
Theory of Digital Automata

For further volumes:
http://www.springer.com/series/6259

International Series on
INTELLIGENT SYSTEMS, CONTROL AND AUTOMATION:
SCIENCE AND ENGINEERING

VOLUME 63

Editor

Professor S. G. Tzafestas, National Technical University of Athens, Greece

Editorial Advisory Board

Professor P. Antsaklis, University of Notre Dame, Notre Dame, IN, USA
Professor P. Borne, Ecole Centrale de Lille, Lille, France
Professor D.G. Caldwell, University of Salford, Salford, UK
Professor C.S. Chen, University of Akron, Akron, Ohio, USA
Professor T. Fukuda, Nagoya University, Nagoya, Japan
Professor S. Monaco, University La Sapienza, Rome, Italy
Professor G. Schmidt, Technical University of Munich, Munich, Germany
Professor S.G. Tzafestas,National TechnicalUniversity of Athens, Athens, Greece
Professor F. Harashima, University of Tokyo, Tokyo, Japan
Professor N.K. Sinha, McMaster University, Hamilton, Ontario, Canada
Professor D. Tabak, George Mason University, Fairfax, Virginia, USA
Professor K. Valavanis, University of Denver, Denver, USA

 Bohdan Borowik • Mykola Karpinskyy
 Valery Lahno • Oleksandr Petrov

 Theory of Digital Automata

 Bohdan Borowik
 Department of Electrical Engineering
 University of Bielsko-Biala
 Bielsko-Biala , Poland

 Valery Lahno
 Department of Computer Systems

and Networks
 East-Ukrainian National University
 Luhansk , Ukraine

 Reviewer
Barbara Borowik
Cracow University of Technology/

Faculty of Physics
Mathematics and Computer Science
Cracow, Poland

 Mykola Karpinskyy
 Computer Science Division
 University of Bielsko-Biala
 Bielsko-Biala , Poland

 Oleksandr Petrov
 Department of Applied Computer Science
 AGH University of Science and Technology
 Krakow , Poland

 ISBN 978-94-007-5227-6 ISBN 978-94-007-5228-3 (eBook)
 DOI 10.1007/978-94-007-5228-3
 Springer Dordrecht Heidelberg New York London

 Library of Congress Control Number: 2012951321

 © Springer Science+Business Media Dordrecht 2013
 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, speci fi cally the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on micro fi lms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied speci fi cally for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this
publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s
location, in its current version, and permission for use must always be obtained from Springer. Permissions
for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to
prosecution under the respective Copyright Law.
 The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a speci fi c statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
 While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

 Printed on acid-free paper

 Springer is part of Springer Science+Business Media (www.springer.com)

v

 Communication systems for most companies throughout the world have already
gone digital or will certainly do so in the near future. For example, cell phones and
other types of wireless communication such as television, radio, process controls,
automotive electronics, consumer electronics, global navigation and military systems,
to name only a few applications, depend heavily on digital electronics.

 This book is designed to serve as a fi rst course in digital automata and digital
systems, providing students at the sophomore level a transition from the world of
physics to the world of digital electronics and computation.

 The book attempts to satisfy two goals: Combine the study of circuits and digital
electronics into a single, uni fi ed treatment, and establish a strong connection with
the contemporary worlds of both these types of digital systems.

 These goals arise from the observation that the conventional approach to intro-
ducing digital electronics through a course in traditional circuit analysis is fast
becoming obsolete. Our world has gone digital. Even those students who remain in
core electrical engineering are heavily in fl uenced by the digital domain.

 Because of this elevated focus on the digital domain, basic electrical engineering
education must change in two ways: First, the traditional approach to teaching circuits
and electronics without regard to the digital domain must be replaced by one that
stresses the foundations that are common to all circuits in both the digital and analog
domains. Because most of the fundamental concepts in circuits and electronics are
equally applicable to both the digital and the analog domains, this means that,
primarily, we must change the way in which we motivate the study of circuits and
electronics to emphasize their broader impact on digital systems.

 Second, given the additional demands of computer engineering, many departments
can ill-afford the luxury of separate courses on circuits and on electronics. Rather,
they might be combined into one course.

 The book attempts to form a bridge between the world of logic and the world of
large digital systems.

 Preface

vii

 1 Digital and Analog Quantities.. 1
 1.1 Analog and Digital Quantities ... 1
 1.2 Post–turing Machine .. 4

 2 Number Systems, Operations, and Codes ... 9
 2.1 Number Systems .. 9

 2.1.1 The Decimal System .. 9
 2.1.2 The Binary System ... 10
 2.1.3 Hexadecimal Notation ... 11
 2.1.4 Binary-Coded Decimal Code ... 12

 2.2 Converting Between Number Systems .. 13
 2.2.1 Converting Between Binary and Decimal

(Between Decimal and Binary) .. 13
 2.2.2 Integers ... 13
 2.2.3 Fractions ... 14
 2.2.4 Integers ... 16
 2.2.5 Fractions ... 16
 2.2.6 Binary to BCD Conversion .. 18

 3 Binary Arithmetic ... 19
 3.1 Binary Addition ... 19
 3.2 Binary Subtraction ... 20
 3.3 Binary Multiplication ... 20
 3.4 Binary Division .. 21
 3.5 BCD Addition .. 21
 3.6 Arithmetic Operations with Signed Numbers 22

 3.6.1 1s and 2s Complements Forms .. 22
 3.6.2 1s Complement .. 23
 3.6.3 2s Complement .. 23
 3.6.4 Additional in the 1s Complement System 24
 3.6.5 Additional in the 2s Complement System 25

 Contents

viii

 3.7 BCD Subtraction .. 27
 3.8 BCD Multiplication and Division .. 29
 3.9 Floating-Point Numbers ... 30

 3.9.1 Floating-Point Arithmetic .. 31

 4 Error Correction in Digital Systems ... 37
 4.1 Parity Method for Error Detection ... 37
 4.2 Cyclic Redundancy Check (CRC) ... 37
 4.3 Reed-Solomon Block ... 38
 4.4 Hamming Code .. 39

 5 Boolean Algebra .. 45
 5.1 Laws of Boolean Algebra .. 46
 5.2 Disjunctive Normal Form .. 48

 6 Basic Logical Functions and Gates. Logic Design.................................. 51
 6.1 Basic Logical Functions and Gates .. 51

 6.1.1 The NOT Gate, or Inverter ... 51
 6.1.2 The AND Gate ... 52
 6.1.3 The OR Gate .. 54
 6.1.4 The NAND Gate .. 56
 6.1.5 The NOR Gate ... 57
 6.1.6 The Exclusive-OR, or XOR Gate .. 57

 6.2 Universal Gates .. 58
 6.2.1 Realization of Logic Function Using NOR Gates 59

 6.3 Combinational Logic Circuits .. 60
 6.4 Full Adder .. 62
 6.5 Seven-Segment Display ... 63
 6.6 Design Combinational Logic Circuits ... 65
 6.7 Evaluating Logic Circuit Outputs .. 71

 7 Minimizing Boolean Functions .. 75
 7.1 Background and Terminology .. 75
 7.2 Karnaugh Maps .. 80
 7.3 On Quine-Mccluskey Method .. 89

 8 Latches, Flip-Flops, Counters, Registers, Timer,
Multiplexer, Decoder, Etc. .. 101
 8.1 Latches ... 101

 8.1.1 The Basic RS NAND Latch ... 102
 8.1.2 The Basic RS NOR Latch .. 104
 8.1.3 The Clocked RS NAND Latch ... 105

 8.2 Edge-Triggered Flip-Flops ... 106
 8.2.1 Flip-Flop Symbols ... 106
 8.2.2 Asynchronous Preset and Clear Inputs 109

Contents

ix

 8.3 Counters ... 111
 8.3.1 A Basic Digital Counter ... 111
 8.3.2 Synchronous Counter ... 112
 8.3.3 Decimal and Shorter Counts .. 113
 8.3.4 BCD Counter ... 122
 8.3.5 The Johnson Counter ... 123

 8.4 Registers ... 125
 8.4.1 Serial-to-Parallel Shift Register ... 126
 8.4.2 Parallel-to-Serial Shift Register ... 126
 8.4.3 Using a Shift Register for Control ... 127

 8.5 Timer .. 129
 8.6 Multiplexer and Demultiplexer .. 132

 8.6.1 The Multiplexer .. 132
 8.6.2 The Demultiplexer ... 134

 8.7 Digital Encoder and Decoder ... 136
 8.7.1 The Digital Encoder ... 136
 8.7.2 Decoder .. 138

 8.8 Digital Comparator .. 139

 9 Machines Moore and Mealy ... 143
 9.1 Synthesis of Moore Automata from Graph-Scheme 143
 9.2 The First Version .. 167
 9.3 The Second Version ... 170

 9.3.1 Machine, Implemented in Flip-Flops
with Multiplex Controls ... 170

 Appendices ... 173
 Appendix A: Counter Modulo 5 ... 173
 Appendix B: Full Adder Circuit ... 186
 Appendix C ... 187
 Appendix D: Logic Symbols, Truth Tables .. 192

 Glossary ... 193

 References .. 203

Subject Index ... 205

Contents

xi

 Early arti fi cial intelligence theory was concerned with models (automata) used to
simulate objects and processes. Automata theory helps with the design of digital
circuits such as parts of computers, telephone systems or control systems.

 The major advantages for Digital and Microprocessor systems are [1–5]:

 Stability and accuracy of control; •
 Flexibility; •
 Lower cost per function; •
 Greater reliability and equipment life; •
 Human factors favouring a Digital Interface. •

 The most general and versatile circuit that can be placed on a single Chip is the
Digital Microprocessor. The Microprocessor is versatile because it can be pro-
grammed to perform an almost unlimited number of computing tasks.

 Application and Advantages of Digital Systems

 The device used in a Digital Circuit generally operates in one of the two states, •
known as ON & OFF, resulting in a very simple operation.
 There are only a few basic operations in a Digital Circuit and they are very easy •
to understand.
 Digital Technique requires Boolean algebra which is very simple and easily to •
learn.
 Digital Circuit study requires the basic concept of Electrical Network Analysis, •
which is also easily learned.
 A large number of Integrated Circuits (IC) are available for performing various •
operations. They are highly reliable and accurate, with a very high speed of
operations.

 Introduction

xii Introduction

 Digital Circuits have a wide range of memory capability which makes them •
highly suitable for Computers, Calculators, and Electronic Watches etc.
 The display of data and other information is very convenient, accurate and elegant •
using digital techniques.

 Many students have, in a wide range of studies, opportunities to learn programming
of digital computers, hence they have a strong motivation to study the way digital
hardware works.

1B. Borowik et al., Theory of Digital Automata, Intelligent Systems, Control
and Automation: Science and Engineering 63, DOI 10.1007/978-94-007-5228-3_1,
© Springer Science+Business Media Dordrecht 2013

 Abstract This chapter discusses different digital representations commonly used
to represent data. In electronic applications digital representations have certain
advantages over analog representations. The chapter introduces also to analog and
digital quantities and to Post–Turing machines.

 1.1 Analog and Digital Quantities

 Electronic circuits can be divided into two broad categories, digital and analog.
Digital electronics involves quantities with discrete values, and analog electronics
involves quantities with continuous values.

 A digital quantity is one having a discrete set of values. Most things that can be
measured quantitatively occur in nature in analog form. For example, S (t) = f (t),
Fig. 1.1 .

 Analog and digital quantities – An analog signal is sampled or tested repeatedly
over a period of time to determine the characteristic that contains the analog quantity. The
sampled analog value is converted to the nearest binary value or quantity. The binary
value is then encoded into a character stream acceptable to the digital equipment that is
designed to use the data. Standardized binary words called BAMs (binary angular mea-
surement) are used to transmit angular, range, and height values between digital equip-
ment in shipboard combat direction systems. Other coding systems such as Gray code
or binary-coded decimal (BCD) are also used to transmit converted values.

 Advantage Digital representation has certain advantages over analog representa-
tion in electronics applications. For one thing, digital data can be processed and
transmitted more ef fi ciently and reliably than analog data. Also, digital data has a
great advantage when storage is necessary. For example, music when converted to
digital form can be stored more compactly and reproduced with greater accuracy and
clarity than is possible when it is in analog form. Noise (unwanted voltage fl uctuations)
does not affect digital data nearly as much as it does analog signals, Fig. 1.2 .

 Chapter 1
 Digital and Analog Quantities

2 1 Digital and Analog Quantities

 Sampled-value representation (quantization) of the analog quantity in Fig. 1.1 .
Each value represented by a dot can be digitized by representing it as a digital code
that consists of a series of 1s and 0s:

()

()
()

2 · · ·
() · · ,

2 · · ·

π
π

¥

=-¥

é ù- Dë û= - D
- Då m

k m

sin F t k t
S t S t k t

F t k t

where () ()/ 1= - -max mink f f q ;

 D = 1 / (2)mt F – step quantization;

 q – number step quantization;

 /2· · .= = Dk mt k F k t

S

SSSSSS

T

tttttt

0

0

1

1

2

2

3

3

2n-1

2n-1

2n

2n

 Fig. 1.1 Quantization of the analog quantity

f(t)

t0
1
2
3
4
5
6
7
8
9
10

11

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

t=const

k=const

 Fig. 1.2 Digital representation

31.1 Analog and Digital Quantities

 Analog and digital signals are used to transmit information, usually through
electric signals. In both these technologies, the information, such as any audio or
video, is transformed into electric signals. The difference between analog and
digital technologies is that in analog technology, information is translated into
electric pulses of varying amplitude. In digital technology, translation of information
is into binary format (0 or 1) where each bit is representative of two distinct amplitudes,
see Table 1.1 [4– 6] .

 All digital information possesses common properties that distinguish it from
analog communications methods [1, 4] :

 Synchronization : Since digital information is conveyed by the sequence in which
symbols are ordered, all digital schemes have some method for determining the begin-
ning of a sequence.

 Language : All digital communications require a language, which in this context
consists of all the information that the sender and receiver of the digital communica-
tion must both possess, in advance, in order for the communication to be
successful.

 Errors : Disturbances (noise) in analog communications invariably introduce some,
generally small, deviation or error between the intended and actual communica-
tion. Disturbances in a digital communication do not result in errors unless the
disturbance is so large as to result in a symbol being misinterpreted as another
symbol or disturb the sequence of symbols. It is therefore generally possible to have
an entirely error-free digital communication. Further, techniques such as check
codes may be used to detect errors and guarantee error-free communications
through redundancy or retransmission. Errors in digital communications can take
the form of substitution errors in which a symbol is replaced by another symbol, or
insertion/deletion errors in which an extra incorrect symbol is inserted into or

 Table 1.1 Analog versus digital quantities

 Analog signals Digital signals

 Technology Analog technology records
waveforms as they are.

 Converts analog waveforms
 into set of numbers and
records them. The numbers
are converted into voltage
stream for representation.

 Representation analog
and digital signals

 Uses continuous range of values
to represent information.

 Uses discrete or discontinuous
values to represent
information.

 Uses analog
and digital signals

 Can be used in various computing
platforms and under operating
systems.

 Computing and electronics
technology.

 Computer Analog computer uses changeable
continuous physical phenomena
such as electrical, mechanical,
hydraulic quantities so as to
solve a problem.

 Digital computers represent
changing quantities
incrementally as and when
their values change.

4 1 Digital and Analog Quantities

deleted from a digital message. Uncorrected errors in digital communications have
unpredictable and generally large impact on the information content of the
communication.

 Granularity : When a continuously variable analog value is represented in digital
form there is always a decision as to the number of symbols to be assigned to that
value. The number of symbols determines the precision or resolution of the result-
ing datum. The difference between the actual analog value and the digital represen-
tation is known as quantization error.

 Copying : Because of the inevitable presence of noise, making many successive
copies of an analog communication is infeasible because each generation increases
the noise. Because digital communications are generally error-free, copies of copies
can be made inde fi nitely.

 1.2 Post–turing Machine

 Although digital signals are generally associated with the binary electronic digital
systems used in modern electronics and computing, digital systems are actually
ancient, and need be neither binary nor electronic.

 A beacon is perhaps the simplest non-electronic digital signal, with just two
states (on and off). In particular, smoke signals are one of the oldest examples of a
digital signal, where an analog “carrier” (smoke) is modulated with a blanket to
generate a digital signal (puffs) that conveys information.

 More recently invented, a modem modulates an analog “carrier” signal (such as
sound) to encode binary electrical digital information, as a series of binary digital
sound pulses. A slightly earlier, surprisingly reliable version of the same concept
was to bundle a sequence of audio digital “signal” and “no signal” information (i.e.
“sound” and “silence”) on magnetic cassette tape for use with early home computers.

 In 1936 Alan Mathison Turing gave his answer to the question “What is a
computable number?” by constructing his now well-known Turing machines as
formalizations of the actions of a human computer. Less well-known is the almost
synchronously published result by Emil Leon Post, in which a quasi-identical
mechanism was developed for similar purposes.

 A post-turing machine uses a binary alphabet, an in fi nite sequence of binary storage
locations, and a primitive programming language with instructions for bi-directional
movement among the storage locations and alteration of their contents one at a time.

 The instructions may require the worker to perform the following “basic acts” or
“operations”:

 Marking the box he is in (assumed empty); •
 Erasing the mark in the box he is in (assumed marked); •
 Moving to the box on his right; •

51.2 Post–turing Machine

 Moving to the box on his left; •
 Determining whether the box he is in, is or is not marked. •

 In the hypothetical machine E.L. Post, information is represented in a binary
alphabet A = {0,1}. The machine has an informational tape of unlimited length – the
machine memory. Each cell can hold 0 or 1 . The machine has a “read head” (special
sensor), which examines the contents of the cell (j), Fig. 1.3 .

 An informational tape can move in both directions, so that each move places the
head in front of a particular cell.

 The machine has a control unit, which at any one time is in a particular state – q .
Tape is moved discretely so the head would stop in front of the cell.

 Instruction set of the abstract machine:

 1. Head to move to the right;
 2. Head to move to the left;
 3. Record label;
 4. To erase the label;
 5. To transfer control;
 6. Stop.

 For example, because the program looks for the hypothetical machine E.L. Post:

 Move the control unit Command number, i Reference number, u

 right, 1 step 1 3 run i No 3
 right, 1 step 2 4 run i No 4
 Record label 3 2 run i No 2
 The command transfer control 4 5
 Stop

 Each command is executed in one step, after which the command whose number
is indicated in the u .

 The Turing Machine differs from the Post machine in that the alphabet may have
more than two characters, Fig. 1.4 .

 Each square of the tape holds exactly one of the symbols, also called input sym-
bols or machine characters. It is assumed that one of the input symbols is a special
one, the blank, denoted by B .

 At any moment of time, the machine, being in one of its states and looking at one
of the input symbols in some square, may act or halt. The action means that, in the
next moment of time, the machine erases the old input symbol and writes a new
input symbol on the same square (it may be the same symbol as before, or a new
symbol; if the old one was not B and the new one is B , the machine is said to erase

q j

 Fig. 1.3 Machine E.L. Post

6 1 Digital and Analog Quantities

the old symbol), changes the state to a new one (again, it is possible that the new
state will be equal to the old one), and fi nally moves the head one square to the left,
or one square to the right, or stays on the same square as before.

where:

 S
0
 – an empty cell;

 S
j1
 – state (content) of the fi rst non-empty left cell;

 S
jk
 – state of the cell, which was seen at a given time;

 r – The number of occupied cells;
 q

i
 – state control device, i = 0,1,…, m.

 A Turing machine program can be de fi ned as a table (Table 1.2).
 Assume that the initial con fi guration of the machine has the form: s

0
 q

2
 1 * 0 s

0
 .

 Then

 q
1
 1 → q

2
 0 Л s

0
 0 q

2
 *0 s

0

 q
2
 * → q

1
 * Л s

0
 0 * q

1
 0 s

0

 q
1
 0 → q

1
 1 Л s

0
 0 * 1 q

2
 s

0

 q
2
 s

0
 → q

0
 s

0
 С s

0
 0 * 1 q

0
 s

0
 The fi nal con fi guration

of the machine

qi
S0 Sj Sj .. Sj .. Sj S0

 1 2 ..

............

..

......

k ..

........

......

....

r

First Step
q

 B 1 1 B

Second Step
 q

 B 0 1 B

Third Step q

 B 0 B B

Fourth Step q

 B 0 B

a

b

 Fig. 1.4 The Turing Machine

 Table 1.2 Turing machine program

 A
 Q

 0 1 * s
0

 q
2
 – q

2
 0 L q

1
 * L Q

0
 S

 q
1
 q

2
 1L – – –

 q
0
 Stop

71.2 Post–turing Machine

 For some pairs of states and input symbols the action is not speci fi ed in the
description of a Turing machine; thus the machine halts. In this case, symbols
remaining on the tape form the output, corresponding to the original input, or more
precisely, to the input string (or sequence) of input symbols. A sequence of actions,
followed by a halt, is called a computation. A Turing machine accepts some input
string if it halts on it. The set of all accepted strings over all the input symbols is
called a language accepted by the Turing machine. Such languages are called recur-
sively enumerable sets.

 Another automaton is a nondeterministic Turing machine. It differs from an
ordinary, deterministic Turing machine in that for a given state and input symbol,
the machine has a fi nite number of choices for the next move. Each choice means a
new input symbol, a new state, and a new direction to move its head.

 A linear bounded automaton is a nondeterministic Turing machine which is
restricted to the portion of the tape containing the input. The capability of the linear
bounded automaton is smaller than that of a Turing machine.

9B. Borowik et al., Theory of Digital Automata, Intelligent Systems, Control
and Automation: Science and Engineering 63, DOI 10.1007/978-94-007-5228-3_2,
© Springer Science+Business Media Dordrecht 2013

 Abstract In this chapter various number systems and conversions between them are
presented and explained. The number systems concerned here are: the decimal system,
the binary system, the hexadecimal system and the binary-coded decimal (BCD) code
(i.e. an encoding for decimal numbers, in which each digit is represented by its own
binary sequence to allow easier conversion to decimal digits and faster decimal calcula-
tions). The chapter, besides providing examples explaining conversions of whole num-
bers also shows the way of converting binary fractions to decimal ones (and opposite).

 2.1 Number Systems

 Convenient as the decimal number system generally is, its usefulness in machine
computation is limited because of the nature of practical electronic devices. In most
present digital machines, the numbers are represented, and the arithmetic operations
performed, in a different number system called the binary number system. This
chapter will help you more easily understand the structure of the binary number
system, which is important in computers and digital electronics.

 2.1.1 The Decimal System

 In everyday life we use a system based on decimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
to represent numbers and refer to the system as the decimal system. Consider what
the number 62 means. It means six tens plus two:

 ()62 6·10 2.= +

 The number 2678 means two thousands, six hundreds, seven tens, plus eight:

 () () ()2678 2· 1000 6·100 7·10 8.= + + +

 Chapter 2
 Number Systems, Operations, and Codes

10 2 Number Systems, Operations, and Codes

 The decimal system is said to have a base , or radix , of 10. This means that each
digit in the number is multiplied by 10 raised to a power corresponding to that dig-
it’s position:

 () ()1 062 6·10 2·10 ;= +

 () () () ()3 2 1 02678 2·10 6·10 7·10 8·10 .= + + +

 Example: А = 123,45.

2 1 0 1 21·10 2·10 3·10 4·10 5·10 ,- -= + + + +A

3 2 1 0 1 2

101964,52 1·10 9·10 6·10 4·10 5·10 2·10 .- -= = + + + + +A

 In general, for the decimal representation of { }2 1 0 1 2 3· - - -= ¼ ¼A d d d d d d , the
value of A is

·10 .= å i

i
i

A d

 2.1.2 The Binary System

 In the decimal system, 10 different digits are used to represent numbers with a base
of 10. In the binary system, we have only two digits, 1 and 0. Thus, numbers in the
binary system are represented to the base 2.

 The binary numeral system, or base-2 number system, represents numeric values
using two symbols, 0 and 1. Owing to its straightforward implementation in digital
electronic circuitry using logic gates, the binary system is used internally by all
modern computers.

 The digits 1 and 0 in binary notation have the same meaning as in decimal
notation:

2 10

2 10

0 0

1 1

=

=

 To represent larger numbers, as with decimal notation, each digit in a binary
number has a value depending on its position:

 () ()1 0
2 1010 1·2 0·2 2 ;= + =

 () ()1 0
2 1011 1·2 0·2 3 ;= + =

 () () ()2 1 1
2 10100 1·2 0·2 0·2 4 ,= + + =

112.1 Number Systems

and so on. Again, fractional values are represented with negative powers of the radix:

3 2 1 0 1 2 3 4

21001,1101 1·2 0·2 0·2 1·2 1·2 1·2 0·2 1·2 .- - - -= + + + + + + +

 In general, for the binary representation of { }2 1 0 1 2 3· - - -= ¼ ¼B b b b b b b , the value of
 B is

·2 .= å i

i
i

B b

 2.1.3 Hexadecimal Notation

 Because of the inherent binary nature of digital computer components, all forms of
data within computers are represented by various binary codes. However, no matter
how convenient the binary system is for computers, it is exceedingly cumbersome for
human beings. Consequently, most computer professionals who must spend time
working with the actual raw data in the computer prefer a more compact notation.

 What notation to use? One possibility is the decimal notation. This is certainly
more compact than binary notation, but it is awkward because of the tediousness of
converting between base 2 and base 10.

 Instead, a notation known as hexadecimal has been adopted. Binary digits are
grouped into sets of four. Each possible combination of four binary digits is given a
symbol, as follows (Table 2.1):

 Because 16 symbols are used, the notation is called hexadecimal , and the 16
symbols are the hexadecimal digits.

 A sequence of hexadecimal digits can be thought of as representing an integer in
base 16.

 Thus,

 () () () ()1 0 1 0
16 16 16 10 102 2 ·16 ·16 2 ·16 2 ·16 44.= + = + =C C

 Table 2.1 Decimal Binary and Hexadecimal numbers system

 Decimal Binary Hexadecimal Decimal Binary Hexadecimal Decimal Binary Hexadecimal

 0 0 0 11 1011 B 22 10110 16
 1 1 1 12 1100 C 23 10111 17
 2 10 2 13 1101 D 24 11000 18
 3 11 3 14 1110 E 25 11001 19
 4 100 4 15 1111 F 26 11010 1A
 5 101 5 16 10000 10 27 11011 1B
 6 110 6 17 10001 11 28 11100 1C
 7 111 7 18 10010 12 29 11101 1D
 8 1000 8 19 10011 13 30 11110 1E
 9 1001 9 20 10100 14 31 11111 1F
 10 1010 A 21 10101 15 32 100000 20

12 2 Number Systems, Operations, and Codes

 Each hexadecimal digit represents four binary digits (bits). For example, byte
values can range from 0 to 255 (decimal) but may be more conveniently represented
as two hexadecimal digits in the range 00 through FF. Hexadecimal is also com-
monly used to represent computer memory addresses.

 Hexadecimal notation is used not only for representing integers. It is also used as
a concise notation for representing any sequence of binary digits, whether they
represent text, numbers, or some other type of data, Table 2.1 . The reasons for using
hexadecimal notation are:

 It is more compact than binary notation. •
 In most computers, binary data occupy some multiple of four bits, and hence •
some multiple of a single hexadecimal digit.
 It is extremely easy to convert between binary and hexadecimal (Table • 2.2).

 2.1.4 Binary-Coded Decimal Code

 In computing and electronic systems, binary-coded decimal (BCD) or, in its most
common modern implementation, packed decimal, is an encoding for decimal num-
bers in which each digit is represented by its own binary sequence. Its main virtue
is that it allows easy conversion to decimal digits for printing or display, and allows
faster decimal calculations. Its drawbacks are a small increase in the complexity of
circuits needed to implement mathematical operations. Uncompressed BCD is also
a relatively inef fi cient encoding -it occupies more space than a purely binary
representation.

 In BCD, a digit is usually represented by four bits which, in general, represent
the decimal digits 0 through 9. Other bit combinations are sometimes used for a
sign or for other indications (e.g., error or over fl ow). To encode a decimal number
using the common BCD encoding, each decimal digit is stored in a 4-bit nibble,
Table 2.3 .

 Table 2.2 ANCII, Decimal, Binary and Hexadecimal code

 Symbols
ANCII

 Decimal
code

 Binary
code

 Hexadecimal
code

 0 48 0110000 30
 1 49 0110001 31
 2 50 0110010 32
 A 65 1000001 41
 B 66 1000010 42
 F 70 1000110 46
 : 58 0111010 3F
 (40 0101000 28

132.2 Converting Between Number Systems

 Although uncompressed BCD is not as widely used as it once was, decimal
 fi xed-point and fl oating-point are still important and continue to be used in fi nancial,
commercial, and industrial computing.

 2.2 Converting Between Number Systems

 2.2.1 Converting Between Binary and Decimal
(Between Decimal and Binary)

 It is a simple matter to convert a number from binary notation to decimal notation.
In fact, we showed several examples in the previous subsection. All that is required
is to multiply each binary digit by the appropriate power of 2 and add the results.

 To convert from decimal to binary, the integer and fractional parts are handled
separately.

 2.2.2 Integers

 For the integer part, recall that in binary notation, an integer is represented by

 - - ¼ =1 2 2 1 0 0 or 1.m m ib b b b b b

 Suppose it is required to convert a decimal integer A into binary form. If we
divide A by 2, in the decimal system, and obtain a quotient A

1
 and a remainder R

0
 ,

we may write

 1 0 02· 0 or 1.= + =A A R R

 Table 2.3 Examples of binary-coded decimal code

 Decimal BCD Decimal BCD Decimal BCD

 0 0000 10 0001 0000 20 0010 0000
 1 0001 11 0001 0001 21 0010 0001
 2 0010 12 0001 0010 22 0010 0010
 3 0011 13 0001 0011 33 0011 0011
 4 0100 14 0001 0100 34 0011 0100
 5 0101 15 0001 0101 45 0100 0101
 6 0110 16 0001 0110 56 0101 0110
 7 0111 17 0001 0111 67 0110 0111
 8 1000 18 0001 1000 78 0111 1000
 9 1001 19 0001 1001 89 1000 1001

14 2 Number Systems, Operations, and Codes

 Next, we divide the quotient A
1
 by 2. Assume that the new quotient is A

2
 and the

new remainder R
1
 . Then

 1 2 1 12· 0 or 1= + =A A R R

so that

() () ()2 1

2 1 0 2 1 02· 2· ·2 ·2 .= + + = + +A A R R A R R

 If next,

 2 3 22· .= +A A R

 Because > > >1 2 �A A A , continuing this sequence will eventually produce a
quotient - =1 1mA (except for the decimal integers 0 and 1, whose binary equivalents
are 0 and 1, respectively) and a remainder

-2mR , which is 0 or 1. Then

 () () () ()1 2 2 1
2 2 1 01·2 ·2 ·2 ·2- -

-= + + + + +�m m
mA R R R R

which is the binary form of A . Hence, we convert from base 10 to base 2 by repeated
divisions by 2. The remainders and the fi nal quotient, 1, give us, in order of increas-
ing signi fi cance, the binary digits of A .

 Example. Example of Converting from Decimal Notation to Binary Notation for
Integers

 83
82

2
41
401

1

2
20
20
0

2
10
10
0

2
5
4
1

2
2
2
0

2
1

 Thus, we obtain 83
10

 = 1010011
2
 .

 2.2.3 Fractions

 For the fractional part, recall that in binary notation, a number with a value between
0 and 1 is represented by

 1 2 3 m i0.b b b b b = 0 1or- - - -…

152.2 Converting Between Number Systems

and has the value

() () () ()1 2 3 m

1 2 3 m·2 ·2 ·2 ·2b b b b- - - -
- - - -+ + + +…

 This can be rewritten as

1 1 1 1 1 1

1 2 3 m+1 m2 ·(2 ·(2 ·(2 ·()2 ·))()2 ·)b b b b b- - - - - -
- - - - -+ + + + + ……

 This expression suggests a technique for conversion. Suppose we want to convert
the number F (0 < F < 1) from decimal to binary notation. We know that F can be
expressed in the form

1 1 1 1 1 1

1 2 3 12 ·(2 ·(2 ·(2 ·(2 ·())))2)- - - - - -
- - - - + -= + + + + +… …m mF b b b b b

 We can say that () 1 12· -= +F b F , where 0 < F
1
 < 1 and where

 1 1 1 1 1
1 2 3 m+1 mF 2 ·(2 ·(2 ·(2 (2)))·)b b b b- - - - -

- - - -= + + + +… …

 To fi nd b
−2

 , we repeat the process. Therefore, the conversion algorithm involves
repeated multiplication by 2. At each step, the fractional part of the number from
the previous step is multiplied by 2. The digit to the left of the decimal point in the
product will be 0 or 1 and contributes to the binary representation, starting with the
most signi fi cant digit. The fractional part of the product is used as the multiplicand
in the next step.

 Example. Example of converting from decimal notation to binary notation for
fractions

 0,3125
 2

0,6250
 2

1,2500
 2

0,5000
 2

1,0000

x

x

x

x

 Thus, we obtain 0,3125
10

 = 0,0101
2
 .

 This process is not necessarily exact; that is, a decimal fraction with a fi nite
number of digits may require a binary fraction with an in fi nite number of digits.
In such cases, the conversion algorithm is usually halted after a prespeci fi ed number
of steps, depending on the desired accuracy.

 Example. Convert number 118, 376
10

 from decimal code in binary code.

16 2 Number Systems, Operations, and Codes

 2.2.4 Integers

 118 2
118 59 2

0 58 29 2
1 28 14 2

1 14 7 2

0 6 3 2
1 2

 1 1

 Thus, we obtain 118
10

 = 1110110
2
 .

 2.2.5 Fractions

 0, 37610
2

2

2

0, 75210

1, 50410

1, 00810

 Thus, we obtain 0,376
10

 » 0,011
2
 .

 The fi nal result 118, 376
10

 » 1110110,011
2
 .

 Example. Example of converting from binary notation to decimal notation for
integers

5 4 3 2 1 0100111 1·2 0·2 0·2 1·2 1·2 1·2 32 4 2 1 39.= + + + + + = + + + =

 Example. Example of converting from binary notation to decimal notation

3 2 1 0 1 2 3 4 51011,01101 1·2 0·2 1·2 1·2 0·2 1·2 1·2 0·2 1·2

1 1 1 13
8 2 1 11 .

4 8 32 32

- - - - -= + + + + + + + +

= + + + + + =

 The decimal value of any binary number can be found by adding the weights of
all bits that are 1 and discarding the weights of all bits that are 0.

 Example. Convert the binary whole number 10111010 to decimal.

 In order to represent the 10 decimal digits 0, 1,…, 9, it is necessary to use at least
4 binary digits. Since there are 16 combinations of 4 binary digits, of which 10
combinations are used, it is possible to form a very large number of distinct codes.

172.2 Converting Between Number Systems

Of particular importance is the class of weighted codes, whose main characteristic
is that each binary digit is assigned a decimal “weight,” and, for each group of four
bits, the sum of the weights of those binary digits whose value is 1 is equal to the
decimal digit which they represent.

 Binary number: 1 0 1 1 1 0 1 0
 Weight: 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0
 Result 128 0 32 16 8 0

 Thus, we obtain 128 + 0 + 32 + 16 + 8 + 0 + 2 + 0 = 186.

 Result – 10111010
2
 = 186

10
 .

 Converting between Decimal (Binary) code and hexadecimal code
(Table 2.4)

 Example. Hexadecimal number 9F2
16

 converted in Binary code:

 9 F 2

 1001 1111 0010

 Thus, we obtain 9F2
16

 = 100111110010
2
 .

 Example. Hexadecimal number IFA,C24
16

 converted in Binary code:

 I F A, C 2 4

 0001 1111 1010, 1100 0010 0100

 Thus, we obtain IFA,C24
16

 = 111111010,110000100100
2
 .

 Example. Binary number 10110110001101
2
 converted in Hexadecimal code:

 = =2 1610110110001101 0010 1101 1000 1101 2D8D .

 Table 2.4

 Weight: 1 2 3 4 5 6 7 8 9

 1 1 2 3 4 5 6 7 8 9
 10 А 14 1E 28 32 3C 46 50 5A
 10 2 64 C8 12C 190 1F4 258 2BC 320 384
 10 3 3E8 7D0 BB8 FA0 1388 1770 1B58 1F40 2328
 10 4 2710 4E20 7530 9C40 C350 EA60 11170 13880 15F90
 10 5 186A0 30D40 493E0 61A80 7A120 927C0 AAE60 C3500 DBBA0

 Example: 1234 = 1000 + 200 + 30 + 4 = (3E8)
16

 + (C8)
16

 + (1E)
16

 + (4)
16

 = (4D2)
16

18 2 Number Systems, Operations, and Codes

 2.2.6 Binary to BCD Conversion

 The basic idea is to shift data serially into a shift register. As each bit is shifted in,
the accumulated sum is collected. Each shift effectively doubles the value of the
binary number in the four-bit shift register which is going to hold the converted
BCD digit.

 Each time a bit is shifted in, the value in the shift register is doubled. After 4 bits
have been shifted in, if the original value is 0, 1, 2, 3, or 4, then the result is within
the 0–9 range of a BCD digit and there is no action required.

 If the value is 5, 6, 7, 8, or 9, then the doubled result is greater than 10, so a carry
out (called ModOut in the code) is generated to represent the over fl ow into the tens
column (i.e. into the next BCD digit).

 Example. А = 49
10

 = 110001
2
 .

 110001
 (1) Shift 1 10001
 (2) Shift 1 1 0001
 (3) Shift 1 1 0 001
 (4) Shift

and correction
 1 1 0 0 01

 +0110 0 1 1 0
 Result 1 0 0 1 0 01
 (5) Shift 1 0 0 1 0 0 1
 (6) Shift 1 0 0 1 0 0 1
 Result 0 1 0 0 1 0 0 1

 The material on number systems is available in almost all elementary texts on
algebra, switching theory, and digital computers. An extensive discussion of computer
arithmetic is available in [5– 11] .

19B. Borowik et al., Theory of Digital Automata, Intelligent Systems, Control
and Automation: Science and Engineering 63, DOI 10.1007/978-94-007-5228-3_3,
© Springer Science+Business Media Dordrecht 2013

 Abstract This chapter introduces to the methods for adding and multiplying binary
numbers. The topic is developed by fi rst considering the binary representation of
unsigned numbers (which are the easiest to understand), and then binary representa-
tion of signed numbers and fractions (the hardest to understand) are concerned.
Binary arithmetic is essential in all digital computers and in many other types of
 digital systems. To understand digital systems, the basics of binary addition, subtrac-
tion, multiplication, and division must be known.

 3.1 Binary Addition

 Adding binary numbers is a very simple task, and very similar to the longhand addi-
tion of decimal numbers. As with decimal numbers, you start by adding the bits
(digits) one column, or place weight, at a time, from right to left.

 0.0010 (2
10

)
 + 0.0100 (4

10
)

 0.0110 (6
10

)

 1010 (10
10

)
 +1011 (11

10
)

 10101 (21
10

)

 0.100111 (39
10

)
 ±0.001101 (13

10
)

 0.110100 (52
10

)

 (а) (b) (c)

 Notice that the fi rst three rules result in a single bit and in the fourth rule the addi-
tion of two 1s yields a binary two (10). When binary numbers are added, the last
condition creates 10 a sum of 0 in a given column and a carry of 1 over to the next
column to the left, as illustrated in the following example:

 Decimal code Binary code

 Carry bits 166 1 111
 47 10100110

 00101111
 Result 213 11010101

 Chapter 3
 Binary Arithmetic

20 3 Binary Arithmetic

 3.2 Binary Subtraction

 Subtraction is generally simpler than addition since only two numbers are involved
and the upper value representation is greater than the lower value representation.
The problem of “borrow” is similar in binary subtraction to that in decimal. We can
construct a subtraction table that has two parts – the three cases of subtracting with-
out borrow, and the one case of the involvement of a borrow digit, no matter how far
to the left is the next available binary digit.

 10101 (21
10

)
 −1010 (10

10
)

 1011 (11
10

)

 1000 (8
10

)
 −11 (3

10
)

 101 (5
10

)
 (а) (b)

 When subtracting numbers, you sometimes have to borrow from the next column
to the left. A borrow is required in binary only when you try to subtract a 1 from a
0. In this case, when a 1 is borrowed from the next column to the left, a 10 is created
in the column being subtracted, and the last of the four basic rules just listed must
be applied, Table 3.1 .

 For 10 minus 1, 1 is borrowed from the “tens” column for use in the “ones” column,
leaving the “tens” column with only 2. The following examples show “borrowing”
in binary subtraction.

 0.0010 (2
10

)
 − 0.0001 (1

10
)

 0.0001 (1
10

)

 100 (4
10

)
 − 010 (2

10
)

 010 (2
10

)

 0.1010 (10
10

)
 −0.0110 (6

10
)

 0.0100 (4
10

)
 (c) (d) (e)

 3.3 Binary Multiplication

 Binary multiplication of two bits is the same as multiplication of the decimal
digits 0 and 1. Multiplication is performed with binary numbers in the same
manner as with decimal numbers. It involves forming partial products, shifting

 Тable 3.1 Binary arithmetic

 The four basic rules for
adding binary digits (bits)
are as follows:

 The four basic rules
for subtracting bits are
as follows:

 The four basic rules for
multiplying bits are as
follows:

 0 + 0 = 0 0 − 0 = 0 0 × 0 = 0
 1 + 0 = 1 1 − 0 = 1 1 × 0 = 0
 0 + 1 = 1 1 − 1 = 0 0 × 1 = 0
 1 + 1 = 10 10 − 1 = 1 1 × 1 = 1

213.5 BCD Addition

each successive partial product left one place, and then adding all the partial
products.

 0.0101 (5
10

)
 × 0.0011 (3

10
)

 0101
 + 0101
 0.1111 (15

10
)

 1101
 × 1101
 1101
 + 0000
 1101
 1101
 10101001

 1101
 × 1101
 1101
 + 1101
 0000
 1101
 10101001

 (a) (b) (c)

 3.4 Binary Division

 Basically the reverse of the multiply by shift and add. Division in binary code follows
the same procedure as division in decimal code.

 A = 430
10

 = 110101110
2
 ;

 B = 10
10

 = 1010; А / B = 43
10

 110101110 | 1010
 −1010 _____ 101011
 1101

−

 1010
 1111

−

 1010
 1010

−

 1010
 0000

 A = 204
10

 = 11001100
(2)

 ,
 B = 12

10
 = 1100

(2)
 ,

 / B = 204
10

 /12
10

 = 17
10

 11001100 | 1100
 1100 | 10001
 00001
 − 0
 11
 − 0
 110
 − 0
 1100
 − 1100
 0000

 (а) (b)

 Detailed study of digital arithmetic is beyond the scope of this book. For a more
comprehensive discussion of computer arithmetic, the reader may consult [4, 5, 10, 11] .

 3.5 BCD Addition

 The procedures followed in adding BCD are the same as those used in binary.
For example, let’s consider the addition of the two BCD digits 5 and 3:

22 3 Binary Arithmetic

 + 0101
(BCD)

 (5
10

)
 0011

(BCD)
 (3

10
)

 1000
(BCD)

 (8
10

)

 There is, however, the possibility that addition of BCD values will result in
invalid totals. The following example shows this:

 Invalid BCD →

 + 1001
(BCD)

 (9
10

)
 0110

(BCD)
 (6

10
)

 1111 (15
10

)

 The sum 1111
2
 is the binary equivalent of 15

10
 ; however, 1111 is not a valid BCD

number. You cannot exceed 1001 in BCD, so a correction factor must be made. To
do this, you add 6

10
 (0110

BCD
) to the sum of the two numbers. The “ add 6 ” correction

factor is added to any BCD group larger than 1001
2
 .

 Remember, there is no 1010
2
 , 1011

2
 , 1100

2
 , 1101

2
 , 1110

2
 , or 1111

2
 in BCD:

 + 1111
 0110

(BCD)

 0001 1111

 ← Invalid BCD
 Add (6

10
)

 ← New BCD

 The sum plus the add 6 correction factor can then be converted back to decimal
to check the answer.

 Add two numbers A = 279
10

 = 0010 0111 1001, В = 581
10

 = 0101 1000 0001.

 0010 0111 1001
 +0101 1000 0001
 0111 1111 1010
 + 0110 0110 Add (6

10
)

 С = 1000 ← 0110 ← 0000

 Result С = 100001100000 = 860
10

 .

 3.6 Arithmetic Operations with Signed Numbers

 The one’s and two’s complements of a binary number are operations used by com-
puters, to perform internal mathematical calculations. To complement a binary
number means to change it to a negative number.

 3.6.1 1s and 2s Complements Forms

 This allows the basic arithmetic operations of subtraction, multiplication, and division
to be performed through successive addition. The intention of this section is to
introduce the basic concepts of complementing.

233.6 Arithmetic Operations with Signed Numbers

 3.6.2 1s Complement

 Let’s assume that we have a 5-bit binary number that we wish to represent as a negative
number. The number is decimal 19, or binary:

 10011
2

 There are two ways to represent this number as a negative number. The fi rst method
is to simply place a minus sign in front of the number, as we do with decimal numbers:

 –(10011)
2

 This method is suitable for us, but it is impossible for computers to interpret,
since the only symbols they use are binary 1s and 0s. To represent negative num-
bers, then, some digital computing devices use what is known as the one’s comple-
ment method. First, the one’s complement method places an extra bit (sign bit) in
the most signi fi cant (left-most) position and lets this bit determine whether the num-
ber is positive or negative. The number is positive if the sign bit is 0 and negative if
the sign bit is 1. Using the one’s complement method, +19 decimal is represented in
binary as shown here with the sign bit (0) indicated in bold:

 0 10011
2

 The negative representation of binary 10011 is obtained by placing a 1 in the
most signi fi cant bit position and inverting each bit in the number (changing 1s to 0s
and 0s to 1s). So, the one’s complement of binary 10011 is:

 1 01100
2

 If a negative number is given in binary, its one’s complement is obtained in the
same fashion.

 +15
10

 = 0 1111
2

 –15
10

 = 1 0000
2

 3.6.3 2s Complement

 The two’s complement is similar to the one’s complement in the sense that one extra
digit is used to represent the sign. The two’s complement computation, however, is
slightly different. In the one’s complement, all bits are inverted; but in the two’s
complement, each bit, from right to left, is inverted only after the fi rst 1 is detected.
Let’s use the number +22 decimal as an example:

 +22
10

 = 0 10110
2

 Its two’s complement would be:

 –22
10

 = 1 01010
2

 Note that in the negative representation of the number 22, starting from the right,
the fi rst digit is a 0, so it is not inverted; the second digit is a 1, so all digits after this
one are inverted.

24 3 Binary Arithmetic

 Тable 3.2 4-bit 1s and 2s complements forms

 Decimal

 1s and 2s complements forms

 Decimal

 1s and 2s complements forms

 Binary
 4-bit 1s
complement

 4-bit 2s
complement Binary

 4-bit 1s
complement

 4-bit 2s
complement

 +7 0.111 0.111 0.111 −0 1.000 1.111 0.000
 +6 0.110 0.110 0.110 −1 1.001 1.110 1.111
 +5 0.101 0.101 0.101 −2 1.010 1.101 1.110
 +4 0.100 0.100 0.100 −3 1.011 1.100 1.101
 +3 0.011 0.011 0.011 −4 1.100 1.011 1.100
 +2 0.010 0.010 0.010 −5 1.101 1.010 1.011
 +1 0.001 0.001 0.001 −6 1.110 1.001 1.010
 +0 0.000 0.000 0.000 −7 1.111 1.000 1.001

 Тable 3.3 8-bit 1s and 2s complements forms

 Decimal Binary Inverse (1s complement) 2s complement

 −7 [−7]
b
 = 1.000111

2
 [−7]

i
 = 1.111000

2
 [−7]

tc
 = 1.111001

2

 If a negative number is given in two’s complement, its complement (a positive
number) is found in the same fashion:

 –14
10

 = 1 10010
2

 +14
10

 = 0 01110
2

 Again, all bits from right to left are inverted after the fi rst 1 is detected. Other
examples of the 1s and 2s complement are shown here (Tables 3.2 and 3.3):

 3.6.4 Additional in the 1s Complement System

 There are several options for adding:
 Case 1. А > 0, В > 0, А + В < 1. [A > 0]

 i
 + [B > 0]

 i
 = A + B .

 Case 2. А > 0, В < 0, А + В > 0. [A > 0]
 i
 + [B < 0]

 i
 = A + 2 + B − 2 − n

 Case 3. А > 0, В < 0, А + В < 0. [A > 0]
i
 + [B < 0]

 i
 = A + 2 + B − 2 − n

 Case 4. А < 0, В < 0, | A + B | < 1. [A < 0]
 i
 + [B < 0]

 i
 = 2 + A − 2 − n + 2 + B − 2 − n

 Where the [A]
 i
 , [B 0]

 i
 – representation of numbers in a computer.

 Examples

 Case 2.
 A = +0,1101 [A]

b
 =0,1101 [A]

i
 = 0,1101

 В = −0,0011 [B]
b
 = 1,0011 [B]

 i
 =1,1100

 1 ← 0,1001
 1

 С = 0,1010 <= [C]
b
 = 0,1010 <= [C]

i
 = 0,1010

253.6 Arithmetic Operations with Signed Numbers

 Case 3.
 А = −0,1101 [A]

b
 = 1,1101 [A]

i
 = 1,0010

 В = +0,0011 [B]
b
 = 0,0011 [B]

 i
 = 0,0011

 С = −0,1010 <= [C]
b
 = 1,1010 < = [C]

i
 = 1,0101

 Case 4.
 A = −0,0101 [A]

b
 =1,0101 [A]

i
 = 1,1010

 В = −0,0110 [B]
b
 = 1,0110 [B]

 i
 = 1,1001

 1 ← 1,0011
 1

 С = −0,1011 < = [C]
b
 =1,1011 < = [C]

i
 =1,0100

 Example. Case | A | = | B |, A < 0, B > 0.
 А = −0,0101 [A]

db
 =1,0101 [A]

i
 =1,1010

 В = +0,0101 [B]
b
 = 0,0101 [B]

 i
 = 0,0101

 С = −0,0000 <= [C]
b
 = 1,0000 <= [C]

i
 = 1,1111

 Example. Case A > B , B > 0, | A + B | = 1.
 A = +0,0111 [A]

b
 = 0,0111 [A]

i
 = 0,0111

 В = +0,1001 [B]
b
 = 0,1001 [B]

 i
 = 0,1001

 С = +0,1111 <= [C]
b
 = 0,1111 <= [C]

i
 = 1,0000

 Example. Case A < 0, B < 0 , | A + B | = 1.
 A = −0,0111 [A]

b
 = 1,0111 [A]

i
 = 1,1000

 В = −0,1001 [B]
b
 = 1,1001 [B]

 i
 = 1,0110

 1 ← 0,1110
 1

 С = +0,1111 < = [C]
b
 =0,1111 < = [C]

i
 = 0,1111

 3.6.5 Additional in the 2s Complement System

 There are several options for adding:

 Case 1. А > 0, В > 0, А + В < 1. [0] [0] .> + > = +tc tcA B A B

 Case 2. А > 0, В < 0, А + В > 0. [0] [0] 2 .> + < = + +tc tcA B A B

 Case 3. А > 0, В < 0, А + В < 0. [0] [0] 2 .> + < = + +tc tcA B A B

 Case 4. А < 0, В < 0,| A + B | < 1. [0] [0] 2 2 .< + < = + + +tc tcA B A B

 Here the [] [], 0 tctc
A B – representation of numbers in a computer.

 Examples.

 Case 3.
 A = − 0,1101 [A]

b
 =1,1101 [A]

tc
 = 1,0011

 В = + 0,0011 [B]
b
 = 0,0011 [B]

 tc
 = 0,0011

 С = −0,1010 <= [C]
b
 =1,1010 <= [C]

tc
 = 1,0110

26 3 Binary Arithmetic

 Case 4.
 A = − 0,0101 [A]

b
 =1,0101 [A]

tc
 =1,1011

 В = − 0,0110 [B]
b
 = 1,0110 [B]

 tc
 = 1,1010

 С = − 0,1011 < = [C]
b
 =1,1011 < = [C]

tc
 = 1 1,0101

 Example. Case | A | = | B |, A < 0, B > 0.
 A = −0,0101 [A]

b
 =1,0101 [A]

tс = 1,1011
 В = + 0,0101 [B]

b
 = 0,0101 [B]

 tс
 = 0,0101

 С = +0,0000 < = [C]
b
 =0,0000 < = [C]

tc
 = 1 0,0000

 Figures 3.1 , 3.2 , 3.3 show a block diagram of the addition (subtraction) of binary
numbers in the direct, inverse and complementary codes.

where ao,b0,co − sign bits;
OV - value of overflow digit;
f- The type of operation (f=0 – Addition, f=1 – Subtraction)

Start

f

00 : bb =

0:=OV

Done

0

0

0

1

1

1

1
0

00 : bc =

c0

BAC +=:

1:=OV

BAC −=:

a0=b0

c0

00 : ac =

ABC −=:

 Fig. 3.1 The block diagram of the addition (subtraction) of binary numbers in the direct code

273.7 BCD Subtraction

 3.7 BCD Subtraction

 Either packed or unpacked BCD numbers can be subtracted. BCD subtraction
follows the same rules as binary subtraction. However, if the subtraction causes a

c-1 – transfer from a sign bit;
A′,B′,C ′ -modules of numbers;

Start

f

00 : bb =

 a0

BB ′=′ :

b0

AA ′=′ :

BAC +=:

c-1

nCC −+= 2:

α

0:=OV 1:=OV

c0

CC ′=′:

Done

0

0

0

0

0

1

1

1

1

1

1

0

where ao,b0,co − sign bits;

OV - value of overflow digit;

f- The type of operation (f=0 – Addition, f=1 – Subtraction)

 Fig. 3.2 The block diagram of the addition (subtraction) of binary numbers in the inverse code
(1s complement form)

28 3 Binary Arithmetic

borrow and/or creates an invalid BCD number, an adjustment is required to correct
the answer. The correction method is to subtract 6 from the difference in any digit
position that has caused an error.

 Examples.
 Represent the number of A = −256

10
 in the inverse code for the BCD:

 1. 0010 0101 0110
 + 0110 0110 0110 Add (6

10
) 0110

 1000 1011 1100
 Result A

 i
 = 1. 0111 0100 0011.

 Represent the number of A = −398
10

 in the two complement code for the BCD:

 1. 0011 1001 1000
 + 0110 0110 0110

 Add (6
10

) 0110

 1. 1001 1111 1110
 0110 0000 0001

 +1
 Result A

tc
 = 1.0110 0000 0010

 A = 37
10

 = 0011 0111
(BCD)

 . B = 12
10

 = 0000 0010
(BCD)

 .
 Result C = A − B = 15

10
 = BCD ?

* - value of overflow in an additional code;α
B ′ - module of number;

Start

f

1: += B ′B ′

BAC +=:

*: α=OV

Done

0

1

where ao,b0,co − sign bits;
OV - value of overflow digit;

f- The type of operation (f=0 – Addition,
 f=1 – Subtraction)

 Fig. 3.3 The block diagram
of the addition (subtraction)
of binary numbers in the 2s
complement form

293.8 BCD Multiplication and Division

 0011 0111
 + 0000 0010
 0011 0101

 Result C = 0011 0101
(BCD)

 = 25
10

 A = −1000 0010 0101
(BCD)

 = −825
10

 , B = 1001 0100 0110
(BCD)

 = 946
10

 .
 Result C = − A + B = (−825 + 946)

10
 = 121

10
 = BCD ?

 1. 0001 0111 0101
 0. 1001 0100 0110
 1. 1010 1011 1011

 + 0110 0110 0110 (adjustment Add 0110
(BCD)

)
 Result C = 0. ← 0001 ← 0010 ← 0001.

 3.8 BCD Multiplication and Division

 Multiplication cannot be performed on packed BCD; the four most signi fi cant bits
must be zeroed for the adjustment to work.

 BCD division also cannot be performed on packed numbers. Before dividing an
unpacked BCD number, the division adjustment is made by converting the BCD
numbers to binary.

 Example. А = 25
10

 = 0010 0101 на В = 12
10

 = 0001 0010. Intermediate results of
multiplication put in P . А·В = 0010 0101 · 0001 0010 = 0011 0000 0000 = 300

10
 .

 P 0000 0000 0000
 + А 0010 0101
 P 0000 0010 0101
 + А 0010 0101
 P 0000 0100 1010
 + 0110
 P 0000 0101 0000

 P 0000 0101 0000
 + А 0010 0101 0000
 P 0010 1010 0000
 + 0110
 Р 0011 0000 0000 = = 300

10

 0010 − 0001 = 0001 > 0, Repeat В + P

 0010 − 0001 = 0

 adjustment
 shift B on the left 4 bits and add to P

 0001–0001 = 0

 adjustment
 А·В = 0011 0000 0000 = 300

10

 Example.
 А = 48

10
 = 0100 1000, В = 2

10
 = 0000 0010, А / В = 24

10
 = 0010 0100. In the C1 –

form the older BCD tetrad private, and C2 – the LSB.

30 3 Binary Arithmetic

 А/В = 0100 1000/0010
 − 0010
 0010 > 0
 − 0010
 0000
 0010

 − 0010
 ± 0010
 0000
 0100 1000
 − 0010
 0110 > 0
 − 0010
 0100 > 0
 −0010
 0010 > 0
 − 0010
 0000

 С 1 = С 1 + 1 = 1

 С 1 = 1 + 1 = 2 = 0010

 B shift to 4 digits to the right and perform the same steps:

 С 2 = С 2 + 1 = 1

 С 2 = 1 + 1 = 2

 С 2 = 2 + 1 = 3

 С 2 = 3 + 1 = 4 = 0100

 Result С 1+ С 2 = 0010 0000 + 0000 0100 = 0010 0100 = 24
10

 3.9 Floating-Point Numbers

 In computing, fl oating-point describes a system for representing numbers that would
be too large or too small to be represented as integers. Numbers (= · pN m q) are in
general represented approximately to a fi xed number of signi fi cant digits and scaled
using an exponent. The base (q) for the scaling is normally 2, 10 or 16. The typical
number that can be represented exactly is of the form, Fig. 3.4 .

 The term fl oating point refers to the fact that the radix point (decimal point, or,
more commonly in computers, binary point) can “ fl oat”; that is, it can be placed
anywhere relative to the signi fi cant digits of the number. This position is indicated
separately in the internal representation, and fl oating-point representation can thus
be thought of as a computer realization of scienti fi c notation. Over the years, several
different fl oating-point representations have been used in computers; however, for
the last 10 years the most commonly encountered representation is that de fi ned by
the IEEE 754 Standard.

 The JVM’s fl oating-point support adheres to the IEEE-754 1985 fl oating-point stan-
dard. This standard de fi nes the format of 32-bit and 64-bit fl oating-point num-
bers and de fi nes the operations upon those numbers. In the JVM, fl oating-point
arithmetic is performed on 32-bit fl oats and 64-bit doubles. For each bytecode that
performs arithmetic on fl oats, there is a corresponding bytecode that performs the
same operation on doubles.

Sign
Bit

p Sign
Bit

m
(23 bit)

m
0 1 k 0 1

 Fig. 3.4 Floating-point
arithmetic represented as
integers (N = m·q p)

313.9 Floating-Point Numbers

 A fl oating-point number has four parts – a sign, a mantissa, a radix, and an
exponent. The sign is either a 1 or −1. The mantissa, always a positive number,
holds the signi fi cant digits of the fl oating-point number. The exponent indicates
the positive or negative power of the radix that the mantissa and sign should be
multiplied by. = ±127p . 1 2.£ <m

 3.9.1 Floating-Point Arithmetic

 Floating-point arithmetic derives its name from something that happens when you
use exponential notation. Consider the number A = 123: it can be written using expo-
nential notation as:

2 1 0 11.23·10 12.3·10 123·10 1230·10 etc.-= = = =A

 All of these representations of the number 123 are numerically equivalent. They
differ only in their “normalization”: where the decimal point appears in the fi rst
number. In each case, the number before the multiplication operator (“*”) repre-
sents the signi fi cant fi gures in the number (which distinguish it from other numbers
with the same normalization and exponent); we will call this number the
“signi fi cand” (also called the “mantissa” in other texts, which call the exponent the
“characteristic”).

 Only two of the representations of the number 123 above are in any kind of
 standard form. The fi rst representation, 21.23·10 , is in a form called “scienti fi c notation”,
and is distinguished by the normalization of the signi fi cand: in scienti fi c notation,
the signi fi cand is always a number greater than or equal to 1 and less than 10.

 Standard computer normalization for fl oating point numbers follows the fourth form
in the list above: the signi fi cand is greater than or equal to .1, and is always less than 1.

 Of course, in a binary computer, all numbers are stored in base 2 instead of base
10; for this reason, the normalization of a binary fl oating point number simply
requires that there be no leading zeroes after the binary point (just as the decimal
point separates the 10 0 place from the 10 −1 place, the binary point separates the 2 0
place from the 2 −1 place). We will continue to use the decimal number system for our
numerical examples, but the impact of the computer’s use of the binary number sys-
tem will be felt as we discuss the way those numbers are stored in the computer. Over
the years, fl oating point formats in computers have not exactly been standardized.
While the IEEE (Institute of Electrical and Electronics Engineers) has developed
standards in this area, they have not been universally adopted. This is due in large
part to the issue of “backwards compatibility”: when a hardware manufacturer
designs a new computer chip, they usually design it so that programs which ran on
their old chips will continue to run in the same way on the new one. Since there was
no standardization in fl oating point formats when the fi rst fl oating point processing
chips (often called “coprocessors” or “FPU”s: “Floating Point Units”) were designed,
there was no rush among computer designers to conform to the IEEE fl oating point
standards (although the situation has improved with time).

32 3 Binary Arithmetic

 The following table describes the IEEE standard formats as well as those used in
common Intel processors, Table 3.4 .

 Note fi rst that all of the formats reserve 1 bit to store the sign of the number; this
is necessary because the signi fi cand is stored as an unsigned fraction in all of these
formats (often the fi rst bit of the signi fi cand is not even stored, because it is always
1 in a properly normalized fl oating-point number). The rows describing the IEEE
extended formats specify the minimum number of bits which the exponent and
signi fi cand must have in order to satisfy the standard. The Intel “internal” format is
an extended precision format used inside the CPU chip, which allows consecutive
 fl oating point operations to be performed with greater precision than that which will
eventually be stored.

 Examples
 We will do all of our examples using decimal, but always keep in mind that the

computer always uses binary code.
 Example 1.
 To fi nd the sum of numbers of A = 122

10
 and B = 12

10
 .

 We fi rst normalize these numbers as
30.122·10=A and

20.12·10=B .
 We can’t simply add two decimal numbers which are multiplied by different

exponents. That is, the answers –
30.242·10 or

20.242·10 are obviously incorrect.
 To solve this problem, the number with the smaller exponent must be denormal-

ized before the addition can take place –
20.12·10=B becomes

30.012·10=B .
 Now we can simply add the decimal numbers, since

 ()·10 ·10 ·10 ,= + = +x x xC A B A B

and we get the answer – 30.134·10 .=C

 Example 2.
 А = 0,315290·10 −2 and = 0,114082·10 +2 .

 First variant Second variant
 A =
 B = 1140

 0,315280·10 −2
 0,820000·10 −2

 A = 0,000031
 B = 0,114082

 5280·10 +2
 ·10 +2

 C = 1,135280·10 -2 C = 0,114114 ·10 +2

 Incorrect result Correct result

 Тable 3.4 Floating-point standard for diferent processor

 Precision
 Sign
(# of bits)

 Exponent
(# of bits)

 Signi fi cand
(# of bits)

 Total Length
(in bits)

 Decimal digits
of precision

 IEEE/Intel single 1 8 23 32 >6
 IEEE single extended 1 ³ 11 ³ 32 ³ 44 >9
 IEE/Intel double 1 11 52 64 >15
 IEEE double extended 1 ³ 15 ³ 64 ³ 64 >19
 Intel internal 1 15 64 80 >19

333.9 Floating-Point Numbers

 Example 3.
 А = 0,96501·10 +2 and В = 0,73004·10 +1 .

 A =
 B =

 0,96501·10 +2
 0,07300·10 +2

 ← over fl ow mantissas
 ← Correct result

 C =
 C =

 1,03801·10 +2
 1,0380·10 +3

 Example 4.
 А = 0,24512·10 −8 and В = −0,24392·10 −8 .

 A =
 B =

 0,24512·10 −8
 − 0,24392·10 −8

 0,12000·10 −10 C = 0,00120·10 −8 =

 Exponents are commonly stored in these formats as unsigned integers; however,
an exponent can be negative as well as positive, and so we must have some tech-
nique for representing negative exponents using unsigned integers. This technique
is called “biasing”: a positive number is added to the exponent before it is stored in
to the fl oating point number. The stored exponent is then called a “biased exponent”.
If the exponent contains 8 bits, the bias number 127 is added to the exponent before
it is stored so that, for example, an exponent of 1 is stored as 128. Since the unsigned
exponent can represent numbers between 0 and 255, it should be theoretically pos-
sible to store exponents whose values range from −127 to +128 (−127 would stored
as the biased exponent value 0, and +128 would be stored as the biased value 255).
In practice, the IEEE speci fi cation reserves the values 0 and 255, which means that
an 8-bit exponent can represent exponent values between −126 and +127. If the
stored (biased) exponent has the value 0, and the signi fi cand is 0 as well, the value
of the fl oating point number is exactly 0. A fl oating point number with a stored
exponent of 0 and a nonzero signi fi cand is of course unnormalized. If the stored
exponent has the value 255 (all ones), the fl oating point number has one of two
special meanings:

 if the signi fi cand is 0, the number represents in fi nity, and •
 if the signi fi cand is not zero, that number represents a “NaN” (“Not a Number”): •
the result of a division by zero.
 In general, in order to perform any fl oating point arithmetic operation, the com-•
puter must:
 fi rst represent each operand as a normalized number within the limits of its precision •
(which may result in representation error due to truncation of less signi fi cant digits);
 denormalize the smaller of the numbers if an addition or subtraction is being •
performed (which may again result in representation error due to the denormali-
zation);

34 3 Binary Arithmetic

 perform the operation (which again may result in representation error due to the •
 fi nite precision of the fl oating point processor);
 fi nally normalize the result. •

 An analogical algorithm can be used for the operations of multiplication of
division for binary numbers, presented in a format with a fl oating point, Fig. 3.5 .

Start

ba ppq −=

1>′q

10 =q 10 =q

bb mm ⋅= −12: aa mm ⋅= −12: 0:=bm 0:=am

1: += bb pp 1: += aa pp bc pp =:

1: −′=′ qq

0=′q

ac pp =:

Algebraic addition / subtraction of the mantissas
as numbers with fixed point

Formed cm and OV →

1=mOV

max>cp

mc [1] = 1

cc mm ⋅= −12:

1: += cc pp

cc mm ⋅= 2:

1:=OV 0:=OV 0:=cm

Done

1: −= cc pp

max|| >cp

1

1

1

1

1

1

1 1

0

0

0

0

0

0
0

E
lim

in
at

in
g

ov
er

fl
ow

 m
an

ti
ss

as

A
lig

nm
en

t
of

 t
he

or

de
r

Normalization or result

 Fig. 3.5 Algorithm of addition of numbers with fl oating point

353.9 Floating-Point Numbers

 Let

 = · ;Ap
AA m q

 = · ;Bp
BB m q

 = · ;Cp
CC m q

 = · .Dp
DD m q

 Then

()
()

· · · ;

\ \ · .

+

-

= =

= =

A B

A B

p p
A B

p p
A B

C A B m m q

D A B m m q

37B. Borowik et al., Theory of Digital Automata, Intelligent Systems, Control
and Automation: Science and Engineering 63, DOI 10.1007/978-94-007-5228-3_4,
© Springer Science+Business Media Dordrecht 2013

 Abstract This chapter presents error detection and error correction methods that
are used in digital systems, such as parity methods, cyclic redundancy check (CRC),
Reed-Solomon block and Hamming code. Additionally some of these methods are
further explained in few examples enclosed in this chapter.

 4.1 Parity Method for Error Detection

 The movement of digital data from one location to another can result in transmission
errors, the receiver not receiving the same signal as transmitted by the transmitter as
a result of electrical noise in the transmission process. Sometimes a noise pulse may
be large enough to alter the logic level of the signal. For example, the transmitted
sequence 1001 may be incorrectly received as 1101. In order to detect such errors a
parity bit is often used. A parity bit is an extra 0 or 1 bit attached to a code group at
transmission. In the even parity method the value of the bit is chosen so that the total
number of 1s in the code group, including the parity bit, is an even number. For
example, in transmitting 1001 the parity bit used would be 0 to give 01001, and thus
an even number of 1s. In transmitting 1101 the parity bit used would be 1 to give
11101, and thus an even number of 1s. With odd parity the parity bit is chosen so
that the total number of 1s, including the parity bit, is odd. Thus if at the receiver the
number of 1s in a code group does not give the required parity, the receiver will
know that there is an error and can request that the code group be retransmitted.

 4.2 Cyclic Redundancy Check (CRC)

 CRC error detection computes the remainder of a polynomial division of a genera-
tor polynomial into a message. The remainder, which is usually 16 or 32 bits, is then
appended to the message. When another remainder is computed, a nonzero value

 Chapter 4
 Error Correction in Digital Systems

38 4 Error Correction in Digital Systems

indicates an error. However, depending on the generator polynomial’s size, the process
can fail in several ways. It is very dif fi cult to determine how effective a given CRC
will be at detecting errors. The probability that a random code word is valid (not
detectable as an error), is completely a function of the code rate: 1−2 −(n − k) . Where
 n is the number of bits of formed from k original bits of data, (n − k) is the number
of redundant bits.

 Use of the CRC technique for error correction normally requires the ability to
send retransmission requests back to the data source.

 CRCs are not suitable for protecting against intentional alteration of data. Firstly,
as there is no authentication, an attacker can edit a message and recalculate the CRC
without the substitution being detected. Secondly, the linear properties of CRC
codes allow an attacker even to keep the CRC unchanged while modifying parts of
the message.

 4.3 Reed-Solomon Block

 Reed-Solomon block codes are popular in communications and data-storage appli-
cations. Like fi re codes, Reed-Solomon-code implementations append symbols to the
end of a transmission to locate and correct errors during decoding. Reed-Solomon-code
systems’ effectiveness at high data rates results from operations taking place at the
code-symbol rate or at a fi xed number of times per code word. Either way, the num-
ber of operations is much smaller than the number of bits. Chips that implement
these types of high-speed real-time correctors are commercially available, as are
DSP-software options.

 Each RS symbol is actually a group of M bits. Just one bit error anywhere in a
given symbol spoils the whole symbol. To have fewer bit errors, you’d like to con-
centrate them into as few RS symbols as possible. That’s why RS codes are often
called “burst-error-correcting” codes. Many RS codes in use are “shortened” by
making the size of the block or the number of used symbols smaller than M (i.e. the
size of RS symbol) or smaller than the maximum number of symbols (i.e. 2 M −1).

 Since RS can be done on any message length and can add any number of extra
check symbols, a particular RS code will be expressed as RS (N,N − R) code where N
is the total number of symbols per code word; R is the number of check symbols per
code word and; therefore, N − R is the number of actual information symbols per code
word. The typical RS decoder can correct up to (N − R)/2 symbol errors per block.

 Generally, a Reed-Solomon corrector provides a number of symbol corrections,
say Z , in an N-symbol code word. Z is independent of the location of the errors
inside the code word. When you use this method with complex interleaving, this
approach can easily correct large error bursts. Further algorithm re fi nements allow
even more correction capability if you know the error location by some other means.
These “soft-error” indicators can come, for example, from up-stream decoding viola-
tions. It is unable to both locate and correct errors in a block that has more than
 Z symbol errors.

394.4 Hamming Code

 4.4 Hamming Code

 In the late 1940s Claude Shannon was developing information theory and coding as
a mathematical model for communication. At the same time, Richard Hamming, a
colleague of Shannon’s at Bell Laboratories, found a need for error correction in his
work on computers. Parity checking was already being used to detect errors in the
calculations of the relay-based computers of the day, and Hamming realized that a
more sophisticated pattern of parity checking allowed the correction of single errors
along with the detection of double errors.

 The codes that Hamming devised, the single-error-correcting binary Hamming
codes and their single-error-correcting, double-error-detecting extended versions
marked the beginning of coding theory. These codes remain important to this day,
for theoretical and practical reasons as well as historical.

 In a Hamming code, multiple extra bits are computed such that each extra bit will
be affected by the data bits in a distinct way. For example, in a system with four data
bits, the fi rst extra bit might be affected by a change in data bits 2 thru 4, but not by
a change in the fi rst data bit. The second extra bit would be unaffected by an error
in the second data bit, and the last extra bit would have no relation to data bit 3. The
matrix for this Hamming code would look like Fig. 4.1 .

 When the extra bits are recalculated at the receiving end, any differences will call
out any single corrupted data bit, or indicate an error if two bits are corrupted.

 1011 is encoded as 1011 010. If the fi rst bit is corrupted, 0011 010 will be
received. Using the fi rst 4 (data) bits to re-calculate the hamming code returns 001.
XORing the received extra bits with the calculated extra bits gives us 010 Å 001 = 011
which is the pattern in the extra bits on the top line of the matrix, indicating an error
in the fi rst bit. The XOR of the expected error-checking bits with those actually
received is called the syndrome of a received code word.

 Example 1

 When data is transmitted from one location to another there is always the possibility
that an error may occur. There are a number of reliable codes that can be used to
encode data so that the error can be detected and corrected. With this example you
will explore a simple error detection-correction technique called a Hamming Code.
A Hamming Code can be used to detect and correct one-bit change in an encoded
code word. This approach can be useful as a change in a single bit is more probable
than a change in two or more bits.

 Consider Fig. 4.2 . Data is represented (stored) in every position (1–15) except 1,
2, 4 and 8. These positions (which are powers of 2) are used to store parity (error
correction) bits.

d1 1 0 0 0 0 1 1
d2 0 1 0 0 1 0 1
d3 0 0 1 0 1 1 0
d4 0 0 0 1 1 1 1

D1 D2 D3 D4 E1 E2 E3 Fig. 4.1

40 4 Error Correction in Digital Systems

 Using the four parity (error correction bits) positions we can represent 15 values
(1–15). These values and their corresponding binary representation are shown in the
table below.

 Using the format given, data is represented by the 11 non-parity bits. For example
the following data item to be encoded (10101101011), Fig. 4.3 (Table 4.1) :

 In positions 3, 6, 9, 10, 12, 14 and 15 we have a ‘ 1 ’. Using our previous conver-
sion table we obtain the binary representation for each of these values. We then
apply the exclusive OR to the resulting values (essentially setting the parity bit to 1
if an odd # of 1s, else setting it to 0). The results of this activity are shown in
Table 4.2 :

 The parity bits are then put in the proper locations in the table providing the
following end result (Fig. 4.4):

 This is the encoded code word that would be sent. The receiving side would
re-compute the parity bits and compare them to the ones received. If they were the
same, no error occurred – if they were different, the location of the fl ipped bit is
determined. For example, let’s say that the bit in position 14 was fl ipped during trans-
mission. The receiving end would see the following encoded sequence (Fig. 4.5):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
error

correction
error

correction 1 error
correction 2 3 4 error

correction 5 6 7 8 9 10 11

 Fig. 4.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
error

correction
error

correction 1 error
correction 0 1 0 error

correction 1 1 0 1 0 1 1

 Fig. 4.3

 Table 4.1 Positions 2 0 = 1 2 1 = 2 2 2 = 4 2 3 = 8

 1 1 0 0 0
 2 0 1 0 0
 3 1 1 0 0
 4 0 0 1 0
 5 1 0 1 0
 6 0 1 1 0
 7 1 1 1 0
 8 0 0 0 1
 9 1 0 0 1
 10 0 1 0 1
 11 1 1 0 1
 12 0 0 1 1
 13 1 0 1 1
 14 0 1 1 1
 15 1 1 1 1

414.4 Hamming Code

 Table 4.3 shows the re-calculation at the receiving end.
 The re-calculated parity information is then compared to the parity information

sent/received. If they are both the same the result (again using an XOR – even parity)
will be all 0s. If a single bit is fl ipped the resulting number will be the position of
the errant bit (check back into table).

 In the methods of error correction of digital systems we often use logic operation
XOR, Figs. 4.6 and 4.7 . The following is an example of a program that describes the
operating principle of this logical operation.

 program Summatot_mod2;
 {$APPTYPE CONSOLE}
 Uses SysUtils;
 CONST MRI=10;
 VAR A: ARRAY[1..MRI+1] of BYTE;

 Table 4.2 1 1 0 0 3

 0 1 1 0 6

 1 0 0 1 9

 0 1 0 1 10

 0 0 1 1 12

 0 1 1 1 14

 1 1 1 1 15

 XOR 1 1 0 1 (11)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 0 0 1 0 1 1 1 0 1 0 1 1

 Fig. 4.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 0 0 1 0 1 1 1 0 1 0 0 1

 Fig. 4.5

 Table 4.3 1 1 0 0 3

 0 1 1 0 6

 1 0 0 1 9

 0 1 0 1 10

 0 0 1 1 12

 1 1 1 1 15

 XOR (Fig. 4.5) 1 1 0 0

42 4 Error Correction in Digital Systems

 I, PZ,X:INTEGER;
 begin
 REPEAT
 WRITELN(‘Enter positions of binary code combination with 1-th for 10-th’,
MRI);
 FOR I:=1 TO MRI DO READ(A[I]);
 PZ:=0;
 FOR I:=1 TO MRI DO PZ:=PZ+A[I];
 PZ:=PZ mod 2;
 IF ODD(PZ)
 THEN A[MRI+1]:=0
 ELSE A[MRI+1]:=1;

a1 a2 a3 a4 a5 . . am

Z=0

control position= 1 control position= 0

Yes No

Error
correction bit

 Fig. 4.6 Blok diagram of the error correction

 Fig. 4.7 Program that describes the operating principle of error correction

434.4 Hamming Code

 WRITELN(‘Register A contains a code:’);
 FOR I:=1 TO MRI+1 DO WRITE(A[1]:1, ‘’); WRITELN;
 WRITELN(‘ Enter, M<10 - Completion’);
 UNTIL MRI<10
 {TODO -oUser -cConsole Main : Insert code here}

 end.
 In information theory, the Hamming distance between two strings of equal length

is the number of positions at which the corresponding symbols are different. Put
another way, it measures the minimum number of substitutions required to change
one string into the other, or the number of errors that transforms one string into the
other (d

 min
 = 3). For example, 0101 and 0110 has a Hamming distance of two whereas

“Butter” and “ladder” are four characters apart.
 The Hamming distance is used in digital telecommunication systems, to count

the number of fl ipped bits in a fi xed-length binary word as an estimate of error, and
therefore is sometimes called the signal distance. Hamming weight analysis of bits
is used in several disciplines including information theory, coding theory, and
cryptography.

45B. Borowik et al., Theory of Digital Automata, Intelligent Systems, Control
and Automation: Science and Engineering 63, DOI 10.1007/978-94-007-5228-3_5,
© Springer Science+Business Media Dordrecht 2013

 Abstract The chapter introduces to Boolean Algebra. First the three Boolean oper-
ators that are used today are concerned (i.e. AND, OR, NOT). Then the laws of
Boolean logic are defi ned axiomatically using axioms together with theorems,
which are presented here in the form of certain equations. The chapter introduces
also to the disjunctive normal form (DNF) and to conjunctive normal form (CNF),
which allow for the standardization (or normalization) of logical formulas.

 Boolean algebra (or Boolean logic) is a logical calculus of truth values, developed
by George Boole in the 1840s.

 Boolean algebra (symbolic logic) remained dormant until the middle of the
Twentieth century. In the 1950s (Huntington) it was used for telephone switching
units and the new up and coming electronic computers.

 Symbolic logic is used not only in genuinely logical or mathematical domains
but also in the natural sciences, and in disciplines such as linguistics, law, and com-
puter technology.

 Today Boolean algebra is used every day to help people when doing searches on
the Internet. It is more commonly referred to as a Boolean search. The three Boolean
operators used today are as follows: AND, OR, NOT.

 The laws of Boolean algebra can be de fi ned axiomatically as certain equations
called axioms together with their logical consequences called theorems, or semanti-
cally as those equations that are true for every possible assignment of 0 or 1 to their
variables. The axiomatic approach is sound and complete in the sense that it proves
respectively neither more nor fewer laws than the semantic approach.

 Boolean algebra is the algebra of two values. These are usually taken to be 0 and
1, as we shall do here, although F and T, false and true, etc. are also in common
use. For the purpose of understanding Boolean algebra any Boolean domain of two
values will do.

 Chapter 5
 Boolean Algebra

46 5 Boolean Algebra

 5.1 Laws of Boolean Algebra

 With values and operations in hand, the next aspect of Boolean algebra is that of
laws or properties. As with many kinds of algebra, the principal laws take the form
of equations between terms built up from variables using the operations of the algebra.
Such an equation is deemed a law or identity only when both sides have the same
value for all values of the variables, equivalently when the two terms denote the
same operation.

 A Boolean algebra can be formally de fi ned as a set B of elements A , B , C , D ,…
with the following properties:

 1. B has two binary operations, ∧ (logical AND) and ∨ (logical OR), which satisfy
the idempotent laws

 Ù = Ú = ,A A A A A A (5.1)

 the commutative laws

 Ù = ÙA B B A (5.2)

 Ú = Ú ,A B B A (5.3)

 and the associative laws

 () ()Ù Ù = Ù ÙA C B C B A
 (5.4)

 () () .Ú Ú = Ú ÚA C B C B A
 (5.5)

 2. The operations satisfy the absorption law

 () () .Ù Ú = Ú Ù =A A B A B A A
 (5.6)

 3. The operations are mutually distributive

 () () ()Ù Ú = Ù Ú ÙA B C A B A C
 (5.7)

 () () () .Ú Ù = Ú Ù ÚA B C A B A C
 (5.8)

 4. B contains universal bounds (the empty set) and (the universal set) which satisfy

 Ù =0 0A (5.9)

 Ú =0 A A (5.10)

 Ù =1 A A (5.11)

 Ú =1 1.A (5.12)

 5. B has a unary operation ®A A of complementation, which obeys the laws

475.1 Laws of Boolean Algebra

 Ù = 0A A (5.13)

 Ú = 1.A A (5.14)

 Huntington (1933) presented the following basis for Boolean algebra:
 Commutativity: .Ú = ÚA B B A

 Associativity: () () .Ú Ú = Ú ÚA C B C B A

 Huntington axiom: () ()! ! ! ! ! .Ú Ú Ú =A B A B A
 H. Robbins then conjectured that the Huntington axiom could be replaced with

the simpler Robbins axiom,

() ()()Ú Ú Ú =! ! ! ! .A B A B A

 The next table shows that this theory is suf fi cient to axiomatize all the valid laws
or identities of two-valued logic, that is, Boolean algebra. It follows that Boolean
algebra as commonly de fi ned in terms of these axioms coincides with the intuitive
semantic notion of the valid identities of two-valued logic.

 The XOR Gate Ä = +· ·A B A B A B .
 Also:

 Table 5.1 Specifi c axioms and theorem of Boolean algebra

 (1) A = 1, if A ¹ 0 A = 0, if A ¹ 1

 (2) If A = 0, then = 1A If A = 1, then = 0A

 (3) 0 + 0 = 0 0 × 0 = 0

 (4) 0 + 1 = 1 1 × 0 = 0

 (5) 1 + 1 = 1 1 × 1 = 1

 (6) =0 1 =1 0

 (7) A Ú 0 = A A × 1 = A ;

 (8) A Ú 1 = 1 A × 0 = 0;

 (9) A Ú A = A A × A = A ;

 (10) 1A AÚ = · 0A A =

 (11) + = ·A B A B = +·A B A B

 De Morgan’s laws

 (12) A B A BÙ = Ú and A B A BÚ = Ù

 Double negation

 (13) ()A A=

 (14) Ú =· ·A B A B A ()()·A B A B AÚ Ú =

48 5 Boolean Algebra

 () ()

Ä =
Ä Ä =

Ä =

Ä =
Ä =
+ = Å Å

= Å Å +

0;

;

1;

1 ;

0 ;

;

· .

A A

A A A A

A A

A A

A A

A B A B AB

A B A B A B

 5.2 Disjunctive Normal Form

 Soundness follows fi rstly from the fact that the initial laws or axioms we started
from were all identities, that is, semantically true laws. Secondly it depends on the
easily veri fi ed fact that the rules preserve identities.

 Completeness can be proved by fi rst deriving a few additional useful laws and
then showing how to use the axioms and rules to prove that a term with n vari-
ables, ordered alphabetically say, is equal to its n -ary normal form, namely a
unique term associated with the n -ary Boolean operation realized by that term
with the variables in that order. It then follows that if two terms denote the same
operation (the same thing as being semantically equal), they are both provably
equal to the normal form term denoting that operation, and hence by transitivity
provably equal to each other. There is more than one suitable choice of normal
form, but complete disjunctive normal form will do. A literal is either a variable
or a negated variable. A disjunctive normal form (DNF) term is a disjunction of
conjunctions of literals. (Associativity allows a term such as ()Ú ÚA B C to be
viewed as the ternary disjunction Ú ÚA B C , likewise for longer disjunctions, and
similarly for conjunction.) A DNF term is complete when every disjunction (con-
junction) contains exactly one occurrence of each variable, independently of
whether or not the variable is negated. Such a conjunction uniquely represents the
operation it denotes by virtue of serving as a coding of those valuations at which
the operation returns 1. Each conjunction codes the valuation setting the posi-
tively occurring variables to 1 and the negated 1s to 0; the value of the conjunc-
tion at that valuation is 1, and hence so is the whole term. At valuations
corresponding to omitted conjunctions, all conjunctions present in the term evalu-
ate to 0 and hence so does the whole term.

 In Boolean logic, a disjunctive normal form (DNF) is a standardization (or
normalization) of a logical formula which is a disjunction of conjunctive clauses.
A logical formula is considered to be in DNF if and only if it is a disjunction of one
or more conjunctions of one or more literals. A DNF formula is in full disjunctive
normal form, if each of its variables appears exactly once in every clause. As in
conjunctive normal form (CNF), the only propositional operators in DNF are and,

495.2 Disjunctive Normal Form

or, and not. The not operator can only be used as part of a literal, which means that
it can only precede a propositional variable. For example, all of the following
 formulas are in DNF (Table 5.2):

 (), , · ·= Úf A B C B C A B

 Or in DNF

() () (), , · · · · · ·

· · · · · · .

f A B C B C A B A A B C A B C C

A B C A B C A B C

= Ú = Ú Ú Ú

= Ú Ú

 Converting a formula to DNF involves using logical equivalences, such as the
double negative elimination, De Morgan’s laws, and the distributive law. All logical
formulas can be converted into disjunctive normal form. However, in some cases
conversion to DNF can lead to an exponential explosion of the formula.

 Тable 5.2 CNF and DNF for elementary logic functions

 Elementary logic functions DNF CNF

 0 y () () () ()Ú Ú Ú Ú· · ·x y x y x y x y

 x yÙ Ùx y () () (Ú Ú Ú· ·x y x y x y

 x yÙ x yÙ () () (· ·x y x y x yÚ Ú Ú
 x Ú· ·x y x y ()()Ú Ú·x y x y

 x yÙ Ùx y () () ()· ·Ú Ú Úx y x y x y

 y () ()· ·x y x yÚ ()()·x y x yÚ Ú

 x yÄ () ()· ·x y x yÚ ()()·x y x yÚ Ú

 x yÚ () () ()· · ·x y x y x yÚ Ú x yÚ

 x y¯ ·x y () () ()Ú Ú Ú· ·x y x y x y
 x yº () ()· ·x y x yÚ () ()Ú Ú·x y x y

 y () ()· ·x y x yÚ
 () ()Ú Ú·x y x y

 y x® () () ()· · ·x y x y x yÚ Ú
 x yÚ

 x () ()· ·x y x yÚ
 () ()Ú Ú·x y x y

 x y® () () ()· · ·x y x y x yÚ Ú x yÚ

 |x y () () ()· · ·x y x y x yÚ Ú x yÚ

 1 () () () ()· · · · .x y x y x y x yÚ Ú Ú y

51B. Borowik et al., Theory of Digital Automata, Intelligent Systems, Control
and Automation: Science and Engineering 63, DOI 10.1007/978-94-007-5228-3_6,
© Springer Science+Business Media Dordrecht 2013

 Abstract In this chapter the three fundamental logical operations are reviewed,
i.e.. the AND, OR, and NOT. The AND, OR, NOT, NAND, NOR and XOR gates
are explained together with their functional implementation. Additionally the
 chapter presents few combinational digital systems, like a full adder and the seven-
segment display and provides examples of designing combinational logic circuits
and the way of evaluating logic circuit outputs.

 6.1 Basi c Logical Functions and Gates

 Notation of basic logic gates shown in Tables 6.1 and 6.2 .
 In some countries such as Russia, Ukraine and others use close to the standard

91–1984 IEEE/ANSI notation of logic elements, see Table 6.2 .
 While each logical element (Table 6.1) or condition must always have a logic

value of either “0” or “1”, we also need to have ways to combine different logical
signals or conditions to provide a logical result.

 These designations we have used in the examples of Chap. 9 .
 When we deal with logical circuits (as in computers), we not only need to deal with

logical functions; we also need some special symbols to denote these functions in a logi-
cal diagram. There are three fundamental logical operations, from which all other func-
tions, no matter how complex, can be derived. These functions are named and, or, and
not. Each of these has a speci fi c symbol and a clearly-de fi ned behavior, as follows:

 6.1.1 The NOT Gate, or Inverter

 The inverter is a little different from AND and OR gates in that it always has exactly
one input as well as one output. Whatever logical state is applied to the input, the
opposite state will appear at the output.

 Chapter 6
 Basic Logical Functions and Gates. Logic Design

http://dx.doi.org/10.1007/978-94-007-5228-3_9

52 6 Basic Logical Functions and Gates. Logic Design

 Table 6.1

 91-1984 IEEE/ANSI
 The traditional notation
of logic elements Logical function

 1
A y

y A=

A
 The NOT gate, or inverter

 y A=

& A

B
y A

B
y

 The AND gate
 ·

&

= = Ù =
=
y A B A B

A B

B

≥1 A

y
 A

B
y

 The OR gate
 y A B A B= + = Ú

B

& A

y
 A

B
y

 The NAND gate

·y A B A B= = +

B

A ≥1
y

 A

B
y

 The NOR gate

·y A B A B= + =

2

A
M

y

B

 A

B
y

 The XOR gate

 y A B

AB AB

= Ä =

= +

 The NOT function is denoted by a horizontal bar over the value to be inverted,
as shown in the fi gure in Table 6.1 . In some cases a single quote mark (’) may also
be used for this purpose: A = 0 and A’ = 1 (0’ = 1) and 1’ = 0 . For greater clarity in
some logical expressions, we will use the overbar most of the time.

 In the inverter symbol, the triangle actually denotes only an ampli fi er, which in
digital terms means that it “cleans up” the signal but does not change its logical
sense. It is the circle at the output which denotes the logical inversion. The circle
could have been placed at the input instead, and the logical meaning would still be
the same.

 6.1.2 The AND Gate

 The AND gate implements the AND function. Both inputs must have logic 1 signals
applied to them in order for the output to be a logic 1. With either input at logic 0,
the output will be held to logic 0.

 There is no limit to the number of inputs that may be applied to an AND function,
so there is no functional limit to the number of inputs an AND gate may have.

536.1 Basic Logical Functions and Gates

 Table 6.2

 Basic logical
gates Notation

 Examples of the operation of gates
(for AND, NOT, OR)

 The AND
gate

&

X1

X2 X3

x1

x2

x3

 The NOT
gate, or
inverter

1 X1

X2

x1

x2

 The OR
gate

1

X1

X2
X3

x1

x2

x3

 The NOR
gate

1

 The NAND
gate

&

 The XOR
gate

M2

However, for practical reasons, commercial AND gates are most commonly manufac-
tured with 2, 3, or 4 inputs.

 ICs were fi rst developed in the 1960s. They are densely populated miniature
electronic circuits made up of hundreds and sometimes thousands of microscopically
small transistors, resistors, diodes and capacitors, all connected together on a single
chip of silicon.

 When assembled in a single package, as shown in Fig. 6.1 , we call the device an IC.
 There are two broad groups of IC: digital ICs and linear ICs. Digital ICs contain

simple switching-type circuits used for logic control and calculators, linear ICs
incorporate ampli fi er-type circuits which can respond to audio and radio frequency

54 6 Basic Logical Functions and Gates. Logic Design

 Fig. 6.1 IC

signals. The most versatile linear IC is the operational ampli fi er which has applications
in electronics, instrumentation and control.

 The IC is an electronic revolution. ICs are more reliable, cheaper and smaller
than the same circuit made from discrete or separate transistors, and electronically
superior. One IC behaves differently than another because of the arrangement of the
transistors within the IC.

 Manufacturers’ data sheets describe the characteristics of the different ICs, which
have a reference number stamped on the top.

 When building circuits, it is necessary to be able to identify the IC pin connection
by number. The number 1 pin of any IC is indicated by a dot pressed into the encap-
sulation; it is also the pin to the left of the cutout. Since the packaging of ICs has two
rows of pins they are called DIL (dual in line) packaged ICs.

 ICs are sometimes connected into DIL sockets and at other times are soldered
directly into the circuit.

 A standard Integrated Circuit (IC) package contains 14 or 16 pins, for practical
size and handling. A standard 14-pin package can contain four 2-input gates, three
3-input gates, or two 4-input gates, and still have room for two pins for power supply
connections, Figs. 6.2 and 6.3 .

 6.1.3 The OR Gate

 The OR gate is sort of the reverse of the AND gate. The OR function, like its verbal
counterpart, allows the output to be true (logic 1) if any one or more of its inputs are
true. In symbols, the OR function is designated with a plus sign (+). In logical
diagrams, the symbol to the left designates the OR gate.

556.1 Basic Logical Functions and Gates

+5V 14 13 12 11 10 9 8

1 2 3 4 5 6 7

GND

Vcc

 Fig. 6.2 IC 7421

+5V
14 13 12 11 10 9 8

1 2 3 4 5 6 7

GND

Vcc

 Fig. 6.3 IC 74LS08

 As with the AND function, the OR function can have any number of inputs.
However, practical commercial OR gates are mostly limited to 2, 3, and 4 inputs, as
with AND gates.

 While the three basic functions AND, OR, and NOT are suf fi cient to accomplish
all possible logical functions and operations, some combinations are used so
commonly that they have been given names and logic symbols of their own.

56 6 Basic Logical Functions and Gates. Logic Design

 We will discuss three of these. The fi rst is called NAND, and consists of an AND
function followed by a NOT function. The second, as you might expect, is called
NOR. This is an OR function followed by NOT. The third is a variation of the OR
function, called the Exclusive-OR, or XOR function. As with the three basic logic
functions, each of these derived functions has a speci fi c logic symbol and behavior,
which we can summarize as follows:

 6.1.4 The NAND Gate

 The NAND gate implements the NAND function, which is exactly inverted from
the AND function you already examined. With the gate shown to the left, both
inputs must have logic 1 signals applied to them in order for the output to be a logic
0. With either input at logic 0, the output will be held to logic 1.

 The circle at the output of the NAND gate denotes the logical inversion, just as it
did at the output of the inverter. Also in the fi gure (Table 6.1), note that the overbar
is a solid bar over both input values at once. This shows that it is the AND function
itself that is inverted, rather than each separate input.

 As with AND, there is no limit to the number of inputs that may be applied to
a NAND function, so there is no functional limit to the number of inputs a NAND
gate may have. However, for practical reasons, commercial NAND gates are
most commonly manufactured with 2, 3, 4 or 8 inputs, to fi t in a 14-pin or 16-pin
package, Figs. 6.4 and 6.5 .

14 13 12 11 10 9 8

1 2 3 4 5 6 7

GND

Vcc

+5V

 Fig. 6.4 IC 7430

576.1 Basic Logical Functions and Gates

 Fig. 6.5 IC 7400

 6.1.5 The NOR Gate

 The NOR gate is an OR gate with the output inverted. Where the OR gate allows the
output to be true (logic 1) if any one or more of its inputs are true, the NOR gate
inverts this and forces the output to logic 0 when any input is true.

 In symbols, the NOR function is designated with a plus sign (+), with an overbar
over the entire expression to indicate the inversion. In logical diagrams, the symbol
to the left designates the NOR gate. As expected, this is an OR gate with a circle to
designate the inversion.

 The NOR function can have any number of inputs, but practical commercial
NOR gates are mostly limited to 2, 3, and 4 inputs, as with other gates in this class,
to fi t in standard IC packages.

 6.1.6 The Exclusive-OR, or XOR Gate

 The Exclusive-OR, or XOR function is an interesting and useful variation on the
basic OR function. Verbally, it can be stated as, “Either A or B, but not both
(y A B AB AB= Ä = +).” The XOR gate produces a logic 1 output only if its two
inputs are different. If the inputs are the same, the output is a logic 0.

 The XOR symbol is a variation on the standard OR symbol. It consists of a plus
(+) sign with a circle around it. The logic symbol, as shown here, is a variation on
the standard OR symbol.

 Unlike standard OR/NOR and AND/NAND functions, the XOR function always
has exactly two inputs, and commercially manufactured XOR gates are the same.
Four XOR gates fi t in a standard 14-pin IC package.

58 6 Basic Logical Functions and Gates. Logic Design

 6.2 Universal Gates

 Universal gates are the ones which can be used for implementing any gate like
AND, OR and NOT, or any combination of these basic gates; NAND and NOR
gates are universal gates. But there are some rules that need to be followed when
implementing NAND or NOR based gates.

 To facilitate the conversion to NAND and NOR logic, we have two new graphic
symbols for these gates (Appendix D).

 NAND Gate (Fig . 6.6)
 NOR Gate (Fig. 6.7)
 Any logic function can be implemented using NAND gates. To achieve this, fi rst

the logic function has to be written in Sum of Product (SOP) form. Once logic function
is converted to SOP, then is very easy to implement using NAND gate. In other
words any logic circuit with AND gates in fi rst level and OR gates in second level
can be converted into a NAND-NAND gate circuit (Fig. 6.8).

 Implementing AND using NAND gates (Fig. 6.9)
 Implementing OR using NAND gates (Fig. 6.10)

BABAY +=⋅=

=

BABAY ⋅=+=

A

B
Y Y

A

B

 Fig. 6.6

NOR Gate

BABAY ⋅=+=

=

BABAY +=⋅=

A

B
Y

Y
A

B

 Fig. 6.7

AAAY =⋅=
A

 Fig. 6.8

http://dx.doi.org/10.1007/978-94-007-5228-3_BM1

596.2 Universal Gates

 6.2.1 Realization of Logic Function Using NOR Gates

 Any logic function can be implemented using NAND gates. To achieve this, fi rst the
logic function has to be written in Sum of Product (SOP) form. Once logic function
is converted to SOP, then is very easy to implement using NAND gate. In other
words any logic circuit with AND gates in fi rst level and OR gates in second level
can be converted into a NAND-NAND gate circuit.

 Implementing an inverter using NOR gate (Fig. 6.11)
 Implementing AND using NOR gates (Fig. 6.12)
 Implementing OR using NOR gates (Fig. 6.13)
 The next section of this book is devoted to combinational logic and deals with

various aspects of the analysis and design of combinational switching circuits. The
particular characteristic of a combinational switching circuit is that its outputs are
functions of only the present circuit inputs. First, switching algebra is introduced
as the basic mathematical tool essential for dealing with problems encountered in
the study of switching circuits. Switching expressions are de fi ned and are found to
be instrumental in describing the logical properties of switching circuits. Systematic

Implementing AND using NAND gates

BA)BA()BA(Y ⋅=⋅⋅⋅=

A

B

 Fig. 6.9

Implementing OR using NAND gates

BABA

)BB()AA(Y

+=⋅=

=⋅⋅⋅=A

B

 Fig. 6.10

Implementing an inverter using NOR gate

AAAY =+=A

 Fig. 6.11

60 6 Basic Logical Functions and Gates. Logic Design

simpli fi cation procedures of these expressions are next presented; these lead to more
economical circuits. Logical design is studied with special attention to conventional
logic, complementary metaloxide semiconductor (CMOS) circuits, and threshold
logic.

 6.3 Combinational Logic Circuits

 To choose representations, engineers consider types of digital systems. Most digital
systems divide into “combinational systems” and “sequential systems.” A combina-
tional system always presents the same output when given the same inputs. It is
basically a representation of a set of logic functions, as already discussed.

 A sequential system is a combinational system with some of the outputs fed back
as inputs. This makes the digital machine perform a “sequence” of operations.
Unlike Sequential Logic Circuits whose outputs are dependant on both their present
inputs and their previous output state giving them some form of Memory, the outputs
of Combinational Logic Circuits are only determined by the logical function of their
current input state, logic “0” or logic “1”, at any given instant in time as they have
no feedback, and any changes to the signals being applied to their inputs will imme-
diately have an effect at the output. In other words, in a Combinational Logic Circuit,
the output is dependant at all times on the combination of its inputs and if one of its
inputs condition changes state so does the output as combinational circuits have
“no memory”, “timing” or “feedback loops” (Fig. 6.14).

Implementing AND using NOR gates

BABA

)BB()AA(Y

⋅=+=

=+++=
B

A

 Fig. 6.12

Implementing OR using NOR gates

BA

)BA()BA(Y

+=

=+++=
A

B

 Fig. 6.13

616.3 Combinational Logic Circuits

 Combination Logic Circuits are made up from basic logic NAND, NOR or NOT
gates that are “combined” or connected together to produce more complicated
switching circuits. These logic gates are the building blocks of combinational logic
circuits. An example of a combinational circuit is a decoder, which converts the
binary code data present at its input into a number of different output lines, one at a
time producing an equivalent decimal code at its output.

 Combinational logic circuits can be very simple or very complicated and any
combinational circuit can be implemented with only NAND and NOR gates as these
are classed as “universal” gates. The three main ways of specifying the function of
a combinational logic circuit are:

 Truth Table: provides a concise list that shows the output values in tabular form
for each possible combination of input variables.
 Boolean Algebra: forms an output expression for each input variable that repre-
sents a logic “1”.
 Logic Diagram: shows the wiring and connections of each individual logic gate
that implements the circuit.

 As combination logic circuits are made up from individual logic gates only, they
can also be considered as “decision making circuits” and combinational logic is about
combining logic gates together to process two or more signals in order to produce at
least one output signal according to the logical function of each logic gate. Common
combinational circuits made up from individual logic gates that carry out a desired
application include Multiplexers, De-multiplexers, Encoders, Decoders, Full and
Half Adders etc., Fig. 6.15 .

Combinational
Logic Circuits

A

B

C

X

Y

OutputsInputs

 Fig. 6.14

Combinational Logic Circuits

Arithmetic and
Logical functions

Data
Transmission

Code Converters

Adders
Subtractors

Comparators
Etc.

Multiplexers
De-multiplexers

Encoders
Decoders

Binary
BCD

7-segment

 Fig. 6.15

62 6 Basic Logical Functions and Gates. Logic Design

 The principal application of switching theory is in the design of digital circuits.
The design of such circuits is commonly referred to as logical (or logic) design.
Most digital systems are constructed from electronic switching circuits. In this sec-
tion, we describe some components that are typical of the basic building blocks used
in constructing digital systems. Switching algebra will be used to describe the logical
behavior of networks composed of these building blocks as well as to manipulate
and simplify switching expressions, thereby reducing the number of components
used in the design. We shall be concerned with the logic functions that a circuit
performs rather than with its electronic structure or behavior. These examples will
introduce us to some practical aspects of logic design in which the speed of operation
and area limitations require ingenuity in arriving at a proper compromise.

 6.4 Full Adder

 A full adder adds binary numbers and accounts for values carried in as well as out.
A one-bit full adder adds three one-bit numbers, often written as A , B , and C

in
 ; A and

 B are the operands, and C
in
 is a bit carried in, Fig. 6.16 .

 The circuit produces a two-bit output sum typically represented by the signals
 C

out
 and S (Table 6.3).

1-bit full adder

Cin

Cout

 S

 B
 A

 Fig. 6.16

 Table 6.3

 Inputs Outputs

 А В С
 in
 S C

 out
 0 0 0 0 0
 0 0 1 1 0
 0 1 0 1 0
 0 1 1 0 1
 1 0 0 1 0
 1 0 1 0 1
 1 1 0 0 1
 1 1 1 1 1

636.5 Seven-Segment Display

 This truth table translates to the logical relationship
 Output S

() () () ()
[]

• • • • • • • •

• • •

• • • •

.

= + + + =

= + + + = Ä + Ä =

= Ä Ä

in in in in

in in in in in in

in

S A B C A B C A B C A B C

A B C B C A B C B C A B C A B C

A B C

 The carry bit output is given by the relationship

 Output C
 out

· · · · · · · ·

· ·() · ·() · ·()

· · · .

= + + + =

= + + + + + =

= + +

out in in in in

in in in in

in in

C A B C A B C A B C A B C

B C A A A C B B A B C C

B C A C A B

 Thus by design, we have the following logic circuit, Fig. 6.17 . Figure 6.18 shows
an example of the adder circuit in Multisim (Adder circuit in MC8 – Appendix B).

 6.5 Seven-Segment Display

 A popular method for displaying decimal digits is by means of the seven-segment
display shown in Fig. 6.19 . The display consists of a BCD-to-seven-segment decoder
and seven separate light segments (usually light-emitting diodes or crystals) each

S

Cout

B

A

Cin

 Fig. 6.17

http://dx.doi.org/10.1007/978-94-007-5228-3_BM1

64 6 Basic Logical Functions and Gates. Logic Design

of which can be turned on and off independently of the others. The display receives
its inputs in the form of BCD coded digits and transforms these inputs to obtain the
pattern of the corresponding decimal digit. Table 6.4 can be viewed as the truth table
for the output functions of the BCD-to-seven-segment decoder. The seven-segment
code corresponding to each digit is directly obtained from the pattern. For example,
to display the decimal digit 2, segments 2 3 5 6 7, , , ,f f f f f are turned on while segments
 4f and 1f remain off. In a similar manner, the rest of the seven-segment code is
obtained. The segment excitation functions can now be determined directly from
the table or by using maps. The expressions for the segment excitation functions are
thus as follows:

 Fig. 6.18

B
C

D
 t

o
7-

se
gm

en
t

de
co

de
r

 f2

f1 f3
f7

f6 f4

f5

f1
f2
f3
f4
f5
f6
f7

x1

x2

x3

x4

 Fig. 6.19

656.6 Design Combinational Logic Circuits

 Table 6.4

 Decimal digit x
 1
 x

 2
 x

 3
 x

 4
 f

 1
 f

 2
 f

 3
 f

 4
 f

 5
 f

 6
 f

 7

 1 0 0 0 1 0 0 1 1 0 0 0
 2 0 0 1 0 0 1 1 0 1 1 1
 3 0 0 1 1 0 1 1 1 1 0 1
 4 0 1 0 0 1 0 1 1 0 0 1
 5 0 1 0 1 1 1 0 1 1 0 1
 6 0 1 1 0 1 0 0 1 1 1 1
 7 0 1 1 1 0 1 1 1 0 0 0
 8 1 0 0 0 1 1 1 1 1 1 1
 9 1 0 0 1 1 1 1 1 0 0 1
 0 0 0 0 0 1 1 1 1 1 1 0

 1 1 2 3 2 4 3 4· · · .f x x x x x x x= Ú Ú Ú

 2 1 3 4 2 4 2 4· · · .f x x x x x x x= Ú Ú Ú

 3 2 3 4 3 4· · .f x x x x x= Ú Ú

 4 3 2 4 .f x x x= Ú Ú

 5 2 4 2 3 3 4 2 3 4· · · · · .f x x x x x x x x x= Ú Ú Ú

 6 2 4 3 4· · .f x x x x= Ú

 7 1 2 3 2 3 3 4· · · .f x x x x x x x= Ú Ú Ú

 For f
 1
 logic circuit, Fig. 6.20 (logic gates: NOT, AND, OR)

 For f
 1
 logic circuit, Fig. 6.21 (logic gate: NAND)

 Checking of the fi nal logic circuit device, Fig. 6.22 .

 6.6 Design Combinational Logic Circuits

 Example 1.
 Necessary to design a logic circuit which receives input signals A,B,C,D from

analog-to-digital converter (ADC), Fig. 6.23 .
 The resolution of the converter indicates the number of discrete values it can produce

over the range of analog values. The values are usually stored electronically in binary

66 6 Basic Logical Functions and Gates. Logic Design

 Fig. 6.20

 Fig. 6.21

form, so the resolution is usually expressed in bits. In consequence, the number of
discrete values available, or “levels”, is usually a power of 2. Logical function Z has
a high level (Z = 1) for the following values ABCD: 0111

2
 ; 1000

2
 ; 1001

2
 ; 1010

2
 ;

1011
2
 ; 1100

2
 ; 1101

2
 ; 1110

2
 ; 1111

2
 .

676.6 Design Combinational Logic Circuits

 Fig. 6.22

ADC A
B
C
D

A Logic circuit
B
C
D

Z Fig. 6.23

 Step 1 . We write the truth Table 6.5 .
 Step 2 . From the truth table choose a value of logic function Z , at which it takes
the value 1.

· · · · · · · · · · · · · · ·

· · · · · · · · · · · · .

Z A B C D A B C D A B C D A B C D A B C D

A B C D A B C D A B C D A B C D

= + + + + +

+ + +

68 6 Basic Logical Functions and Gates. Logic Design

 Step 3 . Minimization of the logic function

() ()
() ()

() ()

()

· · · · · · · · ·

· · · · · ·

· · · · · · · · · · ·

· · · · · · ·

· · · · ·

· · · ·

· · · · · .

= + + + + +

+ + + + =

= + + + + =

= + + + + =

= + + =

= + + =

= + = +

z A B C D A B C D D A B C D D

A B C D D A B C D D

A B C D A B C A B C A B C A B C

A B C D A B C C A B C C

A B C D A B A B

A B C D A B B

A B C D A B C D A

 Step 4. Checking of the fi nal logic circuit device, Fig. 6.24 .

 Example 2.
 Design logic circuit on the logic gates NAND or NOR.

 () or ().= Ú = ÙY Y1,4,6,10,11,12,12,13,14 0,2,3,5,7,8,9,15

 First variant (logic circuit on the logic gates NAND) (Fig. 6.25).

 .= + + +y X X X X X X X X X X X X3 2 1 0 3 2 1 3 2 1 2 0

 Table 6.5

№ Inputs Outputs Minterms

A B C D Z

0 0 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 0
4 0 1 0 0 0
5 0 1 0 1 0
6 0 1 1 0 0
7 0 1 1 1 1 · · ·A B C D®
8 1 0 0 0 1 · · ·A B C D®
9 1 0 0 1 1 · · ·A B C D®
10 1 0 1 0 1 · · ·A B C D®
11 1 0 1 1 1 · · ·A B C D®
12 1 1 0 0 1 · · ·A B C D®
13 1 1 0 1 1 · · ·A B C D®
14 1 1 1 0 1 · · ·A B C D®
15 1 1 1 1 1 · · ·A B C D®

696.6 Design Combinational Logic Circuits

 Since = + = •X X X X Y

• • •

• • • • • • • • • • • • .

= + + + =

= =

=

y X X X X X X X X X X X X

X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X

3 2 1 0 3 2 1 3 2 1 2 0

3 2 1 0 3 2 1 3 2 1 2 0

2 0 0 3 2 1 1 3 1 2 2 3 3 2 2 1 1 0

 Let

;

;

;

.

=

=

=

=

A X

B X

C X

D X

0

1

2

3

01XX 01XX 01XX
01XX

23XX 0 1 0 0

.XX

XXXXXX

XXXXy

02

123123

0123

+
+++

+=

23XX 1 0 0 1

23XX 1 1 0 1

23XX 0 0 1 1

 Fig. 6.25 Minimization of the function with gates NAND

 Fig. 6.24

70 6 Basic Logical Functions and Gates. Logic Design

 Checking of the fi nal logic circuit, Fig. 6.26 .
 Second variant (logic circuit on the logic gates NOR) (Fig. 6.27).

()·()·()·

()·()

.

= + + + + + +

+ + + +

= + + + + + + + + + + + + + +

y X X X X X X X X X

X X X X X X

X X X X X X X X X X X X X X X

3 2 1 3 2 1 3 2 1

3 2 0 2 1 0

3 2 1 3 2 1 3 2 1 3 2 0 2 1 0

 Checking of the fi nal logic circuit, Fig. 6.28 .
 Let

 2; ; ; .= = = =A X B X C X D X0 1 3

 Fig. 6.26 Checking of the fi nal logic circuit with gates NAND

01XX 01XX 01XX 01XX

23XX 0 1 0 0

.)XXX(

)XXX(

)XXX(

)XXX(

)XXX(y

012

023

123

123

023

++⋅
⋅++⋅
⋅++⋅
⋅++⋅

⋅++=

23XX 1 0 0 1

23XX 1 1 0 1

23XX 0 0 1 1

 Fig. 6.27 Minimization of the function with gates NOR

716.7 Evaluating Logic Circuit Outputs

 6.7 Evaluating Logic Circuit Outputs

 In general, the following rules must always be followed when evaluating a Boolean
expression:

 1. First, perform all inversions of single terms; that is, 0 = 1 or 1 = 0.
 2. Then perform all operations within parentheses.
 3. Perform an AND operation before an OR operation unless parentheses indicate

otherwise.
 4. If an expression has a bar over it, perform the operations of the expression fi rst

and then invert the result.

 Examples
 Given the following Boolean variables А = 0, В = 1, С = 1, D = 1. Find Y (Fig. 6.29).

 Solution:
 · · ·() 0·1·1·(0 1) 1·1·1·(0 1) 1·1·1·(1) 1·1·1·(0) 0Y A B C A D= + = + = + = = = .

 Give.n the following Boolean variables А = 0, В = 1, С = 1, D = 1. Find Y (Fig. 6.30).
 Solution:

 = + + = + + = + + = + = + =· · () 0·1·1 (0 1) 1·1·1 (0 1) 1·1·1 (1) 1·1·1 (0) 1.Y A B C A D

 Fig. 6.28 Checking of the fi nal logic circuit with gates NOR

72 6 Basic Logical Functions and Gates. Logic Design

)(DACBAY +⋅⋅⋅=DA +

CBA ⋅⋅

DA +

A

A

B

A

C

D

 Fig. 6.29

)DA(CBAY ++⋅⋅=

DA +

CBA ⋅⋅
AA

B

C

D

 Fig. 6.30

A

B

C

D

E

y

D)C)BA((+⋅+

 Fig. 6.31

 Given the following Boolean variables А = 0, В = 1, С = 1, D = 1, E = 1. Find Y
(Fig. 6.31).

 Solution:

(()·))· (()·))· (· ·))· ())·

())· ()· ()· .

= + + = + + = + + = + +

= + = + = = =

Y A B C D E 0 1 1 1 1 0 1 11 1 1 0 1 1 1

1 1 1 0 1 1 1 1 1 0

736.7 Evaluating Logic Circuit Outputs

 By combination circuits we mean logical circuits which do not contain
feedback.

 Existing methods for the synthesis of combination circuits cover only the fi rst
part of the problem, the construction and minimization of logical control in Boolean
operations.

 The other steps of synthesis which are essential to electronic circuits have not
been formalised. These include:

 1. The expression of Boolean equations in a given operator system.
 2. Attaining the desired quality for the physical characteristics of the network.
 3. The comparison of different versions of the network.

 The existence of ef fi cient algorithms for these steps simpli fi es the synthesis of
actual electronic circuits satisfying given reliability criteria with the minimum use of
equipment. There is also the possibility of the complete automation of the synthesis
with the help of digital computers.

75B. Borowik et al., Theory of Digital Automata, Intelligent Systems, Control
and Automation: Science and Engineering 63, DOI 10.1007/978-94-007-5228-3_7,
© Springer Science+Business Media Dordrecht 2013

 Abstract This chapter describes the graphical and algebraic most widely used ways
to minimize logic functions (in order to reduce the circuit’s complexity), like truth
tables, Karnaugh Maps that are based on the rule of complementation and the Quine-
Mccluskey method, which is functionally identical to Karnaugh mapping, but its
tabular form makes it more effi cient for use in computer algorithms. The chapter
provides many examples of minimization and their hardware implementations.

 7.1 Background and Terminology

 Engineers use many methods to minimize logic functions, in order to reduce the
circuit’s complexity. When the complexity is less, the circuit also has fewer errors
and less electronics, and is therefore less expensive.

 The most widely used simpli fi cation is a minimization algorithm like the Espresso
heuristic logic minimizer within a CAD system, although historically, binary decision
diagrams, an automated Quine-McCluskey algorithm, truth tables, Karnaugh Maps,
and Boolean algebra have been used .

 This chapter describes graphical and algebraic ways to minimize Boolean
functions.

 All the data path and control structures of a digital device can be represented as
Boolean functions, which take the general form, Fig. 7.1 .:

1 1 1 2

2 2 1 2

1 2

(, , ,);

(, , ,);

(, , ,),

= ¼

= ¼

¼¼¼¼¼¼¼¼¼
= ¼

m

m

n n m

Y F X X X

Y F X X X

Y F X X X

 Chapter 7
 Minimizing Boolean Functions

76 7 Minimizing Boolean Functions

where X
 1
 , X

 2
 , …, X

 m
 – is a set of Boolean variables (variables that may take on only the

values zero and one). These Boolean functions must be converted into logic networks
in the most economical way possible. What quali fi es as the “most economical way
possible” varies, depending on whether the network is built using discrete gates, a
programmable logic device with a fi xed complement of gates available, or a fully-
customized integrated circuit. But in all cases, minimization yields a network with as
small a number of gates as possible, and with each gate as simple as possible.

 The variables in the expression on the right side of a Boolean equation are the
input wires to a logic network. The left side of a Boolean equation is the output wire
of the network.

 Any Boolean equation or combinational logic network can be completely and
exactly characterized by a truth table. A truth table lists every possible combination
of values of the input variables, and the corresponding output value of the function
for each combination. There are 2 n rows in the truth table for a function or network
with n input variables, so it isn’t always practical to write out an entire truth table.
But for relatively small values of n , a truth table provides a convenient way to
describe the function or network’s behavior exactly.

 Every row of a truth table with a one in the output column is called a minterm. A
convenient way to represent a truth table is to treat each combination of input
variables as a binary number and to list the numbers of the rows that are minterms.

 Representations are crucial to an engineer’s design of digital circuits. Some
analysis methods only work with particular representations.

 The classical way to represent a digital circuit is with an equivalent set of logic
gates. Another way, often with the least electronics, is to construct an equivalent
system of electronic switches (usually transistors). One of the easiest ways is to
simply have a memory containing a truth table. The inputs are fed into the address
of the memory, and the data outputs of the memory become the outputs.

 For automated analysis, these representations have digital fi le formats that can be
processed by computer programs. Most digital engineers are very careful to select
computer programs (“tools”) with compatible fi le formats [13, 14].

 This document uses the function with the following truth table as a running
example (Table 7.1):

 This truth table can also be represented as the list of minterms, [10, 11, 12, 13,
14, 15, 16, 17, 18] . That is, the truth table has a 1 in the Y column for the rows where
the binary number represented by the values of A , B , and C is one of the numbers
listed inside the square brackets. The other two rows (0, 1, 2 and 6) have a 0 in the
 Y column, and thus are not minterms.

 One standard way to represent any Boolean function is called “sum of products”
(SOP) or, more formally, disjunctive normal form. In this form, the function is written
as the logical OR (indicated by +) of a set of AND terms, one per minterm.

X1

X2

Xm

Y1

Y2

Yn

 Fig. 7.1 The structure of
a digital device

777.1 Background and Terminology

 For example, the disjunctive normal form for our sample function would be:

 = + + +(, ,) · · · · · · .Y A B C A B C A B C A B C ABC

 There is also a conjunctive normal form, which represents an expression as a pro-
duct of sums rather than as a sum of products. The material presented below can be
extended to deal with conjunctive normal forms rather than disjunctive normal forms.

 A literal is a variable that is either complemented or not in a product term.
The minterms in our sample function have a total of six literals: , , , , ,A A B B C C .

 To appreciate the importance of minimization, consider the two networks in
Figs. 7.2 and 7.3 . Both behave exactly the same way. No matter what pattern of ones
and zeros you put into a, b, and c in Fig. 7.2 , the value it produces at y will be
exactly matched if you put the same pattern of values into the corresponding inputs
in Fig. 7.3 . Yet the network in Fig. 7.3 uses far fewer gates, and the gates it uses are

 Fig. 7.2 The logic circuit

 Table 7.1 Truth table

 № minterm A B C Y

 0 0 0 0 0
 1 0 0 1 0
 2 0 1 0 0
 3 0 1 1 1
 4 1 0 0 1
 5 1 0 1 1
 6 1 1 0 0
 7 1 1 1 1

78 7 Minimizing Boolean Functions

simpler (have smaller fan-ins) than the gates in Fig. 7.2 . Clearly, the minimized
circuit should be less expensive to build than the unminimized version. Although it
is not true for Fig. 7.3 , it is often the case that minimized networks will be faster
(have fewer propagation delays) than unminimized networks.

 The network in Fig. 7.3 uses only 4 literals because ,A C isn’t used. In the dis-
junctive normal form of a function, each product term has one literal for each variable.

 (, ,) · · · · · ·Y A B C A B C A B C A B C ABC AB BC= + + + = +

 Figure 7.2 implements our sample function, and demonstrates translating a
disjunctive normal form function directly into a logic network.

 There are many rules for manipulating a Boolean expression algebraically, but
there is just one rule that you need in order to minimize a function once it is in
disjunctive normal form: the rule of complementation.

 For example:

(, ,) (· ·) (· ·) (· ·) (· ·) (· ·)

(· · · ·) (· · · ·) (· · · ·)

· ·() · ·() · ·() · · ·

· ·() · .

= = Ú Ú Ú Ú =

= Ú Ú Ú Ú Ú =

= Ú Ú Ú Ú Ú = Ú Ú =

= Ú Ú = Ú

y f A B C A B C A B C A B C A B C A B C

A B C A B C A B C A B C A B C A B C

B C A A A B C C A B C C B C A B A B

B C A B B B C A

 The rule of complementation says that (ÚA A) is always true (1), so any two
terms that are in the form Ú()·A A B can be reduced to just B without changing its
meaning. Another way of saying this is that two product terms can be simpli fi ed if
the only difference between them is the value of exactly one variable, in which case
that variable can be eliminated from both terms to give an equivalent single term.

 Fig. 7.3 The logic circuit

797.1 Background and Terminology

For example +· · · ·A B C A B C is equivalent to +()· ·A A B C , which is the same as the
single product term, ·B C .

 Consider a few examples (Tables 7.2 , 7.3 , 7.4 , and 7.5).

 Example
 Thus, we obtain = + + + = + +· · · · .y A B A B A B B C A B C

 Table 7.3 Minimizing Boolean functions

 Boolean expression Clari fi cation

 ()·()= + + + +y A B C A B C

 = ()· · ·+ +A B C A B C = · ·x y z x y z+ + =

 · · · · · · · · ·= + + =A A B C A B B C A B C C

 · ·= A B C · 0=x x and · =x x x

 Table 7.2 Minimizing Boolean functions

 Boolean expression Clari fi cation

 · · · ·y A B A B A B B C= + + + =

 = · · · · ·A B A B A B A B B C+ + + + = x x xÚ =

 = ()B·A+ B·A+ A·B+ A·B+ B·C = · ·x y y x=

 = ·() ·() ·B A A A B B B C+ + + + = ·() · ·x y z x y x z+ = +

 = ·() ·() ·B A A A B B B C+ + + + = x y y x+ = +

 = ·1 ·1 ·B A B C+ + = 1x x+ =

 = ·B A B C+ + = ·1x x=

 = ·A B B C+ + = x y y x+ = +

 = A B C+ + ·x x y x y+ = + or ·x x y x y+ = +

 Table 7.4 Minimizing Boolean functions

 Boolean expression Clari fi cation

 ·(·) · · ·(·)y A B D C A B D AC A B D C= + + + + + =

· · · (· ·) · ·() · ·A B D A C A B D AC A B D A C= + + + + =

 · ·x y z x y z+ + =

 · · · ()() (· ·)·(·) A B D A C A B D A C A B D A C= + + + + + + = · ·x y z x y z= + +

 · · · · · · ·

· ()·()

A B D A C A C A B B C A D

C D A B D A C

= + + + + +

+ + + + + =

 · · · · · · ·

· ()·()

A B D A C A C A B B C A D

C D A B D A C

= + + + + +

+ + + + + =

 · · · · · · · ·

· · · · ·

A B D A C A C A B B C A D C D

A A B A C B C A D C D

= + + + + + +

+ + + + + + =

 · · ·() ·(1) · ·(1) ·A B D C A A A B B C A D C D= + + + + + + + + = 1x x+ =

 · ·A B D C A= + + = ·x x y x y+ = + or ·x x y x y+ = +

·B D C A= + +

80 7 Minimizing Boolean Functions

 Example
 Thus, we obtain = + + + + =()·() · ·y A B C A B C A B C

 Example
 Thus, we obtain

 = + + + + + = + +·(·) · · ·(·) · .y A B D C A B D AC A B D C B D C A

 Example
 Thus, we obtain

 = + + + + + + = + + +· · · · · · · ·() .y A B D C D A B C A B C D A B C D C A B

 7.2 Karnaugh Maps

 A Karnaugh Map is a graphical way of minimizing a Boolean expression based on
the rule of complementation. It works well if there are 2, 3, or 4 variables, but gets
messy or impossible to use for expressions with more variables than that.

 The idea behind a Karnaugh Map (Karnaugh 1953) is to draw an expression’s
truth table as a matrix in such a way that each row and each column of the matrix
puts minterms that differ in the value of a single variable adjacent to each other.
Then, by grouping adjacent cells of the matrix, you can identify product terms that
eliminate all complemented literals, resulting in a minimized version of the expres-
sion [4, 5, 19].

 The Karnaugh map (K-map for short), Maurice Karnaugh’s re fi nement of
Edward Veitch’s (1952) Veitch diagram, is a method to simplify Boolean algebra
expressions. The Karnaugh map reduces the need for extensive calculations by
taking advantage of humans’ pattern-recognition capability, permitting the rapid
identi fi cation and elimination of potential race conditions (Table 7.6).

 Truth table
 Figure 7.4 shows how the minterms in truth Table 7.4 are placed in a Karnaugh

Map grid for both 2-variable expressions.

 Table 7.5 Minimizing Boolean functions

 Boolean expression Clari fi cation

 · · · · · · · ·()y A B D C D A B C A B C D A B C= + + + + + + =

 · · · ()·() · A B D C D A B C A B C D A B C= + + + + + + + + + = · ·x y z x y z+ + =

 · · ·D C D A B B A A= + + + + =

 D C A B= + + +

817.2 Karnaugh Maps

 А В f(А,В)

 0 0 f (0,0)
 0 1 f (0,1)
 1 0 f (1,0)
 1 1 f (1,1)

 Table 7.6 Truth table

f (0,0)A = 0

B = 0 B = 1

A = 1

f (0,1)

f (1,0) f (1,1)

 Fig. 7.4 Karnaugh Map

DC)D,C,B,A(f

AB
00 01 11 10

00 f (0,0,0,0) f (0,0,0,1) f (0,0,1,1) f (0,0,1,0)
01 f (0,1,0,0) f (0,1,0,1) f (0,1,1,1) f (0,1,1,0)
11 f (1,1,0,0) f (1,1,0,1) f (1,1,1,1) f (1,1,1,0)
10 f (1,0,0,0) f (1,0,0,1) f (1,0,1,1) f (1,0,1,0)

 Fig. 7.6 Karnaugh Map

 Figures 7.5 and 7.6 shows how the minterms in truth tables are placed in a
Karnaugh Map grid for both 3 and 4-variable expressions.

 Figures 7.7 , 7.8 , 7.9 , and 7.10 shows how the minterms in truth tables are placed
in a Veitch diagram for both 2, 3, 4 and 5-variable expressions.

 The input variables can be combined in 16 different ways, so the Karnaugh map
has 16 positions, and therefore is arranged in a 4 × 4 grid.

 Fig. 7.5 The minterms in truth tables and Karnaugh Map

Truth table Karnaugh Map grid for both 3-variable
expressions

BC A B C f(A,B,C)
00 01 11 10

0 0 0 f (0,0,0)

A

f (0,00) f (0,01) f (0,11) f (0,10)f (0,0,1)
f (0,1,0)
f (0,1,1)
f (1,0,0) f (1,00) f (1,01) f (1,11) f (1,10)
f (1,0,1)
f (1,1,0)

0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1 f (1,1,1)

82 7 Minimizing Boolean Functions

00 01 11 10

C

B

0

1

A

BA Fig. 7.8 The Veitch diagram
for 3 variables

00 01 11 10

00

01

11

10
D

A

B

C

BA
DC

 Fig. 7.9 The Veitch diagram
for 4 variables

0 1

A

B

0

1

 Fig. 7.7 The Veitch diagram
for 2 variables

000 001 011 010 110 111 101 100

AA

C

E

00

01

11

10

D

B

CBA ED Fig. 7.10 The Veitch
diagram for 5 variables

837.2 Karnaugh Maps

 The binary digits in the map represent the function’s output for any given com-
bination of inputs. So 0 is written in the upper leftmost corner of the map because
 ƒ = 0 when A = 0 , B = 0 , C = 0 , D = 0 . Similarly we mark the bottom right corner as
1 because A = 1 , B = 0 , C = 1 , D = 0 gives ƒ = 1 . Note that the values are ordered in a
Gray code, so that precisely one variable changes between any pair of adjacent
cells.

 After the Karnaugh map has been constructed the next task is to fi nd the minimal
terms to use in the fi nal expression. These terms are found by encircling groups of
1’s in the map. The groups must be rectangular and must have an area that is a power
of two (i.e. 2n 1,2,4,8= ¼). The rectangles should be as large as possible without
containing any 0’s.

 Figure 7.11 shows example how the minterms in truth tables are placed in a
Karnaugh Map grid for both 3-variable expressions.

 (, ,) · · · · · · · · · · · .f A B C A B C A B C A B C A B C A B C A B C= Ú Ú Ú Ú == Ú

 Example 1

 .

1
2 3

64 5

7

Y = D·C ·B·A + D·C ·B·A + D·C ·B·A

+D·C·B·A+ D·C·B·A+ D·C·B·A

+D·C ·B·A + D·C ·B·A

 A Karnaugh Map (Veitch diagram) is used to produce a minimal sum of products
implementation of an expression by drawing rectangles around groups of adjacent
minterms in the map; each rectangle will correspond to one product term, and the
full expression will be constructed as the OR (sum) of all the product terms. The
goal is to have as few product terms as possible, which implies that each product
term will account for as many minterms as possible (Fig. 7.12).

 Fig. 7.11 Truth tables and
Karnaugh Map

Truth table Karnaugh Map grid for both
3-variable expressions

BC

A B C f(A,B,C)
00 01 11 10

0

A

1

1 1 1 1

0 1 0 0

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

84 7 Minimizing Boolean Functions

 Here are the rules for drawing the rectangles:

 Every minterm must be inside at least one rectangle, but there must not be any
zeros inside any rectangles.
 Every rectangle has to be as large as possible.
 Rectangles may wrap around to include cells in both the leftmost and rightmost
columns, likewise for the top and bottom rows.
 The number of minterms enclosed in a rectangle must be a power of 2 (1, 2, 4, 8,
or 16 minterms for 4-variable maps).

 Some functions have “don’t care” conditions, which are combinations of inputs
that will never occur, resulting in cases where it doesn’t matter whether the output
is a 0 or a 1. Where these “don’t care” conditions appear in a Karnaugh Map (usually
indicated by X’s instead of 1’s or 0’s), they may be included inside rectangles or not
depending on what will make the rectangles as few and as large as possible.

 = + +· · · · · .Y D B A D C B C A

 Example 2
 Truth table (Table 7.7)
 “Don’t cares” in a Karnaugh map, or truth table, may be either 1’s or 0’s, as long

as we don’t care what the output is for an input condition we never expect to see. We
plot these cells with an asterisk, * , among the normal 1’s and 0’s. When forming
groups of cells, treat the “don’t care” cell as either a 1 or a 0, or ignore the “don’t
cares”. This is helpful if it allows us to form a larger group than would otherwise be
possible without the “don’t cares”. There is no requirement to group all or any of the
“don’t cares”. Only use them in a group if it simpli fi es the logic.

 Fig. 7.12 The Veitch
diagram for 4 variables

11 16 15

14 18 13

17 12

.ACBCDABDY ⋅+⋅⋅+⋅⋅=

A

B

C

D

857.2 Karnaugh Maps

 = + +· · · · · · · · ·Z A B C D A B C D A B C D

 Figures 7.13 and 7.14 show an example of a Veitch diagram and Karnaugh Map
for both 4-variable expressions.

 = + + = + +· · · ().Z D A D B D C D A B C

 = + + = + +() · · · .Z D A B C D A D B D C

*1 *0 0 1

*1 * * *1

*1 *0 0 1

1 0 0 0

BD ⋅

AD ⋅

A

B

D

C

CD ⋅

 Fig. 7.13 The Veitch
diagram for 4 variables

 Table 7.7 Truth table

 D A B C Z

 0 0 0 0 0 0
 1 0 0 0 1 1 · · · 1A B C D =
 2 0 0 1 0 1 · · · 1A B C D =
 3 0 0 1 1 *
 4 0 1 0 0 1 · · · 1A B C D =
 5 0 1 0 1 *
 6 0 1 1 0 *
 7 0 1 1 1 *
 8 1 0 0 0 0
 9 1 0 0 1 0
 10 1 0 1 0 0
 11 1 0 1 1 *
 12 1 1 0 0 0
 13 1 1 0 1 *
 14 1 1 1 0 *
 15 1 1 1 1 *

86 7 Minimizing Boolean Functions

 The network in Fig. 7.15 uses only 4 literals because ,A C isn’t used
 After optimization of network we will get a next expression, Fig. 7.16 .
 Figure 7.17 shows the networks collected in Multisim 10.
 The set of all essential prime implicants must be contained in any irredundant

sum-of-products expression, while any prime implicant covered by the sum of the
essential prime implicants must not be contained in an irredundant expression. For
example, the prime implicant ·B D of function y of Fig. 7.18 is covered by the sum

)D()CBA(Z +⋅⋅=

B

C

D

A

 Fig. 7.16 The network after optimization

0 1 *1 1

1 *1 *1 *1

0 *0 *0 *1

0 0 *0 0

AD

BC
00 01 11 01

DA

 0
1

 1

1

01

00

DC BD
 Fig. 7.14 The Karnaugh
Map for 4 variables

D

CBA ++
A

B

C

D

.)(CDBDADCBADZ ⋅+⋅+⋅=++=

Z

 Fig. 7.15 The network

877.2 Karnaugh Maps

 Fig. 7.17 The networks collected in Multisim 10

88 7 Minimizing Boolean Functions

of four essential prime implicants and, therefore, must not be contained in any
irredundant expression for y . We can thus summarize the procedure for obtaining a
minimal sum-of-products expression for a function y .

 1. Determine all essential prime implicants and include them in the minimal
expression.

 2. Remove from the list of prime implicants all those that are covered by the essential
prime implicants.

 3. If the set derived in step 1 covers all the minterms of f then it is the unique
minimal expression. Otherwise, select additional prime implicants such that f is
covered completely and such that the total number and size of the prime implicants
thus added are minimal.

 The execution of step 3 is not always straightforward. While in most cases with
only a small number of variables this execution can be done by inspecting the map,
in more complicated cases, and when the number of variables is large, a more
systematic method is needed. The prime implicant chart presented in the next
section is a possible tool aiding the search for a minimal expression (Fig. 7.19).

Result () (, , ,) · · · · .

() · · · .

() ·

a y f A B C D C D A B C D

b y B D B C D

c y B D

- = = Ú

- = Ú

- =

 Fig. 7.18 The Karnaugh Map for 4 variables

BA⋅ BA⋅ BA⋅ BA⋅

DC ⋅ 0 0 1 0

D.CADCA

CBACBAy

⋅⋅+⋅⋅+
⋅⋅+⋅⋅=

DC ⋅ 1 1 1 0

DC⋅ 0 1 1 1

DC⋅ 0 1 0 0

 Fig. 7.19 Examples of
minimization using Karnaugh
maps for 4 variables

A
B

DC⋅ DC⋅ DC⋅
00 01 11 10 00 01 11 10 00 01 11 10

00
01
11
10

0
0 1
0
0

00
01
11
10

1
1

0 0

00
01
11
10

11 0 0
1 0
1 0 0
1 0 0

0 0 1 0
1 0 0
1 0 0

1 0

1 0 0
0 0 0 0
0 0 0 0
1 0 0 1

a) b) c)

897.3 On Quine-Mccluskey Method

 7.3 On Quine-Mccluskey Method

 The Quine-McCluskey, or Tabular, method is an algorithmic method that fi nds
prime implicants, necessary prime implicants, and minimum sum-of-products
expressions for digital systems with any number of variables.

 The Quine-McCluskey algorithm was developed by W.V. Quine and Edward
J. McCluskey. It is functionally identical to Karnaugh mapping, but the tabular
form makes it more ef fi cient for use in computer algorithms, and it also gives a
deterministic way to check that the minimal form of a Boolean function has been
reached.

 The method involves two steps:
 Finding all prime implicants of the function.
 Use those prime implicants in a prime implicant chart to fi nd the essential prime

implicants of the function, as well as other prime implicants that are necessary to
cover the function.

 Steps in the Tabular method

 1. Represent the minterms and the “don’t cares” by the values of the input vari-
ables; For example, in a 5-variable system minterm 7 would be represented
by 00111 ;

 2. Arrange the minterms and “don’t cares” in groups according to the number of
1’s:

 Group with no 1’s; •
 Group with a single 1; •
 Group with two 1’s; •

 3. Compare each member of a group to each member of the adjacent group:

 If two terms differ in a single position, then record the reduced expression and •
mark the two items as having been used.

 For example (Table 7.8)
 Or (Table 7.9)
 This step will identify all groups of two and all minterms/“don’t cares” that are

not members of a group of 2.
 Continue this process.

 4. As you compare minterms and “don’t cares”, keep the reduced expressions in
groups. For example

 Group from combining no “1”s with a single “1”.
 Group from combining a single “1” with two “1”s.
 Group from combining two “1”s with three “1”s.
 Combine groups of two

90 7 Minimizing Boolean Functions

 5. Check each group of two expressions against each expression in the adjacent
group.

 Comparison is easier at this step and subsequent steps, because simpli fi cation is
only possible if the groups of two have eliminated the same variable.

 For example (Tables 7.10 , 7.11 , and 7.12)
 The fi nal expression is

 ()= +, , · · .F A B C B C A B

 Table 7.10 Truth table

 Table 7.11 The truth table
after simplifi cation

 Table 7.12 The truth table
after simplifi cation (minterm)

=>

=>

 A B C F(A,B,C)

 0 0 1 1
 1 0 1 1

 Table 7.8 Truth table

 A B C F(A,B,C)

 * 0 1 1

 Table 7.9 The truth table
after simplifi cation

 № A B C F (A,B,C)

 0 0 0 0 0
 1 0 0 1 1
 2 0 1 0 0
 3 0 1 1 0
 4 1 0 0 0
 5 1 0 1 1
 6 1 1 0 1
 7 1 1 1 1

 № A B C F (A,B,C)

 1 0 0 1 1
 5 1 0 1 1
 6 1 1 0 1
 7 1 1 1 1

 № A B C F (A,B,C) Minterm

 1 * 0 1 1 ·B C

 6 1 1 * 1 ·A B

917.3 On Quine-Mccluskey Method

 Table 7.13 Truth table

 № A B C D S(A,B,C,D) Minterm Number of 1’s

 0 0 0 0 0 0
 1 0 0 0 1 0
 2 0 0 1 0 0
 3 0 0 1 1 0
 4 0 1 0 0 1 A ¢ BC ¢ D ¢ 1
 5 0 1 0 1 1 A ¢ BC ¢ D 2
 6 0 1 1 0 0
 7 0 1 1 1 1 A ¢ BCD 3
 8 1 0 0 0 1 AB ¢ C ¢ D ¢ 1
 9 1 0 0 1 0
 10 1 0 1 0 1 AB ¢ CD ¢ 2
 11 1 0 1 1 0
 12 1 1 0 0 1 ABC ¢ D ¢ 2
 13 1 1 0 1 1 ABC ¢ D 3
 14 1 1 1 0 0
 15 1 1 1 1 1 ABCD 4

 Table 7.14 The truth table after simplifi cation

 №
 Line
number A B C D

 Number
of 1’s

 1 4 0 1 0 0 1
 8 1 0 0 0 1

 2 5 0 1 0 1 2
 10 1 0 1 0 2
 12 1 1 0 0 2

 3 7 0 1 1 1 3
 13 1 1 0 1 3

 4 15 1 1 1 1 4

=>

=>

 Table 7.15 The truth table after simplifi cation

 Line number A B C D
 Number
of 1’s

 4,5 0 1 0 * 1
 4,12 * 1 0 0 1
 8,10 1 0 * 0 1
 8,12 1 * 0 0 1
 5,7 0 1 * 1 2
 5,13 * 1 0 1 2
 12,13 1 1 0 * 2
 7,15 * 1 1 1 3
 13,15 1 1 * 1 3

=>

92 7 Minimizing Boolean Functions

 Table 7.16 The truth table after simplifi cation

 Line number A B C D
 Number
of 1’s

 4,5,12,13 * 1 0 * 1
 4,12,5,13 * 1 0 * 1
 8,10 1 0 * 0 1
 8,12 1 * 0 0 1
 5,7,13,15 * 1 * 1 2
 5, 13,7, 15 * 1 * 1 2

 Table 7.17 The truth table after simplifi cation

 Line number A B C D
 Number
of 1’s Minterm

 4,5,12,13 * 1 0 * 1 B ¢ C
 8,10 1 0 * 0 1 AB ¢ D ¢
 8,12 1 * 0 0 1 AC ¢ D ¢
 5,7,13,15 * 1 * 1 2 BD

 Table 7.18 The truth table after simplifi cation

 Line number A B C D
 Number
of 1’s Minterm

 4,5,12,13 * 1 0 * 1 B ¢ C
 8,10 1 0 * 0 1 AB ¢ D ¢
 5,7,13,15 * 1 * 1 2 BD

 Continue comparing group to adjacent group and separating the simpler
expressions that result until no more simpli fi cations can be achieved. This is the set
of prime implicants.

 Make a chart of which minterms are in which prime implicants:

 The prime implicants de fi ne the rows; •
 The minterms de fi ne the columns; •
 The “don’t cares” are excluded at this point. •

 Example (Tables 7.13 , 7.14 , 7.15 , 7.16 , 7.17 , and 7.18)

 S(A,B,C,D) = BC ¢ + AB ¢ D ¢ + BD .

 Although more practical than Karnaugh mapping when dealing with more than
four variables, the Quine–McCluskey algorithm also has a limited range of use
since the problem it solves is NP-hard: the runtime of the Quine-McCluskey
algorithm grows exponentially with the number of variables. It can be shown
that for a function of n variables the upper bound on the number of prime implicants
is 3 n /n. Functions with a large number of variables have to be minimized with
potentially non-optimal heuristic methods, of which the Espresso heuristic logic
minimizer is the de-facto standard.

=>

=>

937.3 On Quine-Mccluskey Method

 Example
 Step 1 fi nding prime implicants.
 Minimizing an arbitrary function:

· · · · · · · · · · · ·

· · · · · · · · · · · · .

1 2 3 4

5 6 7 8

Y D C B A D C B A D C B A D C B A

D C B A D C B A D C B A D C B A

= + + +

+ + + +

 Or

 0011 0100 0110 0111 1010 1011 1100 1110.
1 2 3 4 5 6 7 8

Y = + + + + + + +

 At this point, one can start combining minterms with other minterms. If two
terms vary by only a single digit changing, that digit can be replaced with a * indi-
cating that the digit doesn’t matter (Table 7.19).

 For the fi rst and second groups:

01 0;

100;

0100 u 0110 *

0100 u 1100 *

®
®

 For the second and third groups:

0*11;

*011;

011*;

*110;

101*;

1*10;

11* 0;

0011 u 0111

0011 u 1011

0110 u 0111

0110 u 1110

1010 u 1011

1010 u 1110

1100 u 1110

®
®
®
®
®
®
®

 Table 7.19 The prime implicant table

 Group number Kontermy 0-th order Kontermy 1-th order Kontermy 2-th order

 0 –
 1 0100 01*0 *1*0

 *100
 2 0011 0*11

 0110 *011
 1010 011*
 1100 *110

 101*
 1*10
 11*0

 3 0111
 1011
 1110

 4 –

94 7 Minimizing Boolean Functions

 Table 7.20 The prime implicant table after simplifi cation

 Group number Kontermy 0-th order Kontermy 1-th order Kontermy 2-th order

 0 –
 1 0100 01*0 *1*0

 *100
 2 0011 0*11

 0110 *011
 1010 011*
 1100 *110

 101*
 1*10
 11*0

 3 0111
 1011
 1110

 4 –

 Perform the bonding kontermy fi rst and second order (Table 7.20)

01* 0 11* 0 *1* 0;

*100 *110 *1* 0;

u

u

®
®

 1 0 0*11 *011 011* 101* 1*10.Y = + + + + +

 Step 2: Prime implicant chart.
 None of the terms can be combined any further than this, so at this point we

construct an essential prime implicant table. Along the side goes the prime impli-
cants that have just been generated, and along the top go the minterms speci fi ed
earlier. The “don’t care” terms are not placed on top – they are omitted from this
section because they are not necessary inputs (Table 7.21).

 Here, each of the essential prime implicants has been starred – the prime impli-
cant *1*0 (·C A) can be ‘covered’ by the 0100 (· · ·D C B A), 0110 (· · ·D C B A), 1100
(· · ·D C B A), 1110 (· · ·D C B A). If a prime implicant is essential then, as would be
expected, it is necessary to include it in the minimized Boolean equation. In some
cases, the essential prime implicants do not cover all minterms, in which case addi-
tional procedures for chart reduction can be employed.

 Drawing logical product of logical sums of individual columns implicants

 (B1+C1)·A1·(A1+ D1)·(B1+ D1)·(E1+ F1)·(C1+ E1)·A1·(A1+ F1)

 Or

A1·(B1+C1·D1)·(E1+C1·F1) =

= A1·B1·E1+ A1·B1·C1·F1+ A1·C1·D1·E1+ A1·C1·D1·F1.

957.3 On Quine-Mccluskey Method

 Instead of A1, B1, E1, we substitute the corresponding implicant –
 y = *1*0 + 0*11 + 101*

 The fi nal expression is

 = + +· · · · · .Y C A D B A D C B

 Figures 7.20 and 7.21 show an example of a Karnaugh Map for both 4-variable
expressions –

 + + +1· 1· 1 1· 1· 1· 1 1· 1· 1· 1 1· 1· 1· 1.A B E A B C F A C D E A C D F

 Example
 Minimizing an arbitrary function

 ()·()·()·().
41 2 3

Y D C B A D C B A D C B A D C B A= + + + + + + + + + + + +

 ·()·()·() ·().
75 6 8

D C B A D C B A D C B A D C B A+ + + + + + + + + + + +

00 01 11 10
1

1 1 1

1 1

1 1

A1B1E1 00

01

11

10
D

A

B

C

BA
DC

E1

A1

B1

 Fig. 7.20 The Veitch diagram

 Table 7.21 Prime implicant chart

 Prime
implicants

 1 2 3 4 5 6 7 8

 0011 0100 0110 0111 1010 1011 1100 1110

 A1 = *1*0 * * * *
 B1 = 0*11 * *
 C1 = *011 * *
 D1 = 011* * *
 E1 = 101* * *
 F1 = 1*10 * *

96 7 Minimizing Boolean Functions

00 01 11 10
1

1 1 1

1 1

1 1

A1B1C1F1 00

01

11

10
D

A

B

C

BA
DC

F1

D1

C1

C1

 Fig. 7.21 The Veitch diagram

 At this point, one can start combining maxterms with other maxterms. (Use the
expression + =()(·)A X A X A).

 1 and 4 maxterms = 4()·() .D C B A D C B A D B A+ + + + + + = + + (1)

 1 and 6 maxterms = 6()·() .D C B A D C B A C B A+ + + + + + = + + (2)

 2 and 3 maxterms = 3()·() .D C B A D C B A D C A+ + + + + + = + + (3)

 2 and 7 maxterms = ()·() .
7

D C B A D C B A C B A+ + + + + + = + + (4)

 3 and 4 maxterms = ()·() .
4

D C B A D C B A D C B+ + + + + + = + + (5)

 3 and 8 maxterms =
8()·() .D C B A D C B A C B A+ + + + + + = + + (6)

 5 and 6 maxterms = 6()·() .D C B A D C B A D C B+ + + + + + = + + (7)

 5 and 8 maxterms =
8()·() .D C B A D C B A D B A+ + + + + + = + + (8)

 7 and 8 maxterms = 8()·() .D C B A D C B A D C A+ + + + + + = + + (9)

 Using the expression =·A A A , we obtain

 ()·()·()·()·
41 2 3

Y D C B A D C B A D C B A D C B A= + + + + + + + + + + + +

 ·()·()·()·()·
75 6 8

D C B A D C B A D C B A D C B A+ + + + + + + + + + + +

·()·()·()·()·()·

·()·()·()·()

3 51 2 4

96 87

D B A C B A D C A C B A D C B

C B A D C B D B A D C A

+ + + + + + + + + +

+ + + + + + + +

977.3 On Quine-Mccluskey Method

 Or, using the expression + =·()A A B A , we obtain

3 51 2 6
4

98
7

Y = (D+ B+ A)·(C + B+ A)·(D+C+ A)·(C + B+ A)·(D+C+ B)·(C + B+ A)·

·(D+ C + B)·(D+ B+ A)·(D+C+ A)

 Using the expression + + =()·()A X A X A , we obtain

 3 and 9 maxterms = ()·() .
3 9

D C A D C A C A+ + + + = +

 4 and 6 maxterms = ()·() .
64

C B A C B A C A+ + + + = +
 Using the expression =·A A A , we obtain

3 51 2 6
4

98
7

Y = (D+ B+ A)·(C + B+ A)·(D+C+ A)·(C + B+ A)·(D+C+ B)·(C + B+ A)·

·(D+ C + B)·(D+ B+ A)·(D+C+ A)·(C + A).

 Using the expression + =·()A A B A , we obtain

51 2 8
7Y = (D+ B+ A)·(C + B+ A)·(D+C+ B)·(D+ C + B)·(D+ B+ A)·(C + A).

 Apply Step 2: prime implicant chart (Table 7.22)
 Here, each of the essential prime implicants has been starred – the prime impli-

cant +C A can be ‘covered’ by the maxterms + + + ,D C B A + + + ,D C B A
 + + + ,D C B A + + +D C B A .

 The fi nal implicant chart (Table 7.23)
 The fi nal expression is

 = + + + + +()·()·().Y C A D B A D C B

 Table 7.22 Prime implicant chart

 Prime
implicants

 Maxterms

 D C

B A

+ +

+ +

 D C

B A

+ +
+ +

D C

B A

+ +

+ +

D C

B A

+ +

+ +

D C

B A

+ +

+ +

D C

B A

+ +

+ +

D C

B A

+ +
+ +

D C

B A

+ +

+ +

 C A+ * * * *

 D B A+ + * *

 C B A+ + * *

 D C B+ + * *

 D C B+ + * *

 D B A+ + * *

98 7 Minimizing Boolean Functions

 Table 7.23 The fi nal implicant chart

 Prime
implicants

 Maxterms

 D C

B A

+ +

+ +
 D C

B A

+ +
+ +

 D C

B A

+ +

+ +
 D C

B A

+ +

+ +
 D C

B A

+ +

+ +
 D C

B A

+ +

+ +
 D C

B A

+ +
+ +

 D C

B A

+ +

+ +

 C A+ * * * *

 D B A+ + * *

 D C B+ + * *

 Or

()·()·()

· · · · · .

Y C A D B A D C B

Y C A D B A D C B C A D B A D C B

= + + + + +

= + + + + + + + = + +

 Example
 Minimizing an arbitrary function

1 2 3 4 5 6

7 8

Y = D·C ·B·A+ D·C ·B·A+ D·C ·B·A+ D·C ·B·A+ D·C ·B·A+ D·C ·B·A+

+D·C ·B·A+ D·C ·B·A.

 At this point, one can start combining minterms with other minterms. (Use the
expression + =· ·A X A X A).

 1 and 4 minterms = 1 4D·C ·B·A+ D·C ·B·A = D·B·A. (1)
 1 and 6 minterms = 1 6D·C ·B·A+ D·C ·B·A = C·B·A. (2)
 2 and 3 minterms = 2 3D·C ·B·A+ D·C ·B·A = D·C·A. (3)
 2 and 7 minterms = 2 7D·C ·B·A+ D·C ·B·A = C·B·A. (4)
 3 and 4 minterms = 3 4D·C ·B·A+ D·C ·B·A = D·C·B. (5)
 3 and 8 minterms = 3 8D·C ·B·A+ D·C ·B·A = C·B·A. (6)
 5 and 6 minterms = 5 6D·C ·B·A+ D·C ·B·A = D·C·B. (7)
 5 and 8 minterms = 5 8D·C ·B·A+ D·C ·B·A = D·B·A. (8)
 7 and 8 minterms = 7 8D·C ·B·A+ D·C ·B·A = D·C·A. (9)

 Using the expression + =A A A , we obtain

1 2 3 4 5 6

7 8

Y = D·C ·B·A+ D·C ·B·A+ D·C ·B·A+ D·C ·B·A+ D·C ·B·A+ D·C ·B·A+

+D·C ·B·A+ D·C ·B·A+ D·B·A+C·B·A+ D·C·A+C·B·A+ D·C·B+

+C·B·A+ D·C·B+ D·B·A+ D·C·A.

997.3 On Quine-Mccluskey Method

 Table 7.25 The fi nal implicant chart

 Prime
implicants

 Minterms

 · ·

·

D C

B A

 · ·

·

D C

B A

 · ·

·

D C

B A

 · ·

·

D C

B A

 · ·

·

D C

B A

 · ·

·

D C

B A

 · ·

·

D C

B A

 · ·

·

D C

B A

 ·C A * * * *

 · ·D B A * *

 · ·D C B * *

 Using the expression + =·A A B A , we obtain

4
1 2 3 5

7
6 8 9

Y = D· B·A+C· B·A+ D· C·A+C·B·A+ D· C·B+

+C· B·A+ D·C·B+ D· B·A+ D· C·A.

 Using the expression + =· ·A X A X A , we obtain
 3 and 9 minterms = 3 9D· C·A+ D· C·A = C·A.

 4 and 6 minterms =
3 6

C·B·A+ B·C·A = C·A.
 Using the expression + =A A A , we obtain

4
1 2 3 5

7 8
6 9

Y = D· B·A+C· B·A+ D· C·A+C·B·A+ D· C·B+

+C· B·A+ D·C·B+ D·B·A+ D· C·A+C·A.

 Using the expression + =·A A B A , we obtain

7

1 2 5 8Y = D· B·A+C· B·A+ D· C·B+ D·C·B+ D· B·A+C·A.

 Apply Step 2: prime implicant chart (Table 7.24)
 Here, each of the essential prime implicants has been starred – the prime implicant

 ·C A can be ‘covered’ by the minterms · · · ,D C B A · · · ,D C B A · · · ,D C B A · · ·D C B A .
 The fi nal implicant chart (Table 7.25)

 Table 7.24 Prime implicant chart

 Prime implicants

 Minterms

 · ·

·

D C

B A

 · ·

·

D C

B A

 · ·

·

D C

B A

 · ·

·

D C

B A

 · ·

·

D C

B A

 · ·

·

D C

B A

 · ·

·

D C

B A

 · ·

·

D C

B A

 ·C A * * * *
 · ·D B A * *
 · ·C B A * *
 · ·D C B * *
 · ·D C B * *
 · ·D B A * *

100 7 Minimizing Boolean Functions

 The fi nal expression is = + +· · · · · .Y C A D B A D C B
 Below are options for logical expressions. Perform the minimization of these

functions using – the laws of Boolean algebra, the Karnaugh Map method and the
implicant charts (Table 7.26).

 Table 7.26 Minimization of Boolean expression

 Variant Boolean expression

 1 ·(·) · · ·(·).y A B D D A B C D A B D C= + + + + +

 2 · · · · ·(·) · · .= + + + + +y A B D A B D A B D C A B C D

 3 · · ·(·) · · · · .y A B D A B D C A B D D A B C= + + + + +

 4 · · ·(·) · ·(·).y A B C A B D C D A A B D C= + + + + +

 5 · ·(·) · ·(·) · · · .y D A A B D C A B A B D C D A B C= + + + + + +

 6 · ·(·) · ·(·) · · · .y D A A B D C A B A B D C D A B C= + + + + + +

 7 · ·(·) · ·(·) · · · · .y D A A B D C A B A B D C D A B C A B= + + + + + + +

 8 · · ·(·) · · · · · · ·(·).y A B D A B D C D A B C A B C D A A B D C= + + + + + + +

 9 ·(·) · · · · · · .y A B D C D A B C A B C A D C= + + + + +

 10 · ·(·) (· ·) · · .y D A A B D C C A B D D A B C D= + + + + + +

 11 ·(·) ·(· · · ·).y A B D C D A B C A B C= + + +

 12 · ·() ·(·) ·(· · · ·).y D A A B C A B D C D A B C A B C= + + + + + +

 13 · ·() ·(·) ·(· · · ·) .y D A A B C B A D C D B C A A B C D= + + + + + + +

 14 · · · · ·() ·(· ·) · · · .y A B D C D A A B C A B D C D D A B C= + + + + + +

 15 ·(·) ·(· · · ·).y C A D B D A B C A B C= + + +

 16 · · · · · · · · ·().y A B D C D A B C A B C D A A B C= + + + + + +

 17 () · · · · · · · · ·() · · .y C D A C D A B C A B C D D A A B C A C D= + + + + + + + +

 18 · ·(·) · · · · · ·().y A B C D A B D B C D D A A B C= + + + + +

 19 · A· · · · · · ·().y A B D A B C A B C D A A B C= + + + + + +

 20 ·(·) · · · · · · .y A B D C D A B C A B C A D C= + + + + +

 21 ·(·) · ·(·) · · · · .= + + + + + +y A B D C A B A B D D D A B C A B

 22 · · · · ·(·) · · .y A B D A B D A B D C A B C D= + + + + +

 23 ·(·) ·(· · · ·).y D B D A D A B C A B C= + + +

 24 ·(· ·) · · ·(·).y A B D C D A B C D A B D C= + + + + +

 25 ·(· ·) · · ·(·).y A B D A D A B C D A B D C= + + + + +

101B. Borowik et al., Theory of Digital Automata, Intelligent Systems, Control
and Automation: Science and Engineering 63, DOI 10.1007/978-94-007-5228-3_8,
© Springer Science+Business Media Dordrecht 2013

 Abstract The chapter analyzes the fundamentals of sequential logic, like catego-
ries of bistable devices (i.e. the latch and the fl ip-fl op) and more complex circuits
built from these basic blocks, like the basic RS NAND latch, the clocked RS NAND
latch, a basic digital counter, a synchronous binary counter, BCD counter, the
Johnson counter, serial-to-parallel shift register, parallel-to-serial shift register,
timer, the multiplexer, the demultiplexer, digital comparator and the digital encoder
and decoder.

 8.1 Latches

 This chapter begins a study of the fundamentals of sequential logic. We study two
categories of bistable devices, the latch and the fl ip- fl op. Bistable devices have two
stable states, called SET and RESET; they can retain either of these states inde fi nitely,
making them useful as storage devices. The basic difference between latches and
 fl ip- fl ops is the way in which they are changed from one state to the other. The fl ip-
 fl op is a basic building block for counters, registers, and other sequential control
logic and is used in certain types of memories. The monostable multivibrator,
 commonly known as the one-shot, has only one stable state. A one-shot produces a
single controlled-width pulse when activated or triggered. The astable multivibrator
has no stable state and is used primarily as an oscillator, which is a self-sustained
waveform generator. Pulse oscillators are used as the sources for timing waveforms
in digital systems.

 In electronics, a fl ip- fl op is a circuit that has two stable states and can be used to
store state information.

 A fl ip- fl op is usually controlled by control signals that can include a clock signal.
The outputs usually include the complement as well as the normal output.

 Chapter 8
 Latches, Flip-Flops, Counters, Registers,
Timer, Multiplexer, Decoder, Etc.

102 8 Latches, Flip-Flops, Counters, Registers, Timer, Multiplexer, Decoder, Etc.

 8.1.1 The Basic RS NAND Latch

 In order for a logical circuit to “remember” and retain its logical state even after the
controlling input signal(s) have been removed, it is necessary for the circuit to
include some form of feedback. We might start with a pair of inverters, each having
its input connected to the other’s output. The two outputs will always have opposite
logic levels.

 The problem with this is that we don’t have any additional inputs that we can use to
change the logic states if we want. We can solve this problem by replacing the inverters
with NAND or NOR gates, and using the extra input lines to control the circuit.

 The circuit shown below is a basic NAND latch. The inputs are generally desig-
nated “ S ” and “ R ” for “ Set ” and “ Reset ” respectively. Because the NAND inputs
must normally be logic 1 to avoid affecting the latching action, the inputs are
 considered to be inverted in this circuit.

 For the NAND latch circuit, both inputs should normally be at a logic 1 level.
Changing an input to a logic 0 level will force that output to a logic 1. The same
logic 1 will also be applied to the second input of the other NAND gate, allowing
that output to fall to a logic 0 level. This in turn feeds back to the second input of the
original gate, forcing its output to remain at logic 1.

 Applying another logic 0 input to the same gate will have no further effect on
this circuit. However, applying a logic 0 to the other gate will cause the same
 reaction in the other direction, thus changing the state of the latch circuit the other
way (Fig . 8.1).

 Note that it is forbidden to have both inputs at a logic 0 level at the same time.
That state will force both outputs to a logic 1, overriding the feedback latching
action. In this condition, whichever input goes to logic 1 fi rst will lose control, while
the other input (still at logic 0) controls the resulting state of the latch. If both inputs
go to logic 1 simultaneously, the result is a “race” condition, and the fi nal state of
the latch cannot be determined ahead of time.

 An active-LOW input S-R latch is formed with two cross-coupled NAND gates,
as shown in Fig. 8.2 . Notice that the output of each gate is connected to an input of
the opposite gate. This produces the regenerative feedback that is characteristic of
all latches and fl ip- fl ops.

 Fig. 8.1 RS NAND Latch

1038.1 Latches

 Fig. 8.2 An active-LOW input RS latch is formed with two cross-coupled NAND gates

 Table 8.1 Gated RS NAND
latch truth table

Q

S

C

Q

CLEAR

SET

Q
Q

 Fig. 8.3 Latch output remembers the last input that was activated and will not change states until
the opposite input is activated

 Truth table for the basic RS NAND latch (Table 8.1).
 If the S and R waveforms in Fig . 8.3 are applied to the inputs of the latch in

Fig. 8.4 , determine the waveform that will be observed on the Q output. Assume
that Q is initially LOW.

 SET CLEAR Quit

 1 1 No change
 0 1 Q = 1
 1 0 Q = 0
 0 0 Not allowed (1).= =Q Q

104 8 Latches, Flip-Flops, Counters, Registers, Timer, Multiplexer, Decoder, Etc.

 8.1.2 The Basic RS NOR Latch

 While most of our demonstration circuits use NAND gates, the same functions can
also be performed using NOR gates. A few adjustments must be made to allow for
the difference in the logic function, but the logic involved is quite similar.

 The circuit shown below is a basic NOR latch. The inputs are generally designated
“ S ” and “ R ” for “ Set ” and “ Reset ” respectively. Because the NOR inputs must
normally be logic 0 to avoid overriding the latching action, the inputs are not inverted
in this circuit.

 An active-HIGH input S-R (SET-RESET) latch is formed with two cross- coupled
NOR gates, as shown in Fig. 8.5 .

 Truth table for the basic RS NOR latch (Table 8.2).

T1 T2 T3 T4 T5 T6

SET

CLEAR

1

Q

0

1 Fig. 8.4 The waveforms for
example basic RS NAND
latch

Q

C

S

Q

 Fig. 8.5 RS fl ip-fl op
composed of two NOR gates

 Table 8.2 Gated RS NOR
latch truth table

 SET CLEAR Quit

 0 0 No change
 1 0 Q = 1
 0 1 Q = 0
 1 1 Not allowed (0).= =Q Q

1058.1 Latches

 One problem with the basic RS NOR latch is that the input signals actively drive
their respective outputs to a logic 0, rather than to a logic 1. Thus, the S input signal
is applied to the gate that produces the Q output, while the R input signal is applied
to the gate that produces the Q output. The circuit works fi ne, but this reversal of
inputs can be confusing when you fi rst try to deal with NOR-based circuits.

 8.1.3 The Clocked RS NAND Latch

 By adding a pair of NAND gates to the input circuits of the RS latch, we accomplish
two goals: normal rather than inverted inputs and a third input common to both
gates which we can use to synchronize this circuit with others of its kind, Fig. 8.6 .

 The clocked RS latch circuit is very similar in operation to the basic latch. The S
and R inputs are normally at logic 0, and must be changed to logic 1 to change the
state of the latch. However, with the third input, a new factor has been added. This
input is typically designated C or CLK, because it is typically controlled by a clock
circuit of some sort, which is used to synchronize several of these latch circuits with
each other. The output can only change state while the CLK input is a logic 1. When
CLK is a logic 0, the S and R inputs will have no effect.

 The same rule about not activating both the S and R inputs simultaneously holds
true: if both are logic 1 when the clock is also logic 1, the latching action is bypassed
and both outputs will go to logic 1. The difference in this case is that if the CLK
input drops to logic 0 fi rst, there is no question or doubt – a true race condition will
exist, and you cannot tell which way the outputs will come to rest. The example
circuit on this page re fl ects this uncertainty.

 For correct operation, the selected R or S input should be brought to logic 1, then
the CLK input should be made logic 1 and then logic 0 again. Finally, the selected
input should be returned to logic 0.

 Fig. 8.6 The Clocked RS NAND latch

106 8 Latches, Flip-Flops, Counters, Registers, Timer, Multiplexer, Decoder, Etc.

 8.2 Edge-Triggered Flip-Flops

 Although the internal circuitry of latches is interesting to watch on an individual
basis, placing all of those logic symbols in a diagram involving multiple fl ip- fl ops
would rapidly generate so much clutter that the overall purpose of the diagram
would be lost. Now we are using one symbol to represent a cluster of logic gates
connected to perform a speci fi c function.

 Flip- fl ops are synchronous bistable devices, also known as bistable multivibrators. In
this case, the term synchronous means that the output changes state only at a speci fi ed
point on the triggering input called the clock (CLK), which is designated as a control
input, C; that is, changes in the output occur in synchronization with the clock.

 8.2.1 Flip-Flop Symbols

 An edge-triggered fl ip- fl op changes state either at the positive edge (rising edge) or
at the negative edge (falling edge) of the clock pulse and is sensitive to its inputs
only at this transition of the clock. Three types of edge-triggered fl ip- fl ops are
 covered in this section: SR, D, and JK. Although the S-R fl ip- fl op is not available in
IC form, it is the basis for the D and J-K fl ip- fl ops. The logic symbols for all of these
 fl ip- fl ops are shown in Table 8.3 .

 As you have no doubt noticed, the symbols above are nearly identical – only the
inputs vary. In each of the symbols above, the clock input is marked by the small
angle, rather than by the letters CLK. That little angle marker actually provides two
pieces of information, rather than one. First, of course, it marks the clocking input.
Second, it speci fi es that these are edge-triggered fl ip- fl ops.

 Any of these symbols may be modi fi ed according to their actual use within the
larger circuit.

 It is very seldom that a fl ip- fl op will actually be used alone. Such circuits are far
more useful when grouped together and acting in concert. There are two general
ways in which fl ip- fl ops may be interconnected to perform useful functions: counters

 Table 8.3 Flip-fl op symbols

 JK

C

J Q

QK

 D

C

D
Q

Q

 RS

C

R Q

QS

 T

T

Q

Q

1078.2 Edge-Triggered Flip-Flops

and registers. When we’re done with individual fl ip- fl ops, we’ll go on to counters
and then look at registers.

 Tables 8.4 , 8.5 , 8.6 , 8.7 are the truth tables for type JK, RS, SC, D of fl ip- fl op.
 Given the waveforms in Fig. 8.7 for the JK input and the clock, determine the Q

output waveform.
 The D fl ip- fl op is useful when a single data bit (1 or 0) is to be stored. The addi-

tion of an inverter to a J-K fl ip- fl op creates a basic D fl ip- fl op, as in Fig. 8.8 .
 Given the waveforms in Fig. 8.9 for the D input and the clock, determine the Q

output waveform.
 If the T input is HIGH, the T fl ip- fl op changes state (“toggles”) whenever the

clock input is strobed. If the T input is LOW, the fl ip- fl op holds the previous value.
This behavior is described by the characteristic equation: · ·next T T= + = ÄQ Q T Q Q .

 INPUTS OUTPUTS

 COMMENTS J K CLK Q Q

 0 0 ↑ Q 0Q No change
 0 1 ↑ 0 1 RESET
 1 0 ↑ 1 0 SET
 1 1 ↑ 0Q Q

0
 Toggle

 ↑ = clock transition LOW to HIGH
 Q

0
 = output level prior to clock transition

 Table 8.6 Truth table for a
positive edge-triggered J-K
 fl ip- fl op

 Table 8.4 Truth table for
a positive edge-triggered S-R
 fl ip- fl op

 INPUTS OUTPUTS

 COMMENTS S R CLK Q Q

 0 0 X Q
0
 0Q No change

 0 1 ↑ 0 1 RESET
 1 0 ↑ 1 0 SET
 1 1 ↑ ? ? Invalid

 ↑ = clock transition LOW to HIGH
 X = irrelevant (“don’t care”)
 Q

0
 = output level prior to clock transition

 INPUTS OUTPUT

 COMMENTS S C CLK Q

 0 0 ↑ Q
0
 No change

 1 0 ↑ 1 RESET
 0 1 ↑ 0 SET
 1 1 ↑ ?

 Table 8.5 Truth table for
a positive edge-triggered
S-C fl ip- fl op

 Table 8.7 Truth table for D
 fl ip- fl op

 INPUT OUTPUT

 D CLK Q

 0 ↑ 0
 0 ↑ 1

108 8 Latches, Flip-Flops, Counters, Registers, Timer, Multiplexer, Decoder, Etc.

J

K

CLK

Q

1

0

1

0

1

0

1

0

 Fig. 8.7 The waveforms for the JK input and the clock

J Q

 CLK

K Q

D Q

CLK

Q

D

CLK

 Fig. 8.8 The addition of an inverter to a J-K fl ip-fl op creates a basic D fl ip-fl op

D

CLK

Q

1

0

1

0

1

0

a b c d e f g

 Fig. 8.9 The waveforms for the D input and the clock

 It is useful for constructing binary counters, frequency dividers, and general
binary addition devices. It can be made from a J-K fl ip- fl op by tying both of its
inputs HIGH (Table 8.8).

 Construction of T fl ip- fl op from a J-K fl ip- fl op, Fig. 8.10 .

1098.2 Edge-Triggered Flip-Flops

 8.2.2 Asynchronous Preset and Clear Inputs

 Most integrated circuit fl ip- fl ops also have asynchronous inputs. These are inputs
that affect the state of the fl ip- fl op independent of the clock. They are normally
labeled preset (PRE) and clear (CLR), or direct set and direct reset by some manu-
facturers. An active level on the preset input will set the fl ip- fl op, and an active level
on the clear input will reset it. A logic symbol for a J-K fl ip- fl op with preset and
clear inputs is shown in Fig. 8.11 . These inputs are active-LOW, as indicated by the
bubbles. These preset and clear inputs must both be kept HIGH for synchronous
operation (Table 8.9).

 Asynchronous inputs on a fl ip- fl op have control over the outputs (Q and Q)
regardless of clock input status.

 Table 8.8 T fl ip- fl op operation

 Characteristic table Excitation table

 T Q Q

next

 Comment T Q Q

next

 Comment

 0 0 0 Hold state (no clk) 0 0 0 No change
 0 1 1 Hold state (no clk) 1 1 0 No change
 1 0 1 Toggle 0 1 1 Complement
 1 1 1 Toggle 1 0 1 Complement

CLK

J

Q

K

1

1

 Fig. 8.10 T - fl ip-fl op

 Fig. 8.11 Logic symbol for a
J-K fl ip-fl op with preset and
clear inputs

110 8 Latches, Flip-Flops, Counters, Registers, Timer, Multiplexer, Decoder, Etc.

 These inputs are called the preset (PRE) and clear (CLR). The preset input drives
the fl ip- fl op to a set state while the clear input drives it to a reset state.

 It is possible to drive the outputs of a J-K fl ip- fl op to an invalid condition using
the asynchronous inputs, because all feedback within the multivibrator circuit is
overridden.

 Given the waveforms PRESET and CLEAR in Fig. 8.12 for the J-K inputs and
the clock, determine the Q output waveform.

 Asynchronous inputs, just like synchronous inputs, can be engineered to be
active-HIGH or active-LOW. If they’re active-LOW, there will be an inverting
 bubble at that input lead on the block symbol, just like the negative edge-trigger
clock inputs (Figs. 8.13 , 8.14 , 8.15).

 Table 8.9 Truth table
for D fl ip- fl op

J,K=1

CLK

PRE

CLR

Q

a b c d e f g

 Fig. 8.12 Waveforms for
the J-K

D

C

Q

Q

CLR

PRE Fig. 8.13 Asynchronous
fl ip-fl op (D) inputs

 PRESET CLEAR COMMENTS

 1 1 Synchronized work
 0 1 Q = 1 (regardless of the CLK)
 1 0 Q = 0 (regardless of the CLK)
 0 0 Not used

1118.3 Counters

 8.3 Counters

 In digital logic and computing, a counter is a device which stores (and sometimes
displays) the number of times a particular event or process has occurred, often in
relationship to a clock signal. In practice, there are two types of counters:

 Up counters, which increase (increment) in value; •
 Down counters, which decrease (decrement) in value. •

 8.3.1 A Basic Digital Counter

 One common requirement in digital circuits is counting, both forward and backward.
The demonstration below shows the most basic kind of binary counting circuit.

 Figure 8.16 shows a 4-bit counter. The output of each fl ip- fl op changes state on
the falling edge (1-to-0 transition) of the T input. The count held by this counter
is read in the reverse order from the order in which the fl ip- fl ops are triggered.
Thus, output D is the HIGH order of the count, while output A is the LOW order.
The binary count held by the counter is then DCBA , and runs from 0000 (decimal
0) to 1111 (decimal 15). The next clock pulse will cause the counter to try to
increment to 10000 (decimal 16). However, that 1 bit is not held by any fl ip- fl op

C

C
Q

R
Q

CLR

PRE Fig. 8.14 Asynchronous
fl ip-fl op (C-R) inputs

C

J
Q

K
Q

CLR

PRE Fig. 8.15 Asynchronous
fl ip-fl op (J-K) inputs

112 8 Latches, Flip-Flops, Counters, Registers, Timer, Multiplexer, Decoder, Etc.

and is therefore lost. As a result, the counter actually reverts to 0000, and the
count begins again.

 A major problem with the counter (Fig. 8.16) is that the individual fl ip- fl ops do
not all change state at the same time. Rather, each fl ip- fl op is used to trigger the next
one in the series.

 8.3.2 Synchronous Counter

 We noted the need to have all fl ip- fl ops in a counter to operate in unison with each
other, so that all bits in the output count would change state at the same time. To
accomplish this, we need to apply the same clock pulse to all fl ip- fl ops.

 However, we do not want all fl ip- fl ops to change state with every clock pulse.
Therefore, we’ll need to add some controlling gates to determine when each fl ip-
 fl op is allowed to change state, and when it is not. This requirement denies us the
use of T fl ip- fl ops, but does require that we still use edge-triggered circuits. We can
use either RS or JK fl ip- fl ops for this; we’ll use JK fl ip- fl ops for the demonstrations
on this section.

 8.3.2.1 A Synchronous Binary Counter

 This section begins our study of designing an important class of clocked sequential
logic circuits-synchronous fi nite-state machines. Like all sequential circuits, a fi nite-
state machine determines its outputs and its next state from its current inputs and
current state. A synchronous fi nite-state machine changes state only on the clocking
event.

 A simple way of implementing the logic for each bit of an ascending counter is
for each bit to toggle when all of the less signi fi cant bits are at a logic HIGH state.
For example, bit 1 toggles when bit 0 is logic HIGH; bit 2 toggles when both bit 1
and bit 0 are logic HIGH; bit 3 toggles when bit 2, bit 1 and bit 0 are all HIGH; and
so on. Synchronous counters can also be implemented with hardware that consists
of fi nite state machines, which are more complex but allow for smoother, more
stable transitions.

0 Q

Q

T T

Q

Q

Q

Q

Q

Q

T T

A B C D

 Fig. 8.16 4-bit counter

1138.3 Counters

 To determine the gates required at each fl ip- fl op input, start by drawing up a truth
table for all states of the counter (Table 8.10). Looking fi rst at output A, we note that
it must change state with every input clock pulse. But even with JK fl ip- fl ops, all we
need to do here is to connect both the J and K inputs of this fl ip- fl op to logic 1 in
order to get the correct activity.

 Flip- fl op B is a bit more complicated. This output must change state only on
every other input clock pulse. Looking at the truth table again, output B must be
ready to change states whenever output A is a logic 1, but not when A is a logic 0.
If we recall the behavior of the JK fl ip- fl op, we can see that if we connect output
A to the J and K inputs of fl ip- fl op B, we will see output B behaving correctly.

 Output C may change state only when both A and B are logic 1. We can’t use
only output B as the control for fl ip- fl op C ; that will allow C to change state when
the counter is in state 2, causing it to switch directly from a count of 2 to a count of
7, and again from a count of 10 to a count of 15 – not a good way to count. Therefore
we will need a two-input AND gate at the inputs to fl ip- fl op C . Flip- fl op D requires
a three-input AND gate for its control, as outputs A , B , and C must all be at logic 1
before D can be allowed to change state. The resulting circuit is shown in the dem-
onstration below, Fig. 8.17 .

 8.3.3 Decimal and Shorter Counts

 Example 1
 To create a counter (M = 5), we need to fi nd a way to cut the counting sequence
short. The truth table to the left shows the actual counting sequence we need. Note
that the counting sequence is exactly the same as for the binary counter. At that

 Table 8.10 Truth table for all
states of the counter

 D C B A Count

 0 0 0 0 0
 0 0 0 1 1
 0 0 1 0 2
 0 0 1 1 3
 0 1 0 0 4
 0 1 0 1 5
 0 1 1 0 6
 0 1 1 1 7
 1 0 0 0 8
 1 0 0 1 9
 1 0 1 0 10
 1 0 1 1 11
 1 1 0 0 12
 1 1 0 1 13
 1 1 1 0 14
 1 1 1 1 15

114 8 Latches, Flip-Flops, Counters, Registers, Timer, Multiplexer, Decoder, Etc.

point, where the binary counter would continue on to a count of 4, the counter must
reset itself to a count of 0.

 Step 1: State diagram
 The fi rst step in the design of a counter is to create a state diagram. A state diagram
shows the progression of states through which the counter advances when it is
clocked. As an example, Fig. 8.18 is a state diagram for a counter.

 Step 2: Next-state table and Step 3: Flip- fl op transition table
 Once the sequential circuit is de fi ned by a state diagram, the second step is
to derive a next-state table, which lists each state of the counter (present state)
along with the corresponding next state. The next state is the state that the counter
goes to from its present state upon application of a clock pulse. The next-state
table is derived from the state diagram and is shown in Tables 8.11 and 8.12 . Once
the state diagram of the sequential circuit is defi ned, a Next - State Table is derived
which lists each present state and the corresponding next state. The next state is
the state to which the sequential circuit switches when a clock transition occurs.

K

1

J Q

Q

J J J

K K
K

Q

Q

Q

Q

Q

Q

A B C D

 Fig. 8.17 The scheme of synchronous binary counter

101

110

111

000

001

010

100

011

 Fig. 8.18 A state diagram
for a counter

1158.3 Counters

 Step 4: Minimization and Step 5: Logic expressions for fl ip- fl op inputs

 =2 1 0 .J Q Q

 =1 0 .J Q

 =0 2 .J Q

 = =2 0 1.K K

 =1 1.K J

 Step 6: Counter implementation
 The Boolean expressions obtained in the previous step are implemented using logic
gates. The sequential circuit implemented is shown in Fig. 8.19 . The hardware
 diagram of the counter (Fig. 8.19).
 Example 2

 Step 1: State diagram (Fig. 8.20)

 Step 2: Next-state table and Step 3: Flip- fl op transition table (Table 8.13)

 Step 4: Minimization and Step 5: Logic expressions for fl ip- fl op inputs
 The following diagram shows the steps to create separate next states of separate J
and K from the current states of J and K (Figs. 8.21 and 8.22).

 Step 6: Counter implementation
 The circuit of the counter (Figs. 8.23 and 8.24).
 The process of implementation of the counter design is shown in Appendix C .
 In a digital circuit, an FSM may be built using a programmable logic device, a pro-
grammable logic controller, logic gates and fl ip- fl ops or relays. More speci fi cally,

 Table 8.11 Transition table for a J-K fl ip- fl op

 Output transitions Present state Q
(N)

 Next state Q
(N+1)

 J K

 0-0 0 0 0 x
 0-1 0 1 1 x
 1-0 1 0 x 1
 1-1 1 1 x 0

 Table 8.12 JК fl ip-fl op truth table

 Present state Next state

 Q
2
 Q

1
 Q

0
 Q

2
 Q

1
 Q

0
 J

2
 K

2
 J

1
 K

1
 J

0
 K

0

 0 0 0 0 0 1 0 x 0 x 1 x
 0 0 1 0 1 0 0 x 1 x x 1
 0 1 0 0 1 1 0 x x 0 1 x
 0 1 1 1 0 0 1 x x 1 x 1
 1 0 0 0 0 0 x 1 0 x 0 x

http://dx.doi.org/10.1007/978-94-007-5228-3_BM1

116 8 Latches, Flip-Flops, Counters, Registers, Timer, Multiplexer, Decoder, Etc.

 Fig. 8.19 A synchronous counter using JK fl ip-fl ops

101

110

111

000

001

010

100

011

 Fig. 8.20 A state diagram
for a counter

1178.3 Counters

 Table 8.13 JК fl ip-fl op state table

 Present state Next state

 C B A C B A J
 C
 K

 C
 J

 K

 J

 A
 K

 A

 0 0 0 0 0 1 0 x 0 x 1 x
 0 0 1 0 1 0 0 x 1 x x 1
 0 1 0 0 1 1 0 x x 0 1 x
 0 1 1 1 0 0 1 x x 1 x 1
 1 0 0 0 0 0 x 1 0 x 0 x
 1 0 1 0 0 0 x 1 0 x x 1
 1 1 0 0 0 0 x 1 x 1 0 x
 1 1 1 0 0 0 x 1 x 1 x 1

PRESENT STATE JA

C B A
0
0
0
0

0
0
1
1

0
1
0
1

1
x
1
x

1
1
1
1

0
0
1
1

0
1
0
1

0
x
0
x

A A

CB ⋅ 1 x

CJA =CB ⋅ 0 x

CB ⋅
0

x

CB ⋅
1 x

 Fig. 8.21 Minimization of logic expressions for fl ip-fl op input J
A

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅= = ⋅= +=

 Fig. 8.22 Minimization of logic expressions for fl ip-fl op inputs J
C
 К

C
 ; J

B
 and К

B

118 8 Latches, Flip-Flops, Counters, Registers, Timer, Multiplexer, Decoder, Etc.

Jc C

Kc C

CLK

JB B

KB

CLK

B

JA A

K
A

CLK

CLOCK

1

AB

1

 Fig. 8.23 The circuit of the counter

 Fig. 8.24 The circuit of the counter (Electronic Workbench 5.12)

a hardware implementation requires a register to store state variables, a block of
combinational logic which determines the state transition, and a second block of
combinational logic that determines the output of an FSM.

 Consider an example in which you want to design a meter that works with the
expense ratio 7, when the input signal Х = 1, and the expense ratio 5, when the input
signal Х = 0.

 Counters will be designed using the T- fl ip- fl ops or J-K fl ip- fl ops. The data for the
design of the counters are shown in Tables 8.14 and 8.15 .

 Figures 8.25 , 8.26 , 8.27 show Karnaugh Maps. Figure 8.28 – circuit of the counter. -

1198.3 Counters

 Table 8.14 The data for the design of the counters

 No. Х

 Present state Next state fl ip- fl op

 Present Next Т

 Q
2
 Q

1
 Q

0

2
+Q

1
+Q

0
+Q T

2
 T

1
 T

0

 0 0 0 0 0 0 0 1 0 0 1
 1 0 0 0 1 0 1 0 0 1 1
 2 0 0 1 0 0 1 1 0 0 1
 3 0 0 1 1 1 0 0 1 1 1
 4 0 1 0 0 0 0 0 1 0 0

 5 0 1 0 1 * * * * * *
 6 0 1 1 0 * * * * * *
 7 0 1 1 1 * * * * * *

 8 1 0 0 0 0 0 1 0 0 1
 9 1 0 0 1 0 1 0 0 1 1

 10 1 0 1 0 0 1 1 0 0 1
 11 1 0 1 1 1 0 0 1 1 1
 12 1 1 0 0 1 0 1 0 0 1
 13 1 1 0 1 1 1 0 0 1 1
 14 1 1 1 0 0 0 0 1 1 0

 15 1 1 1 1 * * * * * *

 Table 8.15 The data for the design of the counters

 No. Х

 Present state Next state fl ip- fl op

 Present Next JK

 Q
2
 Q

1
 Q

0
 2

+Q 1
+Q 0

+Q J
2
 K

2
 J

1
 K

1
 J

0
 K

0

 0 0 0 0 0 0 0 1 0 * 0 * 1 *
 1 0 0 0 1 0 1 0 0 * 1 * * 1
 2 0 0 1 0 0 1 1 0 * * 0 1 *
 3 0 0 1 1 1 0 0 1 * * 1 * 1
 4 0 1 0 0 0 0 0 * 1 0 * 0 *

 5 0 1 0 1 * * * * * * * * *
 6 0 1 1 0 * * * * * * * * *
 7 0 1 1 1 * * * * * * * * *

 8 1 0 0 0 0 0 1 0 * 0 * 1 *
 9 1 0 0 1 0 1 0 0 * 1 * * 1

 10 1 0 1 0 0 1 1 0 * * 0 1 *
 11 1 0 1 1 1 0 0 1 * * 1 * 1
 12 1 1 0 0 1 0 1 * 0 0 * 1 *
 13 1 1 0 1 1 1 0 * 0 1 * * 1
 14 1 1 1 0 0 0 0 * 0 1 * * 1

 15 1 1 1 1 * * * * * * * * *

120 8 Latches, Flip-Flops, Counters, Registers, Timer, Multiplexer, Decoder, Etc.

For T2.

Q1Q0
xQ2 00 01 11 10

00 0 0 1 0

01 1 * *

11 0 0 *

10 0 0

*

1

1 0

x ⋅ Q2 ∨ Q1 ⋅ Q0Q2Q1T2 ∨⋅=

 Fig. 8.25 Karnaugh maps
for T

2

For T1.
Q1Q0

xQ2 00 01 11 10

00 0 1 1 0

01 0 * *

11 0 1 *

10 0 1

*

1

1 0

Q1Q2Q0T1 ⋅∨=

 Fig. 8.26 Karnaugh maps
for T

1

For T0.
Q1Q0

xQ2 00 01 11 10

00 1 1 1 1

01

11 1

10 1 1 1

0 * * *

1 * 1

1

Q1xQ2T0 ⋅∨=

 Fig. 8.27 Karnaugh maps
for T

0

1218.3 Counters

For T
2
 .

 For JK

2 1 2

2 1

1 0

1 2 0

0 2 1

0

· ;

;

;

;

· ;

1.

J

K

J

K

J

K

=ì
ï = +ï
ï =ï
í = +ï
ï = +
ï

=ïî

Q Q

X Q

Q

Q Q

Q X Q

 T fl ip-fl op is a model of JK or D trigger, so this scheme is fundamental and
cannot be collected in the EWB 5.12 or Multisim.

 Examples

 Example 1. Figure 8.29 shows a circuit of the counter, that seven-segment displays the
numbers from 0 to 5, when the input on the key of X = 0 and from 0 to 12, when X = 1.

 Example 2. Figure 8.30 shows a circuit of the counter, that seven-segment displays
the numbers from 0 to 15, when the input on the key of X = 0 and from 0 to 22, when
 X = 1. Counters with variable module accounts are used primarily as a frequency
dividers with adjustable coeffi cient. Such circuits are used for example in radio
frequency technology, where there exists continual demand for the development of
circuits with ever higher clock rates or frequencies. In order to realize frequency
divider circuits, usually a plurality of gates are connected in series in a combinato-
rial part of the circuit, so that, for each state change of the input signal, many gates
are switched within one clock period.

&

1
&

& 1
1T0

C

T1

C

T2

C

&

X

C

Q0
Q1

Q2

 Fig. 8.28 Implementation of the sequential circuit

122 8 Latches, Flip-Flops, Counters, Registers, Timer, Multiplexer, Decoder, Etc.

 8.3.4 BCD Counter

 Binary-coded-decimal (BCD) counters can be designed using the approach explained
in Chap. 3 . A two-digit BCD counter is presented in Fig. 8.31 (a two-digit BCD
counter). It consists of two modulo-10 counters, one for each BCD digit, which we

 Fig. 8.29 The circuit of the counter that seven-segment displays the numbers from 0 to 5
(Electronic Workbench 5.12)

 Fig. 8.30 The circuit of the counter that seven-segment displays the numbers from 0 to 15
(Electronic Workbench 5.12)

http://dx.doi.org/10.1007/978-94-007-5228-3_3

1238.3 Counters

implemented using the parallel-load four-bit counter. Note that in a modulo-10 coun-
ter it is necessary to reset the four fl ip- fl ops after the count of 9 has been obtained.
Thus the Load input to each stage is equal to 1 when Q

3
 = Q

0
 = 1, which causes 0 s to

be loaded into the fl ip- fl ops at the next positive edge of the clock signal. Whenever
the count in stage 0, BCD

(0)
 , reaches 9 it is necessary to enable the second stage so

that it will be incremented when the next clock pulse arrives. This is accomplished
by keeping the Enable signal for BCD

(1)
 LOW at all times except when BCD

(0)
 = 9.

 In practice, it has to be possible to clear the contents of the counter by activating
some control signal. Two OR gates are included in the circuit for this purpose. The
control input Clear can be used to load 0 s into the counter. Observe that in this case
 Clear is active when HIGH. In any digital system there is usually one or more clock
signals used to drive all synchronous circuitry. In the preceding counter, as well as
in all counters presented in the previous fi gures, we have assumed that the objective
is to count the number of clock pulses. Of course, these counters can be used to
count the number of pulses in any signal that may be used in place of the clock
signal.

 8.3.5 The Johnson Counter

 In some cases, we want a counter that provides individual digit outputs rather than
a binary or BCD output. Of course, we can do this by adding a decoder circuit to the
binary counter. However, in many cases it is much simpler to use a different counter
structure, that will permit much simpler decoding of individual digit outputs.

Enable

Clock

1

0

0

0

0

B
C
D

Enable
D0 Q0
D1 Q1

D2 Q2
D3

D0
D1
D2
D3

Q3

Q3

Q0
Q1
Q2

Load
Clock

Load
Clock

0

0

0

0

B
C
D Clear

 Fig. 8.31 BCD Counter

124 8 Latches, Flip-Flops, Counters, Registers, Timer, Multiplexer, Decoder, Etc.

 For example, consider the counting sequence, Table 8.16 . It actually resembles
the behavior of a shift register more than a counter, but that need not be a problem.
Indeed, we can easily use a shift register to implement such a counter. In addition,
we can notice that each legal count may be de fi ned by the location of the last fl ip-
 fl op to change states, and which way it changed state. This can be accomplished
with a simple two-input AND or NOR gate monitoring the output states of two
adjacent fl ip- fl ops. In this way, we can use ten simple 2-input gates to provide ten
decoded outputs for digits 0–9. This is known as the Johnson counting sequence,
and counters that implement this approach are called Johnson Counters.

 Johnson Ring Counters or “Twisted Ring Counters”, are exactly the same idea as
the Walking Ring Counter above, except that the inverted output Q of the last Flip-
 fl op is connected back to the input D of the fi rst Flip- fl op as shown below. The main
advantage of this type of ring counter is that it only needs half the number of Flip-
 fl ops compared to the standard walking ring counter in which its Modulo number is
halved.

 This inversion of Q before it is fed back to input D causes the counter to “count”
in a different way. Instead of counting through a fi xed set of patterns like the walk-
ing ring counter such as for a 4-bit counter, “1000”(1), “0100”(2), “0010”(4),
“0001”(8) etc., the Johnson counter counts up and then down as the initial logic “1”
passes through it to the right replacing the preceding logic “0”. A 4-bit Johnson ring
counter passes blocks of four logic “0” and then four logic “1” thereby producing
an 8-bit pattern. As the inverted output 4Q is connected to the input D this 8-bit pat-
tern continually repeats. For example, “1000”, “1100”, “1110”, “1111”, “0111”,
“0011”, “0001”, “0000” and this is demonstrated in Table 8.17 and Fig. 8.32 .

 As well as counting, Ring Counters can be used to detect or recognise various
patterns or number values. By connecting simple logic gates such as AND or OR
gates to the outputs of the Flip- fl ops, the circuit can be made to detect a set number
or value. Standard 2, 3 or 4-stage Johnson Ring Counters can also be used to divide
the frequency of the clock signal by varying their feedback connections, and divide-
by-3 or divide-by-5 outputs are also available.

 Table 8.16 Truth table of
Johnson counter

 States

 Count A B C D E

 0 0 0 0 0 0
 1 0 0 0 0 1
 1 1 0 0 0 2
 1 1 1 0 0 3
 1 1 1 1 0 4
 1 1 1 1 1 5
 0 1 1 1 1 6
 0 1 1 1 1 7
 0 0 0 1 1 8
 0 0 0 0 1 9

 ww

1258.4 Registers

 8.4 Registers

 A Shift Register consists of a number of single bit “D-Type Data Latches” con-
nected together in a chain arrangement so that the output from one data latch
becomes the input of the next latch and so on, thereby moving the stored data seri-
ally from either the left or the right direction. The number of individual Data Latches
used to make up a Shift Register is determined by the number of bits to be stored
with the most common being 8-bits wide. Shift Registers are mainly used to store
data and to convert data from either a serial to parallel or parallel to serial format
with all the latches being driven by a common clock (CLK) signal making them
Synchronous devices. They are generally provided with a Clear or Reset connection
so that they can be “ SET ” or “ RESET ” as required.

 Generally, Shift Registers operate in one of four different modes:

 Serial-in to Parallel-out (SIPO); •
 Serial-in to Serial-out (SISO); •
 Parallel-in to Parallel-out (PIPO); •
 Parallel-in to Serial-out (PISO). •

D1

CLK
 CLR

Q1 Q2 Q3 Q4

Clock

D2

CLK
 CLR

D3

CLK
 CLR

D4

CLK
 CLR

Clear

4Q

 Fig. 8.32 4-bit Johnson Ring Counter

 Table 8.17 Truth table for a
4-bit Johnson ring counter

 D 1 D 2 D 3 D 4

 0 0 0 0
 1 0 0 0
 1 1 0 0
 1 1 1 0
 1 1 1 1
 0 1 1 1
 0 0 1 1
 0 0 0 1

126 8 Latches, Flip-Flops, Counters, Registers, Timer, Multiplexer, Decoder, Etc.

 In this section, we consider two types of registers – Serial-to-Parallel Shift
Register and Parallel-to-Serial Shift Register.

 8.4.1 Serial-to-Parallel Shift Register

 The term register can be used in a variety of speci fi c applications, but in all cases it
refers to a group of fl ip- fl ops operating as a coherent unit to hold data. This is dif-
ferent from a counter, which is a group of fl ip- fl ops operating to generate new data
by tabulating it.

 A counter can be viewed as a specialized kind of register, which counts events
and thereby generates data, rather than just holding the data or changing the way it
is handled. The demonstration circuit below is known as a shift register because
data is shifted through it, from fl ip- fl op to fl ip- fl op. If you apply one byte (8 bits) of
data to the initial data input one bit at a time, and apply one clock pulse to the circuit
after setting each bit of data, you will fi nd the entire byte present at the fl ip- fl op
outputs in parallel format. Therefore, this circuit is known as a serial-in, parallel-out
shift register. It is also known sometimes as a shift-in register, or as a serial-to-
parallel shift register. By standardized convention, the least signi fi cant bit (LSB) of
the byte is shifted in fi rst (Fig. 8.33).

 8.4.2 Parallel-to-Serial Shift Register

 Where there is a need for serial-to-parallel conversion, there is also a need for par-
allel-to-serial conversion. The parallel-in, serial-out register (or parallel-to-serial
shift register, or shift-out register). Since each fl ip- fl op in the register must be able
to accept data from either a serial or a parallel source, a small two-input multiplexer
is required in front of each input. An extra input line selects between serial and
parallel input signals, and as usual the fl ip- fl ops are loaded in accordance with a
common clock signal.

 A 4-bit shift register with parallel and serial inputs and outputs will fi t nicely into
a 14-pin DIP IC.

0

QD QD QD QD QD QDQD QD

 Fig. 8.33 Serial-to-Parallel Shift Register

1278.4 Registers

 The label “ B ” (for example button) indicates that the shift-out register is currently
in serial mode. Thus, input signals present at the serial input just above the “ B ” label
(button) will be shifted into the register one by one with each clock pulse. This
enables us to load the entire register at once from the parallel inputs just below the
multiplexers. Thus, we can have a parallel input and a serial output. The inclusion
of a serial input makes it possible to cascade multiple circuits of this type in order
to increase the number of bits in the total register.

 Because this circuit has both parallel and serial inputs and outputs, it can serve
as either a shift-in register or a shift-out register. This capability can have advan-
tages in many cases (Fig. 8.34).

 8.4.3 Using a Shift Register for Control

 There are many ways to design a suitable control circuit for the swap operation. One
possibility is to use the left-to-right shift register shown in Fig. 8.35 . Assume that
the reset input is used to clear the fl ip- fl ops to 0. Hence the control signals R1

 in
 ,

 R1
 out

 , and so on are not asserted, because the shift register outputs have the value 0.
The serial input w normally has the value 0. We assume that changes in the value of

D1 Q D2 Q

D3 Q D4 Q

Q3
Q4

Q2
Q1

0

B

0

0

0

0

 Fig. 8.34 Parallel-to-Serial Shift Register

128 8 Latches, Flip-Flops, Counters, Registers, Timer, Multiplexer, Decoder, Etc.

 M are synchronized to occur shortly after the active clock edge. This assumption is
reasonable because M would normally be generated as the output of some circuit
that is controlled by the same clock signal. When the desired swap should be per-
formed, M is set to 1 for one clock cycle, and then M returns to 0. After the next
active clock edge, the output of the left-most fl ip- fl op becomes equal to 1, which
asserts both R 2

 out
 and R3

 in
 . The contents of register R2 are placed onto the bus wires

and are loaded into register R3 on the next active clock edge.

D Q

Q

D Q

QClock

M

D Q

Q

Reset

D Q

Q

D Q

Q Clock

M

D P Q

Q

D Q

Q

D Q

Q

D Q

Q

Reset

Clock

M

R2out, R3in R1out, R2in R3out, R1in

R2out, R3in R1out, R2in R3out, R1in

R2out, R3in
R1out, R2in R3out, R1in

Reset

a

b

c

 Fig. 8.35 The left-to-right shift register

1298.5 Timer

 This clock edge also shifts the contents of the shift register, resulting in
 R1

 out
 = R2

 in
 = 1. Note that since w is now 0, the fi rst fl ip- fl op is cleared, causing

 R2
 out

 = R3
 in
 = 0. The contents of R1 are now on the bus and are loaded into R2 on the

next clock edge. After this clock edge the shift register contains 001 and thus asserts
 R3

 out
 and R1

 in
 . The contents of R3 are now on the bus and are loaded into R1 on the

next clock edge. Using the control circuit in Fig. 8.35a , when M changes to 1 the
swap operation does not begin until after the next active clock edge. We can modify
the control circuit so that it starts the swap operation in the same clock cycle in
which w changes to 1. One possible approach is illustrated in Fig. 8.35b . The reset
signal is used to set the shift-register contents to 100 , by presetting the left-most
 fl ip- fl op to 1 and clearing the other two fl ip- fl ops. As long as M = 0, the output con-
trol signals are not asserted. When M changes to 1, the signals R2

 out
 and R3

 in
 are

immediately asserted and the contents of R2 are placed onto the bus. The next active
clock edge loads this data into R3 and also shifts the shift register contents to 010 .
Since the signal R1

 out
 is now asserted, the contents of R1 appear on the bus. The next

clock edge loads this data into R2 and changes the shift register contents to 001 . The
contents of R3 are now on the bus; this data is loaded into R1 at the next clock edge,
which also changes the shift register contents to 100 . We assume that w had the
value 1 for only one clock cycle; hence the output control signals are not asserted at
this point.

 It may not be obvious to design a circuit such as the one in Fig. 8.35b , because
we have presented the design in an ad hoc fashion. The circuit in Fig. 8.35b assumes
that a preset input is available on the left-most fl ip- fl op. If the fl ip- fl op has only a
clear input, then we can use the equivalent circuit shown in Fig. 8.35c . In this circuit
we use the Q output of the left-most fl ip- fl op and also complement the input to this
 fl ip- fl op by using a NOR gate instead of an OR gate.

 8.5 Timer

 The 8-pin 555 timer IC is used in many projects. The 555 timer IC is an amazingly
simple yet versatile device. It has been around now for many years and has been
reworked into a number of different technologies. The two primary versions today
are the original bipolar design and the more recent CMOS equivalent. These differ-
ences primarily affect the amount of power they require and their maximum fre-
quency of operation; they are pin-compatible and functionally interchangeable.

 The fi gure to the right shows the functional block diagram of the 555 timer IC.
The IC is available in either an 8-pin round TO3-style can or an 8-pin mini-DIP
package. In either case, the pin connections are as follows:

 The operation of the 555 timer revolves around the three resistors that form a
voltage divider across the power supply, and the two comparators connected to this
voltage divider. The IC is quiescent so long as the trigger input (pin 2) remains
at +V

CC
 and the threshold input (pin 6) is at ground. Assume the reset input (pin 4)

is also at +V
CC

 and therefore inactive, and that the control voltage input (pin 5)

130 8 Latches, Flip-Flops, Counters, Registers, Timer, Multiplexer, Decoder, Etc.

is unconnected. Under these conditions, the output (pin 3) is at ground and the
discharge transistor (pin 7) is turned on, thus grounding whatever is connected to
this pin.

 The 555 can operate in either monostable or astable mode, depending on the con-
nections to and the arrangement of the external components, Fig. 8.36 . Thus, it can
either produce a single pulse when triggered, or it can produce a continuous pulse
train as long as it remains powered.

 Figure 8.37 shows the use of the IC 555 (Astable Multivibrator). To get an accu-
rate simulation, the number of Points per Cycle is set to 1000 on the Analysis
Options dialog box under the Circuit menu and the analysis type is set to
“Transient”.

 An astable circuit produces a “square wave”, which is a digital waveform with
sharp transitions between LOW (0 V) and HIGH (+V

s
). Note that the durations of

the LOW and HIGH states may be different. The circuit is called astable because it
is not stable in any state: the output is continually changing between “LOW” and
“HIGH”.

 The 556 is a dual version of the 555 housed in a 14-pin package; the two timers
(A and B) share the same power supply pins.

 Low power versions of the 555 are made, such as the ICM7555, but these should
only be used when speci fi ed (to increase battery life) because their maximum output
current of about 20 mA (with a 9 V supply) is too low for many standard 555 circuits.
The ICM7555 has the same pin arrangement as a standard 555.

 One interesting and very useful feature of the 555 timer in either mode is that the
timing interval for either charge or discharge is independent of the supply voltage,
V

CC
 . This is because the same V

CC
 is used both as the charging voltage and as the

basis of the reference voltages for the two comparators inside the 555.
 With just a few external components IC 555 it can be used to build many circuits,

Fig. 8.38 .
 This circuit demonstrates the use of the IC 555 timer in a monostable

con fi guration.
 A monostable circuit produces a single output pulse when triggered. It is called

monostable because it is stable in just one state: “output LOW”. The “output HIGH”
state is temporary, Fig. 8.39 .

 The timing period is triggered (started) when the trigger input (555 pin 2) is less
than ()1 / 3 inV , this makes the output HIGH ()+ inV and the capacitor starts to charge
through a resistor. Once the time period has started, further trigger pulses are ignored.

 Fig. 8.36 The 555 timer IC 1. Ground.
2. Trigger input.
3. Output.
4. Reset input.
5. Control voltage.
6. Threshold input.
7. Discharge.
8. +VCC. +5 to +15 volts
 in normal use.

 Fig. 8.37 Modeling of the timer (use the IC 555 - Astable Multivibrator)

 Fig. 8.38 An example of
using a timer in a digital
system

132 8 Latches, Flip-Flops, Counters, Registers, Timer, Multiplexer, Decoder, Etc.

 The reset input (555 pin 4) overrides all other inputs and the timing may be can-
celled at any time by connecting reset to 0 V, which instantly makes the output
LOW and discharges the capacitor. If the reset function is not required the reset pin
should be connected to ()+ inV .

 8.6 Multiplexer and Demultiplexer

 8.6.1 The Multiplexer

 Data selectors, more commonly called a Multiplexer, shortened to “ Mux ” or
“ MPX ”, are combinational logic switching devices that operate like a very fast act-
ing multiple position rotary switch. They connect or control multiple input lines
called “channels” consisting of either 2, 4, 8 or 16 individual inputs, one at a time to
an output. Then the job of a multiplexer is to allow multiple signals to share a single
common output. For example, a single 8-channel multiplexer would connect one of
its eight inputs to the single data output. Multiplexers are used as one method of
reducing the number of logic gates required in a circuit or when a single data line is
required to carry two or more different digital signals.

 Fig. 8.39 The reset input (555 pin 4) overrides all other inputs and the timing may be cancelled at
any time by connecting reset to 0V

1338.6 Multiplexer and Demultiplexer

 Digital Multiplexers are constructed from individual analogue switches encased
in a single IC package as opposed to the “mechanical” type selectors such as normal
conventional switches and relays. Generally, multiplexers have an even number of
data inputs, usually an even power of two, 2n , a number of “control” inputs that
correspond with the number of data inputs and according to the binary condition of
these control inputs, the appropriate data input is connected directly to the output.
An example of a Multiplexer con fi guration is shown in Fig. 8.40 (Table 8.18).

 The Boolean expression for this 4-to-1 Multiplexer above with inputs A to D and
data select lines x , y is given as:

 = + + +· · · · · · · · .Q A x y B x y C x y D x y

 In this example at any one instant in time only ONE of the four analogue switches
is closed, connecting only one of the input lines A to D to the single output at Q .
Which switch is closed depends upon the addressing input code on lines x and y , so
for this example to select input B to the output at Q , the binary input address would
need to be x = logic “ 1 ” and y = logic “ 0 ”. Adding more control address lines will
allow the multiplexer to control more inputs but each control line con fi guration will
connect only one input to the output.

 Then the implementation of this Boolean expression above using individual logic
gates would require the use of seven individual gates consisting of AND, OR and
NOT gates, Fig. 8.41 .

Input select x
y Control

A

B

C

D

Q

A
na

lo
gu

e
in

pu
ts

 Fig. 8.40 An example of a
multiplexer confi guration

 Table 8.18 Truth table of a
multiplexer

 Addressing

 Input selected x y

 0 0 A
 1 0 B
 0 1 C
 1 1 D

134 8 Latches, Flip-Flops, Counters, Registers, Timer, Multiplexer, Decoder, Etc.

 Figure 8.42 shows the scheme of the multiplexer. Changing the position of key
 A , B , C , G you can track the change in function at the output of the device – Y , W .

 8.6.2 The Demultiplexer

 The data distributor, known more commonly as a Demultiplexer or “ Demux ”, is the
exact opposite of the Multiplexer. The demultiplexer takes one single input data line
and then switches it to any one of a number of individual output lines one at a time.

 Fig. 8.42 The scheme of the multiplexer (Electronic Workbench 5.12)

x

y

A

B

C

D

Q

 Fig. 8.41 An example of a multiplexer confi guration with use of seven individual gates consisting
of AND, OR and NOT gates

1358.6 Multiplexer and Demultiplexer

The demultiplexer converts a serial data signal at the input to a parallel data at its
output lines as shown in Fig. 8.43 (Table 8.19).

 = + + +· · · · · · · · .F A x y B x y C x y D x y

 The function of the Demultiplexer is to switch one common data input line to any
one of the 4 output data lines A to D in our example above. As with the multiplexer
the individual solid state switches are selected by the binary input address code on
the output select pins x and y and by adding more address line inputs it is possible
to switch more outputs giving a 1-to-2 n data line output. Some standard demulti-
plexer IC’s also have an “enable output” input pin which disables or prevents the
input from being passed to the selected output. Also some have latches built into
their outputs to maintain the output logic level after the address inputs have been
changed. However, in standard decoder type circuits the address input will deter-
mine which single data output will have the same value as the data input with all
other data outputs having the value of logic “ 0 ”.

 Unlike multiplexers which convert data from a single data line to multiple lines
and demultiplexers which convert multiple lines to a single data line, there are
devices available which convert data to and from multiple lines.

 The implementation of the Boolean expression above using individual logic
gates would require the use of six individual gates consisting of AND and NOT
gates, Fig. 8.44 .

 Figure 8.45 shows the scheme of the demultiplexer. Changing the position of key
 A , B , C , G you can track the change in function at the output of the device – 0 – 7 .

Input select x
y Control

A

B

C

D

F

 Fig. 8.43 The scheme
of the demultiplexer

 Table 8.19 Truth table
of a demultiplexer

 Addressing Output
selected x y

 0 0 A
 1 0 B
 0 1 C
 1 1 D

136 8 Latches, Flip-Flops, Counters, Registers, Timer, Multiplexer, Decoder, Etc.

 8.7 Digital Encoder and Decoder

 8.7.1 The Digital Encoder

 Unlike a multiplexer that selects one individual data input line and then sends
that data to a single output line or switch, a Digital Encoder more commonly
called a Binary Encoder takes ALL its data inputs one at a time and then converts

x

y

A

B

C

D

F

 Fig. 8.44 Demultiplexer
with using AND gates

 Fig. 8.45 The scheme of the demultiplexer

1378.7 Digital Encoder and Decoder

them into a single encoded output. So we can say that a binary encoder, is a
multi-input combinational logic circuit that converts the logic level “1” data at its
inputs into an equivalent binary code at its output. Generally, digital encoders
produce outputs of 2-bit, 3-bit or 4-bit codes depending upon the number of data
input lines. An “n-bit” binary encoder has 2 n input lines and n-bit output lines
with common types that include 4-to-2, 8-to-3 and 16-to-4 line con fi gurations.
The output lines of a digital encoder generate the binary equivalent of the input
line whose value is equal to “1” and are available to encode either a decimal or
hexadecimal input pattern to typically a binary or BCD output code.

 One of the main disadvantages of standard digital encoders is that they can generate
the wrong output code when there is more than one input present at logic level “ 1 ”.

 One simple way to overcome this problem is to “ Prioritise ” the level of each input
pin and if there was more than one input at logic level “1” the actual output code would
only correspond to the input with the highest designated priority. Then this type of digi-
tal encoder is known commonly as a Priority Encoder or P-encoder for short, Fig. 8.46 .

 Priority Encoders solve the problem mentioned above by allocating a priority
level to each input. The encoder output corresponds to the currently active input
with the highest priority. So when an input with a higher priority is present, all other
inputs with a lower priority will be ignored. Priority encoders come in many forms
with an example of an 8-input priority encoder along with its truth Table 8.20 ,
shown below.

 Priority encoders are available in standard IC form. Priority encoders output the
highest order input fi rst; for example, if input lines “ D

2
 ”, “ D

3
 ” and “ D

5
 ” are applied

simultaneously the output code would be for input “ D
5
 ” (“101”) as this has the high-

est order out of the three inputs. Once input “D
5
 ” had been removed the next highest

output code would be for input “ D
3
 ” (“011”), and so on.

 The Boolean expression for this 8-to-3 encoder above with inputs D
0
 to D

7
 and

outputs Q
0
 , Q

1
 , Q

2
 is given as:

0 1 3 5 7

1 2 3 6 7

2 4 5 6 7

;

;

.

= + + +

= + + +

= + + +

Q D D D D

Q D D D D

Q D D D D

8-to-3 Bit
Priority
Encoder

D0
D1
D2

D3
D4
D5

D6
D7

Lowest Priority

Q0

Q1

Q2

 Fig. 8.46 8-to-3 Bit Priority
Encoder

138 8 Latches, Flip-Flops, Counters, Registers, Timer, Multiplexer, Decoder, Etc.

 Then the implementation of these Boolean expression outputs above using
 individual OR gates is as follows, Fig. 8.47 .

 8.7.2 Decoder

 A decoder is basically a combinational type logic circuit that converts the binary
code data at its input into one of a number of different output lines, one at a time
producing an equivalent decimal code at its output. Binary decoders have inputs of
2-bit, 3-bit or 4-bit codes depending upon the number of data input lines, and an
n-bit decoder has 2n output lines. Therefore, if it receives n inputs (usually grouped
as a binary or Boolean number) it activates one and only one of its 2n outputs based
on that input with all other outputs deactivated. A decoder’s output code normally
has more bits than its input code and practical binary decoder circuits include,
2-to-4, 3-to-8 and 4-to-16 line con fi gurations.

D3

Q1 = D2+ D3 + D6+ D7

Q2 = D4+ D5 + D6+ D7

Q0 = D1+ D3 + D5+ D7

D1

D5

D7

D2

D6

D4

D0

 Fig. 8.47 8-to-3 Bit Priority Encoder with using OR gates

 Table 8.20 Truth table of a priority encoder

 Inputs Outputs

 D
7
 D

6
 D

5
 D

4
 D

3
 D

2
 D

1
 D

0
 Q

2
 Q

1
 Q

0

 0 0 0 0 0 0 0 1 0 0 0
 0 0 0 0 0 0 1 * 0 0 1
 0 0 0 0 0 1 * * 0 1 0
 0 0 0 0 1 * * * 0 1 1
 0 0 0 1 * * * * 1 0 0
 0 0 1 * * * * * 1 0 1
 0 1 * * * * * * 1 1 0
 1 0 * * * * * * 1 1 1

1398.8 Digital Comparator

 8.7.2.1 Binary Decoder

 A binary decoder converts coded inputs into coded outputs, where the input and
output codes are different and decoders are available to “decode” either a Binary or
BCD input pattern to typically a Decimal output code. Commonly available BCD-
to-Decimal decoders include the TTL 7442 or the CMOS 4028. An example of a
2-to-4 line decoder along with its truth table is given below, Fig. 8.48 , Table 8.21 . It
consists of an array of four NAND gates, one of which is selected for each combina-
tion of the input signals A and B .

 8.8 Digital Comparator

 Another common and very useful combinational logic circuit is that of the Digital
Comparator circuit. Digital or Binary Comparators are made up from standard
AND, NOR and NOT gates that compare the digital signals present at their input
terminals and produce an output depending upon the condition of those inputs. For
example, along with being able to add and subtract binary numbers we need to be able
to compare them and determine whether the value of input A is greater than, smaller
than or equal to the value at input B etc.. The digital comparator accomplishes this

A(1)

B(0)

D0

D1

D2

D3

2 x 4
Decoder

D0

D1

D2

D3

A

B

a b

 Fig. 8.48 Binary decoder

 Binary input Decoded output

 A B D
0
 D D

2
 D

3

 0 0 1 0 0 0
 0 1 0 1 0 0
 1 0 0 0 1 0
 1 1 0 0 0 1

 Table 8.21 Truth table of a
2-to-4 decoder

140 8 Latches, Flip-Flops, Counters, Registers, Timer, Multiplexer, Decoder, Etc.

using several logic gates that operate on the principles of Boolean algebra. There are
two main types of digital comparator available and these are.

 Identity Comparator – is a digital comparator that has only one output terminal
for when A = B either “HIGH” A = B = 1 or “LOW” A = B = 0.

 Magnitude Comparator – is a type of digital comparator that has three output
terminals, one each for equality, A = B greater than, A > B and less than A < B.

 The purpose of a digital comparator is to compare a set of variables or unknown
numbers, for example A (A

1
 , A

2
 , A

3
 ,…, A

 n
 , etc.) against that of a constant or unknown

value such as B (B
1
 , B

2
 , B

3
 ,…, B

 n
 , etc.) and produce an output condition or fl ag

depending upon the result of the comparison. For example, a magnitude comparator
of two 1-bits, (A and B) inputs would produce the following three output conditions
when compared to each other.

 > = <, , .A B A B A B

 This is useful if we want to compare two variables and want to produce an output
when any of the above three conditions are achieved. For example, produce an out-
put from a counter when a certain count number is reached. Consider the simple
1-bit comparator below, Fig. 8.49 .

 Then the operation of a 1-bit digital comparator is given in the following truth
table, Table 8.22 .

 You may notice two distinct features about the comparator from the above truth
table. Firstly, the circuit does not distinguish between either two “ 0 ”s or two “ 1 ”s as
an output; A = B is produced when they are both equal, either A = B = “ 0 ” or
 A = B = “ 1 ”. Secondly, the output condition for A = B resembles that of a commonly

A

B

BABAC <→⋅=

BABAE >→⋅=

BA

BABAD

=
→⋅+⋅=

 Fig. 8.49 The simple 1-bit comparator

 Table 8.22 Truth table of a
1-bit digital comparator

 Inputs Outputs

 A B E D C

 0 0 0 1 0
 1 0 1 0 0
 0 1 0 0 1
 1 1 0 1 0

1418.8 Digital Comparator

available logic gate, the Exclusive-NOR or Ex-NOR function (equivalence) on each
of the n-bits giving: ÅA B .

 Digital comparators actually use Exclusive-NOR gates within their design for
comparing their respective pairs of bits. When we are comparing two binary or
BCD values or variables against each other, we are comparing the “magnitude” of
these values, a logic “ 0 ” against a logic “1” which is where the term Magnitude
Comparator comes from.

 As well as comparing individual bits, we can design larger bit comparators by
cascading together n of these and produce an n-bit comparator just as we did for the
n-bit adder in the previous tutorial. Multi-bit comparators can be constructed to
compare whole binary or BCD words to produce an output if one word is larger
than, equal to or less than the other. A very good example of this is the 4-bit
Magnitude Comparator.

 Digital Comparators are used widely in Analogue-to-Digital converters, (ADC)
and Arithmetic Logic Units, (ALU) to perform a variety of arithmetic operations.

 Appendix A contains examples of programs (Delphi, C#) for simulating the
operation of digital automata, presented in this chapter.

http://dx.doi.org/10.1007/978-94-007-5228-3_BM1

143B. Borowik et al., Theory of Digital Automata, Intelligent Systems, Control
and Automation: Science and Engineering 63, DOI 10.1007/978-94-007-5228-3_9,
© Springer Science+Business Media Dordrecht 2013

 Abstract This chapter presents two fi nite-state machines (FMS): a Moore FMS
(in which output values are determined solely by its current state) and a Mealy
FMS (whose output values are determined both by its current state and by the values
of its inputs). The chapter contains many examples of designing digital electronic
systems, which are at the same time a restricted form of Moore machine (where the
state changes only when the global clock signal changes), like a Moore FSM that
performs a multiplication or binary division. Additionally the chapter explains the
methods of hardware implementation of the constructed Moore FSMs.

 In the theory of computation, a Moore machine is a fi nite-state machine whose out-
put values are determined solely by its current state, Fig. 9.1 This is in contrast to a
Mealy machine, whose output values are determined both by its current state and by
the values of its inputs, Fig. 9.2 .

 Where 1, ,¼ na a – outputs of memory elements;
 1, ,¼ jb b – Boolean functions of excitation of the memory elements;
 W

1
 ,…, W

 J
 – output channels of automaton;

 j – number of output channels of automaton;
 Z

1
 ,…, Z

m
 – input channels automaton.

 9.1 Synthesis of Moore Automata from Graph-Scheme

 Since it is impossible to implement machines that have infi nite storage capabilities, we
shall concentrate on those machines whose past histories can affect their future behavior
in only a fi nite number of ways. We shall study machines that can distinguish among a
fi nite number of classes of input histories and shall refer to these classes as the internal
states of the machine. Every fi nite-state machine, therefore, contains a fi nite number of
memory devices, which store the information regarding the past input history.

 Chapter 9
 Machines Moore and Mealy

144 9 Machines Moore and Mealy

nα

Scheme of the
automaton output

Elements of the
memory automaton

Scheme of excitation
functions of the

memory elements

W1 Wj

1α

1β

jβ

Z1 Zm

 Fig. 9.2 Structural
diagram of the Mealy
machine

Scheme of the
automaton output

Elements of the
memory automaton

Scheme of excitation
functions of the

memory elements

W1 Wj

1α nα

1β

jβ

Z1 Zm

 Fig. 9.1 Structural
diagram of the Moore
machine

 Note that, although we are restricting our attention to machines that have fi nite
storage capacity, no bound has been set on the duration for which a particular input
value may affect the future behavior of the machine.

 In the theory of computation, a Moore machine is a fi nite-state machine whose
output values are determined solely by its current state, fi gure. This is in contrast to
a Mealy machine, whose output values are determined both by its current state and
by the values of its inputs, Figs. 9.1 and 9.2 .

 Most digital electronic systems are designed as clocked sequential systems. Clocked
sequential systems are a restricted form of Moore machine where the state changes only
when the global clock signal changes. Typically the current state is stored in fl ip- fl ops,
and a global clock signal is connected to the “clock” input of the fl ip- fl ops. Clocked
sequential systems are one way to solve metastability problems. A typical electronic

1459.1 Synthesis of Moore Automata from Graph-Scheme

Moore machine includes a combinational logic chain to decode the current state into the
outputs. The instant the current state changes, those changes ripple through that chain,
and almost instantaneously the outputs change (or don’t change). There are design tech-
niques to ensure that no glitches occur on the outputs during that brief period while
those changes are rippling through the chain, but most systems are designed so that
glitches during that brief transition time are ignored or are irrelevant. The outputs then
stay the same inde fi nitely, until the Moore machine changes state again.

 The principle of designing devices to implement the various methods of multipli-
cation are shown in Fig. 9.3

 We consider the example of designing devices for multiplying numbers. During
the multiplication of numbers in binary code the sign bit and data bits are handled
separately. We assume that Y and X – correct binary fraction –

RG1
0 n

SM
 0 n 0 n

RG3
0 n

CT
1 q

CT=0

RG2
1 n

RG2(n)

 n

 n n
RG1

1 2n

SM
 1 2n 1 2n

 RG3
1 2n

 RG2
1 n

RG2(n)

2n+1

2n+1

 RG1
1 n

SM

0 2n 0 n

RG3
1 n

 RG2
0 n

RG2(0)

CT
1 q

CT=0

 n

 n+1

 n+1

 2n+1 n

0

RG1
0 2n

SM
0 2n 0 2n

 RG3
0 2n

 RG2
1 n

RG2(1)

2n+1

2n+1 2n+1

a b

dc

 Fig. 9.3 Methods of multiplication. (а) 1st method; (b) 2nd method; (c) 3rd method; (d) 4th
method

146 9 Machines Moore and Mealy

 = ¼1 20, , , , ,nX x x x

 = ¼1 20, , , , ,nY y y y

where x
 i
 , y

 i
 ∈ {0,1}.

 You can use one of the four methods of multiplication.
 1st method

()()()()1 1 1 1

1 1· 0 2 2 2 2- - - -
-= = ¼ + + + + + +� �n n iZ Y X Yx Yx Yx Yx

 2nd method

()()()()1 1

1 10 2 2 2- - + -
-= + + + +� �n n

n nZ Y X Y x Y x

 3rd method

()()()()1 20 2 2 2 2 2 2 2- - - -= + + + + + +� � �n n n n

i nZ Y X Y x Y x Y x

 4th method

()()()1 2

1 20 2 2 2 2 .- - - -= + + + + + +� � �i n
i nZ Y x Y x Y x Y x

 Methods of multiplication on serial binary machines vary from the standard
pencil-and-paper method to multiplication by a fast multiplier. The time taken for a
multiplication by both these methods is independent of the arrangement of digits in
the multiplier. For some methods, however, the time is not invariant, so that for an
optimum-coded machine using a delay-type store it is essential to know the expected
time for a multiplication, so that maximum time-saving may be obtained, by insert-
ing the next order in the optimum position. In a machine of this type each order
includes an indication of the operation to be performed and the address of the next
order; other addresses may be specifi ed also. For the majority of operations, e.g.
addition, subtraction, doubling, halving, some logical orders and magnitude tests,
the time taken is known and fi xed for the same operation. Thus the next order may
be placed, subject to availability, so that it may be called in immediately the previ-
ous operation is completed. Further, if the next order is placed in an earlier position,
it will not be available until after a complete period of the delay store, and if in a
later position, a certain amount of time will be wasted. For operations such as mul-
tiplication and division, with variable time for completion, the optimum position for
the next order is such that over all possible times the expected time is minimized. It
may be necessary in the following methods to allow time for control instructions,
but these are functions of the overall construction of the computer and, as such, do
not affect the basic time for a multiplication.

1479.1 Synthesis of Moore Automata from Graph-Scheme

 To see how this can be done, notice that the result of multiplying two n-digit positive
binary numbers, the result may be as long as 2n digit long. Let us denote the fi rst factor
by x, the second by y, and the result by Z.

 When we implement multiplication in digital computers we have ways to change the
method easily. Firstly, instead of providing registers to store and add intermediators
generated in between the multiplication, we can have adder to add the intermediators
simultaneously and store them then in registers. This saves memory. Secondly, instead
of shifting the multiplicand to the left it is suggested to shift the partial product to the
right. It makes the relative positions for the partial product and multiplicand. Thirdly,
when the corresponding bit of the multiplier is 0, then there is no need to multiply the
number as the result doesn’t have any difference form it.

 Principles of designing devices that implement the various methods of multiplication
are shown in Fig. 8.28.

 Where RG1 – register; RG2 – register X; RG3 – register Y.
 These registers along with two other registers make up the complete implementation.

Principles of designing devices that implement the various methods of multiplication are
shown in Fig. 8.28 where

 RG1 – register = · ;Z Y X
 RG2 – register ;X
 RG3 – register .Y

 Example 1. Build a circuit that simulates activity of a Moore automaton given by the
following graph-scheme, Fig. 9.4 .
 Step 1: Assign the marks to the scheme:

 Mark the node Start and End by symbol – • 1a ;
 Mark the operator nodes by symbols • ¼2 , , ma a , each by one symbol.

 Step 2: Derive the transitions and outputs tables. The transition functions are formed
as conjunctions of the ways from ma to sa . Output data: Graph of Moore automata,
Fig. 9.5 .
 Step 3: We obtain a transitions/outputs table (Table s 9.1 and 9.2):

 Example 2. We consider the example synthesis of the Moore automata for
multiplication of two binary numbers.

 We introduce the following notation:
 SM – adder ;
 CT – counter ;
 RG , RG1 – registers;
 n – number of cycles.
 Let А = 1101

2
 , В = 101

2
 . Then

 1 1 0 1
2
 Multiplier

 1 0 1
2
 Multiplicand

 1 1 0 1 Partial-products
 0 0 0 0

 1 1 0 1
 1 0 0 0 0 0 1 2 Product

http://dx.doi.org/10.1007/978-94-007-5228-3_8

148 9 Machines Moore and Mealy

y3 y4

y1 y2

y2 y3

y1 y4

y2

(-)

1

y4

x2

1

x1

x1

x2 x4

x4
x3 x2

x3 x2

a5a4

a6

a1

a2

a3

a7

1

x3

 Fig. 9.5 Graph of a Moore
automaton

Start a1

10

0

0

0

0

11

1

1

a1Done

X1

X2
X3

X2

X4

Y1 Y2 Y3 Y4 Y1 Y4

Y2 Y3

Y4 Y2

a3a2 a4

a5

a6
a7

 Fig. 9.4 Graph-scheme of a Moore automaton

1499.1 Synthesis of Moore Automata from Graph-Scheme

 The Decision considered in the above example is in this instance realized on the
following scheme (Figs. 9.6 , 9.7 , 9.8) :

 RG2 SM (adder) RG1 (LSB) Comment

 1101 00000 101
 ± 1101
 01101 Addition

 110 Shift (RG1) and (SM)
 00110
 00011 011 Shift (RG1) and (SM)
 ± 1101 Addition
 10000
 01000 001 Shift (RG1) and (SM)
 1000 001 Product

 Table 9.2 Moore automaton
state transition table (reverse
transition table)

 a
 m
 a

 s
 (у) x

 a
6
 a

1
 (−) 4x

 a
7
 1

 a
1
 a 2(у

1
 у

2
) 1x

 a
2
 3 2·x x

 a
6
 4x

 a
1
 a

3
 (у

3
 у

4
) 1x

 a
4
 1

 a
3
 a

4
 (у

1
 у

4
) 2x

 a
2
 a

5
 (у

2
 у

3
) 3x

 a
2
 a

6
 (у

4
) 3 2·x x

 a
3
 a

7
 (у

2
) 2x

 a 5 1

 Table 9.1 Moore automaton
state transition table (direct
transition table)

 a
 m
 (У) a

 s
 x

 a
1
 (−−) a

2
 1x

 a
3
 1x

 a
2
 (у

1
 у

2
) a

2
 3 2·x x

 a
5
 3x

 a
6
 3 2·x x

 a
3
 (у

3
 у

4
) a

4
 2x

 a
7
 2x

 a
4
 (у

1
 у

4
) a

3
 1

 a
5
 (у

2
 у

3
) a

7
 1

 a
6
 (у

4
) a

1
 4x

 a
2
 4x

 a 7 (у 2) a 1 1

150 9 Machines Moore and Mealy

 Fig. 9.7 Graph-scheme of
multiplying two numbers

 Fig. 9.6 The block diagram of an operational device that implements the multiplication

RG1 2 1

SM

n

n

n 2 1

RG2 2 1

K CT 1

y5

y4

y2

y6

y7

y1

y3

x1

x2

1519.1 Synthesis of Moore Automata from Graph-Scheme

 Fig. 9.8 Graph-scheme of
coded multiplication
algorithm of two numbers

 Where

 y
1
 – installation of SM in the zero state (SM : = 0);

 y
2
 – SM : = SM + RG 2;

 y
3
 – transfer the contents of the fi rst register in the fi rst register with a shift to the

right (RG 1 = R 1(RG 1));
 y

4
 – shift the contents of the adder to the right (SM : = R 1 (SM));

 y
5
 – shift LSB to MSB adder register (RG 1[n]:= SM [1]);

 y
6
 – input to the counter number n ;

 y
7
 – signal operations account (СТ : = СТ −1).

 Based on the trigger R – S of the transition table, fi ll columns R and S , Table 9.3
(Figs. 9.9 and 9.10).

 Also Y
1
 = y

1
 , y

6
 ; Y

2
 = y

2
 ; Y

3
 = y

3
 , y

4
 , y

5
 , y

7
 .

 The project requires an algorithm capable of comparing two circuits. It may need
to search thousands of circuits, so it must be as effi cient as possible. Furthermore, it
must correctly fi nd any sort of analogue circuit, not merely all of those with particular

152 9 Machines Moore and Mealy

 Fig. 9.9 Graph-scheme of coded multiplication algorithm of two numbers

 Table 9.3 A fi nite-state machine (FSM)

 Initial
state
(a

m
)

 The code
of the initial
state (Q

 m
)

 State
transition
(a

s
)

 Status code
transition
K(a

 s
)

 Input
signal

,

,

æ ö
ç ÷è ø

m

s

a
x

a

 Output
signal

,

,æ ö
ç ÷è ø

m

s

a
y

a

 Initialization
function
trigger

æ ö
ç ÷
è ø

,m

s

a

a

 Q
2
 Q

1
 Q

2
 Q

1
 R S

 a
1
 0 0 a

2
 0 1 1 y

1
 – S

1

 a
2
 0 1 a

3
 1 0 x

1
 y

2
 R

2
 S

1

 a
3
 1 0 a

4
 1 1 1 y

3
 – S

1

 a
4
 1 1 a

2
 0 1 2x – R

2
 –

 a
4
 1 1 a

1
 0 0 x

2
 – R

1
 R

2
 –

 a
2
 0 1 a

4
 1 1 1x y

3
 – S

2

properties, since it is impossible to know every circuit that may be added to the
repository in the future, or indeed the circuits that will be searched for.

 It is not easy for a computer to determine the function of an analogue circuit. A
computer can be given access to every aspect of a circuit that a human would be able
to see: component values, interconnections, perhaps even component locations so
that the circuit can be drawn on screen.

 However, a computer cannot interpret this information as easily as an experi-
enced engineer.

 There are some circuits that are easily compared. Digital circuits are a special
type of analogue circuit. It is not diffi cult for a computer to examine a combinatorial
digital circuit. A computer can always work out the minimum logical function that
such a circuit provides, and compute truth tables. This type of circuit has discrete
inputs and outputs, each of which can only take two values.

1539.1 Synthesis of Moore Automata from Graph-Scheme

Q1

Q2

D0

D1

D2

D3

S

R T1

S

R T2

S

R T3

S

R T4

&

&

&

&

&

&

&

&

1

1

1

1

&

1

C

C

Y2

X2

X1

y3, y4,y5,y7
y1

y6

 Fig. 9.10 Functional circuit of the multiplication of binary numbers

 Table 9.4 Table of state
auto mation and state trigger

 State automaton (a
 m
) State trigger

 Q
 2
 Q

 1

 a
 1
 0 0

 a
 2
 0 1

 a
 3
 1 0

 a
 4
 1 1

 Combinatorial circuits can thus be compared in terms of the minimal representa-
tion of their logical function, or in terms of their truth tables. However, this is not
possible for non-combinatorial digital circuits: those with some type of memory or
internal state. A logical function or truth table could only be drawn for such circuits
if its parameters included all the values of the internal state.

 In an analogue circuit, a truth table can never be derived, because all inputs and
outputs have real values. Voltage and current are continuous quantities which may
take any real-numbered value. Nor is it possible, in general, to reduce an analogue
circuit to a mathematical function which could be compared more easily.

 An electronic circuit is easily expressed as a graph: an example of one possible rep-
resentation was illustrated earlier in Figure 9.9. Since this is the case, existing methods
for solving subgraph isomorphism problems can be applied to comparing circuits.

 Thus, based on data in Tables 9.3 and 9.4 we obtain the following system of
equations:

154 9 Machines Moore and Mealy

1 1 2 1 1 2 2

2 1 2 1 2 1 2 2 1 2 2 1 2 1

3 1 1 2 1 2 1 1 2 1 2 1 2 1

1 2 1 1

· ; · · ;

· · ; · · · · · · ;

· · · ; · · · · ;

· · .

ü= =
ï= = Ú Ú ï
ý

= Ú = Ú Ú ï
ï= þ

y Q Q R Q Q x

y Q Q x R Q Q x Q Q x Q Q x

y x Q Q Q Q S Q Q Q Q Q Q x

S Q Q x
 (9.1)

 Add to the decoder circuit of automaton states:

 = = = =0 1 2 1 1 2 2 1 2 3 1 2· ; · ; · ; · ;a Q Q a Q Q a Q Q a Q Q

 Thus , the system of Eq. 9.1 can be simpli fi ed:

1 3 2

2 3 2 3 2 1 2 1 3 2 1

1 0 1 1 2

2 2 1

1 0 2 1 2 3 1 2 1

· · ;

· · · · · · · · · ;

· · · · ;

· · ;

· ; · · ; · · · .

= ü
ï= Ú Ú = Ú ïï= Ú Ú ý
ï= ï

= = = Ú ïþ

R a x C

R a x C a x C Q Q x a C a x C

S a C a C x a C

S a x C

y a C y x a C y x a C a C
 (9.2)

 Division, similar to multiplication we can do division as shown below.
 Of all the elemental operations, division is the most complicated and can consume

the most resources (in either silicon, to implement the algorithm in hardware, or in
time, to implement the algorithm in software). In many computer applications,
division is less frequently used than addition, subtraction or multiplication. As a
result, some microprocessors that are designed for digital signal processing (DSP)
or embedded processor applications do not have a divide instruction (they also
usually omit fl oating point support as well).

 We outline the basic algorithmization and programming principles for logic
synthesis of the Moore automata for binary division.

 Example 3. We outline the basic algorithmization and programming principles
for logic synthesis of the Moore automata for binary division.

 All algorithms are categorized into two main sections. One is known as slow
division while the other one is known as fast division. Both of these algorithms have
their own unique working procedure through which they perform all of their tasks.
For example, a slow division algorithm always produces only a single digit of each
 fi nal quotient. Some of the famous examples of a slow division algorithm are restor-
ing and SRT. While on the other hand, a fast division algorithm follows the rule of
closest possible approximated value relative to the fi nally produced quotient and
produces as many digits as it can which are in twice pattern of fi nal outcome
quotient.

 We assume that in an arithmetic division operation involving operands – C = A/B.
 In addition, the digital device must generate a symptoms result in binary variables:

1559.1 Synthesis of Moore Automata from Graph-Scheme

 • Z – a zero result ;
 • S – a negative result ;
 • OV – a sign of overcrowding .

 Algebraic division algorithm operations are designed for 16-bit binary numbers
with fi xed point (Fig. 9.11).

 In computer science, the sign bit is a bit in a computer numbering format that
indicates the sign of a number. In IEEE format, the sign bit is the leftmost bit (most
signifi cant bit). Typically if the sign bit is 1 the number is negative (in the case of
two’s complement integers) or non-positive (for ones’ complement integers, sign-
magnitude integers, and fl oating point numbers), while 0 indicates a positive
number.

 Thus, in operations involving the following variables:

 • А = ¼0 1 2 15a a a a – fi rst operand (dividend);
 • В = ¼0 1 2 15b b b b – second operand (divisor);
 • С = ¼0 1 2 15c c c c – result of the operation division (Also, there remains a W);
 • D = ¼0 1 2 15d d d d – variable, which accumulates C ;
 • 0 0 0, ,a b c – sign bits.

 The sign of the result of division can be found from the expression:

 = Ú0 0 0 0 0 .c a b a b

 The graph-scheme of the division operation is shown in Fig. 9.12 .
 For reduction of mean time for a division operation, use a method that does not

recover the remainder, an algorithm for which follows.

 (1) De fi ne the sign a quotient by summation over module two contents sign category
done and divisor.

 (2) From done to subtract the divisor. If the remainder W < 0 , go to point 3. Otherwise
calculation to fi nish.

 (3) Remember the sign of the remainder (W).
 (4) Shift the remainder (W) on one category to the left.
 (5) Assign the divisor a sign, the inverse sign of the remainder, remembered in Step 2.
 (6) Pack the shifted remainder and divisor (with provision for sign).
 (7) Assign the numeral a quotient importance, opposite code of the sign of the

remainder.
 (8) Repeat Steps 3–7 until required accuracy of the calculation is achieved.

0 1 15

Sing bit Module number

 Fig. 9.11 Binary code

156 9 Machines Moore and Mealy

No

D:=L1(D)

Done

n=0

n:=n-1

C:=D

c0:=s

C:=A - B

c0

Start

a0 = b0

s:=0 s:=1

Yes

a0:=0

b0:=0

OV:=0

n:=16

OV:=1

A:=C

A:=L1(A)

c0

D[15]:=1

C:=A - B

D[15]:=0

C:=A + B

0

0

1

1

Yes

No

 Fig. 9.12 Graph-scheme of the division operation

1579.1 Synthesis of Moore Automata from Graph-Scheme

 The Decision considered in the above example is in this instance realized in the
 following scheme:

 [A]
tc
 +00,1001 00, 1 1 0 0

 [− B]
tc
 (subtraction) 11,0011 00, 1 0 1 1 0

 W < 0 11 ,1100
 proper fraction

 W shift to the left +11,1000
 Addition [B]

tc
 00,1101

 W > 0 00 ,0101

 W shift to the left +00,1010
 Subtraction 11,0011
 W < 0

 11 ,1101

 W shift to the left +11,1010
 Addition 00,1101
 W > 0

 00 ,0111

 W shift to the left +00,1110
 Subtraction 11,0011
 W > 0

 00 ,0001

 W shift to the left +00,0010
 Subtraction 11,0011
 W < 0

 11 ,0101

 Result C = A:B = 0,1011

 Next, determine which sequence of micro operations to be implemented to
develop a framework to perform the division is provided by the algorithm of
Fig. 9.3 . The simplest solution - to keep the topology of the graph algorithm and
replace the contents of its operator - the appropriate logical conditions.

 Thus obtained graph is called fi rmware and treated as an input to the design of the
receiver (fi rmware) of the automaton. In this case, the contents of the vertex operator
corresponding to the action performed by the device in one step of discrete time. The
design of digital systems usually aim to achieve a top speed of their work.

 The structure of the automaton should include the following elements:

 Two hexadecimal registers • РгА and РгВ for storing the input operands and inter-
mediate results, and the РгА register should provide an opportunity to shift its
contents to the left;
 Hexadecimal Register • РгС to accommodate the results of arithmetic operations
of addition or subtraction. At the end of the operation it will post the result;

158 9 Machines Moore and Mealy

 Hexadecimal register • PгD with the ability to left shift code (to accommodate C);
 Hexadecimal binary parallel adder/subtractor • Adder/Sub ;
 Four-digit down counter • Сч n ;
 Flip- fl op the over fl ow • Тг OV to store the over fl ow trait word length;
 Flip- fl op of the sign • Тг s ;
 Scheme comparison “equals” sign bit source operands; •
 decoder • DC “0” zero combination in the ranks С [1:15].

 Table 9.5 shows a complete list of micro-and logical conditions.
 Links between elements of Moore FSM and micro-operations are shown in

Fig. 9.13 .

 Fig. 9.13 Links between elements of Moore FSM and micro-operations

 Table 9.5 A complete list of micro-and logical conditions

 Micro-operation Action Micro-operation Action Logical condition Action

 y
1
 s :=0 y

10
 А := L 1(А) x

1
 a

0
 := b

0

 y
2
 s :=1 y

11
 D [15]:=1 x

2
 c

0

 y
3
 a

0
 :=0 y

12
 D [15]:=0 x

3
 Сч п :=0

 y
4
 b

0
 := 0 y

13
 С := A + В

 y
5
 C := R + S y

14
 D := L 1(D)

 y
6
 OV :=0 y

15
 Сч n := С ч−1

 y
7
 OV := 1 y

16
 C := D

 y
8
 n :=16 y

17
 c

0
 := s

 y
9
 A := C

1599.1 Synthesis of Moore Automata from Graph-Scheme

 Step 1.
 Mark out the microprogram division.
 Assign the marks to the scheme, Fig. 9.14 .

 Step 2.
 We construct the graph, we are actually given alphabet of internal states and

input symbols and determine the transition function. To set the output symbols of

1 0

y17

Start

x1

y1 y2

Done

y16

x2

y11, y5 y12, y13

y14, y15

x3

y3, y4

y5

x2

y6, y8

y9

y10

y7

0

0

1

1

1

0

a1

a2 a3

a4

a5

a7a6

a8

a9

a10
a11

a12

a13

a14

a1

 Fig. 9.14 Graph-scheme of a division algorithm

160 9 Machines Moore and Mealy

the alphabet and the output function (for Moore FSM output function depends only
on the states) should be compared with each vertex in the machine as the output
character contents of the corresponding vertex operator fi rmware. Thus, we obtain
the graph fi rmware machine, which is shown in Fig. 9.15 .

 A synthesizable state machine may be coded many ways. Two of the most com-
mon, easily understood and effi cient methods are two-always block and one-always
block state machines.

 The easiest method to understand and implement is the two-always block state
machine with output assignments included in either the combinational next-state
always block or separate continuous-assignment outputs.

 Step 3.
 Perform the coding of states of the digital automata (Table 9.6).

 Step 4.
 The choice of memory elements. Choosing a D fl ip- fl op. Construct the transition

table automaton (Table 9.7).

 Step 5.
 Development of a combinational circuit.

a1

a2 a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

y2

y3, y4

y5
y6, y8

y7

y9y10

y11, y5

y12, y13

y14, y15

y16

y17

x1

x1

x2

x2

x2
1

x3

 Fig. 9.15 Graph-scheme of division (Moore FSM)

1619.1 Synthesis of Moore Automata from Graph-Scheme

 Table 9.7 Flip-fl op Excitation Tables

 The initial state of
automaton

 Jump
condition

 State
transition

 Excitation function
of the fl ip- fl op

 D
1
 D

2
 D

3
 D

4

 (a
1
) 0001 x

1
 (a

 2
) 0010 0 0 1 0

 1x (a
 3
) 0011 0 0 1 1

 (a
2
) 0010 1 (a

4
) 0100 0 1 0 0

 (а
3
) 0011 1 (a

4
) 0100 0 1 0 0

 (а
4
) 0100 1 (a

5
) 0101 0 1 0 1

 (a
5
) 0101 x

2
 (a

6
) 0110 0 1 1 0

 2x (a
7
) 0111 0 1 1 1

 (a
6
) 0110 1 (a

8
) 1000 1 0 0 0

 (a
7
) 0111 1 (a

1
) 0001 0 0 0 1

 (a
8
) 1000 1 (a

9
) 1001 1 0 0 1

 (а
9
) 1001 x

2
 (a

11
) 1011 1 0 1 1

 2x (a
10

) 1010 1 0 1 0
 (a

10
) 1010 1 (a

12
) 1100 1 1 0 0

 (a
11

) 1011 1 (a
12

) 1100 1 1 0 0
 (a

12
) 1100 x

3
 (a

13
) 1101 1 1 0 1

 3x (a
8
) 1000 1 0 0 0

 (a
13

) 110 l 1 (a
14

) 1110 1 1 1 0
 (a

14
) 1110 1 (a

1
) 0001 0 0 0 1

 Table 9.6 Moore automaton state transition table (reverse transition table)

 State automaton Code Т
1
 Т

2
 Т

3
 Т

4
 State automaton Code Т

1
 Т

2
 Т

3
 Т

4

 а
1
 0001 а

8
 1000

 а
2
 0010 а

9
 1001

 а
3
 0011 а

10
 1010

 а
4
 0100 а

11
 1011

 а
5
 0101 а

12
 1100

 а
6
 0110 а

13
 1101

 а
7
 0111 а

14
 1110

 Stage of minimization we’re missing. You can do it yourself. For example, use
Karnaugh Maps .
 Excitation function of the fl ip- fl op :

 = Ú Ú Ú Ú Ú Ú1 6 8 9 10 11 12 13.D a a a a a a a

 = Ú Ú Ú Ú Ú Ú Ú2 2 3 4 5 10 11 12 3 13.D a a a a a a a x a

 = Ú Ú Ú3 1 5 9 13.D a a a a

 = Ú Ú Ú Ú Ú Ú Ú4 1 1 4 5 2 7 8 9 2 12 3 14D a x a a x a a a x a x a

162 9 Machines Moore and Mealy

 Output function:

1 2

2 3

3 4

4 4

5 5 10

6 6

7 7

,

,

,

,

,

,

=

=

=

=

= Ú

=

=

y a

y a

y a

y a

y a a

y a

y a

8 6

9 8

10 9

11 10

12 11

13 11

14 12

,

,

,

,

,

,

=

=

=

=

=

=

=

y a

y a

y a

y a

y a

y a

y a

15 12

16 13

17 14

,

,

.

=

=

=

y a

y a

y a

 Step 6.
 Development of a functional diagram of the device (Fig. 9.16).
 A function block diagram (FBD) of division algorithm is a block diagram that

describes a function between input variables and output variables. A function is
described as a set of elementary blocks. Input and output variables are connected to
blocks by connection lines. An output of a block may also be connected to an input
of another block.

 Inputs and outputs of the blocks (logic gates, fl ip-fl ops, decoder) are wired
together with connection lines, or links. Single lines may be used to connect two
logical points of the diagram:

 an input variable and an input of a block;•
an output of a block and an input of another block;•
an output of a block and an output variable. •

 The connection is oriented, meaning that the line carries associated data from the
left end to the right end. The left and right ends of the connection line must be of the
same type.

1639.1 Synthesis of Moore Automata from Graph-Scheme

21

20

19

18

17

1

1

DC

1

D
TT

D
TT

D
TT

D
TT

1

2

3

4

5

6

7

8

1
2
3
4

5

6

7

1
2
3

4
5
6
7
8
9

10
11
12
13
14

1

y1

y2

y3

y55

10
y6
y7
y8
y9

y10

y11
y12
y13
y14
y15

&

&

&

&

1
16

4
5

18

7

9
17

8
14

1
5
9

13

12
19

2
3

4
5
10
11
13

CLK

1

1

1

6 1
8

9

10
11

12

13

x1

x2

x3

21

15

 Fig. 9.16 Functional diagram

164 9 Machines Moore and Mealy

 Multiple right connection, also called divergence can be used to broadcast infor-
mation from its left end to each of its right ends. All ends of the connection must be
of the same type.

 Example 4. A fi nite-state machine (FSM) or fi nite-state automaton (plural: autom-
ata), or simply a state machine, is a mathematical abstraction sometimes used to
design digital logic or computer programs. It is a behavior model composed of a
 fi nite number of states, transitions between those states, and actions, similar to a
 fl ow graph in which one can inspect the way logic runs when certain conditions are
met. It has fi nite internal memory, an input feature that reads symbols in a sequence,
one at a time without going backward; and an output feature, which may be in the
form of a user interface, once the model is implemented. The operation of an FSM
begins from one of the states (called a start state), goes through transitions depend-
ing on input to different states and can end in any of those available, however only
a certain set of states mark a successful fl ow of operation (called accept states).

 Finite-state machines can solve a large number of problems, among which are
electronic design automation, communication protocol design, parsing and other
engineering applications.

 A state diagram is a type of diagram used in computer science to describe the
behavior of systems. State diagrams require that the system described is composed
of a fi nite number of states (a

i
).

 Build a circuit that simulates activity of a Moore automaton given by the follow-
ing graph-scheme, Fig. 9.17 .

 Moore automata can describe the transition and output functions

 () ()1 1 1 1 1, , ,+ = =ta f a x z aj

where a
1
 and z

1
 are the state Moore automaton and the output signal from the

machine at time t , respectively.
 The choice of memory elements. Choosing an R-S fl ip- fl op.

⋅

=

=

 Fig. 9.17 Graph-scheme of Moore automaton

1659.1 Synthesis of Moore Automata from Graph-Scheme

 Excitation function of the R-S fl ip- fl op :

 = Ú1 3 2 3 2 ,S Q Q YG Q Q G

 = Ú =1 3 2 3 2 2 ;R Q Q G Q Q G Q G

 =2 1 ,S Q G

 =2 3 1 ;R Q Q YZ

 =3 2 1 ,S Q Q ZG

 =3 2 1 ;R Q Q G

 Output function:

 =1 3 2 1,F Q Q Q

 =2 3 2 1,F Q Q Q

 = Ú3 3 2 1 3 2 1.F Q Q Q Q Q Q

 The process of designing large digital systems is typically one of interconnecting
smaller devices, such as fl ip-fl ops, registers, multiplexers, etc., in such a way that
the resulting system has the required performance characteristics.

 Normally, these devices are interconnected directly to each other with various
inverters being inserted as needed.

 Verify the operation of the automaton we have done in the two most raspros-
tranynnyh systems – NI Multisim and MicroCap 8. Diagram of the digital machine
is made on triggers JK and NOR logic gates. Like NAND gates, NOR gates are so-
called “universal gates” that can be combined to form any other kind of logic gate.

 NI Multisim is an electronic schematic capture and simulation program which is
part of a suite of circuit design programs, along with NI Ultiboard.

 Micro-Cap 8 is an integrated schematic editor and mixed analog/digital simula-
tor that provides an interactive sketch and simulates an environment for electronics
engineers. Micro-Cap 8 blends a modern, intuitive interface with robust numerical
algorithms.

 Figure 9.18 shows a diagram of a digital automata (Micro-Cap 8).
 Figure 9.19 shows the timing diagrams of a digital automata (Micro-Cap 8).
 Figure 9.20 shows a diagram of a digital automata (NI Multisim 10).

 Example 5. Will design an automat that will work as a binary counter when the
control signal M = 0 and the counter in the Gray code if M = 1 (Table 9.8). The digi-
tal automata can be speci fi ed as a graph, Fig. 9.21 or Table 9.9 .

 The digital automata can perform as a counter, using triggers – the fi rst version,
or using multiplexers – the second version.

166 9 Machines Moore and Mealy

 Fig. 9.18 Functional diagram of a digital automata (Micro-Cap 8)

 Fig. 9.19 The timing diagrams of digital automata (Micro-Cap 8)

1679.2 The First Version

 Fig. 9.20 Functional diagram of digital automata (NI Multisim 10)

 Table 9.8 Gray code Decimal Gray code

 0 0 0 0
 1 0 0 1
 2 0 1 1
 3 0 1 0
 4 1 1 0
 5 1 1 1
 6 1 0 1
 7 1 0 0

 9.2 The First Version

 Transition function for each trigger of the automaton can be described by the fol-
lowing dependence:

 ()= ¼ ¼1 2 1 2, , , , , , , .i k nQ F x x x Q Q Q

 Or = Úi i i i iQ f Q g Q ,
 where Functions f and g do not contain the variables Q

 i
 and iQ .

 For J-K = Úi i i i iQ J Q K Q .

 Also fi

 = J

 i
 , =i ig K .

168 9 Machines Moore and Mealy

 For Q
 i
 = 0 we obtain the excitation function for the input J :

.
0

= =
=

i i
i

i

f J
Q

Q

 For Q
 i
 = 1 we obtain the excitation function for the input K :

.
0

= =
=

i i
i

i

g K
Q

Q

000 001 010

111 110

011

101 100

M

M

M

M M

M

M

M

M
M

M

M

 Fig. 9.21 Graph-scheme of Moore automaton

 Table 9.9 The coding of states of the digital automat

 Control
signal Present Next

 Control
signal Present Next

 M Q
2
 Q

1
 Q

0
 Q

2н Q
1н Q

0н M Q
2
 Q

1
 Q

0
 Q

2н Q
1н Q

0н

 0 0 0 0 0 0 1 1 0 0 0 0 0 1
 0 0 0 1 0 1 0 1 0 0 1 0 1 1
 0 0 1 0 0 1 1 1 0 1 0 1 1 0
 0 0 1 1 1 0 0 1 0 1 1 0 1 0
 0 1 0 0 1 0 1 1 1 0 0 0 0 0
 0 1 0 1 1 1 0 1 1 0 1 1 0 0
 0 1 1 0 1 1 1 1 1 1 0 1 1 1
 0 1 1 1 0 0 0 1 1 1 1 1 0 1

1699.2 The First Version

 Fig. 9.22 Diagram of an automaton

 Thus, we can obtain the following expressions:

= Ú =2 1 0 1 0 1 10 0

• ;J MQ Q MQ Q MQ Q MQ Q

= Ú =2 1 0 1 0 1 10 0

• ;K MQ Q MQ Q MQ Q MQ Q

= Ú = 01 0 2 0 2 0• ;J MQ Q Q MQ Q Q

= Ú = 01 0 2 0 2 0• ;K MQ Q Q MQ Q Q

 = Ú Ú =0 2 1 2 1 2 1 2 1• • ;J M Q Q Q Q M Q Q Q Q

 = Ú Ú =0 2 1 2 1 2 1 2 1• • .K M Q Q Q Q M Q Q Q Q

 A diagram of an automaton is shown on Fig. 9.22 .

170 9 Machines Moore and Mealy

 9.3 The Second Version

 9.3.1 Machine, Implemented in Flip-Flops
with Multiplex Controls

 Structure with multiplexers at the inputs triggers different conceptual simplicity and
clarity, for its design does not require the development of logical transducers to
provide the necessary transition automaton. The problem is solved, in fact, using
tables. State variables are taken from the fl ip- fl ops, and input signals form a word,
used as multiplexer address inputs. At this address, each multiplexer selects the
variable (0 or 1) needed to transfer a D-type fl ip- fl op to a new state.

 Structure with multiplexer control triggers is shown in Figure 9.23 . Inputs x
0
 …

x
 m −1

 and the values of bits words of the old state Q
0
 … Q

 n −1
 form a control (address)

input word multiplexer, in which the values of selected bits of the new status word
are established.

 For zero initial states of triggers and M = 0 to address inputs of multiplexers 0000
and received on the inputs of fl ip- fl ops formed by the combination of signals 001.
Receipt of a clock pulse enters this combination in fl ip- fl ops. Now the address for
the multiplexer is a combination of 0001, according to which they removed with a
combination of 010, coming to solve the next clock pulse triggers (status register).
Since the regime of binary counter. Changing the control signal M gives a regime
change of the automaton. If, for example, when the word state 010 signal M becomes
the unit, the address multiplexer changes from 0010 to 1010 and with their outputs
show the combination of 110, corresponding to the next state when the meter is in
the Gray code.

 A diagram of an automaton is shown on Fig. 9.24 . Dignity of the structure – easy
adjustment to a new algorithm for automatic operation, the defect of – the rapid

0 MUX
1
2
.
.
2m+n

A
n-1

D

C n-1
m

n

X0..Xm-1

Q0..Qm-1

(n
-1

)
th

 l
ev

el
 o

f
th

e
ne

w
 s

ta
tu

s
w

or
d

Qn-1

0 MUX
1
2
.
.
2m+n

A 0

D

C
m

n

X0..Xm-1

Q0..Qm-1

Z
er

o
le

ve
l
of

 t
he

ne
w

 s
ta

tu
s

w
or

d

Q0

…….

 Fig. 9.23 Structure of an automaton with a multiplexer

1719.3 The Second Version

growth of dimension of multiplexers with increasing number of states and inputs of
the automaton.

 In conclusion we would like to note that recent progress has resulted in a steady
transition to digital devices with programmable logic. A programmable logic device
or PLD is an electronic component used to build recon fi gurable digital circuits.
Unlike a logic gate, which has a fi xed function, a PLD has an unde fi ned function at
the time of manufacture. Before the PLD can be used in a circuit it must be pro-
grammed, that is, recon fi gured. The study of such devices is not included in the
scope of this book, so we restricted ourselves to the theoretical foundations of digi-
tal automata built on their logic elements.

x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12

x13

x14

x15

M
Q2
Q1
Q0

MUX
16→1

0
1
1
0
0
1
1
0
0
1
1
1
0
0
1

x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13

x 14

x15

M
Q2
Q1
Q0

MUX
16→1

1
0
1
0
1
0
1
0
1
1
0
0
0
0
1

x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11

x12

x13

x14
x15

M
Q2
Q1
Q0

MUX
16→1

0
0
0
1
1
1
1
0
0
0
1
0
0
1
1

M

1D
C1
R

1D
C1
R

1D
C1
R

Input

Reset

 Fig. 9.24 Diagram of an automaton

173B. Borowik et al., Theory of Digital Automata, Intelligent Systems, Control
and Automation: Science and Engineering 63, DOI 10.1007/978-94-007-5228-3,
© Springer Science+Business Media Dordrecht 2013

 Appendix A: Counter Modulo 5

 Consider the implementation of counter pulses. For example solve the following
problem.

 Example . Develop a procedure for drawing up a decimal number to program counter
modulo 5, which contains four digits. As a counter use vector = 1 2 3 4| , , , |A a a a a .
Schematic co unter modulo 5 (mod 5) is presented in Fig. A.1 .

 Counter, see Fig. A.1 , assigned to count the number of pulses arriving to its input.
When the next pulse counter increases the integer stored in it in 5-year notation
on the 1 min value of that number – 0000, max value of that number – 4444. High
bit count – 4, LBS (Least signi fi cant bit) − 1. The initial state counter 0000. In this
state the counter is driven by its current value reset to 0 by feeding an impulse to
tire “reset to 0” (Fig. A.2).

 program Counter;
 {$APPTYPE CONSOLE}
 uses
 SysUtils;

 / / count number of digits
 CONST K=4;
 / / variables in the program

 VAR COUNT: ARRAY [1..K] of BYTE;
 I,N:INTEGER;

 / / procedure reset all bits to 0
 PROCEDURE INIT;
 BEGIN
 FOR I:=1 TO K DO COUNT[I]:=0
 END;

 / / Function reset 1 to J of counter
 FUNCTION CHADD(J:INTEGER):BOOLEAN;

 Appendices

174 Appendices

 BEGIN
 CHADD:= FALSE;
 COUNT[J]:=COUNT[J]+1;
 IF COUNT[J]=K
 THEN BEGIN
 CHADD:= TRUE;
 COUNT[J]:=0 {Reset}
 END

 END;
 BEGIN
 INIT;
 REPEAT
 WRITELN(‘Enter an integer from 0 to 10’); READLN(N);
 FOR I:=1 TO N
 DO IF CHADD(1)

 THEN IF CHADD(2)
 THEN IF CHADD(3)
 THEN IF CHADD(4)

 THEN WRITELN(‘Repletion of counter. Up cast of value counter in 0’);

mod5 mod5 mod5 mod5

Reset to 0

a1 a2 a3 a4

F

 Fig. A.1 Counter modulo 5

 Fig. A.2 Example program “Counter”

175Appendix A: Counter Modulo 5

 FOR I:=K DOWNTO 1 DO WRITE(COUNT[I]:1, ‘’);
 WRITELN;
 WRITELN(‘Enter - Enter an integer from 0 to 9, N=10 - Completion’);
 UNTIL N>9

 { TODO -oUser -cConsole Main : Insert code here}
 end.

 Registers

 Cyclic Registers

 Sometimes it is necessary to “recycle” the same values again and again. Thus the bit
that usually would get dropped is fed to the register input again to receive a cyclic
serial register

 Figure A.3 shows the scheme register A, which contains an +m 1 bit. Originally
performed by recording parallel code input bits tires in register A. The next step is
a cyclical shift code combination.

 Example . Develop procedures for cyclic shift right at N cycles code combi-
nation ()= 6 5 4 3 2 1 0, , , , , ,A K K K K K K K . Example, from the code combination
 ()= 1 0 111 0 1A and N = 8 we should get the following results, Table A.1 and Fig . A.4 .

 program Cycle_register;
 {$APPTYPE CONSOLE}
 Uses SysUtils;
 //MR - The number of bits of code combination
 CONST MR=6;
 VAR A: ARRAY[0..MR] of BYTE;
 J,I,N,PZ: INTEGER;
 begin
 REPEAT
 WRITELN(‘Enter (through Enter) positions of binary code combination with

6-th for 0- th’);
 FOR I:=MR DOWNTO 0 DO READ(A[I]);
 //Enter the number of shifts
 WRITELN(‘Conduct the number of changes to 8’);
 READLN(N);
 WRITELN(‘Register A contains a code’);
 FOR I:=1 TO N
 DO BEGIN
 //Store right end digit
 PZ:=A[0];
 //Shifts to the right all the other bits
 FOR J:=0 TO MR-1
 DO A[J]:=A[J+1];

176 Appendices

 A[MR]:=PZ;
 //Output code combination on each stroke of the program
 WRITE(‘Time’, I:1,’: ’);
 FOR J:=6 DOWNTO 0 DO WRITE(A[J]:1, ‘’);
 WRITELN;
 END;
 WRITELN(‘Enter (through Enter) positions of binary code combination with

6-th for 0- th, N<8 - Completion’);

PR

ma 2a 1a 0a

input bits

 Fig. A.3 The scheme of register (A)

 Table A.1 Bytes of register (A)

 Step Розряди регістру А

 The initial state 1 0 1 1 1 0 1
 Time 1 1 1 0 1 1 1 0
 Time 2 0 1 1 0 1 1 1
 Time 3 1 0 1 1 0 1 1
 Time 4 1 1 0 1 1 0 1
 Time 5 1 1 1 0 1 1 0
 Time 6 0 1 1 1 0 1 1
 Time 7 1 0 1 1 1 0 1
 Time 8 1 1 0 1 1 1 0

 Fig. A.4 Example program “Cycle-register”

177Appendix A: Counter Modulo 5

 UNTIL N<8
 {TODO -oUser -cConsole Main : Insert code here}
 end.

 Binary Coder

 Example . Develop a procedure for encoding binary position 8-bit binary code A in
the three-digit code В .

 To store the position of 8-bit binary code to use vector – A :

= 1 2 3 4 5 6 7 8, , , , , , , .A a a a a a a a a

 To store binary 3-bit code to use vector – В :

= 1 2 3, , .B b b b

 Schematic encoder shown in Fig. A.5 .
 For an illustration of the coder we discuss some examples of coding:

 Let • А = (10000000), then for this code В = (000);
 Let • А = (01000000), then for this code В = (001);
 Let • А = (00100000), then for this code В = (010);
 Let • А = (00010000), then for this code В = (011);
 Let • А = (00001000), then for this code В = (100);
 Let • А = (00000100), then for this code В = (101);
 Let • А = (00000010), then for this code В = (110);
 Let • А = (00000001), then for this code В = (111) .

 Based on these options we can make a code table (see Table A.2).
 Based on Table A.2 we can create a logical encoding scheme (Figs. A.6 and A.7).
 The scheme employs three logical gates “ OR ” (the 3-bit in the code B).

 program Coder;
 {$APPTYPE CONSOLE}
 uses

Output

Record

Coding

b1 b2 b3

a8a1 a2 a3 a4 a5 a6 a7

Reading

Input

 Fig. A.5 Scheme of binary
coder

178 Appendices

 Table A.2 Code table of binary coder

 Code A

 Code B

 b
1
 b

2
 b

3

 a
1
 10000000

 a
2
 01000000 +

 a
3
 00100000 +

 a
4
 00010000 + +

 a
5
 00001000 +

 a
6
 00000100 + +

 a
7
 00000010 + +

 a
8
 00000001 + + +

Coding

1

1

1

&

&

&

b1

b2

b3

k1

k2

k3

a1

a2

a3

a4

a5

a6

a7

a8

 Fig. A.6 The scheme of binary coder employ three logic gates “OR”

 Fig. A.7 Example program “Binary coder” (Pascal)

179Appendix A: Counter Modulo 5

 SysUtils;
 VAR A: ARRAY[1..8] of BYTE;

 B: ARRAY[1..3] of BYTE;
 K1, K2, K3:BOOLEAN;
 i,n:INTEGER;

 BEGIN
 REPEAT
 WRITELN(‘Enter a binary number from 0 to 8’);
 READLN(N);
 FOR I:=1 TO 8

 / / form a binary code number of positional
 DO IF I = N THEN A[I]:= 1
 ELSE A[I]:= 0;
 FOR I:=1 TO 8 DO WRITE(A[I]:1, ‘’);
 WRITELN;

 // Output Register A
 K1:= (A[5]=1) OR (A[6]=1) OR (A[7]=1) OR (A[8]=1);
 K2:= (A[3]=1) OR (A[6]=1) OR (A[7]=1) OR (A[8]=1);
 K3:= (A[2]=1) OR (A[4]=1) OR (A[6]=1) OR (A[8]=1);

 // Record in case in Register B
 IF K1 THEN B[1]:=1 ELSE B[1]:=0;
 IF K2 THEN B[2]:=1 ELSE B[2]:=0;
 IF K3 THEN B[3]:=1 ELSE B[3]:=0;
 WRITELN (‘A register B contains a code:’);
 FOR I:=1 TO 3 DO WRITE(B[1]:1, ‘’); WRITELN;

 WRITELN(‘Enter - Enter a binary number from 0 to 8, 9 - Completion’);
 UNTIL n>8

 {TODO -oUser -cConsole Main : Insert code here}
 end.

 The following is a listing in C#, describing the work of the encoder
(Fig. A.8).

 #include <iostream>
 using namespace std;
 int main()
 {

 int a[8];
 int b[3];
 bool k1,k2,k3;
 int i,n;
 cout<<”Enter a binary number from 0 to 8\n”;
 cin>>n;
 while(n!=9)
 {
 for(int i=0;i<8;i++)

180 Appendices

 {
 if(i+1==n)
 {
 a[i]=1;
 }
 else
 {
 a[i]=0;
 }
 }
 cout<<”\n”;
 for(int i=0;i<8;i++)
 {
 cout<<a[i];
 }
 cout<<”\n”;
 k1=(a[4]==1)|(a[5]==1)|(a[6]==1)|(a[7]==1);
 k2=(a[2]==1)|(a[3]==1)|(a[6]==1)|(a[7]==1);
 k3=(a[1]==1)|(a[3]==1)|(a[5]==1)|(a[7]==1);
 if(k1)
 {
 b[0]=1;
 }
 else
 {
 b[0]=0;
 }
 if(k2)

 Fig. A.8 Example program “Binary coder” (C#)

181Appendix A: Counter Modulo 5

 {
 b[1]=1;
 }
 else
 {
 b[1]=0;
 }
 if(k3)
 {
 b[2]=1;
 }
 else
 {
 b[2]=0;
 }
 cout<<”A register B contains a code\n”;
 for(int i=0;i<3;i++)
 {
 cout<<b[i];
 }
 cout<<”\n”;
 cout<<”Enter - Enter a binary number from 0 to 8, 9 - Completion\n”;
 cin>>n;
 }
 }

 Example encoder on a chip 74147 (MC8) is shown in Fig. A.9 .

 Binary Decoder

 Example . Develop a procedure for decoding the 3 bit binary code A in binary posi-
tional 8-bit code B .

 To store binary 3-bit code to use vector – A :

= 1 2 3, , .A a a a

 To store the position of 8-bit binary code to use vector – B :

= 1 2 3 4 5 6 7 8, , , , , , , .B b b b b b b b b

 A schematic decoder is shown on Fig. A.10 .
 For an illustration of the decoder we discuss some examples of decoding:

 Let • А = (000), then for this code В = (10000000);
 Let • А = (001), then for this code В = (01000000);
 Let • А = (010), then for this code В = (00100000);

182 Appendices

 Fig. A.9 Example of encoder on the 74147 chip (MC8)

Output

Reading

Input
Record

Coding

a1 a2 a3

b1 b2 b3 b4 b5 b6 b7 b8

 Fig. A.10 Scheme of binary decoder

183Appendix A: Counter Modulo 5

 Let • А = (011), then for this code В = (00010000), etc.

 Based on these options we can make a code table (see Table A.3).
 Enter the following logical variables:

= Ù Ù = Ù Ù = Ù Ù

= Ù Ù = Ù Ù = Ù Ù

= Ù Ù = Ù Ù

1 1 2 3; 2 1 2 3; 3 1 2 3;

4 1 2 3; 5 1 2 3; 6 1 2 3;

7 1 2 3; 8 1 2 3.

a a a d a a a d a a a

d a a a d a a a d a a a

d a a a d a a a

 Based on these options we can make a code table (see Table A.3).
 Logical circuit decoding is shown in Figs. A.11 and A.12 .

 program Decoder;
 {$APPTYPE CONSOLE}
 Uses SysUtils;

 VAR B: ARRAY[1..8] of BYTE; A: ARRAY[1..3] of BYTE;
 D: ARRAY[1..8] of BOOLEAN;
 i,N:INTEGER;

 BEGIN
 REPEAT
 WRITELN(‘Enter through blanks in a register “A” a three-digit binary

number’);
 READLN(A[1],A[2],A[3]);
 // Decoding
 D[1]:=(A[1]=0) and (A[2]=0) and (A[3]=0);
 D[2]:=(A[1]=0) and (A[2]=0) and (A[3]=1);
 D[3]:=(A[1]=0) and (A[2]=1) and (A[3]=0);
 D[4]:=(A[1]=0) and (A[2]=1) and (A[3]=1);
 D[5]:=(A[1]=1) and (A[2]=0) and (A[3]=0);
 D[6]:=(A[1]=1) and (A[2]=0) and (A[3]=1);
 D[7]:=(A[1]=1) and (A[2]=1) and (A[3]=0);
 D[8]:=(A[1]=1) and (A[2]=1) and (A[3]=1);

 Table A.3 Code table of binary decoder

 Code A Code В

 (a
1
 , a

2
 , a

3
) b

1
 b

2
 b

3
 b

4
 b

5
 b

6
 b

7
 b

8

 0 0 0 +
 0 0 1 +
 0 1 0 +
 0 1 1 +
 1 0 0 +
 1 0 1 +
 1 1 0 +
 1 1 1 +

184 Appendices

decoding
. . . .d4 d3 d2 d1

b1 b2 b3 b4 b5 b6 b7 b8

& & & & & & & &

& & & & & & & &

a1 a2 a3

d8

 Fig. A.11 Example program “Binary coder” (C#)

 Fig. A.12 Example program “Binary decoder” (Pascal)

185Appendix A: Counter Modulo 5

 // Output Register В
 FOR I:=1 TO 8 DO IF D[I]
 THEN B[I]:=1 ELSE B[I]:=0;
 WRITELN (‘A register B contains a code:’);
 FOR I:=1 TO 8 DO WRITE(B[I]:1, ‘’); WRITELN;
 WRITELN(‘Enter - Enter a binary number from 000 to 111, n>9

Completion’);
 UNTIL n>9
 {TODO -oUser -cConsole Main : Insert code here}
 end.

 The following is a listing in C#, describing the work of the binary decoder
(Fig. A.13).

 #include<iostream>
 #include “stdio.h”
 using namespace std;
 void main()
 {
 int c,n;
 int b[8];
 int a[3];
 bool D[8];
 char str[6];
 char *px1,*px2,*px3;
 cout<<”Enter through blanks in a register ‘A’ a three-digit binary number\n”;
 gets(str);
 while(str[0]!=’9’)
 {

 Fig. A.13 Example program “Binary decoder” (C#)

186 Appendices

 px1=&str[0];
 px2=&str[2];
 px3=&str[4];
 a[0]=atoi(px1);
 a[1]=atoi(px2);
 a[2]=atoi(px3);
 D[0]=(a[0]==0)&(a[1]==0)&(a[2]==0);
 D[1]=(a[0]==0)&(a[1]==0)&(a[2]==1);
 D[2]=(a[0]==0)&(a[1]==1)&(a[2]==0);
 D[3]=(a[0]==0)&(a[1]==1)&(a[2]==1);
 D[4]=(a[0]==1)&(a[1]==0)&(a[2]==0);
 D[5]=(a[0]==1)&(a[1]==0)&(a[2]==1);
 D[6]=(a[0]==1)&(a[1]==1)&(a[2]==0);
 D[7]=(a[0]==1)&(a[1]==1)&(a[2]==1);
 for(int i=0;i<8;i++)
 {
 if(D[i])
 {
 b[i]=1;
 }
 else
 {
 b[i]=0;
 }
 }
 cout<<“A register B contains a code:”;
 for(int i=0;i<8;i++)
 {
 cout<<b[i]<<’ ‘;
 }
 cout<<endl;
 cout<<”Enter - Enter a binary number from 000 to 111, 9 - exit\n”;
 gets(str);
 }
 }

 Example of the decode binary code on the seven segment LED IC 7448 (MC8)
is shown in Fig. A.14 .

 Appendix B: Full Adder Circuit

 A Full Adder is a combinational circuit that performs the arithmetic sum of three
input bits. It consists of three inputs and two outputs. Three of the input variables
can be defi ned as A, B, Cin and the two output variables can be defi ned as S, Cout.

187Appendix C

 Fig. A.14 Example of the decoding binary code on the seven segment LED IC 7448 (MC8)

The two input variables that we defi ned earlier A and B represents the two signifi cant
bits to be added. The third input Cin represents the carry bit. We have to use two
digits because the arithmetic sum of the three binary digits needs two digits. The
two outputs represents S for sum and Cout for carry.

 For designing a full adder circuit, two half adder circuits and an OR gate is
required. It is the simplest way to design a full adder circuit. For this two XOR
gates, two AND gates, one OR gate is required.

 The logic circuit in a full adder MicroCap 8 (MC8).
 Fig. A.15

 In order to implement the serial adder, it is necessary to use some device capable
of storing the information regarding the presence or absence of a carry. Such a
device must have two distinct states, such that each can be assigned to represent a
state of the adder. A number of such devices exist, among which is the delay ele-
ment, which may simply consist of a D fl ip-fl op.

 Adder at IC 7448 (Fig. A.16).
 The timing diagrams of the adder (IC 7448) (Fig. A.17).

 Appendix C

 Step 1 . Circuit of the counter on J-K fl ip- fl op (Fig. A.18).
 Step 2 . Circuit of the counter on IC 4027, IC 4069, IC 4081, IC 4511 (Fig. A.19).

188 Appendices

 Fig. A.16 BCD Adder using IC 7448

 Fig. A.15 Full Adder Circuit (MicroCap 8)

189Appendix C

 Fig. A.17 Timing diagram of the full adder (IC 7448)

 Fig. A.18 JK fl ip-fl op counter circuits

190 Appendices

 PHOTO-RESIST BOARD is a piece of glass reinforce plastic. One of the sides
is copper clad and this copper has a photosensitive coating. When the plastic fi lm is
peeled back this sensitive coating is revealed. After processing this will be the
PCB.

 Schematic diagram of the connection IC 4511 (Fig. A.20).
 Step 3 . Printed Wiring Board (PWB) was developed in the program will

DipTrace (Fig. A.21).
 Step 4. Manufacturing of Printed Wiring Board (Figs. A.22 and A.23) .

 Fig. A.20 Schematic diagram of the connection IC 4511

 Fig. A.19 Counter circuit (IC 4027, IC 4069, IC 4081, IC 4511)

191Appendix C

 Fig. A.21 Circuit diagram to PCB

 Fig. A.23 Printed circuit board (Side 2)

 Figs. A.22 Printed circuit board (Side 1)

192 Appendices

 Appendix D : Logic Symbols, Truth Tables

 AND OR A B Y

 A

B

Y A

B

Y 1 1 1
 1 0 0
 0 1 0
 0 0 0

A

B

Y
 A

B

Y 1 1 0
 1 0 0
 0 1 1
 0 0 0

 A

B

Y A

B

Y 1 1 0
 1 0 1
 0 1 0
 0 0 0

 A

B

Y A

B

Y 1 1 0
 1 0 0
 0 1 0
 0 0 1

A

B

Y

A

B

Y
 1 1 1

 1 0 1
 0 1 1
 0 0 0

 A

B

Y
A

B

Y 1 1 1
 1 0 0
 0 1 1
 0 0 1

 A

B

Y A

B

Y 1 1 1
 1 0 1
 0 1 0
 0 0 0

 A

B

Y A

B

Y 1 1 0
 1 0 1
 0 1 1
 0 0 1

193B. Borowik et al., Theory of Digital Automata, Intelligent Systems, Control
and Automation: Science and Engineering 63, DOI 10.1007/978-94-007-5228-3,
© Springer Science+Business Media Dordrecht 2013

 A

 Access time The time from the application of a valid memory address to the ap-
pearance of valid output data

 Address The location of a given storage cell or group of cells in a memory; a
unique memory location containing 1 byte

 Adjacency Characteristic of cells in a Karnaugh map in which there is a single-
variable change from one cell to another cell next to it on any of its four sides

 Alphanumeric Consisting of numerals, letters, and other characters
 ALU Arithmetic logic unit; the key processing element of a microprocessor that

performs arithmetic and logic operations
 Amplitude In a pulse waveform, the height or maximum value of the pulse as

measured from its LOW level
 Analog Being continuous or having continuous values, as opposed to having a set

of discrete values
 Analog-to-digital (A/D) conversion The process of converting an analog signal

to digital form
 Analog-to-digital converter (ADC) A device used to convert an analog signal to

a sequence of digital codes
 AND A basic logic operation in which a true (HIGH) output occurs only when all

the input conditions are true (HIGH)
 AND gate A logic gate that produces a HIGH output only when all of the inputs

are HIGH
 ANSI American National Standards Institute
 ASCII American Standard Code for Information Interchange; the most widely

used alphanumeric code
 Associative law In addition (ORing) and multiplication (ANDing) of three or more

variables, the order in which the variables are grouped makes no difference
 Asynchronous counter A type of counter in which each stage is clocked from the

output of the preceding stage

 Glossary

194 Glossary

B

 Base One of the three regions in a bipolar junction transistor
 Base address The beginning address of a segment of memory
 BCD Binary coded decimal; a digital code in which each of the decimal digits,

0–9, is represented by a group of 4 bits
 Binary Having two values or states; describes a number system that has a base of

2 and utilizes 1 and 0 as its digits
 Bipolar Having two opposite charge carriers within the transistor structure
 Bistable Having two stable states. Flip- fl ops and latches are bistable multivibra-

tors
 Bit A binary digit, which can be either a 1 or 0
 Boolean addition In Boolean algebra, the OR operation
 Boolean algebra The mathematics of logic circuits
 Boolean expression An expression of variables and operators used to express the

operation of a logic circuit
 Boolean multiplication In Boolean algebra, the AND operation
 Byte A group of 8 bits

 C

 Cache memory A relatively small. high-speed memory that stores the most re-
cently used instructions or data from the larger but slower main memory

 Capacity The total number of data units (bits, bytes, words) that a memory can
store

 Cascade To connect “end-to-end” as when several counters are connected from the
terminal count output of one counter to the enable input of the next counter

 Cascading Connecting the output of one device to the input of a similar device, al-
lowing one device to drive another in order to expand the operational capability

 CCD Charge-coupled device: a type of semiconductor memory that stores data in
the form of charge packets and is serially accessed

 Cell An area on a Karnaugh map that represents a unique combination of variables
in product form: a single storage element in a memory

 CMOS Complementary metal oxide semiconductor; a class of integrated logic cir-
cuits that is implemented with a type of fi eld-effect transistor

 Combinational logic A combination of logic gates interconnected to produce a
speci fi ed Boolean function with no storage or memory capability: sometimes
called combinatorial logic

 Commutative law In addition (ORing) and multiplication (AND-ing) of two vari-
ables, the order in which the variables are OR or AND makes no difference

 Comparator A digital circuit that compares the magnitudes of two quantities and
produces an output indicating the relationship of the quantities

195Glossary

 Counter A digital circuit capable of counting electronic events, such as pulses by
progressing through a sequence of binary states

 CPLD A complex programmable logic device that consists basically of multiple
SPLD arrays with programmable interconnections

 CPU Central processing unit: the main part of a computer responsible for control
and processing of data: the core of a DSP that processes the program instructions

 D

 Data Information in numeric, alphabetic, or other form
 Decade counter A digital counter having ten states
 Decimal Describes a number system with a base of ten
 Decoder A digital circuit that converts coded information into another (familiar)

or noncoded form
 D fl ip- fl op A type of bistable multivibrator in which the output assumes the state

of the D input on the triggering edge of a clock pulse
 Demultiplexer (demux) A circuit (digital device) that switches digital data from

one input line to several output lines in a speci fi ed time sequence
 Dependency notation A notational system for logic symbols that speci fi es input

and output relationships, thus fully de fi ning a given function; an integral feature
of ANSI/IEEE Std. 91-1984

 Digital-to-analog (D/A) conversion The process of converting a sequence of digi-
tal codes to an analog form

 Digital-to-analog converter (DAC) A device in which information in digital form
is converted to analog form

 DIP Dual in-line package; a type of IC package whose leads must pass through
holes to the other side of a PC board

 Distributive law The law that states that ORing several variables and then AND-
ing the result with a single variable is equivalent to ANDing the single variable
with each of the several variables and then ORing the product

 Domain All of the variables in a Boolean expression
 “Don’t care” A combination of input literals that cannot occur and can be used

as a 1 or a 0 on a Karnaugh map for simpli fi cation

 E

 Edge-triggered fl ip- fl op A type of fl ip- fl op in which the data are entered and ap-
pear on the output on the same clock edge

 Emitter One of the three regions in a bipolar junction transistor
 Enable To activate or put into an operational mode; an input on a logic circuit that

enables its operation

196

 Exclusive-NOR (XNOR) gate A logic gate that produces a LOW only when the
two inputs are at opposite levels

 Exclusive-OR (XOR) A basic logic operation in which a HIGH occurs when the
two inputs are at opposite levels

 Exclusive-OR (XOR) gate A logic gate that produces a HIGH only when the two
inputs are at opposite levels

F

 Flip- fl op A basic storage circuit that can store only one bit at a time; a synchronous
bistable device

 Floating-point number A number representation based on scienti fi c notation in
which the number consists of an exponent and a mantissa

G

 Gate A circuit having two or more input terminals and one output terminal, where
an output is present only when the prescribed inputs are present

 Gray code A cyclic code, similar to a binary code, in which only one bit changes
as the counting number increases

H

 Hamming code A type of error-correction code
 Handshaking The process of signal interchange by which two digital devices or

systems jointly establish communication
 HDL Hardware description language; a language used for describing a logic de-

sign using software
 Hexadecimal Describes a number system with a base of 16

 I

 IEEE Institute of Electrical and Electronics Engineers
 Input device Any connected equipment, such as digital control devices or periph-

eral devices, that supply information to the central processing unit. Each type of
input device has a unique interface to the processor

Glossary

197

J

 J-K fl ip- fl op A type of fl ip- fl op that can operate in the SET, RESET, no-change,
and toggle modes

 Johnson counter A type of register in which a speci fi c prestored pattern of 1s and
0s is shifted through the stages, creating a unique sequence of bit patterns

K

 Karnaugh map An arrangement of cells representing the combinations of literals
in a Boolean expression and used for a systematic simpli fi cation of the expression

L

 Literal A variable or the complement of a variable
 Load To enter data into a shift register
 Logic In digital electronics, the decision-making capability of gate circuits, in

which a HIGH represents a true statement and a LOW represents a false one
 Logic element The smallest section of logic in an FPGA that typically contains an

LUT. associated logic, and a fl ip- fl op

 M

 Machine code The basic binary instructions understood by the processor
 Mantissa The magnitude of a fl oating-point number
 Minimization The process that results in an SOP or POS Boolean expression that

contains the fewest possible terms with the fewest possible literals per term
 Multiplexer (mux) A circuit (digital device) that switches digital data from sev-

eral input lines onto a single output line in a speci fi ed time sequence
 Multivibrator A class of digital circuits in which the output is connected back to

the input (an arrangement called feedback) to produce either two stable states,
one stable state, or no stable states, depending on the con fi guration

N

 NAND gate A logic circuit in which a LOW output occurs only if all the inputs
are HIGH

Glossary

198

 Negative-AND An equivalent NOR gate operation in which the HIGH is the active
input when all inputs are LOW

 Negative-OR An equivalent NAND gate operation in which the HIGH is the active
input when one or more of the inputs are LOW

 Netlist A detailed listing of information necessary to describe a circuit, such as
types of elements, inputs, and outputs, and all interconnections

 Nibble A group of 4 bits
 NMOS An n -channel-metal-oxide semiconductor
 Node A common connection point in a circuit in which a gate output is connected

to one or more gate inputs
 Noise immunity The ability of a circuit to reject unwanted signals
 Noise margin The difference between the maximum LOW output of a gate and

the maximum acceptable LOW input of an equivalent gate; also, the difference
between the minimum HIGH output of a gate and the minimum HIGH input of
an equivalent gate

 Nonvolatile A term that describes a memory that can retain stored data when the
power is removed

 NOR gate A logic gate in which the output is LOW when any or all of the inputs
are HIGH

 NOT A basic logic operation that performs inversions
 Numeric Related to numbers.

O

 One-shot A monostable multivibrator.
 OR A basic logic operation in which a true (HIGH) output occurs when one or

more of the input conditions are true (HIGH)
 OR gate A logic gate that produces a HIGH output when one or more inputs are

HIGH
 Oscillator An electronic circuit that is based on the principle of regenerative feed-

back and produces a repetitive output waveform; a signal source
 Output The signal or line coming out of a circuit
 Over fl ow The condition that occurs when the number of bits in a sum exceeds the

number of bits in each of the numbers added

 P

 Period (T) The time required for a periodic waveform to repeat itself
 Periodic Describes a waveform that repeats itself at a fi xed interval
 Pointer The contents of a register (or registers) that contain an address
 Positive logic The system of representing a binary 1 with a HIGH and a binary 0

with a LOW

Glossary

199

 Preset An asynchronous input used to set a fl ip- fl op (make the Q output I)
 Primitive A basic logic element such as a gate or fl ip- fl op, input/output pins,

ground, and V
cc

 Priority encoder An encoder in which only the highest value input digit is en-

coded and any other active input is ignored
 Probe An accessory used to connect a voltage to the input of an oscilloscope or

other instrument
 Product term The Boolean product of two or more literals equivalent to an AND

operation

 Q

 Queue A high-speed memory that stores instructions or data
 Quotient The result of a division.

R

 Race A condition in a logic network in which the difference in propagation times
through two or more signal paths in the network can produce an erroneous out-
put

 Register A digital circuit capable of storing and shifting binary information; typi-
cally used as a temporary storage device

 Register array A set of temporary storage locations within the microprocessor for
keeping data and addresses that need to be accessed quickly by the program

 S

 Schematic (graphic) entry A method of placing a logic design into software using
schematic symbols

 Schottky A speci fi c type of transistor-transistor logic circuit technology
 Set-up time The time interval required for the control levels to be on the inputs to a

digital circuit, such as a f1ip- fl op, prior to the triggering edge of clock pulse
 Shift To move binary data from stage to stage within a shift register or other stor-

age device or to move binary data into or out of the device
 Signal A type of VHDL object that holds data
 Signal tracing A troubleshooting technique in which waveforms are observed in

a step-by-step manner beginning at the input and working toward the output or
vice versa. At each point the observed waveform is compared with the correct
signal for that point

Glossary

200

 Sign bit The left-most bit of a binary number that designates whether the number
is positive (0) or negative (1)

 S-R fl ip- fl op A SET-RESET fl ip- fl op
 Stage One storage element (fl ip- fl op) in a register
 State diagram A graphic depiction of a sequence of states or values
 State machine A logic system exhibiting a sequence of states conditioned by in-

ternal logic and external inputs; any sequential circuit exhibiting a speci fi ed se-
quence of states

 Storage The capability of a digital device to retain bits; the process of retaining
digital data for later use

 String A contiguous sequence of bytes or words
 Subtracter A logic circuit used to subtract two binary numbers
 Subtrahend The number that is being subtracted from the minuend
 SUM The result when two or more numbers are added together
 Sum-or-products (SOP) A form of Boolean expression that is basically the

ORing of ANDed terms
 Sum term The Boolean sum of two or more literals equivalent to an OR operation
 Synchronous counter A type of counter in which each stage is clocked by the

same pulse

 T

 Throughput The average speed with which a program is executed
 Timing diagram A graph of digital waveforms showing the proper time relation-

ship of two or more waveforms and how each waveform changes in relation to
the others

 Trigger A pulse used to initiate a change in the state of a logic circuit
 Tristate A type of output in logic circuits that exhibits three states: HIGH, LOW,

and HIGH-Z; also known as 3-state

U

 Universal gate Either a NAND gate or a NOR gate. The term universal refers to
the property of a gate that permits any logic function to be implemented by that
gate or by a combination of gates of that kind

 Universal shift register A register that has both serial and parallel input and out-
put capability

 Up/down counter A counter that can progress in either direction through a certain
sequence

Glossary

201

 V

 Variable symbol used to represent a logical quantity that can have a value of 1 or
0, usually designated by an italic letter

 VHDL A standard hardware description language: IEEE Std. 1076-1993

W

 Weight The value of a digit in a number based on its position in the number
 Word A complete unit of binary data
 Word capacity The number of words that a memory can store
 Word length The number of bits in a word

Glossary

203B. Borowik et al., Theory of Digital Automata, Intelligent Systems, Control
and Automation: Science and Engineering 63, DOI 10.1007/978-94-007-5228-3,
© Springer Science+Business Media Dordrecht 2013

 1. V.C. Hamacher, Z.G. Vranesic, S.G. Zaky, Computer Organization , 5th edn. (McGraw-Hill,
New York, 2002)

 2. D.A. Patterson, J.L. Hennessy, Computer Organization and Design: The Hardware/Software
Interface , 2nd edn. (Morgan Kaufmann, San Francisco, 1998)

 3. D.D. Gajski, Principles of Digital Design (Prentice-Hall, Upper Saddle River, 1997)
 4. M.M. Mano, C.R. Kime, Logic and Computer Design Fundamentals (Prentice-Hall, Upper

Saddle River, 1997)
 5. T.L. Floyd, Digital Fundamentals (Pearson Education International, Upper Saddle River,

2003)
 6. R.J. Tocci, N.S. Widmer, Digital Systems. Principles and Applications (Prentice-Hall, Upper

Saddle River, 2003)
 7. J.P. Daniels, Digital Design from Zero to One (Wiley, New York, 1996)
 8. V.P. Nelson, H.T. Nagle, B.D. Carroll, J.D. Irwin, Digital Logic Circuit Analysis and Design

(Prentice-Hall, Englewood Cliffs, 1995)
 9. R.H. Katz, Contemporary Logic Design (Benjamin/Cummings, Redwood City, 1994)
 10. J.P. Hayes, Introduction to Logic Design (Addison-Wesley, Reading, 1993)
 11. C.H. Roth Jr., Fundamentals of Logic Design , 4th edn. (West, St. Paul, 1993)
 12. J.F. Wakerly, Digital Design Principles and Practices (Prentice-Hall, Englewood Cliffs,

1990)
 13. R.M. Bertrand, Programmable Controller Circuits (Delmar Publishers, International Thomson

Publishing, Inc., Albany, 1996)
 14. B. George, An Investigation of the Laws of Thought (Project Gutenberg, 2005), www.guten-

berg.net
 15. K. Breeding, Digital Design Fundamentals (Prentice-Hall, Englewood Cliffs, 1989)
 16. W.-K. Chen, Logic Design (CRC Press, Boca Raton, 2003)
 17. E.D. Fabricus, Modern Digital Design and Switching Theory (CRC Press, Boca Raton, 1992)
 18. F.D. Petruzella, Programmable Logic Controllers (McGraw-Hill, New York, 2005)
 19. J. Daintith, Karnaugh map. A dictionary of computing (2004), Retrieved 25 September 2012

from Encyclopedia.com: http://www.encyclopedia.com/doc/1O11-Karnaughmap.html
 20. E.V. Huntington, New sets of independent postulates for the algebra of logic, with special

reference to Whitehead and Russell’s Principia Mathematica. Trans. Amer. Math. Soc. 35,
274–304 (1933)

 References

http://www.gutenberg.net
http://www.gutenberg.net
http://www.encyclopedia.com/doc/1O11-Karnaughmap.html

205

Subject Index

 A

 ADC. See Analog-to-digital converter
(ADC)

 Amplitude , 3
 Analog-to-digital (A/D)

conversion , 65
 Analog-to-digital converter (ADC) ,

65, 141
 AND gate , 52–53
 Arithmetic logic unit (ALU) , 141
 Asynchronous counter , 111

 B
 Binary coded decimal (BCD) , 1, 12–13, 18,

21–22, 27–30, 63, 64, 122–123, 137,
139, 141

 Boolean algebra , 45–49, 61, 75, 80,
100, 140

 Boolean expression , 71, 78–80, 100, 115,
133, 135, 137, 138

 Boolean functions , 75–100, 143
 Boolean multiplication , 133

 C
 Cell , 5, 6, 80, 83, 84
 Combinational logic , 59–62, 65–71, 76, 118,

132, 137, 139, 145
 Commutative law , 46
 Comparator , 129, 130, 139–141
 Counter , 101–141, 149, 151, 157,

165, 170

 D
 Decoder , 38, 61, 63, 64, 101–141, 154,

158, 162
 Demultiplexer (demux) , 132–136
 D fl ip- fl op , 161
 Digital automaton , 73
 Distributive law , 49
 Don’t care , 84, 89, 92, 94, 107

 E
 Edge-triggered fl ip- fl op , 106–111
 Exclusive-NOR (XNOR) gate , 141
 Exclusive-OR (XOR) gate , 39, 41, 47,

52, 53, 56, 57

 F
 Flip- fl op , 101–141, 170–171
 Floating-point number , 30–31
 Function block diagram (FBD) , 162

 G
 Gate , 10, 51–73, 76–78, 102, 105,

106, 112, 113, 115, 121, 124,
132–135, 140

 Graph-scheme , 143–168
 Gray code , 1, 83, 165, 167, 170

 H
 Hexadecimal , 11–12, 17,

137, 157

B. Borowik et al., Theory of Digital Automata, Intelligent Systems, Control
and Automation: Science and Engineering 63, DOI 10.1007/978-94-007-5228-3,
© Springer Science+Business Media Dordrecht 2013

206

 I
 Implicant , 94, 95, 98–100
 Input device , 143

 J
 Johnson counter , 123–125

 K
 Karnaugh map , 75, 80–89, 92, 95, 100, 118,

120, 161

 L
 Literal , 48, 49, 77, 78, 80, 86
 Logic circuit , 58–63, 65–73, 77, 78, 112,

137–139
 Logic element , 51, 52, 71
 Logic-In digital electronics , 10, 111

 M
 Machine code , 146
 Mantissa , 31, 33
 Maxterm , 96–98
 Mealy automat , 144
 Minimization , 68–70, 73, 75–77, 88, 100,

115, 117, 161
 Minterm , 68, 76, 77, 80, 81, 83, 84, 88–94,

98, 99
 Moore automat , 143–168
 Multiplexer (mux) , 61, 101–141, 165,

170, 171

 N
 NAND gate , 52, 53, 56–59, 102–105, 139, 165
 NOR gate , 52, 53, 57–61, 102, 104, 124, 129,

141, 165
 NOT gate , 51–53, 61, 133–135, 139

 O
 OR gate , 51–59, 123, 124, 129, 138

 P
 Prime implicant(s) , 86, 88, 89, 92–95, 97–99
 Prime implicant chart , 88, 89, 94–100

 Priority encoder , 137, 138
 Product term , 77–80, 83

 Q
 Quine-McCluskey algorithm , 75, 89, 92

 R
 Register , 101–141, 147–149, 151, 157, 165, 170

 S
 Schematic (graphic) entry , 165
 Sign bit , 23, 145, 155, 158
 Stage , 123, 124, 161
 State diagram , 114–116, 164
 State machine , 160, 164
 Storage , 1, 4, 38, 101, 143, 144
 String , 7, 43
 Sum term , 83
 Synchronous counter , 112–113, 116

 T
 Timing diagram , 165, 166
 Trigger , 110, 112, 121, 129, 130, 151, 153,

167, 170
 Truth table , 61, 63, 64, 67, 75–77, 80,

81, 83–85, 90–92, 103, 104, 107,
110, 113, 115, 124, 125, 133, 135,
137–140, 153

 U
 Universal gate , 58–61, 165
 Up/down counter , 111

 V
 Variable , 4, 45, 46, 48, 49, 61, 71, 72, 76–78,

80–86, 88–90, 92, 95, 118, 121, 140,
141, 146, 154, 155, 162, 167, 170

 Veitch diagram , 80–85, 95, 96

 W
 Weight , 16, 17, 19, 43
 Word , 58–60, 141, 170
 Word length , 158

Subject Index

	Theory of Digital Automata
	Preface
	Contents
	Introduction
	Application and Advantages of Digital Systems

	Chapter 1: Digital and Analog Quantities
	1.1 Analog and Digital Quantities
	1.2 Post–turing Machine

	Chapter 2: Number Systems, Operations, and Codes
	2.1 Number Systems
	2.1.1 The Decimal System
	2.1.2 The Binary System
	2.1.3 Hexadecimal Notation
	2.1.4 Binary-Coded Decimal Code

	2.2 Converting Between Number Systems
	2.2.1 Converting Between Binary and Decimal (Between Decimal and Binary)
	2.2.2 Integers
	2.2.3 Fractions
	2.2.4 Integers
	2.2.5 Fractions
	2.2.6 Binary to BCD Conversion

	Chapter 3: Binary Arithmetic
	3.1 Binary Addition
	3.2 Binary Subtraction
	3.3 Binary Multiplication
	3.4 Binary Division
	3.5 BCD Addition
	3.6 Arithmetic Operations with Signed Numbers
	3.6.1 1s and 2s Complements Forms
	3.6.2 1s Complement
	3.6.3 2s Complement
	3.6.4 Additional in the 1s Complement System
	3.6.5 Additional in the 2s Complement System

	3.7 BCD Subtraction
	3.8 BCD Multiplication and Division
	3.9 Floating-Point Numbers
	3.9.1 Floating-Point Arithmetic

	Chapter 4: Error Correction in Digital Systems
	4.1 Parity Method for Error Detection
	4.2 Cyclic Redundancy Check (CRC)
	4.3 Reed-Solomon Block
	4.4 Hamming Code

	Chapter 5: Boolean Algebra
	5.1 Laws of Boolean Algebra
	5.2 Disjunctive Normal Form

	Chapter 6: Basic Logical Functions and Gates. Logic Design
	6.1 Basi c Logical Functions and Gates
	6.1.1 The NOT Gate, or Inverter
	6.1.2 The AND Gate
	6.1.3 The OR Gate
	6.1.4 The NAND Gate
	6.1.5 The NOR Gate
	6.1.6 The Exclusive-OR, or XOR Gate

	6.2 Universal Gates
	6.2.1 Realization of Logic Function Using NOR Gates

	6.3 Combinational Logic Circuits
	6.4 Full Adder
	6.5 Seven-Segment Display
	6.6 Design Combinational Logic Circuits
	6.7 Evaluating Logic Circuit Outputs

	Chapter 7: Minimizing Boolean Functions
	7.1 Background and Terminology
	7.2 Karnaugh Maps
	7.3 On Quine-Mccluskey Method

	Chapter 8: Latches, Flip-Flops, Counters, Registers, Timer, Multiplexer, Decoder, Etc.
	8.1 Latches
	8.1.1 The Basic RS NAND Latch
	8.1.2 The Basic RS NOR Latch
	8.1.3 The Clocked RS NAND Latch

	8.2 Edge-Triggered Flip-Flops
	8.2.1 Flip-Flop Symbols
	8.2.2 Asynchronous Preset and Clear Inputs

	8.3 Counters
	8.3.1 A Basic Digital Counter
	8.3.2 Synchronous Counter
	8.3.2.1 A Synchronous Binary Counter

	8.3.3 Decimal and Shorter Counts
	8.3.4 BCD Counter
	8.3.5 The Johnson Counter

	8.4 Registers
	8.4.1 Serial-to-Parallel Shift Register
	8.4.2 Parallel-to-Serial Shift Register
	8.4.3 Using a Shift Register for Control

	8.5 Timer
	8.6 Multiplexer and Demultiplexer
	8.6.1 The Multiplexer
	8.6.2 The Demultiplexer

	8.7 Digital Encoder and Decoder
	8.7.1 The Digital Encoder
	8.7.2 Decoder
	8.7.2.1 Binary Decoder

	8.8 Digital Comparator

	Chapter 9: Machines Moore and Mealy
	9.1 Synthesis of Moore Automata from Graph-Scheme
	9.2 The First Version
	9.3 The Second Version
	9.3.1 Machine, Implemented in Flip-Flops with Multiplex Controls

	Appendices
	Appendix A: Counter Modulo 5
	Registers
	Cyclic Registers

	Binary Coder
	Binary Decoder

	Appendix B: Full Adder Circuit
	Appendix C
	Appendix D : Logic Symbols, Truth Tables
	References
	Subject Index

