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PREFACE

TO THE STUDENT

his is a book about computer organization and architecture. It focuses on the
Tfunction and design of the various components necessary to process informa-
tion digitally. We present computing systems as a series of layers, starting with
low-level hardware and progressing to higher-level software, including assem-
blers and operating systems. These levels constitute a hierarchy of virtual
machines. The study of computer organization focuses on this hierarchy and the
issues involved with how we partition the levels and how each level is imple-
mented. The study of computer architecture focuses on the interface between
hardware and software, and emphasizes the structure and behavior of the system.
The majority of information contained in this textbook is devoted to computer
hardware, and computer organization and architecture, and their relationship to
software performance.

Students invariably ask, “Why, if I am a computer science major, must I learn
about computer hardware? Isn’t that for computer engineers? Why do I care
what the inside of a computer looks like?” As computer users, we probably do
not have to worry about this any more than we need to know what our car looks
like under the hood in order to drive it. We can certainly write high-level lan-
guage programs without understanding how these programs execute; we can use
various application packages without understanding how they really work. But
what happens when the program we have written needs to be faster and more
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efficient, or the application we are using doesn’t do precisely what we want? As
computer scientists, we need a basic understanding of the computer system itself
in order to rectify these problems.

There is a fundamental relationship between the computer hardware and the
many aspects of programming and software components in computer systems. In
order to write good software, it is very important to understand the computer sys-
tem as a whole. Understanding hardware can help you explain the mysterious
errors that sometimes creep into your programs, such as the infamous segmenta-
tion fault or bus error. The level of knowledge about computer organization and
computer architecture that a high-level programmer must have depends on the
task the high-level programmer is attempting to complete.

For example, to write compilers, you must understand the particular hardware
to which you are compiling. Some of the ideas used in hardware (such as pipelin-
ing) can be adapted to compilation techniques, thus making the compiler faster
and more efficient. To model large, complex, real-world systems, you must
understand how floating-point arithmetic should, and does, work (which are not
necessarily the same thing). To write device drivers for video, disks, or other I/O
devices, you need a good understanding of I/O interfacing and computer architec-
ture in general. If you want to work on embedded systems, which are usually very
resource-constrained, you must understand all of the time, space, and price trade-
offs. To do research on, and make recommendations for, hardware systems, net-
works, or specific algorithms, you must acquire an understanding of
benchmarking and then learn how to present performance results adequately.
Before buying hardware, you need to understand benchmarking and all of the
ways in which others can manipulate the performance results to “prove” that one
system is better than another. Regardless of our particular area of expertise, as
computer scientists, it is imperative that we understand how hardware interacts
with software.

You may also be wondering why a book with the word essentials in its title is
so large. The reason is twofold. First, the subject of computer organization is
expansive and it grows by the day. Second, there is little agreement as to which
topics from within this burgeoning sea of information are truly essential and
which are just helpful to know. In writing this book, one goal was to provide a
concise text compliant with the computer architecture curriculum guidelines
jointly published by the Association for Computing Machinery (ACM) and the
Institute of Electrical and Electronic Engineers (IEEE). These guidelines encom-
pass the subject matter that experts agree constitutes the “essential” core body of
knowledge relevant to the subject of computer organization and architecture.

We have augmented the ACM/IEEE recommendations with subject matter
that we feel is useful—if not essential—to your continuing computer science
studies and to your professional advancement. The topics we feel will help you in
your continuing computer science studies include operating systems, compilers,
database management, and data communications. Other subjects are included
because they will help you understand how actual systems work in real life.
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We hope that you find reading this book an enjoyable experience, and that
you take time to delve deeper into some of the material that we have presented. It
is our intention that this book will serve as a useful reference long after your for-
mal course is complete. Although we give you a substantial amount of informa-
tion, it is only a foundation upon which you can build throughout the remainder
of your studies and your career. Successful computer professionals continually
add to their knowledge about how computers work. Welcome to the start of your
journey.

TO THE INSTRUCTOR

About the Book

This book is the outgrowth of two computer science organization and architecture
classes taught at The Pennsylvania State University Harrisburg campus. As the
computer science curriculum evolved, we found it necessary not only to modify
the material taught in the courses but also to condense the courses from a two-
semester sequence into a three credit, one-semester course. Many other schools
have also recognized the need to compress material in order to make room for
emerging topics. This new course, as well as this textbook, is primarily for com-
puter science majors, and is intended to address the topics in computer organiza-
tion and architecture with which computer science majors must be familiar. This
book not only integrates the underlying principles in these areas, but it also intro-
duces and motivates the topics, providing the breadth necessary for majors, while
providing the depth necessary for continuing studies in computer science.

Our primary objective in writing this book is to change the way computer
organization and architecture are typically taught. A computer science major
should leave a computer organization and architecture class with not only an
understanding of the important general concepts on which the digital computer is
founded, but also with a comprehension of how those concepts apply to the real
world. These concepts should transcend vendor-specific terminology and design;
in fact, students should be able to take concepts given in the specific and translate
to the generic and vice versa. In addition, students must develop a firm founda-
tion for further study in the major.

The title of our book, The Essentials of Computer Organization and Architec-
ture, is intended to convey that the topics presented in the text are those for which
every computer science major should have exposure, familiarity, or mastery. We do
not expect students using our textbook to have complete mastery of all topics pre-
sented. It is our firm belief, however, that there are certain topics that must be mas-
tered; there are those topics for which students must have a definite familiarity; and
there are certain topics for which a brief introduction and exposure are adequate.

We do not feel that concepts presented in sufficient depth can be learned by
studying general principles in isolation. We therefore present the topics as an inte-
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grated set of solutions, not simply a collection of individual pieces of informa-
tion. We feel our explanations, examples, exercises, tutorials, and simulators all
combine to provide the student with a total learning experience that exposes the
inner workings of a modern digital computer at the appropriate level.

We have written this textbook in an informal style, omitting unnecessary jar-
gon, writing clearly and concisely, and avoiding unnecessary abstraction, in
hopes of increasing student enthusiasm. We have also broadened the range of top-
ics typically found in a first-level architecture book to include system software, a
brief tour of operating systems, performance issues, alternative architectures, and
a concise introduction to networking, as these topics are intimately related to
computer hardware. Like most books, we have chosen an architectural model, but
it is one that we have designed with simplicity in mind.

Relationship to Computing Curricula 2001

In December of 2001, the ACM/IEEE Joint Task Force unveiled the 2001 Com-
puting Curricula (CC-2001). These new guidelines represent the first major revi-
sion since the very popular Computing Curricula 1991. CC-2001 represents
several major changes from CC-1991, but we are mainly concerned with those
that address computer organization and computer architecture. CC-1991 sug-
gested approximately 59 lecture hours for architecture (defined as both organiza-
tion and architecture and labeled AR), including the following topics: digital
logic, digital systems, machine-level representation of data, assembly-level
machine organization, memory system organization and architecture, interfacing
and communication, and alternative architectures. The latest release of CC-2001
(available at www.computer.org/education/cc2001/) reduces architecture cover-
age to 36 core hours, including digital logic and digital systems (3 hours),
machine-level representation of data (3 hours), assembly-level machine organiza-
tion (9 hours), memory system organization and architecture (5 hours), interfac-
ing and communication (3 hours), functional organization (7 hours), and
multiprocessing and alternative architectures (3 hours). In addition, CC-2001 sug-
gests including performance enhancements and architectures for networks and
distributed systems as part of the architecture and organization module for CC-
2001. We are pleased, after completely revising our course and writing this text-
book, that our new material is in direct correlation with the ACM/IEEE 2001
Curriculum guidelines for computer organization and architecture as follows:

ARI1. Digital logic and digital systems (core): Chapters 1 and 3

AR2. Machine-level representation of data (core): Chapter 2

AR3. Assembly-level machine organization (core): Chapters 4, 5 and 6
AR4. Memory system organization and architecture (core): Chapter 6
ARS. Interfacing and communication (core): Chapter 7

ARG6. Functional organization (core): Chapters 4 and 5

AR7. Multiprocessing and alternative architectures (core): Chapter 9
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ARS. Performance enhancements (elective): Chapters 9 and 10

AR9. Architecture for networks and distributed systems (elective):
Chapter 11

Why another text?

Features

No one can deny there is a plethora of textbooks for teaching computer organiza-
tion and architecture already on the market. In our 25-plus years of teaching these
courses, we have used many very good textbooks. However, each time we have
taught the course, the content has evolved, and, eventually, we discovered we
were writing significantly more course notes to bridge the gap between the mate-
rial in the textbook and the material we deemed necessary to present in our
classes. We found that our course material was migrating from a computer engi-
neering approach to organization and architecture toward a computer science
approach to these topics. When the decision was made to fold the organization
class and the architecture class into one course, we simply could not find a text-
book that covered the material we felt was necessary for our majors, written from
a computer science point of view, written without machine-specific terminology,
and designed to motivate the topics before covering them.

In this textbook, we hope to convey the spirit of design used in the develop-
ment of modern computing systems and what impact this has on computer sci-
ence students. Students, however, must have a strong understanding of the basic
concepts before they can understand and appreciate the non-tangible aspects of
design. Most organization and architecture textbooks present a similar subset of
technical information regarding these basics. We, however, pay particular atten-
tion to the level at which the information should be covered, and to presenting
that information in the context that has relevance for computer science students.
For example, throughout this book, when concrete examples are necessary, we
offer examples for personal computers, enterprise systems, and mainframes, as
these are the types of systems most likely to be encountered. We avoid the “PC
bias” prevalent in similar books in the hope that students will gain an apprecia-
tion for the differences, similarities, and the roles various platforms play within
today’s automated infrastructures. Too often, textbooks forget that motivation is,
perhaps, the single most important key in learning. To that end, we include many
real-world examples, while attempting to maintain a balance between theory and
application.

We have included many features in this textbook to emphasize the various con-
cepts in computer organization and architecture, and to make the material more
accessible to students. Some of the features are listed below:

» Sidebars. These sidebars include interesting tidbits of information that go a
step beyond the main focus of the chapter, thus allowing readers to delve fur-
ther into the material.
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* Real-World Examples. We have integrated the textbook with examples from
real life to give students a better understanding of how technology and tech-
niques are combined for practical purposes.

e Chapter Summaries. These sections provide brief yet concise summaries of
the main points in each chapter.

* Further Reading. These sections list additional sources for those readers who
wish to investigate any of the topics in more detail, and contain references to
definitive papers and books related to the chapter topics.

* Review Questions. Each chapter contains a set of review questions designed to
ensure that the reader has a firm grasp on the material.

* Chapter Exercises. Each chapter has a broad selection of exercises to rein-
force the ideas presented. More challenging exercises are marked with an
asterisk.

e Answers to Selected Exercises. To ensure students are on the right track, we
provide answers to representative questions from each chapter. Questions with
answers in the back of the text are marked with a blue diamond.

e Special “Focus On” Sections. These sections provide additional information
for instructors who may wish to cover certain concepts, such as Kmaps and
input/output, in more detail. Additional exercises are provided for these sec-
tions as well.

e Appendix. The appendix provides a brief introduction or review of data struc-
tures, including topics such as stacks, linked lists, and trees.

* Glossary. An extensive glossary includes brief definitions of all key terms
from the chapters.

e Index. An exhaustive index is provided with this book, with multiple cross-
references, to make finding terms and concepts easier for the reader.

About the Authors

We bring to this textbook not only 25-plus years of combined teaching experi-
ence, but also 20 years of industry experience. Our combined efforts therefore
stress the underlying principles of computer organization and architecture, and
how these topics relate in practice. We include real-life examples to help students
appreciate how these fundamental concepts are applied in the world of computing.
Linda Null received a Ph.D. in Computer Science from lowa State University
in 1991, an M.S. in Computer Science from lowa State University in 1989, an
M.S. in Computer Science Education from Northwest Missouri State University
in 1983, an M.S. in Mathematics Education from Northwest Missouri State Uni-
versity in 1980, and a B.S. in Mathematics and English from Northwest Missouri
State University in 1977. She has been teaching mathematics and computer sci-
ence for over 25 years and is currently the Computer Science graduate program
coordinator at The Pennsylvania State University Harrisburg campus, where she
has been a member of the faculty since 1995. Her areas of interest include com-
puter organization and architecture, operating systems, and computer security.
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Julia Lobur has been a practitioner in the computer industry for over 20
years. She has held positions as a systems consultant, a staff programmer/analyst,
a systems and network designer, and a software development manager, in addi-
tion to part-time teaching duties.

Prerequisites

The typical background necessary for a student using this textbook includes a year
of programming experience using a high-level procedural language. Students are
also expected to have taken a year of college-level mathematics (calculus or dis-
crete mathematics), as this textbook assumes and incorporates these mathematical
concepts. This book assumes no prior knowledge of computer hardware.

A computer organization and architecture class is customarily a prerequisite
for an undergraduate operating systems class (students must know about the
memory hierarchy, concurrency, exceptions, and interrupts), compilers (students
must know about instruction sets, memory addressing, and linking), networking
(students must understand the hardware of a system before attempting to under-
stand the network that ties these components together), and of course, any
advanced architecture class. This text covers the topics necessary for these
courses.

General Organization and Coverage

Our presentation of concepts in this textbook is an attempt at a concise, yet thor-
ough, coverage of the topics we feel are essential for the computer science major.
We do not feel the best way to do this is by “compartmentalizing” the various
topics; therefore, we have chosen a structured, yet integrated approach where
each topic is covered in the context of the entire computer system.

As with many popular texts, we have taken a bottom-up approach, starting
with the digital logic level and building to the application level that students
should be familiar with before starting the class. The text is carefully structured
so that the reader understands one level before moving on to the next. By the time
the reader reaches the application level, all of the necessary concepts in computer
organization and architecture have been presented. Our goal is to allow the stu-
dents to tie the hardware knowledge covered in this book to the concepts learned
in their introductory programming classes, resulting in a complete and thorough
picture of how hardware and software fit together. Ultimately, the extent of hard-
ware understanding has a significant influence on software design and perform-
ance. If students can build a firm foundation in hardware fundamentals, this will
go a long way toward helping them to become better computer scientists.

The concepts in computer organization and architecture are integral to many
of the everyday tasks that computer professionals perform. To address the numer-
ous areas in which a computer professional should be educated, we have taken a
high-level look at computer architecture, providing low-level coverage only when
deemed necessary for an understanding of a specific concept. For example, when
discussing ISAs, many hardware-dependent issues are introduced in the context
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of different case studies to both differentiate and reinforce the issues associated
with ISA design.
The text is divided into eleven chapters and an appendix as follows:

e Chapter 1 provides a historical overview of computing in general, pointing
out the many milestones in the development of computing systems, and allow-
ing the reader to visualize how we arrived at the current state of computing.
This chapter introduces the necessary terminology, the basic components in a
computer system, the various logical levels of a computer system, and the von
Neumann computer model. It provides a high-level view of the computer sys-
tem, as well as the motivation and necessary concepts for further study.

e Chapter 2 provides thorough coverage of the various means computers use to
represent both numerical and character information. Addition, subtraction,
multiplication and division are covered once the reader has been exposed to
number bases and the typical numeric representation techniques, including
one’s complement, two’s complement, and BCD. In addition, EBCDIC,
ASCII, and Unicode character representations are addressed. Fixed- and float-
ing-point representation are also introduced. Codes for data recording and
error detection and correction are covered briefly.

e Chapter 3 is a classic presentation of digital logic and how it relates to
Boolean algebra. This chapter covers both combinational and sequential logic
in sufficient detail to allow the reader to understand the logical makeup of
more complicated MSI (medium scale integration) circuits (such as decoders).
More complex circuits, such as buses and memory, are also included. We have
included optimization and Kmaps in a special “Focus On” section.

e Chapter 4 illustrates basic computer organization and introduces many funda-
mental concepts, including the fetch-decode-execute cycle, the data path,
clocks and buses, register transfer notation, and of course, the CPU. A very
simple architecture, MARIE, and its ISA are presented to allow the reader to
gain a full understanding of the basic architectural organization involved in
program execution. MARIE exhibits the classical von Neumann design, and
includes a program counter, an accumulator, an instruction register, 4096 bytes
of memory, and two addressing modes. Assembly language programming is
introduced to reinforce the concepts of instruction format, instruction mode,
data format, and control that are presented earlier. This is not an assembly lan-
guage textbook and was not designed to provide a practical course in assembly
language programming. The primary objective in introducing assembly is to
further the understanding of computer architecture in general. However, a sim-
ulator for MARIE is provided so assembly language programs can be written,
assembled, and run on the MARIE architecture. The two methods of control,
hardwiring and microprogramming, are introduced and compared in this chap-
ter. Finally, Intel and MIPS architectures are compared to reinforce the con-
cepts in the chapter.

e Chapter 5 provides a closer look at instruction set architectures, including
instruction formats, instruction types, and addressing modes. Instruction-level
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pipelining is introduced as well. Real-world ISAs (including Intel, MIPS, and
Java) are presented to reinforce the concepts presented in the chapter.

* Chapter 6 covers basic memory concepts, such as RAM and the various mem-
ory devices, and also addresses the more advanced concepts of the memory
hierarchy, including cache memory and virtual memory. This chapter gives a
thorough presentation of direct mapping, associative mapping, and set-associa-
tive mapping techniques for cache. It also provides a detailed look at overlays,
paging and segmentation, TLBs, and the various algorithms and devices asso-
ciated with each. A tutorial and simulator for this chapter is available on the
book’s website.

e Chapter 7 provides a detailed overview of I/O fundamentals, bus communica-
tion and protocols, and typical external storage devices, such as magnetic and
optical disks, as well as the various formats available for each. DMA, pro-
grammed I/O, and interrupts are covered as well. In addition, various techniques
for exchanging information between devices are introduced. RAID architectures
are covered in detail, and various data compression formats are introduced.

e Chapter 8 discusses the various programming tools available (such as compil-
ers and assemblers) and their relationship to the architecture of the machine on
which they are run. The goal of this chapter is to tie the programmer’s view of
a computer system with the actual hardware and architecture of the underlying
machine. In addition, operating systems are introduced, but only covered in as
much detail as applies to the architecture and organization of a system (such as
resource use and protection, traps and interrupts, and various other services).

e Chapter 9 provides an overview of alternative architectures that have emerged
in recent years. RISC, Flynn’s Taxonomy, parallel processors, instruction-level
parallelism, multiprocessors, interconnection networks, shared memory sys-
tems, cache coherence, memory models, superscalar machines, neural net-
works, systolic architectures, dataflow computers, and distributed architectures
are covered. Our main objective in this chapter is to help the reader realize we
are not limited to the von Neumann architecture, and to force the reader to con-
sider performance issues, setting the stage for the next chapter.

e Chapter 10 addresses various performance analysis and management issues.
The necessary mathematical preliminaries are introduced, followed by a dis-
cussion of MIPS, FLOPS, benchmarking, and various optimization issues with
which a computer scientist should be familiar, including branch prediction,
speculative execution, and loop optimization.

e Chapter 11 focuses on network organization and architecture, including net-
work components and protocols. The OSI model and TCP/IP suite are intro-
duced in the context of the Internet. This chapter is by no means intended to be
comprehensive. The main objective is to put computer architecture in the cor-
rect context relative to network architecture.

An appendix on data structures is provided for those situations where students may
need a brief introduction or review of such topics as stacks, queues, and linked lists.
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Chapter 1: Introduction

Y Y
Chapter 2: Chapter 3:
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Digital Logic
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Chapter 9: Alternative Chapter 10:
Architectures Performance

FIGURE P.1 Prerequisite Relationship Among Chapters

The sequencing of the chapters is such that they can be taught in the given
numerical order. However, an instructor can modify the order to better fit a given
curriculum if necessary. Figure P.1 shows the prerequisite relationships that exist
between various chapters.

Intended Audience

This book was originally written for an undergraduate class in computer organi-
zation and architecture for computer science majors. Although specifically
directed toward computer science majors, the book does not preclude its use by
IS and IT majors.

This book contains more than sufficient material for a typical one-semester
(14 week, 42 lecture hours) course; however, all of the material in the book can-
not be mastered by the average student in a one-semester class. If the instructor
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plans to cover all topics in detail, a two-semester sequence would be optimal. The
organization is such that an instructor can cover the major topic areas at different
levels of depth, depending on the experience and needs of the students. Table P.1
gives the instructor an idea of the length of time required to cover the topics, and
also lists the corresponding levels of accomplishment for each chapter.

It is our intention that this book will serve as a useful reference long after the
formal course is complete.

Support Materials

A textbook is a fundamental tool in learning, but its effectiveness is greatly
enhanced by supplemental materials and exercises, which emphasize the major
concepts, provide immediate feedback to the reader, and motivate understanding
through repetition. We have, therefore, created the following ancillary materials
for The Essentials of Computer Organization and Architecture:

* [Instructor’s Manual. This manual contains answers to exercises and sample
exam questions. In addition, it provides hints on teaching various concepts and
trouble areas often encountered by students.

» Lecture Slides. These slides contain lecture material appropriate for a one-
semester course in computer organization and architecture.

* Figures and Tables. For those who wish to prepare their own lecture materials,
we provide the figures and tables in downloadable form.

One Semester Two Semesters
(42 Hours) (84 Hours)
Lecture | Expected | Lecture | Expected

Chapter | Hours Level Hours Level
1 3 Mastery 3 Mastery
2 6 Mastery 6 Mastery
3 6 Mastery 6 Mastery
4 6 Familiarity 10 Mastery
5 3 Familiarity 8 Mastery
6 5 Familiarity 9 Mastery
7 2 Familiarity 6 Mastery
8 2 Exposure 7 Mastery
9 3 Familiarity 9 Mastery
10 3 Exposure 9 Mastery
11 3 Exposure 11 Mastery

TABLE P.1 Suggested Lecture Hours
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* Memory Tutorial and Simulator. This package allows students to apply the
concepts on cache and virtual memory.

e MARIE Simulator. This package allows students to assemble and run MARIE
programs.

» Tutorial Software. Other tutorial software is provided for various concepts in
the book.

e The Companion website. All software, slides, and related materials can be
downloaded from the book’s website:

http://computerscience.jbpub.com/ECOA

The exercises, sample exam problems, and solutions have been tested in numer-
ous classes. The Instructor’s Manual, which includes suggestions for teaching the
various chapters in addition to answers for the book’s exercises, suggested pro-
gramming assignments, and sample example questions, is available to instructors
who adopt the book. (Please contact your Jones and Bartlett Publishers Represen-
tative at 1-800-832-0034 for access to this area of the web site.)

The Instructional Model: MARIE

In a computer organization and architecture book, the choice of architectural
model affects the instructor as well as the students. If the model is too compli-
cated, both the instructor and the students tend to get bogged down in details that
really have no bearing on the concepts being presented in class. Real architec-
tures, although interesting, often have far too many peculiarities to make them
usable in an introductory class. To make things even more complicated, real
architectures change from day to day. In addition, it is difficult to find a book
incorporating a model that matches the local computing platform in a given
department, noting that the platform, too, may change from year to year.

To alleviate these problems, we have designed our own simple architecture,
MARIE, specifically for pedagogical use. MARIE (Machine Architecture that is
Really Intuitive and Easy) allows students to learn the essential concepts of com-
puter organization and architecture, including assembly language, without getting
caught up in the unnecessary and confusing details that exist in real architectures.
Despite its simplicity, it simulates a functional system. The MARIE machine sim-
ulator, MarieSim, has a user-friendly GUI that allows students to: (1) create and
edit source code; (2) assemble source code into machine object code; (3) run
machine code; and, (4) debug programs.

Specifically, MarieSim has the following features:

e Support for the MARIE assembly language introduced in Chapter 4
* An integrated text editor for program creation and modification
* Hexadecimal machine language object code

* An integrated debugger with single step mode, break points, pause, resume,
and register and memory tracing
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* A graphical memory monitor displaying the 4096 addresses in MARIE’s

memory

* A graphical display of MARIE’s registers
* Highlighted instructions during program execution

» User-controlled execution speed

e Status messages

» User-viewable symbol tables

* An interactive assembler that lets the user correct any errors and reassemble

automatically, without changing environments

* Online help

* Optional core dumps, allowing the user to specify the memory range

* Frames with sizes that can be modified by the user

* A small learning curve, allowing students to learn the system quickly

MarieSim was written in the Java™ language so that the system would be
portable to any platform for which a Java™ Virtual Machine (JVM) is available.
Students of Java may wish to look at the simulator’s source code, and perhaps
even offer improvements or enhancements to its simple functions.

Figure P.2, the MarieSim Graphical Environment, shows the graphical
environment of the MARIE machine simulator. The screen consists of four
parts: the menu bar, the central monitor area, the memory monitor, and the

message area.

M MARIE Simulator
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Preface
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assembly language.
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(hexadecimal) equivalents. The addresses of these instructions are indicated as
well, and users can view any portion of memory at any time. Highlighting is used
to indicate the initial loading address of a program in addition to the currently
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and memory allows the student to see how the instructions cause the values
within the registers and memory to change.
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Chapter 1 / Introduction

1.3

We begin our discussion of computer hardware by looking at the components
necessary to build a computing system. At the most basic level, a computer is a
device consisting of three pieces:

1. A processor to interpret and execute programs
2. A memory to store both data and programs
3. A mechanism for transferring data to and from the outside world

We discuss these three components in detail as they relate to computer hardware
in the following chapters.

Once you understand computers in terms of their component parts, you
should be able to understand what a system is doing at all times and how you
could change its behavior if so desired. You might even feel like you have a few
things in common with it. This idea is not as far-fetched as it appears. Consider
how a student sitting in class exhibits the three components of a computer: the
student’s brain is the processor, the notes being taken represent the memory, and
the pencil or pen used to take notes is the /O mechanism. But keep in mind that
your abilities far surpass those of any computer in the world today, or any that
can be built in the foreseeable future.

AN EXAMPLE SYSTEM: WADING THROUGH THE JARGON

This book will introduce you to some of the vocabulary that is specific to com-
puters. This jargon can be confusing, imprecise, and intimidating. We believe that
with a little explanation, we can clear the fog.

For the sake of discussion, we have provided a facsimile computer advertise-
ment (see Figure 1.1). The ad is typical of many in that it bombards the reader
with phrases such as “64MB SDRAM,” “64-bit PCI sound card” and “32KB L1
cache.” Without having a handle on such terminology, you would be hard-pressed
to know whether the stated system is a wise buy, or even whether the system is
able to serve your needs. As we progress through this book, you will learn the
concepts behind these terms.

Before we explain the ad, however, we need to discuss something even more
basic: the measurement terminology you will encounter throughout your study of
computers.

It seems that every field has its own way of measuring things. The computer
field is no exception. So that computer people can tell each other how big some-
thing is, or how fast something is, they must use the same units of measure. When
we want to talk about how big some computer thing is, we speak of it in terms of
thousands, millions, billions, or trillions of characters. The prefixes for terms are
given in the left side of Figure 1.2. In computing systems, as you shall see, pow-
ers of 2 are often more important than powers of 10, but it is easier for people to
understand powers of 10. Therefore, these prefixes are given in both powers of 10
and powers of 2. Because 1,000 is close in value to 2! (1,024), we can approxi-
mate powers of 10 by powers of 2. Prefixes used in system metrics are often
applied where the underlying base system is base 2, not base 10. For example, a
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W\

FOR SALE: OBSOLETE COMPUTER — CHEAP! CHEAP! CHEAP!

P\« Pentium Il 667 MHz

* 133 MHz 64MB SDRAM

1= % « 32KB L1 cache, 256KB L2 cache

* 30GB EIDE hard drive (7200 RPM)
IEI ¢ 48X max variable CD-ROM
. * 2 USB ports, 1 serial port, 1 parallel port
© ¢ 19" monitor, .24mm AG, 1280 X 1024 at 85Hz
¢ Intel 3D AGP graphics card
* 56K PCI voice modem
* 64-bit PCI sound card

A N N N N N O O N N NN SNSES

\

FIGURE 1.1 A Typical Computer Advertisement

Kilo- (K) (1 thousand = 10% = 2'%) | Milli- (m) (1 thousandth = 1078 = 2710)
Mega- (M) (1 million = 10° ~ 220) Micro- (u) (1 millionth = 107% ~ 2720)
Giga- (G) (1 billion = 10° ~ 230) Nano- (n) (1 billionth = 10~9 ~ 2-30)
Tera- (T) (1 trillion = 1012 = 249) Pico- (p) (1 trillionth = 10712 < 2740)
Peta- (P) (1 quadrillion = 10" = 250) | Femto- (f) (1 quadrillionth = 1075 ~ 2750)

FIGURE 1.2 Common Prefixes Associated with Computer Organization and
Architecture

kilobyte (1KB) of memory is typically 1,024 bytes of memory rather than 1,000
bytes of memory. However, a 1GB disk drive might actually be 1 billion bytes
instead of 230 (approximately 1.7 billion). You should always read the manufac-
turer’s fine print just to make sure you know exactly what 1K, 1KB, or 1G repre-
sents.

When we want to talk about how fast something is, we speak in terms of frac-
tions of a second—usually thousandths, millionths, billionths, or trillionths. Pre-
fixes for these metrics are given in the right-hand side of Figure 1.2. Notice that
the fractional prefixes have exponents that are the reciprocal of the prefixes on
the left side of the figure. Therefore, if someone says to you that an operation
requires a microsecond to complete, you should also understand that a million of
those operations could take place in one second. When you need to talk about
how many of these things happen in a second, you would use the prefix mega-.
When you need to talk about how fast the operations are performed, you would
use the prefix micro-.
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Now to explain the ad: The microprocessor is the part of a computer that
actually executes program instructions; it is the brain of the system. The micro-
processor in the ad is a Pentium III, operating at 667MHz. Every computer sys-
tem contains a clock that keeps the system synchronized. The clock sends
electrical pulses simultaneously to all main components, ensuring that data and
instructions will be where they’re supposed to be, when they’re supposed to be
there. The number of pulsations emitted each second by the clock is its frequency.
Clock frequencies are measured in cycles per second, or hertz. Because computer
system clocks generate millions of pulses per second, we say that they operate in
the megahertz (MHz) range. Many computers today operate in the gigahertz
range, generating billions of pulses per second. And because nothing much gets
done in a computer system without microprocessor involvement, the frequency
rating of the microprocessor is crucial to overall system speed. The microproces-
sor of the system in our advertisement operates at 667 million cycles per second,
so the seller says that it runs at 667MHz.

The fact that this microprocessor runs at 667MHz, however, doesn’t nec-
essarily mean that it can execute 667 million instructions every second, or,
equivalently, that every instruction requires 1.5 nanoseconds to execute. Later
in this book, you will see that each computer instruction requires a fixed
number of cycles to execute. Some instructions require one clock cycle; how-
ever, most instructions require more than one. The number of instructions per
second that a microprocessor can actually execute is proportionate to its
clock speed. The number of clock cycles required to carry out a particular
machine instruction is a function of both the machine’s organization and its
architecture.

The next thing that we see in the ad is “133MHz 64MB SDRAM.” The 133MHz
refers to the speed of the system bus, which is a group of wires that moves data and
instructions to various places within the computer. Like the microprocessor, the speed
of the bus is also measured in MHz. Many computers have a special local bus for data
that supports very fast transfer speeds (such as those required by video). This local
bus is a high-speed pathway that connects memory directly to the processor. Bus
speed ultimately sets the upper limit on the system’s information-carrying capability.

The system in our advertisement also boasts a memory capacity of 64
megabytes (MB), or about 64 million characters. Memory capacity not only
determines the size of the programs that you can run, but also how many pro-
grams you can run at the same time without bogging down the system. Your
application or operating system manufacturer will usually recommend how much
memory you’ll need to run their products. (Sometimes these recommendations
can be hilariously conservative, so be careful whom you believe!)

In addition to memory size, our advertised system provides us with a memory
type, SDRAM, short for synchronous dynamic random access memory. SDRAM
is much faster than conventional (nonsynchronous) memory because it can syn-
chronize itself with a microprocessor’s bus. At this writing, SDRAM bus syn-
chronization is possible only with buses running at 200MHz and below. Newer
memory technologies such as RDRAM (Rambus DRAM) and SLDRAM
(SyncLink DRAM) are required for systems running faster buses.
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A Look Inside a Computer

Have you even wondered what the inside of a computer really looks like? The
example computer described in this section gives a good overview of the com-
ponents of a modern PC. However, opening a computer and attempting to find
and identify the various pieces can be frustrating, even if you are familiar with
the components and their functions.

LAN use Mouse and

Keyboard Ports

Audio and Parallel  Serial
ort

Microphone Ports Part Port Ports

PCI
Slots
AGP
Connector gl
(CPU) Socket
Memory
Controller Hub
RAM Memory
Banks
[}
Controller Hub
¥ = _“\
Battery
| ) % Power
Secondary Primary  FloppyDiskette  conpgctor

IDE Connector IDE Connector ~ Connector

Courtesy of Intel Corporation

If you remove the cover on your computer, you will no doubt first notice a
big metal box with a fan attached. This is the power supply. You will also see
various drives, including a hard drive, and perhaps a floppy drive and CD-ROM
or DVD drive. There are many integrated circuits — small, black rectangular
boxes with legs attached. You will also notice electrical pathways, or buses, in
the system. There are printed circuit boards (expansion cards) that plug into
sockets on the motherboard, the large board at the bottom of a standard desk-
top PC or on the side of a PC configured as a tower or mini-tower. The moth-

erboard is the printed circuit board that connects all of the components in the
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computer, including the CPU, and RAM and ROM memory, as well as an assort-
ment of other essential components. The components on the motherboard
tend to be the most difficult to identify. Above you see an Intel D850 mother-
board with the more important components labeled.

The 1/O ports at the top of the board allow the computer to communicate
with the outside world. The I/O controller hub allows all connected devices to
function without conflict. The PCI slots allow for expansion boards belonging to
various PCl devices. The AGP connector is for plugging in the AGP graphics card.
There are two RAM memory banks and a memory controller hub. There is no
processor plugged into this motherboard, but we see the socket where the CPU
is to be placed. All computers have an internal battery, as seen at the lower left-
hand corner. This motherboard has two IDE connector slots, and one floppy disk
controller. The power supply plugs into the power connector.

A note of caution regarding looking inside the box: There are many safety
considerations involved with removing the cover for both you and your com-
puter. There are many things you can do to minimize the risks. First and fore-
most, make sure the computer is turned off. Leaving it plugged in is often
preferred, as this offers a path for static electricity. Before opening your com-
puter and touching anything inside, you should make sure you are properly
grounded so static electricity will not damage any components. Many of the
edges, both on the cover and on the circuit boards, can be sharp, so take care
when handling the various pieces. Trying to jam misaligned cards into sockets
can damage both the card and the motherboard, so be careful if you decide to
add a new card or remove and reinstall an existing one.

The next line in the ad, “32KB L1 cache, 256KB L2 cache” also
describes a type of memory. In Chapter 6, you will learn that no matter how
fast a bus is, it still takes “a while” to get data from memory to the processor.
To provide even faster access to data, many systems contain a special mem-
ory called cache. The system in our advertisement has two kinds of cache.
Level 1 cache (L1) is a small, fast memory cache that is built into the micro-
processor chip and helps speed up access to frequently used data. Level 2
cache (L2) is a collection of fast, built-in memory chips situated between the
microprocessor and main memory. Notice that the cache in our system has a
capacity of kilobytes (KB), which is much smaller than main memory. In
Chapter 6 you will learn how cache works, and that a bigger cache isn’t
always better.

On the other hand, everyone agrees that the more fixed disk capacity you
have, the better off you are. The advertised system has 30GB, which is fairly
impressive. The storage capacity of a fixed (or hard) disk is not the only thing to
consider, however. A large disk isn’t very helpful if it is too slow for its host sys-
tem. The computer in our ad has a hard drive that rotates at 7200 RPM (revolu-
tions per minute). To the knowledgeable reader, this indicates (but does not state
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outright) that this is a fairly fast drive. Usually disk speeds are stated in terms of
the number of milliseconds required (on average) to access data on the disk, in
addition to how fast the disk rotates.

Rotational speed is only one of the determining factors in the overall per-
formance of a disk. The manner in which it connects to—or inferfaces with—the
rest of the system is also important. The advertised system uses a disk interface
called EIDE, or enhanced integrated drive electronics. EIDE is a cost-effective
hardware interface for mass storage devices. EIDE contains special circuits that
allow it to enhance a computer’s connectivity, speed, and memory capability.
Most EIDE systems share the main system bus with the processor and memory,
so the movement of data to and from the disk is also dependent on the speed of
the system bus.

Whereas the system bus is responsible for all data movement internal to
the computer, ports allow movement of data to and from devices external to
the computer. Our ad speaks of three different ports with the line, “2 USB
ports, 1 serial port, 1 parallel port.” Most desktop computers come with two
kinds of data ports: serial ports and parallel ports. Serial ports transfer data by
sending a series of electrical pulses across one or two data lines. Parallel ports
use at least eight data lines, which are energized simultaneously to transmit
data. Our advertised system also comes equipped with a special serial connec-
tion called a USB (universal serial bus) port. USB is a popular external bus
that supports Plug-and-Play (the ability to configure devices automatically) as
well as hot plugging (the ability to add and remove devices while the computer
is running).

Some systems augment their main bus with dedicated I/O buses. Peripheral
Component Interconnect (PCI) is one such I/O bus that supports the connection
of multiple peripheral devices. PCI, developed by the Intel Corporation, oper-
ates at high speeds and also supports Plug-and-Play. There are two PCI devices
mentioned in the ad. The PCI modem allows the computer to connect to the
Internet. (We discuss modems in detail in Chapter 11.) The other PCI device is a
sound card, which contains components needed by the system’s stereo speakers.
You will learn more about different kinds of I/O, I/O buses, and disk storage in
Chapter 7.

After telling us about the ports in the advertised system, the ad supplies us
with some specifications for the monitor by saying, “19" monitor, .24mm AG,
1280 X 1024 at 85Hz.” Monitors have little to do with the speed or efficiency of
a computer system, but they have great bearing on the comfort of the user. The
monitor in the ad supports a refresh rate of 85Hz. This means that the image dis-
played on the monitor is repainted 85 times a second. If the refresh rate is too
slow, the screen may exhibit an annoying jiggle or wavelike behavior. The eye-
strain caused by a wavy display makes people tire easily; some people may even
experience headaches after periods of prolonged use. Another source of eyestrain
is poor resolution. A higher-resolution monitor makes for better viewing and finer
graphics. Resolution is determined by the dot pitch of the monitor, which is the
distance between a dot (or pixel) and the closest dot of the same color. The
smaller the dot, the sharper the image. In this case, we have a 0.28 millimeter
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(mm) dot pitch supported by an AG (aperture grill) display. Aperture grills direct
the electron beam that paints the monitor picture on the phosphor coating inside
the glass of the monitor. AG monitors produce crisper images than the older
shadow mask technology. This monitor is further supported by an AGP (acceler-
ated graphics port) graphics card. This is a graphics interface designed by Intel
specifically for 3D graphics.

In light of the preceding discussion, you may be wondering why monitor dot
pitch can’t be made arbitrarily small to give picture perfect resolution. The reason
is that the refresh rate is dependent on the dot pitch. Refreshing 100 dots, for
example, requires more time than refreshing 50 dots. A smaller dot pitch requires
more dots to cover the screen. The more dots to refresh, the longer it takes for
each refresh cycle. Experts recommend a refresh rate of at least 75Hz. The 85Hz
refresh rate of the advertised monitor is better than the minimum recommenda-
tion by 10Hz (about 13%).

Although we cannot delve into all of the brand-specific components avail-
able, after completing this book, you should understand the concept of how
most computer systems operate. This understanding is important for casual
users as well as experienced programmers. As a user, you need to be aware of
the strengths and limitations of your computer system so you can make
informed decisions about applications and thus use your system more effec-
tively. As a programmer, you need to understand exactly how your system
hardware functions so you can write effective and efficient programs. For
example, something as simple as the algorithm your hardware uses to map
main memory to cache and the method used for memory interleaving can have
a tremendous impact on your decision to access array elements in row versus
column-major order.

Throughout this book, we investigate both large and small computers. Large
computers include mainframes (enterprise-class servers) and supercomputers.
Small computers include personal systems, workstations and handheld devices.
We will show that regardless of whether they carry out routine chores or perform
sophisticated scientific tasks, the components of these systems are very similar.
We also visit some architectures that lie outside what is now the mainstream of
computing. We hope that the knowledge that you gain from this book will ulti-
mately serve as a springboard for your continuing studies within the vast and
exciting fields of computer organization and architecture.

STANDARDS ORGANIZATIONS

Suppose you decide that you’d like to have one of those nifty new .28mm dot
pitch AG monitors. You figure that you can shop around a bit to find the best
price. You make a few phone calls, surf the Web, and drive around town until you
find the one that gives you the most for your money. From your experience, you
know that you can buy your monitor anywhere and it will probably work fine on
your system. You can make this assumption because computer equipment manu-
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facturers have agreed to comply with connectivity and operational specifications
established by a number of government and industry organizations.

Some of these standards-setting organizations are ad-hoc trade associations
or consortia made up of industry leaders. Manufacturers know that by establish-
ing common guidelines for a particular type of equipment, they can market their
products to a wider audience than if they came up with separate—and perhaps
incompatible—specifications.

Some standards organizations have formal charters and are recognized inter-
nationally as the definitive authority in certain areas of electronics and comput-
ers. As you continue your studies in computer organization and architecture, you
will encounter specifications formulated by these groups, so you should know
something about them.

The Institute of Electrical and Electronic Engineers (IEEE) is an organization
dedicated to the advancement of the professions of electronic and computer engi-
neering. The IEEE actively promotes the interests of the worldwide engineering
community by publishing an array of technical literature. The IEEE also sets stan-
dards for various computer components, signaling protocols, and data representation,
to name only a few areas of its involvement. The IEEE has a democratic, albeit con-
voluted, procedure established for the creation of new standards. Its final documents
are well respected and usually endure for several years before requiring revision.

The International Telecommunications Union (ITU) is based in Geneva,
Switzerland. The ITU was formerly known as the Comité Consultatif International
Télégraphique et Téléphonique, or the International Consultative Committee on
Telephony and Telegraphy. As its name implies, the ITU concerns itself with the
interoperability of telecommunications systems, including telephone, telegraph, and
data communication systems. The telecommunications arm of the ITU, the ITU-T,
has established a number of standards that you will encounter in the literature. You
will see these standards prefixed by I'TU-T or the group’s former initials, CCITT.

Many countries, including the European Community, have commissioned
umbrella organizations to represent their interests within various international
groups. The group representing the United States is the American National Stan-
dards Institute (ANSI). Great Britain has its British Standards Institution (BSI) in
addition to having a voice on CEN (Comite Europeen de Normalisation), the
European committee for standardization.

The International Organization for Standardization (ISO) is the entity that
coordinates worldwide standards development, including the activities of ANSI
with BSI among others. ISO is not an acronym, but derives from the Greek word,
isos, meaning “equal.” The ISO consists of over 2,800 technical committees, each
of which is charged with some global standardization issue. Its interests range
from the behavior of photographic film to the pitch of screw threads to the com-
plex world of computer engineering. The proliferation of global trade has been
facilitated by the ISO. Today, the ISO touches virtually every aspect of our lives.

Throughout this book, we mention official standards designations where
appropriate. Definitive information concerning many of these standards can be
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found in excruciating detail on the Web site of the organization responsible for
establishing the standard cited. As an added bonus, many standards contain “nor-
mative” and informative references, which provide background information in
areas related to the standard.

HISTORICAL DEVELOPMENT

During their 50-year life span, computers have become the perfect example of
modern convenience. Living memory is strained to recall the days of steno
pools, carbon paper, and mimeograph machines. It sometimes seems that
these magical computing machines were developed instantaneously in the
form that we now know them. But the developmental path of computers is
paved with accidental discovery, commercial coercion, and whimsical fancy.
And occasionally computers have even improved through the application of
solid engineering practices! Despite all of the twists, turns, and technological
dead ends, computers have evolved at a pace that defies comprehension. We
can fully appreciate where we are today only when we have seen where we’ve
come from.

In the sections that follow, we divide the evolution of computers into genera-
tions, each generation being defined by the technology used to build the machine.
We have provided approximate dates for each generation for reference purposes
only. You will find little agreement among experts as to the exact starting and
ending times of each technological epoch.

Every invention reflects the time in which it was made, so one might won-
der whether it would have been called a computer if it had been invented in the
late 1990s. How much computation do we actually see pouring from the myste-
rious boxes perched on or beside our desks? Until recently, computers served us
only by performing mind-bending mathematical manipulations. No longer lim-
ited to white-jacketed scientists, today’s computers help us to write documents,
keep in touch with loved ones across the globe, and do our shopping chores.
Modern business computers spend only a minuscule part of their time perform-
ing accounting calculations. Their main purpose is to provide users with a
bounty of strategic information for competitive advantage. Has the word com-
puter now become a misnomer? An anachronism? What, then, should we call
them, if not computers?

We cannot present the complete history of computing in a few pages. Entire
books have been written on this subject and even they leave their readers wanting
for more detail. If we have piqued your interest, we refer you to look at some of
the books cited in the list of references at the end of this chapter.

Generation Zero: Mechanical Calculating Machines (1642-1945)

Prior to the 1500s, a typical European businessperson used an abacus for calcu-
lations and recorded the result of his ciphering in Roman numerals. After the
decimal numbering system finally replaced Roman numerals, a number of peo-
ple invented devices to make decimal calculations even faster and more accu-
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rate. Wilhelm Schickard (1592—-1635) has been credited with the invention of the
first mechanical calculator, the Calculating Clock (exact date unknown). This
device was able to add and subtract numbers containing as many as six digits. In
1642, Blaise Pascal (1623-1662) developed a mechanical calculator called the
Pascaline to help his father with his tax work. The Pascaline could do addition
with carry and subtraction. It was probably the first mechanical adding device
actually used for a practical purpose. In fact, the Pascaline was so well con-
ceived that its basic design was still being used at the beginning of the twentieth
century, as evidenced by the Lightning Portable Adder in 1908, and the Addome-
ter in 1920. Gottfried Wilhelm von Leibniz (1646-1716), a noted mathemati-
cian, invented a calculator known as the Stepped Reckoner that could add,
subtract, multiply, and divide. None of these devices could be programmed or
had memory. They required manual intervention throughout each step of their
calculations.

Although machines like the Pascaline were used into the twentieth century,
new calculator designs began to emerge in the nineteenth century. One of the
most ambitious of these new designs was the Difference Engine by Charles Bab-
bage (1791-1871). Some people refer to Babbage as “the father of computing.”
By all accounts, he was an eccentric genius who brought us, among other things,
the skeleton key and the “cow catcher,” a device intended to push cows and other
movable obstructions out of the way of locomotives.

Babbage built his Difference Engine in 1822. The Difference Engine got its
name because it used a calculating technique called the method of differences. The
machine was designed to mechanize the solution of polynomial functions and was
actually a calculator, not a computer. Babbage also designed a general-purpose
machine in 1833 called the Analytical Engine. Although Babbage died before he
could build it, the Analytical Engine was designed to be more versatile than his
earlier Difference Engine. The Analytical Engine would have been capable of per-
forming any mathematical operation. The Analytical Engine included many of the
components associated with modern computers: an arithmetic processing unit to
perform calculations (Babbage referred to this as the mill), a memory (the store),
and input and output devices. Babbage also included a conditional branching
operation where the next instruction to be performed was determined by the result
of the previous operation. Ada, Countess of Lovelace and daughter of poet Lord
Byron, suggested that Babbage write a plan for how the machine would calculate
numbers. This is regarded as the first computer program, and Ada is considered to
be the first computer programmer. It is also rumored that she suggested the use of
the binary number system rather than the decimal number system to store data.

A perennial problem facing machine designers has been how to get data into
the machine. Babbage designed the Analytical Engine to use a type of punched
card for input and programming. Using cards to control the behavior of a machine
did not originate with Babbage, but with one of his friends, Joseph-Marie
Jacquard (1752-1834). In 1801, Jacquard invented a programmable weaving
loom that could produce intricate patterns in cloth. Jacquard gave Babbage a tap-
estry that had been woven on this loom using more than 10,000 punched cards.
To Babbage, it seemed only natural that if a loom could be controlled by cards,
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then his Analytical Engine could be as well. Ada expressed her delight with this
idea, writing, “[T]he Analytical Engine weaves algebraical patterns just as the
Jacquard loom weaves flowers and leaves.”

The punched card proved to be the most enduring means of providing input to a
computer system. Keyed data input had to wait until fundamental changes were
made in how calculating machines were constructed. In the latter half of the nine-
teenth century, most machines used wheeled mechanisms, which were difficult to
integrate with early keyboards because they were levered devices. But levered
devices could easily punch cards and wheeled devices could easily read them. So a
number of devices were invented to encode and then “tabulate” card-punched data.
The most important of the late-nineteenth-century tabulating machines was the one
invented by Herman Hollerith (1860-1929). Hollerith’s machine was used for
encoding and compiling 1890 census data. This census was completed in record
time, thus boosting Hollerith’s finances and the reputation of his invention. Hollerith
later founded the company that would become IBM. His 80-column punched card,
the Hollerith card, was a staple of automated data processing for over 50 years.

The First Generation: Vacuum Tube Computers (1945-1953)

Although Babbage is often called the “father of computing,” his machines were
mechanical, not electrical or electronic. In the 1930s, Konrad Zuse (1910-1995)
picked up where Babbage left off, adding electrical technology and other improve-
ments to Babbage’s design. Zuse’s computer, the Z1, used electromechanical
relays instead of Babbage’s hand-cranked gears. The Z1 was programmable and
had a memory, an arithmetic unit, and a control unit. Because money and resources
were scarce in wartime Germany, Zuse used discarded movie film instead of
punched cards for input. Although his machine was designed to use vacuum tubes,
Zuse, who was building his machine on his own, could not afford the tubes. Thus,
the Z1 correctly belongs in the first generation, although it had no tubes.

Zuse built the Z1 in his parents’ Berlin living room while Germany was at
war with most of Europe. Fortunately, he couldn’t convince the Nazis to buy his
machine. They did not realize the tactical advantage such a device would give
them. Allied bombs destroyed all three of Zuse’s first systems, the Z1, Z2, and
73. Zuse’s impressive machines could not be refined until after the war and ended
up being another “evolutionary dead end” in the history of computers.

Digital computers, as we know them today, are the outcome of work done by
a number of people in the 1930s and 1940s. Pascal’s basic mechanical calculator
was designed and modified simultaneously by many people; the same can be said
of the modern electronic computer. Notwithstanding the continual arguments
about who was first with what, three people clearly stand out as the inventors of
modern computers: John Atanasoff, John Mauchly, and J. Presper Eckert.

John Atanasoff (1904-1995) has been credited with the construction of the
first completely electronic computer. The Atanasoff Berry Computer (ABC) was
a binary machine built from vacuum tubes. Because this system was built specifi-
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cally to solve systems of linear equations, we cannot call it a general-purpose
computer. There were, however, some features that the ABC had in common with
the general-purpose ENIAC (Electronic Numerical Integrator and Computer),
which was invented a few years later. These common features caused consider-
able controversy as to who should be given the credit (and patent rights) for the
invention of the electronic digital computer. (The interested reader can find more
details on a rather lengthy lawsuit involving Atanasoff and the ABC in Mollen-
hoff [1988].)

John Mauchly (1907-1980) and J. Presper Eckert (1929-1995) were the two
principle inventors of the ENIAC, introduced to the public in 1946. The ENIAC
is recognized as the first all-electronic, general-purpose digital computer. This
machine used 17,468 vacuum tubes, occupied 1,800 square feet of floor space,
weighed 30 tons, and consumed 174 kilowatts of power. The ENIAC had a mem-
ory capacity of about 1,000 information bits (about 20 10-digit decimal numbers)
and used punched cards to store data.

John Mauchly’s vision for an electronic calculating machine was born from
his lifelong interest in predicting the weather mathematically. While a professor
of physics at Ursinus College near Philadelphia, Mauchly engaged dozens of
adding machines and student operators to crunch mounds of data that he believed
would reveal mathematical relationships behind weather patterns. He felt that if
he could have only a little more computational power, he could reach the goal
that seemed just beyond his grasp. Pursuant to the Allied war effort, and with
ulterior motives to learn about electronic computation, Mauchly volunteered for a
crash course in electrical engineering at the University of Pennsylvania’s Moore
School of Engineering. Upon completion of this program, Mauchly accepted a
teaching position at the Moore School, where he taught a brilliant young student,
J. Presper Eckert. Mauchly and Eckert found a mutual interest in building an
electronic calculating device. In order to secure the funding they needed to build
their machine, they wrote a formal proposal for review by the school. They por-
trayed their machine as conservatively as they could, billing it as an “automatic
calculator.” Although they probably knew that computers would be able to func-
tion most efficiently using the binary numbering system, Mauchly and Eckert
designed their system to use base 10 numbers, in keeping with the appearance of
building a huge electronic adding machine. The university rejected Mauchly and
Eckert’s proposal. Fortunately, the United States Army was more interested.

During World War II, the army had an insatiable need for calculating the tra-
jectories of its new ballistic armaments. Thousands of human “computers” were
engaged around the clock cranking through the arithmetic required for these firing
tables. Realizing that an electronic device could shorten ballistic table calculation
from days to minutes, the army funded the ENIAC. And the ENIAC did indeed
shorten the time to calculate a table from 20 hours to 30 seconds. Unfortunately,
the machine wasn’t ready before the end of the war. But the ENIAC had shown
that vacuum tube computers were fast and feasible. During the next decade, vac-
uum tube systems continued to improve and were commercially successful.
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The Army’s ENIAC can give you the
answer in a fraction of a second !

Think that’s a stumper? You should see some
of the ENIAC's problems! Brain twisters that
if put to paper would run off this page and
feet beyond . . . addition, sublraction, multi-
plication, division —square root, cube root,
any root. Solved by an incredibly complex
system of circuits operating 18,000 clectronic
tubes and tipping the scales at 30 tons!

The ENIAC is symbolic of many amazing
Army devices with a brilliant future for you!
The new Regular Army needs men with apti-
tude for scientific work, and as one of the first
trained in the post-war era, you stand to get
in on the ground floor of important jobs

YOUR REGULAR ARMY SERVES THE NATION
AND MANKIND IN WAR AND PEACE
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which have never hefore existed. You'll find
that an Army career pays off.

The most attractive fields are filling
quickly. Get into the swim while the gelling’s
good! 114, 2 and 3 year enlistments are open
in the Regular Army to ambilious young men
18 to 34 (17 with parents’ consent} who are
otherwise qualified. If you enlist for 3 years,
you may choose your own branch of the ser-
vice, of those still open. Get full details at
your nearest Army Recruiting Station.

A GOOD JOB FOR YOU

U.S. Army

CHOOSE THIS
FINE PROFESSION NOW!

U.S. Army, 1946
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What Is a Vacuum Tube?

The wired world that we know today was born from the invention of a single
electronic device called a vacuum tube by Americans and—more accurately—a
valve by the British. Vacuum tubes should be called valves because
they control the flow of electrons in electrical systems in much the
same way as valves control the flow of water in a plumbing sys-
tem. In fact, some mid-twentieth-century breeds of these electron
tubes contain no vacuum at all, but are filled with conductive
gasses, such as mercury vapor, which can provide desirable electri-
cal behavior.

The electrical phenomenon that makes tubes work was dis-
covered by Thomas A. Edison in 1883 while he was trying to
find ways to keep the filaments of his light bulbs from burning
away (or oxidizing) a few minutes after electrical current was
applied. Edison reasoned correctly that one way to prevent fila-
ment oxidation would be to place the filament in a vacuum. Edi-
son didn’t immediately understand that air not only supports
combustion, but also is a good insulator. When he energized the electrodes
holding a new tungsten filament, the filament soon became hot and burned
out as the others had before it. This time, however, Edison noticed that
electricity continued to flow from the warmed negative terminal to the cool
positive terminal within the light bulb. In 1911, Owen Willans Richardson
analyzed this behavior. He concluded that when a negatively charged fila-
ment was heated, electrons “boiled off” as water molecules can be boiled to
create steam. He aptly named this phenomenon thermionic emission.

Thermionic emission, as Edison had documented it, was thought by many
to be only an electrical curiosity. But in 1905 a British former assistant to Edi-
son, John A. Fleming, saw Edison’s discovery as much more than a novelty. He
knew that thermionic emission supported the flow of electrons in only one
direction: from the negatively charged cathode to the positively charged anode,
also called a plate. He realized that this behavior could rectify alternating cur-
rent. That is, it could change alternating current into the direct current that
was essential for the proper operation of telegraph equipment. Fleming used
his ideas to invent an electronic valve later called a diode tube or rectifier.
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The diode was well suited for changing alternating current into direct cur-
rent, but the greatest power of the electron tube was yet to be discovered. In
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1907, an American named Lee DeForest added a third element, called a control
grid. The control grid, when carrying a negative charge, can reduce or prevent
electron flow from the cathode to the anode of a diode.

Negative charge
on cathode and control
grid; positive on anode:
Electrons stay near
cathode.

Negative charge on
cathode; positive on
control grid and anode:
Electrons travel from
cathode to anode.

When DeForest patented his device, he called it an audion tube. It was later
known as a triode. The schematic symbol for the triode is shown at the left.
A triode can act either as a switch or as an amplifier. Small changes
ElEmemn Grid in the charge of the control grid can cause much larger changes in the
flow of electrons between the cathode and the anode. Therefore, a
weak signal applied to the grid results in a much stronger signal at the
Anode  plate output. A sufficiently large negative charge applied to the grid
(plate)  stops all electrons from leaving the cathode.
Cathode Additional control grids were eventually added to the triode to allow
more exact control of the electron flow. Tubes with two grids (four ele-
ments) are called tetrodes; tubes with three grids are called pentodes. Triodes
and pentodes were the tubes most commonly used in communications and com-
puter applications. Often, two or three triodes or pentodes would be combined
within one envelope so that they could share a single heater, thereby reducing
the power consumption of a particular device. These latter-day devices were
called “miniature” tubes because many were about 2 inches (5cm)
high and one-half inch (1.5cm) in diameter. Equivalent full-sized
diodes, triodes, and pentodes were just a little smaller than a
household light bulb.
Vacuum tubes were not well suited for building computers.
Diode Triode Even the simplest vacuum tube computer system required thou-
sands of tubes. Enormous amounts of electrical power were
required to heat the cathodes of these devices. To prevent a melt-
down, this heat had to be removed from the system as quickly as
possible. Power consumption and heat dissipation could be
|~ ] reduced by running the cathode heaters at lower voltages, but this
reduced the already slow switching speed of the tube. Despite

Tetrode Pentode their limitations and power consumption, vacuum tube computer
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systems, both analog and digital, served their purpose for many years and are the
architectural foundation for all modern computer systems.

Although decades have passed since the last vacuum tube computer was
manufactured, vacuum tubes are still used in audio amplifiers. These “high-end”
amplifiers are favored by musicians who believe that tubes provide a resonant
and pleasing sound unattainable by solid-state devices.

1.5.3 The Second Generation: Transistorized Computers (1954-1965)

The vacuum tube technology of the first generation was not very dependable. In
fact, some ENIAC detractors believed that the system would never run because
the tubes would burn out faster than they could be replaced. Although system reli-
ability wasn’t as bad as the doomsayers predicted, vacuum tube systems often
experienced more downtime than uptime.

In 1948, three researchers with Bell Laboratories—John Bardeen, Walter Brat-
tain, and William Shockley—invented the transistor. This new technology not only
revolutionized devices such as televisions and radios, but also pushed the computer
industry into a new generation. Because transistors consume less power than vacuum
tubes, are smaller, and work more reliably, the circuitry in computers consequently
became smaller and more reliable. Despite using transistors, computers of this gener-
ation were still bulky and quite costly. Typically only universities, governments, and
large businesses could justify the expense. Nevertheless, a plethora of computer
makers emerged in this generation; IBM, Digital Equipment Corporation (DEC),
and Univac (now Unisys) dominated the industry. IBM marketed the 7094 for scien-
tific applications and the 1401 for business applications. DEC was busy manufactur-
ing the PDP-1. A company founded (but soon sold) by Mauchly and Eckert built the
Univac systems. The most successful Unisys systems of this generation belonged to
its 1100 series. Another company, Control Data Corporation (CDC), under the super-
vision of Seymour Cray, built the CDC 6600, the world’s first supercomputer. The
$10 million CDC 6600 could perform 10 million instructions per second, used 60-bit
words, and had an astounding 128 kilowords of main memory.

What Is a Transistor?

The transistor, short for transfer resistor, is the solid-state version of the triode.
There is no such thing as a solid-state version of the tetrode or pentode. Because
electrons are better behaved in a solid medium than in the open void of a vacuum
tube, they need no extra controlling grids. Either germanium or silicon can be the
basic “solid” used in these solid state devices. In their pure form, neither of these
elements is a good conductor of electricity. But when they are combined with
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trace amounts of elements that are their neighbors in the Periodic Chart
of the Elements, they conduct electricity in an effective and easily con-
trolled manner.

Boron, aluminum, and gallium can be found to the left of silicon
and germanium on the Periodic Chart. Because they lie to the left of sil-
icon and germanium, they have one less electron in their outer electron
shell, or valence. So if you add a small amount of aluminum to silicon,
the silicon ends up with a slight imbalance in its outer electron shell,
and therefore attracts electrons from any pole that has a negative
potential (an excess of electrons). When modified (or doped) in this
way, silicon or germanium becomes a P-type material.

Similarly, if we add a little boron, arsenic, or

gallium to silicon, we'll have extra electrons in
valences of the silicon crystals. This gives us an N-
type material. A small amount of current will flow

through the N-type material if we provide the

Bese loosely bound electrons in the N-type material with

Collector \“ a place to go. In other words, if we apply a positive

—————1  potential to N-type material, electrons will flow

from the negative pole to the positive pole. If the

poles are reversed, that is, if we apply a negative potential to the N-type mate-

rial and a positive potential to the P-type material, no current will flow. This

means that we can make a solid-state diode from a simple junction of N- and
P-type materials.

The solid-state triode, the transistor, consists of three layers of semiconduc-
tor material. Either a slice of P-type material is sandwiched between two N-type
materials, or a slice of N-type material is sandwiched between two P-type mate-
rials. The former is called an NPN transistor, the latter a PNP transistor. The
inner layer of the transistor is called the base; the other two layers are called the
collector and emitter.

The figure to the left shows how current flows through NPN and PNP tran-
sistors. The base in a transistor works just like the control grid in a triode tube:
Small changes in the current at the base of a transistor result in a large electron
flow from the emitter to the collector.

A discrete-component transistor is shown in

Electron Source “TO-50" packaging in the figure at the beginning
of this sidebar. There are only three wires (leads)
that connect the base, emitter, and collector of
the transistor to the rest of the circuit. Transistors
are not only smaller than vacuum tubes, but they
also run cooler and are much more reliable. Vac-
uum tube filaments, like light bulb filaments, run
hot and eventually burn out. Computers using
4+ transistorized components will  naturally be

A few
electrons

Large
current output
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smaller and run cooler than their vacuum tube prede-
cessors. The ultimate miniaturization, however, is not

== realized by replacing individual triodes with discrete
transistors, but in shrinking entire circuits onto one

S piece of silicon.

N Cﬂor Integrated circuits, or chips, contain hundreds to
millions of microscopic transistors. Several different
techniques are used to manufacture integrated Cir-

cuits. One of the simplest methods involves creating a circuit using computer-
aided design software that can print large maps of each of the several silicon layers
forming the chip. Each map is used like a photographic negative where light-
induced changes in a photoresistive substance on the chip’s surface produce the
delicate patterns of the circuit when the silicon chip is immersed in a chemical that
washes away the exposed areas of the silicon. This technique is called photomi-
crolithography. After the etching is completed, a layer of N-type or P-type material
is deposited on the bumpy surface of the chip. This layer is then treated with a
photoresistive substance, exposed to light, and etched as was the layer before it.
This process continues until all of the layers have been etched. The resulting peaks
and valleys of P- and N-material form microscopic electronic components, includ-
ing transistors, that behave just like larger versions fashioned from discrete compo-
nents, except that they run a lot faster and consume a small fraction of the power.

Emitter Contacts

1.5.4 The Third Generation: Integrated Circuit Computers (1965-1980)

The real explosion in computer use came with the integrated circuit generation.
Jack Kilby invented the integrated circuit (IC) or microchip, made of germanium.
Six months later, Robert Noyce (who had also been working on integrated circuit
design) created a similar device using silicon instead of germanium. This is the
silicon chip upon which the computer industry was built. Early ICs allowed
dozens of transistors to exist on a single silicon chip that was smaller than a sin-
gle “discrete component” transistor. Computers became faster, smaller, and
cheaper, bringing huge gains in processing power. The IBM System/360 family
of computers was among the first commercially available systems to be built
entirely of solid-state components. The 360 product line was also IBM’s first
offering where all of the machines in the family were compatible, meaning they
all used the same assembly language. Users of smaller machines could upgrade to
larger systems without rewriting all of their software. This was a revolutionary
new concept at the time.

The IC generation also saw the introduction of time-sharing and multipro-
gramming (the ability for more than one person to use the computer at a time).
Multiprogramming, in turn, necessitated the introduction of new operating sys-
tems for these computers. Time-sharing minicomputers such as DEC’s PDP-8 and
PDP-11 made computing affordable to smaller businesses and more universities.
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1.5.5

Comparison of Computer Components

Clockwise, starting from the top:

1) Vacuum Tube

2) Transistor

3) Chip containing 3200 2-input NAND gates

4) Integrated circuit package (the small silver square in
the lower left-hand corner is an integrated circuit)

Courtesy of Linda Null

IC technology also allowed for the development of more powerful supercomput-
ers. Seymour Cray took what he had learned while building the CDC 6600 and
started his own company, the Cray Research Corporation. This company pro-
duced a number of supercomputers, starting with the $8.8 million Cray-1, in
1976. The Cray-1, in stark contrast to the CDC 6600, could execute over 160 mil-
lion instructions per second and could support 8 megabytes of memory.

The Fourth Generation: VLSI Computers (1980-272?)

In the third generation of electronic evolution, multiple transistors were inte-
grated onto one chip. As manufacturing techniques and chip technologies
advanced, increasing numbers of transistors were packed onto one chip. There are
now various levels of integration: SSI (small scale integration), in which there are
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10 to 100 components per chip; MSI (medium scale integration), in which there
are 100 to 1,000 components per chip; LSI (large scale integration), in which
there are 1,000 to 10,000 components per chip; and finally, VLSI (very large
scale integration), in which there are more than 10,000 components per chip. This
last level, VLSI, marks the beginning of the fourth generation of computers.

To give some perspective to these numbers, consider the ENIAC-on-a-chip
project. In 1997, to commemorate the fiftieth anniversary of its first public
demonstration, a group of students at the University of Pennsylvania constructed
a single-chip equivalent of the ENIAC. The 1,800 square-foot, 30-ton beast that
devoured 174 kilowatts of power the minute it was turned on had been repro-
duced on a chip the size of a thumbnail. This chip contained approximately
174,569 transistors—an order of magnitude fewer than the number of compo-
nents typically placed on the same amount of silicon in the late 1990s.

VLSI allowed Intel, in 1971, to create the world’s first microprocessor, the
4004, which was a fully functional, 4-bit system that ran at 108KHz. Intel also
introduced the random access memory (RAM) chip, accommodating four kilobits
of memory on a single chip. This allowed computers of the fourth generation to
become smaller and faster than their solid-state predecessors.

VLSI technology, and its incredible shrinking circuits, spawned the develop-
ment of microcomputers. These systems were small enough and inexpensive
enough to make computers available and affordable to the general public. The
premiere microcomputer was the Altair 8800, released in 1975 by the Micro
Instrumentation and Telemetry (MITS) corporation. The Altair 8800 was soon
followed by the Apple I and Apple 11, and Commodore’s PET and Vic 20. Finally,
in 1981, IBM introduced its PC (Personal Computer).

The Personal Computer was IBM’s third attempt at producing an “entry-level”
computer system. Its Datamaster as well as its 5100 Series desktop computers
flopped miserably in the marketplace. Despite these early failures, IBM’s John Opel
convinced his management to try again. He suggested forming a fairly autonomous
“independent business unit” in Boca Raton, Florida, far from IBM’s headquarters in
Armonk, New York. Opel picked Don Estridge, an energetic and capable engineer,
to champion the development of the new system, code-named the Acorn. In light of
IBM’s past failures in the small-systems area, corporate management held tight rein
on the Acorn’s timeline and finances. Opel could get his project off of the ground
only after promising to deliver it within a year, a seemingly impossible feat.

Estridge knew that the only way that he could deliver the PC within the
wildly optimistic 12-month schedule would be to break with IBM convention and
use as many “off-the-shelf” parts as possible. Thus, from the outset, the IBM PC
was conceived with an “open” architecture. Although some people at IBM may
have later regretted the decision to keep the architecture of the PC as nonpropri-
etary as possible, it was this very openness that allowed IBM to set the standard
for the industry. While IBM’s competitors were busy suing companies for copy-
ing their system designs, PC clones proliferated. Before long, the price of “IBM-
compatible” microcomputers came within reach for just about every small
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business. Also, thanks to the clone makers, large numbers of these systems soon
began finding true “personal use” in people’s homes.

IBM eventually lost its microcomputer market dominance, but the genie was
out of the bottle. For better or worse, the IBM architecture continues to be the de
facto standard for microcomputing, with each year heralding bigger and faster
systems. Today, the average desktop computer has many times the computational
power of the mainframes of the 1960s.

Since the 1960s, mainframe computers have seen stunning improvements in
price-performance ratios owing to VLSI technology. Although the IBM Sys-
tem/360 was an entirely solid-state system, it was still a water-cooled, power-
gobbling behemoth. It could perform only about 50,000 instructions per second
and supported only 16 megabytes of memory (while usually having kilobytes of
physical memory installed). These systems were so costly that only the largest
businesses and universities could afford to own or lease one. Today’s main-
frames—now called “enterprise servers”—are still priced in the millions of dol-
lars, but their processing capabilities have grown several thousand times over,
passing the billion-instructions-per-second mark in the late 1990s. These system:s,
often used as Web servers, routinely support hundreds of thousands of transac-
tions per minute!

The processing power brought by VLSI to supercomputers defies comprehen-
sion. The first supercomputer, the CDC 6600, could perform 10 million instruc-
tions per second, and had 128 kilobytes of main memory. By contrast,
supercomputers of today contain thousands of processors, can address terabytes
of memory, and will soon be able to perform a guadrillion instructions per second.

What technology will mark the beginning of the fifth generation? Some say
that the fifth generation will mark the acceptance of parallel processing and the
use of networks and single-user workstations. Many people believe we have
already crossed into this generation. Some people characterize the fifth generation
as being the generation of neural network, DNA, or optical computing systems.
It’s possible that we won’t be able to define the fifth generation until we have
advanced into the sixth or seventh generation, and whatever those eras will bring.

Moore’s Law

So where does it end? How small can we make transistors? How densely can we
pack chips? No one can say for sure. Every year, scientists continue to thwart
prognosticators’ attempts to define the limits of integration. In fact, more than
one skeptic raised an eyebrow when, in 1965, Intel founder Gordon Moore
stated, “The density of transistors in an integrated circuit will double every year.”
The current version of this prediction is usually conveyed as “the density of sili-
con chips doubles every 18 months.” This assertion has become known as
Moore’s Law. Moore intended this postulate to hold for only 10 years. However,
advances in chip manufacturing processes have allowed this law to hold for
almost 40 years (and many believe it will continue to hold well into the 2010s).
Yet, using current technology, Moore’s Law cannot hold forever. There are
physical and financial limitations that must ultimately come into play. At the cur-
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rent rate of miniaturization, it would take about 500 years to put the entire solar
system on a chip! Clearly, the limit lies somewhere between here and there. Cost
may be the ultimate constraint. Rock’s Law, proposed by early Intel capitalist
Arthur Rock, is a corollary to Moore’s law: “The cost of capital equipment to
build semiconductors will double every four years.” Rock’s Law arises from the
observations of a financier who has seen the price tag of new chip facilities esca-
late from about $12,000 in 1968 to $12 million in the late 1990s. At this rate, by
the year 2035, not only will the size of a memory element be smaller than an
atom, but it would also require the entire wealth of the world to build a single
chip! So even if we continue to make chips smaller and faster, the ultimate ques-
tion may be whether we can afford to build them.

Certainly, if Moore’s Law is to hold, Rock’s Law must fall. It is evident that for
these two things to happen, computers must shift to a radically different technology.
Research into new computing paradigms has been proceeding in earnest during the
last half decade. Laboratory prototypes fashioned around organic computing, super-
conducting, molecular physics, and quantum computing have been demonstrated.
Quantum computers, which leverage the vagaries of quantum mechanics to solve
computational problems, are particularly exciting. Not only would quantum sys-
tems compute exponentially faster than any previously used method, they would
also revolutionize the way in which we define computational problems. Problems
that today are considered ludicrously infeasible could be well within the grasp of the
next generation’s schoolchildren. These schoolchildren may, in fact, chuckle at our
“primitive” systems in the same way that we are tempted to chuckle at the ENIAC.

THE COMPUTER LEVEL HIERARCHY

If a machine is to be capable of solving a wide range of problems, it must be able
to execute programs written in different languages, from FORTRAN and C to
Lisp and Prolog. As we shall see in Chapter 3, the only physical components we
have to work with are wires and gates. A formidable open space—a semantic
gap—exists between these physical components and a high-level language such
as C++. For a system to be practical, the semantic gap must be invisible to most
of the users of the system.

Programming experience teaches us that when a problem is large, we should
break it down and use a “divide and conquer” approach. In programming, we
divide a problem into modules and then design each module separately. Each
module performs a specific task and modules need only know how to interface
with other modules to make use of them.

Computer system organization can be approached in a similar manner. Through
the principle of abstraction, we can imagine the machine to be built from a hierarchy
of levels, in which each level has a specific function and exists as a distinct hypothet-
ical machine. We call the hypothetical computer at each level a virtual machine. Each
level’s virtual machine executes its own particular set of instructions, calling upon
machines at lower levels to carry out the tasks when necessary. By studying com-
puter organization, you will see the rationale behind the hierarchy’s partitioning, as
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FIGURE 1.3 The Abstract Levels of Modern Computing Systems

well as how these layers are implemented and interface with each other. Figure 1.3
shows the commonly accepted layers representing the abstract virtual machines.

Level 6, the User Level, is composed of applications and is the level with
which everyone is most familiar. At this level, we run programs such as word
processors, graphics packages, or games. The lower levels are nearly invisible
from the User Level.

Level 5, the High-Level Language Level, consists of languages such as C,
C++, FORTRAN, Lisp, Pascal, and Prolog. These languages must be translated
(using either a compiler or an interpreter) to a language the machine can under-
stand. Compiled languages are translated into assembly language and then assem-
bled into machine code. (They are translated to the next lower level.) The user at
this level sees very little of the lower levels. Even though a programmer must
know about data types and the instructions available for those types, she need not
know about how those types are actually implemented.

Level 4, the Assembly Language Level, encompasses some type of
assembly language. As previously mentioned, compiled higher-level lan-
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guages are first translated to assembly, which is then directly translated to
machine language. This is a one-to-one translation, meaning that one assem-
bly language instruction is translated to exactly one machine language
instruction. By having separate levels, we reduce the semantic gap between a
high-level language, such as C++, and the actual machine language (which
consists of 0s and 1s).

Level 3, the System Software Level, deals with operating system instructions.
This level is responsible for multiprogramming, protecting memory, synchronizing
processes, and various other important functions. Often, instructions translated from
assembly language to machine language are passed through this level unmodified.

Level 2, the Instruction Set Architecture (ISA), or Machine Level, consists of
the machine language recognized by the particular architecture of the computer
system. Programs written in a computer’s true machine language on a hardwired
computer (see below) can be executed directly by the electronic circuits without
any interpreters, translators, or compilers. We will study instruction set architec-
tures in depth in Chapters 4 and 5.

Level 1, the Control Level, is where a control unit makes sure that
instructions are decoded and executed properly and that data is moved where
and when it should be. The control unit interprets the machine instructions
passed to it, one at a time, from the level above, causing the required actions
to take place.

Control units can be designed in one of two ways: They can be hardwired or
they can be microprogrammed. In hardwired control units, control signals
emanate from blocks of digital logic components. These signals direct all of the
data and instruction traffic to appropriate parts of the system. Hardwired control
units are typically very fast because they are actually physical components. How-
ever, once implemented, they are very difficult to modify for the same reason.

The other option for control is to implement instructions using a micropro-
gram. A microprogram is a program written in a low-level language that is
implemented directly by the hardware. Machine instructions produced in Level 2
are fed into this microprogram, which then interprets the instructions by activat-
ing hardware suited to execute the original instruction. One machine-level
instruction is often translated into several microcode instructions. This is not the
one-to-one correlation that exists between assembly language and machine lan-
guage. Microprograms are popular because they can be modified relatively eas-
ily. The disadvantage of microprogramming is, of course, that the additional
layer of translation typically results in slower instruction execution.

Level 0, the Digital Logic Level, is where we find the physical components
of the computer system: the gates and wires. These are the fundamental building
blocks, the implementations of the mathematical logic, that are common to all
computer systems. Chapter 3 presents the Digital Logic Level in detail.

THE VON NEUMANN MODEL

In the earliest electronic computing machines, programming was Synonymous
with connecting wires to plugs. No layered architecture existed, so programming
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a computer was as much of a feat of electrical engineering as it was an exercise in
algorithm design. Before their work on the ENIAC was complete, John W.
Mauchly and J. Presper Eckert conceived of an easier way to change the behavior
of their calculating machine. They reckoned that memory devices, in the form of
mercury delay lines, could provide a way to store program instructions. This
would forever end the tedium of rewiring the system each time it had a new prob-
lem to solve, or an old one to debug. Mauchly and Eckert documented their idea,
proposing it as the foundation for their next computer, the EDVAC. Unfortu-
nately, while they were involved in the top secret ENIAC project during World
War II, Mauchly and Eckert could not immediately publish their insight.

No such proscriptions, however, applied to a number of people working at the
periphery of the ENIAC project. One of these people was a famous Hungarian
mathematician named John von Neumann (pronounced von noy-man). After read-
ing Mauchly and Eckert’s proposal for the EDVAC, von Neumann published and
publicized the idea. So effective was he in the delivery of this concept that history
has credited him with its invention. All stored-program computers have come to
be known as von Neumann systems using the von Neumann architecture.
Although we are compelled by tradition to say that stored-program computers use
the von Neumann architecture, we shall not do so without paying proper tribute to
its true inventors: John W. Mauchly and J. Presper Eckert.

Today’s version of the stored-program machine architecture satisfies at least
the following characteristics:

* Consists of three hardware systems: A central processing unit (CPU) with a
control unit, an arithmetic logic unit (ALU), registers (small storage areas),
and a program counter; a main-memory system, which holds programs that
control the computer’s operation; and an I/O system.

» Capacity to carry out sequential instruction processing

» Contains a single path, either physically or logically, between the main memory
system and the control unit of the CPU, forcing alternation of instruction and exe-
cution cycles. This single path is often referred to as the von Neumann bottleneck.

Figure 1.4 shows how these features work together in modern computer systems.
Notice that the system shown in the figure passes all of its I/O through the arith-
metic logic unit (actually, it passes through the accumulator, which is part of the
ALU). This architecture runs programs in what is known as the von Neumann
execution cycle (also called the fetch-decode-execute cycle), which describes how
the machine works. One iteration of the cycle is as follows:

1. The control unit fetches the next program instruction from the memory, using
the program counter to determine where the instruction is located.

2. The instruction is decoded into a language the ALU can understand.

3. Any data operands required to execute the instruction are fetched from mem-
ory and placed into registers within the CPU.

4. The ALU executes the instruction and places the results in registers or memory.
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The ideas present in the von Neumann architecture have been extended so
that programs and data stored in a slow-to-access storage medium, such as a hard
disk, can be copied to a fast-access, volatile storage medium such as RAM prior
to execution. This architecture has also been streamlined into what is currently
called the system bus model, which is shown in Figure 1.5. The data bus moves
data from main memory to the CPU registers (and vice versa). The address bus
holds the address of the data that the data bus is currently accessing. The control
bus carries the necessary control signals that specify how the information transfer
is to take place.

Other enhancements to the von Neumann architecture include using index
registers for addressing, adding floating point data, using interrupts and asynchro-
nous I/O, adding virtual memory, and adding general registers. You will learn a
great deal about these enhancements in the chapters that follow.

NON-VON NEUMANN MODELS

Until recently, almost all general-purpose computers followed the von Neumann
design. However, the von Neumann bottleneck continues to baffle engineers look-
ing for ways to build fast systems that are inexpensive and compatible with the
vast body of commercially available software. Engineers who are not constrained
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by the need to maintain compatibility with von Neumann systems are free to use
many different models of computing. A number of different subfields fall into the
non-von Neumann category, including neural networks (using ideas from models
of the brain as a computing paradigm), genetic algorithms (exploiting ideas from
biology and DNA evolution), quantum computation (previously discussed), and
parallel computers. Of these, parallel computing is currently the most popular.

Today, parallel processing solves some of our biggest problems in much the
same way as settlers of the Old West solved their biggest problems using paral-
lel oxen. If they were using an ox to move a tree and the ox was not big enough
or strong enough, they certainly didn’t try to grow a bigger ox—they used two
oxen. If a computer isn’t fast enough or powerful enough, instead of trying to
develop a faster, more powerful computer, why not simply use multiple com-
puters? This is precisely what parallel computing does. The first parallel-pro-
cessing systems were built in the late 1960s and had only two processors. The
1970s saw the introduction of supercomputers with as many as 32 processors,
and the 1980s brought the first systems with over 1,000 processors. Finally, in
1999, IBM announced the construction of a supercomputer called the Blue
Gene. This massively parallel computer contains over 1 million processors,
each with its own dedicated memory. Its first task is to analyze the behavior of
protein molecules.

Even parallel computing has its limits, however. As the number of proces-
sors increases, so does the overhead of managing how tasks are distributed to
those processors. Some parallel-processing systems require extra processors
just to manage the rest of the processors and the resources assigned to them.
No matter how many processors are placed in a system, or how many
resources are assigned to them, somehow, somewhere, a bottleneck is bound to
develop. The best that we can do to remedy this is to make sure that the slow-
est parts of the system are the ones that are used the least. This is the idea
behind Amdahl’s Law. This law states that the performance enhancement possi-
ble with a given improvement is limited by the amount that the improved fea-
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ture is used. The underlying premise is that every algorithm has a sequential
part that ultimately limits the speedup that can be achieved by multiprocessor
implementation.

CHAPTER SUMMARY

I n this chapter we have presented a brief overview of computer organization and
computer architecture and shown how they differ. We also have introduced
some terminology in the context of a fictitious computer advertisement. Much of
this terminology will be expanded on in later chapters.

Historically, computers were simply calculating machines. As computers
became more sophisticated, they became general-purpose machines, which neces-
sitated viewing each system as a hierarchy of levels instead of one gigantic
machine. Each layer in this hierarchy serves a specific purpose, and all levels help
minimize the semantic gap between a high-level programming language or appli-
cation and the gates and wires that make up the physical hardware. Perhaps the
single most important development in computing that affects us as programmers
is the introduction of the stored-program concept of the von Neumann machine.
Although there are other architectural models, the von Neumann architecture is
predominant in today’s general-purpose computers.

FURTHER READING

We encourage you to build on our brief presentation of the history of computers.
We think that you will find this subject intriguing because it is as much about
people as it is about machines. You can read about the “forgotten father of the
computer,” John Atanasoff, in Mollenhoff (1988). This book documents the odd
relationship between Atanasoff and John Mauchly, and recounts the open court
battle of two computer giants, Honeywell and Sperry Rand. This trial ultimately
gave Atanasoff his proper recognition.

For a lighter look at computer history, try the book by Rochester and Gantz
(1983). Augarten’s (1985) illustrated history of computers is a delight to read and
contains hundreds of hard-to-find pictures of early computers and computing devices.
For a complete discussion of the historical development of computers, you can check
out the three-volume dictionary by Cortada (1987). A particularly thoughtful account
of the history of computing is presented in Ceruzzi (1998). If you are interested in an
excellent set of case studies about historical computers, see Blaauw & Brooks (1997).

You will also be richly rewarded by reading McCartney’s (1999) book about
the ENIAC, Chopsky and Leonsis’ (1988) chronicle of the development of the
IBM PC, and Toole’s (1998) biography of Ada, Countess of Lovelace. Polachek’s
(1997) article conveys a vivid picture of the complexity of calculating ballistic fir-
ing tables. After reading this article, you will understand why the army would
gladly pay for anything that promised to make the process faster or more accurate.
The Maxfield and Brown book (1997) contains a fascinating look at the origins and
history of computing as well as in-depth explanations of how a computer works.
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For more information on Moore’s Law, we refer the reader to Schaller
(1997). For detailed descriptions of early computers as well as profiles and remi-
niscences of industry pioneers, you may wish to consult the IEEE Annals of the
History of Computing, which is published quarterly. The Computer Museum His-
tory Center can be found online at www.computerhistory.org. It contains various
exhibits, research, timelines, and collections. Many cities now have computer
museums and allow visitors to use some of the older computers.

A wealth of information can be found at the Web sites of the standards-mak-
ing bodies discussed in this chapter (as well as the sites not discussed in this chap-
ter). The IEEE can be found at: www.ieee.org; ANSI at www.ansi.org; the ISO at
www.iso.ch; the BSI at www.bsi-global.com; and the ITU-T at www.itu.int. The
ISO site offers a vast amount of information and standards reference materials.

The WWW Computer Architecture Home Page at www.cs.wisc.edu/~arch/
www/ contains a comprehensive index to computer architecture—related informa-
tion. Many USENET newsgroups are devoted to these topics as well, including
comp.arch and comp.arch.storage.

The entire May/June 2000 issue of MIT’s Technology Review magazine is
devoted to architectures that may be the basis of tomorrow’s computers. Reading
this issue will be time well spent. In fact, we could say the same of every issue.
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REVIEW OF ESSENTIAL TERMS AND CONCEPTS
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. What is the difference between computer organization and computer architecture?
. What is an ISA?

. What is the importance of the Principle of Equivalence of Hardware and Software?
. Name the three basic components of every computer.

. To what power of 10 does the prefix giga- refer? What is the (approximate) equiva-

lent power of 2?

. To what power of 10 does the prefix micro- refer? What is the (approximate) equiva-

lent power of 2?

. What unit is typically used to measure the speed of a computer clock?
. Name two types of computer memory.

. What is the mission of the IEEE?

10.

What is the full name of the organization that uses the initials ISO? Is ISO an
acronym?

ANSI is the acronym used by which organization?

What is the name of the Swiss organization that devotes itself to matters concerning
telephony, telecommunications, and data communications?

Who is known as the father of computing and why?
What was the significance of the punch card?
Name two driving factors in the development of computers.

What is it about the transistor that made it such a great improvement over the vacuum
tube?

How does an integrated circuit differ from a transistor?

Explain the differences between SSI, MSI, LSI, and VLSIL.

What technology spawned the development of microcomputers? Why?
What is meant by an “open architecture”?

State Moore’s Law. Can it hold indefinitely?

How is Rock’s Law related to Moore’s Law?

Name and explain the seven commonly accepted layers of the Computer Level Hier-
archy. How does this arrangement help us to understand computer systems?

What was it about the von Neumann architecture that distinguished it from its prede-
cessors?

Name the characteristics present in a von Neumann architecture.
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26.
27.
28.

/ Introduction

How does the fetch-decode-execute cycle work?
What is meant by parallel computing?

What is the underlying premise of Amdahl’s Law?

EXERCISES

*1.
2.

*3.

7.

8.
9.

In what ways are hardware and software different? In what ways are they the same?
a) How many milliseconds (ms) are in 1 second?

b) How many microseconds (us) are in 1 second?

¢) How many nanoseconds (ns) are in 1 millisecond?
d) How many microseconds are in 1 millisecond?

e¢) How many nanoseconds are in 1 microsecond?

f) How many kilobytes (KB) are in 1 gigabyte (GB)?
g) How many kilobytes are in 1 megabyte (MB)?

h) How many megabytes are in 1 gigabyte (GB)?

i) How many bytes are in 20 megabytes?

j) How many kilobytes are in 2 gigabytes?

By what order of magnitude is something that runs in nanoseconds faster than some-
thing that runs in milliseconds?

. Pretend you are ready to buy a new computer for personal use. First, take a look at ads

from various magazines and newspapers and list terms you don’t quite understand. Look
these terms up and give a brief written explanation. Decide what factors are important in
your decision as to which computer to buy and list them. After you select the system you
would like to buy, identify which terms refer to hardware and which refer to software.

. Pick your favorite computer language and write a small program. After compiling the

program, see if you can determine the ratio of source code instructions to the
machine language instructions generated by the compiler. If you add one line of
source code, how does that affect the machine language program? Try adding differ-
ent source code instructions, such as an add and then a multiply. How does the size of
the machine code file change with the different instructions? Comment on the result.

. Respond to the comment mentioned in Section 1.5: If invented today, what name do you

think would be given to the computer? Give at least one good reason for your answer.

Suppose a transistor on an integrated circuit chip were 2 microns in size. According
to Moore’s Law, how large would that transistor be in 2 years? How is Moore’s law
relevant to programmers?

What circumstances helped the IBM PC become so successful?

List five applications of personal computers. Is there a limit to the applications of
computers? Do you envision any radically different and exciting applications in the
near future? If so, what?
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10. Under the von Neumann architecture, a program and its data are both stored in mem-

11.

ory. It is therefore possible for a program, thinking a memory location holds a piece
of data when it actually holds a program instruction, to accidentally (or on purpose)
modify itself. What implications does this present to you as a programmer?

Read a popular local newspaper and search through the job openings. (You can also
check some of the more popular online career sites.) Which jobs require specific hard-
ware knowledge? Which jobs imply knowledge of computer hardware? Is there any
correlation between the required hardware knowledge and the company or its location?






CHAPTER

2

2.1

“‘What would life be without arithmetic, but a scene of horrors?”

—Sydney Smith (1835)

Data Representation in
Computer Systems

INTRODUCTION

he organization of any computer depends considerably on how it represents
Tnumbers, characters, and control information. The converse is also true: Stan-
dards and conventions established over the years have determined certain aspects
of computer organization. This chapter describes the various ways in which com-
puters can store and manipulate numbers and characters. The ideas presented in
the following sections form the basis for understanding the organization and
function of all types of digital systems.

The most basic unit of information in a digital computer is called a bit, which
is a contraction of binary digit. In the concrete sense, a bit is nothing more than a
state of “on” or “off ” (or “high” and “low”) within a computer circuit. In 1964,
the designers of the IBM System/360 mainframe computer established a conven-
tion of using groups of 8 bits as the basic unit of addressable computer storage.
They called this collection of 8 bits a byze.

Computer words consist of two or more adjacent bytes that are sometimes
addressed and almost always are manipulated collectively. The word size repre-
sents the data size that is handled most efficiently by a particular architecture.
Words can be 16 bits, 32 bits, 64 bits, or any other size that makes sense within
the context of a computer’s organization (including sizes that are not multiples of
eight). Eight-bit bytes can be divided into two 4-bit halves called nibbles (or nyb-
bles). Because each bit of a byte has a value within a positional numbering sys-
tem, the nibble containing the least-valued binary digit is called the low-order
nibble, and the other half the high-order nibble.

37
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2.2

2.3

POSITIONAL NUMBERING SYSTEMS

At some point during the middle of the sixteenth century, Europe embraced the
decimal (or base 10) numbering system that the Arabs and Hindus had been using
for nearly a millennium. Today, we take for granted that the number 243 means
two hundreds, plus four tens, plus three units. Notwithstanding the fact that zero
means “nothing,” virtually everyone knows that there is a substantial difference
between having 1 of something and having 10 of something.

The general idea behind positional numbering systems is that a numeric value
is represented through increasing powers of a radix (or base). This is often
referred to as a weighted numbering system because each position is weighted by
a power of the radix.

The set of valid numerals for a positional numbering system is equal in size
to the radix of that system. For example, there are 10 digits in the decimal system,
0 through 9, and 3 digits for the ternary (base 3) system, O, 1, and 2. The largest
valid number in a radix system is one smaller than the radix, so 8 is not a valid
numeral in any radix system smaller than 9. To distinguish among numbers in dif-
ferent radices, we use the radix as a subscript, such as in 33, to represent the dec-
imal number 33. (In this book, numbers written without a subscript should be
assumed to be decimal.) Any decimal integer can be expressed exactly in any
other integral base system (see Example 2.1).

EXAMPLE 2.1 Three numbers represented as powers of a radix.

24351, =2 X 102+4 X 101 +3 X 10°+5 X 101+ 1 X 1072
212, =2x32+1x31+2x30=23,
10110, =1X2440X25+1 X 2241 X 2140x20=22

The two most important radices in computer science are binary (base two), and
hexadecimal (base 16). Another radix of interest is octal (base 8). The binary sys-
tem uses only the digits 0 and 1; the octal system, O through 7. The hexadecimal
system allows the digits O through 9 with A, B, C, D, E, and F being used to rep-
resent the numbers 10 through 15. Figure 2.1 shows some of the radices.

DECIMAL TO BINARY CONVERSIONS

Gottfried Leibniz (1646—1716) was the first to generalize the idea of the (posi-
tional) decimal system to other bases. Being a deeply spiritual person, Leibniz
attributed divine qualities to the binary system. He correlated the fact that any
integer could be represented by a series of ones and zeros with the idea that God
(1) created the universe out of nothing (0). Until the first binary digital computers
were built in the late 1940s, this system remained nothing more than a mathemat-
ical curiosity. Today, it lies at the heart of virtually every electronic device that
relies on digital controls.
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Powers of 2 Decimal | 4-Bit Binary | Hexadecimal
22=1=0.25 0 0000 0
2-1=3=0.5 1 0001 1
20 =1 2 0010 2
21=2 3 0011 3
22=4 4 0100 4
23=8 5 0101 5
24=16 6 0110 6
25=32 7 0111 7
26 =64 8 1000 8
27 =128 9 1001 9
28 = 256 10 1010 A
29=512 11 1011 B
210=1,024 12 1100 C
215 = 32,768 13 1101 D
216 = 65,536 14 1110 E
15 1111 F

FIGURE 2.1 Some Numbers to Remember

Because of its simplicity, the binary numbering system translates easily into
electronic circuitry. It is also easy for humans to understand. Experienced com-
puter professionals can recognize smaller binary numbers (such as those shown in
Figure 2.1) at a glance. Converting larger values and fractions, however, usually
requires a calculator or pencil and paper. Fortunately, the conversion techniques
are easy to master with a little practice. We show a few of the simpler techniques
in the sections that follow.

Converting Unsigned Whole Numbers

We begin with the base conversion of unsigned numbers. Conversion of signed
numbers (numbers that can be positive or negative) is more complex, and it is
important that you first understand the basic technique for conversion before con-
tinuing with signed numbers.

Conversion between base systems can be done by using either repeated sub-
traction or a division-remainder method. The subtraction method is cumbersome
and requires a familiarity with the powers of the radix being used. Being the more
intuitive of the two methods, however, we will explain it first.

As an example, let’s say that we want to convert 104, to base 3. We know
that 3* = 81 is the highest power of 3 that is less than 104, so our base 3 number
will be 5 digits wide (one for each power of the radix: O through 4). We make
note that 81 goes once into 104 and subtract, leaving a difference of 23. We know
that the next power of 3, 33 = 27, is too large to subtract, so we note the zero
“placeholder” and look for how many times 32 = 9 divides 23. We see that it goes
twice and subtract 18. We are left with 5 from which we subtract 3! = 3, leaving
2, which is 2 X 39, These steps are shown in Example 2.2.
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— EXAMPLE 2.2 Convert 104,, to base 3 using subtraction.

104
—81=3*X1
23
—0=33%0
23
—18=32X2
5
—3=3x1
2
—2=3'%x2
0 104,,= 10212,

The division-remainder method is faster and easier than the repeated subtraction
method. It employs the idea that successive divisions by the base are in fact suc-
cessive subtractions by powers of the base. The remainders that we get when we
sequentially divide by the base end up being the digits of the result, which are
read from bottom to top. This method is illustrated in Example 2.3.

EXAMPLE 2.3 Convert 104, to base 3 using the division-remainder method.

31104 2 3 divides 104 34 times with a remainder of 2
3134 1 3divides 34 11 times with a remainder of 1
311 2 3divides 11 3 times with a remainder of 2

313 0 3divides 3 1 time with a remainder of 0
311 1 3divides 1 0 times with a remainder of 1
0

Reading the remainders from bottom to top, we have: 104, = 10212,.

This method works with any base, and because of the simplicity of the calcula-
tions, it is particularly useful in converting from decimal to binary. Example 2.4
shows such a conversion.
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EXAMPLE 2.4 Convert 147, to binary.
2147 1 2divides 147 73 times with a remainder of 1

2173 1 2divides 73 36 times with a remainder of 1
2136 0 2 divides 36 18 times with a remainder of O
218 0 2divides 18 9 times with a remainder of 0
219 1 2divides9 4 times with a remainder of 1
214 0 2divides 4 2 times with a remainder of 0
212 0 2divides 2 1 time with a remainder of 0
211 1 2divides 10 times with a remainder of 1
0

Reading the remainders from bottom to top, we have: 147,,=10010011,.

A binary number with N bits can represent unsigned integers from 0 to 2V~!. For
example, 4 bits can represent the decimal values O through 15, while 8 bits can
represent the values O through 255. The range of values that can be represented
by a given number of bits is extremely important when doing arithmetic opera-
tions on binary numbers. Consider a situation in which binary numbers are 4 bits
in length, and we wish to add 1111, (15,,) to 1111,. We know that 15 plus 15 is
30, but 30 cannot be represented using only 4 bits. This is an example of a condi-
tion known as overflow, which occurs in unsigned binary representation when the
result of an arithmetic operation is outside the range of allowable precision for
the given number of bits. We address overflow in more detail when discussing
signed numbers in Section 2.4.

Converting Fractions

Fractions in any base system can be approximated in any other base system using
negative powers of a radix. Radix points separate the integer part of a number
from its fractional part. In the decimal system, the radix point is called a decimal
point. Binary fractions have a binary point.

Fractions that contain repeating strings of digits to the right of the radix point
in one base may not necessarily have a repeating sequence of digits in another
base. For instance, % is a repeating decimal fraction, but in the ternary system it
terminates as 0.2, (2 X 371 =2 X }4).

We can convert fractions between different bases using methods analogous to
the repeated subtraction and division-remainder methods for converting integers.
Example 2.5 shows how we can use repeated subtraction to convert a number
from decimal to base 5.
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EXAMPLE 2.5 Convert 0.4304,, to base 5.

0.4304
—0.4000=5"1x%x2
0.0304
—0.0000=5"2X0 (A placeholder)
0.0304
—0.0240=53%3
0.0064
—0.0064 =54 X 4
0.0000

Reading from top to bottom, we find 0.4304,, = 0.2034.

Because the remainder method works with positive powers of the radix for con-
version of integers, it stands to reason that we would use multiplication to convert
fractions, because they are expressed in negative powers of the radix. However,
instead of looking for remainders, as we did above, we use only the integer part
of the product after multiplication by the radix. The answer is read from top to
bottom instead of bottom to top. Example 2.6 illustrates the process.

EXAMPLE 2.6  Convert 0.4304,, to base 5.

4304

X 5

2.1520  The integer part is 2, omit from subsequent multiplication.
1520

X 5

0.7600  The integer part is 0, we’ll need it as a placeholder.
7600

X 5

3.8000 The integer part is 3, omit from subsequent multiplication.
.8000

X _ 5

4.0000 The fractional part is now zero, so we are done.

Reading from top to bottom, we have 0.4304,, = 0.2034.

This example was contrived so that the process would stop after a few steps.
Often things don’t work out quite so evenly, and we end up with repeating frac-
tions. Most computer systems implement specialized rounding algorithms to pro-
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vide a predictable degree of accuracy. For the sake of clarity, however, we will
simply discard (or truncate) our answer when the desired accuracy has been
achieved, as shown in Example 2.7.

EXAMPLE 2.7 Convert 0.34375,, to binary with 4 bits to the right of the
binary point.

.34375
X 2
0.68750  (Another placeholder.)
.68750
X 2
1.37500
.37500
X 2
0.75000
75000
X 2
1.50000 (This is our fourth bit. We will stop here.)

Reading from top to bottom, 0.34375,, = 0.0101, to four binary places.

The methods just described can be used to directly convert any number in any
base to any other base, say from base 4 to base 3 (as in Example 2.8). However,
in most cases, it is faster and more accurate to first convert to base 10 and then to
the desired base. One exception to this rule is when you are working between
bases that are powers of two, as you’ll see in the next section.

EXAMPLE 2.8 Convert 3121, to base 3.

First, convert to decimal:

3121, =3 X 43+ 1 X 4242 X 41+ 1 X 49
=3X64+1X16+2X4+4=217,

Then convert to base 3:

3217 1
372
3124

318
312
0  Wehave 3121, = 22001,

Do OO
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2.3.3

2.4

2.4.1

Converting between Power-of-Two Radices

Binary numbers are often expressed in hexadecimal—and sometimes octal—to
improve their readability. Because 16 = 2%, a group of 4 bits (called a hextet) is
easily recognized as a hexadecimal digit. Similarly, with 8 = 23, a group of 3 bits
(called an octet) is expressible as one octal digit. Using these relationships, we
can therefore convert a number from binary to octal or hexadecimal by doing lit-
tle more than looking at it.

EXAMPLE 2.9 Convert 110010011101, to octal and hexadecimal.

110010 011101 Separate into groups of three for the octal conversion.
6 2 3 5
110010011101, = 6235,

1100 1001 1101 Separate into groups of 4 for the hexadecimal conversion.
c 9 D

110010011101, = C9D,

If there are too few bits, leading zeros can be added.

SIGNED INTEGER REPRESENTATION

We have seen how to convert an unsigned integer from one base to another.
Signed numbers require additional issues to be addressed. When an integer vari-
able is declared in a program, many programming languages automatically allo-
cate a storage area that includes a sign as the first bit of the storage location. By
convention, a “1” in the high-order bit indicates a negative number. The storage
location can be as small as an 8-bit byte or as large as several words, depending
on the programming language and the computer system. The remaining bits (after
the sign bit) are used to represent the number itself.

How this number is represented depends on the method used. There are three
commonly used approaches. The most intuitive method, signed magnitude, uses
the remaining bits to represent the magnitude of the number. This method and the
other two approaches, which both use the concept of complements, are introduced
in the following sections.

Signed Magnitude

Up to this point, we have ignored the possibility of binary representations for
negative numbers. The set of positive and negative integers is referred to as the
set of signed integers. The problem with representing signed integers as binary
values is the sign—how should we encode the actual sign of the number? Signed-
magnitude representation is one method of solving this problem. As its name



2.4 / Signed Integer Representation 45

implies, a signed-magnitude number has a sign as its left-most bit (also referred
to as the high-order bit or the most significant bit) while the remaining bits repre-
sent the magnitude (or absolute value) of the numeric value. For example, in an
8-bit word, —1 would be represented as 10000001, and +1 as 00000001. In a
computer system that uses signed-magnitude representation and 8 bits to store
integers, 7 bits can be used for the actual representation of the magnitude of the
number. This means that the largest integer an 8-bit word can represent is 27 — 1
or 127 (a zero in the high-order bit, followed by 7 ones). The smallest integer is 8
ones, or —127. Therefore, N bits can represent —2N"D — [ 1o 2V-"D — 1,

Computers must be able to perform arithmetic calculations on integers that
are represented using this notation. Signed-magnitude arithmetic is carried out
using essentially the same methods as humans use with pencil and paper, but it
can get confusing very quickly. As an example, consider the rules for addition:
(1) If the signs are the same, add the magnitudes and use that same sign for the
result; (2) If the signs differ, you must determine which operand has the larger
magnitude. The sign of the result is the same as the sign of the operand with the
larger magnitude, and the magnitude must be obtained by subtracting (not
adding) the smaller one from the larger one. If you consider these rules carefully,
this is the method you use for signed arithmetic by hand.

We arrange the operands in a certain way based on their signs, perform the
calculation without regard to the signs, and then supply the sign as appropriate
when the calculation is complete. When modeling this idea in an 8-bit word, we
must be careful to include only 7 bits in the magnitude of the answer, discarding
any carries that take place over the high-order bit.

EXAMPLE 2.10  Add 01001111, to 00100011, using signed-magnitude arithmetic.

1111 < carries
0 1001111 (79)
0+01000T11 + (35)
0 1110010 (114)

The arithmetic proceeds just as in decimal addition, including the carries, until
we get to the seventh bit from the right. If there is a carry here, we say that we
have an overflow condition and the carry is discarded, resulting in an incorrect
sum. There is no overflow in this example.

We find 01001111, + 00100011, = 01110010, in signed-magnitude represen-
tation.

Sign bits are segregated because they are relevant only after the addition is com-
plete. In this case, we have the sum of two positive numbers, which is positive.
Overflow (and thus an erroneous result) in signed numbers occurs when the sign
of the result is incorrect.
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In signed magnitude, the sign bit is used only for the sign, so we can’t “carry
into” it. If there is a carry emitting from the seventh bit, our result will be trun-
cated as the seventh bit overflows, giving an incorrect sum. (Example 2.11 illus-
trates this overflow condition.) Prudent programmers avoid “million dollar”
mistakes by checking for overflow conditions whenever there is the slightest pos-
sibility that they could occur. If we did not discard the overflow bit, it would
carry into the sign, causing the more outrageous result of the sum of two positive
numbers being negative. (Imagine what would happen if the next step in a pro-
gram were to take the square root or log of that result!)

EXAMPLE 2.11  Add 01001111, to 01100011, using signed-magnitude arithmetic.

Last carry 1 « 1111 <« carries
overflows and is 0 10011171 (79)
discarded. 0+ 1100011 +(99)

0 0110010 (50)

We obtain the erroneous result of 79 + 99 = 50.

The fastest way to convert a binary number to decimal is a method called dou-
ble-dabble (or double-dibble). This method builds on the idea that a subse-
quent power of two is double the previous power of two in a binary number.
The calculation starts with the leftmost bit and works toward the rightmost bit.
The first bit is doubled and added to the next bit. This sum is then doubled and
added to the following bit. The process is repeated for each bit until the right-
most bit has been used.

EXAMPLE 1

Convert 10010011, to decimal.

Step 1:  Write down the binary number, leaving space between the bits.
1 0 0 1 0 0 1 1

Step 2:  Double the high-order bit and copy it under the next bit.

1 0 0 1 0 0 1 1
2

X2
2
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Step 3: Add the next bit and double the sum. Copy this result under the next bit.
1 0 0 1 0 0 1 1
2 4
+0
2
X2 X2
2 4
Step 4:  Repeat Step 3 until you run out of bits.
0 1 0 0 1 1
4 8 18 36 72 146
+0 41 +0 +£0 +1 +1
4 9 18 36 73 147 «The answer: 10010011, = 147,
X2 X2 X2 X2 X2
8 18 36 72 146

When we combine hextet grouping (in reverse) with the double-dabble
method, we find that we can convert hexadecimal to decimal with ease.

EXAMPLE 2
Convert 02CA,4 to decimal.
First, convert the hex to binary by grouping into hextets.
(0] 2 C A
0000 0010 1100 1010

Then apply the double-dabble method on the binary form:

1 0 1 1 0 0 1 0 1 0

2 4 10 22 44 88 178 356 714

+0 +171 +£1 +0 +0 +1 +0 +1 £0

2 5 11 22 44 89 178 357 714
X2 X2 X2 X2 X2 X2 X2 X2 X2
2 4 10 22 44 88 178 356 714

02CA,s = 1011001010, = 714,
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As with addition, signed-magnitude subtraction is carried out in a manner similar
to pencil and paper decimal arithmetic, where it is sometimes necessary to bor-
row from digits in the minuend.

EXAMPLE 2.12  Subtract 01001111, from 01100011, using signed-magnitude
arithmetic.

& borrows
11 (99)
11 —(79)
00 (20)
We find 01100011, — 01001111, = 00010100, in signed-magnitude representation.

SO + O
— O © -

12
0 1 60
0 — 1 11
0 0 01

EXAMPLE 2.13  Subtract 01100011, (99) from 01001111, (79) using signed-
magnitude arithmetic.

By inspection, we see that the subtrahend, 01100011, is larger than the minu-
end, 01001111. With the result obtained in Example 2.12, we know that the dif-
ference of these two numbers is 0010100,. Because the subtrahend is larger than
the minuend, all that we need to do is change the sign of the difference. So we
find 01001111, — 01100011, = 10010100, in signed-magnitude representation.

We know that subtraction is the same as “adding the opposite,” which equates to
negating the value we wish to subtract and then adding instead (which is often
much easier than performing all the borrows necessary for subtraction, particu-
larly in dealing with binary numbers). Therefore, we need to look at some exam-
ples involving both positive and negative numbers. Recall the rules for addition:
(1) If the signs are the same, add the magnitudes and use that same sign for the
result; (2) If the signs differ, you must determine which operand has the larger
magnitude. The sign of the result is the same as the sign of the operand with the
larger magnitude, and the magnitude must be obtained by subtracting (not
adding) the smaller one from the larger one.

EXAMPLE 2.14 Add 10010011, (—19) to 00001101, (+13) using signed-mag-
nitude arithmetic.

The first number (the augend) is negative because its sign bit is set to 1. The
second number (the addend) is positive. What we are asked to do is in fact a sub-
traction. First, we determine which of the two numbers is larger in magnitude and
use that number for the augend. Its sign will be the sign of the result.

012 < borrows
1 00+680611 (—19)
0—-0001101 +(13)
1 0000110 (—6)
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With the inclusion of the sign bit, we see that 10010011, — 00001101, =
10000110, in signed-magnitude representation.

EXAMPLE 2.15 Subtract 10011000, (—24) from 10101011, (—43) using
signed-magnitude arithmetic.

We can convert the subtraction to an addition by negating —24, which gives
us 24, and then we can add this to —43, giving us a new problem of —43 + 24.
However, we know from the addition rules above that because the signs now dif-
fer, we must actually subtract the smaller magnitude from the larger magnitude
(or subtract 24 from 43) and make the result negative (since 43 is larger than 24).

02
0401011 (43

— 0011000 —(24)
0010011 (19

Note that we are not concerned with the sign until we have performed the sub-
traction. We know the answer must be positive. So we end up with 10101011, —
10001100, = 00010011, in signed-magnitude representation.

While reading the preceding examples, you may have noticed how many questions
we had to ask ourselves: Which number is larger? Am I subtracting a negative
number? How many times do I have to borrow from the minuend? A computer
engineered to perform arithmetic in this manner must make just as many decisions
(though a whole lot faster). The logic (and circuitry) is further complicated by the
fact that signed magnitude has two representations for zero, 10000000 and
00000000 (and mathematically speaking, this simply shouldn’t happen!). Simpler
methods for representing signed numbers would allow simpler and less expensive
circuits. These simpler methods are based on radix complement systems.

Complement Systems

Number theorists have known for hundreds of years that one decimal number can
be subtracted from another by adding the difference of the subtrahend from all
nines and adding back a carry. This is called taking the nine’s complement of the
subtrahend, or more formally, finding the diminished radix complement of the
subtrahend. Let’s say we wanted to find 167 — 52. Taking the difference of 52
from 999, we have 947. Thus, in nine’s complement arithmetic we have 167 — 52
=167 + 947 = 114. The “carry” from the hundreds column is added back to the
units place, giving us a correct 167 — 52 = 115. This method was commonly
called “casting out 9s” and has been extended to binary operations to simplify
computer arithmetic. The advantage that complement systems give us over signed
magnitude is that there is no need to process sign bits separately, but we can still
easily check the sign of a number by looking at its high-order bit.
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Another way to envision complement systems is to imagine an odometer on a
bicycle. Unlike cars, when you go backward on a bike, the odometer will go
backward as well. Assuming an odometer with three digits, if we start at zero and
end with 700, we can’t be sure whether the bike went forward 700 miles or back-
ward 300 miles! The easiest solution to this dilemma is simply to cut the number
space in half and use 001-500 for positive miles and 501-999 for negative miles.
We have, effectively, cut down the distance our odometer can measure. But now
if it reads 997, we know the bike has backed up 3 miles instead of riding forward
997 miles. The numbers 501-999 represent the radix complements (the second of
the two methods introduced below) of the numbers 001-500 and are being used
to represent negative distance.

One’s Complement

As illustrated above, the diminished radix complement of a number in base 10 is
found by subtracting the subtrahend from the base minus one, which is 9 in deci-
mal. More formally, given a number N in base r having d digits, the diminished
radix complement of N is defined to be (Y — 1) — N. For decimal numbers, r =
10, and the diminished radix is 10 — 1 = 9. For example, the nine’s complement
of 2468 is 9999 — 2468 = 7531. For an equivalent operation in binary, we subtract
from one less the base (2), which is 1. For example, the one’s complement of
0101, 1s 1111, — 0101 = 1010. Although we could tediously borrow and subtract
as discussed above, a few experiments will convince you that forming the one’s
complement of a binary number amounts to nothing more than switching all of the
Is with Os and vice versa. This sort of bit-flipping is very simple to implement in
computer hardware.

It is important to note at this point that although we can find the nine’s com-
plement of any decimal number or the one’s complement of any binary number,
we are most interested in using complement notation to represent negative num-
bers. We know that performing a subtraction, such as 10 — 7, can be also be
thought of as “adding the opposite,” as in 10 + (—7). Complement notation allows
us to simplify subtraction by turning it into addition, but it also gives us a method
to represent negative numbers. Because we do not wish to use a special bit to rep-
resent the sign (as we did in signed-magnitude representation), we need to remem-
ber that if a number is negative, we should convert it to its complement. The result
should have a 1 in the leftmost bit position to indicate the number is negative. If
the number is positive, we do not have to convert it to its complement. All positive
numbers should have a zero in the leftmost bit position. Example 2.16 illustrates
these concepts.

— EXAMPLE 2.16 Express 23,,and —9,, in 8-bit binary one’s complement form.

23,, =+ (00010111,) = 00010111,
—9,, = —(00001001,) = 11110110,
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Suppose we wish to subtract 9 from 23. To carry out a one’s complement subtrac-
tion, we first express the subtrahend (9) in one’s complement, then add it to the
minuend (23); we are effectively now adding —9 to 23. The high-order bit will
have a 1 or a 0 carry, which is added to the low-order bit of the sum. (This is called
end carry-around and results from using the diminished radix complement.)

EXAMPLE 2.17  Add 23,,to —9,, using one’s complement arithmetic.

1« 111 11 & carries

00010111 (23)

The last + 11110110 +(=9
carry is added 00001101
+ 1

to the sum. 00001110 14,

EXAMPLE 2.18 Add 9,,to —23,, using one’s complement arithmetic.

The last 0« 00001001 9)
carry is zero + 11101000 +(=23)
so we are done. 11110001 -14,,

How do we know that 11110001, is actually —14,,? We simply need to take the one’s
complement of this binary number (remembering it must be negative because the left-
most bit is negative). The one’s complement of 11110001, is 00001110,, which is 14.

The primary disadvantage of one’s complement is that we still have two rep-
resentations for zero: 00000000 and 11111111. For this and other reasons, com-
puter engineers long ago stopped using one’s complement in favor of the more
efficient two’s complement representation for binary numbers.

Two’s Complement

Two’s complement is an example of a radix complement. Given a number N
in base r having d digits, the radix complement of N is defined to be ¥ — N
for N # 0 and O for N = 0. The radix complement is often more intuitive than
the diminished radix complement. Using our odometer example, the ten’s
complement of going forward 2 miles is 10> — 2 = 998, which we have
already agreed indicates a negative (backward) distance. Similarly, in binary,
the two’s complement of the 4-bit number 0011, is 2* — 0011, = 10000, —
0011, = 1101,.

Upon closer examination, you will discover that two’s complement is nothing
more than one’s complement incremented by 1. To find the two’s complement of a
binary number, simply flip bits and add 1. This simplifies addition and subtraction
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as well. Since the subtrahend (the number we complement and add) is incre-
mented at the outset, however, there is no end carry-around to worry about. We
simply discard any carries involving the high-order bits. Remember, only negative
numbers need to be converted to two’s complement notation, as indicated in
Example 2.19.

EXAMPLE 2.19  Express 23, —23,,, and —9,, in 8-bit binary two’s comple-
ment form.

23,, =+ (00010111,) =00010111,

—23,,= — (00010111,) = 11101000, + 1 = 11101001,
—9,,= — (00001001,) = 11110110, + 1 = 11110111,

Suppose we are given the binary representation for a number and want to know
its decimal equivalent? Positive numbers are easy. For example, to convert the
two’s complement value of 00010111, to decimal, we simply convert this binary
number to a decimal number to get 23. However, converting two’s complement
negative numbers requires a reverse procedure similar to the conversion from
decimal to binary. Suppose we are given the two’s complement binary value of
11110111,, and we want to know the decimal equivalent. We know this is a nega-
tive number but must remember it is represented using two’s complement. We
first flip the bits and then add 1 (find the one’s complement and add 1). This
results in the following: 00001000, + 1 = 00001001,. This is equivalent to the
decimal value 9. However, the original number we started with was negative, so
we end up with —9 as the decimal equivalent to 11110111,.

The following two examples illustrate how to perform addition (and hence
subtraction, because we subtract a number by adding its opposite) using two’s
complement notation.

EXAMPLE 2.20 Add 9,,to —23,, using two’s complement arithmetic.
001 )
001+(23)
010 -14

001
+ 11101
11110




2.4 / Signed Integer Representation 53

It is left as an exercise for you to verify that 11110010, is actually —14,, using
two’s complement notation.

EXAMPLE 2.21  Find the sum of 23, and —9,, in binary using two’s comple-
ment arithmetic.

I« 111 111 <& carries
Discard 00010111 (23)
carry. + 11110111 +(-9)

00001110 14,,

Notice that the discarded carry in Example 2.21 did not cause an erroneous result.
An overflow occurs if two positive numbers are added and the result is negative,
or if two negative numbers are added and the result is positive. It is not possible
to have overflow when using two’s complement notation if a positive and a nega-
tive number are being added together.

Simple computer circuits can easily detect an overflow condition using a rule
that is easy to remember. You'll notice in Example 2.21 that the carry going into
the sign bit (a 1 is carried from the previous bit position into the sign bit position)
is the same as the carry going out of the sign bit (a 1 is carried out and discarded).
When these carries are equal, no overflow occurs. When they differ, an overflow
indicator is set in the arithmetic logic unit, indicating the result is incorrect.

A Simple Rule for Detecting an Overflow Condition: If the carry into
the sign bit equals the carry out of the bit, no overflow has occurred. If
the carry into the sign bit is different from the carry out of the sign bit,
overflow (and thus an error) has occurred.

The hard part is getting programmers (or compilers) to consistently check for the
overflow condition. Example 2.22 indicates overflow because the carry into the sign
bit (a 1 is carried in) is not equal to the carry out of the sign bit (a 0 is carried out).

EXAMPLE 2.22  Find the sum of 126,, and &, in binary using two’s comple-
ment arithmetic.

O— 1111 < carries

Discard last 01111110 (126)
carry. +00001000 +(8)
10000110 (-12277
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INTEGER MULTIPLICATION AND DIVISION

Unless sophisticated algorithms are used, multiplication and division can con-
sume a considerable number of computation cycles before a result is obtained.
Here, we discuss only the most straightforward approach to these operations. In
real systems, dedicated hardware is used to optimize throughput, sometimes carry-
ing out portions of the calculation in parallel. Curious readers will want to investi-
gate some of these advanced methods in the references cited at the end of this
chapter.

The simplest multiplication algorithms used by computers are similar to tra-
ditional pencil and paper methods used by humans. The complete multiplication
table for binary numbers couldn’t be simpler: zero times any number is zero, and
one times any number is that number.

To illustrate simple computer multiplication, we begin by writing the multi-
plicand and the multiplier to two separate storage areas. We also need a third stor-
age area for the product. Starting with the low-order bit, a pointer is set to each
digit of the multiplier. For each digit in the multiplier, the multiplicand is
“shifted” one bit to the left. When the multiplier is 1, the “shifted” multiplicand is
added to a running sum of partial products. Because we shift the multiplicand by
one bit for each bit in the multiplier, a product requires double the working space
of either the multiplicand or the multiplier.

There are two simple approaches to binary division: We can either iteratively
subtract the denominator from the divisor, or we can use the same trial-and-error
method of long division that we were taught in grade school. As mentioned above
with multiplication, the most efficient methods used for binary division are beyond
the scope of this text and can be found in the references at the end of this chapter.

Regardless of the relative efficiency of any algorithms that are used, divi-
sion is an operation that can always cause a computer to crash. This is the

A one is carried into the leftmost bit, but a zero is carried out. Because these car-
ries are not equal, an overflow has occurred. (We can easily see that two positive
numbers are being added but the result is negative.)

Two’s complement is the most popular choice for representing signed numbers.
The algorithm for adding and subtracting is quite easy, has the best representa-
tion for O (all O bits), is self-inverting, and is easily extended to larger numbers of
bits. The biggest drawback is in the asymmetry seen in the range of values that
can be represented by N bits. With signed-magnitude numbers, for example, 4
bits allow us to represent the values —7 through +7. However, using two’s com-
plement, we can represent the values —8 through +7, which is often confusing to
anyone learning about complement representations. To see why +7 is the largest
number we can represent using 4-bit two’s complement representation, we need
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case particularly when division by zero is attempted or when two numbers of
enormously different magnitudes are used as operands. When the divisor is
much smaller than the dividend, we get a condition known as divide under-
flow, which the computer sees as the equivalent of division by zero, which is
impossible.

Computers make a distinction between integer division and floating-point
division. With integer division, the answer comes in two parts: a quotient and a
remainder. Floating-point division results in a number that is expressed as a
binary fraction. These two types of division are sufficiently different from each
other as to warrant giving each its own special circuitry. Floating-point calcula-
tions are carried out in dedicated circuits called floating-point units, or FPUs.

EXAMPLE  Find the product of 00000110, and 00001011,.

Multiplicand Partial products
[o]o]JoJofo[1]1]o] + [o]o]o]o]o]o]o]0] 10 1 1 Add multiplicand
A and shift left.
[o]oJoJo]1]1]o]o] + [o]o]o]o]o]1]1]0] 101 1 Addmultiplicand
A and shift left.
[o]ofo[1]1]o]o]o] + [o]o]o1]o]o]1]0] 1 0 1 1 Don'tadd, just shift
$ multiplicand left.
[o]o1]1]o]o]o]o] + [o]o]o1]o]o]1]0] *o 1 1 Add multiplicand.
= [o]1]oJo]o]o]1]o] Product

only remember the first bit must be 0. If the remaining bits are all 1s (giving us
the largest magnitude possible), we have 0111,, which is 7. An immediate reac-
tion to this is that the smallest negative number should then be 1111,, but we can
see that 1111, is actually —1 (flip the bits, add one, and make the number nega-
tive). So how do we represent —8 in two’s complement notation using 4 bits? It
is represented as 1000,. We know this is a negative number. If we flip the bits
(0111), add 1 (to get 1000, which is 8), and make it negative, we get —8.

FLOATING-POINT REPRESENTATION

If we wanted to build a real computer, we could use any of the integer representa-
tions that we just studied. We would pick one of them and proceed with our design
tasks. Our next step would be to decide the word size of our system. If we want our
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system to be really inexpensive, we would pick a small word size, say 16 bits.
Allowing for the sign bit, the largest integer that this system can store is 32,767. So
now what do we do to accommodate a potential customer who wants to keep a tally
of the number of spectators paying admission to professional sports events in a
given year? Certainly, the number is larger than 32,767. No problem. Let’s just
make the word size larger. Thirty-two bits ought to do it. Our word is now big
enough for just about anything that anyone wants to count. But what if this customer
also needs to know the amount of money each spectator spends per minute of play-
ing time? This number is likely to be a decimal fraction. Now we’re really stuck.

The easiest and cheapest approach to this problem is to keep our 16-bit sys-
tem and say, “Hey, we’re building a cheap system here. If you want to do fancy
things with it, get yourself a good programmer.” Although this position sounds
outrageously flippant in the context of today’s technology, it was a reality in the
earliest days of each generation of computers. There simply was no such thing as
a floating-point unit in many of the first mainframes or microcomputers. For
many years, clever programming enabled these integer systems to act as if they
were, in fact, floating-point systems.

If you are familiar with scientific notation, you may already be thinking of how
you could handle floating-point operations—how you could provide floating-point
emulation—in an integer system. In scientific notation, numbers are expressed in two
parts: a fractional part, called a mantissa, and an exponential part that indicates the
power of ten to which the mantissa should be raised to obtain the value we need. So to
express 32,767 in scientific notation, we could write 3.2767 X 10*. Scientific notation
simplifies pencil and paper calculations that involve very large or very small num-
bers. It is also the basis for floating-point computation in today’s digital computers.

A Simple Model

In digital computers, floating-point numbers consist of three parts: a sign bit, an
exponent part (representing the exponent on a power of 2), and a fractional part
called a significand (which is a fancy word for a mantissa). The number of bits
used for the exponent and significand depends on whether we would like to opti-
mize for range (more bits in the exponent) or precision (more bits in the signifi-
cand). For the remainder of this section, we will use a 14-bit model with a 5-bit
exponent, an 8-bit significand, and a sign bit (see Figure 2.2). More general forms
are described in Section 2.5.2.

Let’s say that we wish to store the decimal number 17 in our model. We know
that 17 = 17.0 X 10° = 1.7 X 10' = 0.17 X 102. Analogously, in binary, 17, =
10001, X 2° =1000.1, X 2! = 100.01, X 22 = 10.001, X 23 = 1.0001, X 2% =

1 bit 5 bits 8 bits

Sign bit Exponent Significand
FIGURE 2.2 Floating-Point Representation
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0.10001, X 2. If we use this last form, our fractional part will be 10001000 and
our exponent will be 00101, as shown here:

0ojo o1t o 1)1 0 0 O 1 0 0 O

Using this form, we can store numbers of much greater magnitude than we could
using a fixed-point representation of 14 bits (which uses a total of 14 binary digits
plus a binary, or radix, point). If we want to represent 65536 = 0.1, X 2!7in this
model, we have:

oft o o 0 1t]J1 0 0 O0O O OO

One obvious problem with this model is that we haven’t provided for negative
exponents. If we wanted to store 0.25 we would have no way of doing so because
0.25 is 272 and the exponent —2 cannot be represented. We could fix the problem
by adding a sign bit to the exponent, but it turns out that it is more efficient to use
a biased exponent, because we can use simpler integer circuits when comparing
the values of two floating-point numbers.

The idea behind using a bias value is to convert every integer in the range
into a non-negative integer, which is then stored as a binary numeral. The inte-
gers in the desired range of exponents are first adjusted by adding this fixed bias
value to each exponent. The bias value is a number near the middle of the range
of possible values that we select to represent zero. In this case, we could select
16 because it is midway between 0 and 31 (our exponent has 5 bits, thus allow-
ing for 2° or 32 values). Any number larger than 16 in the exponent field will
represent a positive value. Values less than 16 will indicate negative values. This
is called an excess-16 representation because we have to subtract 16 to get the
true value of the exponent. Note that exponents of all zeros or all ones are typi-
cally reserved for special numbers (such as zero or infinity).

Returning to our example of storing 17, we calculated 17,, = 0.10001, X 25.
The biased exponent is now 16 + 5 =21:

oyt 0o 10 1)1 0 0 0 1 0 0 O

If we wanted to store 0.25 = 1.0 X 272 we would have:

0ojo 1t 1 1 0|1 0 0 O O O O O

There is still one rather large problem with this system: We do not have a unique
representation for each number. All of the following are equivalent:
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o1 o 1 0 1 1 0 0 01 0 O O
o1 o 1 1 0 01 0 0 0 1t 0 O
o1 o 1 1 1 0 0 1 0 0 0 1t O
of1 1 0 0 O o o0 o0 1t 0o o0 o0 1

Because synonymous forms such as these are not well-suited for digital comput-
ers, a convention has been established where the leftmost bit of the significand
will always be a 1. This is called normalization. This convention has the addi-
tional advantage in that the 1 can be implied, effectively giving an extra bit of pre-
cision in the significand.

EXAMPLE 2.23 Express 0.03125,, in normalized floating-point form with
excess-16 bias.

0.03125,, = 0.00001, X 2°=0.0001 X 271 =0.001 X 272 =0.01 X 273 =0.1
X 274 Applying the bias, the exponent field is 16 — 4 = 12.

0ojo + 1.0 0|1 0 0 0 0 0 0 O

Note that in this example we have not expressed the number using the normaliza-
tion notation that implies the 1.

Floating-Point Arithmetic

If we wanted to add two decimal numbers that are expressed in scientific nota-
tion, such as 1.5 X 10? + 3.5 X 103, we would change one of the numbers so that
both of them are expressed in the same power of the base. In our example, 1.5 X
102+ 3.5 X 10> =0.15 X 10° + 3.5 X 103 = 3.65 X 10°. Floating-point addition
and subtraction work the same way, as illustrated below.

EXAMPLE 2.24 Add the following binary numbers as represented in a nor-
malized 14-bit format with a bias of 16.

oft o o1t o0jJj1 1 0 0 1 0 0 O]+

ojt1 o o oot oo 11 010

We see that the addend is raised to the second power and that the augend is to the
zero power. Alignment of these two operands on the binary point gives us:
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11.001000
+0.10011010
11.10111010

Renormalizing, we retain the larger exponent and truncate the low-order bit.
Thus, we have:

Multiplication and division are carried out using the same rules of exponents
applied to decimal arithmetic, such as 273 X 2= 2!, for example.

EXAMPLE 2.25 Multiply:

o1 0 0 1 O 1 1 0 0 1 0 O O =0.11001000 x 22

Xxfoj1 0 O O O i 0 0 1 1 0 1 0 =0.10011010 x 20

Multiplication of 0.11001000 by 0.10011010 yields a product of 1.11011011. Renor-
malizing and supplying the appropriate exponent, the floating-point product is:

oy 0o 0o o t|1t 11 01 1 0 1

Floating-Point Errors

When we use pencil and paper to solve a trigonometry problem or compute the
interest on an investment, we intuitively understand that we are working in the
system of real numbers. We know that this system is infinite, because given any
pair of real numbers, we can always find another real number that is smaller than
one and greater than the other.

Unlike the mathematics in our imaginations, computers are finite systems,
with finite storage. When we call upon our computers to carry out floating-point
calculations, we are modeling the infinite system of real numbers in a finite sys-
tem of integers. What we have, in truth, is an approximation of the real number
system. The more bits we use, the better the approximation. However, there is
always some element of error, no matter how many bits we use.

Floating-point errors can be blatant, subtle, or unnoticed. The blatant errors,
such as numeric overflow or underflow, are the ones that cause programs to crash.
Subtle errors can lead to wildly erroneous results that are often hard to detect before
they cause real problems. For example, in our simple model, we can express normal-
ized numbers in the range of —.11111111, X 2! through +.11111111 X 2'5. Obvi-
ously, we cannot store 2712 or 2128; they simply don’t fit. It is not quite so obvious
that we cannot accurately store 128.5, which is well within our range. Converting
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128.5 to binary, we have 10000000.1, which is 9 bits wide. Our significand can hold
only eight. Typically, the low-order bit is dropped or rounded into the next bit. No
matter how we handle it, however, we have introduced an error into our system.

We can compute the relative error in our representation by taking the ratio of
the absolute value of the error to the true value of the number. Using our example
of 128.5, we find:

128.5 — 128 =0.003906 = 0.39%.
128

If we are not careful, such errors can propagate through a lengthy calculation, caus-
ing substantial loss of precision. Figure 2.3 illustrates the error propagation as we
iteratively multiply 16.24 by 0.91 using our 14-bit model. Upon converting these
numbers to 8-bit binary, we see that we have a substantial error from the outset.

As you can see, in six iterations, we have more than tripled the error in the
product. Continued iterations will produce an error of 100% because the product
eventually goes to zero. Although this 14-bit model is so small that it exaggerates
the error, all floating-point systems behave the same way. There is always some
degree of error involved when representing real numbers in a finite system, no
matter how large we make that system. Even the smallest error can have cata-
strophic results, particularly when computers are used to control physical events
such as in military and medical applications. The challenge to computer scientists
is to find efficient algorithms for controlling such errors within the bounds of per-
formance and economics.

Multiplier Multiplicand 14-Bit Product E?oa:::uct Error
00001 X Q0T WU e s
(1114:,(5).612050)1 X 0.11101000 = 211£1g:;)1 13.4483 1.94%
(111211.80;;)1 X 0.11101000 = (11011;.;71;)1 12.9380 2.46%
(11011.;.;7151)1 X 0.11101000 = (110(:(8)112150)1 11.1366 2.91%
1010.1101 X 0.11101000 = 1001.1100

(10.8125) (9.75) 10.1343 3.79%

1001.1100 X 0.11101000 = 1000.1101 o
(9.75) (8.8125) 8.3922 4.44%

FIGURE 2.3 Error Propagation in a 14-Bit Floating-Point Number
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The IEEE-754 Floating-Point Standard

The floating-point model that we have been using in this section is designed for
simplicity and conceptual understanding. We could extend this model to include
whatever number of bits we wanted. Until the 1980s, these kinds of decisions were
purely arbitrary, resulting in numerous incompatible representations across various
manufacturers’ systems. In 1985, the Institute of Electrical and Electronic Engi-
neers (IEEE) published a floating-point standard for both single- and double-preci-
sion floating-point numbers. This standard is officially known as IEEE-754 (1985).

The IEEE-754 single-precision standard uses an excess 127 bias over an 8-bit
exponent. The significand is 23 bits. With the sign bit included, the total word
size is 32 bits. When the exponent is 255, the quantity represented is = infinity
(which has a zero significand) or “not a number” (which has a non-zero signifi-
cand). “Not a number,” or NaN, is used to represent a value that is not a real num-
ber and is often used as an error indicator.

Double-precision numbers use a signed 64-bit word consisting of an 11-bit
exponent and 52-bit significand. The bias is 1023. The range of numbers that can
be represented in the IEEE double-precision model is shown in Figure 2.4. NaN
is indicated when the exponent is 2047.

At a slight cost in performance, most FPUs use only the 64-bit model so that
only one set of specialized circuits needs to be designed and implemented.

Both the single-precision and double-precision IEEE-754 models have two
representations for zero. When the exponent and the significand are both all zero,
the quantity stored is zero. It doesn’t matter what value is stored in the sign. For
this reason, programmers should use caution when comparing a floating-point
value to zero.

Virtually every recently designed computer system has adopted the IEEE-754
floating-point model. Unfortunately, by the time this standard came along, many
mainframe computer systems had established their own floating-point systems.
Changing to the newer system has taken decades for well-established architectures
such as IBM mainframes, which now support both their traditional floating-point
system and IEEE-754. Before 1998, however, IBM systems had been using the
same architecture for floating-point arithmetic that the original System/360 used

Zero
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Negative Expressible Negative | Positive Expressible Positive
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Numbers

—1.0 X 10308 —1.0 X 10-308 1.0 X 10-308 1.0 x 10308

FIGURE 2.4 Range of IEEE-754 Double-Precision Numbers
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in 1964. One would expect that both systems will continue to be supported, owing
to the substantial amount of older software that is running on these systems.

CHARACTER CODES

We have seen how digital computers use the binary system to represent and
manipulate numeric values. We have yet to consider how these internal values
can be converted to a form that is meaningful to humans. The manner in which
this is done depends on both the coding system used by the computer and how the
values are stored and retrieved.

Binary-Coded Decimal

Binary-coded decimal (BCD) is a numeric coding system used primarily in IBM
mainframe and midrange systems. As its name implies, BCD encodes each digit
of a decimal number to a 4-bit binary form. When stored in an 8-bit byte, the
upper nibble is called the zone and the lower part is called the digit. (This conven-
tion comes to us from the days of punched cards where each column of the card
could have a “zone punch” in one of the top 2 rows and a “digit punch” in one of
the 10 bottom rows.) The high-order nibble in a BCD byte is used to hold the
sign, which can have one of three values: An unsigned number is indicated with
1111; a positive number is indicated with 1100; and a negative number is indi-
cated with 1101. Coding for BCD numbers is shown in Figure 2.5.

As you can see by the figure, six possible binary values are not used,
1010 through 1111. Although it may appear that nearly 40% of our values are
going to waste, we are gaining a considerable advantage in accuracy. For
example, the number 0.3 is a repeating decimal when stored in binary. Trun-
cated to an 8-bit fraction, it converts back to 0.296875, giving us an error of

Digit BCD
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
Zones
1111 Unsigned
1100 Positive
1101 Negative

FIGURE 2.5 Binary-Coded Decimal
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approximately 1.05%. In BCD, the number is stored directly as 1111 0011
(we are assuming the decimal point is implied by the data format), giving no
error at all.

The digits of BCD numbers occupy only one nibble, so we can save on space
and make computations simpler when adjacent digits are placed into adjacent nib-
bles, leaving one nibble for the sign. This process is known as packing and num-
bers thus stored are called packed decimal numbers.

EXAMPLE 2.26 Represent —1265 in 3 bytes using packed BCD.
The zoned-decimal coding for 1265 is:
1111 0001 1111 0010 1111 0110 1111 0101

After packing, this string becomes:
0001 0010 0110 0101

Adding the sign after the low-order digit and padding the high-order digit with
ones in 3 bytes we have:

1111 0001 0010 0110 0101 1101

EBCDIC

Before the development of the IBM System/360, IBM had used a 6-bit variation
of BCD for representing characters and numbers. This code was severely limited
in how it could represent and manipulate data; in fact, lowercase letters were not
part of its repertoire. The designers of the System/360 needed more information
processing capability as well as a uniform manner in which to store both numbers
and data. In order to maintain compatibility with earlier computers and peripheral
equipment, the IBM engineers decided that it would be best to simply expand
BCD from 6 bits to 8 bits. Accordingly, this new code was called Extended
Binary Coded Decimal Interchange Code (EBCDIC). IBM continues to use
EBCDIC in IBM mainframe and midrange computer systems. The EBCDIC code
is shown in Figure 2.6 in zone-digit form. Characters are represented by append-
ing digit bits to zone bits. For example, the character a is 1000 0001 and the digit
3is 1111 0011 in EBCDIC. Note the only difference between upper- and lower-
case characters is in bit position 2, making a translation from upper- to lowercase
(or vice versa) a simple matter of flipping one bit. Zone bits also make it easier
for a programmer to test the validity of input data.

ASCII

While IBM was busy building its iconoclastic System/360, other equipment mak-
ers were trying to devise better ways for transmitting data between systems. The
American Standard Code for Information Interchange (ASCII) is one outcome of
these efforts. ASCII is a direct descendant of the coding schemes used for
decades by teletype (telex) devices. These devices used a 5-bit (Murray) code that
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Digit

Zone| 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
0000 NUL SOH STX ETX PF HT LC DEL RLF SMM VT FF CR SR S|
0001| DLE DC1 DC2 TM RES NL BS IL CAN EM CC CU1 IFS IGS [IRS IUS
0010 DS SOS FS BYP LF ETB ESC SM CuU2 ENQ ACK BEL
0011 SYN PN RS UC EOT CU3 DC4 NAK SuUB
0100 SP [ < ( + !
o101| & ] $ " ) : -
0110 - / | , % _ > ?
0111 ' # @ ' = !
1000 a b c d e f g h i
1001 j I m n o p q r
1010 ~ S t u \Y w X y z
1011
1100| A B C D E F G H |
1101 } J K L M N o} P Q R
1110 \ S T U \" W X Y z
1111 O 1 2 3 4 5 6 7 8 9

Abbreviations:
NUL  Null TM  Tape mark ETB End of transmission block
SOH Start of heading RES Restore ESC Escape
STX Start of text NL New line SM  Set mode
ETX End of text BS Backspace CU2 Customer use 2
PF Punch off IL Idle ENQ Enquiry
HT Horizontal tab CAN Cancel ACK  Acknowledge
LC Lowercase EM  End of medium BEL Ring the bell (beep)
DEL Delete CC  Cursor Control SYN Synchronous idle
RLF  Reverse linefeed CU1  Customer use 1 PN Punch on
SMM Start manual message IFS  Interchange file separator RS Record separator
VT Vertical tab IGS Interchange group separator UC  Uppercase
FF Form Feed IRS Interchange record separator EOT End of transmission
CR  Carriage return IUS  Interchange unit separator CU3 Customer use 3
SO Shift out DS Digit select DC4 Device control 4
Sl Shift in SOS Start of significance NAK Negative acknowledgement
DLE Data link escape FS Field separator SUB Substitute
DC1 Device control 1 BYP Bypass SP Space
DC2 Device control 2 LF Line feed

FIGURE 2.6 The EBCDIC Code (Values Given in Binary Zone-Digit Format)
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was derived from the Baudot code, which was invented in the 1880s. By the early
1960s, the limitations of the 5-bit codes were becoming apparent. The Interna-
tional Organization for Standardization (ISO) devised a 7-bit coding scheme that
it called International Alphabet Number 5. In 1967, a derivative of this alphabet
became the official standard that we now call ASCII.

As you can see in Figure 2.7, ASCII defines codes for 32 control characters, 10
digits, 52 letters (upper- and lowercase), 32 special characters (such as $ and #), and
the space character. The high-order (eighth) bit was intended to be used for parity.

Parity is the most basic of all error detection schemes. It is easy to implement
in simple devices like teletypes. A parity bit is turned “on” or “off” depending on
whether the sum of the other bits in the byte is even or odd. For example, if we
decide to use even parity and we are sending an ASCII A, the lower 7 bits are 100
0001. Because the sum of the bits is even, the parity bit would be set to off and
we would transmit 0100 0001. Similarly, if we transmit an ASCII C, 100 0011,
the parity bit would be set to on before we sent the 8-bit byte, 1100 0011. Parity
can be used to detect only single-bit errors. We will discuss more sophisticated
error detection methods in Section 2.8.

To allow compatibility with telecommunications equipment, computer manu-
facturers gravitated toward the ASCII code. As computer hardware became more
reliable, however, the need for a parity bit began to fade. In the early 1980s,
microcomputer and microcomputer-peripheral makers began to use the parity bit
to provide an “extended” character set for values between 128, and 255,

Depending on the manufacturer, the higher-valued characters could be any-
thing from mathematical symbols to characters that form the sides of boxes to
foreign-language characters such as fi. Unfortunately, no amount of clever tricks
can make ASCII a truly international interchange code.

Unicode

Both EBCDIC and ASCII were built around the Latin alphabet. As such, they are
restricted in their abilities to provide data representation for the non-Latin alpha-
bets used by the majority of the world’s population. As all countries began using
computers, each was devising codes that would most effectively represent their
native languages. None of these were necessarily compatible with any others,
placing yet another barrier in the way of the emerging global economy.

In 1991, before things got too far out of hand, a consortium of industry and
public leaders was formed to establish a new international information
exchange code called Unicode. This group is appropriately called the Unicode
Consortium.

Unicode is a 16-bit alphabet that is downward compatible with ASCII and the
Latin-1 character set. It is conformant with the ISO/IEC 10646-1 international
alphabet. Because the base coding of Unicode is 16 bits, it has the capacity to
encode the majority of characters used in every language of the world. If this
weren’t enough, Unicode also defines an extension mechanism that will allow for
the coding of an additional million characters. This is sufficient to provide codes
for every written language in the history of civilization.
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0 NUL 16 DLE 32 48 0 64 @ 80 P 96 112
1 SOH 17 DCH 33 ! 49 65 A 81 Q 97 a 113 q
2 STX 18 DC2 34 " 50 2 66 B 82 R 98 b 114 r
3 ETX 19 DC3 35 # 51 3 67 C 83 S 9 ¢ 115 s
4 EOT 20 DC4 36 $ 52 4 68 D 84 T 100 d 116 t
5 ENQ 21 NAK 37 % 53 5 69 E 85 U 101 e 117 u
6 ACK 22 SYN 38 & 54 6 70 F 86 V 102 f 118 v
7 BEL 23 ETB 39 ! 55 7 71 G 87 W 103 ¢ 119 w
8 BS 24 CAN 40 ( 56 8 72 H 88 X 104 h 120 x
9 TAB 25 EM 41 ) 57 9 73 | 89 Y 105 i 121 y
10 LF 26 SUB 42 58 74 J 90 Z 106 | 122 z
11 VT 27 ESC 43 + 59 ; 75 K 91 [ 107 k 123 {
12 FF 28 FS 44 | 60 < 76 L 92 \ 108 | 124 |
13 CR 29 GS 45 - 61 = 77 M 93 ] 109 m 125 }
14 SO 30 RS 46 62 > 78 N 94 - 110 n 126 ~
15 8l 31 US 47 |/ 63 ? 79 O 95 _ 111 o 127 DEL
Abbreviations:

NUL  Null DLE Data link escape

SOH Start of heading DC1 Device control 1

STX Start of text DC2 Device control 2

ETX End of text DC3 Device control 3

EOT End of transmission DC4  Device control 4

ENQ Enquiry NAK Negative acknowledge

ACK  Acknowledge SYN Synchronous idle

BEL Bell (beep) ETB End of transmission block

BS Backspace CAN - Cancel )

) EM  End of medium

HT Horizontal tab SUB  Substitute

LF Line feed, new line ESC Escape

VT Vertical tab FS  File separator

FF Form feed, new page GS  Group separator

CR  Carriage return RS  Record separator

SO Shift out US  Unit separator

SI Shift in DEL Delete/ldle

FIGURE 2.7 The ASCII Code (Values Given in Decimal)
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Character Character Set Number of Hexadecimal
Types Description Characters Values
. - 0000
Latin, Cyrillic
Alphabets i ’ 8192 to
Greek, etc. 1FFF
Dingbats, 2000
Symbols Mathematical, 4096 to
etc. 2FFF

Chinese, Japanese,

’ 3000
and Korean phonetic
CJK symbols and 4096 to
A 3FFF
punctuation
Unified Chinese, 4000
Han Japanese, 40,960 to
and Korean DFFF
Expansion or 4096 E?é)o
spillover from Han EFFF
FO00
User defined 4095 to
FFFE

FIGURE 2.8 Unicode Codespace

The Unicode codespace consists of five parts, as shown in Figure 2.8. A full
Unicode-compliant system will also allow formation of composite characters
from the individual codes, such as the combination of ~ and A to form A. The
algorithms used for these composite characters, as well as the Unicode exten-
sions, can be found in the references at the end of this chapter.

Although Unicode has yet to become the exclusive alphabet of American
computers, most manufacturers are including at least some limited support for it
in their systems. Unicode is currently the default character set of the Java pro-
gramming language. Ultimately, the acceptance of Unicode by all manufacturers
will depend on how aggressively they wish to position themselves as interna-
tional players and how inexpensively disk drives can be produced to support an
alphabet with double the storage requirements of ASCII or EBCDIC.

CODES FOR DATA RECORDING AND TRANSMISSION

ASCII, EBCDIC, and Unicode are represented unambiguously in computer mem-
ories. (Chapter 3 describes how this is done using binary digital devices.) Digital
switches, such as those used in memories, are either “off” or “on” with nothing in
between. However, when data is written to some sort of recording medium (such
as tape or disk), or transmitted over long distances, binary signals can become
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2.7.1

blurred, particularly when long strings of ones and zeros are involved. This blur-
ring is partly attributable to timing drifts that occur between senders and
receivers. Magnetic media, such as tapes and disks, can also lose synchronization
owing to the electrical behavior of the magnetic material from which they are
made. Signal transitions between the “high” and “low” states of digital signals
help to maintain synchronization in data recording and communications devices.
To this end, ASCII, EBCDIC, and Unicode are translated into other codes before
they are transmitted or recorded. This translation is carried out by control elec-
tronics within data recording and transmission devices. Neither the user nor the
host computer is ever aware that this translation has taken place.

Bytes are sent and received by telecommunications devices by using “high”
and “low” pulses in the transmission media (copper wire, for example). Magnetic
storage devices record data using changes in magnetic polarity called flux rever-
sals. Certain coding methods are better suited for data communications than for
data recording. New codes are continually being invented to accommodate
evolving recording methods and improved transmission and recording media. We
will examine a few of the more popular recording and transmission codes to
show how some of the challenges in this area have been overcome. For the sake
of brevity, we will use the term data encoding to mean the process of converting
a simple character code such as ASCII to some other code that better lends itself
to storage or transmission. Encoded data will be used to refer to character codes
so encoded.

Non-Return-to-Zero Code

The simplest data encoding method is the non-return-to-zero (NRZ) code. We use
this code implicitly when we say that “highs” and “lows” represent ones and
zeros: ones are usually high voltage, and zeroes are low voltage. Typically, high
voltage is positive 3 or 5 volts; low voltage is negative 3 or 5 volts. (The reverse
is logically equivalent.)

For example, the ASCII code for the English word OK with even parity is:
11001111 01001011. This pattern in NRZ code is shown in its signal form as well
as in its magnetic flux form in Figure 2.9. Each of the bits occupies an arbitrary
slice of time in a transmission medium or an arbitrary speck of space on a disk.
These slices and specks are called bit cells.

As you can see by the figure, we have a long run of ones in the ASCII O. If
we transmit the longer form of the word OK, OKAY, we would have a long string
of zeros as well as a long string of ones: 11001111 01001011 01000001
01011001. Unless the receiver is synchronized precisely with the sender, it is not
possible for either to know the exact duration of the signal for each bit cell. Slow
or out-of-phase timing within the receiver might cause the bit sequence for OKAY
to be received as: 10011 0100101 010001 0101001, which would be translated
back to ASCII as <ETX>(), bearing no resemblance to what was sent. (KETX> is
used here to mean the single ASCII End-of-Text character, 26 in decimal.)
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FIGURE 2.9 NRZ Encoding of OK as
a. Transmission Waveform
b. Magnetic Flux Pattern (The direction of the arrows
indicates the magnetic polarity.)

A little experimentation with this example will demonstrate to you that if only
one bit is missed in NRZ code, the entire message can be reduced to gibberish.

Non-Return-to-Zero-Invert Encoding

The non-return-to-zero-invert (NRZI) method addresses part of the problem of
synchronization loss. NRZI provides a transition—either high-to-low or low-to-
high—for each binary one, and no transition for binary zero. The NRZI coding
for OK (with even parity) is shown in Figure 2.10.

Although NRZI eliminates the problem of dropping binary ones, we are still
faced with the problem of long strings of zeros causing the receiver or reader to
drift out of phase, potentially dropping bits along the way.

The obvious approach to solving this problem is to inject sufficient transi-
tions into the transmitted waveform to keep the sender and receiver synchronized,
while preserving the information content of the message. This is the essential idea
behind all coding methods used today in the storage and transmission of data.

FIGURE 2.10 NRZI Encoding of OK
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2.7.3

2.7.4

Phase Modulation (Manchester Coding)

The coding method known commonly as phase modulation (PM), or Manchester
coding, deals with the synchronization problem head-on. PM provides a transi-
tion for each bit, whether a one or a zero. In PM, each binary one is signaled by
an “up” transition, and binary zeros with a “down” transition. Extra transitions
are provided at bit cell boundaries when necessary. The PM coding of the word
OK is shown in Figure 2.11.

Phase modulation is often used in data transmission applications such as local
area networks. It is inefficient for use in data storage, however. If PM were used for
tape and disk, phase modulation would require twice the bit density of NRZ. (One
flux transition for each half bit cell, depicted in Figure 2.11b.) However, we have just
seen how using NRZ might result in unacceptably high error rates. We could there-
fore define a “good” encoding scheme as a method that most economically achieves
a balance between ‘“excessive” storage volume requirements and ‘“‘excessive” error
rates. A number of codes have been created in trying to find this middle ground.

Frequency Modulation

As used in digital applications, frequency modulation (FM) is similar to phase
modulation in that at least one transition is supplied for each bit cell. These syn-
chronizing transitions occur at the beginning of each bit cell. To encode a binary
1, an additional transition is provided in the center of the bit cell. The FM coding
for OK is shown in Figure 2.12.

As you can readily see from the figure, FM is only slightly better than PM with
respect to its storage requirements. FM, however, lends itself to a coding method
called modified frequency modulation (MFM), whereby bit cell boundary transitions

LB e S 2 e N A O S S A A 2 R 2 AR R 22 S e AR i
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FIGURE 2.11 Phase Modulation (Manchester Coding) of the Word OK as:

a. Transmission Waveform
b. Magnetic Flux Pattern
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FIGURE 2.12 Frequency Modulation Coding of OK

are provided only between consecutive zeros. With MFM, then, at least one transi-
tion is supplied for every pair of bit cells, as opposed to each cell in PM or FM.

With fewer transitions than PM and more transitions than NRZ, MFM is a
highly effective code in terms of economy and error control. For many years,
MFM was virtually the only coding method used for rigid disk storage. The MFM
coding for OK is shown in Figure 2.13.

Run-Length-Limited Code

Run-length-limited (RLL) is a coding method in which block character code
words such as ASCII or EBCDIC are translated into code words specially
designed to limit the number of consecutive zeros appearing in the code. An
RLL(d, k) code allows a minimum of d and a maximum of k consecutive zeros to
appear between any pair of consecutive ones.

Clearly, RLL code words must contain more bits than the original character
code. However, because RLL is coded using NRZI on the disk, RLL-coded data
actually occupies less space on magnetic media because fewer flux transitions are
involved. The code words employed by RLL are designed to prevent a disk from
losing synchronization as it would if a “flat” binary NRZI code were used.

Although there are many variants, RLL(2, 7) is the predominant code used by
magnetic disk systems. It is technically a 16-bit mapping of 8-bit ASCII or
EBCDIC characters. However, it is nearly 50% more efficient than MFM in
terms of flux reversals. (Proof of this is left as an exercise.)

Theoretically speaking, RLL is a form of data compression called Huffiman
coding (discussed in Chapter 7), where the most likely information bit patterns

FIGURE 2.13 Modified Frequency Modulation Coding of OK
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are encoded using the shortest code word bit patterns. (In our c