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Preface

Every aspect of the power system is undergoing a transformation, and the existing
dynamical representation of the power system will change. Engineers from diverse
background, often working in one specialised area of the interconnected power
system, are contributing to this change. The ability to accurately model the existing
complex interconnected power system dynamics with only a few simple differential
equations has been a fascinating intellectual achievement. The work of the engi-
neers who are at the forefront of transforming the power system will have a higher
impact if the new contributions rest on and are connected with the existing foun-
dations of power system dynamics.

This book is written for students or practising engineers with a background in
science or engineering. It is self-contained, starting from phasor analysis and
leading the reader to the design of automatic voltage regulators and power system
stabilisers for synchronous generators. It includes fundamentals of the linear control
systems that enable the design of the controllers. Historically speaking, initially
dynamic models for synchronous machines were developed for analysis and
immediately after that they were successfully used for voltage and frequency reg-
ulation. A solid understanding of power system dynamics is obtained from com-
pleting the model, analysis, design, and then model refinement cycle. In this book,
the reader is guided through the entire cycle.

The simplification in modelling the power system dynamics is achieved by
partitioning the dynamics into fast and slow dynamics. The fast dynamics, also
known as the stator or the transmission system dynamics, is assumed to be in steady
state during each integration time-step of the slow dynamics, also known as rotor
dynamics. Although mathematically straightforward, it is important to understand
the steady-state analysis of the slow dynamics. This analysis, also known as the
power flow or load flow analysis, is introduced in Chap. 1. A simple technique to
solve for the nonlinear steady-state solution is given so that the reader gets a
complete appreciation of the problem. Many advanced methods exist for load flow
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solution, but an understanding of those methods is not necessary for a deep
understanding of power system dynamics.

Magnetic energy is the intermediate energy storage mechanism during the
conversion between electrical and mechanical energy. Magnetic circuits can be
easily understood in analogy with electrical circuits. Although magnetic circuits
have a much smaller linear range, once properly formulated, it is not difficult to
include the nonlinear characteristics during the numerical integration process. The
first chapter covers a comprehensive analysis of the magnetic circuit of three-phase
rotating machines which leads to the principle of operation of synchronous and
induction machines.

The dynamics of generators with moving parts has coupled mechanical and
electrical dynamic equations. The mechanical dynamics is often equivalent to a
mass–spring system driven by the difference between the input mechanical power
and the output electrical power. The electrical output power is a function of the
generator angular position and terminal voltage, and this couples the mechanical
and electrical dynamics of the rotating electrical generators. In most situations, a
first-order differential equation accurately represents the voltage dynamics. In
Chap. 2, a detailed method is presented that shows how the third-order dynamic
equations, for each generator, are coupled to form interconnected system dynamic
equations. This chapter is complete in all the details, and every equation is derived
fully. The reader is encouraged to derive each expression using symbolic compu-
tation software or using the paper-and-pencil method. The fundamental principle is
very simple, but the confidence that this simple principle can lead to such com-
plicated models will only sink in if the reader derives each expression and gets
convinced that only one simple principle, Faraday’s law of induced electromotive
force, has such far-reaching consequences. Algebraic transformation using matrix
algebra plays an important role in the simplified transient analysis models, and the
complete derivation includes all the matrix manipulation required to arrive at the
final simple model.

Chapter 2 extends the simple transient model, accurate in the order of hundreds
of milliseconds, by adding additional dynamics to make it accurate for tens of
milliseconds time frame. Once the understanding of a single coil dynamics is
understood well, it is simply a mechanical process to keep adding additional coils to
the model to obtain the so called sub-transient model. The chapter further derives
the block diagrams used by commercial power system analysis software to model
rotating machines. These models are parameterised both in terms of open-circuit
and short-circuit time constants. The author has used symbolic manipulation soft-
ware to derive these results, and the reader is also strongly urged to use similar
software, especially since high-quality open-source symbolic manipulation software
is available.

Chapter 3 covers essential linear systems analysis for the design of classical
controllers, using frequency domain techniques, for voltage regulation and oscil-
lation damping of rotating generators. In this chapter, detailed derivations are given
so that the reader is absolutely clear what is frequency response and why is it such a
wonderful tool for the design of robust controllers. Almost all classical design tools
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are covered in this chapter giving enough information about the utility of the
method. With the availability of open-source software tools such as octave and
Scilab, this chapter does not detail how to draw various plots for analysis, but it
emphasises on what the tools fit in the design process.

Power system analysis is done with the nonlinear models, but control design is
more convenient with the linearised models. Chapter 3 gives complete derivation of
all the linearised models. Although expressions for the linearised models are given,
here again the reader is urged to derive the models themselves so that they have
definite expressions which they can own and further use it for control design with a
full understanding.

Automatic voltage regulator (AVR) is an essential component of generators, and
almost all the commercially available AVRs can be designed using frequency
domain techniques covered in Chap. 3. In Chap. 4, AVR design is covered from
simple fixed gain controllers to complex multiple-loop proportional–derivative–
integral (PID) controllers. The control specifications are given in terms of
steady-state error, bandwidth, and phase-margin, and the lag-lead compensator
design is used to satisfy these control specifications. These methods have been used
to design and implement AVRs for commercial synchronous generators.

There is no inherent mechanical damping in the interconnected system, and the
electrical transients couple with the mechanical dynamics to provide damping.
Chapter 5 covers a detailed analysis of the magnitude and sign of the damping due
to feedback mechanism used for AVRs. Often the damping due to electrical tran-
sients is not enough, and in those situations, a power system stabiliser (PSS) is used
to increase the damping. The design of PSS is also done using frequency domain
methods. Chapter 5 covers the design of the classical PSS, and it completes the
model, analysis, and design cycle.

Although this book covers the essentials of power system dynamics with rotating
generators, the same ideas are applicable to static generators, such as photo-voltaic
solar generators. The material in this book will enable researchers to integrate
generator models of the emerging renewable resources-based generators to inter-
connected power systems and do control design considering the dynamics of the
entire power systems.

The essentials in this book have been very carefully chosen to provide sufficient
depth to the reader so that it is easy to integrate the dynamics of emerging devices.
The author emphasises that the full benefit from this book can only be realised if the
reader derives the expression in this book.

I have taught a ten-week forty-lecture course based on this book thrice to
engineers with diverse background, and as a result, some refinement has been done
and the author sincerely hopes that it will help engineers from diverse backgrounds
to become productive power system engineers. A shorter version of this course has
been also taught twice to practising power system consultants. I have incorporated
most of the feedback that I received during the course.

I thank my former Ph.D. students who have shaped much of the material in this
book by asking questions and giving me an idea of the difficulties faced by a
beginning researcher in the area of power system dynamics. I thank Dr. C. S. Kumble
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and Mr. Prahlad Tilwalli for engaging me as a consultant and giving me the
satisfaction of observing the performance of the controllers designed using the
methods in this book on commercial synchronous generators.

Canberra, Australia Hemanshu Roy Pota
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Chapter 1
Introduction

This chapter covers the basics that will enable a good understanding of the power
system dynamics. A power system is a collection of electricity generation, trans-
mission, and consumption. Traditionally the generation and consumption have been
geographically separated with a transmission system to connect them. The backbone
of the study of power system dynamics is a circuit analysis of the transmission net-
work. In this circuit analysis, generators are modelled as active voltage sources and
the consumption devices, also known as loads, are modelled as consuming constant
current or power, or as impedances, or a combination of all the three. In developing
the basics of power systems we analyse a transmission system exactly the same way
as we analyse an electrical circuit. In practice generation devices are not ideal voltage
sources and loads are not constant impedances and thus to accommodate practical
generation devices and loads the circuit analysis is extended to what is commonly
known as the load-flow analysis.

In electrical machines magnetic flux is the medium through which conversion
between mechanical and electrical energy takes place. Flux in magnetic circuits is
analogous to current in electrical circuits. In this chapter the necessary magnetic
circuit analysis to understand synchronous and induction machines is covered.

Next we start with a look at the tools that are needed to analyse circuits with
sinusoidal sources, i.e., AC circuits.

1.1 Sinusoidal Steady-State

A transmission network is just like any electrical circuit with steady-state and tran-
sient modes of operation. One key assumption about the transmission system in
power system analysis is that the transmission network is always in steady-state.
This means that we assume that the transients die out much faster than the interval
over which the analysis is done. This simplifies the analysis greatly. Let us first look
at the sinusoidal steady-state analysis, also known as the phasor analysis, of a simple
circuit.

© Springer Nature Singapore Pte Ltd. 2018
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2 1 Introduction

Fig. 1.1 An LC circuit

−
v(t)

+

L

i(t)

R
−

V

+

jωL

I

R

1.1.1 RL Circuit

The circuit in Fig. 1.1 represents a generator supplying an inductive load. The dif-
ferential equation describing the circuit in Fig. 1.1, with v(t) = Vm sin(ωt) is:

L
di

dt
+ Ri = Vm sin(ωt); i(0) = i0 (1.1)

The complete solution to this first-order differential equation (1.1) is:

i(t) = ke−t RL + Im sin(ωt + φ) (1.2)

where Im = Vm√
ω2L2 + R2

, φ = − tan−1 ωL
R , and k is chosen to satisfy the initial con-

dition.
The steady-state solution can be written as:

iss(t) = lim
t→∞ i(t) = Im sin(ωt + φ). (1.3)

The above solution does not depend on the initial conditions and there is an easy
method, known as phasor analysis, to obtain Im and φ without actually solving the
differential equation.

1.1.2 Phasor Analysis

Phasor analysis converts a linear differential equation problem to an algebra problem
with complex variables. A phasor is a complex number rejφ and it is used as a short-
hand notation to represent a sinusoidal waveform

√
2r sin(ωt + φ). The correspon-

dence between the phasors and time waveforms is shown in Fig. 1.2. A systematic
way to do the phasor analysis is to represent all the sinusodal forcing functions as
phasors and the circuit elements by their impedances. After the conversion one can
use either Kirchhoff’s Current Law (KCL) or Kirchhoff’s Voltage Law (KVL) to
write circuit equations and solve them to obtain node voltages or loop currents. It
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Fig. 1.2 Time waveforms
and phasors
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√
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√
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√
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is common to write KCL or nodal equations in power system analysis and solve for
nodal voltages.

For phasor analysis, where all voltage and current sources are sinusoids with the
same frequency ω, any current or voltage forcing function f (t) = Fm sin(ωt + φ) is

written in phasor form as �F = Fm√
2
ejφ. The passive circuit elements, inductance, L,

capacitance, C, and resistance R, are replaced by their impedances jωL, 1
jωC , and R,

respectively. The impedances can be combined using parallel and series circuit rules
like resistors in a DC circuit. Equivalent impedance in general will be a complex
quantity, Z = R + jX , where the real part, R, is called the equivalent resistance, and
the imaginary part, X , is called the equivalent reactance which is positive for an
inductive and negative for a capacitive circuit.

The equivalent circuit for phasor analysis of the LC circuit is shown on the right in

Fig. 1.1. In the phasor analysis we represent Vm sin(ωt) as �V = Vm√
2
ej0, Im sin(ωt +

φ) as �I = Im√
2
ejφ, and �Z = R + jωL. Then

�I = �V
�Z ⇒ �I = Vm√

2
ej0 1√

ω2L2 + R2
ej tan−1 −ωL

R

Themagnitude and phase of the phasor �I directly give themagnitude and the phase of
the sinusoidal iss(t) in (1.3). Phasor representation converts the steady-state solution
of linear differential equations with sinsusoidal inputs to algebraic equations.
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Example In the RL circuit shown in Fig. 1.1, let v(t) = 5 sin 2π60tV , R = 3�, and
L = 0.0106H. Find the steady-state current iss(t).

�V = 5√
2
ej0 and �Z = 3 + j2π60 × 0.0106 � = 3 + j4 �. This gives �I = �V

�Z =
1.0ej (−0.9273) and

iss(t) = √
2 sin(2π60t − 0.9273)A

1.2 Real and Reactive Power

In an AC system, the power generated and consumed is changing at every instant in
time. Although the voltage and current are alternating, the interest is in calculating
the average power generated or consumed. The average power is given the name
real power. When the voltage and current across a device are in phase the real power
is given as the product of the root-mean-squared (rms) values of the voltage and
current. When they are not in phase, the real power is given by the product of the
rms values and something called the power factor which is always less than one.
This means that each device included in the power system analysis is characterised
by the real power it consumes or generates and the power factor. The instantaneous
power can be obtained from phasor quantities using real power and another term
called reactive power, i.e., both real and reactive power are required to completely
characterise power using phasor analysis. In the following the concept of reactive
power is introduced. In power system analysis it is common to specify real and
reactive power for active devices, like generators and motors, and impedances for
passive devices.

Figure1.3 shows an AC generator and a load. The instantaneous power delivered
by the voltage source is:

v(t)i(t) = Vm sin(ωt + α)Im sin(ωt + β)

= Vm sin(ωt + α)Im sin(ωt + α − (α − β))

= VmIm sin(ωt + α)(sin(ωt + α) cos(α − β) − cos(ωt + α) sin(α − β))

= VmIm sin2(ωt + α) cos(α − β) − VmIm
sin 2(ωt + α)

2
sin(α − β))

−
Vm sin(ωt + α)

+
Im sin(ωt + β) Load

Fig. 1.3 Real and reactive power in steady-state
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−
Vre

jα

+
Ire

jβ Load

x

jy

V = Vre
jα

I = Ire
jβ

IR
IX φ

α

Fig. 1.4 Real and reactive power and phasors

= VmIm
1 − cos 2(ωt + α)

2
cos(α − β) − VmIm

sin 2(ωt + α)

2
sin(α − β))

= pR + pQ

The two components of the power delivered by the voltage source can be written
as:

pR = VmIm
1 − cos 2(ωt + α)

2
cos(α − β) and pQ = −VmIm

sin 2(ωt + α)

2
sin(α − β)

(1.4)
Two quantities P and Q known as real power and reactive power, respectively, are
defined as:

P = VmIm
2

cos(α − β) and Q = VmIm
2

sin(α − β) (1.5)

It is easy to see that P is the average of pR over one period and Q is the peak value of
pQ. The unit for the real power is W and for the reactive power it is VAr. The phasor
diagram in Fig. 1.4 can be used to better understand the definitions for P and Q.

In Fig. 1.4, cosφ = cos (β − α), is known as the power factor, where φ is the
phase difference between the voltage and current phasors. Let us express the current
phasor as the sum of two components. One component, �IR = |Ir cosφ| ejα, in phase
and another �IX = |Ir sin φ| ej (α+90◦), ninety degrees out of phase with the voltage
phasor. Let Vr = Vm√

2
, Ir = Im√

2
, then from the definition in (1.5), we get:

P = Vr

∣
∣
∣�IR

∣
∣
∣ sgn(cosφ) and Q = Vr

∣
∣
∣�IX

∣
∣
∣ sgn(sin φ)

This means that the real power is the product of the rms values of the voltage and
the current that is in phase with the voltage and the reactive power is the product
with the rms current that is ninety degrees out of phase with the voltage. The ninety
degree out of phase current produces zero average power, this is the power that gets
alternately consumed and delivered by inductors and capacitors.

The convenience of using reactive power instead of power factor to characterise
a device is due to the ease with which one can compute the reactive power and the
fact that we can treat it as something physical on the same footing as the real power.
Next we show that real and reactive powers can be packed into a term called complex
power and that there has to be a perfect balance in the network between the sum of
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the generated and consumed complex power. It is much easier to understand that the
ith load is Xi VAr instead of specifying that it operates at power factor cosφi, since
the sum of all Xis has a physical meaning while the sum of the power factors has
no meaning. It must be understood that the reactive power, pQ in (1.4), neither gets
consumed nor generated on an average but a balance has to be met between the sum
of generated and consumed reactive powers.

Complex power S The complex power S is defined as: S = P + jQ, from the vector
diagram in Fig. 1.4 it can be seen that:

S = �V �I ∗ = VrIre
j (α−β) = VrIr cos(α − β) + jVrIr sin(α − β) = P + jQ

where ∗ means complex conjugate.
Let the load in Fig. 1.4 be made up of a resistor, R, and reactance, X , such that

the load impedance, ZL = R + jX . The current �Ir = �Vr
R+jX , and its magnitude is

Ir = Vr√
R2+X 2 . Referring to the definitions in Fig. 1.4, we have α = 0, β = − tan−1 X

R ,

φ = β, cosβ = R√
R2+X 2 , and sin β = X√

R2+X 2 . This gives the real and reactive power

absorbed by the load as: P = I2r R and Q = I2r X . This has an interesting interpre-
tation for power absorbed by an impedance. The real power is the power dissi-
pated across the resistor and the reactive power is the power “dissipated” across the
reactance.

1.2.1 P and Q Sign Convention

The real and reactive power specifications follow a sign convention in power system
analysis. This convention is important as power systems have both loads and gener-
ators so it is important to distinguish if one is specifying generated or consumed P
and Q.

Figure1.5 shows two ways one can specify current across a device. In a branch
where the current is flowing from the negative polarity of the voltage to the positive
polarity, i.e., for a generator convention as in Fig. 1.5a:

1. IfP is positive then the real power is generated or supplied by the branch otherwise
it absorbs real power.

−
Vre

jα

+
Ire

jβ Load

(a)

−
Vre

jα

+
Ire

jβ Load

(b)

Fig. 1.5 Real and reactive power sign convention
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Fig. 1.6 Real and reactive
power (numerical example)

−
+

−
1.0ej0

+

jωL1I1

1
jωC1

+
V −

I2

R2I3

jωL2

Table 1.1 Complex power

Element Voltage source Z1 Z2 Z3

Complex power S −1.5385 +
j2.3077

j0.7692 −j7.6923 1.5385 +
j4.6154

2. If Q is positive it is supplying positive reactive power otherwise it is absorbing
positive reactive power.

In a branch where the current is flowing from the positive polarity of the voltage to
the negative polarity, i.e., for a load convention, as in Fig. 1.5b above:

1. IfP is positive then the real power is absorbed by the branch otherwise it generates
real power.

2. If Q is positive it is absorbing positive reactive power otherwise it is supplying
positive reactive power.

For the cases where the phase difference between the voltage and current is limited
between +90◦ and −90◦, for the generator convention, positive Q means that the
current lags the voltage.

Example A schematic of a simple power system with a voltage source and some
loads is shown in Fig. 1.6. Let us calculate the real and reactive power generated and
consumed in the system.

Let ω = 2π60 rad s−1, L1 = 0.1
ω
H , L2 = 0.3

ω
H , C1 = 5

ω
F , and R2 = 0.1�, note

that the source voltage is
√
2 sinωtV .

Let Z1 = jωL1, Z2 = 1
jωC1

, Z3 = R2 + jωL2, writing KCL for the node above the
capacitor, we have:

V − 1ej0

Z1
+ V

Z2
+ V

Z3
= 0

solving the above equation we get, V = 1.2308 − j0.1538V , and I1 = −1.5385 −
j2.3077A, I2 = 0.7692 + j6.1538A, I3 = 0.7692 − j3.8462A. The complex power
consumed by each branch is shown in the Table1.1.

Due to the direction of the current in the circuit diagram in Fig. 1.6 the complex
power for the voltage source in Table1.1 is the consumed power. From Table1.1 it is
clear that all the real powers add up to be zero and so do the reactive powers. We say
Z1 and Z3 consume positive reactive power and Z2 consumes negative reactive power.
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1.2.2 Real and Reactive Power Balance

Figure1.7 is a representation of a transmission system. The active power sources
are represented as current sources and impedances represent transmission lines and
loads.

Let VN = [

V1 V2 V3 0
]

, IB = [

I1 I2 I3 I4 I5
]T

and IS = [

Is1 0 Is2 −Is1 − Is2
]T
.

Using KCL we can write:

⎡

⎢
⎢
⎣

−1 1 0 0 0
0 −1 −1 1 0
0 0 0 −1 −1
1 0 1 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

I1
I2
I3
I4
I5

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

Is1
0
Is2

−Is1 − Is2

⎤

⎥
⎥
⎦

Let the matrix above be represented by B (known as the directed incidence matrix)
then we have:

VNBI
∗
B = VN I

∗
S (1.6)

In the above Eq. (1.6) all the real and reactive powers on the left-hand-side are
calculated according to the load convention and on the right-hand-side using the
generator convention. It can be seen that the left-hand-side of the above equation is
the sum of complex power absorbed by each branch and the right-hand-side is the
sum of complex power supplied by all the sources. In other words the sum of real
and reactive powers across all the loads is equal to the sum of real and reactive power
supplied by the sources.

The above analysis has been done for a simple system and it is not too difficult
to realise that the proof for real and reactive power balance will hold good for all
transmission networks. This analysis shows that one can consider reactive power in
a similar way as one thinks of real power. It is common sense that the generated and
consumed real powers have to be equal and one can think similarly about reactive
power balance. By considering KCL at one node at a time, it can be proved that

Is1 Z1

+

V1

−

I1

Z2I2

Z3

+

V2

−

I3

Z4I4

Z5

+

V3

−

I5

Is2

Fig. 1.7 A simple network



1.2 Real and Reactive Power 9

−
va(t)

+

−
+ vb(t)

a−
+ vc(t)

Ls

ia(t)

Rs

b Ls ib(t) Rs

c Ls

ic(t)

Rs

120◦
120◦

120◦

V a

V b

V c

V ab

V bc

V ca

Fig. 1.8 A three-phase star-star connection

the total ingoing and outgoing complex power at every node is equal. This can be
easily demonstrated for one the leftmost node in Fig. 1.7; the KCL for the node can
be written as:

V1

Z1
+ V1 − V2

Z2
= Is1 (1.7)

Multiplying the complex conjugate of Eq. (1.7) by V1, we get

V1
V ∗
1

Z∗
1

+ V1
V ∗
1 − V ∗

2

Z∗
2

= V1I
∗
s1 (1.8)

In Eq. (1.8), the first term on the left-hand-side is the complex power going down,
the second term is the power going to the right, and the term on the right-hand-side
is the complex power supplied by the current source.

These ideas form the basis of understanding the operation of power systems. Next
we introduce the basic power system analysis called load flow or power flow analysis.

1.3 Load Flow Analysis

In circuit analysis source voltages or current and load impedances are known but
in load flow analysis generator power and load power is specified and so the name
is changed from circuit analysis to load flow. This does not change the way we
formulate the problem but it needs different solution methods. It is common to have
a single-line representation of three-phase power systems for load flow analysis. The
single-line representation simplifies the analysis greatly for balanced three-phase
systems. First let us look at the process for obtaining a single-line representation of
a balanced three-phase system.
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1.3.1 Three-Phase to Single-Line Diagram

For a balanced three-phase system, shown in Figs. 1.8 and 1.9, va = Vm sinωt;
vb = Vm sin(ωt − 2π

3 ); vc = Vm sin(ωt + 2π
3 ). In addition to the line voltages va, vb,

and vc, phase voltages are defined as vab(t) = va(t) − vb(t), vbc(t) = vb(t) − vc(t),
and vca(t) = vc(t) − va(t). The phasor representation of these line ( �Va, �Vb, �Vc) and
phase voltages ( �Vab, �Vbc, �Vca) is shown in Fig. 1.8. From the vector diagram in
Fig. 1.8 we can write, line voltage magnitude, VL = Va = Vb = Vc and phase voltage
magnitude is, VP = √

3VL = Vab = Vbc = Vca. Similarly it can be seen that for the
delta-connected load in Fig. 1.9, ia(t) = iab(t) − ica(t), ib(t) = ibc(t) − iab(t), and
ic(t) = ica(t) − ibc(t) and IL = √

3IP = Ia = Ib = Ic, where IP = Iab = Ibc = Ica.
All the transmission and distribution systems without exception are three-phase

networks as shown in Figs. 1.8 and 1.9. For balanced three-phase circuits the three-
phase analysis can be replaced by a single-phase analysis and thus the most common
representation of power systems is using single-line diagrams. This transformation
from a three-phase to a single-line representation is achieved in the following way.
Using KVL for each leg of the balanced three-phase circuit of Fig. 1.8, we can write
the phasor equations as:

⎡

⎣

�Va
�Vb
�Vc

⎤

⎦ =
⎡

⎣

Rs + jωLs jωLM jωLM
jωLM Rs + jωLs jωLM
jωLM jωLM Rs + jωLs

⎤

⎦

⎡

⎣

�Ia
�Ib
�Ic

⎤

⎦ (1.9)

where LM is the mutual inductance among the three inductors. For a balanced three
phase system �Ib = �Iae−j 2π

3 and �Ic = �Iaej 2π
3 . As �Ib + �Ic = −�Ia, we can write the cou-

pled simultaneous equations in (1.9) as three decoupled equations:

�Va = Rs �Ia + jω(Ls − LM ) �Ia
�Vb = Rs �Ib + jω(Ls − LM ) �Ib
�Vc = Rs �Ic + jω(Ls − LM )�Ic

−
va(t)

+
ia(t)−

+ vb(t)

−
+ vc(t)

Ls

iab(t)

Rs

Ls ibc(t)
ib(t)

Rs

Ls

ica(t)ic(t)

Rs

120◦120◦

120◦
Iab

Ibc

Ica Ia

IbIc

Fig. 1.9 A three-phase star-delta connection
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The decoupling of the equations for three-phase balanced networks is the reason
why only a single-line diagram is used to represent the system where the equivalent
inductance of the transmission lines is given as Ls − LM .

1.3.2 Circuit Analysis Versus Power Systems Analysis

Circuit analysis is simple and most engineers and scientists are familiar with it. One
needs to realise that power system analysis is circuit analysis for power transmission
networks. In conventional circuit analysis all the elements are either passive compo-
nents such as resistors, inductors, and capacitors or active components like voltage
and current sources. A typical power system, shown in Fig. 1.10, is analysed here
as a conventional circuit and then typical power systems constraints are added to
highlight the differences between circuit and power system analyses.

Using KCL for the circuit in Fig. 1.10, we can write,

Ybus

⎡

⎢
⎢
⎣

�V1
�V2
�V3
�V4

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

�I1
0
0
�I4

⎤

⎥
⎥
⎦

Matrix Ybus for the circuit is given as below:

⎡

⎢
⎢
⎢
⎣

∑4
j=2 y1j −y12 −y13 −y14
−y12 y12 + y24 + 1

Z2
0 −y24

−y13 0 y13 + y34 + 1
Z3

−y34
−y14 −y24 −y34

∑3
j=1 yj4

⎤

⎥
⎥
⎥
⎦

where zij is the impedance of the transmission line between nodes i and j and the
admittance is given by yij = 1

zij
.

Fig. 1.10 Four bus circuit

1 4

2

3

I1 I4

Z3

Z2
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Let the parameters for the four bus example in per units be: zt = 0.01 + j0.2, and
zt = z12 = z13 = z14 = z42 = z43, �I1 = �I4 = 1, �Z2 = 0.9 + j0.275, and �Z3 = 0.99 +
j0.1.

Solving for bus voltages we get:

Vbus =

⎡

⎢
⎢
⎣

�V1
�V2
�V3
�V4

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

0.9577 + 0.2935j
0.9429 + 0.1922j
0.9626 + 0.1947j
0.9577 + 0.2935j

⎤

⎥
⎥
⎦

Circuit analysis involves finding the nodal voltages �V1, . . . , �V4 given �I1 and �I4. How is
power systems analysis different fromcircuit analysis? In power systems analysis, the
currents �I1 and �I4, for the active sources, are not known instead real power generation
or voltage magnitude at the node is known. The currents, �I1 and �I4, can be written in
terms of the known variables and this substitution changes the KCL equations from
a set of simultaneous linear equation to a nonlinear set of equations in terms of the
new unknown variables. The current sources, like �I1 and �I4, are changed to one of
the three standard forms depending on the type of the node, i.e., the bus. These three
standard forms are discussed next.

1.3.3 Bus Types

Four variables are associated with each node, or a bus, as it is called in power systems
analysis. For the ith bus, the variables are Pi, Qi, Vi, and δi. Variables Pi and Qi are
the real and reactive power injected at the bus, respectively; Vi is the bus voltage; I i
is the current injected into the bus; where �Vi = Vie

jδi and �Ii = Iie
j (δi+φi). These four

variables are related by the following expression for complex power:

Si = Pi + jQi = Vie
jδi Iie

j (−(δi+φi)) = ViIi cosφi + jViIi sin φi (1.10)

For any given bus only two of the four variables are known. A bus is characterised
by which of the two out of the above four variables are known. The following clas-
sification is commonly used in power system analysis:

1. PV bus: Pi and Vi are known
2. PQ bus: Pi and Qi are known
3. Slack bus: Vi and δi = 0 are known

For the nodal analysis, currents through the active sources and impedances of
the loads are required. These are obtained using the complex power relationship
in (1.10). In particular, �Ii or Zi, for each of the three bus types, are obtained as
follows (φ = tan−1 Qi

Pi
):

1. PV Bus: known: Pi and Vi, and unknown: φi (or Qi) and δi
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�Ii = Pi

Vi cosφi
ej (δi+φi)

2. PQ Bus: known: Pi and Qi, and unknown: Vi and δi

Zi = V 2
i

√

P2
i + Q2

i

ejφ and �Ii = Vi

Zi

3. Slack Bus: known: Vi and δi = 0, and unknown: φi (or Qi) and Pi

�Ii = Pi

Vi cosφi
ejφi

The above expressions for �Ii or Zi are substituted in the KCL equations which
makes the resulting equations nonlinear in the unknown variables. This change to a
set of nonlinear equations means that numerical methods have to be used to solve
the circuit equations. To see how this works, let us look again at the four-bus system
in Fig. 1.10 where Bus 1 is now a PV Bus, P1 = 1pu and V1 = 1pu, and Bus 4 is
the slack bus with V4 = 1pu. The KCL system of equations for this four-bus system
can now be written as:

Ybus

⎡

⎢
⎢
⎣

1ejδ1

�V2
�V3

1ej0

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

1

cosφ1
ej (δ1+φ1)

0
0
�I4

⎤

⎥
⎥
⎥
⎥
⎦

The above four complex equations give eight equations by equating the real and
complex parts of each of the equations. These eight equations can be used to solve
for eight variables: �V2, �V3, �I4, δ1, and φ1. As can be clearly seen that this is a system
of nonlinear algebraic equations and we need numerical methods to solve it.

Power Balance Equations In power systems analysis one can start with the KCL
nodal equations or have a “power balance” formulation of the KCL as given in
Eq. (1.6) which is more convenient for computer solutions.

The power flowing from bus i to bus j, along the transmission line connecting the
two buses with impedance �Zij, is given by:

Sij = �Vi�I∗
ij = �Vi

�V ∗
i − �V ∗

j

Zije
−jθij

At each node the power flows Sij are added up and equated to the power supplied,
Si = Pi + jQi, and this gives us N power flow equations for an N bus system. Note
that at each bus two of the four variables are known and two are unknown and each
of the N equations is really two equations, one equating the real part and another the
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imaginary part. A single-machine-infinite-bus analysis is given next to familiarise
with the basic ideas of the power system analysis.

1.3.4 Single Machine Infinite Bus

A single-machine-infinite-bus (SMIB) system is shown in Fig. 1.11. The system
consists of a generator, transmission line, and an infinite bus which represents the
grid. In the following analysis we look at real and reactive power flows as a result of
varyingvoltage levels andpower injections.AnSMIBanalysis is usedvery frequently
by experienced power systems engineers to understand what is happening even in
complex power systems. A detailed analysis of the SMIB is presented next.

Load-flow Equations The complex power supplied by the generator, G1, is
�SG1 = PG1 + jQG1 = V1e

jδ1�I ∗
12; absorbed by the infinite bus is, �S∞ = P∞ +

jQ∞ = V2e
jδ2(−�I ∗

12); and absorbed by the transmission line, is given is, �SZ =
�PZ + j �QZ = (V1e

jδ1 − V2e
jδ2)(�I ∗

12).
The current from the generator to the infinite bus is given as:

�I12 = I12e
jβ = V1e

jδ1 − V2e
jδ2

Zejθ
(1.11)

where Zejθ is the impedance of the transmission line connecting Buses 1 and 2.
Substituting for �I12 from (1.11) in the generator complex power expression,

PG1 = 1

Z

(

V 2
1 cos θ − V1V2 cos(δ1 − δ2 + θ)

)

(1.12)

QG1 = 1

Z

(

V 2
1 sin θ − V1V2 sin(δ1 − δ2 + θ)

)

(1.13)

PG2 = 1

Z

(

V 2
2 cos θ − V1V2 cos(δ2 − δ1 + θ)

)

(1.14)

QG2 = 1

Z

(

V 2
2 sin θ − V1V2 sin(δ2 − δ1 + θ)

)

(1.15)

The above four Eqs. (1.12)–(1.15) are the four power balance equations, two at each
bus. Let Bus 1 be a PV bus and Bus 2 be a slack bus, then the SMIB load-flow

Fig. 1.11 Single machine
infinite bus–load flow

1

V1e
jδ1

2

V2e
jδ2

Zejθ

I12

G1 ∞
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problem has four unknowns, δ1, QG1 , PG2 , QG2 . Let δij = δi − δj, then from (1.12),
we can write,

δ12 = cos−1

(
V 2
1 cos θ − ZPG1

V1V2

)

− θ

Once δ1 is known (as δ2 is reference, we can assume it to be zero.), the other three
unknowns are directly calculated from Eqs. (1.13)–(1.15). This completes the load-
flow problem for the SMIB system.

Many transmission lines are purely inductive that means the transmission line
impedance �Z = 0 + jX ⇒ θ = π

2 , putting this in the above we get:

PG1 = V1V2 sin δ12

X
and QG1 = V 2

1 − V1V2 cos δ12

X

and

δ12 = sin−1

(
XPG1

V1V2

)

.

By symmetry or doing the algebra we have:

PG2 = V1V2 sin δ21

X
and QG2 = V 2

2 − V1V2 cos δ21

X

The power consumed by the purely inductive transmission line (θ = π
2 ) is:

PZ = PG1 + PG2 = V1V2 sin δ12

X
+ V1V2 sin δ21

X
= 0

QZ = QG1 + QG2 = V 2
1 − V1V2 cos δ12

X
+ V 2

2 − V1V2 cos δ21

X
= V 2

1 + V 2
2 − 2V1V2 cos δ12

X

Reactive Power Control The SMIB example is a good place to analyse how a
variable reactive power supply from generation devices is achieved. The real power
output of a generator is equal to the input power (minus the losses) thus the only
way to change the output real power of a generator is to change the input mechanical
power. As most electrical loads and overhead transmission lines consume reactive
power, it is useful to distribute the required reactive power also among the generators
indirectly by controlling the generator terminal voltage.

For the SMIB system, Fig. 1.12 shows the variation of the synchronous machine
current I12 and power factor cosφ, (φ = β − δ1), as the field current of the generator,
G1, is changed, i.e., V1 is changed, when the output power is constant. Putting the
previous relations together we get:

I212 = V 2
1

X 2
+ V 2

2

X 2
− 2V1V2 cos δ12

X 2
= V 2

1

X 2
+ V 2

2

X 2
− 2V1V2

X 2

√

1 −
(
PG1X

V1V2

)2
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Fig. 1.12 V-curves for an SMIB system

cosφ = PG1

V1I12

Due to the shape of plot of the variation of I12 as the generator terminal voltage is
changed, seen in Fig. 1.12, the plots are called as V curves. For an SMIB systemwith
X = 0.2pu, V2 = 1pu, PG1 = 1pu, δ2 = 0, the V curves are shown in Fig. 1.12. The
V curves show the variation of the magnitude of the generator current as the terminal
voltage varies as the real power output is held constant. The currentmagnitude as seen
in Fig. 1.12a is a V and the power factor variation seen in Fig. 1.12b is an inverted
V. The phase of the current with respect to the terminal voltage is also shown in
Fig. 1.12a. It can be seen from Fig. 1.12b that for low terminal voltages the generator
absorbs reactive power and for higher terminal voltages it supplies reactive power.

These curves show why synchronous machine is such a popular electricity gener-
ation device. The operating characteristics of the synchronous machine enable it to
supply or absorb reactive power in a continuous range. It is easy to vary the terminal
voltage of the synchronousmachine using the field current and by varying the voltage
it is possible to supply a load with an arbitrary power factor.

Note that
∣
∣
∣�I12

∣
∣
∣

2 = I212 = �I12�I ∗
12 and the reactive power absorbedby the transmission

line is:

QX =
∣
∣
∣�I12

∣
∣
∣

2
X = I212X = QG1 + QG∞ = V 2

1 + V 2
2 − 2V1V2 cos δ12

X
(1.16)

From (1.16) it can be seen that for high power transfer, i.e., large sin δ12, the term
2V1V2 cos δ12 will be small thus the reactive power consumed by the transmission line
will increase. For a fixed generator terminal voltage, this increase in the consumption
of the reactive power will drop the voltage at the other end. At times this interaction
between the need to supply higher real power and associated increase in the reactive
power leads to voltage collapse in the grid.
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1.3.5 N-Bus System

An N-Bus system is considered in this section. The ideas from the previous sections
are put together here to get a general formulation.A simple algorithm to solve the load
flow problem is also introduced. Good power system analysis software is available
freely and in general there is no need for power system engineers to write their
own software routines to solve load flow problems. The educational importance of
coding a few load flow algorithm by students cannot be underestimated. We strongly
encourage every student to solve a few load flow problems using their own code.

The ith bus of anN -bus grid is shown in Fig. 1.13. This is a general representation
and it is likely that a given bus may not have all the connection or devices attached
to it as shown in the figure.

The nodal equations or the KCL equations for the N-bus system with the ith Bus
shown in Fig. 1.13, can be written as:

YbusVbus = Ibus

Vbus =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

V1e
jδ1

...

Vie
jδi

...

VNe
jδN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

; Ibus =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�I1
...
�Ii
...

�IN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

where �Ii = �IGi − �ILi
Let the (ij)th element of Ybus be �Yij = Yije

jθij , then we can write:

�IGi =
N
∑

j=1

Yije
jθij Vje

jδj + �ILi =
N
∑

j=1

Yije
jθij Vje

jδj + PLi − jQLi

Vie
−jδi

(1.17)

Fig. 1.13 The ith bus To 1st Bus

To jth Bus

To N th Bus

...

...

IGi

Gi

i

Vie
jδi

ILi

PLi
+ jQLi
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With the expression for the current in (1.17), the complexpower supplied bygenerator
Gi can be written as follows:

PGi + jQGi = �Vi�I ∗
Gi

= Vie
jδi

N
∑

j=1

Yije
−jθij Vje

−jδj + Vie
jδi (PLi + jQLi )

Vie
jδi

=
N
∑

j=1

ViVjYije
j (δi−δj−θij) + PLi + jQLi (1.18)

Pi + jQi =
N
∑

j=1

ViVjYije
j (δi−δj−θij)

=
N
∑

j=1

ViVjYij
(

cos(δij − θij) + j sin(δij − θij)
)

(1.19)

where: Pi + jQi = PGi + jQGi − PLi − jQLi .
From (1.19), for each node, i = 1, . . . ,N , we have

Pi =
N
∑

j=1

ViVjYij cos(δij − θij); Qi =
N
∑

j=1

ViVjYij sin(δij − θij) (1.20)

The above set of 2N Eq. (1.20) are used in most load flow programs. These 2N
equations are solved for 2N unknowns. Please note that for each bus there are four
variables Pi, Qi, Vi, and Vi; in a typical power flow problem two are known and two
are unknown.

There is an alternative load flow formulation to the one in (1.20) that is popular
for simple but very powerful Gauss-Seidel methods and their variations. Noting that

�Si = �Vi�I ∗
i ⇒ �Ii = �S ∗

i

�V ∗
i

= Pi − jQi

Vie
−jδi

,

the nodal or KCL equations given below is an alternative load-flow formulation:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�Y11 . . . �Y1i . . . �Y1N
... · · · ... · · · ...
�Yi1 . . . �Yii . . . �YiN
... · · · ... · · · ...

�YN1 . . . �YNi . . . �YNN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�V1
...
�Vi
...
�VN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

P1−jQ1
�V ∗
1

...
Pi−jQi

�V ∗
i

...
PN−jQN

�V ∗
N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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The Gauss-Seidel algorithms work like this:

1. For all unknown �Vi, i = 1, . . . ,N , supply initial guesses; most common guesses
are Vi = 1pu and δi = 0.

2. Calculate Pi − jQi, i = 1, . . . ,N , using (1.20).
3. Obtain updated values of �Vi, i = 1, . . . ,N

�Vi ← 1
�Yii

⎛

⎜
⎝−

N
∑

j=1
j 
=i

�Yij �Vj + Pi − jQi

�V ∗
i

⎞

⎟
⎠

4. Iterate over Steps 2 and 3 above till there is a convergence in the values of
�Vi, i = 1, . . . ,N .

A Three-Bus Example Figure1.14 is a one-line diagram of a three-bus system. The
impedance of the lines connecting nodes i and j is given by �Zij = 0.01 + j0.2pu,
i.e., all the transmission lines have the same impedance.

1. Bus 1 is a PV bus, i.e., a generator bus: PG1 = 1pu and V1 = 1pu; Q1 and δ1 are
unknown.

2. Bus 2 is a slack bus: V2 = 1pu and δ2 = 0◦; P2 and Q2 are unknown.
3. Bus 3 is a PQ bus, i.e., a load bus: PL3 = 0.5pu and QL3 = 0.1pu; V3 and δ3 are

unknown.

All the values are expressed in per unit with Pb = 100MW and Vb = 138 kV.
The nodal equations or the KCL for the above three-bus system can be written as:

⎡

⎢
⎣

1
�Z12 + 1

�Z13 − 1
�Z12 − 1

�Z13− 1
�Z12

1
�Z12 + 1

�Z23 − 1
�Z23− 1

�Z13 − 1
�Z23

1
�Z13 + 1

�Z23

⎤

⎥
⎦

⎡

⎣

�V1
�V2
�V3

⎤

⎦ =

⎡

⎢
⎢
⎣

P1−jQ1
�V ∗
1

P2−jQ2
�V ∗
2

P3−jQ3
�V ∗
3

⎤

⎥
⎥
⎦

Fig. 1.14 Three bus system

1

V1e
jδ1

2

V2e
jδ2

3V3e 3

G1 ∞

PL3 + jQL3
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A simple Matlab script to solve the three bus system using Gauss-Seidel algorithm
is given below.

clear all

j=sqrt(-1);

zt = 0.01 + j*0.2;

yt = 1/zt;

Ybus = [yt+yt -yt -yt; ...

-yt yt+yt -yt; ...

-yt -yt yt+yt];

%rectangular to polar form

vec = @(m,ph) m*(cos(ph) + j*sin(ph));

%Known values

pg1 = 1.0; %generator 1 set generation

mV(1) = 1;mV(2) = 1;delta(2) = 0;P(1) = pg1;P(3) = -0.5;Q(3) = -0.1;

%Initial guesses

delta(1) = 0; mV(3) = 1; delta(3) = 0;

%build V

for k = 1:3

V(k) = vec(mV(k),delta(k));

end;

%Main loop

for m = 1:10

%calculate bus powers

V(1) = vec(1,angle(V(1))); %magnitude of V(1) is always 1.

for k = 1:2 %We calculate powers for buses 1 and 2 only because bus 3 is a load bus

P(k) = 0; Q(k) = 0;

for l = 1:3

P(k) = P(k) + real(V(k)*V(l)’*Ybus(k,l)’);

Q(k) = Q(k) + imag(V(k)*V(l)’*Ybus(k,l)’);

end;

end;

P(1) = pg1; %bus 1 is a PV bus

V(1) = (1/Ybus(1,1))*(-Ybus(1,2)*V(2) - Ybus(1,3)*V(3) + ...

(P(1) - j*Q(1))/V(1)’);

V(3) = (1/Ybus(3,3))*(-Ybus(1,3)*V(1) - Ybus(2,3)*V(2) + ...

(P(3) - j*Q(3))/V(3)’);

end;

The values of the variables as the iteration progresses are shown in Table1.2. It can
be seen that the convergence is a bit slow.

In this three-bus example the current at the load bus (Bus 3), �I3 = I3e
j (δ3+φ3) is

obtained from the given complex power as follows:

PL3 + jQL3 = V3e
jδ3 I3e

−j (δ3+φ3) = V3I3e
−jφ3 ⇒ I3e

jφ3 = PL3 − jQL3

V3

Frequently the load (such as connected to Bus 3) is represented as a constant
impedance load. This can be done as follows by making an assumption that the bus
voltage (in this case V3) doesn’t change much:

�Z3 = V3e
jδ3

I3e
j (δ3+φ3)

= V3

I3e
jφ3

= V 2
3

PL3 − jQL3
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Table 1.2 Gauss-Seidel algorithm iterations

Iteration V1 V3 PL2 QL2

1 1.010 0.999 0.000 0.000

2 0.999 0.992 −0.343 0.049

3 1.000 0.992 −0.235 0.073

4 1.000 0.992 −0.206 0.071

5 1.000 0.992 −0.197 0.071

6 1.000 0.992 −0.195 0.070

7 1.000 0.992 −0.195 0.070

8 1.000 0.992 −0.194 0.070

9 1.000 0.992 −0.194 0.070

10 1.000 0.992 −0.194 0.070

1.4 Magnetic Circuits and Inductance

To have a feel for the synchronous machine model, a little understanding of the
magnetic circuit in the synchronous machine is essential. Magnetic circuit analysis
is analogous to electrical circuit analysis where magnetic flux is calculated instead
of currents and voltages. Current through an electrical coil generates a magnetic
field and it is expressed in terms of magnetic field strength, H , with the units of
Am−1. The inductance of the coil is a property of an electrical coil that is based
on the size of the magnetic flux created by a given magnetic field strength. Here a
basic technique to analyse magnetic circuits is presented. This technique is sufficient
to understand leakage flux, mutual flux, and the related terms leakage and mutual
inductances for transformers and synchronous machines. The basic tool used here is
Ampère’s Circuital Law that relates magnetic field strength, H , to the current in the
coil. Magnetic flux density, B, magnetic flux, φ, and induced voltages can be easily
derived once the magnetic field strength, H , is known.

1.4.1 An Inductor

Inductance of a coil, such as the one shown in Fig. 1.15, can be obtained using the
following steps.

1. The first step is to calculate the magnetic field strength or intensity,H , which has
the units of Am−1. The intensity, H (l), is a vector quantity and it is a function
of position, l, in the coil.
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Fig. 1.15 An inductive coil

I

N

φ

2. Magnetic field intensity,H (l), is a vector quantity with a direction. The direction
of H (l) through a coil is obtained using the right-hand rule. To apply this rule,
wrap the fingers of the right-hand along the flow of the current and then the
direction of the thumb gives the direction of H (l).

3. Ampère’s Circuital Law,
∮

H (l) · dl = NI , is used to obtainH . The path integral
is taken along a closed contour. The contour is divided into several segments
such that the value ofH (l) is constant along each of those segments and then the
integral is simply the sum of the length of the segment times the constant value of
H along that segment. A contour satisfying this assumption is shown in Fig. 1.15.
The right-hand-side, NI , is the total current that is enclosed by the contour. It is
NI for the contour chosen in Fig. 1.15 but it can be different depending on the
shape of the coil.

4. Next the intensity, H , is related to the flux density, B, which has the units of
T (Tesla) which stands for NsC−1 m−1. Flux density, B = μH , where μ is the
permeability of the magnetic material; B andH are also related by the hysteresis
curve for many magnetic materials. The vacuum permeability, known as μ0, is
4π10−7 V sA−1 m−1.

5. The flux, φ = BA, where A is the area of cross-section through which the flux
passes, has the units of flux are Wb (Webers). In general there will be multiple
paths along which the magnetic flux flows and a calculation of the total flux
must consider all the paths. In most problems multiple symmetrical paths can
be identified from the geometry of the device.

6. Finally, the coil inductance is given as L = Total flux linkage
Applied current . For the coil in

Fig. 1.15 this will be L = Nφ
I .

7. Symbol λ is used to denote the total flux linkages in an N turn coil and it is
calculated as:

λ =
N
∑

j=1

φj

where flux φj goes through the jth turn. For the coil in Fig. 1.15 we have the
same flux through every turn of the coil φ = φi, i = 1, . . . ,N and λ = Nφ.

8. In an electrical system with n coils the inductances are defined as:

Lkj = λkj

ik
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Fig. 1.16 Magnetic circuit

lg
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−
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where λkj are the flux linkages in coil j due to current in coil k; when k = j it is
called self-inductance and when k 
= j it is called mutual-inductance.

9. In a system of multiple coils if flux due to current in coil k links only the turns in
coil k and no other coil then that flux is called the leakage flux and the inductance
due to that flux is called leakage inductance.

The next example illustrates the method detailed above.

Example Two coils with turns N1 = 100 and N2 = 1000 are wound around an iron
core with an air-gap of lg = 1mm. The flux path in the iron core has a length of lc =
10 cm and the cross-section area of the core isAc = 1 cm−2. The relative permeability
of the iron core is μr = 2000 and μ0 = 4π10−7 V sA−1 m−1. Find the self and the
mutual inductance of both the coils.

A closed contour is shown with dashed lines in Fig. 1.16. Two segments can be
clearly identified in the closed contour, one in the core and another in the air-gap.
The magnetic intensity H is constant along each of those segments. Now, applying
Ampère’s Circuital Law, we get,

N1i1 + N1i1 =
∮

H (l) · dl
= Hclc + Hglg

= Bc

μrμ0
lc + Bg

μ0
lg

where Hc (Bc) and Hg (Bg) are the magnetic intensity (flux density) in the core and
the air-gap, respectively.

To obtain the self-induction of coil with N1 turns, we set I2 = 0, and obtain,

N1i1 = φ

μrμ0Ac
lc + φ

μ0Ag
lg

where φ = BcAc = BgAg is the flux that goes through the core and the air-gap. Flux
is analogous to current in an electrical circuit and as the same current flows through a
series circuit so the same flux flows through a series magnetic circuit. In this example
it is assumed that there is no leakage flux and the cross-section area of the air-gap is
the same as the core.
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Analogous to resistance, a term reluctance is defined for magnetic circuits as,
R = l

μA . For this example, we define, Rc = lc
μ0μrAc

, and Rg = lg
μ0Ag

, and we get,

L1 = N1φ

i1
= N 2

1

Rc + Rg

Similarly

L2 = N 2
2

Rc + Rg
and L12 = N1N2

Rc + Rg

Thenumerical values for this example are:L1 = 0.0012H,L2 = 0.1197H, andL12 =
0.0120H.

1.4.2 Rotating Machine

The process discussed above to obtain inductance of coils can be used to obtain induc-
tances of the coils that make up a synchronous machine. The machine in Fig. 1.17
has a salient pole rotor and a stator, with coils on both the rotor and stator. The coil
on the rotor is often called the field coil. The stator coil is represented as a single
turn coil in Fig. 1.17 but it is distributed sinusoidally in space along the stator. In the
following, field coil leakage inductance, field coil self inductance, and the mutual
inductance between the field and stator coils will be obtained.

Each coil in synchronous machine has flux linkages due to current in the coil itself
and also due to currents in other coils. The flux linkages due to the current in the coil
itself and the resulting inductance is called self-inductance and due to the currents
in other coils is called mutual inductance. In the following we discuss the essentials
of self and mutual inductance of the coils in synchronous machines.

Self-Inductance The first step in calculating coil inductances is to mark the multiple
paths taken by the magnetic flux generated due to the current in the coils. In Fig. 1.17
four paths are shown for the flux due to rotor coil current. Flux φl is the leakage
flux that only links the field coil and not the stator coil and flux φm links both the
coils. The leakage and mutual flux follow two symmetrical paths, one above and

Fig. 1.17 Rotor and
armature coils φl

φl

φm

φm

×

.a

a

θ
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another below the horizontal line of symmetry and the total flux through the rotor is:
φ = 2φl + 2φm.

Leakage Flux—φl Using Ampère’s Law (
∮

H · dl = NI ) we get,

Hl1 l1 + Hla la = Nf if
Bl1

μ1μ0
l1 + Bla

μ0
la = Nf if

φl

μ1μ0Al1

l1 + φl

μ0Ala

la = Nf if

where subscript ‘1’ refers to rotor and ‘a’ to the air parameters.

Mutual Flux—φm Using Ampère’s Law (
∮

H · dl = NI ) we get,

Hlr lr + Hlg lg + Hls ls = Nf if
Blr

μrμ0
lr + Blg

μ0
lg + Bls

μsμ0
ls = Nf if

φm

μrμ0Alr

lr + φm

μ0Alg

lg + φm

μsμ0Als

ls = Nf if

where subscript ‘r’ refers to rotor, ‘g’ to the air-gap and ‘s’ to stator.
Introduction of a term called reluctance that is analogous to resistance in electrical

circuits simplifies the above expressions. Reluctance and a few other commonly used
terms are defined below.

1. Reluctance R = l

μA
2. Flux linkages λ = Nφ

3. Inductance L = λ

i

4. Induced Voltage e = −dλ

dt
= −d(Li)

dt
With the above definitions we can write:

φl = Nf if
R1 + Ra

and φm = Nf if
Rr + Rg + Rs

λl = N 2
f if

R1 + Ra
and λm = N 2

f if

Rr + Rg + Rs

Ll = N 2
f

R1 + Ra
and Lm = N 2

f

Rr + Rg + Rs
;φff = φl + φm and Lff = Ll + Lm

where Ll is the leakage inductance and Lff is the self-inductance of the field coil.
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Fig. 1.18 Rotating field coil

Fig. 1.19 Total flux linkage
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Given the geometry of the machine, the parameters of the magnetic material, and
number of turns of the coil, the field coil inductance can be obtained. For practical
purposes these inductances are found by performing actualmeasurements on the field
coil. The important thing to note from the above derived expressions for leakage and
self induction of the field coil is that sinceR1 + Ra >> Rr + Rg + Rs, the leakage
inductance is much smaller than the self inductance and that the self-inductance does
not change with the position of the rotor.

Mutual Inductance
Next the mutual inductance between the field and stator coils is derived. As men-
tioned previously the stator coil is sinusoidally distributed along the stator of the
synchronous machine as shown in Fig. 1.18. The stator coils run along the length of
the machine and loop back from the front and back of the machine. The standard
notation is that ⊗ represents current going into the coil and � represents current
coming out of the coil. Figure1.18 also shows three different rotor positions. The
rotor angle θ increases as the rotor rotates in the anti-clockwise direction.

The aa′ windings on the stator are distributed such that at θ the winding density
is N

2 sin θ. The total number of windings are:

∫ π

0

N

2
sin θ dθ =

[

−N

2
cos θ

]π

0

= N
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The flux linkage between the rotor and stator coils depends on the angular position
of the rotor. Figure1.19 shows how the rotor flux links the stator coils.

The field flux links all the coils but it links positively with the coils on the left
and negatively with the coils on right. In Fig. 1.19, current going into the stator coil
generates flux in the clockwise direction (flux line right next to the ⊗ coil) and the
rotor flux going left after it enters the stator is in the anti-clockwise direction for the
⊗ coil. This rotor flux induces current in the stator coil that is in the same direction
as the coil current, i.e., into the coil due to the Lenz’s law. Similar reasoning shows
that the rotor flux that travels after turning right in the stator links negatively with
the stator coils.

The stator coil density at θ is N
2 sin θ and the number of coils linking the rotor flux

when it is at θ is obtained as:

∫ π

θ

N

2
sin θ dθ −

∫ θ

0

N

2
sin θ dθ = N cos θ

The total number of turns of the coil that link with the field flux when rotor is at
θ is given by N cos θ. Thus the rotor flux linking the stator coils is proportional to
N cos θ. This gives,

φfa = φm and Lfa(θ) = φmNa cos θ

where Lfa is the mutual impedance between the field coil and the aa′ stator coil.
Finally, the emf induced in coil aa′ is proportional to the rate of change of the flux
through the coil and so we write (where ω is the angular velocity of the rotor):

va(t) = Vm sin θ = Vm sinωt

1.5 Electromechanical Energy Conversion

In this section energy conversion in electromechanical systems using electromag-
netic coupling field, i.e., inductances, is discussed. The starting point to analyse the
electromechanical energy conversion problem is the energy balance equation,

Field Energy (Wf ) = Supplied Electrical Energy (We) + Supplied Mechanical Energy (Wm).

In the analysis of electromechanical systems we start with the system operat-
ing in equilibrium and then derive the dynamic equations for the changes from the
equilibrium in the energies in the system from the following expression:

dWf (i, x) = dWe(i, x) + dWm(i, x). (1.21)

For a system with n electrical coils with currents, i1, i2, . . . , in, and m mechanical
parts with displacements, x1, x2, . . . , xm, Eq. (1.21) can be written as:
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n
∑

j=1

∂Wf (i, x)

∂ij
dij +

m
∑

k=1

∂Wf (i, x)

∂xk
dxk =

n
∑

j=1

∂We(i, x)

∂ij
dij +

m
∑

k=1

∂We(i, x)

∂xk
dxk

+
n
∑

j=1

∂Wm(i, x)

∂ij
dij +

m
∑

k=1

∂Wm(i, x)

∂xk
dxk

(1.22)

Each of the variation dij, j = 1, 2, . . . , n and dxk , k = 1, 2, . . . ,m are independent
and thus n + m Eq. (1.22) can be written as a system of n + m equations by equating
the co-efficients of dij and dxk in (1.22) as:

∂Wf (i, x)

∂ij
dij = ∂We(i, x)

∂ij
dij + ∂Wm(i, x)

∂ij
dij, j = 1, 2, . . . , n (1.23)

∂Wf (i, x)

∂xk
dxk = ∂We(i, x)

∂xk
dxk + ∂Wm(i, x)

∂xk
dxk , k = 1, 2, . . . ,m (1.24)

Equations (1.23) and (1.24) are written in terms of coil currents but they can also
be written in terms of coil flux linkages λj, j = 1, 2, . . . , n and then the system of
equations (1.23) and (1.24) is written in terms of dλj, j = 1, 2, . . . , n.

General Method The following general steps detail how to use the above Eq. (1.21)
to obtain dynamic equations for a given electromechanical system.

1. The input electrical energy supplied to a coil with voltage ef across its terminals
is: We = ∫

ef idt = ∫
dλ
dt idt = ∫

idλ, where i is the current through the coil and
λ is the total flux linking the coil. For an n-coil system λi(θi) = ∑n

j=1 Lij(θi, θj)ij.
Thus the change in the supplied electrical energy in a coil is: dWe = idλ.

2. In any system the stored electromagnetic field energy is found by calculating the
supplied electrical energy while making the extracted (or supplied) mechanical
energy zero, i.e., dx = 0 or dθ = 0. For a single coil system Wf = 1

2L(θ)i2.
3. For a rotating part the supplied mechanical energy is: dWm = −Tedθ or dWm =

−fdx for linear displacement.
4. Putting all this together for a rotary machine with m coils and one rotating part,

we have: dWf (i, θ) = ∑m
j=1 ijdλj(i, θ) − Tedθ. This gives:

m
∑

j=1

∂Wf

∂ij
dij + ∂Wf

∂θ
dθ =

m
∑

j=1

ij
∂λj

∂ij
dij +

m
∑

j=1

ij
∂λj

dθ
dθ − Tedθ (1.25)

5. Equating the co-efficients of dθ in (1.25), we get:

Te =
m
∑

j=1

ij
∂λj(i, θ)

∂θ
− ∂Wf

∂θ
(1.26)
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The above general method can be used for multiple moving parts as well. For most
electrical machines we have only one moving part called the rotor.

1.5.1 Plunger-Spring System

Figure1.20 shows the schematic of a plunger system. As the current is applied to the
coil, it pulls themass-damper-spring system into the air-gap. There are three different
systems in this plunger system: (a) the electrical system with the voltage and current
in the coil, (b) the magnetic system that stores magnetic energy in the magnetic core
and the air-gap, and (c) the mass-damper-spring mechanical system. The electrical
energy is transferred from the coil to the mechanical system via the magnetic field.
The analysis problem related to the plunger system in Fig. 1.20 is to find the change
in the position x as a function of time after a step voltage is applied to the field. This
is a typical electromechanical energy conversion problem.

The plunger in Fig. 1.20 is h deep (into the paper) and the air-gap between the
core and the plunger is g. Assuming that the entire flux travels through the plunger
(no leakage), it can be shown that for a core with large air-gap the inductance of the
coil is given as,

L(x) = N 2μ0hx

2g
.

A few observations on this plunger problem give a general idea of the electrome-
chanical system analysis. From Eq. (1.21), it can be seen that if the change in the
mechanical energy dWm(i, x) is zero, i.e., if the plunger is held in one position, all the
change in the electrical energy will equal the change in field energy. This observation
is useful when we calculate the stored field energy as a function of position and cur-
rent. As the plunger moves into the gap in the core, it induces an emf in the coil which
is in addition to the self-induced emf due to the inductance of the coil. Due to this
extra emf, the input electrical energy increases (as compared to when the plunger is
held in one position), and that extra energy is converted into mechanical energy. As
there is an increase in x, mechanical energy is absorbed by the mass-damper-plunger
system thus the supplied mechanical energy is −fdx.

Let λ(x, i) = L(x)i be the total flux linkage of the coil, where L(x) is the coil
inductance, and the stored field energy is 1

2L(x)i2. Then Eq. (1.21) for the plunger

Fig. 1.20 An
electromechanical plunger
system

i

−
v
+

N M
kB
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f
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system is:

d(
1

2
L(x)i2) = idλ(x, i) − fdx

1

2
i2
L(x)

∂x
dx + iL(x)di = i2

L(x)

∂x
dx + iL(x)di − fdx

Equating the co-efficients of dx, we get

1

2
i2
L(x)

∂x
= f

The electromechanical equation for the system is (R is the coil resistance):

Ri + i
∂L(x)

∂x

dx

dt
+ L(x)

di

dt
= v (1.27)

m
d2x

dt2
+ B

dx

dt
+ kx = 1

2
i2

∂L(x)

∂x
(1.28)

Equation (1.27)models the electrical transients and Eq. (1.28)models themechanical
transients. In general the time-constant for electrical transients is much smaller than
mechanical transient time-constant.

1.5.2 Rotor-Spring System

The synchronous machine in Fig. 1.21 has a sinusoidally distributed stator winding
aa′ and a round rotorwith field coil ff ′. A helical spring connects rotor to a fixed point.
The parameters of the system are: J = 1 J s2,B = 0.2 J s, ks = 0.1N m, Laa = 6mH,
Lff = 6mH, L̂fa = 5mH, rf = 1�, ra = 1�, vf = 10V, and va = 10V. The mutual
inductance between the stator and rotor coils is Lfa = L̂fa cos θ where θ is the angle
between the horizontal line and the magnetic “pole” of the rotor.

DC voltages are applied to the rotor and stator windings at time t = 0 s. Plot the
value of θ with time.

Fig. 1.21 Rotor with a
spring
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Field energy is the supplied electrical energy with θ constant or dθ = 0. Note that
λf = if Lff + iaLfa(θ) and λa = iaLaa + if Lfa(θ).

Wf =
∫

if dλf +
∫

iadλa

=
∫

if d(if Lff + iaLfa(θ)) +
∫

iad(iaLaa + if Lfa(θ))

=
∫

if d(if Lff ) +
∫

iad(iaLaa) + if d(iaLfa(θ))

= 1

2
Lff i

2
f + if iaLfa(θ) + 1

2
Laai

2
a

The integral above is evaluated in two steps. Current ia is kept constant in the first
step and if is taken to its final value. In the second step if is fixed at its final value
and ia is varied from zero to its final value. The change in electrical energy is:

dWe = if dλf (ia, if , θ) + iadλa(ia, if , θ)

= if

(
∂λf

∂if
dif + ∂λf

∂ia
dia + ∂λf

∂θ
dθ

)

+ ia

(
∂λa

∂if
dif + ∂λa

∂ia
dia + ∂λa

∂θ
dθ

)

Using dWf (i, θ) = idλ(i, θ) − Tedθ and equating co-efficients of dθ, we get

if ia
dLfa(θ)

dθ
= if

∂λf

∂θ
+ ia

∂λa

∂θ
− Te

= if ia
dLfa(θ)

dθ
+ iaif

dLfa(θ)

dθ
− Te

Te = if ia
dLfa(θ)

dθ
= −if iaL̂fa sin θ

If we want a positive torque as θ increases we can change the direction of the current
flow of either if or ia.

The complete system dynamics equations can be written as:

J
d2θ

dt2
+ B

dθ

dt
+ ksθ = Te

Lff
dif
dt

+ Lfa(θ)
dia
dt

+ ia
dLfa(θ)

dθ

dθ

dt
+ Rf if = vf

Laa
dia
dt

+ Lfa(θ)
dif
dt

+ if
dLfa(θ)

dθ

dθ

dt
+ Raia = va

Define the states as: x1 = θ, x2 = dθ
dt , x3 = if , and x4 = ia and we have dLfa(θ)

dθ

= −L̂fa sin θ.
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Fig. 1.22 Rotor position for
the spring-machine system
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ẋ1 = x2

ẋ2 = − 1

J

(

ksx1 + Bx2 + if iaL̂fa sin θ
)

Let L =
[

Lff Lfa(θ)
Lfa(θ) Laa

]

then

[

ẋ3
ẋ4

]

= [L]−1

[

vf − Rf x3 + L̂fax2x4 sin x1
vr − Rrx4 + L̂fax2x3 sin x1

]

The step response of the angular position of the rotor due to the rotor and stator
voltage steps, Vf = 10V, and Va = 10V, is shown in Fig. 1.22. The equilibrium
value can be obtained by solving for θ in ksx1 + if iaL̂fa sin θ = 0.

1.6 Rotating Magnetic Field

Nikola Tesla discovered that polyphase stationary coils can generate a rotating mag-
netic field. His discovery led to the induction machine which does not need energised
coils on the rotor. Here we look at how a rotating field is created with three-phase
coils.

1. The coil currents are:

ia(t) = Im cos(ωt); ib(t) = Im cos(ωt − 2π

3
); ic(t) = Im cos(ωt + 2π

3
)

2. The three stator coils are spatially distributed such that each of them produces a
spatially distributed sinusoidal magnetomotive force (mmf) in the air-gap. The
spatial location of the maximum value of the mmf due to each coil is shown in
Fig. 1.23 as vectors F̂a, F̂b, and F̂c.
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Fig. 1.23 Synchronous
machine—rotating magnetic
field
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3. For the coil arrangement shown in Fig. 1.23 (θ is wrt the horizontal axis and
positive anti-clockwise), the value of the mmf due to each coil as a function of θ
is given as:

Fa(t, θ) = F̂a(t) cos(θ); Fb(t, θ) = F̂b(t) cos(θ − 2π

3
); Fc(t, θ) = F̂c(t) cos(θ + 2π

3
)

4. The instantaneous peak value of the mmf due to the current in N-turn stator
windings is given as:

F̂a(t) = NIm cos(ωt); F̂b(t) = NIm cos(ωt − 2π

3
); F̂c(t) = NIm cos(ωt + 2π

3
)

5. The resultant rotating mmf at θ is given as:

Fa(t, θ) = NIm cos(ωt) cos(θ) + NIm cos(ωt − 2π

3
) cos(θ − 2π

3
)

+ NIm cos(ωt + 2π

3
) cos(θ + 2π

3
)

= 3

2
NIm cos(ωt − θ)

6. The resulting mmf, Fa(t, θ), is sinusoidally distributed as a function of θ and the
maximum value of F(θ), at time t, is at that θ for which ωt = θ. This means that
the mmf is rotating at the rate given by the stator current frequency ω, and thus
the number of rotations of the mmf per second are: ω

2π .

1.6.1 Synchronous Machine

A three-phase synchronous machine, like most rotating electrical machines, has a
rotor and a stator. The rotor has a low resistance and high inductance coil, known
as the field coil, energised by a DC current. The rotor itself can have salient poles
(Fig. 1.19) or it can be a round rotor (Fig. 1.24). The stator has three sinusoidally
distributed coils, each with N turns that are spatially displaced 120◦ from each other.
Each turn of the coil is a pole pitch apart and runs along the length of the coil and loops
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Fig. 1.24 Synchronous
machine schematic

rotor stator

.

×
a

a

×

.

b

b
.

×c

c

ia
a

ib b

ic

c

back at both the ends. The pitch of each turn depends on the number of poles on the
rotor. In this book two-pole, i.e., one pole-pair machines are shown in the figures and
analysed. Thermal units normally have two poles and hydro units have ten or higher
number of poles. Figure1.24 is a schematic of a round rotor two-pole synchronous
machine. The three stator coils, which are shown as 120◦ displaced lumped coils,
are in reality not lumped but spatially sinusoidally distributed as shown in Fig. 1.23.
When we have multiple pole-pairs the analysis is done for one pole pitch, i.e., 360
electrical degrees. The mechanical rotation, for a P pole machine, is then calculated
using the following formula,

360 mechanical degrees = P

2
× 360 electrical degrees.

Principle of Operation Synchronous machine operation is based on an interaction
of two magnetic fields, one due to the rotor field coil and another due to the field
created by the three-phase stator coils. This interaction of the two magnetic fields is
summarised below and it is expanded in Chap.2.

1. Synchronous machine is made up of a rotating magnetic field (field windings),
and polyphase (mostly three-phase) stator windings.

2. The three-phase sinusoidal currents in the stator windings create a rotating mag-
netic field.

3. The rotor spins to prevent emf being induced in the field coils due to the rotating
field based on Faraday’s Law and Lenz’s Law.

4. An equilibrium is reached when the rotor speed equals the speed of the rotating
magnetic field and there is no induced emf in the rotor coil due to the rotating
magnetic field. This speed is called the synchronous speed.

5. The two fields (the rotating field due to stator and the field due to the rotor rotating
at the synchronous speed) are not spatially aligned. The rotor field lags or leads
the stator field depending on if the machine is operating as a generator or a motor.
The two fields can only be aligned when the machine is running at no load and
there are no mechanical or electrical losses.

Synchronous Generator: Induced EMF As discussed in Sect. 1.4, the voltage
induced in the sinusoidally stator coils due to the field flux in coil aa′ is given
as: Vm sinωt, where ω is the angular velocity of the rotor. As the coils bb′ and cc′
are spatially displaced by 120◦ the induced voltage in the two coils will also have a
phase displacement of 120◦.
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Fig. 1.25 Induced voltages

The induced voltages due to the field coil flux, shown in Fig. 1.25, and for ia =
ib = ic = 0, are given as:

va(t) = Vm cosωt

vb(t) = Vm cos(ωt − 2π

3
)

vc(t) = Vm cos(ωt + 2π

3
)

Rotor and Stator Field Interaction In a synchronous machine the interaction
between the rotor and stator fields, Fr and Fs respectively, shown in Fig. 1.26, is
responsible for synchronising the angular velocity of the rotor with the electrical
frequency of the current in the stator. For a steady-state operation, the two fields
must rotate at the same angular velocity, and thus the following relationship can be
obtained between the rotor angular velocity, ωr , and the supply frequency, ωs:

ωr = ωs

pole pairs on the rotor
(1.29)

For a P pole machine, the machine can be conceptually thought of as P
2 “electri-

cal” machines within one mechanical machine. For the purpose of synchronisation
the rotor thus moves P

2 times slower and yet maintains the synchronisation. Equa-
tion (1.29) is often written as:

f = nP

120
(1.30)

where n is the rotor speed in rotations-per-minute and f is the stator supply frequency
in Hz.

A few key points about the generator andmotor operation, as captured in Fig. 1.26,
of the synchronous machine are enumerated below. A full derivation and coverage
is provided in the next chapter.
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Fig. 1.26 Generator and
motor operations
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1. The stator coils are connected to the grid. There are two rotating magnetic fluxes,
one due to stator currents, Fs = F̂s cos(ωt − θ), and another due to the field
coil, Fr .

2. The interaction between the rotor mmf and the rotating stator mmf due to the
stator currents creates synchronous generator and motor actions.

3. If there is no mechanical torque applied to the machine the mmf vectors F̂s and
Fr are aligned.

4. When a mechanical torque is applied to the rotor it will “advance” and Fr will
lead F̂s—generator action.

5. When a mechanical torque is applied by the rotor it will “fall back” and Fr will
lag F̂s—motor action.

6. The generated real power change results in the change in “δ”, also known as the
synchronous machine angle.

7. The change in the generated reactive power can be achieved by the change in the
magnitude of the generator terminal voltage.

1.6.2 Induction Machine

In a synchronousmachine there is a field coil on the rotor but in the inductionmachine
there are coils or no coil on the rotor but in either case the coils are short circuited and
not energised. Modern induction machines, called doubly-fed induction machines
have energised rotor coils to get extra control capability that is required with wind
generators. These advanced machines are discussed in Chap.2. Here we look at the
principle of operation of singly-fed induction machines as shown in Fig. 1.27.

The rotor of the induction machine rotates at an angular velocity, ωr , which is dif-
ferent from the synchronous speed,ωs. The three-phase stator coils are connected to a
three-phase supply generating a rotating magnetic flux which induces an alternating
current of frequency, ωs − ωr , in the rotor coils due to the speed difference between
the speed of the rotating magnetic field. This alternating current in the rotor creates
a rotating magnetic field at the rotational speed, ωs − ωr , with respect to the rotor.
Thus both the magnetic fields, due to the induced rotor currents and the supplied
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Fig. 1.27 Induction machine
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stator currents, rotate at the synchronous speed, ωs. They are at the same speed but
phase displaced, exactly the same way as in a synchronous motor. The magnitude of
the induced rotor currents depends on the speed difference, ωs − ωr and the measure
of speed difference is denoted by slip, s = ωs−ωr

ωs
. A detailed analysis of the dynamics

of induction machines is given in Chap. 2.

1.7 Essential Background

1.7.1 Complex Number Algebra

There are multiple ways to write complex numbers (for real x and y):

z = x + jy = rejφ = r∠φ

where |z| = r = √

x2 + y2 and ∠z or arg z = φ = tan−1 y
x , and

ex = 1 + x + x2

2! + x3

3! + x4

4! + . . .

ejφ = 1 + jφ − φ2

2! − j
φ3

3! + φ4

4! + . . .

ejφ = cosφ + j sin φ

Let z1 = x1 + jy1 and z2 = x2 + jy2 then
z1 + z2 = (x1 + x2) + j (y1 + y2) and z1z2 = (x1x2 − y1y2) + j (x1y2 + x2y1)
Let z1 = r1e

jφ1 and z2 = r2e
jφ2 then



38 1 Introduction

z1 + z2 = (r1 cosφ1 + r2 cosφ2) + j (r1 sin φ1 + r2 sin φ2)

=
(√

r21 + r22 + r1r2 cos(φ1 − φ2)

)

ej
r1 cosφ1+r2 cosφ2
r1 sin φ1+r2 sin φ2

z1z2 = r1r2e
j (φ1+φ2) Let

v1 = r1 sin(ωt + φ1) = r1 sinωt cosφ1 + r1 cosωt sin φ1

v2 = r2 sin(ωt + φ2) = r2 sinωt cosφ2 + r2 cosωt sin φ2

Then let v1 + v2 = r sin(ωt + φ). Is there an easy way to find r and φ? Let us write

v1 + v2 =
(√

r21 + r22 + r1r2 cos(φ1 − φ2)

)

sin

(

ωt + tan−1 r1 cosφ1 + r2 cosφ2

r1 sin φ1 + r2 sin φ2

)

It is clear that had we expressed v1 and v2 as Vi = rie
jφi and done a complex addition

we would have obtained r and φ directly.
Sinusoids are expressed as complex numbers or vectors to make it easy to do

algebra. This complex number representation is known as phasors.

1.7.2 Per Unit System

In power systems every quantity is specified in a per unit system. There are so many
advantages of using per unit system that after having used it for a while one wonders
how could one have lived without it. To establish a per unit system:

1. First base power Pb and base voltage Vb are chosen.
2. The per unit value of power and voltage is obtained by dividing the nominal value

with the base value.
3. The base values of all other quantities are derived from the base values of power

and voltage, e.g., base current Ib = Pb
Vb

and base impedance Zb = Vb
Ib

= V 2
b
Vb
.

Let Pb = 100MW, then 100MW is 1pu, 200MW 2pu, and 50MW 0.5pu. Let
Vb = 138 kV, then 138kV is 1 pu, 276kV 2pu, and 69kV 0.5pu.

1.7.3 Circuit Theory in a Nutshell

Kirchhoff’s Current Law (KCL) The algebraic sum of all the currents at a node is
zero.

Kirchhoff’s Voltage Law (KVL) The algebraic sum of all the voltage drops across
all elements around a loop is zero.
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Table 1.3 Circuit elements

Resistor

+ vR −
iR vR = RiR

Capacitor

+
vC−

iC iC = C
dvC

dt

Inductor

+ vL −
iL vL = L

diL
dt

The current and voltage relationship for all three circuit elements is given in
Table1.3. These three relationships along with KCL and KVL is circuit theory in a
nutshell.



Chapter 2
Modelling Power System Devices

Chapter Organisation

Introduction section gives the basic modelling philosophy of how individual device
models fit into an interconnected system.As is common in power system simulations,
all voltages and currents are transformed to appropriate dq-frames. A simplification
is achieved by writing device models in local dq-frames. This necessitates the trans-
formation between local and global dq-frames. The ideas and equations necessary
to perform phasor to dq-frame transformations are given in Sect. 2.1.1. A framework
for device models is given in Sect. 2.1.2. In this framework, the inputs to the model
are external device inputs and the stator currents, and the outputs are the states and
stator voltages. This framework enables the addition of new devices to the intercon-
nected systemwithout having to change the model equations for the existing devices.
Section2.1.3 summarises the framework for writing the network equations.

Section2.2 covers modelling of synchronous machines. Themodelling starts with
the transient analysis model and then develops an understanding of the various sim-
plified models used in the analysis and control design. Although a complete sub-
transient analysis model is later developed for synchronous machines the emphasis
is on developing models for transient analysis with a view to using them for control
design. The transient analysis of the electrical behaviour of synchronous machines
is fully captured by just one differential equation. To emphasise this fact most results
used for transient analysis have been so arranged that their relationship to that one
single equation is clear. A similar analysis is done for inductionmachines in Sect. 2.5.
A framework for network equations and how all the devices are connected together is
covered in detail in Sect. 2.7. Finally the material for the entire chapter is put together
by using simulations in Sect. 2.8.

As stated above the synchronous and induction machine models developed in this
chapter are comprehensive and cover situations from steady-state to sub-transient
analysis. It is ensured that various models used in the literature and presented in
many books have been included in this chapter. This is done in a very deliberate way

© Springer Nature Singapore Pte Ltd. 2018
H. R. Pota, The Essentials of Power System Dynamics and Control,
https://doi.org/10.1007/978-981-10-8914-5_2

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8914-5_2&domain=pdf


42 2 Modelling Power System Devices

to enhance student learning. After presenting the essential concepts several relation-
ships and equations are presented in an exercise format where all the conceptual steps
are given and the student must carry out the mechanical steps. In this way students
at all levels will be able to complete the exercises and be certain of the origins of all
the equations used in various models in use in transient analysis and control design.

2.1 Introduction

This section gives an overviewof themodelling process for power systemdevices and
their interface to the network. The network interface and simulation of interconnected
devices is done by neglecting the stator transients in electrical machines.

2.1.1 The dq0 Transformation

All themodels in this book are represented in a dq-frame. The transformation between
the phasor quantities and the dq quantities is achieved using the following matrix:

Ks = 2

3

⎡
⎢⎢⎣

cos(ωt + φr + φs ) cos(ωt + φr + φs − 2π
3 ) cos(ωt + φr + φs + 2π

3 )

− sin(ωt + φr + φs ) − sin(ωt + φr + φs − 2π
3 ) − sin(ωt + φr + φs + 2π

3 )
1
2

1
2

1
2

⎤
⎥⎥⎦ (2.1)

such that

Fdq0 = KsFabc, i.e.,

⎡
⎣
Fd

Fq
F0

⎤
⎦ = Ks

⎡
⎣
Fa
Fb

Fc

⎤
⎦ (2.2)

For balanced three-phase phasor quantities

Fabcs =
⎡
⎢⎣

Fm cos(ωt + φ f )

Fm cos(ωt + φ f − 2π
3 )

Fm cos(ωt + φ f + 2π
3 )

⎤
⎥⎦ (2.3)

the correspoding dq0 variables from (2.2) are:

Fd = Fm cos(φ f − (φs + φr )), Fq = Fm sin(φ f − (φs + φr )), and F0 = 0. (2.4)

The rotating frame in which φr = 0 is called the DQ0 frame (with upper case
letters), shown in Fig. 2.1, and for this case we have:

FD = Fm cos(φ f − φs) and FQ = Fm sin(φ f − φs). (2.5)
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Fig. 2.1 Rotating frames
DQ and dq

a
c

b
q

d

Q

D
φs

φr

Quantities in frames dq0 and DQ0 can be related by using Eqs. (2.4) and (2.5)

[
Fd

Fq

]
=

R(φr )︷ ︸︸ ︷[
cosφr sin φr

− sin φr cosφr

] [
FD

FQ

]
(2.6)

Often the above vector transformation in (2.6) is written as

Fd + jFq = (
FD + jFQ

)
e−jφr (2.7)

Note that in a balanced three-phase system, FD + jFQ is the phasor representation of
voltage Fa with respect to DQ0 and Fd + jFq is the phasor representation of voltage
Fa with respect to the dq0.We will consider only balanced three-phase systems. The
standard convention of positive increase in angle in the counter clockwise direction
is used here.

2.1.1.1 Exercise—Real and Reactive Power

Show that for a three-phase balanced system with

Vabcs =
⎡
⎣

Vm cos(ωt + φ f )

Vm cos(ωt + φ f − 2π
3 )

Vm cos(ωt + φ f + 2π
3 )

⎤
⎦ , Iabcs =

⎡
⎣

Im cos(ωt + φ f + φ)

Im cos(ωt + φ f − 2π
3 + φ)

Im cos(ωt + φ f + 2π
3 + φ)

⎤
⎦ (2.8)

S = 3

2

(
Vd + jVq

) (
Id − j Iq

) ; P = 3

2

(
Vd Id + Vq Iq

)
, and Q = 3

2

(
Vd Iq − Vq Id

)
(2.9)

We know that for the above three-phase system of voltages and currents P =
3
2Vm Im cosφ and Q = 3

2Vm Im sin φ, where the complex power S = P + jQ. Use
the dq0 expression in (2.7) to obtain Vd , Vq , Id , and Iq and then simplify to obtain
the required relationship.
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Equation (2.10)
ui

idsi
iqsi

xi Equation (2.11) vDi

vQi

Fig. 2.2 i th device block diagram

2.1.2 Device Models

All the devices are modelled in terms of currents and voltages referred to a dq-frame.
In synchronous machines the dq-frame is aligned with the field-axis of the rotor and
for other devices it is aligned with the bus voltage to which the device is connected.
Let the i th device be connected to bus i with voltage vdsi and vqsi , the current being
injected by the device into the network is denoted by idsi and iqsi . The voltages and
currents with lowercase subscripts d and q refer to the dq-frame attached to the
machine which can be different from the DQ-frame (uppercase D and Q) attached
to the infinite or the reference bus. Bus voltages and injected currents at the i th bus
in DQ-frame are referred as vDi , vQi , iDi , and iQi .

The device model consists of two sets of equations: (a) differential equations
representing the device dynamics and (b) algebraic constraints of the network satis-
fied by the voltages vDi , vQi , currents iDi , iQi , and R(φri ) the transformation matrix
between the reference DQ-frame and the local dq-frame.

The differential equations for the device connected to bus i , also called the i th
device, in terms of state xi (ni × 1 column vector), have the device inputs ui and also
the currents idsi and iqsi as inputs:

ẋi = fi (xi , idsi , iqsi , ui ) (2.10)

The algebraic constraint equations are written as:

[
vDi

vQi

]
= ZDQi

[
iDi

iQi

]
+ Dai xi and

([
idsi
iqsi

]
= R(φri )

[
iDi

iQi

])
(2.11)

To specify a device model then means to give differential Eqs. (2.10), matrices
ZDQi , Dai , and R(φri ).

Block diagram for the i th device block is given in Fig. 2.2. In a multi-device
system, currents iDi and iQi depend on the state of other devices so we can only
perform the integration step after obtaining idsi and iqsi using the network algebraic
constraints.

The multimachine simulation proceeds as follows. The initial load flow voltages
and currents are used to perform the first integration step for each device using (2.10).
From the current state xi , voltages vDi , vQi are computed using (2.11). These voltages
are then used to obtain currents iDi , iQi using the network algebraic constraints. The
transformation matrix R(φri ) is used to obtain idi , iqi and the next integration step
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is performed. If the device is connected to an infinite bus then vDi and vQi are fixed
and algebraic solution step is not needed.

2.1.3 Network Modelling

For transmission networks we neglect the transients which also implies neglecting
the stator transients of synchronous and induction machines. We can consider the
network in sinsusoidal steady-state and express all the currents and voltages as pha-
sors. For the phasor representation of network quantities, wewill take the infinite-bus
voltage as the reference, i.e., with phase zero. Voltage and current at bus-i can be
written as: �Vi = vDi + jvQi and �Ii = iDi + j iQi , upper case D and Q are used for
network bus quantities. We use the notation �Va and �Ia , to denote vector of phasor
voltages and currents at all the active buses (a), etc. A detailed description of network
modelling is covered in Sect. 2.7.

2.2 Synchronous Machine

Synchronous machine is a complex device to model. It is the genius of the power sys-
tem engineers that has led to a simple and accurate model of synchronous machines
[2–5]. Not only the models are simple enough to get an insight into power system
operation without resorting to computers, the model parameters can be measured
with simple experiments too. A right start to the analysis of synchronous machines
and a little labour in deriving important relationships can lead to a sound understand-
ing of synchronous machine and power system dynamics. Here we start from the
field flux linkage equation and then tie everything around it in stages. Students are
strongly advised to derive all the relationships developed in this chapter themselves.

ia

a

ib
b

ic

c

fd

d

q

δ
⇒

iq

q

idd

q-axis

d-axis

fd

Fig. 2.3 Synchronous machine d and q axis
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Let us consider a Pi pole synchronous machine with four windings as shown
in Fig. 2.3 with one rotating coil in the centre and three stationary coils. Dynamic
equation for the rotor flux in the synchronous generator (for motor operation, change
the sign of the stator current terms) connected to bus i ,

λ̇fdi = −rfdi ifdi + vfdi (2.12)

The torque and rotor speed are related as [6]:

Ji

(
2

Pi

)
ω̇ri = Tmi − Tei (2.13)

δ̇ri = ωri (2.14)

where Tmi is the applied mechanical torque in case of generators and the load torque
for motors,

Tei =
(
3

2

)(
Pi
2

) (
λdsi iqsi − λqsi idsi

)
. (2.15)

Most symbols have their usual meaning: v, i , and λ, r , L , denote voltage, current,
total flux linkages, resistance, and inductance, respectively.Mechanical variables are:
δ for angular position, ω for angular velocity, T for torque, J for angular moment
of inertia. Subscripts indicate the coil to which the quantity relates: d, q for d-axis
and q-axis respectively; s is used for stator and r or fd for rotor; with inductances
subscript l is for leakage and m is to indicate mutual inductance. For example, λdsi
represents flux in the d-axis coil of the stator of the i th generator.

Electrical Torque Tei The electrical torque, Tei is normally obtained using the
method [6, 7] outlined in Sect. 1.5. For the purposes of modelling the dynamics
of synchronous machines for control a simpler method can be used to calculate the
electrical torque. It is always true that the input power is equal to the output power
minus electrical andmechanical losses. A good approximation for most synchronous
generators is to neglect electrical and mechanical losses, thus it can be assumed that
the input and the output power are equal.

The electrical power equation in (2.9), when applied to the synchronous machine,
can be written as: 3

2

(
vdsi idsi + vqsi iqsi

)
and the mechanical power is Tei ωmi . This

gives (ignoring electrical and mechanical losses),

3

2

(
vdsi idsi + vqsi iqsi

) = Tei ωmi (2.16)

Equation (2.16) is exact when the stored magnetic energy or mutual inductances do
not change with the rotor position. In the case of equations that are written in the
dq-frame this means that the approximation (2.16) is good whenever the rotor speed
is close to the synchronous speed which is normally the case.
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The mechanical angular velocity ωmi and the electrical angular velocity ωri are
related by ωri = Pi

2 ωmi , giving,

Tei = Pei
ωmi

= Pi
2

Pei
ωri

=
(
3

2

) (
Pi
2

) (
λdsi iqsi − λqsi idsi

)
(2.17)

The last equality (2.17) is obtainedby substituting forvdsi andvqsi fromEqs. (2.18) and
(2.19) in (2.16). Please note that Eqs. (2.16) and (2.17) cannot be used to obtain Tei
when ωmi is zero, i.e., during the starting of the machine. In power systems, the
starting period of the synchronous machine is seldom of interest thus we can safely
use Eq. (2.17) for modelling the dynamics of the synchronous machine.

Interconnection constraints Algebraic equations or constraints, given below, for
the synchronous machine connected to bus i are used to obtain expressions for the
voltages and currents in the synchronous machine (ω is the angular velocity of the
synchronously rotating dq-frame and it is equal to ωri ),

vqsi = −rsi iqsi + ωλdsi (2.18)

vdsi = −rsi idsi − ωλqsi (2.19)

λqsi = −Llsi iqsi + Lmqi

(−iqsi
)

(2.20)

λdsi = −Llsi idsi + Lmdi

(−idsi + ifdi
)

(2.21)

λfdi = Llfdi ifdi + Lmdi

(−idsi + ifdi
)

(2.22)

Equations (2.18)–(2.22) are completely derived later in the chapter.
The model of the synchronous machine is given by the differential Eqs. (2.12)–

(2.14) and algebraic Eqs. (2.18) and (2.19) with λdsi , λqsi , and ifdi written in terms of
idsi and iqsi . Equations (2.20)–(2.22) are solved for λdsi , λqsi , and ifdi in terms of idsi
and iqsi . The followingmaterial till Sect. 2.2.1 gives the details of thesemanipulations.
On first reading these details can be skipped but please be sure to derive all the
equations to get familiar with the model.

Direct and quadrature axis inductances A simplification in writing the model
equations can be obtained by defining the so called direct and quadrature axis induc-
tances. These inductances also have a physical interpretation and they can be mea-
sured experimentally. Inductance parameters used in Eqs. (2.18)–(2.22) are hard to
measure and it is harder to obtain their values analytically. The introduction of direct
and quadrature axis inductances is one of the main reasons for the accuracy achieved
in modelling synchronous machines.

Define

Ldi = Llsi + Lmdi , Lqi = Llsi + Lmqi , L fdi = Llfdi + Lmdi , (2.23)

From (2.22), we get

ifdi = 1

L fdi

(
λfdi + Lmdi idsi

)
(2.24)
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with this the rotor flux dynamic Eq. (2.12) and the mechanical Eqs. (2.13) and (2.14)
can be written as,

λ̇fdi = − rfdi
L fdi

λfdi − rfdi Lmdi

L fdi
idsi + vfdi (2.25)

Ji

(
2

Pi

)
ω̇ri = TLi −

(
3

2

)(
Pi
2

) ((
Lqi − L ′

di

)
iqsi idsi + Lmdi

L fdi
iqsi λfdi

)
(2.26)

δ̇ri = ωri (2.27)

and the algebraic constraints (2.18) and (2.19) between the stator voltages and cur-
rents can be written as:

vqsi = −rsi iqsi − ωL ′
di idsi + ωLmdi

L fdi
λfdi (2.28)

vdsi = −rsi idsi + ωL ′
qi iqsi (2.29)

Define:

L ′
di = Llfdi Lmdi

L fdi
+ Llsi = Ldi − L2

mdi

L fdi
, L ′

qi = Llsi + Lmqi , (2.30)

E ′
qi = ωLmdi

L fdi
λfdi , Efdi = ωLmdi

rfdi
vfdi , T ′

d0i = L fdi

rfdi
(2.31)

Substituting Ldi , L
′
di
, E ′

qi , Efdi , and T ′
d0i from (2.30) and (2.31) into (2.25) we get

Ė ′
qi = 1

T ′
d0i

(−E ′
qi − ω

(
Ldi − L ′

di

)
idsi + Efdi

)
(2.32)

For synchronousmachine, the d-axis of the rotating frame is alignedwith the rotor
flux axis and δ is the angle between the rotating q-axis and the phase of the a-axis
quantity [8, p. 96], i.e., φri = δi − π

2 , and φsi = 0. Substituting this in (2.6), we get

[
vdsi
vqsi

]
=

[
sin δi − cos δi
cos δi sin δi

] [
vDi

vQi

]
(2.33)

The above matrix relationship can also be expressed as:

vdsi + jvqsi = (
vDi + jvQi

)
ej( π

2 −δi) (2.34)

With the above definitions in (2.30), Eqs. (2.28)–(2.29) can be written as:

[
vdsi
vqsi

]
=

[ −rsi ωL ′
qi−ωL ′

di
−rsi

] [
idsi
iqsi

]
+

[
0
E ′
qi

]
(2.35)
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The above equation can be written in DQO frame as (R(φri ) is the matrix in
Eq. (2.33)):

[
vDi

vQi

]
= R−1(φri )

[ −rsi ωL ′
qi−ωL ′

di
−rsi

]
R(φri )

[
iDi

iQi

]
+ R−1(φri )

[
0

ωLmdi
L fdi

]
λfdi (2.36)

2.2.1 The Model

The model consists of the three differential Eqs. (2.25)–(2.27), with

xi =
⎡
⎣

λfdi
ωri
δri

⎤
⎦ , ui = vfdi , R(φri ) =

[
sin δi − cos δi
cos δi sin δi

]
(2.37)

and

ZDQi = R−1(φri )

[ −rsi ωL ′
qi−ωL ′

di
−rsi

]
R(φri ), Dai = R−1(φri )

[
0 0 0

ωLmdi
L fdi

0 0

]
(2.38)

2.2.2 Equations in Per Unit System

The per unit system for synchronous machine is set up by first choosing the base
power Pb and base voltage Vb, then the current base Ib = Pb

(3/2)Vb
, the flux base λb =

Vb
ωb
, and torque base Tb = Pb

(2/P)ωb
, where ωb is normally the supply frequency.

For algebraic equations if all the quantities are changed to their per unit values,
everything will balance out but extra care needs to be taken when time derivatives

are involved. For example in (2.25), λ̇fdi has the unit of voltage but
λ̇fdi
Vb

is not the per

unit value, ˙̄λfdi , instead
λ̇fdi

Vb
= 1

ωb

˙̄λfdi ,

where bar denotes per unit quantities. The rotor flux Eq. (2.25) in per unit system is:

1

ωb

˙̄λfdi = − r̄fdi
L̄ fdi

λ̄fdi − r̄fdi L̄mdi

L̄ fdi

īdsi + v̄fdi (2.39)

Equation (2.26) is converted to the per unit system by dividing on both the sides by
Tb
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Ji
(

2
Pi

)
ωb

ω̇ri
ωb

Pb
(2/Pi )ωb

=
TLi − (

3
2

) ( Pi
2

) ((
Lqi − L ′

di

)
iqsi idsi + Lmdi

L fdi
iqsi λfdi

)

Pb
(2/P)ωb

˙̄ωri = 1

2Hi

(
T̄Li −

((
L̄qi − L̄ ′

di

)
īqsi īdsi + L̄mdi

L̄ fdi

īqsi λ̄fdi

))
(2.40)

where Hi = (
1
2

)
( 2
Pi

)2
Jiω2

b
Pb

. The angle δ is normally expressed in radians and not in a
per unit system. For δri in radians and ωri in per unit, Eq. (2.27) is written as:

δ̇ri = ωb(ω̄ri − ω̄0
ri ). (2.41)

2.2.3 Steady-State Conditions

For any simulation of the synchronous machine dynamics, first the equilibrium value
of the variables, angle φ0

si , and voltages v0
Di
, v0

Qi
are obtained from the load flow

analysis and v0
dsi
, v0

qsi are written in terms of v0
Di
, v0

Qi
using (2.33). Next, Eqs. (2.25),

(2.26), (2.28), and (2.29) can be solved at steady-state (with λ̇fdi = 0, ω̇ri = 0), to
obtain δ0i , λ

0
fdi , i

0
dsi
, i0qsi , and ω0

ri = 2π50 rad s−1. These values provide all the initial
conditions that are needed to obtain a numerical solution of the dynamic equations.

2.2.4 Single Machine Infinite Bus (SMIB)

A good understanding of the synchronous machine principles can be had by consid-
ering its operationwhen connected to an infinite bus. Since there is only onemachine,
the index subscript i is dropped in the SMIB analysis equations here.

Infinite bus is represented by a fixed voltage magnitue V∞ and φs = 0, then
according to (2.4),

vD = V∞, and vQ = 0.

The voltages vds and vqs are then obtained from the transformation (2.33) and given
as:

vds = V∞ sin δ and vqs = V∞ cos δ.

In the SMIB case the network equations do not need to be solved, since vds and vqs
are fixed, Eq. (2.35) can be solved only once for currents ids and iqs and substituted
in the differential Eqs. (2.25)–(2.27) and these equations can then be integrated.
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2.2.4.1 Steady-State Equivalent When Ld = Lq

During the steady-state operation, the rate of change of rotor flux in (2.12) is zero
and this gives the steady-state field current as,

i0fd = vfd

rfd

Steady-state voltages and currents in (2.18)–(2.22) can be written as follows for
Ld = Lq ,

v0
ds + jv0

qs = −rs
(
i0ds + j i0qs

) + ωLd
(
i0qs − j i0ds

) + j
ωLmdvfd

rfd

= −rs
(
i0ds + j i0qs

) − jωLd
(
i0ds + j i0qs

) + j
ωLmdvfd

rfd

i0ds + j i0qs = j ωLmdvfd
rfd

− (
v0
ds + jv0

qs

)

rs + jωLd

When rs = 0 and define E0
fd = ωLmdvfd

rfd

v0
ds = V∞ sin δ0, v0

qs = V∞ cos δ0, i0ds = E0
fd

ωLd
− v0

qs

ωLd
, i0qs = v0

ds

ωLd

The real power output of the synchronous machine is (rs = 0):

Po = 3

2
�((

v0
ds + jv0

qs

) (
i0ds − j i0qs

))

= 3

2

E0
fdV∞ sin δ0

ωLd

Qo = 3

2
�((

v0
ds + jv0

qs

) (
i0ds − j i0qs

))

= 3

2

E0
fdV∞ cos δ0 − V 2∞

ωLd

2.2.4.2 Transient Analysis—Constant Flux Model

The development here has neglected stator transients and to be consistent with that
it can be assumed that whenever there is a change in the steady-state operation, e.g.,
a fault or change in terminal voltage or a change in input power to the synchronous
machine, stator currents will change their values. Transient analysis concerns itself
about the changes in rotor flux due to the change in stator currents. A proper way to
do the transient analysis is to solve the differential Eqs. (2.25)–(2.27) and that is what
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Fig. 2.4 Voltage behind
transient inductance

−
jEq

+

rs

ids + jiqs

jωLd

+

−

vds + jvqs

is normally done. For many synchronous machines, the time constant
Llfdi +Lmdi

rfdi
in

differential Eq. (2.25) is of the order a few seconds thus it is possible to assume that
λfdi is contstant for the first few milliseconds of the transient period. This suggests
that we can consider λfdi constant at its pre-transient value. This means that we need
to solve only the differential equations that are for the mechanical part with constant
stator currents and voltages.

As seen above, currents ids and iqs are easily calculated from an equivalent circuit
with a voltage source jEfd, behind impdedance rs + jωLd , and connected to the
infinite bus. As soon as there is a change in stator currents Efd changes thus the
simple model used above cannot be used for transient analysis. From observing the
rotor flux equation it can be seen that the quantity which does not change for intial
transient period is the quantity E′

q and thus Eq. (2.35) can be rearranged, in a similar
manner to what was done above for the steady-state analysis, to obtain an equivalent
“voltage behind a reactance” model.

A simplification is achieved when L ′
d = L ′

q . The currents ids and iqs can be
obtained by solving (2.35),

vds + jvqs = −rs
(
ids + j iqs

) + ωL ′
d

(
iqs − j ids

) + jE ′
q

= −rs
(
ids + j iqs

) − jωL ′
d

(
ids + j iqs

) + jE ′
q

ids + j iqs = jE ′
q − (

vds + jvqs
)

rs + jωL ′
d

(2.42)

The equivalent circuit in Fig. 2.4 is a representation of the Eq. (2.42) above.
The real power output of the synchronous machine is (rs = 0):

Po = 3

2
�((

vds + jvqs
) (
ids − j iqs

))

= 3

2

E ′
qV∞ sin δ

ωL ′
d

For the initial fewmilliseconds of the transient period the above value of output power
can be used along with the swing Eqs. (2.26) and (2.27) to solve for the mechanical
oscillations in the rotor angular position. This is a great simplification over having
to use the rotor flux differential equation in addition to the swing equations. If the
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simulation duration extends beyond a few tens of milliseconds then the full model
with three differential equations should be used.

Remark Itmust be noted that the reactance L ′
d is not the reactance of the synchronous

machine during the transient period in comparison with the reactance Ld which is
known as the synchronous reactance and used for steady-state analysis. The transient
reactance L ′

d is a reactance behind a different “voltage” source and not Efd thus
they two should not be compared in that way. The best way to understand transient
reactance L ′

d is to realise that it is that reactance which enables us to write a simple
model for the first few milliseconds of transient analysis.

Please note that the steady-state analysis can be performed with or without the
constant flux assumptions. Since the use of the constant flux model is quite common
for transient analysis and control design, it is common to obtain steady-state con-
ditions using the constant flux model which requires the calculation of E ′

qi , a step
more than the calculation of Efd which is done directly from the knowledge of the
field voltage vfd.

If there is no reason to do the transient analysis then transformation to dq-frame
is not needed. A simple manipulation shows that for balanced steady-state trans-
formation each phase is uncoupled and can be analysed as a voltage source behind
“synchronous” reactance.

The following two exercises help to give a physical meaning to the concept of
direct-axis and quadrature-axis transient inductance [9, vol. III].

2.2.5 Direct-Axis Transient Inductance

Let the relative position of the synchronous machines coils be as shown in Fig. 2.5 at
t = 0 s, and let the currents in the stator coils in the synchronous machine in Fig. 2.5
be switched on at t = 0 s:

⎡
⎣
ia
ib
ic

⎤
⎦ =

⎡
⎢⎣

Im cosωt
Im cos(ωt + 2π

3 )

Im cos(ωt − 2π
3 )

⎤
⎥⎦A (2.43)

The field winding is short-circuited. Assume zero resistance for all the stator
windings. As shown in Fig. 2.5 the rotating frame is aligned with the field-axis and
transformation in (2.1) is used. This will result in iqs = 0 and ids = Im . Note that
one can transform between the phasor quantities abc and the quantities dq0 using
the transformation (2.1) with φs = 0 and φr = 0. In the following the ratio of phasor
quantities which can be obtained by deriving the result in dq variables and then
transforming them to phasor quantities are obtained.

1. At the instant the currents are switched on, the flux in the field coil is zero and it
should remain zero for a very small time after that. Show that during that short
time interval when λfd is zero:
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Fig. 2.5 Synchronous machine and direct-axis inductance

�λa

−�ia
= L ′

d = LlfdLmd

L fd
+ Lls (use (2.21) and (2.22)).

2. A long time after the currents are switched-on, the field current will go to zero.
Show that at steady-state:

�λa

−�ia
= Ld = Lls + Lmd .

Three-phase short-circuit There are many different ways to explain the physical
meaning behind transient reactance and one of them is a description of what happens
during a three-phase short-circuit. Let us consider a synchronous generator running
at no-load and at synchronous speed. A three-phase short-circuit occurs at the syn-
chronousmachine terminals, i.e., vas = vbs = vcs = 0 and thus vds = vqs = 0. Show
that when rs = 0,

ids = E ′
q

ωL ′
d

and iqs = 0 (use (2.18)-(2.22)).

2.2.6 Quadrature-Axis Transient Inductance

Repeat the analysis for the direct-axis transient inductance above, with the one where
the relative position of the synchronous machine coils shown in Fig. 2.6 at t = 0 s
(φs = 0 and φr = −90◦), and prove that for both the initial condition and the steady-
state the ratio is: �λa

−�ia
= L ′

q = Lq = Lls + Lmq .

The above analysis shows that the “inductance” of stator coils is L ′
d and L ′

q
during transient period for specific relative position of the rotor and stator coils. This
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Fig. 2.6 Synchronous
machine and quadrature-axis
inductance
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observation is also used to experimentally obtain the value of transient reactances.
The rotor is physically locked to these positions and then measurements are made to
obtain transient reactances.

2.2.7 Steady-State Output Power

The steady-state voltages and currents in (2.18)–(2.22) can be used to derive the
following power-angle relationship for a salient pole machine (assume rs = 0 and
E0
fd = ωLmdi0fd):

Po = 3

2

E0
fdV∞
ωLd

sin δ0 + 3

2
V 2

∞
Ld − Lq

2ωLd Lq
sin 2δ0 (2.44)

We can assume that VD = V∞ and VQ = 0, this gives v0
ds = V∞ sin δ0 and v0

qs =
V∞ cos δ0. The following steps are useful in deriving the above relationship. Write

v0
ds + jv0

qs = −jωLd
(
i0ds + j i0qs

) + ω
(
Lq − Ld

)
i0qs + jωLmi

0
fd

Equating the real and imaginary parts from above,

v0
ds = ωLqi

0
qs and v0

qs = −ωLdi
0
ds + ωLmi

0
fd

� ((
v0
ds + jv0

qs

) (
i0ds − j i0qs

)) = −ωi0qsi
0
ds

(
Ld − Lq

) + ωLmi
0
fdi

0
qs

Po = 3

2
� ((

v0
ds + jv0

qs

) (
i0ds − j i0qs

))
.
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2.2.8 Voltage Behind Transient Inductance

An analysis similar to the one in Sect. 2.2.4 and Eq. (2.35) can be used to derive the
following power-angle relationship for a salient pole machine (assume rs = 0):

Po = 3

2

E ′
qV∞

ωL ′
d

sin δ + 3

2
V 2

∞
L ′
d − L ′

q

2ωL ′
d L

′
q

sin 2δ (2.45)

Note that the above formula for output power is valid both for transient and steady-
state conditions, provided the appropriate value of E ′

q is used.

2.2.9 Equivalence of the Two Models

It is easy to see that the two Eqs. (2.44) and (2.45) for steady-state output power
give the same expression for the round rotor machines. For the definitions used in
Sect. 2.2 verify the following:

L ′
d = Ld − L2

md

L fd

E ′
q = E0

fd − ω
(
Ld − L ′

d

)
ids (use (2.24) and the definition of E0

fd)

At steady-state verify that for round rotor machines:

E0
fd

Ld
= E ′

q

L ′
d

− ω
(
Ld − L ′

d

)

ωLd L ′
d

v0
qs (use i0ds in the exercise in Sect. 2.2.7)

3

2

E0
fdV∞ sin δ0

ωLd
= 3

2

E ′
qV∞

ωL ′
d

sin δ0 + 3

2
V 2

∞
L ′
d − L ′

q

2ωL ′
d L

′
q

sin 2δ0. (L ′
q = Lq = Ld)

2.2.10 Power Transfer Curves

A synchronous generator is directly connected to an infinite bus. The synchronous
machine parameters and voltages are: Pi = 2; V∞ = Vm = (

√
1/3)26 kV; J =

0.0658 × 106 kg m2; rs = 0.00234�; ωs = 2π50 rad s−1; Lls = 4.6276 × 10−4 H;
Ld = 0.0046H; Lq = 0.0046H; Lmd = 0.0042H; rfd = 0.00075�; and Llfd =
3.6446 × 10−4 H.

1. Show that when Pm = 200 × 106 W and vfd = 11.3331V, the steady-state
values are (assuming rs = 0�): E0

fd = 19.820 kV, δ0 = 40.7659◦, λ0
fd =

44.3806Wb, and E ′
q = 12.823 kV.
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2. Show that the electrical power transfer curves are given by the following equa-
tions (assuming rs = 0�):

(a) Po = 306.29 sin δ MW: during steady-state conditions (use the analysis in
Sect. 2.2.4).

(b) Po = 1151.8 sin δMW: during transient conditions (use the analysis in
Sect. 2.2.4, assuming L ′

d = L ′
q ).

(c) Po = 1151.8 sin δ − 558.16 sin 2δMW: during transient conditions (use the
analysis in the exercise in Sect. 2.2.8, with L ′

q = Lq ).

Plot the above three power curves. What conclusions can you draw from them?

2.2.11 Single-Machine-Infinite-Bus (SMIB) Simulation

The synchronous machine in the exercise in Sect. 2.2.10 is connected to an infinite
bus.

1. Obtain steady-state values of the state variables for the differential Eqs. (2.25)–
(2.27) when Pm = 200 × 106 W and vfd = 11.3331V.

2. Simulate this SMIB system for 1 s, starting from the initial conditions obtained
in the step above. Equation (2.27) is normally rewritten by defining a new state
variable δ = ωt − δr . At each integration step, currents iD and iQ are calculated
using (2.36), where vD = Vm , vQ = 0,

R(φr ) =
[
sin δ − cos δ
cos δ sin δ

]
, and

[
ids
iqs

]
= R(φr )

[
iD
iQ

]

3. Change the input power to Pm = 250 × 106 W at 1 s and simulate for 10 s. Note
that the initial conditions for this step are the final conditions in the above step.

4. Change the input power back to Pm = 200 × 106 W at 10s and simulate for
another 10 s.

5. Show the simulation results using the plots for speed, angle, electrical torque,
dq and phasor currents, flux linkages, real and reactive power.

The simulation plots are shown in Figs. 2.7, 2.8, 2.9, 2.10, 2.11 and 2.12. The
plot is Fig. 2.12 is of special interest. Two output power versus delta plots for the
constant voltage behind transient reactance model, with the sin 2δ term, discussed in
the exercise in Sect. 2.2.10 are plotted along with the simulated δ. One plot is for the
equilibrium point with Pm = 200MW and the other is for Pm = 300MW. It can be
seen that initially there is a good agreement between the simulated and constant flux
model but as the transient dies out they separate. The plot joining both the equilibrim
point is the steady-state power output versus delta curve.
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2.2.12 Steady-State δ0 and i0fd

A synchronous generator is connected to an infinite bus and supplies power P0 at a
power factor PF. Let

φ =
{

− cos−1(PF) lagging PF

cos−1(PF) leading PF

then P0 = (3/2)V∞ Im cosφ.

1. For a round rotor, (Lq = Ld ), the steady-state δ0 can be calculated using the
following relationship:

tan δ0 = rs Im sin φ + ωLd Im cosφ

V∞ + rs Im cosφ − ωLd Im sin φ
.

From Sect. 2.2.4 we can write the following

v0
ds = V∞ sin δ and v0

qs = V∞ cos δ
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and also [
i0ds

i0qs

]
=

[
sin δ − cos δ
cos δ sin δ

] [
Im cosφ
Im sin φ

]

Now use the analysis in Sect. 2.2.4 to write

v0
ds + jv0

qs = −rs
(
i0ds + j i0qs

) + ωLd
(
i0qs − j i0ds

) + jωLmdi
0
fd

in terms of the above given expressions for v0
ds , v

0
qs , i

0
ds , i

0
qs . Equate the real parts

on both side of the above equation, collect the co-efficients of sin δ0 on one side
and cos δ0 on the other side and then take their ratio.

2. For a salient pole machine, (Lq 	= Ld ), the steady-state δ0 can be calculated
using the following relationship:

tan δ0 = rs Im sin φ + ωLq Im cosφ

V∞ + rs Im cosφ − ωLq Im sin φ
.

Use the same process as in the first part of this exercise.
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3. Use (2.18) and (2.21) to show that:

i0fd = v0
qs + rsi0qs + ωLdi0ds

ωLmd
.

Once δ0 is known, v0
qs , i

0
ds , and i

0
qs can be written in terms of V∞, δ0, and φ.

2.2.13 Equal-Area Criterion

Equal-area criterion is a good way to understand the concept of first swing transient
stability [9, vol. I & III]. It is best demonstrated with a SMIB system for a three-phase
to ground fault on the synchronous machine terminals. Figure2.13 is a graphical
application of the criterion. The details are discussed next.

Let δ0 be the steady-state angle of the synchronous machine, and a three-phase to
ground fault occurs at the machine terminals. The electrical output power reduces to
zero but the input mechanical power P0

m is unchanged. After a short time, when the
machine angle is δcl, the fault is cleared. The acceleration energy applied to the rotor



2.2 Synchronous Machine 61

0 5 10 15 20 25 30 35 40
−2

0

2
x 104 I

a

Time (s)

A

0 5 10 15 20 25 30 35 40
−2

0

2
x 104 I

b

Time (s)

A

0 5 10 15 20 25 30 35 40
−2

0

2
x 104 I

c

Time (s)

A

Fig. 2.10 ia , ib, and ic

is the area in the rectangular box in Fig. 2.13. After the fault is cleared the output
power is given by the power curve shown in Fig. 2.13 and the input mechanical power
continues to be P0

m . The deceleration energy is thus given by the shaded area between
the output power curve and the constant P0

m line. If the acceleration energy is less than
the deceleration energy then the generator has the first swing transient stability for
the clearing angle δcl. The clearing angle for which the accelerating and decelerating
energy are equal is called the critical clearing angle δcr and the corresponding time
is called the critical clearing time tcr.

1. Using the three different power output curves in the exercise in Sect. 2.2.10,
calculate the critical clearing angle and time. Note that δ0 using the steady-state
and transient (with sin 2δ term) power output expressions give the same δ0 but
for the transient power output expression, without the sin 2δ term, a fictitious
initial δ needs to be first calculated to match the steady-state input power.

2. Obtain the critical clearing angle and time using the numerical simulation in the
exercise in Sect. 2.2.11. How does this compare with the critical values obtained
with the three power output curves using the equal-area criterion? Which one is
the closest to the tcr obtained by numerical simulation?
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2.2.14 Step Change in vfd Simulation

Perform the steady-state analysis and the simulation for 1 s as in the exercise in
Sect. 2.2.11. At 1 s change the field voltage vfd to 11.4V and simulate for 10 s. Plot
ifd, output power, and other variables.

2.2.15 Synchronous Machine V-Curves

Consider a SMIB system. For a fixed input power, the plot of the steady-state field-
current versus the magnitude of the armature current is a V-curve such as shown in
Fig. 2.14. Using Eqs. (2.18)–(2.21), show that the steady-state currents are:
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δ

Po

P 0
m

δ0 δcl δm

i0ds = Lmd

Ld
i0fd − v0

ds

ωLd

i0qs = v0
qs

ωLq

For SMIB v0
ds = V∞ sin δ0, v0

qs = V∞ cos δ0, ia = i0ds + j i0qs , va = v0
ds + jv0

qs , and
PF = cos(∠va − ∠ia).

Plot themagnitude of the steady-state armature current and PF, as the field-current
varies, for the synchronous machine data given in the exercise in Sect. 2.2.10. For
each chosen value of i0fd the expression in the exercise in Sect. 2.2.7 can be used to
obtain δ0 and then use the above expressions to obtain the plots.
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The ability of synchronous machine to deliver output electrical power at different
power factors is the most important reason for it being the chosen machine as elec-
trical generator. On the left side of the minimum point in the PF plot in Fig. 2.14, it
supplies power to leading PF loads and on the right side to the lagging PF loads.

2.3 Phasor to dq-Frame Transformation

A detailed derivation of the synchronous machine model from the physical three-
phase equations to the dq-frame is given below. The equations in the dq-frame are
time-invariant and they are in a much simpler form than the equations in the three-
phase variables. As shown in Part II of this derivation, the key simplification is
achieved because of the sinusoidal form of the self and mutual inductance terms of
the field and the armature coils.
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2.3.1 Phasor to dq-Frame—Part I

The phasor and dq-frame variables are related by

Fdq0 = KsFabc and Fabc = K−1
s Fdq0

where abc, dq0 subscripts stand for phasor and dq-frame variables as in (2.2) and
Ks , for transformation from abc to arbitrary dq-frame rotating at angular velocity ω,
is given in (2.1) and reproduced here (θ̇ = ω),

Ks = 2

3

⎡
⎢⎣

cos(θ) cos(θ − 2π
3 ) cos(θ + 2π

3 )

− sin(θ) − sin(θ − 2π
3 ) − sin(θ + 2π

3 )
1
2

1
2

1
2

⎤
⎥⎦

The schematic of synchronous machine is shown in Figs. 2.15 and 2.16. Here we
consider synchronous generator equations, to get synchronous motor equations the
directions of the currents need to be changed. For the synchronous machine with a
field winding and three stator windings, the voltage equations can be written as:

vabcs = −Rsiabcs + d

dt
λabcs

K−1
s vdq0s = −RsK

−1
s idq0s + d

dt
K−1

s λdq0

vdq0s = −Ks RsK
−1
s idq0s + Ks

d

dt
K−1

s λdq0, and

vfd = rfdifd + λ̇fd
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where Rs = diag [rs, rs, rs].

1. Show that

K−1
s = 3

2
K̄ T

s

where K̄ T
s is the transpose of Ks but the third column is

[
1 1 1

]T
instead of[

1
2

1
2

1
2

]T
.

2. Show that
−Ks RsK

−1
s = −Rs .

3. Show that

Ks
d

dt
K−1

s = ω

⎡
⎣
0 −1 0
1 0 0
0 0 0

⎤
⎦

4. Show that the transformed equation, Ksvabcs = −Ks RsK−1
s idq0 + Ks

d
dt

K−1
s λdq0, gives,

vds = −rsids − ωλqs + λ̇ds

vqs = −rsiqs + ωλds K
−1
s + λ̇qs

v0s = −rsi0s + λ̇0s

2.3.2 Phasor to dq-Frame—Part II

The flux linkages for a synchronous machine with a field winding and three stator
windings are written as:

[
λabcs

λfd

]
=

[
Lss Lsr

LT
sr L fd

] [−iabcs
ifd

]

K−1
s λdq0s = −Lss K

−1
s idq0s + Lsr ifd

λdq0s = −KsLss K
−1
s idq0s + KsLsr ifd

λfd = −LT
sr K

−1
s idq0s + L fdifd

where

Lss =
⎡
⎣

Lls + L A + LB cos 2θr − 1
2 L A + LB cos 2

(
θr − π

3

) − 1
2 L A + LB cos 2

(
θr + π

3

)
− 1

2 L A + LB cos 2
(
θr − π

3

)
Lls + L A + LB cos 2

(
θr − 2π

3

) − 1
2 L A + LB cos 2 (θr + π)

− 1
2 L A + LB cos 2

(
θr + π

3

) − 1
2 L A + LB cos 2 (θr + π) Lls + L A + LB cos 2

(
θr + 2π

3

)

⎤
⎦ ,

Lmd = 3
2 (L A + LB), Lmq = 3

2 (L A − LB), Ld = Lls + Lmd , Lq = Lls + Lmq ,
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Lsr =
⎡
⎣

Lmd cos θr
Lmd cos

(
θr − 2π

3

)
Lmd cos

(
θr + 2π

3

)

⎤
⎦

When θ = θr = ∫ t
0 ωr dt + θr (0), where ωr is the rotor angular velocity.

1. Show that

KsLss K
−1
s =

⎡
⎣
Ld 0 0
0 Lq 0
0 0 Lls

⎤
⎦

2. Show that

KsLsr =
⎡
⎣
Lmd

0
0

⎤
⎦

3. Show that
LT
sr K

−1
s = [

Lmd 0 0
]

4. Put all the above bits and pieces from Parts I and II together and form the
Eqs. (2.18)–(2.22)and (2.25) when λ̇ds = 0 and λ̇qs = 0.

5. Let the steady-state voltages and currents for the synchronous machine shown
in Fig. 2.16 be given by:

v0
abcs =

⎡
⎣

Vm cos(ωt)
Vm cos(ωt − 2π

3 )

Vm cos(ωt + 2π
3 )

⎤
⎦ and i0abcs =

⎡
⎣

Im cos(ωt + φ)

Im cos(ωt + φ − 2π
3 )

Im cos(ωt + φ + 2π
3 )

⎤
⎦ .

For a round rotor machine, the phasor relationship can be written as:

Vm cos(ωt) = −rs Im cos(ωt + φ) − ωLd Imcos(
π

2
+ ωt + φ) + ωLmd i

0
fd cos(ωt + δ0)

Vm∠0◦ = −rs Im∠φ − jωLd Im∠φ + E0
fd∠δ0,

where the rotor angular position θr = ωt + φ0
r , δ0 = π

2 + φ0
r , E

0
fd = ωLmdi0fd,

and ωLd is known as the synchronous reactance (Fig. 2.17).

Fig. 2.17 Synchronous
machine steady-state model

−
E0

fd∠δ0
+

rs

Im∠φ

jωLd

+

−
Vm∠0◦



68 2 Modelling Power System Devices

Fig. 2.18 Single machine
infinite bus—Load hlow

1

V1e
jδ1

2

V2e
jδ2

Zejθ

I12

G1 ∞

Fig. 2.19 SMIB via LT

G1

LT ∞
1 0

ExerciseA synchronousmachine, shown in the schematic in Fig. 2.18, is transferring
1 pu of real power to the mains. The mains voltage Vm = 1 pu, E0

fd = 1 pu, rs =
0.01 pu, and ωLd = 0.5 pu. Calculate δ0 and the reactive power transferred from the
synchronous machine to the mains.

2.3.3 Transmission Line LT

The analysis above has been done for a synchronous machine directly connected to
the infinite-bus. Often the machine is connected via transmission line to the infinite-
bus. In this section we see the necessary changes to accommodate a transmission
line as seen in the single-line-diagram in Fig. 2.19.

1. A synchronous machine is directly connected to an infinite-bus with voltage V∞.
The voltage Eq. (2.35) can be written as:

[
V∞ sin δ
V∞ cos δ

]
=

[ −rs ωL ′
q

−ωL ′
d −rs

] [
ids
iqs

]
+

[
0
E ′
q

]
(2.46)

2. A synchronous machine, at bus 1, is connected to an infinite-bus, (∞ bus), with
voltage V∞, via a transmission line with inductance LT and zero resistance, as
shown in Fig. 2.19. The voltage Eq. (2.35) can be written as:

[
V∞ sin δ1
V∞ cos δ1

]
=

[ −rs1 ω(L ′
q1 + LT )

−ω(L ′
d1

+ LT ) −rs1

] [
ids1
iqs1

]
+

[
0
E ′
q1

]
. (2.47)

Note that
(vD1 + jvQ1) − V∞ = jωLT (iD1 + j iQ1).

The above relationship can be obtained using:

vDQ01 = Ks
d

dt
K−1

s Ks LTT K
−1
s iDQ01 + vDQ00
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where LTT is the transmission line inductance matrix):

LTT =
⎡
⎣
LT S LTM LTM

LTM LT S LTM

LTM LTM LT S

⎤
⎦

and LT = LT S − LTM . Write the above equation as a matrix equation

[
vD1

vQ1

]
=

[
0 −ωLT

ωLT 0

] [
iD1

iQ1

]
+

[
V∞
0

]

and then transform DQ-variables to dq-variables using the R(φr ) in the exercise
in Sect. 2.2.11. Then eliminate vds1 and vqs1 from the transformed version of the
above equation and (2.35) to obtain the required relationship.

This exercise shows that for a synchronous machine connected to an infinite-bus via
a transmission line, all the derived expressions for SMIB can be used for this case
by replacing L ′

di
with L ′

di
+ LT and L ′

qi with L ′
qi + LT .

2.3.4 Terminal Voltage VT

A synchronous machine, at bus 1, is connected to an infinite-bus, (∞ bus), with
voltage V∞, as shown in Fig. 2.19, via a transmission line with inductance LT and
zero resistance. For rs1 = 0, show that

vds1 = L ′
q1vd0

LT + L ′
q1

and vqs1 = L ′
d1

vq0

LT + L ′
d1

+ LT E ′
q1

LT + L ′
d1

.

Note that (LTT is the transmission line inductance matrix):

vqd01 = Ks
d

dt
K−1

s Ks LTT K
−1
s idq01 + vdq00

[
vds1
vqs1

]
=

[
0 −ωLT

ωLT 0

] [
ids1
iqs1

]
+

[
vd0
vq0

]

Eliminate ids1 and iqs1 from the above equation and (2.35) (with rs1 = 0) to obtain
the required result. The terminal voltage is:

VT1 =
√

v2
ds1

+ v2
qs1
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2.4 Operational Impedance

A synchronous machine model that captures its entire dynamics is very complex
and not much use in getting insights into the synchronous machine dynamics. This
means that modelling techniques must be chosen where the complexity level of the
model can be chosen depending on the application. A modelling technique that is
very popular with engineering applications is to parameterise the models using time-
constants. For a dynamic model each time-constant indicates the duration for which
the transient associated with that time-constant will be a part of the solution. Once
the time interval for the analysis is known, approximate models can be derived by
neglecting the dynamics associated with smaller time-constants.

This process of parameterising the model using time-constants is greatly facili-
tated by using Laplace domain representation of dynamic equations. Strictly speak-
ing Laplace representation can be used only for linear systems but nonlinear blocks
can be inserted judiciously in Laplace representation based block diagram repre-
sentation. This modelling technique is used by almost all commercial power sys-
tem analysis software. Here we look at that technique in enough details such that
the parameterisation used by most power system analysis packages is covered. The
Laplace domain representation is known as the operational impedance method for
synchronous machines.

For a synchronous machine with no damper windings, it can be seen that flux
linkages and stator currents are related via the following Laplace transformed rela-
tionships:

�qsi (s) = −L̂qi Iqsi (s) (2.48)

�dsi (s) = −L̂di

1 + sτ ′
di

1 + sτ ′
doi

Idsi (s) + Lmdi

1 + sτ ′
doi

Vfdi (s) (2.49)

where L̂qi = Lqi , L̂di = Ldi , τ
′
di

= L ′
di
L fdi

rfdi
, and τ ′

doi
= L fdi

rfdi
. Use (2.20) to derive (2.48)

and use (2.12), (2.20), (2.21) to derive (2.49).
Now let us look at the approximationswe canmake to simplify the blocks in (2.49).

If the time-constant τ ′
di
is much smaller than the time interval of interest, we can

write (2.49) as:

�dsi (s) = −L̂di
1

1 + sτ ′
doi

Idsi (s) + Lmdi

1 + sτ ′
doi

Vfdi (s)

Further if τ ′
doi

is much smaller than the time interval of interest, we can write (2.49)
as:

�dsi (s) = −L̂di Idsi (s) + Lmdi Vfdi (s)

The use of operational impedance model is most useful when damper windings
on the rotor are included in the model. Next, we cover the subtransient model, i.e.,
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themodel that includes damper windings. Please note that the operational impedance
model only includes the electrical part of the system and is mostly used to obtain
parameters to model the electrical transients in the model.

2.4.1 Operational Impedance and Sub-transient Model

The synchronous machine dynamics is like a mass-spring system with very little
mechanical damping. Electrical damping is introduced in the machine by putting
extra sets ofwindings on the rotor and shorting them.When the rotational speed of the
synchronous machine is different from its synchronous speed, currents are induced
in these shorted rotor coils that dissipate energy and provide damping. Accurate
synchronous machine models include the effect of the damper windings.

For the design of controllers for power oscillation damping, synchronousmachine
model with one rotor winding (stator transients neglected) gives acceptable transient
period simulation. For the sake of completeness and comparison with other models
existing in the literature, a detailed sub-transient model with three damper windings
is derived in this section. The derivation follows the same ideas as for a single rotor
winding—rotor coil fluxes are state variables and field voltage and stator dq-axis
currents are the inputs to the dynamic equations.

The effect of the damper windings can be modelled by including three damper
windings, two on the q-axis and one on the d-axis of the rotor, as shown in Fig. 2.20.
The Laplace transformed flux linkage of each coil and voltages on the field coil and
equivalent d and q-axis coils are given in the equations below:

Fig. 2.20 Synchronous
machine with damper
windings

kq1

kq2

iqs

q

kd

ids

d

q

d
fd
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�ds = −Ld Ids + Lmd(Ifd + Ikd) (2.50)

�fd = L fd Ifd + Lmd(−Ids + Ikd) (2.51)

�kd = Lkd Ikd + Lmd(−Ids + Ifd) (2.52)

Vfd(s) = rfd Ifd + s�fd (2.53)

Vkd(s) = rkd Ikd + s�kd (2.54)

The q-axis relationships can be obtained from the d-axis relationships (2.50)–(2.54)
by changing fd → kq1 and kd → kq2.

�qs = −Lq Iqs + Lmq(Ikq1
+ Ikq2

) (2.55)

�kq1
= Lkq1

Ikq1
+ Lmq(−Iqs + Ikq2

) (2.56)

�kq2
= Lkq2

Ikq2
+ Lmq(−Iqs + Ikq1

) (2.57)

Vkq1
(s) = rkq1

Ikq1
+ s�kq1

(2.58)

Vkq2
(s) = rkq2

Ikq2
+ s�kq2

(2.59)

The above Eqs. (2.50)–(2.59) are written as below after eliminating rotor variables:

�qs(s) = −L̂q(s)Iqs(s) (2.60)

�ds(s) = −L̂d(s)Ids(s) + G(s)Vfd(s) (2.61)

Expressions for L̂q(s), L̂d(s), and G(s), when all the three damper windings are
short-circuited (Vkd = Vkq1

= Vkq2
= 0) are given below:

�qs(s) = − s2τq1 + sτq2 + τq3
�q(s)

Iqs(s) (2.62)

where
�q(s) = s2(Lkq1

Lkq2
− L2

mq) + s(Lkq1
rkq2

+ Lkq2
rkq1

) + rkq1
rkq2

τq1 = L2
mq(Lq + Lkq1

+ Lkq2
− 2Lmq) − Lq Lkq1

Lkq2
,

τq2 = −Lq(Lkq1
rkq2

+ Lkq2
rkq1

) + L2
mq(rkq1

+ rkq2
),

τq3 = −Lqrkq1
rkq2

�ds(s) = − s2τd1 + sτd2 + τd3
�d(s)

Ids(s) + n(s)

�d(s)
Vfd(s) (2.63)

where
n(s) = Lmdrkd + s(Lmd Lkd − L2

md), �d(s) = s2(LkdL fd − L2
md) + s(Lkdrfd

+L fdrkd) + rkdrfd
τd1 = L2

md(Ld + Lkd + L fd − 2Lmd) − Ld LkdL fd,
τd2 = −Ld(Lkdrfd + L fdrkd) + L2

md(rkd + rfd),
τd3 = −Ldrkdrfd
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G(s) = n(s)

�d(s)
= s(Lmd Lkd − L2

md) + Lmdrkd
s2(LkdL fd − L2

md) + s(Lkdrfd + L fdrkd) + rkdrfd
(2.64)

Define:
L̂d(s) = − �ds (s)

Id (s)

∣∣∣vfd = 0
vkd = 0

L̂q(s) = − �qs (s)
Iq (s)

∣∣∣vkq1 = 0
vkq2 = 0

Ld = lim
s→0

rkd→∞
L̂d(s) Lq = lim

s→0
rkq2→∞

L̂q(s)

L ′
d = lim

s→∞
rkd→∞

L̂d(s) L ′
q = lim

s→∞
rkq2→∞

L̂q(s)

L ′′
d = lim

s→∞ L̂d(s) L ′′
q = lim

s→∞ L̂q(s)

(2.65)

The expressions for �ds(s) and �qs(s) in (2.62), (2.63) have ratio of second order
polynomials. For practical values of synchronous machine inductances these poly-
nomials have real roots and thus it is a common practice to write them as products
of first-order polynomials as below.

�qs (s) = −Lq
(1 + sτ ′

q )(1 + sτ ′′
q )

(1 + sτ ′
qo)(1 + sτ ′′

qo)
Iqs (s) = −Lq

(1 + L ′
q

Lq
sτ ′

qo)(1 + L ′′
q

L ′
q
sτ ′′

qo)

(1 + sτ ′
qo)(1 + sτ ′′

qo)
Iqs (s)

�ds(s) = −Ld
(1 + sτ ′

d)(1 + sτ ′′
d )

(1 + sτ ′
do)(1 + sτ ′′

do)
Ids(s) + n(s)

(1 + sτ ′
do)(1 + sτ ′′

do)
Vfd(s)

where (1 + sτ ′
d)(1 + sτ ′′

d ) = (1 + L ′
d

Ld
sτ ′

do)(1 + L ′′
d

L ′
d

sτ ′′
do). The parameters τ ′

q , τ
′′
q , τ

′
d ,

and τ ′′
d are known as short-circuit parameters and τ ′

qo, τ
′′
qo, τ

′
do, and τ ′′

do are open-circuit
parameters. They are related by the definitions of the transient and sub-transient
reactance in (2.65).

Exercise Show that
Ifd(s)

Ids(s)

∣∣∣∣
Vfd=0

= sG(s)

where G(s) is given in (2.64).

2.4.2 Synchronous Machine Sub-transient Model

The operational impedance sub-transient model developed in the previous section
applies to the electrical transients, neglecting saturation and other nonlinear effects.
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The operational impedancemodel is mostly used to obtainmachine parameters using
experimental frequency response measurements. Next a general sub-transient syn-
chronous machine model is developed.

Equations (2.50)–(2.52) can be solved for rotor winding currents and stator d-axis
flux and written in time-domain as:

ifd = Lkdλfd − Lmdλkd + (Lmd Lkd − L2
md)ids

L fdLkd − L2
md

(2.66)

ikd = −Lmdλfd + L fdλkd + (Lmd L fd − L2
md)ids

L fdLkd − L2
md

(2.67)

λds = Lmd Lkd − L2
md

L fdLkd − L2
md

λfd + L f d Lmd − L2
md

L fdLkd − L2
md

λkd + L ′′
d ids

λds = L ′′
d − Lls

L ′
d − Lls

E ′
q

ω
+ L ′

d − L ′′
d

L ′
d − Lls

λkd + L ′′
d ids (2.68)

The above d-axis rotor winding currents can be used to write the dynamic equa-
tions as follows.

λ̇fd = −rfdifd + vfd

1

ω
Ė ′
q = − rfd

L fd

(
LkdL fd

L fdLkd − L2
md

E ′
q

ω
− L2

md

L fdLkd − L2
md

λkd + Lmd (Lmd Lkd − L2
md )

L fdLkd − L2
md

ids − Lmd

rfd
vfd

)

1

ω
Ė ′
q = − rfd

L fd

(
E ′
q

ω
− L2

md

L fdLkd − L2
md

(λkd − E ′
q

ω
) − Lmd (Lmd Lkd − L2

md )

L fdLkd − L2
md

ids − Lmd

rfd
vfd

)

1

ω
Ė ′
q = − 1

T ′
do

(
E ′
q

ω
− (L ′

d − L ′′
d )(Ld − L ′

d )

(L ′
d − Lls )2

(λkd − E ′
q

ω
) + (Ld − L ′

d )

(
1 − L ′

d − L ′′
d

L ′
d − Lls

)
ids − Lmd

rfd
vfd

)

(2.69)

λ̇kd = −rkdikd

λ̇kd = − rkdL fd

L fdLkd − L2
md

(
λkd − E ′

q

ω
+ Lmd L fd − L2

md

L fd
ids

)

λ̇kd = − 1

T ′′
do

(
λkd − E ′

q

ω
+ (L ′

d − Lls)ids

)
(2.70)

The derivations for simplification of the above equations are done next.
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2.4.2.1 Basic d-Axis Relationships

First the a few definitions from Sect. 2.2 are reproduced here. The symbols have the
same meaning as in Eqs. (2.23) and (2.30).

Ld = Lls + Lmd , Lq = Lls + Lmq , L fd = Llfd + Lmd ,

L ′
d = LlfdLmd

L fd
+ Lls = Ld − L2

md

L fd
, L ′

q = Lls + Lmq .

In the following all the inductance terms appearing in Eqs. (2.69) and (2.70) are
rewritten in terms of L ′

d, L
′′
d , Lls, L ′

q , L
′′
q , and time-constants. The inductance terms

are also manipulated so that a physical meaning can be given to the machine param-
eters.

1. The transient inductance L ′
d can be seen as a series and parallel combination of

leakage and mutual inductances:

L ′
d = Lls + Lmd Llfd

L fd
= Ld − L2

md

L fd
= Lls + 1

1
Lmd

+ 1
Llfd

2. Field leakage written in terms of mutual, transient, and leakage inductances:

1

Llfd
= 1

L ′
d − Lls

− 1

Lmd
= Lmd − (L ′

d − Lls)

Lmd(L ′
d − Lls)

= Ld − Lls − (L ′
d − Lls)

Lmd(L ′
d − Lls)

⇒ Llfd = Lmd(L ′
d − Lls)

Ld − L ′
d

3. Applying the definition in Eq. (2.65), we can write sub-transient inductance as
a series and parallel combination of mutual and leakage inductances:

L ′′
d = Lls + 1

1
Lmd

+ 1
Llfd

+ 1
Llkd

4. The following progression of expressions derive relationships to arrive at
Eqs. (2.69) and (2.70).

Llkd = (L ′
d − Lls)(L ′′

d − Lls)

L ′
d − L ′′

d

1

Llkd
= 1

L ′′
d − Lls

− 1

Lmd
− 1

Llfd

= 1

L ′′
d − Lls

− 1

L ′
d − Lls
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L fd

L fdLkd − L2
md

= L fd

(Llfd + Lmd)Llkd + LlfdLmd
= 1

Llkd + LlfdLmd
L fd

⇒ L fd

L fdLkd − L2
md

= 1

Llkd + (L ′
d − Lls)

= L ′
d − L ′′

d

(L ′
d − Lls)2

L2
md

L fdLkd − L2
md

= L fd(Ld − L ′
d)

L fdLkd − L2
md

= (L ′
d − L ′′

d)(Ld − L ′
d)

(L ′
d − Lls)2

L fdLkd

L fdLkd − L2
md

= 1 + L2
md

L fdLkd − L2
md

L2
md Llkd

L fdLkd − L2
md

= (L ′′
d − Lls)(Ld − L ′

d)

L ′
d − Lls

Lmd L fd − L2
md

L fdLkd − L2
md

= Lmd Llfd

L fdLkd − L2
md

= Lmd Llfd

L fd

L fd

L fdLkd − L2
md

= L ′
d − L ′′

d

L ′
d − Lls

Lmd Lkd − L2
md

L fdLkd − L2
md

λfd = Lmd Llkd

L fdLkd − L2
md

λfd = L fdLlkd

L fdLkd − L2
md

E ′
q

ω
= L ′′

d − Lls

L ′
d − Lls

E ′
q

ω

Lmd
Lmd Lkd − L2

md

L fdLkd − L2
md

= Lmd
Lmd(Lmd + Llkd) − L2

md

L fdLkd − L2
md

= L2
md Llkd

L fdLkd − L2
md

⇒ Lmd
Lmd Lkd − L2

md

L fdLkd − L2
md

= (Ld − L ′
d)

L ′′
d − Lls

L ′
d − Lls

= (Ld − L ′
d)

(
1 − L ′

d − L ′′
d

L ′
d − Lls

)

The q-axis relationships can be obtained from the d-axis relationships by changing
fd → kq1 and kd → kq2.

Let,

Efd = vfdLmd

rfd
, E ′

q = ω
Lmd

L fd
λfd, E ′

d = ω
Lmd

Lkq1

λkq1

T ′
do = L fd

rfd
, T ′′

do = L fdLkd − L2
md

rkdL fd

A block diagram representation of Eqs. (2.69) and (2.70) is shown in Fig. 2.21. A
block diagram representation of the Eq. (2.68) is shown in Fig. 2.22.

The q-axis relationships can be obtained from the d-axis relationships by chang-
ing fd → kq1 and kd → kq2. A block diagram representation of q-axis dynamic
equations is shown in Fig. 2.23. A block diagram representation of the λqs is shown
in Fig. 2.24.
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Efd
+

1
sTdo

+
−
− 1

sTdo

λkd

Eq

ω

+

−

Ld − Ld

(Ld − Lls)2

+Ld − Ld ids

Ld − Lls

Fig. 2.21 Machine with damper windings—d-axis dynamics block

Fig. 2.22 Machine with
damper windings—d-axis
stator flux

Eq

ω

Ld − Lls

Ld − Lls

λkd
Ld − Ld

Ld − Lls

ids Ld

+ λds

Fig. 2.23 Machine with
damper windings—q-axis
dynamics block

1
sTqo

+
−
− 1

sTqo

λkq2

Ed

ω

+

−

Lq − Lq

(Lq − Lls)2

+Lq − Lq iqs

Lq − Lls

Fig. 2.24 Machine with
damper windings—q-axis
stator flux

Ed

ω

Lq − Lls

Lq − Lls

λkq2

Lq − Lq

Lq − Lls

iqs Lq

+ λqs



78 2 Modelling Power System Devices

2.4.2.2 Typical Synchronous Machine Parameters [8, p. 153]

Parameter Hydro Thermal
Synchronous reactance Xd 0.6–1.5 1.0–2.3

Xq 0.4–1.0 1.0–2.3
Transient reactance X ′

d 0.2–0.5 0.15–0.4
X ′
q – 0.3–1.0

Subransient reactance X ′′
d 0.15–0.35 0.12–0.25

X ′′
q 0.2–0.45 0.12–0.25

Transient open-circuit time constant T ′
d0 1.5–9.0 s 3.0–10.0 s

T ′
q0 – 0.5–2.0 s

Subtransient open-circuit time constant T ′′
d0 0.01–0.05 s 0.02–0.05 s

T ′′
q0 0.01–0.09 s 0.02–0.05 s

Stator leakage reactance Xl 0.1–0.2 0.1–0.2
Stator resistance rs 0.002–0.02 0.0015–0.005

The reactances and resistances are in per units and the time-constants are in
seconds.

2.4.2.3 Transient and Steady-State Models

Transient model can be dervided from the subtransient model by considering
rkd → ∞, rkq1 → ∞, and rkq2 → ∞ in (2.65) for the expressions of sub-transient
reactances. The steady-state model is obtained by setting i0fd = vfd

rfd
and then calculat-

ing the stator currents.

2.5 Induction Machine

Let us consider a Pi pole induction machine with the schematic shown in Fig. 2.25.
Both the stator and rotor have three windings. The choice of symbols is the same as
for the synchronous machine described in Sect. 2.2.

The dynamic equations for the rotor flux in the induction motor (for generator
operation change the sign of the current terms) connected to bus i ([6, p. 150]),

λ̇qri = −rri iqri − (ω − ωri )λdri + vqri (2.71)

λ̇dri = −rri idri + (ω − ωri )λqri + vdri (2.72)

Ji

(
2

Pi

)
ω̇ri = Tei − TLi (2.73)

where ω is the angular velocity of the rotating dq-frame,
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Fig. 2.25 Induction machine
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The angular velocity of the rotating dq-frame, ω, can be different from the supply
frequency of 2π50 rad s−1 or 2π60 rad s−1. In most cases ω is chosen equal to the
supply frequency, but it can be different and this factmust be noted. Equations (2.71)–
(2.73) are derived in full further in this chapter.

Algebraic equations or constraints for the induction machine connected to bus i ,

vqsi = rsi iqsi + ωλdsi (2.75)

vdsi = rsi idsi − ωλqsi (2.76)

λqsi = Llsi iqsi + LM
(
iqsi + iqri

)
(2.77)

λdsi = Llsi idsi + LM
(
idsi + idri

)
(2.78)

λqri = Llri iqri + LM
(
iqsi + iqri

)
(2.79)

λdri = Llri idri + LM
(
idsi + idri

)
(2.80)

The model of the induction machine is given by the differential Eqs. (2.71)–(2.73)
and algebraic Eqs. (2.75) and (2.76) with λdsi , λqsi , idri , and iqri , written in terms
of idsi and iqsi . Equations (2.77)–(2.80) are solved for λdsi , λqsi , idri , and iqri in
terms of idsi and iqsi . The following material till Sect. 2.5.1 gives the details of these
manipulations. On first reading these details can be skipped but please be sure to
derive all the equations to get familiar with the model.

Eliminating λds , λqs , idr , and iqr from Eq. (2.77)–(2.80),

λdsi = LMi

Ldri

λdri + Ldsi Ldri − L2
Mi

Ldri

idsi (2.81)
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λqsi = LMi

Lqri

λqri + Lqsi Lqri − L2
Mi

Lqri

iqsi (2.82)

idri = λdri

Ldri

− LMi

Ldri

idsi (2.83)

iqri = λqri

Lqri

− LMi

Lqri

iqsi (2.84)

where Lqri = Llri + LMi , Ldri = Llri + LMi , Lqsi = Llsi + LMi , and Ldsi = Llsi +
LMi . Note that Lqri = Ldri and Lqsi = Ldsi , we also define Lrri = Lqri = Ldri and
Lssi = Lqsi = Ldsi .

The three differential Eqs. (2.71)–(2.73) can now be written as:

λ̇qri = − rri
Lqri

λqri − (ω − ωri )λdri + rri LMi

Lqri

iqsi + vqri (2.85)

λ̇dri = − rri
Ldri

λdri + (ω − ωri )λqri + rri LMi

Ldri

idsi + vdri (2.86)

Ji

(
2

Pi

)
ω̇ri =

(
3

2

) (
Pi
2

)
LMi

Ldri

(
λdri iqsi − λqri idsi

) − TLi (2.87)

The two algebraic Eqs. (2.75) and (2.76) can now be written as:

vqsi = rsi iqsi + ω
Ldsi Ldri − L2

Mi

Ldri

idsi + ω
LMi

Ldri

λdri (2.88)

vdsi = rsi idsi − ω
Lqsi Lqri − L2

Mi

Lqri

iqsi − ω
LMi

Lqri

λqri (2.89)

2.5.1 The Model

The model consists of the three differential Eqs. (2.85)–(2.87), with

xi =
⎡
⎣

λdri
λqri
ωri

⎤
⎦ , ui =

[
vdri
vqri

]
(2.90)

The dq-frame of the i th induction machine is aligned with the a-axis of the i bus
voltage, thus vDi = vdsi , vQi = vqsi , iDi = idsi , and iQi = iqsi , from this the algebraic
constraint equations can be written as:

[
vDi

vQi

]
= ZDQi

[
iDi

iQi

]
+ Dai xi (2.91)
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where

ZDQi =
⎡
⎣ rsi −ω

Lqsi Lqri −L2
Mi

Lqri

ω
Ldsi Ldri −L2

Mi
Ldri

rsi

⎤
⎦ , Dai =

⎡
⎣ 0 −ωLMi

Lqri
0

ωLMi
Ldri

0 0

⎤
⎦ (2.92)

The above equations in the per unit system are written exactly the same way as
for the synchronous machine as discussed in Sect. 2.2.2.

2.5.2 Steady-State Conditions

At steady-state Eqs. (2.85)–(2.87) (with λ̇dri = 0, λ̇qri = 0, ω̇ri = 0), (2.88), (2.89)
can be solved to obtain ω0

ri , λ
0
dri
, λ0

qri , i
0
dsi
, i0qsi , and ω = 2π50 rad s−1. Alternatively,

s0i , i
0
dsi
, i0qsi , i

0
dri
, i0qri can be obtained from putting together the equivalent circuit

in the exercise in Sect. 2.5.3 and steady-state torque expression in the exercise in
Sect. 2.5.4. Finally, (2.79) and (2.80) can be used to obtain λ0

dri
and λ0

qri .

2.5.3 Steady-State Equivalent Circuit

Equations (2.71) and (2.72) (with λ̇qri = 0 and λ̇dri = 0), Eqs. (2.75)–(2.80), can
be used to show that the circuit in Fig. 2.26 is an equivalent circuit for steady-state
operation of an induction machine (eliminate flux variables and write the equations
in terms of phasor current and voltage variables).

vds + jvqs = rs (ids + j iqs ) + jωLss (ids + j iqs ) + jωLM (idr + j iqr )

vdr + jvqr = rr (idr + j iqr ) + j (ω − ωr )Lrr (idr + j iqr ) + j (ω − ωr )LM (ids + j iqs )

The phasor quantities in the equivalent circuit in Fig. 2.26 are V̂s = vds + jvqs , Îs =
ids + j iqs , Îr = idr + j iqr , and V̂r = vdr + jvqr .

Fig. 2.26 Induction
machine steady-state
equivalent circuit

−
V̂s

+
rs

Îs

Lls

LM

Llr

Îr

rr

s

+
V̂r

s−
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2.5.4 Steady-State Output Power

Using the electrical torque expression in (2.87) it is easy to show that Te =(
3
2

) (
P
2

)
LM�( Î ∗

r Îs):

Te =
(
3

2

) (
P

2

)
LM

Ldr

(
λdr iqs − λqr ids

)

=
(
3

2

) (
P

2

)
LM

(
idr iqs − iqr ids

)

Using the steady-state equivalent circuit in Fig. 2.26 we see that the steady-state
output power is given by (vdr = vqr = 0, s = ω−ωr

ω
):

Pe = ωr Te =
(
3

2

) (
P

2

) ∣∣∣ Îr
∣∣∣
2 ωr rr

ω − ωr
=

(
3

2

)(
P

2

) ∣∣∣ Îr
∣∣∣
2 (1 − s)rr

s

2.5.5 Steady-State Torque Versus Speed

Using the torque expression in the exercise in Sect. 2.5.4 and the equivalent circuit
in Fig. 2.26 show that the steady-state is given by (vdr = vqr = 0, s = ω−ωr

ω
):

Te =
3
2
P
2 ωL2

Mrr s|V̂s |2(
rsrr + sω2

(
L2
M − Lss Lrr

))2 + ω2 (rr Lss + srs Lrr )
2

Note that:

Îs = V̂s

rs + jωLls + jωLM(jωLlr+ rr
s )

jωLrr+ rr
s

,

Îr = − Îs
jωLM

jωLrr + rr
s

,

and
Lls LM + Llr LM + Lls Llr = Lss Lrr − L2

M .

Exercise An induction motor is connected to an infinite bus and it has the follow-

ing parameter values: P = 2; TL = 2.4e3

ω
N m; Lls = 0.0139H; Llr = 0.01228H;

Lds = 0.3826H; Ldr = 0.38098H; rs = 1.77�; rr = 1.34�; Vm = (
√
2/3)460V;

vdr = vqr = 0; J = 0.025 kg m2.Assume the inductionmotor dq-frame alignedwith
the infinite bus DQ-frame, i.e., vds = Vm and vqs = 0.

For the steady-state operation of the above induction motor, plot
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1. Electric torque versus speed (or slip)
2. Input current magnitude versus speed (or slip)
3. Reactive power input versus speed (or slip)

2.5.6 Doubly-Fed Induction Machine—Steady-State

A squirrel cage induction machine consumes reactive power both in the motor and
generator modes. A doubly-fed induction machine can be both a consumer and a
supplier of reactive power. In this exercise we see that by suitable adjustment of the
rotor voltage the reactive power consumption of the machine can be controlled.

Parameters for a doubly-fed induction motor, in the given base values, are given
below (quantities without units next to them are per unit values).

The base quantities are chosen as: VAb = 2.4 × 103 VA; Esb =
√

2
3460V; fb =

50Hz; Isb = VAb
(3/2Esb )

; Zsb = Esb
Isb

;ωb = 2π fb;ωmb = ωb; Lsb = Zsb
ωb

; λsb = Lsb Isb ;

Irb = Isb; Erb = Esb; Zrb = Erb
Irb

; Lrb = Zrb
omegab

; Jb = V Ab
ω2
m b
.

The parameters in per unit representation are: ω0 = 2π50 rad s−1, ω = ω0
ωb
; Pe =

2.4e3
V Ab

; Tload = 0.5Pe
ω

; Lss = 0.3826
Lsb

; Lrr = 0.38098
Lrb

; Lsm = 0.3687
Lsb

; rs = 1.77
Zsb

; rr = 1.34
Zrb

;

Lls = Lss − Lsm ; Llr = Lrr − Lsm ; Vm =
√
2460/

√
3

Esb
; J = 0.025

Jb
; Vs = Vm(cos(0) +

j sin(0)); Vrm = 0.05.
Show that when this induction motor is running at a slip of 0 05, the variation

of the steady-state phase and amplitude of the stator current ( Îs in Fig. 2.26) with
the phase of the applied rotor voltage is as shown in Fig. 2.27. This curve is similar
to the V-curve of the synchronous machine. Thus a doubly-fed induction machine
can provide characteristics similar to synchronous machine during the steady-state
operaion.

The parameters in this exercise are in terms of dq-axis, to work out the phasor
rotor voltages the transformation matrix Kr in the exercise in Sect. 2.6.1 should be
used.

2.5.7 Exercise—Voltage Behind Transient Inductance

Show that Eqs. (2.88) and (2.89) can be represented by the equivalent circuit shown
in Fig. 2.28, where

L ′
s = Lds Ldr − L2

M

Ldr
, v′

d = −ω
LM

Lqr
λqr , and v′

q = ω
LM

Ldr
λdr
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Fig. 2.27 DFIM—V-curves

Fig. 2.28 Voltage behind
transient inductance

−
vd + jvq

+

rs

ids + jiqs

jωLs

+

−

vds + jvqs

2.5.8 Doubly-Fed Induction Machine

From the modelling point of view the chief difference between doubly-fed and short-
circuited rotor machine is considering vdri and vqri in (2.85) and (2.86). In all the
derivations done in the exercises here, if vdri and vqri are non-zero then it models a
doubly-fed machine and for vdri = vqri = 0, it is a squirrel cage or short-circuited-
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rotor induction machine. The actually applied rotor voltages and vdri , vqri are related
by the transformation Kr in the exercise in Sect. 2.6.1.

2.5.9 Vector Control

In most power system simulations the dq-frame of the induction motor is aligned
with the DQ-frame connected to the bus. There are many applications, vector control
being one of the most useful one, where the dq-frame of the induction motor is
positioned such that the d-axis is aligned with the rotor flux.

Repeat the simulations in the exercise in Sect. 2.5.5with the d-axis of the dq-frame
aligned with the rotor flux. Plot the angle between the d-axis and phase-a peak, given
by δ below. The following changes need to be made in the simulation in Sect. 2.5.5
for this simulation.

1. Since the d-axis, rotating at an angular velocity ωv , is chosen to be aligned with
the rotorflux,wehaveλqr = 0 and λ̇qr = 0.Thismeans thatEqs. (2.79) and (2.85)
provide constraints and give ωv , the angular velocity of the rotating dq-frame,

ωv = ωr + rr LM

Lqr

iqs
λdr

+ vqr

λdr
(ωr is the rotor angular velocity)

and we have to add the following equation to replace (2.85),

δ̇ = ωv − ωs

where ωs = 2π50.
2. dq and DQ currents are related as follows (for SMIB vD = Vm , vQ = 0),

R(φr ) =
[
sin δ − cos δ
cos δ sin δ

]
,

[
ids
iqs

]
= R(φr )

[
iD
iQ

]
,

[
vds
vqs

]
= R(φr )

[
vD

vQ

]

3. For steady-state values, solve Eqs. (2.86), (2.87) (with λ̇dr = 0, ω̇r = 0), (2.88),
(2.89) to obtain δ0, λ0

dr , i
0
ds , i

0
qs , and using Eq. (2.85) with λ̇qr = 0,

ω0
r = 2π50 − rr LM

Lqr

i0qs
λ0
dr

The above equations are a complete description of induction machine dynamics but
to achieve vector control the following equation is needed to obtain vdqr from vabcr

δ̇r = ωr − ω0
r and θr = ω0

r t + δr .
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The plots from the simulation using vector control are shown in Figs. 2.29, 2.30,
2.31 and 2.32.

2.5.10 Dynamic Equations with δ

At times it is useful to write the dynamic equations for induction machines in a struc-
ture similar to the synchronous machine. The equations in the exercise in Sect. 2.5.9
can be used to write the SMIB equations as (rs = 0):

λ̇dr = −
(

rr
Ldr

+ rr L2
M

L2
dr L

′
s

)
λdr + rr LM

ωs Ldr L ′
s

V∞ cos δ + vdr (2.93)

δ̇ = −(ωs − ωr ) − rr LM

ωs Lqr L ′
s

V∞ sin δ

λdr
+ vqr

λdr
(2.94)

J

(
2

P

)
ω̇r =

(
3

2

) (
P

2

)
LM

Ldr

(
−λdr

V∞ sin δ

ωs L ′
s

)
− TL (2.95)
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Fig. 2.30 ids and iqs

Note that for the induction machine connected to the infinite-bus vds = V∞ sin δ
and vqs = V∞ cos δ. Use the equivalent circuit in Fig. 2.28 to obtain the currents

ids = −v′
q+V∞ cos δ

ωs L ′
s

and iqs = −V∞ sin δ
ωs L ′

s
. Here we assume that the d-axis of the rotating

frame is aligned with the rotor flux and thus all the relationship in the exercise in
Sect. 2.5.9 can be applied to obtain the above dynamic equations.

2.6 Phasor to dq-Frame Transformation

Similar to the development of the dq-frame equations for the synchronous machine,
a derivation for induction machines is given below.
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Fig. 2.31 idr and iqr

2.6.1 Phasor to dq-Frame—Part I

For an induction machine with a schematic as shown in Fig. 2.25, the phasor and
dq-frame variables are related by

Fdq0 = KsFabc and Fabc = K−1
s Fdq0

where abc, dq0 subscripts stand for phasor and dq-frame variables as in (2.2) and
Ks is given in (2.1) and reproduced here (θ̇ = ω),

Ks = 2

3

⎡
⎢⎣

cos(θ) cos(θ − 2π
3 ) cos(θ + 2π

3 )

− sin(θ) − sin(θ − 2π
3 ) − sin(θ + 2π

3 )
1
2

1
2

1
2

⎤
⎥⎦

where θ = ∫ t
0 ωdt + θ0, ω can be any arbitray speed but here it is the synchronous

speed, i.e., the frequency of the applied stator voltage and θ0 is the position of the
stator phase-a coil at time zero.
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Kr = 2

3

⎡
⎢⎣

cos(θ − θr ) cos(θ − θr − 2π
3 ) cos(θ − θr + 2π

3 )

− sin(θ − θr ) − sin(θ − θr − 2π
3 ) − sin(θ − θr + 2π

3 )
1
2

1
2

1
2

⎤
⎥⎦

where θr = ∫ t
0 ωr dt + θr (0), ωr is the angular velocity of the rotor and θr (0) is its

initial position. Please note (see Fig. 2.25):

1. θ is the angle between the d-axis of the dq-frame rotating at angular velocity ω
and stator phase-a coil.

2. θ − θr is the angle between the rotor phase-a coil and the d-axis of the rotating
frame. The angle between the rotor a-coil and stator a-coil is θr .

For a round rotor inducitonmotor with three stator windings and three rotor windings
the voltage equations can be written as:
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vabcj = R j iabcj + d

dt
λabcj

K−1
j vdq0 j = R j K

−1
j idq0 j + d

dt
K−1

j λabcj

vdq0 j = K j R j K
−1
j idq0 j + K j

d

dt
K−1

j λdq0 j , and

where j may be replaced by s for stator and r for rotor, Rs = diag [rs, rs, rs], and
Rr = diag [rr , rr , rr ].

1. Show that

K−1
j = 3

2
K̄ T

j .

where K̄ T
j is the transpose of K j but the third column is

[
1 1 1

]T
instead of[

1
2

1
2

1
2

]T
.

2. Show that
K j R j K

−1
j = R j .

3. Show that

Ks
d

dt
K−1

s = ω

⎡
⎣
0 −1 0
1 0 0
0 0 0

⎤
⎦

4. Show that

Kr
d

dt
K−1

r = (ω − ωr )

⎡
⎣
0 −1 0
1 0 0
0 0 0

⎤
⎦

5. Show that

vds = rr ids − ωλqs + λ̇ds

vqs = rr iqs + ωλds + λ̇qs

v0s = rr i0s + λ̇0s

6. Show that

vdr = rr idr − (ω − ωr )λqr + λ̇dr

vqr = rr iqr + (ω − ωr )λdr + λ̇qr

v0r = rr i0r + λ̇0r
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2.6.2 Phasor to dq-Frame—Part II

The flux linkages for an induction machine with a field winding and three stator
windings are written as:

[
λabcs

λabcr

]
=

[
Lss Lsr

LT
sr Lrr

] [
iabcs
iabcr

]

[
λdq0s

λdq0r

]
=

[
KsLss K−1

s Ks Lsr K−1
r

Kr LT
sr K

−1
s Kr Lrr K−1

r

] [
idq0s
idq0r

]

where Ks and Kr are given in the exercise in Sect. 2.6.1,

Lss =

⎡
⎢⎢⎣
Lls + Lms − 1

2 Lms − 1
2 Lms

− 1
2 Lms Lls + Lms − 1

2 Lms

− 1
2 Lms − 1

2 Lms Lls + Lms

⎤
⎥⎥⎦ ,

Lrr =

⎡
⎢⎢⎣
Llr + Lms − 1

2 Lms − 1
2 Lms

− 1
2 Lms Llr + Lms − 1

2 Lms

− 1
2 Lms − 1

2 Lms Llr + Lms

⎤
⎥⎥⎦ ,

Lsr = Lms

⎡
⎢⎣

cos θr cos
(
θr + 2π

3

)
cos

(
θr − 2π

3

)

cos
(
θr − 2π

3

)
cos θr cos

(
θr + 2π

3

)

cos
(
θr + 2π

3

)
cos

(
θr − 2π

3

)
cos θr

⎤
⎥⎦ ,

and LM = 3
2 Lms .

1. Show that

KsLss K
−1
s =

⎡
⎣
Lls + LM 0 0

0 Lls + LM 0
0 0 Lls

⎤
⎦

2. Show that

Kr Lrr K
−1
r =

⎡
⎣
Llr + LM 0 0

0 Llr + LM 0
0 0 Llr

⎤
⎦

3. Show that

KsLsr K
−1
r = Kr L

T
sr K

−1
s =

⎡
⎣
LM 0 0
0 LM 0
0 0 0

⎤
⎦

4. Put all the above bits and pieces from Parts I and II together and form the
Eqs. (2.71), (2.72), and (2.75)–(2.80) when λ̇ds = 0 and λ̇qs = 0.
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2.7 Network Equations

Let n be the number of buses at which active generators or loads are connected and
let m be the number of buses at which constant impedance loads are connected. A
set of bus voltages and currents, with all elements real obtained from the elements
of �Va and �Ia , and a nni × 1 dimensional state-vector x , are defined as follows:

Va =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

vD1

...

vDn

vQ1

...

vQn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

; Ia =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

iD1

...

iDn

iQ1

...

iQn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

; Vā =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

vDn+1

...

vDn+m

vQn+1

...

vQn+m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

; Iā =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

iDn+1

...

iDn+m

iQn+1

...

iQn+m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

; x =

⎡
⎢⎢⎢⎣

x1
x2
...

xnni

⎤
⎥⎥⎥⎦

(2.96)
Using the bus admittance matrix Y (Y �V = �I ), we can rewrite the network relation-
ships, in terms of the above defined vectors in (2.96) as

⎡
⎣
Yaa Yaā Yao
Yāa Yāā Yāo
Yoa Yoā Yoo

⎤
⎦

⎡
⎣
Va

Vā

Vo

⎤
⎦ =

⎡
⎣
Ia
0
Io

⎤
⎦ (2.97)

where the subscript o is used to denote slack bus quantities. At each active bus, let
the current and voltage be related by

Si
( �Vi , �Ii , xi

)
= 0. (2.98)

The above relationship (2.98) for some of the commonly used active load models
can be written as:

1. Constant Impedance:
�Vi
�Ii = constant

2. Constant Current: �Ii = constant
3. Constant Load: �Vi �I ∗

i = constant
4. Constant MVA: �Vi �Ii = constant

The above Eqs. (2.97) and (2.98) are 2n + 2m + 2o + 2n and we have the following
unknowns: 2n voltages Va , 2n currents Ia , 2m voltages Vā , and 2o currents Io (known
Vo). Thus the nonlinear Eqs. (2.97) and (2.98) can be solved after each integration
step to obtain Ia , which is needed for the next integration step.
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2.7.1 Machines as Active Loads

When the active loads can be expressed in certain forms, Eqs. (2.97) and (2.98) can
be formulated as a system of linear equations. Electrical machines as active loads
have a form which makes the solution of Eqs. (2.97) and (2.98) easier. From the
machine stator equations we can write,

Va = Za Ia + Dax (2.99)

Substituting (2.99) in (2.97), we get

Vā = −Y−1
āā (YāaVa + YāoVo) (2.100)

= −Y−1
āā (Yāa (Za Ia + Dax) + YāoVo) (2.101)

Substituting for Vā from (2.101) in the equation for Ia in the matrix Eq. (2.97),

(
Yaa Za − YaāY

−1
āā Yāa Za

)
Ia +

(
Yaa − YaāY

−1
āā Yāa

)
Dax − YaāY

−1
āā YaoVo + YaoVo = Ia

(2.102)

Define (E is a 2n × 2n identify matrix)

Ȳaa = Yaa Za − E − YaāY
−1
āā Yāa Za (2.103)

D̄a = − (
Yaa − YaāY

−1
āā Yāa

)
Da (2.104)

Ȳoo = YaāY
−1
āā Yāo − Yao (2.105)

Then from (2.102),
Ia = Ȳ−1

aa

(
D̄ax + ȲooVo

)
(2.106)

Eq. (2.106) in a block diagram form is shown in Fig. 2.33.

Fig. 2.33 Network block
diagram

Equation (2.106)

x1
ZDQ1

Da1

xn

ZDQn

Dan

...

iD1

iQ1

iDn

iQn

...

R(φr1)

φr1
ids1

iqs1

...

R(φrn)

φrn idsn

iqsn

...
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2.7.2 Submatrices in Eq. (2.97)

To illustrate how the matrix in (2.97) is constructed, let us look at the submatrix Yaa .
We can write the relationship between bus voltages and currents, using the elements
in the original Y matrix, as:

[
Gaa + j Baa Gaā + j Baā Gao + j Bao

]
⎡
⎣
VDa + jVQa
VDā + jVQā
VDo + jVQo

⎤
⎦ = [

IDa + j IQa
]

(2.107)

[
Gaa −Baa
Baa Gaa

] [
VDa
VQa

]
+

[
Gaā −Baā
Baā Gaā

] [
VDā
VQā

]
+

[
Gao −Bao
Bao Gao

] [
VDo
VQo

]
=

[
IDa
IQa

]
(2.108)

Thus we get,

Yaa =
[
Gaa −Baa
Baa Gaa

]
, Yaā =

[
Gaā −Baā
Baā Gaā

]
, Yao =

[
Gao −Bao
Bao Gao

]
(2.109)

In a similar manner all the submatrices of the matrix in (2.97) can be obtained from
the original Y matrix.

2.7.3 Forming Za from Zai

The matrix Za can be formed as follows (for i = 1, 2, . . . , n):

Za(i, i) = ZDQi (1, 1), Za(i, i + n) = ZDQi (1, 2), (2.110)

Za(i + n, i) = ZDQi (2, 1), Za(i + n, i + n) = ZDQi (2, 2), (2.111)

and all other elements of Za are zero.

2.7.4 Forming Da from Dai

Let the number of states in device j be n j . The matrix Da can be formed as follows
(for i = 1, 2, . . . , n):

Da(i,
i−1∑
j=1

n j + k) = Dai (1, k), k = 1, 2, . . . , ni , (2.112)

Da(i + n,

i−1∑
j=1

n j + k) = Dai (2, k), k = 1, 2, . . . , ni , (2.113)
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and all other elements of Da are zero.

2.7.5 Network Equations Referred to Machine Internal
Variables

In special cases the synchronous machine parameters are such that they permit a
simple electrical equivalent representation of the machine terminal variables, i.e.,
VDi , VQi , and state variables, i.e., E ′

di
, E ′

qi . The terminal and state variables are
related by Eq. (2.11), which cannot in general be converted into an electrical equiv-
alent circuit like the ones in Figs. 2.4 or 2.28. In cases where an equivalent circuit
representation is possible, e.g., when L ′

d = L ′
q , it is convenient to eliminate all the

other bus nodes andwrite the network equations only in terms of the internal machine
variables. This can be done by setting Za = 0 in Eq. (2.99), i.e., Va = Dax , and

Va =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

E ′
D1

...

E ′
Dn

E ′
Q1

...

E ′
Qn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

; Ia =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

iD1

...

iDn

iQ1

...

iQn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.114)

Using the above substitutions, and assuming that there is no infinite bus in the system,
we can write Eq. (2.106) as

Ia = (
Yaa − YaāY

−1
āā Yāa

)
Va = YredVa (2.115)

Each of the matrix, Yaa,Yaā,Yāā,Yāa , in (2.115) has a special structure as given
in (2.109). It can be proved that the matrix Yred = Yaa − YaāY

−1
āā Yāa will also have

a similar structure and we write,

Yred =
[
G −B
B G

]
(2.116)

(Hint: The product of matrices in the form in (2.109) preserves the structure. To see
that inverse is also of the same structure, let there exist matrices X and Y such that

[
Gaa −Baa

Baa Gaa

] [
X Y

−Y X

]
=

[
Gaa X + BaaY GaaY − Baa X
Baa X − GaaY Gaa X + BaaY

]
(2.117)

Matrices X and Y can be found such that Gaa X + BaaY = diag{1, 1, . . . , 1} and
GaaY − Baa X = 0. Hence the same structure.)
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Let Gi j and Bi j be the i j th elements of matrices G and B in (2.116), respectively.
Then using (2.115) we can write

iDi + j iQi =
n∑
j=1

(
Gi j + j Bi j

) (
E ′
D j

+ jE ′
Q j

)
(2.118)

(
idi + j iqi

)
e−j

( π
2 −δi

)
=

n∑
j=1

(
Gi j + j Bi j

) (
E ′
d j

+ jE ′
q j

)
e−j

( π
2 −δ j

)
(2.119)

idi + j iqi =
n∑
j=1

(
Gi j + j Bi j

) (
E ′
d j

+ jE ′
q j

)
ejδ j i (2.120)

idi =
n∑
j=1

(
Gi j cos δ j i − Bi j sin δ j i

)
E ′
d j

− (
Gi j sin δ j i + Bi j cos δ j i

)
E ′
q j

(2.121)

iqi =
n∑
j=1

(
Gi j sin δ j i + Bi j cos δ j i

)
E ′
d j

+ (
Gi j cos δ j i − Bi j sin δ j i

)
E ′
q j

(2.122)

where Eq. (2.7) is used to transform betwen dq and DQ quantities in Eq. (2.119),
and note that for synchronous machines φri = δi − π

2 .

2.8 Simulation

Block diagram in Fig. 2.33 shows the network block and its inputs and outputs. The
inputs come from individual devices such as the ones shown in the block diagram
in Fig. 2.2, and again the outputs from the network block in Fig. 2.33 feedback into
individual device blocks. An integration step is performed using n blocks of the type
shown in Fig. 2.2 and then one algebraic step is performed as shown in the block
diagram in Fig. 2.33. The alternating integration and algebraic solutions are repeated
for the duration of the simulation. This simulation process consists of the following
steps.

The equations for induction machine in Sect.2.5are for the motor convention
but the currents in Ia in (2.106) are flowing into the network. To use this Ia for
induction motor simulation a negative sign has to be place in front of ZDQi given
in (2.91) for inductionmotors and also negative of Iai has to be used in the differential
Eqs. (2.85)–(2.87).

1. Form Ybus matrix. Synchronous machines can be represented as PV buses and
induction machines can be PQ buses.

2. Perform a load flow analysis. Obtain �Vi and �Ii for all the buses and form vectors
in (2.96). This step is only to get an estimate of the bus voltages.

3. Convert PQ buses to constant impedance buses and modify Ybus.
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Fig. 2.34 Four-bus system

PQ

G1 ∞

IM
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1 4
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4. Form the matrices in the matrix Eq. (2.97), and matrices Za and Da in (2.99). In
general Za and Da will depend on the current system state, develop functions to
calculate these matrices for a given system state.

5. Find steady-state conditions by simultaneously solving the equilibrium condi-
tions from differential equations and algebraic constrains. For this step the initial
V 0
a can be formed from the load flow solution, for this V 0

a and steady-state state
x0 vector can be obtained for all the active devices. For this x0, I 0a is obtained
from (2.106). Iterations can stop when V 0

a is equal to Z0
a I

0
a + D0

a x
0 (Eq. (2.99)),

if not then choose another value for V 0
a and perform another iteration step. This

entire step can be easily accomplished using the Matlab function fsolve.
6. Run a dynamic simulation starting from the steady-state solution obtained above

for 1 sor so. After each integration step Eq. (2.106) should be used to obtain Ia
and these current values are input for the next integration step.

(a) Perform an integration step as shown in the block diagram in Fig. 2.2 for
each device, and obtain xi , ZDQi , R(φri ), i = 1, . . . , n.

(b) Obtain Ia from (2.106). Go to Step 6a and continue till the end of the simu-
lation period.

7. Apply a disturbance, e.g., increasing the input synchronous machine power by
fifty per cent, and perform dynamic simulation.

2.8.1 Four-Bus System

A simple four-bus system with a synchronous generator, an induction motor, and an
infinite bus, as shown in Fig. 2.34 is used to demonstrate the simulation process for
a network.
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The line impedances are: z12 = 0.01 + j0.2 pu, z13 = 0.01 + j0.2 pu, z14 =
0.01 + j0.2 pu, z21 = 0.01 + j0.2 pu, 0, 0, z24 = 0.01 + j0.2 pu, z31 = 0.01 +
j0.2 pu, z34 = 0.01 + j0.2 pu, z41 = 0.01 + j0.2 pu, z42 = 0.01 + j0.2 pu, z43 =
0.01 + j0.2 pu. For the load flow: Bus 1 is a PV bus (0.2395, 1 pu); Bus 2 is a PQ
bus (−1, −0.78 pu); Bus 3 is a PQ bus (−1, −0.1 pu); Bus 4 is an infinite or slack
bus with voltage 1 pu. The synchronous machine parameters in per unit system are:

Ld : 1.7997, Lq : 1.7997, L ′
d : 0.2254, L ′

q : 1.7997, Lmd : 1.6201, Lmq : 1.6201,
ωs : 1, L fd : 1.6673, rs : 0, rfd : 3.0880 × 10−4, vfd : 2.5166 × 10−4,

J : 7.7775, Vm : 1, Pm : 0.2395.

The induction motor parameters in per unit system are:

Lss : 1.3633, Lrr : 1.3575, Lsm : 1.3138,ω : 1, rs : 0.0201, rr : 0.0152,
J : 1.0281, Vm : 1, Tload : 0.5000.

A simulation is performed for the two-machine four-bus system in Fig. 2.34. The
input power to the synchronous machine is increased by fifty per cent and then again
reduced to the normal value. The simulation results are shown in Figs. 2.35 and 2.36.

2.8.2 Matlab Scripts

The followingmatlab scripts canbeobtainedby sending an e-mail to h.pota@adfa.edu.au.
The following scripts simulate a single machine connected to infinite bus.

1. indmcinitial.m
2. SynMachinedqSimulationNSTpu.m—SMIB synchronous machine simulation,

neglecting stator transients.
3. iqd0dotNSTpu.m—ẋ calculation function for SynMachinedqSimulation

NSTpu.m.
4. getinitialconditions.m—initial conditions for synchronous machine
5. indmcdqsimulationpu.m—SMIB inductionmachine simulation, including stator

transients.
6. indiqd0dotpu.m—ẋ calculation function for indmcdqsimulationpu.m.
7. Torquesspu.m—calculate steady-state slip and then other states for a given load

torque.
8. indmcdqsimulationNSTpu.m
9. indiqd0dotNSTpu.m—ẋ calculation function for indmcdqsimulationNSTpu.m.
10. indssTvsw.m—Simple speed versus electric torque for induction motors.

The following scripts simulate the four-bus system.

1. loadflow.m—The initial load flow to get a rough estimate of the bus voltages.
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2. powerbal.m—load flow is done using Matlab’s fsolve function and this func-
tion is called by fsolve to check if the power balance is achieved.

3. parameters.m—Puts the synchronous and inductionmachine parameters inMat-
lab struct form. This makes it easy to access these parameters without getting
mixed up with symbols and using a long list of parameters in the global com-
mand.

4. networkequations.m—Formsall thematrices inEq. (2.97); it iterates viafsolve
as described in Step 5 in Sect. 2.8; sets up the simulation and then does the
dynamic system simulation.

5. algbal.m—Function called by networkequations.m to get the initial conditions
which satisfy both device and network constraints.

6. algconstraints.m—Function to calculate Ia given the current state x .
7. syncmcinitial.m—Get steady-state values for synchronous machines given the

terminal voltage in DQ-frame.
8. indmcinitial.m—Get steady-state values for induction machines given the ter-

minal voltage in DQ-frame.
9. syncmcza.m—Form the ZDQi and Dai matrices for synchronous machines given

the current state.
10. indmcza.m Form the ZDQi and Dai matrices for induction machines. The sign

of ZDQi is reversed for induction motors.
11. networkdotpu.m—ẋ calculation function for both synchronous and induction

machines and called from networkequations.m. In the function, Ia is first
obtained with algconstraints.m and then these currents are passed on to sub-
functions which calculate ẋ for synchronous and induction machines. In the
induction motor ẋ calculation idsi = −iDi and iqsi = −iQi .

2.9 Saturation

In developing the models for synchronous machines and induction machines the
saturation effects have not been considered. But the saturation effects have been
anticipated in the models by using flux linkages of the coil as state variables instead
of the currents through the coil as is the general practice in electrical circuits. Here we
see how a minor modification in the integration routine can be made to do dynamic
analysis with saturation effects.

For small values of excitation current there is a linear relationship between the
flux and the current, as shown by the air-gap line in Fig. 2.37. For flux levels in
synchronous machine and the magnetic materials used, the current-flux relationship
is shown by the saturation curve in Fig. 2.37. The current needed to create flux λ
is K1sλ for the air-gap but another term like K2seK3sλ is added to it to model the
saturation effect as shown in Fig. 2.38. The modelling of the saturation term can be
done in many different ways but the important point to keep in mind is that including
the effect of saturation is to include an extra term as shown in Fig. 2.38.
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For linear circuits the flux linkages are related to current by the coil induc-
tance, λ = Li . There are many ways to model the saturation but most power
systems dynamic analysis packages model the flux linkages are related as: i =(
K1sλ + K2seK3sλ

)
λ. The integration equation is shown in (2.124).

λ̇ = vi − Ri (2.123)

= vi − R
(
K1sλ + K2se

K3sλ
)

(2.124)

The above relationship (2.124) is for self flux linkages in a coil but the same idea
will work if there are multiple mutual linkages from other coils. As stated before the
use of flux linkages as state variables is a great advantage in keeping the equations
general enough to accommodate the saturation effects easily.



Chapter 3
Linear Control

3.1 Introduction

Automatic voltage regulator (AVR) and power system stabiliser (PSS) are two fun-
damental controllers which are important for the electrical engineering side of power
systems. Although the impact of these two controllers is far reaching, they can be
understood and designed using very elementary classical control ideas and tools.
Power engineers will be able to design AVR and PSS for multi-machine system using
the material in this chapter. Moreover, researchers will better understand nonlinear
multi-device dynamics and control problem by the tools presented in this chapter.

Fundamental ideas to understand linear dynamic systems depend on the behaviour
and solution of linear differential equations. An easy introduction and general solu-
tion method is introduced first and this is then used to introduce frequency response
and other classical analysis and design tools.

A linear model for the synchronous machine is first derived and analysed for
its dynamic properties. The analysis clearly identifies the role of AVRs and PSSs
in maintaining the stability of interconnected power systems. Finally, a detailed
introduction and design of AVRs and the PSS is done to bring all the classical
analysis and design tools together. The aim of this chapter is also to get the reader
to appreciate the characterisation of real interconnected power systems using Bode
plots as shown in Fig. 3.1.

3.2 Time Domain Analysis

Time domain analysis is based on characterising a dynamic system based on differen-
tial equations. The techniques of the time domain analysis are meant to characterise
the solution without actually solving the differential equations. To appreciate these
methods let us first look at the basics of solving differential equations. The idea
and solution methods for linear differential equations are rather straightforward. It
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Fig. 3.1 Bode plots of GPVr (s) from [10]

is convenient to write a system of linear differential equations in a state-space form
which in appearance and solution methods is like a first-order differential equation.
For this reason we first look at the first-order equation in this section.

3.2.1 First Order Differential Equations

Let us look at the following simple first order linear differential equation:

ẋ = ax, x(0) = x0 (3.1)

The solution of this Eq. (3.1) is a function which when differentiated is a constant
times the function itself. Which function is that? The exponential function has this
property,

deat

dt
= aeat . (3.2)
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So x(t) = eat satisfies the differential Eq. (3.1) but not the initial condition. We need
to modify our guess of x(t) only slightly to satisfy the initial condition: x(t) = x0eat .
This solution is known as the initial condition solution.

Now we look at the forced first order equation:

ẋ = ax + bu(t), x(0) = x0 (3.3)

where u(t) is the forcing function.
As a first guess let’s see how our initial condition solution can help us here. Let

the guess be x(t) = x0eat + y(t), y(t) is as yet unknown function. It would make
sense to impose the condition y(0) = 0. Substituting this guess in Eq. (3.3) gives,

ax0e
at + ẏ(t) = a

(
x0e

at + y(t)
)+ bu(t)

⇒ ẏ(t) = ay(t) + bu(t) (3.4)

Equation (3.4) is similar to the original equation but with zero intial condition.
As we did for the solution of the unforced Eq. (3.1), we guess a solution for the

forcedEq. (3.4) as y(t) = eat z(t), where z(t) is as yet unknown function. Substituting
this guess in Eq. (3.4) we get,

ẏ(t) = aeat z(t) + eat ż(t) (3.5)

From Eq. (3.5) we can see that if

ż(t) = e−atbu(t) (3.6)

then y(t) = eat z(t) is a solution of Eq. (3.4). This means that the solution of the
original Eq. (3.3) is,

x(t) = x0e
at + eat

∫ t

0
e−aτbu(τ )dτ . (3.7)

The solution of the first order differential (3.1), given in (3.7), has been derived
by making repeated guesses. The solution can be found by other methods which can
be found in many textbooks. Here the guess method is deliberately used to underline
the fact that almost all problems are first solved by guessing a solution and then
improving on it till a satisfactory solution is found. Unfortunately, later the “guess”
tracks are hidden and a clean solution is presented. This removes students from
the original insights and they miss on the most useful learning experience. Before
accepting a solution, students should always think if they can guess a solution and
how the first guess was made leading to the final solution.

Once the “guess” approach to solving a differential equations is understood, one
never has to look for methods to solve differential equations, the methods can be
invented as required.
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3.2.2 Second Order Differential Equations

Inmany dynamical systems, an equivalent second order system dominates the system
response and most systems can be approximated using a second order system. Next,
we look at second order linear systems in detail.

Firstly we look at the solution of the following homogeneous second order linear
differential equation:

d2x

dt2
+ a

dx

dt
+ bx = 0, x(0) = x0, x ′(0) = x ′

0 (3.8)

To find a solution of the above differential equation (3.8), we first guess a solution
and then substitute it back in the equation and see if it satisfies the equation. To see
what type of functions may provide a good guess we rewrite the above equation
as: d2x

dt2 = −a dx
dt − bx , and observe that higher order derivatives are expressed as a

linear combination of the lower order derivatives. Which functions have this prop-
erty? Polynomial functions in time don’t have this property (why?). Sine and cosine
functions differentiated twice result in a constant times the function itself, so sine and
cosine functions show some promise and they are indeed good guesses for equations
where the first derivative is missing, i.e., d2x

dt2 = −bx , but for a general Eq. (3.8) it
cannot be used.

Drill Substitute a general function A sin(λx + φ) in Eq. (3.8) and show that such a
function cannot satisfy a general second order differential equation.

Since the sine function shows some promise let’s go a step further and try a
generalised trigonometric function, keλt . On substituting keλt into Eq. (3.8) we get,

λ2keλt + aλkeλt + bkeλt = 0. (3.9)

For the above equation to hold we need,

λ2 + aλ + b = 0 (3.10)

Equation (3.10) is known as the characteristic equation for the system described by
the Eq. (3.8). Let the solution of the characteristic be λ = λ1,λ2. Then the general
solution of the differential equation (3.8) is given by:

x(t) = k1e
λ1t + k2e

λ2t (3.11)

Real Roots (Overdamped Solution) The case where λ1 and λ2 are real and distinct
needs no further comment except that the initial conditions are used to find the values
of the constants k1 and k2. The case with equal real roots is interesting and is covered
later.
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Complex Roots (Underdamped Solution) When λ1 and λ2 are complex they have
to be complex conjugate (why?). This means that, λ1, λ2 = α ± jω. The general
solution can then be written as:

x(t) = k1e
(α+jω)t + k2e

(α−jω)t

= eαt ((k1 + k2) cos(ωt) + j (k1 − k2) sin(ωt)) (3.12)

To satisfy the given initial conditions it must be true that,

k1 + k2 = x(0) (3.13)

jω(k1 − k2) + α(k1 + k2) = x ′(0) (3.14)

From (3.13) and (3.14) above, for real values of x(0) and x ′(0), k1 and k2 have to be
complex conjugate.

Drill Prove that k1 and k2 are complex conjugate.
For complex conjugate k1 and k2 we see that j (k1 − k2) is a real number. Denote:

k =
√

(k1 + k2)2 + (j (k1 − k2))2 = 2k1k2

φ = tan−1

(
k1 + k2
k1 − k2

)

with the above definitions of k and φ the general solution (3.12) can be written in
the form:

x(t) = keαt sin(ωt + φ) (3.15)

The two constants k and φ are solved for the given initial conditions.

Repeated Roots (Critically Damped Solution) When the roots of the characteristic
equation (3.10) are equal then the solution is written differently from (3.11) above.
The characteristic equation such as (3.10) has repeated roots when b = a2/4 and
then the differential equation (3.10) can be written as:

d

dt

(
dx

dt
+ a

2
x

)
+ a

2

(
dx

dt
+ a

2
x

)
= 0 (3.16)

Let

y
�= dx

dt
+ a

2
x (3.17)

with this definition of y, Eq. (3.16) and its solution can be written as:

dy

dt
+ a

2
y = 0 ⇒ y = ke− a

2 t . (3.18)



108 3 Linear Control

Substituting the above solution back into (3.17) we get:

dx

dt
+ a

2
x = ke− a

2 t ⇒ x = k1te
− a

2 t + k2e
− a

2 t (3.19)

Like the previous two cases the initial conditions are used to obtain values of the
constants k1 and k2.

Forcing Functions For an equation with a forcing function f (t), shown below,

d2x

dt2
+ a

dx

dt
+ bx = f (t), x(0) = x0, x ′(0) = x ′

0, (3.20)

what has been described before for the homogeneous equation is used to get the
natural response.

To find particular solution for a general forcing function is a bit tedious. Particular
solutions can be easily obtained for certain forcing functions. For example, particular
solution due to a step forcing function is a constant, and due to a sinusoidal forcing
function is a sinusoid itself with the frequency the same as that of the forcing function
sinusoid but with a different magnitude and phase are different.

3.2.3 Simultaneous First Order Differential Equations
or State-Space Representation

Earlier we saw that it was very simple to obtain a complete solution to the first order
Eq. (3.3). In this section we use the same idea to obtain a solution of simultaneous
first order differential equations.

The second order Eq. (3.20) can be written as two simultaneous first order equa-
tions. Define

x1 := x (3.21)

x2 := ẋ ⇒ ẋ2 = −ax2 − bx1 + f (t) (3.22)

With the above definitions (3.21) and (3.22), the differential equation (3.20) can be
written in a compact matrix form as:

[
ẋ1
ẋ2

]
=
[

0 1
−b −a

] [
x1
x2

]
+
[
0
1

]
f (t) (3.23)

We now write the above equation in the form,

Ẋ = AX + B f (t) (3.24)

where
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X :=
[
x1
x2

]
; A =

[
0 1

−b −a

]
; B =

[
0
1

]
. (3.25)

We say that Eq. (3.24) is a vector version of Eq. (3.3). Looking at the solution of
Eq. (3.3), given in Eq. (3.7), we write the solution of Eq. (3.24) as:

X (t) = �(A, t)

[
X (0) +

∫ t

0
�(A,−τ )B f (τ )dτ

]
. (3.26)

The solution (3.26) is valid provided the function �(A, t) satisfies two conditions:

�̇(A, t) = A�(A, t) and �(A, t)�(A,−t) = I

where I is an identity matrix. Note that

d

dt

∫ t

0
�(A,−τ )B f (τ )dτ = �(A,−t)B f (t). (3.27)

If �̇(A, t) = A�(A, t) then �̈(A, t) = A2�(A, t), etc. We can use this fact to form
a Taylor series for the function �(A, t) (note that �(A, 0) = I , �̇(A, 0) = A, and
�̈(A, 0) = A2, etc.)

�(A, t) = I + At + A2t2

2! + A3t3

3! + . . . (3.28)

When A is a diagonal matrix such that aii = λi and ai j = 0, i �= j , then we write
A = diag{λ1, . . . ,λn}, and from (3.28), we have

�(A, t) = diag{eλ1t , . . . , eλn t }. (3.29)

It can be verified by direct evaluation that for the definition of �(A, t) in (3.28),

�(A, t)�(A,−t) = I and �(A, t1 + t2) = �(A, t1)�(A, t2) = �(A, t2)�(A, t1).

There exist many different ways to calculate the state-transition matrix �(A, t).
One of the easier ways is to use a computer. The factorial terms in Eq. (3.28)
dominate after a few terms for small t . This with the property �(A, t1 + t2) =
�(A, t1)�(A, t2) makes it very easy to calculate state-transition matrix using a
computer.

An nth order differential equation can be written as a set of simultaneous first
order differential equations. Let an nth order system be given as:

dnx

dtn
+ a1

dn−1x

dtn−1
+ · · · + anx = f (t),

dxi (0)

dti
= xi0, i = 0, 2, . . . , n − 1.

(3.30)
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Then define:

x1 := x

xi := ẋi−1, i = 2, . . . , n (3.31)

This gives,

ẋn = −
n∑

i=1

ai xn−i+1 + f (t). (3.32)

The n first order simultaneous Eqs. (3.31) and (3.32) can be written as:

Ẋ = AX + B f (t), X (0) = X0 (3.33)

where

X :=

⎡

⎢
⎢⎢
⎢
⎢
⎣

x1
x2
.
.
.

xn−1

xn

⎤

⎥
⎥⎥
⎥
⎥
⎦

; A =

⎡

⎢
⎢⎢
⎢
⎢
⎣

0 1 0 · · · 0
0 0 1 · · · 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 · · · 1
−an −an−1 −an−2 · · · −a1

⎤

⎥
⎥⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢⎢
⎢
⎢
⎣

0
0
.
.
.

0
1

⎤

⎥
⎥⎥
⎥
⎥
⎦

, X (0) :=

⎡

⎢⎢
⎢
⎢⎢
⎢
⎣

x00
x10
.
.
.

xn−2
0
xn−1
0

⎤

⎥⎥
⎥
⎥⎥
⎥
⎦

.

(3.34)

The variables x1, x . . . , xn are called the state-variables and X is called the state-
vector.
The solution of Eq. (3.33) is:

X (t) = �(A, t)

[
X (0) +

∫ t

0
�(A,−τ )B f (τ )dτ

]
. (3.35)

3.2.4 Modal Analysis

A linear dynamic system can be represented as:

ẋ = Ax + Bu (3.36)

x is an n-dimensional column vector and A is an n × n matrix. Modal analysis is a
technique of analysing system behaviour looking at the properties of the matrix A
in (3.36).

For an n × n matrix A, its characteristic equation is given by det(A − λI ) = 0
where I is an identity matrix; n solutions λi , i = 1, 2, . . . , n are called eigenvalues
of matrix A.

Let �i be a column vector (right eigenvector) such that
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A�i = λi�i , i = 1, . . . , n

For dynamic systems (3.36), eigenvectors have an interesting interpretation. If the
initial condition x(0) = �i and u = 0, then according to Eq. (3.35),

x(t) = I + λi�i t + λ2
i �i t2

2! + λ3
i �i t3

3! + . . . (3.37)

For λi real the solution continues along the vector �i and for λi negative, it
approaches zero along the eigenvector. It can be easily seen from the properties
of the eigenvectors that any solution starting close to an eigenvector will approach
the eigenvector and either go to zero or infinity along that eigenvector.

For complex λi = ai + jbi and the associated eigenvector �i = Ui + jVi , we
have:

AUi = aiUi − bi Vi (3.38)

AVi = ai Vi + biUi (3.39)

From (3.38)–(3.39), it can be seen that the real part of the eigenvalue ai scales along
the same direction but the imaginary part bi flips the imaginary and the real parts of
the eigenvector. So one can say that the real part moves the trajectory linearly and
the imaginary part rotates it between vectors Ui and Vi

In the limit if ai = 0, the trajectory if starting along the vector Ui or Vi is given
by substituting (3.38)–(3.39) in (3.35),

x(t) = Ui cos bi t + Vi sin bi t (3.40)

From (3.40) one can say that the trajectory will keep rotating from Ui to Vi at
frequency bi . For eigenvalues with zero real part, i.e., a = 0, the trajectory will be a
circle and the radius will depend on the initial conditions.

The relationship between eigenvectors and the system response can be seen for a
simple system:

ẍ + 2ζωn ẋ + ω2
nx = 0; x(0) = x0, ẋ(0) = x ′

0

For this system let x1 = x , and x2 = ẋ , then:

x =
[
x1
x2

]
and A =

[
0 1

−ω2
n −2ζωn

]

Figure3.2 shows trajectories when ζ = 1.25,ωn = 1 rad s−1, λ1 = −0.5,λ2 =
−2.0, and �1 = [0.89, −0.44]T ,�2 = [−0.44, 0.89]T . It can be seen that the
trajectories move towards an eigenvector and then approach the origin along the
eigenvector.

Figure3.3 shows trajectories when ζ = 0.1,ωn = 14 rad s−1, λ1,λ2 =
−0.1 ± j0.995, and �1 = [0.7071, −0.0707 + 0.7036j ]T ,�2 = [0.7071,
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Fig. 3.2 Trajectories for a system with real eigenvalues

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Fig. 3.3 Trajectories for a system with imaginary eigenvalues

−0.0707 − 0.7036j ]T . It can be seen that the trajectory is spiralling towards the
origin as expected for a system with imaginary eigenvalues (Fig. 3.3).

The correspondence between eigenvectors and the system response can be further
systematised by considering all the eigenvectors together. Denoting � as the matrix,
known as modal matrix, made up of all the column vector �i , such that
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� = [�1, . . . , �n] .

We can see that
�−1A� = diag{λ1, . . . ,λn}

Often we write � = diag{λ1, . . . ,λn}.
The left eigenvector, �i , is a row vector such that

�i A = λi�i .

Note that AT�T
i = λi�

T
i , we can make another modal matrix � as,

� = [�T
1 , . . . , �T

n

]T
.

The left and right eigenvectors are such that, � j�i = 0, i �= j , and, �i�i =
Ci . This follows from � j A�i = λ j� j�i = λi� j�i . Often the modal matrices are
normalised such that �� = I .

Define a transformed vector z as x = �z (since �� = I , we have z = �x), then
(for u=0)

ż = �−1A�z = �z.

The i th element of z(t) is called the i thmodeof the systemcorresponding to the eigen-
value λi . We have z(t) = e�t z(0) and zi (t) = eλi t zi (0) = eλi t�i x(0) and finally

x(t) =
n∑

i=1

�i�i x(0)e
λi t .

The i th right eigenvector �i is the mode shape corresponding to the eigenvalue
λi . The j th element of the left eigenvector �i , �i j , gives the contribution of the j th
state in the i th mode.

3.2.4.1 Evaluating Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors are calculated inmany different ways both numerically
for a linear model and experimentally for power systems. It is helpful to remember
a few properties of eigenvalues and eigenvectors to be able to make efficient use of
the modal analysis.

For a matrix A with an eigenvalue λ and associated eigenvector X :

1. A−1 (if it exists) has an eigenvalue 1
λ
with associated eigenvector X .

2. The matrix (A − k I ) has an eigenvalue (λ − k) and associated eigenvector X .
3. The matrix (A − k I )−1, i.e., the inverse (if it exists) of the matrix(A − k I ), has

eigenvalue 1
λ−k and corresponding eigenvector X .
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To obtain an eigenvalue of a matrix A closest to q [11]:

1. Let Z0 be an arbitrary vector or a vector close to the expected eigenvector.
2. Solve for Wk+1:

(A − q I )Wk+1 = Zk

3. Compute the vector Zk+1 for the next iteration:

Zk+1 = Wk+1

max(Wk+1)

and return to the preceding step till there is a convergence.

Prony Analysis Modal information can be obtained from experimental measure-
ments using Prony analysis [12–14]. The Prony method decomposes time-domain
signals into damped sinusoids with four parameters per mode: frequency, damping,
amplitude (relative weight), and phase:

y(t) =
∑

Ai exp(σi t) cos(ωi t + φi ). (3.41)

Prony analysis proceeds along the following steps.

1. Record output y(t) for non-zero initial condition disturbance. Let the record
y(t) consist of N samples y(tk) = y(k), k = 0, 1, . . . , N − 1 evenly spaced by
an amount �t .

2. Fit the record y(t) with a discrete linear prediction model of form (with SNR >
40 dB)

yi (P + k) = a1yi (P + k − 1) + · · · + aP yi (k); SNR = 20 log rms

(
y(t)

y(t) − yi (t)

)
.

(3.42)
3. Find the roots of the characteristic polynomial, λi = σi ± jωi , associated with

the model (3.42).
4. Using the roots of of the characteristic polynomial, λi = σi ± jωi , determine

the amplitude (relative weight) and initial phase for each mode using (3.41) and
the time-domain data.

Details of Prony analysis done by BPA using an output record that was obtained by
applying a 1400 MW load for 0.5 s [12, 13].

3.2.5 Eigenvalue Sensitivity and Participation Matrix

A grid is an interconnection of several generators with the capability to provide con-
trol for voltage and frequency regulation. In the first instance it is desired that the



3.2 Time Domain Analysis 115

controls be decentralised or local. The first task is to decide which generators will
be used for control and their control authority. Every power system has continuous
oscillations and the primary purpose of the control is to damp those oscillations. Lin-
earised models of the complete power system give a very good idea of the oscillation
characteristics of power systems. The analysis consists in first evaluating the eigen-
values of the linearised model and analysing the damping properties of the dominant
eigenvalues. For the eigenvalues with less than acceptable damping control action is
provided.

Once the lowly damped dominant eigenvalues are identified, the sensitivity of
eigenvalues to changing the elements in the A matrix enables the identification of
the generators which can provide the control action for increasing the damping. Here
we look at the participation matrix method to evaluate the sensitivity.

We can use the basic eigenvalue algebra to write an expression for the sensitivity
of the eigenvalues of the system in terms of participation matrix elements as shown
below:

A�i = λi�i (3.43)
∂A

∂akj
�i + A

∂�i

∂akj
= ∂λi

∂akj
�i + λi

∂�i

∂akj
(3.44)

�i
∂A

∂akj
�i = ∂λi

∂akj
(3.45)

∂λi

∂akj
= �ik� j i . (3.46)

Equation (3.45) is possible since �i�i = 1 and �i (A − λi I ) = 0 and finally only
the (k, j)th element of A depends on akj . The eigenvalue sensitivity

∂λi
∂akj

is given by
the expression in (3.46).

From the above sensitivity formula (3.46), let’s see what happens if we change
the (k, k)th element of the A matrix, i.e., provide a feedback in the state equation
for ẋk from state variable xk , i.e., provide a local control:

∂λi

∂akk
= �ik�ki = pki . (3.47)

This tells us that to change the i th mode the best thing to do is apply a control to
the state variable k such that pki is the largest participating factor. There is another
interpretation of the elements of the participation matrix. The dynamics of the x j =∑n

i=1 � j i�i x(0)eλi t state is made up of the dynamics of various modes and we see
that � j i gives the participation of mode zi in state x j . We have zi =∑n

j=1 �i j x j ,
this means that � j i�i j is the participation of mode i in state x j and vice-versa. The
participation matrix P is made up of elements [8, 15]:

pki = �ki�ik .
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Here are a few important points in the use of the participation factors.

1. The term, pki , gives the participation of the i th state in the kth mode and vice-
versa.

2. States of a system are not unique, they can be scaled and eigenvectors may also
be scaled by an arbitrary constant.

3. Participation factors are scale independent.
4. Participation factors are useful in the placement of PSS.

In many dynamic system applications eigenvectors are used for modal analysis
and control design. In power systems participation factors are used. Although eigen-
vectors and participation factors are related, participation factors have an important
property that their value is scale independent, i.e., is does not change with different
scaling of the state variables, it is truly a property of the system dynamics.

Let the original system be:

[
ẋ1
ẋ2

]
=
[
0 1

−1 −1

] [
x1
x2

]
(3.48)

The right eigenvectors are (columns of �):

� =
[

0.7071 0.7071
−0.3535 + 0.6123i −0.3535 − 0.6123i

]
(3.49)

The left eigenvectors are (rows of �):

� =
[
0.7071 − 0.4082i −0.8165i
0.7071 + 0.4082i 0.8165i

]
(3.50)

The two right eigenvectors above tell us that in both the modes both the states
contribute equallymagnitudewise butwith a 180◦ phase difference. The participation
matrix is:

P =
[
0.5000 − 0.2887i 0.5000 + 0.2887i
0.5000 + 0.2887i 0.5000 − 0.2887i

]
(3.51)

The above participationmatrix clearly indicates that both the states contribute equally
to both the modes. The same conclusion as from eigenvector analysis.

Now let us scale the first state variable and define a new variable as: z1 = 500x1.
The above Eq. (3.48) becomes:

[
ż1
ẋ2

]
=
[
0 500
−1
500 −1

] [
z1
x2

]
(3.52)

The right eigenvectors are (columns of �):

� =
[

1 1
−0.001 + 0.0017i −0.001 − 0.0017i

]
(3.53)
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The left eigenvectors are (rows of �):

� =
[
0.5 − 0.29i −288.68i
0.5 + 0.29i 288.68i

]
(3.54)

The right eigenvectors �i indicate that state variable x1 contributes much more to
both the modes. Below the participation matrix of the scaled system is given and it
is the same as in the first representation.

P =
[
0.5000 − 0.2887i 0.5000 + 0.2887i
0.5000 + 0.2887i 0.5000 − 0.2887i

]
(3.55)

From this we can see that the participation matrix is scale independent and it a
property of the system itself.

3.3 Laplace Domain or Transfer Function Analysis

A power system, like most practical dynamic systems, is an interconnection of many
subsystems. For analysis and control design a mathematical model of the complete
system must be put together from subsystem models. In general this is a difficult
task but of all the mathematical representations Laplace domain representation (also
known as a transfer function representation) makes it the easiest to put together a
complete systemmodel from subsystemmodels. This is the reason for the popularity
of transfer functions.

A transfer function is an input-output model of the system. It is a compact model.
As we will see later in writing the model equations, d

dt is replaced by s in transfer
functions, resulting in economy of writing. At an advanced level, transfer functions
capture unmodelled dynamics in a practical manner facilitating the design of robust
control.

The Laplace transform, of a time function f (t), is defined as:

F(s) = L[ f (t)] =
∫ ∞

0
e−st f (t)dt (3.56)

where s is a complex variable. It is a convention to denote time functions with lower
case letters and Laplace transformed functions with upper case letters. Let us first
derive a few frequently used time and Laplace transform pairs.

A unit-step u(t) is defined as a function which is zero for time less than zero and
unity at all other times. Then

U (s) =
∫ ∞

0
e−st u(t)dt

= −1

s
e−st

∣∣
∣∣

∞

0

= 1

s
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Table 3.1 Laplace transform pairs

f (t) F(s)

eat f (t) F(s − a)
d f
dt sF(s) − f (0)
dn f
dtn sn F(s) −∑n

k=1 s
n−k f k−1(0)

f (t − a)u(t − a) e−as F(s)

unit-step u(t) 1
s

e−at u(t) 1
s+a∫

g(τ )dτ 1
s G(s)

tnu(t) n!
sn+1

sin(ωt)u(t) ω
s2+ω2

cos(ωt)u(t) s
s2+ω2

Let f (t) = e−atu(t), where u(t) is a unit-step, then

F(s) =
∫ ∞

0
e−st e−atu(t)dt

= − 1

s + a
e−(s+a)t

∣∣
∣∣

∞

0

= 1

s + a

Let g(t) = d f
dt , then

G(s) =
∫ ∞

0

d f

dt
e−st dt

= f (t)e−st
∣
∣∞
0 + s

∫ ∞

0
e−st f (t)dt = sF(s) − f (0)

Continuing the derivation process used above we can easily obtain Table3.1 for
the Laplace transform pairs.

Transfer Function For a single-input-single-output system, theLaplace transformof
the output divided by the Laplace transform of the input, with zero initial conditions,
is called the transfer function of the system. For a multi-input-multi-output system
transfer functions are defined for every input-output pair and the collection of these
transfer functions is normally represented in a matrix form.

For the types of systems considered in power system analysis, transfer functions
are a ratio of two rational polynomials, i.e.,

G(s) = b(s)

a(s)
= b0sm + b1sm−1 + . . . + bm

sn + a1sn−1 + . . . + an
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The roots of the numerator b(s) are called the zeros of the system and the roots of
the denominator a(s) are called the poles of the system.

The transfer function for a system represented by an nth order equation can also
be written quite easily. Let the nth order system be given as:

dnx

dtn
+ a1

dn−1x

dtn−1
+ · · · + anx = u(t),

dxi (0)

dti
= 0, i = 0, 2, . . . , n − 1. (3.57)

Let the output y = x , and let u(t) be the input (not the unit-step as used before).
Taking Laplace Transform of both the sides of Eq. (3.57), we get using Table3.1,

sn X (s) + a1s
n−1X (s) + · · · + an X (s) = U (s). (3.58)

From the above (3.58) gives, the transfer function as,

G(s) = Y (s)

U (s)
= 1

sn + a1sn−1 + · · · + an

In Sect. 3.2.3, we saw how an nth order differential equation can be represented
in the state-space form:

ẋ = Ax + Bu (3.59)

y = Cx + Du (3.60)

x is an n-dimensional columnvector; A isn × nmatrix; B isn × mmatrix;C is p × n
matrix; D is p × p matrix; u is m-dimensional column vector; y is p-dimensional
column vector; the system has m inputs and p outputs. The transfer function for the
system in (3.59) and (3.60) can be obtained as follows:

sX (s) =AX (s) + BU (s)

X (s) = (s I − A)−1 BU (s)

Y (s) =CX (s) + DU (s)

where I is an n × n identity matrix with ones on its principal diagonal and zero
elsewhere. Putting the above relations together we get the transfer function as:

G(s) = C (s I − A)−1 B + D

3.3.1 Block Diagrams

Asmentioned above, one of the strengths of the Laplace domain analysis is the ability
to represent a complex interconnected system as an interconnection of subsystem
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G1(s)
U1(s) Y1(s) = U2(s)

G2(s)
Y2(s) = G(s) = G1(s)G2(s)

U1(s) Y2(s)

Fig. 3.4 Series connection

G1(s)
U1(s) Y1(s)

G2(s)
U2(s) Y2(s)

+
U(s) Y (s)

= G(s) = G1(s) + G2(s)
U(s) Y (s)

Fig. 3.5 Parallel connection

blocks. Here we look at elementary block diagram manipulations which are used to
combine subsystem blocks into a complete system.

Figure3.4 shows two transfer functions connected in series. The output of the first
block is the input to the next block, the transfer function of the complete system is
given as:

G(s) = Y2(s)

U1(s)
= Y1(s)

U1(s)

Y2(s)

Y1(s)
= G1(s)G2(s)

Figure3.5 shows two transfer functions connected in parallel. The input of both
the blocks is the same and the output of the system is the sum of the two outputs, the
transfer function of the complete system is given as:

G(s) = Y (s)

U (s)
= Y1(s) + Y2(s)

U (s)
= G1(s) + G2(s)

Figure3.6 shows two transfer functions connected in a negative feedback config-
uration. The transfer function of the complete system is obtained as follows:

U1(s) = U (s) − Y2(s)

= U (s) − G1(s)G2(s)U1(s)

= U (s)

1 + G1(s)G2(s)

From the above and Y (s) = G1(s)U1(s), we get

G(s) = Y (s)

U (s)
= G1(s)G2(s)

1 + G1(s)G2(s)

In general an interconnected system will be much more complicated than the
three cases considered here but using these three block diagram manipulations one
can obtain the complete transfer function of even the most complicated system.
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G1(s)
U1(s) Y1(s)

G2(s)
U2(s)

+

Y2(s)

−

U(s) Y (s)

= G(s) =
G1(s)G2(s)

1 + G1(s)G2(s)
U(s) Y (s)

Fig. 3.6 Feedback connection

Subsequent to the combination of the subsystemblocks, one of theLaplace domain
analysismethod consists of evaluating the zeros and poles of the transfer function and
then relating them to the time response of the dynamic system. Frequency response,
obtained from the transfer function or experimentally, is another analysis method.
We will look at the frequency response later in the chapter but next we see how
dynamic system analysis is done using the poles and zeros of a transfer functions.

3.3.2 Second Order System Response

Transfer function for a second-order system (with y(t) = x(t))

ẍ + 2ζωn ẋ + ω2
nx = u(t); x(0) = 0, ẋ(0) = 0

can be written as,

G(s) = Y (s)

U (s)
= ωn

2

s2 + 2ζωns + ωn
2

(3.61)

where ζ,ωn > 0. The transfer function is parameterised in terms of ζ and ωn . The
value of ωn does not qualitatively change the system response but there are three
important cases—with qualitatively different system behaviour—as ζ varies. The
three cases are discussed below.

(a) ζ > 1
This is known as an overdamped system. To see why, let’s look at the step-response
for this case.

Y (s) = 1

s

ωn
2

(s + p1)(s + p2)

= 1

s
− p2

p2 − p1

1

s + p1
+ p1

p2 − p1

1

s + p2
(3.62)

where p2 > p1 > 0, p1 = ωn(ζ −√ζ2 − 1), and p2 = ωn(ζ +√ζ2 − 1). This gives:
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y(t) = 1 − 1

2

(
ζ

√
ζ2 − 1

+ 1

)

e
−ωn

(
ζ−√

ζ2−1
)
t + 1

2

(
ζ

√
ζ2 − 1

− 1

)

e
−ωn

(
ζ+√

ζ2−1
)
t

= 1 − e−ωn t cosh

(
ωn

√
ζ2 − 1

)
t − ζ

√
ζ2 − 1

e−ωn t sinh

(
ωn

√
ζ2 − 1

)
t (3.63)

In the above Eq. (3.63) it can be seen that

cosh
(
ωn

√
ζ2 − 1

)
t > 0 and sinh

(
ωn

√
ζ2 − 1

)
t > 0, ∀t > 0.

This means that two positive numbers are always subtracted in Eq. (3.63) from
the steady-state value of 1. Hence the step-response y(t) in Eq. (3.63) never goes
above 1, hence the classification of overdamped.

(b) ζ < 1
This is known as an underdamped system. To see why, let’s look at the step-response
for this case.

Y (s) = 1

s

ωn
2

s2 + 2ζωns + ωn
2

= 1

s
− s + 2ζωn

s2 + 2ζωns + ωn
2

= 1

s
− ζωn

(s + ζωn)2 + ωn
2(1 − ζ2)

− s + ζωn

(s + ζωn)2 + ωn
2(1 − ζ2)

(3.64)

This gives:

y(t) = 1 − ζe−ζωn t

√
1 − ζ2

sinωd t − e−ζωn t cosωd t

= 1 − e−ζωn t

√
1 − ζ2

sin(ωd t + ψ) (3.65)

where ωd = ωn

√
1 − ζ2 and ψ = tan−1

√
1−ζ2

ζ
.

It can be clearly seen that the step-response in Eq. (3.65) will overshoot the
steady-state value of 1 as the sinusoidal function takes negative values, hence the
classification as underdamped system.

(c) ζ = 1
This is the critically damped case. To see why let’s look at the step-response.

Step-response:
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Fig. 3.7 Step-response of Second-order System (ωn = 10)

Y (s) = 1

s

ωn
2

(s + ωn)2

= 1

s
− 1

s + ωn
− ωn

(s + ωn)2
(3.66)

This gives,
y(t) = 1 − e−ωn t − ωnte

−ωn t . (3.67)

Comparing the above expression (3.67) for the step-response with the expression for
overdamped case in expression (3.63), we see that since (for ζ > 1):

cosh

(
ωn

√
ζ2 − 1

)
t > 1, ∀t > 0 and

ζ
√

ζ2 − 1
sinh

(
ωn

√
ζ2 − 1

)
t > ωnt, ∀t > 0,

the step-response of a critically damped system will always be higher than the over-
damped system step-response (ζ > 1). In otherwords, of all the second order damped
systems with real poles (parameterised by ζ as in expression 3.61) this will reach the
steady-state in the shortest time. That’s why it’s called critically damped. This can
be clearly seen in Fig. 3.7.

An analysis for a second order system is done in the section.Almost every dynamic
system has a much higher order than two, so why do we emphasise the second order
analysis so much? The fact is that even for a hundredth order system the dominant
dynamics is often given by just a couple of poles close to the imaginary axis, i.e., the
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reduced order model of interest even for very high order systems is a second order
system. Moreover, many design specifications are also given in terms of a second
order system response. A good understanding and familiarity with the second order
system dynamics is very important.

3.3.3 Frequency Domain Analysis

Frequency response for most systems can be experimentally obtained and this makes
the study of the analysis and design methods based on frequency response very
rewarding. Frequency response is a term used for the gain and phase shift between
the input and output for sinusoidal forcing function in steady-state. In this section,
first we prove that the steady-state output for a stable linear system, with sinusoidal
inputs, is a sinusoid with the same frequency as the input sinusoid, with a different
peak value and phase. This is the most vital element of linear analysis and design,
thus it should be understood well.

To make it accessible to students from different background, two proofs relating
the transfer functions and state-space representations to the frequency response are
presented next.

3.3.3.1 Transfer Function to Frequency Response

Let a stable system be described by a transfer function H(s). Let us denote the
input signal as r(t) and the output signal as y(t). For an input sinusoidal signal, i.e.,
r(t) = A sin(ωs t), the steady-state output y(t) = A|H(jω)| sin(ωs t + ∠H(jω)).

Proof The Laplace transform of the input is:

L[r(t)] = R(s) = Aωs

s2 + ω2
s

and hence the output can be written as:

Y (s) = H(s)R(s) = H(s)
Aωs

s2 + ω2
s

Let
H(s)Aωs

s2 + ω2
s

= k

s + jωs
+ k∗

s − jωs
+

n∑

i=1

λi

s + αi
(3.68)

k = H(s)Aωs

s2 + ω2
s

(s + jωs)

∣∣∣∣
s=−jωs

= H(−jωs)Aωs

−2jωs
= jH(−jωs)A

2
(3.69)



3.3 Laplace Domain or Transfer Function Analysis 125

Let
H(jωs)

�= a(ωs) + jb(ωs)

This implies:

Yss(s)
�= k

s + jωs
+ k∗

s − jωs
= j (a(ωs) − jb(ωs))A

2(s + jωs)
+ −j (a(ωs) + jb(ωs))A

2(s − jωs)

Then:

yss(t) = L−1[Yss(s)] = (ja(ωs) + b(ωs))A

2
e−jωs t + (−ja(ωs) + b(ωs))A

2
ejωs t

= A[ ja(ωs)

2
(e−jωs t − ejωs t )] + A[b(ωs)

2
(e−jωs t + ejωs t )]

= A[a(ωs)

2j
(ejωs t − e−jωs t )] + A[b(ωs)

2
(e−jωs t + ejωs t )]

= A[a(ωs) sin(ωs t) + b(ωs) cos(ωs t)]
= A

√
(a2(ωs) + b2(ωs))[ a(ωs)√

(a2(ωs) + b2(ωs))
sin(ωs t) + b(ωs)√

(a2(ωs) + b2(ωs))
cos(ωs t)]

Noting that

|H(jωs)| =
√

(a2(ωs) + b2(ωs)) and φ(ωs)
�= ∠H(jωs) = tan−1 b(ωs)

a(ωs)

we can write:
yss(t) = A|H(jωs)| sin(ωs t + φ(ωs))

In the above we haven’t paid any attention to the third part of the expression on
the left hand side of the Eq. (3.68). Let us look at that expression now.

yn(t)
�= L−1[

n∑

i=1

λi

s + αi
] =

n∑

i=1

λi e
−αi t

Note that both λi and αi can be either real or complex. When αi is real then λi is
also real. For complex αi there will be another α j = α∗

i and in general we can write:

yn(t) =
∑

∀ real αi

λi e
−αi t +

∑

∀ complex αi &α∗
i

ki e
−
(αi )t sin(ωs t + ψ)

It is easy to see that when (Real part of (αi ) > 0)
(αi ) > 0 then limt→∞ yn(t) = 0.
For all passive RLC networks
(αi ) is always less than 0. The condition
(αi ) >

0 also means that all the roots of the denominator of the transfer function H(s) are in
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the left half of the complex plane. Roots of the denominator of the transfer function
are also known as the system poles; zeros are the roots of the transfer function
numerator.

In other words for any system with the poles in the left half complex plane the
steady-state response to a sinusoid of frequency ωs can be worked out by evaluating
the magnitude and the phase of the complex number H(jωs) and then noting that
the magnitude of the output is given by the magnitude of the input sinusoid times the
magnitude of H(jωs) and the phase shift between the input sinusoid and the output
is given by the phase of H(jωs).

3.3.3.2 State-Space Representation to Frequency Response

For a stable linear system,

ẋ = Ax + Bu (3.70)

y = Cx + Du (3.71)

let u(t) = est where s = iω. Show that for this input u(t) the steady-state output

yss(t) = Meiθest

where
Meiθ = C(iω I − A)−1B + D.

Use the above result to show that when

u(t) = cos(ωt) = 1

2

(
eiωt + e−iωt

)

then
yss(t) = M cos(ωt + θ).

Proof We can write,

X (t) = eAt X (0) +
∫ t

0
eA(t−τ )Bu(τ )dτ = eAt X (0) + eAt

∫ t

0
e−Aτeiωτdτ B

(3.72)
Let

S =
∫ t

0
e−Aτeiωτdτ

then using the rule of integration by parts



3.3 Laplace Domain or Transfer Function Analysis 127

S = e−Aτeiωτ

iω

∣∣∣∣

t

0

+ A

iω

∫ t

0
e−Aτeiωτdτ (3.73)

= e−Aτeiωτ

iω

∣∣∣∣

t

0

+ A

iω
S (3.74)

(
I − A

iω

)
S = e−Aτeiωτ

iω

∣
∣∣∣

t

0

(3.75)

=e−At eiωt

iω
− I

iω
(3.76)

S = (iω I − A)−1 e−At eiωt − (iω I − A)−1 (3.77)

=e−At (iω I − A)−1 eiωt − (iω I − A)−1 (3.78)

The last step is possible only because the matrices (iω I − A)−1 and e−At commute.
Putting S back in Eq. (3.72), we get

X (t) = eAt X (0) + eAte−At (iω I − A)−1 eiωt − eAt (iω I − A)−1 (3.79)

= eAt X (0) + (iω I − A)−1 eiωt − eAt (iω I − A)−1 (3.80)

If all the eigenvalues of A are in the left-half-plane then the first and third terms on
the right-hand-side of the above equation go to zero as time goes to infinity. So we
have

yss(t) = Meiθeiωt = (C (iω I − A)−1 B + D
)
eiωt .

The steady-state output due to the input e−iωt is:

(
C (−iω I − A)−1 B + D

)
eiωt = Me−iθe−iωt .

Putting this together the steady-state output due to cos(ωt) is:

yss(t) = Meiθeiωt + Me−iθe−iωt

2
(3.81)

= Mei(ωt+θ) + Me−i(ωt+θ)

2
(3.82)

= Mcos(ωt + θ). (3.83)

3.3.4 Bode Plots

Frequency response is normally represented as Bode plots. In this section we look
at Bode plots with a view to using Bode plots in the design of controllers using
frequency response data, either obtained analytically or experimentally.

A general transfer function, with real coefficients, can be represented in the fol-
lowing way:
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H(s) = k

∏n1
i=1(1 + αi s)

∏n2
i=1

(
s
�i

)2 + 2ξi s
�i

+ 1

∏n3
i=1(1 + βi s)

∏n4
i=1

(
s
ωi

)2 + 2ζi s
ωi

+ 1
=
∏m

i=1 Fzi∏n
i=1 Fpi

Bode plot is a plot of 20 log10 |H(jω)| and the ∠H(jω) versus ω. It is a semilog
plot where the x-axis is the log-axis and the y-axis is the linear axis. For complex
numbers a and b, we have log(|a||b|) = log |a| + log |b| and ∠ab = ∠a + ∠b. For
this reason we make a plot of each of the factors,

(
Fzi , Fpi

)
, separately and then add

them up to give the Bode plot of H(s). Next we look at Bode plots for first order and
second order terms.

First Order Block—Bode Plot Let

H1(s) = 1

1 + sτ
, H1(jω) = 1

1 + jωτ

The sketch of the Bode plot of the first order term is obtain as follows:

20 log10 |H1(jω)| = 20 log10
1√

1 + ω2τ 2
=

⎧
⎪⎨

⎪⎩

0 ω << 1
τ
,

−3db ω = 1
τ
,

−20 log10 ω − 20 log10 τ ω >> 1
τ
.

∠H1(jω) = − tan−1 ωτ

1
=

⎧
⎪⎨

⎪⎩

0◦ ω << 1
τ

(
0.1
τ

)

−45◦ ω = 1
τ
,

−90◦ ω >> 1
τ

(
10
τ

)
.

First order pole magnitude plots have a slope of −20 db/decade and the phase
plot has a slope of –45 deg/decade (goes from 0 to−90◦). First order zero magnitude
plots have a slope of 20db/decade and the phase plot has a slope of 45 deg/decade
(goes from 0 to 90◦).

Bode plot for a first order term in the denominator is shown in Fig. 3.8 and for a
first order term in the numerator is shown in Fig. 3.9.

Second Order Block—Bode Plot For transfer functions with complex poles or
zeros, the transfer function cannot be reduced to a product of first order factors
with real co-efficients. For such transfer functions Bode plots are sketched for the
second order factors with complex poles or zeros. Next we discuss second order
terms (Figs. 3.8 and 3.9).

Let a second order term be:

H1(s) = 1
(

s
ω0

)2 + 2ζs
ω0

+ 1

The frequency response for this term is:
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Fig. 3.9 Bode plot—1 + sτ
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H1(jω) = 1
(

jω
ω0

)2 + 2ζjω
ω0

+ 1
= 1

1 −
(

ω
ω0

)2 + 2ζjω
ω0

The magnitude of the frequency response is:

|H1(jω)| = 1
√(

1 −
(

ω
ω0

)2)2

+ 4
(

ζω
ω0

)2

Define u
�= ω

ω0
and now the above expression can be written as:

|H1(ju)| = 1
√(

1 − (u)2
)2 + 4 (ζu)2

= 1
√
1 + 2u2(2ζ2 − 1) + u4

This magnitude function has a resonant peak in the Bode plot for certain values of
zeta, the value of the peak, i.e., its maximum value is obtained next.

d |H1(ju)|
du

= −1

2

4u3 + 4u(2ζ2 − 1)
(
1 + 2u2(2ζ2 − 1) + u4

) 3
2

d |H1(ju)|
du

= 0 when u = 0 or u =
√
1 − 2ζ2, for u real ζ <

1√
2

∣∣∣H1(j
√
1 − 2ζ2)

∣∣∣ = 1
√
1 − (1 − 2ζ2)2

For ζ < 1√
2
, we have |H1(ju)| = 1√

1+2u2(2ζ2−1)+u4
. The sketch for the second order

term is obtained as follows:

20 log10 |H1(ju)| =

⎧
⎪⎨

⎪⎩

0 u <<
√
1 − 2ζ2,

−10 log10(
√
1 − (1 − 2ζ2)2) u = √1 − 2ζ2,

−40 log10 u u >>
√
1 − 2ζ2.

∠H1(ju) = − tan−1 2ζu

1 − u2
=

⎧
⎪⎨

⎪⎩

0◦ u << 1

−90◦ u = 1

−180◦ u >> 1.

Second order pole magnitude plots have a slope of −40 db/decade and the phase
plot goes from 0 to −180◦ in the vicinity of the resonant frequency. Second order
zero magnitude plots have a slope of 40db/decade and the phase plot goes from
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Fig. 3.11 Bode plot—s2 + 2ζs + 1

0 to 180◦ in the vicinity of the resonant frequency. The sharpness of the phase plot
as it switches from 0 to −180◦ depends on the damping ratio ζ as can be seen in
Figs. 3.10 and 3.11.
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Fig. 3.12 Feedback block
diagram R(s)

+
E(s)

K
U(s) 1

(s+1)(s+2)(s+3)

Plant
Y (s)

−

When sketching by hand, individual Bode plots for the first and second order
terms are put together to obtain the complete Bode plot. With the ready availability
of the computers, there is little need to sketch Bode plots by hand but hand sketching
exercise helps to understand what information is contained in Bode plots and how
one can use them to design controllers.

3.3.5 Root-Locus

In the preceding part of the chapter, time and frequency domain analysis was dis-
cussed. Root-locus is a technique which is a combination of both time and frequency
domain analysis ideas. Root-locus is a handy tool to tune the gain of automatic
voltage regulators and power system stabilisers in power systems.

Root-locus is the loci of all the poles of the closed-loop system as the gain K
varies from 0 to ∞. As computers are used for plotting the root-locus, the rules
required to plot a root-locus are not given here. It is more important to understand
what information can be obtained from the root-locus than the rules to draw it.

For the system in Fig. 3.12, the root-locus is given in Fig. 3.13. The open-loop
poles of this system are at: {−1,−2,−3}; from the root-locus in Fig. 3.13 it can be
seen that as the gain K increases one closed-loop poles travels left along the negative
real-axis but two poles go to the right-half-plane. There is a critical value of K for
which two of the closed-loop poles are on the imaginary axis. If one were using the
root-locus method to tune the parameter K , they would first decide if they wanted
overdamped, critically damped, or underdamped (with the damping ratio) response,
and then choose K to achieve that response. In short, root-locus gives all the possible
locations of the closed-loop poles as the gain K changes and gives a good overview
of how a constant gain controller can change the closed-loop dynamics. Root-locus
is a very useful analysis and design tool for linear control.

3.3.6 Frequency Domain Control Design

In this section we discuss the design of the controller H(s) shown in Fig. 3.14. In
many practical situation we know only the frequency response of the plantG(jω), so
the designmethod can use only this information and not the state-space representation
or the transfer function of the system.

The closed-loop transfer function (also known as the closed-loop gain) is:



3.3 Laplace Domain or Transfer Function Analysis 133

−8 −7 −6 −5 −4 −3 −2 −1 0 1
−5

−4

−3

−2

−1

0

1

2

3

4

5
0.160.30.460.60.720.84

0.92

0.98

0.160.30.460.60.720.84

0.92

0.98

1234567

Root Locus

Real Axis

Im
ag

in
ar

y 
Ax

is

Fig. 3.13 Root locus (Matlab script basicrlocus.m)

Y (s)

R(s)
= G(s)H(s)

1 + G(s)H(s)
.

The above closed-loop system is stable only if all the roots of the equation 1 +
G(s)H(s) = 0 are in the left-half-plane.

For the closed-loop system in Fig. 3.14, the loop-gain is defined as L(s) =
G(s)H(s). This is the gain as we go around the loop from the input to the feed-
back summing junction. The loop-gain is also called the open-loop system. The
stability of the closed-loop system can be evaluated from the frequency response of
the loop-gain by evaluating the gain margin or the phase margin. For the closed-loop
system to be stable both GM and PM (calculated with open-loop transfer function)
should be positive if all the poles and zeros of the open-loop are in the left-half-plane.

Gain Margin (GM) GM of a system is the gain in dB of the loop-gain when the
phase is −180◦, i.e., GM = −20 log10

∣
∣L(jω†)

∣
∣, where ∠L(jω†) = 180◦.

Phase Margin (PM) PM of a system is 180 + ∠L(j ω̂) where
∣∣L(j ω̂)

∣∣ = 1.
A more general stability is given in terms of the Nyquist stability criterion using

the frequency response of the open-loop system.

Fig. 3.14 Feedback block
diagram R(s)

+
E(s)

H(s)

Controller
U(s)

G(s)

Plant
Y (s)

−
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3.3.6.1 Design Specifications

The specifications for the design of the feedback controller H(s) Fig. 3.14 in classical
control design are normally specified in terms of four conditions:

1. Steady-state error, limt→∞ e(t), for a chosen input R(s).
2. The bandwidth or the zero gain crossover frequency of the loop-gain, i.e., ωBW ,

such that, |L(jωBW )| = 1. The bandwidth is related to the speed of response.
3. Phase margin, normally chosen as sixty degrees.
4. Gain margin, normally chosen as higher than 6 dB.

Please note that the last three specifications above are in terms of the frequency
response of the loop-gain. This means that we can use the frequency response of the
plant to complete the design. Next we look at the relationship between the above
design specifications and the closed-loop response.

3.3.6.2 Steady-State Error

The following analysis refers to the feedback system shown in Fig. 3.14. Assume
that the feedback system is stable, then

E(s) = R(s) − G(s)H(s)E(s) (3.84)

⇒ (1 + G(s)H(s))E(s) = R(s) (3.85)

⇒ E(s)

R(s)
= 1

1 + G(s)H(s)
(3.86)

For unit step reference R(s) = 1
s and using the final value theorem (limt→∞ f (t) =

lims→0 sF(s), if the limit exists), we have

lim
t→∞ e(t) = lim

s→0
s
1

s

1

1 + G(s)H(s)

ess = e(∞) = 1

1 + G(0)H(0)
(3.87)

The values G(0) and H(0) are the DC gains of these transfer functions. From (3.87)
it is obvious that if either the plant or the controller has an integrator, i.e., the 1

s
term, then the steady-state error to a step-reference is zero. This is the reason why
an integrator is a part of most of the controllers.

3.3.6.3 Open-Loop Bandwidth and Rise-Time

For the feedback system shown in Fig. 3.12, let H(s) = K and G(s) = 1
1+sT . It can

be shown that:
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1. The open-loop system bandwidth ωBW, i.e., the 0dB crossover of the Bode plot
of G(s)H(s), is approximately ωBW ≈ K

T .
2. The closed-loop system rise-time tr (for a unit step input) is:

tr ≈ 2.3

ωBW
(3.88)

where tr is the time at which the output reaches 90 per cent of its final or steady-
state value.

Equation (3.88) connects bandwidth and rise time and it is very useful. Although
this relationship is true only for a first order system, it is a good approximation for
ever higher order system. Equation (3.88) tells that to achieve a fast response (small
tr ), the open-loop or loop-gain bandwidth should be large. In this first order example
the bandwidth can be increased by increasing K This rule of thumb is often used by
control designers; to achieve a faster response, the gain of the loop is increased.

3.3.6.4 Phase-Margin and Damping

Let G(s) be the plant transfer function and H(s) = 1, for the block diagram shown
in Fig. 3.12. The closed-loop transfer function is,

T (s) = G(s)

1 + G(s)
.

Let ωp be such that |G(jωp)| = 1 and ∠G(jωp) = φ, then

|T (jωp)| = 1

2 sin φm

2

(3.89)

where phase margin φm = 180 + φ, −180◦ ≤ φ ≤ 180◦.
Equation (3.89) is an important relationship that links phase-margin with peak

value of the frequency response at the gain crossover point. As we saw previously
the peak of the Bode plot for second order underdamped system is an indicator of
the damping of the system. In general we want |T (jωp)| to be less than one and it
can be seen from (3.89) that for this to happen the phase-margin φm must be greater
than 60◦. This also means that the desired damping can be specified in terms of the
phase-margin of the system. This is particularly useful since phase-margin can be
directly adjusted using frequency domain techniques using experimentally measured
data.

Next we look at a lead block which is the most important block in providing
the right phase-margin. A good understanding of the frequency response of the lead
block is very helpful in the design of AVRs and PSSs for power systems. Another
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commonly used block is called a lag controller. The utility and characteristics of these
two blocks will become clear when we look at their application to power systems.

3.3.7 Lead Block Relationships

The transfer function of a lead block can be written as:

C(s) = 1 + s/ωz

1 + s/ωp

where ωp > ωz Let ωl be the frequency at which ∠C(jωl) is maximum over all
ω > 0. Then it can be shown that

ωl = √
ωzωp,φl

�= ∠C(jωl) = sin−1

(
ωp/ωz − 1

ωp/ωz + 1

)
, and

20 log10 |C(jωl)| = 10 log10(ωp/ωz).

The ratio ωp

ωz
is often expressed as m.

It can also be seen that

m = 1 + sin φl

1 − sin φl
,ωl = √

ωzωp = ωz
√
m, and logωl = 1

2

(
logωz + logωp

)

The above relationships mean that for a lead compensator the maximum phase lead
is provided at the frequency which is the geometric mean of the pole and zero
frequencies of the lead block. The actual phase lead is a function of the separation
of the pole and zero, the larger the separation the larger is the phase lead. Of course
the maximum possible phase lead is 90◦ and to achieve that the pole and zero have
to be two decades apart. For the control design, a specification is given in terms
of the phase-margin and the lead controller is used if the desired phase-margin is
higher than the existing phase-margin. The phase lead required to achieve the desired
phase-margin is provided by the lead block. This is illustrated with a design example
next.

Fig. 3.15 Feedback block
diagram R(s)

+
E(s)

C(s)
Controller

U(s)
G(s)
Plant

Y (s)
−
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3.3.7.1 Example—Lead-Lag Controller Design

In Fig. 3.15, let

G(s) = 10

(s + 1)(s + 5)
.

Design a controller C(s) such that,

1. The closed-loop system has zero steady-state error to unit step reference input;
2. The crossover frequency is above 100 rad s−1;
3. There is a minimum 60◦ phase margin.

A lead-lag controller, as explained below, can meet these specifications:

C(s) = K
1 + s

α

s

1 + s
ωz

1 + s
ωp

From the system transfer function we can see that there is no integrator in the
system.To achieve a zero steady-state error an integrator has to be a part of the system.
Also from the frequency response of the open-loop system, shown in Fig. 3.16, it
can be seen that the crossover frequency is 1.62 rad s−1. To increase the crossover
frequency we need to introduce gain at low frequencies. These two requirements
can be met using a lag block:

1+ s
α

s . We need to choose an appropriate α to meet the
crossover frequency requirement.

From Fig. 3.16 it can be seen that a gain of 1000 is needed at 100rad s−1 for the
crossover frequency to be at 100rad s−1. This gain can be achieved with α = 0.001.
The frequency response of the system with this lag block, i.e., 1+1000s

s G(s), is shown
in Fig. 3.17. It can be seen that the phase-margin is no now only 3.44◦. A lead
compensator is needed to increase the phase margin to 60◦.

Using the relationship derived above:

m = 1 + sin φl
1 − sin φl

, ωl = √
ωzωp = ωz

√
m, 100 rad s−1 and logωl = 1

2

(
logωz + logωp

)

with ωl = 100 rads−1 and φl = 56.56◦, we obtain ωz = 30.0351 rad s−1 and ωp =
332.9438 rad s−1. The extra gain introduced by the lead block is 3.3294, to compen-
sate for this K = 1

3.3294 is chosen.
The frequency response of C(s)G(s) is plotted in Fig. 3.18. From the figure we

see that it meets both the bandwidth and phase-margin requirements. The closed-loop
step-response is shown in Fig. 3.19.

A good understanding of the sequence of ideas used in this design problem can
be very effectively used to design commercial grade AVRs and PSSs. As we will see
later, the design of lag-lead controller in this design exercise can be used to design a
PID controller by re-parametrising the controller. Next we see a popular method to
directly design a PID controller.
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Fig. 3.20 Feedback block
diagram R(s)

+
E(s)

C(s)
Controller

U(s)
G(s)
Plant

Y (s)
−

3.4 Ziegler-Nichols Tuning Method for PID Control

Ziegler-Nichols method to tune PID controller gains is mostly used for industrial
systems where a full mathematical model is not available but it is acceptable to
perform tests on the plant itself to tune a controller. For the unity feedback block
diagram in Fig. 3.20, let the PID controller be respresented as:

C(s) = KP

[
1 + 1

Ti s
+ Tds

]
.

The Ziegler-Nichols method provides guidelines to tune the parameters, KP , Ti ,
and Td .

The first step is to perform experiments on the system in closed-loop, as shown
in Fig. 3.20, with 1

Ti
= 0 and Td = 0. The gain KP is varied till there is a sustained

oscillation in the system. The value of KP for which the sustained oscillations are
observed is called the critical gain Kc. Let the period of the oscillations be Tc. The PID
controller parameters are obtained in terms of the critical gain Kc and the oscillation
period Tc as shown in Table3.2. Depending on the desired closed-loop response
different parameter selections can be made.

3.4.1 PID Control of Governors

Synchronous machine governors respond to change in frequency by adjusting the
input mechanical power. In a given power system there are multiple generators hence
multiple governors. Two features distinguish control design for governors from that
of the AVRs. Firstly, governors are deliberately designed so that the frequency error

Table 3.2 Zeigler-Nichols parameters

Control KP Ti Td

P only 0.5Kc

PI 0.45Kc 0.833Tc
PID tight control 0.6Kc 0.5Tc 0.125Tc
PID some overshoot 0.33Kc 0.5Tc 0.33Tc
PID no overshoot 0.2Kc 0.3Tc 0.5Tc
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Gate Servo

1 − sTW

1+0 .5sTW
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1

sTM + D

Gen/Load

RP

Droop

−
ω

−

Fig. 3.21 Governor PID control

does not go to zero with changing output electrical power. This is done so that
governors do not competewith each other in compensating for themismatched power.
The frequency of the generator is decreased with increasing output power, and this
is known as droop, as shown in the droop block in Fig. 3.21. Secondly, governors
have a slow response time, in the order of tens of seconds, and the turbines, valves,
servomechanisms have significant built-in delays. For these systems Ziegler-Nichols
method for tuning PID controllers has been very successful.

For governor control design a first-order synchronous machine model is used
since governor dynamics is slow there is no loss of accuracy if only the mechanical
movement ismodelled and the electrical dynamics are neglected. In themodel chosen
for control, shown in Fig. 3.21, a pilot servo, gate servo, and turbine are all modelled
as first-order systems. The turbine model has a right-half-plane zero which models
the flexibility of the turbine shaft.

The design method is illustrated for a system with the following parameters:
TP = 0.05, TG = 0.2, TW = 3, TM = 10, RP = 0.0.04, D = 1.

The controller for the governor in Fig. 3.21 has three blocks. Firstly only the
top, proportional gain, block is included in the system and the other two blocks
are taken out. In the closed-loop the proportional gain is varied and for Kc =
4.195 sustained oscillations are observed with a period Tc = 12.44s, as shown
in Fig. 3.22. PID controller parameters are tuned with these two values as shown
in Table3.2. Closed-loop step-responses for various choices of response are obtained;
Fig. 3.23 shows the plot for proportional control only; Fig. 3.24 is for PI control;
Fig. 3.25 shows tight PID control; Fig. 3.26 shows response for PID with some over-
shoot, and finally Fig. 3.27 is for a PID control which is designed to result in no
overshoot. As can be seen from the plots the responses do not fully match the per-
formance criterion but they are close enough for practical purposes. Ziegler-Nichols
method is robust to modelling uncertainties and it is a good practical method to tune
PID controller parameters.
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Fig. 3.22 PID Tuning—Governor—Sustained oscillations Kc = 4.195, Tc = 12.44s
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Fig. 3.23 PID Tuning—Governor—P only—KP = 0.5Kc
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Fig. 3.24 PID Tuning—Governor—PI—KP = 0.45Kc, Ti = 0.833Tc
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Fig. 3.25 PID Tuning—Governor—PID tight—KP = 0.6Kc, Ti = 0.5Tc, Td = 0.125Tc
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Fig. 3.26 PID Tuning—Governor—PID some overshoot—KP = 0.33Kc, Ti = 0.5Tc, Td =
0.33Tc
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Fig. 3.27 PID Tuning—Governor—PID no overshoot—KP = 0.2Kc, Ti = 0.3Tc, Td = 0.5Tc
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3.4.1.1 Exercise—Lead-lag Controller

In the above Fig. 3.15, let

G(s) = 100

(s/10 + 1)(s/20 + 1)
.

Design a controller C(s) such that,

1. The closed-loop system has zero steady-state error to unit step reference input;
2. The crossover frequency is above 500 rad s−1;
3. There is a minimum 60◦ phase margin.

3.5 Linearisation

Most dynamic systems can only be described by a nonlinear model but for the
purposes of designing a controller a linear model is often used. Linear control theory
is a very convenient tool to design controllers even for nonlinear systems so to be
able to use linear control ideas nonlinear models are first linearised. In this section
we look at an analytical and also a numerical linearisation method.

Let a general nonlinear system have the following state-space representation:

ẋ = f (x, u) (3.90)

In the above Eq. (3.90) x and f (x, u) are n-dimensional vectors, u is an m-
dimensional vector, and the i th element of each of these vectors is xi , fi (x, u),
ui , respectively.

Linearisation is done about an equilibrium point, say (x0, u0), such that f (x0, u0)
= 0. Taylor series expansion of f (x, u) about the equilibrium point, (x0, u0), is put
together from the Taylor series expansion for each element, fi (x, u), of f (x, u):

fi (x0 + �x, u0 + �u) = fi (x0, u0) + ∂ fi (x, u)

∂x1

∣∣
∣∣x=x0
u=u0

�x1 + ∂ fi (x, u)

∂x2

∣∣
∣∣x=x0
u=u0

�x2 + · · · (3.91)

∂ fi (x, u)

∂xn

∣
∣
∣∣x=x0
u=u0

�xn + · · · + ∂ fi (x, u)

∂u1

∣
∣
∣∣x=x0
u=u0

�u1 + · · · + ∂ fi (x, u)

∂um

∣
∣
∣∣x=x0
u=u0

�um . (3.92)

where �xi = xi − xi0 and �ui = ui − ui0 .
For small changes in �x and �u we can write a linearised version of the differential
equation (3.90) by neglecting all the terms with higher powers of �xi and �u j , to
obtain the following linearised system:

�ẋ = A�x + B�u (3.93)
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where

�x =

⎡

⎢⎢⎢
⎣

�x1
�x2

...

�xn

⎤

⎥⎥⎥
⎦

and �u =

⎡

⎢⎢⎢
⎣

�u1
�u2

...

�un

⎤

⎥⎥⎥
⎦

A =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

∂ f1(x,u)

∂x1

∣∣∣ x=x0
u=u0

∂ f1(x,u)

∂x2

∣∣∣ x=x0
u=u0

· · · ∂ f1(x,u)

∂xn

∣∣∣ x=x0
u=u0

∂ f2(x,u)

∂x1

∣
∣∣ x=x0
u=u0

∂ f2(x,u)

∂x2

∣
∣∣ x=x0
u=u0

· · · ∂ f2(x,u)

∂xn

∣
∣∣ x=x0
u=u0

...
...

...
...

∂ fn(x,u)

∂x1

∣∣∣ x=x0
u=u0

∂ fn(x,u)

∂x2

∣∣∣ x=x0
u=u0

· · · ∂ fn(x,u)

∂xn

∣∣∣ x=x0
u=u0

⎤

⎥⎥⎥
⎥⎥⎥
⎦

(3.94)

B =

⎡

⎢⎢⎢⎢⎢⎢
⎣

∂ f1(x,u)

∂u1

∣
∣∣ x=x0
u=u0

∂ f1(x,u)

∂u2

∣
∣∣ x=x0
u=u0

· · · ∂ f1(x,u)

∂um

∣
∣∣ x=x0
u=u0

∂ f2(x,u)

∂u1

∣∣∣ x=x0
u=u0

∂ f2(x,u)

∂u2

∣∣∣ x=x0
u=u0

· · · ∂ f2(x,u)

∂um

∣∣∣ x=x0
u=u0

...
...

...
...

∂ fn(x,u)

∂u1

∣
∣∣ x=x0
u=u0

∂ fn(x,u)

∂u2

∣
∣∣ x=x0
u=u0

· · · ∂ fn(x,u)

∂um

∣
∣∣ x=x0
u=u0

⎤

⎥⎥⎥⎥⎥⎥
⎦

(3.95)

Matrices A and B are also called the Jacobian matrices.

3.5.1 Perturbation Method

In many situations the partial derivatives are hard or inconvenient to obtain and
in those situations perturbation analysis can be used to obtain a linearised model.
The (i, j)th element of the matrix A in the linearised model (3.93) are obtained
numerically as:

ai j = fi (x0 + ε j , u0) − fi (x0, u0)

ε j

where ε j is a vector the same size as x with all its elements zero other than its j th
element which is a small number ε.

The (i, j)th element of matrix B can be obtained numerically as:

bi j = fi (x0, u0 + ε j ) − fi (x0, u0)

ε j

where ε j is a vector the same size as u with all its elements zero other than its j th
element. This is a simple method and works well in practice.
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3.6 Linear Models for Synchronous Machine

Synchronous machine models are inherently nonlinear due to the fact that the elec-
trical power is proportional to the sine of the power angle δ. Other types of nonlin-
earities are also present, such as magnetic saturation effects, but these effects are not
important for the control design. To get familiar with the linearisation process the
linearising of a SMIB system, shown in Fig. 3.28, is considered next.

3.6.1 Single Machine Infinite Bus Equations (Without AVR)

The differential equations for SMIB system are obtained from the Eqs. (2.25)–(2.27)
in Chap. 2.

δ̇ = ω0ωr − ω0 (3.96)

ω̇r = 1

2H
(Tm − Te − KDωr ) (3.97)

Ė ′
q = 1

τ ′
do

(
Efd − E ′

q − (xd − x ′
d

)
Id
)

(3.98)

where E ′
q = Lmd

L fd
λfd, τ ′

do = L fd
ω0rfd

, Efd = Lmd
rfd

vfd, KD is themechanical damping. Alge-
braic equations (re = 0):

Id = E ′
q − V∞ cos δ

x ′
d + xe

(3.99)

Iq = V∞ sin δ

x ′
q + xe

(3.100)

Vq = E ′
q − x ′

d Id (3.101)

Vd = x ′
q Iq (3.102)

Te = E ′
q Iq + (x ′

q − x ′
d

)
Iq Id (3.103)

Note that the per unit numerical values of the torque and power are the same. The first
step in linearising is defining the deviation of the state variables from their equilibrium
value as new state variables. Let x0 denote the equilibrium values of a state variable

Fig. 3.28 Single Machine
Infinite Bus (SMIB)

Eq∠
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+

jxd jxe
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+
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x , then the new states are defined as �x = x − x0, e.g., �δ = δ − δ0. Please note
that as the equilibrium value is a constant, giving �ẋ = ẋ . The equilibrium per unit
value of the speed is 1 so �ωr = ωr − 1. The linear version of Eqs. (3.96)–(3.98) is
obtained by writing these equations in terms of the new state variables. This means
writing the linear approximation for all the nonlinear algebraic functions on the
right-hand-side of Eqs. (3.96)–(3.98). Following this procedure and taking Laplace
transform of each of the elements of the equations, the linearised equations of the
synchronous machine connected to an infinite-bus through a transmission line can
be written as:

�δ(s) = ω0

s
�ωr (s) (3.104)

�ωr (s) = �Tm (s) − �Te(s)

2Hs + KD
(3.105)

s�E ′
q (s) = 1

τ ′
do

⎛

⎝�Efd(s) − �E ′
q (s) − (xd − x ′

d
)
⎛

⎝�δ(s)
∂ Id
∂δ

∣∣∣
∣
(.)=(.)0

+ �E ′
q (s)

∂ Id
∂E ′

q

∣∣
∣∣∣
(.)=(.)0

⎞

⎠

⎞

⎠

(3.106)

where (.) = (.)0 means that the function has to be evaluated at the equilibrium value
of all the states on which it depends. The linearised electric torque from (3.103) can
be written as:

�Te(s) = �δ(s)
∂Te
∂δ

∣∣
∣∣
(.)=(.)0

+ �E ′
q(s)

∂Te
∂E ′

q

∣∣∣
∣∣
(.)=(.)0

= K1�δ(s) + K2�E ′
q(s) (3.107)

With the definitions of the K-parameters given below, we can write (3.106) as,

�E ′
q(s) = K3

1 + sT3
(�Efd(s) − K4�δ(s)) (3.108)

Figure3.29 is a block diagram representation of Eqs. (3.105)–(3.108).
For the above linearised equations it is easy to derive the following expressions

of the K-parameters:

K1 = E ′0
q V∞ cos δ0

x ′
q + xe

+ (x ′
q − x ′

d)
(
E ′0
q V∞ cos δ0 − V 2∞ cos 2δ0

)

(x ′
d + xe)(x ′

q + cxe)

K2 = V∞ sin δ0

x ′
d + xe

K3 = x ′
d + xe
xe + xd

, T3 = τ ′
doK3, K4 = xd − x ′

d

x ′
d + xe

V∞ sin δ0
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It can be shown that the transfer function (with �Tm = 0) is:

�δ(s)

�E f d (s)
= −K2K3ω0

(1 + sT3)
(
2Hs2 + KDs + K1ω0

)− K2K3K4ω0
(3.109)

Let the K-parameters for a synchronous machine be given as:

K1 = 1.591, K2 = 1.5, K3 = 0.333, K4 = 1.8, T3 = 1.91, K5 = −0.12, K6 = 0.3

TR = 0.03, H = 3.0, KD = 0.0,ω0 = 2π60.

For these parameter values, the roots of characteristic equation of just the mechanical part, 2Hs2 +
KDs + K1ω0 are, has roots at ±j9.9983.

The poles of the transfer function in (3.109) are: 0.1470 ± j10.00,−0.8175.
The resonant mode is still at 9.99rad s−1 but the inclusion of the field circuit has added a little

damping to the mode.

3.6.1.1 Linear Model—State-Space Representation

From the block diagram in Fig. 3.29, it can be shown that the state-space representation of the
linearised synchronous machine without an AVR can be written as:

⎡

⎣
�ω̇

�δ̇
�Ė ′

q

⎤

⎦ =
⎡

⎣
− KD

2H − K1
2H − K2

2H
ω0 0 0
0 − K4K3

T3
− 1

T3

⎤

⎦

⎡

⎣
�ω
�δ

�E ′
q

⎤

⎦+
⎡

⎣
1
2H 0
0 0
0 K3

T3

⎤

⎦
[
�Tm
�Efd

]
(3.110)

For a system with the following parameter values, Pm = 0.5; xq = 1.0; xd = 1.81;
H = 3.5; KD = 1; τ ′

d0 = 8.0; TR = 0.02; KA = 200; x ′
d = 0.8; x ′

q = 0.8; xe = 0.6;
ω0 = 2π50; V∞ = 0.995; E ′

q0 = 1.2, the A-matrix using the above linearised model
representation in (3.110) and using linearisation by perturbation are given below. It
can be seen that there is a good agreement between the two matrices (Analytical
(left) and Perturbation Method (right)).

⎡

⎣
−0.1429 −0.0987 −0.05952
314.2 0 0
0 0.0526 −0.03482

⎤

⎦ ,

⎡

⎣
−0.1429 −0.09834 −0.05952
314.2 0 0
0 0.05297 −0.03482

⎤

⎦ (3.111)

ΔEfd

+
K3

1 + sT3

Field Circuit
ΔEq

K2 +
ΔTe

−
ΔTm + 1

2Hs + KD

Δωr ω0

s
Δ

K1

K4

−

Fig. 3.29 Synchronous machine (without AVR)
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3.6.2 Single Machine Infinite Bus Equations (with AVR)

Automatic Voltage Regulator (AVR) is needed to regulate the terminal voltage of
synchronous generators. The input to the AVR is the difference between the set
reference voltage and the measured terminal voltage. Modern AVRs or exciters are
solid-state devices and owing to their fast response they can be modelled as a static
gain to get an insight into the role of AVRs in maintaining system stability.

The modified equations of a synchronous machine with an AVR are written as:

δ̇ = ω0ω − ω0 (3.112)

ω̇ = 1

2H

(
Pm − E ′

q Iq + (x ′
d − x ′

q

)
Iq Id

)
(3.113)

Ė ′
q = 1

τ ′
do

(
KA (Vref − Vo + Vs) − E ′

q − (xd − x ′
d

)
Id
)

(3.114)

V̇o = 1

TR
(Vt − Vo) (3.115)

Equation (3.115) represents the sensor dynamics that is used to measure the root-
mean-square value of the terminal voltage.

The algebraic equations for this system are (re = 0):

Id = E ′
q − V∞ cos δ

x ′
d + xe

(3.116)

Iq = V∞ sin δ

x ′
q + xe

(3.117)

Vq = E ′
q − x ′

d Id (3.118)

Vd = x ′
q Iq (3.119)

Vt =
√
V 2
q + V 2

d

=
√

(x ′
q Iq)

2 + (E ′
q − x ′

d Id)
2 (3.120)

3.6.3 K-Paramters: K5 and K6

To obtain the linear model with terminal voltage as one the state-variables two more
K-parameters are required. Small changes in the terminal voltage Vt in (3.120) can
be expressed as a linear function of �δ(s) and �E ′

q :

�Vt (s) = K5�δ(s) + K6�E ′
q(s). (3.121)

From (3.120) we can write,
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2V 0
t �Vt (s) = 2(x ′

q )2 I 0q

⎛

⎝�δ(s)
∂ Iq
∂δ

∣∣∣
∣
(.)=(.)0

+ �E ′
q (s)

∂ Iq
∂E ′

q

∣∣
∣∣∣
(.)=(.)0

⎞

⎠

+ 2(E ′0
q − x ′

d I
0
d )

⎛

⎝�E ′
q (s) − x ′

d

⎛

⎝�δ(s)
∂ Id
∂δ

∣
∣∣∣
(.)=(.)0

+ �E ′
q (s)

∂ Id
∂E ′

q

∣∣∣
∣∣
(.)=(.)0

⎞

⎠

⎞

⎠

(3.122)

Obtaining expressions for the partial derivatives and evaluating them about the equi-
librium point the following expressions for K5 and K6 are obtained.

K5 = 1

V 0
t

(

(x ′
q)

2 I 0q
V∞ cos δ0

x ′
q + xe

− (E ′0
q − x ′

d I
0
d )x ′

d

V∞ sin δ0

x ′
d + xe

)

K6 = 1

V 0
t

(
(E ′0

q − x ′
d I

0
d ) − (E ′0

q − x ′
d I

0
d )

x ′
d

x ′
d + xe

)

Putting (3.109) and (3.121) together, we get (3.123).

�Vt (s)

�E f d(s)
= −(K5 − (K6K4)K2K3ω0

(1 + sT3)
(
2Hs2 + KDs + K1ω0

)− K2K3K4ω0
+ K6K3

1 + sT3
(3.123)

Block diagram of the linearised system with AVR is shown in Fig. 3.30.

3.6.3.1 State-Space Representation with AVR

From the block diagram in Fig. 3.30, the state-space representation of the syn-
chronous machine with an AVR can be written as:

ΔVref
+

KA

Exciter ΔEfd
+

K3

1 + sT3

Field Circuit
ΔEq

K2 +
ΔTe

−
ΔTm+ 1

2Hs + KD

Δωr ω0

s
Δ

K1

+ K5
1

1 + sTR

Voltage Transducer
ΔVt

ΔVo
−

K6

K4

−

Fig. 3.30 Synchronous machine linear model (with AVR)
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⎡

⎢
⎢
⎣

�ω̇

�δ̇
�Ė ′

q

�V̇o

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

− KD
2H − K1

2H − K2
2H 0

ω0 0 0 0
0 − K4K3

T3
− 1

T3
− KAK3

T3
0 K5

TR

K6
TR

− 1
TR

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

�ω
�δ

�E ′
q

�Vo

⎤

⎥
⎥
⎦+

⎡

⎢
⎢
⎣

1
2H 0
0 0
0 KAK3

T3
0 0

⎤

⎥
⎥
⎦

[
�Tm
�Vref

]

(3.124)
For the following numerical values, Pm = 0.5; xq = 1.0; xd = 1.81; H = 3.5;
KD = 1; τ ′

d0 = 8.0; TR = 0.02; KA = 200; x ′
d = 0.8; x ′

q = 0.8; xe = 0.6;ω0 = 2π
50; V∞ = 0.995; E ′

q0 = 1.2, the linearised representation using analytical (left) and
perturbation Method (right) are given below. It can be seen that the matrices are
accurate to three decimal places. Analytically obtained A:

⎡

⎢⎢
⎣

−0.1429 −0.0987 −0.05952 0
314.2 0 0 0
0 0.0526 −0.03482 −25
0 −8.444 20.58 −50

⎤

⎥⎥
⎦ ,

⎡

⎢⎢
⎣

−0.1429 −0.09834 −0.05952 0
314.2 0 0 0
0 0.05297 −0.03482 −25
0 −8.383 20.28 −50

⎤

⎥⎥
⎦

(3.125)

3.6.3.2 K-Parameters: K7 and K8

In many situations the AVR is used to adjust the terminal voltage of the synchronous
machine to deliver a set reactive power or power at a set power factor. The linearised
expression for the reactive power is required in the design and analysis is these
situations.

The reactive power delivered by a synchronous machine can be written as from
(2.9):

Q = Vq Id − Vd Iq (3.126)

= (E ′
q − x ′

d Id
)
Id − x ′

q I
2
q (3.127)

�Q(s) = K7�δ(s) + K8�E ′
q(s) (3.128)

Following the method to obtain the K-parameters K1–K6, we can obtain expressions
for K7 and K8 from (3.128), as follows:

K7 = E ′0
q V∞ sin δ0

x ′
d + xe

− 2x ′
d

E ′0
q − V∞ cos δ0

x ′
d + xe

V∞ sin δ0

x ′
d + xe

− 2x ′
q

(
V∞ sin δ0

)2
(
x ′
q + xe

)2

=
(
xe − x ′

d

)
E ′0
q V∞ sin δ0 + x ′

dV
2∞ sin 2δ0

(x ′
d + xe)2

− 2x ′
q

(
V∞ sin δ0

)2
(
x ′
q + xe

)2 (3.129)
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K8 = E ′0
q

x ′
d + xe

+ (xe − x ′
d

) E ′0
q − V∞ cos δ0

(x ′
d + xe)2

= 2xeE ′0
q − (xe − x ′

d

)
V∞ cos δ0

(x ′
d + xe)2

(3.130)

Next we derive an expression for small changes in the power factor. This expres-
sion is very useful when analysing AVRs that are used to deliver power at a constant
power factor.

Q = P tan φ

�P = K1�δ(s) + K2�E ′
q(s) from (3.107)

�Q = �P tan φ0 + P0�φ

cos2 φ0

�φ = cos2 φ0
(
�Q − �P tan φ0

)

P0

� cosφ = − sin φ0�φ

� cosφ = −cos2 φ0 sin φ0

P0

(
K7�δ + K8�E ′

q − K1�δ tan φ0 − K2�E ′
q tan φ0

)

= −cos2 φ0 sin φ0

P0

(
�δ
(
K7 − K1 tan φ0)+ �E ′

q

(
K8 − K2 tan φ0))

The above expression for the linearised power factor involves four K-parameters,
instead of the usual two for other variables, as the power factor depends on both the
real and reactive power terms and they each depend on two K-parameters.



Chapter 4
Design of the Automatic Voltage
Regulator

AVRs are primarily used to regulate the output voltage of synchronous generators.
In this chapter we will cover the tuning of exciters as recommended by the IEEE
committee for excitation systemmodels [16, 17]. The exciter tuning is in linewith the
recommended IEEE committee practice report in [18]. Although recent literature has
confirmed that these models provide good agreement with detailed models [19], new
models continue to be introduced for specialised situations [20]. Advanced control
methods have appeared in the literature [21, 22] but it appears that the tuning based on
classical control ideas has plenty of applications [23, 24]. The IEEE committee report
[25] has some essential classical control ideas based on an interesting paper, which
discusses the estimation of closed-loop poles from open-loop poles and frequency
response [26]. AVRs are also known to enhance the transient stability of synchronous
generators and some of the easy to follow classical papers on this subject are: [3,
27–29].

4.1 Synchronous Machine Model for AVR Tuning

For the initial AVR design synchronous generator is modelled as a first order system.
Subsequent to this design the performance of this AVR is evaluated for the machine
connected to the grid. The first ordermodel is justified by looking at the SMIB system
in Eqs. (3.96)–(3.98). For unloaded generator, i.e., the generator stator current is zero,
E ′
q is equal to the terminal voltage and thusEq. (3.98) describes the dynamics between

the field and terminal voltages. Most of the exicter design is done for unloaded
generator. Setting Id = 0 in (3.98), we get the following transfer function for the
synchronous machine:

�Vt (s)

�Efd(s)
= 1

1 + sT ′
d0

(4.1)
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H. R. Pota, The Essentials of Power System Dynamics and Control,
https://doi.org/10.1007/978-981-10-8914-5_4

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8914-5_4&domain=pdf


156 4 Design of the Automatic Voltage Regulator

−150

−100

−50

0

50

M
ag

ni
tu

de
 (d

B)

10−3 10−2 10−1 100 101 102
−270

−180

−90

0

Ph
as

e 
(d

eg
)

Bode Diagram

Frequency (rad/sec)

Fig. 4.1 Synchronous machine—frequency response �Vt (s)
�Vref(s)

Although unloaded machine model is used for AVR tuning, it proves to be quite
robust even when the machine is loaded. Figure4.1 shows frequency responses of an
unloaded generator and the same generator loaded at 0.9pu. A few points need to be
carefully observed about the two frequency responses in Fig. 4.1.

1. At low frequencies the exact plot has a higher gain than the approximate plot.
This means that the steady-state error in practice will be lower than the designed
value.

2. At higher frequencies the exact plot has a lower gain than the approximate plot.
This means that the system will have higher gain margin than the designed value.

3. The biggest difference between the two plots is for a complex pole-zero pair. It
can be seen that the phase andmagnitude contribution due to the pair appears only
near the electromechanical frequency of oscillation. A good AVR compensation
method should not alter the frequency response in the range of this complex pole-
zero pair. This also enables an independent design of the excitation system and
the power system stabiliser.
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AVR Models

IEEE recommended practice for excitation system models covers four DC commu-
tator exciters, eight alternator-supplied rectifier exciters, and seven static excitation
systems [16]. In what follows we will look at tuning the parameters of one exciter
from each of the three groups. To understand the fundamentals of exciter tuning it
is sufficient to look at a simple exciter model and tune its gain to meet performance
specifications. Once it is understood how the gain for a simple AVR can be tuned the
rest will follow rather easily.

A good understanding of the tuning process is achieved by considering a first
order AVR model

KA

1 + sTA

where for practical systems KA ranges between 200 and 500 and TA is about 10ms.

4.2 AVR Performance Requirements

The terminal voltage of a syncrhonous generator has to be maintained at a certain
level. Due to the varying load conditions, and the resulting change in voltage drop
across the stator reactance, the terminal voltage varies. Feedback control is one easy
way to make sure that the terminal voltage is at a set value regardless of the changing
load conditions. The correction needs to be made as quickly as possible, i.e., it must
be a fast acting feedback controller. From Sect. 3.3.6 we know that to obtain a fast
response, the open-loop bandwidth has to be large and to ensure a small steady-state
error we know from Eq. (3.87) that the DC gain of the transfer function has to be
large.

Formal performance specifications for AVR performance are given in IEEE guide
[18] and a committee report [25]. The material covered here will enable the tuning
of AVR parameters in most cases to satisfy the requirements in [18] and [25]. As the
implemented AVRs are nonlinear, some fine tuning or empirical adjustments may be
needed for practical systems.

4.2.1 AVR Tuning—K A and Phase-Margin

The main issues involved with the design of an AVR can be illustrated using a simple
example from [24]. The block diagram for this example is shown in Fig. 4.2 with
TA = 0.04 and T ′

d0 = 1.
The immediate problem is the selection of gain KA such that it has a fast rise-time

and small steady-state error. A block diagram of an AVR and a generator is shown in
Fig. 4.3. In the block diagram the disturbance term �d(s) represents the weakening
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Fig. 4.2 AVR tuning block
diagram R(s)

+
E(s) KA

1 + sTA

AVR
U(s) 1

1 + sTd0

Generator
Y (s)

−

Fig. 4.3 AVR
tuning—steady-state error

Vref
+

E(s) KA

1 + sTA

AVR
Efd

Δd(s)

+
− 1

1 + sTd0

Generator
VT

−

of the flux due to armature reaction, etc. In other words, �d(s), models the effect
of all the disturbances which change the terminal voltage. Typically: TA = 0.05,
T ′
do = 5, KA = 50; with these values and for a unit step change in reference voltage

and disturbance �d(s),

ess = lim
s→0

s

(
1

s

(1 + sTA)(1 + sT ′
do)

(1 + sTA)(1 + sT ′
do) + KA

+ 1

s

(1 + sTA)

(1 + sTA)(1 + sT ′
do) + KA

)
= 2

1 + KA
= 3.92%

Steady-state error of this magnitude is not acceptable and a way is needed to
increase the low frequency gain. Next we see what happens when KA is increased.

For the closed-loop system in Fig. 4.2, the frequency and step response are plotted
in Figs. 4.4 and 4.5 for gains: KA = {1, 10, 20, 50}. The phase-margins correspond-
ing to these four gains are: 180◦, 75.6◦, 59.8◦, and 40.5◦, respectively. From the
previous analysis we can expect that higher values of KA result in faster response
and lower values of phase-margin result in response with low damping. This can be
seen in the time responses in Fig. 4.5.

It can be seen that higher gain results in lower steady-state error and faster
response. But higher gains also mean oscillations. It is important to realise that
there is a trade-off between the exciter gain and the closed-loop system damping.
At times it is possible to find a value of KA that meets both the steady-state error
and speed of response requirements. In most cases a constant gain AVR is not suit-
able for obtaining a satisfactory transient and steady-state response. A lag block can
be used to provide the desired steady-state response and acceptable transients. For
achieving a damped and fast response with small steady-state error the controller can
be augmented with a lag block. Next we look at how to tune the parameters of the
lag block to meet AVR performance specifications.
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4.2.2 AVR Tuning—Lag Block

A lag block is used to reduce gain at higher frequencies without reducing the DC
gain and that’s why it is also known as transient gain reduction block. In the example
we have considered above, let us say that we need the steady-state error to be less
than 0.5%. A gain KA = 500 will give us a steady-state error of 0.4%. This choice of
KA gives a phase-margin of 25.4◦ and the cross-over frequency is 42.5 rad s−1. We
know that a phase-margin less than 60◦ is likely to lead to an oscillatory system. To
increase the phase-margin at the expense of reducing the bandwidth or the response
time one easy way is to use a lag block,

1 + sTC
1 + sTB

, TB > TC

Block diagram of the closed-loop system with a lag block is shown in Fig. 4.6.
The next design issue is the selection of time constants TB and TC . For a 0.25 s

rise-time we need the open-loop bandwidth to be approximately 10 rad s−1, i.e., the
magnitude of the open-loopgain at 10 rad s−1 should be1.Theopen-loopgainwithout
the lag block is approximately 20dB at 10 rad s−1 thus we need to choose TB and TC
such that they result in the pole and zero one decade apart to reduce the gain by20dBat
higher frequencies. To provide a good phase-margin the net phase contribution due to
the lag block near the cross-over frequency should be approximately zero. With this,
we can choose TB = 10 and a decade below TC = 1. The frequency response of the
open-loop systemwith these parameter values is shown in Fig. 4.7. The step-response
of the closed-loop system with and without the lag block is shown in Fig. 4.8. From
the figure it is clear that the lag compensator provides damping without affecting the
steady-state error.

4.2.3 AVR Tuning—Rate-Feedback

There are many AVRs in practice which use a rate feedback block shown in Fig. 4.9.
The system shown in Fig. 4.9 includes a rotating exciter modelled as a first-order
block. There are two feedback loops in the system. The first feedback loop has the
rate feedback block sKF

1+sTF
in the feedback path. In this design problem, appropriate

values of TF and KF need to be chosen where all the other parameters are specified.

Vref
+

1 + sTC

1 + sTB

Lag block
KA

1 + sTA

AVR
Efd 1

1 + sTd0

Generator
VT

−

Fig. 4.6 AVR tuning lag compensator
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Vref
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+
1

sTE

Exciter
Efd 1

1 + sTd0

Generator
VT

KE

−

sKF

1 + sTF

Rate-feedback

−−

Fig. 4.9 AVR tuning rate-feedback compensator

The design objective is to have a fast response time and a small steady-state error
to a step input. Typical parameters are: KA = 120, TA = 0.15, TE = 0.5, KE = 1.0,
T ′
d0 = 5; in most designs TF ≈ 10TA.
The purpose of the inner loop with rate feedback is to provide high DC gain and

reduce high frequency gain to provide stability to the closed-loop system. To see how
the inner loop with rate feedback provides this capability let us consider a feedback
system with transfer function g in the forward path and h in the feedback path with
the closed-loop transfer function ghcl = g

1+gh . Approximate frequency response of

the closed-loop will be the same as that of g when |gh| << 1 and 1
h when |gh| >> 1.

The cascade of the exciter and AVR blocks, with transfer function g =
KA

(1+sTA)(KE+sTE )
, provides a high DC gain of KA

KE
; the first break point is at KE

TE
rad s−1

and the second break point is at 1
TA

rad s−1. The rate feedback block, h = sKF
1+sTF

, has
a DC gain of −∞, a low frequency reponse of 20dB/decade, and a break point at
1
TF

rad s−1. Since we have KA
KE

< 1
TF

< 1
TA
, the closed-loop magnitude response for

the inner loop is: DC gain of KA
KE

, then −20 dB/decade from KE
TE

rad s−1, flat from
1
TF

rad s−1, and again −20 dB/decade from 1
TA

rad s−1. The gain in the flat part is TF
KF

.
The frequency response for the inner loop is shown in Fig. 4.10 where the flat section
can be clearly seen.

In this design, it is aimed that the open-loop crossover frequency for the entire
loop in Fig. 4.9 is in the flat section of the inner loop gain. It is a common practice
to have the crossover frequency as the geometric mean of the two end-points of the
flat section.

The following steps give the design process.

1. If KA is not already specified, choose it to satisfy the steady-state error specifi-
cations.

2. TF ≈ 10TA

3. Choose ωc =
√

1

TF

1

TA

4. Find the gain which needs to be applied to the generator transfer function such
that the crossover is at ωc. This extra gain Kωc = |1 + jωcT ′

d0|.
5. Set KF = Kωc TF
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Fig. 4.10 Rate feedback—inner-loop frequency response

Following the above steps we get for the parameters given above TF = 1, and KF =
0.0772. The open-loop frequency response for the entire loop is shown in Fig. 4.11
and the closed-loop step response is shown in Fig. 4.12. From the figures it is clear
that the design specifications are met.

4.2.4 AVR Tuning—PID Design

The steady-state error due to a step input with a PID controller is zero. For this reason
majority of AVRs have a PID block as a part of the AVR structure. The main design
objective with a PID control is to get a fast response with good damping. Fast and a
well-damped response is achieved with large open-loop bandwidth and a large phase
margin.

Here we illustrate the design of a PID controller using the example of a very
popular AVR known as IEEE AC7B compensator shown in Figs. 4.13 and 4.14.

Let us say that the desired open-loop gain crossover frequency is ωc, which is
between 1 and 10 rad s−1, and the desired phase margin is φd , which is between 60◦
and 90◦.
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Fig. 4.11 Rate feedback—open-loop frequency response

In the design the following assumptions are made:

1. Fex is unity.
2. In per unit system Ifd = VT .
3. The correction for exciter saturation Vx = 0.
4. Either use the PID block CR(s) or the rate-feedback block (KF3 �= 0).
5. KPVT is unity.
6. Compensator voltage, VC = VT , in Fig. 4.13.

Exercise: Redraw the block diagrams in Figs. 4.13 and 4.14 with the above sim-
plifying assumptions. (Hint: the outputs of the shaded boxes in Fig. 4.13 are either
0 or 1.)

The transfer function between X and Efd in Fig. 4.14 is:

GxEfd(s) =
CA(s)

sTE+KE

1 + KF1CA(s)
sTE+KE

(4.2)
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+ KE
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VE
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Fig. 4.13 AVR tuning IEEE AC7B compensator—block 1
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s
+
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+
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Π
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−

Fig. 4.14 AVR tuning IEEE AC7B compensator—block 2
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where the feedback from the KD block is ignored. Input KPVT to the multiplier
block in Fig. 4.14 is to account for the main supply to the exciter, which is from the
generator terminals. In exciter tuning KPVT can be considered as unity.

The first step in the design process is to design for the inner loop. The steps are:

1. Choose the inner loop crossover ωci = 2ωc.
2. Choose the location of the zero of the PI controller a decade below the crossover

frequency, i.e., KIA
KPA

= ωci
10 .

3. Choose KPA such that the inner loop crossover frequency is at ωci .

The second stage in the design process is to choose controller CR(s) to achieve
the overall bandwidth ωc and the phase margin φd . First note that the inner loop
transfer function is:

G in = GxEfd(s)

1 + GxEfd(s)KDGgen(s)
(4.3)

The open-loop gain then is (with KF3 = 0):

Gol = CR(s)G in (4.4)

The controller CR(s) is written as CR(s) = KxClag(s)Clead(s) and

Clag(s) =
β
ωc
s + 1

s
and Clead(s) =

s
ωz

+ 1
s

ωp
+ 1

(4.5)

The following steps can be used to choose the gains for the PID controller CR(s).

1. Select β = 10.
2. Find out the phase margin φ with Clag(s)G in.
3. The extra phase lead φl needed to achieve the desired phase margin is φd − φ.
4. Choose ωz , ωp, and Kx according to Sect. 3.3.7.
5. Equating the co-efficeints of CR(s) and KxClag(s), we can obtain

TDR = 1

ωp
; KIR = Kx ; KDR = βKIR

ωzωp
− KPRTDR; KPR =

(
β

ωc
+ 1

ωz

)
KIR − KIRTDR.

Let us look at a system with the following parameters: KF1 = 0.212,
KF2 = 0.0, KF3 = 0.0, TE = 0.36, KE = 1.0, KC = 0.30, KD = 1.04, TR = 0.01,
T ′
d0 = 8.9, KE = 1, KD = 0.6. The controller parameters for ωc = 5 rad s−1 and

φd = 65% are: KPA = 17.5366, KIA = 17.5366, TDR = 0.1803, KPR = 11.0192,
KIR = 5.3972, KDR = 0.4091. The open-loop frequency response and the closed-
loop step response is shown in Figs. 4.15 and 4.16.
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4.3 AVR Models

All AVRs fall in one of the follwing three categories:

1. DC generator directly connected to the synchronous generator field.
2. AC generator connected to the synchronous generator field via a solid-state

rectifier.
3. Solid-state rectifiers supplied from the synchronous terminal voltage and con-

nected to the synchronous generator field.

In the following we look at some of the common features of the exciters so that
we can model them appropriately for AVR tuning.

4.3.1 Rotating Exciters

Rotating exciters can be either AC or DC generators. In the literature AC generators
are also known as brushless machines [30, 31]. DC generators and alternators still
exist as exciters in old generators, but static exciters are becoming common for new
generators.

In all rotating exciters there is a field coil and its electrical properties form themost
important part of the exciter model. The field voltage supplied to the synchronous
generator, Efd, the output of the exciters, is proportional to the total flux linkages,
λ in the exciter field coil. For rotating generators we can take it that the generated
voltage Efd = k f ωexλ, where ωex is the exciter angular velocity which can be con-
sidered constant, λ are the total flux linkages in the exciter field coil, and k f is a
proportionality constant. Further let kλ = k f ωex, and so we can write Efd = kλλ. Let
us first look at the relationship between λ and the applied voltage to the exciter field
coil.

4.3.2 Current-Flux Relationship in Coils with Saturation

The modelling of the saturation term can be done in many different ways but the
important point to keep in mind is that including the effect of saturation is to include
an extra term as shown in Fig. 4.17. Instead of using the exponential function to
model saturation, e.g., in Fig. 2.38, some simulations use a quadratic relationship,
e.g.,

Se(Efd) = B (Efd − A)2

Efd
. (4.6)

In general, we are able to write a relationship between exciter field current and
synchronous machine field voltage Efd as, i = Efd (KE + Se(Efd)).
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Fig. 4.17 Rotating exciter
block diagram

vi
R

+

1
sTe

Efd

Ke + Se(Efd)

−

For the exciter field circuit shown in Fig. 2.38, we write

vi = Ri + dλ

dt

vi = REfd (KE + Se(Efd)) + 1

kλ

dEfd

dt
(4.7)

Sowith Te = 1
Rkλ

, Ke = KE , we obtain the block diagram in Fig. 4.17 to represent
the model in (4.7).

The block diagram in Fig. 4.17 is used to represent field coil in both DC and AC
exciters, with suitable adjustments in the parameters Te and Ke. In excitation systems
with only solid-state components, there is a saturable core reactance which is used
to control the input to the rectifier and this can be also modelled using the block
diagram in Fig. 4.17. Thus this block is a common feature of almost all excitation
systems.

4.4 Practical Exciters

In this section we look at two of the popular exciters and see how we can use the
methods detailed in this chapter to tune the parameters of these two exciters. These
two popular exciters are: an ACmachine exciter IEEEAC1A and a solid-state exciter
IEEE ST2A. The block diagrams of these two exciters are shown in Figs. 4.19 and
4.20. Let us look at the components in these block diagrams with a view to make
assumptions about their dynamics in the AVR tuning process.

4.4.1 AC Exciter

The block diagram for a synchronous machine in Fig. 2.21, with damper windings
neglected, can be used to represent a brushless AC exciter as shown in Fig. 4.18. The
exciter supplies an inductive load so the terminal voltage, which is the main gener-
ator’s field voltage Efd, is proportional to E ′

q . The block KE + S(E ′
fd) in Fig. 4.18

represents the gain adjustment and the extra exciter field current needed due to sat-
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Efd
+

1
sTdo

Eq

ω

+

−

Ld − Ld ids

⇒

VR

+
1

sTE

Efd

KE + S(Efd)+

VFE ∝ iexfd
−

KD
ifd

Fig. 4.18 Brushless exciter block diagram

uration. In most cases KD = Ld − L ′
d . The input to the integrator block

1

sTE
is

λ̇ex
fd = VR − r exfd i

ex
fd , where the superscript ‘ex’ is used for exciter quantities. This

means that the quantity being subtracted from VR in Fig. 4.18 is proportional to the
exciter field current. In many exciter control schemes the exciter field current is
fedback through a rate block for a faster exciter response.

4.4.2 Rectifier Equivalent Representation

The voltage drop in the rectifier is modelled using the block f (IN ) in Figs. 4.19
and 4.20, which is defined as follows:

f (IN ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − 0.577IN , IN < 0.433√
0.75 − I 2N , 0.433 < IN < 0.75

1.732(1 − IN ), 0.75 < IN < 1.0

0, IN > 1.

(4.8)

The effect of the voltage drop due to the commutating inductance in the system
is modelled as a voltage drop as a function of the load current. It can be written as:

Efd = E0
fd − Xcomm Ifd ⇒ Efd

E0
fd

= 1 − Xcomm Ifd
E0
fd

where Xcomm is the effective commutating reactance and the formula in (4.8) models
this term. The multiplication block in Fig. 4.19 models this as a gain term due to the
rectification process. The block VE =|KPVT + jKI IT | in Fig. 4.20 is to compensate
voltage drop between the terminal voltage and some other point at which the AVR
is designed to regulate the voltage.
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Fig. 4.20 AVR tuning IEEE ST2A compensator

4.4.3 Compensating Voltage VC and VAR Droop

Details about the compensating voltage VC in Figs. 4.13, 4.19, and 4.20 are given
in [16]. This term is needed to provide a droop for reactive power sharing amongst
generators. For a fast exciter without the VC term,

Efd = KA (Vref − VT ) and Q ≈ Efd − VT

Xs

VT = KAVref

1 + KA
− XsQ

1 + KA
(4.9)

From (4.9) one can see that for large KA, the terminal voltage and reactive power
output Q are very weakly coupled and regulating VT will not properly regulate Q.
A compensating voltage

VC = |V̄T + (RC + j XC) ĪT |



172 4 Design of the Automatic Voltage Regulator

can help with this. The terminal current IT = IP − j IQ , where IP is the current
in phase with the terminal voltage VT . From this one can write for change only in
reactive component as,

VT = KAVref

1 + KA
− (Xs + KAXc)IQ

1 + KA
(4.10)

where Xc can be selected to provide a reactive power droop or load compensation or
several of the other things as suggested in [16].VoltageVS in Figs. 4.13, 4.19, and 4.20
is a stablising voltage term (normally the output of a PSS) which can be considered
to be zero for AVR tuning.

4.4.4 Assumptions for AVR Tuning

It can be seen that the compensation for loading and rectifier voltage drop is applied
as a product term. For the purposes of AVR tuning these values can be assumed to
be 1pu and thus removed from the representation for the purposes of design. The
block diagrams in Figs. 4.19 and 4.20 are generally simplified with the result that
the resulting block diagram takes the form of the block diagram (without the shaded
boxes) with either a constant-gain or a lag, or a rate-feedback, or a PID controller. It
can be seen that once the product terminals are removed from the block diagrams in
Figs. 4.19 and 4.20, it is straightforward to use them to tune AVR parameters.



Chapter 5
Design of the Power System Stabliser

The mechanical part of the synchronous generator is analogous to a spring-mass
system with very little mechanical damping. For small disturbances it is effectively
an oscillator. Some electrical damping is provided by the AVR control action but for
higher values of AVR gain, the electrical damping can become negative, which turns
theoscillator into anunstable system.Most synchronousgenerators are equippedwith
power system stabilisers (PSS) which provide a feedback to increase the damping
and prevent the system from oscillating.

Power System Stabilisers (PSS) are very clever devices which achieve a lot with
very little effort. A carefully designed and located PSS can damp oscillations in
interconnected power systems with tens of synchronous machines. In essence a PSS
is a lead compensator block which can be a first order block. To make the PSS design
effective we have to first understand what is it that PSS does and what is the best
location for the PSS in a multimachine system. In this chapter we analyse the role of
synchronous and damping torques for a synchronous machine, methods to choose a
location for the PSS, and tuning the PSS.

5.1 Synchronising and Damping Torques

As the electrical loading or the mechanical power of the synchronous machine
changes, a restoration force is generated within the machine to change the power
angle δ such that an equilibrium is reached between the input and output power.
As mentioned above the essential dynamics of a synchronous machine is that of
a mass-spring system but there is a little damping that makes the post-disturbance
trajectory converge to its equilibrium value. In a second order linear position feed-
back system, with low damping, the damping is increased with velocity feedback
and the position feedback pulls the system to the new set position. Similarly in a
synchronous machine feedback from the angular velocity provides damping and the

© Springer Nature Singapore Pte Ltd. 2018
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feedback from the angle synchronises the machine. It so happens that in most cases
the damping torque in a synchronous machine is too small and the PSS is designed
to increase that damping torque. Next we analyse the damping and synchronising
torque in a synchronous machine.

The linearised SMIB system with an AVR shown in Fig. 5.1 can be redrawn as
shown in Fig. 5.2 which gives a better idea of the synchronising and damping torques.
The blocks Kω(s) and Kδ(s) in Fig. 5.2 are:

Kω(s) = − K2K3K4TR

T3TRs2 + s (T3 + TR) + 1 + KAK3K6
(5.1)

Kδ(s) = − K2K3 (K4 + KAK5)

T3TRs2 + s (T3 + TR) + 1 + KAK3K6
(5.2)

The damping introduced by Kω(s) and Kδ(s) at any resonant mode can be esti-
mated by the imaginary part of Kδ(jωresonant) and real part of Kω(jωresonant). Here
the assumption being that Kω(s) and Kδ(s) do not greatly affect the resonant mode
but only the damping at the resonant mode. For a given frequency real values of
Kω(s) and Kδ(s) give damping and synchronising torques, respectively, and their
imaginary values give synchronising and damping torques, respectively.

Table5.1 gives the K-parameters for different output power operation of a syn-
chronous machine with the following numerical values of the parameters,

ΔVref
+

KA

ExciterΔEfd
+

K3

1 + sT3

Field Circuit
ΔEq

K2 +
ΔTe

−
ΔTm+ 1

2Hs + KD

Δωr ω0

s
Δ

K1

+ K5
1

1 + sTR

Voltage Transducer
ΔVt

ΔVo
−

K6

K4

−

Fig. 5.1 Synchronous machine linear model (with AVR)

+
ΔTe

−
ΔTm
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s
Δ

K (s) + K1

ω0Kω(s)

Fig. 5.2 Synchronising and damping torques
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Table 5.1 K-parameters

P + jQ 0.5 + j0.1 0.6 + j0.2 0.7 − j0.1 0.8 − j0.2

K1 0.6909 0.6061 0.4872 0.2956

K2 0.4167 0.5 0.5833 0.6667

K3 3.59 3.59 3.59 3.59

K4 0.4208 0.505 0.5892 0.6733

K5 −0.1689 −0.2055 −0.2449 −0.2909

K6 0.4116 0.3932 0.367 0.3233

Table 5.2 Kδ(s) and Kω(s) for mid-range KA

Kω(s) Kδ(s)

s ≈ j0 − K2K3K4TR
1 + KAK3K6

− K2K3 (K4 + KAK5)

1 + KAK3K6

s ≈ jωresonant j
K2K3K4TR
ω(T3 + TR)

j
K2K3 (K4 + KAK5)

ω(T3 + TR)

xq = 1.0; xd = 1.81; H = 3.5; KD = 1; τ ′
d0 = 8.0; TR = 0.02; KA = 200; x ′

d = 0.8;
x ′
q = 0.8; xe = 0.6;ω0 = 2π50; V∞ = 0.995; E ′

q0 = 1.2.
With the values of K -parameters in Table5.1, we get an estimate of the steady-

state damping and synchronising torques due to Kω(s) and Kδ(s) terms from the
expressions in Table5.2 for different operating points.

The total synchronising torque is given by the term Kδ(s) + sKω(s) since the
derivative of the angular velocity is the angular position. The expressions for Kω(s)
and Kδ(s) in (5.1) and (5.2) can be used to obtain the following expressions for the
synchronising torques when there is noAVR (limKA→0) andwhen there is a high-gain
AVR (limKA→∞).

lim
KA→0

Kδ(s) + sKω(s) = − K2K3K4(1 + sTR)

(1 + sTR)(1 + sT3)
= − K2K3K4

(1 + sT3)
(5.3)

lim
KA→∞ Kδ(s) + sKω(s) = −K2K5

K6
(5.4)

Using the Equations in (5.3), (5.4), and Table5.2, the results are summarised in
Table5.3. Terms marked in Table5.3 with * may change sign with a sign change in
K5. The indications of positive or negative torque for the starred terms is for negative
values of K5.

In Table5.3 synchronising torque only due to Kω(s) and Kδ(s) is given. The total
synchronisatin torque is obtained by adding K1 to that value. Increasing load leads
to smaller value of K1, thus lower synchronising torque. Higher values of KA make
the damping torque Kω(s) smaller at low frequencies but increase the synchronising
torque needed for increased transient stability limit.
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Table 5.3 Synchronising and damping terms

KA ≈ 0 KA mid-range KA → ∞
s ≈ j0 zero damp.

−ve sync.
−ve damp.
+ve sync.*

zero damp.
+ve sync.*

s ≈ jωresonant +ve damp.
zero sync.

−ve damp.*
+ve sync.

zero damp.
+ve sync.*

5.1.1 Multimachine Systems

Expressions for damping and synchronising torques for multimachine system are
developed [1, p. 98] in this section. Let

�δ = [δ1, δ2, . . . , δn]
T ,

�ω = [ω1,ω2, . . . ,ωn]
T ,

and let xd be the state vector of all other states, like exciter, AVR, governor, turbines
and every other dynamic elements in the system. The state-space representation for
a multimachine power system can be written as:

d�δ

dt
= ω0�ω (5.5)

2H
d�ω

dt
= �Tm − �Te − Dω�ω (5.6)

dxd
dt

= Adxd + Bdδ�δ + Bdω�ω (5.7)

The input to the mechanical system (5.5)–(5.7) are the mechanical and electrical
torques which can be written in terms of all other state variables as follows for a
closed-loop system:

�Te = ctexd + Ddδ�δ + Ddω�ω (5.8)

�Tm = ctmxd + Dmδ�δ + Dmω�ω (5.9)

Replacing d
dt by s,

Xd(s) = (s I − Ad)
−1 (Bdδ + sBdω)�δ(s) (5.10)

�Te(s) = (
cte (s I − Ad)

−1 (Bdδ + sBdω) + (Ddδ + sDdω)
)
�δ(s) (5.11)

�Tm(s) = (
ctm (s I − Ad)

−1 (Bdδ + sBdω) + (Dmδ + sDmω)
)
�δ(s) (5.12)

Once an expression for �Te(s) is obtained it can be written as Ts(s) + sTd(s) where
Ts(s) is the synchronising torque and Td(s) is the damping torque.
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Let us apply the above formulation for a SMIB machine with an AVR (block
diagram in Fig. 3.30) and compare it with the results we have already obtained in
the Sect. 5.1. The state-space representation of a SMIB with an AVR can be written
from Eq. (3.124):

�δ̇ = ω0�ωr (5.13)

2H�ω̇r = −KD�ωr − K2�E ′
q − K1�δ + �Tm (5.14)

T3�Ė ′
q = −E ′

q + K3KA (Vref − �v1) − K3K4�δ (5.15)

TR�v̇1 = −�v1 + K6�E ′
q + K5�δ (5.16)

x1
�= �δ, x2

�= �ωr , x3
�= �E ′

q , x4
�= �v1, xd = [x3, x4]

T (5.17)

cte = [−K2 0
]
, Ddδ = −K1, Ddω = −KD (5.18)

ctm = [
0 0

]
, Dmδ = 0, Dmω = 0 (5.19)

Ad =
[− 1

T3
− KAK3

T3
K6
TR

− 1
TR

]

, Bdδ =
[− K3K4

T3
K5
TR

]

, Bdω =
[
0

0

]

(5.20)

Using the Maple script KdKw.ma we get:

(
cte (s I − Ad)

−1 (Bdδ + sBdω) + (Ddδ + sDdω)
) = Ts + sTd (5.21)

where

Td(s) = − K2K3K4TR

T3TRs2 + s (T3 + TR) + 1 + KAK3K6

Ts(s) = K1 − K2K3 (K4 + KAK5)

T3TRs2 + s (T3 + TR) + 1 + KAK3K6

These are the same expressions as obtained for damping and synchronising torque
in Sect. 5.1.

5.2 Design of Power System Stabilisers

Equations (3.96) and (3.97) model the mechanical behaviour of a synchronous
machine. The damping constant KD in (3.97) models mechanical damping which is
very small. A way to damp the mechanical oscillations then seems to be to change
the applied electrical torque �Te(s), shown in Fig. 5.1, in proportion to the change
in the speed of the machine. A practical way to achieve this is to apply a control
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−
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Fig. 5.3 Synchronous machine with PSS

signal to the AVR such that it changes the input electrical torque in proportion to the
change in the angular velocity. Damping can also be increased by changing the input
mechanical torque proportional to the change in the speed, as done by the governor,
but this is a slow process due to the large response time of the valves and turbines,
and it does not provide fast enough damping. Conventional PSSmeasures the change
in the speed and applies a control signal to the AVR as shown in the block diagram
in Fig. 5.3.

From the block diagram in Fig. 5.3, we can write

�Te(s) = KAK2K3 (1 + sTR)GPSS(s)

(1 + sTR) (1 + sT3) + KAK3K6
�ωr (s) + KAK2K3 (1 + sTR)

(1 + sTR) (1 + sT3) + KAK3K6
�Vref(s)

+ K1 (1 + sTR) (1 + sT3) − K2 (K4 (1 + sTR) + KAK5)

(1 + sTR) (1 + sT3) + KAK3K6
�δ(s)

(5.22)

The PSS, GPSS(s), is designed to make sure that the net phase shift, at the
electromechanical oscillation frequency ω∗, from �ωr (s) to �Te(s) is zero. From
Eq. (5.22), it can be seen that this will happen if

∠GPSS(jω∗) + ∠GPVr(jω∗) = 0.

where GPVr(s) is the transfer function

GPVr(s) = KAK2K3 (1 + sTR)

(1 + sTR) (1 + sT3) + KAK3K6
.

From (5.22), it can be seen that GPVr(s) is the transfer function between �Te(s) and
�Vref(s), without GPSS(s), and with blocked rotor, i.e, �δ(s) = 0 or H → ∞.

A classical PSS block is shown in Fig. 5.4. It has the following transfer function:

GPSS(s) = Kstab
sTW

1 + sTw

1 + sT1
1 + sT3

1 + sT2
1 + sT4
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Fig. 5.4 A PSS block

The washout block filters out constant and low frequency changes in the speed. The
generic PSS has two lead blocks in case a lead larger than say 90 degrees is required.

In subsequent PSSdesignmethods, e.g., Gibbardmethod, phase lead has to be pro-
vided over a range of frequencies, instead of just at the resonant frequency. Practical
application of a design method which requires phase lead over a range of frequencies
is discussed in [32].

From Fig. 2 in [32] it can be seen that the desired phase lead changes from approx-
imately 0 deg at 0.2Hz to 75 deg at 2 Hz. Although the total phase lead required is
less than 90 deg (which one lead block can provide), the rate at which phase lead
is required is more than 45 degrees per decade hence the need for two phase lead
blocks.

Similarly in many PSS designs the phase lead required may exceed 45 degree per
decade and in those situations a double phase lead block is required.

Let us see the Bode plot in Fig. 5.5 for the double lead block transfer function
with T1 = T2 = 0.118s, T3 = T4 = 0.044s. From the plot in Fig. 5.5 we can see that
the double block provides approximately the phase lead needed for the PSS in [32].

PSS Design Steps
One can proceed with the following steps to design a classical PSS.

1. Find out the resonant mode frequency of the system ω∗.
2. Obtain the frequency response between the�Vref and�Te by holding the change

in rotor speed to zero, i.e., obtain the transfer function GPVr(s). Calculate the
phase lag at the resonant frequency, i.e., GPVr(jω∗).

3. Choose parameters for the lead compensator in Fig. 5.4 to provide the phase lead
equal to the phase lag obtained in the previous step.

4. Use root-locus to select gain Kstab for maximum damping.
5. Alternatively increase the gain of the PSS till the closed-loop system oscillates

and then set the gain K to be one third of this gain [10].
6. Choose TW for the washout filter so that it does not interfere with the phase

compensator dynamics.

The PSS design is explained here using a numerical example for the sys-
tem in Sect. 3.6.3 with: Pm = 0.5; xq = 1.0; xd = 1.81; H = 3.5; KD = 1; τ ′

d0 =
8.0; TR = 0.02; KA = 200; x ′

d = 0.8; x ′
q = 0.8; xe = 0.6;ω0 = 2π50; V∞ =0.995;

E ′
q0 = 1.2. All values are in per units.

1. First we find out the resonant mode frequency of the machine which has the fol-
lowing Amatrix obtained using the linearisation techniques discusses in Chap. 3:
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Fig. 5.5 Two lead blocks frequency response

A =

⎡

⎢⎢
⎣

0 −0.2652 −0.25 0
377 0 0 0
0 −0.3138 −0.5236 −0.1743
0 −4 10 −33.33

⎤

⎥⎥
⎦ (5.23)

The state vector is: [�ωr ,�δ,�E ′
q ,�vi ]T .

The frequency response of the machine, without the PSS, is shown in Fig. 5.6.
The resonant mode is clearly seen in the plot and from the eigenvalues given
below it is clear that the electromechanical oscillation frequency is 9.99 rad s−1

and the damping constant is 0.013. The PSS is designed next to provide the right
phase lead at this frequency.
The eigenvalues are:

[−33.28 −0.1389 + j9.99 −0.1389 − j9.99 −0.3006
]

(5.24)

The right eigenvectors are:
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⎡

⎢⎢
⎣

0 −0.0003657 + j0.0263 −0.0003657 − j0.0263 −0.0005232
0.0004152 0.9925 0.9925 0.6561
−0.005319 −0.001845 + j0.02923 −0.001845 − j0.02923 −0.6966

−1 −0.1077 + j0.04123 −0.1077 − j0.04123 −0.2903

⎤

⎥⎥
⎦ (5.25)

The participation matrix is:

⎡

⎢
⎢
⎣

−0 0.5004 − j0.00687 0.5004 + j0.00687 −0.0008316
0 0.5004 − j0.00687 0.5004 + j0.00687 −0.0008316

−0.001676 −0.001098 + j0.01391 −0.001098 − j0.01391 1.004
1.002 0.0002213 − j0.0001655 0.0002213 + j0.0001655 −0.002208

⎤

⎥
⎥
⎦

(5.26)

From the eigenvectors we can see that in the second and third oscillatory modes
(second and third colums of the right eigenvector matrix), the second state �δ
has the highest contribution and �ωr has very little contribution thus the low
damping. The participation matrix indicates that the two most effective states to
feedback are �δ and �ωr . The low value of participation for the other two states
means that there is little point in using the terminal voltage feedback to damp this
electromechanical mode. We use the feedback from the state �ωr to damp this
mode.

2. Next we obtain a frequency response between the �Vref and �Te by holding the
change in rotor speed to zero. This frequency response is shown in Fig. 5.7.

3. We calculate the phase lag at the resonant frequency from the frequency response
obtained in the last step. This is approximately 90◦.

4. We then provide a lead compensator to provide a phase lead equal to the phase
lag obtained in the previous step (at the resonant mode). The PSS is

GPSS(s) = 10
1.4s

1 + 1.4s

1 + s
0.286

1 + 1
349.7

.

The frequency response of the PSS with this phase lead is shown in Fig. 5.8. The
gain is chosen using the root-locus method. The root-locus is shown in Fig. 5.9.

5.2.1 Other PSS Design Methods

As can be expected there are many PSS design methods and configurations. The
essential idea remains the same as discussed in the previous section. Some of the
methods that have been accepted in the power industry are mentioned below.

1. Compensation determination using residue angle [1, p. 145].
2. Larsen and Swann [33] suggest that the response of the phase angle of the gener-

ator terminal voltage magnitude is very close to that of the electrical torque. The
response of the terminal voltage magnitude to changes in the voltage reference
input is straightforward to measure. Therefore, it is a good signal with which to
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Fig. 5.6 PSS tuning—open-loop frequency response

validate the power system model used for the power system stabilizer design [1,
pp. 156–157] (Fig. 5.10).

3. The transfer function of the PSS according to Gibbard method is [34]:

GP(s) = DsT

(1 + sT )(1 + sT1)(1 + sT2)

1

kGPVr (s)
(5.27)

Typical values: T = 3, T1 = 0.05, T2 = 0.01, D = 20. For the definition of
GPVr (s) refer to Fig. 5.3; this is the fransfer function between Vref and �Te.
The frequency response of a typical PSS using this method is shown in Fig. 5.11
and the corresponding root-locus to tune for k is shown in Fig. 5.12.

5.3 Multimachine System PSS Design

Classical PSSs are successfully deployed for interconnected systems with many
synchronous generators. The classical PSS is a single-input-single-output system
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Fig. 5.7 Frequency response—�Vref and �Te

and for a multimachine system the most important question is the selection of a
generator whose speed is fed back and also a generator whose electrical torque is
changed via feedback. In most cases both the generators are the same and in that
case the selection of that generator is important. Normally the feedback and the
control happens at the same generator but with the availability of affordable phasor
measurement units, it may be possible to take feedback from one generator and apply
a proportional electrical damping torque to another generator. Next we look at the
residue method for the selection of the generator pairs or a generator at which the
PSS should be located to achieve maximum damping.

5.3.1 Dominant Residue Method

The transfer function of a system with poles at p1, . . . , pn can be written as:

G(s) = R1

s − p1
+ R2

s − p2
+ · · · + Rn

s − pn
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Fig. 5.12 PSS tuning—root-locus to choose k

where Ri , i = 1, . . . , n, are the system residues. Let us first see what is the relation-
ship between Ri and modal matrices.

Let the state-space respresentation of the same system be,

ẋ = Ax + Bu (5.28)

y = Cx + Du (5.29)

Define x = �z, where � is the matrix with right eigenvectors as its columns, for
this, ż = �−1A�z + �−1Bu and y = C�z, for this we can write,

G(s) = C�(s I − �)−1 �−1B =
n∑

i=1

C�i�i B

s − pi
⇒ Ri = C�i�i B. (5.30)

where �i ,�i are the left and right eigenvectors of the system. For an multi-input-
multi-output (MIMO) system, Ri are matrices, and the element Ri ( j, k) gives the
contribution in output j due to input k formode i . This is exactly the same information
conveyed by participation factors.
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Fig. 5.13 Small gain in the
feedback loop U(s)

+ G(s)
Plant

Y (s)

(s)

Controller

−

To see the influence of the residue in a feedback control design let us consider the
feedback system in Fig. 5.13. Let G(s) = ∑n

i=1
Ri

s−λi
, then the closed-loop transfer

function is given as:

Y (s)

U (s)
= G(s)

1 + εH(s)G(s)
(5.31)

=
∑n

i=1
Ri

s−λi

∏n
i=1(s − λi )

∏n
i=1(s − λi ) + εH(s)

∑n
i=1 Ri

∏n
j=1
j 
=i

(s − λ j )
(5.32)

=
∑n

i=1
Ri

s−λi

∏n
i=1(s − λi )

(s − λk + εH(s)Rk)
∏n

j=1
j 
=k

(s − λ j ) + εH(s)
∑n

i=1
i 
=k

Ri
∏n

j=1
j 
=i

(s − λ j )

(5.33)

If we choose H(s) such that:

H(s) =
{
1 s is close to λk

0 s is not close to λk

then the denominator of (5.32) near s = λk is:

(s − λk + εRk)

n∏

j=1
j 
=k

(s − λ j ) (5.34)

The above Eq. (5.34) implies that as a result of the feedback shown in Fig. 5.13 the
mode λk will shift by −εRk and all other modes will remain unchanged [35].

In a resonant system like a power systemwith angle oscillations, the above analysis
shows that the strength of the feedback is governed by the residue of the resonant
mode. This is because the system itself acts as a filter to feedback the oscillation
mode signal with the strongest signal, i.e., H(s) is a part of the dynamics of the
system itself.

Let us now consider a MIMO system, let Fig. 5.14 be a block diagram represen-
tation of the system with the lth input and mth output.
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Fig. 5.14 Small gain in the
feedback loop
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Ym(s) = (Ul(s) − εYm(s))
n∑

i=1

Rlm
i

s − pi
(5.35)

Ym(s)

Ul(s)
=

∑n
i=1 R

lm
i

∏n
j 
=i
j=1

(s − p j )

∏n
j=1(s − p j ) + ε

∑n
i=1 R

lm
i

∏n
j 
=i
j=1

(s − p j )
(5.36)

When Rlm
k >> Rlm

i , i = 1, . . . , n, (i 
= k), we can write (5.36) as:

Ym(s)

Ul(s)
=

∑n
i=1 R

lm
i

∏n
j 
=i
j=1

(s − p j )

(
s − pk − εRlm

k

)∏n
j 
=k
j=1

(s − p j )
(5.37)

Equation (5.37) shows that the largest shift in the poles of the system will be
realised by feeding back the input corresponding to the largest residue of the sys-
tem. Thus to damp the kth mode choose l and m such that Rlm

k >> Rlm
i , i =

1, . . . , n, (i 
= k). Once an input-output pair is selected and the corresponding
residue has been evaluated, the method discussed previously can be used to design a
PSS. The following properties of the residues are helpful in the design process.

1.
Ri = lim

λ→pi
G(s)(s − pi )

where pi is not a multiple pole of G(s).
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2. The departure angle of root-locus of G(s) from pole pi is

αi = 180 − ∠ lim
λ→pi

G(s)(s − pi ) = −180 + ∠Ri

3. When the feedback is positive (as in the case of PSS), the departure angle is,
αi = ∠Ri . In classical PSS design it is aimed that the root-locus heads “left”
from the underdamped pole. This can be achieved by providing a lead equal to
180 − ∠Ri such that the departure angle αi = 180.

4. Residues change the mode with “resonant” feedback.

5.3.2 GPV r(s) for Multi-machine Systems [1]

The first step in tuning PSS for multi-machine systems is to obtain the transfer
function GPVr (s) between �Vref(s) and �Te(s). Let

�δ = [δ1, δ2, . . . , δn]
T ,

�ω = [ω1,ω2, . . . ,ωn]
T ,

and let xd be the state vector of all other states, like exciter, AVR, governor, turbines
and every other dynamic element in the system. The state-space representation can
be written as:

Obtaining GPVr (s) for multi-machine systems [1]:

d�δ

dt
= ω0�ω (5.38)

M
d�ω

dt
= �Tm − �Te − Dω�ω (5.39)

dxd
dt

= Adxd + Bdδ�δ + Bdω�ω + Bv (Vref + Vs) (5.40)

�Te = ctexd + Ddδ�δ + Ddω�ω (5.41)

�Tm = ctmxd + Dmδ�δ + Dmω�ω (5.42)

Replacing d
dt by s

Xd(s) = (s I − Ad)
−1 ((Bdδ + sBdω)�δ(s) + Bv (Vref + Vs)) (5.43)

�Te(s)|�δ=0 = cte (s I − Ad)
−1 Bv (Vref + Vs) (5.44)
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We can write GPVr (s) as:

GPVr (s) = cte (s I − Ad)
−1 Bv (5.45)

Single Machine Infinite Bus

�δ̇ = ω0�ωr (5.46)

2H�ω̇r = −KD�ωr − K2�E ′
qfd − K1�δ + �Tm (5.47)

T3�Ė ′
qfd = −E ′

qfd + K3KA (Vref + Vs − �v1) − K3K4�δ (5.48)

TR�v̇1 = −�v1 + K6E
′
qfd + K5�δ (5.49)

x1
�= �δ, x2

�= �ωr , x3
�= �E ′

qfd , x4
�= �v1, xd = [x3, x4]

′ (5.50)

cte = [−K2 0
]
, Ad =

[− 1
T3

− KAK3
T3

K6
TR

− 1
TR

]

, Bv =
[

KAK3
T3

0

]

(5.51)

Substituting the above matrices in the expression for GPVr (s) in (5.45) and using
the Maple script KdKw.ma we get:

GPVr (s) = K2K3KA(sTR + 1)

T3TRs2 + s (T3 + TR) + 1 + KAK3K6
(5.52)

A comparison is made between the frequency response obtained using the above
anyalytical (5.52) expression of the transfer function andGibbard’smethod of setting
inertias to infinity in Figs. 5.15 and 5.16, respectively.

Next we look at the PSS design for the two-area system and a 30 bus system [1,
p. 38].

Two-Area System
One line diagram of a two-area system from [1, p. 38] is shown in Fig. 5.17. It consists
of four generators with two generators each in an area. Modal analysis is performed
for this two-area system to obtain the dominant modes—oscillation frequency and
mode shape. In this example of four generators, as they oscillate they can form the
following possible oscillating groups: one group with all four generators oscillating
independently, six groups with two generators paired together, two groups with three
generators each, and one group with all the four generators. Modal analysis can
work out which of the possible ten groupings for oscillations will be dominant. This
example is called a two-area system because with the modal analysis we discover
that this system has two dominant modes, one local mode and another inter-area
mode where generators G1 and G2 oscillate coherently and so do G3 and G4, but
they form two groups which oscillate with respect to each other.
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Fig. 5.15 Frequency response of analytical GPVr (s)

The A matrix for four machine system, where the machines are represented using
the classical swing equation, is:

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

0 377 0 0 0 0 0 0
−0.07442 0 0.0676 0 0.003688 0 0.003135 0

0 0 0 377 0 0 0 0
0.07182 0 −0.08647 0 0.007151 0 0.007503 0

0 0 0 0 0 377 0 0
0.007307 0 0.01069 0 −0.07802 0 0.06003 0

0 0 0 0 0 0 0 377
0.01135 0 0.01733 0 0.06725 0 −0.09593 0

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

(5.53)

The state variables are:

[
�δ1 �ω1 �δ2 �ω2 �δ3 �ω3 �δ4 �ω4

]
(5.54)

The eigenvalues of the above A matrix are:

[
0.01148 −0.01148 − j3.532 j3.532 − j7.509 j7.509 − j7.575 j7.575

]
(5.55)
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Fig. 5.16 Frequency response of numerical GPVr (s)

Fig. 5.17 Two area system G1
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The right eigenvectors are:

⎡

⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢
⎣

0.5 −0.5 0.3274 0.3274 −0.4342 −0.4342 −0.3084 −0.3084
0 0 − j0.003067 j0.003067 j0.008648 − j0.008648 j0.006196 − j0.006196
0.5 −0.5 0.2651 0.2651 0.4838 0.4838 0.3575 0.3575
0 0 − j0.002484 j0.002484 − j0.009637 j0.009637 − j0.007183 j0.007183
0.5 −0.5 −0.6821 −0.6821 −0.5045 −0.5045 0.5416 0.5416
0 0 j0.00639 − j0.00639 j0.01005 − j0.01005 − j0.01088 j0.01088
0.5 −0.5 −0.5977 −0.5977 0.568 0.568 −0.6953 −0.6953
0 0 j0.005599 − j0.005599 − j0.01131 j0.01131 j0.01397 − j0.01397

⎤

⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥
⎦

(5.56)
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Fig. 5.18 Local mode—generators 1 and 2 speeds

The participation matrix is:

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

0.1778 0.1778 0.09611 0.09611 0.1437 0.1437 0.08235 0.08235
0.1778 0.1778 0.09611 0.09611 0.1437 0.1437 0.08235 0.08235
0.1641 0.1641 0.06261 0.06261 0.1631 0.1631 0.1102 0.1102
0.1641 0.1641 0.06261 0.06261 0.1631 0.1631 0.1102 0.1102
0.08577 0.08577 0.1997 0.1997 0.09248 0.09248 0.122 0.122
0.08577 0.08577 0.1997 0.1997 0.09248 0.09248 0.122 0.122
0.07232 0.07232 0.1416 0.1416 0.1007 0.1007 0.1854 0.1854
0.07232 0.07232 0.1416 0.1416 0.1007 0.1007 0.1854 0.1854

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

(5.57)

The local modes of this two area system can be seen by perturbing generators 1
and 2. The local mode can be seen in 5.18 and 5.19 where G1 and G2 oscillate with
respect to each other and so do generators G3 and G4.

The inter-area mode can be excited by perturbing generators 1 and 3. The inter-
area mode can be seen in Figs. 5.20 and 5.21 where G1 and G2 oscillate coherently
and so do G3 and G4.

Figs. 5.22 and 5.23 show how G1 and G2 form one group and G3 and G4 another
group and they oscillate with respect to each other.
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Fig. 5.19 Local mode—generators 3 and 4 speeds

0 2 4 6 8 10
0

0.5

1

1.5
x 10−3

Fig. 5.20 Inter area mode—generators 1 and 2 speeds
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Fig. 5.21 Inter area mode—generators 3 and 4 speeds
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Fig. 5.22 Inter area mode—generators 1 and 3 speeds
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Fig. 5.23 Inter area mode—generators 2 and 4 speeds

A 30 Bus System
A one-line diagram of a 30 bus system with sixteen generators is shown in Fig. 5.24.

The system has two unstable roots: 0.3264 − 6.8364j and 0.3264 + 6.8364j .
The modes of this system are shown as a pole-zero plot in Fig. 5.25.

The non-negligible participation factor for the 0.3264 − 6.8364i mode are:

Participation factor State State name Machine number
0.1288 − 0.0624i 8.0000 1.0000 2.0000
0.0912 − 0.0783i 9.0000 2.0000 2.0000
0.0810 − 0.0646i 15.0000 1.0000 3.0000
0.9107 − 0.0783i 57.0000 1.0000 9.0000
1.0000 58.0000 2.0000 9.0000
0.1730 − 0.0790i 59.0000 3.0000 9.0000
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Fig. 5.24 Sixteen generator system [1, p. 351]

Based on the participation factors it is clear that the PSS must be located at
generator 9. The phase lead that is required by the PSS at generator 9 is shown in
Fig. 5.26. A PSS block with the following transfer function is designed,

GP(s) = k
sTw

1 + sTw

1 + sT1
1 + sT3

1 + sT2
1 + sT4

The values of the PSS parameters that provide the required lead as shown in Fig. 5.26
are: Tw = 5; T1 = 0.08; T2 = 0.01; T3 = 1

4π ; T4 = 1
8π .

The root-locus plot in Fig. 5.27 is used to obtain the gain k of the PSS. The modes
of the closed-loop system with the PSS are shown in Fig. 5.28.
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Chapter 6
Exercises

6.1 Phasor Analysis

Exercise 6.1 In Fig. 6.1 the voltage v(t) = 2 sin(2π50t) V, R = 1�, and L =
0.0025H. Find the steady-state current i(t). Draw the phasor equivalent circuit as
shown on the right side of Fig. 6.1 with numerical values for all the phasor quantities.

Exercise 6.2 In Fig. 6.2 the voltage v(t) = 100 sin(2π50t)V, R = 300�, and C =
10µF, and vc(0) = 50V. Find the steady-state capacitor voltage vc(t). Write the
differential equation describing the circuit operation. Solve the differential equation
numerically or otherwise to obtain vc(t) and plot the steady-state solution and the
numerical solution on the same plot.

Exercise 6.3 Figure6.3 is a one-line diagram of a three-bus system. The impedance
of the lines connecting nodes i and j is given by �Zi j = 0.05 + j0.3pu, i.e., all the
transmission lines have the same impedance.Obtain theYBus matrix for this three-bus
system.

Exercise 6.4 1. What is a V-curve? Describe the conditions under which aV-curve
is plotted. How does the V-curve make synchronous generator the dominant
device for electromechanical energy conversion?

2. What is the essential condition in terms of flux linkages for electromechanical
energy conversion?

Exercise 6.5 In Fig. 6.4 the voltage v(t) = 2 sin(2π50t)V, R = 1�, R = 300�,
andC = 10µF, vc(0) = 50V, and v′

c(0) = 0. Solve the differential equation numer-
ically or otherwise to obtain vc(t) and plot the steady-state solution and the numerical
solution on the same plot.
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Fig. 6.1 An RL circuit

−
v(t)

+

L

i(t)

R
−

V

+

jωL

I

R

Fig. 6.2 An RC circuit
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Exercise 6.6 In Fig. 6.5 the voltage v1(t) = 10 sin(2π50t)V, v2(t) = 20 sin
(2π50t + 90◦)V, R = 300�, andC = 100µF, L = 25mH.Calculate currents i1(t)
and i2(t) using phasor analysis. Find the real and reactive power consumed by each
element in the circuit and add them up to verify that the sum of complex power
consumed by all the loads is equal to the generated complex power.

Fig. 6.3 Three bus system
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Exercise 6.7 1. Figure6.6 shows a three-phase star system.
In the three-phase star system shown in Fig. 6.6, the supply voltages are: va(t) =
415 sin(2π50t) V, vb(t) = 415 sin(2π50t − 120◦) V, vc(t) = 415 sin(2π50t +
120◦) V, and the load is: R = 5�, and L = 15mH. Calculate the total real and
reactive power consumed by the load and generated by the three-phase voltage
source.

2. Figure6.7 shows a three-phase delta connected load.
In the three-phase � system shown in Fig. 6.7, the supply voltages are: va(t) =
415 sin(2π50t)V, vb(t) = 415 sin(2π50t − 120◦) V, vc(t) = 415 sin(2π50t +
120◦) V, and the load is: R = 5�, and L = 15mH. Calculate the total real and
reactive power consumed by the load and generated by the three-phase voltage
source.

Exercise 6.8 Figure6.8 shows a one-line diagram of a single machine infinite-bus
system. Generator 1 is set to generate 0.5 pu real power, Zejθ = 0.25ej π

2 , V1 =
1.0pu, V2 = 1.0pu, and δ2 = 0◦. Calculate δ1 and the reactive power generated
by Generator 1. What is the real and reactive power generated or absorbed by the
infinite-bus?

−
va(t)

+

−
+ vb(t)

a−
+ vc(t)

Ls

ia(t)
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b Ls ib(t) Rs

c Ls
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V b

V c
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V bc

V ca

Fig. 6.6 A Three-Phase Star-Star connection
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Fig. 6.7 A Three-Phase Star-Delta connection
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Exercise 6.9 Figure6.8 shows a one-line diagram of a single machine infinite-bus
system. Generator 1 is set to generate 0.5pu real power, Zejθ = 0.3ej π

2 , V2 = 1.0pu,
and δ2 = 0◦. Plot the current magnitude | �I12| and the reactive power supplied by
generator 1 as the magnitude of the voltage at bus 1, V1, varies between 0.85 and
1.1pu.

Exercise 6.10 Figure6.9 is a one-line diagramof a three-bus system. The impedance
of the lines connecting nodes i and j is given by �Zi j = 0.05 + j0.3pu, i.e., all the
transmission lines have the same impedance.

1. Bus 1 is a PV bus, i.e., a generator bus: PG1 = 0.5pu and V1 = 1.1pu; Q1 and
δ1 are unknown.

2. Bus 2 is a slack bus: V2 = 1pu and δ2 = 0◦; P2 and Q2 are unknown.
3. Bus 3 is a PQ bus, i.e., a load bus: PL3 = 0.8pu and QL3 = 0.2pu; V3 and δ3 are

unknown.

All the values are expressed in per unit with Pb = 100MW and Vb = 138 kV.
Use the powerworld simulator or write a program usingMatlab or any other package
to obtain a power flow solution. Attach the one-line diagram and tabulate the results
from the power flow solution.

Exercise 6.11 Figure6.10 is a one-line diagramof a four-bus system.The impedance
of the lines connecting nodes i and j is given by �Zi j = 0.01 + j0.2pu, i.e., all the
transmission lines have the same impedance.

1. Bus 1 is a PV bus, i.e., a generator bus: PG1 = 1pu and V1 = 0.99pu; Q1 and δ1
are unknown.

2. Bus 2 is a PV bus, i.e., a generator bus: PG2 = 0.8pu and V2 = 1.01pu; Q2 and
δ2 are unknown.

Fig. 6.8 SMIB—Load flow
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Fig. 6.9 Three bus system
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Fig. 6.10 Four bus circuit
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3. Bus 3 is a slack bus: V3 = 1pu and δ3 = 0◦; P3 and Q3 are unknown.
4. Bus 4 is a PQ bus, i.e., a load bus: PL4 = 1.5pu and QL4 = 0.3pu; V3 and δ3 are

unknown.

All the values are expressed in per unit with Pb = 100MW and Vb = 138 kV.
Please write a load-flow script (in a package of your choice) and obtain the complex
power supplied by the swing bus to supply the load at bus 4.

Exercise 6.12 Two coils with turns N1 = 1000 and N2 = 100 are wound around an
iron core with an airgap of lg = 2mm. The flux path in the iron core has a length of
5 cm and the cross-section area of the core is 2 cm2. The relative permeability of the
iron core is μr = 3000 and μ0 = 4π10−7 V sA−1 m−1. Find the inductance of both
the coils (Fig. 6.11).

Exercise 6.13 The synchronous machine, in Fig. 6.12, has a sinusoidally distributed
stator winding aa′ and a round rotor with field coil f f ′. A helical spring connects
rotor to a fixed point. DC voltages are applied to the rotor and stator windings at
time t = 0 s and θ(0) = 0.03 rad. The parameters of the system are: J = 1 J s2, B =
0.2 J s, ks = 0.2Nm, Laa = 4mH, L ff = 4mH, L̂ f a = 3mH, r f = 1�, ra = 2�,
v f = 10V, and va = −10V. The mutual inductance is L f a = L̂ f a cos θ where θ is
the angle between the horizontal line and the magnetic “pole” of the rotor.

1. What is the equilibrium value of θ?
2. Plot the value of θ with time.
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Fig. 6.12 Machine and
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Exercise 6.14 Two magnetically coupled coils, a and f , have the following induc-
tances: Laa = 3 + cos 2θ mH, La f = 0.1 cos θH , and L f f = 30 + 10 cos 2θH . The
coil a is free to rotate about its centre and coil f is stationary. Find the torque Ta(θ)

on the rotor coil a for ia = 1A and i f = 0.01A.

Exercise 6.15 The currents in N-turn stator windings aa′, bb′, and cc′ of a syn-
chronous machine as shown in Fig. 6.13 result in the following peak mmf values:

F̂a = N Im cos(ωt); F̂b = N Im cos(ωt − 2π

3
); F̂c = N Im cos(ωt + 2π

3
)

Prove that the resultant rotating mmf is:

F =N Im cos(ωt) cos(θ) + N Im cos(ωt − 2π

3
) cos(θ − 2π

3
)

+ N Im cos(ωt + 2π

3
) cos(θ + 2π

3
)

=3

2
N Im cos(ωt − θ)

where θ is measured counter-clockwise from the horizontal line.

Exercise 6.16 Please comment on the statement that the dynamics of a synchronous
machine is similar to a mass-spring system dynamics. Justify your comments with
appropriate equations.
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Exercise 6.17

Ks = 2

3

⎡
⎣

cos(ωt + φr + φs) cos(ωt + φr + φs − 2π
3 ) cos(ωt + φr + φs + 2π

3 )

− sin(ωt + φr + φs) − sin(ωt + φr + φs − 2π
3 ) − sin(ωt + φr + φs + 2π

3 )
1
2

1
2

1
2

⎤
⎦

The above matrix Ks is used to transform between abc and dq-frames: Fdq0 =
KsFabc. Obtain Idq0 when φr + φs = 0, and

Iabc =
⎡
⎣

Im sinωt
Im sin(ωt − 2π

3 )

Im sin(ωt + 2π
3 )

⎤
⎦

Exercise 6.18 The stator coil of a three-phase round rotor synchronous machine
has: rs = 0.003 pu, ωLd = 1.5 pu, ωLq = 1.5 pu, ωLmd = 1.4 pu. The field coil
has: rfd = 0.0006 pu. The line voltage is 1ej0. Use the voltage-behind-synchronous-
reactance model to find E0

fd, δ0, and i
0
fd when the stator current is: (a) 1e

j π
4 pu and (b)

1e−j π
4 pu.

Exercise 6.19 The stator coil of a three-phase round rotor synchronousmachine has:
rs = 0.003 pu, ωL ′

d = 1.5 pu, ωL ′
q = 1.5 pu. The field coil has: rfd = 0.0006 pu.

The voltage vD + jvQ = 1ej0 and iD + j iQ = 1e−j π
4 pu. Obtain E ′

q and δ0. Use the
voltage-behind-transient reactance model and note that (where F is either v or i):

[
Fds

Fqs

]
=

[
sin δ0 − cos δ0
cos δ0 sin δ0

] [
FD

FQ

]
(6.1)

Exercise 6.20 A synchronous generator is connected to an infinite bus, with voltage
V∞ej0, and supplies power P0 at a power factor PF. Let

φ =
{

− cos−1(PF) lagging PF

cos−1(PF) leading PF

then P0 = (3/2)V∞ Im cosφ. Show that for a round rotor, (Lq = Ld ), the steady-state
δ0 can be calculated using the following relationship:

tan δ0 = rs Im sin φ + ωLd Im cosφ

V∞ + rs Im cosφ − ωLd Im sin φ
.

Exercise 6.21 The synchronous machine in the exercise in Sect. 2.2.10 is connected
to an infinite bus and it is supplying 200 × 106W power at 0.8 lagging power factor.
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1. Obtain steady-state values of the state variables for the differential Eqs. (2.25)–
(2.27). Since the machine is connected to the infinite bus vD = Vm and vQ = 0.

φ = − cos−1 0.8

200 × 106 W = (3/2)Vm Im cosφ (obtain Im)

iD = Im cosφ

iQ = Im sin φ[
ids
iqs

]
= R(φr )

[
iD
iQ

]
(ids, iqs in terms of δ)

where R(φr ) is the same as in the above exercise in Sect. 2.2.11. Obtain δ0, λ0
fd,

i0ds , and i
0
qs from (2.25), (2.35) and P0

o = (3/2)(v0
dsi

0
ds + v0

qsi
0
qs). Obtain i

0
fd from

(2.24) and then vfd = rfdi0fd.
2. Calculate the initial values of δ0 and i0fd based on the exercise in Sect. 2.2.12 and

compare it with the values obtained above.
3. Simulate this SMIB system for 1 s. Please see the instructions in the exercise in

Sect. 2.2.11.
4. Change the input power to Pm = 250 × 106 W at 1 s and simulate for 10 s. Note

that the initial conditions for this step are the final conditions in the above step.
Note that by changing the input power the output power will also change

5. Change the input power back to Pm = 200 × 106 W at 10s and simulate for
another 10 s.

6. Show the simulation results using the plots for speed, angle, electrical torque, dq
and phasor currents, flux linkages, real and reactive power.

Exercise 6.22 Repeat Exercise 6.21 when the synchronous machine is supplying
200 × 106 W power at 0.8 leading power factor.

Exercise 6.23 The synchronous machine with parameters in Exercise6.21 is oper-
ating at steady-state with zero input mechanical power. At t = 1 s, a three-phase
short-circuit is applied at the generator terminals. The short-circuit is removed at
t = 5 s. Simulate the response till t = 10 s and plot all the outputs including phasor
currents. What can you say about the relative magnitude of the transient and syn-
chronous reactance of this synchronous machine from the plot of phasor currents?

Exercise 6.24 A single machine is connected to an infinite bus. The pre-fault power
transfer is: 2.25 sin δ pu and at steady-state the power transfer is 0.9pu. There is a
fault that reduced the power transfer capability to 0.75 sin δ pu and when the fault is
cleared the power transfer capacity is 1.75 sin δ pu. Find the critical clearing angle.
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Fig. 6.14 Induction
machine steady-state
equivalent circuit

−
V̂s

+
rs

Îs
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Exercise 6.25

Ks = 2

3

⎡
⎣

cos(θ) cos(θ − 2π
3 ) cos(θ + 2π

3 )

− sin(θ) − sin(θ − 2π
3 ) − sin(θ + 2π

3 )
1
2

1
2

1
2

⎤
⎦

Lsr =
⎡
⎣

Lmd cos θr
Lmd cos

(
θr − 2π

3

)
Lmd cos

(
θr + 2π

3

)

⎤
⎦

When θ = θr = ∫ t
0 ωr dt + θr (0), where ωr is the rotor angular velocity. Show that

KsLsr =
⎡
⎣
Lmd

0
0

⎤
⎦

Exercise 6.26 Show that the circuit in Fig. 6.14 is an equivalent circuit for steady-
state operation (with λ̇qr = 0 and λ̇dr = 0) of an induction machine (eliminate flux
variables and write the equations in terms of phasor current and voltage variables).
To show that the circuit in Fig. 6.14 is an equivalent circuit, you need to show that in
steady-state the following is true.

vds + jvqs = rs(ids + j iqs) + jωLss(ids + j iqs) + jωLM (idr + j iqr )

vdr + jvqr = rr (idr + j iqr ) + j (ω − ωr )Lrr (idr + j iqr ) + j (ω − ωr )LM (ids + j iqs)

Please note that: V̂s = vds + jvqs , Îs = ids + j iqs , Îr = idr + j iqr , V̂r = vdr + jvqr ,
Lqr = Llr + LM , Ldr = Llr + LM , Lqs = Lls + LM , and Lds = Lls + LM . Note
that Lqr = Ldr and Lqs = Lds , we also define Lrr = Lqr = Ldr and Lss =
Lqs = Lds .

Exercise 6.27 An induction motor is connected to an infinite bus and it has
the following parameter values: P = 1.5; Lls = 0.014H; Llr = 0.012H; Lds =
0.39H; Ldr = 0.39H; rs = 1.75� ; rr = 1.30�; Vm = (

√
2/3)240V; vdr = vqr =

0. Assume the induction motor dq-frame aligned with the infinite bus DQ-frame, i.e.,
vds = Vm and vqs = 0.
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For the steady-state operation of the above induction motor, plot for ωr varying
from 0 to 2ω. You can assume the synchronous speed ω = 2π50 rad s−1 and the slip
s = ω−ωr

ω
.

1. Electric torque versus speed (or slip)
2. Input current magnitude versus speed (or slip)
3. Reactive power input versus speed (or slip)

Exercise 6.28 For the induction motor connected to an infinite bus system with
parameters given Exercise 6.27:

1. The dq-frame is rotating with the angular velocity ω = 2π50 rad s−1.
2. For steady-state values solve Eqs. (2.85), (2.86), (2.87) (with λ̇dr = 0, λ̇qr =

0, ω̇ri = 0), (2.88), (2.89) to obtain ω0
ri , λ

0
dr , λ

0
qr , i

0
ds , i

0
qs .

3. Simulate this system for 0.1 s, starting from the initial conditions obtained in the
step above. At each integration step for Eqs. (2.85), (2.86), currents ids and iqs
are calculated using (2.88)–(2.89), where vds = Vm , vqs = 0.

4. At 0.1 s, change the load torque to 50% of the value used above and simulate
for 1 s. Note that the initial conditions for this step are the final conditions in the
above step.

5. Change the load torque back to the original value after 1 s and simulate for another
1 s.

6. Show the simulation results using the plots for speed, electrical torque, dq and
phasor currents, flux linkages, real and reactive power.

Plot all the currents, voltages, real and reactive power output and other state variables.

Exercise 6.29 From the modelling point of view the chief difference between
doubly-fed and short-circuited rotor machine is considering vdri and vqri in (2.85)
and (2.86). In all the derivations done in the exercises here, if vdri and vqri are non-
zero then it models a doubly-fed machine and for vdri = vqri = 0, it is a squirrel cage
or short-circuited-rotor induction machine. The actually applied rotor voltages and
vdri , vqri are related by the transformation Kr in the exercise in Sect. 2.6.1.

Repeat the Exercise6.28 when vdr = 2V and vqr = 2V.

Exercise 6.30 For the following parameter values, in per unit, obtain the A-matrix
using the linearised model shown in Fig. 6.15: Pm = 0.6; xq = 1.3; xd = 1.5; KD =
1.0; H = 3.0; τ ′

d0 = 7.0s; x ′
d = 0.3; x ′

q = 1.3; xe = 0.6;ω0 = 2π60 rad s−1; V∞ =
1; E ′

q0 = 1.2. Assume values not given above. Please note that to get the A-matrix
you will need to obtain the K-parameters first. For the A-matrix obtained here, obtain
its eigenvalues and eigenvectors.

Exercise 6.31 In Fig. 6.16, let

G(s) = 10

(s + 1)(s + 10)
.
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ΔEfd

+
K3

1 + sT3

Field Circuit
ΔEq

K2 +
ΔTe

−
ΔTm + 1

2Hs + KD

Δωr ω0

s
Δδ

K1

K4

−

Fig. 6.15 Synchronous machine (without AVR)

Fig. 6.16 Feedback block
diagram R(s)

+
E(s)

C(s)
Controller

U(s)
G(s)
Plant

Y (s)
−

Design controller C(s) such that,

1. The closed-loop system has zero steady-state error to unit step reference input;
2. The crossover frequency is above 80 rad s−1;
3. There is a minimum 50◦ phase margin.

A lead-lag controller can meet these specifications:

C(s) = K
1 + s

α

s

1 + s
ωz

1 + s
ωp

Please provide sufficient justifications and explanations with the design.

Exercise 6.32 The differential equations describing DC motor dynamics are:

L
dia
dt

+ Ria + kωωr = vm (6.2)

J
dωr

dt
+ Bωr = kaia (6.3)

dθ

dt
= ωr (6.4)

where vm is the input motor voltage, ωr , θ, ia are the motor angular velocity, angular
position, and armature current, respectively. Let the angle θ be the output and the
voltage vm be the system input.
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Obtain a state-space realisation, i.e., {A, B,C, D} matrices and the transfer func-
tion of the system, 
(s)

Vm (s) , for the system represented by Eqs. (6.2)–(6.4).

Exercise 6.33 A dynamical system is represented in the block diagram form as
shown in Fig. 6.17.

Find the overall transfer function Y (s)
U (s) in terms of the component blocks.

Exercise 6.34 A dynamical system is represented in the block diagram form as
shown in Fig. 6.18.

Find the overall transfer function Y (s)
R(s) in terms of the component blocks.

Exercise 6.35 Plot the bode plot for some of the following systems with τ =
1/10; τ1 = 1/20; τ2 = 1/30; τ3 = 1/100:

1. 1
1+τ s

2. 1+τ s
s

3. 1
(1+τ1s)(1+τ2s)

U(s)+
G1(s)

+
G2(s) G3(s)

Y (s)

H1(s)

−

H3(s)

−

H2(s)

−

Fig. 6.17 Block diagram

R(s) G1(s) R1(s)

G2(s) G4(s)

G3(s) G5(s)

Y1(s)
G6(s) Y (s)H2(s)

H4(s)

H3(s)

+ −
−

+
−

+ −

+

+

Fig. 6.18 Block diagram
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Fig. 6.19 Frequency response

4. 1+τ1s
1+τ2s

5. 1+τ3s
(1+τ1s)(1+τ2s)

6. 1+T1s
1+T3s

1+T2s
1+T4s

, T1 = T2 = 0.118 s, T3 = T4 = 0.044 s.

7. sTW
1+sTW

, (sTW )2

(1+sTW )2
, TW = 10.

8. 1−τ1s
1+τ2s

Exercise 6.36 Obtain the transfer functions for the systems with the frequency
response shown in Figs. 6.19, 6.20, 6.21 and 6.22.

Exercise 6.37 A block diagram of an AVR and a generator is shown in Fig. 6.23. In
the block diagram the disturbance term�d(s) in the figure represents the weakening
of the flux due to armature reaction, etc. In other words, �d(s), models the effect
of all the disturbances which change the terminal voltage. Let: TA = 0.02, T ′

do = 8,
�d(s) = 0.
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Fig. 6.20 Frequency response

Choose a value for KA such that the steady-state error to a unit-step reference
voltage Vref is less than 3%. What is the settling time with this value of KA?

Exercise 6.38 The block diagram of a closed-loop system with a lag block is shown
in Fig. 6.24. Let: TA = 0.05, T ′

do = 5, KA = 500.
Design the lag block in Fig. 6.24, i.e., choose TC and TB such that the open-loop (or
the loop-gain) bandwidth is 12 rad s−1.

Exercise 6.39 AnAVRswith a rate feedback block is shown in Fig. 6.25. Let: KA =
120, TA = 0.15, TE = 0.5, KE = 1.0, T ′

d0 = 5.
Design the rate-feedback block in Fig. 6.25, i.e., choose TF and KF such that the

open-loop (or the loop-gain) bandwidth is 12 rad s−1.

Exercise 6.40 Let us look at an AVR, shown in Figs. 4.13 and 4.14, with the follow-
ingparameters: KF1 = 0.212, KF2 = 0.0, KF3 = 0.0, TE = 0.36, KE = 1.0, KC =
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Fig. 6.21 Frequency response

0.30, KD = 1.04, TR = 0.01, T ′
d0 = 8.9, KE = 1, KD = 0.6. Assume a practical

value of any parameter that is not given here. Design the PID controller CR(s),
i.e., choose the parameters, KPA, KIA, TDR, KPR, KIR, KDR, such that the open-loop
crossover frequency is ωc = 4 rad s−1 with a phase-margin φd = 60◦.

Exercise 6.41 A synchronous machine with a static AVR (gain KA) is connected to
the infinite-bus as shown in Fig. 6.26 and the SMIB has the following parameters,
xq = 1.0; xd = 1.81; H = 3.5; KD = 1; τ ′

d0 = 8.0; TR = 0.02; KA = 200;
x ′
d = 0.8; x ′

q = 0.8; xe = 0.6;ω0 = 2π50; V∞ = 1.0; Pe = 1.0; Q = 0.1.
Design a PSS to fit into the overall scheme shown in Fig. 5.3.What is themaximum

damping that can be provided by the PSS? A PSS block such as in Fig. 5.4 or any
other PSS block can be used to damp the resonant mode.
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Fig. 6.22 Frequency response

Vref
+

E(s) KA

1 + sTA

AVR
Efd

Δd(s)

+
− 1

1 + sTd0

Generator
VT

−

Fig. 6.23 AVR tuning—steady-state error

Vref
+

1 + sTC

1 + sTB

Lag block
KA

1 + sTA
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Efd 1

1 + sTd0

Generator
VT

−

Fig. 6.24 AVR tuning lag compensator
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Fig. 6.25 AVR tuning rate-feedback compensator

Fig. 6.26 Single machine
infinite bus (SMIB)

Eq∠δ

−

+

jxd jxe

V∞∠0
+

−

6.2 Answers

Exercise6.1, page 201
�I = 1.11e−j38.14◦

A and iss(t) = √
2 × 1.11 sin(2π50t − 38.14◦)

Exercise6.2, page 201
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Capacitor Voltage - Solving ODE
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Time (s)

-100

-50
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50

100

v c(t)

Capacitor Voltage - Phasor Analysis

Input Voltage
Steady-state Solution
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Exercise6.3, page 201

YBUS =
⎡
⎣

1.08 − j6.48 −0.54 + j3.24 −0.54 + j3.24
−0.54 + j3.24 1.08 − j6.48 −0.54 + j3.24
−0.54 + j3.24 −0.54 + j3.24 1.08 − j6.48

⎤
⎦

Exercise6.4, page 201—To be included

Exercise6.5, page 201
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ODE Solution
Steady-state Solution

Exercise6.6, page 202

�Vc = 2.24 − j0.64, �I1 = −0.025 − j0.00146, �I2 = 0.0056 − j0.068, Svc =
−j0.170, Sv1 = 0.258 − j0.0014.

Exercise6.7, page 202

Star - �Ia = 43.95−j41.42, Sload = 18242 + j17192, Sgen = 3 × (18242 + j17192).
Delta - �Iab = 101.81 − j24.07, Sload = 54725 + j51577, Sgen = 3 × (54725 +
j51577).

Exercise6.8, page 203

δ1 = 7.49◦ and the complex power absorbed by the infinite-bus is 0.5 − j0.031pu.

Exercise6.9, page 203
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Exercise6.10, page 204

V1 Iteration V3 PL2 QL2

1 1.004 1.019 0.000 0.000
2 0.999 1.013 0.027 −0.081
3 1.000 1.013 0.232 −0.064
4 1.000 1.013 0.284 −0.064
5 1.000 1.013 0.298 −0.064
6 1.000 1.013 0.302 −0.064
7 1.000 1.013 0.303 −0.064
8 1.000 1.013 0.303 −0.064
9 1.000 1.013 0.303 −0.064
10 1.000 1.013 0.303 −0.064

Exercise6.11, page 204

Iteration V1 V2 V4 PL3 QL3

1 0.996 1.016 0.979 −0.000 −0.000
2 0.990 1.009 0.969 −0.445 0.161
3 0.990 1.010 0.969 −0.399 0.206
4 0.990 1.010 0.969 −0.340 0.203
5 0.990 1.010 0.969 −0.312 0.201
6 0.990 1.010 0.969 −0.299 0.200
7 0.990 1.010 0.969 −0.294 0.200
8 0.990 1.010 0.969 −0.291 0.200
9 0.990 1.010 0.969 −0.290 0.200
10 0.990 1.010 0.969 −0.289 0.199
11 0.990 1.010 0.969 −0.289 0.199
12 0.990 1.010 0.969 −0.289 0.199
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Exercise6.12, page 205

L1 = 1.246mH and L2 = 0.1246H.

Exercise6.13, page 205
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