical – only the 
inputs vary. In each of the symbols above, the clock input is marked by the small 
angle, rather than by the letters CLK. That little angle marker actually provides two 
pieces of information, rather than one. First, of course, it marks the clocking input. 
Second, it speci fi es that these are edge-triggered  fl ip- fl ops. 

 Any of these symbols may be modi fi ed according to their actual use within the 
larger circuit. 

 It is very seldom that a  fl ip- fl op will actually be used alone. Such circuits are far 
more useful when grouped together and acting in concert. There are two general 
ways in which  fl ip- fl ops may be interconnected to perform useful functions:  counters 

   Table 8.3    Flip-fl op symbols      

  JK  

C

J Q 

QK

      D  

C

D
Q 

Q

    

  RS  

C

R Q 

QS

      T  

T 

Q 

Q
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and registers. When we’re done with individual  fl ip- fl ops, we’ll go on to counters 
and then look at registers. 

 Tables  8.4 ,  8.5 ,  8.6 ,  8.7  are the truth tables for type JK, RS, SC, D of  fl ip- fl op.      
 Given the waveforms in Fig.  8.7  for the  JK  input and the clock, determine the  Q  

output waveform.  
 The D  fl ip- fl op is useful when a single data bit (1 or 0) is to be stored. The addi-

tion of an inverter to a J-K  fl ip- fl op creates a basic D  fl ip- fl op, as in Fig.  8.8 .   
 Given the waveforms in Fig.  8.9  for the D input and the clock, determine the  Q  

output waveform.  
 If the T input is HIGH, the T  fl ip- fl op changes state (“toggles”) whenever the 

clock input is strobed. If the T input is LOW, the  fl ip- fl op holds the previous value. 
This behavior is described by the characteristic equation:     · ·next T T= + = ÄQ Q T Q Q .   

 INPUTS  OUTPUTS 

 COMMENTS   J    K    CLK    Q       Q    

 0  0  ↑   Q       0Q     No change 
 0  1  ↑  0  1  RESET 
 1  0  ↑  1  0  SET 
 1  1  ↑      0Q      Q  

0
   Toggle 

  ↑ = clock transition LOW to HIGH 
  Q  

0
  = output level prior to clock transition  

   Table 8.6    Truth table for a 
positive edge-triggered J-K 
 fl ip- fl op   

   Table 8.4    Truth table for 
a positive edge-triggered S-R 
 fl ip- fl op   

 INPUTS  OUTPUTS 

 COMMENTS   S    R    CLK    Q       Q    

 0  0  X   Q  
0
       0Q     No change 

 0  1  ↑  0  1  RESET 
 1  0  ↑  1  0  SET 
 1  1  ↑  ?  ?  Invalid 

  ↑ = clock transition LOW to HIGH 
 X = irrelevant (“don’t care”) 
  Q  

0
  = output level prior to clock transition  

  INPUTS   OUTPUT 

 COMMENTS   S    C    CLK    Q  

 0  0  ↑   Q  
0
   No change 

 1  0  ↑  1  RESET 
 0  1  ↑  0  SET 
 1  1  ↑  ? 

   Table 8.5    Truth table for 
a positive edge-triggered 
S-C  fl ip- fl op   

   Table 8.7    Truth table for D 
 fl ip- fl op   

 INPUT  OUTPUT 

  D    CLK    Q  

 0  ↑  0 
 0  ↑  1 
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J 

K 

CLK 

Q 

1 

0 

1 

0 

1 

0

1 

0

  Fig. 8.7    The waveforms for the JK input and the clock       

J   Q 

  CLK 

K Q

D               Q 

CLK            

Q

D 

CLK 

  Fig. 8.8    The addition of an inverter to a J-K fl ip-fl op creates a basic D fl ip-fl op       

D 

CLK 

Q 

1 

0 

1 

0 

1 

0 

a b c d e f g

  Fig. 8.9    The waveforms for the D input and the clock       

 It is useful for constructing binary counters, frequency dividers, and general 
binary addition devices. It can be made from a J-K  fl ip- fl op by tying both of its 
inputs HIGH (Table  8.8 ).    

 Construction of T  fl ip- fl op from a J-K  fl ip- fl op, Fig.  8.10 .   
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    8.2.2   Asynchronous Preset and Clear Inputs 

 Most integrated circuit  fl ip- fl ops also have asynchronous inputs. These are inputs 
that affect the state of the  fl ip- fl op independent of the clock. They are normally 
labeled preset (PRE) and clear (CLR), or direct set and direct reset by some manu-
facturers. An active level on the preset input will set the  fl ip- fl op, and an active level 
on the clear input will reset it. A logic symbol for a J-K  fl ip- fl op with preset and 
clear inputs is shown in Fig.  8.11 . These inputs are active-LOW, as indicated by the 
bubbles. These preset and clear inputs must both be kept HIGH for synchronous 
operation (Table  8.9 ).  

 Asynchronous inputs on a  fl ip- fl op have control over the outputs ( Q  and     Q   ) 
regardless of clock input status. 

  Table 8.8   T  fl ip- fl op operation    

 Characteristic table  Excitation table 

  T    Q    Q  
 
next

 
   Comment   T    Q    Q  

 
next

 
   Comment 

 0  0  0  Hold state (no clk)  0  0  0  No change 
 0  1  1  Hold state (no clk)  1  1  0  No change 
 1  0  1  Toggle  0  1  1  Complement 
 1  1  1  Toggle  1  0  1  Complement 

CLK

J

Q 

K

1 

1 

  Fig. 8.10    T - fl ip-fl op       

  Fig. 8.11    Logic symbol for a 
J-K fl ip-fl op with preset and 
clear inputs       
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 These inputs are called the preset (PRE) and clear (CLR). The preset input drives 
the  fl ip- fl op to a set state while the clear input drives it to a reset state. 

 It is possible to drive the outputs of a J-K  fl ip- fl op to an invalid condition using 
the asynchronous inputs, because all feedback within the multivibrator circuit is 
overridden. 

 Given the waveforms     PRESET   and     CLEAR   in Fig.  8.12  for the J-K inputs and 
the clock, determine the  Q  output waveform.  

 Asynchronous inputs, just like synchronous inputs, can be engineered to be 
active-HIGH or active-LOW. If they’re active-LOW, there will be an inverting 
 bubble at that input lead on the block symbol, just like the negative edge-trigger 
clock inputs (Figs.  8.13 ,  8.14 ,  8.15 ).      

   Table 8.9    Truth table 
for D  fl ip- fl op   

J,K=1 

CLK

PRE

CLR

Q

a b c d e f g

  Fig. 8.12    Waveforms for 
the J-K       

D

C

Q 

Q

CLR

PRE  Fig. 8.13    Asynchronous 
fl ip-fl op (D) inputs       

     PRESET         CLEAR     COMMENTS 

 1  1   Synchronized work  
 0  1   Q  = 1 ( regardless of the CLK ) 
 1  0   Q  = 0 ( regardless of the CLK ) 
 0  0   Not used  
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    8.3   Counters 

 In digital logic and computing, a counter is a device which stores (and sometimes 
displays) the number of times a particular event or process has occurred, often in 
relationship to a clock signal. In practice, there are two types of counters:

   Up counters, which increase (increment) in value;  • 
  Down counters, which decrease (decrement) in value.    • 

    8.3.1   A Basic Digital Counter 

 One common requirement in digital circuits is counting, both forward and backward. 
The demonstration below shows the most basic kind of binary counting circuit. 

 Figure  8.16  shows a 4-bit counter. The output of each  fl ip- fl op changes state on 
the falling edge (1-to-0 transition) of the T input. The count held by this counter 
is read in the reverse order from the order in which the  fl ip- fl ops are triggered. 
Thus, output  D  is the HIGH order of the count, while output A is the LOW order. 
The binary count held by the counter is then  DCBA , and runs from 0000 (decimal 
0) to 1111 (decimal 15). The next clock pulse will cause the counter to try to 
increment to 10000 (decimal 16). However, that 1 bit is not held by any  fl ip- fl op 

C

C
Q 

R
Q

CLR

PRE  Fig. 8.14    Asynchronous 
fl ip-fl op (C-R) inputs       

C

J
Q 

K
Q

CLR

PRE  Fig. 8.15    Asynchronous 
fl ip-fl op (J-K) inputs       

 

 



112 8 Latches, Flip-Flops, Counters, Registers, Timer, Multiplexer, Decoder, Etc.

and is therefore lost. As a result, the counter actually reverts to 0000, and the 
count begins again.  

 A major problem with the counter (Fig.  8.16 ) is that the individual  fl ip- fl ops do 
not all change state at the same time. Rather, each  fl ip- fl op is used to trigger the next 
one in the series.  

    8.3.2   Synchronous Counter 

 We noted the need to have all  fl ip- fl ops in a counter to operate in unison with each 
other, so that all bits in the output count would change state at the same time. To 
accomplish this, we need to apply the same clock pulse to all  fl ip- fl ops. 

 However, we do not want all  fl ip- fl ops to change state with every clock pulse. 
Therefore, we’ll need to add some controlling gates to determine when each  fl ip-
 fl op is allowed to change state, and when it is not. This requirement denies us the 
use of T  fl ip- fl ops, but does require that we still use edge-triggered circuits. We can 
use either RS or JK  fl ip- fl ops for this; we’ll use JK  fl ip- fl ops for the demonstrations 
on this section. 

    8.3.2.1   A Synchronous Binary Counter 

 This section begins our study of designing an important class of clocked sequential 
logic circuits-synchronous  fi nite-state machines. Like all sequential circuits, a  fi nite-
state machine determines its outputs and its next state from its current inputs and 
current state. A synchronous  fi nite-state machine changes state only on the clocking 
event. 

 A simple way of implementing the logic for each bit of an ascending counter is 
for each bit to toggle when all of the less signi fi cant bits are at a logic HIGH state. 
For example, bit 1 toggles when bit 0 is logic HIGH; bit 2 toggles when both bit 1 
and bit 0 are logic HIGH; bit 3 toggles when bit 2, bit 1 and bit 0 are all HIGH; and 
so on. Synchronous counters can also be implemented with hardware that consists 
of  fi nite state machines, which are more complex but allow for smoother, more 
stable transitions. 

0 Q 

Q

T T 

Q 

Q

Q 

Q

Q 

Q

T T 

A B C D 

  Fig. 8.16    4-bit counter       
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 To determine the gates required at each  fl ip- fl op input, start by drawing up a truth 
table for all states of the counter (Table  8.10 ). Looking  fi rst at output A, we note that 
it must change state with every input clock pulse. But even with JK  fl ip- fl ops, all we 
need to do here is to connect both the J and K inputs of this  fl ip- fl op to logic 1 in 
order to get the correct activity.  

 Flip- fl op B is a bit more complicated. This output must change state only on 
every other input clock pulse. Looking at the truth table again, output B must be 
ready to change states whenever output A is a logic 1, but not when A is a logic 0. 
If we recall the behavior of the JK  fl ip- fl op, we can see that if we connect output 
A to the J and K inputs of  fl ip- fl op B, we will see output B behaving correctly. 

 Output  C  may change state only when both  A  and  B  are logic 1. We can’t use 
only output  B  as the control for  fl ip- fl op  C ; that will allow  C  to change state when 
the counter is in state 2, causing it to switch directly from a count of 2 to a count of 
7, and again from a count of 10 to a count of 15 – not a good way to count. Therefore 
we will need a two-input AND gate at the inputs to  fl ip- fl op  C . Flip- fl op  D  requires 
a three-input AND gate for its control, as outputs  A ,  B , and  C  must all be at logic 1 
before  D  can be allowed to change state. The resulting circuit is shown in the dem-
onstration below, Fig.  8.17 .    

    8.3.3   Decimal and Shorter Counts 

  Example 1  
 To create a counter ( M  = 5), we need to  fi nd a way to cut the counting sequence 
short. The truth table to the left shows the actual counting sequence we need. Note 
that the counting sequence is exactly the same as for the binary counter. At that 

   Table 8.10    Truth table for all 
states of the counter   

 D  C  B  A  Count 

 0  0  0  0  0 
 0  0  0  1  1 
 0  0  1  0  2 
 0  0  1  1  3 
 0  1  0  0  4 
 0  1  0  1  5 
 0  1  1  0  6 
 0  1  1  1  7 
 1  0  0  0  8 
 1  0  0  1  9 
 1  0  1  0  10 
 1  0  1  1  11 
 1  1  0  0  12 
 1  1  0  1  13 
 1  1  1  0  14 
 1  1  1  1  15 
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point, where the binary counter would continue on to a count of 4, the counter must 
reset itself to a count of 0. 

  Step 1: State diagram  
 The  fi rst step in the design of a counter is to create a state diagram. A state  diagram 
shows the progression of states through which the counter advances when it is 
clocked. As an example, Fig.  8.18  is a state diagram for a counter.  

  Step 2: Next-state table and Step 3: Flip- fl op transition table  
 Once the sequential circuit is de fi ned by a state diagram, the second step is 
to derive a next-state table, which lists each state of the counter (present state) 
along with the corresponding next state. The next state is the state that the counter 
goes to from its present state upon application of a clock pulse. The next-state 
table is derived from the state diagram and is shown in Tables  8.11  and  8.12 . Once 
the state diagram of the sequential circuit is defi ned, a Next - State Table is derived 
which lists each present state and the corresponding next state. The next state is 
the state to which the sequential circuit switches when a clock transition occurs.    

K

1

J Q 

Q

J J J

K K
K

Q 

Q

Q

Q

Q

Q

A B C D 

  Fig. 8.17    The scheme of synchronous binary counter       
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  Fig. 8.18    A state diagram 
for a counter       
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  Step 4: Minimization and Step 5: Logic expressions for  fl ip- fl op inputs 

     =2 1 0 .J Q Q    

     =1 0 .J Q    

     =0 2 .J Q    

     = =2 0 1.K K    

     =1 1.K J     

  Step 6: Counter implementation  
 The Boolean expressions obtained in the previous step are implemented using logic 
gates. The sequential circuit implemented is shown in Fig.  8.19 . The hardware 
 diagram of the counter (Fig.  8.19 ).  
  Example 2  

  Step 1: State diagram  (Fig.  8.20 )  

  Step 2: Next-state table and Step 3: Flip- fl op transition table  (Table  8.13 )  

  Step 4: Minimization and Step 5: Logic expressions for  fl ip- fl op inputs  
 The following diagram shows the steps to create separate next states of separate J 
and K from the current states of J and K (Figs.  8.21  and  8.22 ).   

  Step 6: Counter implementation  
 The circuit of the counter (Figs.  8.23  and  8.24 ).   
 The process of implementation of the counter design is shown in Appendix   C    . 
 In a digital circuit, an FSM may be built using a programmable logic device, a pro-
grammable logic controller, logic gates and  fl ip- fl ops or relays. More speci fi cally, 

   Table 8.11    Transition table for a J-K  fl ip- fl op   

 Output transitions  Present state Q 
(N)

   Next state Q 
(N+1)

    J    K  

 0-0  0  0  0  x 
 0-1  0  1  1  x 
 1-0  1  0  x  1 
 1-1  1  1  x  0 

   Table 8.12    JК fl ip-fl op truth table   

 Present state  Next state 

 Q 
2
   Q 

1
   Q 

0
   Q 

2
   Q 

1
   Q 

0
   J 

2
   K 

2
   J 

1
   K 

1
   J 

0
   K 

0
  

 0  0  0  0  0  1  0  x  0  x  1  x 
 0  0  1  0  1  0  0  x  1  x  x  1 
 0  1  0  0  1  1  0  x  x  0  1  x 
 0  1  1  1  0  0  1  x  x  1  x  1 
 1  0  0  0  0  0  x  1  0  x  0  x 

http://dx.doi.org/10.1007/978-94-007-5228-3_BM1
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  Fig. 8.19    A synchronous counter using JK fl ip-fl ops       
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110
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000
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  Fig. 8.20    A state diagram 
for a counter       
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   Table 8.13    JК fl ip-fl op state table   

 Present state  Next state 

  C    B    A    C    B    A    J  
 C 
    K  

 C 
    J  

  
    K  

  
    J  

 A 
    K  

 A 
  

 0  0  0  0  0  1  0  x  0  x  1  x 
 0  0  1  0  1  0  0  x  1  x  x  1 
 0  1  0  0  1  1  0  x  x  0  1  x 
 0  1  1  1  0  0  1  x  x  1  x  1 
 1  0  0  0  0  0  x  1  0  x  0  x 
 1  0  1  0  0  0  x  1  0  x  x  1 
 1  1  0  0  0  0  x  1  x  1  0  x 
 1  1  1  0  0  0  x  1  x  1  x  1 

PRESENT  STATE JA

C B A
0 
0 
0 
0 

0 
0 
1 
1 

0 
1 
0 
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1 
x 
1 
x 

1 
1 
1 
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0 
0 
1 
1 

0 
1 
0 
1 

0 
x 
0 
x 

A    A 

CB ⋅ 1 x

CJA =CB ⋅ 0 x 

CB ⋅
0 

x 

CB ⋅
1 x 

  Fig. 8.21    Minimization of logic expressions for fl ip-fl op input  J  
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  Fig. 8.22    Minimization of  logic expressions for fl ip-fl op  inputs  J  
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Jc C 

Kc C

CLK 

JB B 

KB

CLK 

B

JA A

K
A

CLK 

CLOCK 
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AB

1

  Fig. 8.23    The circuit of the counter       

  Fig. 8.24    The circuit of the counter (Electronic Workbench 5.12)       

a hardware implementation requires a register to store state variables, a block of 
combinational logic which determines the state transition, and a second block of 
combinational logic that determines the output of an FSM. 

 Consider an example in which you want to design a meter that works with the 
expense ratio 7, when the input signal  Х  = 1, and the expense ratio 5, when the input 
signal  Х  = 0. 

 Counters will be designed using the T- fl ip- fl ops or J-K  fl ip- fl ops. The data for the 
design of the counters are shown in Tables  8.14  and  8.15 .  

 Figures  8.25 ,  8.26 ,  8.27  show Karnaugh Maps. Figure  8.28  – circuit of the counter. -
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   Table 8.14    The data for the design of the counters   

 No.   Х  

 Present state  Next state  fl ip- fl op 

 Present  Next   Т  

  Q  
2
    Q  

1
    Q  

0
       

2
+Q         

1
+Q         

0
+Q      T  

2
    T  

1
    T  

0
  

 0  0  0  0  0  0  0  1  0  0  1 
 1  0  0  0  1  0  1  0  0  1  1 
 2  0  0  1  0  0  1  1  0  0  1 
 3  0  0  1  1  1  0  0  1  1  1 
 4  0  1  0  0  0  0  0  1  0  0 

 5  0  1  0  1  *  *  *  *  *  * 
 6  0  1  1  0  *  *  *  *  *  * 
 7  0  1  1  1  *  *  *  *  *  * 

 8  1  0  0  0  0  0  1  0  0  1 
 9  1  0  0  1  0  1  0  0  1  1 

 10  1  0  1  0  0  1  1  0  0  1 
 11  1  0  1  1  1  0  0  1  1  1 
 12  1  1  0  0  1  0  1  0  0  1 
 13  1  1  0  1  1  1  0  0  1  1 
 14  1  1  1  0  0  0  0  1  1  0 

 15  1  1  1  1  *  *  *  *  *  * 

   Table 8.15    The data for the design of the counters   

 No.   Х  

 Present state  Next state  fl ip- fl op 

 Present  Next   JK  

  Q  
2
    Q  

1
    Q  

0
       2

+Q         1
+Q         0

+Q      J  
2
    K  

2
    J  

1
    K  

1
    J  

0
    K  

0
  

 0  0  0  0  0  0  0  1  0  *  0  *  1  * 
 1  0  0  0  1  0  1  0  0  *  1  *  *  1 
 2  0  0  1  0  0  1  1  0  *  *  0  1  * 
 3  0  0  1  1  1  0  0  1  *  *  1  *  1 
 4  0  1  0  0  0  0  0  *  1  0  *  0  * 

 5  0  1  0  1  *  *  *  *  *  *  *  *  * 
 6  0  1  1  0  *  *  *  *  *  *  *  *  * 
 7  0  1  1  1  *  *  *  *  *  *  *  *  * 

 8  1  0  0  0  0  0  1  0  *  0  *  1  * 
 9  1  0  0  1  0  1  0  0  *  1  *  *  1 

 10  1  0  1  0  0  1  1  0  *  *  0  1  * 
 11  1  0  1  1  1  0  0  1  *  *  1  *  1 
 12  1  1  0  0  1  0  1  *  0  0  *  1  * 
 13  1  1  0  1  1  1  0  *  0  1  *  *  1 
 14  1  1  1  0  0  0  0  *  0  1  *  *  1 

 15  1  1  1  1  *  *  *  *  *  *  *  *  * 
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For T2. 

Q1Q0
xQ2 00 01 11 10

00 0 0 1 0

01 1 * * 

11 0 0 * 

10 0 0

*

1

1 0

x ⋅ Q2 ∨ Q1 ⋅ Q0Q2Q1T2 ∨⋅=

  Fig. 8.25    Karnaugh maps 
for T 

2 
       

For T1. 
Q1Q0

xQ2 00 01 11 10

00 0 1 1 0

01 0 * * 

11 0 1 * 

10 0 1 

*

1

1 0

Q1Q2Q0T1 ⋅∨=

  Fig. 8.26    Karnaugh maps 
for T 

1 
       

For T0. 
Q1Q0

xQ2 00 01 11 10

00 1 1 1 1 

01

11 1 

10 1 1 1 

0 * * *

1 * 1

1

Q1xQ2T0 ⋅∨=

  Fig. 8.27    Karnaugh maps 
for T 

0 
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For  T  
2
 . 

     For  JK 
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  T fl ip-fl op is a model of JK or D trigger, so this scheme is fundamental and 
cannot be collected in the EWB 5.12 or Multisim.     

  Examples  

  Example 1.  Figure  8.29  shows a circuit of the counter, that seven-segment displays the 
numbers from 0 to 5, when the input on the key of  X  = 0 and from 0 to 12, when  X  = 1.     

  Example 2.  Figure  8.30  shows a circuit of the counter, that seven-segment  displays 
the numbers from 0 to 15, when the input on the key of  X  = 0 and from 0 to 22, when 
 X  = 1.       Counters with variable module accounts are used primarily as a frequency 
dividers with adjustable coeffi cient. Such circuits are used for example in radio 
frequency technology, where there exists continual demand for the development of 
circuits with ever higher clock rates or frequencies. In order to realize frequency 
divider circuits, usually a plurality of gates are connected in series in a combinato-
rial part of the circuit, so that, for each state change of the input signal, many gates 
are switched within one clock period.

&

1
&

& 1
1T0 

C 

T1 

C 

T2 

C

&

X 

C 

Q0
Q1

Q2

  Fig. 8.28    Implementation of the sequential circuit       
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    8.3.4   BCD Counter 

 Binary-coded-decimal (BCD) counters can be designed using the approach explained 
in Chap.   3    . A two-digit BCD counter is presented in Fig.  8.31  (a two-digit BCD 
counter). It consists of two modulo-10 counters, one for each BCD digit, which we 

  Fig. 8.29    The circuit of the counter that seven-segment displays the numbers from 0 to 5 
(Electronic Workbench 5.12)       

  Fig. 8.30    The circuit of the counter that seven-segment displays the numbers from 0 to 15 
(Electronic Workbench 5.12)       
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implemented using the parallel-load four-bit counter. Note that in a modulo-10 coun-
ter it is necessary to reset the four  fl ip- fl ops after the count of 9 has been obtained. 
Thus the Load input to each stage is equal to 1 when  Q  

3
   = Q  

0
  = 1, which causes 0 s to 

be loaded into the  fl ip- fl ops at the next positive edge of the clock  signal. Whenever 
the count in stage 0, BCD 

(0)
 , reaches 9 it is necessary to enable the second stage so 

that it will be incremented when the next clock pulse arrives. This is accomplished 
by keeping the Enable signal for BCD 

(1)
  LOW at all times except when BCD 

(0)
  = 9.  

 In practice, it has to be possible to clear the contents of the counter by activating 
some control signal. Two OR gates are included in the circuit for this purpose. The 
control input  Clear  can be used to load 0 s into the counter. Observe that in this case 
 Clear  is active when HIGH. In any digital system there is usually one or more clock 
signals used to drive all synchronous circuitry. In the preceding counter, as well as 
in all counters presented in the previous  fi gures, we have assumed that the objective 
is to count the number of clock pulses. Of course, these counters can be used to 
count the number of pulses in any signal that may be used in place of the clock 
signal.  

    8.3.5   The Johnson Counter 

 In some cases, we want a counter that provides individual digit outputs rather than 
a binary or BCD output. Of course, we can do this by adding a decoder circuit to the 
binary counter. However, in many cases it is much simpler to use a different counter 
structure, that will permit much simpler decoding of individual digit outputs. 

Enable 

Clock 

1 

0 

0 

0 

0 

B 
C 
D 

Enable 
D0 Q0 
D1 Q1 

D2 Q2 
D3

D0
D1
D2
D3

Q3

Q3

Q0 
Q1 
Q2 

Load
Clock

Load
Clock

0 

0 

0 

0 

B 
C 
D Clear 

  Fig. 8.31    BCD Counter       
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 For example, consider the counting sequence, Table  8.16 . It actually resembles 
the behavior of a shift register more than a counter, but that need not be a problem. 
Indeed, we can easily use a shift register to implement such a counter. In addition, 
we can notice that each legal count may be de fi ned by the location of the last  fl ip-
 fl op to change states, and which way it changed state. This can be accomplished 
with a simple two-input AND or NOR gate monitoring the output states of two 
adjacent  fl ip- fl ops. In this way, we can use ten simple 2-input gates to provide ten 
decoded outputs for digits 0–9. This is known as the Johnson counting sequence, 
and counters that implement this approach are called Johnson Counters.  

 Johnson Ring Counters or “Twisted Ring Counters”, are exactly the same idea as 
the Walking Ring Counter above, except that the inverted output Q of the last Flip-
 fl op is connected back to the input D of the  fi rst Flip- fl op as shown below. The main 
advantage of this type of ring counter is that it only needs half the number of Flip-
 fl ops compared to the standard walking ring counter in which its Modulo number is 
halved. 

 This inversion of  Q  before it is fed back to input  D  causes the counter to “count” 
in a different way. Instead of counting through a  fi xed set of patterns like the walk-
ing ring counter such as for a 4-bit counter, “1000”(1), “0100”(2), “0010”(4), 
“0001”(8) etc., the Johnson counter counts up and then down as the initial logic “1” 
passes through it to the right replacing the preceding logic “0”. A 4-bit Johnson ring 
counter passes blocks of four logic “0” and then four logic “1” thereby producing 
an 8-bit pattern. As the inverted output     4Q   is connected to the input  D  this 8-bit pat-
tern continually repeats. For example, “1000”, “1100”, “1110”, “1111”, “0111”, 
“0011”, “0001”, “0000” and this is demonstrated in Table  8.17  and Fig.  8.32 .   

 As well as counting, Ring Counters can be used to detect or recognise various 
patterns or number values. By connecting simple logic gates such as AND or OR 
gates to the outputs of the Flip- fl ops, the circuit can be made to detect a set number 
or value. Standard 2, 3 or 4-stage Johnson Ring Counters can also be used to divide 
the frequency of the clock signal by varying their feedback connections, and divide-
by-3 or divide-by-5 outputs are also available.   

   Table 8.16    Truth table of 
Johnson counter   

 States 

 Count   A    B    C    D    E  

 0  0  0  0  0  0 
 1  0  0  0  0  1 
 1  1  0  0  0  2 
 1  1  1  0  0  3 
 1  1  1  1  0  4 
 1  1  1  1  1  5 
 0  1  1  1  1  6 
 0  1  1  1  1  7 
 0  0  0  1  1  8 
 0  0  0  0  1  9 

 ww
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    8.4   Registers 

 A Shift Register consists of a number of single bit “D-Type Data Latches” con-
nected together in a chain arrangement so that the output from one data latch 
becomes the input of the next latch and so on, thereby moving the stored data seri-
ally from either the left or the right direction. The number of individual Data Latches 
used to make up a Shift Register is determined by the number of bits to be stored 
with the most common being 8-bits wide. Shift Registers are mainly used to store 
data and to convert data from either a serial to parallel or parallel to serial format 
with all the latches being driven by a common clock ( CLK ) signal making them 
Synchronous devices. They are generally provided with a  Clear  or  Reset  connection 
so that they can be “ SET ” or “ RESET ” as required. 

 Generally, Shift Registers operate in one of four different modes:

   Serial-in to Parallel-out (SIPO);  • 
  Serial-in to Serial-out (SISO);  • 
  Parallel-in to Parallel-out (PIPO);  • 
  Parallel-in to Serial-out (PISO).    • 

D1 

CLK 
  CLR 

Q1 Q2 Q3 Q4

Clock 

D2 

CLK 
   CLR 

D3 

CLK 
   CLR 

D4 

CLK 
   CLR 

Clear 

4Q

  Fig. 8.32    4-bit Johnson Ring Counter       

   Table 8.17    Truth table for a 
4-bit Johnson ring counter      

  D 1   D 2   D 3   D 4 

 0  0  0  0 
 1  0  0  0 
 1  1  0  0 
 1  1  1  0 
 1  1  1  1 
 0  1  1  1 
 0  0  1  1 
 0  0  0  1 
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 In this section, we consider two types of registers – Serial-to-Parallel Shift 
Register and Parallel-to-Serial Shift Register. 

    8.4.1   Serial-to-Parallel Shift Register 

 The term register can be used in a variety of speci fi c applications, but in all cases it 
refers to a group of  fl ip- fl ops operating as a coherent unit to hold data. This is dif-
ferent from a counter, which is a group of  fl ip- fl ops operating to generate new data 
by tabulating it. 

 A counter can be viewed as a specialized kind of register, which counts events 
and thereby generates data, rather than just holding the data or changing the way it 
is handled. The demonstration circuit below is known as a shift register because 
data is shifted through it, from  fl ip- fl op to  fl ip- fl op. If you apply one byte (8 bits) of 
data to the initial data input one bit at a time, and apply one clock pulse to the circuit 
after setting each bit of data, you will  fi nd the entire byte present at the  fl ip- fl op 
outputs in parallel format. Therefore, this circuit is known as a serial-in, parallel-out 
shift register. It is also known sometimes as a shift-in register, or as a serial-to-
parallel shift register. By standardized convention, the least signi fi cant bit (LSB) of 
the byte is shifted in  fi rst (Fig.  8.33 ).   

    8.4.2   Parallel-to-Serial Shift Register 

 Where there is a need for serial-to-parallel conversion, there is also a need for par-
allel-to-serial conversion. The parallel-in, serial-out register (or parallel-to-serial 
shift register, or shift-out register). Since each  fl ip- fl op in the register must be able 
to accept data from either a serial or a parallel source, a small two-input multiplexer 
is required in front of each input. An extra input line selects between serial and 
parallel input signals, and as usual the  fl ip- fl ops are loaded in accordance with a 
common clock signal. 

 A 4-bit shift register with parallel and serial inputs and outputs will  fi t nicely into 
a 14-pin DIP IC. 

0 

QD QD QD QD QD QDQD QD

  Fig. 8.33    Serial-to-Parallel Shift Register       
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 The label “ B ” (for example button) indicates that the shift-out register is currently 
in serial mode. Thus, input signals present at the serial input just above the “ B ” label 
(button) will be shifted into the register one by one with each clock pulse. This 
enables us to load the entire register at once from the parallel inputs just below the 
multiplexers. Thus, we can have a parallel input and a serial output. The inclusion 
of a serial input makes it possible to cascade multiple circuits of this type in order 
to increase the number of bits in the total register. 

 Because this circuit has both parallel and serial inputs and outputs, it can serve 
as either a shift-in register or a shift-out register. This capability can have advan-
tages in many cases (Fig.  8.34 ).   

    8.4.3   Using a Shift Register for Control 

 There are many ways to design a suitable control circuit for the swap operation. One 
possibility is to use the left-to-right shift register shown in Fig.  8.35 . Assume that 
the reset input is used to clear the  fl ip- fl ops to 0. Hence the control signals  R1  

 in 
 , 

 R1  
 out 

 , and so on are not asserted, because the shift register outputs have the value 0. 
The serial input w normally has the value 0. We assume that changes in the value of 

D1   Q D2   Q 

D3   Q D4   Q 

Q3
Q4

Q2
Q1

0 

B 

0

0

0 

0 

  Fig. 8.34    Parallel-to-Serial Shift Register       
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 M  are synchronized to occur shortly after the active clock edge. This assumption is 
reasonable because  M  would normally be generated as the output of some circuit 
that is controlled by the same clock signal. When the desired swap should be per-
formed,  M  is set to 1 for one clock cycle, and then  M  returns to 0. After the next 
active clock edge, the output of the left-most  fl ip- fl op becomes equal to 1, which 
asserts both  R 2 

 out 
  and  R3  

 in 
 . The contents of register  R2  are placed onto the bus wires 

and are loaded into register  R3  on the next active clock edge.  

D      Q 

Q

D      Q 

QClock

M

D      Q 

Q  

Reset

D      Q 

Q  

D      Q 

Q  Clock

M

D  P  Q 
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D      Q 
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D      Q 

Q
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M

R2out, R3in R1out, R2in R3out, R1in

R2out, R3in R1out, R2in R3out, R1in

R2out, R3in
R1out, R2in R3out, R1in

Reset

a

b

c

  Fig. 8.35    The left-to-right shift register       
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 This clock edge also shifts the contents of the shift register, resulting in 
 R1  

 out 
  =  R2  

 in 
  = 1. Note that since w is now 0, the  fi rst  fl ip- fl op is cleared, causing 

 R2  
 out 

   = R3  
 in 
  = 0. The contents of  R1  are now on the bus and are loaded into  R2  on the 

next clock edge. After this clock edge the shift register contains  001  and thus asserts 
 R3  

 out 
  and  R1  

 in 
 . The contents of  R3  are now on the bus and are loaded into  R1  on the 

next clock edge. Using the control circuit in Fig.  8.35a , when  M  changes to 1 the 
swap operation does not begin until after the next active clock edge. We can modify 
the control circuit so that it starts the swap operation in the same clock cycle in 
which w changes to 1. One possible approach is illustrated in Fig.  8.35b . The reset 
signal is used to set the shift-register contents to  100 , by presetting the left-most 
 fl ip- fl op to 1 and clearing the other two  fl ip- fl ops. As long as  M  = 0, the output con-
trol signals are not asserted. When  M  changes to 1, the signals  R2  

 out 
  and  R3  

 in 
  are 

immediately asserted and the contents of  R2  are placed onto the bus. The next active 
clock edge loads this data into  R3  and also shifts the shift register contents to  010 . 
Since the signal  R1  

 out 
  is now asserted, the contents of  R1  appear on the bus. The next 

clock edge loads this data into  R2  and changes the shift register contents to  001 . The 
contents of  R3  are now on the bus; this data is loaded into  R1  at the next clock edge, 
which also changes the shift register contents to  100 . We assume that w had the 
value 1 for only one clock cycle; hence the output control signals are not asserted at 
this point. 

 It may not be obvious to design a circuit such as the one in Fig.  8.35b , because 
we have presented the design in an ad hoc fashion. The circuit in Fig.  8.35b  assumes 
that a preset input is available on the left-most  fl ip- fl op. If the  fl ip- fl op has only a 
clear input, then we can use the equivalent circuit shown in Fig.  8.35c . In this circuit 
we use the  Q  output of the left-most  fl ip- fl op and also complement the input to this 
 fl ip- fl op by using a NOR gate instead of an OR gate.   

    8.5   Timer 

 The 8-pin 555 timer IC is used in many projects. The 555 timer IC is an amazingly 
simple yet versatile device. It has been around now for many years and has been 
reworked into a number of different technologies. The two primary versions today 
are the original bipolar design and the more recent CMOS equivalent. These differ-
ences primarily affect the amount of power they require and their maximum fre-
quency of operation; they are pin-compatible and functionally interchangeable. 

 The  fi gure to the right shows the functional block diagram of the 555 timer IC. 
The IC is available in either an 8-pin round TO3-style can or an 8-pin mini-DIP 
package. In either case, the pin connections are as follows:  

 The operation of the 555 timer revolves around the three resistors that form a 
voltage divider across the power supply, and the two comparators connected to this 
voltage divider. The IC is quiescent so long as the trigger input (pin 2) remains 
at +V 

CC
  and the threshold input (pin 6) is at ground. Assume the reset input (pin 4) 

is also at +V 
CC

  and therefore inactive, and that the control voltage input (pin 5) 
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is unconnected. Under these conditions, the output (pin 3) is at ground and the 
discharge transistor (pin 7) is turned on, thus grounding whatever is connected to 
this pin. 

 The 555 can operate in either monostable or astable mode, depending on the con-
nections to and the arrangement of the external components, Fig.  8.36 . Thus, it can 
either produce a single pulse when triggered, or it can produce a continuous pulse 
train as long as it remains powered. 

 Figure  8.37  shows the use of the IC 555 (Astable Multivibrator). To get an accu-
rate simulation, the number of Points per Cycle is set to 1000 on the Analysis 
Options dialog box under the Circuit menu and the analysis type is set to 
“Transient”. 

 An astable circuit produces a “square wave”, which is a digital waveform with 
sharp transitions between LOW (0 V) and HIGH (+V 

s
 ). Note that the durations of 

the LOW and HIGH states may be different. The circuit is called astable because it 
is not stable in any state: the output is continually changing between “LOW” and 
“HIGH”.  

 The 556 is a dual version of the 555 housed in a 14-pin package; the two timers 
(A and B) share the same power supply pins. 

 Low power versions of the 555 are made, such as the ICM7555, but these should 
only be used when speci fi ed (to increase battery life) because their maximum output 
current of about 20 mA (with a  9 V  supply) is too low for many standard 555  circuits. 
The ICM7555 has the same pin arrangement as a standard 555. 

 One interesting and very useful feature of the 555 timer in either mode is that the 
timing interval for either charge or discharge is independent of the supply voltage, 
V 

CC
 . This is because the same V 

CC
  is used both as the charging voltage and as the 

basis of the reference voltages for the two comparators inside the 555. 
 With just a few external components IC 555 it can be used to build many circuits, 

Fig.  8.38 .  
 This circuit demonstrates the use of the IC 555 timer in a monostable 

con fi guration. 
 A monostable circuit produces a single output pulse when triggered. It is called 

monostable because it is stable in just one state: “output LOW”. The “output HIGH” 
state is temporary, Fig.  8.39 .  

 The timing period is triggered (started) when the trigger input (555 pin 2) is less 
than     ( )1 / 3 inV   , this makes the output HIGH     ( )+ inV   and the capacitor starts to charge 
through a resistor. Once the time period has started, further trigger pulses are ignored. 

  Fig. 8.36    The 555 timer IC       1. Ground. 
2. Trigger input. 
3. Output. 
4. Reset input. 
5. Control voltage. 
6. Threshold input. 
7. Discharge. 
8. +VCC. +5 to +15 volts
     in normal use.

 



  Fig. 8.37    Modeling of the timer  (use the IC 555  - Astable Multivibrator)       

  Fig. 8.38    An example of 
using a timer in a digital 
system       
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 The reset input (555 pin 4) overrides all other inputs and the timing may be can-
celled at any time by connecting reset to 0 V, which instantly makes the output 
LOW and discharges the capacitor. If the reset function is not required the reset pin 
should be connected to     ( )+ inV   .  

    8.6   Multiplexer and Demultiplexer 

    8.6.1   The Multiplexer 

 Data selectors, more commonly called a Multiplexer, shortened to “ Mux ” or 
“ MPX ”, are combinational logic switching devices that operate like a very fast act-
ing multiple position rotary switch. They connect or control multiple input lines 
called “channels” consisting of either 2, 4, 8 or 16 individual inputs, one at a time to 
an output. Then the job of a multiplexer is to allow multiple signals to share a single 
common output. For example, a single 8-channel multiplexer would connect one of 
its eight inputs to the single data output. Multiplexers are used as one method of 
reducing the number of logic gates required in a circuit or when a single data line is 
required to carry two or more different digital signals. 

  Fig. 8.39    The reset input (555 pin 4) overrides all other inputs and the timing may be cancelled at 
any time by connecting reset to 0V       
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 Digital Multiplexers are constructed from individual analogue switches encased 
in a single IC package as opposed to the “mechanical” type selectors such as normal 
conventional switches and relays. Generally, multiplexers have an even number of 
data inputs, usually an even power of two,     2n   , a number of “control” inputs that 
correspond with the number of data inputs and according to the binary condition of 
these control inputs, the appropriate data input is connected directly to the output. 
An example of a Multiplexer con fi guration is shown in Fig.  8.40  (Table  8.18 ).   

 The Boolean expression for this 4-to-1 Multiplexer above with inputs A to D and 
data select lines  x ,  y  is given as:

     = + + +· · · · · · · · .Q A x y B x y C x y D x y     

 In this example at any one instant in time only ONE of the four analogue switches 
is closed, connecting only one of the input lines  A  to  D  to the single output at  Q . 
Which switch is closed depends upon the addressing input code on lines  x  and  y , so 
for this example to select input B to the output at  Q , the binary input address would 
need to be  x  = logic “ 1 ” and y = logic “ 0 ”. Adding more control address lines will 
allow the multiplexer to control more inputs but each control line con fi guration will 
connect only  one  input to the output. 

 Then the implementation of this Boolean expression above using individual logic 
gates would require the use of seven individual gates consisting of AND, OR and 
NOT gates, Fig.  8.41 .  

Input select   x
y Control
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  Fig. 8.40    An example of a 
multiplexer confi guration       

   Table 8.18    Truth table of a 
multiplexer   

 Addressing 

 Input selected   x    y  

 0  0   A  
 1  0   B  
 0  1   C  
 1  1   D  
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 Figure  8.42  shows the scheme of the multiplexer. Changing the position of key 
 A ,  B ,  C ,  G  you can track the change in function at the output of the device –  Y , W .   

    8.6.2   The Demultiplexer 

 The data distributor, known more commonly as a Demultiplexer or “ Demux ”, is the 
exact opposite of the Multiplexer. The demultiplexer takes one single input data line 
and then switches it to any one of a number of individual output lines one at a time. 

  Fig. 8.42    The scheme of the multiplexer (Electronic Workbench 5.12)       
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Q 

  Fig. 8.41    An example of a multiplexer confi guration with use of seven individual gates consisting 
of AND, OR and NOT gates       
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The demultiplexer converts a serial data signal at the input to a parallel data at its 
output lines as shown in Fig.  8.43  (Table  8.19 ).  

     = + + +· · · · · · · · .F A x y B x y C x y D x y     

 The function of the Demultiplexer is to switch one common data input line to any 
one of the 4 output data lines  A  to  D  in our example above. As with the multiplexer 
the individual solid state switches are selected by the binary input address code on 
the output select pins  x  and  y  and by adding more address line inputs it is possible 
to switch more outputs giving a 1-to-2 n  data line output. Some standard demulti-
plexer IC’s also have an “enable output” input pin which disables or prevents the 
input from being passed to the selected output. Also some have latches built into 
their outputs to maintain the output logic level after the address inputs have been 
changed. However, in standard decoder type circuits the address input will deter-
mine which single data output will have the same value as the data input with all 
other data outputs having the value of logic “ 0 ”. 

 Unlike multiplexers which convert data from a single data line to multiple lines 
and demultiplexers which convert multiple lines to a single data line, there are 
devices available which convert data to and from multiple lines. 

 The implementation of the Boolean expression above using individual logic 
gates would require the use of six individual gates consisting of AND and NOT 
gates, Fig.  8.44 .  

 Figure  8.45  shows the scheme of the demultiplexer. Changing the position of key 
 A ,  B ,  C ,  G  you can track the change in function at the output of the device –  0 – 7 .    

Input select   x
y Control

A 

B 

C 

D 

F 

  Fig. 8.43    The scheme
of the demultiplexer       

   Table 8.19    Truth table 
of a demultiplexer   

 Addressing  Output 
selected   x    y  

 0  0   A  
 1  0   B  
 0  1   C  
 1  1   D  
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    8.7   Digital Encoder and Decoder 

    8.7.1   The Digital Encoder 

 Unlike a multiplexer that selects one individual data input line and then sends 
that data to a single output line or switch, a Digital Encoder more commonly 
called a Binary Encoder takes ALL its data inputs one at a time and then converts 

x 

y 

A 

B 

C 

D 

F 

  Fig. 8.44    Demultiplexer 
with using AND gates       

  Fig. 8.45    The scheme of the demultiplexer       
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them into a single encoded output. So we can say that a binary encoder, is a 
multi-input combinational logic circuit that converts the logic level “1” data at its 
inputs into an equivalent binary code at its output. Generally, digital encoders 
produce outputs of 2-bit, 3-bit or 4-bit codes depending upon the number of data 
input lines. An “n-bit” binary encoder has 2 n  input lines and n-bit output lines 
with common types that include 4-to-2, 8-to-3 and 16-to-4 line con fi gurations. 
The output lines of a digital encoder generate the binary equivalent of the input 
line whose value is equal to “1” and are available to encode either a decimal or 
hexadecimal input pattern to typically a binary or BCD output code. 

 One of the main disadvantages of standard digital encoders is that they can generate 
the wrong output code when there is more than one input present at logic level “ 1 ”. 

 One simple way to overcome this problem is to “ Prioritise ” the level of each input 
pin and if there was more than one input at logic level “1” the actual output code would 
only correspond to the input with the highest designated priority. Then this type of digi-
tal encoder is known commonly as a Priority Encoder or P-encoder for short, Fig.  8.46 .  

 Priority Encoders solve the problem mentioned above by allocating a priority 
level to each input. The encoder output corresponds to the currently active input 
with the highest priority. So when an input with a higher priority is present, all other 
inputs with a lower priority will be ignored. Priority encoders come in many forms 
with an example of an 8-input priority encoder along with its truth Table  8.20 , 
shown below.  

 Priority encoders are available in standard IC form. Priority encoders output the 
highest order input  fi rst; for example, if input lines “ D  

2
 ”, “ D  

3
 ” and “ D  

5
 ” are applied 

simultaneously the output code would be for input “ D  
5
 ” (“101”) as this has the high-

est order out of the three inputs. Once input “D 
5
 ” had been removed the next highest 

output code would be for input “ D  
3
 ” (“011”), and so on. 

 The Boolean expression for this 8-to-3 encoder above with inputs  D  
0
  to  D  

7
  and 

outputs  Q  
0
  , Q  

1
  , Q  

2
  is given as:

     

0 1 3 5 7

1 2 3 6 7

2 4 5 6 7

;

;

.

= + + +

= + + +

= + + +

Q D D D D

Q D D D D

Q D D D D     

8-to-3 Bit
Priority
Encoder

D0
D1 
D2

D3
D4
D5

D6
D7

Lowest Priority  

Q0

Q1

Q2

  Fig. 8.46     8-to-3 Bit Priority 
Encoder       
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 Then the implementation of these Boolean expression outputs above using 
 individual OR gates is as follows, Fig.  8.47 .   

    8.7.2   Decoder 

 A decoder is basically a combinational type logic circuit that converts the binary 
code data at its input into one of a number of different output lines, one at a time 
producing an equivalent decimal code at its output. Binary decoders have inputs of 
2-bit, 3-bit or 4-bit codes depending upon the number of data input lines, and an 
n-bit decoder has 2n output lines. Therefore, if it receives n inputs (usually grouped 
as a binary or Boolean number) it activates one and only one of its 2n outputs based 
on that input with all other outputs deactivated. A decoder’s output code normally 
has more bits than its input code and practical binary decoder circuits include, 
2-to-4, 3-to-8 and 4-to-16 line con fi gurations. 

D3

Q1 = D2+ D3 + D6+ D7

Q2 = D4+ D5 + D6+ D7

Q0 = D1+ D3 + D5+ D7

D1

D5

D7

D2

D6

D4

D0

  Fig. 8.47    8-to-3 Bit Priority Encoder with using OR gates       

   Table 8.20    Truth table of a priority encoder   

 Inputs  Outputs 

  D  
7
    D  

6
    D  

5
    D  

4
    D  

3
    D  

2
    D  

1
    D  

0
    Q  

2
    Q  

1
    Q  

0
  

  0    0    0    0    0    0    0    1    0    0    0  
  0    0    0    0    0    0    1    *    0    0    1  
  0    0    0    0    0    1    *    *    0    1    0  
  0    0    0    0    1    *    *    *    0    1    1  
  0    0    0    1    *    *    *    *    1    0    0  
  0    0    1    *    *    *    *    *    1    0    1  
  0    1    *    *    *    *    *    *    1    1    0  
  1    0    *    *    *    *    *    *    1    1    1  
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    8.7.2.1   Binary Decoder 

 A binary decoder converts coded inputs into coded outputs, where the input and 
output codes are different and decoders are available to “decode” either a Binary or 
BCD input pattern to typically a Decimal output code. Commonly available BCD-
to-Decimal decoders include the TTL 7442 or the CMOS 4028. An example of a 
2-to-4 line decoder along with its truth table is given below, Fig.  8.48 , Table  8.21 . It 
consists of an array of four NAND gates, one of which is selected for each combina-
tion of the input signals  A  and  B .      

    8.8   Digital Comparator 

 Another common and very useful combinational logic circuit is that of the Digital 
Comparator circuit. Digital or Binary Comparators are made up from standard 
AND, NOR and NOT gates that compare the digital signals present at their input 
terminals and produce an output depending upon the condition of those inputs. For 
example, along with being able to add and subtract binary numbers we need to be able 
to compare them and determine whether the value of input  A  is greater than, smaller 
than or equal to the value at input  B  etc.. The digital comparator accomplishes this 

A(1) 

B(0) 

D0

D1

D2

D3

2 x 4
Decoder

D0

D1 

D2

D3

A 

B

a b

  Fig. 8.48    Binary decoder       

 Binary input  Decoded output 

  A    B    D  
0
    D    D  

2
    D  

3
  

 0  0  1  0  0  0 
 0  1  0  1  0  0 
 1  0  0  0  1  0 
 1  1  0  0  0  1 

   Table 8.21    Truth table of a 
2-to-4 decoder   
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using several logic gates that operate on the principles of Boolean algebra. There are 
two main types of digital comparator available and these are. 

 Identity Comparator – is a digital comparator that has only one output terminal 
for when  A  =  B  either “HIGH”  A  =  B  = 1 or “LOW”  A  =  B  = 0. 

 Magnitude Comparator – is a type of digital comparator that has three output 
terminals, one each for equality,  A  =  B  greater than,  A  >  B  and less than  A  <  B.  

 The purpose of a digital comparator is to compare a set of variables or unknown 
numbers, for example  A  ( A  

1
 ,  A  

2
 ,  A  

3
 ,…,  A  

 n 
 , etc.) against that of a constant or unknown 

value such as  B  ( B  
1
 ,  B  

2
 ,  B  

3
 ,…,  B  

 n 
 , etc.) and produce an output condition or  fl ag 

depending upon the result of the comparison. For example, a magnitude comparator 
of two 1-bits, ( A  and  B ) inputs would produce the following three output conditions 
when compared to each other.

     > = <, , .A B A B A B     

 This is useful if we want to compare two variables and want to produce an output 
when any of the above three conditions are achieved. For example, produce an out-
put from a counter when a certain count number is reached. Consider the simple 
1-bit comparator below, Fig.  8.49 .  

 Then the operation of a 1-bit digital comparator is given in the following truth 
table, Table  8.22 .  

 You may notice two distinct features about the comparator from the above truth 
table. Firstly, the circuit does not distinguish between either two “ 0 ”s or two “ 1 ”s as 
an output;  A  =  B  is produced when they are both equal, either  A  =  B  = “ 0 ” or 
 A  =  B  = “ 1 ”. Secondly, the output condition for  A  =  B  resembles that of a commonly 

A 

B 

BABAC <→⋅=

BABAE >→⋅=

BA

BABAD

=
→⋅+⋅=

  Fig. 8.49    The simple 1-bit comparator       

   Table 8.22    Truth table of a 
1-bit digital comparator   

 Inputs  Outputs 

  A    B    E    D    C  

 0  0  0  1  0 
 1  0  1  0  0 
 0  1  0  0  1 
 1  1  0  1  0 
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available logic gate, the Exclusive-NOR or Ex-NOR function (equivalence) on each 
of the n-bits giving:     ÅA B   . 

 Digital comparators actually use Exclusive-NOR gates within their design for 
comparing their respective pairs of bits. When we are comparing two binary or 
BCD values or variables against each other, we are comparing the “magnitude” of 
these values, a logic “ 0 ” against a logic “1” which is where the term Magnitude 
Comparator comes from. 

 As well as comparing individual bits, we can design larger bit comparators by 
cascading together n of these and produce an n-bit comparator just as we did for the 
n-bit adder in the previous tutorial. Multi-bit comparators can be constructed to 
compare whole binary or BCD words to produce an output if one word is larger 
than, equal to or less than the other. A very good example of this is the 4-bit 
Magnitude Comparator. 

 Digital Comparators are used widely in Analogue-to-Digital converters, (ADC) 
and Arithmetic Logic Units, (ALU) to perform a variety of arithmetic operations. 

  Appendix     A       contains examples of programs (Delphi, C#) for simulating the 
operation of digital automata, presented in this chapter.        

http://dx.doi.org/10.1007/978-94-007-5228-3_BM1
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  Abstract   This chapter presents two fi nite-state machines (FMS): a Moore FMS 
(in which output values are determined solely by its current state) and a Mealy 
FMS (whose output values are determined both by its current state and by the values 
of its inputs). The chapter contains many examples of designing digital electronic 
systems, which are at the same time a restricted form of Moore machine (where the 
state changes only when the global clock signal changes), like a Moore FSM that 
performs a multiplication or binary division. Additionally the chapter explains the 
methods of hardware implementation of the constructed Moore FSMs.         

 In    the theory of computation, a Moore machine is a  fi nite-state machine whose out-
put values are determined solely by its current state, Fig.  9.1  This is in contrast to a 
Mealy machine, whose output values are determined both by its current state and by 
the values of its inputs, Fig.  9.2 .   

 Where     1, ,¼ na a   – outputs of memory elements; 
     1, ,¼ jb b   – Boolean functions of excitation of the memory elements; 
  W  

1
 ,…, W  

 J 
  – output channels of automaton; 

  j  – number of output channels of automaton; 
  Z  

1
 ,…, Z  

m
  – input channels automaton. 

    9.1   Synthesis of Moore Automata from Graph-Scheme 

 Since it is impossible to implement machines that have infi nite storage capabilities, we 
shall concentrate on those machines whose past histories can affect their future behavior 
in only a fi nite number of ways. We shall study machines that can distinguish among a 
fi nite number of classes of input histories and shall refer to these classes as the internal 
states of the machine. Every fi nite-state machine, therefore, contains a fi nite number of 
memory devices, which store the information regarding the past input history. 

    Chapter 9   
 Machines Moore and Mealy          
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nα

Scheme of the
automaton output

Elements of the
memory automaton

Scheme of excitation
functions of the

memory elements

W1 Wj

1α

1β

jβ

Z1       Zm

  Fig. 9.2    Structural 
diagram of the Mealy 
machine       

Scheme of the
automaton output

Elements of the
memory automaton

Scheme of excitation
functions of the

memory elements

W1 Wj 

1α nα

1β

jβ

Z1       Zm

  Fig. 9.1    Structural 
diagram of the Moore 
machine       

 Note that, although we are restricting our attention to machines that have fi nite 
storage capacity, no bound has been set on the duration for which a particular input 
value may affect the future behavior of the machine. 

 In the theory of computation, a Moore machine is a fi nite-state machine whose 
output values are determined solely by its current state, fi gure. This is in contrast to 
a Mealy machine, whose output values are determined both by its current state and 
by the values of its inputs, Figs.  9.1  and  9.2 . 

 Most digital electronic systems are designed as clocked sequential systems. Clocked 
sequential systems are a restricted form of Moore machine where the state changes only 
when the global clock signal changes. Typically the current state is stored in  fl ip- fl ops, 
and a global clock signal is connected to the “clock” input of the  fl ip- fl ops. Clocked 
sequential systems are one way to solve metastability problems. A typical electronic 
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Moore machine includes a combinational logic chain to decode the current state into the 
outputs. The instant the current state changes, those changes ripple through that chain, 
and almost instantaneously the outputs change (or don’t change). There are design tech-
niques to ensure that no glitches occur on the outputs during that brief period while 
those changes are rippling through the chain, but most systems are designed so that 
glitches during that brief transition time are ignored or are irrelevant. The outputs then 
stay the same inde fi nitely, until the Moore machine changes state again. 

 The principle of designing devices to implement the various methods of multipli-
cation are shown in Fig.  9.3   

 We consider the example of designing devices for multiplying numbers. During 
the multiplication of numbers in binary code the sign bit and data bits are handled 
separately. We assume that  Y  and  X  – correct binary fraction –   

RG1 
0                        n 

SM 
   0 n 0                 n 

RG3
0 n

CT 
1  q

CT=0 

RG2 
1                        n 

RG2(n)

    n 

    n     n 
RG1 

1 2n

SM 
   1 2n 1 2n

       RG3 
1 2n

      RG2 
1 n

RG2(n)

2n+1 

2n+1 

         RG1 
1                       n

SM 

0 2n 0 n

RG3 
1 n

         RG2 
0                        n

RG2(0) 

CT 
1 q

CT=0 

     n 

  n+1 

    n+1 

 2n+1      n 

0 

RG1
0 2n

SM
0 2n 0 2n

    RG3
0  2n

            RG2
1 n

RG2(1) 

2n+1 

2n+1 2n+1 

a b

dc

  Fig. 9.3    Methods of multiplication. ( а ) 1st method; ( b ) 2nd method; ( c ) 3rd method; ( d ) 4th 
method       
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     = ¼1 20, , , , ,nX x x x    

     = ¼1 20, , , , ,nY y y y    

where  x  
 i 
 ,  y  

 i 
  ∈ {0,1}. 

 You can use one of the four methods of multiplication. 
  1st method 

     
( )( )( )( )1 1 1 1

1 1· 0 2 2 2 2- - - -
-= = ¼ + + + + + +� �n n iZ Y X Yx Yx Yx Yx

    

  2nd method    

     
( )( )( )( )1 1

1 10 2 2 2- - + -
-= + + + +� �n n

n nZ Y X Y x Y x
    

  3rd method 

     
( )( )( )( )1 20 2 2 2 2 2 2 2- - - -= + + + + + +� � �n n n n

i nZ Y X Y x Y x Y x
    

  4th method 

     
( )( )( )1 2

1 20 2 2 2 2 .- - - -= + + + + + +� � �i n
i nZ Y x Y x Y x Y x

    

 Methods of multiplication on serial binary machines vary from the standard 
pencil-and-paper method to multiplication by a fast multiplier. The time taken for a 
multiplication by both these methods is independent of the arrangement of digits in 
the multiplier. For some methods, however, the time is not invariant, so that for an 
optimum-coded machine using a delay-type store it is essential to know the expected 
time for a multiplication, so that maximum time-saving may be obtained, by insert-
ing the next order in the optimum position. In a machine of this type each order 
includes an indication of the operation to be performed and the address of the next 
order; other addresses may be specifi ed also. For the majority of operations, e.g. 
addition, subtraction, doubling, halving, some logical orders and magnitude tests, 
the time taken is known and fi xed for the same operation. Thus the next order may 
be placed, subject to availability, so that it may be called in immediately the previ-
ous operation is completed. Further, if the next order is placed in an earlier position, 
it will not be available until after a complete period of the delay store, and if in a 
later position, a certain amount of time will be wasted. For operations such as mul-
tiplication and division, with variable time for completion, the optimum position for 
the next order is such that over all possible times the expected time is minimized. It 
may be necessary in the following methods to allow time for control instructions, 
but these are functions of the overall construction of the computer and, as such, do 
not affect the basic time for a multiplication. 
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 To see how this can be done, notice that the result of multiplying two n-digit positive 
binary numbers, the result may be as long as 2n digit long. Let us denote the fi rst factor 
by x, the second by y, and the result by Z. 

 When we implement multiplication in digital computers we have ways to change the 
method easily. Firstly, instead of providing registers to store and add intermediators 
generated in between the multiplication, we can have adder to add the intermediators 
simultaneously and store them then in registers. This saves memory. Secondly, instead 
of shifting the multiplicand to the left it is suggested to shift the partial product to the 
right. It makes the relative positions for the partial product and multiplicand. Thirdly, 
when the corresponding bit of the multiplier is 0, then there is no need to multiply the 
number as the result doesn’t have any difference form it. 

 Principles of designing devices that implement the various methods of multiplication 
are shown in Fig. 8.28. 

 Where RG1 – register; RG2  – register X; RG3 – register Y. 
 These registers along with two other registers make up the complete implementation. 

Principles of designing devices that implement the various methods of multiplication are 
shown in Fig.   8.28     where 

  RG1  – register     = · ;Z Y X    
  RG2  – register     ;X    
  RG3  – register     .Y    

  Example 1.    Build a circuit that simulates activity of a Moore automaton given by the 
following graph-scheme, Fig.  9.4 .  
  Step 1:  Assign the marks to the scheme:

   Mark the node Start and End by symbol –  •    1a   ;  
  Mark the operator nodes by symbols  •    ¼2 , , ma a   , each by one symbol.    

  Step 2:  Derive the transitions and outputs tables. The transition functions are formed 
as conjunctions of the ways from     ma    to     sa   . Output data: Graph of Moore automata, 
Fig.  9.5 .  
  Step 3:  We obtain a transitions/outputs table (Table   s  9.1  and  9.2 ):   

  Example 2.    We consider the example synthesis of the Moore automata for 
multiplication of two binary numbers. 

 We introduce the following notation: 
  SM  –  adder ; 
  CT  –  counter ; 
  RG ,  RG1  –  registers;  
  n – number of cycles.  
 Let  А  = 1101 

2
 ,  В  = 101 

2
 . Then  

 1  1  0  1 
2
   Multiplier 

 1  0  1 
2
   Multiplicand 

 1  1  0  1  Partial-products 
 0  0  0  0 

 1  1  0  1 
 1  0  0  0  0  0  1 2    Product  

http://dx.doi.org/10.1007/978-94-007-5228-3_8
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  Fig. 9.5    Graph of a Moore 
automaton       
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  Fig. 9.4    Graph-scheme of a Moore automaton          
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 The Decision considered in the above example is in this instance realized on the 
following scheme (Figs.  9.6 ,  9.7 ,  9.8 )   :     

  RG2    SM  (adder)   RG1  (LSB)  Comment 

 1101   00000  101 
 ±  1101  
  01101      Addition 

 110  Shift ( RG1 ) and ( SM ) 
  00110     
  00011  011  Shift ( RG1 ) and ( SM ) 
 ±  1101   Addition 
   10000      
  01000  001  Shift ( RG1 ) and ( SM ) 
  1000  001   Product  

   Table 9.2    Moore automaton 
state transition table (reverse 
transition table)   
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   Table 9.1    Moore automaton 
state transition table (direct 
transition table)   
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  Fig. 9.7    Graph-scheme of 
multiplying two numbers       

  Fig. 9.6    The block diagram of an operational device that implements the multiplication       
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  Fig. 9.8    Graph-scheme of 
coded multiplication 
algorithm of two numbers       

       Where

    y  
1
  – installation of  SM  in the zero state ( SM : = 0);  

   y  
2
  –  SM : =  SM  +  RG 2;  

   y  
3
  – transfer the contents of the  fi rst register in the  fi rst register with a shift to the 

right ( RG 1 =  R 1( RG 1));  
   y  

4
  – shift the contents of the adder to the right ( SM : =  R 1 ( SM ));  

   y  
5
  – shift LSB to MSB adder register ( RG 1[ n ]:=  SM  [1]);  

   y  
6
  – input to the counter number  n ;  

   y  
7
  – signal operations account ( СТ : =  СТ −1).       

 Based on the trigger  R – S  of the transition table,  fi ll columns  R and S , Table  9.3  
(Figs.  9.9  and  9.10 ). 

 Also  Y  
1
  =  y  

1
 ,  y  

6
 ;  Y  

2
  =  y  

2
 ;  Y  

3
  =  y  

3
 ,  y  

4
 , y  

5
 , y  

7
 .    

 The project requires an algorithm capable of comparing two circuits. It may need 
to search thousands of circuits, so it must be as effi cient as possible. Furthermore, it 
must correctly fi nd any sort of analogue circuit, not merely all of those with particular 

 



152 9 Machines Moore and Mealy

  Fig. 9.9    Graph-scheme of coded multiplication algorithm of two numbers       

   Table 9.3    A fi nite-state machine (FSM)      

 Initial 
state 
(a 

m
 ) 

 The code 
of the initial 
state ( Q  

 m 
 ) 

 State 
transition 
( a  

s
 ) 

 Status code 
transition 
K( a  

 s 
 ) 

 Input 
signal
    

,

,

æ ö
ç ÷è ø

m

s

a
x

a

   

 Output 
signal
    

,
 

,æ ö
ç ÷è ø

m

s

a
y

a

   

 Initialization 
function 
trigger     

æ ö
ç ÷
è ø

,m

s

a

a

   

  Q  
2
    Q  

1
    Q  

2
    Q  

1
    R    S  

  a  
1
   0  0   a  

2
   0  1  1   y  

1
   –   S  

1
  

  a  
2
   0  1   a  

3
   1  0   x  

1
    y  

2
    R  

2
    S  

1
  

  a  
3
   1  0   a  

4
   1  1  1   y  

3
   –   S  

1
  

  a  
4
   1  1   a  

2
   0  1      2x     –   R  

2
   – 

  a  
4
   1  1   a  

1
   0  0   x  

2
   –   R  

1
  R  

2
   – 

  a  
2
   0  1   a  

4
   1  1      1x      y  

3
   –   S  

2
  

properties, since it is impossible to know every circuit that may be added to the 
repository in the future, or indeed the circuits that will be searched for. 

 It is not easy for a computer to determine the function of an analogue circuit. A 
computer can be given access to every aspect of a circuit that a human would be able 
to see: component values, interconnections, perhaps even component locations so 
that the circuit can be drawn on screen. 

 However, a computer cannot interpret this information as easily as an experi-
enced engineer. 

 There are some circuits that are easily compared. Digital circuits are a special 
type of analogue circuit. It is not diffi cult for a computer to examine a combinatorial 
digital circuit. A computer can always work out the minimum logical function that 
such a circuit provides, and compute truth tables. This type of circuit has discrete 
inputs and outputs, each of which can only take two values. 
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  Fig. 9.10    Functional circuit of the multiplication of binary numbers       

   Table 9.4    Table of state 
auto mation and state trigger   

 State automaton ( a  
 m 
 )  State trigger 

  Q  
 2 
    Q  

 1 
  

  a  
 1 
    0    0  

  a  
 2 
    0    1  

  a  
 3 
    1    0  

  a  
 4 
    1    1  

 Combinatorial circuits can thus be compared in terms of the minimal representa-
tion of their logical function, or in terms of their truth tables. However, this is not 
possible for non-combinatorial digital circuits: those with some type of memory or 
internal state. A logical function or truth table could only be drawn for such circuits 
if its parameters included all the values of the internal state. 

 In an analogue circuit, a truth table can never be derived, because all inputs and 
outputs have real values. Voltage and current are continuous quantities which may 
take any real-numbered value. Nor is it possible, in general, to reduce an analogue 
circuit to a mathematical function which could be compared more easily. 

 An electronic circuit is easily expressed as a graph: an example of one possible rep-
resentation was illustrated earlier in Figure 9.9. Since this is the case, existing methods 
for solving subgraph isomorphism problems can be  applied to comparing circuits. 

 Thus, based on data in Tables  9.3  and  9.4  we obtain the following system of 
equations: 
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1 1 2 1 1 2 2

2 1 2 1 2 1 2 2 1 2 2 1 2 1

3 1 1 2 1 2 1 1 2 1 2 1 2 1

1 2 1 1

· ; · · ;

· · ; · · · · · · ;

· · · ; · · · · ;

· · . 

ü= =
ï= = Ú Ú ï
ý

= Ú = Ú Ú ï
ï= þ

y Q Q R Q Q x

y Q Q x R Q Q x Q Q x Q Q x

y x Q Q Q Q S Q Q Q Q Q Q x

S Q Q x
   (9.1)  

 Add to the decoder circuit of automaton states:

     = = = =0 1 2 1 1 2 2 1 2 3 1 2· ; · ; · ; · ;a Q Q a Q Q a Q Q a Q Q     

 Thus   , the system of Eq. 9.1 can be simpli fi ed:

     

1 3 2

2 3 2 3 2 1 2 1 3 2 1

1 0 1 1 2

2 2 1

1 0 2 1 2 3 1 2 1

· · ;

· · · · · · · · · ;

· · · · ;

· · ;

· ; · · ; · · · .

= ü
ï= Ú Ú = Ú ïï= Ú Ú ý
ï= ï

= = = Ú ïþ

R a x C

R a x C a x C Q Q x a C a x C

S a C a C x a C

S a x C

y a C y x a C y x a C a C
   (9.2)    

 Division, similar to multiplication we can do division as shown below. 
 Of all the elemental operations, division is the most complicated and can consume 

the most resources (in either silicon, to implement the algorithm in hardware, or in 
time, to implement the algorithm in software). In many computer applications, 
division is less frequently used than addition, subtraction or multiplication. As a 
result, some microprocessors that are designed for digital signal processing (DSP) 
or embedded processor applications do not have a divide instruction (they also 
usually omit fl oating point support as well). 

 We outline the basic algorithmization and programming principles for logic 
synthesis of the Moore automata for binary division. 

  Example 3.    We outline the basic algorithmization and programming principles 
for logic  synthesis of the Moore automata for binary division. 

 All algorithms are categorized into two main sections. One is known as slow 
division while the other one is known as fast division. Both of these algorithms have 
their own unique working procedure through which they perform all of their tasks. 
For example, a slow division algorithm always produces only a single digit of each 
 fi nal quotient. Some of the famous examples of a slow division algorithm are restor-
ing and SRT. While on the other hand, a fast division algorithm follows the rule of 
closest possible approximated value relative to the  fi nally produced quotient and 
produces as many digits as it can which are in twice pattern of  fi nal outcome 
quotient.    

 We assume that in an arithmetic division operation involving operands –  C = A/B.  
 In addition, the digital device must generate a symptoms result in binary variables:
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    • Z  –  a zero result ;  
   • S  –  a negative result ;  
   • OV  –  a sign of overcrowding .    

 Algebraic division algorithm operations are designed for 16-bit binary numbers 
with  fi xed point (Fig.  9.11 ).  

 In computer science, the sign bit is a bit in a computer numbering format that 
indicates the sign of a number. In IEEE format, the sign bit is the leftmost bit (most 
signifi cant bit). Typically if the sign bit is 1 the number is negative (in the case of 
two’s complement integers) or non-positive (for ones’ complement integers, sign-
magnitude integers, and fl oating point numbers), while 0 indicates a positive 
number. 

 Thus, in operations involving the following variables:

    • А  =     ¼0 1 2 15a a a a   –  fi rst operand ( dividend );  
   • В  =     ¼0 1 2 15b b b b   – second operand ( divisor );  
   • С  =     ¼0 1 2 15c c c c   – result of the operation division ( Also, there remains a   W );  
   • D  =     ¼0 1 2 15d d d d   – variable, which accumulates  C ;  
   •    0 0 0, ,a b c   – sign bits.       

 The sign of the result of division can be found from the expression:

     = Ú0 0 0 0 0 .c a b a b     

 The graph-scheme of the division operation is shown in Fig.  9.12 . 
 For reduction of mean time for a division operation, use a method that does not 

recover the remainder, an algorithm for which follows.

    (1)    De fi ne the sign a quotient by summation over module two contents sign category 
done and divisor.     

    (2)    From done to subtract the divisor. If the remainder  W < 0 , go to point 3. Otherwise 
calculation to  fi nish.     

    (3)    Remember the sign of the remainder ( W ).  
    (4)    Shift the remainder ( W ) on one category to the left.  
    (5)    Assign the divisor a sign, the inverse sign of the remainder, remembered in Step 2.  
    (6)    Pack the shifted remainder and divisor (with provision for sign).  
    (7)    Assign the numeral a quotient importance, opposite code of the sign of the 

remainder.  
    (8)    Repeat Steps 3–7 until required accuracy of the calculation is achieved.        

0 1 15

Sing bit Module number

  Fig. 9.11    Binary code        
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No

D:=L1(D)

Done 

n=0 

n:=n-1

C:=D

c0:=s

C:=A - B

c0

Start 

a0 = b0

s:=0 s:=1

Yes

a0:=0
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0
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1

Yes

No

  Fig. 9.12    Graph-scheme of the division operation       
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 The Decision considered in the above example is in this instance realized in the 
 following scheme:  

 [ A ] 
tc
   +00,1001  00, 1 1 0 0 

 [− B ] 
tc
  ( subtraction )    11,0011   00, 1 0 1 1 0 

  W  < 0    11 ,1100     
     proper fraction 

  W  shift to the left  +11,1000 
 Addition [ B ] 

tc
     00,1101  

  W > 0     00 ,0101     
      

  W  shift to the left  +00,1010 
 Subtraction    11,0011  
  W < 0    

    11 ,1101 
      

  W  shift to the left  +11,1010 
 Addition   00,1101  
  W > 0    

    00 ,0111 
      

  W  shift to the left  +00,1110 
 Subtraction   11,0011  
  W > 0    

    00 ,0001 
      

  W  shift to the left  +00,0010 
 Subtraction   11,0011  
  W < 0    

    11 ,0101 

  Result   C = A:B =   0,1011  

 Next, determine which sequence of micro operations to be implemented to 
develop a framework to perform the division is provided by the algorithm of 
Fig.  9.3 . The simplest solution - to keep the topology of the graph algorithm and 
replace the contents of its operator - the appropriate logical conditions. 

 Thus obtained graph is called fi rmware and treated as an input to the design of the 
receiver (fi rmware) of the automaton. In this case, the contents of the vertex operator 
corresponding to the action performed by the device in one step of discrete time. The 
design of digital systems usually aim to achieve a top speed of their work. 

 The structure of the automaton should include the following elements:

   Two hexadecimal registers  • РгА  and  РгВ  for storing the input operands and inter-
mediate results, and the  РгА  register should provide an opportunity to shift its 
contents to the left;  
  Hexadecimal Register  • РгС  to accommodate the results of arithmetic operations 
of addition or subtraction. At the end of the operation it will post the result;  
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  Hexadecimal register  • PгD  with the ability to left shift code (to accommodate  C );  
  Hexadecimal binary parallel adder/subtractor  • Adder/Sub ;  
  Four-digit down counter  • Сч n ;  
  Flip- fl op the over fl ow  • Тг OV  to store the over fl ow trait    word length;  
  Flip- fl op of the sign  • Тг s ;  
  Scheme comparison “equals” sign bit source operands;  • 
  decoder  • DC  “0” zero combination in the ranks  С [1:15].       

 Table  9.5  shows a complete list of micro-and logical conditions.  
 Links between elements of Moore FSM and micro-operations are shown in 

Fig.  9.13 .  

  Fig. 9.13    Links between elements of Moore FSM and micro-operations       

   Table 9.5    A complete list of micro-and logical conditions   

 Micro-operation  Action  Micro-operation  Action  Logical condition  Action 

  y  
1
    s :=0   y  

10
    А := L 1( А )   x  

1
    a  

0
 := b  

0
  

  y  
2
    s :=1   y  

11
    D [15]:=1   x  

2
    c  

0
  

  y  
3
    a  

0
 :=0   y  

12
    D [15]:=0   x  

3
    Сч п :=0 

  y  
4
    b  

0
 :=    0      y  

13
    С := A  +  В  

  y  
5
    C := R  +  S    y  

14
    D := L 1(D) 

  y  
6
    OV :=0   y  

15
    Сч n := С ч−1 

  y  
7
    OV := 1    y  

16
    C := D  

  y  
8
    n :=16   y  

17
    c  

0
 :=  s  

  y  
9
    A := C  
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  Step 1.  
 Mark out the microprogram division. 
 Assign the marks to the scheme, Fig.  9.14 .  

  Step 2.  
 We construct the graph, we are actually given alphabet of internal states and 

input symbols and determine the transition function. To set the output symbols of 

1 0
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y1 y2 

Done 

y16 
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y11, y5 y12, y13 

y14, y15 
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y6, y8 

y9 

y10 

y7 
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1

0
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a7a6

a8
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a10
a11

a12

a13

a14

a1

  Fig. 9.14    Graph-scheme of a division algorithm       
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the alphabet and the output function (for Moore FSM output function depends only 
on the states) should be compared with each vertex in the machine as the output 
character contents of the corresponding vertex operator fi rmware. Thus, we obtain 
the graph fi rmware machine, which is shown in Fig.  9.15 .  

 A synthesizable state machine may be coded many ways. Two of the most com-
mon, easily understood and effi cient methods are two-always block and one-always 
block state machines. 

 The easiest method to understand and implement is the two-always block state 
machine with output assignments included in either the combinational next-state 
always block or separate continuous-assignment outputs. 

  Step 3.  
 Perform the coding of states of the digital automata (Table  9.6 ).  

  Step 4.  
 The choice of memory elements. Choosing a D  fl ip- fl op. Construct the transition 

table automaton (Table  9.7 ).  

  Step 5.  
 Development of a combinational circuit. 
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a11
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a13

a14
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y7

y9y10

y11, y5

y12, y13
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x2 

x2

x2 
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x3 

  Fig. 9.15    Graph-scheme of division (Moore FSM)       
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   Table 9.7    Flip-fl op Excitation Tables   

 The initial state of 
automaton 

 Jump 
condition 

 State 
transition 

 Excitation function 
of the  fl ip- fl op 

  D  
1
    D  

2
    D  

3
    D  

4
  

 ( a  
1
 ) 0001   x  

1
   ( a  

 2 
 ) 0010  0  0  1  0 

     1x     ( a  
 3 
 ) 0011  0  0  1  1 

 ( a  
2
 ) 0010  1  ( a  

4
 ) 0100  0  1  0  0 

 ( а  
3
 ) 0011  1  ( a  

4
 ) 0100  0  1  0  0 

 ( а  
4
 ) 0100  1  ( a  

5
 ) 0101  0  1  0  1 

 ( a  
5
 ) 0101   x  

2
   ( a  

6
 ) 0110  0  1  1  0 

     2x     ( a  
7
 ) 0111  0  1  1  1 

 ( a  
6
 ) 0110  1  ( a  

8
 ) 1000  1  0  0  0 

 ( a  
7
 ) 0111  1  ( a  

1
 ) 0001  0  0  0  1 

 ( a  
8
 ) 1000  1  ( a  

9
 ) 1001  1  0  0  1 

 ( а  
9
 ) 1001   x  

2
   ( a  

11
 ) 1011  1  0  1  1 

     2x     ( a  
10

 ) 1010  1  0  1  0 
 ( a  

10
 ) 1010  1  ( a  

12
 ) 1100  1  1  0  0 

 ( a  
11

 ) 1011  1  ( a  
12

 ) 1100  1  1  0  0 
 ( a  

12
 ) 1100   x  

3
   ( a  

13
 ) 1101  1  1  0  1 

     3x     ( a  
8
 ) 1000  1  0  0  0 

 ( a  
13

 ) 110 l  1  ( a  
14

 ) 1110  1  1  1  0 
 ( a  

14
 ) 1110  1  ( a  

1
 ) 0001  0  0  0  1 

   Table 9.6    Moore automaton state transition table (reverse transition table)   

 State automaton  Code Т 
1
  Т 

2
  Т 

3
  Т 

4
   State automaton  Code Т 

1
  Т 

2
  Т 

3
  Т 

4
  

  а  
1
   0001   а  

8
   1000 

  а  
2
   0010   а  

9
   1001 

  а  
3
   0011   а  

10
   1010 

  а  
4
   0100   а  

11
   1011 

  а  
5
   0101   а  

12
   1100 

  а  
6
   0110   а  

13
   1101 

  а  
7
   0111   а  

14
   1110 

 Stage of minimization we’re missing. You can do it yourself. For example, use 
Karnaugh Maps .  
  Excitation function of the  fl ip- fl op :

     = Ú Ú Ú Ú Ú Ú1 6 8 9 10 11 12 13.D a a a a a a a    

     = Ú Ú Ú Ú Ú Ú Ú2 2 3 4 5 10 11 12 3 13.D a a a a a a a x a    

     = Ú Ú Ú3 1 5 9 13.D a a a a    

     = Ú Ú Ú Ú Ú Ú Ú4 1 1 4 5 2 7 8 9 2 12 3 14D a x a a x a a a x a x a     



162 9 Machines Moore and Mealy

  Output function: 

     

1 2

2 3

3 4

4 4
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6 6

7 7
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,

,

,

,

,

=

=

=

=

= Ú

=

=

y a
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y a
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y a a

y a
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8 6

9 8

10 9

11 10

12 11

13 11

14 12

,

,

,

,

,

,

=

=

=

=

=

=

=

y a

y a

y a

y a

y a

y a

y a    

     

15 12

16 13

17 14

,

,

.

=

=

=

y a

y a

y a     

  Step 6.  
 Development of a functional diagram of the device (Fig.  9.16 ).  
 A function block diagram (FBD) of division algorithm is a block diagram that 

describes a function between input variables and output variables. A function is 
described as a set of elementary blocks. Input and output variables are connected to 
blocks by connection lines. An output of a block may also be connected to an input 
of another block. 

 Inputs and outputs of the blocks (logic gates, fl ip-fl ops, decoder) are wired 
together with connection lines, or links. Single lines may be used to connect two 
logical points of the diagram: 

 an input variable and an input of a block;• 
an output of a block and an input of another block;• 
an output of a block and an output variable. • 

 The connection is oriented, meaning that the line carries associated data from the 
left end to the right end. The left and right ends of the connection line must be of the 
same type. 
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  Fig. 9.16    Functional diagram       
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 Multiple right connection, also called divergence can be used to broadcast infor-
mation from its left end to each of its right ends. All ends of the connection must be 
of the same type. 

  Example 4.    A  fi nite-state machine (FSM) or  fi nite-state automaton (plural: autom-
ata), or simply a state machine, is a mathematical abstraction sometimes used to 
design digital logic or computer programs. It is a behavior model composed of a 
 fi nite number of states, transitions between those states, and actions, similar to a 
 fl ow graph in which one can inspect the way logic runs when certain conditions are 
met. It has  fi nite internal memory, an input feature that reads symbols in a sequence, 
one at a time without going backward; and an output feature, which may be in the 
form of a user interface, once the model is implemented. The operation of an FSM 
begins from one of the states (called a start state), goes through transitions depend-
ing on input to different states and can end in any of those available, however only 
a certain set of states mark a successful  fl ow of operation (called accept states). 

 Finite-state machines can solve a large number of problems, among which are 
electronic design automation, communication protocol design, parsing and other 
engineering applications. 

 A state diagram is a type of diagram used in computer science to describe the 
behavior of systems. State diagrams require that the system described is composed 
of a fi nite number of states ( a

i
 ). 

 Build a circuit that simulates activity of a Moore automaton given by the follow-
ing graph-scheme, Fig.  9.17 . 

 Moore automata can describe the transition and output functions

     ( ) ( )1 1 1 1 1, , ,+ = =ta f a x z aj
   

where  a  
1
  and  z  

1
  are the state Moore automaton and the output signal from the 

machine at time  t , respectively.  
 The choice of memory elements. Choosing an R-S  fl ip- fl op. 

⋅

=

=

  Fig. 9.17    Graph-scheme of Moore automaton       
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  Excitation function of the R-S  fl ip- fl op :

     = Ú1 3 2 3 2 ,S Q Q YG Q Q G    

     = Ú =1 3 2 3 2 2 ;R Q Q G Q Q G Q G    

     =2 1 ,S Q G    

     =2 3 1 ;R Q Q YZ    

     =3 2 1 ,S Q Q ZG    

     =3 2 1 ;R Q Q G     

  Output function: 

     =1 3 2 1,F Q Q Q    

     =2 3 2 1,F Q Q Q    

     = Ú3 3 2 1 3 2 1.F Q Q Q Q Q Q     

 The process of designing large digital systems is typically one of interconnecting 
smaller devices, such as fl ip-fl ops, registers, multiplexers, etc., in such a way that 
the resulting system has the required performance characteristics. 

 Normally, these devices are interconnected directly to each other with various 
inverters being inserted as needed. 

 Verify the operation of the automaton we have done in the two most raspros-
tranynnyh systems    – NI Multisim and MicroCap 8. Diagram of the digital machine 
is made on triggers JK and NOR logic gates. Like NAND gates, NOR gates are so-
called “universal gates” that can be combined to form any other kind of logic gate. 

 NI Multisim is an electronic schematic capture and simulation program which is 
part of a suite of circuit design programs, along with NI Ultiboard. 

 Micro-Cap 8 is an integrated schematic editor and mixed analog/digital simula-
tor that provides an interactive sketch and simulates an environment for electronics 
engineers. Micro-Cap 8 blends a modern, intuitive interface with robust numerical 
algorithms. 

 Figure  9.18  shows a diagram of a digital automata (Micro-Cap 8). 
 Figure  9.19  shows the timing diagrams of a digital automata (Micro-Cap 8). 
 Figure  9.20  shows a diagram of a digital automata (NI Multisim 10).    

  Example 5.    Will design an automat that will work as a binary counter when the 
control signal M = 0 and the counter in the Gray code if M = 1 (Table  9.8 ). The digi-
tal automata can be speci fi ed as a graph, Fig.  9.21  or Table  9.9 .  

 The digital automata can perform as a counter, using triggers – the  fi rst version, 
or using multiplexers – the second version.    
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  Fig. 9.18    Functional diagram of a digital automata (Micro-Cap 8)       

  Fig. 9.19    The timing diagrams of digital automata (Micro-Cap 8)       
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  Fig. 9.20    Functional diagram of digital automata (NI Multisim 10)       

   Table 9.8    Gray code    Decimal  Gray code 

 0  0  0  0 
 1  0  0  1 
 2  0  1  1 
 3  0  1  0 
 4  1  1  0 
 5  1  1  1 
 6  1  0  1 
 7  1  0  0 

    9.2   The First Version 

 Transition function for each trigger of the automaton can be described by the fol-
lowing dependence:

     ( )= ¼ ¼1 2 1 2, , , , , , , .i k nQ F x x x Q Q Q     

 Or     = Úi i i i iQ f Q g Q   , 
 where Functions  f  and  g  do not contain the variables  Q  

 i 
  and     iQ   . 

 For J-K     = Úi i i i iQ J Q K Q   . 

 Also    fi
    
   = J  

 i 
 ,     =i ig K   . 
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 For  Q  
 i 
  = 0 we obtain the excitation function for the input  J :

     

.
0

= =
=

i i
i

i

f J
Q

Q

    

 For  Q  
 i 
  = 1 we obtain the excitation function for the input  K :

     

.
0

= =
=

i i
i

i

g K
Q

Q
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  Fig. 9.21    Graph-scheme of Moore automaton       

   Table 9.9    The coding of states of the digital automat   

 Control 
signal  Present  Next 

 Control 
signal  Present  Next 

  M   Q 
2
   Q 

1
   Q 

0
   Q 

2н   Q 
1н   Q 

0н    M   Q 
2
   Q 

1
   Q 

0
   Q 

2н   Q 
1н   Q 

0н  

  0   0  0  0  0  0  1   1   0  0  0  0  0  1 
  0   0  0  1  0  1  0   1   0  0  1  0  1  1 
  0   0  1  0  0  1  1   1   0  1  0  1  1  0 
  0   0  1  1  1  0  0   1   0  1  1  0  1  0 
  0   1  0  0  1  0  1   1   1  0  0  0  0  0 
  0   1  0  1  1  1  0   1   1  0  1  1  0  0 
  0   1  1  0  1  1  1   1   1  1  0  1  1  1 
  0   1  1  1  0  0  0   1   1  1  1  1  0  1 
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  Fig. 9.22    Diagram of an automaton       

 Thus, we can obtain the following expressions:

     
= Ú =2 1 0 1 0 1 10 0

• ;J MQ Q MQ Q MQ Q MQ Q
   

     
= Ú =2 1 0 1 0 1 10 0

• ;K MQ Q MQ Q MQ Q MQ Q
   

     
= Ú = 01 0 2 0 2 0• ;J MQ Q Q MQ Q Q

   

     
= Ú = 01 0 2 0 2 0• ;K MQ Q Q MQ Q Q

   

     = Ú Ú =0 2 1 2 1 2 1 2 1• • ;J M Q Q Q Q M Q Q Q Q    

     = Ú Ú =0 2 1 2 1 2 1 2 1• • .K M Q Q Q Q M Q Q Q Q     

 A diagram of an automaton is shown on Fig.  9.22 .   

 



170 9 Machines Moore and Mealy

    9.3   The Second Version 

    9.3.1   Machine, Implemented in Flip-Flops 
with Multiplex Controls 

 Structure with multiplexers at the inputs triggers different conceptual simplicity and 
clarity, for its design does not require the development of logical transducers to 
provide the necessary transition automaton. The problem is solved, in fact, using 
tables. State variables are taken from the  fl ip- fl ops, and input signals form a word, 
used as multiplexer address inputs. At this address, each multiplexer selects the 
variable (0 or 1) needed to transfer a D-type  fl ip- fl op to a new state. 

 Structure with multiplexer control triggers is shown in Figure  9.23 . Inputs  x  
0
  …

x  
 m −1

  and the values of bits words of the old state  Q  
0
 … Q  

 n −1
  form a control (address) 

input word multiplexer, in which the values of selected bits of the new status word 
are established.  

 For zero initial states of triggers and  M  = 0 to address inputs of multiplexers 0000 
and received on the inputs of  fl ip- fl ops formed by the combination of signals 001. 
Receipt of a clock pulse enters this combination in  fl ip- fl ops. Now the address for 
the multiplexer is a combination of 0001, according to which they removed with a 
combination of 010, coming to solve the next clock pulse triggers (status register). 
Since the regime of binary counter.    Changing the control signal  M  gives a regime 
change of the automaton. If, for example, when the word state 010 signal  M  becomes 
the unit, the address multiplexer changes from 0010 to 1010 and with their outputs 
show the combination of 110, corresponding to the next state when the meter is in 
the Gray code. 

 A diagram of an automaton is shown on Fig.  9.24 . Dignity of the structure – easy 
adjustment to a new algorithm for automatic operation, the defect of – the rapid 
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  Fig. 9.23    Structure of an automaton with a multiplexer       
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growth of dimension of multiplexers with increasing number of states and inputs of 
the automaton.     

 In conclusion we would like to note that recent progress has resulted in a steady 
transition to digital devices with programmable logic. A programmable logic device 
or PLD is an electronic component used to build recon fi gurable digital circuits. 
Unlike a logic gate, which has a  fi xed function, a PLD has an unde fi ned function at 
the time of manufacture. Before the PLD can be used in a circuit it must be pro-
grammed, that is, recon fi gured. The study of such devices is not included in the 
scope of this book, so we restricted ourselves to the theoretical foundations of digi-
tal automata built on their logic elements.        
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  Fig. 9.24    Diagram of an automaton       
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   Appendix A: Counter Modulo 5    

 Consider the implementation of counter pulses. For example solve the following 
problem. 

  Example . Develop a procedure for drawing up a decimal number to program counter 
modulo 5, which contains four digits. As a counter use vector     = 1 2 3 4| , , , |A a a a a   . 
Schematic co  unter modulo 5 (mod 5) is presented in Fig.  A.1 .     

 Counter, see Fig.  A.1 , assigned to count the number of pulses arriving to its input. 
When the next pulse counter increases the integer stored in it in 5-year notation 
on the 1 min value of that number – 0000, max value of that number – 4444. High 
bit count – 4, LBS (Least signi fi cant bit) − 1. The initial state counter 0000. In this 
state the counter is driven by its current value reset to 0 by feeding an impulse to 
tire “reset to 0” (Fig.  A.2 ).    

  program Counter;     
   {$APPTYPE CONSOLE}  
  uses  
   SysUtils;  

  / / count number of digits  
  CONST K=4;  
  / / variables in the program  

   VAR COUNT: ARRAY [1..K] of BYTE;  
   I,N:INTEGER;  

  / / procedure reset all bits to 0  
   PROCEDURE INIT;  
   BEGIN  
   FOR I:=1 TO K DO COUNT[I]:=0  
   END;  

  / / Function reset 1 to J of counter  
   FUNCTION CHADD(J:INTEGER):BOOLEAN;  

         Appendices 
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   BEGIN  
  CHADD:= FALSE;  
  COUNT[J]:=COUNT[J]+1;  
  IF COUNT[J]=K  
  THEN BEGIN  
  CHADD:= TRUE;  
  COUNT[J]:=0 {Reset}  
  END  

  END;  
  BEGIN  
  INIT;  
  REPEAT  
  WRITELN(‘Enter an integer from 0 to 10’); READLN(N);  
  FOR I:=1 TO N  
  DO IF CHADD(1)  

  THEN IF CHADD(2)  
  THEN IF CHADD(3)  
  THEN IF CHADD(4)  

  THEN WRITELN(‘Repletion of counter. Up cast of value counter in 0’);  

mod5 mod5 mod5 mod5 

Reset  to 0 

a1 a2 a3 a4

F  

  Fig. A.1    Counter modulo 5          

  Fig. A.2    Example program “Counter”       
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  FOR I:=K DOWNTO 1 DO WRITE(COUNT[I]:1, ‘’);  
  WRITELN;  
  WRITELN(‘Enter - Enter an integer from 0 to 9, N=10 - Completion’);  
  UNTIL N>9  

   { TODO -oUser -cConsole Main : Insert code here}  
  end.    

   Registers 

   Cyclic Registers 

 Sometimes it is necessary to “recycle” the same values again and again. Thus the bit 
that usually would get dropped is fed to the register input again to receive a cyclic 
serial register 

 Figure  A.3  shows the scheme register A, which contains an     +m 1   bit. Originally 
performed by recording parallel code input bits tires    in register A. The next step is 
a cyclical shift code combination.  

  Example . Develop procedures for cyclic shift right at  N  cycles code combi-
nation     ( )= 6 5 4 3 2 1 0, , , , , ,A K K K K K K K   . Example, from the code combination 
    ( )= 1 0 111 0 1A   and  N  = 8 we should get the following results, Table  A.1  and Fig   .  A.4 .  

  program Cycle_register;  
  {$APPTYPE CONSOLE}  
  Uses SysUtils;  
  //MR - The number of bits of code combination  
  CONST MR=6;  
  VAR A: ARRAY[0..MR] of BYTE;  
  J,I,N,PZ: INTEGER;  
  begin  
  REPEAT  
  WRITELN(‘Enter (through Enter) positions of binary code combination with 

6-th for 0- th’);  
  FOR I:=MR DOWNTO 0 DO READ(A[I]);  
  //Enter the number of shifts  
  WRITELN(‘Conduct the number of changes to 8’);  
  READLN(N);  
  WRITELN(‘Register A contains a code’);  
  FOR I:=1 TO N  
  DO BEGIN  
  //Store right end digit  
  PZ:=A[0];  
  //Shifts to the right all the other bits  
  FOR J:=0 TO MR-1  
  DO A[J]:=A[J+1];  
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  A[MR]:=PZ;  
  //Output code combination on each stroke of the program  
  WRITE(‘Time’, I:1,’: ’);  
  FOR J:=6 DOWNTO 0 DO WRITE(A[J]:1, ‘’);  
  WRITELN;  
  END;  
  WRITELN(‘Enter (through Enter) positions of binary code combination with 

6-th for 0- th, N<8 - Completion’);  

PR 

ma 2a 1a 0a

input bits

  Fig. A.3    The scheme of register (A)       

   Table A.1    Bytes of register (A)      

 Step  Розряди регістру    А 

 The initial state  1 0 1 1 1 0 1 
 Time 1  1 1 0 1 1 1 0 
 Time 2  0 1 1 0 1 1 1 
 Time 3  1 0 1 1 0 1 1 
 Time 4  1 1 0 1 1 0 1 
 Time 5  1 1 1 0 1 1 0 
 Time 6  0 1 1 1 0 1 1 
 Time 7  1 0 1 1 1 0 1 
 Time 8  1 1 0 1 1 1 0 

  Fig. A.4    Example program “Cycle-register”       
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  UNTIL N<8  
   {TODO -oUser -cConsole Main : Insert code here}  
  end.     

   Binary Coder 

  Example . Develop a procedure for encoding binary position 8-bit binary code  A  in 
the three-digit code  В . 

 To store the position of 8-bit binary code to use vector  – A :

     
= 1 2 3 4 5 6 7 8, , , , , , , .A a a a a a a a a

    

 To store binary 3-bit code to use vector –  В :

     
= 1 2 3, , .B b b b

    

 Schematic encoder shown in Fig.  A.5 .  
 For an illustration of the coder we discuss some examples of coding:

   Let  • А  = (10000000), then for this code  В  = (000);  
  Let  • А  = (01000000), then for this code  В  = (001);  
  Let  • А  = (00100000), then for this code  В  = (010);  
  Let  • А  = (00010000), then for this code  В  = (011);  
  Let  • А  = (00001000), then for this code  В  = (100);  
  Let  • А  = (00000100), then for this code  В  = (101);  
  Let  • А  = (00000010), then for this code  В  = (110);  
  Let  • А  = (00000001), then for this code  В  = (111) .     

 Based on these options we can make a code table (see Table  A.2 ).  
 Based on Table  A.2  we can create a logical encoding scheme (Figs.  A.6  and  A.7 ). 
 The scheme employs three logical gates “ OR ” (the 3-bit in the code B).  

  program Coder;  
  {$APPTYPE CONSOLE}  
  uses  

Output 

Record 

Coding 

b1 b2 b3

a8a1 a2 a3 a4 a5 a6 a7

Reading 

Input 

  Fig. A.5    Scheme of binary 
coder       
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   Table A.2    Code table of binary coder   

 Code A 

 Code B 

  b  
1
    b  

2
    b  

3
  

  a  
1
   10000000 

  a  
2
   01000000  + 

  a  
3
   00100000  + 

  a  
4
   00010000  +  + 

  a  
5
   00001000  + 

  a  
6
   00000100  +  + 

  a  
7
   00000010  +  + 

  a  
8
   00000001  +  +  + 

Coding

1

1

1

&

&

&

b1

b2

b3

k1

k2

k3

a1

a2

a3

a4

a5

a6

a7

a8

  Fig. A.6    The scheme of binary coder employ three logic gates “OR”       

  Fig. A.7    Example program “Binary coder” (Pascal)       
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   SysUtils;  
   VAR A: ARRAY[1..8] of BYTE;  

   B: ARRAY[1..3] of BYTE;  
   K1, K2, K3:BOOLEAN;  
   i,n:INTEGER;  

   BEGIN  
   REPEAT  
   WRITELN(‘Enter a binary number from 0 to 8’);  
   READLN(N);  
   FOR I:=1 TO 8  

  / / form a binary code number of positional  
   DO IF I = N THEN A[I]:= 1  
   ELSE A[I]:= 0;  
   FOR I:=1 TO 8 DO WRITE(A[I]:1, ‘’);  
   WRITELN;  

  // Output Register A  
   K1:= (A[5]=1) OR (A[6]=1) OR (A[7]=1) OR (A[8]=1);  
   K2:= (A[3]=1) OR (A[6]=1) OR (A[7]=1) OR (A[8]=1);  
   K3:= (A[2]=1) OR (A[4]=1) OR (A[6]=1) OR (A[8]=1);  

  // Record in case in Register B  
   IF K1 THEN B[1]:=1 ELSE B[1]:=0;  
   IF K2 THEN B[2]:=1 ELSE B[2]:=0;  
   IF K3 THEN B[3]:=1 ELSE B[3]:=0;  
   WRITELN (‘A register B contains a code:’);  
   FOR I:=1 TO 3 DO WRITE(B[1]:1, ‘’); WRITELN;  

   WRITELN(‘Enter - Enter a binary number from 0 to 8, 9 - Completion’);  
   UNTIL n>8  

   {TODO -oUser -cConsole Main : Insert code here}  
  end.   

 The following is a listing in C#, describing the work of the encoder 
(Fig.  A.8 ). 

  #include <iostream>  
  using namespace std;  
  int main()  
  {  

   int a[8];  
   int b[3];  
   bool k1,k2,k3;  
   int i,n;  
   cout<<”Enter a binary number from 0 to 8\n”;  
   cin>>n;  
   while(n!=9)  
   {  
   for(int i=0;i<8;i++)  
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   {  
    if(i+1==n)  
    {  
     a[i]=1;  
    }  
    else  
    {  
     a[i]=0;  
    }  
   }  
   cout<<”\n”;  
   for(int i=0;i<8;i++)  
   {  
   cout<<a[i];  
   }  
   cout<<”\n”;  
   k1=(a[4]==1)|(a[5]==1)|(a[6]==1)|(a[7]==1);  
   k2=(a[2]==1)|(a[3]==1)|(a[6]==1)|(a[7]==1);  
   k3=(a[1]==1)|(a[3]==1)|(a[5]==1)|(a[7]==1);  
   if(k1)  
   {  
    b[0]=1;  
   }  
   else  
   {  
    b[0]=0;  
   }  
   if(k2)  

  Fig. A.8    Example program “Binary coder” (C#)       
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   {  
    b[1]=1;  
   }  
   else  
   {  
    b[1]=0;  
   }  
   if(k3)  
   {  
    b[2]=1;  
   }  
   else  
   {  
    b[2]=0;  
   }  
   cout<<”A register B contains a code\n”;  
   for(int i=0;i<3;i++)  
   {  
    cout<<b[i];  
   }  
   cout<<”\n”;  
   cout<<”Enter - Enter a binary number from 0 to 8, 9 - Completion\n”;  
   cin>>n;  
   }  
   }   

 Example encoder on a chip 74147 (MC8) is shown in Fig.  A.9 .   

   Binary Decoder 

  Example . Develop a procedure for decoding the 3 bit binary code  A  in binary posi-
tional 8-bit code  B . 

 To store binary 3-bit code to use vector –  A :

     
= 1 2 3, , .A a a a

    

 To store the position of 8-bit binary code to use vector  – B :

     
= 1 2 3 4 5 6 7 8, , , , , , , .B b b b b b b b b

    

 A schematic decoder is shown on Fig.  A.10 .  
 For an illustration of the decoder we discuss some examples of decoding:

   Let  • А  = (000), then for this code  В  = (10000000);  
  Let  • А  = (001), then for this code  В  = (01000000);  
  Let  • А  = (010), then for this code  В  = (00100000);  
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  Fig. A.9    Example of encoder on the 74147 chip (MC8)       

Output

Reading 

Input 
Record 

Coding 

a1 a2 a3

b1 b2 b3 b4 b5 b6 b7 b8

  Fig. A.10    Scheme of binary decoder       
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  Let  • А  = (011), then for this code  В  = (00010000), etc.    

 Based on these options we can make a code table (see Table  A.3 ).  
 Enter the following logical variables:

     

= Ù Ù = Ù Ù = Ù Ù

= Ù Ù = Ù Ù = Ù Ù

= Ù Ù = Ù Ù

1 1 2 3; 2 1 2 3; 3 1 2 3;

4 1 2 3; 5 1 2 3; 6 1 2 3;

7 1 2 3; 8 1 2 3.

a a a d a a a d a a a

d a a a d a a a d a a a

d a a a d a a a     

 Based on these options we can make a code table (see Table  A.3 ). 
 Logical circuit decoding is shown in Figs.  A.11  and  A.12 .  

  program Decoder;  
  {$APPTYPE CONSOLE}  
  Uses SysUtils;  

  VAR B: ARRAY[1..8] of BYTE; A: ARRAY[1..3] of BYTE;  
   D: ARRAY[1..8] of BOOLEAN;  
   i,N:INTEGER;  

   BEGIN  
   REPEAT  
  WRITELN(‘Enter through blanks in a register “A” a three-digit binary 

number’);  
   READLN(A[1],A[2],A[3]);  
  // Decoding  
   D[1]:=(A[1]=0) and (A[2]=0) and (A[3]=0);  
   D[2]:=(A[1]=0) and (A[2]=0) and (A[3]=1);  
   D[3]:=(A[1]=0) and (A[2]=1) and (A[3]=0);  
   D[4]:=(A[1]=0) and (A[2]=1) and (A[3]=1);  
   D[5]:=(A[1]=1) and (A[2]=0) and (A[3]=0);  
   D[6]:=(A[1]=1) and (A[2]=0) and (A[3]=1);  
   D[7]:=(A[1]=1) and (A[2]=1) and (A[3]=0);  
   D[8]:=(A[1]=1) and (A[2]=1) and (A[3]=1);  

   Table A.3    Code table of binary decoder   

 Code A  Code В 

 ( a  
1
 ,  a  

2
 ,  a  

3
 )   b  

1
    b  

2
    b  

3
    b  

4
    b  

5
    b  

6
    b  

7
    b  

8
  

 0 0 0  + 
 0 0 1  + 
 0 1 0  + 
 0 1 1  + 
 1 0 0  + 
 1 0 1  + 
 1 1 0  + 
 1 1 1  + 
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decoding 
.  .   .     .d4 d3 d2 d1 

b1 b2 b3 b4 b5 b6 b7 b8

& & & & & & & &

& & & & & & &   &

a1 a2 a3

d8

  Fig. A.11    Example program “Binary coder” (C#)       

  Fig. A.12    Example program “Binary decoder” (Pascal)       
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  // Output Register В  
   FOR I:=1 TO 8 DO IF D[I]  
   THEN B[I]:=1 ELSE B[I]:=0;  
   WRITELN (‘A register B contains a code:’);  
   FOR I:=1 TO 8 DO WRITE(B[I]:1, ‘’); WRITELN;  
   WRITELN(‘Enter - Enter a binary number from 000 to 111, n>9 

Completion’);  
   UNTIL n>9  
   {TODO -oUser -cConsole Main : Insert code here}  
  end.   

 The following is a listing in C#, describing the work of the binary decoder 
(Fig.  A.13 ). 

  #include<iostream>  
  #include “stdio.h”  
  using namespace std;  
  void main()  
  {  
   int c,n;  
   int b[8];  
   int a[3];  
   bool D[8];  
   char str[6];  
   char *px1,*px2,*px3;  
   cout<<”Enter through blanks in a register ‘A’ a three-digit binary number\n”;  
   gets(str);  
   while(str[0]!=’9’)  
   {  

  Fig. A.13    Example program “Binary decoder” (C#)       
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   px1=&str[0];  
   px2=&str[2];  
   px3=&str[4];  
   a[0]=atoi(px1);  
   a[1]=atoi(px2);  
   a[2]=atoi(px3);  
   D[0]=(a[0]==0)&(a[1]==0)&(a[2]==0);  
   D[1]=(a[0]==0)&(a[1]==0)&(a[2]==1);  
   D[2]=(a[0]==0)&(a[1]==1)&(a[2]==0);  
   D[3]=(a[0]==0)&(a[1]==1)&(a[2]==1);  
   D[4]=(a[0]==1)&(a[1]==0)&(a[2]==0);  
   D[5]=(a[0]==1)&(a[1]==0)&(a[2]==1);  
   D[6]=(a[0]==1)&(a[1]==1)&(a[2]==0);  
   D[7]=(a[0]==1)&(a[1]==1)&(a[2]==1);  
   for(int i=0;i<8;i++)  
   {  
    if(D[i])  
    {  
     b[i]=1;  
    }  
    else  
    {  
     b[i]=0;  
    }  
   }  
   cout<<“A register B contains a code:”;  
   for(int i=0;i<8;i++)  
   {  
    cout<<b[i]<<’ ‘;  
   }  
   cout<<endl;  
   cout<<”Enter - Enter a binary number from 000 to 111, 9 - exit\n”;  
   gets(str);  
   }  
  }   

 Example of the decode binary code on the seven segment LED IC 7448 (MC8) 
is shown in Fig.  A.14 .      

   Appendix B: Full Adder Circuit    

 A Full Adder is a combinational circuit that performs the arithmetic sum of three 
input bits. It consists of three inputs and two outputs. Three of the input variables 
can be defi ned as A, B, Cin and the two output variables can be defi ned as S, Cout. 
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  Fig. A.14    Example of the decoding binary code on the seven segment LED IC 7448 (MC8)       

The two input variables that we defi ned earlier A and B represents the two  signifi cant 
bits to be added. The third input Cin represents the carry bit. We have to use two 
digits because the arithmetic sum of the three binary digits needs two digits. The 
two outputs represents S for sum and Cout for carry. 

 For designing a full adder circuit, two half adder circuits and an OR gate is 
required. It is the simplest way to design a full adder circuit. For this two XOR 
gates, two AND gates, one OR gate is required.  

 The logic circuit in a full adder MicroCap 8 (MC8). 
 Fig.  A.15   

 In order to implement the serial adder, it is necessary to use some device capable 
of storing the information regarding the presence or absence of a carry. Such a 
device must have two distinct states, such that each can be assigned to represent a 
state of the adder. A number of such devices exist, among which is the delay ele-
ment, which may simply consist of a D fl ip-fl op.  

 Adder at IC 7448 (Fig.  A.16 ).  
 The timing diagrams of the adder (IC 7448) (Fig.  A.17 ).     

   Appendix C 

  Step 1 . Circuit of the counter on J-K  fl ip- fl op (Fig.  A.18 ).  
  Step 2 . Circuit of the counter on IC 4027, IC 4069, IC 4081, IC 4511 (Fig.  A.19 ).  
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  Fig. A.16    BCD Adder using IC 7448       

  Fig. A.15    Full Adder Circuit (MicroCap 8)       
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  Fig. A.17    Timing diagram of the full adder (IC 7448)       

  Fig. A.18    JK fl ip-fl op counter circuits       

 

 



190 Appendices

 PHOTO-RESIST BOARD is a piece of glass reinforce plastic. One of the sides 
is copper clad and this copper has a photosensitive coating. When the plastic fi lm is 
peeled back this sensitive coating is revealed. After processing this will be the 
PCB. 

 Schematic diagram of the connection IC 4511 (Fig.  A.20 ).  
  Step 3 . Printed Wiring Board (PWB) was developed in the program will 

DipTrace (Fig.  A.21 ).  
  Step 4.  Manufacturing of Printed Wiring Board (Figs.  A.22  and  A.23 ) .       

  Fig. A.20    Schematic diagram of the connection IC 4511          

  Fig. A.19    Counter circuit (IC 4027, IC 4069, IC 4081, IC 4511)       
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  Fig. A.21    Circuit diagram to PCB       

  Fig. A.23    Printed circuit board  (Side 2)       

  Figs. A.22    Printed circuit board (Side 1)       
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   Appendix D   : Logic Symbols, Truth Tables    

 AND  OR  A B Y 

  A

B

Y       A

B

Y      1  1  1 
 1  0  0 
 0  1  0 
 0  0  0 

  
A

B

Y 
      A

B

Y      1  1  0 
 1  0  0 
 0  1  1 
 0  0  0 

      A

B

Y       A

B

Y  1  1  0 
 1  0  1 
 0  1  0 
 0  0  0 

  A

B

Y       A

B

Y      1  1  0 
 1  0  0 
 0  1  0 
 0  0  1 

  

A

B

Y 

      
A

B

Y
     1  1  1 

 1  0  1 
 0  1  1 
 0  0  0 

  A

B

Y       
A

B

Y      1  1  1 
 1  0  0 
 0  1  1 
 0  0  1 

  A

B

Y       A

B

Y      1  1  1 
 1  0  1 
 0  1  0 
 0  0  0 

  A

B

Y       A

B

Y      1  1 0 
 1  0  1 
 0  1  1 
 0  0  1 
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   A 

  Access time    The time from the application of a valid memory address to the ap-
pearance of valid output data   

  Address    The location of a given storage cell or group of cells in a memory; a 
unique memory location containing 1 byte   

  Adjacency    Characteristic of cells in a Karnaugh map in which there is a single-
variable change from one cell to another cell next to it on any of its four sides   

  Alphanumeric    Consisting of numerals, letters, and other characters   
  ALU    Arithmetic logic unit; the key processing element of a microprocessor that 

performs arithmetic and logic operations   
  Amplitude    In a pulse waveform, the height or maximum value of the pulse as 

measured from its LOW level   
  Analog    Being continuous or having continuous values, as opposed to having a set 

of discrete values   
  Analog-to-digital (A/D) conversion    The process of converting an analog signal 

to digital form   
  Analog-to-digital converter (ADC)    A device used to convert an analog signal to 

a sequence of digital codes   
  AND    A basic logic operation in which a true (HIGH) output occurs only when all 

the input conditions are true (HIGH)   
  AND gate    A logic gate that produces a HIGH output only when all of the inputs 

are HIGH   
  ANSI    American National Standards Institute   
  ASCII    American Standard Code for Information Interchange; the most widely 

used alphanumeric code   
  Associative law    In addition (ORing) and multiplication (ANDing) of three or more 

variables, the order in which the variables are grouped makes no difference   
  Asynchronous counter    A type of counter in which each stage is clocked from the 

output of the preceding stage      

  Glossary
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B 

  Base    One of the three regions in a bipolar junction transistor   
  Base address    The beginning address of a segment of memory   
  BCD    Binary coded decimal; a digital code in which each of the decimal digits, 

0–9, is represented by a group of 4 bits   
  Binary    Having two values or states; describes a number system that has a base of 

2 and utilizes 1 and 0 as its digits   
  Bipolar    Having two opposite charge carriers within the transistor structure   
  Bistable    Having two stable states. Flip- fl ops and latches are bistable multivibra-

tors   
  Bit    A binary digit, which can be either a 1 or 0   
  Boolean addition    In Boolean algebra, the OR operation   
  Boolean algebra    The mathematics of logic circuits   
  Boolean expression    An expression of variables and operators used to express the 

operation of a logic circuit   
  Boolean multiplication    In Boolean algebra, the AND operation   
  Byte    A group of 8 bits

      C 

  Cache memory    A relatively small. high-speed memory that stores the most re-
cently used instructions or data from the larger but slower main memory   

  Capacity    The total number of data units (bits, bytes, words) that a memory can 
store   

  Cascade    To connect “end-to-end” as when several counters are connected from the 
terminal count output of one counter to the enable input of the next counter   

  Cascading    Connecting the output of one device to the input of a similar device, al-
lowing one device to drive another in order to expand the operational capability   

  CCD    Charge-coupled device: a type of semiconductor memory that stores data in 
the form of charge packets and is serially accessed   

  Cell    An area on a Karnaugh map that represents a unique combination of variables 
in product form: a single storage element in a memory   

  CMOS    Complementary metal oxide semiconductor; a class of integrated logic cir-
cuits that is implemented with a type of  fi eld-effect transistor   

  Combinational logic    A combination of logic gates interconnected to produce a 
speci fi ed Boolean function with no storage or memory capability: sometimes 
called combinatorial logic   

  Commutative law    In addition (ORing) and multiplication (AND-ing) of two vari-
ables, the order in which the variables are OR or AND makes no difference   

  Comparator    A digital circuit that compares the magnitudes of two quantities and 
produces an output indicating the relationship of the quantities   
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  Counter    A digital circuit capable of counting electronic events, such as pulses by 
progressing through a sequence of binary states   

  CPLD    A complex programmable logic device that consists basically of multiple 
SPLD arrays with programmable interconnections   

  CPU    Central processing unit: the main part of a computer responsible for control 
and processing of data: the core of a DSP that processes the program instructions

      D 

  Data    Information in numeric, alphabetic, or other form   
  Decade counter    A digital counter having ten states   
  Decimal    Describes a number system with a base of ten   
  Decoder    A digital circuit that converts coded information into another (familiar) 

or noncoded form   
  D  fl ip- fl op    A type of bistable multivibrator in which the output assumes the state 

of the D input on the triggering edge of a clock pulse   
  Demultiplexer (demux)    A circuit (digital device) that switches digital data from 

one input line to several output lines in a speci fi ed time sequence   
  Dependency notation    A notational system for logic symbols that speci fi es input 

and output relationships, thus fully de fi ning a given function; an integral feature 
of ANSI/IEEE Std. 91-1984   

  Digital-to-analog (D/A) conversion    The process of converting a sequence of digi-
tal codes to an analog form   

  Digital-to-analog converter (DAC)    A device in which information in digital form 
is converted to analog form   

  DIP    Dual in-line package; a type of IC package whose leads must pass through 
holes to the other side of a PC board   

  Distributive law    The law that states that ORing several variables and then AND-
ing the result with a single variable is equivalent to ANDing the single variable 
with each of the several variables and then ORing the product   

  Domain    All of the variables in a Boolean expression   
  “Don’t care”    A combination of input literals that cannot occur and can be used 

as a 1 or a 0 on a Karnaugh map for simpli fi cation

      E 

  Edge-triggered  fl ip- fl op    A type of  fl ip- fl op in which the data are entered and ap-
pear on the output on the same clock edge   

  Emitter    One of the three regions in a bipolar junction transistor   
  Enable    To activate or put into an operational mode; an input on a logic circuit that 

enables its operation   
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  Exclusive-NOR (XNOR) gate    A logic gate that produces a LOW only when the 
two inputs are at opposite levels   

  Exclusive-OR (XOR)    A basic logic operation in which a HIGH occurs when the 
two inputs are at opposite levels   

  Exclusive-OR (XOR) gate    A logic gate that produces a HIGH only when the two 
inputs are at opposite levels      

F 

  Flip- fl op    A basic storage circuit that can store only one bit at a time; a synchronous 
bistable device   

  Floating-point number    A number representation based on scienti fi c notation in 
which the number consists of an exponent and a mantissa      

G 

  Gate    A circuit having two or more input terminals and one output terminal, where 
an output is present only when the prescribed inputs are present   

  Gray code    A cyclic code, similar to a binary code, in which only one bit changes 
as the counting number increases      

H 

  Hamming code    A type of error-correction code   
  Handshaking    The process of signal interchange by which two digital devices or 

systems jointly establish communication   
  HDL    Hardware description language; a language used for describing a logic de-

sign using software   
  Hexadecimal    Describes a number system with a base of 16

      I 

  IEEE    Institute of Electrical and Electronics Engineers   
  Input device    Any connected equipment, such as digital control devices or periph-

eral devices, that supply information to the central processing unit. Each type of 
input device has a unique interface to the processor      

Glossary
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J 

  J-K  fl ip- fl op    A type of  fl ip- fl op that can operate in the SET, RESET, no-change, 
and toggle modes   

  Johnson counter    A type of register in which a speci fi c prestored pattern of 1s and 
0s is shifted through the stages, creating a unique sequence of bit patterns      

K 

  Karnaugh map    An arrangement of cells representing the combinations of literals 
in a Boolean expression and used for a systematic simpli fi cation of the expression      

L 

  Literal    A variable or the complement of a variable   
  Load    To enter data into a shift register   
  Logic    In digital electronics, the decision-making capability of gate circuits, in 

which a HIGH represents a true statement and a LOW represents a false one   
  Logic element    The smallest section of logic in an FPGA that typically contains an 

LUT. associated logic, and a  fl ip- fl op

      M 

  Machine code    The basic binary instructions understood by the processor   
  Mantissa    The magnitude of a  fl oating-point number   
  Minimization    The process that results in an SOP or POS Boolean expression that 

contains the fewest possible terms with the fewest possible literals per term   
  Multiplexer (mux)    A circuit (digital device) that switches digital data from sev-

eral input lines onto a single output line in a speci fi ed time sequence   
  Multivibrator    A class of digital circuits in which the output is connected back to 

the input (an arrangement called feedback) to produce either two stable states, 
one stable state, or no stable states, depending on the con fi guration      

N 

  NAND gate    A logic circuit in which a LOW output occurs only if all the inputs 
are HIGH   

Glossary
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  Negative-AND    An equivalent NOR gate operation in which the HIGH is the active 
input when all inputs are LOW   

  Negative-OR    An equivalent NAND gate operation in which the HIGH is the active 
input when one or more of the inputs are LOW   

  Netlist    A detailed listing of information necessary to describe a circuit, such as 
types of elements, inputs, and outputs, and all interconnections   

  Nibble    A group of 4 bits   
  NMOS    An  n -channel-metal-oxide semiconductor   
  Node    A common connection point in a circuit in which a gate output is connected 

to one or more gate inputs   
  Noise immunity    The ability of a circuit to reject unwanted signals   
  Noise margin    The difference between the maximum LOW output of a gate and 

the maximum acceptable LOW input of an equivalent gate; also, the difference 
between the minimum HIGH output of a gate and the minimum HIGH input of 
an equivalent gate   

  Nonvolatile    A term that describes a memory that can retain stored data when the 
power is removed   

  NOR gate    A logic gate in which the output is LOW when any or all of the inputs 
are HIGH   

  NOT    A basic logic operation that performs inversions   
  Numeric    Related to numbers.      

O 

  One-shot    A monostable multivibrator.   
  OR    A basic logic operation in which a true (HIGH) output occurs when one or 

more of the input conditions are true (HIGH)   
  OR gate    A logic gate that produces a HIGH output when one or more inputs are 

HIGH   
  Oscillator    An electronic circuit that is based on the principle of regenerative feed-

back and produces a repetitive output waveform; a signal source   
  Output    The signal or line coming out of a circuit   
  Over fl ow    The condition that occurs when the number of bits in a sum exceeds the 

number of bits in each of the numbers added

      P 

  Period (T)    The time required for a periodic waveform to repeat itself   
  Periodic    Describes a waveform that repeats itself at a  fi xed interval   
  Pointer    The contents of a register (or registers) that contain an address   
  Positive logic    The system of representing a binary 1 with a HIGH and a binary 0 

with a LOW   

Glossary
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  Preset    An asynchronous input used to set a  fl ip- fl op (make the  Q  output  I )   
  Primitive    A basic logic element such as a gate or  fl ip- fl op, input/output pins, 

ground, and V 
cc

    
  Priority encoder    An encoder in which only the highest value input digit is en-

coded and any other active input is ignored   
  Probe    An accessory used to connect a voltage to the input of an oscilloscope or 

other instrument   
  Product term    The Boolean product of two or more literals equivalent to an AND 

operation

      Q 

  Queue    A high-speed memory that stores instructions or data   
  Quotient    The result of a division.      

R 

  Race    A condition in a logic network in which the difference in propagation times 
through two or more signal paths in the network can produce an erroneous out-
put   

  Register    A digital circuit capable of storing and shifting binary information; typi-
cally used as a temporary storage device   

  Register array    A set of temporary storage locations within the microprocessor for 
keeping data and addresses that need to be accessed quickly by the program

      S 

  Schematic (graphic) entry    A method of placing a logic design into software using 
schematic symbols   

  Schottky    A speci fi c type of transistor-transistor logic circuit technology   
  Set-up time    The time interval required for the control levels to be on the inputs to a 

digital circuit, such as a f1ip- fl op, prior to the triggering edge of clock pulse   
  Shift    To move binary data from stage to stage within a shift register or other stor-

age device or to move binary data into or out of the device   
  Signal    A type of VHDL object that holds data   
  Signal tracing    A troubleshooting technique in which waveforms are observed in 

a step-by-step manner beginning at the input and working toward the output or 
vice versa. At each point the observed waveform is compared with the correct 
signal for that point   

Glossary



200

  Sign bit    The left-most bit of a binary number that designates whether the number 
is positive (0) or negative (1)   

  S-R  fl ip- fl op    A SET-RESET  fl ip- fl op   
  Stage    One storage element ( fl ip- fl op) in a register   
  State diagram    A graphic depiction of a sequence of states or values   
  State machine    A logic system exhibiting a sequence of states conditioned by in-

ternal logic and external inputs; any sequential circuit exhibiting a speci fi ed se-
quence of states   

  Storage    The capability of a digital device to retain bits; the process of retaining 
digital data for later use   

  String    A contiguous sequence of bytes or words   
  Subtracter    A logic circuit used to subtract two binary numbers   
  Subtrahend    The number that is being subtracted from the minuend   
  SUM    The result when two or more numbers are added together   
  Sum-or-products (SOP)    A form of Boolean expression that is basically the 

ORing of ANDed terms   
  Sum term    The Boolean sum of two or more literals equivalent to an OR operation   
  Synchronous counter    A type of counter in which each stage is clocked by the 

same pulse

      T 

  Throughput    The average speed with which a program is executed   
  Timing diagram    A graph of digital waveforms showing the proper time relation-

ship of two or more waveforms and how each waveform changes in relation to 
the others   

  Trigger    A pulse used to initiate a change in the state of a logic circuit   
  Tristate    A type of output in logic circuits that exhibits three states: HIGH, LOW, 

and HIGH-Z; also known as 3-state      

U 

  Universal gate    Either a NAND gate or a NOR gate. The term universal refers to 
the property of a gate that permits any logic function to be implemented by that 
gate or by a combination of gates of that kind   

  Universal shift register    A register that has both serial and parallel input and out-
put capability   

  Up/down counter    A counter that can progress in either direction through a certain 
sequence

Glossary
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      V 

  Variable    symbol used to represent a logical quantity that can have a value of 1 or 
0, usually designated by an italic letter   

  VHDL    A standard hardware description language: IEEE Std. 1076-1993      

W 

  Weight    The value of a digit in a number based on its position in the number   
  Word    A complete unit of binary data   
  Word capacity    The number of words that a memory can store   
  Word length    The number of bits in a word     

Glossary
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